Chang, Young-Soo; Hong, Sung Hwa; Kim, Eun Yeon; Choi, Ji Eun; Chung, Won-Ho; Cho, Yang-Sun; Moon, Il Joon
2018-05-18
Despite recent advancement in the prediction of cochlear implant outcome, the benefit of bilateral procedures compared to bimodal stimulation and how we predict speech perception outcomes of sequential bilateral cochlear implant based on bimodal auditory performance in children remain unclear. This investigation was performed: (1) to determine the benefit of sequential bilateral cochlear implant and (2) to identify the associated factors for the outcome of sequential bilateral cochlear implant. Observational and retrospective study. We retrospectively analyzed 29 patients with sequential cochlear implant following bimodal-fitting condition. Audiological evaluations were performed; the categories of auditory performance scores, speech perception with monosyllable and disyllables words, and the Korean version of Ling. Audiological evaluations were performed before sequential cochlear implant with the bimodal fitting condition (CI1+HA) and one year after the sequential cochlear implant with bilateral cochlear implant condition (CI1+CI2). The good Performance Group (GP) was defined as follows; 90% or higher in monosyllable and bisyllable tests with auditory-only condition or 20% or higher improvement of the scores with CI1+CI2. Age at first implantation, inter-implant interval, categories of auditory performance score, and various comorbidities were analyzed by logistic regression analysis. Compared to the CI1+HA, CI1+CI2 provided significant benefit in categories of auditory performance, speech perception, and Korean version of Ling results. Preoperative categories of auditory performance scores were the only associated factor for being GP (odds ratio=4.38, 95% confidence interval - 95%=1.07-17.93, p=0.04). The children with limited language development in bimodal condition should be considered as the sequential bilateral cochlear implant and preoperative categories of auditory performance score could be used as the predictor in speech perception after sequential cochlear implant. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Tinnitus after Simultaneous and Sequential Bilateral Cochlear Implantation.
Ramakers, Geerte G J; Kraaijenga, Véronique J C; Smulders, Yvette E; van Zon, Alice; Stegeman, Inge; Stokroos, Robert J; Free, Rolien H; Frijns, Johan H M; Huinck, Wendy J; Van Zanten, Gijsbert A; Grolman, Wilko
2017-01-01
There is an ongoing global discussion on whether or not bilateral cochlear implantation should be standard care for bilateral deafness. Contrary to unilateral cochlear implantation, however, little is known about the effect of bilateral cochlear implantation on tinnitus. To investigate tinnitus outcomes 1 year after bilateral cochlear implantation. Secondarily, to compare tinnitus outcomes between simultaneous and sequential bilateral cochlear implantation and to investigate long-term follow-up (3 years). This study is a secondary analysis as part of a multicenter randomized controlled trial. Thirty-eight postlingually deafened adults were included in the original trial, in which the presence of tinnitus was not an inclusion criterion. All participants received cochlear implants (CIs) because of profound hearing loss. Nineteen participants received bilateral CIs simultaneously and 19 participants received bilateral CIs sequentially with an inter-implant interval of 2 years. The prevalence and severity of tinnitus before and after simultaneous and sequential bilateral cochlear implantation were measured preoperatively and each year after implantation with the Tinnitus Handicap Inventory (THI) and Tinnitus Questionnaire (TQ). The prevalence of preoperative tinnitus was 42% (16/38). One year after bilateral implantation, there was a median difference of -8 (inter-quartile range (IQR): -28 to 4) in THI score and -9 (IQR: -17 to -9) in TQ score in the participants with preoperative tinnitus. Induction of tinnitus occurred in five participants, all in the simultaneous group, in the year after bilateral implantation. Although the preoperative and also the postoperative median THI and TQ scores were higher in the simultaneous group, the median difference scores were equal in both groups. In the simultaneous group, tinnitus scores fluctuated in the 3 years after implantation. In the sequential group, four patients had an additional benefit of the second CI: a total suppression of tinnitus compared with their unilateral situation. While bilateral cochlear implantation can have a positive effect on preoperative tinnitus complaints, the induction of (temporary or permanent) tinnitus was also reported. Dutch Trial Register NTR1722.
United Kingdom national paediatric bilateral cochlear implant audit: preliminary results.
