Sample records for sequencing ngs techniques

  1. Impact of Next Generation Sequencing Techniques in Food Microbiology

    PubMed Central

    Mayo, Baltasar; Rachid, Caio T. C. C; Alegría, Ángel; Leite, Analy M. O; Peixoto, Raquel S; Delgado, Susana

    2014-01-01

    Understanding the Maxam-Gilbert and Sanger sequencing as the first generation, in recent years there has been an explosion of newly-developed sequencing strategies, which are usually referred to as next generation sequencing (NGS) techniques. NGS techniques have high-throughputs and produce thousands or even millions of sequences at the same time. These sequences allow for the accurate identification of microbial taxa, including uncultivable organisms and those present in small numbers. In specific applications, NGS provides a complete inventory of all microbial operons and genes present or being expressed under different study conditions. NGS techniques are revolutionizing the field of microbial ecology and have recently been used to examine several food ecosystems. After a short introduction to the most common NGS systems and platforms, this review addresses how NGS techniques have been employed in the study of food microbiota and food fermentations, and discusses their limits and perspectives. The most important findings are reviewed, including those made in the study of the microbiota of milk, fermented dairy products, and plant-, meat- and fish-derived fermented foods. The knowledge that can be gained on microbial diversity, population structure and population dynamics via the use of these technologies could be vital in improving the monitoring and manipulation of foods and fermented food products. They should also improve their safety. PMID:25132799

  2. Next generation sequencing in clinical medicine: Challenges and lessons for pathology and biomedical informatics.

    PubMed

    Gullapalli, Rama R; Desai, Ketaki V; Santana-Santos, Lucas; Kant, Jeffrey A; Becich, Michael J

    2012-01-01

    The Human Genome Project (HGP) provided the initial draft of mankind's DNA sequence in 2001. The HGP was produced by 23 collaborating laboratories using Sanger sequencing of mapped regions as well as shotgun sequencing techniques in a process that occupied 13 years at a cost of ~$3 billion. Today, Next Generation Sequencing (NGS) techniques represent the next phase in the evolution of DNA sequencing technology at dramatically reduced cost compared to traditional Sanger sequencing. A single laboratory today can sequence the entire human genome in a few days for a few thousand dollars in reagents and staff time. Routine whole exome or even whole genome sequencing of clinical patients is well within the realm of affordability for many academic institutions across the country. This paper reviews current sequencing technology methods and upcoming advancements in sequencing technology as well as challenges associated with data generation, data manipulation and data storage. Implementation of routine NGS data in cancer genomics is discussed along with potential pitfalls in the interpretation of the NGS data. The overarching importance of bioinformatics in the clinical implementation of NGS is emphasized.[7] We also review the issue of physician education which also is an important consideration for the successful implementation of NGS in the clinical workplace. NGS technologies represent a golden opportunity for the next generation of pathologists to be at the leading edge of the personalized medicine approaches coming our way. Often under-emphasized issues of data access and control as well as potential ethical implications of whole genome NGS sequencing are also discussed. Despite some challenges, it's hard not to be optimistic about the future of personalized genome sequencing and its potential impact on patient care and the advancement of knowledge of human biology and disease in the near future.

  3. Next generation sequencing in clinical medicine: Challenges and lessons for pathology and biomedical informatics

    PubMed Central

    Gullapalli, Rama R.; Desai, Ketaki V.; Santana-Santos, Lucas; Kant, Jeffrey A.; Becich, Michael J.

    2012-01-01

    The Human Genome Project (HGP) provided the initial draft of mankind's DNA sequence in 2001. The HGP was produced by 23 collaborating laboratories using Sanger sequencing of mapped regions as well as shotgun sequencing techniques in a process that occupied 13 years at a cost of ~$3 billion. Today, Next Generation Sequencing (NGS) techniques represent the next phase in the evolution of DNA sequencing technology at dramatically reduced cost compared to traditional Sanger sequencing. A single laboratory today can sequence the entire human genome in a few days for a few thousand dollars in reagents and staff time. Routine whole exome or even whole genome sequencing of clinical patients is well within the realm of affordability for many academic institutions across the country. This paper reviews current sequencing technology methods and upcoming advancements in sequencing technology as well as challenges associated with data generation, data manipulation and data storage. Implementation of routine NGS data in cancer genomics is discussed along with potential pitfalls in the interpretation of the NGS data. The overarching importance of bioinformatics in the clinical implementation of NGS is emphasized.[7] We also review the issue of physician education which also is an important consideration for the successful implementation of NGS in the clinical workplace. NGS technologies represent a golden opportunity for the next generation of pathologists to be at the leading edge of the personalized medicine approaches coming our way. Often under-emphasized issues of data access and control as well as potential ethical implications of whole genome NGS sequencing are also discussed. Despite some challenges, it's hard not to be optimistic about the future of personalized genome sequencing and its potential impact on patient care and the advancement of knowledge of human biology and disease in the near future. PMID:23248761

  4. A Review on the Applications of Next Generation Sequencing Technologies as Applied to Food-Related Microbiome Studies

    PubMed Central

    Cao, Yu; Fanning, Séamus; Proos, Sinéad; Jordan, Kieran; Srikumar, Shabarinath

    2017-01-01

    The development of next generation sequencing (NGS) techniques has enabled researchers to study and understand the world of microorganisms from broader and deeper perspectives. The contemporary advances in DNA sequencing technologies have not only enabled finer characterization of bacterial genomes but also provided deeper taxonomic identification of complex microbiomes which in its genomic essence is the combined genetic material of the microorganisms inhabiting an environment, whether the environment be a particular body econiche (e.g., human intestinal contents) or a food manufacturing facility econiche (e.g., floor drain). To date, 16S rDNA sequencing, metagenomics and metatranscriptomics are the three basic sequencing strategies used in the taxonomic identification and characterization of food-related microbiomes. These sequencing strategies have used different NGS platforms for DNA and RNA sequence identification. Traditionally, 16S rDNA sequencing has played a key role in understanding the taxonomic composition of a food-related microbiome. Recently, metagenomic approaches have resulted in improved understanding of a microbiome by providing a species-level/strain-level characterization. Further, metatranscriptomic approaches have contributed to the functional characterization of the complex interactions between different microbial communities within a single microbiome. Many studies have highlighted the use of NGS techniques in investigating the microbiome of fermented foods. However, the utilization of NGS techniques in studying the microbiome of non-fermented foods are limited. This review provides a brief overview of the advances in DNA sequencing chemistries as the technology progressed from first, next and third generations and highlights how NGS provided a deeper understanding of food-related microbiomes with special focus on non-fermented foods. PMID:29033905

  5. Targeted Next-generation Sequencing and Bioinformatics Pipeline to Evaluate Genetic Determinants of Constitutional Disease.

    PubMed

    Dilliott, Allison A; Farhan, Sali M K; Ghani, Mahdi; Sato, Christine; Liang, Eric; Zhang, Ming; McIntyre, Adam D; Cao, Henian; Racacho, Lemuel; Robinson, John F; Strong, Michael J; Masellis, Mario; Bulman, Dennis E; Rogaeva, Ekaterina; Lang, Anthony; Tartaglia, Carmela; Finger, Elizabeth; Zinman, Lorne; Turnbull, John; Freedman, Morris; Swartz, Rick; Black, Sandra E; Hegele, Robert A

    2018-04-04

    Next-generation sequencing (NGS) is quickly revolutionizing how research into the genetic determinants of constitutional disease is performed. The technique is highly efficient with millions of sequencing reads being produced in a short time span and at relatively low cost. Specifically, targeted NGS is able to focus investigations to genomic regions of particular interest based on the disease of study. Not only does this further reduce costs and increase the speed of the process, but it lessens the computational burden that often accompanies NGS. Although targeted NGS is restricted to certain regions of the genome, preventing identification of potential novel loci of interest, it can be an excellent technique when faced with a phenotypically and genetically heterogeneous disease, for which there are previously known genetic associations. Because of the complex nature of the sequencing technique, it is important to closely adhere to protocols and methodologies in order to achieve sequencing reads of high coverage and quality. Further, once sequencing reads are obtained, a sophisticated bioinformatics workflow is utilized to accurately map reads to a reference genome, to call variants, and to ensure the variants pass quality metrics. Variants must also be annotated and curated based on their clinical significance, which can be standardized by applying the American College of Medical Genetics and Genomics Pathogenicity Guidelines. The methods presented herein will display the steps involved in generating and analyzing NGS data from a targeted sequencing panel, using the ONDRISeq neurodegenerative disease panel as a model, to identify variants that may be of clinical significance.

  6. Next-generation sequencing is a robust strategy for the high-throughput detection of zygosity in transgenic maize.

    PubMed

    Fritsch, Leonie; Fischer, Rainer; Wambach, Christoph; Dudek, Max; Schillberg, Stefan; Schröper, Florian

    2015-08-01

    Simple and reliable, high-throughput techniques to detect the zygosity of transgenic events in plants are valuable for biotechnology and plant breeding companies seeking robust genotyping data for the assessment of new lines and the monitoring of breeding programs. We show that next-generation sequencing (NGS) applied to short PCR products spanning the transgene integration site provides accurate zygosity data that are more robust and reliable than those generated by PCR-based methods. The NGS reads covered the 5' border of the transgenic events (incorporating part of the transgene and the flanking genomic DNA), or the genomic sequences flanking the unfilled transgene integration site at the wild-type locus. We compared the NGS method to competitive real-time PCR with transgene-specific and wild-type-specific primer/probe pairs, one pair matching the 5' genomic flanking sequence and 5' part of the transgene and the other matching the unfilled transgene integration site. Although both NGS and real-time PCR provided useful zygosity data, the NGS technique was favorable because it needed fewer optimization steps. It also provided statistically more-reliable evidence for the presence of each allele because each product was often covered by more than 100 reads. The NGS method is also more suitable for the genotyping of large panels of plants because up to 80 million reads can be produced in one sequencing run. Our novel method is therefore ideal for the rapid and accurate genotyping of large numbers of samples.

  7. Histoimmunogenetics Markup Language 1.0: Reporting next generation sequencing-based HLA and KIR genotyping.

    PubMed

    Milius, Robert P; Heuer, Michael; Valiga, Daniel; Doroschak, Kathryn J; Kennedy, Caleb J; Bolon, Yung-Tsi; Schneider, Joel; Pollack, Jane; Kim, Hwa Ran; Cereb, Nezih; Hollenbach, Jill A; Mack, Steven J; Maiers, Martin

    2015-12-01

    We present an electronic format for exchanging data for HLA and KIR genotyping with extensions for next-generation sequencing (NGS). This format addresses NGS data exchange by refining the Histoimmunogenetics Markup Language (HML) to conform to the proposed Minimum Information for Reporting Immunogenomic NGS Genotyping (MIRING) reporting guidelines (miring.immunogenomics.org). Our refinements of HML include two major additions. First, NGS is supported by new XML structures to capture additional NGS data and metadata required to produce a genotyping result, including analysis-dependent (dynamic) and method-dependent (static) components. A full genotype, consensus sequence, and the surrounding metadata are included directly, while the raw sequence reads and platform documentation are externally referenced. Second, genotype ambiguity is fully represented by integrating Genotype List Strings, which use a hierarchical set of delimiters to represent allele and genotype ambiguity in a complete and accurate fashion. HML also continues to enable the transmission of legacy methods (e.g. site-specific oligonucleotide, sequence-specific priming, and Sequence Based Typing (SBT)), adding features such as allowing multiple group-specific sequencing primers, and fully leveraging techniques that combine multiple methods to obtain a single result, such as SBT integrated with NGS. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Cell-free DNA and next-generation sequencing in the service of personalized medicine for lung cancer

    PubMed Central

    Bennett, Catherine W.; Berchem, Guy; Kim, Yeoun Jin; El-Khoury, Victoria

    2016-01-01

    Personalized medicine has emerged as the future of cancer care to ensure that patients receive individualized treatment specific to their needs. In order to provide such care, molecular techniques that enable oncologists to diagnose, treat, and monitor tumors are necessary. In the field of lung cancer, cell free DNA (cfDNA) shows great potential as a less invasive liquid biopsy technique, and next-generation sequencing (NGS) is a promising tool for analysis of tumor mutations. In this review, we outline the evolution of cfDNA and NGS and discuss the progress of using them in a clinical setting for patients with lung cancer. We also present an analysis of the role of cfDNA as a liquid biopsy technique and NGS as an analytical tool in studying EGFR and MET, two frequently mutated genes in lung cancer. Ultimately, we hope that using cfDNA and NGS for cancer diagnosis and treatment will become standard for patients with lung cancer and across the field of oncology. PMID:27589834

  9. Comparison of three human papillomavirus DNA detection methods: Next generation sequencing, multiplex-PCR and nested-PCR followed by Sanger based sequencing.

    PubMed

    da Fonseca, Allex Jardim; Galvão, Renata Silva; Miranda, Angelica Espinosa; Ferreira, Luiz Carlos de Lima; Chen, Zigui

    2016-05-01

    To compare the diagnostic performance for HPV infection using three laboratorial techniques. Ninty-five cervicovaginal samples were randomly selected; each was tested for HPV DNA and genotypes using 3 methods in parallel: Multiplex-PCR, the Nested PCR followed by Sanger sequencing, and the Next_Gen Sequencing (NGS) with two assays (NGS-A1, NGS-A2). The study was approved by the Brazilian National IRB (CONEP protocol 16,800). The prevalence of HPV by the NGS assays was higher than that using the Multiplex-PCR (64.2% vs. 45.2%, respectively; P = 0.001) and the Nested-PCR (64.2% vs. 49.5%, respectively; P = 0.003). NGS also showed better performance in detecting high-risk HPV (HR-HPV) and HPV16. There was a weak interobservers agreement between the results of Multiplex-PCR and Nested-PCR in relation to NGS for the diagnosis of HPV infection, and a moderate correlation for HR-HPV detection. Both NGS assays showed a strong correlation for detection of HPVs (k = 0.86), HR-HPVs (k = 0.91), HPV16 (k = 0.92) and HPV18 (k = 0.91). NGS is more sensitive than the traditional Sanger sequencing and the Multiplex PCR to genotype HPVs, with promising ability to detect multiple infections, and may have the potential to establish an alternative method for the diagnosis and genotyping of HPV. © 2015 Wiley Periodicals, Inc.

  10. Targeted next generation sequencing for the detection of ciprofloxacin resistance markers using molecular inversion probes

    DTIC Science & Technology

    2016-07-06

    1 Targeted next-generation sequencing for the detection of ciprofloxacin resistance markers using molecular inversion probes Christopher P...development and evaluation of a panel of 44 single-stranded molecular inversion probes (MIPs) coupled to next-generation sequencing (NGS) for the...padlock and molecular inversion probes as upfront enrichment steps for use with NGS showed the specificity and multiplexability of these techniques

  11. Clinical Validation of Copy Number Variant Detection from Targeted Next-Generation Sequencing Panels.

    PubMed

    Kerkhof, Jennifer; Schenkel, Laila C; Reilly, Jack; McRobbie, Sheri; Aref-Eshghi, Erfan; Stuart, Alan; Rupar, C Anthony; Adams, Paul; Hegele, Robert A; Lin, Hanxin; Rodenhiser, David; Knoll, Joan; Ainsworth, Peter J; Sadikovic, Bekim

    2017-11-01

    Next-generation sequencing (NGS) technology has rapidly replaced Sanger sequencing in the assessment of sequence variations in clinical genetics laboratories. One major limitation of current NGS approaches is the ability to detect copy number variations (CNVs) approximately >50 bp. Because these represent a major mutational burden in many genetic disorders, parallel CNV assessment using alternate supplemental methods, along with the NGS analysis, is normally required, resulting in increased labor, costs, and turnaround times. The objective of this study was to clinically validate a novel CNV detection algorithm using targeted clinical NGS gene panel data. We have applied this approach in a retrospective cohort of 391 samples and a prospective cohort of 2375 samples and found a 100% sensitivity (95% CI, 89%-100%) for 37 unique events and a high degree of specificity to detect CNVs across nine distinct targeted NGS gene panels. This NGS CNV pipeline enables stand-alone first-tier assessment for CNV and sequence variants in a clinical laboratory setting, dispensing with the need for parallel CNV analysis using classic techniques, such as microarray, long-range PCR, or multiplex ligation-dependent probe amplification. This NGS CNV pipeline can also be applied to the assessment of complex genomic regions, including pseudogenic DNA sequences, such as the PMS2CL gene, and to mitochondrial genome heteroplasmy detection. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  12. Next-generation sequencing: hype and hope for development of personalized radiation therapy?

    PubMed

    Tinhofer, Ingeborg; Niehr, Franziska; Konschak, Robert; Liebs, Sandra; Munz, Matthias; Stenzinger, Albrecht; Weichert, Wilko; Keilholz, Ulrich; Budach, Volker

    2015-08-28

    The introduction of next-generation sequencing (NGS) in the field of cancer research has boosted worldwide efforts of genome-wide personalized oncology aiming at identifying predictive biomarkers and novel actionable targets. Despite considerable progress in understanding the molecular biology of distinct cancer entities by the use of this revolutionary technology and despite contemporaneous innovations in drug development, translation of NGS findings into improved concepts for cancer treatment remains a challenge. The aim of this article is to describe shortly the NGS platforms for DNA sequencing and in more detail key achievements and unresolved hurdles. A special focus will be given on potential clinical applications of this innovative technique in the field of radiation oncology.

  13. Single-Cell Sequencing for Drug Discovery and Drug Development.

    PubMed

    Wu, Hongjin; Wang, Charles; Wu, Shixiu

    2017-01-01

    Next-generation sequencing (NGS), particularly single-cell sequencing, has revolutionized the scale and scope of genomic and biomedical research. Recent technological advances in NGS and singlecell studies have made the deep whole-genome (DNA-seq), whole epigenome and whole-transcriptome sequencing (RNA-seq) at single-cell level feasible. NGS at the single-cell level expands our view of genome, epigenome and transcriptome and allows the genome, epigenome and transcriptome of any organism to be explored without a priori assumptions and with unprecedented throughput. And it does so with single-nucleotide resolution. NGS is also a very powerful tool for drug discovery and drug development. In this review, we describe the current state of single-cell sequencing techniques, which can provide a new, more powerful and precise approach for analyzing effects of drugs on treated cells and tissues. Our review discusses single-cell whole genome/exome sequencing (scWGS/scWES), single-cell transcriptome sequencing (scRNA-seq), single-cell bisulfite sequencing (scBS), and multiple omics of single-cell sequencing. We also highlight the advantages and challenges of each of these approaches. Finally, we describe, elaborate and speculate the potential applications of single-cell sequencing for drug discovery and drug development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. NGS Catalog: A Database of Next Generation Sequencing Studies in Humans

    PubMed Central

    Xia, Junfeng; Wang, Qingguo; Jia, Peilin; Wang, Bing; Pao, William; Zhao, Zhongming

    2015-01-01

    Next generation sequencing (NGS) technologies have been rapidly applied in biomedical and biological research since its advent only a few years ago, and they are expected to advance at an unprecedented pace in the following years. To provide the research community with a comprehensive NGS resource, we have developed the database Next Generation Sequencing Catalog (NGS Catalog, http://bioinfo.mc.vanderbilt.edu/NGS/index.html), a continually updated database that collects, curates and manages available human NGS data obtained from published literature. NGS Catalog deposits publication information of NGS studies and their mutation characteristics (SNVs, small insertions/deletions, copy number variations, and structural variants), as well as mutated genes and gene fusions detected by NGS. Other functions include user data upload, NGS general analysis pipelines, and NGS software. NGS Catalog is particularly useful for investigators who are new to NGS but would like to take advantage of these powerful technologies for their own research. Finally, based on the data deposited in NGS Catalog, we summarized features and findings from whole exome sequencing, whole genome sequencing, and transcriptome sequencing studies for human diseases or traits. PMID:22517761

  15. Applying Ancestry and Sex Computation as a Quality Control Tool in Targeted Next-Generation Sequencing.

    PubMed

    Mathias, Patrick C; Turner, Emily H; Scroggins, Sheena M; Salipante, Stephen J; Hoffman, Noah G; Pritchard, Colin C; Shirts, Brian H

    2016-03-01

    To apply techniques for ancestry and sex computation from next-generation sequencing (NGS) data as an approach to confirm sample identity and detect sample processing errors. We combined a principal component analysis method with k-nearest neighbors classification to compute the ancestry of patients undergoing NGS testing. By combining this calculation with X chromosome copy number data, we determined the sex and ancestry of patients for comparison with self-report. We also modeled the sensitivity of this technique in detecting sample processing errors. We applied this technique to 859 patient samples with reliable self-report data. Our k-nearest neighbors ancestry screen had an accuracy of 98.7% for patients reporting a single ancestry. Visual inspection of principal component plots was consistent with self-report in 99.6% of single-ancestry and mixed-ancestry patients. Our model demonstrates that approximately two-thirds of potential sample swaps could be detected in our patient population using this technique. Patient ancestry can be estimated from NGS data incidentally sequenced in targeted panels, enabling an inexpensive quality control method when coupled with patient self-report. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Comparison of an In Vitro Diagnostic Next-Generation Sequencing Assay with Sanger Sequencing for HIV-1 Genotypic Resistance Testing.

    PubMed

    Tzou, Philip L; Ariyaratne, Pramila; Varghese, Vici; Lee, Charlie; Rakhmanaliev, Elian; Villy, Carolin; Yee, Meiqi; Tan, Kevin; Michel, Gerd; Pinsky, Benjamin A; Shafer, Robert W

    2018-06-01

    The ability of next-generation sequencing (NGS) technologies to detect low frequency HIV-1 drug resistance mutations (DRMs) not detected by dideoxynucleotide Sanger sequencing has potential advantages for improved patient outcomes. We compared the performance of an in vitro diagnostic (IVD) NGS assay, the Sentosa SQ HIV genotyping assay for HIV-1 genotypic resistance testing, with Sanger sequencing on 138 protease/reverse transcriptase (RT) and 39 integrase sequences. The NGS assay used a 5% threshold for reporting low-frequency variants. The level of complete plus partial nucleotide sequence concordance between Sanger sequencing and NGS was 99.9%. Among the 138 protease/RT sequences, a mean of 6.4 DRMs was identified by both Sanger and NGS, a mean of 0.5 DRM was detected by NGS alone, and a mean of 0.1 DRM was detected by Sanger sequencing alone. Among the 39 integrase sequences, a mean of 1.6 DRMs was detected by both Sanger sequencing and NGS and a mean of 0.15 DRM was detected by NGS alone. Compared with Sanger sequencing, NGS estimated higher levels of resistance to one or more antiretroviral drugs for 18.2% of protease/RT sequences and 5.1% of integrase sequences. There was little evidence for technical artifacts in the NGS sequences, but the G-to-A hypermutation was detected in three samples. In conclusion, the IVD NGS assay evaluated in this study was highly concordant with Sanger sequencing. At the 5% threshold for reporting minority variants, NGS appeared to attain a modestly increased sensitivity for detecting low-frequency DRMs without compromising sequence accuracy. Copyright © 2018 American Society for Microbiology.

  17. Next generation sequencing (NGS): a golden tool in forensic toolkit.

    PubMed

    Aly, S M; Sabri, D M

    The DNA analysis is a cornerstone in contemporary forensic sciences. DNA sequencing technologies are powerful tools that enrich molecular sciences in the past based on Sanger sequencing and continue to glowing these sciences based on Next generation sequencing (NGS). Next generation sequencing has excellent potential to flourish and increase the molecular applications in forensic sciences by jumping over the pitfalls of the conventional method of sequencing. The main advantages of NGS compared to conventional method that it utilizes simultaneously a large number of genetic markers with high-resolution of genetic data. These advantages will help in solving several challenges such as mixture analysis and dealing with minute degraded samples. Based on these new technologies, many markers could be examined to get important biological data such as age, geographical origins, tissue type determination, external visible traits and monozygotic twins identification. It also could get data related to microbes, insects, plants and soil which are of great medico-legal importance. Despite the dozens of forensic research involving NGS, there are requirements before using this technology routinely in forensic cases. Thus, there is a great need to more studies that address robustness of these techniques. Therefore, this work highlights the applications of forensic sciences in the era of massively parallel sequencing.

  18. DNA fingerprinting, DNA barcoding, and next generation sequencing technology in plants.

    PubMed

    Sucher, Nikolaus J; Hennell, James R; Carles, Maria C

    2012-01-01

    DNA fingerprinting of plants has become an invaluable tool in forensic, scientific, and industrial laboratories all over the world. PCR has become part of virtually every variation of the plethora of approaches used for DNA fingerprinting today. DNA sequencing is increasingly used either in combination with or as a replacement for traditional DNA fingerprinting techniques. A prime example is the use of short, standardized regions of the genome as taxon barcodes for biological identification of plants. Rapid advances in "next generation sequencing" (NGS) technology are driving down the cost of sequencing and bringing large-scale sequencing projects into the reach of individual investigators. We present an overview of recent publications that demonstrate the use of "NGS" technology for DNA fingerprinting and DNA barcoding applications.

  19. Deep sequencing is an appropriate tool for the selection of unique Hepatitis C virus (HCV) variants after single genomic amplification.

    PubMed

    Guinoiseau, Thibault; Moreau, Alain; Hohnadel, Guillaume; Ngo-Giang-Huong, Nicole; Brulard, Celine; Vourc'h, Patrick; Goudeau, Alain; Gaudy-Graffin, Catherine

    2017-01-01

    Hepatitis C virus (HCV) evolves rapidly in a single host and circulates as a quasispecies wich is a complex mixture of genetically distinct virus's but closely related namely variants. To identify intra-individual diversity and investigate their functional properties in vitro, it is necessary to define their quasispecies composition and isolate the HCV variants. This is possible using single genome amplification (SGA). This technique, based on serially diluted cDNA to amplify a single cDNA molecule (clonal amplicon), has already been used to determine individual HCV diversity. In these studies, positive PCR reactions from SGA were directly sequenced using Sanger technology. The detection of non-clonal amplicons is necessary for excluding them to facilitate further functional analysis. Here, we compared Next Generation Sequencing (NGS) with De Novo assembly and Sanger sequencing for their ability to distinguish clonal and non-clonal amplicons after SGA on one plasma specimen. All amplicons (n = 42) classified as clonal by NGS were also classified as clonal by Sanger sequencing. No double peaks were seen on electropherograms for non-clonal amplicons with position-specific nucleotide variation below 15% by NGS. Altogether, NGS circumvented many of the difficulties encountered when using Sanger sequencing after SGA and is an appropriate tool to reliability select clonal amplicons for further functional studies.

  20. Deep sequencing is an appropriate tool for the selection of unique Hepatitis C virus (HCV) variants after single genomic amplification

    PubMed Central

    Guinoiseau, Thibault; Moreau, Alain; Hohnadel, Guillaume; Ngo-Giang-Huong, Nicole; Brulard, Celine; Vourc’h, Patrick; Goudeau, Alain; Gaudy-Graffin, Catherine

    2017-01-01

    Hepatitis C virus (HCV) evolves rapidly in a single host and circulates as a quasispecies wich is a complex mixture of genetically distinct virus’s but closely related namely variants. To identify intra-individual diversity and investigate their functional properties in vitro, it is necessary to define their quasispecies composition and isolate the HCV variants. This is possible using single genome amplification (SGA). This technique, based on serially diluted cDNA to amplify a single cDNA molecule (clonal amplicon), has already been used to determine individual HCV diversity. In these studies, positive PCR reactions from SGA were directly sequenced using Sanger technology. The detection of non-clonal amplicons is necessary for excluding them to facilitate further functional analysis. Here, we compared Next Generation Sequencing (NGS) with De Novo assembly and Sanger sequencing for their ability to distinguish clonal and non-clonal amplicons after SGA on one plasma specimen. All amplicons (n = 42) classified as clonal by NGS were also classified as clonal by Sanger sequencing. No double peaks were seen on electropherograms for non-clonal amplicons with position-specific nucleotide variation below 15% by NGS. Altogether, NGS circumvented many of the difficulties encountered when using Sanger sequencing after SGA and is an appropriate tool to reliability select clonal amplicons for further functional studies. PMID:28362878

  1. Software for pre-processing Illumina next-generation sequencing short read sequences

    PubMed Central

    2014-01-01

    Background When compared to Sanger sequencing technology, next-generation sequencing (NGS) technologies are hindered by shorter sequence read length, higher base-call error rate, non-uniform coverage, and platform-specific sequencing artifacts. These characteristics lower the quality of their downstream analyses, e.g. de novo and reference-based assembly, by introducing sequencing artifacts and errors that may contribute to incorrect interpretation of data. Although many tools have been developed for quality control and pre-processing of NGS data, none of them provide flexible and comprehensive trimming options in conjunction with parallel processing to expedite pre-processing of large NGS datasets. Methods We developed ngsShoRT (next-generation sequencing Short Reads Trimmer), a flexible and comprehensive open-source software package written in Perl that provides a set of algorithms commonly used for pre-processing NGS short read sequences. We compared the features and performance of ngsShoRT with existing tools: CutAdapt, NGS QC Toolkit and Trimmomatic. We also compared the effects of using pre-processed short read sequences generated by different algorithms on de novo and reference-based assembly for three different genomes: Caenorhabditis elegans, Saccharomyces cerevisiae S288c, and Escherichia coli O157 H7. Results Several combinations of ngsShoRT algorithms were tested on publicly available Illumina GA II, HiSeq 2000, and MiSeq eukaryotic and bacteria genomic short read sequences with the focus on removing sequencing artifacts and low-quality reads and/or bases. Our results show that across three organisms and three sequencing platforms, trimming improved the mean quality scores of trimmed sequences. Using trimmed sequences for de novo and reference-based assembly improved assembly quality as well as assembler performance. In general, ngsShoRT outperformed comparable trimming tools in terms of trimming speed and improvement of de novo and reference-based assembly as measured by assembly contiguity and correctness. Conclusions Trimming of short read sequences can improve the quality of de novo and reference-based assembly and assembler performance. The parallel processing capability of ngsShoRT reduces trimming time and improves the memory efficiency when dealing with large datasets. We recommend combining sequencing artifacts removal, and quality score based read filtering and base trimming as the most consistent method for improving sequence quality and downstream assemblies. ngsShoRT source code, user guide and tutorial are available at http://research.bioinformatics.udel.edu/genomics/ngsShoRT/. ngsShoRT can be incorporated as a pre-processing step in genome and transcriptome assembly projects. PMID:24955109

  2. Inference of Markovian properties of molecular sequences from NGS data and applications to comparative genomics.

    PubMed

    Ren, Jie; Song, Kai; Deng, Minghua; Reinert, Gesine; Cannon, Charles H; Sun, Fengzhu

    2016-04-01

    Next-generation sequencing (NGS) technologies generate large amounts of short read data for many different organisms. The fact that NGS reads are generally short makes it challenging to assemble the reads and reconstruct the original genome sequence. For clustering genomes using such NGS data, word-count based alignment-free sequence comparison is a promising approach, but for this approach, the underlying expected word counts are essential.A plausible model for this underlying distribution of word counts is given through modeling the DNA sequence as a Markov chain (MC). For single long sequences, efficient statistics are available to estimate the order of MCs and the transition probability matrix for the sequences. As NGS data do not provide a single long sequence, inference methods on Markovian properties of sequences based on single long sequences cannot be directly used for NGS short read data. Here we derive a normal approximation for such word counts. We also show that the traditional Chi-square statistic has an approximate gamma distribution ,: using the Lander-Waterman model for physical mapping. We propose several methods to estimate the order of the MC based on NGS reads and evaluate those using simulations. We illustrate the applications of our results by clustering genomic sequences of several vertebrate and tree species based on NGS reads using alignment-free sequence dissimilarity measures. We find that the estimated order of the MC has a considerable effect on the clustering results ,: and that the clustering results that use a N: MC of the estimated order give a plausible clustering of the species. Our implementation of the statistics developed here is available as R package 'NGS.MC' at http://www-rcf.usc.edu/∼fsun/Programs/NGS-MC/NGS-MC.html fsun@usc.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Next-generation sequencing in the clinic: promises and challenges.

    PubMed

    Xuan, Jiekun; Yu, Ying; Qing, Tao; Guo, Lei; Shi, Leming

    2013-11-01

    The advent of next generation sequencing (NGS) technologies has revolutionized the field of genomics, enabling fast and cost-effective generation of genome-scale sequence data with exquisite resolution and accuracy. Over the past years, rapid technological advances led by academic institutions and companies have continued to broaden NGS applications from research to the clinic. A recent crop of discoveries have highlighted the medical impact of NGS technologies on Mendelian and complex diseases, particularly cancer. However, the ever-increasing pace of NGS adoption presents enormous challenges in terms of data processing, storage, management and interpretation as well as sequencing quality control, which hinder the translation from sequence data into clinical practice. In this review, we first summarize the technical characteristics and performance of current NGS platforms. We further highlight advances in the applications of NGS technologies towards the development of clinical diagnostics and therapeutics. Common issues in NGS workflows are also discussed to guide the selection of NGS platforms and pipelines for specific research purposes. Published by Elsevier Ireland Ltd.

  4. Normal and compound poisson approximations for pattern occurrences in NGS reads.

    PubMed

    Zhai, Zhiyuan; Reinert, Gesine; Song, Kai; Waterman, Michael S; Luan, Yihui; Sun, Fengzhu

    2012-06-01

    Next generation sequencing (NGS) technologies are now widely used in many biological studies. In NGS, sequence reads are randomly sampled from the genome sequence of interest. Most computational approaches for NGS data first map the reads to the genome and then analyze the data based on the mapped reads. Since many organisms have unknown genome sequences and many reads cannot be uniquely mapped to the genomes even if the genome sequences are known, alternative analytical methods are needed for the study of NGS data. Here we suggest using word patterns to analyze NGS data. Word pattern counting (the study of the probabilistic distribution of the number of occurrences of word patterns in one or multiple long sequences) has played an important role in molecular sequence analysis. However, no studies are available on the distribution of the number of occurrences of word patterns in NGS reads. In this article, we build probabilistic models for the background sequence and the sampling process of the sequence reads from the genome. Based on the models, we provide normal and compound Poisson approximations for the number of occurrences of word patterns from the sequence reads, with bounds on the approximation error. The main challenge is to consider the randomness in generating the long background sequence, as well as in the sampling of the reads using NGS. We show the accuracy of these approximations under a variety of conditions for different patterns with various characteristics. Under realistic assumptions, the compound Poisson approximation seems to outperform the normal approximation in most situations. These approximate distributions can be used to evaluate the statistical significance of the occurrence of patterns from NGS data. The theory and the computational algorithm for calculating the approximate distributions are then used to analyze ChIP-Seq data using transcription factor GABP. Software is available online (www-rcf.usc.edu/∼fsun/Programs/NGS_motif_power/NGS_motif_power.html). In addition, Supplementary Material can be found online (www.liebertonline.com/cmb).

  5. Pitfalls in genetic testing: the story of missed SCN1A mutations.

    PubMed

    Djémié, Tania; Weckhuysen, Sarah; von Spiczak, Sarah; Carvill, Gemma L; Jaehn, Johanna; Anttonen, Anna-Kaisa; Brilstra, Eva; Caglayan, Hande S; de Kovel, Carolien G; Depienne, Christel; Gaily, Eija; Gennaro, Elena; Giraldez, Beatriz G; Gormley, Padhraig; Guerrero-López, Rosa; Guerrini, Renzo; Hämäläinen, Eija; Hartmann, Corinna; Hernandez-Hernandez, Laura; Hjalgrim, Helle; Koeleman, Bobby P C; Leguern, Eric; Lehesjoki, Anna-Elina; Lemke, Johannes R; Leu, Costin; Marini, Carla; McMahon, Jacinta M; Mei, Davide; Møller, Rikke S; Muhle, Hiltrud; Myers, Candace T; Nava, Caroline; Serratosa, Jose M; Sisodiya, Sanjay M; Stephani, Ulrich; Striano, Pasquale; van Kempen, Marjan J A; Verbeek, Nienke E; Usluer, Sunay; Zara, Federico; Palotie, Aarno; Mefford, Heather C; Scheffer, Ingrid E; De Jonghe, Peter; Helbig, Ingo; Suls, Arvid

    2016-07-01

    Sanger sequencing, still the standard technique for genetic testing in most diagnostic laboratories and until recently widely used in research, is gradually being complemented by next-generation sequencing (NGS). No single mutation detection technique is however perfect in identifying all mutations. Therefore, we wondered to what extent inconsistencies between Sanger sequencing and NGS affect the molecular diagnosis of patients. Since mutations in SCN1A, the major gene implicated in epilepsy, are found in the majority of Dravet syndrome (DS) patients, we focused on missed SCN1A mutations. We sent out a survey to 16 genetic centers performing SCN1A testing. We collected data on 28 mutations initially missed using Sanger sequencing. All patients were falsely reported as SCN1A mutation-negative, both due to technical limitations and human errors. We illustrate the pitfalls of Sanger sequencing and most importantly provide evidence that SCN1A mutations are an even more frequent cause of DS than already anticipated.

  6. Evaluation of Targeted Next-Generation Sequencing for Detection of Bovine Pathogens in Clinical Samples.

    PubMed

    Anis, Eman; Hawkins, Ian K; Ilha, Marcia R S; Woldemeskel, Moges W; Saliki, Jeremiah T; Wilkes, Rebecca P

    2018-07-01

    The laboratory diagnosis of infectious diseases, especially those caused by mixed infections, is challenging. Routinely, it requires submission of multiple samples to separate laboratories. Advances in next-generation sequencing (NGS) have provided the opportunity for development of a comprehensive method to identify infectious agents. This study describes the use of target-specific primers for PCR-mediated amplification with the NGS technology in which pathogen genomic regions of interest are enriched and selectively sequenced from clinical samples. In the study, 198 primers were designed to target 43 common bovine and small-ruminant bacterial, fungal, viral, and parasitic pathogens, and a bioinformatics tool was specifically constructed for the detection of targeted pathogens. The primers were confirmed to detect the intended pathogens by testing reference strains and isolates. The method was then validated using 60 clinical samples (including tissues, feces, and milk) that were also tested with other routine diagnostic techniques. The detection limits of the targeted NGS method were evaluated using 10 representative pathogens that were also tested by quantitative PCR (qPCR), and the NGS method was able to detect the organisms from samples with qPCR threshold cycle ( C T ) values in the 30s. The method was successful for the detection of multiple pathogens in the clinical samples, including some additional pathogens missed by the routine techniques because the specific tests needed for the particular organisms were not performed. The results demonstrate the feasibility of the approach and indicate that it is possible to incorporate NGS as a diagnostic tool in a cost-effective manner into a veterinary diagnostic laboratory. Copyright © 2018 Anis et al.

  7. Use of Sequence-independent, single-primer amplification (SISPA) with NGS platform for detection of RNA viruses in clinical samples

    USDA-ARS?s Scientific Manuscript database

    Current technologies for next generation sequencing (NGS) have revolutionized metagenomics analysis of clinical samples. One advantage of the NGS platform is the possibility to sequence the genetic material in samples without any prior knowledge of the sequence contained within. Sequence-Independent...

  8. From genomics to functional markers in the era of next-generation sequencing.

    PubMed

    Salgotra, R K; Gupta, B B; Stewart, C N

    2014-03-01

    The availability of complete genome sequences, along with other genomic resources for Arabidopsis, rice, pigeon pea, soybean and other crops, has revolutionized our understanding of the genetic make-up of plants. Next-generation DNA sequencing (NGS) has facilitated single nucleotide polymorphism discovery in plants. Functionally-characterized sequences can be identified and functional markers (FMs) for important traits can be developed at an ever-increasing ease. FMs are derived from sequence polymorphisms found in allelic variants of a functional gene. Linkage disequilibrium-based association mapping and homologous recombinants have been developed for identification of "perfect" markers for their use in crop improvement practices. Compared with many other molecular markers, FMs derived from the functionally characterized sequence genes using NGS techniques and their use provide opportunities to develop high-yielding plant genotypes resistant to various stresses at a fast pace.

  9. An NGS Workflow Blueprint for DNA Sequencing Data and Its Application in Individualized Molecular Oncology

    PubMed Central

    Li, Jian; Batcha, Aarif Mohamed Nazeer; Grüning, Björn; Mansmann, Ulrich R.

    2015-01-01

    Next-generation sequencing (NGS) technologies that have advanced rapidly in the past few years possess the potential to classify diseases, decipher the molecular code of related cell processes, identify targets for decision-making on targeted therapy or prevention strategies, and predict clinical treatment response. Thus, NGS is on its way to revolutionize oncology. With the help of NGS, we can draw a finer map for the genetic basis of diseases and can improve our understanding of diagnostic and prognostic applications and therapeutic methods. Despite these advantages and its potential, NGS is facing several critical challenges, including reduction of sequencing cost, enhancement of sequencing quality, improvement of technical simplicity and reliability, and development of semiautomated and integrated analysis workflow. In order to address these challenges, we conducted a literature research and summarized a four-stage NGS workflow for providing a systematic review on NGS-based analysis, explaining the strength and weakness of diverse NGS-based software tools, and elucidating its potential connection to individualized medicine. By presenting this four-stage NGS workflow, we try to provide a minimal structural layout required for NGS data storage and reproducibility. PMID:27081306

  10. Yleaf: Software for Human Y-Chromosomal Haplogroup Inference from Next-Generation Sequencing Data.

    PubMed

    Ralf, Arwin; Montiel González, Diego; Zhong, Kaiyin; Kayser, Manfred

    2018-05-01

    Next-generation sequencing (NGS) technologies offer immense possibilities given the large genomic data they simultaneously deliver. The human Y-chromosome serves as good example how NGS benefits various applications in evolution, anthropology, genealogy, and forensics. Prior to NGS, the Y-chromosome phylogenetic tree consisted of a few hundred branches, based on NGS data, it now contains many thousands. The complexity of both, Y tree and NGS data provide challenges for haplogroup assignment. For effective analysis and interpretation of Y-chromosome NGS data, we present Yleaf, a publically available, automated, user-friendly software for high-resolution Y-chromosome haplogroup inference independently of library and sequencing methods.

  11. The utility of Next Generation Sequencing for molecular diagnostics in Rett syndrome.

    PubMed

    Vidal, Silvia; Brandi, Núria; Pacheco, Paola; Gerotina, Edgar; Blasco, Laura; Trotta, Jean-Rémi; Derdak, Sophia; Del Mar O'Callaghan, Maria; Garcia-Cazorla, Àngels; Pineda, Mercè; Armstrong, Judith

    2017-09-25

    Rett syndrome (RTT) is an early-onset neurodevelopmental disorder that almost exclusively affects girls and is totally disabling. Three genes have been identified that cause RTT: MECP2, CDKL5 and FOXG1. However, the etiology of some of RTT patients still remains unknown. Recently, next generation sequencing (NGS) has promoted genetic diagnoses because of the quickness and affordability of the method. To evaluate the usefulness of NGS in genetic diagnosis, we present the genetic study of RTT-like patients using different techniques based on this technology. We studied 1577 patients with RTT-like clinical diagnoses and reviewed patients who were previously studied and thought to have RTT genes by Sanger sequencing. Genetically, 477 of 1577 patients with a RTT-like suspicion have been diagnosed. Positive results were found in 30% by Sanger sequencing, 23% with a custom panel, 24% with a commercial panel and 32% with whole exome sequencing. A genetic study using NGS allows the study of a larger number of genes associated with RTT-like symptoms simultaneously, providing genetic study of a wider group of patients as well as significantly reducing the response time and cost of the study.

  12. ViennaNGS: A toolbox for building efficient next- generation sequencing analysis pipelines

    PubMed Central

    Wolfinger, Michael T.; Fallmann, Jörg; Eggenhofer, Florian; Amman, Fabian

    2015-01-01

    Recent achievements in next-generation sequencing (NGS) technologies lead to a high demand for reuseable software components to easily compile customized analysis workflows for big genomics data. We present ViennaNGS, an integrated collection of Perl modules focused on building efficient pipelines for NGS data processing. It comes with functionality for extracting and converting features from common NGS file formats, computation and evaluation of read mapping statistics, as well as normalization of RNA abundance. Moreover, ViennaNGS provides software components for identification and characterization of splice junctions from RNA-seq data, parsing and condensing sequence motif data, automated construction of Assembly and Track Hubs for the UCSC genome browser, as well as wrapper routines for a set of commonly used NGS command line tools. PMID:26236465

  13. Small RNA NGS Revealed the Presence of Cherry Virus A and Little Cherry Virus 1 on Apricots in Hungary.

    PubMed

    Baráth, Dániel; Jaksa-Czotter, Nikoletta; Molnár, János; Varga, Tünde; Balássy, Júlia; Szabó, Luca Krisztina; Kirilla, Zoltán; Tusnády, Gábor E; Preininger, Éva; Várallyay, Éva

    2018-06-11

    Fruit trees, such as apricot trees, are constantly exposed to the attack of viruses. As they are propagated in a vegetative way, this risk is present not only in the field, where they remain for decades, but also during their propagation. Metagenomic diagnostic methods, based on next generation sequencing (NGS), offer unique possibilities to reveal all the present pathogens in the investigated sample. Using NGS of small RNAs, a special field of these techniques, we tested leaf samples of different varieties of apricot originating from an isolator house or open field stock nursery. As a result, we identified Cherry virus A (CVA) and little cherry virus 1 (LChV-1) for the first time in Hungary. The NGS results were validated by RT-PCR and also by Northern blot in the case of CVA. Cloned and Sanger sequenced viral-specific PCR products enabled us to investigate their phylogenetic relationships. However, since these pathogens have not been described in our country before, their role in symptom development and modification during co-infection with other viruses requires further investigation.

  14. Next generation sequencing identifies abnormal Y chromosome and candidate causal variants in premature ovarian failure patients.

    PubMed

    Lee, Yujung; Kim, Changshin; Park, YoungJoon; Pyun, Jung-A; Kwack, KyuBum

    2016-12-01

    Premature ovarian failure (POF) is characterized by heterogeneous genetic causes such as chromosomal abnormalities and variants in causal genes. Recently, development of techniques made next generation sequencing (NGS) possible to detect genome wide variants including chromosomal abnormalities. Among 37 Korean POF patients, XY karyotype with distal part deletions of Y chromosome, Yp11.32-31 and Yp12 end part, was observed in two patients through NGS. Six deleterious variants in POF genes were also detected which might explain the pathogenesis of POF with abnormalities in the sex chromosomes. Additionally, the two POF patients had no mutation in SRY but three non-synonymous variants were detected in genes regarding sex reversal. These findings suggest candidate causes of POF and sex reversal and show the propriety of NGS to approach the heterogeneous pathogenesis of POF. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. A Web-Hosted R Workflow to Simplify and Automate the Analysis of 16S NGS Data

    EPA Science Inventory

    Next-Generation Sequencing (NGS) produces large data sets that include tens-of-thousands of sequence reads per sample. For analysis of bacterial diversity, 16S NGS sequences are typically analyzed in a workflow that containing best-of-breed bioinformatics packages that may levera...

  16. Library construction for next-generation sequencing: Overviews and challenges

    PubMed Central

    Head, Steven R.; Komori, H. Kiyomi; LaMere, Sarah A.; Whisenant, Thomas; Van Nieuwerburgh, Filip; Salomon, Daniel R.; Ordoukhanian, Phillip

    2014-01-01

    High-throughput sequencing, also known as next-generation sequencing (NGS), has revolutionized genomic research. In recent years, NGS technology has steadily improved, with costs dropping and the number and range of sequencing applications increasing exponentially. Here, we examine the critical role of sequencing library quality and consider important challenges when preparing NGS libraries from DNA and RNA sources. Factors such as the quantity and physical characteristics of the RNA or DNA source material as well as the desired application (i.e., genome sequencing, targeted sequencing, RNA-seq, ChIP-seq, RIP-seq, and methylation) are addressed in the context of preparing high quality sequencing libraries. In addition, the current methods for preparing NGS libraries from single cells are also discussed. PMID:24502796

  17. Whole Genome Sequencing Increases Molecular Diagnostic Yield Compared with Current Diagnostic Testing for Inherited Retinal Disease.

    PubMed

    Ellingford, Jamie M; Barton, Stephanie; Bhaskar, Sanjeev; Williams, Simon G; Sergouniotis, Panagiotis I; O'Sullivan, James; Lamb, Janine A; Perveen, Rahat; Hall, Georgina; Newman, William G; Bishop, Paul N; Roberts, Stephen A; Leach, Rick; Tearle, Rick; Bayliss, Stuart; Ramsden, Simon C; Nemeth, Andrea H; Black, Graeme C M

    2016-05-01

    To compare the efficacy of whole genome sequencing (WGS) with targeted next-generation sequencing (NGS) in the diagnosis of inherited retinal disease (IRD). Case series. A total of 562 patients diagnosed with IRD. We performed a direct comparative analysis of current molecular diagnostics with WGS. We retrospectively reviewed the findings from a diagnostic NGS DNA test for 562 patients with IRD. A subset of 46 of 562 patients (encompassing potential clinical outcomes of diagnostic analysis) also underwent WGS, and we compared mutation detection rates and molecular diagnostic yields. In addition, we compared the sensitivity and specificity of the 2 techniques to identify known single nucleotide variants (SNVs) using 6 control samples with publically available genotype data. Diagnostic yield of genomic testing. Across known disease-causing genes, targeted NGS and WGS achieved similar levels of sensitivity and specificity for SNV detection. However, WGS also identified 14 clinically relevant genetic variants through WGS that had not been identified by NGS diagnostic testing for the 46 individuals with IRD. These variants included large deletions and variants in noncoding regions of the genome. Identification of these variants confirmed a molecular diagnosis of IRD for 11 of the 33 individuals referred for WGS who had not obtained a molecular diagnosis through targeted NGS testing. Weighted estimates, accounting for population structure, suggest that WGS methods could result in an overall 29% (95% confidence interval, 15-45) uplift in diagnostic yield. We show that WGS methods can detect disease-causing genetic variants missed by current NGS diagnostic methodologies for IRD and thereby demonstrate the clinical utility and additional value of WGS. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  18. Application of next-generation sequencing in clinical oncology to advance personalized treatment of cancer

    PubMed Central

    Guan, Yan-Fang; Li, Gai-Rui; Wang, Rong-Jiao; Yi, Yu-Ting; Yang, Ling; Jiang, Dan; Zhang, Xiao-Ping; Peng, Yin

    2012-01-01

    With the development and improvement of new sequencing technology, next-generation sequencing (NGS) has been applied increasingly in cancer genomics research over the past decade. More recently, NGS has been adopted in clinical oncology to advance personalized treatment of cancer. NGS is used to identify novel and rare cancer mutations, detect familial cancer mutation carriers, and provide molecular rationale for appropriate targeted therapy. Compared to traditional sequencing, NGS holds many advantages, such as the ability to fully sequence all types of mutations for a large number of genes (hundreds to thousands) in a single test at a relatively low cost. However, significant challenges, particularly with respect to the requirement for simpler assays, more flexible throughput, shorter turnaround time, and most importantly, easier data analysis and interpretation, will have to be overcome to translate NGS to the bedside of cancer patients. Overall, continuous dedication to apply NGS in clinical oncology practice will enable us to be one step closer to personalized medicine. PMID:22980418

  19. Next-generation Sequencing (NGS) Analysis on Single Circulating Tumor Cells (CTCs) with No Need of Whole-genome Amplification (WGA).

    PubMed

    Palmirotta, Raffaele; Lovero, Domenica; Silvestris, Erica; Felici, Claudia; Quaresmini, Davide; Cafforio, Paola; Silvestris, Franco

    2017-01-01

    Isolation and genotyping of circulating tumor cells (CTCs) is gaining an increasing interest by clinical researchers in oncology not only for investigative purposes, but also for concrete application in clinical practice in terms of diagnosis, prognosis and decision treatment with targeted therapies. For the mutational analysis of single CTCs, the most advanced biotechnology methodology currently available includes the combination of whole genome amplification (WGA) followed by next-generation sequencing (NGS). However, the sequence of these molecular techniques is time-consuming and may also favor operator-dependent errors, related to the procedures themselves that, as in the case of the WGA technique, might affect downstream molecular analyses. A preliminary approach of molecular analysis by NGS on a model of CTCs without previous WGA procedural step was performed. We set-up an artificial sample obtained by spiking the SK-MEL-28 melanoma cell line in normal donor peripheral whole blood. Melanoma cells were first enriched using an AutoMACS® (Miltenyi) cell separator and then isolated as single and pooled CTCs by DEPArray™ System (Silicon Biosystems). NGS analysis, using the Ion AmpliSeq™ Cancer Hotspot Panel v2 (Life Technologies) with the Ion Torrent PGM™ system (Life Technologies), was performed on the SK-MEL-28 cell pellet, a single CTC previously processed with WGA and on 1, 2, 4 and 8 recovered CTCs without WGA pre-amplification. NGS directly carried out on CTCs without WGA showed the same mutations identified in SK-MEL-28 cell line pellet, with a considerable efficiency and avoiding the errors induced by the WGA procedure. We identified a cost-effective, time-saving and reliable methodological approach that could improve the analytical accuracy of the liquid biopsy and appears promising in studying CTCs from cancer patients for both research and clinical purposes. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  20. Genetic counselors’ (GC) knowledge, awareness, and understanding of clinical next-generation sequencing (NGS) genomic testing

    PubMed Central

    Boland, PM; Ruth, K; Matro, JM; Rainey, KL; Fang, CY; Wong, YN; Daly, MB; Hall, MJ

    2014-01-01

    Genomic tests are increasingly complex, less expensive, and more widely available with the advent of next-generation sequencing (NGS). We assessed knowledge and perceptions among genetic counselors pertaining to NGS genomic testing via an online survey. Associations between selected characteristics and perceptions were examined. Recent education on NGS testing was common, but practical experience limited. Perceived understanding of clinical NGS was modest, specifically concerning tumor testing. Greater perceived understanding of clinical NGS testing correlated with more time spent in cancer-related counseling, exposure to NGS testing, and NGS-focused education. Substantial disagreement about the role of counseling for tumor-based testing was seen. Finally, a majority of counselors agreed with the need for more education about clinical NGS testing, supporting this approach to optimizing implementation. PMID:25523111

  1. Next-generation sequencing library construction on a surface.

    PubMed

    Feng, Kuan; Costa, Justin; Edwards, Jeremy S

    2018-05-30

    Next-generation sequencing (NGS) has revolutionized almost all fields of biology, agriculture and medicine, and is widely utilized to analyse genetic variation. Over the past decade, the NGS pipeline has been steadily improved, and the entire process is currently relatively straightforward. However, NGS instrumentation still requires upfront library preparation, which can be a laborious process, requiring significant hands-on time. Herein, we present a simple but robust approach to streamline library preparation by utilizing surface bound transposases to construct DNA libraries directly on a flowcell surface. The surface bound transposases directly fragment genomic DNA while simultaneously attaching the library molecules to the flowcell. We sequenced and analysed a Drosophila genome library generated by this surface tagmentation approach, and we showed that our surface bound library quality was comparable to the quality of the library from a commercial kit. In addition to the time and cost savings, our approach does not require PCR amplification of the library, which eliminates potential problems associated with PCR duplicates. We described the first study to construct libraries directly on a flowcell. We believe our technique could be incorporated into the existing Illumina sequencing pipeline to simplify the workflow, reduce costs, and improve data quality.

  2. Impact of NGS in the medical sciences: Genetic syndromes with an increased risk of developing cancer as an example of the use of new technologies

    PubMed Central

    Lapunzina, Pablo; López, Rocío Ortiz; Rodríguez-Laguna, Lara; García-Miguel, Purificación; Martínez, Augusto Rojas; Martínez-Glez, Víctor

    2014-01-01

    The increased speed and decreasing cost of sequencing, along with an understanding of the clinical relevance of emerging information for patient management, has led to an explosion of potential applications in healthcare. Currently, SNP arrays and Next-Generation Sequencing (NGS) technologies are relatively new techniques used to scan genomes for gains and losses, losses of heterozygosity (LOH), SNPs, and indel variants as well as to perform complete sequencing of a panel of candidate genes, the entire exome (whole exome sequencing) or even the whole genome. As a result, these new high-throughput technologies have facilitated progress in the understanding and diagnosis of genetic syndromes and cancers, two disorders traditionally considered to be separate diseases but that can share causal genetic alterations in a group of developmental disorders associated with congenital malformations and cancer risk. The purpose of this work is to review these syndromes as an example of a group of disorders that has been included in a panel of genes for NGS analysis. We also highlight the relationship between development and cancer and underline the connections between these syndromes. PMID:24764758

  3. A machine learning model to determine the accuracy of variant calls in capture-based next generation sequencing.

    PubMed

    van den Akker, Jeroen; Mishne, Gilad; Zimmer, Anjali D; Zhou, Alicia Y

    2018-04-17

    Next generation sequencing (NGS) has become a common technology for clinical genetic tests. The quality of NGS calls varies widely and is influenced by features like reference sequence characteristics, read depth, and mapping accuracy. With recent advances in NGS technology and software tools, the majority of variants called using NGS alone are in fact accurate and reliable. However, a small subset of difficult-to-call variants that still do require orthogonal confirmation exist. For this reason, many clinical laboratories confirm NGS results using orthogonal technologies such as Sanger sequencing. Here, we report the development of a deterministic machine-learning-based model to differentiate between these two types of variant calls: those that do not require confirmation using an orthogonal technology (high confidence), and those that require additional quality testing (low confidence). This approach allows reliable NGS-based calling in a clinical setting by identifying the few important variant calls that require orthogonal confirmation. We developed and tested the model using a set of 7179 variants identified by a targeted NGS panel and re-tested by Sanger sequencing. The model incorporated several signals of sequence characteristics and call quality to determine if a variant was identified at high or low confidence. The model was tuned to eliminate false positives, defined as variants that were called by NGS but not confirmed by Sanger sequencing. The model achieved very high accuracy: 99.4% (95% confidence interval: +/- 0.03%). It categorized 92.2% (6622/7179) of the variants as high confidence, and 100% of these were confirmed to be present by Sanger sequencing. Among the variants that were categorized as low confidence, defined as NGS calls of low quality that are likely to be artifacts, 92.1% (513/557) were found to be not present by Sanger sequencing. This work shows that NGS data contains sufficient characteristics for a machine-learning-based model to differentiate low from high confidence variants. Additionally, it reveals the importance of incorporating site-specific features as well as variant call features in such a model.

  4. A new approach for detecting fungal and oomycete plant pathogens in next generation sequencing metagenome data utilising electronic probes

    USDA-ARS?s Scientific Manuscript database

    Early stage infections caused by fungal/oomycete spores can remain undetected until signs or symptoms develop. Serological and molecular techniques are currently used for detecting these pathogens. Next-generation sequencing (NGS) has potential as a diagnostic tool, due to the capacity to target mul...

  5. NGS-based likelihood ratio for identifying contributors in two- and three-person DNA mixtures.

    PubMed

    Chan Mun Wei, Joshua; Zhao, Zicheng; Li, Shuai Cheng; Ng, Yen Kaow

    2018-06-01

    DNA fingerprinting, also known as DNA profiling, serves as a standard procedure in forensics to identify a person by the short tandem repeat (STR) loci in their DNA. By comparing the STR loci between DNA samples, practitioners can calculate a probability of match to identity the contributors of a DNA mixture. Most existing methods are based on 13 core STR loci which were identified by the Federal Bureau of Investigation (FBI). Analyses based on these loci of DNA mixture for forensic purposes are highly variable in procedures, and suffer from subjectivity as well as bias in complex mixture interpretation. With the emergence of next-generation sequencing (NGS) technologies, the sequencing of billions of DNA molecules can be parallelized, thus greatly increasing throughput and reducing the associated costs. This allows the creation of new techniques that incorporate more loci to enable complex mixture interpretation. In this paper, we propose a computation for likelihood ratio that uses NGS (next generation sequencing) data for DNA testing on mixed samples. We have applied the method to 4480 simulated DNA mixtures, which consist of various mixture proportions of 8 unrelated whole-genome sequencing data. The results confirm the feasibility of utilizing NGS data in DNA mixture interpretations. We observed an average likelihood ratio as high as 285,978 for two-person mixtures. Using our method, all 224 identity tests for two-person mixtures and three-person mixtures were correctly identified. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Next-generation sequencing library preparation method for identification of RNA viruses on the Ion Torrent Sequencing Platform.

    PubMed

    Chen, Guiqian; Qiu, Yuan; Zhuang, Qingye; Wang, Suchun; Wang, Tong; Chen, Jiming; Wang, Kaicheng

    2018-05-09

    Next generation sequencing (NGS) is a powerful tool for the characterization, discovery, and molecular identification of RNA viruses. There were multiple NGS library preparation methods published for strand-specific RNA-seq, but some methods are not suitable for identifying and characterizing RNA viruses. In this study, we report a NGS library preparation method to identify RNA viruses using the Ion Torrent PGM platform. The NGS sequencing adapters were directly inserted into the sequencing library through reverse transcription and polymerase chain reaction, without fragmentation and ligation of nucleic acids. The results show that this method is simple to perform, able to identify multiple species of RNA viruses in clinical samples.

  7. Molecular analysis of fungal populations in patients with oral candidiasis using next-generation sequencing.

    PubMed

    Imabayashi, Yumi; Moriyama, Masafumi; Takeshita, Toru; Ieda, Shinsuke; Hayashida, Jun-Nosuke; Tanaka, Akihiko; Maehara, Takashi; Furukawa, Sachiko; Ohta, Miho; Kubota, Keigo; Yamauchi, Masaki; Ishiguro, Noriko; Yamashita, Yoshihisa; Nakamura, Seiji

    2016-06-16

    Oral candidiasis is closely associated with changes in oral fungal biodiversity and is caused primarily by Candida albicans. However, the widespread use of empiric and prophylactic antifungal drugs has caused a shift in fungal biodiversity towards other Candida or yeast species. Recently, next-generation sequencing (NGS) has provided an improvement over conventional culture techniques, allowing rapid comprehensive analysis of oral fungal biodiversity. In this study, we used NGS to examine the oral fungal biodiversity of 27 patients with pseudomembranous oral candidiasis (POC) and 66 healthy controls. The total number of fungal species in patients with POC and healthy controls was 67 and 86, respectively. The copy number of total PCR products and the proportion of non-C. albicans, especially C. dubliniensis, in patients with POC, were higher than those in healthy controls. The detection patterns in patients with POC were similar to those in controls after antifungal treatment. Interestingly, the number of fungal species and the copy number of total PCR products in healthy controls increased with aging. These results suggest that high fungal biodiversity and aging might be involved in the pathogenesis of oral candidiasis. We therefore conclude that NGS is a useful technique for investigating oral candida infections.

  8. Next generation sequencing and its applications in forensic genetics.

    PubMed

    Børsting, Claus; Morling, Niels

    2015-09-01

    It has been almost a decade since the first next generation sequencing (NGS) technologies emerged and quickly changed the way genetic research is conducted. Today, full genomes are mapped and published almost weekly and with ever increasing speed and decreasing costs. NGS methods and platforms have matured during the last 10 years, and the quality of the sequences has reached a level where NGS is used in clinical diagnostics of humans. Forensic genetic laboratories have also explored NGS technologies and especially in the last year, there has been a small explosion in the number of scientific articles and presentations at conferences with forensic aspects of NGS. These contributions have demonstrated that NGS offers new possibilities for forensic genetic case work. More information may be obtained from unique samples in a single experiment by analyzing combinations of markers (STRs, SNPs, insertion/deletions, mRNA) that cannot be analyzed simultaneously with the standard PCR-CE methods used today. The true variation in core forensic STR loci has been uncovered, and previously unknown STR alleles have been discovered. The detailed sequence information may aid mixture interpretation and will increase the statistical weight of the evidence. In this review, we will give an introduction to NGS and single-molecule sequencing, and we will discuss the possible applications of NGS in forensic genetics. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Clinical utilisation of a rapid low-pass whole genome sequencing technique for the diagnosis of aneuploidy in human embryos prior to implantation.

    PubMed

    Wells, Dagan; Kaur, Kulvinder; Grifo, Jamie; Glassner, Michael; Taylor, Jenny C; Fragouli, Elpida; Munne, Santiago

    2014-08-01

    The majority of human embryos created using in vitro fertilisation (IVF) techniques are aneuploid. Comprehensive chromosome screening methods, applicable to single cells biopsied from preimplantation embryos, allow reliable identification and transfer of euploid embryos. Recently, randomised trials using such methods have indicated that aneuploidy screening improves IVF success rates. However, the high cost of testing has restricted the availability of this potentially beneficial strategy. This study aimed to harness next-generation sequencing (NGS) technology, with the intention of lowering the costs of preimplantation aneuploidy screening. Embryo biopsy, whole genome amplification and semiconductor sequencing. A rapid (<15 h) NGS protocol was developed, with consumable cost only two-thirds that of the most widely used method for embryo aneuploidy detection. Validation involved blinded analysis of 54 cells from cell lines or biopsies from human embryos. Sensitivity and specificity were 100%. The method was applied clinically, assisting in the selection of euploid embryos in two IVF cycles, producing healthy children in both cases. The NGS approach was also able to reveal specified mutations in the nuclear or mitochondrial genomes in parallel with chromosome assessment. Interestingly, elevated mitochondrial DNA content was associated with aneuploidy (p<0.05), a finding suggestive of a link between mitochondria and chromosomal malsegregation. This study demonstrates that NGS provides highly accurate, low-cost diagnosis of aneuploidy in cells from human preimplantation embryos and is rapid enough to allow testing without embryo cryopreservation. The method described also has the potential to shed light on other aspects of embryo genetics of relevance to health and viability. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. Clinical utilisation of a rapid low-pass whole genome sequencing technique for the diagnosis of aneuploidy in human embryos prior to implantation

    PubMed Central

    Wells, Dagan; Kaur, Kulvinder; Grifo, Jamie; Glassner, Michael; Taylor, Jenny C; Fragouli, Elpida; Munne, Santiago

    2014-01-01

    Background The majority of human embryos created using in vitro fertilisation (IVF) techniques are aneuploid. Comprehensive chromosome screening methods, applicable to single cells biopsied from preimplantation embryos, allow reliable identification and transfer of euploid embryos. Recently, randomised trials using such methods have indicated that aneuploidy screening improves IVF success rates. However, the high cost of testing has restricted the availability of this potentially beneficial strategy. This study aimed to harness next-generation sequencing (NGS) technology, with the intention of lowering the costs of preimplantation aneuploidy screening. Methods Embryo biopsy, whole genome amplification and semiconductor sequencing. Results A rapid (<15 h) NGS protocol was developed, with consumable cost only two-thirds that of the most widely used method for embryo aneuploidy detection. Validation involved blinded analysis of 54 cells from cell lines or biopsies from human embryos. Sensitivity and specificity were 100%. The method was applied clinically, assisting in the selection of euploid embryos in two IVF cycles, producing healthy children in both cases. The NGS approach was also able to reveal specified mutations in the nuclear or mitochondrial genomes in parallel with chromosome assessment. Interestingly, elevated mitochondrial DNA content was associated with aneuploidy (p<0.05), a finding suggestive of a link between mitochondria and chromosomal malsegregation. Conclusions This study demonstrates that NGS provides highly accurate, low-cost diagnosis of aneuploidy in cells from human preimplantation embryos and is rapid enough to allow testing without embryo cryopreservation. The method described also has the potential to shed light on other aspects of embryo genetics of relevance to health and viability. PMID:25031024

  11. Analysis of Pre-Analytic Factors Affecting the Success of Clinical Next-Generation Sequencing of Solid Organ Malignancies.

    PubMed

    Chen, Hui; Luthra, Rajyalakshmi; Goswami, Rashmi S; Singh, Rajesh R; Roy-Chowdhuri, Sinchita

    2015-08-28

    Application of next-generation sequencing (NGS) technology to routine clinical practice has enabled characterization of personalized cancer genomes to identify patients likely to have a response to targeted therapy. The proper selection of tumor sample for downstream NGS based mutational analysis is critical to generate accurate results and to guide therapeutic intervention. However, multiple pre-analytic factors come into play in determining the success of NGS testing. In this review, we discuss pre-analytic requirements for AmpliSeq PCR-based sequencing using Ion Torrent Personal Genome Machine (PGM) (Life Technologies), a NGS sequencing platform that is often used by clinical laboratories for sequencing solid tumors because of its low input DNA requirement from formalin fixed and paraffin embedded tissue. The success of NGS mutational analysis is affected not only by the input DNA quantity but also by several other factors, including the specimen type, the DNA quality, and the tumor cellularity. Here, we review tissue requirements for solid tumor NGS based mutational analysis, including procedure types, tissue types, tumor volume and fraction, decalcification, and treatment effects.

  12. Application of Genomic Technologies to the Breeding of Trees

    PubMed Central

    Badenes, Maria L.; Fernández i Martí, Angel; Ríos, Gabino; Rubio-Cabetas, María J.

    2016-01-01

    The recent introduction of next generation sequencing (NGS) technologies represents a major revolution in providing new tools for identifying the genes and/or genomic intervals controlling important traits for selection in breeding programs. In perennial fruit trees with long generation times and large sizes of adult plants, the impact of these techniques is even more important. High-throughput DNA sequencing technologies have provided complete annotated sequences in many important tree species. Most of the high-throughput genotyping platforms described are being used for studies of genetic diversity and population structure. Dissection of complex traits became possible through the availability of genome sequences along with phenotypic variation data, which allow to elucidate the causative genetic differences that give rise to observed phenotypic variation. Association mapping facilitates the association between genetic markers and phenotype in unstructured and complex populations, identifying molecular markers for assisted selection and breeding. Also, genomic data provide in silico identification and characterization of genes and gene families related to important traits, enabling new tools for molecular marker assisted selection in tree breeding. Deep sequencing of transcriptomes is also a powerful tool for the analysis of precise expression levels of each gene in a sample. It consists in quantifying short cDNA reads, obtained by NGS technologies, in order to compare the entire transcriptomes between genotypes and environmental conditions. The miRNAs are non-coding short RNAs involved in the regulation of different physiological processes, which can be identified by high-throughput sequencing of RNA libraries obtained by reverse transcription of purified short RNAs, and by in silico comparison with known miRNAs from other species. All together, NGS techniques and their applications have increased the resources for plant breeding in tree species, closing the former gap of genetic tools between trees and annual species. PMID:27895664

  13. Application of Genomic Technologies to the Breeding of Trees.

    PubMed

    Badenes, Maria L; Fernández I Martí, Angel; Ríos, Gabino; Rubio-Cabetas, María J

    2016-01-01

    The recent introduction of next generation sequencing (NGS) technologies represents a major revolution in providing new tools for identifying the genes and/or genomic intervals controlling important traits for selection in breeding programs. In perennial fruit trees with long generation times and large sizes of adult plants, the impact of these techniques is even more important. High-throughput DNA sequencing technologies have provided complete annotated sequences in many important tree species. Most of the high-throughput genotyping platforms described are being used for studies of genetic diversity and population structure. Dissection of complex traits became possible through the availability of genome sequences along with phenotypic variation data, which allow to elucidate the causative genetic differences that give rise to observed phenotypic variation. Association mapping facilitates the association between genetic markers and phenotype in unstructured and complex populations, identifying molecular markers for assisted selection and breeding. Also, genomic data provide in silico identification and characterization of genes and gene families related to important traits, enabling new tools for molecular marker assisted selection in tree breeding. Deep sequencing of transcriptomes is also a powerful tool for the analysis of precise expression levels of each gene in a sample. It consists in quantifying short cDNA reads, obtained by NGS technologies, in order to compare the entire transcriptomes between genotypes and environmental conditions. The miRNAs are non-coding short RNAs involved in the regulation of different physiological processes, which can be identified by high-throughput sequencing of RNA libraries obtained by reverse transcription of purified short RNAs, and by in silico comparison with known miRNAs from other species. All together, NGS techniques and their applications have increased the resources for plant breeding in tree species, closing the former gap of genetic tools between trees and annual species.

  14. Next-generation sequencing for genetic testing of familial colorectal cancer syndromes.

    PubMed

    Simbolo, Michele; Mafficini, Andrea; Agostini, Marco; Pedrazzani, Corrado; Bedin, Chiara; Urso, Emanuele D; Nitti, Donato; Turri, Giona; Scardoni, Maria; Fassan, Matteo; Scarpa, Aldo

    2015-01-01

    Genetic screening in families with high risk to develop colorectal cancer (CRC) prevents incurable disease and permits personalized therapeutic and follow-up strategies. The advancement of next-generation sequencing (NGS) technologies has revolutionized the throughput of DNA sequencing. A series of 16 probands for either familial adenomatous polyposis (FAP; 8 cases) or hereditary nonpolyposis colorectal cancer (HNPCC; 8 cases) were investigated for intragenic mutations in five CRC familial syndromes-associated genes (APC, MUTYH, MLH1, MSH2, MSH6) applying both a custom multigene Ion AmpliSeq NGS panel and conventional Sanger sequencing. Fourteen pathogenic variants were detected in 13/16 FAP/HNPCC probands (81.3 %); one FAP proband presented two co-existing pathogenic variants, one in APC and one in MUTYH. Thirteen of these 14 pathogenic variants were detected by both NGS and Sanger, while one MSH2 mutation (L280FfsX3) was identified only by Sanger sequencing. This is due to a limitation of the NGS approach in resolving sequences close or within homopolymeric stretches of DNA. To evaluate the performance of our NGS custom panel we assessed its capability to resolve the DNA sequences corresponding to 2225 pathogenic variants reported in the COSMIC database for APC, MUTYH, MLH1, MSH2, MSH6. Our NGS custom panel resolves the sequences where 2108 (94.7 %) of these variants occur. The remaining 117 mutations reside inside or in close proximity to homopolymer stretches; of these 27 (1.2 %) are imprecisely identified by the software but can be resolved by visual inspection of the region, while the remaining 90 variants (4.0 %) are blind spots. In summary, our custom panel would miss 4 % (90/2225) of pathogenic variants that would need a small set of Sanger sequencing reactions to be solved. The multiplex NGS approach has the advantage of analyzing multiple genes in multiple samples simultaneously, requiring only a reduced number of Sanger sequences to resolve homopolymeric DNA regions not adequately assessed by NGS. The implementation of NGS approaches in routine diagnostics of familial CRC is cost-effective and significantly reduces diagnostic turnaround times.

  15. Next-generation sequencing: advances and applications in cancer diagnosis

    PubMed Central

    Serratì, Simona; De Summa, Simona; Pilato, Brunella; Petriella, Daniela; Lacalamita, Rosanna; Tommasi, Stefania; Pinto, Rosamaria

    2016-01-01

    Technological advances have led to the introduction of next-generation sequencing (NGS) platforms in cancer investigation. NGS allows massive parallel sequencing that affords maximal tumor genomic assessment. NGS approaches are different, and concern DNA and RNA analysis. DNA sequencing includes whole-genome, whole-exome, and targeted sequencing, which focuses on a selection of genes of interest for a specific disease. RNA sequencing facilitates the detection of alternative gene-spliced transcripts, posttranscriptional modifications, gene fusion, mutations/single-nucleotide polymorphisms, small and long noncoding RNAs, and changes in gene expression. Most applications are in the cancer research field, but lately NGS technology has been revolutionizing cancer molecular diagnostics, due to the many advantages it offers compared to traditional methods. There is greater knowledge on solid cancer diagnostics, and recent interest has been shown also in the field of hematologic cancer. In this review, we report the latest data on NGS diagnostic/predictive clinical applications in solid and hematologic cancers. Moreover, since the amount of NGS data produced is very large and their interpretation is very complex, we briefly discuss two bioinformatic aspects, variant-calling accuracy and copy-number variation detection, which are gaining a lot of importance in cancer-diagnostic assessment. PMID:27980425

  16. Repair of DNA damage caused by cytosine deamination in mitochondrial DNA of forensic case samples.

    PubMed

    Gorden, Erin M; Sturk-Andreaggi, Kimberly; Marshall, Charla

    2018-05-01

    DNA sequence damage from cytosine deamination is well documented in degraded samples, such as those from ancient and forensic contexts. This study examined the effect of a DNA repair treatment on mitochondrial DNA (mtDNA) from aged and degraded skeletal samples. DNA extracts from 21 non-probative, degraded skeletal samples (aged 50-70 years) were utilized for the analysis. A portion of each sample extract was subjected to DNA repair using a commercial repair kit, the New England BioLabs' NEBNext FFPE DNA Repair Kit (Ipswich, MA). MtDNA was enriched using PCR and targeted capture in a side-by-side experiment of untreated and repaired DNA. Sequencing was performed using both traditional (Sanger-type; STS) and next-generation sequencing (NGS) methods Although cytosine deamination was evident in the mtDNA sequence data, the observed level of damaged bases varied by sequencing method as well as by enrichment type. The STS PCR amplicon data did not show evidence of cytosine deamination that could be distinguished from background signal in either the untreated or repaired sample set. However, the same PCR amplicons showed 850 C → T/G → A substitutions consistent with cytosine deamination with variant frequencies (VFs) of up to 25% when sequenced using NGS methods The occurrence of base misincorporation due to cytosine deamination was reduced by 98% (to 10) in the NGS amplicon data after repair. The NGS capture data indicated low levels (1-2%) of cytosine deamination in mtDNA fragments that was effectively mitigated by DNA repair. The observed difference in the level of cytosine deamination between the PCR and capture enrichment methods can be attributed to the greater propensity for stochastic effects from the PCR enrichment technique employed (e.g., low template input, increased PCR cycles). Altogether these results indicate that DNA repair may be required when sequencing PCR-amplified DNA from degraded forensic case samples with NGS methods. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Genetic counselors' (GC) knowledge, awareness, understanding of clinical next-generation sequencing (NGS) genomic testing.

    PubMed

    Boland, P M; Ruth, K; Matro, J M; Rainey, K L; Fang, C Y; Wong, Y N; Daly, M B; Hall, M J

    2015-12-01

    Genomic tests are increasingly complex, less expensive, and more widely available with the advent of next-generation sequencing (NGS). We assessed knowledge and perceptions among genetic counselors pertaining to NGS genomic testing via an online survey. Associations between selected characteristics and perceptions were examined. Recent education on NGS testing was common, but practical experience limited. Perceived understanding of clinical NGS was modest, specifically concerning tumor testing. Greater perceived understanding of clinical NGS testing correlated with more time spent in cancer-related counseling, exposure to NGS testing, and NGS-focused education. Substantial disagreement about the role of counseling for tumor-based testing was seen. Finally, a majority of counselors agreed with the need for more education about clinical NGS testing, supporting this approach to optimizing implementation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. The impact of next-generation sequencing on genomics

    PubMed Central

    Zhang, Jun; Chiodini, Rod; Badr, Ahmed; Zhang, Genfa

    2011-01-01

    This article reviews basic concepts, general applications, and the potential impact of next-generation sequencing (NGS) technologies on genomics, with particular reference to currently available and possible future platforms and bioinformatics. NGS technologies have demonstrated the capacity to sequence DNA at unprecedented speed, thereby enabling previously unimaginable scientific achievements and novel biological applications. But, the massive data produced by NGS also presents a significant challenge for data storage, analyses, and management solutions. Advanced bioinformatic tools are essential for the successful application of NGS technology. As evidenced throughout this review, NGS technologies will have a striking impact on genomic research and the entire biological field. With its ability to tackle the unsolved challenges unconquered by previous genomic technologies, NGS is likely to unravel the complexity of the human genome in terms of genetic variations, some of which may be confined to susceptible loci for some common human conditions. The impact of NGS technologies on genomics will be far reaching and likely change the field for years to come. PMID:21477781

  19. Practical applications of next-generation sequencing for food-safety research

    USDA-ARS?s Scientific Manuscript database

    Next-generation sequencing (NGS) is a transformative technology that is revolutionizing the biological sciences. However, many researchers remain uncertain as to the best ways to harness the power of NGS and apply it to their own research questions. Here we highlight three case studies of how NGS ...

  20. Comparison of Next-Generation Sequencing Systems

    PubMed Central

    Liu, Lin; Li, Yinhu; Li, Siliang; Hu, Ni; He, Yimin; Pong, Ray; Lin, Danni; Lu, Lihua; Law, Maggie

    2012-01-01

    With fast development and wide applications of next-generation sequencing (NGS) technologies, genomic sequence information is within reach to aid the achievement of goals to decode life mysteries, make better crops, detect pathogens, and improve life qualities. NGS systems are typically represented by SOLiD/Ion Torrent PGM from Life Sciences, Genome Analyzer/HiSeq 2000/MiSeq from Illumina, and GS FLX Titanium/GS Junior from Roche. Beijing Genomics Institute (BGI), which possesses the world's biggest sequencing capacity, has multiple NGS systems including 137 HiSeq 2000, 27 SOLiD, one Ion Torrent PGM, one MiSeq, and one 454 sequencer. We have accumulated extensive experience in sample handling, sequencing, and bioinformatics analysis. In this paper, technologies of these systems are reviewed, and first-hand data from extensive experience is summarized and analyzed to discuss the advantages and specifics associated with each sequencing system. At last, applications of NGS are summarized. PMID:22829749

  1. From sequencer to supercomputer: an automatic pipeline for managing and processing next generation sequencing data.

    PubMed

    Camerlengo, Terry; Ozer, Hatice Gulcin; Onti-Srinivasan, Raghuram; Yan, Pearlly; Huang, Tim; Parvin, Jeffrey; Huang, Kun

    2012-01-01

    Next Generation Sequencing is highly resource intensive. NGS Tasks related to data processing, management and analysis require high-end computing servers or even clusters. Additionally, processing NGS experiments requires suitable storage space and significant manual interaction. At The Ohio State University's Biomedical Informatics Shared Resource, we designed and implemented a scalable architecture to address the challenges associated with the resource intensive nature of NGS secondary analysis built around Illumina Genome Analyzer II sequencers and Illumina's Gerald data processing pipeline. The software infrastructure includes a distributed computing platform consisting of a LIMS called QUEST (http://bisr.osumc.edu), an Automation Server, a computer cluster for processing NGS pipelines, and a network attached storage device expandable up to 40TB. The system has been architected to scale to multiple sequencers without requiring additional computing or labor resources. This platform provides demonstrates how to manage and automate NGS experiments in an institutional or core facility setting.

  2. Generic Amplicon Deep Sequencing to Determine Ilarvirus Species Diversity in Australian Prunus

    PubMed Central

    Kinoti, Wycliff M.; Constable, Fiona E.; Nancarrow, Narelle; Plummer, Kim M.; Rodoni, Brendan

    2017-01-01

    The distribution of Ilarvirus species populations amongst 61 Australian Prunus trees was determined by next generation sequencing (NGS) of amplicons generated using a genus-based generic RT-PCR targeting a conserved region of the Ilarvirus RNA2 component that encodes the RNA dependent RNA polymerase (RdRp) gene. Presence of Ilarvirus sequences in each positive sample was further validated by Sanger sequencing of cloned amplicons of regions of each of RNA1, RNA2 and/or RNA3 that were generated by species specific PCRs and by metagenomic NGS. Prunus necrotic ringspot virus (PNRSV) was the most frequently detected Ilarvirus, occurring in 48 of the 61 Ilarvirus-positive trees and Prune dwarf virus (PDV) and Apple mosaic virus (ApMV) were detected in three trees and one tree, respectively. American plum line pattern virus (APLPV) was detected in three trees and represents the first report of APLPV detection in Australia. Two novel and distinct groups of Ilarvirus-like RNA2 amplicon sequences were also identified in several trees by the generic amplicon NGS approach. The high read depth from the amplicon NGS of the generic PCR products allowed the detection of distinct RNA2 RdRp sequence variant populations of PNRSV, PDV, ApMV, APLPV and the two novel Ilarvirus-like sequences. Mixed infections of ilarviruses were also detected in seven Prunus trees. Sanger sequencing of specific RNA1, RNA2, and/or RNA3 genome segments of each virus and total nucleic acid metagenomics NGS confirmed the presence of PNRSV, PDV, ApMV and APLPV detected by RNA2 generic amplicon NGS. However, the two novel groups of Ilarvirus-like RNA2 amplicon sequences detected by the generic amplicon NGS could not be associated to the presence of sequence from RNA1 or RNA3 genome segments or full Ilarvirus genomes, and their origin is unclear. This work highlights the sensitivity of genus-specific amplicon NGS in detection of virus sequences and their distinct populations in multiple samples, and the need for a standardized approach to accurately determine what constitutes an active, viable virus infection after detection by molecular based methods. PMID:28713347

  3. Generic Amplicon Deep Sequencing to Determine Ilarvirus Species Diversity in Australian Prunus.

    PubMed

    Kinoti, Wycliff M; Constable, Fiona E; Nancarrow, Narelle; Plummer, Kim M; Rodoni, Brendan

    2017-01-01

    The distribution of Ilarvirus species populations amongst 61 Australian Prunus trees was determined by next generation sequencing (NGS) of amplicons generated using a genus-based generic RT-PCR targeting a conserved region of the Ilarvirus RNA2 component that encodes the RNA dependent RNA polymerase (RdRp) gene. Presence of Ilarvirus sequences in each positive sample was further validated by Sanger sequencing of cloned amplicons of regions of each of RNA1, RNA2 and/or RNA3 that were generated by species specific PCRs and by metagenomic NGS. Prunus necrotic ringspot virus (PNRSV) was the most frequently detected Ilarvirus , occurring in 48 of the 61 Ilarvirus -positive trees and Prune dwarf virus (PDV) and Apple mosaic virus (ApMV) were detected in three trees and one tree, respectively. American plum line pattern virus (APLPV) was detected in three trees and represents the first report of APLPV detection in Australia. Two novel and distinct groups of Ilarvirus -like RNA2 amplicon sequences were also identified in several trees by the generic amplicon NGS approach. The high read depth from the amplicon NGS of the generic PCR products allowed the detection of distinct RNA2 RdRp sequence variant populations of PNRSV, PDV, ApMV, APLPV and the two novel Ilarvirus -like sequences. Mixed infections of ilarviruses were also detected in seven Prunus trees. Sanger sequencing of specific RNA1, RNA2, and/or RNA3 genome segments of each virus and total nucleic acid metagenomics NGS confirmed the presence of PNRSV, PDV, ApMV and APLPV detected by RNA2 generic amplicon NGS. However, the two novel groups of Ilarvirus -like RNA2 amplicon sequences detected by the generic amplicon NGS could not be associated to the presence of sequence from RNA1 or RNA3 genome segments or full Ilarvirus genomes, and their origin is unclear. This work highlights the sensitivity of genus-specific amplicon NGS in detection of virus sequences and their distinct populations in multiple samples, and the need for a standardized approach to accurately determine what constitutes an active, viable virus infection after detection by molecular based methods.

  4. Attomole-level Genomics with Single-molecule Direct DNA, cDNA and RNA Sequencing Technologies.

    PubMed

    Ozsolak, Fatih

    2016-01-01

    With the introduction of next-generation sequencing (NGS) technologies in 2005, the domination of microarrays in genomics quickly came to an end due to NGS's superior technical performance and cost advantages. By enabling genetic analysis capabilities that were not possible previously, NGS technologies have started to play an integral role in all areas of biomedical research. This chapter outlines the low-quantity DNA and cDNA sequencing capabilities and applications developed with the Helicos single molecule DNA sequencing technology.

  5. Sanger Confirmation Is Required to Achieve Optimal Sensitivity and Specificity in Next-Generation Sequencing Panel Testing.

    PubMed

    Mu, Wenbo; Lu, Hsiao-Mei; Chen, Jefferey; Li, Shuwei; Elliott, Aaron M

    2016-11-01

    Next-generation sequencing (NGS) has rapidly replaced Sanger sequencing as the method of choice for diagnostic gene-panel testing. For hereditary-cancer testing, the technical sensitivity and specificity of the assay are paramount as clinicians use results to make important clinical management and treatment decisions. There is significant debate within the diagnostics community regarding the necessity of confirming NGS variant calls by Sanger sequencing, considering that numerous laboratories report having 100% specificity from the NGS data alone. Here we report our results from 20,000 hereditary-cancer NGS panels spanning 47 genes, in which all 7845 nonpolymorphic variants were Sanger- sequenced. Of these, 98.7% were concordant between NGS and Sanger sequencing and 1.3% were identified as NGS false-positives, located mainly in complex genomic regions (A/T-rich regions, G/C-rich regions, homopolymer stretches, and pseudogene regions). Simulating a false-positive rate of zero by adjusting the variant-calling quality-score thresholds decreased the sensitivity of the assay from 100% to 97.8%, resulting in the missed detection of 176 Sanger-confirmed variants, the majority in complex genomic regions (n = 114) and mosaic mutations (n = 7). The data illustrate the importance of setting quality thresholds for panel testing only after thousands of samples have been processed and the necessity of Sanger confirmation of NGS variants to maintain the highest possible sensitivity. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  6. Novel Primer Sets for Next Generation Sequencing-Based Analyses of Water Quality

    PubMed Central

    Lee, Elvina; Khurana, Maninder S.; Whiteley, Andrew S.; Monis, Paul T.; Bath, Andrew; Gordon, Cameron; Ryan, Una M.; Paparini, Andrea

    2017-01-01

    Next generation sequencing (NGS) has rapidly become an invaluable tool for the detection, identification and relative quantification of environmental microorganisms. Here, we demonstrate two new 16S rDNA primer sets, which are compatible with NGS approaches and are primarily for use in water quality studies. Compared to 16S rRNA gene based universal primers, in silico and experimental analyses demonstrated that the new primers showed increased specificity for the Cyanobacteria and Proteobacteria phyla, allowing increased sensitivity for the detection, identification and relative quantification of toxic bloom-forming microalgae, microbial water quality bioindicators and common pathogens. Significantly, Cyanobacterial and Proteobacterial sequences accounted for ca. 95% of all sequences obtained within NGS runs (when compared to ca. 50% with standard universal NGS primers), providing higher sensitivity and greater phylogenetic resolution of key water quality microbial groups. The increased selectivity of the new primers allow the parallel sequencing of more samples through reduced sequence retrieval levels required to detect target groups, potentially reducing NGS costs by 50% but still guaranteeing optimal coverage and species discrimination. PMID:28118368

  7. A distributed system for fast alignment of next-generation sequencing data.

    PubMed

    Srimani, Jaydeep K; Wu, Po-Yen; Phan, John H; Wang, May D

    2010-12-01

    We developed a scalable distributed computing system using the Berkeley Open Interface for Network Computing (BOINC) to align next-generation sequencing (NGS) data quickly and accurately. NGS technology is emerging as a promising platform for gene expression analysis due to its high sensitivity compared to traditional genomic microarray technology. However, despite the benefits, NGS datasets can be prohibitively large, requiring significant computing resources to obtain sequence alignment results. Moreover, as the data and alignment algorithms become more prevalent, it will become necessary to examine the effect of the multitude of alignment parameters on various NGS systems. We validate the distributed software system by (1) computing simple timing results to show the speed-up gained by using multiple computers, (2) optimizing alignment parameters using simulated NGS data, and (3) computing NGS expression levels for a single biological sample using optimal parameters and comparing these expression levels to that of a microarray sample. Results indicate that the distributed alignment system achieves approximately a linear speed-up and correctly distributes sequence data to and gathers alignment results from multiple compute clients.

  8. Prescreening of microbial populations for the assessment of sequencing potential.

    PubMed

    Hanning, Irene B; Ricke, Steven C

    2011-01-01

    Next-generation sequencing (NGS) is a powerful tool that can be utilized to profile and compare microbial populations. By amplifying a target gene present in all bacteria and subsequently sequencing amplicons, the bacteria genera present in the populations can be identified and compared. In some scenarios, little to no difference may exist among microbial populations being compared in which case a prescreening method would be practical to determine which microbial populations would be suitable for further analysis by NGS. Denaturing density-gradient electrophoresis (DGGE) is relatively cheaper than NGS and the data comparing microbial populations are ready to be viewed immediately after electrophoresis. DGGE follows essentially the same initial methodology as NGS by targeting and amplifying the 16S rRNA gene. However, as opposed to sequencing amplicons, DGGE amplicons are analyzed by electrophoresis. By prescreening microbial populations with DGGE, more efficient use of NGS methods can be accomplished. In this chapter, we outline the protocol for DGGE targeting the same gene (16S rRNA) that would be targeted for NGS to compare and determine differences in microbial populations from a wide range of ecosystems.

  9. Pros and Cons of Ion-Torrent Next Generation Sequencing versus Terminal Restriction Fragment Length Polymorphism T-RFLP for Studying the Rumen Bacterial Community

    PubMed Central

    de la Fuente, Gabriel; Belanche, Alejandro; Girwood, Susan E.; Pinloche, Eric; Wilkinson, Toby; Newbold, C. Jamie

    2014-01-01

    The development of next generation sequencing has challenged the use of other molecular fingerprinting methods used to study microbial diversity. We analysed the bacterial diversity in the rumen of defaunated sheep following the introduction of different protozoal populations, using both next generation sequencing (NGS: Ion Torrent PGM) and terminal restriction fragment length polymorphism (T-RFLP). Although absolute number differed, there was a high correlation between NGS and T-RFLP in terms of richness and diversity with R values of 0.836 and 0.781 for richness and Shannon-Wiener index, respectively. Dendrograms for both datasets were also highly correlated (Mantel test = 0.742). Eighteen OTUs and ten genera were significantly impacted by the addition of rumen protozoa, with an increase in the relative abundance of Prevotella, Bacteroides and Ruminobacter, related to an increase in free ammonia levels in the rumen. Our findings suggest that classic fingerprinting methods are still valuable tools to study microbial diversity and structure in complex environments but that NGS techniques now provide cost effect alternatives that provide a far greater level of information on the individual members of the microbial population. PMID:25051490

  10. Molecular Diagnostics of Gliomas Using Next Generation Sequencing of a Glioma-Tailored Gene Panel.

    PubMed

    Zacher, Angela; Kaulich, Kerstin; Stepanow, Stefanie; Wolter, Marietta; Köhrer, Karl; Felsberg, Jörg; Malzkorn, Bastian; Reifenberger, Guido

    2017-03-01

    Current classification of gliomas is based on histological criteria according to the World Health Organization (WHO) classification of tumors of the central nervous system. Over the past years, characteristic genetic profiles have been identified in various glioma types. These can refine tumor diagnostics and provide important prognostic and predictive information. We report on the establishment and validation of gene panel next generation sequencing (NGS) for the molecular diagnostics of gliomas. We designed a glioma-tailored gene panel covering 660 amplicons derived from 20 genes frequently aberrant in different glioma types. Sensitivity and specificity of glioma gene panel NGS for detection of DNA sequence variants and copy number changes were validated by single gene analyses. NGS-based mutation detection was optimized for application on formalin-fixed paraffin-embedded tissue specimens including small stereotactic biopsy samples. NGS data obtained in a retrospective analysis of 121 gliomas allowed for their molecular classification into distinct biological groups, including (i) isocitrate dehydrogenase gene (IDH) 1 or 2 mutant astrocytic gliomas with frequent α-thalassemia/mental retardation syndrome X-linked (ATRX) and tumor protein p53 (TP53) gene mutations, (ii) IDH mutant oligodendroglial tumors with 1p/19q codeletion, telomerase reverse transcriptase (TERT) promoter mutation and frequent Drosophila homolog of capicua (CIC) gene mutation, as well as (iii) IDH wildtype glioblastomas with frequent TERT promoter mutation, phosphatase and tensin homolog (PTEN) mutation and/or epidermal growth factor receptor (EGFR) amplification. Oligoastrocytic gliomas were genetically assigned to either of these groups. Our findings implicate gene panel NGS as a promising diagnostic technique that may facilitate integrated histological and molecular glioma classification. © 2016 International Society of Neuropathology.

  11. Comparison of a High-Resolution Melting Assay to Next-Generation Sequencing for Analysis of HIV Diversity

    PubMed Central

    Cousins, Matthew M.; Ou, San-San; Wawer, Maria J.; Munshaw, Supriya; Swan, David; Magaret, Craig A.; Mullis, Caroline E.; Serwadda, David; Porcella, Stephen F.; Gray, Ronald H.; Quinn, Thomas C.; Donnell, Deborah; Eshleman, Susan H.

    2012-01-01

    Next-generation sequencing (NGS) has recently been used for analysis of HIV diversity, but this method is labor-intensive, costly, and requires complex protocols for data analysis. We compared diversity measures obtained using NGS data to those obtained using a diversity assay based on high-resolution melting (HRM) of DNA duplexes. The HRM diversity assay provides a single numeric score that reflects the level of diversity in the region analyzed. HIV gag and env from individuals in Rakai, Uganda, were analyzed in a previous study using NGS (n = 220 samples from 110 individuals). Three sequence-based diversity measures were calculated from the NGS sequence data (percent diversity, percent complexity, and Shannon entropy). The amplicon pools used for NGS were analyzed with the HRM diversity assay. HRM scores were significantly associated with sequence-based measures of HIV diversity for both gag and env (P < 0.001 for all measures). The level of diversity measured by the HRM diversity assay and NGS increased over time in both regions analyzed (P < 0.001 for all measures except for percent complexity in gag), and similar amounts of diversification were observed with both methods (P < 0.001 for all measures except for percent complexity in gag). Diversity measures obtained using the HRM diversity assay were significantly associated with those from NGS, and similar increases in diversity over time were detected by both methods. The HRM diversity assay is faster and less expensive than NGS, facilitating rapid analysis of large studies of HIV diversity and evolution. PMID:22785188

  12. Reproducibility of Illumina platform deep sequencing errors allows accurate determination of DNA barcodes in cells.

    PubMed

    Beltman, Joost B; Urbanus, Jos; Velds, Arno; van Rooij, Nienke; Rohr, Jan C; Naik, Shalin H; Schumacher, Ton N

    2016-04-02

    Next generation sequencing (NGS) of amplified DNA is a powerful tool to describe genetic heterogeneity within cell populations that can both be used to investigate the clonal structure of cell populations and to perform genetic lineage tracing. For applications in which both abundant and rare sequences are biologically relevant, the relatively high error rate of NGS techniques complicates data analysis, as it is difficult to distinguish rare true sequences from spurious sequences that are generated by PCR or sequencing errors. This issue, for instance, applies to cellular barcoding strategies that aim to follow the amount and type of offspring of single cells, by supplying these with unique heritable DNA tags. Here, we use genetic barcoding data from the Illumina HiSeq platform to show that straightforward read threshold-based filtering of data is typically insufficient to filter out spurious barcodes. Importantly, we demonstrate that specific sequencing errors occur at an approximately constant rate across different samples that are sequenced in parallel. We exploit this observation by developing a novel approach to filter out spurious sequences. Application of our new method demonstrates its value in the identification of true sequences amongst spurious sequences in biological data sets.

  13. Sequencing technologies - the next generation.

    PubMed

    Metzker, Michael L

    2010-01-01

    Demand has never been greater for revolutionary technologies that deliver fast, inexpensive and accurate genome information. This challenge has catalysed the development of next-generation sequencing (NGS) technologies. The inexpensive production of large volumes of sequence data is the primary advantage over conventional methods. Here, I present a technical review of template preparation, sequencing and imaging, genome alignment and assembly approaches, and recent advances in current and near-term commercially available NGS instruments. I also outline the broad range of applications for NGS technologies, in addition to providing guidelines for platform selection to address biological questions of interest.

  14. A vertebrate case study of the quality of assemblies derived from next-generation sequences

    PubMed Central

    2011-01-01

    The unparalleled efficiency of next-generation sequencing (NGS) has prompted widespread adoption, but significant problems remain in the use of NGS data for whole genome assembly. We explore the advantages and disadvantages of chicken genome assemblies generated using a variety of sequencing and assembly methodologies. NGS assemblies are equivalent in some ways to a Sanger-based assembly yet deficient in others. Nonetheless, these assemblies are sufficient for the identification of the majority of genes and can reveal novel sequences when compared to existing assembly references. PMID:21453517

  15. Effective assessment of egfr mutation status in bronchoalveolar lavage and pleural fluids by next-generation sequencing.

    PubMed

    Buttitta, Fiamma; Felicioni, Lara; Del Grammastro, Maela; Filice, Giampaolo; Di Lorito, Alessia; Malatesta, Sara; Viola, Patrizia; Centi, Irene; D'Antuono, Tommaso; Zappacosta, Roberta; Rosini, Sandra; Cuccurullo, Franco; Marchetti, Antonio

    2013-02-01

    The therapeutic choice for patients with lung adenocarcinoma depends on the presence of EGF receptor (EGFR) mutations. In many cases, only cytologic samples are available for molecular diagnosis. Bronchoalveolar lavage (BAL) and pleural fluid, which represent a considerable proportion of cytologic specimens, cannot always be used for molecular testing because of low rate of tumor cells. We tested the feasibility of EGFR mutation analysis on BAL and pleural fluid samples by next-generation sequencing (NGS), an innovative and extremely sensitive platform. The study was devised to extend the EGFR test to those patients who could not get it due to the paucity of biologic material. A series of 830 lung cytology specimens was used to select 48 samples (BAL and pleural fluid) from patients with EGFR mutations in resected tumors. These samples included 36 cases with 0.3% to 9% of neoplastic cells (series A) and 12 cases without evidence of tumor (series B). All samples were analyzed by Sanger sequencing and NGS on 454 Roche platform. A mean of 21,130 ± 2,370 sequences per sample were obtained by NGS. In series A, EGFR mutations were detected in 16% of cases by Sanger sequencing and in 81% of cases by NGS. Seventy-seven percent of cases found to be negative by Sanger sequencing showed mutations by NGS. In series B, all samples were negative for EGFR mutation by Sanger sequencing whereas 42% of them were positive by NGS. The very sensitive EGFR-NGS assay may open up to the possibility of specific treatments for patients otherwise doomed to re-biopsies or nontargeted therapies.

  16. Targeted sequencing of plant genomes

    Treesearch

    Mark D. Huynh

    2014-01-01

    Next-generation sequencing (NGS) has revolutionized the field of genetics by providing a means for fast and relatively affordable sequencing. With the advancement of NGS, wholegenome sequencing (WGS) has become more commonplace. However, sequencing an entire genome is still not cost effective or even beneficial in all cases. In studies that do not require a whole-...

  17. Characterizing differential gene expression in polyploid grasses lacking a reference transcriptome

    USDA-ARS?s Scientific Manuscript database

    Basal transcriptome characterization and differential gene expression in response to varying conditions are often addressed through next generation sequencing (NGS) and data analysis techniques. While these strategies are commonly used, there are countless tools, pipelines, data analysis methods an...

  18. Phenotypic mutant library: potential for gene discovery

    USDA-ARS?s Scientific Manuscript database

    The rapid development of high throughput and affordable Next- Generation Sequencing (NGS) techniques has renewed interest in gene discovery using forward genetics. The conventional forward genetic approach starts with isolation of mutants with a phenotype of interest, mapping the mutation within a s...

  19. Next generation sequencing--implications for clinical practice.

    PubMed

    Raffan, Eleanor; Semple, Robert K

    2011-01-01

    Genetic testing in inherited disease has traditionally relied upon recognition of the presenting clinical syndrome and targeted analysis of genes known to be linked to that syndrome. Consequently, many patients with genetic syndromes remain without a specific diagnosis. New 'next-generation' sequencing (NGS) techniques permit simultaneous sequencing of enormous amounts of DNA. A slew of research publications have recently demonstrated the tremendous power of these technologies in increasing understanding of human genetic disease. These approaches are likely to be increasingly employed in routine diagnostic practice, but the scale of the genetic information yielded about individuals means that caution must be exercised to avoid net harm in this setting. Use of NGS in a research setting will increasingly have a major but indirect beneficial impact on clinical practice. However, important technical, ethical and social challenges need to be addressed through informed professional and public dialogue before it finds its mature niche as a direct tool in the clinical diagnostic armoury.

  20. Cryptosporidium in fish: alternative sequencing approaches and analyses at multiple loci to resolve mixed infections.

    PubMed

    Paparini, Andrea; Yang, Rongchang; Chen, Linda; Tong, Kaising; Gibson-Kueh, Susan; Lymbery, Alan; Ryan, Una M

    2017-11-01

    Currently, the systematics, biology and epidemiology of piscine Cryptosporidium species are poorly understood. Here, we compared Sanger ‒ and next-generation ‒ sequencing (NGS), of piscine Cryptosporidium, at the 18S rRNA and actin genes. The hosts comprised 11 ornamental fish species, spanning four orders and eight families. The objectives were: to (i) confirm the rich genetic diversity of the parasite and the high frequency of mixed infections; and (ii) explore the potential of NGS in the presence of complex genetic mixtures. By Sanger sequencing, four main genotypes were obtained at the actin locus, while for the 18S locus, seven genotypes were identified. At both loci, NGS revealed frequent mixed infections, consisting of one highly dominant variant plus substantially rarer genotypes. Both sequencing methods detected novel Cryptosporidium genotypes at both loci, including a novel and highly abundant actin genotype that was identified by both Sanger sequencing and NGS. Importantly, this genotype accounted for 68·9% of all NGS reads from all samples (249 585/362 372). The present study confirms that aquarium fish can harbour a large and unexplored Cryptosporidium genetic diversity. Although commonly used in molecular parasitology studies, nested PCR prevents quantitative comparisons and thwarts the advantages of NGS, when this latter approach is used to investigate multiple infections.

  1. Clinical validation of the 50 gene AmpliSeq Cancer Panel V2 for use on a next generation sequencing platform using formalin fixed, paraffin embedded and fine needle aspiration tumour specimens.

    PubMed

    Rathi, Vivek; Wright, Gavin; Constantin, Diana; Chang, Siok; Pham, Huong; Jones, Kerryn; Palios, Atha; Mclachlan, Sue-Anne; Conron, Matthew; McKelvie, Penny; Williams, Richard

    2017-01-01

    The advent of massively parallel sequencing has caused a paradigm shift in the ways cancer is treated, as personalised therapy becomes a reality. More and more laboratories are looking to introduce next generation sequencing (NGS) as a tool for mutational analysis, as this technology has many advantages compared to conventional platforms like Sanger sequencing. In Australia all massively parallel sequencing platforms are still considered in-house in vitro diagnostic tools by the National Association of Testing Authorities (NATA) and a comprehensive analytical validation of all assays, and not just mere verification, is a strict requirement before accreditation can be granted for clinical testing on these platforms. Analytical validation of assays on NGS platforms can prove to be extremely challenging for pathology laboratories. Although there are many affordable and easily accessible NGS instruments available, there are no standardised guidelines as yet for clinical validation of NGS assays. We present an accreditation development procedure that was both comprehensive and applicable in a setting of hospital laboratory for NGS services. This approach may also be applied to other NGS applications in service laboratories. Copyright © 2016 Royal College of Pathologists of Australasia. Published by Elsevier B.V. All rights reserved.

  2. The quest for rare variants: pooled multiplexed next generation sequencing in plants.

    PubMed

    Marroni, Fabio; Pinosio, Sara; Morgante, Michele

    2012-01-01

    Next generation sequencing (NGS) instruments produce an unprecedented amount of sequence data at contained costs. This gives researchers the possibility of designing studies with adequate power to identify rare variants at a fraction of the economic and labor resources required by individual Sanger sequencing. As of today, few research groups working in plant sciences have exploited this potentiality, showing that pooled NGS provides results in excellent agreement with those obtained by individual Sanger sequencing. The aim of this review is to convey to the reader the general ideas underlying the use of pooled NGS for the identification of rare variants. To facilitate a thorough understanding of the possibilities of the method, we will explain in detail the possible experimental and analytical approaches and discuss their advantages and disadvantages. We will show that information on allele frequency obtained by pooled NGS can be used to accurately compute basic population genetics indexes such as allele frequency, nucleotide diversity, and Tajima's D. Finally, we will discuss applications and future perspectives of the multiplexed NGS approach.

  3. Validation of Metagenomic Next-Generation Sequencing Tests for Universal Pathogen Detection.

    PubMed

    Schlaberg, Robert; Chiu, Charles Y; Miller, Steve; Procop, Gary W; Weinstock, George

    2017-06-01

    - Metagenomic sequencing can be used for detection of any pathogens using unbiased, shotgun next-generation sequencing (NGS), without the need for sequence-specific amplification. Proof-of-concept has been demonstrated in infectious disease outbreaks of unknown causes and in patients with suspected infections but negative results for conventional tests. Metagenomic NGS tests hold great promise to improve infectious disease diagnostics, especially in immunocompromised and critically ill patients. - To discuss challenges and provide example solutions for validating metagenomic pathogen detection tests in clinical laboratories. A summary of current regulatory requirements, largely based on prior guidance for NGS testing in constitutional genetics and oncology, is provided. - Examples from 2 separate validation studies are provided for steps from assay design, and validation of wet bench and bioinformatics protocols, to quality control and assurance. - Although laboratory and data analysis workflows are still complex, metagenomic NGS tests for infectious diseases are increasingly being validated in clinical laboratories. Many parallels exist to NGS tests in other fields. Nevertheless, specimen preparation, rapidly evolving data analysis algorithms, and incomplete reference sequence databases are idiosyncratic to the field of microbiology and often overlooked.

  4. ICO amplicon NGS data analysis: a Web tool for variant detection in common high-risk hereditary cancer genes analyzed by amplicon GS Junior next-generation sequencing.

    PubMed

    Lopez-Doriga, Adriana; Feliubadaló, Lídia; Menéndez, Mireia; Lopez-Doriga, Sergio; Morón-Duran, Francisco D; del Valle, Jesús; Tornero, Eva; Montes, Eva; Cuesta, Raquel; Campos, Olga; Gómez, Carolina; Pineda, Marta; González, Sara; Moreno, Victor; Capellá, Gabriel; Lázaro, Conxi

    2014-03-01

    Next-generation sequencing (NGS) has revolutionized genomic research and is set to have a major impact on genetic diagnostics thanks to the advent of benchtop sequencers and flexible kits for targeted libraries. Among the main hurdles in NGS are the difficulty of performing bioinformatic analysis of the huge volume of data generated and the high number of false positive calls that could be obtained, depending on the NGS technology and the analysis pipeline. Here, we present the development of a free and user-friendly Web data analysis tool that detects and filters sequence variants, provides coverage information, and allows the user to customize some basic parameters. The tool has been developed to provide accurate genetic analysis of targeted sequencing of common high-risk hereditary cancer genes using amplicon libraries run in a GS Junior System. The Web resource is linked to our own mutation database, to assist in the clinical classification of identified variants. We believe that this tool will greatly facilitate the use of the NGS approach in routine laboratories.

  5. ngs.plot: Quick mining and visualization of next-generation sequencing data by integrating genomic databases.

    PubMed

    Shen, Li; Shao, Ningyi; Liu, Xiaochuan; Nestler, Eric

    2014-04-15

    Understanding the relationship between the millions of functional DNA elements and their protein regulators, and how they work in conjunction to manifest diverse phenotypes, is key to advancing our understanding of the mammalian genome. Next-generation sequencing technology is now used widely to probe these protein-DNA interactions and to profile gene expression at a genome-wide scale. As the cost of DNA sequencing continues to fall, the interpretation of the ever increasing amount of data generated represents a considerable challenge. We have developed ngs.plot - a standalone program to visualize enrichment patterns of DNA-interacting proteins at functionally important regions based on next-generation sequencing data. We demonstrate that ngs.plot is not only efficient but also scalable. We use a few examples to demonstrate that ngs.plot is easy to use and yet very powerful to generate figures that are publication ready. We conclude that ngs.plot is a useful tool to help fill the gap between massive datasets and genomic information in this era of big sequencing data.

  6. ngs.plot: Quick mining and visualization of next-generation sequencing data by integrating genomic databases

    PubMed Central

    2014-01-01

    Background Understanding the relationship between the millions of functional DNA elements and their protein regulators, and how they work in conjunction to manifest diverse phenotypes, is key to advancing our understanding of the mammalian genome. Next-generation sequencing technology is now used widely to probe these protein-DNA interactions and to profile gene expression at a genome-wide scale. As the cost of DNA sequencing continues to fall, the interpretation of the ever increasing amount of data generated represents a considerable challenge. Results We have developed ngs.plot – a standalone program to visualize enrichment patterns of DNA-interacting proteins at functionally important regions based on next-generation sequencing data. We demonstrate that ngs.plot is not only efficient but also scalable. We use a few examples to demonstrate that ngs.plot is easy to use and yet very powerful to generate figures that are publication ready. Conclusions We conclude that ngs.plot is a useful tool to help fill the gap between massive datasets and genomic information in this era of big sequencing data. PMID:24735413

  7. Secure and robust cloud computing for high-throughput forensic microsatellite sequence analysis and databasing.

    PubMed

    Bailey, Sarah F; Scheible, Melissa K; Williams, Christopher; Silva, Deborah S B S; Hoggan, Marina; Eichman, Christopher; Faith, Seth A

    2017-11-01

    Next-generation Sequencing (NGS) is a rapidly evolving technology with demonstrated benefits for forensic genetic applications, and the strategies to analyze and manage the massive NGS datasets are currently in development. Here, the computing, data storage, connectivity, and security resources of the Cloud were evaluated as a model for forensic laboratory systems that produce NGS data. A complete front-to-end Cloud system was developed to upload, process, and interpret raw NGS data using a web browser dashboard. The system was extensible, demonstrating analysis capabilities of autosomal and Y-STRs from a variety of NGS instrumentation (Illumina MiniSeq and MiSeq, and Oxford Nanopore MinION). NGS data for STRs were concordant with standard reference materials previously characterized with capillary electrophoresis and Sanger sequencing. The computing power of the Cloud was implemented with on-demand auto-scaling to allow multiple file analysis in tandem. The system was designed to store resulting data in a relational database, amenable to downstream sample interpretations and databasing applications following the most recent guidelines in nomenclature for sequenced alleles. Lastly, a multi-layered Cloud security architecture was tested and showed that industry standards for securing data and computing resources were readily applied to the NGS system without disadvantageous effects for bioinformatic analysis, connectivity or data storage/retrieval. The results of this study demonstrate the feasibility of using Cloud-based systems for secured NGS data analysis, storage, databasing, and multi-user distributed connectivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Minimum Information for Reporting Next Generation Sequence Genotyping (MIRING): Guidelines for Reporting HLA and KIR Genotyping via Next Generation Sequencing

    PubMed Central

    Mack, Steven J.; Milius, Robert P.; Gifford, Benjamin D.; Sauter, Jürgen; Hofmann, Jan; Osoegawa, Kazutoyo; Robinson, James; Groeneweg, Mathijs; Turenchalk, Gregory S.; Adai, Alex; Holcomb, Cherie; Rozemuller, Erik H.; Penning, Maarten T.; Heuer, Michael L.; Wang, Chunlin; Salit, Marc L.; Schmidt, Alexander H.; Parham, Peter R.; Müller, Carlheinz; Hague, Tim; Fischer, Gottfried; Fernandez-Viňa, Marcelo; Hollenbach, Jill A; Norman, Paul J.; Maiers, Martin

    2015-01-01

    The development of next-generation sequencing (NGS) technologies for HLA and KIR genotyping is rapidly advancing knowledge of genetic variation of these highly polymorphic loci. NGS genotyping is poised to replace older methods for clinical use, but standard methods for reporting and exchanging these new, high quality genotype data are needed. The Immunogenomic NGS Consortium, a broad collaboration of histocompatibility and immunogenetics clinicians, researchers, instrument manufacturers and software developers, has developed the Minimum Information for Reporting Immunogenomic NGS Genotyping (MIRING) reporting guidelines. MIRING is a checklist that specifies the content of NGS genotyping results as well as a set of messaging guidelines for reporting the results. A MIRING message includes five categories of structured information – message annotation, reference context, full genotype, consensus sequence and novel polymorphism – and references to three categories of accessory information – NGS platform documentation, read processing documentation and primary data. These eight categories of information ensure the long-term portability and broad application of this NGS data for all current histocompatibility and immunogenetics use cases. In addition, MIRING can be extended to allow the reporting of genotype data generated using pre-NGS technologies. Because genotyping results reported using MIRING are easily updated in accordance with reference and nomenclature databases, MIRING represents a bold departure from previous methods of reporting HLA and KIR genotyping results, which have provided static and less-portable data. More information about MIRING can be found online at miring.immunogenomics.org. PMID:26407912

  9. Diagnosis of Sepsis with Cell-free DNA by Next-Generation Sequencing Technology in ICU Patients.

    PubMed

    Long, Yun; Zhang, Yinxin; Gong, Yanping; Sun, Ruixue; Su, Longxiang; Lin, Xin; Shen, Ao; Zhou, Jiali; Caiji, Zhuoma; Wang, Xinying; Li, Dongfang; Wu, Honglong; Tan, Hongdong

    2016-07-01

    Bacteremia is a common serious manifestation of disease in the intensive care unit (ICU), which requires quick and accurate determinations of pathogens to select the appropriate antibiotic treatment. To overcome the shortcomings of traditional bacterial culture (BC), we have adapted next-generation sequencing (NGS) technology to identify pathogens from cell-free plasma DNA. In this study, 78 plasma samples from ICU patients were analyzed by both NGS and BC methods and verified by PCR amplification/Sanger sequencing and ten plasma samples from healthy volunteers were analyzed by NGS as negative controls to define or calibrate the threshold of the NGS methodology. Overall, 1578 suspected patient samples were found to contain bacteria or fungi by NGS, whereas ten patients were diagnosed by BC. Seven samples were diagnosed with bacterial or fungal infection both by NGS and BC. Among them, two samples were diagnosed with two types of bacteria by NGS, whereas one sample was diagnosed with two types of bacteria by BC, which increased the detectability of bacteria or fungi from 11 with BC to 17 with NGS. Most interestingly, 14 specimens were also diagnosed with viral infection by NGS. The overall diagnostic sensitivity was significantly increased from 12.82% (10/78) by BC alone to 30.77% (24/78) by NGS alone for ICU patients, which provides more useful information for establishing patient treatment plans. NGS technology can be applied to detect bacteria in clinical blood samples as an emerging diagnostic tool rich in information to determine the appropriate treatment of septic patients. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.

  10. Simultaneous virus identification and characterization of severe unexplained pneumonia cases using a metagenomics sequencing technique.

    PubMed

    Zou, Xiaohui; Tang, Guangpeng; Zhao, Xiang; Huang, Yan; Chen, Tao; Lei, Mingyu; Chen, Wenbing; Yang, Lei; Zhu, Wenfei; Zhuang, Li; Yang, Jing; Feng, Zhaomin; Wang, Dayan; Wang, Dingming; Shu, Yuelong

    2017-03-01

    Many viruses can cause respiratory diseases in humans. Although great advances have been achieved in methods of diagnosis, it remains challenging to identify pathogens in unexplained pneumonia (UP) cases. In this study, we applied next-generation sequencing (NGS) technology and a metagenomic approach to detect and characterize respiratory viruses in UP cases from Guizhou Province, China. A total of 33 oropharyngeal swabs were obtained from hospitalized UP patients and subjected to NGS. An unbiased metagenomic analysis pipeline identified 13 virus species in 16 samples. Human rhinovirus C was the virus most frequently detected and was identified in seven samples. Human measles virus, adenovirus B 55 and coxsackievirus A10 were also identified. Metagenomic sequencing also provided virus genomic sequences, which enabled genotype characterization and phylogenetic analysis. For cases of multiple infection, metagenomic sequencing afforded information regarding the quantity of each virus in the sample, which could be used to evaluate each viruses' role in the disease. Our study highlights the potential of metagenomic sequencing for pathogen identification in UP cases.

  11. Analysis and Visualization of ChIP-Seq and RNA-Seq Sequence Alignments Using ngs.plot.

    PubMed

    Loh, Yong-Hwee Eddie; Shen, Li

    2016-01-01

    The continual maturation and increasing applications of next-generation sequencing technology in scientific research have yielded ever-increasing amounts of data that need to be effectively and efficiently analyzed and innovatively mined for new biological insights. We have developed ngs.plot-a quick and easy-to-use bioinformatics tool that performs visualizations of the spatial relationships between sequencing alignment enrichment and specific genomic features or regions. More importantly, ngs.plot is customizable beyond the use of standard genomic feature databases to allow the analysis and visualization of user-specified regions of interest generated by the user's own hypotheses. In this protocol, we demonstrate and explain the use of ngs.plot using command line executions, as well as a web-based workflow on the Galaxy framework. We replicate the underlying commands used in the analysis of a true biological dataset that we had reported and published earlier and demonstrate how ngs.plot can easily generate publication-ready figures. With ngs.plot, users would be able to efficiently and innovatively mine their own datasets without having to be involved in the technical aspects of sequence coverage calculations and genomic databases.

  12. Next-Generation Sequencing and Genome Editing in Plant Virology

    PubMed Central

    Hadidi, Ahmed; Flores, Ricardo; Candresse, Thierry; Barba, Marina

    2016-01-01

    Next-generation sequencing (NGS) has been applied to plant virology since 2009. NGS provides highly efficient, rapid, low cost DNA, or RNA high-throughput sequencing of the genomes of plant viruses and viroids and of the specific small RNAs generated during the infection process. These small RNAs, which cover frequently the whole genome of the infectious agent, are 21–24 nt long and are known as vsRNAs for viruses and vd-sRNAs for viroids. NGS has been used in a number of studies in plant virology including, but not limited to, discovery of novel viruses and viroids as well as detection and identification of those pathogens already known, analysis of genome diversity and evolution, and study of pathogen epidemiology. The genome engineering editing method, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has been successfully used recently to engineer resistance to DNA geminiviruses (family, Geminiviridae) by targeting different viral genome sequences in infected Nicotiana benthamiana or Arabidopsis plants. The DNA viruses targeted include tomato yellow leaf curl virus and merremia mosaic virus (begomovirus); beet curly top virus and beet severe curly top virus (curtovirus); and bean yellow dwarf virus (mastrevirus). The technique has also been used against the RNA viruses zucchini yellow mosaic virus, papaya ringspot virus and turnip mosaic virus (potyvirus) and cucumber vein yellowing virus (ipomovirus, family, Potyviridae) by targeting the translation initiation genes eIF4E in cucumber or Arabidopsis plants. From these recent advances of major importance, it is expected that NGS and CRISPR-Cas technologies will play a significant role in the very near future in advancing the field of plant virology and connecting it with other related fields of biology. PMID:27617007

  13. A safe an easy method for building consensus HIV sequences from 454 massively parallel sequencing data.

    PubMed

    Fernández-Caballero Rico, Jose Ángel; Chueca Porcuna, Natalia; Álvarez Estévez, Marta; Mosquera Gutiérrez, María Del Mar; Marcos Maeso, María Ángeles; García, Federico

    2018-02-01

    To show how to generate a consensus sequence from the information of massive parallel sequences data obtained from routine HIV anti-retroviral resistance studies, and that may be suitable for molecular epidemiology studies. Paired Sanger (Trugene-Siemens) and next-generation sequencing (NGS) (454 GSJunior-Roche) HIV RT and protease sequences from 62 patients were studied. NGS consensus sequences were generated using Mesquite, using 10%, 15%, and 20% thresholds. Molecular evolutionary genetics analysis (MEGA) was used for phylogenetic studies. At a 10% threshold, NGS-Sanger sequences from 17/62 patients were phylogenetically related, with a median bootstrap-value of 88% (IQR83.5-95.5). Association increased to 36/62 sequences, median bootstrap 94% (IQR85.5-98)], using a 15% threshold. Maximum association was at the 20% threshold, with 61/62 sequences associated, and a median bootstrap value of 99% (IQR98-100). A safe method is presented to generate consensus sequences from HIV-NGS data at 20% threshold, which will prove useful for molecular epidemiological studies. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  14. Performance of amplicon-based next generation DNA sequencing for diagnostic gene mutation profiling in oncopathology.

    PubMed

    Sie, Daoud; Snijders, Peter J F; Meijer, Gerrit A; Doeleman, Marije W; van Moorsel, Marinda I H; van Essen, Hendrik F; Eijk, Paul P; Grünberg, Katrien; van Grieken, Nicole C T; Thunnissen, Erik; Verheul, Henk M; Smit, Egbert F; Ylstra, Bauke; Heideman, Daniëlle A M

    2014-10-01

    Next generation DNA sequencing (NGS) holds promise for diagnostic applications, yet implementation in routine molecular pathology practice requires performance evaluation on DNA derived from routine formalin-fixed paraffin-embedded (FFPE) tissue specimens. The current study presents a comprehensive analysis of TruSeq Amplicon Cancer Panel-based NGS using a MiSeq Personal sequencer (TSACP-MiSeq-NGS) for somatic mutation profiling. TSACP-MiSeq-NGS (testing 212 hotspot mutation amplicons of 48 genes) and a data analysis pipeline were evaluated in a retrospective learning/test set approach (n = 58/n = 45 FFPE-tumor DNA samples) against 'gold standard' high-resolution-melting (HRM)-sequencing for the genes KRAS, EGFR, BRAF and PIK3CA. Next, the performance of the validated test algorithm was assessed in an independent, prospective cohort of FFPE-tumor DNA samples (n = 75). In the learning set, a number of minimum parameter settings was defined to decide whether a FFPE-DNA sample is qualified for TSACP-MiSeq-NGS and for calling mutations. The resulting test algorithm revealed 82% (37/45) compliance to the quality criteria and 95% (35/37) concordant assay findings for KRAS, EGFR, BRAF and PIK3CA with HRM-sequencing (kappa = 0.92; 95% CI = 0.81-1.03) in the test set. Subsequent application of the validated test algorithm to the prospective cohort yielded a success rate of 84% (63/75), and a high concordance with HRM-sequencing (95% (60/63); kappa = 0.92; 95% CI = 0.84-1.01). TSACP-MiSeq-NGS detected 77 mutations in 29 additional genes. TSACP-MiSeq-NGS is suitable for diagnostic gene mutation profiling in oncopathology.

  15. Next Generation Sequencing Technology and Genomewide Data Analysis: Perspectives for Retinal Research

    PubMed Central

    Chaitankar, Vijender; Karakülah, Gökhan; Ratnapriya, Rinki; Giuste, Felipe O.; Brooks, Matthew J.; Swaroop, Anand

    2016-01-01

    The advent of high throughput next generation sequencing (NGS) has accelerated the pace of discovery of disease-associated genetic variants and genomewide profiling of expressed sequences and epigenetic marks, thereby permitting systems-based analyses of ocular development and disease. Rapid evolution of NGS and associated methodologies presents significant challenges in acquisition, management, and analysis of large data sets and for extracting biologically or clinically relevant information. Here we illustrate the basic design of commonly used NGS-based methods, specifically whole exome sequencing, transcriptome, and epigenome profiling, and provide recommendations for data analyses. We briefly discuss systems biology approaches for integrating multiple data sets to elucidate gene regulatory or disease networks. While we provide examples from the retina, the NGS guidelines reviewed here are applicable to other tissues/cell types as well. PMID:27297499

  16. Use of sequence-independent-single-primer-amplification (SISPA) for whole genome sequencing using illumina MiSeq platform for avian influenza virus, Newcastle disease virus, and infectious bronchitis virus

    USDA-ARS?s Scientific Manuscript database

    Over the past decade, Next Generation Sequencing (NGS) technologies, also called deep sequencing, have continued to evolve, increasing capacity and lower the cost necessary for large genome sequencing projects. The one of the advantage of NGS platforms is the possibility to sequence the samples with...

  17. Navigating the Rapids: The Development of Regulated Next-Generation Sequencing-Based Clinical Trial Assays and Companion Diagnostics

    PubMed Central

    Pant, Saumya; Weiner, Russell; Marton, Matthew J.

    2014-01-01

    Over the past decade, next-generation sequencing (NGS) technology has experienced meteoric growth in the aspects of platform, technology, and supporting bioinformatics development allowing its widespread and rapid uptake in research settings. More recently, NGS-based genomic data have been exploited to better understand disease development and patient characteristics that influence response to a given therapeutic intervention. Cancer, as a disease characterized by and driven by the tumor genetic landscape, is particularly amenable to NGS-based diagnostic (Dx) approaches. NGS-based technologies are particularly well suited to studying cancer disease development, progression and emergence of resistance, all key factors in the development of next-generation cancer Dxs. Yet, to achieve the promise of NGS-based patient treatment, drug developers will need to overcome a number of operational, technical, regulatory, and strategic challenges. Here, we provide a succinct overview of the state of the clinical NGS field in terms of the available clinically targeted platforms and sequencing technologies. We discuss the various operational and practical aspects of clinical NGS testing that will facilitate or limit the uptake of such assays in routine clinical care. We examine the current strategies for analytical validation and Food and Drug Administration (FDA)-approval of NGS-based assays and ongoing efforts to standardize clinical NGS and build quality control standards for the same. The rapidly evolving companion diagnostic (CDx) landscape for NGS-based assays will be reviewed, highlighting the key areas of concern and suggesting strategies to mitigate risk. The review will conclude with a series of strategic questions that face drug developers and a discussion of the likely future course of NGS-based CDx development efforts. PMID:24860780

  18. Genetic Variants Identified from Epilepsy of Unknown Etiology in Chinese Children by Targeted Exome Sequencing

    PubMed Central

    Wang, Yimin; Du, Xiaonan; Bin, Rao; Yu, Shanshan; Xia, Zhezhi; Zheng, Guo; Zhong, Jianmin; Zhang, Yunjian; Jiang, Yong-hui; Wang, Yi

    2017-01-01

    Genetic factors play a major role in the etiology of epilepsy disorders. Recent genomics studies using next generation sequencing (NGS) technique have identified a large number of genetic variants including copy number (CNV) and single nucleotide variant (SNV) in a small set of genes from individuals with epilepsy. These discoveries have contributed significantly to evaluate the etiology of epilepsy in clinic and lay the foundation to develop molecular specific treatment. However, the molecular basis for a majority of epilepsy patients remains elusive, and furthermore, most of these studies have been conducted in Caucasian children. Here we conducted a targeted exome-sequencing of 63 trios of Chinese epilepsy families using a custom-designed NGS panel that covers 412 known and candidate genes for epilepsy. We identified pathogenic and likely pathogenic variants in 15 of 63 (23.8%) families in known epilepsy genes including SCN1A, CDKL5, STXBP1, CHD2, SCN3A, SCN9A, TSC2, MBD5, POLG and EFHC1. More importantly, we identified likely pathologic variants in several novel candidate genes such as GABRE, MYH1, and CLCN6. Our results provide the evidence supporting the application of custom-designed NGS panel in clinic and indicate a conserved genetic susceptibility for epilepsy between Chinese and Caucasian children. PMID:28074849

  19. Assessment of clinical analytical sensitivity and specificity of next-generation sequencing for detection of simple and complex mutations.

    PubMed

    Chin, Ephrem L H; da Silva, Cristina; Hegde, Madhuri

    2013-02-19

    Detecting mutations in disease genes by full gene sequence analysis is common in clinical diagnostic laboratories. Sanger dideoxy terminator sequencing allows for rapid development and implementation of sequencing assays in the clinical laboratory, but it has limited throughput, and due to cost constraints, only allows analysis of one or at most a few genes in a patient. Next-generation sequencing (NGS), on the other hand, has evolved rapidly, although to date it has mainly been used for large-scale genome sequencing projects and is beginning to be used in the clinical diagnostic testing. One advantage of NGS is that many genes can be analyzed easily at the same time, allowing for mutation detection when there are many possible causative genes for a specific phenotype. In addition, regions of a gene typically not tested for mutations, like deep intronic and promoter mutations, can also be detected. Here we use 20 previously characterized Sanger-sequenced positive controls in disease-causing genes to demonstrate the utility of NGS in a clinical setting using standard PCR based amplification to assess the analytical sensitivity and specificity of the technology for detecting all previously characterized changes (mutations and benign SNPs). The positive controls chosen for validation range from simple substitution mutations to complex deletion and insertion mutations occurring in autosomal dominant and recessive disorders. The NGS data was 100% concordant with the Sanger sequencing data identifying all 119 previously identified changes in the 20 samples. We have demonstrated that NGS technology is ready to be deployed in clinical laboratories. However, NGS and associated technologies are evolving, and clinical laboratories will need to invest significantly in staff and infrastructure to build the necessary foundation for success.

  20. Use of amplicon sequencing to improve sensitivity in PCR-based detection of microbial pathogen in environmental samples.

    PubMed

    Saingam, Prakit; Li, Bo; Yan, Tao

    2018-06-01

    DNA-based molecular detection of microbial pathogens in complex environments is still plagued by sensitivity, specificity and robustness issues. We propose to address these issues by viewing them as inadvertent consequences of requiring specific and adequate amplification (SAA) of target DNA molecules by current PCR methods. Using the invA gene of Salmonella as the model system, we investigated if next generation sequencing (NGS) can be used to directly detect target sequences in false-negative PCR reaction (PCR-NGS) in order to remove the SAA requirement from PCR. False-negative PCR and qPCR reactions were first created using serial dilutions of laboratory-prepared Salmonella genomic DNA and then analyzed directly by NGS. Target invA sequences were detected in all false-negative PCR and qPCR reactions, which lowered the method detection limits near the theoretical minimum of single gene copy detection. The capability of the PCR-NGS approach in correcting false negativity was further tested and confirmed under more environmentally relevant conditions using Salmonella-spiked stream water and sediment samples. Finally, the PCR-NGS approach was applied to ten urban stream water samples and detected invA sequences in eight samples that would be otherwise deemed Salmonella negative. Analysis of the non-target sequences in the false-negative reactions helped to identify primer dime-like short sequences as the main cause of the false negativity. Together, the results demonstrated that the PCR-NGS approach can significantly improve method sensitivity, correct false-negative detections, and enable sequence-based analysis for failure diagnostics in complex environmental samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Applications of next-generation sequencing analysis for the detection of hepatocellular carcinoma-associated hepatitis B virus mutations.

    PubMed

    Wu, I-Chin; Liu, Wen-Chun; Chang, Ting-Tsung

    2018-06-02

    Next-generation sequencing (NGS) is a powerful and high-throughput method for the detection of viral mutations. This article provides a brief overview about optimization of NGS analysis for hepatocellular carcinoma (HCC)-associated hepatitis B virus (HBV) mutations, and hepatocarcinogenesis of relevant mutations. For the application of NGS analysis in the genome of HBV, four noteworthy steps were discovered in testing. First, a sample-specific reference sequence was the most effective mapping reference for NGS. Second, elongating the end of reference sequence improved mapping performance at the end of the genome. Third, resetting the origin of mapping reference sequence could probed deletion mutations and variants at a certain location with common mutations. Fourth, using a platform-specific cut-off value to distinguish authentic minority variants from technical artifacts was found to be highly effective. One hundred and sixty-seven HBV single nucleotide variants (SNVs) were found to be studied previously through a systematic literature review, and 12 SNVs were determined to be associated with HCC by meta-analysis. From comprehensive research using a HBV genome-wide NGS analysis, 60 NGS-defined HCC-associated SNVs with their pathogenic frequencies were identified, with 19 reported previously. All the 12 HCC-associated SNVs proved by meta-analysis were confirmed by NGS analysis, except for C1766T and T1768A which were mainly expressed in genotypes A and D, but including the subgroup analysis of A1762T. In the 41 novel NGS-defined HCC-associated SNVs, 31.7% (13/41) had cut-off values of SNV frequency lower than 20%. This showed that NGS could be used to detect HCC-associated SNVs with low SNV frequency. Most SNV II (the minor strains in the majority of non-HCC patients) had either low (< 20%) or high (> 80%) SNV frequencies in HCC patients, a characteristic U-shaped distribution pattern. The cut-off values of SNV frequency for HCC-associated SNVs represent their pathogenic frequencies. The pathogenic frequencies of HCC-associated SNV II also showed a U-shaped distribution. Hepatocarcinogenesis induced by HBV mutated proteins through cellular pathways was reviewed. NGS analysis is useful to discover novel HCC-associated HBV SNVs, especially those with low SNV frequency. The hepatocarcinogenetic mechanisms of novel HCC-associated HBV SNVs defined by NGS analysis deserve further investigation.

  2. Next-Generation Sequencing in Oncology: Genetic Diagnosis, Risk Prediction and Cancer Classification

    PubMed Central

    Kamps, Rick; Brandão, Rita D.; van den Bosch, Bianca J.; Paulussen, Aimee D. C.; Xanthoulea, Sofia; Blok, Marinus J.; Romano, Andrea

    2017-01-01

    Next-generation sequencing (NGS) technology has expanded in the last decades with significant improvements in the reliability, sequencing chemistry, pipeline analyses, data interpretation and costs. Such advances make the use of NGS feasible in clinical practice today. This review describes the recent technological developments in NGS applied to the field of oncology. A number of clinical applications are reviewed, i.e., mutation detection in inherited cancer syndromes based on DNA-sequencing, detection of spliceogenic variants based on RNA-sequencing, DNA-sequencing to identify risk modifiers and application for pre-implantation genetic diagnosis, cancer somatic mutation analysis, pharmacogenetics and liquid biopsy. Conclusive remarks, clinical limitations, implications and ethical considerations that relate to the different applications are provided. PMID:28146134

  3. [Current situation and prospect of breast cancer liquid biopsy].

    PubMed

    Zhou, B; Xin, L; Xu, L; Ye, J M; Liu, Y H

    2018-02-01

    Liquid biopsy is a diagnostic approach by analyzing body fluid samples. Peripheral blood is the most common sample. Urine, saliva, pleural effusion and ascites are also used. Now liquid biopsy is mainly used in the area of neoplasm diagnosis and treatment. Compared with traditional tissue biopsy, liquid biopsy is minimally invasive, convenient to sample and easy to repeat. Liquid biopsy mainly includes circulating tumor cells and circulating tumor DNA (ctDNA) detection. Detection of ctDNA requires sensitive and accurate methods. The progression of next-generation sequencing (NGS) and digital PCR promote the process of studies in ctDNA. In 2016, Nature published the result of whole-genome sequencing study of breast cancer. The study found 1 628 mutations of 93 protein-coding genes which may be driver mutations of breast cancer. The result of this study provided a new platform for breast cancer ctDNA studies. In recent years, there were many studies using ctDNA detection to monitor therapeutic effect and guide treatment. NGS is a promising technique in accessing genetic information and guiding targeted therapy. It must be emphasized that ctDNA detection using NGS is still at research stage. It is important to standardize ctDNA detection technique and perform prospective clinical researches. The time is not ripe for using ctDNA detection to guide large-scale breast cancer clinical practice at present.

  4. Characterization of the cutaneous mycobiota in healthy and allergic cats using next generation sequencing.

    PubMed

    Meason-Smith, Courtney; Diesel, Alison; Patterson, Adam P; Older, Caitlin E; Johnson, Timothy J; Mansell, Joanne M; Suchodolski, Jan S; Rodrigues Hoffmann, Aline

    2017-02-01

    Next generation sequencing (NGS) studies have demonstrated a diverse skin-associated microbiota and microbial dysbiosis associated with atopic dermatitis in people and in dogs. The skin of cats has yet to be investigated using NGS techniques. We hypothesized that the fungal microbiota of healthy feline skin would be similar to that of dogs, with a predominance of environmental fungi, and that fungal dysbiosis would be present on the skin of allergic cats. Eleven healthy cats and nine cats diagnosed with one or more cutaneous hypersensitivity disorders, including flea bite, food-induced and nonflea nonfood-induced hypersensitivity. Healthy cats were sampled at twelve body sites and allergic cats at six sites. DNA was isolated and Illumina sequencing was performed targeting the internal transcribed spacer region of fungi. Sequences were processed using the bioinformatics software QIIME. The most abundant fungal sequences from the skin of all cats were classified as Cladosporium and Alternaria. The mucosal sites, including nostril, conjunctiva and reproductive tracts, had the fewest number of fungi, whereas the pre-aural space had the most. Allergic feline skin had significantly greater amounts of Agaricomycetes and Sordariomycetes, and significantly less Epicoccum compared to healthy feline skin. The skin of healthy cats appears to have a more diverse fungal microbiota compared to previous studies, and a fungal dysbiosis is noted in the skin of allergic cats. Future studies assessing the temporal stability of the skin microbiota in cats will be useful in determining whether the microbiota sequenced using NGS are colonizers or transient microbes. © 2016 ESVD and ACVD.

  5. Single molecule sequencing of the M13 virus genome without amplification

    PubMed Central

    Zhao, Luyang; Deng, Liwei; Li, Gailing; Jin, Huan; Cai, Jinsen; Shang, Huan; Li, Yan; Wu, Haomin; Xu, Weibin; Zeng, Lidong; Zhang, Renli; Zhao, Huan; Wu, Ping; Zhou, Zhiliang; Zheng, Jiao; Ezanno, Pierre; Yang, Andrew X.; Yan, Qin; Deem, Michael W.; He, Jiankui

    2017-01-01

    Next generation sequencing (NGS) has revolutionized life sciences research. However, GC bias and costly, time-intensive library preparation make NGS an ill fit for increasing sequencing demands in the clinic. A new class of third-generation sequencing platforms has arrived to meet this need, capable of directly measuring DNA and RNA sequences at the single-molecule level without amplification. Here, we use the new GenoCare single-molecule sequencing platform from Direct Genomics to sequence the genome of the M13 virus. Our platform detects single-molecule fluorescence by total internal reflection microscopy, with sequencing-by-synthesis chemistry. We sequenced the genome of M13 to a depth of 316x, with 100% coverage. We determined a consensus sequence accuracy of 100%. In contrast to GC bias inherent to NGS results, we demonstrated that our single-molecule sequencing method yields minimal GC bias. PMID:29253901

  6. Single molecule sequencing of the M13 virus genome without amplification.

    PubMed

    Zhao, Luyang; Deng, Liwei; Li, Gailing; Jin, Huan; Cai, Jinsen; Shang, Huan; Li, Yan; Wu, Haomin; Xu, Weibin; Zeng, Lidong; Zhang, Renli; Zhao, Huan; Wu, Ping; Zhou, Zhiliang; Zheng, Jiao; Ezanno, Pierre; Yang, Andrew X; Yan, Qin; Deem, Michael W; He, Jiankui

    2017-01-01

    Next generation sequencing (NGS) has revolutionized life sciences research. However, GC bias and costly, time-intensive library preparation make NGS an ill fit for increasing sequencing demands in the clinic. A new class of third-generation sequencing platforms has arrived to meet this need, capable of directly measuring DNA and RNA sequences at the single-molecule level without amplification. Here, we use the new GenoCare single-molecule sequencing platform from Direct Genomics to sequence the genome of the M13 virus. Our platform detects single-molecule fluorescence by total internal reflection microscopy, with sequencing-by-synthesis chemistry. We sequenced the genome of M13 to a depth of 316x, with 100% coverage. We determined a consensus sequence accuracy of 100%. In contrast to GC bias inherent to NGS results, we demonstrated that our single-molecule sequencing method yields minimal GC bias.

  7. Next-generation sequencing in clinical virology: Discovery of new viruses.

    PubMed

    Datta, Sibnarayan; Budhauliya, Raghvendra; Das, Bidisha; Chatterjee, Soumya; Vanlalhmuaka; Veer, Vijay

    2015-08-12

    Viruses are a cause of significant health problem worldwide, especially in the developing nations. Due to different anthropological activities, human populations are exposed to different viral pathogens, many of which emerge as outbreaks. In such situations, discovery of novel viruses is utmost important for deciding prevention and treatment strategies. Since last century, a number of different virus discovery methods, based on cell culture inoculation, sequence-independent PCR have been used for identification of a variety of viruses. However, the recent emergence and commercial availability of next-generation sequencers (NGS) has entirely changed the field of virus discovery. These massively parallel sequencing platforms can sequence a mixture of genetic materials from a very heterogeneous mix, with high sensitivity. Moreover, these platforms work in a sequence-independent manner, making them ideal tools for virus discovery. However, for their application in clinics, sample preparation or enrichment is necessary to detect low abundance virus populations. A number of techniques have also been developed for enrichment or viral nucleic acids. In this manuscript, we review the evolution of sequencing; NGS technologies available today as well as widely used virus enrichment technologies. We also discuss the challenges associated with their applications in the clinical virus discovery.

  8. Open source tools to exploit DNA sequence data from livestock species

    USDA-ARS?s Scientific Manuscript database

    Next-Generation Sequencing (NGS) is a recent technological development that allows researchers to rapidly determine the DNA sequence of an individual. The decrease in cost of NGS has brought the technology into the realm of practical applications in livestock genomics, where it can be used to genera...

  9. AMPLISAS: a web server for multilocus genotyping using next-generation amplicon sequencing data.

    PubMed

    Sebastian, Alvaro; Herdegen, Magdalena; Migalska, Magdalena; Radwan, Jacek

    2016-03-01

    Next-generation sequencing (NGS) technologies are revolutionizing the fields of biology and medicine as powerful tools for amplicon sequencing (AS). Using combinations of primers and barcodes, it is possible to sequence targeted genomic regions with deep coverage for hundreds, even thousands, of individuals in a single experiment. This is extremely valuable for the genotyping of gene families in which locus-specific primers are often difficult to design, such as the major histocompatibility complex (MHC). The utility of AS is, however, limited by the high intrinsic sequencing error rates of NGS technologies and other sources of error such as polymerase amplification or chimera formation. Correcting these errors requires extensive bioinformatic post-processing of NGS data. Amplicon Sequence Assignment (AMPLISAS) is a tool that performs analysis of AS results in a simple and efficient way, while offering customization options for advanced users. AMPLISAS is designed as a three-step pipeline consisting of (i) read demultiplexing, (ii) unique sequence clustering and (iii) erroneous sequence filtering. Allele sequences and frequencies are retrieved in excel spreadsheet format, making them easy to interpret. AMPLISAS performance has been successfully benchmarked against previously published genotyped MHC data sets obtained with various NGS technologies. © 2015 John Wiley & Sons Ltd.

  10. Overview of Next-generation Sequencing Platforms Used in Published Draft Plant Genomes in Light of Genotypization of Immortelle Plant (Helichrysium Arenarium)

    PubMed Central

    Hodzic, Jasin; Gurbeta, Lejla; Omanovic-Miklicanin, Enisa; Badnjevic, Almir

    2017-01-01

    Introduction: Major advancements in DNA sequencing methods introduced in the first decade of the new millennium initiated a rapid expansion of sequencing studies, which yielded a tremendous amount of DNA sequence data, including whole sequenced genomes of various species, including plants. A set of novel sequencing platforms, often collectively named as “next-generation sequencing” (NGS) completely transformed the life sciences, by allowing extensive throughput, while greatly reducing the necessary time, labor and cost of any sequencing endeavor. Purpose: of this paper is to present an overview NGS platforms used to produce the current compendium of published draft genomes of various plants, namely the Roche/454, ABI/SOLiD, and Solexa/Illumina, and to determine the most frequently used platform for the whole genome sequencing of plants in light of genotypization of immortelle plant. Materials and methods: 45 papers were selected (with 47 presented plant genome draft sequences), and utilized sequencing techniques and NGS platforms (Roche/454, ABI/SOLiD and Illumina/Solexa) in selected papers were determined. Subsequently, frequency of usage of each platform or combination of platforms was calculated. Results: Illumina/Solexa platforms are by used either as sole sequencing tool in 40.42% of published genomes, or in combination with other platforms - additional 48.94% of published genomes, followed by Roche/454 platforms, used in combination with traditional Sanger sequencing method (10.64%), and never as a sole tool. ABI/SOLiD was only used in combination with Illumina/Solexa and Roche/454 in 4.25% of publications. Conclusions: Illumina/Solexa platforms are by far most preferred by researchers, most probably due to most affordable sequencing costs. Taking into consideration the current economic situation in the Balkans region, Illumina Solexa is the best (if not the only) platform choice if the sequencing of immortelle plant (Helichrysium arenarium) is to be performed by the researchers in this region. PMID:28974852

  11. The first FDA marketing authorizations of next-generation sequencing technology and tests: challenges, solutions and impact for future assays.

    PubMed

    Bijwaard, Karen; Dickey, Jennifer S; Kelm, Kellie; Težak, Živana

    2015-01-01

    The rapid emergence and clinical translation of novel high-throughput sequencing technologies created a need to clarify the regulatory pathway for the evaluation and authorization of these unique technologies. Recently, the US FDA authorized for marketing four next generation sequencing (NGS)-based diagnostic devices which consisted of two heritable disease-specific assays, library preparation reagents and a NGS platform that are intended for human germline targeted sequencing from whole blood. These first authorizations can serve as a case study in how different types of NGS-based technology are reviewed by the FDA. In this manuscript we describe challenges associated with the evaluation of these novel technologies and provide an overview of what was reviewed. Besides making validated NGS-based devices available for in vitro diagnostic use, these first authorizations create a regulatory path for similar future instruments and assays.

  12. Characterization of the Gut Microbiome Using 16S or Shotgun Metagenomics

    PubMed Central

    Jovel, Juan; Patterson, Jordan; Wang, Weiwei; Hotte, Naomi; O'Keefe, Sandra; Mitchel, Troy; Perry, Troy; Kao, Dina; Mason, Andrew L.; Madsen, Karen L.; Wong, Gane K.-S.

    2016-01-01

    The advent of next generation sequencing (NGS) has enabled investigations of the gut microbiome with unprecedented resolution and throughput. This has stimulated the development of sophisticated bioinformatics tools to analyze the massive amounts of data generated. Researchers therefore need a clear understanding of the key concepts required for the design, execution and interpretation of NGS experiments on microbiomes. We conducted a literature review and used our own data to determine which approaches work best. The two main approaches for analyzing the microbiome, 16S ribosomal RNA (rRNA) gene amplicons and shotgun metagenomics, are illustrated with analyses of libraries designed to highlight their strengths and weaknesses. Several methods for taxonomic classification of bacterial sequences are discussed. We present simulations to assess the number of sequences that are required to perform reliable appraisals of bacterial community structure. To the extent that fluctuations in the diversity of gut bacterial populations correlate with health and disease, we emphasize various techniques for the analysis of bacterial communities within samples (α-diversity) and between samples (β-diversity). Finally, we demonstrate techniques to infer the metabolic capabilities of a bacteria community from these 16S and shotgun data. PMID:27148170

  13. Performance evaluation of Sanger sequencing for the diagnosis of primary hyperoxaluria and comparison with targeted next generation sequencing

    PubMed Central

    Williams, Emma L; Bagg, Eleanor A L; Mueller, Michael; Vandrovcova, Jana; Aitman, Timothy J; Rumsby, Gill

    2015-01-01

    Definitive diagnosis of primary hyperoxaluria (PH) currently utilizes sequential Sanger sequencing of the AGXT, GRPHR, and HOGA1 genes but efficacy is unproven. This analysis is time-consuming, relatively expensive, and delays in diagnosis and inappropriate treatment can occur if not pursued early in the diagnostic work-up. We reviewed testing outcomes of Sanger sequencing in 200 consecutive patient samples referred for analysis. In addition, the Illumina Truseq custom amplicon system was evaluated for paralleled next-generation sequencing (NGS) of AGXT,GRHPR, and HOGA1 in 90 known PH patients. AGXT sequencing was requested in all patients, permitting a diagnosis of PH1 in 50%. All remaining patients underwent targeted exon sequencing of GRHPR and HOGA1 with 8% diagnosed with PH2 and 8% with PH3. Complete sequencing of both GRHPR and HOGA1 was not requested in 25% of patients referred leaving their diagnosis in doubt. NGS analysis showed 98% agreement with Sanger sequencing and both approaches had 100% diagnostic specificity. Diagnostic sensitivity of Sanger sequencing was 98% and for NGS it was 97%. NGS has comparable diagnostic performance to Sanger sequencing for the diagnosis of PH and, if implemented, would screen for all forms of PH simultaneously ensuring prompt diagnosis at decreased cost. PMID:25629080

  14. Next Generation Sequence Analysis and Computational Genomics Using Graphical Pipeline Workflows

    PubMed Central

    Torri, Federica; Dinov, Ivo D.; Zamanyan, Alen; Hobel, Sam; Genco, Alex; Petrosyan, Petros; Clark, Andrew P.; Liu, Zhizhong; Eggert, Paul; Pierce, Jonathan; Knowles, James A.; Ames, Joseph; Kesselman, Carl; Toga, Arthur W.; Potkin, Steven G.; Vawter, Marquis P.; Macciardi, Fabio

    2012-01-01

    Whole-genome and exome sequencing have already proven to be essential and powerful methods to identify genes responsible for simple Mendelian inherited disorders. These methods can be applied to complex disorders as well, and have been adopted as one of the current mainstream approaches in population genetics. These achievements have been made possible by next generation sequencing (NGS) technologies, which require substantial bioinformatics resources to analyze the dense and complex sequence data. The huge analytical burden of data from genome sequencing might be seen as a bottleneck slowing the publication of NGS papers at this time, especially in psychiatric genetics. We review the existing methods for processing NGS data, to place into context the rationale for the design of a computational resource. We describe our method, the Graphical Pipeline for Computational Genomics (GPCG), to perform the computational steps required to analyze NGS data. The GPCG implements flexible workflows for basic sequence alignment, sequence data quality control, single nucleotide polymorphism analysis, copy number variant identification, annotation, and visualization of results. These workflows cover all the analytical steps required for NGS data, from processing the raw reads to variant calling and annotation. The current version of the pipeline is freely available at http://pipeline.loni.ucla.edu. These applications of NGS analysis may gain clinical utility in the near future (e.g., identifying miRNA signatures in diseases) when the bioinformatics approach is made feasible. Taken together, the annotation tools and strategies that have been developed to retrieve information and test hypotheses about the functional role of variants present in the human genome will help to pinpoint the genetic risk factors for psychiatric disorders. PMID:23139896

  15. Diagnostic Applications of Next Generation Sequencing in Immunogenetics and Molecular Oncology

    PubMed Central

    Grumbt, Barbara; Eck, Sebastian H.; Hinrichsen, Tanja; Hirv, Kaimo

    2013-01-01

    Summary With the introduction of the next generation sequencing (NGS) technologies, remarkable new diagnostic applications have been established in daily routine. Implementation of NGS is challenging in clinical diagnostics, but definite advantages and new diagnostic possibilities make the switch to the technology inevitable. In addition to the higher sequencing capacity, clonal sequencing of single molecules, multiplexing of samples, higher diagnostic sensitivity, workflow miniaturization, and cost benefits are some of the valuable features of the technology. After the recent advances, NGS emerged as a proven alternative for classical Sanger sequencing in the typing of human leukocyte antigens (HLA). By virtue of the clonal amplification of single DNA molecules ambiguous typing results can be avoided. Simultaneously, a higher sample throughput can be achieved by tagging of DNA molecules with multiplex identifiers and pooling of PCR products before sequencing. In our experience, up to 380 samples can be typed for HLA-A, -B, and -DRB1 in high-resolution during every sequencing run. In molecular oncology, NGS shows a markedly increased sensitivity in comparison to the conventional Sanger sequencing and is developing to the standard diagnostic tool in detection of somatic mutations in cancer cells with great impact on personalized treatment of patients. PMID:23922545

  16. Evaluation of NGS and RT-PCR Methods for ALK Rearrangement in European NSCLC Patients: Results from the European Thoracic Oncology Platform Lungscape Project.

    PubMed

    Letovanec, Igor; Finn, Stephen; Zygoura, Panagiota; Smyth, Paul; Soltermann, Alex; Bubendorf, Lukas; Speel, Ernst-Jan; Marchetti, Antonio; Nonaka, Daisuke; Monkhorst, Kim; Hager, Henrik; Martorell, Miguel; Sejda, Aleksandra; Cheney, Richard; Hernandez-Losa, Javier; Verbeken, Eric; Weder, Walter; Savic, Spasenija; Di Lorito, Alessia; Navarro, Atilio; Felip, Enriqueta; Warth, Arne; Baas, Paul; Meldgaard, Peter; Blackhall, Fiona; Dingemans, Anne-Marie; Dienemann, Hendrik; Dziadziuszko, Rafal; Vansteenkiste, Johan; O'Brien, Cathal; Geiger, Thomas; Sherlock, Jon; Schageman, Jeoffrey; Dafni, Urania; Kammler, Roswitha; Kerr, Keith; Thunnissen, Erik; Stahel, Rolf; Peters, Solange

    2018-03-01

    The reported prevalence of ALK receptor tyrosine kinase gene (ALK) rearrangement in NSCLC ranges from 2% to 7%. The primary standard diagnostic method is fluorescence in situ hybridization (FISH). Recently, immunohistochemistry (IHC) has also proved to be a reproducible and sensitive technique. Reverse-transcriptase polymerase chain reaction (RT-PCR) has also been advocated, and most recently, the advent of targeted next-generation sequencing (NGS) for ALK and other fusions has become possible. This study compares anaplastic lymphoma kinase (ALK) evaluation with all four techniques in resected NSCLC from the large European Thoracic Oncology Platform Lungscape cohort. A total of 96 cases from the European Thoracic Oncology Platform Lungscape iBiobank, with any ALK immunoreactivity were examined by FISH, central RT-PCR, and NGS. An H-score higher than 120 defines IHC positivity. RNA was extracted from the same formalin-fixed, paraffin-embedded tissues. For RT-PCR, primers covered the most frequent ALK translocations. For NGS, the Oncomine Solid Tumour Fusion Transcript Kit (Thermo Fisher Scientific, Waltham, MA) was used. The concordance was assessed using the Cohen κ coefficient (two-sided α ≤ 5%). NGS provided results for 77 of the 95 cases tested (81.1%), whereas RT-PCR provided results for 77 of 96 (80.2%). Concordance occurred in 55 cases of the 60 cases tested with all four methods (43 ALK negative and 12 ALK positive). Using ALK copositivity for IHC and FISH as the criterion standard, we derived a sensitivity for RT-PCR/NGS of 70.0%/85.0%, with a specificity of 87.1%/79.0%. When either RT-PCR or NGS was combined with IHC, the sensitivity remained the same, whereas the specificity increased to 88.7% and 83.9% respectively. NGS evaluation with the Oncomine Solid Tumour Fusion transcript kit and RT-PCR proved to have high sensitivity and specificity, advocating their use in routine practice. For maximal sensitivity and specificity, ALK status should be assessed by using two techniques and a third one in discordant cases. We therefore propose a customizable testing algorithm. These findings significantly influence existing testing paradigms and have clear clinical and economic impact. Copyright © 2017 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  17. Bias-Corrected Targeted Next-Generation Sequencing for Rapid, Multiplexed Detection of Actionable Alterations in Cell-Free DNA from Advanced Lung Cancer Patients.

    PubMed

    Paweletz, Cloud P; Sacher, Adrian G; Raymond, Chris K; Alden, Ryan S; O'Connell, Allison; Mach, Stacy L; Kuang, Yanan; Gandhi, Leena; Kirschmeier, Paul; English, Jessie M; Lim, Lee P; Jänne, Pasi A; Oxnard, Geoffrey R

    2016-02-15

    Tumor genotyping is a powerful tool for guiding non-small cell lung cancer (NSCLC) care; however, comprehensive tumor genotyping can be logistically cumbersome. To facilitate genotyping, we developed a next-generation sequencing (NGS) assay using a desktop sequencer to detect actionable mutations and rearrangements in cell-free plasma DNA (cfDNA). An NGS panel was developed targeting 11 driver oncogenes found in NSCLC. Targeted NGS was performed using a novel methodology that maximizes on-target reads, and minimizes artifact, and was validated on DNA dilutions derived from cell lines. Plasma NGS was then blindly performed on 48 patients with advanced, progressive NSCLC and a known tumor genotype, and explored in two patients with incomplete tumor genotyping. NGS could identify mutations present in DNA dilutions at ≥ 0.4% allelic frequency with 100% sensitivity/specificity. Plasma NGS detected a broad range of driver and resistance mutations, including ALK, ROS1, and RET rearrangements, HER2 insertions, and MET amplification, with 100% specificity. Sensitivity was 77% across 62 known driver and resistance mutations from the 48 cases; in 29 cases with common EGFR and KRAS mutations, sensitivity was similar to droplet digital PCR. In two cases with incomplete tumor genotyping, plasma NGS rapidly identified a novel EGFR exon 19 deletion and a missed case of MET amplification. Blinded to tumor genotype, this plasma NGS approach detected a broad range of targetable genomic alterations in NSCLC with no false positives including complex mutations like rearrangements and unexpected resistance mutations such as EGFR C797S. Through use of widely available vacutainers and a desktop sequencing platform, this assay has the potential to be implemented broadly for patient care and translational research. ©2015 American Association for Cancer Research.

  18. Bias-corrected targeted next-generation sequencing for rapid, multiplexed detection of actionable alterations in cell-free DNA from advanced lung cancer patients

    PubMed Central

    Paweletz, Cloud P.; Sacher, Adrian G.; Raymond, Chris K.; Alden, Ryan S.; O'Connell, Allison; Mach, Stacy L.; Kuang, Yanan; Gandhi, Leena; Kirschmeier, Paul; English, Jessie M.; Lim, Lee P.; Jänne, Pasi A.; Oxnard, Geoffrey R.

    2015-01-01

    Purpose Tumor genotyping is a powerful tool for guiding non-small cell lung cancer (NSCLC) care, however comprehensive tumor genotyping can be logistically cumbersome. To facilitate genotyping, we developed a next-generation sequencing (NGS) assay using a desktop sequencer to detect actionable mutations and rearrangements in cell-free plasma DNA (cfDNA). Experimental Design An NGS panel was developed targeting 11 driver oncogenes found in NSCLC. Targeted NGS was performed using a novel methodology that maximizes on-target reads, and minimizes artifact, and was validated on DNA dilutions derived from cell lines. Plasma NGS was then blindly performed on 48 patients with advanced, progressive NSCLC and a known tumor genotype, and explored in two patients with incomplete tumor genotyping. Results NGS could identify mutations present in DNA dilutions at ≥0.4% allelic frequency with 100% sensitivity/specificity. Plasma NGS detected a broad range of driver and resistance mutations, including ALK, ROS1, and RET rearrangements, HER2 insertions, and MET amplification, with 100% specificity. Sensitivity was 77% across 62 known driver and resistance mutations from the 48 cases; in 29 cases with common EGFR and KRAS mutations, sensitivity was similar to droplet digital PCR. In two cases with incomplete tumor genotyping, plasma NGS rapidly identified a novel EGFR exon 19 deletion and a missed case of MET amplification. Conclusion Blinded to tumor genotype, this plasma NGS approach detected a broad range of targetable genomic alterations in NSCLC with no false positives including complex mutations like rearrangements and unexpected resistance mutations such as EGFR C797S. Through use of widely available vacutainers and a desktop sequencing platform, this assay has the potential to be implemented broadly for patient care and translational research. PMID:26459174

  19. Customisation of the exome data analysis pipeline using a combinatorial approach.

    PubMed

    Pattnaik, Swetansu; Vaidyanathan, Srividya; Pooja, Durgad G; Deepak, Sa; Panda, Binay

    2012-01-01

    The advent of next generation sequencing (NGS) technologies have revolutionised the way biologists produce, analyse and interpret data. Although NGS platforms provide a cost-effective way to discover genome-wide variants from a single experiment, variants discovered by NGS need follow up validation due to the high error rates associated with various sequencing chemistries. Recently, whole exome sequencing has been proposed as an affordable option compared to whole genome runs but it still requires follow up validation of all the novel exomic variants. Customarily, a consensus approach is used to overcome the systematic errors inherent to the sequencing technology, alignment and post alignment variant detection algorithms. However, the aforementioned approach warrants the use of multiple sequencing chemistry, multiple alignment tools, multiple variant callers which may not be viable in terms of time and money for individual investigators with limited informatics know-how. Biologists often lack the requisite training to deal with the huge amount of data produced by NGS runs and face difficulty in choosing from the list of freely available analytical tools for NGS data analysis. Hence, there is a need to customise the NGS data analysis pipeline to preferentially retain true variants by minimising the incidence of false positives and make the choice of right analytical tools easier. To this end, we have sampled different freely available tools used at the alignment and post alignment stage suggesting the use of the most suitable combination determined by a simple framework of pre-existing metrics to create significant datasets.

  20. Application of Stochastic Labeling with Random-Sequence Barcodes for Simultaneous Quantification and Sequencing of Environmental 16S rRNA Genes.

    PubMed

    Hoshino, Tatsuhiko; Inagaki, Fumio

    2017-01-01

    Next-generation sequencing (NGS) is a powerful tool for analyzing environmental DNA and provides the comprehensive molecular view of microbial communities. For obtaining the copy number of particular sequences in the NGS library, however, additional quantitative analysis as quantitative PCR (qPCR) or digital PCR (dPCR) is required. Furthermore, number of sequences in a sequence library does not always reflect the original copy number of a target gene because of biases caused by PCR amplification, making it difficult to convert the proportion of particular sequences in the NGS library to the copy number using the mass of input DNA. To address this issue, we applied stochastic labeling approach with random-tag sequences and developed a NGS-based quantification protocol, which enables simultaneous sequencing and quantification of the targeted DNA. This quantitative sequencing (qSeq) is initiated from single-primer extension (SPE) using a primer with random tag adjacent to the 5' end of target-specific sequence. During SPE, each DNA molecule is stochastically labeled with the random tag. Subsequently, first-round PCR is conducted, specifically targeting the SPE product, followed by second-round PCR to index for NGS. The number of random tags is only determined during the SPE step and is therefore not affected by the two rounds of PCR that may introduce amplification biases. In the case of 16S rRNA genes, after NGS sequencing and taxonomic classification, the absolute number of target phylotypes 16S rRNA gene can be estimated by Poisson statistics by counting random tags incorporated at the end of sequence. To test the feasibility of this approach, the 16S rRNA gene of Sulfolobus tokodaii was subjected to qSeq, which resulted in accurate quantification of 5.0 × 103 to 5.0 × 104 copies of the 16S rRNA gene. Furthermore, qSeq was applied to mock microbial communities and environmental samples, and the results were comparable to those obtained using digital PCR and relative abundance based on a standard sequence library. We demonstrated that the qSeq protocol proposed here is advantageous for providing less-biased absolute copy numbers of each target DNA with NGS sequencing at one time. By this new experiment scheme in microbial ecology, microbial community compositions can be explored in more quantitative manner, thus expanding our knowledge of microbial ecosystems in natural environments.

  1. Analysis of plant microbe interactions in the era of next generation sequencing technologies

    PubMed Central

    Knief, Claudia

    2014-01-01

    Next generation sequencing (NGS) technologies have impressively accelerated research in biological science during the last years by enabling the production of large volumes of sequence data to a drastically lower price per base, compared to traditional sequencing methods. The recent and ongoing developments in the field allow addressing research questions in plant-microbe biology that were not conceivable just a few years ago. The present review provides an overview of NGS technologies and their usefulness for the analysis of microorganisms that live in association with plants. Possible limitations of the different sequencing systems, in particular sources of errors and bias, are critically discussed and methods are disclosed that help to overcome these shortcomings. A focus will be on the application of NGS methods in metagenomic studies, including the analysis of microbial communities by amplicon sequencing, which can be considered as a targeted metagenomic approach. Different applications of NGS technologies are exemplified by selected research articles that address the biology of the plant associated microbiota to demonstrate the worth of the new methods. PMID:24904612

  2. Compression of next-generation sequencing quality scores using memetic algorithm

    PubMed Central

    2014-01-01

    Background The exponential growth of next-generation sequencing (NGS) derived DNA data poses great challenges to data storage and transmission. Although many compression algorithms have been proposed for DNA reads in NGS data, few methods are designed specifically to handle the quality scores. Results In this paper we present a memetic algorithm (MA) based NGS quality score data compressor, namely MMQSC. The algorithm extracts raw quality score sequences from FASTQ formatted files, and designs compression codebook using MA based multimodal optimization. The input data is then compressed in a substitutional manner. Experimental results on five representative NGS data sets show that MMQSC obtains higher compression ratio than the other state-of-the-art methods. Particularly, MMQSC is a lossless reference-free compression algorithm, yet obtains an average compression ratio of 22.82% on the experimental data sets. Conclusions The proposed MMQSC compresses NGS quality score data effectively. It can be utilized to improve the overall compression ratio on FASTQ formatted files. PMID:25474747

  3. Streaming support for data intensive cloud-based sequence analysis.

    PubMed

    Issa, Shadi A; Kienzler, Romeo; El-Kalioby, Mohamed; Tonellato, Peter J; Wall, Dennis; Bruggmann, Rémy; Abouelhoda, Mohamed

    2013-01-01

    Cloud computing provides a promising solution to the genomics data deluge problem resulting from the advent of next-generation sequencing (NGS) technology. Based on the concepts of "resources-on-demand" and "pay-as-you-go", scientists with no or limited infrastructure can have access to scalable and cost-effective computational resources. However, the large size of NGS data causes a significant data transfer latency from the client's site to the cloud, which presents a bottleneck for using cloud computing services. In this paper, we provide a streaming-based scheme to overcome this problem, where the NGS data is processed while being transferred to the cloud. Our scheme targets the wide class of NGS data analysis tasks, where the NGS sequences can be processed independently from one another. We also provide the elastream package that supports the use of this scheme with individual analysis programs or with workflow systems. Experiments presented in this paper show that our solution mitigates the effect of data transfer latency and saves both time and cost of computation.

  4. Collection and storage of HLA NGS genotyping data for the 17th International HLA and Immunogenetics Workshop.

    PubMed

    Chang, Chia-Jung; Osoegawa, Kazutoyo; Milius, Robert P; Maiers, Martin; Xiao, Wenzhong; Fernandez-Viňa, Marcelo; Mack, Steven J

    2018-02-01

    For over 50 years, the International HLA and Immunogenetics Workshops (IHIW) have advanced the fields of histocompatibility and immunogenetics (H&I) via community sharing of technology, experience and reagents, and the establishment of ongoing collaborative projects. Held in the fall of 2017, the 17th IHIW focused on the application of next generation sequencing (NGS) technologies for clinical and research goals in the H&I fields. NGS technologies have the potential to allow dramatic insights and advances in these fields, but the scope and sheer quantity of data associated with NGS raise challenges for their analysis, collection, exchange and storage. The 17th IHIW adopted a centralized approach to these issues, and we developed the tools, services and systems to create an effective system for capturing and managing these NGS data. We worked with NGS platform and software developers to define a set of distinct but equivalent NGS typing reports that record NGS data in a uniform fashion. The 17th IHIW database applied our standards, tools and services to collect, validate and store those structured, multi-platform data in an automated fashion. We have created community resources to enable exploration of the vast store of curated sequence and allele-name data in the IPD-IMGT/HLA Database, with the goal of creating a long-term community resource that integrates these curated data with new NGS sequence and polymorphism data, for advanced analyses and applications. Copyright © 2017 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  5. Proficiency testing for bacterial whole genome sequencing: an end-user survey of current capabilities, requirements and priorities.

    PubMed

    Moran-Gilad, Jacob; Sintchenko, Vitali; Pedersen, Susanne Karlsmose; Wolfgang, William J; Pettengill, James; Strain, Errol; Hendriksen, Rene S

    2015-04-03

    The advent of next-generation sequencing (NGS) has revolutionised public health microbiology. Given the potential impact of NGS, it is paramount to ensure standardisation of 'wet' laboratory and bioinformatic protocols and promote comparability of methods employed by different laboratories and their outputs. Therefore, one of the ambitious goals of the Global Microbial Identifier (GMI) initiative (http://www.globalmicrobialidentifier.org/) has been to establish a mechanism for inter-laboratory NGS proficiency testing (PT). This report presents findings from the survey recently conducted by Working Group 4 among GMI members in order to ascertain NGS end-use requirements and attitudes towards NGS PT. The survey identified the high professional diversity of laboratories engaged in NGS-based public health projects and the wide range of capabilities within institutions, at a notable range of costs. The priority pathogens reported by respondents reflected the key drivers for NGS use (high burden disease and 'high profile' pathogens). The performance of and participation in PT was perceived as important by most respondents. The wide range of sequencing and bioinformatics practices reported by end-users highlights the importance of standardisation and harmonisation of NGS in public health and underpins the use of PT as a means to assuring quality. The findings of this survey will guide the design of the GMI PT program in relation to the spectrum of pathogens included, testing frequency and volume as well as technical requirements. The PT program for external quality assurance will evolve and inform the introduction of NGS into clinical and public health microbiology practice in the post-genomic era.

  6. Pair-barcode high-throughput sequencing for large-scale multiplexed sample analysis

    PubMed Central

    2012-01-01

    Background The multiplexing becomes the major limitation of the next-generation sequencing (NGS) in application to low complexity samples. Physical space segregation allows limited multiplexing, while the existing barcode approach only permits simultaneously analysis of up to several dozen samples. Results Here we introduce pair-barcode sequencing (PBS), an economic and flexible barcoding technique that permits parallel analysis of large-scale multiplexed samples. In two pilot runs using SOLiD sequencer (Applied Biosystems Inc.), 32 independent pair-barcoded miRNA libraries were simultaneously discovered by the combination of 4 unique forward barcodes and 8 unique reverse barcodes. Over 174,000,000 reads were generated and about 64% of them are assigned to both of the barcodes. After mapping all reads to pre-miRNAs in miRBase, different miRNA expression patterns are captured from the two clinical groups. The strong correlation using different barcode pairs and the high consistency of miRNA expression in two independent runs demonstrates that PBS approach is valid. Conclusions By employing PBS approach in NGS, large-scale multiplexed pooled samples could be practically analyzed in parallel so that high-throughput sequencing economically meets the requirements of samples which are low sequencing throughput demand. PMID:22276739

  7. Pair-barcode high-throughput sequencing for large-scale multiplexed sample analysis.

    PubMed

    Tu, Jing; Ge, Qinyu; Wang, Shengqin; Wang, Lei; Sun, Beili; Yang, Qi; Bai, Yunfei; Lu, Zuhong

    2012-01-25

    The multiplexing becomes the major limitation of the next-generation sequencing (NGS) in application to low complexity samples. Physical space segregation allows limited multiplexing, while the existing barcode approach only permits simultaneously analysis of up to several dozen samples. Here we introduce pair-barcode sequencing (PBS), an economic and flexible barcoding technique that permits parallel analysis of large-scale multiplexed samples. In two pilot runs using SOLiD sequencer (Applied Biosystems Inc.), 32 independent pair-barcoded miRNA libraries were simultaneously discovered by the combination of 4 unique forward barcodes and 8 unique reverse barcodes. Over 174,000,000 reads were generated and about 64% of them are assigned to both of the barcodes. After mapping all reads to pre-miRNAs in miRBase, different miRNA expression patterns are captured from the two clinical groups. The strong correlation using different barcode pairs and the high consistency of miRNA expression in two independent runs demonstrates that PBS approach is valid. By employing PBS approach in NGS, large-scale multiplexed pooled samples could be practically analyzed in parallel so that high-throughput sequencing economically meets the requirements of samples which are low sequencing throughput demand.

  8. Metagenomic approaches for direct and cell culture evaluation of the virological quality of wastewater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aw, Tiong Gim; Howe, Adina; Rose, Joan B.

    2014-12-01

    Genomic-based molecular techniques are emerging as powerful tools that allow a comprehensive characterization of water and wastewater microbiomes. Most recently, next generation sequencing (NGS) technologies which produce large amounts of sequence data are beginning to impact the field of environmental virology. In this study, NGS and bioinformatics have been employed for the direct detection and characterization of viruses in wastewater and of viruses isolated after cell culture. Viral particles were concentrated and purified from sewage samples by polyethylene glycol precipitation. Viral nucleic acid was extracted and randomly amplified prior to sequencing using Illumina technology, yielding a total of 18 millionmore » sequence reads. Most of the viral sequences detected could not be characterized, indicating the great viral diversity that is yet to be discovered. This sewage virome was dominated by bacteriophages and contained sequences related to known human pathogenic viruses such as adenoviruses (species B, C and F), polyomaviruses JC and BK and enteroviruses (type B). An array of other animal viruses was also found, suggesting unknown zoonotic viruses. This study demonstrated the feasibility of metagenomic approaches to characterize viruses in complex environmental water samples.« less

  9. Introduction of the hybcell-based compact sequencing technology and comparison to state-of-the-art methodologies for KRAS mutation detection.

    PubMed

    Zopf, Agnes; Raim, Roman; Danzer, Martin; Niklas, Norbert; Spilka, Rita; Pröll, Johannes; Gabriel, Christian; Nechansky, Andreas; Roucka, Markus

    2015-03-01

    The detection of KRAS mutations in codons 12 and 13 is critical for anti-EGFR therapy strategies; however, only those methodologies with high sensitivity, specificity, and accuracy as well as the best cost and turnaround balance are suitable for routine daily testing. Here we compared the performance of compact sequencing using the novel hybcell technology with 454 next-generation sequencing (454-NGS), Sanger sequencing, and pyrosequencing, using an evaluation panel of 35 specimens. A total of 32 mutations and 10 wild-type cases were reported using 454-NGS as the reference method. Specificity ranged from 100% for Sanger sequencing to 80% for pyrosequencing. Sanger sequencing and hybcell-based compact sequencing achieved a sensitivity of 96%, whereas pyrosequencing had a sensitivity of 88%. Accuracy was 97% for Sanger sequencing, 85% for pyrosequencing, and 94% for hybcell-based compact sequencing. Quantitative results were obtained for 454-NGS and hybcell-based compact sequencing data, resulting in a significant correlation (r = 0.914). Whereas pyrosequencing and Sanger sequencing were not able to detect multiple mutated cell clones within one tumor specimen, 454-NGS and the hybcell-based compact sequencing detected multiple mutations in two specimens. Our comparison shows that the hybcell-based compact sequencing is a valuable alternative to state-of-the-art methodologies used for detection of clinically relevant point mutations.

  10. LFQC: a lossless compression algorithm for FASTQ files

    PubMed Central

    Nicolae, Marius; Pathak, Sudipta; Rajasekaran, Sanguthevar

    2015-01-01

    Motivation: Next Generation Sequencing (NGS) technologies have revolutionized genomic research by reducing the cost of whole genome sequencing. One of the biggest challenges posed by modern sequencing technology is economic storage of NGS data. Storing raw data is infeasible because of its enormous size and high redundancy. In this article, we address the problem of storage and transmission of large FASTQ files using innovative compression techniques. Results: We introduce a new lossless non-reference based FASTQ compression algorithm named Lossless FASTQ Compressor. We have compared our algorithm with other state of the art big data compression algorithms namely gzip, bzip2, fastqz (Bonfield and Mahoney, 2013), fqzcomp (Bonfield and Mahoney, 2013), Quip (Jones et al., 2012), DSRC2 (Roguski and Deorowicz, 2014). This comparison reveals that our algorithm achieves better compression ratios on LS454 and SOLiD datasets. Availability and implementation: The implementations are freely available for non-commercial purposes. They can be downloaded from http://engr.uconn.edu/rajasek/lfqc-v1.1.zip. Contact: rajasek@engr.uconn.edu PMID:26093148

  11. Highly sensitive detection of ESR1 mutations in cell-free DNA from patients with metastatic breast cancer using molecular barcode sequencing.

    PubMed

    Masunaga, Nanae; Kagara, Naofumi; Motooka, Daisuke; Nakamura, Shota; Miyake, Tomohiro; Tanei, Tomonori; Naoi, Yasuto; Shimoda, Masafumi; Shimazu, Kenzo; Kim, Seung Jin; Noguchi, Shinzaburo

    2018-01-01

    We aimed to develop a highly sensitive method to detect ESR1 mutations in cell-free DNA (cfDNA) using next-generation sequencing with molecular barcode (MB-NGS) targeting the hotspot segment (c.1600-1713). The sensitivity of MB-NGS was tested using serially diluted ESR1 mutant DNA and then cfDNA samples from 34 patients with metastatic breast cancer were analyzed with MB-NGS. The results of MB-NGS were validated in comparison with conventional NGS and droplet digital PCR (ddPCR). MB-NGS showed a higher sensitivity (0.1%) than NGS without barcode (1%) by reducing background errors. Of the cfDNA samples from 34 patients with metastatic breast cancer, NGS without barcode revealed seven mutations in six patients (17.6%) and MB-NGS revealed six additional mutations including three mutations not reported in the COSMIC database of breast cancer, resulting in total 13 ESR1 mutations in ten patients (29.4%). Regarding the three hotspot mutations, all the patients with mutations detected by MB-NGS had identical mutations detected by droplet digital PCR (ddPCR), and mutant allele frequency correlated very well between both (r = 0.850, p < 0.01). Moreover, all the patients without these mutations by MB-NGS were found to have no mutations by ddPCR. In conclusion, MB-NGS could successfully detect ESR1 mutations in cfDNA with a higher sensitivity of 0.1% than conventional NGS and was considered as clinically useful as ddPCR.

  12. Development and Validation of Targeted Next-Generation Sequencing Panels for Detection of Germline Variants in Inherited Diseases.

    PubMed

    Santani, Avni; Murrell, Jill; Funke, Birgit; Yu, Zhenming; Hegde, Madhuri; Mao, Rong; Ferreira-Gonzalez, Andrea; Voelkerding, Karl V; Weck, Karen E

    2017-06-01

    - The number of targeted next-generation sequencing (NGS) panels for genetic diseases offered by clinical laboratories is rapidly increasing. Before an NGS-based test is implemented in a clinical laboratory, appropriate validation studies are needed to determine the performance characteristics of the test. - To provide examples of assay design and validation of targeted NGS gene panels for the detection of germline variants associated with inherited disorders. - The approaches used by 2 clinical laboratories for the development and validation of targeted NGS gene panels are described. Important design and validation considerations are examined. - Clinical laboratories must validate performance specifications of each test prior to implementation. Test design specifications and validation data are provided, outlining important steps in validation of targeted NGS panels by clinical diagnostic laboratories.