Cullington, Helen; Bele, Devyanee; Brinton, Julie; Lutman, Mark
2013-11-01
Prior to 2009, United Kingdom (UK) public funding was mainly only available for children to receive unilateral cochlear implants. In 2009, the National Institute for Health and Care Excellence published guidance for cochlear implantation following their review. According to these guidelines, all suitable children are eligible to have simultaneous bilateral cochlear implants or a sequential bilateral cochlear implant if they had received the first before the guidelines were published. Fifteen UK cochlear implant centres formed a consortium to carry out a multi-centre audit. The audit involves collecting data from simultaneously and sequentially implanted children at four intervals: before bilateral cochlear implants or before the sequential implant, 1, 2, and 3 years after bilateral implants. The measures include localization, speech recognition in quiet and background noise, speech production, listening, vocabulary, parental perception, quality of life, and surgical data including complications. The audit has now passed the 2-year point, and data have been received on 850 children. This article provides a first view of some data received up until March 2012.
Cost-Utility Analysis of Cochlear Implantation in Australian Adults.
Foteff, Chris; Kennedy, Steven; Milton, Abul Hasnat; Deger, Melike; Payk, Florian; Sanderson, Georgina
2016-06-01
Sequential and simultaneous bilateral cochlear implants are emerging as appropriate treatment options for Australian adults with sensory deficits in both cochleae. Current funding of Australian public hospitals does not provide for simultaneous bilateral cochlear implantation (CI) as a separate surgical procedure. Previous cost-effectiveness studies of sequential and simultaneous bilateral CI assumed 100% of unilaterally treated patients' transition to a sequential bilateral CI. This assumption does not place cochlear implantation in the context of the generally treated population. When mutually exclusive treatment options exist, such as unilateral CI, sequential bilateral CI, and simultaneous bilateral CI, the mean costs of the treated populations are weighted in the calculation of incremental cost-utility ratios. The objective was to evaluate the cost-utility of bilateral hearing aids (HAs) compared with unilateral, sequential, and simultaneous bilateral CI in Australian adults with bilateral severe to profound sensorineural hearing loss. Cost-utility analysis of secondary sources input to a Markov model. Australian health care perspective, lifetime horizon with costs and outcomes discounted 5% annually. Bilateral HAs as treatment for bilateral severe to profound sensorineural hearing loss compared with unilateral, sequential, and simultaneous bilateral CI. Incremental costs per quality adjusted life year (AUD/QALY). When compared with bilateral hearing aids the incremental cost-utility ratio for the CI treatment population was AUD11,160/QALY. The incremental cost-utility ratio was weighted according to the number of patients treated unilaterally, sequentially, and simultaneously, as these were mutually exclusive treatment options. No peer-reviewed articles have reported the incremental analysis of cochlear implantation in a continuum of care for surgically treated populations with bilateral severe to profound sensorineural hearing loss. Unilateral, sequential, and simultaneous bilateral CI were cost-effective when compared with bilateral hearing aids. Technologies that reduce the total number of visits for a patient could introduce additional cost efficiencies into clinical practice.
Cullington, H E; Bele, D; Brinton, J C; Cooper, S; Daft, M; Harding, J; Hatton, N; Humphries, J; Lutman, M E; Maddocks, J; Maggs, J; Millward, K; O'Donoghue, G; Patel, S; Rajput, K; Salmon, V; Sear, T; Speers, A; Wheeler, A; Wilson, K
2017-01-01
To assess longitudinal outcomes in a large and varied population of children receiving bilateral cochlear implants both simultaneously and sequentially. This observational non-randomized service evaluation collected localization and speech recognition in noise data from simultaneously and sequentially implanted children at four time points: before bilateral cochlear implants or before the sequential implant, 1 year, 2 years, and 3 years after bilateral implants. No inclusion criteria were applied, so children with additional difficulties, cochleovestibular anomalies, varying educational placements, 23 different home languages, a full range of outcomes and varying device use were included. 1001 children were included: 465 implanted simultaneously and 536 sequentially, representing just over 50% of children receiving bilateral implants in the UK in this period. In simultaneously implanted children the median age at implant was 2.1 years; 7% were implanted at less than 1 year of age. In sequentially implanted children the interval between implants ranged from 0.1 to 14.5 years. Children with simultaneous bilateral implants localized better than those with one implant. On average children receiving a second (sequential) cochlear implant showed improvement in localization and listening in background noise after 1 year of bilateral listening. The interval between sequential implants had no effect on localization improvement although a smaller interval gave more improvement in speech recognition in noise. Children with sequential implants on average were able to use their second device to obtain spatial release from masking after 2 years of bilateral listening. Although ranges were large, bilateral cochlear implants on average offered an improvement in localization and speech perception in noise over unilateral implants. These data represent the diverse population of children with bilateral cochlear implants in the UK from 2010 to 2012. Predictions of outcomes for individual patients are not possible from these data. However, there are no indications to preclude children with long inter-implant interval having the chance of a second cochlear implant.