  13. Next-Generation Sequencing of Aquatic Oligochaetes: Comparison of Experimental Communities

    PubMed Central

    Vivien, Régis; Lejzerowicz, Franck; Pawlowski, Jan

    2016-01-01

    Aquatic oligochaetes are a common group of freshwater benthic invertebrates known to be very sensitive to environmental changes and currently used as bioindicators in some countries. However, more extensive application of oligochaetes for assessing the ecological quality of sediments in watercourses and lakes would require overcoming the difficulties related to morphology-based identification of oligochaetes species. This study tested the Next-Generation Sequencing (NGS) of a standard cytochrome c oxydase I (COI) barcode as a tool for the rapid assessment of oligochaete diversity in environmental samples, based on mixed specimen samples. To know the composition of each sample we Sanger sequenced every specimen present in these samples. Our study showed that a large majority of OTUs (Operational Taxonomic Unit) could be detected by NGS analyses. We also observed congruence between the NGS and specimen abundance data for several but not all OTUs. Because the differences in sequence abundance data were consistent across samples, we exploited these variations to empirically design correction factors. We showed that such factors increased the congruence between the values of oligochaetes-based indices inferred from the NGS and the Sanger-sequenced specimen data. The validation of these correction factors by further experimental studies will be needed for the adaptation and use of NGS technology in biomonitoring studies based on oligochaete communities. PMID:26866802

  14. Applications and challenges of next-generation sequencing in Brassica species.

    PubMed

    Wei, Lijuan; Xiao, Meili; Hayward, Alice; Fu, Donghui

    2013-12-01

    Next-generation sequencing (NGS) produces numerous (often millions) short DNA sequence reads, typically varying between 25 and 400 bp in length, at a relatively low cost and in a short time. This revolutionary technology is being increasingly applied in whole-genome, transcriptome, epigenome and small RNA sequencing, molecular marker and gene discovery, comparative and evolutionary genomics, and association studies. The Brassica genus comprises some of the most agro-economically important crops, providing abundant vegetables, condiments, fodder, oil and medicinal products. Many Brassica species have undergone the process of polyploidization, which makes their genomes exceptionally complex and can create difficulties in genomics research. NGS injects new vigor into Brassica research, yet also faces specific challenges in the analysis of complex crop genomes and traits. In this article, we review the advantages and limitations of different NGS technologies and their applications and challenges, using Brassica as an advanced model system for agronomically important, polyploid crops. Specifically, we focus on the use of NGS for genome resequencing, transcriptome sequencing, development of single-nucleotide polymorphism markers, and identification of novel microRNAs and their targets. We present trends and advances in NGS technology in relation to Brassica crop improvement, with wide application for sophisticated genomics research into agronomically important polyploid crops.

  15. A framework for organizing cancer-related variations from existing databases, publications and NGS data using a High-performance Integrated Virtual Environment (HIVE).

    PubMed

    Wu, Tsung-Jung; Shamsaddini, Amirhossein; Pan, Yang; Smith, Krista; Crichton, Daniel J; Simonyan, Vahan; Mazumder, Raja

    2014-01-01

    Years of sequence feature curation by UniProtKB/Swiss-Prot, PIR-PSD, NCBI-CDD, RefSeq and other database biocurators has led to a rich repository of information on functional sites of genes and proteins. This information along with variation-related annotation can be used to scan human short sequence reads from next-generation sequencing (NGS) pipelines for presence of non-synonymous single-nucleotide variations (nsSNVs) that affect functional sites. This and similar workflows are becoming more important because thousands of NGS data sets are being made available through projects such as The Cancer Genome Atlas (TCGA), and researchers want to evaluate their biomarkers in genomic data. BioMuta, an integrated sequence feature database, provides a framework for automated and manual curation and integration of cancer-related sequence features so that they can be used in NGS analysis pipelines. Sequence feature information in BioMuta is collected from the Catalogue of Somatic Mutations in Cancer (COSMIC), ClinVar, UniProtKB and through biocuration of information available from publications. Additionally, nsSNVs identified through automated analysis of NGS data from TCGA are also included in the database. Because of the petabytes of data and information present in NGS primary repositories, a platform HIVE (High-performance Integrated Virtual Environment) for storing, analyzing, computing and curating NGS data and associated metadata has been developed. Using HIVE, 31 979 nsSNVs were identified in TCGA-derived NGS data from breast cancer patients. All variations identified through this process are stored in a Curated Short Read archive, and the nsSNVs from the tumor samples are included in BioMuta. Currently, BioMuta has 26 cancer types with 13 896 small-scale and 308 986 large-scale study-derived variations. Integration of variation data allows identifications of novel or common nsSNVs that can be prioritized in validation studies. Database URL: BioMuta: http://hive.biochemistry.gwu.edu/tools/biomuta/index.php; CSR: http://hive.biochemistry.gwu.edu/dna.cgi?cmd=csr; HIVE: http://hive.biochemistry.gwu.edu.

  16. Targeted next-generation sequencing in monogenic dyslipidemias.

    PubMed

    Hegele, Robert A; Ban, Matthew R; Cao, Henian; McIntyre, Adam D; Robinson, John F; Wang, Jian

    2015-04-01

    To evaluate the potential clinical translation of high-throughput next-generation sequencing (NGS) methods in diagnosis and management of dyslipidemia. Recent NGS experiments indicate that most causative genes for monogenic dyslipidemias are already known. Thus, monogenic dyslipidemias can now be diagnosed using targeted NGS. Targeting of dyslipidemia genes can be achieved by either: designing custom reagents for a dyslipidemia-specific NGS panel; or performing genome-wide NGS and focusing on genes of interest. Advantages of the former approach are lower cost and limited potential to detect incidental pathogenic variants unrelated to dyslipidemia. However, the latter approach is more flexible because masking criteria can be altered as knowledge advances, with no need for re-design of reagents or follow-up sequencing runs. Also, the cost of genome-wide analysis is decreasing and ethical concerns can likely be mitigated. DNA-based diagnosis is already part of the clinical diagnostic algorithms for familial hypercholesterolemia. Furthermore, DNA-based diagnosis is supplanting traditional biochemical methods to diagnose chylomicronemia caused by deficiency of lipoprotein lipase or its co-factors. The increasing availability and decreasing cost of clinical NGS for dyslipidemia means that its potential benefits can now be evaluated on a larger scale.

  17. Next-Generation Sequencing of Antibody Display Repertoires

    PubMed Central

    Rouet, Romain; Jackson, Katherine J. L.; Langley, David B.; Christ, Daniel

    2018-01-01

    In vitro selection technology has transformed the development of therapeutic monoclonal antibodies. Using methods such as phage, ribosome, and yeast display, high affinity binders can be selected from diverse repertoires. Here, we review strategies for the next-generation sequencing (NGS) of phage- and other antibody-display libraries, as well as NGS platforms and analysis tools. Moreover, we discuss recent examples relating to the use of NGS to assess library diversity, clonal enrichment, and affinity maturation. PMID:29472918

  18. Application of next generation sequencing in clinical microbiology and infection prevention.

    PubMed

    Deurenberg, Ruud H; Bathoorn, Erik; Chlebowicz, Monika A; Couto, Natacha; Ferdous, Mithila; García-Cobos, Silvia; Kooistra-Smid, Anna M D; Raangs, Erwin C; Rosema, Sigrid; Veloo, Alida C M; Zhou, Kai; Friedrich, Alexander W; Rossen, John W A

    2017-02-10

    Current molecular diagnostics of human pathogens provide limited information that is often not sufficient for outbreak and transmission investigation. Next generation sequencing (NGS) determines the DNA sequence of a complete bacterial genome in a single sequence run, and from these data, information on resistance and virulence, as well as information for typing is obtained, useful for outbreak investigation. The obtained genome data can be further used for the development of an outbreak-specific screening test. In this review, a general introduction to NGS is presented, including the library preparation and the major characteristics of the most common NGS platforms, such as the MiSeq (Illumina) and the Ion PGM™ (ThermoFisher). An overview of the software used for NGS data analyses used at the medical microbiology diagnostic laboratory in the University Medical Center Groningen in The Netherlands is given. Furthermore, applications of NGS in the clinical setting are described, such as outbreak management, molecular case finding, characterization and surveillance of pathogens, rapid identification of bacteria using the 16S-23S rRNA region, taxonomy, metagenomics approaches on clinical samples, and the determination of the transmission of zoonotic micro-organisms from animals to humans. Finally, we share our vision on the use of NGS in personalised microbiology in the near future, pointing out specific requirements. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  19. Reprint of "Application of next generation sequencing in clinical microbiology and infection prevention".

    PubMed

    Deurenberg, Ruud H; Bathoorn, Erik; Chlebowicz, Monika A; Couto, Natacha; Ferdous, Mithila; García-Cobos, Silvia; Kooistra-Smid, Anna M D; Raangs, Erwin C; Rosema, Sigrid; Veloo, Alida C M; Zhou, Kai; Friedrich, Alexander W; Rossen, John W A

    2017-05-20

    Current molecular diagnostics of human pathogens provide limited information that is often not sufficient for outbreak and transmission investigation. Next generation sequencing (NGS) determines the DNA sequence of a complete bacterial genome in a single sequence run, and from these data, information on resistance and virulence, as well as information for typing is obtained, useful for outbreak investigation. The obtained genome data can be further used for the development of an outbreak-specific screening test. In this review, a general introduction to NGS is presented, including the library preparation and the major characteristics of the most common NGS platforms, such as the MiSeq (Illumina) and the Ion PGM™ (ThermoFisher). An overview of the software used for NGS data analyses used at the medical microbiology diagnostic laboratory in the University Medical Center Groningen in The Netherlands is given. Furthermore, applications of NGS in the clinical setting are described, such as outbreak management, molecular case finding, characterization and surveillance of pathogens, rapid identification of bacteria using the 16S-23S rRNA region, taxonomy, metagenomics approaches on clinical samples, and the determination of the transmission of zoonotic micro-organisms from animals to humans. Finally, we share our vision on the use of NGS in personalised microbiology in the near future, pointing out specific requirements. Copyright © 2017. Published by Elsevier B.V.

  20. Next-Generation Sequencing Approaches in Genome-Wide Discovery of Single Nucleotide Polymorphism Markers Associated with Pungency and Disease Resistance in Pepper.

    PubMed

    Manivannan, Abinaya; Kim, Jin-Hee; Yang, Eun-Young; Ahn, Yul-Kyun; Lee, Eun-Su; Choi, Sena; Kim, Do-Sun

    2018-01-01

    Pepper is an economically important horticultural plant that has been widely used for its pungency and spicy taste in worldwide cuisines. Therefore, the domestication of pepper has been carried out since antiquity. Owing to meet the growing demand for pepper with high quality, organoleptic property, nutraceutical contents, and disease tolerance, genomics assisted breeding techniques can be incorporated to develop novel pepper varieties with desired traits. The application of next-generation sequencing (NGS) approaches has reformed the plant breeding technology especially in the area of molecular marker assisted breeding. The availability of genomic information aids in the deeper understanding of several molecular mechanisms behind the vital physiological processes. In addition, the NGS methods facilitate the genome-wide discovery of DNA based markers linked to key genes involved in important biological phenomenon. Among the molecular markers, single nucleotide polymorphism (SNP) indulges various benefits in comparison with other existing DNA based markers. The present review concentrates on the impact of NGS approaches in the discovery of useful SNP markers associated with pungency and disease resistance in pepper. The information provided in the current endeavor can be utilized for the betterment of pepper breeding in future.

  1. Transposon Insertion Finder (TIF): a novel program for detection of de novo transpositions of transposable elements.

    PubMed

    Nakagome, Mariko; Solovieva, Elena; Takahashi, Akira; Yasue, Hiroshi; Hirochika, Hirohiko; Miyao, Akio

    2014-03-14

    Transposition event detection of transposable element (TE) in the genome using short reads from the next-generation sequence (NGS) was difficult, because the nucleotide sequence of TE itself is repetitive, making it difficult to identify locations of its insertions by alignment programs for NGS. We have developed a program with a new algorithm to detect the transpositions from NGS data. In the process of tool development, we used next-generation sequence (NGS) data of derivative lines (ttm2 and ttm5) of japonica rice cv. Nipponbare, regenerated through cell culture. The new program, called a transposon insertion finder (TIF), was applied to detect the de novo transpositions of Tos17 in the regenerated lines. TIF searched 300 million reads of a line within 20 min, identifying 4 and 12 de novo transposition in ttm2 and ttm5 lines, respectively. All of the transpositions were confirmed by PCR/electrophoresis and sequencing. Using the program, we also detected new transposon insertions of P-element from NGS data of Drosophila melanogaster. TIF operates to find the transposition of any elements provided that target site duplications (TSDs) are generated by their transpositions.

  2. Next-generation sequencing (NGS) for assessment of microbial water quality: current progress, challenges, and future opportunities

    PubMed Central

    Tan, BoonFei; Ng, Charmaine; Nshimyimana, Jean Pierre; Loh, Lay Leng; Gin, Karina Y.-H.; Thompson, Janelle R.

    2015-01-01

    Water quality is an emergent property of a complex system comprised of interacting microbial populations and introduced microbial and chemical contaminants. Studies leveraging next-generation sequencing (NGS) technologies are providing new insights into the ecology of microbially mediated processes that influence fresh water quality such as algal blooms, contaminant biodegradation, and pathogen dissemination. In addition, sequencing methods targeting small subunit (SSU) rRNA hypervariable regions have allowed identification of signature microbial species that serve as bioindicators for sewage contamination in these environments. Beyond amplicon sequencing, metagenomic and metatranscriptomic analyses of microbial communities in fresh water environments reveal the genetic capabilities and interplay of waterborne microorganisms, shedding light on the mechanisms for production and biodegradation of toxins and other contaminants. This review discusses the challenges and benefits of applying NGS-based methods to water quality research and assessment. We will consider the suitability and biases inherent in the application of NGS as a screening tool for assessment of biological risks and discuss the potential and limitations for direct quantitative interpretation of NGS data. Secondly, we will examine case studies from recent literature where NGS based methods have been applied to topics in water quality assessment, including development of bioindicators for sewage pollution and microbial source tracking, characterizing the distribution of toxin and antibiotic resistance genes in water samples, and investigating mechanisms of biodegradation of harmful pollutants that threaten water quality. Finally, we provide a short review of emerging NGS platforms and their potential applications to the next generation of water quality assessment tools. PMID:26441948

  3. GARFIELD-NGS: Genomic vARiants FIltering by dEep Learning moDels in NGS.

    PubMed

    Ravasio, Viola; Ritelli, Marco; Legati, Andrea; Giacopuzzi, Edoardo

    2018-04-14

    Exome sequencing approach is extensively used in research and diagnostic laboratories to discover pathological variants and study genetic architecture of human diseases. However, a significant proportion of identified genetic variants are actually false positive calls, and this pose serious challenges for variants interpretation. Here, we propose a new tool named GARFIELD-NGS (Genomic vARiants FIltering by dEep Learning moDels in NGS), which rely on deep learning models to dissect false and true variants in exome sequencing experiments performed with Illumina or ION platforms. GARFIELD-NGS showed strong performances for both SNP and INDEL variants (AUC 0.71 - 0.98) and outperformed established hard filters. The method is robust also at low coverage down to 30X and can be applied on data generated with the recent Illumina two-colour chemistry. GARFIELD-NGS processes standard VCF file and produces a regular VCF output. Thus, it can be easily integrated in existing analysis pipeline, allowing application of different thresholds based on desired level of sensitivity and specificity. GARFIELD-NGS available at https://github.com/gedoardo83/GARFIELD-NGS. edoardo.giacopuzzi@unibs.it. Supplementary data are available at Bioinformatics online.

  4. Multicenter validation of cancer gene panel-based next-generation sequencing for translational research and molecular diagnostics.

    PubMed

    Hirsch, B; Endris, V; Lassmann, S; Weichert, W; Pfarr, N; Schirmacher, P; Kovaleva, V; Werner, M; Bonzheim, I; Fend, F; Sperveslage, J; Kaulich, K; Zacher, A; Reifenberger, G; Köhrer, K; Stepanow, S; Lerke, S; Mayr, T; Aust, D E; Baretton, G; Weidner, S; Jung, A; Kirchner, T; Hansmann, M L; Burbat, L; von der Wall, E; Dietel, M; Hummel, M

    2018-04-01

    The simultaneous detection of multiple somatic mutations in the context of molecular diagnostics of cancer is frequently performed by means of amplicon-based targeted next-generation sequencing (NGS). However, only few studies are available comparing multicenter testing of different NGS platforms and gene panels. Therefore, seven partner sites of the German Cancer Consortium (DKTK) performed a multicenter interlaboratory trial for targeted NGS using the same formalin-fixed, paraffin-embedded (FFPE) specimen of molecularly pre-characterized tumors (n = 15; each n = 5 cases of Breast, Lung, and Colon carcinoma) and a colorectal cancer cell line DNA dilution series. Detailed information regarding pre-characterized mutations was not disclosed to the partners. Commercially available and custom-designed cancer gene panels were used for library preparation and subsequent sequencing on several devices of two NGS different platforms. For every case, centrally extracted DNA and FFPE tissue sections for local processing were delivered to each partner site to be sequenced with the commercial gene panel and local bioinformatics. For cancer-specific panel-based sequencing, only centrally extracted DNA was analyzed at seven sequencing sites. Subsequently, local data were compiled and bioinformatics was performed centrally. We were able to demonstrate that all pre-characterized mutations were re-identified correctly, irrespective of NGS platform or gene panel used. However, locally processed FFPE tissue sections disclosed that the DNA extraction method can affect the detection of mutations with a trend in favor of magnetic bead-based DNA extraction methods. In conclusion, targeted NGS is a very robust method for simultaneous detection of various mutations in FFPE tissue specimens if certain pre-analytical conditions are carefully considered.

  5. Development of a genus-specific next generation sequencing approach for sensitive and quantitative determination of the Legionella microbiome in freshwater systems.

    PubMed

    Pereira, Rui P A; Peplies, Jörg; Brettar, Ingrid; Höfle, Manfred G

    2017-03-31

    Next Generation Sequencing (NGS) has revolutionized the analysis of natural and man-made microbial communities by using universal primers for bacteria in a PCR based approach targeting the 16S rRNA gene. In our study we narrowed primer specificity to a single, monophyletic genus because for many questions in microbiology only a specific part of the whole microbiome is of interest. We have chosen the genus Legionella, comprising more than 20 pathogenic species, due to its high relevance for water-based respiratory infections. A new NGS-based approach was designed by sequencing 16S rRNA gene amplicons specific for the genus Legionella using the Illumina MiSeq technology. This approach was validated and applied to a set of representative freshwater samples. Our results revealed that the generated libraries presented a low average raw error rate per base (<0.5%); and substantiated the use of high-fidelity enzymes, such as KAPA HiFi, for increased sequence accuracy and quality. The approach also showed high in situ specificity (>95%) and very good repeatability. Only in samples in which the gammabacterial clade SAR86 was present more than 1% non-Legionella sequences were observed. Next-generation sequencing read counts did not reveal considerable amplification/sequencing biases and showed a sensitive as well as precise quantification of L. pneumophila along a dilution range using a spiked-in, certified genome standard. The genome standard and a mock community consisting of six different Legionella species demonstrated that the developed NGS approach was quantitative and specific at the level of individual species, including L. pneumophila. The sensitivity of our genus-specific approach was at least one order of magnitude higher compared to the universal NGS approach. Comparison of quantification by real-time PCR showed consistency with the NGS data. Overall, our NGS approach can determine the quantitative abundances of Legionella species, i. e. the complete Legionella microbiome, without the need for species-specific primers. The developed NGS approach provides a new molecular surveillance tool to monitor all Legionella species in qualitative and quantitative terms if a spiked-in genome standard is used to calibrate the method. Overall, the genus-specific NGS approach opens up a new avenue to massive parallel diagnostics in a quantitative, specific and sensitive way.

  6. Quantifying low-frequency revertants in oral poliovirus vaccine using next generation sequencing.

    PubMed

    Sarcey, Eric; Serres, Aurélie; Tindy, Fabrice; Chareyre, Audrey; Ng, Siemon; Nicolas, Marine; Vetter, Emmanuelle; Bonnevay, Thierry; Abachin, Eric; Mallet, Laurent

    2017-08-01

    Spontaneous reversion to neurovirulence of live attenuated oral poliovirus vaccine (OPV) serotype 3 (chiefly involving the n.472U>C mutation), must be monitored during production to ensure vaccine safety and consistency. Mutant analysis by polymerase chain reaction and restriction enzyme cleavage (MAPREC) has long been endorsed by the World Health Organization as the preferred in vitro test for this purpose; however, it requires radiolabeling, which is no longer supported by many laboratories. We evaluated the performance and suitability of next generation sequencing (NGS) as an alternative to MAPREC. The linearity of NGS was demonstrated at revertant concentrations equivalent to the study range of 0.25%-1.5%. NGS repeatability and intermediate precision were comparable across all tested samples, and NGS was highly reproducible, irrespective of sequencing platform or analysis software used. NGS was performed on OPV serotype 3 working seed lots and monovalent bulks (n=21) that were previously tested using MAPREC, and which covered the representative range of vaccine production. Percentages of 472-C revertants identified by NGS and MAPREC were comparable and highly correlated (r≥0.80), with a Pearson correlation coefficient of 0.95585 (p<0.0001). NGS demonstrated statistically equivalent performance to that of MAPREC for quantifying low-frequency OPV serotype 3 revertants, and offers a valid alternative to MAPREC. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. The environmental genomics of metazoan thermal adaptation

    PubMed Central

    Porcelli, D; Butlin, R K; Gaston, K J; Joly, D; Snook, R R

    2015-01-01

    Continued and accelerating change in the thermal environment places an ever-greater priority on understanding how organisms are going to respond. The paradigm of ‘move, adapt or die', regarding ways in which organisms can respond to environmental stressors, stimulates intense efforts to predict the future of biodiversity. Assuming that extinction is an unpalatable outcome, researchers have focussed attention on how organisms can shift in their distribution to stay in the same thermal conditions or can stay in the same place by adapting to a changing thermal environment. How likely these respective outcomes might be depends on the answer to a fundamental evolutionary question, namely what genetic changes underpin adaptation to the thermal environment. The increasing access to and decreasing costs of next-generation sequencing (NGS) technologies, which can be applied to both model and non-model systems, provide a much-needed tool for understanding thermal adaptation. Here we consider broadly what is already known from non-NGS studies about thermal adaptation, then discuss the benefits and challenges of different NGS methodologies to add to this knowledge base. We then review published NGS genomics and transcriptomics studies of thermal adaptation to heat stress in metazoans and compare these results with previous non-NGS patterns. We conclude by summarising emerging patterns of genetic response and discussing future directions using these increasingly common techniques. PMID:25735594

  8. BATCH-GE: Batch analysis of Next-Generation Sequencing data for genome editing assessment

    PubMed Central

    Boel, Annekatrien; Steyaert, Woutert; De Rocker, Nina; Menten, Björn; Callewaert, Bert; De Paepe, Anne; Coucke, Paul; Willaert, Andy

    2016-01-01

    Targeted mutagenesis by the CRISPR/Cas9 system is currently revolutionizing genetics. The ease of this technique has enabled genome engineering in-vitro and in a range of model organisms and has pushed experimental dimensions to unprecedented proportions. Due to its tremendous progress in terms of speed, read length, throughput and cost, Next-Generation Sequencing (NGS) has been increasingly used for the analysis of CRISPR/Cas9 genome editing experiments. However, the current tools for genome editing assessment lack flexibility and fall short in the analysis of large amounts of NGS data. Therefore, we designed BATCH-GE, an easy-to-use bioinformatics tool for batch analysis of NGS-generated genome editing data, available from https://github.com/WouterSteyaert/BATCH-GE.git. BATCH-GE detects and reports indel mutations and other precise genome editing events and calculates the corresponding mutagenesis efficiencies for a large number of samples in parallel. Furthermore, this new tool provides flexibility by allowing the user to adapt a number of input variables. The performance of BATCH-GE was evaluated in two genome editing experiments, aiming to generate knock-out and knock-in zebrafish mutants. This tool will not only contribute to the evaluation of CRISPR/Cas9-based experiments, but will be of use in any genome editing experiment and has the ability to analyze data from every organism with a sequenced genome. PMID:27461955

  9. Analysis of the Vaginal Microbiome by Next-Generation Sequencing and Evaluation of its Performance as a Clinical Diagnostic Tool in Vaginitis

    PubMed Central

    Hong, Ki Ho; Hong, Sung Kuk; Cho, Sung Im; Ra, Eunkyung; Han, Kyung Hee; Kang, Soon Beom; Kim, Eui-Chong; Park, Sung Sup

    2016-01-01

    Background Next-generation sequencing (NGS) can detect many more microorganisms of a microbiome than traditional methods. This study aimed to analyze the vaginal microbiomes of Korean women by using NGS that included bacteria and other microorganisms. The NGS results were compared with the results of other assays, and NGS was evaluated for its feasibility for predicting vaginitis. Methods In total, 89 vaginal swab specimens were collected. Microscopic examinations of Gram staining and microbiological cultures were conducted on 67 specimens. NGS was performed with GS junior system on all of the vaginal specimens for the 16S rRNA, internal transcribed spacer (ITS), and Tvk genes to detect bacteria, fungi, and Trichomonas vaginalis. In addition, DNA probe assays of the Candida spp., Gardnerella vaginalis, and Trichomonas vaginalis were performed. Various predictors of diversity that were obtained from the NGS data were analyzed to predict vaginitis. Results ITS sequences were obtained in most of the specimens (56.2%). The compositions of the intermediate and vaginitis Nugent score groups were similar to each other but differed from the composition of the normal score group. The fraction of the Lactobacillus spp. showed the highest area under the curve value (0.8559) in ROC curve analysis. The NGS and DNA probe assay results showed good agreement (range, 86.2-89.7%). Conclusions Fungi as well as bacteria should be considered for the investigation of vaginal microbiome. The intermediate and vaginitis Nugent score groups were indistinguishable in NGS. NGS is a promising diagnostic tool of the vaginal microbiome and vaginitis, although some problems need to be resolved. PMID:27374709

  10. BioVLAB-MMIA-NGS: microRNA-mRNA integrated analysis using high-throughput sequencing data.

    PubMed

    Chae, Heejoon; Rhee, Sungmin; Nephew, Kenneth P; Kim, Sun

    2015-01-15

    It is now well established that microRNAs (miRNAs) play a critical role in regulating gene expression in a sequence-specific manner, and genome-wide efforts are underway to predict known and novel miRNA targets. However, the integrated miRNA-mRNA analysis remains a major computational challenge, requiring powerful informatics systems and bioinformatics expertise. The objective of this study was to modify our widely recognized Web server for the integrated mRNA-miRNA analysis (MMIA) and its subsequent deployment on the Amazon cloud (BioVLAB-MMIA) to be compatible with high-throughput platforms, including next-generation sequencing (NGS) data (e.g. RNA-seq). We developed a new version called the BioVLAB-MMIA-NGS, deployed on both Amazon cloud and on a high-performance publicly available server called MAHA. By using NGS data and integrating various bioinformatics tools and databases, BioVLAB-MMIA-NGS offers several advantages. First, sequencing data is more accurate than array-based methods for determining miRNA expression levels. Second, potential novel miRNAs can be detected by using various computational methods for characterizing miRNAs. Third, because miRNA-mediated gene regulation is due to hybridization of an miRNA to its target mRNA, sequencing data can be used to identify many-to-many relationship between miRNAs and target genes with high accuracy. http://epigenomics.snu.ac.kr/biovlab_mmia_ngs/. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Tracking B-Cell Repertoires and Clonal Histories in Normal and Malignant Lymphocytes.

    PubMed

    Weston-Bell, Nicola J; Cowan, Graeme; Sahota, Surinder S

    2017-01-01

    Methods for tracking B-cell repertoires and clonal history in normal and malignant B-cells based on immunoglobulin variable region (IGV) gene analysis have developed rapidly with the advent of massive parallel next-generation sequencing (mpNGS) protocols. mpNGS permits a depth of analysis of IGV genes not hitherto feasible, and presents challenges of bioinformatics analysis, which can be readily met by current pipelines. This strategy offers a potential resolution of B-cell usage at a depth that may capture fully the natural state, in a given biological setting. Conventional methods based on RT-PCR amplification and Sanger sequencing are also available where mpNGS is not accessible. Each method offers distinct advantages. Conventional methods for IGV gene sequencing are readily adaptable to most laboratories and provide an ease of analysis to capture salient features of B-cell use. This chapter describes two methods in detail for analysis of IGV genes, mpNGS and conventional RT-PCR with Sanger sequencing.

  12. Assuring the Quality of Next-Generation Sequencing in Clinical Microbiology and Public Health Laboratories.

    PubMed

    Gargis, Amy S; Kalman, Lisa; Lubin, Ira M

    2016-12-01

    Clinical microbiology and public health laboratories are beginning to utilize next-generation sequencing (NGS) for a range of applications. This technology has the potential to transform the field by providing approaches that will complement, or even replace, many conventional laboratory tests. While the benefits of NGS are significant, the complexities of these assays require an evolving set of standards to ensure testing quality. Regulatory and accreditation requirements, professional guidelines, and best practices that help ensure the quality of NGS-based tests are emerging. This review highlights currently available standards and guidelines for the implementation of NGS in the clinical and public health laboratory setting, and it includes considerations for NGS test validation, quality control procedures, proficiency testing, and reference materials. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. Genetic markers, genotyping methods & next generation sequencing in Mycobacterium tuberculosis

    PubMed Central

    Desikan, Srinidhi; Narayanan, Sujatha

    2015-01-01

    Molecular epidemiology (ME) is one of the main areas in tuberculosis research which is widely used to study the transmission epidemics and outbreaks of tubercle bacilli. It exploits the presence of various polymorphisms in the genome of the bacteria that can be widely used as genetic markers. Many DNA typing methods apply these genetic markers to differentiate various strains and to study the evolutionary relationships between them. The three widely used genotyping tools to differentiate Mycobacterium tuberculosis strains are IS6110 restriction fragment length polymorphism (RFLP), spacer oligotyping (Spoligotyping), and mycobacterial interspersed repeat units - variable number of tandem repeats (MIRU-VNTR). A new prospect towards ME was introduced with the development of whole genome sequencing (WGS) and the next generation sequencing (NGS) methods, where the entire genome is sequenced that not only helps in pointing out minute differences between the various sequences but also saves time and the cost. NGS is also found to be useful in identifying single nucleotide polymorphisms (SNPs), comparative genomics and also various aspects about transmission dynamics. These techniques enable the identification of mycobacterial strains and also facilitate the study of their phylogenetic and evolutionary traits. PMID:26205019

  14. ddClone: joint statistical inference of clonal populations from single cell and bulk tumour sequencing data.

    PubMed

    Salehi, Sohrab; Steif, Adi; Roth, Andrew; Aparicio, Samuel; Bouchard-Côté, Alexandre; Shah, Sohrab P

    2017-03-01

    Next-generation sequencing (NGS) of bulk tumour tissue can identify constituent cell populations in cancers and measure their abundance. This requires computational deconvolution of allelic counts from somatic mutations, which may be incapable of fully resolving the underlying population structure. Single cell sequencing (SCS) is a more direct method, although its replacement of NGS is impeded by technical noise and sampling limitations. We propose ddClone, which analytically integrates NGS and SCS data, leveraging their complementary attributes through joint statistical inference. We show on real and simulated datasets that ddClone produces more accurate results than can be achieved by either method alone.

  15. Analysis of Bacterial and Fungal Nucleic Acid in Canine Sterile Granulomatous and Pyogranulomatous Dermatitis and Panniculitis.

    PubMed

    Rosa, Fabio B; Older, Caitlin E; Meason-Smith, Courtney; Suchodolski, Jan S; Lingsweiler, Sonia; Mansell, Joanne E; Hoffmann, Aline Rodrigues

    2018-01-01

    Next generation sequencing (NGS) studies are revealing a diverse microbiota on the skin of dogs. The skin microbiota of canine sterile granulomatous and pyogranulomatous dermatitis (SGPD) has yet to be investigated using NGS techniques. NGS targeting the 16S rRNA and ITS-1 region of bacterial and fungal DNA, respectively, were used to investigate if bacterial and fungal DNA were associated with skin lesions in cases of canine SGPD. The study included 20 formalin-fixed paraffin-embedded (FFPE) skin samples and 12 fresh samples from SGPD-affected dogs, and 10 FFPE and 10 fresh samples from healthy dogs. DNA was extracted from deep dermis and panniculus, and microbial DNA was amplified using primers targeting the bacterial 16S rRNA V1-V3 and fungal ITS-1 regions. The amplified DNA was utilized for NGS on an Illumina MiSeq instrument. The sequences were processed using QIIME. No differences in fungal or bacterial alpha diversity were observed between the SGPD and control samples. Beta diversity analysis demonstrated differences in the bacterial communities between SGPD and control, but not in the fungal communities. Compared to controls, the family Erysipelotrichaceae and genus Staphylococcus were significantly more abundant in the SGPD FFPE samples, and genus Corynebacterium were more abundant in fresh samples. The bacteria found to be more abundant in SGPD are common inhabitants of skin surfaces, and likely secondary contaminants in SGPD cases. This study provides additional evidence that SGPD lesions are likely sterile.

  16. Comparison of Burrows-Wheeler transform-based mapping algorithms used in high-throughput whole-genome sequencing: application to Illumina data for livestock genomes

    USDA-ARS?s Scientific Manuscript database

    Ongoing developments and cost decreases in next-generation sequencing (NGS) technologies have led to an increase in their application, which has greatly enhanced the fields of genetics and genomics. Mapping sequence reads onto a reference genome is a fundamental step in the analysis of NGS data. Eff...

  17. Identification of an EMS-induced causal mutation in a gene required for boron-mediated root development by low-coverage genome re-sequencing in Arabidopsis

    PubMed Central

    Tabata, Ryo; Kamiya, Takehiro; Shigenobu, Shuji; Yamaguchi, Katsushi; Yamada, Masashi; Hasebe, Mitsuyasu; Fujiwara, Toru; Sawa, Shinichiro

    2013-01-01

    Next-generation sequencing (NGS) technologies enable the rapid production of an enormous quantity of sequence data. These powerful new technologies allow the identification of mutations by whole-genome sequencing. However, most reported NGS-based mapping methods, which are based on bulked segregant analysis, are costly and laborious. To address these limitations, we designed a versatile NGS-based mapping method that consists of a combination of low- to medium-coverage multiplex SOLiD (Sequencing by Oligonucleotide Ligation and Detection) and classical genetic rough mapping. Using only low to medium coverage reduces the SOLiD sequencing costs and, since just 10 to 20 mutant F2 plants are required for rough mapping, the operation is simple enough to handle in a laboratory with limited space and funding. As a proof of principle, we successfully applied this method to identify the CTR1, which is involved in boron-mediated root development, from among a population of high boron requiring Arabidopsis thaliana mutants. Our work demonstrates that this NGS-based mapping method is a moderately priced and versatile method that can readily be applied to other model organisms. PMID:23104114

  18. Next generation sequencing in women affected by nonsyndromic premature ovarian failure displays new potential causative genes and mutations.

    PubMed

    Fonseca, Dora Janeth; Patiño, Liliana Catherine; Suárez, Yohjana Carolina; de Jesús Rodríguez, Asid; Mateus, Heidi Eliana; Jiménez, Karen Marcela; Ortega-Recalde, Oscar; Díaz-Yamal, Ivonne; Laissue, Paul

    2015-07-01

    To identify new molecular actors involved in nonsyndromic premature ovarian failure (POF) etiology. This is a retrospective case-control cohort study. University research group and IVF medical center. Twelve women affected by nonsyndromic POF. The control group included 176 women whose menopause had occurred after age 50 and had no antecedents regarding gynecological disease. A further 345 women from the same ethnic origin (general population group) were also recruited to assess allele frequency for potentially deleterious sequence variants. Next generation sequencing (NGS), Sanger sequencing, and bioinformatics analysis. The complete coding regions of 70 candidate genes were massively sequenced, via NGS, in POF patients. Bioinformatics and genetics were used to confirm NGS results and to identify potential sequence variants related to the disease pathogenesis. We have identified mutations in two novel genes, ADAMTS19 and BMPR2, that are potentially related to POF origin. LHCGR mutations, which might have contributed to the phenotype, were also detected. We thus recommend NGS as a powerful tool for identifying new molecular actors in POF and for future diagnostic/prognostic purposes. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  19. Biofilm-Growing Bacteria Involved in the Corrosion of Concrete Wastewater Pipes: Protocols for Comparative Metagenomic Analyses

    EPA Science Inventory

    Advances in high-throughput next-generation sequencing (NGS) technology for direct sequencing of environmental DNA (i.e. shotgun metagenomics) is transforming the field of microbiology. NGS technologies are now regularly being applied in comparative metagenomic studies, which pr...

  20. Streaming Support for Data Intensive Cloud-Based Sequence Analysis

    PubMed Central

    Issa, Shadi A.; Kienzler, Romeo; El-Kalioby, Mohamed; Tonellato, Peter J.; Wall, Dennis; Bruggmann, Rémy; Abouelhoda, Mohamed

    2013-01-01

    Cloud computing provides a promising solution to the genomics data deluge problem resulting from the advent of next-generation sequencing (NGS) technology. Based on the concepts of “resources-on-demand” and “pay-as-you-go”, scientists with no or limited infrastructure can have access to scalable and cost-effective computational resources. However, the large size of NGS data causes a significant data transfer latency from the client's site to the cloud, which presents a bottleneck for using cloud computing services. In this paper, we provide a streaming-based scheme to overcome this problem, where the NGS data is processed while being transferred to the cloud. Our scheme targets the wide class of NGS data analysis tasks, where the NGS sequences can be processed independently from one another. We also provide the elastream package that supports the use of this scheme with individual analysis programs or with workflow systems. Experiments presented in this paper show that our solution mitigates the effect of data transfer latency and saves both time and cost of computation. PMID:23710461

  1. MutAid: Sanger and NGS Based Integrated Pipeline for Mutation Identification, Validation and Annotation in Human Molecular Genetics.

    PubMed

    Pandey, Ram Vinay; Pabinger, Stephan; Kriegner, Albert; Weinhäusel, Andreas

    2016-01-01

    Traditional Sanger sequencing as well as Next-Generation Sequencing have been used for the identification of disease causing mutations in human molecular research. The majority of currently available tools are developed for research and explorative purposes and often do not provide a complete, efficient, one-stop solution. As the focus of currently developed tools is mainly on NGS data analysis, no integrative solution for the analysis of Sanger data is provided and consequently a one-stop solution to analyze reads from both sequencing platforms is not available. We have therefore developed a new pipeline called MutAid to analyze and interpret raw sequencing data produced by Sanger or several NGS sequencing platforms. It performs format conversion, base calling, quality trimming, filtering, read mapping, variant calling, variant annotation and analysis of Sanger and NGS data under a single platform. It is capable of analyzing reads from multiple patients in a single run to create a list of potential disease causing base substitutions as well as insertions and deletions. MutAid has been developed for expert and non-expert users and supports four sequencing platforms including Sanger, Illumina, 454 and Ion Torrent. Furthermore, for NGS data analysis, five read mappers including BWA, TMAP, Bowtie, Bowtie2 and GSNAP and four variant callers including GATK-HaplotypeCaller, SAMTOOLS, Freebayes and VarScan2 pipelines are supported. MutAid is freely available at https://sourceforge.net/projects/mutaid.

  2. MutAid: Sanger and NGS Based Integrated Pipeline for Mutation Identification, Validation and Annotation in Human Molecular Genetics

    PubMed Central

    Pandey, Ram Vinay; Pabinger, Stephan; Kriegner, Albert; Weinhäusel, Andreas

    2016-01-01

    Traditional Sanger sequencing as well as Next-Generation Sequencing have been used for the identification of disease causing mutations in human molecular research. The majority of currently available tools are developed for research and explorative purposes and often do not provide a complete, efficient, one-stop solution. As the focus of currently developed tools is mainly on NGS data analysis, no integrative solution for the analysis of Sanger data is provided and consequently a one-stop solution to analyze reads from both sequencing platforms is not available. We have therefore developed a new pipeline called MutAid to analyze and interpret raw sequencing data produced by Sanger or several NGS sequencing platforms. It performs format conversion, base calling, quality trimming, filtering, read mapping, variant calling, variant annotation and analysis of Sanger and NGS data under a single platform. It is capable of analyzing reads from multiple patients in a single run to create a list of potential disease causing base substitutions as well as insertions and deletions. MutAid has been developed for expert and non-expert users and supports four sequencing platforms including Sanger, Illumina, 454 and Ion Torrent. Furthermore, for NGS data analysis, five read mappers including BWA, TMAP, Bowtie, Bowtie2 and GSNAP and four variant callers including GATK-HaplotypeCaller, SAMTOOLS, Freebayes and VarScan2 pipelines are supported. MutAid is freely available at https://sourceforge.net/projects/mutaid. PMID:26840129

  3. Identification and characterization of Highlands J virus from a Mississippi sandhill crane using unbiased next-generation sequencing

    USGS Publications Warehouse

    Ip, Hon S.; Wiley, Michael R.; Long, Renee; Gustavo, Palacios; Shearn-Bochsler, Valerie; Whitehouse, Chris A.

    2014-01-01

    Advances in massively parallel DNA sequencing platforms, commonly termed next-generation sequencing (NGS) technologies, have greatly reduced time, labor, and cost associated with DNA sequencing. Thus, NGS has become a routine tool for new viral pathogen discovery and will likely become the standard for routine laboratory diagnostics of infectious diseases in the near future. This study demonstrated the application of NGS for the rapid identification and characterization of a virus isolated from the brain of an endangered Mississippi sandhill crane. This bird was part of a population restoration effort and was found in an emaciated state several days after Hurricane Isaac passed over the refuge in Mississippi in 2012. Post-mortem examination had identified trichostrongyliasis as the possible cause of death, but because a virus with morphology consistent with a togavirus was isolated from the brain of the bird, an arboviral etiology was strongly suspected. Because individual molecular assays for several known arboviruses were negative, unbiased NGS by Illumina MiSeq was used to definitively identify and characterize the causative viral agent. Whole genome sequencing and phylogenetic analysis revealed the viral isolate to be the Highlands J virus, a known avian pathogen. This study demonstrates the use of unbiased NGS for the rapid detection and characterization of an unidentified viral pathogen and the application of this technology to wildlife disease diagnostics and conservation medicine.

  4. Comparison of Four Human Papillomavirus Genotyping Methods: Next-generation Sequencing, INNO-LiPA, Electrochemical DNA Chip, and Nested-PCR.

    PubMed

    Nilyanimit, Pornjarim; Chansaenroj, Jira; Poomipak, Witthaya; Praianantathavorn, Kesmanee; Payungporn, Sunchai; Poovorawan, Yong

    2018-03-01

    Human papillomavirus (HPV) infection causes cervical cancer, thus necessitating early detection by screening. Rapid and accurate HPV genotyping is crucial both for the assessment of patients with HPV infection and for surveillance studies. Fifty-eight cervicovaginal samples were tested for HPV genotypes using four methods in parallel: nested-PCR followed by conventional sequencing, INNO-LiPA, electrochemical DNA chip, and next-generation sequencing (NGS). Seven HPV genotypes (16, 18, 31, 33, 45, 56, and 58) were identified by all four methods. Nineteen HPV genotypes were detected by NGS, but not by nested-PCR, INNO-LiPA, or electrochemical DNA chip. Although NGS is relatively expensive and complex, it may serve as a sensitive HPV genotyping method. Because of its highly sensitive detection of multiple HPV genotypes, NGS may serve as an alternative for diagnostic HPV genotyping in certain situations. © The Korean Society for Laboratory Medicine

  5. QuickNGS elevates Next-Generation Sequencing data analysis to a new level of automation.

    PubMed

    Wagle, Prerana; Nikolić, Miloš; Frommolt, Peter

    2015-07-01

    Next-Generation Sequencing (NGS) has emerged as a widely used tool in molecular biology. While time and cost for the sequencing itself are decreasing, the analysis of the massive amounts of data remains challenging. Since multiple algorithmic approaches for the basic data analysis have been developed, there is now an increasing need to efficiently use these tools to obtain results in reasonable time. We have developed QuickNGS, a new workflow system for laboratories with the need to analyze data from multiple NGS projects at a time. QuickNGS takes advantage of parallel computing resources, a comprehensive back-end database, and a careful selection of previously published algorithmic approaches to build fully automated data analysis workflows. We demonstrate the efficiency of our new software by a comprehensive analysis of 10 RNA-Seq samples which we can finish in only a few minutes of hands-on time. The approach we have taken is suitable to process even much larger numbers of samples and multiple projects at a time. Our approach considerably reduces the barriers that still limit the usability of the powerful NGS technology and finally decreases the time to be spent before proceeding to further downstream analysis and interpretation of the data.

  6. College of American Pathologists' laboratory standards for next-generation sequencing clinical tests.

    PubMed

    Aziz, Nazneen; Zhao, Qin; Bry, Lynn; Driscoll, Denise K; Funke, Birgit; Gibson, Jane S; Grody, Wayne W; Hegde, Madhuri R; Hoeltge, Gerald A; Leonard, Debra G B; Merker, Jason D; Nagarajan, Rakesh; Palicki, Linda A; Robetorye, Ryan S; Schrijver, Iris; Weck, Karen E; Voelkerding, Karl V

    2015-04-01

    The higher throughput and lower per-base cost of next-generation sequencing (NGS) as compared to Sanger sequencing has led to its rapid adoption in clinical testing. The number of laboratories offering NGS-based tests has also grown considerably in the past few years, despite the fact that specific Clinical Laboratory Improvement Amendments of 1988/College of American Pathologists (CAP) laboratory standards had not yet been developed to regulate this technology. To develop a checklist for clinical testing using NGS technology that sets standards for the analytic wet bench process and for bioinformatics or "dry bench" analyses. As NGS-based clinical tests are new to diagnostic testing and are of much greater complexity than traditional Sanger sequencing-based tests, there is an urgent need to develop new regulatory standards for laboratories offering these tests. To develop the necessary regulatory framework for NGS and to facilitate appropriate adoption of this technology for clinical testing, CAP formed a committee in 2011, the NGS Work Group, to deliberate upon the contents to be included in the checklist. Results . -A total of 18 laboratory accreditation checklist requirements for the analytic wet bench process and bioinformatics analysis processes have been included within CAP's molecular pathology checklist (MOL). This report describes the important issues considered by the CAP committee during the development of the new checklist requirements, which address documentation, validation, quality assurance, confirmatory testing, exception logs, monitoring of upgrades, variant interpretation and reporting, incidental findings, data storage, version traceability, and data transfer confidentiality.

  7. Massively parallel sequencing of 17 commonly used forensic autosomal STRs and amelogenin with small amplicons.

    PubMed

    Kim, Eun Hye; Lee, Hwan Young; Yang, In Seok; Jung, Sang-Eun; Yang, Woo Ick; Shin, Kyoung-Jin

    2016-05-01

    The next-generation sequencing (NGS) method has been utilized to analyze short tandem repeat (STR) markers, which are routinely used for human identification purposes in the forensic field. Some researchers have demonstrated the successful application of the NGS system to STR typing, suggesting that NGS technology may be an alternative or additional method to overcome limitations of capillary electrophoresis (CE)-based STR profiling. However, there has been no available multiplex PCR system that is optimized for NGS analysis of forensic STR markers. Thus, we constructed a multiplex PCR system for the NGS analysis of 18 markers (13CODIS STRs, D2S1338, D19S433, Penta D, Penta E and amelogenin) by designing amplicons in the size range of 77-210 base pairs. Then, PCR products were generated from two single-sources, mixed samples and artificially degraded DNA samples using a multiplex PCR system, and were prepared for sequencing on the MiSeq system through construction of a subsequent barcoded library. By performing NGS and analyzing the data, we confirmed that the resultant STR genotypes were consistent with those of CE-based typing. Moreover, sequence variations were detected in targeted STR regions. Through the use of small-sized amplicons, the developed multiplex PCR system enables researchers to obtain successful STR profiles even from artificially degraded DNA as well as STR loci which are analyzed with large-sized amplicons in the CE-based commercial kits. In addition, successful profiles can be obtained from mixtures up to a 1:19 ratio. Consequently, the developed multiplex PCR system, which produces small size amplicons, can be successfully applied to STR NGS analysis of forensic casework samples such as mixtures and degraded DNA samples. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Experience of targeted Usher exome sequencing as a clinical test

    PubMed Central

    Besnard, Thomas; García-García, Gema; Baux, David; Vaché, Christel; Faugère, Valérie; Larrieu, Lise; Léonard, Susana; Millan, Jose M; Malcolm, Sue; Claustres, Mireille; Roux, Anne-Françoise

    2014-01-01

    We show that massively parallel targeted sequencing of 19 genes provides a new and reliable strategy for molecular diagnosis of Usher syndrome (USH) and nonsyndromic deafness, particularly appropriate for these disorders characterized by a high clinical and genetic heterogeneity and a complex structure of several of the genes involved. A series of 71 patients including Usher patients previously screened by Sanger sequencing plus newly referred patients was studied. Ninety-eight percent of the variants previously identified by Sanger sequencing were found by next-generation sequencing (NGS). NGS proved to be efficient as it offers analysis of all relevant genes which is laborious to reach with Sanger sequencing. Among the 13 newly referred Usher patients, both mutations in the same gene were identified in 77% of cases (10 patients) and one candidate pathogenic variant in two additional patients. This work can be considered as pilot for implementing NGS for genetically heterogeneous diseases in clinical service. PMID:24498627

  9. Use of four next-generation sequencing platforms to determine HIV-1 coreceptor tropism.

    PubMed

    Archer, John; Weber, Jan; Henry, Kenneth; Winner, Dane; Gibson, Richard; Lee, Lawrence; Paxinos, Ellen; Arts, Eric J; Robertson, David L; Mimms, Larry; Quiñones-Mateu, Miguel E

    2012-01-01

    HIV-1 coreceptor tropism assays are required to rule out the presence of CXCR4-tropic (non-R5) viruses prior treatment with CCR5 antagonists. Phenotypic (e.g., Trofile™, Monogram Biosciences) and genotypic (e.g., population sequencing linked to bioinformatic algorithms) assays are the most widely used. Although several next-generation sequencing (NGS) platforms are available, to date all published deep sequencing HIV-1 tropism studies have used the 454™ Life Sciences/Roche platform. In this study, HIV-1 co-receptor usage was predicted for twelve patients scheduled to start a maraviroc-based antiretroviral regimen. The V3 region of the HIV-1 env gene was sequenced using four NGS platforms: 454™, PacBio® RS (Pacific Biosciences), Illumina®, and Ion Torrent™ (Life Technologies). Cross-platform variation was evaluated, including number of reads, read length and error rates. HIV-1 tropism was inferred using Geno2Pheno, Web PSSM, and the 11/24/25 rule and compared with Trofile™ and virologic response to antiretroviral therapy. Error rates related to insertions/deletions (indels) and nucleotide substitutions introduced by the four NGS platforms were low compared to the actual HIV-1 sequence variation. Each platform detected all major virus variants within the HIV-1 population with similar frequencies. Identification of non-R5 viruses was comparable among the four platforms, with minor differences attributable to the algorithms used to infer HIV-1 tropism. All NGS platforms showed similar concordance with virologic response to the maraviroc-based regimen (75% to 80% range depending on the algorithm used), compared to Trofile (80%) and population sequencing (70%). In conclusion, all four NGS platforms were able to detect minority non-R5 variants at comparable levels suggesting that any NGS-based method can be used to predict HIV-1 coreceptor usage.

  10. Identification of a novel splicing mutation within SLC17A8 in a Korean family with hearing loss by whole-exome sequencing.

    PubMed

    Ryu, Nari; Lee, Seokwon; Park, Hong-Joon; Lee, Byeonghyeon; Kwon, Tae-Jun; Bok, Jinwoong; Park, Chan Ik; Lee, Kyu-Yup; Baek, Jeong-In; Kim, Un-Kyung

    2017-09-05

    Hereditary hearing loss (HHL) is a common genetically heterogeneous disorder, which follows Mendelian inheritance in humans. Because of this heterogeneity, the identification of the causative gene of HHL by linkage analysis or Sanger sequencing have shown economic and temporal limitations. With recent advances in next-generation sequencing (NGS) techniques, rapid identification of a causative gene via massively parallel sequencing is now possible. We recruited a Korean family with three generations exhibiting autosomal dominant inheritance of hearing loss (HL), and the clinical information about this family revealed that there are no other symptoms accompanied with HL. To identify a causative mutation of HL in this family, we performed whole-exome sequencing of 4 family members, 3 affected and an unaffected. As the result, A novel splicing mutation, c.763+1G>T, in the solute carrier family 17, member 8 (SLC17A8) gene was identified in the patients, and the genotypes of the mutation were co-segregated with the phenotype of HL. Additionally, this mutation was not detected in 100 Koreans with normal hearing. Via NGS, we detected a novel splicing mutation that might influence the hearing ability within the patients with autosomal dominant non-syndromic HL. Our data suggests that this technique is a powerful tool to discover causative genetic factors of HL and facilitate diagnoses of the primary cause of HHL. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Using next-generation sequencing to develop molecular diagnostics for Pseudoperonospora cubensis, the cucurbit downy mildew pathogen

    USDA-ARS?s Scientific Manuscript database

    Advances in Next Generation Sequencing (NGS) allow for rapid development of genomics resources needed to generate molecular diagnostics assays for infectious agents. NGS approaches are particularly helpful for organisms that cannot be cultured, such as the downy mildew pathogens, a group of biotrop...

  12. DDBJ read annotation pipeline: a cloud computing-based pipeline for high-throughput analysis of next-generation sequencing data.

    PubMed

    Nagasaki, Hideki; Mochizuki, Takako; Kodama, Yuichi; Saruhashi, Satoshi; Morizaki, Shota; Sugawara, Hideaki; Ohyanagi, Hajime; Kurata, Nori; Okubo, Kousaku; Takagi, Toshihisa; Kaminuma, Eli; Nakamura, Yasukazu

    2013-08-01

    High-performance next-generation sequencing (NGS) technologies are advancing genomics and molecular biological research. However, the immense amount of sequence data requires computational skills and suitable hardware resources that are a challenge to molecular biologists. The DNA Data Bank of Japan (DDBJ) of the National Institute of Genetics (NIG) has initiated a cloud computing-based analytical pipeline, the DDBJ Read Annotation Pipeline (DDBJ Pipeline), for a high-throughput annotation of NGS reads. The DDBJ Pipeline offers a user-friendly graphical web interface and processes massive NGS datasets using decentralized processing by NIG supercomputers currently free of charge. The proposed pipeline consists of two analysis components: basic analysis for reference genome mapping and de novo assembly and subsequent high-level analysis of structural and functional annotations. Users may smoothly switch between the two components in the pipeline, facilitating web-based operations on a supercomputer for high-throughput data analysis. Moreover, public NGS reads of the DDBJ Sequence Read Archive located on the same supercomputer can be imported into the pipeline through the input of only an accession number. This proposed pipeline will facilitate research by utilizing unified analytical workflows applied to the NGS data. The DDBJ Pipeline is accessible at http://p.ddbj.nig.ac.jp/.

  13. DDBJ Read Annotation Pipeline: A Cloud Computing-Based Pipeline for High-Throughput Analysis of Next-Generation Sequencing Data

    PubMed Central

    Nagasaki, Hideki; Mochizuki, Takako; Kodama, Yuichi; Saruhashi, Satoshi; Morizaki, Shota; Sugawara, Hideaki; Ohyanagi, Hajime; Kurata, Nori; Okubo, Kousaku; Takagi, Toshihisa; Kaminuma, Eli; Nakamura, Yasukazu

    2013-01-01

    High-performance next-generation sequencing (NGS) technologies are advancing genomics and molecular biological research. However, the immense amount of sequence data requires computational skills and suitable hardware resources that are a challenge to molecular biologists. The DNA Data Bank of Japan (DDBJ) of the National Institute of Genetics (NIG) has initiated a cloud computing-based analytical pipeline, the DDBJ Read Annotation Pipeline (DDBJ Pipeline), for a high-throughput annotation of NGS reads. The DDBJ Pipeline offers a user-friendly graphical web interface and processes massive NGS datasets using decentralized processing by NIG supercomputers currently free of charge. The proposed pipeline consists of two analysis components: basic analysis for reference genome mapping and de novo assembly and subsequent high-level analysis of structural and functional annotations. Users may smoothly switch between the two components in the pipeline, facilitating web-based operations on a supercomputer for high-throughput data analysis. Moreover, public NGS reads of the DDBJ Sequence Read Archive located on the same supercomputer can be imported into the pipeline through the input of only an accession number. This proposed pipeline will facilitate research by utilizing unified analytical workflows applied to the NGS data. The DDBJ Pipeline is accessible at http://p.ddbj.nig.ac.jp/. PMID:23657089

  14. HIA: a genome mapper using hybrid index-based sequence alignment.

    PubMed

    Choi, Jongpill; Park, Kiejung; Cho, Seong Beom; Chung, Myungguen

    2015-01-01

    A number of alignment tools have been developed to align sequencing reads to the human reference genome. The scale of information from next-generation sequencing (NGS) experiments, however, is increasing rapidly. Recent studies based on NGS technology have routinely produced exome or whole-genome sequences from several hundreds or thousands of samples. To accommodate the increasing need of analyzing very large NGS data sets, it is necessary to develop faster, more sensitive and accurate mapping tools. HIA uses two indices, a hash table index and a suffix array index. The hash table performs direct lookup of a q-gram, and the suffix array performs very fast lookup of variable-length strings by exploiting binary search. We observed that combining hash table and suffix array (hybrid index) is much faster than the suffix array method for finding a substring in the reference sequence. Here, we defined the matching region (MR) is a longest common substring between a reference and a read. And, we also defined the candidate alignment regions (CARs) as a list of MRs that is close to each other. The hybrid index is used to find candidate alignment regions (CARs) between a reference and a read. We found that aligning only the unmatched regions in the CAR is much faster than aligning the whole CAR. In benchmark analysis, HIA outperformed in mapping speed compared with the other aligners, without significant loss of mapping accuracy. Our experiments show that the hybrid of hash table and suffix array is useful in terms of speed for mapping NGS sequencing reads to the human reference genome sequence. In conclusion, our tool is appropriate for aligning massive data sets generated by NGS sequencing.

  15. HPV Genotyping of Modified General Primer-Amplicons Is More Analytically Sensitive and Specific by Sequencing than by Hybridization

    PubMed Central

    Meisal, Roger; Rounge, Trine Ballestad; Christiansen, Irene Kraus; Eieland, Alexander Kirkeby; Worren, Merete Molton; Molden, Tor Faksvaag; Kommedal, Øyvind; Hovig, Eivind; Leegaard, Truls Michael

    2017-01-01

    Sensitive and specific genotyping of human papillomaviruses (HPVs) is important for population-based surveillance of carcinogenic HPV types and for monitoring vaccine effectiveness. Here we compare HPV genotyping by Next Generation Sequencing (NGS) to an established DNA hybridization method. In DNA isolated from urine, the overall analytical sensitivity of NGS was found to be 22% higher than that of hybridization. NGS was also found to be the most specific method and expanded the detection repertoire beyond the 37 types of the DNA hybridization assay. Furthermore, NGS provided an increased resolution by identifying genetic variants of individual HPV types. The same Modified General Primers (MGP)-amplicon was used in both methods. The NGS method is described in detail to facilitate implementation in the clinical microbiology laboratory and includes suggestions for new standards for detection and calling of types and variants with improved resolution. PMID:28045981

  16. HPV Genotyping of Modified General Primer-Amplicons Is More Analytically Sensitive and Specific by Sequencing than by Hybridization.

    PubMed

    Meisal, Roger; Rounge, Trine Ballestad; Christiansen, Irene Kraus; Eieland, Alexander Kirkeby; Worren, Merete Molton; Molden, Tor Faksvaag; Kommedal, Øyvind; Hovig, Eivind; Leegaard, Truls Michael; Ambur, Ole Herman

    2017-01-01

    Sensitive and specific genotyping of human papillomaviruses (HPVs) is important for population-based surveillance of carcinogenic HPV types and for monitoring vaccine effectiveness. Here we compare HPV genotyping by Next Generation Sequencing (NGS) to an established DNA hybridization method. In DNA isolated from urine, the overall analytical sensitivity of NGS was found to be 22% higher than that of hybridization. NGS was also found to be the most specific method and expanded the detection repertoire beyond the 37 types of the DNA hybridization assay. Furthermore, NGS provided an increased resolution by identifying genetic variants of individual HPV types. The same Modified General Primers (MGP)-amplicon was used in both methods. The NGS method is described in detail to facilitate implementation in the clinical microbiology laboratory and includes suggestions for new standards for detection and calling of types and variants with improved resolution.

  17. Clinical application of next-generation sequencing for Mendelian diseases.

    PubMed

    Jamuar, Saumya Shekhar; Tan, Ene-Choo

    2015-06-16

    Over the past decade, next-generation sequencing (NGS) has led to an exponential increase in our understanding of the genetic basis of Mendelian diseases. NGS allows for the analysis of multiple regions of the genome in one single reaction and has been shown to be a cost-effective and efficient tool in investigating patients with Mendelian diseases. More recently, NGS has been successfully deployed in the clinics, with a reported diagnostic yield of ~25 %. However, recommendations on clinical implementation of NGS are still evolving with numerous key challenges that impede the widespread use of genetics in everyday medicine. These challenges include when to order, on whom to order, what type of test to order, and how to interpret and communicate the results, including incidental findings, to the patient and family. In this review, we discuss these challenges and suggest guidelines on implementing NGS in the routine clinical workflow.

  18. Web-based bioinformatics workflows for end-to-end RNA-seq data computation and analysis in agricultural animal species

    USDA-ARS?s Scientific Manuscript database

    Remarkable advances in next-generation sequencing (NGS) technologies, bioinformatics algorithms, and computational technologies have significantly accelerated genomic research. However, complicated NGS data analysis still remains as a major bottleneck. RNA-seq, as one of the major area in the NGS fi...

  19. Comprehensive viral enrichment enables sensitive respiratory virus genomic identification and analysis by next generation sequencing.

    PubMed

    O'Flaherty, Brigid M; Li, Yan; Tao, Ying; Paden, Clinton R; Queen, Krista; Zhang, Jing; Dinwiddie, Darrell L; Gross, Stephen M; Schroth, Gary P; Tong, Suxiang

    2018-06-01

    Next generation sequencing (NGS) technologies have revolutionized the genomics field and are becoming more commonplace for identification of human infectious diseases. However, due to the low abundance of viral nucleic acids (NAs) in relation to host, viral identification using direct NGS technologies often lacks sufficient sensitivity. Here, we describe an approach based on two complementary enrichment strategies that significantly improves the sensitivity of NGS-based virus identification. To start, we developed two sets of DNA probes to enrich virus NAs associated with respiratory diseases. The first set of probes spans the genomes, allowing for identification of known viruses and full genome sequencing, while the second set targets regions conserved among viral families or genera, providing the ability to detect both known and potentially novel members of those virus groups. Efficiency of enrichment was assessed by NGS testing reference virus and clinical samples with known infection. We show significant improvement in viral identification using enriched NGS compared to unenriched NGS. Without enrichment, we observed an average of 0.3% targeted viral reads per sample. However, after enrichment, 50%-99% of the reads per sample were the targeted viral reads for both the reference isolates and clinical specimens using both probe sets. Importantly, dramatic improvements on genome coverage were also observed following virus-specific probe enrichment. The methods described here provide improved sensitivity for virus identification by NGS, allowing for a more comprehensive analysis of disease etiology. © 2018 O'Flaherty et al.; Published by Cold Spring Harbor Laboratory Press.

  20. Metagenome assembly through clustering of next-generation sequencing data using protein sequences.

    PubMed

    Sim, Mikang; Kim, Jaebum

    2015-02-01

    The study of environmental microbial communities, called metagenomics, has gained a lot of attention because of the recent advances in next-generation sequencing (NGS) technologies. Microbes play a critical role in changing their environments, and the mode of their effect can be solved by investigating metagenomes. However, the difficulty of metagenomes, such as the combination of multiple microbes and different species abundance, makes metagenome assembly tasks more challenging. In this paper, we developed a new metagenome assembly method by utilizing protein sequences, in addition to the NGS read sequences. Our method (i) builds read clusters by using mapping information against available protein sequences, and (ii) creates contig sequences by finding consensus sequences through probabilistic choices from the read clusters. By using simulated NGS read sequences from real microbial genome sequences, we evaluated our method in comparison with four existing assembly programs. We found that our method could generate relatively long and accurate metagenome assemblies, indicating that the idea of using protein sequences, as a guide for the assembly, is promising. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Chronic Meningitis Investigated via Metagenomic Next-Generation Sequencing

    PubMed Central

    O’Donovan, Brian D.; Gelfand, Jeffrey M.; Sample, Hannah A.; Chow, Felicia C.; Betjemann, John P.; Shah, Maulik P.; Richie, Megan B.; Gorman, Mark P.; Hajj-Ali, Rula A.; Calabrese, Leonard H.; Zorn, Kelsey C.; Chow, Eric D.; Greenlee, John E.; Blum, Jonathan H.; Green, Gary; Khan, Lillian M.; Banerji, Debarko; Langelier, Charles; Bryson-Cahn, Chloe; Harrington, Whitney; Lingappa, Jairam R.; Shanbhag, Niraj M.; Green, Ari J.; Brew, Bruce J.; Soldatos, Ariane; Strnad, Luke; Doernberg, Sarah B.; Jay, Cheryl A.; Douglas, Vanja; Josephson, S. Andrew; DeRisi, Joseph L.

    2018-01-01

    Importance Identifying infectious causes of subacute or chronic meningitis can be challenging. Enhanced, unbiased diagnostic approaches are needed. Objective To present a case series of patients with diagnostically challenging subacute or chronic meningitis using metagenomic next-generation sequencing (mNGS) of cerebrospinal fluid (CSF) supported by a statistical framework generated from mNGS of control samples from the environment and from patients who were noninfectious. Design, Setting, and Participants In this case series, mNGS data obtained from the CSF of 94 patients with noninfectious neuroinflammatory disorders and from 24 water and reagent control samples were used to develop and implement a weighted scoring metric based on z scores at the species and genus levels for both nucleotide and protein alignments to prioritize and rank the mNGS results. Total RNA was extracted for mNGS from the CSF of 7 participants with subacute or chronic meningitis who were recruited between September 2013 and March 2017 as part of a multicenter study of mNGS pathogen discovery among patients with suspected neuroinflammatory conditions. The neurologic infections identified by mNGS in these 7 participants represented a diverse array of pathogens. The patients were referred from the University of California, San Francisco Medical Center (n = 2), Zuckerberg San Francisco General Hospital and Trauma Center (n = 2), Cleveland Clinic (n = 1), University of Washington (n = 1), and Kaiser Permanente (n = 1). A weighted z score was used to filter out environmental contaminants and facilitate efficient data triage and analysis. Main Outcomes and Measures Pathogens identified by mNGS and the ability of a statistical model to prioritize, rank, and simplify mNGS results. Results The 7 participants ranged in age from 10 to 55 years, and 3 (43%) were female. A parasitic worm (Taenia solium, in 2 participants), a virus (HIV-1), and 4 fungi (Cryptococcus neoformans, Aspergillus oryzae, Histoplasma capsulatum, and Candida dubliniensis) were identified among the 7 participants by using mNGS. Evaluating mNGS data with a weighted z score–based scoring algorithm reduced the reported microbial taxa by a mean of 87% (range, 41%-99%) when taxa with a combined score of 0 or less were removed, effectively separating bona fide pathogen sequences from spurious environmental sequences so that, in each case, the causative pathogen was found within the top 2 scoring microbes identified using the algorithm. Conclusions and Relevance Diverse microbial pathogens were identified by mNGS in the CSF of patients with diagnostically challenging subacute or chronic meningitis, including a case of subarachnoid neurocysticercosis that defied diagnosis for 1 year, the first reported case of CNS vasculitis caused by Aspergillus oryzae, and the fourth reported case of C dubliniensis meningitis. Prioritizing metagenomic data with a scoring algorithm greatly clarified data interpretation and highlighted the problem of attributing biological significance to organisms present in control samples used for metagenomic sequencing studies. PMID:29710329

  2. Chronic Meningitis Investigated via Metagenomic Next-Generation Sequencing.

    PubMed

    Wilson, Michael R; O'Donovan, Brian D; Gelfand, Jeffrey M; Sample, Hannah A; Chow, Felicia C; Betjemann, John P; Shah, Maulik P; Richie, Megan B; Gorman, Mark P; Hajj-Ali, Rula A; Calabrese, Leonard H; Zorn, Kelsey C; Chow, Eric D; Greenlee, John E; Blum, Jonathan H; Green, Gary; Khan, Lillian M; Banerji, Debarko; Langelier, Charles; Bryson-Cahn, Chloe; Harrington, Whitney; Lingappa, Jairam R; Shanbhag, Niraj M; Green, Ari J; Brew, Bruce J; Soldatos, Ariane; Strnad, Luke; Doernberg, Sarah B; Jay, Cheryl A; Douglas, Vanja; Josephson, S Andrew; DeRisi, Joseph L

    2018-04-16

    Identifying infectious causes of subacute or chronic meningitis can be challenging. Enhanced, unbiased diagnostic approaches are needed. To present a case series of patients with diagnostically challenging subacute or chronic meningitis using metagenomic next-generation sequencing (mNGS) of cerebrospinal fluid (CSF) supported by a statistical framework generated from mNGS of control samples from the environment and from patients who were noninfectious. In this case series, mNGS data obtained from the CSF of 94 patients with noninfectious neuroinflammatory disorders and from 24 water and reagent control samples were used to develop and implement a weighted scoring metric based on z scores at the species and genus levels for both nucleotide and protein alignments to prioritize and rank the mNGS results. Total RNA was extracted for mNGS from the CSF of 7 participants with subacute or chronic meningitis who were recruited between September 2013 and March 2017 as part of a multicenter study of mNGS pathogen discovery among patients with suspected neuroinflammatory conditions. The neurologic infections identified by mNGS in these 7 participants represented a diverse array of pathogens. The patients were referred from the University of California, San Francisco Medical Center (n = 2), Zuckerberg San Francisco General Hospital and Trauma Center (n = 2), Cleveland Clinic (n = 1), University of Washington (n = 1), and Kaiser Permanente (n = 1). A weighted z score was used to filter out environmental contaminants and facilitate efficient data triage and analysis. Pathogens identified by mNGS and the ability of a statistical model to prioritize, rank, and simplify mNGS results. The 7 participants ranged in age from 10 to 55 years, and 3 (43%) were female. A parasitic worm (Taenia solium, in 2 participants), a virus (HIV-1), and 4 fungi (Cryptococcus neoformans, Aspergillus oryzae, Histoplasma capsulatum, and Candida dubliniensis) were identified among the 7 participants by using mNGS. Evaluating mNGS data with a weighted z score-based scoring algorithm reduced the reported microbial taxa by a mean of 87% (range, 41%-99%) when taxa with a combined score of 0 or less were removed, effectively separating bona fide pathogen sequences from spurious environmental sequences so that, in each case, the causative pathogen was found within the top 2 scoring microbes identified using the algorithm. Diverse microbial pathogens were identified by mNGS in the CSF of patients with diagnostically challenging subacute or chronic meningitis, including a case of subarachnoid neurocysticercosis that defied diagnosis for 1 year, the first reported case of CNS vasculitis caused by Aspergillus oryzae, and the fourth reported case of C dubliniensis meningitis. Prioritizing metagenomic data with a scoring algorithm greatly clarified data interpretation and highlighted the problem of attributing biological significance to organisms present in control samples used for metagenomic sequencing studies.

  3. ReSeqTools: an integrated toolkit for large-scale next-generation sequencing based resequencing analysis.

    PubMed

    He, W; Zhao, S; Liu, X; Dong, S; Lv, J; Liu, D; Wang, J; Meng, Z

    2013-12-04

    Large-scale next-generation sequencing (NGS)-based resequencing detects sequence variations, constructs evolutionary histories, and identifies phenotype-related genotypes. However, NGS-based resequencing studies generate extraordinarily large amounts of data, making computations difficult. Effective use and analysis of these data for NGS-based resequencing studies remains a difficult task for individual researchers. Here, we introduce ReSeqTools, a full-featured toolkit for NGS (Illumina sequencing)-based resequencing analysis, which processes raw data, interprets mapping results, and identifies and annotates sequence variations. ReSeqTools provides abundant scalable functions for routine resequencing analysis in different modules to facilitate customization of the analysis pipeline. ReSeqTools is designed to use compressed data files as input or output to save storage space and facilitates faster and more computationally efficient large-scale resequencing studies in a user-friendly manner. It offers abundant practical functions and generates useful statistics during the analysis pipeline, which significantly simplifies resequencing analysis. Its integrated algorithms and abundant sub-functions provide a solid foundation for special demands in resequencing projects. Users can combine these functions to construct their own pipelines for other purposes.

  4. Scalable and cost-effective NGS genotyping in the cloud.

    PubMed

    Souilmi, Yassine; Lancaster, Alex K; Jung, Jae-Yoon; Rizzo, Ettore; Hawkins, Jared B; Powles, Ryan; Amzazi, Saaïd; Ghazal, Hassan; Tonellato, Peter J; Wall, Dennis P

    2015-10-15

    While next-generation sequencing (NGS) costs have plummeted in recent years, cost and complexity of computation remain substantial barriers to the use of NGS in routine clinical care. The clinical potential of NGS will not be realized until robust and routine whole genome sequencing data can be accurately rendered to medically actionable reports within a time window of hours and at scales of economy in the 10's of dollars. We take a step towards addressing this challenge, by using COSMOS, a cloud-enabled workflow management system, to develop GenomeKey, an NGS whole genome analysis workflow. COSMOS implements complex workflows making optimal use of high-performance compute clusters. Here we show that the Amazon Web Service (AWS) implementation of GenomeKey via COSMOS provides a fast, scalable, and cost-effective analysis of both public benchmarking and large-scale heterogeneous clinical NGS datasets. Our systematic benchmarking reveals important new insights and considerations to produce clinical turn-around of whole genome analysis optimization and workflow management including strategic batching of individual genomes and efficient cluster resource configuration.

  5. Spectrum of benzo[a]pyrene-induced mutations in the Pig-a gene of L5178YTk+/- cells identified with next generation sequencing.

    PubMed

    Revollo, Javier; Wang, Yiying; McKinzie, Page; Dad, Azra; Pearce, Mason; Heflich, Robert H; Dobrovolsky, Vasily N

    2017-12-01

    We used Sanger sequencing and next generation sequencing (NGS) for analysis of mutations in the endogenous X-linked Pig-a gene of clonally expanded L5178YTk +/- cells. The clones developed from single cells that were sorted on a flow cytometer based upon the expression pattern of the GPI-anchored marker, CD90, on their surface. CD90-deficient and CD90-proficient cells were sorted from untreated cultures and CD90-deficient cells were sorted from cultures treated with benzo[a]pyrene (B[a]P). Pig-a mutations were identified in all clones developed from CD90-deficient cells; no Pig-a mutations were found in clones of CD90-proficient cells. The spectrum of B[a]P-induced Pig-a mutations was dominated by basepair substitutions, small insertions and deletions at G:C, or at sequences rich in G:C content. We observed high concordance between Pig-a mutations determined by Sanger sequencing and by NGS, but NGS was able to identify mutations in samples that were difficult to analyze by Sanger sequencing (e.g., mixtures of two mutant clones). Overall, the NGS method is a cost and labor efficient high throughput approach for analysis of a large number of mutant clones. Published by Elsevier B.V.

  6. Sequencing-based diagnostics for pediatric genetic diseases: progress and potential

    PubMed Central

    Tayoun, Ahmad Abou; Krock, Bryan; Spinner, Nancy B.

    2016-01-01

    Introduction The last two decades have witnessed revolutionary changes in clinical diagnostics, fueled by the Human Genome Project and advances in high throughput, Next Generation Sequencing (NGS). We review the current state of sequencing-based pediatric diagnostics, associated challenges, and future prospects. Areas Covered We present an overview of genetic disease in children, review the technical aspects of Next Generation Sequencing and the strategies to make molecular diagnoses for children with genetic disease. We discuss the challenges of genomic sequencing including incomplete current knowledge of variants, lack of data about certain genomic regions, mosaicism, and the presence of regions with high homology. Expert Commentary NGS has been a transformative technology and the gap between the research and clinical communities has never been so narrow. Therapeutic interventions are emerging based on genomic findings and the applications of NGS are progressing to prenatal genetics, epigenomics and transcriptomics. PMID:27388938

  7. Microsatellite instability in prostate cancer by PCR or next-generation sequencing.

    PubMed

    Hempelmann, Jennifer A; Lockwood, Christina M; Konnick, Eric Q; Schweizer, Michael T; Antonarakis, Emmanuel S; Lotan, Tamara L; Montgomery, Bruce; Nelson, Peter S; Klemfuss, Nola; Salipante, Stephen J; Pritchard, Colin C

    2018-04-17

    Microsatellite instability (MSI) is now being used as a sole biomarker to guide immunotherapy treatment for men with advanced prostate cancer. Yet current molecular diagnostic tests for MSI have not been evaluated for use in prostate cancer. We evaluated two next-generation sequencing (NGS) MSI-detection methods, MSIplus (18 markers) and MSI by Large Panel NGS (> 60 markers), and compared the performance of each NGS method to the most widely used 5-marker MSI-PCR detection system. All methods were evaluated by comparison to targeted whole gene sequencing of DNA mismatch-repair genes, and immunohistochemistry for mismatch repair genes, where available. In a set of 91 prostate tumors with known mismatch repair status (29-deficient and 62-intact mismatch-repair) MSIplus had a sensitivity of 96.6% (28/29) and a specificity of 100% (62/62), MSI by Large Panel NGS had a sensitivity of 93.1% (27/29) and a specificity of 98.4% (61/62), and MSI-PCR had a sensitivity of 72.4% (21/29) and a specificity of 100% (62/62). We found that the widely used 5-marker MSI-PCR panel has inferior sensitivity when applied to prostate cancer and that NGS testing with an expanded panel of markers performs well. In addition, NGS methods offer advantages over MSI-PCR, including no requirement for matched non-tumor tissue and an automated analysis pipeline with quantitative interpretation of MSI-status.

  8. Use of the Ion PGM and the GeneReader NGS Systems in Daily Routine Practice for Advanced Lung Adenocarcinoma Patients: A Practical Point of View Reporting a Comparative Study and Assessment of 90 Patients.

    PubMed

    Heeke, Simon; Hofman, Véronique; Long-Mira, Elodie; Lespinet, Virginie; Lalvée, Salomé; Bordone, Olivier; Ribeyre, Camille; Tanga, Virginie; Benzaquen, Jonathan; Leroy, Sylvie; Cohen, Charlotte; Mouroux, Jérôme; Marquette, Charles Hugo; Ilié, Marius; Hofman, Paul

    2018-03-21

    Background : With the integration of various targeted therapies into the clinical management of patients with advanced lung adenocarcinoma, next-generation sequencing (NGS) has become the technology of choice and has led to an increase in simultaneously interrogated genes. However, the broader adoption of NGS for routine clinical practice is still hampered by sophisticated workflows, complex bioinformatics analysis and medical interpretation. Therefore, the performance of the novel QIAGEN GeneReader NGS system was compared to an in-house ISO-15189 certified Ion PGM NGS platform. Methods : Clinical samples from 90 patients (60 Retrospectively and 30 Prospectively) with lung adenocarcinoma were sequenced with both systems. Mutations were analyzed and EGFR , KRAS , BRAF , NRAS , ALK , PIK3CA and ERBB2 genes were compared and sampling time and suitability for clinical testing were assessed. Results : Both sequencing systems showed perfect concordance for the overlapping genes. Correlation of allele frequency was r ² = 0.93 for the retrospective patients and r ² = 0.81 for the prospective patients. Hands-on time and total run time were shorter using the PGM system, while the GeneReader platform provided good traceability and up-to-date interpretation of the results. Conclusion : We demonstrated the suitability of the GeneReader NGS system in routine practice in a clinical pathology laboratory setting.

  9. CNV-TV: a robust method to discover copy number variation from short sequencing reads.

    PubMed

    Duan, Junbo; Zhang, Ji-Gang; Deng, Hong-Wen; Wang, Yu-Ping

    2013-05-02

    Copy number variation (CNV) is an important structural variation (SV) in human genome. Various studies have shown that CNVs are associated with complex diseases. Traditional CNV detection methods such as fluorescence in situ hybridization (FISH) and array comparative genomic hybridization (aCGH) suffer from low resolution. The next generation sequencing (NGS) technique promises a higher resolution detection of CNVs and several methods were recently proposed for realizing such a promise. However, the performances of these methods are not robust under some conditions, e.g., some of them may fail to detect CNVs of short sizes. There has been a strong demand for reliable detection of CNVs from high resolution NGS data. A novel and robust method to detect CNV from short sequencing reads is proposed in this study. The detection of CNV is modeled as a change-point detection from the read depth (RD) signal derived from the NGS, which is fitted with a total variation (TV) penalized least squares model. The performance (e.g., sensitivity and specificity) of the proposed approach are evaluated by comparison with several recently published methods on both simulated and real data from the 1000 Genomes Project. The experimental results showed that both the true positive rate and false positive rate of the proposed detection method do not change significantly for CNVs with different copy numbers and lengthes, when compared with several existing methods. Therefore, our proposed approach results in a more reliable detection of CNVs than the existing methods.

  10. Review of sequencing platforms and their applications in phaeochromocytoma and paragangliomas.

    PubMed

    Pillai, Suja; Gopalan, Vinod; Lam, Alfred King-Yin

    2017-08-01

    Genetic testing is recommended for patients with phaeochromocytoma (PCC) and paraganglioma (PGL) because of their genetic heterogeneity and heritability. Due to the large number of susceptibility genes associated with PCC/PGL, next-generation sequencing (NGS) technology is ideally suited for carrying out genetic screening of these individuals. New generations of DNA sequencing technologies facilitate the development of comprehensive genetic testing in PCC/PGL at a lower cost. Whole-exome sequencing and targeted NGS are the preferred methods for screening of PCC/PGL, both having precise mutation detection methods and low costs. RNA sequencing and DNA methylation studies using NGS technology in PCC/PGL can be adopted to act as diagnostic or prognostic biomarkers as well as in planning targeted epigenetic treatment of patients with PCC/PGL. The designs of NGS having a high depth of coverage and robust analytical pipelines can lead to the successful detection of a wide range of genomic defects in PCC/PGL. Nevertheless, the major challenges of this technology must be addressed before it has practical applications in the clinical diagnostics to fulfill the goal of personalized medicine in PCC/PGL. In future, novel approaches of sequencing, such as third and fourth generation sequencing can alter the workflow, cost, analysis, and interpretation of genomics associated with PCC/PGL. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Next generation sequencing techniques in liquid biopsy: focus on non-small cell lung cancer patients.

    PubMed

    Malapelle, Umberto; Pisapia, Pasquale; Rocco, Danilo; Smeraglio, Riccardo; di Spirito, Maria; Bellevicine, Claudio; Troncone, Giancarlo

    2016-10-01

    The advent of genomic based personalized medicine has led to multiple advances in the molecular characterization of many tumor types, such as non-small cell lung cancer (NSCLC). NSCLC is diagnosed in most cases on small tissue samples that may be not always sufficient for EGFR mutational assessment to select patients for first and second generations' tyrosine kinase inhibitors (TKIs) therapy. In patients without tissue availability at presentation, the analysis of cell free DNA (cfDNA) derived from liquid biopsy samples, in particular from plasma, represent an established alternative to provide EGFR mutational testing for treatment decision making. In addition, a new paradigm for TKIs resistance management was recently approved by Food and Drug Administration, supporting the liquid biopsy based genotyping prior to tissue based genotyping for the detection of T790M mutation to select patients for third generation TKIs. In these settings, real time PCR (RT-PCR) and digital PCR 'targeted' methods, which detect known mutations by specific probes, have extensively been adopted. Taking into account the restricted reference range and the limited multiplexing power of these targeted methods, the performance of liquid biopsy analyses may be further improved by next generation sequencing (NGS). While most tissue based NGS genotyping is well established, liquid biopsy NGS application is challenging, requiring a careful validation of the whole process, from blood collection to variant calling. Here we review this evolving field, highlighting those methodological points that are crucial to accurately select NSCLC patients for TKIs treatment administration by NGS on cfDNA.

  12. Droplet Digital™ PCR Next-Generation Sequencing Library QC Assay.

    PubMed

    Heredia, Nicholas J

    2018-01-01

    Digital PCR is a valuable tool to quantify next-generation sequencing (NGS) libraries precisely and accurately. Accurately quantifying NGS libraries enable accurate loading of the libraries on to the sequencer and thus improve sequencing performance by reducing under and overloading error. Accurate quantification also benefits users by enabling uniform loading of indexed/barcoded libraries which in turn greatly improves sequencing uniformity of the indexed/barcoded samples. The advantages gained by employing the Droplet Digital PCR (ddPCR™) library QC assay includes the precise and accurate quantification in addition to size quality assessment, enabling users to QC their sequencing libraries with confidence.

  13. Sequence Data for Clostridium autoethanogenum using Three Generations of Sequencing Technologies

    DOE PAGES

    Utturkar, Sagar M.; Klingeman, Dawn Marie; Bruno-Barcena, José M.; ...

    2015-04-14

    During the past decade, DNA sequencing output has been mostly dominated by the second generation sequencing platforms which are characterized by low cost, high throughput and shorter read lengths for example, Illumina. The emergence and development of so called third generation sequencing platforms such as PacBio has permitted exceptionally long reads (over 20 kb) to be generated. Due to read length increases, algorithm improvements and hybrid assembly approaches, the concept of one chromosome, one contig and automated finishing of microbial genomes is now a realistic and achievable task for many microbial laboratories. In this paper, we describe high quality sequencemore » datasets which span three generations of sequencing technologies, containing six types of data from four NGS platforms and originating from a single microorganism, Clostridium autoethanogenum. The dataset reported here will be useful for the scientific community to evaluate upcoming NGS platforms, enabling comparison of existing and novel bioinformatics approaches and will encourage interest in the development of innovative experimental and computational methods for NGS data.« less

  14. Deep nirS amplicon sequencing of San Francisco Bay sediments enables prediction of geography and environmental conditions from denitrifying community composition.

    PubMed

    Lee, Jessica A; Francis, Christopher A

    2017-12-01

    Denitrification is a dominant nitrogen loss process in the sediments of San Francisco Bay. In this study, we sought to understand the ecology of denitrifying bacteria by using next-generation sequencing (NGS) to survey the diversity of a denitrification functional gene, nirS (encoding cytchrome-cd 1 nitrite reductase), along the salinity gradient of San Francisco Bay over the course of a year. We compared our dataset to a library of nirS sequences obtained previously from the same samples by standard PCR cloning and Sanger sequencing, and showed that both methods similarly demonstrated geography, salinity and, to a lesser extent, nitrogen, to be strong determinants of community composition. Furthermore, the depth afforded by NGS enabled novel techniques for measuring the association between environment and community composition. We used Random Forests modelling to demonstrate that the site and salinity of a sample could be predicted from its nirS sequences, and to identify indicator taxa associated with those environmental characteristics. This work contributes significantly to our understanding of the distribution and dynamics of denitrifying communities in San Francisco Bay, and provides valuable tools for the further study of this key N-cycling guild in all estuarine systems. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Improving newborn screening for cystic fibrosis using next-generation sequencing technology: a technical feasibility study.

    PubMed

    Baker, Mei W; Atkins, Anne E; Cordovado, Suzanne K; Hendrix, Miyono; Earley, Marie C; Farrell, Philip M

    2016-03-01

    Many regions have implemented newborn screening (NBS) for cystic fibrosis (CF) using a limited panel of cystic fibrosis transmembrane regulator (CFTR) mutations after immunoreactive trypsinogen (IRT) analysis. We sought to assess the feasibility of further improving the screening using next-generation sequencing (NGS) technology. An NGS assay was used to detect 162 CFTR mutations/variants characterized by the CFTR2 project. We used 67 dried blood spots (DBSs) containing 48 distinct CFTR mutations to validate the assay. NGS assay was retrospectively performed on 165 CF screen-positive samples with one CFTR mutation. The NGS assay was successfully performed using DNA isolated from DBSs, and it correctly detected all CFTR mutations in the validation. Among 165 screen-positive infants with one CFTR mutation, no additional disease-causing mutation was identified in 151 samples consistent with normal sweat tests. Five infants had a CF-causing mutation that was not included in this panel, and nine with two CF-causing mutations were identified. The NGS assay was 100% concordant with traditional methods. Retrospective analysis results indicate an IRT/NGS screening algorithm would enable high sensitivity, better specificity and positive predictive value (PPV). This study lays the foundation for prospective studies and for introducing NGS in NBS laboratories.

  16. Next Generation Sequencing Plus (NGS+) with Y-chromosomal Markers for Forensic Pedigree Searches.

    PubMed

    Qian, Xiaoqin; Hou, Jiayi; Wang, Zheng; Ye, Yi; Lang, Min; Gao, Tianzhen; Liu, Jing; Hou, Yiping

    2017-09-12

    There is high demand for forensic pedigree searches with Y-chromosome short tandem repeat (Y-STR) profiling in large-scale crime investigations. However, when two Y-STR haplotypes have a few mismatched loci, it is difficult to determine if they are from the same male lineage because of the high mutation rate of Y-STRs. Here we design a new strategy to handle cases in which none of pedigree samples shares identical Y-STR haplotype. We combine next generation sequencing (NGS), capillary electrophoresis and pyrosequencing under the term 'NGS+' for typing Y-STRs and Y-chromosomal single nucleotide polymorphisms (Y-SNPs). The high-resolution Y-SNP haplogroup and Y-STR haplotype can be obtained with NGS+. We further developed a new data-driven decision rule, FSindex, for estimating the likelihood for each retrieved pedigree. Our approach enables positive identification of pedigree from mismatched Y-STR haplotypes. It is envisaged that NGS+ will revolutionize forensic pedigree searches, especially when the person of interest was not recorded in forensic DNA database.

  17. From cheek swabs to consensus sequences: an A to Z protocol for high-throughput DNA sequencing of complete human mitochondrial genomes

    PubMed Central

    2014-01-01

    Background Next-generation DNA sequencing (NGS) technologies have made huge impacts in many fields of biological research, but especially in evolutionary biology. One area where NGS has shown potential is for high-throughput sequencing of complete mtDNA genomes (of humans and other animals). Despite the increasing use of NGS technologies and a better appreciation of their importance in answering biological questions, there remain significant obstacles to the successful implementation of NGS-based projects, especially for new users. Results Here we present an ‘A to Z’ protocol for obtaining complete human mitochondrial (mtDNA) genomes – from DNA extraction to consensus sequence. Although designed for use on humans, this protocol could also be used to sequence small, organellar genomes from other species, and also nuclear loci. This protocol includes DNA extraction, PCR amplification, fragmentation of PCR products, barcoding of fragments, sequencing using the 454 GS FLX platform, and a complete bioinformatics pipeline (primer removal, reference-based mapping, output of coverage plots and SNP calling). Conclusions All steps in this protocol are designed to be straightforward to implement, especially for researchers who are undertaking next-generation sequencing for the first time. The molecular steps are scalable to large numbers (hundreds) of individuals and all steps post-DNA extraction can be carried out in 96-well plate format. Also, the protocol has been assembled so that individual ‘modules’ can be swapped out to suit available resources. PMID:24460871

  18. Refining the Results of a Classical SELEX Experiment by Expanding the Sequence Data Set of an Aptamer Pool Selected for Protein A

    PubMed Central

    2018-01-01

    New, as yet undiscovered aptamers for Protein A were identified by applying next generation sequencing (NGS) to a previously selected aptamer pool. This pool was obtained in a classical SELEX (Systematic Evolution of Ligands by EXponential enrichment) experiment using the FluMag-SELEX procedure followed by cloning and Sanger sequencing. PA#2/8 was identified as the only Protein A-binding aptamer from the Sanger sequence pool, and was shown to be able to bind intact cells of Staphylococcus aureus. In this study, we show the extension of the SELEX results by re-sequencing of the same aptamer pool using a medium throughput NGS approach and data analysis. Both data pools were compared. They confirm the selection of a highly complex and heterogeneous oligonucleotide pool and show consistently a high content of orphans as well as a similar relative frequency of certain sequence groups. But in contrast to the Sanger data pool, the NGS pool was clearly dominated by one sequence group containing the known Protein A-binding aptamer PA#2/8 as the most frequent sequence in this group. In addition, we found two new sequence groups in the NGS pool represented by PA-C10 and PA-C8, respectively, which also have high specificity for Protein A. Comparative affinity studies reveal differences between the aptamers and confirm that PA#2/8 remains the most potent sequence within the selected aptamer pool reaching affinities in the low nanomolar range of KD = 20 ± 1 nM. PMID:29495282

  19. Refining the Results of a Classical SELEX Experiment by Expanding the Sequence Data Set of an Aptamer Pool Selected for Protein A.