ERIC Educational Resources Information Center
Reeder, Ruth M.; Firszt, Jill B.; Cadieux, Jamie H.; Strube, Michael J.
2017-01-01
Purpose: Whether, and if so when, a second-ear cochlear implant should be provided to older, unilaterally implanted children is an ongoing clinical question. This study evaluated rate of speech recognition progress for the second implanted ear and with bilateral cochlear implants in older sequentially implanted children and evaluated localization…
ERIC Educational Resources Information Center
Reeder, Ruth M.; Firszt, Jill B.; Holden, Laura K.; Strube, Michael J.
2014-01-01
Purpose: The purpose of this study was to examine the rate of progress in the 2nd implanted ear as it relates to the 1st implanted ear and to bilateral performance in adult sequential cochlear implant recipients. In addition, this study aimed to identify factors that contribute to patient outcomes. Method: The authors performed a prospective…
Härkönen, Kati; Kivekäs, Ilkka; Rautiainen, Markus; Kotti, Voitto; Sivonen, Ville; Vasama, Juha-Pekka
2015-05-01
This prospective study shows that working performance, quality of life (QoL), and quality of hearing (QoH) are better with two compared with a single cochlear implant (CI). The impact of the second CI on the patient's QoL is as significant as the impact of the first CI. To evaluate the benefits of sequential bilateral cochlear implantation in working, QoL, and QoH. We studied working performance, work-related stress, QoL, and QoH with specific questionnaires in 15 patients with unilateral CI scheduled for sequential CI of another ear. Sound localization performance and speech perception in noise were measured with specific tests. All questionnaires and tests were performed before the second CI surgery and 6 and 12 months after its activation. Bilateral CIs increased patients' working performance and their work-related stress and fatigue decreased. Communication with co-workers was easier and patients were more active in their working environment. Sequential bilateral cochlear implantation improved QoL, QoH, sound localization, and speech perception in noise statistically significantly.
Escorihuela García, Vicente; Pitarch Ribas, María Ignacia; Llópez Carratalá, Ignacio; Latorre Monteagudo, Emilia; Morant Ventura, Antonio; Marco Algarra, Jaime
2016-01-01
The studies that have evaluated the effectiveness of bilateral cochlear implantation in children suggest an improvement in hearing about sound localization and speech discrimination. In this paper we show the differences in audio-linguistic achievements with early bilateral cochlear implantation versus unilateral, and differences between simultaneous and sequential bilateral implantation. We present 88 children with bilateral profound sensorineural hearing loss, treated with bilateral cochlear implantation in 32 cases and unilateral in 56 cases, during the first 12 months (27 children) of life and between 12 and 24 months (61 children). We conducted a statistical comparison of both groups in the audiometry, IT-Mais, Nottingham, LittlEars scales and verbal tests. No significant differences in hearing thresholds and questionnaires between unilateral and bilateral implantation were detected in either the first or second year. Verbal tests do show statistically significant differences: children with bilateral cochlear implant obtain 100% recognition of disyllabic and phrases within 2-3 years after implantation whilst children with one implant do not obtain those results at 5 years after surgery. No differences between simultaneous and sequential bilateral implantation were detected. We emphasize the importance of ensuring good early audiological screening, to carry out an early and bilateral cochlear implantation with the consequent development of audio-language skills similar to normal hearing children. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. All rights reserved.
[Bilateral cochlear implants in children: acquisition of binaural hearing].