    PubMed

    Stoltenburg, Regina; Strehlitz, Beate

    2018-02-24

    New, as yet undiscovered aptamers for Protein A were identified by applying next generation sequencing (NGS) to a previously selected aptamer pool. This pool was obtained in a classical SELEX (Systematic Evolution of Ligands by EXponential enrichment) experiment using the FluMag-SELEX procedure followed by cloning and Sanger sequencing. PA#2/8 was identified as the only Protein A-binding aptamer from the Sanger sequence pool, and was shown to be able to bind intact cells of Staphylococcus aureus . In this study, we show the extension of the SELEX results by re-sequencing of the same aptamer pool using a medium throughput NGS approach and data analysis. Both data pools were compared. They confirm the selection of a highly complex and heterogeneous oligonucleotide pool and show consistently a high content of orphans as well as a similar relative frequency of certain sequence groups. But in contrast to the Sanger data pool, the NGS pool was clearly dominated by one sequence group containing the known Protein A-binding aptamer PA#2/8 as the most frequent sequence in this group. In addition, we found two new sequence groups in the NGS pool represented by PA-C10 and PA-C8, respectively, which also have high specificity for Protein A. Comparative affinity studies reveal differences between the aptamers and confirm that PA#2/8 remains the most potent sequence within the selected aptamer pool reaching affinities in the low nanomolar range of K D = 20 ± 1 nM.

  20. Single-variant and multi-variant trend tests for genetic association with next-generation sequencing that are robust to sequencing error.

    PubMed

    Kim, Wonkuk; Londono, Douglas; Zhou, Lisheng; Xing, Jinchuan; Nato, Alejandro Q; Musolf, Anthony; Matise, Tara C; Finch, Stephen J; Gordon, Derek

    2012-01-01

    As with any new technology, next-generation sequencing (NGS) has potential advantages and potential challenges. One advantage is the identification of multiple causal variants for disease that might otherwise be missed by SNP-chip technology. One potential challenge is misclassification error (as with any emerging technology) and the issue of power loss due to multiple testing. Here, we develop an extension of the linear trend test for association that incorporates differential misclassification error and may be applied to any number of SNPs. We call the statistic the linear trend test allowing for error, applied to NGS, or LTTae,NGS. This statistic allows for differential misclassification. The observed data are phenotypes for unrelated cases and controls, coverage, and the number of putative causal variants for every individual at all SNPs. We simulate data considering multiple factors (disease mode of inheritance, genotype relative risk, causal variant frequency, sequence error rate in cases, sequence error rate in controls, number of loci, and others) and evaluate type I error rate and power for each vector of factor settings. We compare our results with two recently published NGS statistics. Also, we create a fictitious disease model based on downloaded 1000 Genomes data for 5 SNPs and 388 individuals, and apply our statistic to those data. We find that the LTTae,NGS maintains the correct type I error rate in all simulations (differential and non-differential error), while the other statistics show large inflation in type I error for lower coverage. Power for all three methods is approximately the same for all three statistics in the presence of non-differential error. Application of our statistic to the 1000 Genomes data suggests that, for the data downloaded, there is a 1.5% sequence misclassification rate over all SNPs. Finally, application of the multi-variant form of LTTae,NGS shows high power for a number of simulation settings, although it can have lower power than the corresponding single-variant simulation results, most probably due to our specification of multi-variant SNP correlation values. In conclusion, our LTTae,NGS addresses two key challenges with NGS disease studies; first, it allows for differential misclassification when computing the statistic; and second, it addresses the multiple-testing issue in that there is a multi-variant form of the statistic that has only one degree of freedom, and provides a single p value, no matter how many loci. Copyright © 2013 S. Karger AG, Basel.

  1. Single variant and multi-variant trend tests for genetic association with next generation sequencing that are robust to sequencing error

    PubMed Central

    Kim, Wonkuk; Londono, Douglas; Zhou, Lisheng; Xing, Jinchuan; Nato, Andrew; Musolf, Anthony; Matise, Tara C.; Finch, Stephen J.; Gordon, Derek

    2013-01-01

    As with any new technology, next generation sequencing (NGS) has potential advantages and potential challenges. One advantage is the identification of multiple causal variants for disease that might otherwise be missed by SNP-chip technology. One potential challenge is misclassification error (as with any emerging technology) and the issue of power loss due to multiple testing. Here, we develop an extension of the linear trend test for association that incorporates differential misclassification error and may be applied to any number of SNPs. We call the statistic the linear trend test allowing for error, applied to NGS, or LTTae,NGS. This statistic allows for differential misclassification. The observed data are phenotypes for unrelated cases and controls, coverage, and the number of putative causal variants for every individual at all SNPs. We simulate data considering multiple factors (disease mode of inheritance, genotype relative risk, causal variant frequency, sequence error rate in cases, sequence error rate in controls, number of loci, and others) and evaluate type I error rate and power for each vector of factor settings. We compare our results with two recently published NGS statistics. Also, we create a fictitious disease model, based on downloaded 1000 Genomes data for 5 SNPs and 388 individuals, and apply our statistic to that data. We find that the LTTae,NGS maintains the correct type I error rate in all simulations (differential and non-differential error), while the other statistics show large inflation in type I error for lower coverage. Power for all three methods is approximately the same for all three statistics in the presence of non-differential error. Application of our statistic to the 1000 Genomes data suggests that, for the data downloaded, there is a 1.5% sequence misclassification rate over all SNPs. Finally, application of the multi-variant form of LTTae,NGS shows high power for a number of simulation settings, although it can have lower power than the corresponding single variant simulation results, most probably due to our specification of multi-variant SNP correlation values. In conclusion, our LTTae,NGS addresses two key challenges with NGS disease studies; first, it allows for differential misclassification when computing the statistic; and second, it addresses the multiple-testing issue in that there is a multi-variant form of the statistic that has only one degree of freedom, and provides a single p-value, no matter how many loci. PMID:23594495

  2. A novel procedure on next generation sequencing data analysis using text mining algorithm.

    PubMed

    Zhao, Weizhong; Chen, James J; Perkins, Roger; Wang, Yuping; Liu, Zhichao; Hong, Huixiao; Tong, Weida; Zou, Wen

    2016-05-13

    Next-generation sequencing (NGS) technologies have provided researchers with vast possibilities in various biological and biomedical research areas. Efficient data mining strategies are in high demand for large scale comparative and evolutional studies to be performed on the large amounts of data derived from NGS projects. Topic modeling is an active research field in machine learning and has been mainly used as an analytical tool to structure large textual corpora for data mining. We report a novel procedure to analyse NGS data using topic modeling. It consists of four major procedures: NGS data retrieval, preprocessing, topic modeling, and data mining using Latent Dirichlet Allocation (LDA) topic outputs. The NGS data set of the Salmonella enterica strains were used as a case study to show the workflow of this procedure. The perplexity measurement of the topic numbers and the convergence efficiencies of Gibbs sampling were calculated and discussed for achieving the best result from the proposed procedure. The output topics by LDA algorithms could be treated as features of Salmonella strains to accurately describe the genetic diversity of fliC gene in various serotypes. The results of a two-way hierarchical clustering and data matrix analysis on LDA-derived matrices successfully classified Salmonella serotypes based on the NGS data. The implementation of topic modeling in NGS data analysis procedure provides a new way to elucidate genetic information from NGS data, and identify the gene-phenotype relationships and biomarkers, especially in the era of biological and medical big data. The implementation of topic modeling in NGS data analysis provides a new way to elucidate genetic information from NGS data, and identify the gene-phenotype relationships and biomarkers, especially in the era of biological and medical big data.

  3. Gene Expression Profiling in Fish Toxicology: A Review.

    PubMed

    Kumar, Girish; Denslow, Nancy D

    In this review, we present an overview of transcriptomic responses to chemical exposures in a variety of fish species. We have discussed the use of several molecular approaches such as northern blotting, differential display reverse transcription-polymerase chain reaction (DDRT-PCR), suppression subtractive hybridization (SSH), real time quantitative PCR (RT-qPCR), microarrays, and next-generation sequencing (NGS) for measuring gene expression. These techniques have been mainly used to measure the toxic effects of single compounds or simple mixtures in laboratory conditions. In addition, only few studies have been conducted to examine the biological significance of differentially expressed gene sets following chemical exposure. Therefore, future studies should focus more under field conditions using a multidisciplinary approach (genomics, proteomics and metabolomics) to understand the synergetic effects of multiple environmental stressors and to determine the functional significance of differentially expressed genes. Nevertheless, recent developments in NGS technologies and decreasing costs of sequencing holds the promise to uncover the complexity of anthropogenic impacts and biological effects in wild fish populations.

  4. Annotation-based genome-wide SNP discovery in the large and complex Aegilops tauschii genome using next-generation sequencing without a reference genome sequence

    PubMed Central

    2011-01-01

    Background Many plants have large and complex genomes with an abundance of repeated sequences. Many plants are also polyploid. Both of these attributes typify the genome architecture in the tribe Triticeae, whose members include economically important wheat, rye and barley. Large genome sizes, an abundance of repeated sequences, and polyploidy present challenges to genome-wide SNP discovery using next-generation sequencing (NGS) of total genomic DNA by making alignment and clustering of short reads generated by the NGS platforms difficult, particularly in the absence of a reference genome sequence. Results An annotation-based, genome-wide SNP discovery pipeline is reported using NGS data for large and complex genomes without a reference genome sequence. Roche 454 shotgun reads with low genome coverage of one genotype are annotated in order to distinguish single-copy sequences and repeat junctions from repetitive sequences and sequences shared by paralogous genes. Multiple genome equivalents of shotgun reads of another genotype generated with SOLiD or Solexa are then mapped to the annotated Roche 454 reads to identify putative SNPs. A pipeline program package, AGSNP, was developed and used for genome-wide SNP discovery in Aegilops tauschii-the diploid source of the wheat D genome, and with a genome size of 4.02 Gb, of which 90% is repetitive sequences. Genomic DNA of Ae. tauschii accession AL8/78 was sequenced with the Roche 454 NGS platform. Genomic DNA and cDNA of Ae. tauschii accession AS75 was sequenced primarily with SOLiD, although some Solexa and Roche 454 genomic sequences were also generated. A total of 195,631 putative SNPs were discovered in gene sequences, 155,580 putative SNPs were discovered in uncharacterized single-copy regions, and another 145,907 putative SNPs were discovered in repeat junctions. These SNPs were dispersed across the entire Ae. tauschii genome. To assess the false positive SNP discovery rate, DNA containing putative SNPs was amplified by PCR from AL8/78 and AS75 and resequenced with the ABI 3730 xl. In a sample of 302 randomly selected putative SNPs, 84.0% in gene regions, 88.0% in repeat junctions, and 81.3% in uncharacterized regions were validated. Conclusion An annotation-based genome-wide SNP discovery pipeline for NGS platforms was developed. The pipeline is suitable for SNP discovery in genomic libraries of complex genomes and does not require a reference genome sequence. The pipeline is applicable to all current NGS platforms, provided that at least one such platform generates relatively long reads. The pipeline package, AGSNP, and the discovered 497,118 Ae. tauschii SNPs can be accessed at (http://avena.pw.usda.gov/wheatD/agsnp.shtml). PMID:21266061

  5. tropiTree: An NGS-Based EST-SSR Resource for 24 Tropical Tree Species

    PubMed Central

    Russell, Joanne R.; Hedley, Peter E.; Cardle, Linda; Dancey, Siobhan; Morris, Jenny; Booth, Allan; Odee, David; Mwaura, Lucy; Omondi, William; Angaine, Peter; Machua, Joseph; Muchugi, Alice; Milne, Iain; Kindt, Roeland; Jamnadass, Ramni; Dawson, Ian K.

    2014-01-01

    The development of genetic tools for non-model organisms has been hampered by cost, but advances in next-generation sequencing (NGS) have created new opportunities. In ecological research, this raises the prospect for developing molecular markers to simultaneously study important genetic processes such as gene flow in multiple non-model plant species within complex natural and anthropogenic landscapes. Here, we report the use of bar-coded multiplexed paired-end Illumina NGS for the de novo development of expressed sequence tag-derived simple sequence repeat (EST-SSR) markers at low cost for a range of 24 tree species. Each chosen tree species is important in complex tropical agroforestry systems where little is currently known about many genetic processes. An average of more than 5,000 EST-SSRs was identified for each of the 24 sequenced species, whereas prior to analysis 20 of the species had fewer than 100 nucleotide sequence citations. To make results available to potential users in a suitable format, we have developed an open-access, interactive online database, tropiTree (http://bioinf.hutton.ac.uk/tropiTree), which has a range of visualisation and search facilities, and which is a model for the efficient presentation and application of NGS data. PMID:25025376

  6. Identification of a Novel De Novo Heterozygous Deletion in the SOX10 Gene in Waardenburg Syndrome Type II Using Next-Generation Sequencing.

    PubMed

    Li, Haonan; Jin, Peng; Hao, Qian; Zhu, Wei; Chen, Xia; Wang, Ping

    2017-11-01

    Waardenburg syndrome (WS) is a rare autosomal dominant disorder associated with pigmentation abnormalities and sensorineural hearing loss. In this study, we investigated the genetic cause of WSII in a patient and evaluated the reliability of the targeted next-generation exome sequencing method for the genetic diagnosis of WS. Clinical evaluations were conducted on the patient and targeted next-generation sequencing (NGS) was used to identify the candidate genes responsible for WSII. Multiplex ligation-dependent probe amplification (MLPA) and real-time quantitative polymerase chain reaction (qPCR) were performed to confirm the targeted NGS results. Targeted NGS detected the entire deletion of the coding sequence (CDS) of the SOX10 gene in the WSII patient. MLPA results indicated that all exons of the SOX10 heterozygous deletion were detected; no aberrant copy number in the PAX3 and microphthalmia-associated transcription factor (MITF) genes was found. Real-time qPCR results identified the mutation as a de novo heterozygous deletion. This is the first report of using a targeted NGS method for WS candidate gene sequencing; its accuracy was verified by using the MLPA and qPCR methods. Our research provides a valuable method for the genetic diagnosis of WS.

  7. Unveiling Distribution Patterns of Freshwater Phytoplankton by a Next Generation Sequencing Based Approach

    PubMed Central

    Eiler, Alexander; Drakare, Stina; Bertilsson, Stefan; Pernthaler, Jakob; Peura, Sari; Rofner, Carina; Simek, Karel; Yang, Yang; Znachor, Petr; Lindström, Eva S.

    2013-01-01

    The recognition and discrimination of phytoplankton species is one of the foundations of freshwater biodiversity research and environmental monitoring. This step is frequently a bottleneck in the analytical chain from sampling to data analysis and subsequent environmental status evaluation. Here we present phytoplankton diversity data from 49 lakes including three seasonal surveys assessed by next generation sequencing (NGS) of 16S ribosomal RNA chloroplast and cyanobacterial gene amplicons and also compare part of these datasets with identification based on morphology. Direct comparison of NGS to microscopic data from three time-series showed that NGS was able to capture the seasonality in phytoplankton succession as observed by microscopy. Still, the PCR-based approach was only semi-quantitative, and detailed NGS and microscopy taxa lists had only low taxonomic correspondence. This is probably due to, both, methodological constraints and current discrepancies in taxonomic frameworks. Discrepancies included Euglenophyta and Heterokonta that were scarce in the NGS but frequently detected by microscopy and Cyanobacteria that were in general more abundant and classified with high resolution by NGS. A deep-branching taxonomically unclassified cluster was frequently detected by NGS but could not be linked to any group identified by microscopy. NGS derived phytoplankton composition differed significantly among lakes with different trophic status, showing that our approach can resolve phytoplankton communities at a level relevant for ecosystem management. The high reproducibility and potential for standardization and parallelization makes our NGS approach an excellent candidate for simultaneous monitoring of prokaryotic and eukaryotic phytoplankton in inland waters. PMID:23349714

  8. Visual programming for next-generation sequencing data analytics.

    PubMed

    Milicchio, Franco; Rose, Rebecca; Bian, Jiang; Min, Jae; Prosperi, Mattia

    2016-01-01

    High-throughput or next-generation sequencing (NGS) technologies have become an established and affordable experimental framework in biological and medical sciences for all basic and translational research. Processing and analyzing NGS data is challenging. NGS data are big, heterogeneous, sparse, and error prone. Although a plethora of tools for NGS data analysis has emerged in the past decade, (i) software development is still lagging behind data generation capabilities, and (ii) there is a 'cultural' gap between the end user and the developer. Generic software template libraries specifically developed for NGS can help in dealing with the former problem, whilst coupling template libraries with visual programming may help with the latter. Here we scrutinize the state-of-the-art low-level software libraries implemented specifically for NGS and graphical tools for NGS analytics. An ideal developing environment for NGS should be modular (with a native library interface), scalable in computational methods (i.e. serial, multithread, distributed), transparent (platform-independent), interoperable (with external software interface), and usable (via an intuitive graphical user interface). These characteristics should facilitate both the run of standardized NGS pipelines and the development of new workflows based on technological advancements or users' needs. We discuss in detail the potential of a computational framework blending generic template programming and visual programming that addresses all of the current limitations. In the long term, a proper, well-developed (although not necessarily unique) software framework will bridge the current gap between data generation and hypothesis testing. This will eventually facilitate the development of novel diagnostic tools embedded in routine healthcare.

  9. Dealing with the incidental finding of secondary variants by the example of SRNS patients undergoing targeted next-generation sequencing.

    PubMed

    Weber, Stefanie; Büscher, Anja K; Hagmann, Henning; Liebau, Max C; Heberle, Christian; Ludwig, Michael; Rath, Sabine; Alberer, Martin; Beissert, Antje; Zenker, Martin; Hoyer, Peter F; Konrad, Martin; Klein, Hanns-Georg; Hoefele, Julia

    2016-01-01

    Steroid-resistant nephrotic syndrome (SRNS) is a severe cause of progressive renal disease. Genetic forms of SRNS can present with autosomal recessive or autosomal dominant inheritance. Recent studies have identified mutations in multiple podocyte genes responsible for SRNS. Improved sequencing methods (next-generation sequencing, NGS) now promise rapid mutational testing of SRNS genes. In the present study, a simultaneous screening of ten SRNS genes in 37 SRNS patients was performed by NGS. In 38 % of the patients, causative mutations in one SRNS gene were found. In 22 % of the patients, in addition to these mutations, a secondary variant in a different gene was identified. This high incidence of accumulating sequence variants was unexpected but, although they might have modifier effects, the pathogenic potential of these additional sequence variants seems unclear so far. The example of molecular diagnostics by NGS in SRNS patients shows that these new sequencing technologies might provide further insight into molecular pathogenicity in genetic disorders but will also generate results, which will be difficult to interpret and complicate genetic counseling. Although NGS promises more frequent identification of disease-causing mutations, the identification of causative mutations, the interpretation of incidental findings and possible pitfalls might pose problems, which hopefully will decrease by further experience and elucidation of molecular interactions.

  10. Genomics and molecular breeding in lesser explored pulse crops: current trends and future opportunities.

    PubMed

    Bohra, Abhishek; Jha, Uday Chand; Kishor, P B Kavi; Pandey, Shailesh; Singh, Narendra P

    2014-12-01

    Pulses are multipurpose crops for providing income, employment and food security in the underprivileged regions, notably the FAO-defined low-income food-deficit countries. Owing to their intrinsic ability to endure environmental adversities and the least input/management requirements, these crops remain central to subsistence farming. Given their pivotal role in rain-fed agriculture, substantial research has been invested to boost the productivity of these pulse crops. To this end, genomic tools and technologies have appeared as the compelling supplement to the conventional breeding. However, the progress in minor pulse crops including dry beans (Vigna spp.), lupins, lablab, lathyrus and vetches has remained unsatisfactory, hence these crops are often labeled as low profile or lesser researched. Nevertheless, recent scientific and technological breakthroughs particularly the next generation sequencing (NGS) are radically transforming the scenario of genomics and molecular breeding in these minor crops. NGS techniques have allowed de novo assembly of whole genomes in these orphan crops. Moreover, the availability of a reference genome sequence would promote re-sequencing of diverse genotypes to unlock allelic diversity at a genome-wide scale. In parallel, NGS has offered high-resolution genetic maps or more precisely, a robust genetic framework to implement whole-genome strategies for crop improvement. As has already been demonstrated in lupin, sequencing-based genotyping of the representative sample provided access to a number of functionally-relevant markers that could be deployed straight away in crop breeding programs. This article attempts to outline the recent progress made in genomics of these lesser explored pulse crops, and examines the prospects of genomics assisted integrated breeding to enhance and stabilize crop yields. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Non-invasive prenatal diagnosis of achondroplasia and thanatophoric dysplasia: next-generation sequencing allows for a safer, more accurate, and comprehensive approach.

    PubMed

    Chitty, Lyn S; Mason, Sarah; Barrett, Angela N; McKay, Fiona; Lench, Nicholas; Daley, Rebecca; Jenkins, Lucy A

    2015-07-01

    Accurate prenatal diagnosis of genetic conditions can be challenging and usually requires invasive testing. Here, we demonstrate the potential of next-generation sequencing (NGS) for the analysis of cell-free DNA in maternal blood to transform prenatal diagnosis of monogenic disorders. Analysis of cell-free DNA using a PCR and restriction enzyme digest (PCR-RED) was compared with a novel NGS assay in pregnancies at risk of achondroplasia and thanatophoric dysplasia. PCR-RED was performed in 72 cases and was correct in 88.6%, inconclusive in 7% with one false negative. NGS was performed in 47 cases and was accurate in 96.2% with no inconclusives. Both approaches were used in 27 cases, with NGS giving the correct result in the two cases inconclusive with PCR-RED. NGS provides an accurate, flexible approach to non-invasive prenatal diagnosis of de novo and paternally inherited mutations. It is more sensitive than PCR-RED and is ideal when screening a gene with multiple potential pathogenic mutations. These findings highlight the value of NGS in the development of non-invasive prenatal diagnosis for other monogenic disorders. © 2015 John Wiley & Sons, Ltd.

  12. Computational tools for copy number variation (CNV) detection using next-generation sequencing data: features and perspectives.

    PubMed

    Zhao, Min; Wang, Qingguo; Wang, Quan; Jia, Peilin; Zhao, Zhongming

    2013-01-01

    Copy number variation (CNV) is a prevalent form of critical genetic variation that leads to an abnormal number of copies of large genomic regions in a cell. Microarray-based comparative genome hybridization (arrayCGH) or genotyping arrays have been standard technologies to detect large regions subject to copy number changes in genomes until most recently high-resolution sequence data can be analyzed by next-generation sequencing (NGS). During the last several years, NGS-based analysis has been widely applied to identify CNVs in both healthy and diseased individuals. Correspondingly, the strong demand for NGS-based CNV analyses has fuelled development of numerous computational methods and tools for CNV detection. In this article, we review the recent advances in computational methods pertaining to CNV detection using whole genome and whole exome sequencing data. Additionally, we discuss their strengths and weaknesses and suggest directions for future development.

  13. Computational tools for copy number variation (CNV) detection using next-generation sequencing data: features and perspectives

    PubMed Central

    2013-01-01

    Copy number variation (CNV) is a prevalent form of critical genetic variation that leads to an abnormal number of copies of large genomic regions in a cell. Microarray-based comparative genome hybridization (arrayCGH) or genotyping arrays have been standard technologies to detect large regions subject to copy number changes in genomes until most recently high-resolution sequence data can be analyzed by next-generation sequencing (NGS). During the last several years, NGS-based analysis has been widely applied to identify CNVs in both healthy and diseased individuals. Correspondingly, the strong demand for NGS-based CNV analyses has fuelled development of numerous computational methods and tools for CNV detection. In this article, we review the recent advances in computational methods pertaining to CNV detection using whole genome and whole exome sequencing data. Additionally, we discuss their strengths and weaknesses and suggest directions for future development. PMID:24564169

  14. Rapid and Easy Protocol for Quantification of Next-Generation Sequencing Libraries.

    PubMed

    Hawkins, Steve F C; Guest, Paul C

    2018-01-01

    The emergence of next-generation sequencing (NGS) over the last 10 years has increased the efficiency of DNA sequencing in terms of speed, ease, and price. However, the exact quantification of a NGS library is crucial in order to obtain good data on sequencing platforms developed by the current market leader Illumina. Different approaches for DNA quantification are available currently and the most commonly used are based on analysis of the physical properties of the DNA through spectrophotometric or fluorometric methods. Although these methods are technically simple, they do not allow exact quantification as can be achieved using a real-time quantitative PCR (qPCR) approach. A qPCR protocol for DNA quantification with applications in NGS library preparation studies is presented here. This can be applied in various fields of study such as medical disorders resulting from nutritional programming disturbances.

  15. Application of Next-generation Sequencing Technology in Forensic Science

    PubMed Central

    Yang, Yaran; Xie, Bingbing; Yan, Jiangwei

    2014-01-01

    Next-generation sequencing (NGS) technology, with its high-throughput capacity and low cost, has developed rapidly in recent years and become an important analytical tool for many genomics researchers. New opportunities in the research domain of the forensic studies emerge by harnessing the power of NGS technology, which can be applied to simultaneously analyzing multiple loci of forensic interest in different genetic contexts, such as autosomes, mitochondrial and sex chromosomes. Furthermore, NGS technology can also have potential applications in many other aspects of research. These include DNA database construction, ancestry and phenotypic inference, monozygotic twin studies, body fluid and species identification, and forensic animal, plant and microbiological analyses. Here we review the application of NGS technology in the field of forensic science with the aim of providing a reference for future forensics studies and practice. PMID:25462152

  16. Unexpected effects of different genetic backgrounds on identification of genomic rearrangements via whole-genome next generation sequencing.

    PubMed

    Chen, Zhangguo; Gowan, Katherine; Leach, Sonia M; Viboolsittiseri, Sawanee S; Mishra, Ameet K; Kadoishi, Tanya; Diener, Katrina; Gao, Bifeng; Jones, Kenneth; Wang, Jing H

    2016-10-21

    Whole genome next generation sequencing (NGS) is increasingly employed to detect genomic rearrangements in cancer genomes, especially in lymphoid malignancies. We recently established a unique mouse model by specifically deleting a key non-homologous end-joining DNA repair gene, Xrcc4, and a cell cycle checkpoint gene, Trp53, in germinal center B cells. This mouse model spontaneously develops mature B cell lymphomas (termed G1XP lymphomas). Here, we attempt to employ whole genome NGS to identify novel structural rearrangements, in particular inter-chromosomal translocations (CTXs), in these G1XP lymphomas. We sequenced six lymphoma samples, aligned our NGS data with mouse reference genome (in C57BL/6J (B6) background) and identified CTXs using CREST algorithm. Surprisingly, we detected widespread CTXs in both lymphomas and wildtype control samples, majority of which were false positive and attributable to different genetic backgrounds. In addition, we validated our NGS pipeline by sequencing multiple control samples from distinct tissues of different genetic backgrounds of mouse (B6 vs non-B6). Lastly, our studies showed that widespread false positive CTXs can be generated by simply aligning sequences from different genetic backgrounds of mouse. We conclude that mapping and alignment with reference genome might not be a preferred method for analyzing whole-genome NGS data obtained from a genetic background different from reference genome. Given the complex genetic background of different mouse strains or the heterogeneity of cancer genomes in human patients, in order to minimize such systematic artifacts and uncover novel CTXs, a preferred method might be de novo assembly of personalized normal control genome and cancer cell genome, instead of mapping and aligning NGS data to mouse or human reference genome. Thus, our studies have critical impact on the manner of data analysis for cancer genomics.

  17. Robustness of Next Generation Sequencing on Older Formalin-Fixed Paraffin-Embedded Tissue

    PubMed Central

    Carrick, Danielle Mercatante; Mehaffey, Michele G.; Sachs, Michael C.; Altekruse, Sean; Camalier, Corinne; Chuaqui, Rodrigo; Cozen, Wendy; Das, Biswajit; Hernandez, Brenda Y.; Lih, Chih-Jian; Lynch, Charles F.; Makhlouf, Hala; McGregor, Paul; McShane, Lisa M.; Phillips Rohan, JoyAnn; Walsh, William D.; Williams, Paul M.; Gillanders, Elizabeth M.; Mechanic, Leah E.; Schully, Sheri D.

    2015-01-01

    Next Generation Sequencing (NGS) technologies are used to detect somatic mutations in tumors and study germ line variation. Most NGS studies use DNA isolated from whole blood or fresh frozen tissue. However, formalin-fixed paraffin-embedded (FFPE) tissues are one of the most widely available clinical specimens. Their potential utility as a source of DNA for NGS would greatly enhance population-based cancer studies. While preliminary studies suggest FFPE tissue may be used for NGS, the feasibility of using archived FFPE specimens in population based studies and the effect of storage time on these specimens needs to be determined. We conducted a study to determine whether DNA in archived FFPE high-grade ovarian serous adenocarcinomas from Surveillance, Epidemiology and End Results (SEER) registries Residual Tissue Repositories (RTR) was present in sufficient quantity and quality for NGS assays. Fifty-nine FFPE tissues, stored from 3 to 32 years, were obtained from three SEER RTR sites. DNA was extracted, quantified, quality assessed, and subjected to whole exome sequencing (WES). Following DNA extraction, 58 of 59 specimens (98%) yielded DNA and moved on to the library generation step followed by WES. Specimens stored for longer periods of time had significantly lower coverage of the target region (6% lower per 10 years, 95% CI: 3-10%) and lower average read depth (40x lower per 10 years, 95% CI: 18-60), although sufficient quality and quantity of WES data was obtained for data mining. Overall, 90% (53/59) of specimens provided usable NGS data regardless of storage time. This feasibility study demonstrates FFPE specimens acquired from SEER registries after varying lengths of storage time and under varying storage conditions are a promising source of DNA for NGS. PMID:26222067

  18. [Hot topics of circulating tumor DNA testing in breast cancer].

    PubMed

    Liu, Y H; Zhou, B; Xu, L; Xin, L

    2017-02-01

    The progress of gene detection technologies represented by next generation sequencing (NGS) and digital PCR laid a foundation for studies of circulating tumor DNA (ctDNA) in breast cancer. In 2014, the NGS workgroup organized by the College of American Pathologists (CAP) published the College of American Pathologists ' Laboratory Standards for Next - Generation Sequencing Clinical Tests, which provides a blueprint for the standardization of gene testing. In 2015, the Guidelines for Diagnostic Next - generation Sequencing published by the European Society of Human Genetics claimed that NGS is unacceptable in clinical practice before studies guided by guidelines are approved. Although existing studies show the benefits of ctDNA testing in disease monitoring and prognosis analyzing, we have a ways to go to normalize the procedure and build strict detection criteria.

  19. Mutation Detection with Next-Generation Resequencing through a Mediator Genome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wurtzel, Omri; Dori-Bachash, Mally; Pietrokovski, Shmuel

    2010-12-31

    The affordability of next generation sequencing (NGS) is transforming the field of mutation analysis in bacteria. The genetic basis for phenotype alteration can be identified directly by sequencing the entire genome of the mutant and comparing it to the wild-type (WT) genome, thus identifying acquired mutations. A major limitation for this approach is the need for an a-priori sequenced reference genome for the WT organism, as the short reads of most current NGS approaches usually prohibit de-novo genome assembly. To overcome this limitation we propose a general framework that utilizes the genome of relative organisms as mediators for comparing WTmore » and mutant bacteria. Under this framework, both mutant and WT genomes are sequenced with NGS, and the short sequencing reads are mapped to the mediator genome. Variations between the mutant and the mediator that recur in the WT are ignored, thus pinpointing the differences between the mutant and the WT. To validate this approach we sequenced the genome of Bdellovibrio bacteriovorus 109J, an obligatory bacterial predator, and its prey-independent mutant, and compared both to the mediator species Bdellovibrio bacteriovorus HD100. Although the mutant and the mediator sequences differed in more than 28,000 nucleotide positions, our approach enabled pinpointing the single causative mutation. Experimental validation in 53 additional mutants further established the implicated gene. Our approach extends the applicability of NGS-based mutant analyses beyond the domain of available reference genomes.« less

  20. Use of the LUS in sequence allele designations to facilitate probabilistic genotyping of NGS-based STR typing results.

    PubMed

    Just, Rebecca S; Irwin, Jodi A

    2018-05-01

    Some of the expected advantages of next generation sequencing (NGS) for short tandem repeat (STR) typing include enhanced mixture detection and genotype resolution via sequence variation among non-homologous alleles of the same length. However, at the same time that NGS methods for forensic DNA typing have advanced in recent years, many caseworking laboratories have implemented or are transitioning to probabilistic genotyping to assist the interpretation of complex autosomal STR typing results. Current probabilistic software programs are designed for length-based data, and were not intended to accommodate sequence strings as the product input. Yet to leverage the benefits of NGS for enhanced genotyping and mixture deconvolution, the sequence variation among same-length products must be utilized in some form. Here, we propose use of the longest uninterrupted stretch (LUS) in allele designations as a simple method to represent sequence variation within the STR repeat regions and facilitate - in the nearterm - probabilistic interpretation of NGS-based typing results. An examination of published population data indicated that a reference LUS region is straightforward to define for most autosomal STR loci, and that using repeat unit plus LUS length as the allele designator can represent greater than 80% of the alleles detected by sequencing. A proof of concept study performed using a freely available probabilistic software demonstrated that the LUS length can be used in allele designations when a program does not require alleles to be integers, and that utilizing sequence information improves interpretation of both single-source and mixed contributor STR typing results as compared to using repeat unit information alone. The LUS concept for allele designation maintains the repeat-based allele nomenclature that will permit backward compatibility to extant STR databases, and the LUS lengths themselves will be concordant regardless of the NGS assay or analysis tools employed. Further, these biologically based, easy-to-derive designations uphold clear relationships between parent alleles and their stutter products, enabling analysis in fully continuous probabilistic programs that model stutter while avoiding the algorithmic complexities that come with string based searches. Though using repeat unit plus LUS length as the allele designator does not capture variation that occurs outside of the core repeat regions, this straightforward approach would permit the large majority of known STR sequence variation to be used for mixture deconvolution and, in turn, result in more informative mixture statistics in the near term. Ultimately, the method could bridge the gap from current length-based probabilistic systems to facilitate broader adoption of NGS by forensic DNA testing laboratories. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Uncommon nucleotide excision repair phenotypes revealed by targeted high-throughput sequencing.

    PubMed

    Calmels, Nadège; Greff, Géraldine; Obringer, Cathy; Kempf, Nadine; Gasnier, Claire; Tarabeux, Julien; Miguet, Marguerite; Baujat, Geneviève; Bessis, Didier; Bretones, Patricia; Cavau, Anne; Digeon, Béatrice; Doco-Fenzy, Martine; Doray, Bérénice; Feillet, François; Gardeazabal, Jesus; Gener, Blanca; Julia, Sophie; Llano-Rivas, Isabel; Mazur, Artur; Michot, Caroline; Renaldo-Robin, Florence; Rossi, Massimiliano; Sabouraud, Pascal; Keren, Boris; Depienne, Christel; Muller, Jean; Mandel, Jean-Louis; Laugel, Vincent

    2016-03-22

    Deficient nucleotide excision repair (NER) activity causes a variety of autosomal recessive diseases including xeroderma pigmentosum (XP) a disorder which pre-disposes to skin cancer, and the severe multisystem condition known as Cockayne syndrome (CS). In view of the clinical overlap between NER-related disorders, as well as the existence of multiple phenotypes and the numerous genes involved, we developed a new diagnostic approach based on the enrichment of 16 NER-related genes by multiplex amplification coupled with next-generation sequencing (NGS). Our test cohort consisted of 11 DNA samples, all with known mutations and/or non pathogenic SNPs in two of the tested genes. We then used the same technique to analyse samples from a prospective cohort of 40 patients. Multiplex amplification and sequencing were performed using AmpliSeq protocol on the Ion Torrent PGM (Life Technologies). We identified causative mutations in 17 out of the 40 patients (43%). Four patients showed biallelic mutations in the ERCC6(CSB) gene, five in the ERCC8(CSA) gene: most of them had classical CS features but some had very mild and incomplete phenotypes. A small cohort of 4 unrelated classic XP patients from the Basque country (Northern Spain) revealed a common splicing mutation in POLH (XP-variant), demonstrating a new founder effect in this population. Interestingly, our results also found ERCC2(XPD), ERCC3(XPB) or ERCC5(XPG) mutations in two cases of UV-sensitive syndrome and in two cases with mixed XP/CS phenotypes. Our study confirms that NGS is an efficient technique for the analysis of NER-related disorders on a molecular level. It is particularly useful for phenotypes with combined features or unusually mild symptoms. Targeted NGS used in conjunction with DNA repair functional tests and precise clinical evaluation permits rapid and cost-effective diagnosis in patients with NER-defects.

  2. Viral Diagnostics in Plants Using Next Generation Sequencing: Computational Analysis in Practice.

    PubMed

    Jones, Susan; Baizan-Edge, Amanda; MacFarlane, Stuart; Torrance, Lesley

    2017-01-01

    Viruses cause significant yield and quality losses in a wide variety of cultivated crops. Hence, the detection and identification of viruses is a crucial facet of successful crop production and of great significance in terms of world food security. Whilst the adoption of molecular techniques such as RT-PCR has increased the speed and accuracy of viral diagnostics, such techniques only allow the detection of known viruses, i.e., each test is specific to one or a small number of related viruses. Therefore, unknown viruses can be missed and testing can be slow and expensive if molecular tests are unavailable. Methods for simultaneous detection of multiple viruses have been developed, and (NGS) is now a principal focus of this area, as it enables unbiased and hypothesis-free testing of plant samples. The development of NGS protocols capable of detecting multiple known and emergent viruses present in infected material is proving to be a major advance for crops, nuclear stocks or imported plants and germplasm, in which disease symptoms are absent, unspecific or only triggered by multiple viruses. Researchers want to answer the question "how many different viruses are present in this crop plant?" without knowing what they are looking for: RNA-sequencing (RNA-seq) of plant material allows this question to be addressed. As well as needing efficient nucleic acid extraction and enrichment protocols, virus detection using RNA-seq requires fast and robust bioinformatics methods to enable host sequence removal and virus classification. In this review recent studies that use RNA-seq for virus detection in a variety of crop plants are discussed with specific emphasis on the computational methods implemented. The main features of a number of specific bioinformatics workflows developed for virus detection from NGS data are also outlined and possible reasons why these have not yet been widely adopted are discussed. The review concludes by discussing the future directions of this field, including the use of bioinformatics tools for virus detection deployed in analytical environments using cloud computing.

  3. Identifying molecular drivers of gastric cancer through next-generation sequencing.

    PubMed

    Liang, Han; Kim, Yon Hui

    2013-11-01

    Gastric cancer is the second most common cause of cancer-related death in the world, representing a major global health issue. The high mortality rate is largely due to the lack of effective medical treatment for advanced stages of this disease. Recently next-generation sequencing (NGS) technology has become a revolutionary tool for cancer research, and several NGS studies in gastric cancer have been published. Here we review the insights gained from these studies regarding how use NGS to elucidate the molecular basis of gastric cancer and identify potential therapeutic targets. We also discuss the challenges and future directions of such efforts. Published by Elsevier Ireland Ltd.

  4. Connectivity Mapping for Candidate Therapeutics Identification Using Next Generation Sequencing RNA-Seq Data

    PubMed Central

    McArt, Darragh G.; Dunne, Philip D.; Blayney, Jaine K.; Salto-Tellez, Manuel; Van Schaeybroeck, Sandra; Hamilton, Peter W.; Zhang, Shu-Dong

    2013-01-01

    The advent of next generation sequencing technologies (NGS) has expanded the area of genomic research, offering high coverage and increased sensitivity over older microarray platforms. Although the current cost of next generation sequencing is still exceeding that of microarray approaches, the rapid advances in NGS will likely make it the platform of choice for future research in differential gene expression. Connectivity mapping is a procedure for examining the connections among diseases, genes and drugs by differential gene expression initially based on microarray technology, with which a large collection of compound-induced reference gene expression profiles have been accumulated. In this work, we aim to test the feasibility of incorporating NGS RNA-Seq data into the current connectivity mapping framework by utilizing the microarray based reference profiles and the construction of a differentially expressed gene signature from a NGS dataset. This would allow for the establishment of connections between the NGS gene signature and those microarray reference profiles, alleviating the associated incurring cost of re-creating drug profiles with NGS technology. We examined the connectivity mapping approach on a publicly available NGS dataset with androgen stimulation of LNCaP cells in order to extract candidate compounds that could inhibit the proliferative phenotype of LNCaP cells and to elucidate their potential in a laboratory setting. In addition, we also analyzed an independent microarray dataset of similar experimental settings. We found a high level of concordance between the top compounds identified using the gene signatures from the two datasets. The nicotine derivative cotinine was returned as the top candidate among the overlapping compounds with potential to suppress this proliferative phenotype. Subsequent lab experiments validated this connectivity mapping hit, showing that cotinine inhibits cell proliferation in an androgen dependent manner. Thus the results in this study suggest a promising prospect of integrating NGS data with connectivity mapping. PMID:23840550

  5. Quantitative Analysis of Mutant Subclones in Chronic Myeloid Leukemia: Comparison of Different Methodological Approaches

    PubMed Central

    Preuner, Sandra; Barna, Agnes; Frommlet, Florian; Czurda, Stefan; Konstantin, Byrgazov; Alikian, Mary; Machova Polakova, Katerina; Sacha, Tomasz; Richter, Johan; Lion, Thomas; Gabriel, Christian

    2016-01-01

    Identification and quantitative monitoring of mutant BCR-ABL1 subclones displaying resistance to tyrosine kinase inhibitors (TKIs) have become important tasks in patients with Ph-positive leukemias. Different technologies have been established for patient screening. Various next-generation sequencing (NGS) platforms facilitating sensitive detection and quantitative monitoring of mutations in the ABL1-kinase domain (KD) have been introduced recently, and are expected to become the preferred technology in the future. However, broad clinical implementation of NGS methods has been hampered by the limited accessibility at different centers and the current costs of analysis which may not be regarded as readily affordable for routine diagnostic monitoring. It is therefore of interest to determine whether NGS platforms can be adequately substituted by other methodological approaches. We have tested three different techniques including pyrosequencing, LD (ligation-dependent)-PCR and NGS in a series of peripheral blood specimens from chronic myeloid leukemia (CML) patients carrying single or multiple mutations in the BCR-ABL1 KD. The proliferation kinetics of mutant subclones in serial specimens obtained during the course of TKI-treatment revealed similar profiles via all technical approaches, but individual specimens showed statistically significant differences between NGS and the other methods tested. The observations indicate that different approaches to detection and quantification of mutant subclones may be applicable for the monitoring of clonal kinetics, but careful calibration of each method is required for accurate size assessment of mutant subclones at individual time points. PMID:27136541

  6. Quantitative Analysis of Mutant Subclones in Chronic Myeloid Leukemia: Comparison of Different Methodological Approaches.

    PubMed

    Preuner, Sandra; Barna, Agnes; Frommlet, Florian; Czurda, Stefan; Konstantin, Byrgazov; Alikian, Mary; Machova Polakova, Katerina; Sacha, Tomasz; Richter, Johan; Lion, Thomas; Gabriel, Christian

    2016-04-29

    Identification and quantitative monitoring of mutant BCR-ABL1 subclones displaying resistance to tyrosine kinase inhibitors (TKIs) have become important tasks in patients with Ph-positive leukemias. Different technologies have been established for patient screening. Various next-generation sequencing (NGS) platforms facilitating sensitive detection and quantitative monitoring of mutations in the ABL1-kinase domain (KD) have been introduced recently, and are expected to become the preferred technology in the future. However, broad clinical implementation of NGS methods has been hampered by the limited accessibility at different centers and the current costs of analysis which may not be regarded as readily affordable for routine diagnostic monitoring. It is therefore of interest to determine whether NGS platforms can be adequately substituted by other methodological approaches. We have tested three different techniques including pyrosequencing, LD (ligation-dependent)-PCR and NGS in a series of peripheral blood specimens from chronic myeloid leukemia (CML) patients carrying single or multiple mutations in the BCR-ABL1 KD. The proliferation kinetics of mutant subclones in serial specimens obtained during the course of TKI-treatment revealed similar profiles via all technical approaches, but individual specimens showed statistically significant differences between NGS and the other methods tested. The observations indicate that different approaches to detection and quantification of mutant subclones may be applicable for the monitoring of clonal kinetics, but careful calibration of each method is required for accurate size assessment of mutant subclones at individual time points.

  7. Randomized comparison of next-generation sequencing and array comparative genomic hybridization for preimplantation genetic screening: a pilot study.

    PubMed

    Yang, Zhihong; Lin, James; Zhang, John; Fong, Wai Ieng; Li, Pei; Zhao, Rong; Liu, Xiaohong; Podevin, William; Kuang, Yanping; Liu, Jiaen

    2015-06-23

    Recent advances in next-generation sequencing (NGS) have provided new methods for preimplantation genetic screening (PGS) of human embryos from in vitro fertilization (IVF) cycles. However, there is still limited information about clinical applications of NGS in IVF and PGS (IVF-PGS) treatments. The present study aimed to investigate the effects of NGS screening on clinical pregnancy and implantation outcomes for PGS patients in comparison to array comparative genomic hybridization (aCGH) screening. This study was performed in two phases. Phase I study evaluated the accuracy of NGS for aneuploidy screening in comparison to aCGH. Whole-genome amplification (WGA) products (n = 164) derived from previous IVF-PGS cycles (n = 38) were retrospectively analyzed with NGS. The NGS results were then compared with those of aCGH. Phase II study further compared clinical pregnancy and implantation outcomes between NGS and aCGH for IVF-PGS patients. A total of 172 patients at mean age 35.2 ± 3.5 years were randomized into two groups: 1) NGS (Group A): patients (n = 86) had embryos screened with NGS and 2) aCGH (Group B): patients (n = 86) had embryos screened with aCGH. For both groups, blastocysts were vitrified after trophectoderm biopsy. One to two euploid blastocysts were thawed and transferred to individual patients primarily based on the PGS results. Ongoing pregnancy and implantation rates were compared between the two study groups. NGS detected all types of aneuploidies of human blastocysts accurately and provided a 100 % 24-chromosome diagnosis consistency with the highly validated aCGH method. Moreover, NGS screening identified euploid blastocysts for transfer and resulted in similarly high ongoing pregnancy rates for PGS patients compared to aCGH screening (74.7 % vs. 69.2 %, respectively, p >0.05). The observed implantation rates were also comparable between the NGS and aCGH groups (70.5 % vs. 66.2 %, respectively, p >0.05). While NGS screening has been recently introduced to assist IVF patients, this is the first randomized clinical study on the efficiency of NGS for preimplantation genetic screening in comparison to aCGH. With the observed high accuracy of 24-chromosome diagnosis and the resulting high ongoing pregnancy and implantation rates, NGS has demonstrated an efficient, robust high-throughput technology for PGS.

  8. Comparative microbiota assessment of wilted Italian ryegrass, whole crop corn, and wilted alfalfa silage using denaturing gradient gel electrophoresis and next-generation sequencing.

    PubMed

    Ni, Kuikui; Minh, Tang Thuy; Tu, Tran Thi Minh; Tsuruta, Takeshi; Pang, Huili; Nishino, Naoki

    2017-02-01

    The microbiota of pre-ensiled crop and silage were examined using denaturing gradient gel electrophoresis (DGGE) and next-generation sequencing (NGS). Wilted Italian ryegrass (IR), whole crop corn (WC), and wilted alfalfa (AL) silages stored for 2 months were examined. All silages contained lactic acid as a predominant fermentation product. Across the three crop species, DGGE detected 36 and 28 bands, and NGS identified 253 and 259 genera in the pre-ensiled crops and silages, respectively. The NGS demonstrated that, although lactic acid bacteria (LAB) became prevalent in all silages after 2 months of storage, the major groups were different between crops: Leuconostoc spp. and Pediococcus spp. for IR silage, Lactobacillus spp. for WC silage, and Enterococcus spp. for AL silage. The predominant silage LAB genera were also detected by DGGE, but the presence of diverse non-LAB species in pre-ensiled crops was far better detected by NGS. Likewise, good survival of Agrobacterium spp., Methylobacterium spp., and Sphingomonas spp. in IR and AL silages was demonstrated by NGS. The diversity of the microbiota described by principal coordinate analysis was similar between DGGE and NGS. Our finding that analysis of pre-ensiled crop microbiota did not help predict silage microbiota was true for both DGGE and NGS.

  9. Impact of genotyping errors on statistical power of association tests in genomic analyses: A case study

    PubMed Central

    Hou, Lin; Sun, Ning; Mane, Shrikant; Sayward, Fred; Rajeevan, Nallakkandi; Cheung, Kei-Hoi; Cho, Kelly; Pyarajan, Saiju; Aslan, Mihaela; Miller, Perry; Harvey, Philip D.; Gaziano, J. Michael; Concato, John; Zhao, Hongyu

    2017-01-01

    A key step in genomic studies is to assess high throughput measurements across millions of markers for each participant’s DNA, either using microarrays or sequencing techniques. Accurate genotype calling is essential for downstream statistical analysis of genotype-phenotype associations, and next generation sequencing (NGS) has recently become a more common approach in genomic studies. How the accuracy of variant calling in NGS-based studies affects downstream association analysis has not, however, been studied using empirical data in which both microarrays and NGS were available. In this article, we investigate the impact of variant calling errors on the statistical power to identify associations between single nucleotides and disease, and on associations between multiple rare variants and disease. Both differential and nondifferential genotyping errors are considered. Our results show that the power of burden tests for rare variants is strongly influenced by the specificity in variant calling, but is rather robust with regard to sensitivity. By using the variant calling accuracies estimated from a substudy of a Cooperative Studies Program project conducted by the Department of Veterans Affairs, we show that the power of association tests is mostly retained with commonly adopted variant calling pipelines. An R package, GWAS.PC, is provided to accommodate power analysis that takes account of genotyping errors (http://zhaocenter.org/software/). PMID:28019059

  10. Reflection on Molecular Approaches Influencing State-of-the-Art Bioremediation Design: Culturing to Microbial Community Fingerprinting to Omics

    PubMed Central

    Czaplicki, Lauren M.; Gunsch, Claudia K.

    2017-01-01

    Bioremediation is generally viewed as a cost effective and sustainable technology because it relies on microbes to transform pollutants into benign compounds. Advances in molecular biological analyses allow unprecedented microbial detection and are increasingly incorporated into bioremediation. Throughout history, state-of-the-art techniques have informed bioremediation strategies. However, the insights those techniques provided were not as in depth as those provided by recently developed omics tools. Advances in next generation sequencing (NGS) have now placed metagenomics and metatranscriptomics within reach of environmental engineers. As NGS costs decrease, metagenomics and metatranscriptomics have become increasingly feasible options to rapidly scan sites for specific degradative functions and identify microorganisms important in pollutant degradation. These omic techniques are capable of revolutionizing biological treatment in environmental engineering by allowing highly sensitive characterization of previously uncultured microorganisms. Omics enables the discovery of novel microorganisms for use in bioaugmentation and supports systematic optimization of biostimulation strategies. This review describes the omics journey from roots in biology and medicine to its current status in environmental engineering including potential future directions in commercial application. PMID:28348455

  11. Characterization of NIST human mitochondrial DNA SRM-2392 and SRM-2392-I standard reference materials by next generation sequencing.

    PubMed

    Riman, Sarah; Kiesler, Kevin M; Borsuk, Lisa A; Vallone, Peter M

    2017-07-01

    Standard Reference Materials SRM 2392 and 2392-I are intended to provide quality control when amplifying and sequencing human mitochondrial genome sequences. The National Institute of Standards and Technology (NIST) offers these SRMs to laboratories performing DNA-based forensic human identification, molecular diagnosis of mitochondrial diseases, mutation detection, evolutionary anthropology, and genetic genealogy. The entire mtGenome (∼16569bp) of SRM 2392 and 2392-I have previously been characterized at NIST by Sanger sequencing. Herein, we used the sensitivity, specificity, and accuracy offered by next generation sequencing (NGS) to: (1) re-sequence the certified values of the SRM 2392 and 2392-I; (2) confirm Sanger data with a high coverage new sequencing technology; (3) detect lower level heteroplasmies (<20%); and thus (4) support mitochondrial sequencing communities in the adoption of NGS methods. To obtain a consensus sequence for the SRMs as well as identify and control any bias, sequencing was performed using two NGS platforms and data was analyzed using different bioinformatics pipelines. Our results confirm five low level heteroplasmy sites that were not previously observed with Sanger sequencing: three sites in the GM09947A template in SRM 2392 and two sites in the HL-60 template in SRM 2392-I. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Y and W Chromosome Assemblies: Approaches and Discoveries.

    PubMed

    Tomaszkiewicz, Marta; Medvedev, Paul; Makova, Kateryna D

    2017-04-01

    Hundreds of vertebrate genomes have been sequenced and assembled to date. However, most sequencing projects have ignored the sex chromosomes unique to the heterogametic sex - Y and W - that are known as sex-limited chromosomes (SLCs). Indeed, haploid and repetitive Y chromosomes in species with male heterogamety (XY), and W chromosomes in species with female heterogamety (ZW), are difficult to sequence and assemble. Nevertheless, obtaining their sequences is important for understanding the intricacies of vertebrate genome function and evolution. Recent progress has been made towards the adaptation of next-generation sequencing (NGS) techniques to deciphering SLC sequences. We review here currently available methodology and results with regard to SLC sequencing and assembly. We focus on vertebrates, but bring in some examples from other taxa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Quality control of next-generation sequencing library through an integrative digital microfluidic platform.

    PubMed

    Thaitrong, Numrin; Kim, Hanyoup; Renzi, Ronald F; Bartsch, Michael S; Meagher, Robert J; Patel, Kamlesh D

    2012-12-01

    We have developed an automated quality control (QC) platform for next-generation sequencing (NGS) library characterization by integrating a droplet-based digital microfluidic (DMF) system with a capillary-based reagent delivery unit and a quantitative CE module. Using an in-plane capillary-DMF interface, a prepared sample droplet was actuated into position between the ground electrode and the inlet of the separation capillary to complete the circuit for an electrokinetic injection. Using a DNA ladder as an internal standard, the CE module with a compact LIF detector was capable of detecting dsDNA in the range of 5-100 pg/μL, suitable for the amount of DNA required by the Illumina Genome Analyzer sequencing platform. This DMF-CE platform consumes tenfold less sample volume than the current Agilent BioAnalyzer QC technique, preserving precious sample while providing necessary sensitivity and accuracy for optimal sequencing performance. The ability of this microfluidic system to validate NGS library preparation was demonstrated by examining the effects of limited-cycle PCR amplification on the size distribution and the yield of Illumina-compatible libraries, demonstrating that as few as ten cycles of PCR bias the size distribution of the library toward undesirable larger fragments. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. [Comparative results of preimplantation genetic screening by array comparative genomic hybridization and new-generation sequencing].

    PubMed

    Aleksandrova, N V; Shubina, E S; Ekimov, A N; Kodyleva, T A; Mukosey, I S; Makarova, N P; Kulakova, E V; Levkov, L A; Barkov, I Yu; Trofimov, D Yu; Sukhikh, G T

    2017-01-01

    Aneuploidies as quantitative chromosome abnormalities are a main cause of failed development of morphologically normal embryos, implantation failures, and early reproductive losses. Preimplantation genetic screening (PGS) allows a preselection of embryos with a normal karyotype, thus increasing the implantation rate and reducing the frequency of early pregnancy loss after IVF. Modern PGS technologies are based on a genome-wide analysis of the embryo. The first pilot study in Russia was performed to assess the possibility of using semiconductor new-generation sequencing (NGS) as a PGS method. NGS data were collected for 38 biopsied embryos and compared with the data from array comparative genomic hybridization (array-CGH). The concordance between the NGS and array-CGH data was 94.8%. Two samples showed the karyotype 47,XXY by array-CGH and a normal karyotype by NGS. The discrepancies may be explained by loss of efficiency of array-CGH amplicon labeling.

  15. Integration of next-generation sequencing in clinical diagnostic molecular pathology laboratories for analysis of solid tumours; an expert opinion on behalf of IQN Path ASBL.

    PubMed

    Deans, Zandra C; Costa, Jose Luis; Cree, Ian; Dequeker, Els; Edsjö, Anders; Henderson, Shirley; Hummel, Michael; Ligtenberg, Marjolijn Jl; Loddo, Marco; Machado, Jose Carlos; Marchetti, Antonio; Marquis, Katherine; Mason, Joanne; Normanno, Nicola; Rouleau, Etienne; Schuuring, Ed; Snelson, Keeda-Marie; Thunnissen, Erik; Tops, Bastiaan; Williams, Gareth; van Krieken, Han; Hall, Jacqueline A

    2017-01-01

    The clinical demand for mutation detection within multiple genes from a single tumour sample requires molecular diagnostic laboratories to develop rapid, high-throughput, highly sensitive, accurate and parallel testing within tight budget constraints. To meet this demand, many laboratories employ next-generation sequencing (NGS) based on small amplicons. Building on existing publications and general guidance for the clinical use of NGS and learnings from germline testing, the following guidelines establish consensus standards for somatic diagnostic testing, specifically for identifying and reporting mutations in solid tumours. These guidelines cover the testing strategy, implementation of testing within clinical service, sample requirements, data analysis and reporting of results. In conjunction with appropriate staff training and international standards for laboratory testing, these consensus standards for the use of NGS in molecular pathology of solid tumours will assist laboratories in implementing NGS in clinical services.

  16. KNIME4NGS: a comprehensive toolbox for next generation sequencing analysis.

    PubMed

    Hastreiter, Maximilian; Jeske, Tim; Hoser, Jonathan; Kluge, Michael; Ahomaa, Kaarin; Friedl, Marie-Sophie; Kopetzky, Sebastian J; Quell, Jan-Dominik; Mewes, H Werner; Küffner, Robert

    2017-05-15

    Analysis of Next Generation Sequencing (NGS) data requires the processing of large datasets by chaining various tools with complex input and output formats. In order to automate data analysis, we propose to standardize NGS tasks into modular workflows. This simplifies reliable handling and processing of NGS data, and corresponding solutions become substantially more reproducible and easier to maintain. Here, we present a documented, linux-based, toolbox of 42 processing modules that are combined to construct workflows facilitating a variety of tasks such as DNAseq and RNAseq analysis. We also describe important technical extensions. The high throughput executor (HTE) helps to increase the reliability and to reduce manual interventions when processing complex datasets. We also provide a dedicated binary manager that assists users in obtaining the modules' executables and keeping them up to date. As basis for this actively developed toolbox we use the workflow management software KNIME. See http://ibisngs.github.io/knime4ngs for nodes and user manual (GPLv3 license). robert.kueffner@helmholtz-muenchen.de. Supplementary data are available at Bioinformatics online.

  17. ChimericSeq: An open-source, user-friendly interface for analyzing NGS data to identify and characterize viral-host chimeric sequences.

    PubMed

    Shieh, Fwu-Shan; Jongeneel, Patrick; Steffen, Jamin D; Lin, Selena; Jain, Surbhi; Song, Wei; Su, Ying-Hsiu

    2017-01-01

    Identification of viral integration sites has been important in understanding the pathogenesis and progression of diseases associated with particular viral infections. The advent of next-generation sequencing (NGS) has enabled researchers to understand the impact that viral integration has on the host, such as tumorigenesis. Current computational methods to analyze NGS data of virus-host junction sites have been limited in terms of their accessibility to a broad user base. In this study, we developed a software application (named ChimericSeq), that is the first program of its kind to offer a graphical user interface, compatibility with both Windows and Mac operating systems, and optimized for effectively identifying and annotating virus-host chimeric reads within NGS data. In addition, ChimericSeq's pipeline implements custom filtering to remove artifacts and detect reads with quantitative analytical reporting to provide functional significance to discovered integration sites. The improved accessibility of ChimericSeq through a GUI interface in both Windows and Mac has potential to expand NGS analytical support to a broader spectrum of the scientific community.

  18. ChimericSeq: An open-source, user-friendly interface for analyzing NGS data to identify and characterize viral-host chimeric sequences

    PubMed Central

    Shieh, Fwu-Shan; Jongeneel, Patrick; Steffen, Jamin D.; Lin, Selena; Jain, Surbhi; Song, Wei

    2017-01-01

    Identification of viral integration sites has been important in understanding the pathogenesis and progression of diseases associated with particular viral infections. The advent of next-generation sequencing (NGS) has enabled researchers to understand the impact that viral integration has on the host, such as tumorigenesis. Current computational methods to analyze NGS data of virus-host junction sites have been limited in terms of their accessibility to a broad user base. In this study, we developed a software application (named ChimericSeq), that is the first program of its kind to offer a graphical user interface, compatibility with both Windows and Mac operating systems, and optimized for effectively identifying and annotating virus-host chimeric reads within NGS data. In addition, ChimericSeq’s pipeline implements custom filtering to remove artifacts and detect reads with quantitative analytical reporting to provide functional significance to discovered integration sites. The improved accessibility of ChimericSeq through a GUI interface in both Windows and Mac has potential to expand NGS analytical support to a broader spectrum of the scientific community. PMID:28829778

  19. Structural variation discovery in the cancer genome using next generation sequencing: Computational solutions and perspectives

    PubMed Central

    Liu, Biao; Conroy, Jeffrey M.; Morrison, Carl D.; Odunsi, Adekunle O.; Qin, Maochun; Wei, Lei; Trump, Donald L.; Johnson, Candace S.; Liu, Song; Wang, Jianmin

    2015-01-01

    Somatic Structural Variations (SVs) are a complex collection of chromosomal mutations that could directly contribute to carcinogenesis. Next Generation Sequencing (NGS) technology has emerged as the primary means of interrogating the SVs of the cancer genome in recent investigations. Sophisticated computational methods are required to accurately identify the SV events and delineate their breakpoints from the massive amounts of reads generated by a NGS experiment. In this review, we provide an overview of current analytic tools used for SV detection in NGS-based cancer studies. We summarize the features of common SV groups and the primary types of NGS signatures that can be used in SV detection methods. We discuss the principles and key similarities and differences of existing computational programs and comment on unresolved issues related to this research field. The aim of this article is to provide a practical guide of relevant concepts, computational methods, software tools and important factors for analyzing and interpreting NGS data for the detection of SVs in the cancer genome. PMID:25849937

  20. Targeted next-generation sequencing makes new molecular diagnoses and expands genotype-phenotype relationship in Ehlers-Danlos syndrome.

    PubMed

    Weerakkody, Ruwan A; Vandrovcova, Jana; Kanonidou, Christina; Mueller, Michael; Gampawar, Piyush; Ibrahim, Yousef; Norsworthy, Penny; Biggs, Jennifer; Abdullah, Abdulshakur; Ross, David; Black, Holly A; Ferguson, David; Cheshire, Nicholas J; Kazkaz, Hanadi; Grahame, Rodney; Ghali, Neeti; Vandersteen, Anthony; Pope, F Michael; Aitman, Timothy J

    2016-11-01

    Ehlers-Danlos syndrome (EDS) comprises a group of overlapping hereditary disorders of connective tissue with significant morbidity and mortality, including major vascular complications. We sought to identify the diagnostic utility of a next-generation sequencing (NGS) panel in a mixed EDS cohort. We developed and applied PCR-based NGS assays for targeted, unbiased sequencing of 12 collagen and aortopathy genes to a cohort of 177 unrelated EDS patients. Variants were scored blind to previous genetic testing and then compared with results of previous Sanger sequencing. Twenty-eight pathogenic variants in COL5A1/2, COL3A1, FBN1, and COL1A1 and four likely pathogenic variants in COL1A1, TGFBR1/2, and SMAD3 were identified by the NGS assays. These included all previously detected single-nucleotide and other short pathogenic variants in these genes, and seven newly detected pathogenic or likely pathogenic variants leading to clinically significant diagnostic revisions. Twenty-two variants of uncertain significance were identified, seven of which were in aortopathy genes and required clinical follow-up. Unbiased NGS-based sequencing made new molecular diagnoses outside the expected EDS genotype-phenotype relationship and identified previously undetected clinically actionable variants in aortopathy susceptibility genes. These data may be of value in guiding future clinical pathways for genetic diagnosis in EDS.Genet Med 18 11, 1119-1127.

  1. A highly efficient method for extracting next-generation sequencing quality RNA from adipose tissue of recalcitrant animal species.

    PubMed

    Sharma, Davinder; Golla, Naresh; Singh, Dheer; Onteru, Suneel K

    2018-03-01

    The next-generation sequencing (NGS) based RNA sequencing (RNA-Seq) and transcriptome profiling offers an opportunity to unveil complex biological processes. Successful RNA-Seq and transcriptome profiling requires a large amount of high-quality RNA. However, NGS-quality RNA isolation is extremely difficult from recalcitrant adipose tissue (AT) with high lipid content and low cell numbers. Further, the amount and biochemical composition of AT lipid varies depending upon the animal species which can pose different degree of resistance to RNA extraction. Currently available approaches may work effectively in one species but can be almost unproductive in another species. Herein, we report a two step protocol for the extraction of NGS quality RNA from AT across a broad range of animal species. © 2017 Wiley Periodicals, Inc.

  2. Molecular Diagnosis of Usher Syndrome: Application of Two Different Next Generation Sequencing-Based Procedures

    PubMed Central

    Licastro, Danilo; Mutarelli, Margherita; Peluso, Ivana; Neveling, Kornelia; Wieskamp, Nienke; Rispoli, Rossella; Vozzi, Diego; Athanasakis, Emmanouil; D'Eustacchio, Angela; Pizzo, Mariateresa; D'Amico, Francesca; Ziviello, Carmela; Simonelli, Francesca; Fabretto, Antonella; Scheffer, Hans; Gasparini, Paolo; Banfi, Sandro; Nigro, Vincenzo

    2012-01-01

    Usher syndrome (USH) is a clinically and genetically heterogeneous disorder characterized by visual and hearing impairments. Clinically, it is subdivided into three subclasses with nine genes identified so far. In the present study, we investigated whether the currently available Next Generation Sequencing (NGS) technologies are already suitable for molecular diagnostics of USH. We analyzed a total of 12 patients, most of which were negative for previously described mutations in known USH genes upon primer extension-based microarray genotyping. We enriched the NGS template either by whole exome capture or by Long-PCR of the known USH genes. The main NGS sequencing platforms were used: SOLiD for whole exome sequencing, Illumina (Genome Analyzer II) and Roche 454 (GS FLX) for the Long-PCR sequencing. Long-PCR targeting was more efficient with up to 94% of USH gene regions displaying an overall coverage higher than 25×, whereas whole exome sequencing yielded a similar coverage for only 50% of those regions. Overall this integrated analysis led to the identification of 11 novel sequence variations in USH genes (2 homozygous and 9 heterozygous) out of 18 detected. However, at least two cases were not genetically solved. Our result highlights the current limitations in the diagnostic use of NGS for USH patients. The limit for whole exome sequencing is linked to the need of a strong coverage and to the correct interpretation of sequence variations with a non obvious, pathogenic role, whereas the targeted approach suffers from the high genetic heterogeneity of USH that may be also caused by the presence of additional causative genes yet to be identified. PMID:22952768

  3. Implementing genomic medicine in pathology.

    PubMed

    Williams, Eli S; Hegde, Madhuri

    2013-07-01

    The finished sequence of the Human Genome Project, published 50 years after Watson and Crick's seminal paper on the structure of DNA, pushed human genetics into the public eye and ushered in the genomic era. A significant, if overlooked, aspect of the race to complete the genome was the technology that propelled scientists to the finish line. DNA sequencing technologies have become more standardized, automated, and capable of higher throughput. This technology has continued to grow at an astounding rate in the decade since the Human Genome Project was completed. Today, massively parallel sequencing, or next-generation sequencing (NGS), allows the detection of genetic variants across the entire genome. This ability has led to the identification of new causes of disease and is changing the way we categorize, treat, and manage disease. NGS approaches such as whole-exome sequencing and whole-genome sequencing are rapidly becoming an affordable genetic testing strategy for the clinical laboratory. One test can now provide vast amounts of health information pertaining not only to the disease of interest, but information that may also predict adult-onset disease, reveal carrier status for a rare disease and predict drug responsiveness. The issue of what to do with these incidental findings, along with questions pertaining to NGS testing strategies, data interpretation and storage, and applying genetic testing results into patient care, remains without a clear answer. This review will explore these issues and others relevant to the implementation of NGS in the clinical laboratory.

  4. Calling Chromosome Alterations, DNA Methylation Statuses, and Mutations in Tumors by Simple Targeted Next-Generation Sequencing: A Solution for Transferring Integrated Pangenomic Studies into Routine Practice?

    PubMed

    Garinet, Simon; Néou, Mario; de La Villéon, Bruno; Faillot, Simon; Sakat, Julien; Da Fonseca, Juliana P; Jouinot, Anne; Le Tourneau, Christophe; Kamal, Maud; Luscap-Rondof, Windy; Boeva, Valentina; Gaujoux, Sebastien; Vidaud, Michel; Pasmant, Eric; Letourneur, Franck; Bertherat, Jérôme; Assié, Guillaume

    2017-09-01

    Pangenomic studies identified distinct molecular classes for many cancers, with major clinical applications. However, routine use requires cost-effective assays. We assessed whether targeted next-generation sequencing (NGS) could call chromosomal alterations and DNA methylation status. A training set of 77 tumors and a validation set of 449 (43 tumor types) were analyzed by targeted NGS and single-nucleotide polymorphism (SNP) arrays. Thirty-two tumors were analyzed by NGS after bisulfite conversion, and compared to methylation array or methylation-specific multiplex ligation-dependent probe amplification. Considering allelic ratios, correlation was strong between targeted NGS and SNP arrays (r = 0.88). In contrast, considering DNA copy number, for variations of one DNA copy, correlation was weaker between read counts and SNP array (r = 0.49). Thus, we generated TARGOMICs, optimized for detecting chromosome alterations by combining allelic ratios and read counts generated by targeted NGS. Sensitivity for calling normal, lost, and gained chromosomes was 89%, 72%, and 31%, respectively. Specificity was 81%, 93%, and 98%, respectively. These results were confirmed in the validation set. Finally, TARGOMICs could efficiently align and compute proportions of methylated cytosines from bisulfite-converted DNA from targeted NGS. In conclusion, beyond calling mutations, targeted NGS efficiently calls chromosome alterations and methylation status in tumors. A single run and minor design/protocol adaptations are sufficient. Optimizing targeted NGS should expand translation of genomics to clinical routine. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  5. Pooled-DNA Sequencing for Elucidating New Genomic Risk Factors, Rare Variants Underlying Alzheimer's Disease.

    PubMed

    Jin, Sheng Chih; Benitez, Bruno A; Deming, Yuetiva; Cruchaga, Carlos

    2016-01-01

    Analyses of genome-wide association studies (GWAS) for complex disorders usually identify common variants with a relatively small effect size that only explain a small proportion of phenotypic heritability. Several studies have suggested that a significant fraction of heritability may be explained by low-frequency (minor allele frequency (MAF) of 1-5 %) and rare-variants that are not contained in the commercial GWAS genotyping arrays (Schork et al., Curr Opin Genet Dev 19:212, 2009). Rare variants can also have relatively large effects on risk for developing human diseases or disease phenotype (Cruchaga et al., PLoS One 7:e31039, 2012). However, it is necessary to perform next-generation sequencing (NGS) studies in a large population (>4,000 samples) to detect a significant rare-variant association. Several NGS methods, such as custom capture sequencing and amplicon-based sequencing, are designed to screen a small proportion of the genome, but most of these methods are limited in the number of samples that can be multiplexed (i.e. most sequencing kits only provide 96 distinct index). Additionally, the sequencing library preparation for 4,000 samples remains expensive and thus conducting NGS studies with the aforementioned methods are not feasible for most research laboratories.The need for low-cost large scale rare-variant detection makes pooled-DNA sequencing an ideally efficient and cost-effective technique to identify rare variants in target regions by sequencing hundreds to thousands of samples. Our recent work has demonstrated that pooled-DNA sequencing can accurately detect rare variants in targeted regions in multiple DNA samples with high sensitivity and specificity (Jin et al., Alzheimers Res Ther 4:34, 2012). In these studies we used a well-established pooled-DNA sequencing approach and a computational package, SPLINTER (short indel prediction by large deviation inference and nonlinear true frequency estimation by recursion) (Vallania et al., Genome Res 20:1711, 2010), for accurate identification of rare variants in large DNA pools. Given an average sequencing coverage of 30× per haploid genome, SPLINTER can detect rare variants and short indels up to 4 base pairs (bp) with high sensitivity and specificity (up to 1 haploid allele in a pool as large as 500 individuals). Step-by-step instructions on how to conduct pooled-DNA sequencing experiments and data analyses are described in this chapter.

  6. Whole-Exome Sequencing to Decipher the Genetic Heterogeneity of Hearing Loss in a Chinese Family with Deaf by Deaf Mating

    PubMed Central

    Qing, Jie; Yan, Denise; Zhou, Yuan; Liu, Qiong; Wu, Weijing; Xiao, Zian; Liu, Yuyuan; Liu, Jia; Du, Lilin; Xie, Dinghua; Liu, Xue Zhong

    2014-01-01

    Inherited deafness has been shown to have high genetic heterogeneity. For many decades, linkage analysis and candidate gene approaches have been the main tools to elucidate the genetics of hearing loss. However, this associated study design is costly, time-consuming, and unsuitable for small families. This is mainly due to the inadequate numbers of available affected individuals, locus heterogeneity, and assortative mating. Exome sequencing has now become technically feasible and a cost-effective method for detection of disease variants underlying Mendelian disorders due to the recent advances in next-generation sequencing (NGS) technologies. In the present study, we have combined both the Deafness Gene Mutation Detection Array and exome sequencing to identify deafness causative variants in a large Chinese composite family with deaf by deaf mating. The simultaneous screening of the 9 common deafness mutations using the allele-specific PCR based universal array, resulted in the identification of the 1555A>G in the mitochondrial DNA (mtDNA) 12S rRNA in affected individuals in one branch of the family. We then subjected the mutation-negative cases to exome sequencing and identified novel causative variants in the MYH14 and WFS1 genes. This report confirms the effective use of a NGS technique to detect pathogenic mutations in affected individuals who were not candidates for classical genetic studies. PMID:25289672

  7. Pretreatment drug resistance in a large countrywide Ethiopian HIV-1C cohort: a comparison of Sanger and high-throughput sequencing.

    PubMed

    Telele, Nigus Fikrie; Kalu, Amare Worku; Gebre-Selassie, Solomon; Fekade, Daniel; Abdurahman, Samir; Marrone, Gaetano; Neogi, Ujjwal; Tegbaru, Belete; Sönnerborg, Anders

    2018-05-15

    Baseline plasma samples of 490 randomly selected antiretroviral therapy (ART) naïve patients from seven hospitals participating in the first nationwide Ethiopian HIV-1 cohort were analysed for surveillance drug resistance mutations (sDRM) by population based Sanger sequencing (PBSS). Also next generation sequencing (NGS) was used in a subset of 109 baseline samples of patients. Treatment outcome after 6- and 12-months was assessed by on-treatment (OT) and intention-to-treat (ITT) analyses. Transmitted drug resistance (TDR) was detected in 3.9% (18/461) of successfully sequenced samples by PBSS. However, NGS detected sDRM more often (24%; 26/109) than PBSS (6%; 7/109) (p = 0.0001) and major integrase strand transfer inhibitors (INSTI) DRMs were also found in minor viral variants from five patients. Patients with sDRM had more frequent treatment failure in both OT and ITT analyses. The high rate of TDR by NGS and the identification of preexisting INSTI DRMs in minor wild-type HIV-1 subtype C viral variants infected Ethiopian patients underscores the importance of TDR surveillance in low- and middle-income countries and shows added value of high-throughput NGS in such studies.

  8. Functional DNA quantification guides accurate next-generation sequencing mutation detection in formalin-fixed, paraffin-embedded tumor biopsies

    PubMed Central

    2013-01-01

    The formalin-fixed, paraffin-embedded (FFPE) biopsy is a challenging sample for molecular assays such as targeted next-generation sequencing (NGS). We compared three methods for FFPE DNA quantification, including a novel PCR assay (‘QFI-PCR’) that measures the absolute copy number of amplifiable DNA, across 165 residual clinical specimens. The results reveal the limitations of commonly used approaches, and demonstrate the value of an integrated workflow using QFI-PCR to improve the accuracy of NGS mutation detection and guide changes in input that can rescue low quality FFPE DNA. These findings address a growing need for improved quality measures in NGS-based patient testing. PMID:24001039

  9. Parallel tagged next-generation sequencing on pooled samples - a new approach for population genetics in ecology and conservation.

    PubMed

    Zavodna, Monika; Grueber, Catherine E; Gemmell, Neil J

    2013-01-01

    Next-generation sequencing (NGS) on pooled samples has already been broadly applied in human medical diagnostics and plant and animal breeding. However, thus far it has been only sparingly employed in ecology and conservation, where it may serve as a useful diagnostic tool for rapid assessment of species genetic diversity and structure at the population level. Here we undertake a comprehensive evaluation of the accuracy, practicality and limitations of parallel tagged amplicon NGS on pooled population samples for estimating species population diversity and structure. We obtained 16S and Cyt b data from 20 populations of Leiopelma hochstetteri, a frog species of conservation concern in New Zealand, using two approaches - parallel tagged NGS on pooled population samples and individual Sanger sequenced samples. Data from each approach were then used to estimate two standard population genetic parameters, nucleotide diversity (π) and population differentiation (FST), that enable population genetic inference in a species conservation context. We found a positive correlation between our two approaches for population genetic estimates, showing that the pooled population NGS approach is a reliable, rapid and appropriate method for population genetic inference in an ecological and conservation context. Our experimental design also allowed us to identify both the strengths and weaknesses of the pooled population NGS approach and outline some guidelines and suggestions that might be considered when planning future projects.

  10. Next-generation sequencing meets genetic diagnostics: development of a comprehensive workflow for the analysis of BRCA1 and BRCA2 genes

    PubMed Central

    Feliubadaló, Lídia; Lopez-Doriga, Adriana; Castellsagué, Ester; del Valle, Jesús; Menéndez, Mireia; Tornero, Eva; Montes, Eva; Cuesta, Raquel; Gómez, Carolina; Campos, Olga; Pineda, Marta; González, Sara; Moreno, Victor; Brunet, Joan; Blanco, Ignacio; Serra, Eduard; Capellá, Gabriel; Lázaro, Conxi

    2013-01-01

    Next-generation sequencing (NGS) is changing genetic diagnosis due to its huge sequencing capacity and cost-effectiveness. The aim of this study was to develop an NGS-based workflow for routine diagnostics for hereditary breast and ovarian cancer syndrome (HBOCS), to improve genetic testing for BRCA1 and BRCA2. A NGS-based workflow was designed using BRCA MASTR kit amplicon libraries followed by GS Junior pyrosequencing. Data analysis combined Variant Identification Pipeline freely available software and ad hoc R scripts, including a cascade of filters to generate coverage and variant calling reports. A BRCA homopolymer assay was performed in parallel. A research scheme was designed in two parts. A Training Set of 28 DNA samples containing 23 unique pathogenic mutations and 213 other variants (33 unique) was used. The workflow was validated in a set of 14 samples from HBOCS families in parallel with the current diagnostic workflow (Validation Set). The NGS-based workflow developed permitted the identification of all pathogenic mutations and genetic variants, including those located in or close to homopolymers. The use of NGS for detecting copy-number alterations was also investigated. The workflow meets the sensitivity and specificity requirements for the genetic diagnosis of HBOCS and improves on the cost-effectiveness of current approaches. PMID:23249957

  11. Mobile Genome Express (MGE): A comprehensive automatic genetic analyses pipeline with a mobile device.

    PubMed

    Yoon, Jun-Hee; Kim, Thomas W; Mendez, Pedro; Jablons, David M; Kim, Il-Jin

    2017-01-01

    The development of next-generation sequencing (NGS) technology allows to sequence whole exomes or genome. However, data analysis is still the biggest bottleneck for its wide implementation. Most laboratories still depend on manual procedures for data handling and analyses, which translates into a delay and decreased efficiency in the delivery of NGS results to doctors and patients. Thus, there is high demand for developing an automatic and an easy-to-use NGS data analyses system. We developed comprehensive, automatic genetic analyses controller named Mobile Genome Express (MGE) that works in smartphones or other mobile devices. MGE can handle all the steps for genetic analyses, such as: sample information submission, sequencing run quality check from the sequencer, secured data transfer and results review. We sequenced an Actrometrix control DNA containing multiple proven human mutations using a targeted sequencing panel, and the whole analysis was managed by MGE, and its data reviewing program called ELECTRO. All steps were processed automatically except for the final sequencing review procedure with ELECTRO to confirm mutations. The data analysis process was completed within several hours. We confirmed the mutations that we have identified were consistent with our previous results obtained by using multi-step, manual pipelines.

  12. Simple and efficient identification of rare recessive pathologically important sequence variants from next generation exome sequence data.

    PubMed

    Carr, Ian M; Morgan, Joanne; Watson, Christopher; Melnik, Svitlana; Diggle, Christine P; Logan, Clare V; Harrison, Sally M; Taylor, Graham R; Pena, Sergio D J; Markham, Alexander F; Alkuraya, Fowzan S; Black, Graeme C M; Ali, Manir; Bonthron, David T

    2013-07-01

    Massively parallel ("next generation") DNA sequencing (NGS) has quickly become the method of choice for seeking pathogenic mutations in rare uncharacterized monogenic diseases. Typically, before DNA sequencing, protein-coding regions are enriched from patient genomic DNA, representing either the entire genome ("exome sequencing") or selected mapped candidate loci. Sequence variants, identified as differences between the patient's and the human genome reference sequences, are then filtered according to various quality parameters. Changes are screened against datasets of known polymorphisms, such as dbSNP and the 1000 Genomes Project, in the effort to narrow the list of candidate causative variants. An increasing number of commercial services now offer to both generate and align NGS data to a reference genome. This potentially allows small groups with limited computing infrastructure and informatics skills to utilize this technology. However, the capability to effectively filter and assess sequence variants is still an important bottleneck in the identification of deleterious sequence variants in both research and diagnostic settings. We have developed an approach to this problem comprising a user-friendly suite of programs that can interactively analyze, filter and screen data from enrichment-capture NGS data. These programs ("Agile Suite") are particularly suitable for small-scale gene discovery or for diagnostic analysis. © 2013 WILEY PERIODICALS, INC.

  13. An integrated pipeline for next generation sequencing and annotation of the complete mitochondrial genome of the giant intestinal fluke, Fasciolopsis buski (Lankester, 1857) Looss, 1899

    PubMed Central

    Biswal, Devendra Kumar; Ghatani, Sudeep; Shylla, Jollin A.; Sahu, Ranjana; Mullapudi, Nandita

    2013-01-01

    Helminths include both parasitic nematodes (roundworms) and platyhelminths (trematode and cestode flatworms) that are abundant, and are of clinical importance. The genetic characterization of parasitic flatworms using advanced molecular tools is central to the diagnosis and control of infections. Although the nuclear genome houses suitable genetic markers (e.g., in ribosomal (r) DNA) for species identification and molecular characterization, the mitochondrial (mt) genome consistently provides a rich source of novel markers for informative systematics and epidemiological studies. In the last decade, there have been some important advances in mtDNA genomics of helminths, especially lung flukes, liver flukes and intestinal flukes. Fasciolopsis buski, often called the giant intestinal fluke, is one of the largest digenean trematodes infecting humans and found primarily in Asia, in particular the Indian subcontinent. Next-generation sequencing (NGS) technologies now provide opportunities for high throughput sequencing, assembly and annotation within a short span of time. Herein, we describe a high-throughput sequencing and bioinformatics pipeline for mt genomics for F. buski that emphasizes the utility of short read NGS platforms such as Ion Torrent and Illumina in successfully sequencing and assembling the mt genome using innovative approaches for PCR primer design as well as assembly. We took advantage of our NGS whole genome sequence data (unpublished so far) for F. buski and its comparison with available data for the Fasciola hepatica mtDNA as the reference genome for design of precise and specific primers for amplification of mt genome sequences from F. buski. A long-range PCR was carried out to create an NGS library enriched in mt DNA sequences. Two different NGS platforms were employed for complete sequencing, assembly and annotation of the F. buski mt genome. The complete mt genome sequences of the intestinal fluke comprise 14,118 bp and is thus the shortest trematode mitochondrial genome sequenced to date. The noncoding control regions are separated into two parts by the tRNA-Gly gene and don’t contain either tandem repeats or secondary structures, which are typical for trematode control regions. The gene content and arrangement are identical to that of F. hepatica. The F. buski mtDNA genome has a close resemblance with F. hepatica and has a similar gene order tallying with that of other trematodes. The mtDNA for the intestinal fluke is reported herein for the first time by our group that would help investigate Fasciolidae taxonomy and systematics with the aid of mtDNA NGS data. More so, it would serve as a resource for comparative mitochondrial genomics and systematic studies of trematode parasites. PMID:24255820

  14. The importance of de novo mutations for pediatric neurological disease--It is not all in utero or birth trauma.

    PubMed

    Erickson, Robert P

    2016-01-01

    The advent of next generation sequencing (NGS, which consists of massively parallel sequencing to perform TGS (total genome sequencing) or WES (whole exome sequencing)) has abundantly discovered many causative mutations in patients with pediatric neurological disease. A surprisingly high number of these are de novo mutations which have not been inherited from either parent. For epilepsy, autism spectrum disorders, and neuromotor disorders, including cerebral palsy, initial estimates put the frequency of causative de novo mutations at about 15% and about 10% of these are somatic. There are some shared mutated genes between these three classes of disease. Studies of copy number variation by comparative genomic hybridization (CGH) proceded the NGS approaches but they also detect de novo variation which is especially important for ASDs. There are interesting differences between the mutated genes detected by CGS and NGS. In summary, de novo mutations cause a very significant proportion of pediatric neurological disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Species identification in mixed tuna samples with next-generation sequencing targeting two short cytochrome b gene fragments.

    PubMed

    Kappel, Kristina; Haase, Ilka; Käppel, Christine; Sotelo, Carmen G; Schröder, Ute

    2017-11-01

    Conventional Sanger sequencing of PCR products is the gold standard for species authentication of seafood products. However, this method is inappropriate for the analysis of products that might contain mixtures of species, such as tinned tuna. The purpose of this study was to test whether next-generation sequencing (NGS) can be a solution for the authentication of mixed products. Nine tuna samples containing mixtures of up to four species were prepared and subjected to an NGS approach targeting two short cytochrome b gene (cytb) fragments on the Illumina MiSeq platform. Sequence recovery was precise and admixtures of as low as 1% could be identified, depending on the species composition of the mixtures. Duplicate samples as well as two individual NGS runs produced very similar results. A first test of three commercial tinned tuna samples indicated the presence of different species in the same tin, although this is forbidden by EU law. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Next-generation sequencing coupled with a cell-free display technology for high-throughput production of reliable interactome data

    PubMed Central

    Fujimori, Shigeo; Hirai, Naoya; Ohashi, Hiroyuki; Masuoka, Kazuyo; Nishikimi, Akihiko; Fukui, Yoshinori; Washio, Takanori; Oshikubo, Tomohiro; Yamashita, Tatsuhiro; Miyamoto-Sato, Etsuko

    2012-01-01

    Next-generation sequencing (NGS) has been applied to various kinds of omics studies, resulting in many biological and medical discoveries. However, high-throughput protein-protein interactome datasets derived from detection by sequencing are scarce, because protein-protein interaction analysis requires many cell manipulations to examine the interactions. The low reliability of the high-throughput data is also a problem. Here, we describe a cell-free display technology combined with NGS that can improve both the coverage and reliability of interactome datasets. The completely cell-free method gives a high-throughput and a large detection space, testing the interactions without using clones. The quantitative information provided by NGS reduces the number of false positives. The method is suitable for the in vitro detection of proteins that interact not only with the bait protein, but also with DNA, RNA and chemical compounds. Thus, it could become a universal approach for exploring the large space of protein sequences and interactome networks. PMID:23056904

  17. Genetic architecture of retinal and macular degenerative diseases: the promise and challenges of next-generation sequencing

    PubMed Central

    2013-01-01

    Inherited retinal degenerative diseases (RDDs) display wide variation in their mode of inheritance, underlying genetic defects, age of onset, and phenotypic severity. Molecular mechanisms have not been delineated for many retinal diseases, and treatment options are limited. In most instances, genotype-phenotype correlations have not been elucidated because of extensive clinical and genetic heterogeneity. Next-generation sequencing (NGS) methods, including exome, genome, transcriptome and epigenome sequencing, provide novel avenues towards achieving comprehensive understanding of the genetic architecture of RDDs. Whole-exome sequencing (WES) has already revealed several new RDD genes, whereas RNA-Seq and ChIP-Seq analyses are expected to uncover novel aspects of gene regulation and biological networks that are involved in retinal development, aging and disease. In this review, we focus on the genetic characterization of retinal and macular degeneration using NGS technology and discuss the basic framework for further investigations. We also examine the challenges of NGS application in clinical diagnosis and management. PMID:24112618

  18. Cracking the Code of Human Diseases Using Next-Generation Sequencing: Applications, Challenges, and Perspectives

    PubMed Central

    Precone, Vincenza; Del Monaco, Valentina; Esposito, Maria Valeria; De Palma, Fatima Domenica Elisa; Ruocco, Anna; D'Argenio, Valeria

    2015-01-01

    Next-generation sequencing (NGS) technologies have greatly impacted on every field of molecular research mainly because they reduce costs and increase throughput of DNA sequencing. These features, together with the technology's flexibility, have opened the way to a variety of applications including the study of the molecular basis of human diseases. Several analytical approaches have been developed to selectively enrich regions of interest from the whole genome in order to identify germinal and/or somatic sequence variants and to study DNA methylation. These approaches are now widely used in research, and they are already being used in routine molecular diagnostics. However, some issues are still controversial, namely, standardization of methods, data analysis and storage, and ethical aspects. Besides providing an overview of the NGS-based approaches most frequently used to study the molecular basis of human diseases at DNA level, we discuss the principal challenges and applications of NGS in the field of human genomics. PMID:26665001

  19. Added Value of Next-Generation Sequencing for Multilocus Sequence Typing Analysis of a Pneumocystis jirovecii Pneumonia Outbreak1.

    PubMed

    Charpentier, Elena; Garnaud, Cécile; Wintenberger, Claire; Bailly, Sébastien; Murat, Jean-Benjamin; Rendu, John; Pavese, Patricia; Drouet, Thibault; Augier, Caroline; Malvezzi, Paolo; Thiébaut-Bertrand, Anne; Mallaret, Marie-Reine; Epaulard, Olivier; Cornet, Muriel; Larrat, Sylvie; Maubon, Danièle

    2017-08-01

    Pneumocystis jirovecii is a major threat for immunocompromised patients, and clusters of pneumocystis pneumonia (PCP) have been increasingly described in transplant units during the past decade. Exploring an outbreak transmission network requires complementary spatiotemporal and strain-typing approaches. We analyzed a PCP outbreak and demonstrated the added value of next-generation sequencing (NGS) for the multilocus sequence typing (MLST) study of P. jirovecii strains. Thirty-two PCP patients were included. Among the 12 solid organ transplant patients, 5 shared a major and unique genotype that was also found as a minor strain in a sixth patient. A transmission map analysis strengthened the suspicion of nosocomial acquisition of this strain for the 6 patients. NGS-MLST enables accurate determination of subpopulation, which allowed excluding other patients from the transmission network. NGS-MLST genotyping approach was essential to deciphering this outbreak. This innovative approach brings new insights for future epidemiologic studies on this uncultivable opportunistic fungus.

  20. Added Value of Next-Generation Sequencing for Multilocus Sequence Typing Analysis of a Pneumocystis jirovecii Pneumonia Outbreak1

    PubMed Central

    Charpentier, Elena; Garnaud, Cécile; Wintenberger, Claire; Bailly, Sébastien; Murat, Jean-Benjamin; Rendu, John; Pavese, Patricia; Drouet, Thibault; Augier, Caroline; Malvezzi, Paolo; Thiébaut-Bertrand, Anne; Mallaret, Marie-Reine; Epaulard, Olivier; Cornet, Muriel; Larrat, Sylvie

    2017-01-01

    Pneumocystis jirovecii is a major threat for immunocompromised patients, and clusters of pneumocystis pneumonia (PCP) have been increasingly described in transplant units during the past decade. Exploring an outbreak transmission network requires complementary spatiotemporal and strain-typing approaches. We analyzed a PCP outbreak and demonstrated the added value of next-generation sequencing (NGS) for the multilocus sequence typing (MLST) study of P. jirovecii strains. Thirty-two PCP patients were included. Among the 12 solid organ transplant patients, 5 shared a major and unique genotype that was also found as a minor strain in a sixth patient. A transmission map analysis strengthened the suspicion of nosocomial acquisition of this strain for the 6 patients. NGS-MLST enables accurate determination of subpopulation, which allowed excluding other patients from the transmission network. NGS-MLST genotyping approach was essential to deciphering this outbreak. This innovative approach brings new insights for future epidemiologic studies on this uncultivable opportunistic fungus. PMID:28726611

  1. NGS for the Masses: Empowering Biologists to Improve Bioinformatics Productivity ( 7th Annual SFAF Meeting, 2012)

    ScienceCinema

    Qaadri, Kashef [Biomatters Inc., San Francisco, CA (United States)

    2018-05-21

    Kashef Qaadri on "NGS for the Masses: Empowering biologists to improve bioinformatic productivity" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  2. NGS for the Masses: Empowering Biologists to Improve Bioinformatics Productivity ( 7th Annual SFAF Meeting, 2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qaadri, Kashef

    2012-06-01

    Kashef Qaadri on "NGS for the Masses: Empowering biologists to improve bioinformatic productivity" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  3. Outbreak Investigation Using High-Throughput Genome Sequencing within a Diagnostic Microbiology Laboratory

    PubMed Central

    Sherry, Norelle L.; Porter, Jessica L.; Seemann, Torsten; Watkins, Andrew; Stinear, Timothy P.

    2013-01-01

    Next-generation sequencing (NGS) of bacterial genomes has recently become more accessible and is now available to the routine diagnostic microbiology laboratory. However, questions remain regarding its feasibility, particularly with respect to data analysis in nonspecialist centers. To test the applicability of NGS to outbreak investigations, Ion Torrent sequencing was used to investigate a putative multidrug-resistant Escherichia coli outbreak in the neonatal unit of the Mercy Hospital for Women, Melbourne, Australia. Four suspected outbreak strains and a comparator strain were sequenced. Genome-wide single nucleotide polymorphism (SNP) analysis demonstrated that the four neonatal intensive care unit (NICU) strains were identical and easily differentiated from the comparator strain. Genome sequence data also determined that the NICU strains belonged to multilocus sequence type 131 and carried the blaCTX-M-15 extended-spectrum beta-lactamase. Comparison of the outbreak strains to all publicly available complete E. coli genome sequences showed that they clustered with neonatal meningitis and uropathogenic isolates. The turnaround time from a positive culture to the completion of sequencing (prior to data analysis) was 5 days, and the cost was approximately $300 per strain (for the reagents only). The main obstacles to a mainstream adoption of NGS technologies in diagnostic microbiology laboratories are currently cost (although this is decreasing), a paucity of user-friendly and clinically focused bioinformatics platforms, and a lack of genomics expertise outside the research environment. Despite these hurdles, NGS technologies provide unparalleled high-resolution genotyping in a short time frame and are likely to be widely implemented in the field of diagnostic microbiology in the next few years, particularly for epidemiological investigations (replacing current typing methods) and the characterization of resistance determinants. Clinical microbiologists need to familiarize themselves with these technologies and their applications. PMID:23408689

  4. Deep NPM1 Sequencing Following Allogeneic Hematopoietic Cell Transplantation Improves Risk Assessment in Adults with NPM1-Mutated AML.

    PubMed

    Zhou, Yi; Othus, Megan; Walter, Roland B; Estey, Elihu H; Wu, David; Wood, Brent L

    2018-04-21

    Relapse is the major cause of death in patients with acute myeloid leukemia (AML) after allogeneic hematopoietic cell transplantation (HCT). Measurable residual disease (MRD) detected by multiparameter flow cytometry (MFC) before and after HCT is a strong, independent risk factor for relapse. As next-generation sequencing (NGS) is increasingly applied in AML MRD detection, it remains to be determined if NGS can improve prediction of post-HCT relapse. Herein, we investigated pre-HCT MRD detected by MFC and NGS in 59 adult patients with NPM1-mutated AML in morphologic remission; 45 of the 59 had post-HCT MRD determined by MFC and NGS around day 28. Before HCT, MRD detected by MFC was the most significant risk factor for relapse (hazard ratio [HR], 4.63; P < .001), whereas MRD detected only by NGS was not. After HCT, MRD detected by either MFC or NGS was significant risk factor for relapse (HR, 4.96, P = .004 and HR, 4.36, P = .002, respectively). Combining pre- and post-HCT MRD provided the best prediction for relapse (HR, 5.25; P < .001), with a sensitivity at 83%. We conclude that NGS testing of mutated NPM1 post-HCT improves the risk assessment for relapse, whereas pre-HCT MFC testing identifies a subset of high-risk patients in whom additional therapy should be tested. Copyright © 2018 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  5. Microsatellite DNA capture from enriched libraries.

    PubMed

    Gonzalez, Elena G; Zardoya, Rafael

    2013-01-01

    Microsatellites are DNA sequences of tandem repeats of one to six nucleotides, which are highly polymorphic, and thus the molecular markers of choice in many kinship, population genetic, and conservation studies. There have been significant technical improvements since the early methods for microsatellite isolation were developed, and today the most common procedures take advantage of the hybrid capture methods of enriched-targeted microsatellite DNA. Furthermore, recent advents in sequencing technologies (i.e., next-generation sequencing, NGS) have fostered the mining of microsatellite markers in non-model organisms, affording a cost-effective way of obtaining a large amount of sequence data potentially useful for loci characterization. The rapid improvements of NGS platforms together with the increase in available microsatellite information open new avenues to the understanding of the evolutionary forces that shape genetic structuring in wild populations. Here, we provide detailed methodological procedures for microsatellite isolation based on the screening of GT microsatellite-enriched libraries, either by cloning and Sanger sequencing of positive clones or by direct NGS. Guides for designing new species-specific primers and basic genotyping are also given.

  6. Non-invasive prenatal diagnosis of achondroplasia and thanatophoric dysplasia: next-generation sequencing allows for a safer, more accurate, and comprehensive approach

    PubMed Central

    Chitty, Lyn S; Mason, Sarah; Barrett, Angela N; McKay, Fiona; Lench, Nicholas; Daley, Rebecca; Jenkins, Lucy A

    2015-01-01

    Abstract Objective Accurate prenatal diagnosis of genetic conditions can be challenging and usually requires invasive testing. Here, we demonstrate the potential of next-generation sequencing (NGS) for the analysis of cell-free DNA in maternal blood to transform prenatal diagnosis of monogenic disorders. Methods Analysis of cell-free DNA using a PCR and restriction enzyme digest (PCR–RED) was compared with a novel NGS assay in pregnancies at risk of achondroplasia and thanatophoric dysplasia. Results PCR–RED was performed in 72 cases and was correct in 88.6%, inconclusive in 7% with one false negative. NGS was performed in 47 cases and was accurate in 96.2% with no inconclusives. Both approaches were used in 27 cases, with NGS giving the correct result in the two cases inconclusive with PCR–RED. Conclusion NGS provides an accurate, flexible approach to non-invasive prenatal diagnosis of de novo and paternally inherited mutations. It is more sensitive than PCR–RED and is ideal when screening a gene with multiple potential pathogenic mutations. These findings highlight the value of NGS in the development of non-invasive prenatal diagnosis for other monogenic disorders. © 2015 The Authors. Prenatal Diagnosis published by John Wiley & Sons, Ltd. What's already known about this topic? Non-invasive prenatal diagnosis (NIPD) using PCR-based methods has been reported for the detection or exclusion of individual paternally inherited or de novo alleles in maternal plasma. What does this study add? NIPD using next generation sequencing provides an accurate, more sensitive approach which can be used to detect multiple mutations in a single assay and so is ideal when screening a gene with multiple potential pathogenic mutations. Next generation sequencing thus provides a flexible approach to non-invasive prenatal diagnosis ideal for use in a busy service laboratory. PMID:25728633

  7. Tracking the NGS revolution: managing life science research on shared high-performance computing clusters.

    PubMed

    Dahlö, Martin; Scofield, Douglas G; Schaal, Wesley; Spjuth, Ola

    2018-05-01

    Next-generation sequencing (NGS) has transformed the life sciences, and many research groups are newly dependent upon computer clusters to store and analyze large datasets. This creates challenges for e-infrastructures accustomed to hosting computationally mature research in other sciences. Using data gathered from our own clusters at UPPMAX computing center at Uppsala University, Sweden, where core hour usage of ∼800 NGS and ∼200 non-NGS projects is now similar, we compare and contrast the growth, administrative burden, and cluster usage of NGS projects with projects from other sciences. The number of NGS projects has grown rapidly since 2010, with growth driven by entry of new research groups. Storage used by NGS projects has grown more rapidly since 2013 and is now limited by disk capacity. NGS users submit nearly twice as many support tickets per user, and 11 more tools are installed each month for NGS projects than for non-NGS projects. We developed usage and efficiency metrics and show that computing jobs for NGS projects use more RAM than non-NGS projects, are more variable in core usage, and rarely span multiple nodes. NGS jobs use booked resources less efficiently for a variety of reasons. Active monitoring can improve this somewhat. Hosting NGS projects imposes a large administrative burden at UPPMAX due to large numbers of inexperienced users and diverse and rapidly evolving research areas. We provide a set of recommendations for e-infrastructures that host NGS research projects. We provide anonymized versions of our storage, job, and efficiency databases.

  8. Tracking the NGS revolution: managing life science research on shared high-performance computing clusters

    PubMed Central

    2018-01-01

    Abstract Background Next-generation sequencing (NGS) has transformed the life sciences, and many research groups are newly dependent upon computer clusters to store and analyze large datasets. This creates challenges for e-infrastructures accustomed to hosting computationally mature research in other sciences. Using data gathered from our own clusters at UPPMAX computing center at Uppsala University, Sweden, where core hour usage of ∼800 NGS and ∼200 non-NGS projects is now similar, we compare and contrast the growth, administrative burden, and cluster usage of NGS projects with projects from other sciences. Results The number of NGS projects has grown rapidly since 2010, with growth driven by entry of new research groups. Storage used by NGS projects has grown more rapidly since 2013 and is now limited by disk capacity. NGS users submit nearly twice as many support tickets per user, and 11 more tools are installed each month for NGS projects than for non-NGS projects. We developed usage and efficiency metrics and show that computing jobs for NGS projects use more RAM than non-NGS projects, are more variable in core usage, and rarely span multiple nodes. NGS jobs use booked resources less efficiently for a variety of reasons. Active monitoring can improve this somewhat. Conclusions Hosting NGS projects imposes a large administrative burden at UPPMAX due to large numbers of inexperienced users and diverse and rapidly evolving research areas. We provide a set of recommendations for e-infrastructures that host NGS research projects. We provide anonymized versions of our storage, job, and efficiency databases. PMID:29659792

  9. Human papillomavirus genotyping by Linear Array and Next-Generation Sequencing in cervical samples from Western Mexico.

    PubMed

    Flores-Miramontes, María Guadalupe; Torres-Reyes, Luis Alberto; Alvarado-Ruíz, Liliana; Romero-Martínez, Salvador Angel; Ramírez-Rodríguez, Verenice; Balderas-Peña, Luz María Adriana; Vallejo-Ruíz, Verónica; Piña-Sánchez, Patricia; Cortés-Gutiérrez, Elva Irene; Jave-Suárez, Luis Felipe; Aguilar-Lemarroy, Adriana

    2015-10-06

    The Linear Array® (LA) genotyping test is one of the most used methodologies for Human papillomavirus (HPV) genotyping, in that it is able to detect 37 HPV genotypes and co-infections in the same sample. However, the assay is limited to a restricted number of HPV, and sequence variations in the detection region of the HPV probes could give false negatives results. Recently, 454 Next-Generation sequencing (NGS) technology has been efficiently used also for HPV genotyping; this methodology is based on massive sequencing of HPV fragments and is expected to be highly specific and sensitive. In this work, we studied HPV prevalence in cervixes of women in Western Mexico by LA and confirmed the genotypes found by NGS. Two hundred thirty three cervical samples from women Without cervical lesions (WCL, n = 48), with Cervical intraepithelial neoplasia grade 1 (CIN I, n = 98), or with Cervical cancer (CC, n = 87) were recruited, DNA was extracted, and HPV positivity was determined by PCR amplification using PGMY09/11 primers. All HPV- positive samples were genotyped individually by LA. Additionally, pools of amplicons from the PGMY-PCR products were sequenced using 454 NGS technology. Results obtained by NGS were compared with those of LA for each group of samples. We identified 35 HPV genotypes, among which 30 were identified by both technologies; in addition, the HPV genotypes 32, 44, 74, 102 and 114 were detected by NGS. These latter genotypes, to our knowledge, have not been previously reported in Mexican population. Furthermore, we found that LA did not detect, in some diagnosis groups, certain HPV genotypes included in the test, such as 6, 11, 16, 26, 35, 51, 58, 68, 73, and 89, which indicates possible variations at the species level. There are HPV genotypes in Mexican population that cannot be detected by LA, which is, at present, the most complete commercial genotyping test. More studies are necessary to determine the impact of HPV-44, 74, 102 and 114 on the risk of developing CC. A greater number of samples must be analyzed by NGS for the most accurate determination of Mexican HPV variants.

  10. Tumor genome analysis includes germline genome: Are we ready for surprises?

    PubMed Central

    Catenacci, Daniel VT; Amico, Andrea L; Nielsen, Sarah M; Geynisman, Daniel M; Rambo, Brittany; Carey, George B; Gulden, Cassandra; Fackenthal, Jim; Marsh, Robert D; Kindler, Hedy L; Olopade, Olufunmilayo I

    2015-01-01

    We sought to describe the spectrum of potential and confirmed germline genomic events incidentally identified during routine medium-throughput somatic tumor DNA sequencing, and to provide a framework for pre- and post-test consent and counseling for patients and families. Targeted tumor-only next-generation sequencing (NGS) had been used to evaluate for possible druggable genomic events obtained from consecutive new patients with metastatic gastroesophageal, hepatobiliary or colorectal cancer seen at the University of Chicago. A panel of medical oncologists, cancer geneticists and genetic counselors retrospectively grouped these patients (N = 111) based on probability of possessing a potentially inherited mutation in a cancer susceptibility gene, both prior to and after incorporating tumor-only NGS results. High-risk patients (determined from NGS results) were contacted and counseled in person by a genetic counselor (N = 21). When possible and indicated, germline genetic testing was offered. Of 8 evaluable high-risk patients, 7 underwent germline testing. Three (37.5%) had confirmed actionable germline mutations (all in the BRCA2 gene). NGS offers promise, but poses significant challenges for oncologists who are ill prepared to handle incidental findings that have clinical implications for at risk family members. In this relatively small cohort of patients undergoing tumor genomic testing for gastrointestinal malignancies, we incidentally identified 3 BRCA2 mutations carriers. This report underscores the need for oncologists to develop a framework for pre- and post-test communication of risks to patients undergoing routine tumor-only sequencing. What's new? High-throughput, ‘next-generation sequencing’ (NGS) allows millions of DNA strands to be sequenced in parallel. NGS is increasingly used to test tumors for mutations that may guide therapy. Sometimes, however, this testing can reveal mutations that are known to be inherited, which means that family members are also at increased risk for cancer. How should this information be presented? This article underscores the need for oncologists to develop a framework for pre- and post-test communication and counseling regarding risk for patients undergoing tumor-only sequencing. PMID:25123297

  11. Approaches for in silico finishing of microbial genome sequences

    PubMed Central

    Kremer, Frederico Schmitt; McBride, Alan John Alexander; Pinto, Luciano da Silva

    2017-01-01

    Abstract The introduction of next-generation sequencing (NGS) had a significant effect on the availability of genomic information, leading to an increase in the number of sequenced genomes from a large spectrum of organisms. Unfortunately, due to the limitations implied by the short-read sequencing platforms, most of these newly sequenced genomes remained as “drafts”, incomplete representations of the whole genetic content. The previous genome sequencing studies indicated that finishing a genome sequenced by NGS, even bacteria, may require additional sequencing to fill the gaps, making the entire process very expensive. As such, several in silico approaches have been developed to optimize the genome assemblies and facilitate the finishing process. The present review aims to explore some free (open source, in many cases) tools that are available to facilitate genome finishing. PMID:28898352

  12. Approaches for in silico finishing of microbial genome sequences.

    PubMed

    Kremer, Frederico Schmitt; McBride, Alan John Alexander; Pinto, Luciano da Silva

    The introduction of next-generation sequencing (NGS) had a significant effect on the availability of genomic information, leading to an increase in the number of sequenced genomes from a large spectrum of organisms. Unfortunately, due to the limitations implied by the short-read sequencing platforms, most of these newly sequenced genomes remained as "drafts", incomplete representations of the whole genetic content. The previous genome sequencing studies indicated that finishing a genome sequenced by NGS, even bacteria, may require additional sequencing to fill the gaps, making the entire process very expensive. As such, several in silico approaches have been developed to optimize the genome assemblies and facilitate the finishing process. The present review aims to explore some free (open source, in many cases) tools that are available to facilitate genome finishing.

  13. Quick, sensitive and specific detection and evaluation of quantification of minor variants by high-throughput sequencing.

    PubMed

    Leung, Ross Ka-Kit; Dong, Zhi Qiang; Sa, Fei; Chong, Cheong Meng; Lei, Si Wan; Tsui, Stephen Kwok-Wing; Lee, Simon Ming-Yuen

    2014-02-01

    Minor variants have significant implications in quasispecies evolution, early cancer detection and non-invasive fetal genotyping but their accurate detection by next-generation sequencing (NGS) is hampered by sequencing errors. We generated sequencing data from mixtures at predetermined ratios in order to provide insight into sequencing errors and variations that can arise for which simulation cannot be performed. The information also enables better parameterization in depth of coverage, read quality and heterogeneity, library preparation techniques, technical repeatability for mathematical modeling, theory development and simulation experimental design. We devised minor variant authentication rules that achieved 100% accuracy in both testing and validation experiments. The rules are free from tedious inspection of alignment accuracy, sequencing read quality or errors introduced by homopolymers. The authentication processes only require minor variants to: (1) have minimum depth of coverage larger than 30; (2) be reported by (a) four or more variant callers, or (b) DiBayes or LoFreq, plus SNVer (or BWA when no results are returned by SNVer), and with the interassay coefficient of variation (CV) no larger than 0.1. Quantification accuracy undermined by sequencing errors could neither be overcome by ultra-deep sequencing, nor recruiting more variant callers to reach a consensus, such that consistent underestimation and overestimation (i.e. low CV) were observed. To accommodate stochastic error and adjust the observed ratio within a specified accuracy, we presented a proof of concept for the use of a double calibration curve for quantification, which provides an important reference towards potential industrial-scale fabrication of calibrants for NGS.

  14. A Universal Next-Generation Sequencing Protocol To Generate Noninfectious Barcoded cDNA Libraries from High-Containment RNA Viruses

    PubMed Central

    Moser, Lindsey A.; Ramirez-Carvajal, Lisbeth; Puri, Vinita; Pauszek, Steven J.; Matthews, Krystal; Dilley, Kari A.; Mullan, Clancy; McGraw, Jennifer; Khayat, Michael; Beeri, Karen; Yee, Anthony; Dugan, Vivien; Heise, Mark T.; Frieman, Matthew B.; Rodriguez, Luis L.; Bernard, Kristen A.; Wentworth, David E.

    2016-01-01

    ABSTRACT Several biosafety level 3 and/or 4 (BSL-3/4) pathogens are high-consequence, single-stranded RNA viruses, and their genomes, when introduced into permissive cells, are infectious. Moreover, many of these viruses are select agents (SAs), and their genomes are also considered SAs. For this reason, cDNAs and/or their derivatives must be tested to ensure the absence of infectious virus and/or viral RNA before transfer out of the BSL-3/4 and/or SA laboratory. This tremendously limits the capacity to conduct viral genomic research, particularly the application of next-generation sequencing (NGS). Here, we present a sequence-independent method to rapidly amplify viral genomic RNA while simultaneously abolishing both viral and genomic RNA infectivity across multiple single-stranded positive-sense RNA (ssRNA+) virus families. The process generates barcoded DNA amplicons that range in length from 300 to 1,000 bp, which cannot be used to rescue a virus and are stable to transport at room temperature. Our barcoding approach allows for up to 288 barcoded samples to be pooled into a single library and run across various NGS platforms without potential reconstitution of the viral genome. Our data demonstrate that this approach provides full-length genomic sequence information not only from high-titer virion preparations but it can also recover specific viral sequence from samples with limited starting material in the background of cellular RNA, and it can be used to identify pathogens from unknown samples. In summary, we describe a rapid, universal standard operating procedure that generates high-quality NGS libraries free of infectious virus and infectious viral RNA. IMPORTANCE This report establishes and validates a standard operating procedure (SOP) for select agents (SAs) and other biosafety level 3 and/or 4 (BSL-3/4) RNA viruses to rapidly generate noninfectious, barcoded cDNA amenable for next-generation sequencing (NGS). This eliminates the burden of testing all processed samples derived from high-consequence pathogens prior to transfer from high-containment laboratories to lower-containment facilities for sequencing. Our established protocol can be scaled up for high-throughput sequencing of hundreds of samples simultaneously, which can dramatically reduce the cost and effort required for NGS library construction. NGS data from this SOP can provide complete genome coverage from viral stocks and can also detect virus-specific reads from limited starting material. Our data suggest that the procedure can be implemented and easily validated by institutional biosafety committees across research laboratories. PMID:27822536

  15. Use of NGS in Commercial Broiler Production

    USDA-ARS?s Scientific Manuscript database

    With the development and evolution of next generation sequencing technologies, these powerful tools can be applied to a variety of aspect of commercial broiler production, especially in respect to food safety issues. NGS technologies allow for a deeper understanding of the complex microbiota inhere...

  16. Evaluation of Ion Torrent sequencing technology for rapid clinical human leucocyte antigen typing.

    PubMed

    Guerra, Sandra G; Chong, Winnie; Brown, Colin J; Navarrete, Cristina V

    2018-06-05

    The development of techniques to define the human leucocyte antigen (HLA) region has proven to be challenging due to its high level of polymorphism. Within a clinical laboratory, a technique for high-resolution HLA typing, which is rapid and cost effective is essential. NGS has provided a rapid, high-resolution HLA typing solution, which has reduced the number of HLA ambiguities seen with other typing methods. In this study, the One Lambda NXType NGS kit was tested on the Ion Torrent PGM platform. A total of 362 registry donors from four ethnic populations (Europeans, South Asians, Africans and Chinese) were NGS HLA typed across 9-loci (HLA-A, -B, -C, -DRB1,-DRB345 -DQB1 and -DPB1). Concordance rates of 91%-98% were obtained (for HLA-A, -B, -C, -DRB1, -DQB1 and -DPB1) when compared to historical PCR-SSO HLA types, and the identification of uncommon alleles such as A*24:07:01 and C*04:82 were observed. A turnaround time of four days was achieved for typing 44 samples. However, some limitations were observed; primer locations did not allow all ambiguities to be resolved for HLA Class II where Exon I and IV amplification are needed (HLA-DRB1*04:07:01/04:92, HLA-DRB1*09:01:02/*09:21 and HLA-DRB1*12:01:01/*12:10). This study has demonstrated high-resolution typing by NGS can be achieved in an acceptable turnaround time for a clinical laboratory; however, the Ion Torrent workflow has some technical limitations that should be addressed. © 2018 John Wiley & Sons Ltd.

  17. VIP: an integrated pipeline for metagenomics of virus identification and discovery

    PubMed Central

    Li, Yang; Wang, Hao; Nie, Kai; Zhang, Chen; Zhang, Yi; Wang, Ji; Niu, Peihua; Ma, Xuejun

    2016-01-01

    Identification and discovery of viruses using next-generation sequencing technology is a fast-developing area with potential wide application in clinical diagnostics, public health monitoring and novel virus discovery. However, tremendous sequence data from NGS study has posed great challenge both in accuracy and velocity for application of NGS study. Here we describe VIP (“Virus Identification Pipeline”), a one-touch computational pipeline for virus identification and discovery from metagenomic NGS data. VIP performs the following steps to achieve its goal: (i) map and filter out background-related reads, (ii) extensive classification of reads on the basis of nucleotide and remote amino acid homology, (iii) multiple k-mer based de novo assembly and phylogenetic analysis to provide evolutionary insight. We validated the feasibility and veracity of this pipeline with sequencing results of various types of clinical samples and public datasets. VIP has also contributed to timely virus diagnosis (~10 min) in acutely ill patients, demonstrating its potential in the performance of unbiased NGS-based clinical studies with demand of short turnaround time. VIP is released under GPLv3 and is available for free download at: https://github.com/keylabivdc/VIP. PMID:27026381

  18. Clinical Validation of Targeted Next Generation Sequencing for Colon and Lung Cancers

    PubMed Central

    D’Haene, Nicky; Le Mercier, Marie; De Nève, Nancy; Blanchard, Oriane; Delaunoy, Mélanie; El Housni, Hakim; Dessars, Barbara; Heimann, Pierre; Remmelink, Myriam; Demetter, Pieter; Tejpar, Sabine; Salmon, Isabelle

    2015-01-01

    Objective Recently, Next Generation Sequencing (NGS) has begun to supplant other technologies for gene mutation testing that is now required for targeted therapies. However, transfer of NGS technology to clinical daily practice requires validation. Methods We validated the Ion Torrent AmpliSeq Colon and Lung cancer panel interrogating 1850 hotspots in 22 genes using the Ion Torrent Personal Genome Machine. First, we used commercial reference standards that carry mutations at defined allelic frequency (AF). Then, 51 colorectal adenocarcinomas (CRC) and 39 non small cell lung carcinomas (NSCLC) were retrospectively analyzed. Results Sensitivity and accuracy for detecting variants at an AF >4% was 100% for commercial reference standards. Among the 90 cases, 89 (98.9%) were successfully sequenced. Among the 86 samples for which NGS and the reference test were both informative, 83 showed concordant results between NGS and the reference test; i.e. KRAS and BRAF for CRC and EGFR for NSCLC, with the 3 discordant cases each characterized by an AF <10%. Conclusions Overall, the AmpliSeq colon/lung cancer panel was specific and sensitive for mutation analysis of gene panels and can be incorporated into clinical daily practice. PMID:26366557

  19. A bioinformatics approach for identifying transgene insertion sites using whole genome sequencing data.

    PubMed

    Park, Doori; Park, Su-Hyun; Ban, Yong Wook; Kim, Youn Shic; Park, Kyoung-Cheul; Kim, Nam-Soo; Kim, Ju-Kon; Choi, Ik-Young

    2017-08-15

    Genetically modified crops (GM crops) have been developed to improve the agricultural traits of modern crop cultivars. Safety assessments of GM crops are of paramount importance in research at developmental stages and before releasing transgenic plants into the marketplace. Sequencing technology is developing rapidly, with higher output and labor efficiencies, and will eventually replace existing methods for the molecular characterization of genetically modified organisms. To detect the transgenic insertion locations in the three GM rice gnomes, Illumina sequencing reads are mapped and classified to the rice genome and plasmid sequence. The both mapped reads are classified to characterize the junction site between plant and transgene sequence by sequence alignment. Herein, we present a next generation sequencing (NGS)-based molecular characterization method, using transgenic rice plants SNU-Bt9-5, SNU-Bt9-30, and SNU-Bt9-109. Specifically, using bioinformatics tools, we detected the precise insertion locations and copy numbers of transfer DNA, genetic rearrangements, and the absence of backbone sequences, which were equivalent to results obtained from Southern blot analyses. NGS methods have been suggested as an effective means of characterizing and detecting transgenic insertion locations in genomes. Our results demonstrate the use of a combination of NGS technology and bioinformatics approaches that offers cost- and time-effective methods for assessing the safety of transgenic plants.

  20. A Multi-Omics Approach to Evaluate the Quality of Milk Whey Used in Ricotta Cheese Production

    PubMed Central

    Sattin, Eleonora; Andreani, Nadia A.; Carraro, Lisa; Lucchini, Rosaria; Fasolato, Luca; Telatin, Andrea; Balzan, Stefania; Novelli, Enrico; Simionati, Barbara; Cardazzo, Barbara

    2016-01-01

    In the past, milk whey was only a by-product of cheese production, but currently, it has a high commercial value for use in the food industries. However, the regulation of whey management (i.e., storage and hygienic properties) has not been updated, and as a consequence, its microbiological quality is very challenging for food safety. The Next Generation Sequencing (NGS) technique was applied to several whey samples used for Ricotta production to evaluate the microbial community composition in depth using both RNA and DNA as templates for NGS library construction. Whey samples demonstrating a high microbial and aerobic spore load contained mostly Firmicutes; although variable, some samples contained a relevant amount of Gammaproteobacteria. Several lots of whey acquired as raw material for Ricotta production presented defective organoleptic properties. To define the volatile compounds in normal and defective whey samples, a headspace gas chromatography/mass spectrometry (GC/MS) analysis was conducted. The statistical analysis demonstrated that different microbial communities resulted from DNA or cDNA library sequencing, and distinguishable microbiota composed the communities contained in the organoleptic-defective whey samples. PMID:27582735

  1. Validity of Targeted Next-Generation Sequencing in Routine Care for Identifying Clinically Relevant Molecular Profiles in Non-Small-Cell Lung Cancer: Results of a 2-Year Experience on 1343 Samples.

    PubMed

    Legras, Antoine; Barritault, Marc; Tallet, Anne; Fabre, Elizabeth; Guyard, Alice; Rance, Bastien; Digan, William; Pecuchet, Nicolas; Giroux-Leprieur, Etienne; Julie, Catherine; Jouveshomme, Stéphane; Duchatelle, Véronique; Giraudet, Véronique; Gibault, Laure; Cazier, Alain; Pastre, Jean; Le Pimpec-Barthes, Françoise; Laurent-Puig, Pierre; Blons, Hélène

    2018-05-19

    Theranostic assays are based on single-gene testing, but the ability of next-generation sequencing (NGS) to interrogate numerous genetic alterations will progressively replace single-gene assays. Although NGS was evaluated to screen for theranostic mutations, its usefulness in clinical practice on large series of samples remains to be demonstrated. NGS performance was assessed following guidelines. TaqMan probes and NGS were compared for their ability to detect EGFR and KRAS mutations, and NGS mutation profiles were analyzed on a large series of non-small-cell lung cancers (n = 1343). The R 2 correlation between expected and measured allelic ratio, using commercial samples, was >0.96. Mutation detection threshold was 2% for 10 ng of DNA input. κ Scores for TaqMan versus NGS were 0.99 (95% CI, 0.97-1.00) for EGFR and 0.98 (95% CI, 0.97-1.00) for KRAS after exclusion of rare EGFR (n = 40) and KRAS (n = 60) mutations. NGS identified 693 and 292 mutations in validated and potential oncogenic drivers, respectively. Significant associations were found between EGFR and PI3KCA or CTNNB1 and between KRAS and STK11. Potential oncogenic driver mutations or gene amplifications were more frequent in validated oncogenic driver nonmutated samples. This work is a proof of concept that targeted NGS is accessible in routine screening, including large screening, at reasonable cost. Clinical data should be collected and implemented in specific databases to make molecular data meaningful for direct patients' benefit. Copyright © 2018. Published by Elsevier Inc.

  2. TagDust2: a generic method to extract reads from sequencing data.

    PubMed

    Lassmann, Timo

    2015-01-28

    Arguably the most basic step in the analysis of next generation sequencing data (NGS) involves the extraction of mappable reads from the raw reads produced by sequencing instruments. The presence of barcodes, adaptors and artifacts subject to sequencing errors makes this step non-trivial. Here I present TagDust2, a generic approach utilizing a library of hidden Markov models (HMM) to accurately extract reads from a wide array of possible read architectures. TagDust2 extracts more reads of higher quality compared to other approaches. Processing of multiplexed single, paired end and libraries containing unique molecular identifiers is fully supported. Two additional post processing steps are included to exclude known contaminants and filter out low complexity sequences. Finally, TagDust2 can automatically detect the library type of sequenced data from a predefined selection. Taken together TagDust2 is a feature rich, flexible and adaptive solution to go from raw to mappable NGS reads in a single step. The ability to recognize and record the contents of raw reads will help to automate and demystify the initial, and often poorly documented, steps in NGS data analysis pipelines. TagDust2 is freely available at: http://tagdust.sourceforge.net .

  3. Accuracy of next-generation sequencing for the identification of clinically relevant variants in cytology smears in lung adenocarcinoma.

    PubMed

    Baum, Jordan E; Zhang, Pan; Hoda, Rana S; Geraghty, Brian; Rennert, Hanna; Narula, Navneet; Fernandes, Helen D

    2017-06-01

    Minimally invasive diagnostic procedures such as needle-core biopsy and fine-needle aspiration provide adequate material for molecular analyses. Advances in precision oncology are trending toward the interrogation of limited amounts of genomic material to guide clinical and therapeutic decisions. The aim of this study was to investigate the minimum cellularity needed on cytologic smears for the identification of clinically relevant variants with next-generation sequencing (NGS). Thirty cases of cytologically diagnosed, resection-proven primary lung adenocarcinoma were identified. Nineteen of the 30 cases were known to harbor actionable variants. One Diff-Quik (DQ)-stained slide and 1 Papanicolaou (Pap)-stained slide were selected from each case. Cases were categorized as containing fewer than 100 tumor cells, 100 to 500 tumor cells, or more than 500 tumor cells. NGS was performed on the Ion Torrent platform. NGS was successfully performed on all cell blocks and on 90% of the smears. Paired DQ and Pap smears showed similar cellularity, and cases that differed in cellularity were within 1 category of each other. The cases with more than 100 tumor cells had a 93% success rate; this was significantly different from the situation for cases with fewer than 100 tumor cells, which were successfully sequenced only 67% of the time. Overall, NGS was able to provide clinically relevant information for 83% of DQ smears and for 90% of Pap smears tested. The data show a significantly higher likelihood of successful NGS with cytologic smears with more than 100 tumor cells. There was a trend for a higher NGS success rate with Pap smears versus DQ smears. Cancer Cytopathol 2017;125:398-406. © 2017 American Cancer Society. © 2017 American Cancer Society.

  4. Group-based variant calling leveraging next-generation supercomputing for large-scale whole-genome sequencing studies.

    PubMed

    Standish, Kristopher A; Carland, Tristan M; Lockwood, Glenn K; Pfeiffer, Wayne; Tatineni, Mahidhar; Huang, C Chris; Lamberth, Sarah; Cherkas, Yauheniya; Brodmerkel, Carrie; Jaeger, Ed; Smith, Lance; Rajagopal, Gunaretnam; Curran, Mark E; Schork, Nicholas J

    2015-09-22

    Next-generation sequencing (NGS) technologies have become much more efficient, allowing whole human genomes to be sequenced faster and cheaper than ever before. However, processing the raw sequence reads associated with NGS technologies requires care and sophistication in order to draw compelling inferences about phenotypic consequences of variation in human genomes. It has been shown that different approaches to variant calling from NGS data can lead to different conclusions. Ensuring appropriate accuracy and quality in variant calling can come at a computational cost. We describe our experience implementing and evaluating a group-based approach to calling variants on large numbers of whole human genomes. We explore the influence of many factors that may impact the accuracy and efficiency of group-based variant calling, including group size, the biogeographical backgrounds of the individuals who have been sequenced, and the computing environment used. We make efficient use of the Gordon supercomputer cluster at the San Diego Supercomputer Center by incorporating job-packing and parallelization considerations into our workflow while calling variants on 437 whole human genomes generated as part of large association study. We ultimately find that our workflow resulted in high-quality variant calls in a computationally efficient manner. We argue that studies like ours should motivate further investigations combining hardware-oriented advances in computing systems with algorithmic developments to tackle emerging 'big data' problems in biomedical research brought on by the expansion of NGS technologies.

  5. Decoding the Heart through Next Generation Sequencing Approaches.

    PubMed

    Pawlak, Michal; Niescierowicz, Katarzyna; Winata, Cecilia Lanny

    2018-06-07

    : Vertebrate organs develop through a complex process which involves interaction between multiple signaling pathways at the molecular, cell, and tissue levels. Heart development is an example of such complex process which, when disrupted, results in congenital heart disease (CHD). This complexity necessitates a holistic approach which allows the visualization of genome-wide interaction networks, as opposed to assessment of limited subsets of factors. Genomics offers a powerful solution to address the problem of biological complexity by enabling the observation of molecular processes at a genome-wide scale. The emergence of next generation sequencing (NGS) technology has facilitated the expansion of genomics, increasing its output capacity and applicability in various biological disciplines. The application of NGS in various aspects of heart biology has resulted in new discoveries, generating novel insights into this field of study. Here we review the contributions of NGS technology into the understanding of heart development and its disruption reflected in CHD and discuss how emerging NGS based methodologies can contribute to the further understanding of heart repair.

  6. No more non-model species: the promise of next generation sequencing for comparative immunology.

    PubMed

    Dheilly, Nolwenn M; Adema, Coen; Raftos, David A; Gourbal, Benjamin; Grunau, Christoph; Du Pasquier, Louis

    2014-07-01

    Next generation sequencing (NGS) allows for the rapid, comprehensive and cost effective analysis of entire genomes and transcriptomes. NGS provides approaches for immune response gene discovery, profiling gene expression over the course of parasitosis, studying mechanisms of diversification of immune receptors and investigating the role of epigenetic mechanisms in regulating immune gene expression and/or diversification. NGS will allow meaningful comparisons to be made between organisms from different taxa in an effort to understand the selection of diverse strategies for host defence under different environmental pathogen pressures. At the same time, it will reveal the shared and unique components of the immunological toolkit and basic functional aspects that are essential for immune defence throughout the living world. In this review, we argue that NGS will revolutionize our understanding of immune responses throughout the animal kingdom because the depth of information it provides will circumvent the need to concentrate on a few "model" species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. A Fast Solution to NGS Library Prep with Low Nanogram DNA Input

    PubMed Central

    Liu, Pingfang; Lohman, Gregory J.S.; Cantor, Eric; Langhorst, Bradley W.; Yigit, Erbay; Apone, Lynne M.; Munafo, Daniela B.; Stewart, Fiona J.; Evans, Thomas C.; Nichols, Nicole; Dimalanta, Eileen T.; Davis, Theodore B.; Sumner, Christine

    2013-01-01

    Next Generation Sequencing (NGS) has significantly impacted human genetics, enabling a comprehensive characterization of the human genome as well as a better understanding of many genomic abnormalities. By delivering massive DNA sequences at unprecedented speed and cost, NGS promises to make personalized medicine a reality in the foreseeable future. To date, library construction with clinical samples has been a challenge, primarily due to the limited quantities of sample DNA available. Our objective here was to overcome this challenge by developing NEBNext® Ultra DNA Library Prep Kit, a fast library preparation method. Specifically, we streamlined the workflow utilizing novel NEBNext reagents and adaptors, including a new DNA polymerase that has been optimized to minimize GC bias. As a result of this work, we have developed a simple method for library construction from an amount of DNA as low as 5 ng, which can be used for both intact and fragmented DNA. Moreover, the workflow is compatible with multiple NGS platforms.

  8. Next-Generation Sequencing for Infectious Disease Diagnosis and Management: A Report of the Association for Molecular Pathology.

    PubMed

    Lefterova, Martina I; Suarez, Carlos J; Banaei, Niaz; Pinsky, Benjamin A

    2015-11-01

    Next-generation sequencing (NGS) technologies are increasingly being used for diagnosis and monitoring of infectious diseases. Herein, we review the application of NGS in clinical microbiology, focusing on genotypic resistance testing, direct detection of unknown disease-associated pathogens in clinical specimens, investigation of microbial population diversity in the human host, and strain typing. We have organized the review into three main sections: i) applications in clinical virology, ii) applications in clinical bacteriology, mycobacteriology, and mycology, and iii) validation, quality control, and maintenance of proficiency. Although NGS holds enormous promise for clinical infectious disease testing, many challenges remain, including automation, standardizing technical protocols and bioinformatics pipelines, improving reference databases, establishing proficiency testing and quality control measures, and reducing cost and turnaround time, all of which would be necessary for widespread adoption of NGS in clinical microbiology laboratories. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  9. TGS-TB: Total Genotyping Solution for Mycobacterium tuberculosis Using Short-Read Whole-Genome Sequencing

    PubMed Central

    Sekizuka, Tsuyoshi; Yamashita, Akifumi; Murase, Yoshiro; Iwamoto, Tomotada; Mitarai, Satoshi; Kato, Seiya; Kuroda, Makoto

    2015-01-01

    Whole-genome sequencing (WGS) with next-generation DNA sequencing (NGS) is an increasingly accessible and affordable method for genotyping hundreds of Mycobacterium tuberculosis (Mtb) isolates, leading to more effective epidemiological studies involving single nucleotide variations (SNVs) in core genomic sequences based on molecular evolution. We developed an all-in-one web-based tool for genotyping Mtb, referred to as the Total Genotyping Solution for TB (TGS-TB), to facilitate multiple genotyping platforms using NGS for spoligotyping and the detection of phylogenies with core genomic SNVs, IS6110 insertion sites, and 43 customized loci for variable number tandem repeat (VNTR) through a user-friendly, simple click interface. This methodology is implemented with a KvarQ script to predict MTBC lineages/sublineages and potential antimicrobial resistance. Seven Mtb isolates (JP01 to JP07) in this study showing the same VNTR profile were accurately discriminated through median-joining network analysis using SNVs unique to those isolates. An additional IS6110 insertion was detected in one of those isolates as supportive genetic information in addition to core genomic SNVs. The results of in silico analyses using TGS-TB are consistent with those obtained using conventional molecular genotyping methods, suggesting that NGS short reads could provide multiple genotypes to discriminate multiple strains of Mtb, although longer NGS reads (≥300-mer) will be required for full genotyping on the TGS-TB web site. Most available short reads (~100-mer) can be utilized to discriminate the isolates based on the core genome phylogeny. TGS-TB provides a more accurate and discriminative strain typing for clinical and epidemiological investigations; NGS strain typing offers a total genotyping solution for Mtb outbreak and surveillance. TGS-TB web site: https://gph.niid.go.jp/tgs-tb/. PMID:26565975

  10. DNA sequencing using polymerase substrate-binding kinetics

    PubMed Central

    Previte, Michael John Robert; Zhou, Chunhong; Kellinger, Matthew; Pantoja, Rigo; Chen, Cheng-Yao; Shi, Jin; Wang, BeiBei; Kia, Amirali; Etchin, Sergey; Vieceli, John; Nikoomanzar, Ali; Bomati, Erin; Gloeckner, Christian; Ronaghi, Mostafa; He, Molly Min

    2015-01-01

    Next-generation sequencing (NGS) has transformed genomic research by decreasing the cost of sequencing. However, whole-genome sequencing is still costly and complex for diagnostics purposes. In the clinical space, targeted sequencing has the advantage of allowing researchers to focus on specific genes of interest. Routine clinical use of targeted NGS mandates inexpensive instruments, fast turnaround time and an integrated and robust workflow. Here we demonstrate a version of the Sequencing by Synthesis (SBS) chemistry that potentially can become a preferred targeted sequencing method in the clinical space. This sequencing chemistry uses natural nucleotides and is based on real-time recording of the differential polymerase/DNA-binding kinetics in the presence of correct or mismatch nucleotides. This ensemble SBS chemistry has been implemented on an existing Illumina sequencing platform with integrated cluster amplification. We discuss the advantages of this sequencing chemistry for targeted sequencing as well as its limitations for other applications. PMID:25612848

  11. PVT: An Efficient Computational Procedure to Speed up Next-generation Sequence Analysis

    PubMed Central

    2014-01-01

    Background High-throughput Next-Generation Sequencing (NGS) techniques are advancing genomics and molecular biology research. This technology generates substantially large data which puts up a major challenge to the scientists for an efficient, cost and time effective solution to analyse such data. Further, for the different types of NGS data, there are certain common challenging steps involved in analysing those data. Spliced alignment is one such fundamental step in NGS data analysis which is extremely computational intensive as well as time consuming. There exists serious problem even with the most widely used spliced alignment tools. TopHat is one such widely used spliced alignment tools which although supports multithreading, does not efficiently utilize computational resources in terms of CPU utilization and memory. Here we have introduced PVT (Pipelined Version of TopHat) where we take up a modular approach by breaking TopHat’s serial execution into a pipeline of multiple stages, thereby increasing the degree of parallelization and computational resource utilization. Thus we address the discrepancies in TopHat so as to analyze large NGS data efficiently. Results We analysed the SRA dataset (SRX026839 and SRX026838) consisting of single end reads and SRA data SRR1027730 consisting of paired-end reads. We used TopHat v2.0.8 to analyse these datasets and noted the CPU usage, memory footprint and execution time during spliced alignment. With this basic information, we designed PVT, a pipelined version of TopHat that removes the redundant computational steps during ‘spliced alignment’ and breaks the job into a pipeline of multiple stages (each comprising of different step(s)) to improve its resource utilization, thus reducing the execution time. Conclusions PVT provides an improvement over TopHat for spliced alignment of NGS data analysis. PVT thus resulted in the reduction of the execution time to ~23% for the single end read dataset. Further, PVT designed for paired end reads showed an improved performance of ~41% over TopHat (for the chosen data) with respect to execution time. Moreover we propose PVT-Cloud which implements PVT pipeline in cloud computing system. PMID:24894600

  12. PVT: an efficient computational procedure to speed up next-generation sequence analysis.

    PubMed

    Maji, Ranjan Kumar; Sarkar, Arijita; Khatua, Sunirmal; Dasgupta, Subhasis; Ghosh, Zhumur

    2014-06-04

    High-throughput Next-Generation Sequencing (NGS) techniques are advancing genomics and molecular biology research. This technology generates substantially large data which puts up a major challenge to the scientists for an efficient, cost and time effective solution to analyse such data. Further, for the different types of NGS data, there are certain common challenging steps involved in analysing those data. Spliced alignment is one such fundamental step in NGS data analysis which is extremely computational intensive as well as time consuming. There exists serious problem even with the most widely used spliced alignment tools. TopHat is one such widely used spliced alignment tools which although supports multithreading, does not efficiently utilize computational resources in terms of CPU utilization and memory. Here we have introduced PVT (Pipelined Version of TopHat) where we take up a modular approach by breaking TopHat's serial execution into a pipeline of multiple stages, thereby increasing the degree of parallelization and computational resource utilization. Thus we address the discrepancies in TopHat so as to analyze large NGS data efficiently. We analysed the SRA dataset (SRX026839 and SRX026838) consisting of single end reads and SRA data SRR1027730 consisting of paired-end reads. We used TopHat v2.0.8 to analyse these datasets and noted the CPU usage, memory footprint and execution time during spliced alignment. With this basic information, we designed PVT, a pipelined version of TopHat that removes the redundant computational steps during 'spliced alignment' and breaks the job into a pipeline of multiple stages (each comprising of different step(s)) to improve its resource utilization, thus reducing the execution time. PVT provides an improvement over TopHat for spliced alignment of NGS data analysis. PVT thus resulted in the reduction of the execution time to ~23% for the single end read dataset. Further, PVT designed for paired end reads showed an improved performance of ~41% over TopHat (for the chosen data) with respect to execution time. Moreover we propose PVT-Cloud which implements PVT pipeline in cloud computing system.

  13. CRCDA—Comprehensive resources for cancer NGS data analysis

    PubMed Central

    Thangam, Manonanthini; Gopal, Ramesh Kumar

    2015-01-01

    Next generation sequencing (NGS) innovations put a compelling landmark in life science and changed the direction of research in clinical oncology with its productivity to diagnose and treat cancer. The aim of our portal comprehensive resources for cancer NGS data analysis (CRCDA) is to provide a collection of different NGS tools and pipelines under diverse classes with cancer pathways and databases and furthermore, literature information from PubMed. The literature data was constrained to 18 most common cancer types such as breast cancer, colon cancer and other cancers that exhibit in worldwide population. NGS-cancer tools for the convenience have been categorized into cancer genomics, cancer transcriptomics, cancer epigenomics, quality control and visualization. Pipelines for variant detection, quality control and data analysis were listed to provide out-of-the box solution for NGS data analysis, which may help researchers to overcome challenges in selecting and configuring individual tools for analysing exome, whole genome and transcriptome data. An extensive search page was developed that can be queried by using (i) type of data [literature, gene data and sequence read archive (SRA) data] and (ii) type of cancer (selected based on global incidence and accessibility of data). For each category of analysis, variety of tools are available and the biggest challenge is in searching and using the right tool for the right application. The objective of the work is collecting tools in each category available at various places and arranging the tools and other data in a simple and user-friendly manner for biologists and oncologists to find information easier. To the best of our knowledge, we have collected and presented a comprehensive package of most of the resources available in cancer for NGS data analysis. Given these factors, we believe that this website will be an useful resource to the NGS research community working on cancer. Database URL: http://bioinfo.au-kbc.org.in/ngs/ngshome.html. PMID:26450948

  14. AlignerBoost: A Generalized Software Toolkit for Boosting Next-Gen Sequencing Mapping Accuracy Using a Bayesian-Based Mapping Quality Framework.

    PubMed

    Zheng, Qi; Grice, Elizabeth A

    2016-10-01

    Accurate mapping of next-generation sequencing (NGS) reads to reference genomes is crucial for almost all NGS applications and downstream analyses. Various repetitive elements in human and other higher eukaryotic genomes contribute in large part to ambiguously (non-uniquely) mapped reads. Most available NGS aligners attempt to address this by either removing all non-uniquely mapping reads, or reporting one random or "best" hit based on simple heuristics. Accurate estimation of the mapping quality of NGS reads is therefore critical albeit completely lacking at present. Here we developed a generalized software toolkit "AlignerBoost", which utilizes a Bayesian-based framework to accurately estimate mapping quality of ambiguously mapped NGS reads. We tested AlignerBoost with both simulated and real DNA-seq and RNA-seq datasets at various thresholds. In most cases, but especially for reads falling within repetitive regions, AlignerBoost dramatically increases the mapping precision of modern NGS aligners without significantly compromising the sensitivity even without mapping quality filters. When using higher mapping quality cutoffs, AlignerBoost achieves a much lower false mapping rate while exhibiting comparable or higher sensitivity compared to the aligner default modes, therefore significantly boosting the detection power of NGS aligners even using extreme thresholds. AlignerBoost is also SNP-aware, and higher quality alignments can be achieved if provided with known SNPs. AlignerBoost's algorithm is computationally efficient, and can process one million alignments within 30 seconds on a typical desktop computer. AlignerBoost is implemented as a uniform Java application and is freely available at https://github.com/Grice-Lab/AlignerBoost.

  15. A no-gold-standard technique for objective assessment of quantitative nuclear-medicine imaging methods

    PubMed Central

    Jha, Abhinav K; Caffo, Brian; Frey, Eric C

    2016-01-01

    The objective optimization and evaluation of nuclear-medicine quantitative imaging methods using patient data is highly desirable but often hindered by the lack of a gold standard. Previously, a regression-without-truth (RWT) approach has been proposed for evaluating quantitative imaging methods in the absence of a gold standard, but this approach implicitly assumes that bounds on the distribution of true values are known. Several quantitative imaging methods in nuclear-medicine imaging measure parameters where these bounds are not known, such as the activity concentration in an organ or the volume of a tumor. We extended upon the RWT approach to develop a no-gold-standard (NGS) technique for objectively evaluating such quantitative nuclear-medicine imaging methods with patient data in the absence of any ground truth. Using the parameters estimated with the NGS technique, a figure of merit, the noise-to-slope ratio (NSR), can be computed, which can rank the methods on the basis of precision. An issue with NGS evaluation techniques is the requirement of a large number of patient studies. To reduce this requirement, the proposed method explored the use of multiple quantitative measurements from the same patient, such as the activity concentration values from different organs in the same patient. The proposed technique was evaluated using rigorous numerical experiments and using data from realistic simulation studies. The numerical experiments demonstrated that the NSR was estimated accurately using the proposed NGS technique when the bounds on the distribution of true values were not precisely known, thus serving as a very reliable metric for ranking the methods on the basis of precision. In the realistic simulation study, the NGS technique was used to rank reconstruction methods for quantitative single-photon emission computed tomography (SPECT) based on their performance on the task of estimating the mean activity concentration within a known volume of interest. Results showed that the proposed technique provided accurate ranking of the reconstruction methods for 97.5% of the 50 noise realizations. Further, the technique was robust to the choice of evaluated reconstruction methods. The simulation study pointed to possible violations of the assumptions made in the NGS technique under clinical scenarios. However, numerical experiments indicated that the NGS technique was robust in ranking methods even when there was some degree of such violation. PMID:26982626

  16. A no-gold-standard technique for objective assessment of quantitative nuclear-medicine imaging methods.

    PubMed

    Jha, Abhinav K; Caffo, Brian; Frey, Eric C

    2016-04-07

    The objective optimization and evaluation of nuclear-medicine quantitative imaging methods using patient data is highly desirable but often hindered by the lack of a gold standard. Previously, a regression-without-truth (RWT) approach has been proposed for evaluating quantitative imaging methods in the absence of a gold standard, but this approach implicitly assumes that bounds on the distribution of true values are known. Several quantitative imaging methods in nuclear-medicine imaging measure parameters where these bounds are not known, such as the activity concentration in an organ or the volume of a tumor. We extended upon the RWT approach to develop a no-gold-standard (NGS) technique for objectively evaluating such quantitative nuclear-medicine imaging methods with patient data in the absence of any ground truth. Using the parameters estimated with the NGS technique, a figure of merit, the noise-to-slope ratio (NSR), can be computed, which can rank the methods on the basis of precision. An issue with NGS evaluation techniques is the requirement of a large number of patient studies. To reduce this requirement, the proposed method explored the use of multiple quantitative measurements from the same patient, such as the activity concentration values from different organs in the same patient. The proposed technique was evaluated using rigorous numerical experiments and using data from realistic simulation studies. The numerical experiments demonstrated that the NSR was estimated accurately using the proposed NGS technique when the bounds on the distribution of true values were not precisely known, thus serving as a very reliable metric for ranking the methods on the basis of precision. In the realistic simulation study, the NGS technique was used to rank reconstruction methods for quantitative single-photon emission computed tomography (SPECT) based on their performance on the task of estimating the mean activity concentration within a known volume of interest. Results showed that the proposed technique provided accurate ranking of the reconstruction methods for 97.5% of the 50 noise realizations. Further, the technique was robust to the choice of evaluated reconstruction methods. The simulation study pointed to possible violations of the assumptions made in the NGS technique under clinical scenarios. However, numerical experiments indicated that the NGS technique was robust in ranking methods even when there was some degree of such violation.

  17. Practical no-gold-standard evaluation framework for quantitative imaging methods: application to lesion segmentation in positron emission tomography

    PubMed Central

    Jha, Abhinav K.; Mena, Esther; Caffo, Brian; Ashrafinia, Saeed; Rahmim, Arman; Frey, Eric; Subramaniam, Rathan M.

    2017-01-01

    Abstract. Recently, a class of no-gold-standard (NGS) techniques have been proposed to evaluate quantitative imaging methods using patient data. These techniques provide figures of merit (FoMs) quantifying the precision of the estimated quantitative value without requiring repeated measurements and without requiring a gold standard. However, applying these techniques to patient data presents several practical difficulties including assessing the underlying assumptions, accounting for patient-sampling-related uncertainty, and assessing the reliability of the estimated FoMs. To address these issues, we propose statistical tests that provide confidence in the underlying assumptions and in the reliability of the estimated FoMs. Furthermore, the NGS technique is integrated within a bootstrap-based methodology to account for patient-sampling-related uncertainty. The developed NGS framework was applied to evaluate four methods for segmenting lesions from F-Fluoro-2-deoxyglucose positron emission tomography images of patients with head-and-neck cancer on the task of precisely measuring the metabolic tumor volume. The NGS technique consistently predicted the same segmentation method as the most precise method. The proposed framework provided confidence in these results, even when gold-standard data were not available. The bootstrap-based methodology indicated improved performance of the NGS technique with larger numbers of patient studies, as was expected, and yielded consistent results as long as data from more than 80 lesions were available for the analysis. PMID:28331883

  18. Comparison of targeted next-generation sequencing with conventional sequencing for predicting the responsiveness to epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) therapy in never-smokers with lung adenocarcinoma.

    PubMed

    Han, Ji-Youn; Kim, Sun Hye; Lee, Yeon-Su; Lee, Seung-Youn; Hwang, Jung-Ah; Kim, Jin Young; Yoon, Sung Jin; Lee, Geon Kook

    2014-08-01

    To investigate the clinical utility of targeted next-generation sequencing (NGS) for predicting the responsiveness to epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) therapy, we compared the efficacy with conventional sequencing in never-smokers with lung adenocarcinoma (NSLAs). We obtained DNA from 48 NSLAs who received gefitinib or erlotinib for their recurrent disease after surgery. Sanger sequencing and peptide nucleic acid clamp polymerase chain reaction (PCR) were used to analyze EGFR, KRAS, BRAF, and PIK3CA mutations. We analyzed ALK, RET, and ROS1 rearrangements by fluorescent in situ hybridization or reverse transcriptase-PCR and quantitative real-time PCR. After molecular screening, Ion Torrent NGS was performed in 31 cases harboring only EGFR exon 19 deletions (19DEL), an L858R mutation, or none of the above mutations. The 31 samples were divided into four groups: (1) responders to EGFR-TKIs with only 19DEL or L858R (n=15); (2) primary resistance to EGFR-TKI with only 19DEL or L858R (n=4); (3) primary resistance to EGFR-TKI without any mutations (n=8); (4) responders to EGFR-TKI without any mutations (n=4). With NGS, all conventionally detected mutations were confirmed except for one L858R in group 2. Additional uncovered predictive mutations with NGS included one PIK3CA E542K in group 2, two KRAS (G12V and G12D), one PIK3CA E542K, one concomitant PIK3CA and EGFR L858R in group 3, and one EGFR 19DEL in group 4. Targeted NGS provided a more accurate and clinically useful molecular classification of NSLAs. It may improve the efficacy of EGFR-TKI therapy in lung cancer. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Pitfalls in genetic testing: a case of a SNP in primer-annealing region leading to allele dropout in BRCA1.

    PubMed

    Silva, Felipe Carneiro; Torrezan, Giovana Tardin; Brianese, Rafael Canfield; Stabellini, Raquel; Carraro, Dirce Maria

    2017-07-01

    Hereditary breast and ovarian cancer is characterized by mutations in BRCA1 or BRCA2 genes and PCR-based screening techniques, such as capillary sequencing and next-generation sequencing (NGS), are considered gold standard methods for detection of pathogenic mutations in these genes. Single-nucleotide polymorphisms (SNPs) constitute a vast source of variation in the human genome and represent a risk for misdiagnosis in genetic testing, since the presence of a SNP in primer-annealing sites may cause false negative results due to allele dropout. However, few reports are available and the frequency of this phenomenon in diagnostic assays remains unknown. In this article, we investigated the causes of a false negative capillary sequencing result in BRCA1 involving a mother-daughter dyad. Using several molecular strategies, including different DNA polymerases, primer redesign, allele-specific PCR and NGS, we established that the initial misdiagnosis was caused by a SNP located in the primer-annealing region, leading to allele dropout of the mutated allele. Assuming that this problem can also occur in any PCR-based method that are widely used in diagnostic settings, the clinical report presented here draws attention for one of the limitations of genetic testing in general, for which medical and laboratory communities need to be aware.

  20. Panel-based Genetic Diagnostic Testing for Inherited Eye Diseases is Highly Accurate and Reproducible and More Sensitive for Variant Detection Than Exome Sequencing

    PubMed Central

    Bujakowska, Kinga M.; Sousa, Maria E.; Fonseca-Kelly, Zoë D.; Taub, Daniel G.; Janessian, Maria; Wang, Dan Yi; Au, Elizabeth D.; Sims, Katherine B.; Sweetser, David A.; Fulton, Anne B.; Liu, Qin; Wiggs, Janey L.; Gai, Xiaowu; Pierce, Eric A.

    2015-01-01

    Purpose Next-generation sequencing (NGS) based methods are being adopted broadly for genetic diagnostic testing, but the performance characteristics of these techniques have not been fully defined with regard to test accuracy and reproducibility. Methods We developed a targeted enrichment and NGS approach for genetic diagnostic testing of patients with inherited eye disorders, including inherited retinal degenerations, optic atrophy and glaucoma. In preparation for providing this Genetic Eye Disease (GEDi) test on a CLIA-certified basis, we performed experiments to measure the sensitivity, specificity, reproducibility as well as the clinical sensitivity of the test. Results The GEDi test is highly reproducible and accurate, with sensitivity and specificity for single nucleotide variant detection of 97.9% and 100%, respectively. The sensitivity for variant detection was notably better than the 88.3% achieved by whole exome sequencing (WES) using the same metrics, due to better coverage of targeted genes in the GEDi test compared to commercially available exome capture sets. Prospective testing of 192 patients with IRDs indicated that the clinical sensitivity of the GEDi test is high, with a diagnostic rate of 51%. Conclusion The data suggest that based on quantified performance metrics, selective targeted enrichment is preferable to WES for genetic diagnostic testing. PMID:25412400

  1. Evaluation of next generation sequencing for the analysis of Eimeria communities in wildlife.

    PubMed

    Vermeulen, Elke T; Lott, Matthew J; Eldridge, Mark D B; Power, Michelle L

    2016-05-01

    Next-generation sequencing (NGS) techniques are well-established for studying bacterial communities but not yet for microbial eukaryotes. Parasite communities remain poorly studied, due in part to the lack of reliable and accessible molecular methods to analyse eukaryotic communities. We aimed to develop and evaluate a methodology to analyse communities of the protozoan parasite Eimeria from populations of the Australian marsupial Petrogale penicillata (brush-tailed rock-wallaby) using NGS. An oocyst purification method for small sample sizes and polymerase chain reaction (PCR) protocol for the 18S rRNA locus targeting Eimeria was developed and optimised prior to sequencing on the Illumina MiSeq platform. A data analysis approach was developed by modifying methods from bacterial metagenomics and utilising existing Eimeria sequences in GenBank. Operational taxonomic unit (OTU) assignment at a high similarity threshold (97%) was more accurate at assigning Eimeria contigs into Eimeria OTUs but at a lower threshold (95%) there was greater resolution between OTU consensus sequences. The assessment of two amplification PCR methods prior to Illumina MiSeq, single and nested PCR, determined that single PCR was more sensitive to Eimeria as more Eimeria OTUs were detected in single amplicons. We have developed a simple and cost-effective approach to a data analysis pipeline for community analysis of eukaryotic organisms using Eimeria communities as a model. The pipeline provides a basis for evaluation using other eukaryotic organisms and potential for diverse community analysis studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Clinical next-generation sequencing in patients with non-small cell lung cancer.

    PubMed

    Hagemann, Ian S; Devarakonda, Siddhartha; Lockwood, Christina M; Spencer, David H; Guebert, Kalin; Bredemeyer, Andrew J; Al-Kateb, Hussam; Nguyen, TuDung T; Duncavage, Eric J; Cottrell, Catherine E; Kulkarni, Shashikant; Nagarajan, Rakesh; Seibert, Karen; Baggstrom, Maria; Waqar, Saiama N; Pfeifer, John D; Morgensztern, Daniel; Govindan, Ramaswamy

    2015-02-15

    A clinical assay was implemented to perform next-generation sequencing (NGS) of genes commonly mutated in multiple cancer types. This report describes the feasibility and diagnostic yield of this assay in 381 consecutive patients with non-small cell lung cancer (NSCLC). Clinical targeted sequencing of 23 genes was performed with DNA from formalin-fixed, paraffin-embedded (FFPE) tumor tissue. The assay used Agilent SureSelect hybrid capture followed by Illumina HiSeq 2000, MiSeq, or HiSeq 2500 sequencing in a College of American Pathologists-accredited, Clinical Laboratory Improvement Amendments-certified laboratory. Single-nucleotide variants and insertion/deletion events were reported. This assay was performed before methods were developed to detect rearrangements by NGS. Two hundred nine of all requisitioned samples (55%) were successfully sequenced. The most common reason for not performing the sequencing was an insufficient quantity of tissue available in the blocks (29%). Excisional, endoscopic, and core biopsy specimens were sufficient for testing in 95%, 66%, and 40% of the cases, respectively. The median turnaround time (TAT) in the pathology laboratory was 21 days, and there was a trend of an improved TAT with more rapid sequencing platforms. Sequencing yielded a mean coverage of 1318×. Potentially actionable mutations (ie, predictive or prognostic) were identified in 46% of 209 samples and were most commonly found in KRAS (28%), epidermal growth factor receptor (14%), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (4%), phosphatase and tensin homolog (1%), and BRAF (1%). Five percent of the samples had multiple actionable mutations. A targeted therapy was instituted on the basis of NGS in 11% of the sequenced patients or in 6% of all patients. NGS-based diagnostics are feasible in NSCLC and provide clinically relevant information from readily available FFPE tissue. The sample type is associated with the probability of successful testing. © 2014 American Cancer Society.

  3. Next-Generation Genomics Facility at C-CAMP: Accelerating Genomic Research in India

    PubMed Central

    S, Chandana; Russiachand, Heikham; H, Pradeep; S, Shilpa; M, Ashwini; S, Sahana; B, Jayanth; Atla, Goutham; Jain, Smita; Arunkumar, Nandini; Gowda, Malali

    2014-01-01

    Next-Generation Sequencing (NGS; http://www.genome.gov/12513162) is a recent life-sciences technological revolution that allows scientists to decode genomes or transcriptomes at a much faster rate with a lower cost. Genomic-based studies are in a relatively slow pace in India due to the non-availability of genomics experts, trained personnel and dedicated service providers. Using NGS there is a lot of potential to study India's national diversity (of all kinds). We at the Centre for Cellular and Molecular Platforms (C-CAMP) have launched the Next Generation Genomics Facility (NGGF) to provide genomics service to scientists, to train researchers and also work on national and international genomic projects. We have HiSeq1000 from Illumina and GS-FLX Plus from Roche454. The long reads from GS FLX Plus, and high sequence depth from HiSeq1000, are the best and ideal hybrid approaches for de novo and re-sequencing of genomes and transcriptomes. At our facility, we have sequenced around 70 different organisms comprising of more than 388 genomes and 615 transcriptomes – prokaryotes and eukaryotes (fungi, plants and animals). In addition we have optimized other unique applications such as small RNA (miRNA, siRNA etc), long Mate-pair sequencing (2 to 20 Kb), Coding sequences (Exome), Methylome (ChIP-Seq), Restriction Mapping (RAD-Seq), Human Leukocyte Antigen (HLA) typing, mixed genomes (metagenomes) and target amplicons, etc. Translating DNA sequence data from NGS sequencer into meaningful information is an important exercise. Under NGGF, we have bioinformatics experts and high-end computing resources to dissect NGS data such as genome assembly and annotation, gene expression, target enrichment, variant calling (SSR or SNP), comparative analysis etc. Our services (sequencing and bioinformatics) have been utilized by more than 45 organizations (academia and industry) both within India and outside, resulting several publications in peer-reviewed journals and several genomic/transcriptomic data is available at NCBI.

  4. Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics.

    PubMed

    Straub, Shannon C K; Parks, Matthew; Weitemier, Kevin; Fishbein, Mark; Cronn, Richard C; Liston, Aaron

    2012-02-01

    Just as Sanger sequencing did more than 20 years ago, next-generation sequencing (NGS) is poised to revolutionize plant systematics. By combining multiplexing approaches with NGS throughput, systematists may no longer need to choose between more taxa or more characters. Here we describe a genome skimming (shallow sequencing) approach for plant systematics. Through simulations, we evaluated optimal sequencing depth and performance of single-end and paired-end short read sequences for assembly of nuclear ribosomal DNA (rDNA) and plastomes and addressed the effect of divergence on reference-guided plastome assembly. We also used simulations to identify potential phylogenetic markers from low-copy nuclear loci at different sequencing depths. We demonstrated the utility of genome skimming through phylogenetic analysis of the Sonoran Desert clade (SDC) of Asclepias (Apocynaceae). Paired-end reads performed better than single-end reads. Minimum sequencing depths for high quality rDNA and plastome assemblies were 40× and 30×, respectively. Divergence from the reference significantly affected plastome assembly, but relatively similar references are available for most seed plants. Deeper rDNA sequencing is necessary to characterize intragenomic polymorphism. The low-copy fraction of the nuclear genome was readily surveyed, even at low sequencing depths. Nearly 160000 bp of sequence from three organelles provided evidence of phylogenetic incongruence in the SDC. Adoption of NGS will facilitate progress in plant systematics, as whole plastome and rDNA cistrons, partial mitochondrial genomes, and low-copy nuclear markers can now be efficiently obtained for molecular phylogenetics studies.

  5. Next-generation sequencing of mixed genomic DNA allows efficient assembly of rearranged mitochondrial genomes in Amolops chunganensis and Quasipaa boulengeri

    PubMed Central

    Yuan, Siqi; Zheng, Yuchi; Zeng, Xiaomao

    2016-01-01

    Recent improvements in next-generation sequencing (NGS) technologies can facilitate the obtainment of mitochondrial genomes. However, it is not clear whether NGS could be effectively used to reconstruct the mitogenome with high gene rearrangement. These high rearrangements would cause amplification failure, and/or assembly and alignment errors. Here, we choose two frogs with rearranged gene order, Amolops chunganensis and Quasipaa boulengeri, to test whether gene rearrangements affect the mitogenome assembly and alignment by using NGS. The mitogenomes with gene rearrangements are sequenced through Illumina MiSeq genomic sequencing and assembled effectively by Trinity v2.1.0 and SOAPdenovo2. Gene order and contents in the mitogenome of A. chunganensis and Q. boulengeri are typical neobatrachian pattern except for rearrangements at the position of “WANCY” tRNA genes cluster. Further, the mitogenome of Q. boulengeri is characterized with a tandem duplication of trnM. Moreover, we utilize 13 protein-coding genes of A. chunganensis, Q. boulengeri and other neobatrachians to reconstruct the phylogenetic tree for evaluating mitochondrial sequence authenticity of A. chunganensis and Q. boulengeri. In this work, we provide nearly complete mitochondrial genomes of A. chunganensis and Q. boulengeri. PMID:27994980

  6. Navigating highly homologous genes in a molecular diagnostic setting: a resource for clinical next-generation sequencing.

    PubMed

    Mandelker, Diana; Schmidt, Ryan J; Ankala, Arunkanth; McDonald Gibson, Kristin; Bowser, Mark; Sharma, Himanshu; Duffy, Elizabeth; Hegde, Madhuri; Santani, Avni; Lebo, Matthew; Funke, Birgit

    2016-12-01

    Next-generation sequencing (NGS) is now routinely used to interrogate large sets of genes in a diagnostic setting. Regions of high sequence homology continue to be a major challenge for short-read technologies and can lead to false-positive and false-negative diagnostic errors. At the scale of whole-exome sequencing (WES), laboratories may be limited in their knowledge of genes and regions that pose technical hurdles due to high homology. We have created an exome-wide resource that catalogs highly homologous regions that is tailored toward diagnostic applications. This resource was developed using a mappability-based approach tailored to current Sanger and NGS protocols. Gene-level and exon-level lists delineate regions that are difficult or impossible to analyze via standard NGS. These regions are ranked by degree of affectedness, annotated for medical relevance, and classified by the type of homology (within-gene, different functional gene, known pseudogene, uncharacterized noncoding region). Additionally, we provide a list of exons that cannot be analyzed by short-amplicon Sanger sequencing. This resource can help guide clinical test design, supplemental assay implementation, and results interpretation in the context of high homology.Genet Med 18 12, 1282-1289.

  7. Implementation of Cloud based next generation sequencing data analysis in a clinical laboratory.

    PubMed

    Onsongo, Getiria; Erdmann, Jesse; Spears, Michael D; Chilton, John; Beckman, Kenneth B; Hauge, Adam; Yohe, Sophia; Schomaker, Matthew; Bower, Matthew; Silverstein, Kevin A T; Thyagarajan, Bharat

    2014-05-23

    The introduction of next generation sequencing (NGS) has revolutionized molecular diagnostics, though several challenges remain limiting the widespread adoption of NGS testing into clinical practice. One such difficulty includes the development of a robust bioinformatics pipeline that can handle the volume of data generated by high-throughput sequencing in a cost-effective manner. Analysis of sequencing data typically requires a substantial level of computing power that is often cost-prohibitive to most clinical diagnostics laboratories. To address this challenge, our institution has developed a Galaxy-based data analysis pipeline which relies on a web-based, cloud-computing infrastructure to process NGS data and identify genetic variants. It provides additional flexibility, needed to control storage costs, resulting in a pipeline that is cost-effective on a per-sample basis. It does not require the usage of EBS disk to run a sample. We demonstrate the validation and feasibility of implementing this bioinformatics pipeline in a molecular diagnostics laboratory. Four samples were analyzed in duplicate pairs and showed 100% concordance in mutations identified. This pipeline is currently being used in the clinic and all identified pathogenic variants confirmed using Sanger sequencing further validating the software.

  8. Poly(A)-tag deep sequencing data processing to extract poly(A) sites.

    PubMed

    Wu, Xiaohui; Ji, Guoli; Li, Qingshun Quinn

    2015-01-01

    Polyadenylation [poly(A)] is an essential posttranscriptional processing step in the maturation of eukaryotic mRNA. The advent of next-generation sequencing (NGS) technology has offered feasible means to generate large-scale data and new opportunities for intensive study of polyadenylation, particularly deep sequencing of the transcriptome targeting the junction of 3'-UTR and the poly(A) tail of the transcript. To take advantage of this unprecedented amount of data, we present an automated workflow to identify polyadenylation sites by integrating NGS data cleaning, processing, mapping, normalizing, and clustering. In this pipeline, a series of Perl scripts are seamlessly integrated to iteratively map the single- or paired-end sequences to the reference genome. After mapping, the poly(A) tags (PATs) at the same genome coordinate are grouped into one cleavage site, and the internal priming artifacts removed. Then the ambiguous region is introduced to parse the genome annotation for cleavage site clustering. Finally, cleavage sites within a close range of 24 nucleotides and from different samples can be clustered into poly(A) clusters. This procedure could be used to identify thousands of reliable poly(A) clusters from millions of NGS sequences in different tissues or treatments.

  9. Performance Comparison of Bench-Top Next Generation Sequencers Using Microdroplet PCR-Based Enrichment for Targeted Sequencing in Patients with Autism Spectrum Disorder

    PubMed Central

    Okamoto, Nobuhiko; Nakashima, Mitsuko; Tsurusaki, Yoshinori; Miyake, Noriko; Saitsu, Hirotomo; Matsumoto, Naomichi

    2013-01-01

    Next-generation sequencing (NGS) combined with enrichment of target genes enables highly efficient and low-cost sequencing of multiple genes for genetic diseases. The aim of this study was to validate the accuracy and sensitivity of our method for comprehensive mutation detection in autism spectrum disorder (ASD). We assessed the performance of the bench-top Ion Torrent PGM and Illumina MiSeq platforms as optimized solutions for mutation detection, using microdroplet PCR-based enrichment of 62 ASD associated genes. Ten patients with known mutations were sequenced using NGS to validate the sensitivity of our method. The overall read quality was better with MiSeq, largely because of the increased indel-related error associated with PGM. The sensitivity of SNV detection was similar between the two platforms, suggesting they are both suitable for SNV detection in the human genome. Next, we used these methods to analyze 28 patients with ASD, and identified 22 novel variants in genes associated with ASD, with one mutation detected by MiSeq only. Thus, our results support the combination of target gene enrichment and NGS as a valuable molecular method for investigating rare variants in ASD. PMID:24066114

  10. Clinical sequencing in leukemia with the assistance of artificial intelligence.

    PubMed

    Tojo, Arinobu

    2017-01-01

    Next generation sequencing (NGS) of cancer genomes is now becoming a prerequisite for accurate diagnosis and proper treatment in clinical oncology. Because the genomic regions for NGS expand from a certain set of genes to the whole exome or whole genome, the resulting sequence data becomes incredibly enormous and makes it quite laborious to translate the genomic data into medicine, so-called annotation and curation. We organized a clinical sequencing team and established a bidirectional (bed-to-bench and bench-to-bed) system to integrate clinical and genomic data for hematological malignancies. We also started a collaborative research project with IBM Japan to adopt the artificial intelligence Watson for Genomics (WfG) to the pipeline of medical informatics. Genomic DNA was prepared from malignant as well as normal tissues in each patient and subjected to NGS. Sequence data was analyzed using an in-house semi-automated pipeline in combination with WfG, which was used to identify candidate driver mutations and relevant pathways from which applicable drug information was deduced. Currently, we have analyzed more than 150 patients with hematological disorders, including AML and ALL, and obtained many informative findings. In this presentation, I will introduce some of the achievements we have made so far.

  11. Protein domain analysis of genomic sequence data reveals regulation of LRR related domains in plant transpiration in Ficus.

    PubMed

    Lang, Tiange; Yin, Kangquan; Liu, Jinyu; Cao, Kunfang; Cannon, Charles H; Du, Fang K

    2014-01-01

    Predicting protein domains is essential for understanding a protein's function at the molecular level. However, up till now, there has been no direct and straightforward method for predicting protein domains in species without a reference genome sequence. In this study, we developed a functionality with a set of programs that can predict protein domains directly from genomic sequence data without a reference genome. Using whole genome sequence data, the programming functionality mainly comprised DNA assembly in combination with next-generation sequencing (NGS) assembly methods and traditional methods, peptide prediction and protein domain prediction. The proposed new functionality avoids problems associated with de novo assembly due to micro reads and small single repeats. Furthermore, we applied our functionality for the prediction of leucine rich repeat (LRR) domains in four species of Ficus with no reference genome, based on NGS genomic data. We found that the LRRNT_2 and LRR_8 domains are related to plant transpiration efficiency, as indicated by the stomata index, in the four species of Ficus. The programming functionality established in this study provides new insights for protein domain prediction, which is particularly timely in the current age of NGS data expansion.

  12. The Democratization of the Oncogene

    PubMed Central

    Le, Anh T.; Doebele, Robert C.

    2014-01-01

    Summary The identification of novel, oncogenic gene rearrangements in inflammatory myofibroblastic tumor (IMT) demonstrates the potential of next generation sequencing (NGS) platforms for the detection of therapeutically relevant oncogenes across multiple tumor types, but raises significant questions relating to the investigation of targeted therapies in this new era of widespread NGS testing. PMID:25092743

  13. Significance of functional disease-causal/susceptible variants identified by whole-genome analyses for the understanding of human diseases.

    PubMed

    Hitomi, Yuki; Tokunaga, Katsushi

    2017-01-01

    Human genome variation may cause differences in traits and disease risks. Disease-causal/susceptible genes and variants for both common and rare diseases can be detected by comprehensive whole-genome analyses, such as whole-genome sequencing (WGS), using next-generation sequencing (NGS) technology and genome-wide association studies (GWAS). Here, in addition to the application of an NGS as a whole-genome analysis method, we summarize approaches for the identification of functional disease-causal/susceptible variants from abundant genetic variants in the human genome and methods for evaluating their functional effects in human diseases, using an NGS and in silico and in vitro functional analyses. We also discuss the clinical applications of the functional disease causal/susceptible variants to personalized medicine.

  14. Next-Generation Sequencing-Based Approaches for Mutation Mapping and Identification in Caenorhabditis elegans

    PubMed Central

    Doitsidou, Maria; Jarriault, Sophie; Poole, Richard J.

    2016-01-01

    The use of next-generation sequencing (NGS) has revolutionized the way phenotypic traits are assigned to genes. In this review, we describe NGS-based methods for mapping a mutation and identifying its molecular identity, with an emphasis on applications in Caenorhabditis elegans. In addition to an overview of the general principles and concepts, we discuss the main methods, provide practical and conceptual pointers, and guide the reader in the types of bioinformatics analyses that are required. Owing to the speed and the plummeting costs of NGS-based methods, mapping and cloning a mutation of interest has become straightforward, quick, and relatively easy. Removing this bottleneck previously associated with forward genetic screens has significantly advanced the use of genetics to probe fundamental biological processes in an unbiased manner. PMID:27729495

  15. Viral Diagnostics in Plants Using Next Generation Sequencing: Computational Analysis in Practice

    PubMed Central

    Jones, Susan; Baizan-Edge, Amanda; MacFarlane, Stuart; Torrance, Lesley

    2017-01-01

    Viruses cause significant yield and quality losses in a wide variety of cultivated crops. Hence, the detection and identification of viruses is a crucial facet of successful crop production and of great significance in terms of world food security. Whilst the adoption of molecular techniques such as RT-PCR has increased the speed and accuracy of viral diagnostics, such techniques only allow the detection of known viruses, i.e., each test is specific to one or a small number of related viruses. Therefore, unknown viruses can be missed and testing can be slow and expensive if molecular tests are unavailable. Methods for simultaneous detection of multiple viruses have been developed, and (NGS) is now a principal focus of this area, as it enables unbiased and hypothesis-free testing of plant samples. The development of NGS protocols capable of detecting multiple known and emergent viruses present in infected material is proving to be a major advance for crops, nuclear stocks or imported plants and germplasm, in which disease symptoms are absent, unspecific or only triggered by multiple viruses. Researchers want to answer the question “how many different viruses are present in this crop plant?” without knowing what they are looking for: RNA-sequencing (RNA-seq) of plant material allows this question to be addressed. As well as needing efficient nucleic acid extraction and enrichment protocols, virus detection using RNA-seq requires fast and robust bioinformatics methods to enable host sequence removal and virus classification. In this review recent studies that use RNA-seq for virus detection in a variety of crop plants are discussed with specific emphasis on the computational methods implemented. The main features of a number of specific bioinformatics workflows developed for virus detection from NGS data are also outlined and possible reasons why these have not yet been widely adopted are discussed. The review concludes by discussing the future directions of this field, including the use of bioinformatics tools for virus detection deployed in analytical environments using cloud computing. PMID:29123534

  16. Development and preliminary evaluation of a multiplexed amplification and next generation sequencing method for viral hemorrhagic fever diagnostics

    PubMed Central

    Radonić, Aleksandar; Kocak Tufan, Zeliha; Domingo, Cristina

    2017-01-01

    Background We describe the development and evaluation of a novel method for targeted amplification and Next Generation Sequencing (NGS)-based identification of viral hemorrhagic fever (VHF) agents and assess the feasibility of this approach in diagnostics. Methodology An ultrahigh-multiplex panel was designed with primers to amplify all known variants of VHF-associated viruses and relevant controls. The performance of the panel was evaluated via serially quantified nucleic acids from Yellow fever virus, Rift Valley fever virus, Crimean-Congo hemorrhagic fever (CCHF) virus, Ebola virus, Junin virus and Chikungunya virus in a semiconductor-based sequencing platform. A comparison of direct NGS and targeted amplification-NGS was performed. The panel was further tested via a real-time nanopore sequencing-based platform, using clinical specimens from CCHF patients. Principal findings The multiplex primer panel comprises two pools of 285 and 256 primer pairs for the identification of 46 virus species causing hemorrhagic fevers, encompassing 6,130 genetic variants of the strains involved. In silico validation revealed that the panel detected over 97% of all known genetic variants of the targeted virus species. High levels of specificity and sensitivity were observed for the tested virus strains. Targeted amplification ensured viral read detection in specimens with the lowest virus concentration (1–10 genome equivalents) and enabled significant increases in specific reads over background for all viruses investigated. In clinical specimens, the panel enabled detection of the causative agent and its characterization within 10 minutes of sequencing, with sample-to-result time of less than 3.5 hours. Conclusions Virus enrichment via targeted amplification followed by NGS is an applicable strategy for the diagnosis of VHFs which can be adapted for high-throughput or nanopore sequencing platforms and employed for surveillance or outbreak monitoring. PMID:29155823

  17. Development and preliminary evaluation of a multiplexed amplification and next generation sequencing method for viral hemorrhagic fever diagnostics.

    PubMed

    Brinkmann, Annika; Ergünay, Koray; Radonić, Aleksandar; Kocak Tufan, Zeliha; Domingo, Cristina; Nitsche, Andreas

    2017-11-01

    We describe the development and evaluation of a novel method for targeted amplification and Next Generation Sequencing (NGS)-based identification of viral hemorrhagic fever (VHF) agents and assess the feasibility of this approach in diagnostics. An ultrahigh-multiplex panel was designed with primers to amplify all known variants of VHF-associated viruses and relevant controls. The performance of the panel was evaluated via serially quantified nucleic acids from Yellow fever virus, Rift Valley fever virus, Crimean-Congo hemorrhagic fever (CCHF) virus, Ebola virus, Junin virus and Chikungunya virus in a semiconductor-based sequencing platform. A comparison of direct NGS and targeted amplification-NGS was performed. The panel was further tested via a real-time nanopore sequencing-based platform, using clinical specimens from CCHF patients. The multiplex primer panel comprises two pools of 285 and 256 primer pairs for the identification of 46 virus species causing hemorrhagic fevers, encompassing 6,130 genetic variants of the strains involved. In silico validation revealed that the panel detected over 97% of all known genetic variants of the targeted virus species. High levels of specificity and sensitivity were observed for the tested virus strains. Targeted amplification ensured viral read detection in specimens with the lowest virus concentration (1-10 genome equivalents) and enabled significant increases in specific reads over background for all viruses investigated. In clinical specimens, the panel enabled detection of the causative agent and its characterization within 10 minutes of sequencing, with sample-to-result time of less than 3.5 hours. Virus enrichment via targeted amplification followed by NGS is an applicable strategy for the diagnosis of VHFs which can be adapted for high-throughput or nanopore sequencing platforms and employed for surveillance or outbreak monitoring.

  18. Status of NGS CORS Network and Its Contribution to the GGOS Infrastructure

    NASA Astrophysics Data System (ADS)

    Choi, K. K.; Haw, D.; Sun, L.

    2017-12-01

    Recent advancement of Satellite Geodesy techniques can now contribute to the global frame realization needed to improve worldwide accuracies. These techniques rely on coordinates computed using continuously observed GPS data and corresponding satellite orbits. The GPS-based reference system continues to depend on the physical stability of a ground-based network of points as the primary foundation for these observations. NOAA's National Geodetic Survey (NGS) has been operating Continuously Operating Reference Stations (CORS) to provide direct access to the National Spatial Reference System (NSRS). By virtue of NGS' scientific reputation and leadership in national and international geospatial issues, NGS has determined to increase its participation in the maintenance of the U.S. component of the global GPS tracking network in order to realize a long-term stable national terrestrial reference frame. NGS can do so by leveraging its national leadership role coupled with NGS' scientific expertise, in designating and upgrading a subset of the current tracking network for this purpose. This subset of stations must have the highest operational standards to serve the dual functions: being the U.S. contribution to the international frame, along with providing the link to the national datum. These stations deserve special attention to ensure that the highest possible levels of quality and stability are maintained. To meet this need, NGS is working with the international scientific groups to add and designate these reference stations based on scientific merit such as: colocation with other geodetic techniques, geographic area, and monumentation stability.

  19. Clinical evaluation of panel testing by next-generation sequencing (NGS) for gene mutations in myeloid neoplasms.

    PubMed

    Au, Chun Hang; Wa, Anna; Ho, Dona N; Chan, Tsun Leung; Ma, Edmond S K

    2016-01-22

    Genomic techniques in recent years have allowed the identification of many mutated genes important in the pathogenesis of acute myeloid leukemia (AML). Together with cytogenetic aberrations, these gene mutations are powerful prognostic markers in AML and can be used to guide patient management, for example selection of optimal post-remission therapy. The mutated genes also hold promise as therapeutic targets themselves. We evaluated the applicability of a gene panel for the detection of AML mutations in a diagnostic molecular pathology laboratory. Fifty patient samples comprising 46 AML and 4 other myeloid neoplasms were accrued for the study. They consisted of 19 males and 31 females at a median age of 60 years (range: 18-88 years). A total of 54 genes (full coding exons of 15 genes and exonic hotspots of 39 genes) were targeted by 568 amplicons that ranged from 225 to 275 bp. The combined coverage was 141 kb in sequence length. Amplicon libraries were prepared by TruSight myeloid sequencing panel (Illumina, CA) and paired-end sequencing runs were performed on a MiSeq (Illumina) genome sequencer. Sequences obtained were analyzed by in-house bioinformatics pipeline, namely BWA-MEM, Samtools, GATK, Pindel, Ensembl Variant Effect Predictor and a novel algorithm ITDseek. The mean count of sequencing reads obtained per sample was 3.81 million and the mean sequencing depth was over 3000X. Seventy-seven mutations in 24 genes were detected in 37 of 50 samples (74 %). On average, 2 mutations (range 1-5) were detected per positive sample. TP53 gene mutations were found in 3 out of 4 patients with complex and unfavorable cytogenetics. Comparing NGS results with that of conventional molecular testing showed a concordance rate of 95.5 %. After further resolution and application of a novel bioinformatics algorithm ITDseek to aid the detection of FLT3 internal tandem duplication (ITD), the concordance rate was revised to 98.2 %. Gene panel testing by NGS approach was applicable for sensitive and accurate detection of actionable AML gene mutations in the clinical laboratory to individualize patient management. A novel algorithm ITDseek was presented that improved the detection of FLT3-ITD of varying length, position and at low allelic burden.

  20. Capture-based next-generation sequencing reveals multiple actionable mutations in cancer patients failed in traditional testing.

    PubMed

    Xie, Jing; Lu, Xiongxiong; Wu, Xue; Lin, Xiaoyi; Zhang, Chao; Huang, Xiaofang; Chang, Zhili; Wang, Xinjing; Wen, Chenlei; Tang, Xiaomei; Shi, Minmin; Zhan, Qian; Chen, Hao; Deng, Xiaxing; Peng, Chenghong; Li, Hongwei; Fang, Yuan; Shao, Yang; Shen, Baiyong

    2016-05-01

    Targeted therapies including monoclonal antibodies and small molecule inhibitors have dramatically changed the treatment of cancer over past 10 years. Their therapeutic advantages are more tumor specific and with less side effects. For precisely tailoring available targeted therapies to each individual or a subset of cancer patients, next-generation sequencing (NGS) has been utilized as a promising diagnosis tool with its advantages of accuracy, sensitivity, and high throughput. We developed and validated a NGS-based cancer genomic diagnosis targeting 115 prognosis and therapeutics relevant genes on multiple specimen including blood, tumor tissue, and body fluid from 10 patients with different cancer types. The sequencing data was then analyzed by the clinical-applicable analytical pipelines developed in house. We have assessed analytical sensitivity, specificity, and accuracy of the NGS-based molecular diagnosis. Also, our developed analytical pipelines were capable of detecting base substitutions, indels, and gene copy number variations (CNVs). For instance, several actionable mutations of EGFR,PIK3CA,TP53, and KRAS have been detected for indicating drug susceptibility and resistance in the cases of lung cancer. Our study has shown that NGS-based molecular diagnosis is more sensitive and comprehensive to detect genomic alterations in cancer, and supports a direct clinical use for guiding targeted therapy.

  1. Data security in genomics: A review of Australian privacy requirements and their relation to cryptography in data storage.

    PubMed

    Schlosberg, Arran

    2016-01-01

    The advent of next-generation sequencing (NGS) brings with it a need to manage large volumes of patient data in a manner that is compliant with both privacy laws and long-term archival needs. Outside of the realm of genomics there is a need in the broader medical community to store data, and although radiology aside the volume may be less than that of NGS, the concepts discussed herein are similarly relevant. The relation of so-called "privacy principles" to data protection and cryptographic techniques is explored with regards to the archival and backup storage of health data in Australia, and an example implementation of secure management of genomic archives is proposed with regards to this relation. Readers are presented with sufficient detail to have informed discussions - when implementing laboratory data protocols - with experts in the fields.

  2. Data security in genomics: A review of Australian privacy requirements and their relation to cryptography in data storage

    PubMed Central

    Schlosberg, Arran

    2016-01-01

    The advent of next-generation sequencing (NGS) brings with it a need to manage large volumes of patient data in a manner that is compliant with both privacy laws and long-term archival needs. Outside of the realm of genomics there is a need in the broader medical community to store data, and although radiology aside the volume may be less than that of NGS, the concepts discussed herein are similarly relevant. The relation of so-called “privacy principles” to data protection and cryptographic techniques is explored with regards to the archival and backup storage of health data in Australia, and an example implementation of secure management of genomic archives is proposed with regards to this relation. Readers are presented with sufficient detail to have informed discussions – when implementing laboratory data protocols – with experts in the fields. PMID:26955504

  3. Use of next generation sequencing data to develop a qPCR method for specific detection of EU-unauthorized genetically modified Bacillus subtilis overproducing riboflavin.

    PubMed

    Barbau-Piednoir, Elodie; De Keersmaecker, Sigrid C J; Delvoye, Maud; Gau, Céline; Philipp, Patrick; Roosens, Nancy H

    2015-11-11

    Recently, the presence of an unauthorized genetically modified (GM) Bacillus subtilis bacterium overproducing vitamin B2 in a feed additive was notified by the Rapid Alert System for Food and Feed (RASFF). This has demonstrated that a contamination by a GM micro-organism (GMM) may occur in feed additives and has confronted for the first time,the enforcement laboratories with this type of RASFF. As no sequence information of this GMM nor any specific detection or identification method was available, Next GenerationSequencing (NGS) was used to generate sequence information. However, NGS data analysis often requires appropriate tools, involving bioinformatics expertise which is not alwayspresent in the average enforcement laboratory. This hampers the use of this technology to rapidly obtain critical sequence information in order to be able to develop a specific qPCRdetection method. Data generated by NGS were exploited using a simple BLAST approach. A TaqMan® qPCR method was developed and tested on isolated bacterial strains and on the feed additive directly. In this study, a very simple strategy based on the common BLAST tools that can be used by any enforcement lab without profound bioinformatics expertise, was successfully used toanalyse the B. subtilis data generated by NGS. The results were used to design and assess a new TaqMan® qPCR method, specifically detecting this GM vitamin B2 overproducing bacterium. The method complies with EU critical performance parameters for specificity, sensitivity, PCR efficiency and repeatability. The VitB2-UGM method also could detect the B. subtilis strain in genomic DNA extracted from the feed additive, without prior culturing step. The proposed method, provides a crucial tool for specifically and rapidly identifying this unauthorized GM bacterium in food and feed additives by enforcement laboratories. Moreover, this work can be seen as a case study to substantiate how the use of NGS data can offer an added value to easily gain access to sequence information needed to develop qPCR methods to detect unknown andunauthorized GMO in food and feed.

  4. Assessment of species diversity and distribution of an ancient diatom lineage using a DNA metabarcoding approach.

    PubMed

    Nanjappa, Deepak; Audic, Stephane; Romac, Sarah; Kooistra, Wiebe H C F; Zingone, Adriana

    2014-01-01

    Continuous efforts to estimate actual diversity and to trace the species distribution and ranges in the natural environments have gone in equal pace with advancements of the technologies in the study of microbial species diversity from microscopic observations to DNA-based barcoding. DNA metabarcoding based on Next Generation Sequencing (NGS) constitutes the latest advancement in these efforts. Here we use NGS data from different sites to investigate the geographic range of six species of the diatom family Leptocylindraceae and to identify possible new taxa within the family. We analysed the V4 and V9 regions of the nuclear-encoded SSU rDNA gene region in the NGS database of the European ERA-Biodiversa project BioMarKs, collected in plankton and sediments at six coastal sites in European coastal waters, as well as environmental sequences from the NCBI database. All species known in the family Leptocylindraceae were detected in both datasets, but the much larger Illumina V9 dataset showed a higher species coverage at the various sites than the 454 V4 dataset. Sequences identical or similar to the references of Leptocylindrus aporus, L. convexus, L. danicus/hargravesii and Tenuicylindrus belgicus were found in the Mediterranean Sea, North Atlantic Ocean and Black Sea as well as at locations outside Europe. Instead, sequences identical or close to that of L. minimus were found in the North Atlantic Ocean and the Black Sea but not in the Mediterranean Sea, while sequences belonging to a yet undescribed taxon were encountered only in Oslo Fjord and Baffin Bay. Identification of Leptocylindraceae species in NGS datasets has expanded our knowledge of the species biogeographic distribution and of the overall diversity of this diatom family. Individual species appear to be widespread, but not all of them are found everywhere. Despite the sequencing depth allowed by NGS and the wide geographic area covered by this study, the diversity of this ancient diatom family appears to be low, at least at the level of the marker used in this study.

  5. Assessment of Species Diversity and Distribution of an Ancient Diatom Lineage Using a DNA Metabarcoding Approach

    PubMed Central

    Nanjappa, Deepak; Audic, Stephane; Romac, Sarah; Kooistra, Wiebe H. C. F.; Zingone, Adriana

    2014-01-01

    Background Continuous efforts to estimate actual diversity and to trace the species distribution and ranges in the natural environments have gone in equal pace with advancements of the technologies in the study of microbial species diversity from microscopic observations to DNA-based barcoding. DNA metabarcoding based on Next Generation Sequencing (NGS) constitutes the latest advancement in these efforts. Here we use NGS data from different sites to investigate the geographic range of six species of the diatom family Leptocylindraceae and to identify possible new taxa within the family. Methodology/Principal Findings We analysed the V4 and V9 regions of the nuclear-encoded SSU rDNA gene region in the NGS database of the European ERA-Biodiversa project BioMarKs, collected in plankton and sediments at six coastal sites in European coastal waters, as well as environmental sequences from the NCBI database. All species known in the family Leptocylindraceae were detected in both datasets, but the much larger Illumina V9 dataset showed a higher species coverage at the various sites than the 454 V4 dataset. Sequences identical or similar to the references of Leptocylindrus aporus, L. convexus, L. danicus/hargravesii and Tenuicylindrus belgicus were found in the Mediterranean Sea, North Atlantic Ocean and Black Sea as well as at locations outside Europe. Instead, sequences identical or close to that of L. minimus were found in the North Atlantic Ocean and the Black Sea but not in the Mediterranean Sea, while sequences belonging to a yet undescribed taxon were encountered only in Oslo Fjord and Baffin Bay. Conclusions/Significance Identification of Leptocylindraceae species in NGS datasets has expanded our knowledge of the species biogeographic distribution and of the overall diversity of this diatom family. Individual species appear to be widespread, but not all of them are found everywhere. Despite the sequencing depth allowed by NGS and the wide geographic area covered by this study, the diversity of this ancient diatom family appears to be low, at least at the level of the marker used in this study. PMID:25133638

  6. The Challenges of Implementing Next Generation Sequencing Across a Large Healthcare System, and the Molecular Epidemiology and Antibiotic Susceptibilities of Carbapenemase-Producing Bacteria in the Healthcare System of the U.S. Department of Defense

    PubMed Central

    Lesho, Emil; Clifford, Robert; Onmus-Leone, Fatma; Appalla, Lakshmi; Snesrud, Erik; Kwak, Yoon; Ong, Ana; Maybank, Rosslyn; Waterman, Paige; Rohrbeck, Patricia; Julius, Michael; Roth, Amanda; Martinez, Joshua; Nielsen, Lindsey; Steele, Eric; McGann, Patrick; Hinkle, Mary

    2016-01-01

    Objective We sought to: 1) provide an overview of the genomic epidemiology of an extensive collection of carbapenemase-producing bacteria (CPB) collected in the U.S. Department of Defense health system; 2) increase awareness of the public availability of the sequences, isolates, and customized antimicrobial resistance database of that system; and 3) illustrate challenges and offer mitigations for implementing next generation sequencing (NGS) across large health systems. Design Prospective surveillance and system-wide implementation of NGS. Setting 288-hospital healthcare network. Methods All phenotypically carbapenem resistant bacteria underwent CarbaNP® testing and PCR, followed by NGS. Commercial (Newbler and Geneious), on-line (ResFinder), and open-source software (Btrim, FLASh, Bowtie2, an Samtools) were used for assembly, SNP detection and clustering. Laboratory capacity, throughput, and response time were assessed. Results From 2009 through 2015, 27,000 multidrug-resistant Gram-negative isolates were submitted. 225 contained carbapenemase-encoding genes (most commonly blaKPC, blaNDM, and blaOXA23). These were found in 15 species from 146 inpatients in 19 facilities. Genetically related CPB were found in more than one hospital. Other clusters or outbreaks were not clonal and involved genetically related plasmids, while some involved several unrelated plasmids. Relatedness depended on the clustering algorithm used. Transmission patterns of plasmids and other mobile genetic elements could not be determined without ultra-long read, single-molecule real-time sequencing. 80% of carbapenem-resistant phenotypes retained susceptibility to aminoglycosides, and 70% retained susceptibility to fluoroquinolones. However, among the CPB-confirmed genotypes, fewer than 25% retained susceptibility to aminoglycosides or fluoroquinolones. Conclusion Although NGS is increasingly acclaimed to revolutionize clinical practice, resource-constrained environments, large or geographically dispersed healthcare networks, and military or government-funded public health laboratories are likely to encounter constraints and challenges as they implement NGS across their health systems. These include lack of standardized definitions and quality control metrics, limitations of short-read sequencing, insufficient bandwidth, and the current limited availability of very expensive and scarcely available sequencing platforms. Possible solutions and mitigations are also proposed. PMID:27196272

  7. The Challenges of Implementing Next Generation Sequencing Across a Large Healthcare System, and the Molecular Epidemiology and Antibiotic Susceptibilities of Carbapenemase-Producing Bacteria in the Healthcare System of the U.S. Department of Defense.

    PubMed

    Lesho, Emil; Clifford, Robert; Onmus-Leone, Fatma; Appalla, Lakshmi; Snesrud, Erik; Kwak, Yoon; Ong, Ana; Maybank, Rosslyn; Waterman, Paige; Rohrbeck, Patricia; Julius, Michael; Roth, Amanda; Martinez, Joshua; Nielsen, Lindsey; Steele, Eric; McGann, Patrick; Hinkle, Mary

    2016-01-01

    We sought to: 1) provide an overview of the genomic epidemiology of an extensive collection of carbapenemase-producing bacteria (CPB) collected in the U.S. Department of Defense health system; 2) increase awareness of the public availability of the sequences, isolates, and customized antimicrobial resistance database of that system; and 3) illustrate challenges and offer mitigations for implementing next generation sequencing (NGS) across large health systems. Prospective surveillance and system-wide implementation of NGS. 288-hospital healthcare network. All phenotypically carbapenem resistant bacteria underwent CarbaNP® testing and PCR, followed by NGS. Commercial (Newbler and Geneious), on-line (ResFinder), and open-source software (Btrim, FLASh, Bowtie2, an Samtools) were used for assembly, SNP detection and clustering. Laboratory capacity, throughput, and response time were assessed. From 2009 through 2015, 27,000 multidrug-resistant Gram-negative isolates were submitted. 225 contained carbapenemase-encoding genes (most commonly blaKPC, blaNDM, and blaOXA23). These were found in 15 species from 146 inpatients in 19 facilities. Genetically related CPB were found in more than one hospital. Other clusters or outbreaks were not clonal and involved genetically related plasmids, while some involved several unrelated plasmids. Relatedness depended on the clustering algorithm used. Transmission patterns of plasmids and other mobile genetic elements could not be determined without ultra-long read, single-molecule real-time sequencing. 80% of carbapenem-resistant phenotypes retained susceptibility to aminoglycosides, and 70% retained susceptibility to fluoroquinolones. However, among the CPB-confirmed genotypes, fewer than 25% retained susceptibility to aminoglycosides or fluoroquinolones. Although NGS is increasingly acclaimed to revolutionize clinical practice, resource-constrained environments, large or geographically dispersed healthcare networks, and military or government-funded public health laboratories are likely to encounter constraints and challenges as they implement NGS across their health systems. These include lack of standardized definitions and quality control metrics, limitations of short-read sequencing, insufficient bandwidth, and the current limited availability of very expensive and scarcely available sequencing platforms. Possible solutions and mitigations are also proposed.

  8. Statistical framework for detection of genetically modified organisms based on Next Generation Sequencing.

    PubMed

    Willems, Sander; Fraiture, Marie-Alice; Deforce, Dieter; De Keersmaecker, Sigrid C J; De Loose, Marc; Ruttink, Tom; Herman, Philippe; Van Nieuwerburgh, Filip; Roosens, Nancy

    2016-02-01

    Because the number and diversity of genetically modified (GM) crops has significantly increased, their analysis based on real-time PCR (qPCR) methods is becoming increasingly complex and laborious. While several pioneers already investigated Next Generation Sequencing (NGS) as an alternative to qPCR, its practical use has not been assessed for routine analysis. In this study a statistical framework was developed to predict the number of NGS reads needed to detect transgene sequences, to prove their integration into the host genome and to identify the specific transgene event in a sample with known composition. This framework was validated by applying it to experimental data from food matrices composed of pure GM rice, processed GM rice (noodles) or a 10% GM/non-GM rice mixture, revealing some influential factors. Finally, feasibility of NGS for routine analysis of GM crops was investigated by applying the framework to samples commonly encountered in routine analysis of GM crops. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Genomic and transcriptomic approaches to study immunology in cyprinids: What is next?

    PubMed

    Petit, Jules; David, Lior; Dirks, Ron; Wiegertjes, Geert F

    2017-10-01

    Accelerated by the introduction of Next-Generation Sequencing (NGS), a number of genomes of cyprinid fish species have been drafted, leading to a highly valuable collective resource of comparative genome information on cyprinids (Cyprinidae). In addition, NGS-based transcriptome analyses of different developmental stages, organs, or cell types, increasingly contribute to the understanding of complex physiological processes, including immune responses. Cyprinids are a highly interesting family because they comprise one of the most-diversified families of teleosts and because of their variation in ploidy level, with diploid, triploid, tetraploid, hexaploid and sometimes even octoploid species. The wealth of data obtained from NGS technologies provides both challenges and opportunities for immunological research, which will be discussed here. Correct interpretation of ploidy effects on immune responses requires knowledge of the degree of functional divergence between duplicated genes, which can differ even between closely-related cyprinid fish species. We summarize NGS-based progress in analysing immune responses and discuss the importance of respecting the presence of (multiple) duplicated gene sequences when performing transcriptome analyses for detailed understanding of complex physiological processes. Progressively, advances in NGS technology are providing workable methods to further elucidate the implications of gene duplication events and functional divergence of duplicates genes and proteins involved in immune responses in cyprinids. We conclude with discussing how future applications of NGS technologies and analysis methods could enhance immunological research and understanding. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. A comprehensive quality control workflow for paired tumor-normal NGS experiments.

    PubMed

    Schroeder, Christopher M; Hilke, Franz J; Löffler, Markus W; Bitzer, Michael; Lenz, Florian; Sturm, Marc

    2017-06-01

    Quality control (QC) is an important part of all NGS data analysis stages. Many available tools calculate QC metrics from different analysis steps of single sample experiments (raw reads, mapped reads and variant lists). Multi-sample experiments, as sequencing of tumor-normal pairs, require additional QC metrics to ensure validity of results. These multi-sample QC metrics still lack standardization. We therefore suggest a new workflow for QC of DNA sequencing of tumor-normal pairs. With this workflow well-known single-sample QC metrics and additional metrics specific for tumor-normal pairs can be calculated. The segmentation into different tools offers a high flexibility and allows reuse for other purposes. All tools produce qcML, a generic XML format for QC of -omics experiments. qcML uses quality metrics defined in an ontology, which was adapted for NGS. All QC tools are implemented in C ++ and run both under Linux and Windows. Plotting requires python 2.7 and matplotlib. The software is available under the 'GNU General Public License version 2' as part of the ngs-bits project: https://github.com/imgag/ngs-bits. christopher.schroeder@med.uni-tuebingen.de. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  11. Potential applications of next generation DNA sequencing of 16S rRNA gene amplicons in microbial water quality monitoring

    PubMed Central

    Vierheilig, J.; Savio, D.; Ley, R. E.; Mach, R. L.; Farnleitner, A. H.

    2016-01-01

    The applicability of next generation DNA sequencing (NGS) methods for water quality assessment has so far not been broadly investigated. This study set out to evaluate the potential of an NGS-based approach in a complex catchment with importance for drinking water abstraction. In this multicompartment investigation, total bacterial communities in water, faeces, soil, and sediment samples were investigated by 454 pyrosequencing of bacterial 16S rRNA gene amplicons to assess the capabilities of this NGS method for (i) the development and evaluation of environmental molecular diagnostics, (ii) direct screening of the bulk bacterial communities, and (iii) the detection of faecal pollution in water. Results indicate that NGS methods can highlight potential target populations for diagnostics and will prove useful for the evaluation of existing and the development of novel DNA-based detection methods in the field of water microbiology. The used approach allowed unveiling of dominant bacterial populations but failed to detect populations with low abundances such as faecal indicators in surface waters. In combination with metadata, NGS data will also allow the identification of drivers of bacterial community composition during water treatment and distribution, highlighting the power of this approach for monitoring of bacterial regrowth and contamination in technical systems. PMID:26606090

  12. Trophic and Non-Trophic Interactions in a Biodiversity Experiment Assessed by Next-Generation Sequencing

    PubMed Central

    Tiede, Julia; Wemheuer, Bernd; Traugott, Michael; Daniel, Rolf; Tscharntke, Teja; Ebeling, Anne; Scherber, Christoph

    2016-01-01

    Plant diversity affects species richness and abundance of taxa at higher trophic levels. However, plant diversity effects on omnivores (feeding on multiple trophic levels) and their trophic and non-trophic interactions are not yet studied because appropriate methods were lacking. A promising approach is the DNA-based analysis of gut contents using next generation sequencing (NGS) technologies. Here, we integrate NGS-based analysis into the framework of a biodiversity experiment where plant taxonomic and functional diversity were manipulated to directly assess environmental interactions involving the omnivorous ground beetle Pterostichus melanarius. Beetle regurgitates were used for NGS-based analysis with universal 18S rDNA primers for eukaryotes. We detected a wide range of taxa with the NGS approach in regurgitates, including organisms representing trophic, phoretic, parasitic, and neutral interactions with P. melanarius. Our findings suggest that the frequency of (i) trophic interactions increased with plant diversity and vegetation cover; (ii) intraguild predation increased with vegetation cover, and (iii) neutral interactions with organisms such as fungi and protists increased with vegetation cover. Experimentally manipulated plant diversity likely affects multitrophic interactions involving omnivorous consumers. Our study therefore shows that trophic and non-trophic interactions can be assessed via NGS to address fundamental questions in biodiversity research. PMID:26859146

  13. DNAseq Workflow in a Diagnostic Context and an Example of a User Friendly Implementation.

    PubMed

    Wolf, Beat; Kuonen, Pierre; Dandekar, Thomas; Atlan, David

    2015-01-01

    Over recent years next generation sequencing (NGS) technologies evolved from costly tools used by very few, to a much more accessible and economically viable technology. Through this recently gained popularity, its use-cases expanded from research environments into clinical settings. But the technical know-how and infrastructure required to analyze the data remain an obstacle for a wider adoption of this technology, especially in smaller laboratories. We present GensearchNGS, a commercial DNAseq software suite distributed by Phenosystems SA. The focus of GensearchNGS is the optimal usage of already existing infrastructure, while keeping its use simple. This is achieved through the integration of existing tools in a comprehensive software environment, as well as custom algorithms developed with the restrictions of limited infrastructures in mind. This includes the possibility to connect multiple computers to speed up computing intensive parts of the analysis such as sequence alignments. We present a typical DNAseq workflow for NGS data analysis and the approach GensearchNGS takes to implement it. The presented workflow goes from raw data quality control to the final variant report. This includes features such as gene panels and the integration of online databases, like Ensembl for annotations or Cafe Variome for variant sharing.

  14. Carrier screening in the era of expanding genetic technology.

    PubMed

    Arjunan, Aishwarya; Litwack, Karen; Collins, Nick; Charrow, Joel

    2016-12-01

    The Center for Jewish Genetics provides genetic education and carrier screening to individuals of Jewish descent. Carrier screening has traditionally been performed by targeted mutation analysis for founder mutations with an enzyme assay for Tay-Sachs carrier detection. The development of next-generation sequencing (NGS) allows for higher detection rates regardless of ethnicity. Here, we explore differences in carrier detection rates between genotyping and NGS in a primarily Jewish population. Peripheral blood samples or saliva samples were obtained from 506 individuals. All samples were analyzed by sequencing, targeted genotyping, triplet-repeat detection, and copy-number analysis; the analyses were carried out at Counsyl. Of 506 individuals screened, 288 were identified as carriers of at least 1 condition and 8 couples were carriers for the same disorder. A total of 434 pathogenic variants were identified. Three hundred twelve variants would have been detected via genotyping alone. Although no additional mutations were detected by NGS in diseases routinely screened for in the Ashkenazi Jewish population, 26.5% of carrier results and 2 carrier couples would have been missed without NGS in the larger panel. In a primarily Jewish population, NGS reveals a larger number of pathogenic variants and provides individuals with valuable information for family planning.Genet Med 18 12, 1214-1217.

  15. PGen: large-scale genomic variations analysis workflow and browser in SoyKB.

    PubMed

    Liu, Yang; Khan, Saad M; Wang, Juexin; Rynge, Mats; Zhang, Yuanxun; Zeng, Shuai; Chen, Shiyuan; Maldonado Dos Santos, Joao V; Valliyodan, Babu; Calyam, Prasad P; Merchant, Nirav; Nguyen, Henry T; Xu, Dong; Joshi, Trupti

    2016-10-06

    With the advances in next-generation sequencing (NGS) technology and significant reductions in sequencing costs, it is now possible to sequence large collections of germplasm in crops for detecting genome-scale genetic variations and to apply the knowledge towards improvements in traits. To efficiently facilitate large-scale NGS resequencing data analysis of genomic variations, we have developed "PGen", an integrated and optimized workflow using the Extreme Science and Engineering Discovery Environment (XSEDE) high-performance computing (HPC) virtual system, iPlant cloud data storage resources and Pegasus workflow management system (Pegasus-WMS). The workflow allows users to identify single nucleotide polymorphisms (SNPs) and insertion-deletions (indels), perform SNP annotations and conduct copy number variation analyses on multiple resequencing datasets in a user-friendly and seamless way. We have developed both a Linux version in GitHub ( https://github.com/pegasus-isi/PGen-GenomicVariations-Workflow ) and a web-based implementation of the PGen workflow integrated within the Soybean Knowledge Base (SoyKB), ( http://soykb.org/Pegasus/index.php ). Using PGen, we identified 10,218,140 single-nucleotide polymorphisms (SNPs) and 1,398,982 indels from analysis of 106 soybean lines sequenced at 15X coverage. 297,245 non-synonymous SNPs and 3330 copy number variation (CNV) regions were identified from this analysis. SNPs identified using PGen from additional soybean resequencing projects adding to 500+ soybean germplasm lines in total have been integrated. These SNPs are being utilized for trait improvement using genotype to phenotype prediction approaches developed in-house. In order to browse and access NGS data easily, we have also developed an NGS resequencing data browser ( http://soykb.org/NGS_Resequence/NGS_index.php ) within SoyKB to provide easy access to SNP and downstream analysis results for soybean researchers. PGen workflow has been optimized for the most efficient analysis of soybean data using thorough testing and validation. This research serves as an example of best practices for development of genomics data analysis workflows by integrating remote HPC resources and efficient data management with ease of use for biological users. PGen workflow can also be easily customized for analysis of data in other species.

  16. AlignerBoost: A Generalized Software Toolkit for Boosting Next-Gen Sequencing Mapping Accuracy Using a Bayesian-Based Mapping Quality Framework

    PubMed Central

    Zheng, Qi; Grice, Elizabeth A.

    2016-01-01

    Accurate mapping of next-generation sequencing (NGS) reads to reference genomes is crucial for almost all NGS applications and downstream analyses. Various repetitive elements in human and other higher eukaryotic genomes contribute in large part to ambiguously (non-uniquely) mapped reads. Most available NGS aligners attempt to address this by either removing all non-uniquely mapping reads, or reporting one random or "best" hit based on simple heuristics. Accurate estimation of the mapping quality of NGS reads is therefore critical albeit completely lacking at present. Here we developed a generalized software toolkit "AlignerBoost", which utilizes a Bayesian-based framework to accurately estimate mapping quality of ambiguously mapped NGS reads. We tested AlignerBoost with both simulated and real DNA-seq and RNA-seq datasets at various thresholds. In most cases, but especially for reads falling within repetitive regions, AlignerBoost dramatically increases the mapping precision of modern NGS aligners without significantly compromising the sensitivity even without mapping quality filters. When using higher mapping quality cutoffs, AlignerBoost achieves a much lower false mapping rate while exhibiting comparable or higher sensitivity compared to the aligner default modes, therefore significantly boosting the detection power of NGS aligners even using extreme thresholds. AlignerBoost is also SNP-aware, and higher quality alignments can be achieved if provided with known SNPs. AlignerBoost’s algorithm is computationally efficient, and can process one million alignments within 30 seconds on a typical desktop computer. AlignerBoost is implemented as a uniform Java application and is freely available at https://github.com/Grice-Lab/AlignerBoost. PMID:27706155

  17. Plastid: nucleotide-resolution analysis of next-generation sequencing and genomics data.

    PubMed

    Dunn, Joshua G; Weissman, Jonathan S

    2016-11-22

    Next-generation sequencing (NGS) informs many biological questions with unprecedented depth and nucleotide resolution. These assays have created a need for analytical tools that enable users to manipulate data nucleotide-by-nucleotide robustly and easily. Furthermore, because many NGS assays encode information jointly within multiple properties of read alignments - for example, in ribosome profiling, the locations of ribosomes are jointly encoded in alignment coordinates and length - analytical tools are often required to extract the biological meaning from the alignments before analysis. Many assay-specific pipelines exist for this purpose, but there remains a need for user-friendly, generalized, nucleotide-resolution tools that are not limited to specific experimental regimes or analytical workflows. Plastid is a Python library designed specifically for nucleotide-resolution analysis of genomics and NGS data. As such, Plastid is designed to extract assay-specific information from read alignments while retaining generality and extensibility to novel NGS assays. Plastid represents NGS and other biological data as arrays of values associated with genomic or transcriptomic positions, and contains configurable tools to convert data from a variety of sources to such arrays. Plastid also includes numerous tools to manipulate even discontinuous genomic features, such as spliced transcripts, with nucleotide precision. Plastid automatically handles conversion between genomic and feature-centric coordinates, accounting for splicing and strand, freeing users of burdensome accounting. Finally, Plastid's data models use consistent and familiar biological idioms, enabling even beginners to develop sophisticated analytical workflows with minimal effort. Plastid is a versatile toolkit that has been used to analyze data from multiple NGS assays, including RNA-seq, ribosome profiling, and DMS-seq. It forms the genomic engine of our ORF annotation tool, ORF-RATER, and is readily adapted to novel NGS assays. Examples, tutorials, and extensive documentation can be found at https://plastid.readthedocs.io .

  18. Validation of next generation sequencing technologies in comparison to current diagnostic gold standards for BRAF, EGFR and KRAS mutational analysis.

    PubMed

    McCourt, Clare M; McArt, Darragh G; Mills, Ken; Catherwood, Mark A; Maxwell, Perry; Waugh, David J; Hamilton, Peter; O'Sullivan, Joe M; Salto-Tellez, Manuel

    2013-01-01

    Next Generation Sequencing (NGS) has the potential of becoming an important tool in clinical diagnosis and therapeutic decision-making in oncology owing to its enhanced sensitivity in DNA mutation detection, fast-turnaround of samples in comparison to current gold standard methods and the potential to sequence a large number of cancer-driving genes at the one time. We aim to test the diagnostic accuracy of current NGS technology in the analysis of mutations that represent current standard-of-care, and its reliability to generate concomitant information on other key genes in human oncogenesis. Thirteen clinical samples (8 lung adenocarcinomas, 3 colon carcinomas and 2 malignant melanomas) already genotyped for EGFR, KRAS and BRAF mutations by current standard-of-care methods (Sanger Sequencing and q-PCR), were analysed for detection of mutations in the same three genes using two NGS platforms and an additional 43 genes with one of these platforms. The results were analysed using closed platform-specific proprietary bioinformatics software as well as open third party applications. Our results indicate that the existing format of the NGS technology performed well in detecting the clinically relevant mutations stated above but may not be reliable for a broader unsupervised analysis of the wider genome in its current design. Our study represents a diagnostically lead validation of the major strengths and weaknesses of this technology before consideration for diagnostic use.

  19. Mutational analysis using Sanger and next generation sequencing in sporadic spindle cell hemangiomas: A study of 19 cases.

    PubMed

    Ten Broek, Roel W; Bekers, Elise M; de Leng, Wendy W J; Strengman, Eric; Tops, Bastiaan B J; Kutzner, Heinz; Leeuwis, Jan Willem; van Gorp, Joost M; Creytens, David H; Mentzel, Thomas; van Diest, Paul J; Eijkelenboom, Astrid; Flucke, Uta

    2017-12-01

    Spindle cell hemangioma (SCH) is a distinct vascular soft-tissue lesion characterized by cavernous blood vessels and a spindle cell component mainly occurring in the distal extremities of young adults. The majority of cases harbor heterozygous mutations in IDH1/2 sporadically or rarely in association with Maffucci syndrome. However, based on mosaicism and accordingly a low percentage of lesional cells harboring a mutant allele, detection can be challenging. We tested 19 sporadic SCHs by Sanger sequencing, multiplex ligation-dependent probe amplification (MLPA), conventional next generation sequencing (NGS), and NGS using a single molecule molecular inversion probes (smMIP)-based library preparation to compare their diagnostic value. Out of 10 cases tested by Sanger sequencing and 2 analyzed using MLPA, 4 and 1, respectively, revealed a mutation in IDH1 (p.R132C). The 7 remaining negative cases and additional 6 cases were investigated using smMIP/NGS, showing hot spot mutations in IDH1 (p.R132C) (8 cases) and IDH2 (3 cases; twice p.R172S and once p.R172G, respectively). One case was negative. Owing to insufficient DNA quality and insufficient coverage, 2 cases were excluded. In total, in 16 out of 17 cases successfully tested, an IDH1/2 mutation was found. Given that IDH1/2 mutations were absent in 161 other vascular lesions tested by smMIP/NGS, the mutation can be considered as highly specific for SCH. © 2017 Wiley Periodicals, Inc.

  20. Using GBrowse 2.0 to visualize and share next-generation sequence data

    PubMed Central

    2013-01-01

    GBrowse is a mature web-based genome browser that is suitable for deployment on both public and private web sites. It supports most of genome browser features, including qualitative and quantitative (wiggle) tracks, track uploading, track sharing, interactive track configuration, semantic zooming and limited smooth track panning. As of version 2.0, GBrowse supports next-generation sequencing (NGS) data by providing for the direct display of SAM and BAM sequence alignment files. SAM/BAM tracks provide semantic zooming and support both local and remote data sources. This article provides step-by-step instructions for configuring GBrowse to display NGS data. PMID:23376193

  1. Application of resequencing to rice genomics, functional genomics and evolutionary analysis

    PubMed Central

    2014-01-01

    Rice is a model system used for crop genomics studies. The completion of the rice genome draft sequences in 2002 not only accelerated functional genome studies, but also initiated a new era of resequencing rice genomes. Based on the reference genome in rice, next-generation sequencing (NGS) using the high-throughput sequencing system can efficiently accomplish whole genome resequencing of various genetic populations and diverse germplasm resources. Resequencing technology has been effectively utilized in evolutionary analysis, rice genomics and functional genomics studies. This technique is beneficial for both bridging the knowledge gap between genotype and phenotype and facilitating molecular breeding via gene design in rice. Here, we also discuss the limitation, application and future prospects of rice resequencing. PMID:25006357

  2. Amplicon-based next-generation sequencing of plasma cell-free DNA for detection of driver and resistance mutations in advanced non-small cell lung cancer.

    PubMed

    Guibert, N; Hu, Y; Feeney, N; Kuang, Y; Plagnol, V; Jones, G; Howarth, K; Beeler, J F; Paweletz, C P; Oxnard, G R

    2018-04-01

    Genomic analysis of plasma cell-free DNA is transforming lung cancer care; however, available assays are limited by cost, turnaround time, and imperfect accuracy. Here, we study amplicon-based plasma next-generation sequencing (NGS), rather than hybrid-capture-based plasma NGS, hypothesizing this would allow sensitive detection and monitoring of driver and resistance mutations in advanced non-small cell lung cancer (NSCLC). Plasma samples from patients with NSCLC and a known targetable genotype (EGFR, ALK/ROS1, and other rare genotypes) were collected while on therapy and analyzed blinded to tumor genotype. Plasma NGS was carried out using enhanced tagged amplicon sequencing of hotspots and coding regions from 36 genes, as well as intronic coverage for detection of ALK/ROS1 fusions. Diagnostic accuracy was compared with plasma droplet digital PCR (ddPCR) and tumor genotype. A total of 168 specimens from 46 patients were studied. Matched plasma NGS and ddPCR across 120 variants from 80 samples revealed high concordance of allelic fraction (R2 = 0.95). Pretreatment, sensitivity of plasma NGS for the detection of EGFR driver mutations was 100% (30/30), compared with 87% for ddPCR (26/30). A full spectrum of rare driver oncogenic mutations could be detected including sensitive detection of ALK/ROS1 fusions (8/9 detected, 89%). Studying 25 patients positive for EGFR T790M that developed resistance to osimertinib, 15 resistance mechanisms could be detected including tertiary EGFR mutations (C797S, Q791P) and mutations or amplifications of non-EGFR genes, some of which could be detected pretreatment or months before progression. This blinded analysis demonstrates the ability of amplicon-based plasma NGS to detect a full range of targetable genotypes in NSCLC, including fusion genes, with high accuracy. The ability of plasma NGS to detect a range of preexisting and acquired resistance mechanisms highlights its potential value as an alternative to single mutation digital PCR-based plasma assays for personalizing treatment of TKI resistance in lung cancer.

  3. Improving mapping and SNP-calling performance in multiplexed targeted next-generation sequencing

    PubMed Central

    2012-01-01

    Background Compared to classical genotyping, targeted next-generation sequencing (tNGS) can be custom-designed to interrogate entire genomic regions of interest, in order to detect novel as well as known variants. To bring down the per-sample cost, one approach is to pool barcoded NGS libraries before sample enrichment. Still, we lack a complete understanding of how this multiplexed tNGS approach and the varying performance of the ever-evolving analytical tools can affect the quality of variant discovery. Therefore, we evaluated the impact of different software tools and analytical approaches on the discovery of single nucleotide polymorphisms (SNPs) in multiplexed tNGS data. To generate our own test model, we combined a sequence capture method with NGS in three experimental stages of increasing complexity (E. coli genes, multiplexed E. coli, and multiplexed HapMap BRCA1/2 regions). Results We successfully enriched barcoded NGS libraries instead of genomic DNA, achieving reproducible coverage profiles (Pearson correlation coefficients of up to 0.99) across multiplexed samples, with <10% strand bias. However, the SNP calling quality was substantially affected by the choice of tools and mapping strategy. With the aim of reducing computational requirements, we compared conventional whole-genome mapping and SNP-calling with a new faster approach: target-region mapping with subsequent ‘read-backmapping’ to the whole genome to reduce the false detection rate. Consequently, we developed a combined mapping pipeline, which includes standard tools (BWA, SAMtools, etc.), and tested it on public HiSeq2000 exome data from the 1000 Genomes Project. Our pipeline saved 12 hours of run time per Hiseq2000 exome sample and detected ~5% more SNPs than the conventional whole genome approach. This suggests that more potential novel SNPs may be discovered using both approaches than with just the conventional approach. Conclusions We recommend applying our general ‘two-step’ mapping approach for more efficient SNP discovery in tNGS. Our study has also shown the benefit of computing inter-sample SNP-concordances and inspecting read alignments in order to attain more confident results. PMID:22913592

  4. The democratization of the oncogene.

    PubMed

    Le, Anh T; Doebele, Robert C

    2014-08-01

    The identification of novel, oncogenic gene rearrangements in inflammatory myofibroblastic tumor demonstrates the potential of next-generation sequencing (NGS) platforms for the detection of therapeutically relevant oncogenes across multiple tumor types, but raises significant questions relating to the investigation of targeted therapies in this new era of widespread NGS testing. ©2014 American Association for Cancer Research.

  5. DEApp: an interactive web interface for differential expression analysis of next generation sequence data.

    PubMed

    Li, Yan; Andrade, Jorge

    2017-01-01

    A growing trend in the biomedical community is the use of Next Generation Sequencing (NGS) technologies in genomics research. The complexity of downstream differential expression (DE) analysis is however still challenging, as it requires sufficient computer programing and command-line knowledge. Furthermore, researchers often need to evaluate and visualize interactively the effect of using differential statistical and error models, assess the impact of selecting different parameters and cutoffs, and finally explore the overlapping consensus of cross-validated results obtained with different methods. This represents a bottleneck that slows down or impedes the adoption of NGS technologies in many labs. We developed DEApp, an interactive and dynamic web application for differential expression analysis of count based NGS data. This application enables models selection, parameter tuning, cross validation and visualization of results in a user-friendly interface. DEApp enables labs with no access to full time bioinformaticians to exploit the advantages of NGS applications in biomedical research. This application is freely available at https://yanli.shinyapps.io/DEAppand https://gallery.shinyapps.io/DEApp.

  6. Detection Copy Number Variants from NGS with Sparse and Smooth Constraints.

    PubMed

    Zhang, Yue; Cheung, Yiu-Ming; Xu, Bo; Su, Weifeng

    2017-01-01

    It is known that copy number variations (CNVs) are associated with complex diseases and particular tumor types, thus reliable identification of CNVs is of great potential value. Recent advances in next generation sequencing (NGS) data analysis have helped manifest the richness of CNV information. However, the performances of these methods are not consistent. Reliably finding CNVs in NGS data in an efficient way remains a challenging topic, worthy of further investigation. Accordingly, we tackle the problem by formulating CNVs identification into a quadratic optimization problem involving two constraints. By imposing the constraints of sparsity and smoothness, the reconstructed read depth signal from NGS is anticipated to fit the CNVs patterns more accurately. An efficient numerical solution tailored from alternating direction minimization (ADM) framework is elaborated. We demonstrate the advantages of the proposed method, namely ADM-CNV, by comparing it with six popular CNV detection methods using synthetic, simulated, and empirical sequencing data. It is shown that the proposed approach can successfully reconstruct CNV patterns from raw data, and achieve superior or comparable performance in detection of the CNVs compared to the existing counterparts.

  7. How Next-Generation Sequencing and Multiscale Data Analysis Will Transform Infectious Disease Management

    PubMed Central

    Pak, Theodore R.; Kasarskis, Andrew

    2015-01-01

    Recent reviews have examined the extent to which routine next-generation sequencing (NGS) on clinical specimens will improve the capabilities of clinical microbiology laboratories in the short term, but do not explore integrating NGS with clinical data from electronic medical records (EMRs), immune profiling data, and other rich datasets to create multiscale predictive models. This review introduces a range of “omics” and patient data sources relevant to managing infections and proposes 3 potentially disruptive applications for these data in the clinical workflow. The combined threats of healthcare-associated infections and multidrug-resistant organisms may be addressed by multiscale analysis of NGS and EMR data that is ideally updated and refined over time within each healthcare organization. Such data and analysis should form the cornerstone of future learning health systems for infectious disease. PMID:26251049

  8. Microfluidics for genome-wide studies involving next generation sequencing

    PubMed Central

    Murphy, Travis W.; Lu, Chang

    2017-01-01

    Next-generation sequencing (NGS) has revolutionized how molecular biology studies are conducted. Its decreasing cost and increasing throughput permit profiling of genomic, transcriptomic, and epigenomic features for a wide range of applications. Microfluidics has been proven to be highly complementary to NGS technology with its unique capabilities for handling small volumes of samples and providing platforms for automation, integration, and multiplexing. In this article, we review recent progress on applying microfluidics to facilitate genome-wide studies. We emphasize on several technical aspects of NGS and how they benefit from coupling with microfluidic technology. We also summarize recent efforts on developing microfluidic technology for genomic, transcriptomic, and epigenomic studies, with emphasis on single cell analysis. We envision rapid growth in these directions, driven by the needs for testing scarce primary cell samples from patients in the context of precision medicine. PMID:28396707

  9. Genome Sequencing and Assembly by Long Reads in Plants

    PubMed Central

    Li, Changsheng; Lin, Feng; An, Dong; Huang, Ruidong

    2017-01-01

    Plant genomes generated by Sanger and Next Generation Sequencing (NGS) have provided insight into species diversity and evolution. However, Sanger sequencing is limited in its applications due to high cost, labor intensity, and low throughput, while NGS reads are too short to resolve abundant repeats and polyploidy, leading to incomplete or ambiguous assemblies. The advent and improvement of long-read sequencing by Third Generation Sequencing (TGS) methods such as PacBio and Nanopore have shown promise in producing high-quality assemblies for complex genomes. Here, we review the development of sequencing, introducing the application as well as considerations of experimental design in TGS of plant genomes. We also introduce recent revolutionary scaffolding technologies including BioNano, Hi-C, and 10× Genomics. We expect that the informative guidance for genome sequencing and assembly by long reads will benefit the initiation of scientists’ projects. PMID:29283420

  10. Evaluation of Techniques for Measuring Microbial Hazards in Bathing Waters: A Comparative Study

    PubMed Central

    Schang, Christelle; Henry, Rebekah; Kolotelo, Peter A.; Prosser, Toby; Crosbie, Nick; Grant, Trish; Cottam, Darren; O’Brien, Peter; Coutts, Scott; Deletic, Ana; McCarthy, David T.

    2016-01-01

    Recreational water quality is commonly monitored by means of culture based faecal indicator organism (FIOs) assays. However, these methods are costly and time-consuming; a serious disadvantage when combined with issues such as non-specificity and user bias. New culture and molecular methods have been developed to counter these drawbacks. This study compared industry-standard IDEXX methods (Colilert and Enterolert) with three alternative approaches: 1) TECTA™ system for E. coli and enterococci; 2) US EPA’s 1611 method (qPCR based enterococci enumeration); and 3) Next Generation Sequencing (NGS). Water samples (233) were collected from riverine, estuarine and marine environments over the 2014–2015 summer period and analysed by the four methods. The results demonstrated that E. coli and coliform densities, inferred by the IDEXX system, correlated strongly with the TECTA™ system. The TECTA™ system had further advantages in faster turnaround times (~12 hrs from sample receipt to result compared to 24 hrs); no staff time required for interpretation and less user bias (results are automatically calculated, compared to subjective colorimetric decisions). The US EPA Method 1611 qPCR method also showed significant correlation with the IDEXX enterococci method; but had significant disadvantages such as highly technical analysis and higher operational costs (330% of IDEXX). The NGS method demonstrated statistically significant correlations between IDEXX and the proportions of sequences belonging to FIOs, Enterobacteriaceae, and Enterococcaceae. While costs (3,000% of IDEXX) and analysis time (300% of IDEXX) were found to be significant drawbacks of NGS, rapid technological advances in this field will soon see it widely adopted. PMID:27213772

  11. Sequence capture of ultraconserved elements from bird museum specimens.

    PubMed

    McCormack, John E; Tsai, Whitney L E; Faircloth, Brant C

    2016-09-01

    New DNA sequencing technologies are allowing researchers to explore the genomes of the millions of natural history specimens collected prior to the molecular era. Yet, we know little about how well specific next-generation sequencing (NGS) techniques work with the degraded DNA typically extracted from museum specimens. Here, we use one type of NGS approach, sequence capture of ultraconserved elements (UCEs), to collect data from bird museum specimens as old as 120 years. We targeted 5060 UCE loci in 27 western scrub-jays (Aphelocoma californica) representing three evolutionary lineages that could be species, and we collected an average of 3749 UCE loci containing 4460 single nucleotide polymorphisms (SNPs). Despite older specimens producing fewer and shorter loci in general, we collected thousands of markers from even the oldest specimens. More sequencing reads per individual helped to boost the number of UCE loci we recovered from older specimens, but more sequencing was not as successful at increasing the length of loci. We detected contamination in some samples and determined that contamination was more prevalent in older samples that were subject to less sequencing. For the phylogeny generated from concatenated UCE loci, contamination led to incorrect placement of some individuals. In contrast, a species tree constructed from SNPs called within UCE loci correctly placed individuals into three monophyletic groups, perhaps because of the stricter analytical procedures used for SNP calling. This study and other recent studies on the genomics of museum specimens have profound implications for natural history collections, where millions of older specimens should now be considered genomic resources. © 2015 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  12. Comparing memory-efficient genome assemblers on stand-alone and cloud infrastructures.

    PubMed

    Kleftogiannis, Dimitrios; Kalnis, Panos; Bajic, Vladimir B

    2013-01-01

    A fundamental problem in bioinformatics is genome assembly. Next-generation sequencing (NGS) technologies produce large volumes of fragmented genome reads, which require large amounts of memory to assemble the complete genome efficiently. With recent improvements in DNA sequencing technologies, it is expected that the memory footprint required for the assembly process will increase dramatically and will emerge as a limiting factor in processing widely available NGS-generated reads. In this report, we compare current memory-efficient techniques for genome assembly with respect to quality, memory consumption and execution time. Our experiments prove that it is possible to generate draft assemblies of reasonable quality on conventional multi-purpose computers with very limited available memory by choosing suitable assembly methods. Our study reveals the minimum memory requirements for different assembly programs even when data volume exceeds memory capacity by orders of magnitude. By combining existing methodologies, we propose two general assembly strategies that can improve short-read assembly approaches and result in reduction of the memory footprint. Finally, we discuss the possibility of utilizing cloud infrastructures for genome assembly and we comment on some findings regarding suitable computational resources for assembly.

  13. Lessons learned from gene identification studies in Mendelian epilepsy disorders

    PubMed Central

    Hardies, Katia; Weckhuysen, Sarah; De Jonghe, Peter; Suls, Arvid

    2016-01-01

    Next-generation sequencing (NGS) technologies are now routinely used for gene identification in Mendelian disorders. Setting up cost-efficient NGS projects and managing the large amount of variants remains, however, a challenging job. Here we provide insights in the decision-making processes before and after the use of NGS in gene identification studies. Genetic factors are thought to have a role in ~70% of all epilepsies, and a variety of inheritance patterns have been described for seizure-associated gene defects. We therefore chose epilepsy as disease model and selected 35 NGS studies that focused on patients with a Mendelian epilepsy disorder. The strategies used for gene identification and their respective outcomes were reviewed. High-throughput NGS strategies have led to the identification of several new epilepsy-causing genes, enlarging our knowledge on both known and novel pathomechanisms. NGS findings have furthermore extended the awareness of phenotypical and genetic heterogeneity. By discussing recent studies we illustrate: (I) the power of NGS for gene identification in Mendelian disorders, (II) the accelerating pace in which this field evolves, and (III) the considerations that have to be made when performing NGS studies. Nonetheless, the enormous rise in gene discovery over the last decade, many patients and families included in gene identification studies still remain without a molecular diagnosis; hence, further genetic research is warranted. On the basis of successful NGS studies in epilepsy, we discuss general approaches to guide human geneticists and clinicians in setting up cost-efficient gene identification NGS studies. PMID:26603999

  14. Application of viromics: a new approach to the understanding of viral infections in humans.

    PubMed

    Ramamurthy, Mageshbabu; Sankar, Sathish; Kannangai, Rajesh; Nandagopal, Balaji; Sridharan, Gopalan

    2017-12-01

    This review is focused at exploring the strengths of modern technology driven data compiled in the areas of virus gene sequencing, virus protein structures and their implication to viral diagnosis and therapy. The information for virome analysis (viromics) is generated by the study of viral genomes (entire nucleotide sequence) and viral genes (coding for protein). Presently, the study of viral infectious diseases in terms of etiopathogenesis and development of newer therapeutics is undergoing rapid changes. Currently, viromics relies on deep sequencing, next generation sequencing (NGS) data and public domain databases like GenBank and unique virus specific databases. Two commonly used NGS platforms: Illumina and Ion Torrent, recommend maximum fragment lengths of about 300 and 400 nucleotides for analysis respectively. Direct detection of viruses in clinical samples is now evolving using these methods. Presently, there are a considerable number of good treatment options for HBV/HIV/HCV. These viruses however show development of drug resistance. The drug susceptibility regions of the genomes are sequenced and the prediction of drug resistance is now possible from 3 public domains available on the web. This has been made possible through advances in the technology with the advent of high throughput sequencing and meta-analysis through sophisticated and easy to use software and the use of high speed computers for bioinformatics. More recently NGS technology has been improved with single-molecule real-time sequencing. Here complete long reads can be obtained with less error overcoming a limitation of the NGS which is inherently prone to software anomalies that arise in the hands of personnel without adequate training. The development in understanding the viruses in terms of their genome, pathobiology, transcriptomics and molecular epidemiology constitutes viromics. It could be stated that these developments will bring about radical changes and advancement especially in the field of antiviral therapy and diagnostic virology.

  15. Genotyping of 25 leukemia-associated genes in a single work flow by next-generation sequencing technology with low amounts of input template DNA.

    PubMed

    Rinke, Jenny; Schäfer, Vivien; Schmidt, Mathias; Ziermann, Janine; Kohlmann, Alexander; Hochhaus, Andreas; Ernst, Thomas

    2013-08-01

    We sought to establish a convenient, sensitive next-generation sequencing (NGS) method for genotyping the 26 most commonly mutated leukemia-associated genes in a single work flow and to optimize this method for low amounts of input template DNA. We designed 184 PCR amplicons that cover all of the candidate genes. NGS was performed with genomic DNA (gDNA) from a cohort of 10 individuals with chronic myelomonocytic leukemia. The results were compared with NGS data obtained from sequencing of DNA generated by whole-genome amplification (WGA) of 20 ng template gDNA. Differences between gDNA and WGA samples in variant frequencies were determined for 2 different WGA kits. For gDNA samples, 25 of 26 genes were successfully sequenced with a sensitivity of 5%, which was achieved by a median coverage of 492 reads (range, 308-636 reads) per amplicon. We identified 24 distinct mutations in 11 genes. With WGA samples, we reliably detected all mutations above 5% sensitivity with a median coverage of 506 reads (range, 256-653 reads) per amplicon. With all variants included in the analysis, WGA amplification by the 2 kits tested yielded differences in variant frequencies that ranged from -28.19% to +9.94% [mean (SD) difference, -0.2% (4.08%)] and from -35.03% to +18.67% [mean difference, -0.75% (5.12%)]. Our method permits simultaneous analysis of a wide range of leukemia-associated target genes in a single sequencing run. NGS can be performed after WGA of template DNA for reliable detection of variants without introducing appreciable bias.

  16. SearchSmallRNA: a graphical interface tool for the assemblage of viral genomes using small RNA libraries data.

    PubMed

    de Andrade, Roberto R S; Vaslin, Maite F S

    2014-03-07

    Next-generation parallel sequencing (NGS) allows the identification of viral pathogens by sequencing the small RNAs of infected hosts. Thus, viral genomes may be assembled from host immune response products without prior virus enrichment, amplification or purification. However, mapping of the vast information obtained presents a bioinformatics challenge. In order to by pass the need of line command and basic bioinformatics knowledge, we develop a mapping software with a graphical interface to the assemblage of viral genomes from small RNA dataset obtained by NGS. SearchSmallRNA was developed in JAVA language version 7 using NetBeans IDE 7.1 software. The program also allows the analysis of the viral small interfering RNAs (vsRNAs) profile; providing an overview of the size distribution and other features of the vsRNAs produced in infected cells. The program performs comparisons between each read sequenced present in a library and a chosen reference genome. Reads showing Hamming distances smaller or equal to an allowed mismatched will be selected as positives and used to the assemblage of a long nucleotide genome sequence. In order to validate the software, distinct analysis using NGS dataset obtained from HIV and two plant viruses were used to reconstruct viral whole genomes. SearchSmallRNA program was able to reconstructed viral genomes using NGS of small RNA dataset with high degree of reliability so it will be a valuable tool for viruses sequencing and discovery. It is accessible and free to all research communities and has the advantage to have an easy-to-use graphical interface. SearchSmallRNA was written in Java and is freely available at http://www.microbiologia.ufrj.br/ssrna/.

  17. SearchSmallRNA: a graphical interface tool for the assemblage of viral genomes using small RNA libraries data

    PubMed Central

    2014-01-01

    Background Next-generation parallel sequencing (NGS) allows the identification of viral pathogens by sequencing the small RNAs of infected hosts. Thus, viral genomes may be assembled from host immune response products without prior virus enrichment, amplification or purification. However, mapping of the vast information obtained presents a bioinformatics challenge. Methods In order to by pass the need of line command and basic bioinformatics knowledge, we develop a mapping software with a graphical interface to the assemblage of viral genomes from small RNA dataset obtained by NGS. SearchSmallRNA was developed in JAVA language version 7 using NetBeans IDE 7.1 software. The program also allows the analysis of the viral small interfering RNAs (vsRNAs) profile; providing an overview of the size distribution and other features of the vsRNAs produced in infected cells. Results The program performs comparisons between each read sequenced present in a library and a chosen reference genome. Reads showing Hamming distances smaller or equal to an allowed mismatched will be selected as positives and used to the assemblage of a long nucleotide genome sequence. In order to validate the software, distinct analysis using NGS dataset obtained from HIV and two plant viruses were used to reconstruct viral whole genomes. Conclusions SearchSmallRNA program was able to reconstructed viral genomes using NGS of small RNA dataset with high degree of reliability so it will be a valuable tool for viruses sequencing and discovery. It is accessible and free to all research communities and has the advantage to have an easy-to-use graphical interface. Availability and implementation SearchSmallRNA was written in Java and is freely available at http://www.microbiologia.ufrj.br/ssrna/. PMID:24607237

  18. Mutational Analysis of Extranodal NK/T-Cell Lymphoma Using Targeted Sequencing with a Comprehensive Cancer Panel.

    PubMed

    Choi, Seungkyu; Go, Jai Hyang; Kim, Eun Kyung; Lee, Hojung; Lee, Won Mi; Cho, Chun-Sung; Han, Kyudong

    2016-09-01

    Extranodal natural killer (NK)/T-cell lymphoma, nasal type (NKTCL), is a malignant disorder of cytotoxic lymphocytes of NK or T cells. It is an aggressive neoplasm with a very poor prognosis. Although extranodal NKTCL reportedly has a strong association with Epstein-Barr virus, the molecular pathogenesis of NKTCL has been unexplored. The recent technological advancements in next-generation sequencing (NGS) have made DNA sequencing cost- and time-effective, with more reliable results. Using the Ion Proton Comprehensive Cancer Panel, we sequenced 409 cancer-related genes to identify somatic mutations in five NKTCL tissue samples. The sequencing analysis detected 25 mutations in 21 genes. Among them, KMT2D , a histone modification-related gene, was the most frequently mutated gene (four of the five cases). This result was consistent with recent NGS studies that have suggested KMT2D as a novel driver gene in NKTCL. Mutations were also found in ARID1A , a chromatin remodeling gene, and TP53 , which also recurred in recent NGS studies. We also found mutations in 18 novel candidate genes, with molecular functions that were potentially implicated in cancer development. We suggest that these genes may result in multiple oncogenic events and may be used as potential bio-markers of NKTCL in the future.

  19. Genome-wide gene–gene interaction analysis for next-generation sequencing

    PubMed Central

    Zhao, Jinying; Zhu, Yun; Xiong, Momiao

    2016-01-01

    The critical barrier in interaction analysis for next-generation sequencing (NGS) data is that the traditional pairwise interaction analysis that is suitable for common variants is difficult to apply to rare variants because of their prohibitive computational time, large number of tests and low power. The great challenges for successful detection of interactions with NGS data are (1) the demands in the paradigm of changes in interaction analysis; (2) severe multiple testing; and (3) heavy computations. To meet these challenges, we shift the paradigm of interaction analysis between two SNPs to interaction analysis between two genomic regions. In other words, we take a gene as a unit of analysis and use functional data analysis techniques as dimensional reduction tools to develop a novel statistic to collectively test interaction between all possible pairs of SNPs within two genome regions. By intensive simulations, we demonstrate that the functional logistic regression for interaction analysis has the correct type 1 error rates and higher power to detect interaction than the currently used methods. The proposed method was applied to a coronary artery disease dataset from the Wellcome Trust Case Control Consortium (WTCCC) study and the Framingham Heart Study (FHS) dataset, and the early-onset myocardial infarction (EOMI) exome sequence datasets with European origin from the NHLBI's Exome Sequencing Project. We discovered that 6 of 27 pairs of significantly interacted genes in the FHS were replicated in the independent WTCCC study and 24 pairs of significantly interacted genes after applying Bonferroni correction in the EOMI study. PMID:26173972

  20. A general method to eliminate laboratory induced recombinants during massive, parallel sequencing of cDNA library.

    PubMed

    Waugh, Caryll; Cromer, Deborah; Grimm, Andrew; Chopra, Abha; Mallal, Simon; Davenport, Miles; Mak, Johnson

    2015-04-09

    Massive, parallel sequencing is a potent tool for dissecting the regulation of biological processes by revealing the dynamics of the cellular RNA profile under different conditions. Similarly, massive, parallel sequencing can be used to reveal the complexity of viral quasispecies that are often found in the RNA virus infected host. However, the production of cDNA libraries for next-generation sequencing (NGS) necessitates the reverse transcription of RNA into cDNA and the amplification of the cDNA template using PCR, which may introduce artefact in the form of phantom nucleic acids species that can bias the composition and interpretation of original RNA profiles. Using HIV as a model we have characterised the major sources of error during the conversion of viral RNA to cDNA, namely excess RNA template and the RNaseH activity of the polymerase enzyme, reverse transcriptase. In addition we have analysed the effect of PCR cycle on detection of recombinants and assessed the contribution of transfection of highly similar plasmid DNA to the formation of recombinant species during the production of our control viruses. We have identified RNA template concentrations, RNaseH activity of reverse transcriptase, and PCR conditions as key parameters that must be carefully optimised to minimise chimeric artefacts. Using our optimised RT-PCR conditions, in combination with our modified PCR amplification procedure, we have developed a reliable technique for accurate determination of RNA species using NGS technology.

  1. Making the Leap from Research Laboratory to Clinic: Challenges and Opportunities for Next-Generation Sequencing in Infectious Disease Diagnostics

    PubMed Central

    Goldberg, Brittany; Sichtig, Heike; Geyer, Chelsie; Ledeboer, Nathan

    2015-01-01

    ABSTRACT Next-generation DNA sequencing (NGS) has progressed enormously over the past decade, transforming genomic analysis and opening up many new opportunities for applications in clinical microbiology laboratories. The impact of NGS on microbiology has been revolutionary, with new microbial genomic sequences being generated daily, leading to the development of large databases of genomes and gene sequences. The ability to analyze microbial communities without culturing organisms has created the ever-growing field of metagenomics and microbiome analysis and has generated significant new insights into the relation between host and microbe. The medical literature contains many examples of how this new technology can be used for infectious disease diagnostics and pathogen analysis. The implementation of NGS in medical practice has been a slow process due to various challenges such as clinical trials, lack of applicable regulatory guidelines, and the adaptation of the technology to the clinical environment. In April 2015, the American Academy of Microbiology (AAM) convened a colloquium to begin to define these issues, and in this document, we present some of the concepts that were generated from these discussions. PMID:26646014

  2. A prospective pilot study of genome-wide exome and transcriptome profiling in patients with small cell lung cancer progressing after first-line therapy.

    PubMed

    Weiss, Glen J; Byron, Sara A; Aldrich, Jessica; Sangal, Ashish; Barilla, Heather; Kiefer, Jeffrey A; Carpten, John D; Craig, David W; Whitsett, Timothy G

    2017-01-01

    Small cell lung cancer (SCLC) that has progressed after first-line therapy is an aggressive disease with few effective therapeutic strategies. In this prospective study, we employed next-generation sequencing (NGS) to identify therapeutically actionable alterations to guide treatment for advanced SCLC patients. Twelve patients with SCLC were enrolled after failing platinum-based chemotherapy. Following informed consent, genome-wide exome and RNA-sequencing was performed in a CLIA-certified, CAP-accredited environment. Actionable targets were identified and therapeutic recommendations made from a pharmacopeia of FDA-approved drugs. Clinical response to genomically-guided treatment was evaluated by Response Evaluation Criteria in Solid Tumors (RECIST) 1.1. The study completed its accrual goal of 12 evaluable patients. The minimum tumor content for successful NGS was 20%, with a median turnaround time from sample collection to genomics-based treatment recommendation of 27 days. At least two clinically actionable targets were identified in each patient, and six patients (50%) received treatment identified by NGS. Two had partial responses by RECIST 1.1 on a clinical trial involving a PD-1 inhibitor + irinotecan (indicated by MLH1 alteration). The remaining patients had clinical deterioration before NGS recommended therapy could be initiated. Comprehensive genomic profiling using NGS identified clinically-actionable alterations in SCLC patients who progressed on initial therapy. Recommended PD-1 therapy generated partial responses in two patients. Earlier access to NGS guided therapy, along with improved understanding of those SCLC patients likely to respond to immune-based therapies, should help to extend survival in these cases with poor outcomes.

  3. Legal approaches regarding health-care decisions involving minors: implications for next-generation sequencing

    PubMed Central

    Sénécal, Karine; Thys, Kristof; Vears, Danya F; Van Assche, Kristof; Knoppers, Bartha M; Borry, Pascal

    2016-01-01

    The development of next-generation sequencing (NGS) technologies are revolutionizing medical practice, facilitating more accurate, sophisticated and cost-effective genetic testing. NGS is already being implemented in the clinic assisting diagnosis and management of disorders with a strong heritable component. Although considerable attention has been paid to issues regarding return of incidental or secondary findings, matters of consent are less well explored. This is particularly important for the use of NGS in minors. Recent guidelines addressing genomic testing and screening of children and adolescents have suggested that as ‘young children' lack decision-making capacity, decisions about testing must be conducted by a surrogate, namely their parents. This prompts consideration of the age at which minors can provide lawful consent to health-care interventions, and consequently NGS performed for diagnostic purposes. Here, we describe the existing legal approaches regarding the rights of minors to consent to health-care interventions, including how laws in the 28 Member States of the European Union and in Canada consider competent minors, and then apply this to the context of NGS. There is considerable variation in the rights afforded to minors across countries. Many legal systems determine that minors would be allowed, or may even be required, to make decisions about interventions such as NGS. However, minors are often considered as one single homogeneous population who always require parental consent, rather than recognizing there are different categories of ‘minors' and that capacity to consent or to be involved in discussions and decision-making process is a spectrum rather than a hurdle. PMID:27302841

  4. Legal approaches regarding health-care decisions involving minors: implications for next-generation sequencing.

    PubMed

    Sénécal, Karine; Thys, Kristof; Vears, Danya F; Van Assche, Kristof; Knoppers, Bartha M; Borry, Pascal

    2016-11-01

    The development of next-generation sequencing (NGS) technologies are revolutionizing medical practice, facilitating more accurate, sophisticated and cost-effective genetic testing. NGS is already being implemented in the clinic assisting diagnosis and management of disorders with a strong heritable component. Although considerable attention has been paid to issues regarding return of incidental or secondary findings, matters of consent are less well explored. This is particularly important for the use of NGS in minors. Recent guidelines addressing genomic testing and screening of children and adolescents have suggested that as 'young children' lack decision-making capacity, decisions about testing must be conducted by a surrogate, namely their parents. This prompts consideration of the age at which minors can provide lawful consent to health-care interventions, and consequently NGS performed for diagnostic purposes. Here, we describe the existing legal approaches regarding the rights of minors to consent to health-care interventions, including how laws in the 28 Member States of the European Union and in Canada consider competent minors, and then apply this to the context of NGS. There is considerable variation in the rights afforded to minors across countries. Many legal systems determine that minors would be allowed, or may even be required, to make decisions about interventions such as NGS. However, minors are often considered as one single homogeneous population who always require parental consent, rather than recognizing there are different categories of 'minors' and that capacity to consent or to be involved in discussions and decision-making process is a spectrum rather than a hurdle.

  5. Diagnosis of autosomal dominant polycystic kidney disease using efficient PKD1 and PKD2 targeted next-generation sequencing.

    PubMed

    Trujillano, Daniel; Bullich, Gemma; Ossowski, Stephan; Ballarín, José; Torra, Roser; Estivill, Xavier; Ars, Elisabet

    2014-09-01

    Molecular diagnostics of autosomal dominant polycystic kidney disease (ADPKD) relies on mutation screening of PKD1 and PKD2, which is complicated by extensive allelic heterogeneity and the presence of six highly homologous sequences of PKD1. To date, specific sequencing of PKD1 requires laborious long-range amplifications. The high cost and long turnaround time of PKD1 and PKD2 mutation analysis using conventional techniques limits its widespread application in clinical settings. We performed targeted next-generation sequencing (NGS) of PKD1 and PKD2. Pooled barcoded DNA patient libraries were enriched by in-solution hybridization with PKD1 and PKD2 capture probes. Bioinformatics analysis was performed using an in-house developed pipeline. We validated the assay in a cohort of 36 patients with previously known PKD1 and PKD2 mutations and five control individuals. Then, we used the same assay and bioinformatics analysis in a discovery cohort of 12 uncharacterized patients. We detected 35 out of 36 known definitely, highly likely, and likely pathogenic mutations in the validation cohort, including two large deletions. In the discovery cohort, we detected 11 different pathogenic mutations in 10 out of 12 patients. This study demonstrates that laborious long-range PCRs of the repeated PKD1 region can be avoided by in-solution enrichment of PKD1 and PKD2 and NGS. This strategy significantly reduces the cost and time for simultaneous PKD1 and PKD2 sequence analysis, facilitating routine genetic diagnostics of ADPKD.

  6. Neurofibromatosis type 1 molecular diagnosis: what can NGS do for you when you have a large gene with loss of function mutations?

    PubMed Central

    Pasmant, Eric; Parfait, Béatrice; Luscan, Armelle; Goussard, Philippe; Briand-Suleau, Audrey; Laurendeau, Ingrid; Fouveaut, Corinne; Leroy, Chrystel; Montadert, Annelore; Wolkenstein, Pierre; Vidaud, Michel; Vidaud, Dominique

    2015-01-01

    Molecular diagnosis of neurofibromatosis type 1 (NF1) is challenging owing to the large size of the tumour suppressor gene NF1, and the lack of mutation hotspots. A somatic alteration of the wild-type NF1 allele is observed in NF1-associated tumours. Genetic heterogeneity in NF1 was confirmed in patients with SPRED1 mutations. Here, we present a targeted next-generation sequencing (NGS) of NF1 and SPRED1 using a multiplex PCR approach (230 amplicons of ∼150 bp) on a PGM sequencer. The chip capacity allowed mixing 48 bar-coded samples in a 4-day workflow. We validated the NGS approach by retrospectively testing 30 NF1-mutated samples, and then prospectively analysed 279 patients in routine diagnosis. On average, 98.5% of all targeted bases were covered by at least 20X and 96% by at least 100X. An NF1 or SPRED1 alteration was found in 246/279 (88%) and 10/279 (4%) patients, respectively. Genotyping throughput was increased over 10 times, as compared with Sanger, with ∼90€ for consumables per sample. Interestingly, our targeted NGS approach also provided quantitative information based on sequencing depth allowing identification of multiexons deletion or duplication. We then addressed the NF1 somatic mutation detection sensitivity in mosaic NF1 patients and tumours. PMID:25074460

  7. Molecular Diagnosis of Infantile Mitochondrial Disease with Targeted Next-Generation Sequencing

    PubMed Central

    Calvo, Sarah E.; Compton, Alison G.; Hershman, Steven G.; Lim, Sze Chern; Lieber, Daniel S.; Tucker, Elena J.; Laskowski, Adrienne; Garone, Caterina; Liu, Shangtao; Jaffe, David B.; Christodoulou, John; Fletcher, Janice M.; Bruno, Damien L; Goldblatt, Jack; DiMauro, Salvatore; Thorburn, David R.; Mootha, Vamsi K.

    2012-01-01

    Advances in next-generation sequencing (NGS) promise to facilitate diagnosis of inherited disorders. While in research settings NGS has pinpointed causal alleles using segregation in large families, the key challenge for clinical diagnosis is application to single individuals. To explore its diagnostic utility, we performed targeted NGS in 42 unrelated infants with clinical and biochemical evidence of mitochondrial oxidative phosphorylation disease, who were refractory to traditional molecular diagnosis. These devastating mitochondrial disorders are characterized by phenotypic and genetic heterogeneity, with over 100 causal genes identified to date. We performed “MitoExome” sequencing of the mitochondrial DNA (mtDNA) and exons of ~1000 nuclear genes encoding mitochondrial proteins and prioritized rare mutations predicted to disrupt function. Since patients and controls harbored a comparable number of such heterozygous alleles, we could not prioritize dominant acting genes. However, patients showed a five-fold enrichment of genes with two such mutations that could underlie recessive disease. In total, 23/42 (55%) patients harbored such recessive genes or pathogenic mtDNA variants. Firm diagnoses were enabled in 10 patients (24%) who had mutations in genes previously linked to disease. 13 patients (31%) had mutations in nuclear genes never linked to disease. The pathogenicity of two such genes, NDUFB3 and AGK, was supported by cDNA complementation and evidence from multiple patients, respectively. The results underscore the immediate potential and challenges of deploying NGS in clinical settings. PMID:22277967

  8. Low-Cost, High-Throughput Sequencing of DNA Assemblies Using a Highly Multiplexed Nextera Process.

    PubMed

    Shapland, Elaine B; Holmes, Victor; Reeves, Christopher D; Sorokin, Elena; Durot, Maxime; Platt, Darren; Allen, Christopher; Dean, Jed; Serber, Zach; Newman, Jack; Chandran, Sunil

    2015-07-17

    In recent years, next-generation sequencing (NGS) technology has greatly reduced the cost of sequencing whole genomes, whereas the cost of sequence verification of plasmids via Sanger sequencing has remained high. Consequently, industrial-scale strain engineers either limit the number of designs or take short cuts in quality control. Here, we show that over 4000 plasmids can be completely sequenced in one Illumina MiSeq run for less than $3 each (15× coverage), which is a 20-fold reduction over using Sanger sequencing (2× coverage). We reduced the volume of the Nextera tagmentation reaction by 100-fold and developed an automated workflow to prepare thousands of samples for sequencing. We also developed software to track the samples and associated sequence data and to rapidly identify correctly assembled constructs having the fewest defects. As DNA synthesis and assembly become a centralized commodity, this NGS quality control (QC) process will be essential to groups operating high-throughput pipelines for DNA construction.

  9. A robust and cost-effective approach to sequence and analyze complete genomes of small RNA viruses

    USDA-ARS?s Scientific Manuscript database

    Background: Next-generation sequencing (NGS) allows ultra-deep sequencing of nucleic acids. The use of sequence-independent amplification of viral nucleic acids without utilization of target-specific primers provides advantages over traditional sequencing methods and allows detection of unsuspected ...

  10. Historical Perspective, Development and Applications of Next-Generation Sequencing in Plant Virology

    PubMed Central

    Barba, Marina; Czosnek, Henryk; Hadidi, Ahmed

    2014-01-01

    Next-generation high throughput sequencing technologies became available at the onset of the 21st century. They provide a highly efficient, rapid, and low cost DNA sequencing platform beyond the reach of the standard and traditional DNA sequencing technologies developed in the late 1970s. They are continually improved to become faster, more efficient and cheaper. They have been used in many fields of biology since 2004. In 2009, next-generation sequencing (NGS) technologies began to be applied to several areas of plant virology including virus/viroid genome sequencing, discovery and detection, ecology and epidemiology, replication and transcription. Identification and characterization of known and unknown viruses and/or viroids in infected plants are currently among the most successful applications of these technologies. It is expected that NGS will play very significant roles in many research and non-research areas of plant virology. PMID:24399207

  11. Houston Methodist Variant Viewer: An Application to Support Clinical Laboratory Interpretation of Next-generation Sequencing Data for Cancer

    PubMed Central

    Christensen, Paul A.; Ni, Yunyun; Bao, Feifei; Hendrickson, Heather L.; Greenwood, Michael; Thomas, Jessica S.; Long, S. Wesley; Olsen, Randall J.

    2017-01-01

    Introduction: Next-generation-sequencing (NGS) is increasingly used in clinical and research protocols for patients with cancer. NGS assays are routinely used in clinical laboratories to detect mutations bearing on cancer diagnosis, prognosis and personalized therapy. A typical assay may interrogate 50 or more gene targets that encompass many thousands of possible gene variants. Analysis of NGS data in cancer is a labor-intensive process that can become overwhelming to the molecular pathologist or research scientist. Although commercial tools for NGS data analysis and interpretation are available, they are often costly, lack key functionality or cannot be customized by the end user. Methods: To facilitate NGS data analysis in our clinical molecular diagnostics laboratory, we created a custom bioinformatics tool termed Houston Methodist Variant Viewer (HMVV). HMVV is a Java-based solution that integrates sequencing instrument output, bioinformatics analysis, storage resources and end user interface. Results: Compared to the predicate method used in our clinical laboratory, HMVV markedly simplifies the bioinformatics workflow for the molecular technologist and facilitates the variant review by the molecular pathologist. Importantly, HMVV reduces time spent researching the biological significance of the variants detected, standardizes the online resources used to perform the variant investigation and assists generation of the annotated report for the electronic medical record. HMVV also maintains a searchable variant database, including the variant annotations generated by the pathologist, which is useful for downstream quality improvement and research projects. Conclusions: HMVV is a clinical grade, low-cost, feature-rich, highly customizable platform that we have made available for continued development by the pathology informatics community. PMID:29226007

  12. Development of a Targeted Next-Generation Sequencing Assay to Detect Diagnostically Relevant Mutations of JAK2, CALR, and MPL in Myeloproliferative Neoplasms.

    PubMed

    Frawley, Thomas; O'Brien, Cathal P; Conneally, Eibhlin; Vandenberghe, Elisabeth; Percy, Melanie; Langabeer, Stephen E; Haslam, Karl

    2018-02-01

    The classical Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), consisting of polycythemia vera, essential thrombocythemia, and primary myelofibrosis, are a heterogeneous group of neoplasms that harbor driver mutations in the JAK2, CALR, and MPL genes. The detection of mutations in these genes has been incorporated into the recent World Health Organization (WHO) diagnostic criteria for MPN. Given a pressing clinical need to screen for mutations in these genes in a routine diagnostic setting, a targeted next-generation sequencing (NGS) assay for the detection of MPN-associated mutations located in JAK2 exon 14, JAK2 exon 12, CALR exon 9, and MPL exon 10 was developed to provide a single platform alternative to reflexive, stepwise diagnostic algorithms. Polymerase chain reaction (PCR) primers were designed to target mutation hotspots in JAK2 exon 14, JAK2 exon 12, MPL exon 10, and CALR exon 9. Multiplexed PCR conditions were optimized by using qualitative PCR followed by NGS. Diagnostic genomic DNA from 35 MPN patients, known to harbor driver mutations in one of the target genes, was used to validate the assay. One hundred percent concordance was observed between the previously-identified mutations and those detected by NGS, with no false positives, nor any known mutations missed (specificity = 100%, CI = 0.96, sensitivity = 100%, CI = 0.89). Improved resolution of mutation sequences was also revealed by NGS analysis. Detection of diagnostically relevant driver mutations of MPN is enhanced by employing a targeted multiplex NGS approach. This assay presents a robust solution to classical MPN mutation screening, providing an alternative to time-consuming sequential analyses.

  13. Use of the Minion nanopore sequencer for rapid sequencing of avian influenza virus isolates

    USDA-ARS?s Scientific Manuscript database

    A relatively new sequencing technology, the MinION nanopore sequencer, provides a platform that is smaller, faster, and cheaper than existing Next Generation Sequence (NGS) technologies. The MinION sequences of individual strands of DNA and can produce millions of sequencing reads. The cost of the s...

  14. Moorean and Tahitian Partula tree snail survival after a mass extinction: New genomic insights using museum specimens.

    PubMed

    Haponski, Amanda E; Lee, Taehwan; Ó Foighil, Diarmaid

    2017-01-01

    Natural history museum collections provide a biodiversity window into the past and are of particular importance to the study of extinction-impacted clades such as the Pacific Island tree snail family Partulidae. Deliberate introduction of the predatory rosy wolf snail Euglandina rosea in the late 20th century led to the extinction/extirpation of 55/61 Society Island Partulidae species. In this study, we phylogenomically investigated the inter-relationships of the three surviving Society Island valley Partula species: P. taeniata (Moorea), P. clara and P. hyalina (Tahiti). All three formed a distinct clade in earlier mitochondrial phylogenies. Using Next Generation Sequencing (NGS) double digested Restriction Associated DNA sequencing (ddRADseq), we found that 46-year-old lyophilized museum specimens produced similar numbers of reads, sequencing depth, and loci as 10-year old ethanol-preserved collections. Phylogenomic trees indicated that Tahitian P. clara and P. hyalina are the result of a single founding lineage from Moorea, contrasting previous mitochondrial results and clarifying the enigmatic taxonomic status of P. c. incrassa. Our study highlights the utility and viability of NGS techniques for museum specimens and their increased resolution of evolutionary patterns. Sampling will be expanded to include the remaining Society Island partulid taxa to further explore the evolutionary history of this radiation. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Genome-wide sequencing and quantification of circulating microRNAs for dogs with congestive heart failure secondary to myxomatous mitral valve degeneration.

    PubMed

    Jung, SeungWoo; Bohan, Amy

    2018-02-01

    OBJECTIVE To characterize expression profiles of circulating microRNAs via genome-wide sequencing for dogs with congestive heart failure (CHF) secondary to myxomatous mitral valve degeneration (MMVD). ANIMALS 9 healthy client-owned dogs and 8 age-matched client-owned dogs with CHF secondary to MMVD. PROCEDURES Blood samples were collected before administering cardiac medications for the management of CHF. Isolated microRNAs from plasma were classified into microRNA libraries and subjected to next-generation sequencing (NGS) for genome-wide sequencing analysis and quantification of circulating microRNAs. Quantitative reverse transcription PCR (qRT-PCR) assays were used to validate expression profiles of differentially expressed circulating microRNAs identified from NGS analysis of dogs with CHF. RESULTS 326 microRNAs were identified with NGS analysis. Hierarchical analysis revealed distinct expression patterns of circulating microRNAs between healthy dogs and dogs with CHF. Results of qRT-PCR assays confirmed upregulation of 4 microRNAs (miR-133, miR-1, miR-let-7e, and miR-125) and downregulation of 4 selected microRNAs (miR-30c, miR-128, miR-142, and miR-423). Results of qRT-PCR assays were highly correlated with NGS data and supported the specificity of circulating microRNA expression profiles in dogs with CHF secondary to MMVD. CONCLUSIONS AND CLINICAL RELEVANCE These results suggested that circulating microRNA expression patterns were unique and could serve as molecular biomarkers of CHF in dogs with MMVD.

  16. Cloning and Identification of Recombinant Argonaute-Bound Small RNAs Using Next-Generation Sequencing.

    PubMed

    Gangras, Pooja; Dayeh, Daniel M; Mabin, Justin W; Nakanishi, Kotaro; Singh, Guramrit

    2018-01-01

    Argonaute proteins (AGOs) are loaded with small RNAs as guides to recognize target mRNAs. Since the target specificity heavily depends on the base complementarity between two strands, it is important to identify small guide and long target RNAs bound to AGOs. For this purpose, next-generation sequencing (NGS) technologies have extended our appreciation truly to the nucleotide level. However, the identification of RNAs via NGS from scarce RNA samples remains a challenge. Further, most commercial and published methods are compatible with either small RNAs or long RNAs, but are not equally applicable to both. Therefore, a single method that yields quantitative, bias-free NGS libraries to identify small and long RNAs from low levels of input will be of wide interest. Here, we introduce such a procedure that is based on several modifications of two published protocols and allows robust, sensitive, and reproducible cloning and sequencing of small amounts of RNAs of variable lengths. The method was applied to the identification of small RNAs bound to a purified eukaryotic AGO. Following ligation of a DNA adapter to RNA 3'-end, the key feature of this method is to use the adapter for priming reverse transcription (RT) wherein biotinylated deoxyribonucleotides specifically incorporated into the extended complementary DNA. Such RT products are enriched on streptavidin beads, circularized while immobilized on beads and directly used for PCR amplification. We provide a stepwise guide to generate RNA-Seq libraries, their purification, quantification, validation, and preparation for next-generation sequencing. We also provide basic steps in post-NGS data analyses using Galaxy, an open-source, web-based platform.

  17. Estimating time of HIV-1 infection from next-generation sequence diversity

    PubMed Central

    2017-01-01

    Estimating the time since infection (TI) in newly diagnosed HIV-1 patients is challenging, but important to understand the epidemiology of the infection. Here we explore the utility of virus diversity estimated by next-generation sequencing (NGS) as novel biomarker by using a recent genome-wide longitudinal dataset obtained from 11 untreated HIV-1-infected patients with known dates of infection. The results were validated on a second dataset from 31 patients. Virus diversity increased linearly with time, particularly at 3rd codon positions, with little inter-patient variation. The precision of the TI estimate improved with increasing sequencing depth, showing that diversity in NGS data yields superior estimates to the number of ambiguous sites in Sanger sequences, which is one of the alternative biomarkers. The full advantage of deep NGS was utilized with continuous diversity measures such as average pairwise distance or site entropy, rather than the fraction of polymorphic sites. The precision depended on the genomic region and codon position and was highest when 3rd codon positions in the entire pol gene were used. For these data, TI estimates had a mean absolute error of around 1 year. The error increased only slightly from around 0.6 years at a TI of 6 months to around 1.1 years at 6 years. Our results show that virus diversity determined by NGS can be used to estimate time since HIV-1 infection many years after the infection, in contrast to most alternative biomarkers. We provide the regression coefficients as well as web tool for TI estimation. PMID:28968389

  18. STINGRAY: system for integrated genomic resources and analysis.

    PubMed

    Wagner, Glauber; Jardim, Rodrigo; Tschoeke, Diogo A; Loureiro, Daniel R; Ocaña, Kary A C S; Ribeiro, Antonio C B; Emmel, Vanessa E; Probst, Christian M; Pitaluga, André N; Grisard, Edmundo C; Cavalcanti, Maria C; Campos, Maria L M; Mattoso, Marta; Dávila, Alberto M R

    2014-03-07

    The STINGRAY system has been conceived to ease the tasks of integrating, analyzing, annotating and presenting genomic and expression data from Sanger and Next Generation Sequencing (NGS) platforms. STINGRAY includes: (a) a complete and integrated workflow (more than 20 bioinformatics tools) ranging from functional annotation to phylogeny; (b) a MySQL database schema, suitable for data integration and user access control; and (c) a user-friendly graphical web-based interface that makes the system intuitive, facilitating the tasks of data analysis and annotation. STINGRAY showed to be an easy to use and complete system for analyzing sequencing data. While both Sanger and NGS platforms are supported, the system could be faster using Sanger data, since the large NGS datasets could potentially slow down the MySQL database usage. STINGRAY is available at http://stingray.biowebdb.org and the open source code at http://sourceforge.net/projects/stingray-biowebdb/.

  19. STINGRAY: system for integrated genomic resources and analysis

    PubMed Central

    2014-01-01

    Background The STINGRAY system has been conceived to ease the tasks of integrating, analyzing, annotating and presenting genomic and expression data from Sanger and Next Generation Sequencing (NGS) platforms. Findings STINGRAY includes: (a) a complete and integrated workflow (more than 20 bioinformatics tools) ranging from functional annotation to phylogeny; (b) a MySQL database schema, suitable for data integration and user access control; and (c) a user-friendly graphical web-based interface that makes the system intuitive, facilitating the tasks of data analysis and annotation. Conclusion STINGRAY showed to be an easy to use and complete system for analyzing sequencing data. While both Sanger and NGS platforms are supported, the system could be faster using Sanger data, since the large NGS datasets could potentially slow down the MySQL database usage. STINGRAY is available at http://stingray.biowebdb.org and the open source code at http://sourceforge.net/projects/stingray-biowebdb/. PMID:24606808

  20. How next-generation sequencing and multiscale data analysis will transform infectious disease management.

    PubMed

    Pak, Theodore R; Kasarskis, Andrew

    2015-12-01

    Recent reviews have examined the extent to which routine next-generation sequencing (NGS) on clinical specimens will improve the capabilities of clinical microbiology laboratories in the short term, but do not explore integrating NGS with clinical data from electronic medical records (EMRs), immune profiling data, and other rich datasets to create multiscale predictive models. This review introduces a range of "omics" and patient data sources relevant to managing infections and proposes 3 potentially disruptive applications for these data in the clinical workflow. The combined threats of healthcare-associated infections and multidrug-resistant organisms may be addressed by multiscale analysis of NGS and EMR data that is ideally updated and refined over time within each healthcare organization. Such data and analysis should form the cornerstone of future learning health systems for infectious disease. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.

  1. Unipro UGENE NGS pipelines and components for variant calling, RNA-seq and ChIP-seq data analyses.

    PubMed

    Golosova, Olga; Henderson, Ross; Vaskin, Yuriy; Gabrielian, Andrei; Grekhov, German; Nagarajan, Vijayaraj; Oler, Andrew J; Quiñones, Mariam; Hurt, Darrell; Fursov, Mikhail; Huyen, Yentram

    2014-01-01

    The advent of Next Generation Sequencing (NGS) technologies has opened new possibilities for researchers. However, the more biology becomes a data-intensive field, the more biologists have to learn how to process and analyze NGS data with complex computational tools. Even with the availability of common pipeline specifications, it is often a time-consuming and cumbersome task for a bench scientist to install and configure the pipeline tools. We believe that a unified, desktop and biologist-friendly front end to NGS data analysis tools will substantially improve productivity in this field. Here we present NGS pipelines "Variant Calling with SAMtools", "Tuxedo Pipeline for RNA-seq Data Analysis" and "Cistrome Pipeline for ChIP-seq Data Analysis" integrated into the Unipro UGENE desktop toolkit. We describe the available UGENE infrastructure that helps researchers run these pipelines on different datasets, store and investigate the results and re-run the pipelines with the same parameters. These pipeline tools are included in the UGENE NGS package. Individual blocks of these pipelines are also available for expert users to create their own advanced workflows.

  2. Evaluation of next generation mtGenome sequencing using the Ion Torrent Personal Genome Machine (PGM)☆

    PubMed Central

    Parson, Walther; Strobl, Christina; Huber, Gabriela; Zimmermann, Bettina; Gomes, Sibylle M.; Souto, Luis; Fendt, Liane; Delport, Rhena; Langit, Reina; Wootton, Sharon; Lagacé, Robert; Irwin, Jodi

    2013-01-01

    Insights into the human mitochondrial phylogeny have been primarily achieved by sequencing full mitochondrial genomes (mtGenomes). In forensic genetics (partial) mtGenome information can be used to assign haplotypes to their phylogenetic backgrounds, which may, in turn, have characteristic geographic distributions that would offer useful information in a forensic case. In addition and perhaps even more relevant in the forensic context, haplogroup-specific patterns of mutations form the basis for quality control of mtDNA sequences. The current method for establishing (partial) mtDNA haplotypes is Sanger-type sequencing (STS), which is laborious, time-consuming, and expensive. With the emergence of Next Generation Sequencing (NGS) technologies, the body of available mtDNA data can potentially be extended much more quickly and cost-efficiently. Customized chemistries, laboratory workflows and data analysis packages could support the community and increase the utility of mtDNA analysis in forensics. We have evaluated the performance of mtGenome sequencing using the Personal Genome Machine (PGM) and compared the resulting haplotypes directly with conventional Sanger-type sequencing. A total of 64 mtGenomes (>1 million bases) were established that yielded high concordance with the corresponding STS haplotypes (<0.02% differences). About two-thirds of the differences were observed in or around homopolymeric sequence stretches. In addition, the sequence alignment algorithm employed to align NGS reads played a significant role in the analysis of the data and the resulting mtDNA haplotypes. Further development of alignment software would be desirable to facilitate the application of NGS in mtDNA forensic genetics. PMID:23948325

  3. Genomics and metagenomics in medical microbiology.

    PubMed

    Padmanabhan, Roshan; Mishra, Ajay Kumar; Raoult, Didier; Fournier, Pierre-Edouard

    2013-12-01

    Over the last two decades, sequencing tools have evolved from laborious time-consuming methodologies to real-time detection and deciphering of genomic DNA. Genome sequencing, especially using next generation sequencing (NGS) has revolutionized the landscape of microbiology and infectious disease. This deluge of sequencing data has not only enabled advances in fundamental biology but also helped improve diagnosis, typing of pathogen, virulence and antibiotic resistance detection, and development of new vaccines and culture media. In addition, NGS also enabled efficient analysis of complex human micro-floras, both commensal, and pathological, through metagenomic methods, thus helping the comprehension and management of human diseases such as obesity. This review summarizes technological advances in genomics and metagenomics relevant to the field of medical microbiology. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. High-Performance Integrated Virtual Environment (HIVE) Tools and Applications for Big Data Analysis.

    PubMed

    Simonyan, Vahan; Mazumder, Raja

    2014-09-30

    The High-performance Integrated Virtual Environment (HIVE) is a high-throughput cloud-based infrastructure developed for the storage and analysis of genomic and associated biological data. HIVE consists of a web-accessible interface for authorized users to deposit, retrieve, share, annotate, compute and visualize Next-generation Sequencing (NGS) data in a scalable and highly efficient fashion. The platform contains a distributed storage library and a distributed computational powerhouse linked seamlessly. Resources available through the interface include algorithms, tools and applications developed exclusively for the HIVE platform, as well as commonly used external tools adapted to operate within the parallel architecture of the system. HIVE is composed of a flexible infrastructure, which allows for simple implementation of new algorithms and tools. Currently, available HIVE tools include sequence alignment and nucleotide variation profiling tools, metagenomic analyzers, phylogenetic tree-building tools using NGS data, clone discovery algorithms, and recombination analysis algorithms. In addition to tools, HIVE also provides knowledgebases that can be used in conjunction with the tools for NGS sequence and metadata analysis.

  5. Reflecting on Earlier Experiences with Unsolicited Findings: Points to Consider for Next-Generation Sequencing and Informed Consent in Diagnostics

    PubMed Central

    Rigter, Tessel; Henneman, Lidewij; Kristoffersson, Ulf; Hall, Alison; Yntema, Helger G; Borry, Pascal; Tönnies, Holger; Waisfisz, Quinten; Elting, Mariet W; Dondorp, Wybo J; Cornel, Martina C

    2013-01-01

    High-throughput nucleotide sequencing (often referred to as next-generation sequencing; NGS) is increasingly being chosen as a diagnostic tool for cases of expected but unresolved genetic origin. When exploring a higher number of genetic variants, there is a higher chance of detecting unsolicited findings. The consequential increased need for decisions on disclosure of these unsolicited findings poses a challenge for the informed consent procedure. This article discusses the ethical and practical dilemmas encountered when contemplating informed consent for NGS in diagnostics from a multidisciplinary point of view. By exploring recent similar experiences with unsolicited findings in other settings, an attempt is made to describe what can be learned so far for implementing NGS in standard genetic diagnostics. The article concludes with a set of points to consider in order to guide decision-making on the extent of return of results in relation to the mode of informed consent. We hereby aim to provide a sound basis for developing guidelines for optimizing the informed consent procedure. PMID:23784691

  6. STAR: an integrated solution to management and visualization of sequencing data.

    PubMed

    Wang, Tao; Liu, Jie; Shen, Li; Tonti-Filippini, Julian; Zhu, Yun; Jia, Haiyang; Lister, Ryan; Whitaker, John W; Ecker, Joseph R; Millar, A Harvey; Ren, Bing; Wang, Wei

    2013-12-15

    Easily visualization of complex data features is a necessary step to conduct studies on next-generation sequencing (NGS) data. We developed STAR, an integrated web application that enables online management, visualization and track-based analysis of NGS data. STAR is a multilayer web service system. On the client side, STAR leverages JavaScript, HTML5 Canvas and asynchronous communications to deliver a smoothly scrolling desktop-like graphical user interface with a suite of in-browser analysis tools that range from providing simple track configuration controls to sophisticated feature detection within datasets. On the server side, STAR supports private session state retention via an account management system and provides data management modules that enable collection, visualization and analysis of third-party sequencing data from the public domain with over thousands of tracks hosted to date. Overall, STAR represents a next-generation data exploration solution to match the requirements of NGS data, enabling both intuitive visualization and dynamic analysis of data. STAR browser system is freely available on the web at http://wanglab.ucsd.edu/star/browser and https://github.com/angell1117/STAR-genome-browser.

  7. High-Performance Integrated Virtual Environment (HIVE) Tools and Applications for Big Data Analysis

    PubMed Central

    Simonyan, Vahan; Mazumder, Raja

    2014-01-01

    The High-performance Integrated Virtual Environment (HIVE) is a high-throughput cloud-based infrastructure developed for the storage and analysis of genomic and associated biological data. HIVE consists of a web-accessible interface for authorized users to deposit, retrieve, share, annotate, compute and visualize Next-generation Sequencing (NGS) data in a scalable and highly efficient fashion. The platform contains a distributed storage library and a distributed computational powerhouse linked seamlessly. Resources available through the interface include algorithms, tools and applications developed exclusively for the HIVE platform, as well as commonly used external tools adapted to operate within the parallel architecture of the system. HIVE is composed of a flexible infrastructure, which allows for simple implementation of new algorithms and tools. Currently, available HIVE tools include sequence alignment and nucleotide variation profiling tools, metagenomic analyzers, phylogenetic tree-building tools using NGS data, clone discovery algorithms, and recombination analysis algorithms. In addition to tools, HIVE also provides knowledgebases that can be used in conjunction with the tools for NGS sequence and metadata analysis. PMID:25271953

  8. Engineered Polymerases Enable Novel Sequencing Applications (7th Annual SFAF Meeting, 2012)

    ScienceCinema

    Appel, Maryke

    2018-01-15

    Maryke Appel on "Engineered polymerases provide improved NGS library amplification and enable novel sequencing applications" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  9. Advances in DNA sequencing technologies for high resolution HLA typing.

    PubMed

    Cereb, Nezih; Kim, Hwa Ran; Ryu, Jaejun; Yang, Soo Young

    2015-12-01

    This communication describes our experience in large-scale G group-level high resolution HLA typing using three different DNA sequencing platforms - ABI 3730 xl, Illumina MiSeq and PacBio RS II. Recent advances in DNA sequencing technologies, so-called next generation sequencing (NGS), have brought breakthroughs in deciphering the genetic information in all living species at a large scale and at an affordable level. The NGS DNA indexing system allows sequencing multiple genes for large number of individuals in a single run. Our laboratory has adopted and used these technologies for HLA molecular testing services. We found that each sequencing technology has its own strengths and weaknesses, and their sequencing performances complement each other. HLA genes are highly complex and genotyping them is quite challenging. Using these three sequencing platforms, we were able to meet all requirements for G group-level high resolution and high volume HLA typing. Copyright © 2015 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  10. Gene panel sequencing in heritable thoracic aortic disorders and related entities - results of comprehensive testing in a cohort of 264 patients.

    PubMed

    Campens, Laurence; Callewaert, Bert; Muiño Mosquera, Laura; Renard, Marjolijn; Symoens, Sofie; De Paepe, Anne; Coucke, Paul; De Backer, Julie

    2015-02-03

    Heritable Thoracic Aortic Disorders (H-TAD) may present clinically as part of a syndromic entity or as an isolated (nonsyndromic) manifestation. About one dozen genes are now available for clinical molecular testing. Targeted single gene testing is hampered by significant clinical overlap between syndromic H-TAD entities and the absence of discriminating features in isolated cases. Therefore panel testing of multiple genes has now emerged as the preferred approach. So far, no data on mutation detection rate with this technique have been reported. We performed Next Generation Sequencing (NGS) based screening of the seven currently most prevalent H-TAD-associated genes (FBN1, TGFBR1/2, TGFB2, SMAD3, ACTA2 and COL3A1) on 264 samples from unrelated probands referred for H-TAD and related entities. Patients fulfilling the criteria for Marfan syndrome (MFS) were only included if targeted FBN1 sequencing and MLPA analysis were negative. A mutation was identified in 34 patients (13%): 12 FBN1, one TGFBR1, two TGFBR2, three TGFB2, nine SMAD3, four ACTA2 and three COL3A1 mutations. We found mutations in FBN1 (N = 3), TGFBR2 (N = 1) and COL3A1 (N = 2) in patients without characteristic clinical features of syndromal H-TAD. Six TAD patients harboring a mutation in SMAD3 and one TAD patient with a TGFB2 mutation fulfilled the diagnostic criteria for MFS. NGS based H-TAD panel testing efficiently reveals a mutation in 13% of patients. Our observations emphasize the clinical overlap between patients harboring mutations in syndromic and nonsyndromic H-TAD related genes as well as within syndromic H-TAD entities, justifying a widespread application of this technique.

  11. Performance of the ForenSeqTM DNA Signature Prep kit on highly degraded samples.

    PubMed

    Fattorini, Paolo; Previderé, Carlo; Carboni, Ilaria; Marrubini, Giorgio; Sorçaburu-Cigliero, Solange; Grignani, Pierangela; Bertoglio, Barbara; Vatta, Paolo; Ricci, Ugo

    2017-04-01

    Next generation sequencing (NGS) is the emerging technology in forensic genomics laboratories. It offers higher resolution to address most problems of human identification, greater efficiency and potential ability to interrogate very challenging forensic casework samples. In this study, a trial set of DNA samples was artificially degraded by progressive aqueous hydrolysis, and analyzed together with the corresponding unmodified DNA sample and control sample 2800 M, to test the performance and reliability of the ForenSeq TM DNA Signature Prep kit using the MiSeq Sequencer (Illumina). The results of replicate tests performed on the unmodified sample (1.0 ng) and on scalar dilutions (1.0, 0.5 and 0.1 ng) of the reference sample 2800 M showed the robustness and the reliability of the NGS approach even from sub-optimal amounts of high quality DNA. The degraded samples showed a very limited number of reads/sample, from 2.9-10.2 folds lower than the ones reported for the less concentrated 2800 M DNA dilution (0.1 ng). In addition, it was impossible to assign up to 78.2% of the genotypes in the degraded samples as the software identified the corresponding loci as "low coverage" (< 50x). Amplification artifacts such as allelic imbalances, allele drop outs and a single allele drop in were also scored in the degraded samples. However, the ForenSeq TM DNA Sequencing kit, on the Illumina MiSeq, was able to generate data which led to the correct typing of 5.1-44.8% and 10.9-58.7% of 58 of the STRs and 92 SNPs, respectively. In all trial samples, the SNP markers showed higher chances to be typed correctly compared to the STRs. This NGS approach showed very promising results in terms of ability to recover genetic information from heavily degraded DNA samples for which the conventional PCR/CE approach gave no results. The frequency of genetic mistyping was very low, reaching the value of 1.4% for only one of the degraded samples. However, these results suggest that further validation studies and a definition of interpretation criteria for NGS data are needed before implementation of this technique in forensic genetics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Primer ID Validates Template Sampling Depth and Greatly Reduces the Error Rate of Next-Generation Sequencing of HIV-1 Genomic RNA Populations

    PubMed Central

    Zhou, Shuntai; Jones, Corbin; Mieczkowski, Piotr

    2015-01-01

    ABSTRACT Validating the sampling depth and reducing sequencing errors are critical for studies of viral populations using next-generation sequencing (NGS). We previously described the use of Primer ID to tag each viral RNA template with a block of degenerate nucleotides in the cDNA primer. We now show that low-abundance Primer IDs (offspring Primer IDs) are generated due to PCR/sequencing errors. These artifactual Primer IDs can be removed using a cutoff model for the number of reads required to make a template consensus sequence. We have modeled the fraction of sequences lost due to Primer ID resampling. For a typical sequencing run, less than 10% of the raw reads are lost to offspring Primer ID filtering and resampling. The remaining raw reads are used to correct for PCR resampling and sequencing errors. We also demonstrate that Primer ID reveals bias intrinsic to PCR, especially at low template input or utilization. cDNA synthesis and PCR convert ca. 20% of RNA templates into recoverable sequences, and 30-fold sequence coverage recovers most of these template sequences. We have directly measured the residual error rate to be around 1 in 10,000 nucleotides. We use this error rate and the Poisson distribution to define the cutoff to identify preexisting drug resistance mutations at low abundance in an HIV-infected subject. Collectively, these studies show that >90% of the raw sequence reads can be used to validate template sampling depth and to dramatically reduce the error rate in assessing a genetically diverse viral population using NGS. IMPORTANCE Although next-generation sequencing (NGS) has revolutionized sequencing strategies, it suffers from serious limitations in defining sequence heterogeneity in a genetically diverse population, such as HIV-1 due to PCR resampling and PCR/sequencing errors. The Primer ID approach reveals the true sampling depth and greatly reduces errors. Knowing the sampling depth allows the construction of a model of how to maximize the recovery of sequences from input templates and to reduce resampling of the Primer ID so that appropriate multiplexing can be included in the experimental design. With the defined sampling depth and measured error rate, we are able to assign cutoffs for the accurate detection of minority variants in viral populations. This approach allows the power of NGS to be realized without having to guess about sampling depth or to ignore the problem of PCR resampling, while also being able to correct most of the errors in the data set. PMID:26041299

  13. Profiling of potential driver mutations in sarcomas by targeted next generation sequencing.

    PubMed

    Andersson, Carola; Fagman, Henrik; Hansson, Magnus; Enlund, Fredrik

    2016-04-01

    Comprehensive genetic profiling by massively parallel sequencing, commonly known as next generation sequencing (NGS), is becoming the foundation of personalized oncology. For sarcomas very few targeted treatments are currently in routine use. In clinical practice the preoperative diagnostic workup of soft tissue tumours largely relies on core needle biopsies. Although mostly sufficient for histopathological diagnosis, only very limited amounts of formalin fixated paraffin embedded tissue are often available for predictive mutation analysis. Targeted NGS may thus open up new possibilities for comprehensive characterization of scarce biopsies. We therefore set out to search for driver mutations by NGS in a cohort of 55 clinically and morphologically well characterized sarcomas using low input of DNA from formalin fixated paraffin embedded tissues. The aim was to investigate if there are any recurrent or targetable aberrations in cancer driver genes in addition to known chromosome translocations in different types of sarcomas. We employed a panel covering 207 mutation hotspots in 50 cancer-associated genes to analyse DNA from nine gastrointestinal stromal tumours, 14 synovial sarcomas, seven myxoid liposarcomas, 22 Ewing sarcomas and three Ewing-like small round cell tumours at a large sequencing depth to detect also mutations that are subclonal or occur at low allele frequencies. We found nine mutations in eight different potential driver genes, some of which are potentially actionable by currently existing targeted therapies. Even though no recurrent mutations in driver genes were found in the different sarcoma groups, we show that targeted NGS-based sequencing is clearly feasible in a diagnostic setting with very limited amounts of paraffin embedded tissue and may provide novel insights into mesenchymal cell signalling and potentially druggable targets. Interestingly, we also identify five non-synonymous sequence variants in 4 established cancer driver genes in DNA from normal tissue from sarcoma patients that may possibly predispose or contribute to neoplastic development. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Future technologies for monitoring HIV drug resistance and cure.

    PubMed

    Parikh, Urvi M; McCormick, Kevin; van Zyl, Gert; Mellors, John W

    2017-03-01

    Sensitive, scalable and affordable assays are critically needed for monitoring the success of interventions for preventing, treating and attempting to cure HIV infection. This review evaluates current and emerging technologies that are applicable for both surveillance of HIV drug resistance (HIVDR) and characterization of HIV reservoirs that persist despite antiretroviral therapy and are obstacles to curing HIV infection. Next-generation sequencing (NGS) has the potential to be adapted into high-throughput, cost-efficient approaches for HIVDR surveillance and monitoring during continued scale-up of antiretroviral therapy and rollout of preexposure prophylaxis. Similarly, improvements in PCR and NGS are resulting in higher throughput single genome sequencing to detect intact proviruses and to characterize HIV integration sites and clonal expansions of infected cells. Current population genotyping methods for resistance monitoring are high cost and low throughput. NGS, combined with simpler sample collection and storage matrices (e.g. dried blood spots), has considerable potential to broaden global surveillance and patient monitoring for HIVDR. Recent adaptions of NGS to identify integration sites of HIV in the human genome and to characterize the integrated HIV proviruses are likely to facilitate investigations of the impact of experimental 'curative' interventions on HIV reservoirs.

  15. Improving diagnosis for congenital cataract by introducing NGS genetic testing.

    PubMed

    Musleh, Mohammud; Ashworth, Jane; Black, Graeme; Hall, Georgina

    2016-01-01

    Childhood cataract (CC) has an incidence of 3.5 per 10,000 by age 15 years. Diagnosis of any underlying cause is important to ensure effective and prompt management of multisystem complications, to facilitate accurate genetic counselling and to streamline multidisciplinary care. Next generation sequencing (NGS) has been shown to be effective in providing an underlying diagnosis in 70% of patients with CC in a research setting. This project aimed to integrate NGS testing in CC within six months of presentation and increase the rate of diagnosis. A retrospective case note review was undertaken to define the baseline efficacy of current care in providing a precise diagnosis. Quality improvement methods were used to integrate and optimize NGS testing in clinical care and measure the improvements made. The percentage of children receiving an NGS result within six months increased from 26% to 71% during the project period. The mean time to NGS testing and receiving a report decreased and there was a reduction in variation over the study period. Several patients and families had a change in management or genetic counselling as a direct result of the diagnosis given by the NGS test. The current recommended investigation of patients with bilateral CC is ineffective in identifying a diagnosis. Quality Improvement methods have facilitated successful integration of NGS testing into clinical care, improving time to diagnosis and leading to development of a new care pathway.

  16. An efficient approach to BAC based assembly of complex genomes.

    PubMed

    Visendi, Paul; Berkman, Paul J; Hayashi, Satomi; Golicz, Agnieszka A; Bayer, Philipp E; Ruperao, Pradeep; Hurgobin, Bhavna; Montenegro, Juan; Chan, Chon-Kit Kenneth; Staňková, Helena; Batley, Jacqueline; Šimková, Hana; Doležel, Jaroslav; Edwards, David

    2016-01-01

    There has been an exponential growth in the number of genome sequencing projects since the introduction of next generation DNA sequencing technologies. Genome projects have increasingly involved assembly of whole genome data which produces inferior assemblies compared to traditional Sanger sequencing of genomic fragments cloned into bacterial artificial chromosomes (BACs). While whole genome shotgun sequencing using next generation sequencing (NGS) is relatively fast and inexpensive, this method is extremely challenging for highly complex genomes, where polyploidy or high repeat content confounds accurate assembly, or where a highly accurate 'gold' reference is required. Several attempts have been made to improve genome sequencing approaches by incorporating NGS methods, to variable success. We present the application of a novel BAC sequencing approach which combines indexed pools of BACs, Illumina paired read sequencing, a sequence assembler specifically designed for complex BAC assembly, and a custom bioinformatics pipeline. We demonstrate this method by sequencing and assembling BAC cloned fragments from bread wheat and sugarcane genomes. We demonstrate that our assembly approach is accurate, robust, cost effective and scalable, with applications for complete genome sequencing in large and complex genomes.

  17. FDA's Activities Supporting Regulatory Application of "Next Gen" Sequencing Technologies.

    PubMed

    Wilson, Carolyn A; Simonyan, Vahan

    2014-01-01

    Applications of next-generation sequencing (NGS) technologies require availability and access to an information technology (IT) infrastructure and bioinformatics tools for large amounts of data storage and analyses. The U.S. Food and Drug Administration (FDA) anticipates that the use of NGS data to support regulatory submissions will continue to increase as the scientific and clinical communities become more familiar with the technologies and identify more ways to apply these advanced methods to support development and evaluation of new biomedical products. FDA laboratories are conducting research on different NGS platforms and developing the IT infrastructure and bioinformatics tools needed to enable regulatory evaluation of the technologies and the data sponsors will submit. A High-performance Integrated Virtual Environment, or HIVE, has been launched, and development and refinement continues as a collaborative effort between the FDA and George Washington University to provide the tools to support these needs. The use of a highly parallelized environment facilitated by use of distributed cloud storage and computation has resulted in a platform that is both rapid and responsive to changing scientific needs. The FDA plans to further develop in-house capacity in this area, while also supporting engagement by the external community, by sponsoring an open, public workshop to discuss NGS technologies and data formats standardization, and to promote the adoption of interoperability protocols in September 2014. Next-generation sequencing (NGS) technologies are enabling breakthroughs in how the biomedical community is developing and evaluating medical products. One example is the potential application of this method to the detection and identification of microbial contaminants in biologic products. In order for the U.S. Food and Drug Administration (FDA) to be able to evaluate the utility of this technology, we need to have the information technology infrastructure and bioinformatics tools to be able to store and analyze large amounts of data. To address this need, we have developed the High-performance Integrated Virtual Environment, or HIVE. HIVE uses a combination of distributed cloud storage and distributed cloud computations to provide a platform that is both rapid and responsive to support the growing and increasingly diverse scientific and regulatory needs of FDA scientists in their evaluation of NGS in research and ultimately for evaluation of NGS data in regulatory submissions. © PDA, Inc. 2014.

  18. High-Throughput Next-Generation Sequencing of Polioviruses

    PubMed Central

    Montmayeur, Anna M.; Schmidt, Alexander; Zhao, Kun; Magaña, Laura; Iber, Jane; Castro, Christina J.; Chen, Qi; Henderson, Elizabeth; Ramos, Edward; Shaw, Jing; Tatusov, Roman L.; Dybdahl-Sissoko, Naomi; Endegue-Zanga, Marie Claire; Adeniji, Johnson A.; Oberste, M. Steven; Burns, Cara C.

    2016-01-01

    ABSTRACT The poliovirus (PV) is currently targeted for worldwide eradication and containment. Sanger-based sequencing of the viral protein 1 (VP1) capsid region is currently the standard method for PV surveillance. However, the whole-genome sequence is sometimes needed for higher resolution global surveillance. In this study, we optimized whole-genome sequencing protocols for poliovirus isolates and FTA cards using next-generation sequencing (NGS), aiming for high sequence coverage, efficiency, and throughput. We found that DNase treatment of poliovirus RNA followed by random reverse transcription (RT), amplification, and the use of the Nextera XT DNA library preparation kit produced significantly better results than other preparations. The average viral reads per total reads, a measurement of efficiency, was as high as 84.2% ± 15.6%. PV genomes covering >99 to 100% of the reference length were obtained and validated with Sanger sequencing. A total of 52 PV genomes were generated, multiplexing as many as 64 samples in a single Illumina MiSeq run. This high-throughput, sequence-independent NGS approach facilitated the detection of a diverse range of PVs, especially for those in vaccine-derived polioviruses (VDPV), circulating VDPV, or immunodeficiency-related VDPV. In contrast to results from previous studies on other viruses, our results showed that filtration and nuclease treatment did not discernibly increase the sequencing efficiency of PV isolates. However, DNase treatment after nucleic acid extraction to remove host DNA significantly improved the sequencing results. This NGS method has been successfully implemented to generate PV genomes for molecular epidemiology of the most recent PV isolates. Additionally, the ability to obtain full PV genomes from FTA cards will aid in facilitating global poliovirus surveillance. PMID:27927929

  19. Use of next generation sequencing technologies in research and beyond: are participants with mental health disorders fully protected?

    PubMed

    Groisman, Iris Jaitovich; Mathieu, Ghislaine; Godard, Beatrice

    2012-12-20

    Next Generation Sequencing (NGS) is expected to help find the elusive, causative genetic defects associated with Bipolar Disorder (BD). This article identifies the importance of NGS and further analyses the social and ethical implications of this approach when used in research projects studying BD, as well as other psychiatric ailments, with a view to ensuring the protection of research participants. We performed a systematic review of studies through PubMed, followed by a manual search through the titles and abstracts of original articles, including the reviews, commentaries and letters published in the last five years and dealing with the ethical and social issues raised by NGS technologies and genomics studies of mental disorders, especially BD. A total of 217 studies contributed to identify the themes discussed herein. The amount of information generated by NGS renders individuals suffering from BD particularly vulnerable, and increases the need for educational support throughout the consent process, and, subsequently, of genetic counselling, when communicating individual research results and incidental findings to them. Our results highlight the importance and difficulty of respecting participants' autonomy while avoiding any therapeutic misconception. We also analysed the need for specific regulations on the use and communication of incidental findings, as well as the increasing influence of NGS in health care. Shared efforts on the part of researchers and their institutions, Research Ethics Boards as well as participants' representatives are needed to delineate a tailored consent process so as to better protect research participants. However, health care professionals involved in BD care and treatment need to first determine the scientific validity and clinical utility of NGS-generated findings, and thereafter their prevention and treatment significance.

  20. A prospective pilot study of genome-wide exome and transcriptome profiling in patients with small cell lung cancer progressing after first-line therapy

    PubMed Central

    Byron, Sara A.; Aldrich, Jessica; Sangal, Ashish; Barilla, Heather; Kiefer, Jeffrey A.; Carpten, John D.; Craig, David W.; Whitsett, Timothy G.

    2017-01-01

    Background Small cell lung cancer (SCLC) that has progressed after first-line therapy is an aggressive disease with few effective therapeutic strategies. In this prospective study, we employed next-generation sequencing (NGS) to identify therapeutically actionable alterations to guide treatment for advanced SCLC patients. Methods Twelve patients with SCLC were enrolled after failing platinum-based chemotherapy. Following informed consent, genome-wide exome and RNA-sequencing was performed in a CLIA-certified, CAP-accredited environment. Actionable targets were identified and therapeutic recommendations made from a pharmacopeia of FDA-approved drugs. Clinical response to genomically-guided treatment was evaluated by Response Evaluation Criteria in Solid Tumors (RECIST) 1.1. Results The study completed its accrual goal of 12 evaluable patients. The minimum tumor content for successful NGS was 20%, with a median turnaround time from sample collection to genomics-based treatment recommendation of 27 days. At least two clinically actionable targets were identified in each patient, and six patients (50%) received treatment identified by NGS. Two had partial responses by RECIST 1.1 on a clinical trial involving a PD-1 inhibitor + irinotecan (indicated by MLH1 alteration). The remaining patients had clinical deterioration before NGS recommended therapy could be initiated. Conclusions Comprehensive genomic profiling using NGS identified clinically-actionable alterations in SCLC patients who progressed on initial therapy. Recommended PD-1 therapy generated partial responses in two patients. Earlier access to NGS guided therapy, along with improved understanding of those SCLC patients likely to respond to immune-based therapies, should help to extend survival in these cases with poor outcomes. PMID:28586388

  1. Use of next generation sequencing technologies in research and beyond: are participants with mental health disorders fully protected?

    PubMed Central

    2012-01-01

    Background Next Generation Sequencing (NGS) is expected to help find the elusive, causative genetic defects associated with Bipolar Disorder (BD). This article identifies the importance of NGS and further analyses the social and ethical implications of this approach when used in research projects studying BD, as well as other psychiatric ailments, with a view to ensuring the protection of research participants. Methods We performed a systematic review of studies through PubMed, followed by a manual search through the titles and abstracts of original articles, including the reviews, commentaries and letters published in the last five years and dealing with the ethical and social issues raised by NGS technologies and genomics studies of mental disorders, especially BD. A total of 217 studies contributed to identify the themes discussed herein. Results The amount of information generated by NGS renders individuals suffering from BD particularly vulnerable, and increases the need for educational support throughout the consent process, and, subsequently, of genetic counselling, when communicating individual research results and incidental findings to them. Our results highlight the importance and difficulty of respecting participants’ autonomy while avoiding any therapeutic misconception. We also analysed the need for specific regulations on the use and communication of incidental findings, as well as the increasing influence of NGS in health care. Conclusions Shared efforts on the part of researchers and their institutions, Research Ethics Boards as well as participants’ representatives are needed to delineate a tailored consent process so as to better protect research participants. However, health care professionals involved in BD care and treatment need to first determine the scientific validity and clinical utility of NGS-generated findings, and thereafter their prevention and treatment significance. PMID:23256847

  2. Practical application of self-organizing maps to interrelate biodiversity and functional data in NGS-based metagenomics.

    PubMed

    Weber, Marc; Teeling, Hanno; Huang, Sixing; Waldmann, Jost; Kassabgy, Mariette; Fuchs, Bernhard M; Klindworth, Anna; Klockow, Christine; Wichels, Antje; Gerdts, Gunnar; Amann, Rudolf; Glöckner, Frank Oliver

    2011-05-01

    Next-generation sequencing (NGS) technologies have enabled the application of broad-scale sequencing in microbial biodiversity and metagenome studies. Biodiversity is usually targeted by classifying 16S ribosomal RNA genes, while metagenomic approaches target metabolic genes. However, both approaches remain isolated, as long as the taxonomic and functional information cannot be interrelated. Techniques like self-organizing maps (SOMs) have been applied to cluster metagenomes into taxon-specific bins in order to link biodiversity with functions, but have not been applied to broad-scale NGS-based metagenomics yet. Here, we provide a novel implementation, demonstrate its potential and practicability, and provide a web-based service for public usage. Evaluation with published data sets mimicking varyingly complex habitats resulted into classification specificities and sensitivities of close to 100% to above 90% from phylum to genus level for assemblies exceeding 8 kb for low and medium complexity data. When applied to five real-world metagenomes of medium complexity from direct pyrosequencing of marine subsurface waters, classifications of assemblies above 2.5 kb were in good agreement with fluorescence in situ hybridizations, indicating that biodiversity was mostly retained within the metagenomes, and confirming high classification specificities. This was validated by two protein-based classifications (PBCs) methods. SOMs were able to retrieve the relevant taxa down to the genus level, while surpassing PBCs in resolution. In order to make the approach accessible to a broad audience, we implemented a feature-rich web-based SOM application named TaxSOM, which is freely available at http://www.megx.net/toolbox/taxsom. TaxSOM can classify reads or assemblies exceeding 2.5 kb with high accuracy and thus assists in linking biodiversity and functions in metagenome studies, which is a precondition to study microbial ecology in a holistic fashion.

  3. A novel cell line generated using the CRISPR/Cas9 technology as universal quality control material for KRAS G12V mutation testing.

    PubMed

    Jia, Shiyu; Zhang, Rui; Lin, Guigao; Peng, Rongxue; Gao, Peng; Han, Yanxi; Fu, Yu; Ding, Jiansheng; Wu, Qisheng; Zhang, Kuo; Xie, Jiehong; Li, Jinming

    2018-06-01

    KRAS mutations are the key indicator for EGFR monoclonal antibody-targeted therapy and acquired drug resistance, and their accurate detection is critical to the clinical decision-making of colorectal cancer. However, no proper quality control material is available for the current detection methods, particularly next-generation sequencing (NGS). The ideal quality control material for NGS needs to provide both the tumor mutation gene and the matched background genomic DNA, which is uncataloged in public databases, to accurately distinguish germline polymorphisms and somatic mutations. We developed a novel KRAS G12V mutant cell line using the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) technique to make up for the deficiencies in existing quality control material and further validated the feasibility of the cell line as quality control material by amplification refractory mutation system (ARMS), Sanger sequencing, digital PCR (dPCR), and NGS. We verified that the edited cell line specifically had the G12V mutation, and the validation results presented a high consistency among the four methods of detection. The three cell lines screened contained the G12V mutation and the mutation allele fractions of G12V-1, G12V-2, and G12V-3 were 52.01%, 82.06%, and 17.29%, respectively. The novel KRAS G12V cell line generated using the CRISPR/Cas9 gene editing system is suitable as a quality control material for all current detection methods and provides a new direction in the development of quality control material. © 2018 Wiley Periodicals, Inc.

  4. Looking beyond the exome: a phenotype-first approach to molecular diagnostic resolution in rare and undiagnosed diseases.

    PubMed

    Pena, Loren D M; Jiang, Yong-Hui; Schoch, Kelly; Spillmann, Rebecca C; Walley, Nicole; Stong, Nicholas; Rapisardo Horn, Sarah; Sullivan, Jennifer A; McConkie-Rosell, Allyn; Kansagra, Sujay; Smith, Edward C; El-Dairi, Mays; Bellet, Jane; Keels, Martha Ann; Jasien, Joan; Kranz, Peter G; Noel, Richard; Nagaraj, Shashi K; Lark, Robert K; Wechsler, Daniel S G; Del Gaudio, Daniela; Leung, Marco L; Hendon, Laura G; Parker, Collette C; Jones, Kelly L; Goldstein, David B; Shashi, Vandana

    2018-04-01

    PurposeTo describe examples of missed pathogenic variants on whole-exome sequencing (WES) and the importance of deep phenotyping for further diagnostic testing.MethodsGuided by phenotypic information, three children with negative WES underwent targeted single-gene testing.ResultsIndividual 1 had a clinical diagnosis consistent with infantile systemic hyalinosis, although WES and a next-generation sequencing (NGS)-based ANTXR2 test were negative. Sanger sequencing of ANTXR2 revealed a homozygous single base pair insertion, previously missed by the WES variant caller software. Individual 2 had neurodevelopmental regression and cerebellar atrophy, with no diagnosis on WES. New clinical findings prompted Sanger sequencing and copy number testing of PLA2G6. A novel homozygous deletion of the noncoding exon 1 (not included in the WES capture kit) was detected, with extension into the promoter, confirming the clinical suspicion of infantile neuroaxonal dystrophy. Individual 3 had progressive ataxia, spasticity, and magnetic resonance image changes of vanishing white matter leukoencephalopathy. An NGS leukodystrophy gene panel and WES showed a heterozygous pathogenic variant in EIF2B5; no deletions/duplications were detected. Sanger sequencing of EIF2B5 showed a frameshift indel, probably missed owing to failure of alignment.ConclusionThese cases illustrate potential pitfalls of WES/NGS testing and the importance of phenotype-guided molecular testing in yielding diagnoses.

  5. Deep sequencing methods for protein engineering and design.

    PubMed

    Wrenbeck, Emily E; Faber, Matthew S; Whitehead, Timothy A

    2017-08-01

    The advent of next-generation sequencing (NGS) has revolutionized protein science, and the development of complementary methods enabling NGS-driven protein engineering have followed. In general, these experiments address the functional consequences of thousands of protein variants in a massively parallel manner using genotype-phenotype linked high-throughput functional screens followed by DNA counting via deep sequencing. We highlight the use of information rich datasets to engineer protein molecular recognition. Examples include the creation of multiple dual-affinity Fabs targeting structurally dissimilar epitopes and engineering of a broad germline-targeted anti-HIV-1 immunogen. Additionally, we highlight the generation of enzyme fitness landscapes for conducting fundamental studies of protein behavior and evolution. We conclude with discussion of technological advances. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. How Can We Better Detect Unauthorized GMOs in Food and Feed Chains?

    PubMed

    Fraiture, Marie-Alice; Herman, Philippe; De Loose, Marc; Debode, Frédéric; Roosens, Nancy H

    2017-06-01

    Current GMO detection systems have limited abilities to detect unauthorized genetically modified organisms (GMOs). Here, we propose a new workflow, based on next-generation sequencing (NGS) technology, to overcome this problem. In providing information about DNA sequences, this high-throughput workflow can distinguish authorized and unauthorized GMOs by strengthening the tools commonly used by enforcement laboratories with the help of NGS technology. In addition, thanks to its massive sequencing capacity, this workflow could be used to monitor GMOs present in the food and feed chain. In view of its potential implementation by enforcement laboratories, we discuss this innovative approach, its current limitations, and its sustainability of use over time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. IG and TR single chain fragment variable (scFv) sequence analysis: a new advanced functionality of IMGT/V-QUEST and IMGT/HighV-QUEST.

    PubMed

    Giudicelli, Véronique; Duroux, Patrice; Kossida, Sofia; Lefranc, Marie-Paule

    2017-06-26

    IMGT®, the international ImMunoGeneTics information system® ( http://www.imgt.org ), was created in 1989 in Montpellier, France (CNRS and Montpellier University) to manage the huge and complex diversity of the antigen receptors, and is at the origin of immunoinformatics, a science at the interface between immunogenetics and bioinformatics. Immunoglobulins (IG) or antibodies and T cell receptors (TR) are managed and described in the IMGT® databases and tools at the level of receptor, chain and domain. The analysis of the IG and TR variable (V) domain rearranged nucleotide sequences is performed by IMGT/V-QUEST (online since 1997, 50 sequences per batch) and, for next generation sequencing (NGS), by IMGT/HighV-QUEST, the high throughput version of IMGT/V-QUEST (portal begun in 2010, 500,000 sequences per batch). In vitro combinatorial libraries of engineered antibody single chain Fragment variable (scFv) which mimic the in vivo natural diversity of the immune adaptive responses are extensively screened for the discovery of novel antigen binding specificities. However the analysis of NGS full length scFv (~850 bp) represents a challenge as they contain two V domains connected by a linker and there is no tool for the analysis of two V domains in a single chain. The functionality "Analyis of single chain Fragment variable (scFv)" has been implemented in IMGT/V-QUEST and, for NGS, in IMGT/HighV-QUEST for the analysis of the two V domains of IG and TR scFv. It proceeds in five steps: search for a first closest V-REGION, full characterization of the first V-(D)-J-REGION, then search for a second V-REGION and full characterization of the second V-(D)-J-REGION, and finally linker delimitation. For each sequence or NGS read, positions of the 5'V-DOMAIN, linker and 3'V-DOMAIN in the scFv are provided in the 'V-orientated' sense. Each V-DOMAIN is fully characterized (gene identification, sequence description, junction analysis, characterization of mutations and amino changes). The functionality is generic and can analyse any IG or TR single chain nucleotide sequence containing two V domains, provided that the corresponding species IMGT reference directory is available. The "Analysis of single chain Fragment variable (scFv)" implemented in IMGT/V-QUEST and, for NGS, in IMGT/HighV-QUEST provides the identification and full characterization of the two V domains of full-length scFv (~850 bp) nucleotide sequences from combinatorial libraries. The analysis can also be performed on concatenated paired chains of expressed antigen receptor IG or TR repertoires.

  8. Application of a molecular diagnostic algorithm for haemophilia A and B using next-generation sequencing of entire F8, F9 and VWF genes.

    PubMed

    Bastida, Jose Maria; González-Porras, Jose Ramon; Jiménez, Cristina; Benito, Rocio; Ordoñez, Gonzalo R; Álvarez-Román, Maria Teresa; Fontecha, M Elena; Janusz, Kamila; Castillo, David; Fisac, Rosa María; García-Frade, Luis Javier; Aguilar, Carlos; Martínez, María Paz; Bermejo, Nuria; Herrero, Sonia; Balanzategui, Ana; Martin-Antorán, Jose Manuel; Ramos, Rafael; Cebeiro, Maria Jose; Pardal, Emilia; Aguilera, Carmen; Pérez-Gutierrez, Belen; Prieto, Manuel; Riesco, Susana; Mendoza, Maria Carmen; Benito, Ana; Hortal Benito-Sendin, Ana; Jiménez-Yuste, Víctor; Hernández-Rivas, Jesus Maria; García-Sanz, Ramon; González-Díaz, Marcos; Sarasquete, Maria Eugenia

    2017-01-05

    Currently, molecular diagnosis of haemophilia A and B (HA and HB) highlights the excess risk-inhibitor development associated with specific mutations, and enables carrier testing of female relatives and prenatal or preimplantation genetic diagnosis. Molecular testing for HA also helps distinguish it from von Willebrand disease (VWD). Next-generation sequencing (NGS) allows simultaneous investigation of several complete genes, even though they may span very extensive regions. This study aimed to evaluate the usefulness of a molecular algorithm employing an NGS approach for sequencing the complete F8, F9 and VWF genes. The proposed algorithm includes the detection of inversions of introns 1 and 22, an NGS custom panel (the entire F8, F9 and VWF genes), and multiplex ligation-dependent probe amplification (MLPA) analysis. A total of 102 samples (97 FVIII- and FIX-deficient patients, and five female carriers) were studied. IVS-22 screening identified 11 out of 20 severe HA patients and one female carrier. IVS-1 analysis did not reveal any alterations. The NGS approach gave positive results in 88 cases, allowing the differential diagnosis of mild/moderate HA and VWD in eight cases. MLPA confirmed one large exon deletion. Only one case did have no pathogenic variants. The proposed algorithm had an overall success rate of 99 %. In conclusion, our evaluation demonstrates that this algorithm can reliably identify pathogenic variants and diagnose patients with HA, HB or VWD.

  9. Museomics resolve the systematics of an endangered grass lineage endemic to north-western Madagascar

    PubMed Central

    Silva, Christian; Besnard, Guillaume; Piot, Anthony; Razanatsoa, Jacqueline; Oliveira, Reyjane P.; Vorontsova, Maria S.

    2017-01-01

    Background and Aims Recent developments in DNA sequencing, so-called next-generation sequencing (NGS) methods, can help the study of rare lineages that are known from museum specimens. Here, the taxonomy and evolution of the Malagasy grass lineage Chasechloa was investigated with the aid of NGS. Methods Full chloroplast genome data and some nuclear sequences were produced by NGS from old herbarium specimens, while some selected markers were generated from recently collected Malagasy grasses. In addition, a scanning electron microscopy analysis of the upper floret and cross-sections of the rachilla appendages followed by staining with Sudan IV were performed on Chasechloa to examine the morphology of the upper floret and the presence of oils in the appendages. Key Results Chasechloa was recovered within tribe Paniceae, sub-tribe Boivinellinae, contrary to its previous placement as a member of the New World genus Echinolaena (tribe Paspaleae). Chasechloa originated in Madagascar between the Upper Miocene and the Pliocene. It comprises two species, one of them collected only once in 1851. The genus is restricted to north-western seasonally dry deciduous forests. The appendages at the base of the upper floret of Chasechloa have been confirmed as elaiosomes, an evolutionary adaptation for myrmecochory. Conclusions Chasechloa is reinstated at the generic level and a taxonomic treatment is presented, including conservation assessments of its species. Our study also highlights the power of NGS technology to analyse relictual or probably extinct groups. PMID:28028020

  10. Bio-Docklets: virtualization containers for single-step execution of NGS pipelines.

    PubMed

    Kim, Baekdoo; Ali, Thahmina; Lijeron, Carlos; Afgan, Enis; Krampis, Konstantinos

    2017-08-01

    Processing of next-generation sequencing (NGS) data requires significant technical skills, involving installation, configuration, and execution of bioinformatics data pipelines, in addition to specialized postanalysis visualization and data mining software. In order to address some of these challenges, developers have leveraged virtualization containers toward seamless deployment of preconfigured bioinformatics software and pipelines on any computational platform. We present an approach for abstracting the complex data operations of multistep, bioinformatics pipelines for NGS data analysis. As examples, we have deployed 2 pipelines for RNA sequencing and chromatin immunoprecipitation sequencing, preconfigured within Docker virtualization containers we call Bio-Docklets. Each Bio-Docklet exposes a single data input and output endpoint and from a user perspective, running the pipelines as simply as running a single bioinformatics tool. This is achieved using a "meta-script" that automatically starts the Bio-Docklets and controls the pipeline execution through the BioBlend software library and the Galaxy Application Programming Interface. The pipeline output is postprocessed by integration with the Visual Omics Explorer framework, providing interactive data visualizations that users can access through a web browser. Our goal is to enable easy access to NGS data analysis pipelines for nonbioinformatics experts on any computing environment, whether a laboratory workstation, university computer cluster, or a cloud service provider. Beyond end users, the Bio-Docklets also enables developers to programmatically deploy and run a large number of pipeline instances for concurrent analysis of multiple datasets. © The Authors 2017. Published by Oxford University Press.

  11. Light-weight reference-based compression of FASTQ data.

    PubMed

    Zhang, Yongpeng; Li, Linsen; Yang, Yanli; Yang, Xiao; He, Shan; Zhu, Zexuan

    2015-06-09

    The exponential growth of next generation sequencing (NGS) data has posed big challenges to data storage, management and archive. Data compression is one of the effective solutions, where reference-based compression strategies can typically achieve superior compression ratios compared to the ones not relying on any reference. This paper presents a lossless light-weight reference-based compression algorithm namely LW-FQZip to compress FASTQ data. The three components of any given input, i.e., metadata, short reads and quality score strings, are first parsed into three data streams in which the redundancy information are identified and eliminated independently. Particularly, well-designed incremental and run-length-limited encoding schemes are utilized to compress the metadata and quality score streams, respectively. To handle the short reads, LW-FQZip uses a novel light-weight mapping model to fast map them against external reference sequence(s) and produce concise alignment results for storage. The three processed data streams are then packed together with some general purpose compression algorithms like LZMA. LW-FQZip was evaluated on eight real-world NGS data sets and achieved compression ratios in the range of 0.111-0.201. This is comparable or superior to other state-of-the-art lossless NGS data compression algorithms. LW-FQZip is a program that enables efficient lossless FASTQ data compression. It contributes to the state of art applications for NGS data storage and transmission. LW-FQZip is freely available online at: http://csse.szu.edu.cn/staff/zhuzx/LWFQZip.

  12. Bio-Docklets: virtualization containers for single-step execution of NGS pipelines

    PubMed Central

    Kim, Baekdoo; Ali, Thahmina; Lijeron, Carlos; Afgan, Enis

    2017-01-01

    Abstract Processing of next-generation sequencing (NGS) data requires significant technical skills, involving installation, configuration, and execution of bioinformatics data pipelines, in addition to specialized postanalysis visualization and data mining software. In order to address some of these challenges, developers have leveraged virtualization containers toward seamless deployment of preconfigured bioinformatics software and pipelines on any computational platform. We present an approach for abstracting the complex data operations of multistep, bioinformatics pipelines for NGS data analysis. As examples, we have deployed 2 pipelines for RNA sequencing and chromatin immunoprecipitation sequencing, preconfigured within Docker virtualization containers we call Bio-Docklets. Each Bio-Docklet exposes a single data input and output endpoint and from a user perspective, running the pipelines as simply as running a single bioinformatics tool. This is achieved using a “meta-script” that automatically starts the Bio-Docklets and controls the pipeline execution through the BioBlend software library and the Galaxy Application Programming Interface. The pipeline output is postprocessed by integration with the Visual Omics Explorer framework, providing interactive data visualizations that users can access through a web browser. Our goal is to enable easy access to NGS data analysis pipelines for nonbioinformatics experts on any computing environment, whether a laboratory workstation, university computer cluster, or a cloud service provider. Beyond end users, the Bio-Docklets also enables developers to programmatically deploy and run a large number of pipeline instances for concurrent analysis of multiple datasets. PMID:28854616

  13. Amplicon sequencing of bacterial microbiota in abortion material from cattle.

    PubMed

    Vidal, Sara; Kegler, Kristel; Posthaus, Horst; Perreten, Vincent; Rodriguez-Campos, Sabrina

    2017-10-10

    Abortions in cattle have a significant economic impact on animal husbandry and require prompt diagnosis for surveillance of epizootic infectious agents. Since most abortions are not epizootic but sporadic with often undetected etiologies, this study examined the bacterial community present in the placenta (PL, n = 32) and fetal abomasal content (AC, n = 49) in 64 cases of bovine abortion by next generation sequencing (NGS) of the 16S rRNA gene. The PL and AC from three fetuses of dams that died from non-infectious reasons were included as controls. All samples were analyzed by bacterial culture, and 17 were examined by histopathology. We observed 922 OTUs overall and 267 taxa at the genus level. No detectable bacterial DNA was present in the control samples. The microbial profiles of the PL and AC differed significantly, both in their composition (PERMANOVA), species richness and Chao-1 (Mann-Whitney test). In both organs, Pseudomonas was the most abundant genus. The combination of NGS and culture identified opportunistic pathogens of interest in placentas with lesions, such as Vibrio metschnikovii, Streptococcus uberis, Lactococcus lactis and Escherichia coli. In placentas with lesions where culturing was unsuccessful, Pseudomonas and unidentified Aeromonadaceae were identified by NGS displaying high number of reads. Three cases with multiple possible etiologies and placentas presenting lesions were detected by NGS. Amplicon sequencing has the potential to uncover unknown etiological agents. These new insights on cattle abortion extend our focus to previously understudied opportunistic abortive bacteria.

  14. Investigation of a Canine Parvovirus Outbreak using Next Generation Sequencing.

    PubMed

    Parker, Jayme; Murphy, Molly; Hueffer, Karsten; Chen, Jack

    2017-08-29

    Canine parvovirus (CPV) outbreaks can have a devastating effect in communities with dense dog populations. The interior region of Alaska experienced a CPV outbreak in the winter of 2016 leading to the further investigation of the virus due to reports of increased morbidity and mortality occurring at dog mushing kennels in the area. Twelve rectal-swab specimens from dogs displaying clinical signs consistent with parvoviral-associated disease were processed using next-generation sequencing (NGS) methodologies by targeting RNA transcripts, and therefore detecting only replicating virus. All twelve specimens demonstrated the presence of the CPV transcriptome, with read depths ranging from 2.2X - 12,381X, genome coverage ranging from 44.8-96.5%, and representation of CPV sequencing reads to those of the metagenome background ranging from 0.0015-6.7%. Using the data generated by NGS, the presence of newly evolved, yet known, strains of both CPV-2a and CPV-2b were identified and grouped geographically. Deep-sequencing data provided additional diagnostic information in terms of investigating novel CPV in this outbreak. NGS data in addition to limited serological data provided strong diagnostic evidence that this outbreak most likely arose from unvaccinated or under-vaccinated canines, not from a novel CPV strain incapable of being neutralized by current vaccination efforts.

  15. A novel ABCD1 mutation detected by next generation sequencing in presumed hereditary spastic paraplegia: A 30-year diagnostic delay caused by misleading biochemical findings.

    PubMed

    Koutsis, Georgios; Lynch, David S; Tucci, Arianna; Houlden, Henry; Karadima, Georgia; Panas, Marios

    2015-08-15

    To present a Greek family in which 5 male and 2 female members developed progressive spastic paraplegia. Plasma very long chain fatty acids (VLCFA) were reportedly normal at first testing in an affected male and for over 30 years the presumed diagnosis was hereditary spastic paraplegia (HSP). Targeted next generation sequencing (NGS) was used as a further diagnostic tool. Targeted exome sequencing in the proband, followed by Sanger sequencing confirmation; mutation segregation testing in multiple family members and plasma VLCFA measurement in the proband. NGS of the proband revealed a novel frameshift mutation in ABCD1 (c.1174_1178del, p.Leu392Serfs*7), bringing an end to diagnostic uncertainty by establishing the diagnosis of adrenomyeloneuropathy (AMN), the myelopathic phenotype of X-linked adrenoleukodystrophy (ALD). The mutation segregated in all family members and the diagnosis of AMN/ALD was confirmed by plasma VLCFA measurement. Confounding factors that delayed the diagnosis are presented. This report highlights the diagnostic utility of NGS in patients with undiagnosed spastic paraplegia, establishing a molecular diagnosis of AMN, allowing proper genetic counseling and management, and overcoming the diagnostic delay that can be rarely caused by false negative VLCFA analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Diagnostic Yield of Next-Generation Sequencing in Very Early-Onset Inflammatory Bowel Diseases: A Multicenter Study.

    PubMed

    Charbit-Henrion, Fabienne; Parlato, Marianna; Hanein, Sylvain; Duclaux-Loras, Rémi; Nowak, Jan; Begue, Bernadette; Rakotobe, Sabine; Bruneau, Julie; Fourrage, Cécile; Alibeu, Olivier; Rieux-Laucat, Frédéric; Lévy, Eva; Stolzenberg, Marie-Claude; Mazerolles, Fabienne; Latour, Sylvain; Lenoir, Christelle; Fischer, Alain; Picard, Capucine; Aloi, Marina; Amil Dias, Jorge; Ben Hariz, Mongi; Bourrier, Anne; Breuer, Christian; Breton, Anne; Bronski, Jiri; Buderus, Stephan; Cananzi, Mara; Coopman, Stéphanie; Crémilleux, Clara; Dabadie, Alain; Dumant-Forest, Clémentine; Egritas Gurkan, Odul; Fabre, Alexandre; Fischer, Aude; German Diaz, Marta; Gonzalez-Lama, Yago; Goulet, Olivier; Guariso, Graziella; Gurcan, Neslihan; Homan, Matjaz; Hugot, Jean-Pierre; Jeziorski, Eric; Karanika, Evi; Lachaux, Alain; Lewindon, Peter; Lima, Rosa; Magro, Fernando; Major, Janos; Malamut, Georgia; Mas, Emmanuel; Mattyus, Istvan; Mearin, Luisa M; Melek, Jan; Navas-Lopez, Victor Manuel; Paerregaard, Anders; Pelatan, Cecile; Pigneur, Bénédicte; Pinto Pais, Isabel; Rebeuh, Julie; Romano, Claudio; Siala, Nadia; Strisciuglio, Caterina; Tempia-Caliera, Michela; Tounian, Patrick; Turner, Dan; Urbonas, Vaidotas; Willot, Stéphanie; Ruemmele, Frank M; Cerf-Bensussan, Nadine

    2018-05-18

    An expanding number of monogenic defects have been identified as causative of severe forms of very early-onset inflammatory bowel diseases (VEO-IBD). The present study aimed at defining how next-generation sequencing (NGS) methods can be used to improve identification of known molecular diagnosis and adapt treatment. 207 children were recruited in 45 Paediatric centres through an international collaborative network (ESPGHAN GENIUS working group) with a clinical presentation of severe VEO-IBD (n=185) or an anamnesis suggestive of a monogenic disorder (n=22). Patients were divided at inclusion into three phenotypic subsets: predominantly small bowel inflammation, colitis with perianal lesions, and colitis only. Methods to obtain molecular diagnosis included functional tests followed by specific Sanger sequencing, custom-made targeted NGS, and in selected cases whole exome sequencing (WES) of parents-child trios. Genetic findings were validated clinically and/or functionally. Molecular diagnosis was achieved in 66/207 children (32%): 61% with small bowel inflammation, 39% with colitis and perianal lesions and 18% with colitis only. Targeted NGS pinpointed gene mutations causative of atypical presentations and identified large exonic copy number variations previously missed by WES. Our results lead us to propose an optimised diagnostic strategy to identify known monogenic causes of severe IBD.

  17. Present and future of personalized medicine in CLL.

    PubMed

    Montserrat, Emili; Bauman, Tycho; Delgado, Julio

    2016-03-01

    Medicine has been 'personalized' (i.e. centred in persons) since its foundation. Recently, however, the term 'personalized medicine' (or, better, 'precision medicine') has been introduced to define 'a form of medicine that uses information about a person's genes, proteins, and environment to prevent, diagnose, and treat disease'. This concept has gained momentum thanks to next-generation-sequencing (NGS) techniques that allow identification of molecular characteristics unique to the patient and to the tumour. It is hoped that NGS will not only contribute to a better understanding of chronic lymphocytic leukaemia (CLL), but will identify disease subsets that could benefit from specific treatment interventions. Recent advances in diagnosis (e.g. high-resolution immunophenotyping, markers of genetic abnormalities), prognosis (e.g. biomarkers), response predictors [e.g. del(17p)/TP53 mutations even at subclonal level], treatment (e.g. BCR signalling inhibitors, BCL2 antagonists, CAR-T cells) and methods to evaluate minimal residual disease constitute good examples of tools facilitating 'personalized' management of patients with CLL. Copyright © 2016. Published by Elsevier Ltd.

  18. Cryptic Hepatitis B and E in Patients With Acute Hepatitis of Unknown Etiology.

    PubMed

    Ganova-Raeva, Lilia; Punkova, Lili; Campo, David S; Dimitrova, Zoya; Skums, Pavel; Vu, Nga H; Dat, Do T; Dalton, Harry R; Khudyakov, Yury

    2015-12-15

    Up to 30% of acute viral hepatitis has no known etiology. To determine the disease etiology in patients with acute hepatitis of unknown etiology (HUE), serum specimens were obtained from 38 patients residing in the United Kingdom and Vietnam and from 26 healthy US blood donors. All specimens tested negative for known viral infections causing hepatitis, using commercially available serological and nucleic acid assays. Specimens were processed by sequence-independent complementary DNA amplification and next-generation sequencing (NGS). Sufficient material for individual NGS libraries was obtained from 12 HUE cases and 26 blood donors; the remaining HUE cases were sequenced as a pool. Read mapping was done by targeted and de novo assembly. Sequences from hepatitis B virus (HBV) were detected in 7 individuals with HUE (58.3%) and the pooled library, and hepatitis E virus (HEV) was detected in 2 individuals with HUE (16.7%) and the pooled library. Both HEV-positive cases were coinfected with HBV. HBV sequences belonged to genotypes A, D, or G, and HEV sequences belonged to genotype 3. No known hepatotropic viruses were detected in the tested normal human sera. NGS-based detection of HBV and HEV infections is more sensitive than using commercially available assays. HBV and HEV may be cryptically associated with HUE. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  19. A Comprehensive Strategy for Accurate Mutation Detection of the Highly Homologous PMS2.

    PubMed

    Li, Jianli; Dai, Hongzheng; Feng, Yanming; Tang, Jia; Chen, Stella; Tian, Xia; Gorman, Elizabeth; Schmitt, Eric S; Hansen, Terah A A; Wang, Jing; Plon, Sharon E; Zhang, Victor Wei; Wong, Lee-Jun C

    2015-09-01

    Germline mutations in the DNA mismatch repair gene PMS2 underlie the cancer susceptibility syndrome, Lynch syndrome. However, accurate molecular testing of PMS2 is complicated by a large number of highly homologous sequences. To establish a comprehensive approach for mutation detection of PMS2, we have designed a strategy combining targeted capture next-generation sequencing (NGS), multiplex ligation-dependent probe amplification, and long-range PCR followed by NGS to simultaneously detect point mutations and copy number changes of PMS2. Exonic deletions (E2 to E9, E5 to E9, E8, E10, E14, and E1 to E15), duplications (E11 to E12), and a nonsense mutation, p.S22*, were identified. Traditional multiplex ligation-dependent probe amplification and Sanger sequencing approaches cannot differentiate the origin of the exonic deletions in the 3' region when PMS2 and PMS2CL share identical sequences as a result of gene conversion. Our approach allows unambiguous identification of mutations in the active gene with a straightforward long-range-PCR/NGS method. Breakpoint analysis of multiple samples revealed that recurrent exon 14 deletions are mediated by homologous Alu sequences. Our comprehensive approach provides a reliable tool for accurate molecular analysis of genes containing multiple copies of highly homologous sequences and should improve PMS2 molecular analysis for patients with Lynch syndrome. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  20. Mind the gap; seven reasons to close fragmented genome assemblies

    USDA-ARS?s Scientific Manuscript database

    Like other domains of life, research into the biology of filamentous microbes has greatly benefited from the advent of whole-genome sequencing. Next-generation sequencing (NGS) technologies have revolutionized sequencing, making genomic sciences accessible to many academic laboratories including tho...

  1. Fluorescence in situ hybridization, immunohistochemistry, and next-generation sequencing for detection of EML4-ALK rearrangement in lung cancer.

    PubMed

    Pekar-Zlotin, Marina; Hirsch, Fred R; Soussan-Gutman, Lior; Ilouze, Maya; Dvir, Addie; Boyle, Theresa; Wynes, Murry; Miller, Vincent A; Lipson, Doron; Palmer, Gary A; Ali, Siraj M; Dekel, Shlomi; Brenner, Ronen; Bunn, Paul A; Peled, Nir

    2015-03-01

    The U.S. Food and Drug Administration-approved method for detecting EML4-ALK rearrangement is fluorescence in situ hybridization (FISH); however, data supporting the use of immunohistochemistry (IHC) for that purpose are accumulating. Previous studies that compared FISH and IHC considered FISH the gold standard, but none compared data with the results of next-generation sequencing (NGS) analysis. We studied FISH and IHC (D5F3 antibody) systematically for EML4-ALK rearrangement in 51 lung adenocarcinoma patients, followed by NGS in case of discordance. Of 51 patients, 4 were positive with FISH (7.8%), and 8 were positive with IHC (15.7%). Three were positive with both. NGS confirmed that four of the five patients who were positive with IHC and negative with FISH were positive for ALK. Two were treated by crizotinib, with progression-free survival of 18 and 6 months. Considering NGS as the most accurate test, the sensitivity and specificity were 42.9% and 97.7%, respectively, for FISH and 100% and 97.7%, respectively, for IHC. The FISH-based method of detecting EML4-ALK rearrangement in lung cancer may miss a significant number of patients who could benefit from targeted ALK therapy. Screening for EML4-ALK rearrangement by IHC should be strongly considered, and NGS is recommended in borderline cases. Two patients who were negative with FISH and positive with IHC were treated with crizotinib and responded to therapy. ©AlphaMed Press.

  2. Assessment of the quality of DNA from various formalin-fixed paraffin-embedded (FFPE) tissues and the use of this DNA for next-generation sequencing (NGS) with no artifactual mutation

    PubMed Central

    Einaga, Naoki; Yoshida, Akio; Noda, Hiroko; Suemitsu, Masaaki; Nakayama, Yuki; Sakurada, Akihisa; Kawaji, Yoshiko; Yamaguchi, Hiromi; Sasaki, Yasushi; Tokino, Takashi; Esumi, Mariko

    2017-01-01

    Formalin-fixed, paraffin-embedded (FFPE) tissues used for pathological diagnosis are valuable for studying cancer genomics. In particular, laser-capture microdissection of target cells determined by histopathology combined with FFPE tissue section immunohistochemistry (IHC) enables precise analysis by next-generation sequencing (NGS) of the genetic events occurring in cancer. The result is a new strategy for a pathological tool for cancer diagnosis: ‘microgenomics’. To more conveniently and precisely perform microgenomics, we revealed by systematic analysis the following three details regarding FFPE DNA compared with paired frozen tissue DNA. 1) The best quality of FFPE DNA is obtained by tissue fixation with 10% neutral buffered formalin for 1 day and heat treatment of tissue lysates at 95°C for 30 minutes. 2) IHC staining of FFPE tissues decreases the quantity and quality of FFPE DNA to one-fourth, and antigen retrieval (at 120°C for 15 minutes, pH 6.0) is the major reason for this decrease. 3) FFPE DNA prepared as described herein is sufficient for NGS. For non-mutated tissue specimens, no artifactual mutation occurs during FFPE preparation, as shown by precise comparison of NGS of FFPE DNA and paired frozen tissue DNA followed by validation. These results demonstrate that even FFPE tissues used for routine clinical diagnosis can be utilized to obtain reliable NGS data if appropriate conditions of fixation and validation are applied. PMID:28498833

  3. Clinical Application of Picodroplet Digital PCR Technology for Rapid Detection of EGFR T790M in Next-Generation Sequencing Libraries and DNA from Limited Tumor Samples.

    PubMed

    Borsu, Laetitia; Intrieri, Julie; Thampi, Linta; Yu, Helena; Riely, Gregory; Nafa, Khedoudja; Chandramohan, Raghu; Ladanyi, Marc; Arcila, Maria E

    2016-11-01

    Although next-generation sequencing (NGS) is a robust technology for comprehensive assessment of EGFR-mutant lung adenocarcinomas with acquired resistance to tyrosine kinase inhibitors, it may not provide sufficiently rapid and sensitive detection of the EGFR T790M mutation, the most clinically relevant resistance biomarker. Here, we describe a digital PCR (dPCR) assay for rapid T790M detection on aliquots of NGS libraries prepared for comprehensive profiling, fully maximizing broad genomic analysis on limited samples. Tumor DNAs from patients with EGFR-mutant lung adenocarcinomas and acquired resistance to epidermal growth factor receptor inhibitors were prepared for Memorial Sloan-Kettering-Integrated Mutation Profiling of Actionable Cancer Targets sequencing, a hybrid capture-based assay interrogating 410 cancer-related genes. Precapture library aliquots were used for rapid EGFR T790M testing by dPCR, and results were compared with NGS and locked nucleic acid-PCR Sanger sequencing (reference high sensitivity method). Seventy resistance samples showed 99% concordance with the reference high sensitivity method in accuracy studies. Input as low as 2.5 ng provided a sensitivity of 1% and improved further with increasing DNA input. dPCR on libraries required less DNA and showed better performance than direct genomic DNA. dPCR on NGS libraries is a robust and rapid approach to EGFR T790M testing, allowing most economical utilization of limited material for comprehensive assessment. The same assay can also be performed directly on any limited DNA source and cell-free DNA. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  4. Clinical mutational profiling of 1006 lung cancers by next generation sequencing

    PubMed Central

    Illei, Peter B.; Belchis, Deborah; Tseng, Li-Hui; Nguyen, Doreen; De Marchi, Federico; Haley, Lisa; Riel, Stacy; Beierl, Katie; Zheng, Gang; Brahmer, Julie R.; Askin, Frederic B.; Gocke, Christopher D.; Eshleman, James R.; Forde, Patrick M.; Lin, Ming-Tseh

    2017-01-01

    Analysis of lung adenocarcinomas for actionable mutations has become standard of care. Here, we report our experience using next generation sequencing (NGS) to examine AKT1, BRAF, EGFR, ERBB2, KRAS, NRAS, and PIK3CA genes in 1006 non-small cell lung cancers in a clinical diagnostic setting. NGS demonstrated high sensitivity. Among 760 mutations detected, the variant allele frequency (VAF) was 2–5% in 33 (4.3%) mutations and 2–10% in 101 (13%) mutations. A single bioinformatics pipeline using Torrent Variant Caller, however, missed a variety of EGFR mutations. Mutations were detected in KRAS (36% of tumors), EGFR (19%) including 8 (0.8%) within the extracellular domain (4 at codons 108 and 4 at codon 289), BRAF (6.3%), and PIK3CA (3.7%). With a broader reportable range, exon 19 deletion and p.L858R accounted for only 36% and 26% of EGFR mutations and p.V600E accounted for only 24% of BRAF mutations. NGS provided accurate sequencing of complex mutations seen in 19% of EGFR exon 19 deletion mutations. Doublet (compound) EGFR mutations were observed in 29 (16%) of 187 EGFR-mutated tumors, including 69% with two non-p.L858R missense mutations and 24% with p.L858 and non-p.L858R missense mutations. Concordant VAFs suggests doublet EGFR mutations were present in a dominant clone and cooperated in oncogenesis. Mutants with predicted impaired kinase, observed in 25% of BRAF-mutated tumors, were associated with a higher incidence of concomitant activating KRAS mutations. NGS demonstrates high analytic sensitivity, broad reportable range, quantitative VAF measurement, single molecule sequencing to resolve complex deletion mutations, and simultaneous detection of concomitant mutations. PMID:29228562

  5. RNA-Seq Analysis to Measure the Expression of SINE Retroelements.

    PubMed

    Román, Ángel Carlos; Morales-Hernández, Antonio; Fernández-Salguero, Pedro M

    2016-01-01

    The intrinsic features of retroelements, like their repetitive nature and disseminated presence in their host genomes, demand the use of advanced methodologies for their bioinformatic and functional study. The short length of SINE (short interspersed elements) retrotransposons makes such analyses even more complex. Next-generation sequencing (NGS) technologies are currently one of the most widely used tools to characterize the whole repertoire of gene expression in a specific tissue. In this chapter, we will review the molecular and computational methods needed to perform NGS analyses on SINE elements. We will also describe new methods of potential interest for researchers studying repetitive elements. We intend to outline the general ideas behind the computational analyses of NGS data obtained from SINE elements, and to stimulate other scientists to expand our current knowledge on SINE biology using RNA-seq and other NGS tools.

  6. LightAssembler: fast and memory-efficient assembly algorithm for high-throughput sequencing reads.

    PubMed

    El-Metwally, Sara; Zakaria, Magdi; Hamza, Taher

    2016-11-01

    The deluge of current sequenced data has exceeded Moore's Law, more than doubling every 2 years since the next-generation sequencing (NGS) technologies were invented. Accordingly, we will able to generate more and more data with high speed at fixed cost, but lack the computational resources to store, process and analyze it. With error prone high throughput NGS reads and genomic repeats, the assembly graph contains massive amount of redundant nodes and branching edges. Most assembly pipelines require this large graph to reside in memory to start their workflows, which is intractable for mammalian genomes. Resource-efficient genome assemblers combine both the power of advanced computing techniques and innovative data structures to encode the assembly graph efficiently in a computer memory. LightAssembler is a lightweight assembly algorithm designed to be executed on a desktop machine. It uses a pair of cache oblivious Bloom filters, one holding a uniform sample of [Formula: see text]-spaced sequenced [Formula: see text]-mers and the other holding [Formula: see text]-mers classified as likely correct, using a simple statistical test. LightAssembler contains a light implementation of the graph traversal and simplification modules that achieves comparable assembly accuracy and contiguity to other competing tools. Our method reduces the memory usage by [Formula: see text] compared to the resource-efficient assemblers using benchmark datasets from GAGE and Assemblathon projects. While LightAssembler can be considered as a gap-based sequence assembler, different gap sizes result in an almost constant assembly size and genome coverage. https://github.com/SaraEl-Metwally/LightAssembler CONTACT: sarah_almetwally4@mans.edu.egSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Next-generation sequencing for molecular diagnosis of lung adenocarcinoma specimens obtained by fine needle aspiration cytology

    NASA Astrophysics Data System (ADS)

    Qiu, Tian; Guo, Huiqin; Zhao, Huan; Wang, Luhua; Zhang, Zhihui

    2015-06-01

    Identification of multi-gene variations has led to the development of new targeted therapies in lung adenocarcinoma patients, and identification of an appropriate patient population with a reliable screening method is the key to the overall success of tumor targeted therapies. In this study, we used the Ion Torrent next-generation sequencing (NGS) technique to screen for mutations in 89 cases of lung adenocarcinoma metastatic lymph node specimens obtained by fine-needle aspiration cytology (FNAC). Of the 89 specimens, 30 (34%) were found to harbor epidermal growth factor receptor (EGFR) kinase domain mutations. Seven (8%) samples harbored KRAS mutations, and three (3%) samples had BRAF mutations involving exon 11 (G469A) and exon 15 (V600E). Eight (9%) samples harbored PIK3CA mutations. One (1%) sample had a HRAS G12C mutation. Thirty-two (36%) samples (36%) harbored TP53 mutations. Other genes including APC, ATM, MET, PTPN11, GNAS, HRAS, RB1, SMAD4 and STK11 were found each in one case. Our study has demonstrated that NGS using the Ion Torrent technology is a useful tool for gene mutation screening in lung adenocarcinoma metastatic lymph node specimens obtained by FNAC, and may promote the development of new targeted therapies in lung adenocarcinoma patients.

  8. Monitoring of airborne biological particles in outdoor atmosphere. Part 2: Metagenomics applied to urban environments.

    PubMed

    Núñez, Andrés; Amo de Paz, Guillermo; Rastrojo, Alberto; García, Ana M; Alcamí, Antonio; Gutiérrez-Bustillo, A Montserrat; Moreno, Diego A

    2016-06-01

    The air we breathe contains microscopic biological particles such as viruses, bacteria, fungi and pollen, some of them with relevant clinic importance. These organisms and/or their propagules have been traditionally studied by different disciplines and diverse methodologies like culture and microscopy. These techniques require time, expertise and also have some important biases. As a consequence, our knowledge on the total diversity and the relationships between the different biological entities present in the air is far from being complete. Currently, metagenomics and next-generation sequencing (NGS) may resolve this shortage of information and have been recently applied to metropolitan areas. Although the procedures and methods are not totally standardized yet, the first studies from urban air samples confirm the previous results obtained by culture and microscopy regarding abundance and variation of these biological particles. However, DNA-sequence analyses call into question some preceding ideas and also provide new interesting insights into diversity and their spatial distribution inside the cities. Here, we review the procedures, results and perspectives of the recent works that apply NGS to study the main biological particles present in the air of urban environments. [Int Microbiol 19(2):69-80(2016)]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  9. Almost 2% of Spanish breast cancer families are associated to germline pathogenic mutations in the ATM gene.

    PubMed

    Tavera-Tapia, A; Pérez-Cabornero, L; Macías, J A; Ceballos, M I; Roncador, G; de la Hoya, M; Barroso, A; Felipe-Ponce, V; Serrano-Blanch, R; Hinojo, C; Miramar-Gallart, M D; Urioste, M; Caldés, T; Santillan-Garzón, S; Benitez, J; Osorio, A

    2017-02-01

    There is still a considerable percentage of hereditary breast and ovarian cancer (HBOC) cases not explained by BRCA1 and BRCA2 genes. In this report, next-generation sequencing (NGS) techniques were applied to identify novel variants and/or genes involved in HBOC susceptibility. Using whole exome sequencing, we identified a novel germline mutation in the moderate-risk gene ATM (c.5441delT; p.Leu1814Trpfs*14) in a family negative for mutations in BRCA1/2 (BRCAX). A case-control association study was performed to establish its prevalence in Spanish population, in a series of 1477 BRCAX families and 589 controls further screened, and NGS panels were used for ATM mutational screening in a cohort of 392 HBOC Spanish BRCAX families and 350 patients affected with diseases not related to breast cancer. Although the interrogated mutation was not prevalent in case-control association study, a comprehensive mutational analysis of the ATM gene revealed 1.78% prevalence of mutations in the ATM gene in HBOC and 1.94% in breast cancer-only BRCAX families in Spanish population, where data about ATM mutations were very limited. ATM mutation prevalence in Spanish population highlights the importance of considering ATM pathogenic variants linked to breast cancer susceptibility.

  10. Targeted next-generation sequencing helps to decipher the genetic and phenotypic heterogeneity of hypertrophic cardiomyopathy

    PubMed Central

    Cecconi, Massimiliano; Parodi, Maria I.; Formisano, Francesco; Spirito, Paolo; Autore, Camillo; Musumeci, Maria B.; Favale, Stefano; Forleo, Cinzia; Rapezzi, Claudio; Biagini, Elena; Davì, Sabrina; Canepa, Elisabetta; Pennese, Loredana; Castagnetta, Mauro; Degiorgio, Dario; Coviello, Domenico A.

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is mainly associated with myosin, heavy chain 7 (MYH7) and myosin binding protein C, cardiac (MYBPC3) mutations. In order to better explain the clinical and genetic heterogeneity in HCM patients, in this study, we implemented a target-next generation sequencing (NGS) assay. An Ion AmpliSeq™ Custom Panel for the enrichment of 19 genes, of which 9 of these did not encode thick/intermediate and thin myofilament (TTm) proteins and, among them, 3 responsible of HCM phenocopy, was created. Ninety-two DNA samples were analyzed by the Ion Personal Genome Machine: 73 DNA samples (training set), previously genotyped in some of the genes by Sanger sequencing, were used to optimize the NGS strategy, whereas 19 DNA samples (discovery set) allowed the evaluation of NGS performance. In the training set, we identified 72 out of 73 expected mutations and 15 additional mutations: the molecular diagnosis was achieved in one patient with a previously wild-type status and the pre-excitation syndrome was explained in another. In the discovery set, we identified 20 mutations, 5 of which were in genes encoding non-TTm proteins, increasing the diagnostic yield by approximately 20%: a single mutation in genes encoding non-TTm proteins was identified in 2 out of 3 borderline HCM patients, whereas co-occuring mutations in genes encoding TTm and galactosidase alpha (GLA) altered proteins were characterized in a male with HCM and multiorgan dysfunction. Our combined targeted NGS-Sanger sequencing-based strategy allowed the molecular diagnosis of HCM with greater efficiency than using the conventional (Sanger) sequencing alone. Mutant alleles encoding non-TTm proteins may aid in the complete understanding of the genetic and phenotypic heterogeneity of HCM: co-occuring mutations of genes encoding TTm and non-TTm proteins could explain the wide variability of the HCM phenotype, whereas mutations in genes encoding only the non-TTm proteins are identifiable in patients with a milder HCM status. PMID:27600940

  11. Controversy and debate on clinical genomics sequencing-paper 1: genomics is not exceptional: rigorous evaluations are necessary for clinical applications of genomic sequencing.

    PubMed

    Wilson, Brenda J; Miller, Fiona Alice; Rousseau, François

    2017-12-01

    Next generation genomic sequencing (NGS) technologies-whole genome and whole exome sequencing-are now cheap enough to be within the grasp of many health care organizations. To many, NGS is symbolic of cutting edge health care, offering the promise of "precision" and "personalized" medicine. Historically, research and clinical application has been a two-way street in clinical genetics: research often driven directly by the desire to understand and try to solve immediate clinical problems affecting real, identifiable patients and families, accompanied by a low threshold of willingness to apply research-driven interventions without resort to formal empirical evaluations. However, NGS technologies are not simple substitutes for older technologies and need careful evaluation for use as screening, diagnostic, or prognostic tools. We have concerns across three areas. First, at the moment, analytic validity is unknown because technical platforms are not yet stable, laboratory quality assurance programs are in their infancy, and data interpretation capabilities are badly underdeveloped. Second, clinical validity of genomic findings for patient populations without pre-existing high genetic risk is doubtful, as most clinical experience with NGS technologies relates to patients with a high prior likelihood of a genetic etiology. Finally, we are concerned that proponents argue not only for clinically driven approaches to assessing a patient's genome, but also for seeking out variants associated with unrelated conditions or susceptibilities-so-called "secondary targets"-this is screening on a genomic scale. We argue that clinical uses of genomic sequencing should remain limited to specialist and research settings, that screening for secondary findings in clinical testing should be limited to the maximum extent possible, and that the benefits, harms, and economic implications of their routine use be systematically evaluated. All stakeholders have a responsibility to ensure that patients receive effective, safe health care, in an economically sustainable health care system. There should be no exception for genome-based interventions. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. A remark on copy number variation detection methods.

    PubMed

    Li, Shuo; Dou, Xialiang; Gao, Ruiqi; Ge, Xinzhou; Qian, Minping; Wan, Lin

    2018-01-01

    Copy number variations (CNVs) are gain and loss of DNA sequence of a genome. High throughput platforms such as microarrays and next generation sequencing technologies (NGS) have been applied for genome wide copy number losses. Although progress has been made in both approaches, the accuracy and consistency of CNV calling from the two platforms remain in dispute. In this study, we perform a deep analysis on copy number losses on 254 human DNA samples, which have both SNP microarray data and NGS data publicly available from Hapmap Project and 1000 Genomes Project respectively. We show that the copy number losses reported from Hapmap Project and 1000 Genome Project only have < 30% overlap, while these reports are required to have cross-platform (e.g. PCR, microarray and high-throughput sequencing) experimental supporting by their corresponding projects, even though state-of-art calling methods were employed. On the other hand, copy number losses are found directly from HapMap microarray data by an accurate algorithm, i.e. CNVhac, almost all of which have lower read mapping depth in NGS data; furthermore, 88% of which can be supported by the sequences with breakpoint in NGS data. Our results suggest the ability of microarray calling CNVs and the possible introduction of false negatives from the unessential requirement of the additional cross-platform supporting. The inconsistency of CNV reports from Hapmap Project and 1000 Genomes Project might result from the inadequate information containing in microarray data, the inconsistent detection criteria, or the filtration effect of cross-platform supporting. The statistical test on CNVs called from CNVhac show that the microarray data can offer reliable CNV reports, and majority of CNV candidates can be confirmed by raw sequences. Therefore, the CNV candidates given by a good caller could be highly reliable without cross-platform supporting, so additional experimental information should be applied in need instead of necessarily.

  13. STAR: an integrated solution to management and visualization of sequencing data

    PubMed Central

    Wang, Tao; Liu, Jie; Shen, Li; Tonti-Filippini, Julian; Zhu, Yun; Jia, Haiyang; Lister, Ryan; Whitaker, John W.; Ecker, Joseph R.; Millar, A. Harvey; Ren, Bing; Wang, Wei

    2013-01-01

    Motivation: Easily visualization of complex data features is a necessary step to conduct studies on next-generation sequencing (NGS) data. We developed STAR, an integrated web application that enables online management, visualization and track-based analysis of NGS data. Results: STAR is a multilayer web service system. On the client side, STAR leverages JavaScript, HTML5 Canvas and asynchronous communications to deliver a smoothly scrolling desktop-like graphical user interface with a suite of in-browser analysis tools that range from providing simple track configuration controls to sophisticated feature detection within datasets. On the server side, STAR supports private session state retention via an account management system and provides data management modules that enable collection, visualization and analysis of third-party sequencing data from the public domain with over thousands of tracks hosted to date. Overall, STAR represents a next-generation data exploration solution to match the requirements of NGS data, enabling both intuitive visualization and dynamic analysis of data. Availability and implementation: STAR browser system is freely available on the web at http://wanglab.ucsd.edu/star/browser and https://github.com/angell1117/STAR-genome-browser. Contact: wei-wang@ucsd.edu PMID:24078702

  14. Conifer genomics and adaptation: at the crossroads of genetic diversity and genome function.

    PubMed

    Prunier, Julien; Verta, Jukka-Pekka; MacKay, John J

    2016-01-01

    Conifers have been understudied at the genomic level despite their worldwide ecological and economic importance but the situation is rapidly changing with the development of next generation sequencing (NGS) technologies. With NGS, genomics research has simultaneously gained in speed, magnitude and scope. In just a few years, genomes of 20-24 gigabases have been sequenced for several conifers, with several others expected in the near future. Biological insights have resulted from recent sequencing initiatives as well as genetic mapping, gene expression profiling and gene discovery research over nearly two decades. We review the knowledge arising from conifer genomics research emphasizing genome evolution and the genomic basis of adaptation, and outline emerging questions and knowledge gaps. We discuss future directions in three areas with potential inputs from NGS technologies: the evolutionary impacts of adaptation in conifers based on the adaptation-by-speciation model; the contributions of genetic variability of gene expression in adaptation; and the development of a broader understanding of genetic diversity and its impacts on genome function. These research directions promise to sustain research aimed at addressing the emerging challenges of adaptation that face conifer trees. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  15. HPV-QUEST: A highly customized system for automated HPV sequence analysis capable of processing Next Generation sequencing data set.

    PubMed

    Yin, Li; Yao, Jiqiang; Gardner, Brent P; Chang, Kaifen; Yu, Fahong; Goodenow, Maureen M

    2012-01-01

    Next Generation sequencing (NGS) applied to human papilloma viruses (HPV) can provide sensitive methods to investigate the molecular epidemiology of multiple type HPV infection. Currently a genotyping system with a comprehensive collection of updated HPV reference sequences and a capacity to handle NGS data sets is lacking. HPV-QUEST was developed as an automated and rapid HPV genotyping system. The web-based HPV-QUEST subtyping algorithm was developed using HTML, PHP, Perl scripting language, and MYSQL as the database backend. HPV-QUEST includes a database of annotated HPV reference sequences with updated nomenclature covering 5 genuses, 14 species and 150 mucosal and cutaneous types to genotype blasted query sequences. HPV-QUEST processes up to 10 megabases of sequences within 1 to 2 minutes. Results are reported in html, text and excel formats and display e-value, blast score, and local and coverage identities; provide genus, species, type, infection site and risk for the best matched reference HPV sequence; and produce results ready for additional analyses.

  16. Next Generation Sequencing Technologies: The Doorway to the Unexplored Genomics of Non-Model Plants

    PubMed Central

    Unamba, Chibuikem I. N.; Nag, Akshay; Sharma, Ram K.

    2015-01-01

    Non-model plants i.e., the species which have one or all of the characters such as long life cycle, difficulty to grow in the laboratory or poor fecundity, have been schemed out of sequencing projects earlier, due to high running cost of Sanger sequencing. Consequently, the information about their genomics and key biological processes are inadequate. However, the advent of fast and cost effective next generation sequencing (NGS) platforms in the recent past has enabled the unearthing of certain characteristic gene structures unique to these species. It has also aided in gaining insight about mechanisms underlying processes of gene expression and secondary metabolism as well as facilitated development of genomic resources for diversity characterization, evolutionary analysis and marker assisted breeding even without prior availability of genomic sequence information. In this review we explore how different Next Gen Sequencing platforms, as well as recent advances in NGS based high throughput genotyping technologies are rewarding efforts on de-novo whole genome/transcriptome sequencing, development of genome wide sequence based markers resources for improvement of non-model crops that are less costly than phenotyping. PMID:26734016

  17. Detection of novel mutations that cause autosomal dominant retinitis pigmentosa in candidate genes by long-range PCR amplification and next-generation sequencing

    PubMed Central

    Dias, Miguel de Sousa; Hernan, Imma; Pascual, Beatriz; Borràs, Emma; Mañé, Begoña; Gamundi, Maria José

    2013-01-01

    Purpose To devise an effective method for detecting mutations in 12 genes (CA4, CRX, IMPDH1, NR2E3, RP9, PRPF3, PRPF8, PRPF31, PRPH2, RHO, RP1, and TOPORS) commonly associated with autosomal dominant retinitis pigmentosa (adRP) that account for more than 95% of known mutations. Methods We used long-range PCR (LR-PCR) amplification and next-generation sequencing (NGS) performed in a GS Junior 454 benchtop sequencing platform. Twenty LR-PCR fragments, between 3,000 and 10,000 bp, containing all coding exons and flanking regions of the 12 genes, were obtained from DNA samples of patients with adRP. Sequencing libraries were prepared with an enzymatic (Fragmentase technology) method. Results Complete coverage of the coding and flanking sequences of the 12 genes assayed was obtained with NGS, with an average sequence depth of 380× (ranging from 128× to 1,077×). Five previous known mutations in the adRP genes were detected with a sequence variation percentage between 35% and 65%. We also performed a parallel sequence analysis of four samples, three of them new patients with index adRP, in which two novel mutations were detected in RHO (p.Asn73del) and PRPF31 (p.Ile109del). Conclusions The results demonstrate that genomic LR-PCR amplification together with NGS is an effective method for analyzing individual patient samples for mutations in a monogenic heterogeneous disease such as adRP. This approach proved effective for the parallel analysis of adRP and has been introduced as routine. Additionally, this approach could be extended to other heterogeneous genetic diseases. PMID:23559859

  18. Characterization of H9N2 avian influenza viruses from the Middle East demonstrates heterogeneity at amino acid position 226 in the hemagglutinin and potential for transmission to mammals

    USDA-ARS?s Scientific Manuscript database

    Next-generation sequencing (NGS) technologies are a valuable tool to monitor changes in viral genomes and determine the genetic heterogeneity of viruses. In this study, NGS was applied to poultry samples from Jordan to detect eleven H9N2 low pathogenic avian influenza viruses (LPAIV). All of the vir...

  19. Use of next-generation sequencing to detect LDLR gene copy number variation in familial hypercholesterolemia[S

    PubMed Central

    Iacocca, Michael A.; Wang, Jian; Dron, Jacqueline S.; Robinson, John F.; McIntyre, Adam D.; Cao, Henian

    2017-01-01

    Familial hypercholesterolemia (FH) is a heritable condition of severely elevated LDL cholesterol, caused predominantly by autosomal codominant mutations in the LDL receptor gene (LDLR). In providing a molecular diagnosis for FH, the current procedure often includes targeted next-generation sequencing (NGS) panels for the detection of small-scale DNA variants, followed by multiplex ligation-dependent probe amplification (MLPA) in LDLR for the detection of whole-exon copy number variants (CNVs). The latter is essential because ∼10% of FH cases are attributed to CNVs in LDLR; accounting for them decreases false negative findings. Here, we determined the potential of replacing MLPA with bioinformatic analysis applied to NGS data, which uses depth-of-coverage analysis as its principal method to identify whole-exon CNV events. In analysis of 388 FH patient samples, there was 100% concordance in LDLR CNV detection between these two methods: 38 reported CNVs identified by MLPA were also successfully detected by our NGS method, while 350 samples negative for CNVs by MLPA were also negative by NGS. This result suggests that MLPA can be removed from the routine diagnostic screening for FH, significantly reducing associated costs, resources, and analysis time, while promoting more widespread assessment of this important class of mutations across diagnostic laboratories. PMID:28874442

  20. New Challenges in Targeting Signaling Pathways in Acute Lymphoblastic Leukemia by NGS Approaches: An Update

    PubMed Central

    Hernández-Rivas, Jesús María

    2018-01-01

    The identification and study of genetic alterations involved in various signaling pathways associated with the pathogenesis of acute lymphoblastic leukemia (ALL) and the application of recent next-generation sequencing (NGS) in the identification of these lesions not only broaden our understanding of the involvement of various genetic alterations in the pathogenesis of the disease but also identify new therapeutic targets for future clinical trials. The present review describes the main deletions, amplifications, sequence mutations, epigenetic lesions, and new structural DNA rearrangements detected by NGS in B-ALL and T-ALL and their clinical importance for therapeutic procedures. We reviewed the molecular basis of pathways including transcriptional regulation, lymphoid differentiation and development, TP53 and the cell cycle, RAS signaling, JAK/STAT, NOTCH, PI3K/AKT/mTOR, Wnt/β-catenin signaling, chromatin structure modifiers, and epigenetic regulators. The implementation of NGS strategies has enabled important mutated genes in each pathway, their associations with the genetic subtypes of ALL, and their outcomes, which will be described further. We also discuss classic and new cryptic DNA rearrangements in ALL identified by mRNA-seq strategies. Novel cooperative abnormalities in ALL could be key prognostic and/or predictive biomarkers for selecting the best frontline treatment and for developing therapies after the first relapse or refractory disease. PMID:29642462

  1. New Challenges in Targeting Signaling Pathways in Acute Lymphoblastic Leukemia by NGS Approaches: An Update.

    PubMed

    Montaño, Adrián; Forero-Castro, Maribel; Marchena-Mendoza, Darnel; Benito, Rocío; Hernández-Rivas, Jesús María

    2018-04-07

    The identification and study of genetic alterations involved in various signaling pathways associated with the pathogenesis of acute lymphoblastic leukemia (ALL) and the application of recent next-generation sequencing (NGS) in the identification of these lesions not only broaden our understanding of the involvement of various genetic alterations in the pathogenesis of the disease but also identify new therapeutic targets for future clinical trials. The present review describes the main deletions, amplifications, sequence mutations, epigenetic lesions, and new structural DNA rearrangements detected by NGS in B-ALL and T-ALL and their clinical importance for therapeutic procedures. We reviewed the molecular basis of pathways including transcriptional regulation, lymphoid differentiation and development, TP53 and the cell cycle, RAS signaling, JAK/STAT, NOTCH, PI3K/AKT/mTOR, Wnt/β-catenin signaling, chromatin structure modifiers, and epigenetic regulators. The implementation of NGS strategies has enabled important mutated genes in each pathway, their associations with the genetic subtypes of ALL, and their outcomes, which will be described further. We also discuss classic and new cryptic DNA rearrangements in ALL identified by mRNA-seq strategies. Novel cooperative abnormalities in ALL could be key prognostic and/or predictive biomarkers for selecting the best frontline treatment and for developing therapies after the first relapse or refractory disease.

  2. Comprehensive genetic testing for female and male infertility using next-generation sequencing.

    PubMed

    Patel, Bonny; Parets, Sasha; Akana, Matthew; Kellogg, Gregory; Jansen, Michael; Chang, Chihyu; Cai, Ying; Fox, Rebecca; Niknazar, Mohammad; Shraga, Roman; Hunter, Colby; Pollock, Andrew; Wisotzkey, Robert; Jaremko, Malgorzata; Bisignano, Alex; Puig, Oscar

    2018-05-19

    To develop a comprehensive genetic test for female and male infertility in support of medical decisions during assisted reproductive technology (ART) protocols. We developed a next-generation sequencing (NGS) gene panel consisting of 87 genes including promoters, 5' and 3' untranslated regions, exons, and selected introns. In addition, sex chromosome aneuploidies and Y chromosome microdeletions were analyzed concomitantly using the same panel. The NGS panel was analytically validated by retrospective analysis of 118 genomic DNA samples with known variants in loci representative of female and male infertility. Our results showed analytical accuracy of > 99%, with > 98% sensitivity for single-nucleotide variants (SNVs) and > 91% sensitivity for insertions/deletions (indels). Clinical sensitivity was assessed with samples containing variants representative of male and female infertility, and it was 100% for SNVs/indels, CFTR IVS8-5T variants, sex chromosome aneuploidies, and copy number variants (CNVs) and > 93% for Y chromosome microdeletions. Cost analysis shows potential savings when comparing this single NGS assay with the standard approach, which includes multiple assays. A single, comprehensive, NGS panel can simplify the ordering process for healthcare providers, reduce turnaround time, and lower the overall cost of testing for genetic assessment of infertility in females and males, while maintaining accuracy.

  3. Highly multiplexed and quantitative cell-surface protein profiling using genetically barcoded antibodies.

    PubMed

    Pollock, Samuel B; Hu, Amy; Mou, Yun; Martinko, Alexander J; Julien, Olivier; Hornsby, Michael; Ploder, Lynda; Adams, Jarrett J; Geng, Huimin; Müschen, Markus; Sidhu, Sachdev S; Moffat, Jason; Wells, James A

    2018-03-13

    Human cells express thousands of different surface proteins that can be used for cell classification, or to distinguish healthy and disease conditions. A method capable of profiling a substantial fraction of the surface proteome simultaneously and inexpensively would enable more accurate and complete classification of cell states. We present a highly multiplexed and quantitative surface proteomic method using genetically barcoded antibodies called phage-antibody next-generation sequencing (PhaNGS). Using 144 preselected antibodies displayed on filamentous phage (Fab-phage) against 44 receptor targets, we assess changes in B cell surface proteins after the development of drug resistance in a patient with acute lymphoblastic leukemia (ALL) and in adaptation to oncogene expression in a Myc-inducible Burkitt lymphoma model. We further show PhaNGS can be applied at the single-cell level. Our results reveal that a common set of proteins including FLT3, NCR3LG1, and ROR1 dominate the response to similar oncogenic perturbations in B cells. Linking high-affinity, selective, genetically encoded binders to NGS enables direct and highly multiplexed protein detection, comparable to RNA-sequencing for mRNA. PhaNGS has the potential to profile a substantial fraction of the surface proteome simultaneously and inexpensively to enable more accurate and complete classification of cell states. Copyright © 2018 the Author(s). Published by PNAS.

  4. Next-generation sequencing for targeted discovery of rare mutations in rice

    USDA-ARS?s Scientific Manuscript database

    Advances in DNA sequencing (i.e., next-generation sequencing, NGS) have greatly increased the power and efficiency of detecting rare mutations in large mutant populations. Targeting Induced Local Lesions in Genomes (TILLING) is a reverse genetics approach for identifying gene mutations resulting fro...

  5. QTL mapping for downy mildew resistance in cucumber via bulked segregant analysis using next-generation sequencing and conventional methods.

    PubMed

    Win, Khin Thanda; Vegas, Juan; Zhang, Chunying; Song, Kihwan; Lee, Sanghyeob

    2017-01-01

    QTL mapping using NGS-assisted BSA was successfully applied to an F 2 population for downy mildew resistance in cucumber. QTLs detected by NGS-assisted BSA were confirmed by conventional QTL analysis. Downy mildew (DM), caused by Pseudoperonospora cubensis, is one of the most destructive foliar diseases in cucumber. QTL mapping is a fundamental approach for understanding the genetic inheritance of DM resistance in cucumber. Recently, many studies have reported that a combination of bulked segregant analysis (BSA) and next-generation sequencing (NGS) can be a rapid and cost-effective way of mapping QTLs. In this study, we applied NGS-assisted BSA to QTL mapping of DM resistance in cucumber and confirmed the results by conventional QTL analysis. By sequencing two DNA pools each consisting of ten individuals showing high resistance and susceptibility to DM from a F 2 population, we identified single nucleotide polymorphisms (SNPs) between the two pools. We employed a statistical method for QTL mapping based on these SNPs. Five QTLs, dm2.2, dm4.1, dm5.1, dm5.2, and dm6.1, were detected and dm2.2 showed the largest effect on DM resistance. Conventional QTL analysis using the F 2 confirmed dm2.2 (R 2  = 10.8-24 %) and dm5.2 (R 2  = 14-27.2 %) as major QTLs and dm4.1 (R 2  = 8 %) as two minor QTLs, but could not detect dm5.1 and dm6.1. A new QTL on chromosome 2, dm2.1 (R 2  = 28.2 %) was detected by the conventional QTL method using an F 3 population. This study demonstrated the effectiveness of NGS-assisted BSA for mapping QTLs conferring DM resistance in cucumber and revealed the unique genetic inheritance of DM resistance in this population through two distinct major QTLs on chromosome 2 that mainly harbor DM resistance.

  6. Identification of optimum sequencing depth especially for de novo genome assembly of small genomes using next generation sequencing data.

    PubMed

    Desai, Aarti; Marwah, Veer Singh; Yadav, Akshay; Jha, Vineet; Dhaygude, Kishor; Bangar, Ujwala; Kulkarni, Vivek; Jere, Abhay

    2013-01-01

    Next Generation Sequencing (NGS) is a disruptive technology that has found widespread acceptance in the life sciences research community. The high throughput and low cost of sequencing has encouraged researchers to undertake ambitious genomic projects, especially in de novo genome sequencing. Currently, NGS systems generate sequence data as short reads and de novo genome assembly using these short reads is computationally very intensive. Due to lower cost of sequencing and higher throughput, NGS systems now provide the ability to sequence genomes at high depth. However, currently no report is available highlighting the impact of high sequence depth on genome assembly using real data sets and multiple assembly algorithms. Recently, some studies have evaluated the impact of sequence coverage, error rate and average read length on genome assembly using multiple assembly algorithms, however, these evaluations were performed using simulated datasets. One limitation of using simulated datasets is that variables such as error rates, read length and coverage which are known to impact genome assembly are carefully controlled. Hence, this study was undertaken to identify the minimum depth of sequencing required for de novo assembly for different sized genomes using graph based assembly algorithms and real datasets. Illumina reads for E.coli (4.6 MB) S.kudriavzevii (11.18 MB) and C.elegans (100 MB) were assembled using SOAPdenovo, Velvet, ABySS, Meraculous and IDBA-UD. Our analysis shows that 50X is the optimum read depth for assembling these genomes using all assemblers except Meraculous which requires 100X read depth. Moreover, our analysis shows that de novo assembly from 50X read data requires only 6-40 GB RAM depending on the genome size and assembly algorithm used. We believe that this information can be extremely valuable for researchers in designing experiments and multiplexing which will enable optimum utilization of sequencing as well as analysis resources.

  7. A case study for cloud based high throughput analysis of NGS data using the globus genomics system

    DOE PAGES

    Bhuvaneshwar, Krithika; Sulakhe, Dinanath; Gauba, Robinder; ...

    2015-01-01

    Next generation sequencing (NGS) technologies produce massive amounts of data requiring a powerful computational infrastructure, high quality bioinformatics software, and skilled personnel to operate the tools. We present a case study of a practical solution to this data management and analysis challenge that simplifies terabyte scale data handling and provides advanced tools for NGS data analysis. These capabilities are implemented using the “Globus Genomics” system, which is an enhanced Galaxy workflow system made available as a service that offers users the capability to process and transfer data easily, reliably and quickly to address end-to-end NGS analysis requirements. The Globus Genomicsmore » system is built on Amazon's cloud computing infrastructure. The system takes advantage of elastic scaling of compute resources to run multiple workflows in parallel and it also helps meet the scale-out analysis needs of modern translational genomics research.« less

  8. Molecular diagnostics for hereditary hearing loss in children.

    PubMed

    Sommen, Manou; Wuyts, Wim; Van Camp, Guy

    2017-08-01

    Hearing loss (HL) is the most common birth defect in industrialized countries with far-reaching social, psychological and cognitive implications. It is an extremely heterogeneous disease, complicating molecular testing. The introduction of next-generation sequencing (NGS) has resulted in great progress in diagnostics allowing to study all known HL genes in a single assay. The diagnostic yield is currently still limited, but has the potential to increase substantially. Areas covered: In this review the utility of NGS and the problems for comprehensive molecular testing for HL are evaluated and discussed. Expert commentary: Different publications have proven the appropriateness of NGS for molecular testing of heterogeneous diseases such as HL. However, several problems still exist, such as pseudogenic background of some genes and problematic copy number variant analysis on targeted NGS data. Another main challenge for the future will be the establishment of population specific mutation-spectra to achieve accurate personalized comprehensive molecular testing for HL.

  9. A case study for cloud based high throughput analysis of NGS data using the globus genomics system

    PubMed Central

    Bhuvaneshwar, Krithika; Sulakhe, Dinanath; Gauba, Robinder; Rodriguez, Alex; Madduri, Ravi; Dave, Utpal; Lacinski, Lukasz; Foster, Ian; Gusev, Yuriy; Madhavan, Subha

    2014-01-01

    Next generation sequencing (NGS) technologies produce massive amounts of data requiring a powerful computational infrastructure, high quality bioinformatics software, and skilled personnel to operate the tools. We present a case study of a practical solution to this data management and analysis challenge that simplifies terabyte scale data handling and provides advanced tools for NGS data analysis. These capabilities are implemented using the “Globus Genomics” system, which is an enhanced Galaxy workflow system made available as a service that offers users the capability to process and transfer data easily, reliably and quickly to address end-to-endNGS analysis requirements. The Globus Genomics system is built on Amazon 's cloud computing infrastructure. The system takes advantage of elastic scaling of compute resources to run multiple workflows in parallel and it also helps meet the scale-out analysis needs of modern translational genomics research. PMID:26925205

  10. Use of Combined MSAP and NGS Techniques to Identify Differentially Methylated Regions in Somaclones: A Case Study of Two Stable Somatic Wheat Mutants.

    PubMed

    Baránek, Miroslav; Čechová, Jana; Kovacs, Tamas; Eichmeier, Aleš; Wang, Shunli; Raddová, Jana; Nečas, Tomáš; Ye, Xingguo

    2016-01-01

    The appearance of somaclonal variability induced by in vitro cultivation is relatively frequent and can, in some cases, provide a valuable source of new genetic variation for crop improvement. The cause of this phenomenon remains unknown; however, there are a number of reports suggesting that epigenetics, including DNA methylations, are an important factor. In addition to the non-heritable DNA methylation changes caused by transient and reversible stress-responsive gene regulation, recent evidence supports the existence of mitotically and meiotically inherited changes. The induction of phenotypes via stable DNA methylation changes has occasionally great economical value; however, very little is known about the genetic or molecular basis of these phenotypes. We used a novel approach consisting of a standard MSAP analysis followed by deep amplicon sequencing to better understand this phenomenon. Our models included two wheat genotypes, and their somaclones induced using in vitro cultivation with a changed heritable phenotype (shortened stem height and silenced high molecular weight glutenin). Using this novel procedure, we obtained information on the dissimilarity of DNA methylation landscapes between the standard cultivar and its respective somaclones, and we extracted the sequences and genome regions that were differentially methylated between subjects. Transposable elements were identified as the most likely factor for producing changes in somaclone properties. In summary, the novel approach of combining MSAP and NGS is relatively easy and widely applicable, which is a rather unique feature compared with the currently available techniques in the epigenetics field.

  11. Massively parallel sequencing of 32 forensic markers using the Precision ID GlobalFiler™ NGS STR Panel and the Ion PGM™ System.

    PubMed

    Wang, Zheng; Zhou, Di; Wang, Hui; Jia, Zhenjun; Liu, Jing; Qian, Xiaoqin; Li, Chengtao; Hou, Yiping

    2017-11-01

    Massively parallel sequencing (MPS) technologies have proved capable of sequencing the majority of the key forensic STR markers. By MPS, not only the repeat-length size but also sequence variations could be detected. Recently, Thermo Fisher Scientific has designed an advanced MPS 32-plex panel, named the Precision ID GlobalFiler™ NGS STR Panel, where the primer set has been designed specifically for the purpose of MPS technologies and the data analysis are supported by a new version HID STR Genotyper Plugin (V4.0). In this study, a series of experiments that evaluated concordance, reliability, sensitivity of detection, mixture analysis, and the ability to analyze case-type and challenged samples were conducted. In addition, 106 unrelated Han individuals were sequenced to perform genetic analyses of allelic diversity. As expected, MPS detected broader allele variations and gained higher power of discrimination and exclusion rate. MPS results were found to be concordant with current capillary electrophoresis methods, and single source complete profiles could be obtained stably using as little as 100pg of input DNA. Moreover, this MPS panel could be adapted to case-type samples and partial STR genotypes of the minor contributor could be detected up to 19:1 mixture. Aforementioned results indicate that the Precision ID GlobalFiler™ NGS STR Panel is reliable, robust and reproducible and have the potential to be used as a tool for human forensics. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Construction of a multiplex mutation hot spot PCR panel: the first step towards colorectal cancer genotyping on the GS Junior platform.

    PubMed

    Péterfia, Bálint; Kalmár, Alexandra; Patai, Árpád V; Csabai, István; Bodor, András; Micsik, Tamás; Wichmann, Barnabás; Egedi, Krisztina; Hollósi, Péter; Kovalszky, Ilona; Tulassay, Zsolt; Molnár, Béla

    2017-01-01

    Background: To support cancer therapy, development of low cost library preparation techniques for targeted next generation sequencing (NGS) is needed. In this study we designed and tested a PCR-based library preparation panel with limited target area for sequencing the top 12 somatic mutation hot spots in colorectal cancer on the GS Junior instrument. Materials and Methods: A multiplex PCR panel was designed to amplify regions of mutation hot spots in 12 selected genes ( APC, BRAF, CTNNB1, EGFR, FBXW7, KRAS, NRAS, MSH6, PIK3CA, SMAD2, SMAD4, TP53 ). Amplicons were sequenced on a GS Junior instrument using ligated and barcoded adaptors. Eight samples were sequenced in a single run. Colonic DNA samples (8 normal mucosa; 33 adenomas; 17 adenocarcinomas) as well as HT-29 and Caco-2 cell lines with known mutation profiles were analyzed. Variants found by the panel on APC, BRAF, KRAS and NRAS genes were validated by conventional sequencing. Results: In total, 34 kinds of mutations were detected including two novel mutations ( FBXW7 c.1740:C>G and SMAD4 c.413C>G) that have not been recorded in mutation databases, and one potential germline mutation ( APC ). The most frequently mutated genes were APC, TP53 and KRAS with 30%, 15% and 21% frequencies in adenomas and 29%, 53% and 29% frequencies in carcinomas, respectively. In cell lines, all the expected mutations were detected except for one located in a homopolymer region. According to re-sequencing results sensitivity and specificity was 100% and 92% respectively. Conclusions: Our NGS-based screening panel denotes a promising step towards low cost colorectal cancer genotyping on the GS Junior instrument. Despite the relatively low coverage, we discovered two novel mutations and obtained mutation frequencies comparable to literature data. Additionally, as an advantage, this panel requires less template DNA than sequence capture colon cancer panels currently available for the GS Junior instrument.

  13. Museomics resolve the systematics of an endangered grass lineage endemic to north-western Madagascar.

    PubMed

    Silva, Christian; Besnard, Guillaume; Piot, Anthony; Razanatsoa, Jacqueline; Oliveira, Reyjane P; Vorontsova, Maria S

    2017-02-01

    Recent developments in DNA sequencing, so-called next-generation sequencing (NGS) methods, can help the study of rare lineages that are known from museum specimens. Here, the taxonomy and evolution of the Malagasy grass lineage Chasechloa was investigated with the aid of NGS. Full chloroplast genome data and some nuclear sequences were produced by NGS from old herbarium specimens, while some selected markers were generated from recently collected Malagasy grasses. In addition, a scanning electron microscopy analysis of the upper floret and cross-sections of the rachilla appendages followed by staining with Sudan IV were performed on Chasechloa to examine the morphology of the upper floret and the presence of oils in the appendages. Chasechloa was recovered within tribe Paniceae, sub-tribe Boivinellinae, contrary to its previous placement as a member of the New World genus Echinolaena (tribe Paspaleae). Chasechloa originated in Madagascar between the Upper Miocene and the Pliocene. It comprises two species, one of them collected only once in 1851. The genus is restricted to north-western seasonally dry deciduous forests. The appendages at the base of the upper floret of Chasechloa have been confirmed as elaiosomes, an evolutionary adaptation for myrmecochory. Chasechloa is reinstated at the generic level and a taxonomic treatment is presented, including conservation assessments of its species. Our study also highlights the power of NGS technology to analyse relictual or probably extinct groups. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Virus genome dynamics under different propagation pressures: reconstruction of whole genome haplotypes of West Nile viruses from NGS data.

    PubMed

    Kortenhoeven, Cornell; Joubert, Fourie; Bastos, Armanda D S; Abolnik, Celia

    2015-02-22

    Extensive focus is placed on the comparative analyses of consensus genotypes in the study of West Nile virus (WNV) emergence. Few studies account for genetic change in the underlying WNV quasispecies population variants. These variants are not discernable in the consensus genome at the time of emergence, and the maintenance of mutation-selection equilibria of population variants is greatly underestimated. The emergence of lineage 1 WNV strains has been studied extensively, but recent epidemics caused by lineage 2 WNV strains in Hungary, Austria, Greece and Italy emphasizes the increasing importance of this lineage to public health. In this study we explored the quasispecies dynamics of minority variants that contribute to cell-tropism and host determination, i.e. the ability to infect different cell types or cells from different species from Next Generation Sequencing (NGS) data of a historic lineage 2 WNV strain. Minority variants contributing to host cell membrane association persist in the viral population without contributing to the genetic change in the consensus genome. Minority variants are shown to maintain a stable mutation-selection equilibrium under positive selection, particularly in the capsid gene region. This study is the first to infer positive selection and the persistence of WNV haplotype variants that contribute to viral fitness without accompanying genetic change in the consensus genotype, documented solely from NGS sequence data. The approach used in this study streamlines the experimental design seeking viral minority variants accurately from NGS data whilst minimizing the influence of associated sequence error.

  15. Assessment of antibody library diversity through next generation sequencing and technical error compensation

    PubMed Central

    Lisi, Simonetta; Chirichella, Michele; Arisi, Ivan; Goracci, Martina; Cremisi, Federico; Cattaneo, Antonino

    2017-01-01

    Antibody libraries are important resources to derive antibodies to be used for a wide range of applications, from structural and functional studies to intracellular protein interference studies to developing new diagnostics and therapeutics. Whatever the goal, the key parameter for an antibody library is its complexity (also known as diversity), i.e. the number of distinct elements in the collection, which directly reflects the probability of finding in the library an antibody against a given antigen, of sufficiently high affinity. Quantitative evaluation of antibody library complexity and quality has been for a long time inadequately addressed, due to the high similarity and length of the sequences of the library. Complexity was usually inferred by the transformation efficiency and tested either by fingerprinting and/or sequencing of a few hundred random library elements. Inferring complexity from such a small sampling is, however, very rudimental and gives limited information about the real diversity, because complexity does not scale linearly with sample size. Next-generation sequencing (NGS) has opened new ways to tackle the antibody library complexity quality assessment. However, much remains to be done to fully exploit the potential of NGS for the quantitative analysis of antibody repertoires and to overcome current limitations. To obtain a more reliable antibody library complexity estimate here we show a new, PCR-free, NGS approach to sequence antibody libraries on Illumina platform, coupled to a new bioinformatic analysis and software (Diversity Estimator of Antibody Library, DEAL) that allows to reliably estimate the complexity, taking in consideration the sequencing error. PMID:28505201

  16. Detection of genome-wide copy number variants in myeloid malignancies using next-generation sequencing.

    PubMed

    Shen, Wei; Paxton, Christian N; Szankasi, Philippe; Longhurst, Maria; Schumacher, Jonathan A; Frizzell, Kimberly A; Sorrells, Shelly M; Clayton, Adam L; Jattani, Rakhi P; Patel, Jay L; Toydemir, Reha; Kelley, Todd W; Xu, Xinjie

    2018-04-01

    Genetic abnormalities, including copy number variants (CNV), copy number neutral loss of heterozygosity (CN-LOH) and gene mutations, underlie the pathogenesis of myeloid malignancies and serve as important diagnostic, prognostic and/or therapeutic markers. Currently, multiple testing strategies are required for comprehensive genetic testing in myeloid malignancies. The aim of this proof-of-principle study was to investigate the feasibility of combining detection of genome-wide large CNVs, CN-LOH and targeted gene mutations into a single assay using next-generation sequencing (NGS). For genome-wide CNV detection, we designed a single nucleotide polymorphism (SNP) sequencing backbone with 22 762 SNP regions evenly distributed across the entire genome. For targeted mutation detection, 62 frequently mutated genes in myeloid malignancies were targeted. We combined this SNP sequencing backbone with a targeted mutation panel, and sequenced 9 healthy individuals and 16 patients with myeloid malignancies using NGS. We detected 52 somatic CNVs, 11 instances of CN-LOH and 39 oncogenic mutations in the 16 patients with myeloid malignancies, and none in the 9 healthy individuals. All CNVs and CN-LOH were confirmed by SNP microarray analysis. We describe a genome-wide SNP sequencing backbone which allows for sensitive detection of genome-wide CNVs and CN-LOH using NGS. This proof-of-principle study has demonstrated that this strategy can provide more comprehensive genetic profiling for patients with myeloid malignancies using a single assay. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Assessment of antibody library diversity through next generation sequencing and technical error compensation.

    PubMed

    Fantini, Marco; Pandolfini, Luca; Lisi, Simonetta; Chirichella, Michele; Arisi, Ivan; Terrigno, Marco; Goracci, Martina; Cremisi, Federico; Cattaneo, Antonino

    2017-01-01

    Antibody libraries are important resources to derive antibodies to be used for a wide range of applications, from structural and functional studies to intracellular protein interference studies to developing new diagnostics and therapeutics. Whatever the goal, the key parameter for an antibody library is its complexity (also known as diversity), i.e. the number of distinct elements in the collection, which directly reflects the probability of finding in the library an antibody against a given antigen, of sufficiently high affinity. Quantitative evaluation of antibody library complexity and quality has been for a long time inadequately addressed, due to the high similarity and length of the sequences of the library. Complexity was usually inferred by the transformation efficiency and tested either by fingerprinting and/or sequencing of a few hundred random library elements. Inferring complexity from such a small sampling is, however, very rudimental and gives limited information about the real diversity, because complexity does not scale linearly with sample size. Next-generation sequencing (NGS) has opened new ways to tackle the antibody library complexity quality assessment. However, much remains to be done to fully exploit the potential of NGS for the quantitative analysis of antibody repertoires and to overcome current limitations. To obtain a more reliable antibody library complexity estimate here we show a new, PCR-free, NGS approach to sequence antibody libraries on Illumina platform, coupled to a new bioinformatic analysis and software (Diversity Estimator of Antibody Library, DEAL) that allows to reliably estimate the complexity, taking in consideration the sequencing error.

  18. The ICR96 exon CNV validation series: a resource for orthogonal assessment of exon CNV calling in NGS data.

    PubMed

    Mahamdallie, Shazia; Ruark, Elise; Yost, Shawn; Ramsay, Emma; Uddin, Imran; Wylie, Harriett; Elliott, Anna; Strydom, Ann; Renwick, Anthony; Seal, Sheila; Rahman, Nazneen

    2017-01-01

    Detection of deletions and duplications of whole exons (exon CNVs) is a key requirement of genetic testing. Accurate detection of this variant type has proved very challenging in targeted next-generation sequencing (NGS) data, particularly if only a single exon is involved. Many different NGS exon CNV calling methods have been developed over the last five years. Such methods are usually evaluated using simulated and/or in-house data due to a lack of publicly-available datasets with orthogonally generated results. This hinders tool comparisons, transparency and reproducibility. To provide a community resource for assessment of exon CNV calling methods in targeted NGS data, we here present the ICR96 exon CNV validation series. The dataset includes high-quality sequencing data from a targeted NGS assay (the TruSight Cancer Panel) together with Multiplex Ligation-dependent Probe Amplification (MLPA) results for 96 independent samples. 66 samples contain at least one validated exon CNV and 30 samples have validated negative results for exon CNVs in 26 genes. The dataset includes 46 exon CNVs in BRCA1 , BRCA2 , TP53 , MLH1 , MSH2 , MSH6 , PMS2 , EPCAM or PTEN , giving excellent representation of the cancer predisposition genes most frequently tested in clinical practice. Moreover, the validated exon CNVs include 25 single exon CNVs, the most difficult type of exon CNV to detect. The FASTQ files for the ICR96 exon CNV validation series can be accessed through the European-Genome phenome Archive (EGA) under the accession number EGAS00001002428.

  19. SALP, a new single-stranded DNA library preparation method especially useful for the high-throughput characterization of chromatin openness states.

    PubMed

    Wu, Jian; Dai, Wei; Wu, Lin; Wang, Jinke

    2018-02-13

    Next-generation sequencing (NGS) is fundamental to the current biological and biomedical research. Construction of sequencing library is a key step of NGS. Therefore, various library construction methods have been explored. However, the current methods are still limited by some shortcomings. This study developed a new NGS library construction method, Single strand Adaptor Library Preparation (SALP), by using a novel single strand adaptor (SSA). SSA is a double-stranded oligonucleotide with a 3' overhang of 3 random nucleotides, which can be efficiently ligated to the 3' end of single strand DNA by T4 DNA ligase. SALP can be started with any denatured DNA fragments such as those sheared by Tn5 tagmentation, enzyme digestion and sonication. When started with Tn5-tagmented chromatin, SALP can overcome a key limitation of ATAC-seq and become a high-throughput NGS library construction method, SALP-seq, which can be used to comparatively characterize the chromatin openness state of multiple cells unbiasly. In this way, this study successfully characterized the comparative chromatin openness states of four different cell lines, including GM12878, HepG2, HeLa and 293T, with SALP-seq. Similarly, this study also successfully characterized the chromatin openness states of HepG2 cells with SALP-seq by using 10 5 to 500 cells. This study developed a new NGS library construction method, SALP, by using a novel kind of single strand adaptor (SSA), which should has wide applications in the future due to its unique performance.

  20. Genotyping-by-sequencing (GBS) revealed molecular genetic diversity of Iranian wheat landraces and cultivars

    USDA-ARS?s Scientific Manuscript database

    Genetic diversity is an essential resource for breeders to improve new cultivars with desirable characteristics. Recently genotyping-by-sequencing (GBS), a next generation sequencing (NGS) based technology that can simplify complex genomes, has been used as a high-throughput and cost-effective molec...

  1. Utilization of sequence on relatives to improve analysis of individuals' low-coverage NGS data

    USDA-ARS?s Scientific Manuscript database

    Low-coverage sequence data is expected to have low call rates under the prevailing paradigm that genotypes are first “called” from sequence data of each individual independently and subsequent analyses (including determination of haplotypes) are dependent on those called genotypes. However, provide...

  2. Next generation sequencing provides rapid access to the genome of wheat stripe rust

    USDA-ARS?s Scientific Manuscript database

    Background: The wheat stripe rust fungus (Puccinia striiformis f. sp. tritici, PST) is responsible for significant yield losses in wheat production worldwide. In spite of its economic importance, the PST genomic sequence is not currently available. Fortunately Next Generation Sequencing (NGS) has ra...

  3. Next-generation sequencing diagnostics of bacteremia in sepsis (Next GeneSiS-Trial): Study protocol of a prospective, observational, noninterventional, multicenter, clinical trial.

    PubMed

    Brenner, Thorsten; Decker, Sebastian O; Grumaz, Silke; Stevens, Philip; Bruckner, Thomas; Schmoch, Thomas; Pletz, Mathias W; Bracht, Hendrik; Hofer, Stefan; Marx, Gernot; Weigand, Markus A; Sohn, Kai

    2018-02-01

    Sepsis remains a major challenge, even in modern intensive care medicine. The identification of the causative pathogen is crucial for an early optimization of the antimicrobial treatment regime. In this context, culture-based diagnostic procedures (e.g., blood cultures) represent the standard of care, although they are associated with relevant limitations. Accordingly, culture-independent molecular diagnostic procedures might be of help for the identification of the causative pathogen in infected patients. The concept of an unbiased sequence analysis of circulating cell-free DNA (cfDNA) from plasma samples of septic patients by next-generation sequencing (NGS) has recently been identified to be a promising diagnostic platform for critically ill patients suffering from bloodstream infections. Although this new approach might be more sensitive and specific than culture-based state-of-the-art technologies, additional clinical trials are needed to exactly define the performance as well as clinical value of a NGS-based approach. Next GeneSiS is a prospective, observational, noninterventional, multicenter study to assess the diagnostic performance of a NGS-based approach for the detection of relevant infecting organisms in patients with suspected or proven sepsis [according to recent sepsis definitions (sepsis-3)] by the use of the quantitative sepsis indicating quantifier (SIQ) score in comparison to standard (culture-based) microbiological diagnostics. The clinical value of this NGS-based approach will be estimated by a panel of independent clinical specialists, retrospectively identifying potential changes in patients' management based on NGS results. Further subgroup analyses will focus on the clinical value especially for patients suffering from a failure of empiric treatment within the first 3 days after onset [as assessed by death of the patient or lack of improvement of the patient's clinical condition (in terms of an inadequate decrease of SOFA-score) or persistent high procalcitonin levels]. This prospective, observational, noninterventional, multicenter study for the first time investigates the performance as well as the clinical value of a NGS-based approach for the detection of bacteremia in patients with sepsis and may therefore be a pivotal step toward the clinical use of NGS in this indication. DRKS-ID: DRKS00011911 (registered October 9, 2017) https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00011911; ClinicalTrials.gov Identifier: NCT03356249 (registered November 29, 2017) https://clinicaltrials.gov/ct2/show/NCT03356249.

  4. [Molecular and prenatal diagnosis of a family with Fanconi anemia by next generation sequencing].

    PubMed

    Gong, Zhuwen; Yu, Yongguo; Zhang, Qigang; Gu, Xuefan

    2015-04-01

    To provide prenatal diagnosis for a pregnant woman who had given birth to a child with Fanconi anemia with combined next-generation sequencing (NGS) and Sanger sequencing. For the affected child, potential mutations of the FANCA gene were analyzed with NGS. Suspected mutation was verified with Sanger sequencing. For prenatal diagnosis, genomic DNA was extracted from cultured fetal amniotic fluid cells and subjected to analysis of the same mutations. A low-frequency frameshifting mutation c.989_995del7 (p.H330LfsX2, inherited from his father) and a truncating mutation c.3971C>T (p.P1324L, inherited from his mother) have been identified in the affected child and considered to be pathogenic. The two mutations were subsequently verified by Sanger sequencing. Upon prenatal diagnosis, the fetus was found to carry two mutations. The combined next-generation sequencing and Sanger sequencing can reduce the time for diagnosis and identify subtypes of Fanconi anemia and the mutational sites, which has enabled reliable prenatal diagnosis of this disease.

  5. Targeted therapy according to next generation sequencing-based panel sequencing.

    PubMed

    Saito, Motonobu; Momma, Tomoyuki; Kono, Koji

    2018-04-17

    Targeted therapy against actionable gene mutations shows a significantly higher response rate as well as longer survival compared to conventional chemotherapy, and has become a standard therapy for many cancers. Recent progress in next-generation sequencing (NGS) has enabled to identify huge number of genetic aberrations. Based on sequencing results, patients recommend to undergo targeted therapy or immunotherapy. In cases where there are no available approved drugs for the genetic mutations detected in the patients, it is recommended to be facilitate the registration for the clinical trials. For that purpose, a NGS-based sequencing panel that can simultaneously target multiple genes in a single investigation has been used in daily clinical practice. To date, various types of sequencing panels have been developed to investigate genetic aberrations with tumor somatic genome variants (gain-of-function or loss-of-function mutations, high-level copy number alterations, and gene fusions) through comprehensive bioinformatics. Because sequencing panels are efficient and cost-effective, they are quickly being adopted outside the lab, in hospitals and clinics, in order to identify personal targeted therapy for individual cancer patients.

  6. A cloud-compatible bioinformatics pipeline for ultrarapid pathogen identification from next-generation sequencing of clinical samples

    PubMed Central

    Naccache, Samia N.; Federman, Scot; Veeraraghavan, Narayanan; Zaharia, Matei; Lee, Deanna; Samayoa, Erik; Bouquet, Jerome; Greninger, Alexander L.; Luk, Ka-Cheung; Enge, Barryett; Wadford, Debra A.; Messenger, Sharon L.; Genrich, Gillian L.; Pellegrino, Kristen; Grard, Gilda; Leroy, Eric; Schneider, Bradley S.; Fair, Joseph N.; Martínez, Miguel A.; Isa, Pavel; Crump, John A.; DeRisi, Joseph L.; Sittler, Taylor; Hackett, John; Miller, Steve; Chiu, Charles Y.

    2014-01-01

    Unbiased next-generation sequencing (NGS) approaches enable comprehensive pathogen detection in the clinical microbiology laboratory and have numerous applications for public health surveillance, outbreak investigation, and the diagnosis of infectious diseases. However, practical deployment of the technology is hindered by the bioinformatics challenge of analyzing results accurately and in a clinically relevant timeframe. Here we describe SURPI (“sequence-based ultrarapid pathogen identification”), a computational pipeline for pathogen identification from complex metagenomic NGS data generated from clinical samples, and demonstrate use of the pipeline in the analysis of 237 clinical samples comprising more than 1.1 billion sequences. Deployable on both cloud-based and standalone servers, SURPI leverages two state-of-the-art aligners for accelerated analyses, SNAP and RAPSearch, which are as accurate as existing bioinformatics tools but orders of magnitude faster in performance. In fast mode, SURPI detects viruses and bacteria by scanning data sets of 7–500 million reads in 11 min to 5 h, while in comprehensive mode, all known microorganisms are identified, followed by de novo assembly and protein homology searches for divergent viruses in 50 min to 16 h. SURPI has also directly contributed to real-time microbial diagnosis in acutely ill patients, underscoring its potential key role in the development of unbiased NGS-based clinical assays in infectious diseases that demand rapid turnaround times. PMID:24899342

  7. Looking beyond the exome: a phenotype-first approach to molecular diagnostic resolution in rare and undiagnosed diseases

    PubMed Central

    Pena, Loren DM; Jiang, Yong-Hui; Schoch, Kelly; Spillmann, Rebecca C.; Walley, Nicole; Stong, Nicholas; Horn, Sarah Rapisardo; Sullivan, Jennifer A.; McConkie-Rosell, Allyn; Kansagra, Sujay; Smith, Edward C.; El-Dairi, Mays; Bellet, Jane; Ann Keels, Martha; Jasien, Joan; Kranz, Peter G.; Noel, Richard; Nagaraj, Shashi K.; Lark, Robert K.; Wechsler, Daniel SG; del Gaudio, Daniela; Leung, Marco L.; Hendon, Laura G.; Parker, Collette C.; Jones, Kelly L.; Goldstein, David B.; Shashi, Vandana

    2017-01-01

    Purpose To describe examples of missed pathogenic variants on whole exome sequencing (WES) and the importance of deep phenotyping for further diagnostic testing. Methods Guided by phenotypic information, three children with negative WES underwent targeted single gene testing. Results Individual 1 had a clinical diagnosis consistent with infantile systemic hyalinosis, although WES and an NGS-based ANTXR2 test were negative. Sanger sequencing of ANTXR2 revealed a homozygous single base pair insertion, previously missed by the WES variant caller software. Individual 2 had neurodevelopmental regression and cerebellar atrophy, with no diagnosis on WES. New clinical findings prompted Sanger sequencing and copy number testing of PLA2G6. A novel homozygous deletion of the non-coding exon 1 (not included in the WES capture kit) was detected, with extension into the promoter, confirming the clinical suspicion of infantile neuroaxonal dystrophy. Individual 3 had progressive ataxia, spasticity and MRI changes of vanishing white matter leukoencephalopathy. An NGS leukodystrophy gene panel and WES showed a heterozygous pathogenic variant in EIF2B5; no deletions/duplications were detected. Sanger sequencing of EIF2B5 showed a frameshift indel, likely missed due to failure of alignment. Conclusions These cases illustrate potential pitfalls of WES/NGS testing, and the importance of phenotype-guided molecular testing in yielding diagnoses. PMID:28914269

  8. A family with the Arg103Pro mutation in the NEUROD1 gene detected by next-generation sequencing - Clinical characteristics of mutation carriers.

    PubMed

    Szopa, Magdalena; Ludwig-Galezowska, Agnieszka H; Radkowski, Piotr; Skupien, Jan; Machlowska, Julita; Klupa, Tomasz; Wolkow, Pawel; Borowiec, Maciej; Mlynarski, Wojciech; Malecki, Maciej T

    2016-02-01

    Until now only a few families with early onset autosomal diabetes due to the NEUROD1 gene mutations have been identified. Moreover, only some of them meet strict MODY (maturity-onset diabetes of the young) criteria. Next-generation sequencing (NGS) provides an opportunity to detect more pathogenic mutations in this gene. Here, we evaluated the segregation of the Arg103Pro mutation in the NEUROD1 gene in a pedigree in which it was detected, and described the clinical characteristics of the mutation carriers. We included 156 diabetic probands of MODY families, among them 52 patients earlier tested for GCK-MODY and/or HNF1A-MODY by Sanger sequencing with negative results. Genetic testing was performed by targeted NGS sequencing using a panel of 28 monogenic diabetes genes. As detected by NGS, one patient had the missense Arg103Pro (CGC/CCC) mutation in the gene NEUROD1 changing the amino-acid structure of the DNA binding domain of this transcription factor. We confirmed this sequence difference by Sanger sequencing. This family had previously been tested with negative results for HNF1A gene mutations. 17 additional members of this family were invited for further testing. We confirmed the presence of the mutation in 11 subjects. Seven adult mutation carriers (all but one) from three generations had been already diagnosed with diabetes. There were 3 individuals with the Arg103Pro mutation diagnosed before the age of 30 years in the family. The range of age of the four unaffected mutation carriers (3 minors and 1 adult) was 3-48 years. Interestingly, one mutation carrier had a history of transient neonatal hypoglycemia, of which the clinical course resembled episodes typical for HNF4A-MODY. We report a family with autosomal dominant diabetes related to a new NEUROD1 mutation, one of very few meeting MODY criteria. The use of the NGS method will facilitate identification of more families with rare forms of MODY. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Application of High-Throughput Next-Generation Sequencing for HLA Typing on Buccal Extracted DNA: Results from over 10,000 Donor Recruitment Samples

    PubMed Central

    Nguyen, David; Valenzuela, Nicole; Takemura, Ping; Bolon, Yung-Tsi; Springer, Brianna; Saito, Katsuyuki; Zheng, Ying; Hague, Tim; Pasztor, Agnes; Horvath, Gyorgy; Rigo, Krisztina; Reed, Elaine F.; Zhang, Qiuheng

    2016-01-01

    Background Unambiguous HLA typing is important in hematopoietic stem cell transplantation (HSCT), HLA disease association studies, and solid organ transplantation. However, current molecular typing methods only interrogate the antigen recognition site (ARS) of HLA genes, resulting in many cis-trans ambiguities that require additional typing methods to resolve. Here we report high-resolution HLA typing of 10,063 National Marrow Donor Program (NMDP) registry donors using long-range PCR by next generation sequencing (NGS) approach on buccal swab DNA. Methods Multiplex long-range PCR primers amplified the full-length of HLA class I genes (A, B, C) from promotor to 3’ UTR. Class II genes (DRB1, DQB1) were amplified from exon 2 through part of exon 4. PCR amplicons were pooled and sheared using Covaris fragmentation. Library preparation was performed using the Illumina TruSeq Nano kit on the Beckman FX automated platform. Each sample was tagged with a unique barcode, followed by 2×250 bp paired-end sequencing on the Illumina MiSeq. HLA typing was assigned using Omixon Twin software that combines two independent computational algorithms to ensure high confidence in allele calling. Consensus sequence and typing results were reported in Histoimmunogenetics Markup Language (HML) format. All homozygous alleles were confirmed by Luminex SSO typing and exon novelties were confirmed by Sanger sequencing. Results Using this automated workflow, over 10,063 NMDP registry donors were successfully typed under high-resolution by NGS. Despite known challenges of nucleic acid degradation and low DNA concentration commonly associated with buccal-based specimens, 97.8% of samples were successfully amplified using long-range PCR. Among these, 98.2% were successfully reported by NGS, with an accuracy rate of 99.84% in an independent blind Quality Control audit performed by the NDMP. In this study, NGS-HLA typing identified 23 null alleles (0.023%), 92 rare alleles (0.091%) and 42 exon novelties (0.042%). Conclusion Long-range, unambiguous HLA genotyping is achievable on clinical buccal swab-extracted DNA. Importantly, full-length gene sequencing and the ability to curate full sequence data will permit future interrogation of the impact of introns, expanded exons, and other gene regulatory sequences on clinical outcomes in transplantation. PMID:27798706

  10. Application of High-Throughput Next-Generation Sequencing for HLA Typing on Buccal Extracted DNA: Results from over 10,000 Donor Recruitment Samples.

    PubMed

    Yin, Yuxin; Lan, James H; Nguyen, David; Valenzuela, Nicole; Takemura, Ping; Bolon, Yung-Tsi; Springer, Brianna; Saito, Katsuyuki; Zheng, Ying; Hague, Tim; Pasztor, Agnes; Horvath, Gyorgy; Rigo, Krisztina; Reed, Elaine F; Zhang, Qiuheng

    2016-01-01

    Unambiguous HLA typing is important in hematopoietic stem cell transplantation (HSCT), HLA disease association studies, and solid organ transplantation. However, current molecular typing methods only interrogate the antigen recognition site (ARS) of HLA genes, resulting in many cis-trans ambiguities that require additional typing methods to resolve. Here we report high-resolution HLA typing of 10,063 National Marrow Donor Program (NMDP) registry donors using long-range PCR by next generation sequencing (NGS) approach on buccal swab DNA. Multiplex long-range PCR primers amplified the full-length of HLA class I genes (A, B, C) from promotor to 3' UTR. Class II genes (DRB1, DQB1) were amplified from exon 2 through part of exon 4. PCR amplicons were pooled and sheared using Covaris fragmentation. Library preparation was performed using the Illumina TruSeq Nano kit on the Beckman FX automated platform. Each sample was tagged with a unique barcode, followed by 2×250 bp paired-end sequencing on the Illumina MiSeq. HLA typing was assigned using Omixon Twin software that combines two independent computational algorithms to ensure high confidence in allele calling. Consensus sequence and typing results were reported in Histoimmunogenetics Markup Language (HML) format. All homozygous alleles were confirmed by Luminex SSO typing and exon novelties were confirmed by Sanger sequencing. Using this automated workflow, over 10,063 NMDP registry donors were successfully typed under high-resolution by NGS. Despite known challenges of nucleic acid degradation and low DNA concentration commonly associated with buccal-based specimens, 97.8% of samples were successfully amplified using long-range PCR. Among these, 98.2% were successfully reported by NGS, with an accuracy rate of 99.84% in an independent blind Quality Control audit performed by the NDMP. In this study, NGS-HLA typing identified 23 null alleles (0.023%), 92 rare alleles (0.091%) and 42 exon novelties (0.042%). Long-range, unambiguous HLA genotyping is achievable on clinical buccal swab-extracted DNA. Importantly, full-length gene sequencing and the ability to curate full sequence data will permit future interrogation of the impact of introns, expanded exons, and other gene regulatory sequences on clinical outcomes in transplantation.

  11. Nanopore sequencing technology: a new route for the fast detection of unauthorized GMO.

    PubMed

    Fraiture, Marie-Alice; Saltykova, Assia; Hoffman, Stefan; Winand, Raf; Deforce, Dieter; Vanneste, Kevin; De Keersmaecker, Sigrid C J; Roosens, Nancy H C

    2018-05-21

    In order to strengthen the current genetically modified organism (GMO) detection system for unauthorized GMO, we have recently developed a new workflow based on DNA walking to amplify unknown sequences surrounding a known DNA region. This DNA walking is performed on transgenic elements, commonly found in GMO, that were earlier detected by real-time PCR (qPCR) screening. Previously, we have demonstrated the ability of this approach to detect unauthorized GMO via the identification of unique transgene flanking regions and the unnatural associations of elements from the transgenic cassette. In the present study, we investigate the feasibility to integrate the described workflow with the MinION Next-Generation-Sequencing (NGS). The MinION sequencing platform can provide long read-lengths and deal with heterogenic DNA libraries, allowing for rapid and efficient delivery of sequences of interest. In addition, the ability of this NGS platform to characterize unauthorized and unknown GMO without any a priori knowledge has been assessed.

  12. Single-Center Experience with a Targeted Next Generation Sequencing Assay for Assessment of Relevant Somatic Alterations in Solid Tumors.

    PubMed

    Paasinen-Sohns, Aino; Koelzer, Viktor H; Frank, Angela; Schafroth, Julian; Gisler, Aline; Sachs, Melanie; Graber, Anne; Rothschild, Sacha I; Wicki, Andreas; Cathomas, Gieri; Mertz, Kirsten D

    2017-03-01

    Companion diagnostics rely on genomic testing of molecular alterations to enable effective cancer treatment. Here we report the clinical application and validation of the Oncomine Focus Assay (OFA), an integrated, commercially available next-generation sequencing (NGS) assay for the rapid and simultaneous detection of single nucleotide variants, short insertions and deletions, copy number variations, and gene rearrangements in 52 cancer genes with therapeutic relevance. Two independent patient cohorts were investigated to define the workflow, turnaround times, feasibility, and reliability of OFA targeted sequencing in clinical application and using archival material. Cohort I consisted of 59 diagnostic clinical samples from the daily routine submitted for molecular testing over a 4-month time period. Cohort II consisted of 39 archival melanoma samples that were up to 15years old. Libraries were prepared from isolated nucleic acids and sequenced on the Ion Torrent PGM sequencer. Sequencing datasets were analyzed using the Ion Reporter software. Genomic alterations were identified and validated by orthogonal conventional assays including pyrosequencing and immunohistochemistry. Sequencing results of both cohorts, including archival formalin-fixed, paraffin-embedded material stored up to 15years, were consistent with published variant frequencies. A concordance of 100% between established assays and OFA targeted NGS was observed. The OFA workflow enabled a turnaround of 3½ days. Taken together, OFA was found to be a convenient tool for fast, reliable, broadly applicable and cost-effective targeted NGS of tumor samples in routine diagnostics. Thus, OFA has strong potential to become an important asset for precision oncology. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. 75 FR 57263 - New Policy Announcing That Traditional Horizontal Survey Projects Performed With Terrestrial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-20

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration New Policy Announcing That Traditional Horizontal Survey Projects Performed With Terrestrial Survey Techniques Will No Longer Be Accepted for Processing or Loading Into NGS Databases AGENCY: National Geodetic Survey (NGS), National Ocean...

  14. Coinheritance of biallelic SLURP1 and SLC39A4 mutations cause a severe genodermatosis with skin peeling and hair loss all over the body.

    PubMed

    Harms, F L; Nampoothiri, S; Kortüm, F; Thomas, J; Panicker, V V; Alawi, M; Altmüller, J; Yesodharan, D; Kutsche, K

    2018-06-27

    Next-generation sequencing (NGS), especially multi-gene panels and whole-exome sequencing (WES), is a tool for identifying the cause of monogenic disorders and has played a role in uncovering the genetic cause of previously uncharacterized genodermatoses. 1 By the application of NGS, the concept of apparently novel or atypical clinical presentations has been challenged by the finding of two or more genetic diagnoses in affected individuals. Approximately 5% of cases in which WES was informative had dual or multiple molecular diagnoses. 2 This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Genomic treasure troves: complete genome sequencing of herbarium and insect museum specimens.

    PubMed

    Staats, Martijn; Erkens, Roy H J; van de Vossenberg, Bart; Wieringa, Jan J; Kraaijeveld, Ken; Stielow, Benjamin; Geml, József; Richardson, James E; Bakker, Freek T

    2013-01-01

    Unlocking the vast genomic diversity stored in natural history collections would create unprecedented opportunities for genome-scale evolutionary, phylogenetic, domestication and population genomic studies. Many researchers have been discouraged from using historical specimens in molecular studies because of both generally limited success of DNA extraction and the challenges associated with PCR-amplifying highly degraded DNA. In today's next-generation sequencing (NGS) world, opportunities and prospects for historical DNA have changed dramatically, as most NGS methods are actually designed for taking short fragmented DNA molecules as templates. Here we show that using a standard multiplex and paired-end Illumina sequencing approach, genome-scale sequence data can be generated reliably from dry-preserved plant, fungal and insect specimens collected up to 115 years ago, and with minimal destructive sampling. Using a reference-based assembly approach, we were able to produce the entire nuclear genome of a 43-year-old Arabidopsis thaliana (Brassicaceae) herbarium specimen with high and uniform sequence coverage. Nuclear genome sequences of three fungal specimens of 22-82 years of age (Agaricus bisporus, Laccaria bicolor, Pleurotus ostreatus) were generated with 81.4-97.9% exome coverage. Complete organellar genome sequences were assembled for all specimens. Using de novo assembly we retrieved between 16.2-71.0% of coding sequence regions, and hence remain somewhat cautious about prospects for de novo genome assembly from historical specimens. Non-target sequence contaminations were observed in 2 of our insect museum specimens. We anticipate that future museum genomics projects will perhaps not generate entire genome sequences in all cases (our specimens contained relatively small and low-complexity genomes), but at least generating vital comparative genomic data for testing (phylo)genetic, demographic and genetic hypotheses, that become increasingly more horizontal. Furthermore, NGS of historical DNA enables recovering crucial genetic information from old type specimens that to date have remained mostly unutilized and, thus, opens up a new frontier for taxonomic research as well.

  16. High-density array-CGH with targeted NGS unmask multiple noncontiguous minute deletions on chromosome 3p21 in mesothelioma.

    PubMed

    Yoshikawa, Yoshie; Emi, Mitsuru; Hashimoto-Tamaoki, Tomoko; Ohmuraya, Masaki; Sato, Ayuko; Tsujimura, Tohru; Hasegawa, Seiki; Nakano, Takashi; Nasu, Masaki; Pastorino, Sandra; Szymiczek, Agata; Bononi, Angela; Tanji, Mika; Pagano, Ian; Gaudino, Giovanni; Napolitano, Andrea; Goparaju, Chandra; Pass, Harvey I; Yang, Haining; Carbone, Michele

    2016-11-22

    We used a custom-made comparative genomic hybridization array (aCGH; average probe interval 254 bp) to screen 33 malignant mesothelioma (MM) biopsies for somatic copy number loss throughout the 3p21 region (10.7 Mb) that harbors 251 genes, including BRCA1 (breast cancer 1)-associated protein 1 (BAP1), the most commonly mutated gene in MM. We identified frequent minute biallelic deletions (<3 kb) in 46 of 251 genes: four were cancer-associated genes: SETD2 (SET domain-containing protein 2) (7 of 33), BAP1 (8 of 33), PBRM1 (polybromo 1) (3 of 33), and SMARCC1 (switch/sucrose nonfermentable- SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily c, member 1) (2 of 33). These four genes were further investigated by targeted next-generation sequencing (tNGS), which revealed sequence-level mutations causing biallelic inactivation. Combined high-density aCGH and tNGS revealed biallelic gene inactivation in SETD2 (9 of 33, 27%), BAP1 (16 of 33, 48%), PBRM1 (5 of 33, 15%), and SMARCC1 (2 of 33, 6%). The incidence of genetic alterations detected is much higher than reported in the literature because minute deletions are not detected by NGS or commercial aCGH. Many of these minute deletions were not contiguous, but rather alternated with segments showing oscillating copy number changes along the 3p21 region. In summary, we found that in MM: (i) multiple minute simultaneous biallelic deletions are frequent in chromosome 3p21, where they occur as distinct events involving multiple genes; (ii) in addition to BAP1, mutations of SETD2, PBRM1, and SMARCC1 are frequent in MM; and (iii) our results suggest that high-density aCGH combined with tNGS provides a more precise estimate of the frequency and types of genes inactivated in human cancer than approaches based exclusively on NGS strategy.

  17. obitools: a unix-inspired software package for DNA metabarcoding.

    PubMed

    Boyer, Frédéric; Mercier, Céline; Bonin, Aurélie; Le Bras, Yvan; Taberlet, Pierre; Coissac, Eric

    2016-01-01

    DNA metabarcoding offers new perspectives in biodiversity research. This recently developed approach to ecosystem study relies heavily on the use of next-generation sequencing (NGS) and thus calls upon the ability to deal with huge sequence data sets. The obitools package satisfies this requirement thanks to a set of programs specifically designed for analysing NGS data in a DNA metabarcoding context. Their capacity to filter and edit sequences while taking into account taxonomic annotation helps to set up tailor-made analysis pipelines for a broad range of DNA metabarcoding applications, including biodiversity surveys or diet analyses. The obitools package is distributed as an open source software available on the following website: http://metabarcoding.org/obitools. A Galaxy wrapper is available on the GenOuest core facility toolshed: http://toolshed.genouest.org. © 2015 John Wiley & Sons Ltd.

  18. Whole genome sequencing of a begomovirus-resistant tomato inbred reveals introgressions from wild Solanum species

    USDA-ARS?s Scientific Manuscript database

    The low cost of next generation sequencing (NGS) technology and the availability of a large number of well annotated plant genomes has made sequencing technology useful to breeding programs. With the published high quality tomato reference genome of the processing cultivar Heinz 1706, we can now uti...

  19. Optimizing the molecular diagnosis of CDKL5 gene-related epileptic encephalopathy in boys.

    PubMed

    Mei, Davide; Darra, Francesca; Barba, Carmen; Marini, Carla; Fontana, Elena; Chiti, Laura; Parrini, Elena; Dalla Bernardina, Bernardo; Guerrini, Renzo

    2014-11-01

    Mutations involving the cyclin-dependent kinase-like 5 (CDKL5) gene cause an early onset epileptic encephalopathy (EE) with severe neurologic impairment and a skewed 12:1 female-to-male ratio. To date, 18 mutations have been described in boys. We analyzed our cohort of boys with early onset EE to assess the diagnostic yield of our molecular approach. We studied 74 boys who presented early onset severe seizures, including infantile spasms and developmental delay, in the setting of EE, using Sanger sequencing, next-generation sequencing (NGS) and multiplex ligation-dependent probe amplification (MLPA). We identified alterations involving CDKL5 in four boys (5.4%) using NGS in one and MLPA in three. Three of four mutations were indicative of somatic mosaicism. CDKL5 gene mutations accounted for 5.4% of boys with early onset EE. Somatic mosaic mutations might be even more represented than germline mutations, probably because their less deleterious effect enhances viability of the male embryo. The molecular approach used for CDKL5 screening remarkably influences the diagnostic yield in boys. Diagnosis is optimized by Sanger sequencing combined with array-based methods or MLPA; alternatively, NGS targeted resequencing designed to also detect copy number alterations, may be performed. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.

  20. Methodology challenges in studying human gut microbiota - effects of collection, storage, DNA extraction and next generation sequencing technologies.

    PubMed

    Panek, Marina; Čipčić Paljetak, Hana; Barešić, Anja; Perić, Mihaela; Matijašić, Mario; Lojkić, Ivana; Vranešić Bender, Darija; Krznarić, Željko; Verbanac, Donatella

    2018-03-23

    The information on microbiota composition in the human gastrointestinal tract predominantly originates from the analyses of human faeces by application of next generation sequencing (NGS). However, the detected composition of the faecal bacterial community can be affected by various factors including experimental design and procedures. This study evaluated the performance of different protocols for collection and storage of faecal samples (native and OMNIgene.GUT system) and bacterial DNA extraction (MP Biomedicals, QIAGEN and MO BIO kits), using two NGS platforms for 16S rRNA gene sequencing (Ilumina MiSeq and Ion Torrent PGM). OMNIgene.GUT proved as a reliable and convenient system for collection and storage of faecal samples although favouring Sutterella genus. MP provided superior DNA yield and quality, MO BIO depleted Gram positive organisms while using QIAGEN with OMNIgene.GUT resulted in greatest variability compared to other two kits. MiSeq and IT platforms in their supplier recommended setups provided comparable reproducibility of donor faecal microbiota. The differences included higher diversity observed with MiSeq and increased capacity of MiSeq to detect Akkermansia muciniphila, [Odoribacteraceae], Erysipelotrichaceae and Ruminococcaceae (primarily Faecalibacterium prausnitzii). The results of our study could assist the investigators using NGS technologies to make informed decisions on appropriate tools for their experimental pipelines.

  1. Trends in IT Innovation to Build a Next Generation Bioinformatics Solution to Manage and Analyse Biological Big Data Produced by NGS Technologies.

    PubMed

    de Brevern, Alexandre G; Meyniel, Jean-Philippe; Fairhead, Cécile; Neuvéglise, Cécile; Malpertuy, Alain

    2015-01-01

    Sequencing the human genome began in 1994, and 10 years of work were necessary in order to provide a nearly complete sequence. Nowadays, NGS technologies allow sequencing of a whole human genome in a few days. This deluge of data challenges scientists in many ways, as they are faced with data management issues and analysis and visualization drawbacks due to the limitations of current bioinformatics tools. In this paper, we describe how the NGS Big Data revolution changes the way of managing and analysing data. We present how biologists are confronted with abundance of methods, tools, and data formats. To overcome these problems, focus on Big Data Information Technology innovations from web and business intelligence. We underline the interest of NoSQL databases, which are much more efficient than relational databases. Since Big Data leads to the loss of interactivity with data during analysis due to high processing time, we describe solutions from the Business Intelligence that allow one to regain interactivity whatever the volume of data is. We illustrate this point with a focus on the Amadea platform. Finally, we discuss visualization challenges posed by Big Data and present the latest innovations with JavaScript graphic libraries.

  2. Trends in IT Innovation to Build a Next Generation Bioinformatics Solution to Manage and Analyse Biological Big Data Produced by NGS Technologies

    PubMed Central

    de Brevern, Alexandre G.; Meyniel, Jean-Philippe; Fairhead, Cécile; Neuvéglise, Cécile; Malpertuy, Alain

    2015-01-01

    Sequencing the human genome began in 1994, and 10 years of work were necessary in order to provide a nearly complete sequence. Nowadays, NGS technologies allow sequencing of a whole human genome in a few days. This deluge of data challenges scientists in many ways, as they are faced with data management issues and analysis and visualization drawbacks due to the limitations of current bioinformatics tools. In this paper, we describe how the NGS Big Data revolution changes the way of managing and analysing data. We present how biologists are confronted with abundance of methods, tools, and data formats. To overcome these problems, focus on Big Data Information Technology innovations from web and business intelligence. We underline the interest of NoSQL databases, which are much more efficient than relational databases. Since Big Data leads to the loss of interactivity with data during analysis due to high processing time, we describe solutions from the Business Intelligence that allow one to regain interactivity whatever the volume of data is. We illustrate this point with a focus on the Amadea platform. Finally, we discuss visualization challenges posed by Big Data and present the latest innovations with JavaScript graphic libraries. PMID:26125026

  3. Identification of a novel heterozygous missense mutation in the CACNA1F gene in a chinese family with retinitis pigmentosa by next generation sequencing.

    PubMed

    Zhou, Qi; Cheng, Jingliang; Yang, Weichan; Tania, Mousumi; Wang, Hui; Khan, Md Asaduzzaman; Duan, Chengxia; Zhu, Li; Chen, Rui; Lv, Hongbin; Fu, Junjiang

    2015-01-01

    Retinitis pigmentosa (RP) is an inherited retinal degenerative disease, which is clinically and genetically heterogeneous, and the inheritance pattern is complex. In this study, we have intended to study the possible association of certain genes with X-linked RP (XLRP) in a Chinese family. A Chinese family with RP was recruited, and a total of seven individuals were enrolled in this genetic study. Genomic DNA was isolated from peripheral leukocytes, and used for the next generation sequencing (NGS). The affected individual presented the clinical signs of XLRP. A heterozygous missense mutation (c.1555C>T, p.R519W) was identified by NGS in exon 13 of the CACNA1F gene on X chromosome, and was confirmed by Sanger sequencing. It showed perfect cosegregation with the disease in the family. The mutation at this position in the CACNA1F gene of RP was found novel by database searching. By using NGS, we have found a novel heterozygous missense mutation (c.1555C>T, p.R519W) in CACNA1F gene, which is probably associated with XLRP. The findings might provide new insights into the cause and diagnosis of RP, and have implications for genetic counseling and clinical management in this family.

  4. Applications of next-generation sequencing to blood and marrow transplantation.

    PubMed

    Chapman, Michael; Warren, Edus H; Wu, Catherine J

    2012-01-01

    Since the advent of next-generation sequencing (NGS) in 2005, there has been an explosion of published studies employing the technology to tackle previously intractable questions in many disparate biological fields. This has been coupled with technology development that has occurred at a remarkable pace. This review discusses the potential impact of this new technology on the field of blood and marrow stem cell transplantation. Hematologic malignancies have been among the forefront of those cancers whose genomes have been the subject of NGS. Hence, these studies have opened novel areas of biology that can be exploited for prognostic, diagnostic, and therapeutic means. Because of the unprecedented depth, resolution and accuracy achievable by NGS, this technology is well-suited for providing detailed information on the diversity of receptors that govern antigen recognition; this approach has the potential to contribute important insights into understanding the biologic effects of transplantation. Finally, the ability to perform comprehensive tumor sequencing provides a systematic approach to the discovery of genetic alterations that can encode peptides with restricted tumor expression, and hence serve as potential target antigens of graft-versus-leukemia responses. Altogether, this increasingly affordable technology will undoubtedly impact the future practice and care of patients with hematologic malignancies. Copyright © 2012 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  5. Graph mining for next generation sequencing: leveraging the assembly graph for biological insights.

    PubMed

    Warnke-Sommer, Julia; Ali, Hesham

    2016-05-06

    The assembly of Next Generation Sequencing (NGS) reads remains a challenging task. This is especially true for the assembly of metagenomics data that originate from environmental samples potentially containing hundreds to thousands of unique species. The principle objective of current assembly tools is to assemble NGS reads into contiguous stretches of sequence called contigs while maximizing for both accuracy and contig length. The end goal of this process is to produce longer contigs with the major focus being on assembly only. Sequence read assembly is an aggregative process, during which read overlap relationship information is lost as reads are merged into longer sequences or contigs. The assembly graph is information rich and capable of capturing the genomic architecture of an input read data set. We have developed a novel hybrid graph in which nodes represent sequence regions at different levels of granularity. This model, utilized in the assembly and analysis pipeline Focus, presents a concise yet feature rich view of a given input data set, allowing for the extraction of biologically relevant graph structures for graph mining purposes. Focus was used to create hybrid graphs to model metagenomics data sets obtained from the gut microbiomes of five individuals with Crohn's disease and eight healthy individuals. Repetitive and mobile genetic elements are found to be associated with hybrid graph structure. Using graph mining techniques, a comparative study of the Crohn's disease and healthy data sets was conducted with focus on antibiotics resistance genes associated with transposase genes. Results demonstrated significant differences in the phylogenetic distribution of categories of antibiotics resistance genes in the healthy and diseased patients. Focus was also evaluated as a pure assembly tool and produced excellent results when compared against the Meta-velvet, Omega, and UD-IDBA assemblers. Mining the hybrid graph can reveal biological phenomena captured by its structure. We demonstrate the advantages of considering assembly graphs as data-mining support in addition to their role as frameworks for assembly.

  6. SIMBA: a web tool for managing bacterial genome assembly generated by Ion PGM sequencing technology.

    PubMed

    Mariano, Diego C B; Pereira, Felipe L; Aguiar, Edgar L; Oliveira, Letícia C; Benevides, Leandro; Guimarães, Luís C; Folador, Edson L; Sousa, Thiago J; Ghosh, Preetam; Barh, Debmalya; Figueiredo, Henrique C P; Silva, Artur; Ramos, Rommel T J; Azevedo, Vasco A C

    2016-12-15

    The evolution of Next-Generation Sequencing (NGS) has considerably reduced the cost per sequenced-base, allowing a significant rise of sequencing projects, mainly in prokaryotes. However, the range of available NGS platforms requires different strategies and software to correctly assemble genomes. Different strategies are necessary to properly complete an assembly project, in addition to the installation or modification of various software. This requires users to have significant expertise in these software and command line scripting experience on Unix platforms, besides possessing the basic expertise on methodologies and techniques for genome assembly. These difficulties often delay the complete genome assembly projects. In order to overcome this, we developed SIMBA (SImple Manager for Bacterial Assemblies), a freely available web tool that integrates several component tools for assembling and finishing bacterial genomes. SIMBA provides a friendly and intuitive user interface so bioinformaticians, even with low computational expertise, can work under a centralized administrative control system of assemblies managed by the assembly center head. SIMBA guides the users to execute assembly process through simple and interactive pages. SIMBA workflow was divided in three modules: (i) projects: allows a general vision of genome sequencing projects, in addition to data quality analysis and data format conversions; (ii) assemblies: allows de novo assemblies with the software Mira, Minia, Newbler and SPAdes, also assembly quality validations using QUAST software; and (iii) curation: presents methods to finishing assemblies through tools for scaffolding contigs and close gaps. We also presented a case study that validated the efficacy of SIMBA to manage bacterial assemblies projects sequenced using Ion Torrent PGM. Besides to be a web tool for genome assembly, SIMBA is a complete genome assemblies project management system, which can be useful for managing of several projects in laboratories. SIMBA source code is available to download and install in local webservers at http://ufmg-simba.sourceforge.net .

  7. Use of next-generation sequencing to detect LDLR gene copy number variation in familial hypercholesterolemia.

    PubMed

    Iacocca, Michael A; Wang, Jian; Dron, Jacqueline S; Robinson, John F; McIntyre, Adam D; Cao, Henian; Hegele, Robert A

    2017-11-01

    Familial hypercholesterolemia (FH) is a heritable condition of severely elevated LDL cholesterol, caused predominantly by autosomal codominant mutations in the LDL receptor gene ( LDLR ). In providing a molecular diagnosis for FH, the current procedure often includes targeted next-generation sequencing (NGS) panels for the detection of small-scale DNA variants, followed by multiplex ligation-dependent probe amplification (MLPA) in LDLR for the detection of whole-exon copy number variants (CNVs). The latter is essential because ∼10% of FH cases are attributed to CNVs in LDLR ; accounting for them decreases false negative findings. Here, we determined the potential of replacing MLPA with bioinformatic analysis applied to NGS data, which uses depth-of-coverage analysis as its principal method to identify whole-exon CNV events. In analysis of 388 FH patient samples, there was 100% concordance in LDLR CNV detection between these two methods: 38 reported CNVs identified by MLPA were also successfully detected by our NGS method, while 350 samples negative for CNVs by MLPA were also negative by NGS. This result suggests that MLPA can be removed from the routine diagnostic screening for FH, significantly reducing associated costs, resources, and analysis time, while promoting more widespread assessment of this important class of mutations across diagnostic laboratories. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  8. Genetic analysis of Chinese families reveals a novel truncation allele of the retinitis pigmentosa GTPase regulator gene

    PubMed Central

    Hu, Fang; Zeng, Xiang-Yun; Liu, Lin-Lin; Luo, Yao-Ling; Jiang, Yi-Ping; Wang, Hui; Xie, Jing; Hu, Cheng-Quan; Gan, Lin; Huang, Liang

    2014-01-01

    AIM To make comprehensive molecular diagnosis for retinitis pigmentosa (RP) patients in a consanguineous Han Chinese family using next generation sequencing based Capture-NGS screen technology. METHODS A five-generation Han Chinese family diagnosed as non-syndromic X-linked recessive RP (XLRP) was recruited, including four affected males, four obligate female carriers and eleven unaffected family members. Capture-NGS was performed using a custom designed capture panel covers 163 known retinal disease genes including 47 RP genes, followed by the validation of detected mutation using Sanger sequencing in all recruited family members. RESULTS Capture-NGS in one affected 47-year-old male reveals a novel mutation, c.2417_2418insG:p.E806fs, in exon ORF15 of RP GTPase regulator (RPGR) gene results in a frameshift change that results in a premature stop codon and a truncated protein product. The mutation was further validated in three of four affected males and two of four female carriers but not in the other unaffected family members. CONCLUSION We have identified a novel mutation, c.2417_2418insG:p.E806fs, in a Han Chinese family with XLRP. Our findings expand the mutation spectrum of RPGR and the phenotypic spectrum of XLRP in Han Chinese families, and confirms Capture-NGS could be an effective and economic approach for the comprehensive molecular diagnosis of RP. PMID:25349787

  9. System for Informatics in the Molecular Pathology Laboratory: An Open-Source End-to-End Solution for Next-Generation Sequencing Clinical Data Management.

    PubMed

    Kang, Wenjun; Kadri, Sabah; Puranik, Rutika; Wurst, Michelle N; Patil, Sushant A; Mujacic, Ibro; Benhamed, Sonia; Niu, Nifang; Zhen, Chao Jie; Ameti, Bekim; Long, Bradley C; Galbo, Filipo; Montes, David; Iracheta, Crystal; Gamboa, Venessa L; Lopez, Daisy; Yourshaw, Michael; Lawrence, Carolyn A; Aisner, Dara L; Fitzpatrick, Carrie; McNerney, Megan E; Wang, Y Lynn; Andrade, Jorge; Volchenboum, Samuel L; Furtado, Larissa V; Ritterhouse, Lauren L; Segal, Jeremy P

    2018-04-24

    Next-generation sequencing (NGS) diagnostic assays increasingly are becoming the standard of care in oncology practice. As the scale of an NGS laboratory grows, management of these assays requires organizing large amounts of information, including patient data, laboratory processes, genomic data, as well as variant interpretation and reporting. Although several Laboratory Information Systems and/or Laboratory Information Management Systems are commercially available, they may not meet all of the needs of a given laboratory, in addition to being frequently cost-prohibitive. Herein, we present the System for Informatics in the Molecular Pathology Laboratory, a free and open-source Laboratory Information System/Laboratory Information Management System for academic and nonprofit molecular pathology NGS laboratories, developed at the Genomic and Molecular Pathology Division at the University of Chicago Medicine. The System for Informatics in the Molecular Pathology Laboratory was designed as a modular end-to-end information system to handle all stages of the NGS laboratory workload from test order to reporting. We describe the features of the system, its clinical validation at the Genomic and Molecular Pathology Division at the University of Chicago Medicine, and its installation and testing within a different academic center laboratory (University of Colorado), and we propose a platform for future community co-development and interlaboratory data sharing. Copyright © 2018. Published by Elsevier Inc.

  10. A whole-genome, radiation hybrid map of wheat

    USDA-ARS?s Scientific Manuscript database

    Generating a reference sequence of bread wheat (Triticum aestivum L.) is a challenging task because of its large, highly repetitive and allopolyploid genome. Ordering of BAC- and NGS-based contigs in ongoing wheat genome-sequencing projects primarily uses recombination and comparative genomics-base...

  11. Profiling the nucleobase and structure selectivity of anticancer drugs and other DNA alkylating agents by RNA sequencing.

    PubMed

    Gillingham, Dennis; Sauter, Basilius

    2018-05-06

    Drugs that covalently modify DNA are components of most chemotherapy regimens, often serving as first-line treatments. Classically the chemical reactivity of DNA alkylators has been determined in vitro with short oligonucleotides. Here we use next generation RNA sequencing to report on the chemoselectivity of alkylating agents. We develop the method with the well-known clinically used DNA modifiying drugs streptozotocin and temozolomide, and then apply the technique to profile RNA modification with uncharacterized alkylation reactions such as with powerful electrophiles like trimethylsilyldiazomethane. The multiplexed and massively parallel format of NGS offers analyses of chemical reactivity in nucleic acids to be accomplished in less time with greater statistical power. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Genetic Characterization of a Panel of Diverse HIV-1 Isolates at Seven International Sites

    PubMed Central

    Chen, Yue; Sanchez, Ana M.; Sabino, Ester; Hunt, Gillian; Ledwaba, Johanna; Hackett, John; Swanson, Priscilla; Hewlett, Indira; Ragupathy, Viswanath; Vikram Vemula, Sai; Zeng, Peibin; Tee, Kok-Keng; Chow, Wei Zhen; Ji, Hezhao; Sandstrom, Paul; Denny, Thomas N.; Busch, Michael P.; Gao, Feng

    2016-01-01

    HIV-1 subtypes and drug resistance are routinely tested by many international surveillance groups. However, results from different sites often vary. A systematic comparison of results from multiple sites is needed to determine whether a standardized protocol is required for consistent and accurate data analysis. A panel of well-characterized HIV-1 isolates (N = 50) from the External Quality Assurance Program Oversight Laboratory (EQAPOL) was assembled for evaluation at seven international sites. This virus panel included seven subtypes, six circulating recombinant forms (CRFs), nine unique recombinant forms (URFs) and three group O viruses. Seven viruses contained 10 major drug resistance mutations (DRMs). HIV-1 isolates were prepared at a concentration of 107 copies/ml and compiled into blinded panels. Subtypes and DRMs were determined with partial or full pol gene sequences by conventional Sanger sequencing and/or Next Generation Sequencing (NGS). Subtype and DRM results were reported and decoded for comparison with full-length genome sequences generated by EQAPOL. The partial pol gene was amplified by RT-PCR and sequenced for 89.4%-100% of group M viruses at six sites. Subtyping results of majority of the viruses (83%-97.9%) were correctly determined for the partial pol sequences. All 10 major DRMs in seven isolates were detected at these six sites. The complete pol gene sequence was also obtained by NGS at one site. However, this method missed six group M viruses and sequences contained host chromosome fragments. Three group O viruses were only characterized with additional group O-specific RT-PCR primers employed by one site. These results indicate that PCR protocols and subtyping tools should be standardized to efficiently amplify diverse viruses and more consistently assign virus genotypes, which is critical for accurate global subtype and drug resistance surveillance. Targeted NGS analysis of partial pol sequences can serve as an alternative approach, especially for detection of low-abundance DRMs. PMID:27314585

  13. Genetic Characterization of a Panel of Diverse HIV-1 Isolates at Seven International Sites.

    PubMed

    Hora, Bhavna; Keating, Sheila M; Chen, Yue; Sanchez, Ana M; Sabino, Ester; Hunt, Gillian; Ledwaba, Johanna; Hackett, John; Swanson, Priscilla; Hewlett, Indira; Ragupathy, Viswanath; Vikram Vemula, Sai; Zeng, Peibin; Tee, Kok-Keng; Chow, Wei Zhen; Ji, Hezhao; Sandstrom, Paul; Denny, Thomas N; Busch, Michael P; Gao, Feng

    2016-01-01

    HIV-1 subtypes and drug resistance are routinely tested by many international surveillance groups. However, results from different sites often vary. A systematic comparison of results from multiple sites is needed to determine whether a standardized protocol is required for consistent and accurate data analysis. A panel of well-characterized HIV-1 isolates (N = 50) from the External Quality Assurance Program Oversight Laboratory (EQAPOL) was assembled for evaluation at seven international sites. This virus panel included seven subtypes, six circulating recombinant forms (CRFs), nine unique recombinant forms (URFs) and three group O viruses. Seven viruses contained 10 major drug resistance mutations (DRMs). HIV-1 isolates were prepared at a concentration of 107 copies/ml and compiled into blinded panels. Subtypes and DRMs were determined with partial or full pol gene sequences by conventional Sanger sequencing and/or Next Generation Sequencing (NGS). Subtype and DRM results were reported and decoded for comparison with full-length genome sequences generated by EQAPOL. The partial pol gene was amplified by RT-PCR and sequenced for 89.4%-100% of group M viruses at six sites. Subtyping results of majority of the viruses (83%-97.9%) were correctly determined for the partial pol sequences. All 10 major DRMs in seven isolates were detected at these six sites. The complete pol gene sequence was also obtained by NGS at one site. However, this method missed six group M viruses and sequences contained host chromosome fragments. Three group O viruses were only characterized with additional group O-specific RT-PCR primers employed by one site. These results indicate that PCR protocols and subtyping tools should be standardized to efficiently amplify diverse viruses and more consistently assign virus genotypes, which is critical for accurate global subtype and drug resistance surveillance. Targeted NGS analysis of partial pol sequences can serve as an alternative approach, especially for detection of low-abundance DRMs.

  14. Towards Clinical Molecular Diagnosis of Inherited Cardiac Conditions: A Comparison of Bench-Top Genome DNA Sequencers

    PubMed Central

    Wilkinson, Samuel L.; John, Shibu; Walsh, Roddy; Novotny, Tomas; Valaskova, Iveta; Gupta, Manu; Game, Laurence; Barton, Paul J R.; Cook, Stuart A.; Ware, James S.

    2013-01-01

    Background Molecular genetic testing is recommended for diagnosis of inherited cardiac disease, to guide prognosis and treatment, but access is often limited by cost and availability. Recently introduced high-throughput bench-top DNA sequencing platforms have the potential to overcome these limitations. Methodology/Principal Findings We evaluated two next-generation sequencing (NGS) platforms for molecular diagnostics. The protein-coding regions of six genes associated with inherited arrhythmia syndromes were amplified from 15 human samples using parallelised multiplex PCR (Access Array, Fluidigm), and sequenced on the MiSeq (Illumina) and Ion Torrent PGM (Life Technologies). Overall, 97.9% of the target was sequenced adequately for variant calling on the MiSeq, and 96.8% on the Ion Torrent PGM. Regions missed tended to be of high GC-content, and most were problematic for both platforms. Variant calling was assessed using 107 variants detected using Sanger sequencing: within adequately sequenced regions, variant calling on both platforms was highly accurate (Sensitivity: MiSeq 100%, PGM 99.1%. Positive predictive value: MiSeq 95.9%, PGM 95.5%). At the time of the study the Ion Torrent PGM had a lower capital cost and individual runs were cheaper and faster. The MiSeq had a higher capacity (requiring fewer runs), with reduced hands-on time and simpler laboratory workflows. Both provide significant cost and time savings over conventional methods, even allowing for adjunct Sanger sequencing to validate findings and sequence exons missed by NGS. Conclusions/Significance MiSeq and Ion Torrent PGM both provide accurate variant detection as part of a PCR-based molecular diagnostic workflow, and provide alternative platforms for molecular diagnosis of inherited cardiac conditions. Though there were performance differences at this throughput, platforms differed primarily in terms of cost, scalability, protocol stability and ease of use. Compared with current molecular genetic diagnostic tests for inherited cardiac arrhythmias, these NGS approaches are faster, less expensive, and yet more comprehensive. PMID:23861798

  15. Retrospective use of next-generation sequencing reveals the presence of Enteroviruses in acute influenza-like illness respiratory samples collected in South/South-East Asia during 2010-2013.

    PubMed

    Rutvisuttinunt, Wiriya; Klungthong, Chonticha; Thaisomboonsuk, Butsaya; Chinnawirotpisan, Piyawan; Ajariyakhajorn, Chuanpis; Manasatienkij, Wudtichai; Phonpakobsin, Thipwipha; Lon, Chanthap; Saunders, David; Wangchuk, Sonam; Shrestha, Sanjaya K; Velasco, John Mark S; Alera, Maria Theresa P; Simasathien, Sriluck; Buddhari, Darunee; Jarman, Richard G; Macareo, Louis R; Yoon, In-Kyu; Fernandez, Stefan

    2017-09-01

    Emerging and re-emerging respiratory pathogens represent an increasing threat to public health. Etiological determination during outbreaks generally relies on clinical information, occasionally accompanied by traditional laboratory molecular or serological testing. Often, this limited testing leads to inconclusive findings. The Armed Forces Research Institute of Medical Sciences (AFRIMS) collected 12,865 nasopharyngeal specimens from acute influenza-like illness (ILI) patients in five countries in South/South East Asia during 2010-2013. Three hundred and twenty-four samples which were found to be negative for influenza virus after screening with real-time RT-PCR and cell-based culture techniques demonstrated the potential for viral infection with evident cytopathic effect (CPE) in several cell lines. To assess whether whole genome next-generation sequencing (WG-NGS) together with conventional molecular assays can be used to reveal the etiology of influenza negative, but CPE positive specimens. The supernatant of these CPE positive cell cultures were grouped in 32 pools containing 2-26 supernatants per pool. Three WG-NGS runs were performed on these supernatant pools. Sequence reads were used to identify positive pools containing viral pathogens. Individual samples in the positive pools were confirmed by qRT-PCR, RT-PCR, PCR and Sanger sequencing from the CPE culture and original clinical specimens. WG-NGS was an effective way to expand pathogen identification in surveillance studies. This enabled the identification of a viral agent in 71.3% (231/324) of unidentified surveillance samples, including common respiratory pathogens (100/324; 30.9%): enterovirus (16/100; 16.0%), coxsackievirus (31/100; 31.0%), echovirus (22/100; 22.0%), human rhinovirus (3/100; 3%), enterovirus genus (2/100; 2.0%), influenza A (9/100; 9.0%), influenza B, (5/100; 5.0%), human parainfluenza (4/100; 4.0%), human adenovirus (3/100; 3.0%), human coronavirus (1/100; 1.0%), human metapneumovirus (2/100; 2.0%), and mumps virus (2/100; 2.0%), in addition to the non-respiratory pathogen herpes simplex virus type 1 (HSV-1) (172/324; 53.1%) and HSV-1 co-infection with respiratory viruses (41/324; 12.7%). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Evaluating Mismatch Repair Deficiency in Pancreatic Adenocarcinoma: Challenges and Recommendations.

    PubMed

    Hu, Zishuo I; Shia, Jinru; Stadler, Zsofia K; Varghese, Anna M; Capanu, Marinela; Salo-Mullen, Erin; Lowery, Maeve A; Diaz, Luis A; Mandelker, Diana; Yu, Kenneth H; Zervoudakis, Alice; Kelsen, David P; Iacobuzio-Donahue, Christine A; Klimstra, David S; Saltz, Leonard B; Sahin, Ibrahim H; O'Reilly, Eileen M

    2018-03-15

    Purpose: Immune checkpoint inhibition has been shown to generate profound and durable responses in mismatch repair deficient (MMR-D) solid tumors and has elicited interest in detection tools and strategies to guide therapeutic decision-making. Herein we address questions on the appropriate screening, detection methods, patient selection, and initiation of therapy for MMR-D pancreatic ductal adenocarcinoma (PDAC) and assess the utility of next-generation sequencing (NGS) in providing additional prognostic and predictive information for MMR-D PDAC. Experimental Design: Archival and prospectively acquired samples and matched normal DNA from N = 833 PDAC cases were analyzed using a hybridization capture-based, NGS assay designed to perform targeted deep sequencing of all exons and selected introns of 341 to 468 cancer-associated genes. A computational program using NGS data derived the MSI status from the tumor-normal paired genome sequencing data. Available germline testing, IHC, and microsatellite instability (MSI) PCR results were reviewed to assess and confirm MMR-D and MSI status. Results: MMR-D in PDAC is a rare event among PDAC patients (7/833), occurring at a frequency of 0.8%. Loss of MMR protein expression by IHC, high mutational load, and elevated MSIsensor scores were correlated with MMR-D PDAC. All 7 MMR-D PDAC patients in the study were found to have Lynch syndrome. Four (57%) of the MMR-D patients treated with immune checkpoint blockade had treatment benefit (1 complete response, 2 partial responses, 1 stable disease). Conclusions: An integrated approach of germline testing and somatic analyses of tumor tissues in advanced PDAC using NGS may help guide future development of immune and molecularly directed therapies in PDAC patients. Clin Cancer Res; 24(6); 1326-36. ©2018 AACR . ©2018 American Association for Cancer Research.

  17. Dawn of ocular gene therapy: implications for molecular diagnosis in retinal disease

    PubMed Central

    Jacques, ZANEVELD; Feng, WANG; Xia, WANG; Rui, CHEN

    2013-01-01

    Personalized medicine aims to utilize genomic information about patients to tailor treatment. Gene replacement therapy for rare genetic disorders is perhaps the most extreme form of personalized medicine, in that the patients’ genome wholly determines their treatment regimen. Gene therapy for retinal disorders is poised to become a clinical reality. The eye is an optimal site for gene therapy due to the relative ease of precise vector delivery, immune system isolation, and availability for monitoring of any potential damage or side effects. Due to these advantages, clinical trials for gene therapy of retinal diseases are currently underway. A necessary precursor to such gene therapies is accurate molecular diagnosis of the mutation(s) underlying disease. In this review, we discuss the application of Next Generation Sequencing (NGS) to obtain such a diagnosis and identify disease causing genes, using retinal disorders as a case study. After reviewing ocular gene therapy, we discuss the application of NGS to the identification of novel Mendelian disease genes. We then compare current, array based mutation detection methods against next NGS-based methods in three retinal diseases: Leber’s Congenital Amaurosis, Retinitis Pigmentosa, and Stargardt’s disease. We conclude that next-generation sequencing based diagnosis offers several advantages over array based methods, including a higher rate of successful diagnosis and the ability to more deeply and efficiently assay a broad spectrum of mutations. However, the relative difficulty of interpreting sequence results and the development of standardized, reliable bioinformatic tools remain outstanding concerns. In this review, recent advances NGS based molecular diagnoses are discussed, as well as their implications for the development of personalized medicine. PMID:23393028

  18. [Effective management of an outbreak with multiresistent Klebsiella pneumoniae in a neurorehabilitation unit].

    PubMed

    Dohle, Christian; Korr, Gerit; Friedrichs, Michael; Kullmann, Volker; Tung, Mei-Lin; Kaase, Martin; Rüssmann, Holger; Sissolak, Dagmar; Werber, Dirk; Becker, Laura; Fuchs, Stephan; Pfeifer, Yvonne; Semmler, Torsten; Widders, Gudrun; Eckmanns, Tim; Werner, Guido; Zill, Edith; Haller, Sebastian

    2018-05-01

    In addition to acute care hospitals, rehabilitation centres are increasingly confronted with multi-resistant pathogens. Long durations of stay and intensive treatments impose special hygienic challenges. We investigated an extended spectrum beta-lactamase-Klebsiella pneumoniae (ESBL-K. pneumoniae) outbreak in a neurorehabilitation centre. We defined confirmed cases as patients who stayed in the centre during the outbreak period and from whom ESBL-K. pneumoniae was isolated with the outbreak sequence type. Probable cases had an epidemiological link to at least one confirmed case but no isolate for typing. Next generation sequencing (NGS) was performed on 53 isolates from patients. Environmental sampling was performed. Systematic microbiological screening was implemented and ESBL-K. pneumoniae-positive patients were cohorted in a designated ward. We identified 30 confirmed and 6 probable cases. NGS revealed three genetic clusters: Cluster 1 - the outbreak cluster - with isolates of 30 cases (sequence type ST15), Cluster 2 with 7 patients (ST405) and Cluster 3 with 8 patients (ST414). In two patients, the outbreak strain developed further antibiotic resistance, one with colistin resistance and the other carbapenem resistance. The outbreak ceased after strict isolation measures. Epidemiology and NGS results paired with the effectiveness of cohorting suggest that transmission occurred mainly from person to person in this outbreak. There was an apparent association of the probability to acquire ESBL-K. pneumoniae and treatment intensity, whereas infection rate was related to morbidity. The identification of the outbreak clone and additional clusters plus the development of additional antibiotic resistance shows the relevance of NGS and highlights the need for timely and efficient outbreak management.

  19. A Next-Generation Sequencing Data Analysis Pipeline for Detecting Unknown Pathogens from Mixed Clinical Samples and Revealing Their Genetic Diversity.

    PubMed

    Gong, Yu-Nong; Chen, Guang-Wu; Yang, Shu-Li; Lee, Ching-Ju; Shih, Shin-Ru; Tsao, Kuo-Chien

    2016-01-01

    Forty-two cytopathic effect (CPE)-positive isolates were collected from 2008 to 2012. All isolates could not be identified for known viral pathogens by routine diagnostic assays. They were pooled into 8 groups of 5-6 isolates to reduce the sequencing cost. Next-generation sequencing (NGS) was conducted for each group of mixed samples, and the proposed data analysis pipeline was used to identify viral pathogens in these mixed samples. Polymerase chain reaction (PCR) or enzyme-linked immunosorbent assay (ELISA) was individually conducted for each of these 42 isolates depending on the predicted viral types in each group. Two isolates remained unknown after these tests. Moreover, iteration mapping was implemented for each of these 2 isolates, and predicted human parechovirus (HPeV) in both. In summary, our NGS pipeline detected the following viruses among the 42 isolates: 29 human rhinoviruses (HRVs), 10 HPeVs, 1 human adenovirus (HAdV), 1 echovirus and 1 rotavirus. We then focused on the 10 identified Taiwanese HPeVs because of their reported clinical significance over HRVs. Their genomes were assembled and their genetic diversity was explored. One novel 6-bp deletion was found in one HPeV-1 virus. In terms of nucleotide heterogeneity, 64 genetic variants were detected from these HPeVs using the mapped NGS reads. Most importantly, a recombination event was found between our HPeV-3 and a known HPeV-4 strain in the database. Similar event was detected in the other HPeV-3 strains in the same clade of the phylogenetic tree. These findings demonstrated that the proposed NGS data analysis pipeline identified unknown viruses from the mixed clinical samples, revealed their genetic identity and variants, and characterized their genetic features in terms of viral evolution.

  20. Newly designed 11-gene panel reveals first case of hereditary amyloidosis captured by massive parallel sequencing.

    PubMed

    Chyra Kufova, Zuzana; Sevcikova, Tereza; Januska, Jaroslav; Vojta, Petr; Boday, Arpad; Vanickova, Pavla; Filipova, Jana; Growkova, Katerina; Jelinek, Tomas; Hajduch, Marian; Hajek, Roman

    2018-02-17

    Amyloidosis is caused by deposition of abnormal protein fibrils, leading to damage of organ function. Hereditary amyloidosis represents a monogenic disease caused by germline mutations in 11 amyloidogenic precursor protein genes. One of the important but non-specific symptoms of amyloidosis is hypertrophic cardiomyopathy. Diagnostics of hereditary amyloidosis is complicated and the real cause can remain overlooked. We aimed to design hereditary amyloidosis gene panel and to introduce new next-generation sequencing (NGS) approach to investigate hereditary amyloidosis in a cohort of patients with hypertrophic cardiomyopathy of unknown significance. Design of target enrichment DNA library preparation using Haloplex Custom Kit containing 11 amyloidogenic genes was followed by MiSeq Illumina sequencing and bioinformatics identification of germline variants using tool VarScan in a cohort of 40 patients. We present design of NGS panel for 11 genes ( TTR , FGA , APOA1 , APOA2 , LYZ , GSN , CST3 , PRNP , APP , B2M , ITM2B ) connected to various forms of amyloidosis. We detected one mutation, which is responsible for hereditary amyloidosis. Some other single nucleotide variants are so far undescribed or rare variants or represent common polymorphisms in European population. We report one positive case of hereditary amyloidosis in a cohort of patients with hypertrophic cardiomyopathy of unknown significance and set up first panel for NGS in hereditary amyloidosis. This work may facilitate successful implementation of the NGS method by other researchers or clinicians and may improve the diagnostic process after validation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

Top