Ramos-Macías, Angel; Deive-Maggiolo, Leopoldo; Artiles-Cabrera, Ovidio; González-Aguado, Rocío; Borkoski-Barreiro, Silvia A; Masgoret-Palau, Elizabeth; Falcón-González, Juan C; Bueno-Yanes, Jorge
2013-01-01
Several studies have indicated the benefit of bilateral cochlear implants in the acquisition of binaural hearing and bilateralism. In children with cochlear implants, is it possible to achieve binaurality after a second implant? When is the ideal time to implant them? The objective of this study was to analyse the binaural effect in children with bilateral implants and the differences between subjects with simultaneous and sequential implants with both short and long intervals. There were 90 patients between 1 and 2 years of age (the first surgery), implanted between 2000 and 2008. Of these, 25 were unilateral users and 65 bilateral; 17 patients had received simultaneous implants, 29 had sequential implants before 12 months after the first one (short interimplant period) and 19 after 12 months (long period). All of them were tested for silent and noisy verbal perception and a tonal threshold audiometry was performed. The silent perception test showed that the simultaneous and short period sequential implant patients (mean: 84.67%) versus unilateral and long period sequential implants (mean: 79.66%), had a statistically-significant difference (P=0,23). Likewise, the noisy perception test showed a difference with statistical significance (P=0,22) comparing the simultaneous implanted and short period sequential implants (mean, 77.17%) versus unilateral implanted and long period sequential ones (mean: 69.32%). The simultaneous and sequential short period implants acquired the advantages of binaural hearing. Copyright © 2012 Elsevier España, S.L. All rights reserved.
Samuel, V; Gamble, C; Cullington, H; Bathgate, F; Bennett, E; Coop, N; Cropper, J; Emond, A; Kentish, R; Edwards, L
2016-11-01
In contrast to previous clinical practice, current guidelines recommend bilateral cochlear implantation in children, resulting in a cohort of children who initially received one implant, but have subsequently had a second, contralateral implant. This study aimed to explore satisfaction and quality of life in children implanted simultaneously or sequentially. A novel measure of satisfaction and quality of life following paediatric bilateral cochlear implantation (the Brief Assessment of Parental Perception; BAPP) was developed and preliminary validation undertaken as part of a large, national project of bilateral implantation. Children's parents completed the measure yearly for up to three years following implantation. Children from 14 UK implant centres were recruited into the study; data were available for 410 children one year post-implantation. The BAPP was found to have good face and convergent validity, and internal consistency. Results indicated very high levels of satisfaction with the devices, and improvements in quality of life. However there was evidence that children implanted sequentially were less willing to wear their second implant in the first two years than those children receiving simultaneous implants. Simultaneous and sequential cochlear implants have a positive impact on the quality of life of deaf children.
Reeder, Ruth M; Firszt, Jill B; Cadieux, Jamie H; Strube, Michael J
2017-01-01
Whether, and if so when, a second-ear cochlear implant should be provided to older, unilaterally implanted children is an ongoing clinical question. This study evaluated rate of speech recognition progress for the second implanted ear and with bilateral cochlear implants in older sequentially implanted children and evaluated localization abilities. A prospective longitudinal study included 24 bilaterally implanted children (mean ear surgeries at 5.11 and 14.25 years). Test intervals were every 3-6 months through 24 months postbilateral. Test conditions were each ear and bilaterally for speech recognition and localization. Overall, the rate of progress for the second implanted ear was gradual. Improvements in quiet continued through the second year of bilateral use. Improvements in noise were more modest and leveled off during the second year. On all measures, results from the second ear were poorer than the first. Bilateral scores were better than either ear alone for all measures except sentences in quiet and localization. Older sequentially implanted children with several years between surgeries may obtain speech understanding in the second implanted ear; however, performance may be limited and rate of progress gradual. Continued contralateral ear hearing aid use and reduced time between surgeries may enhance outcomes.
Cullington, H E; Bele, D; Brinton, J C; Cooper, S; Daft, M; Harding, J; Hatton, N; Humphries, J; Lutman, M E; Maddocks, J; Maggs, J; Millward, K; O'Donoghue, G; Patel, S; Rajput, K; Salmon, V; Sear, T; Speers, A; Wheeler, A; Wilson, K
2017-01-01
This fourteen-centre project used professional rating scales and parent questionnaires to assess longitudinal outcomes in a large non-selected population of children receiving simultaneous and sequential bilateral cochlear implants. This was an observational non-randomized service evaluation. Data were collected at four time points: before bilateral cochlear implants or before the sequential implant, one year, two years, and three years after. The measures reported are Categories of Auditory Performance II (CAPII), Speech Intelligibility Rating (SIR), Bilateral Listening Skills Profile (BLSP) and Parent Outcome Profile (POP). Thousand and one children aged from 8 months to almost 18 years were involved, although there were many missing data. In children receiving simultaneous implants after one, two, and three years respectively, median CAP scores were 4, 5, and 6; median SIR were 1, 2, and 3. Three years after receiving simultaneous bilateral cochlear implants, 61% of children were reported to understand conversation without lip-reading and 66% had intelligible speech if the listener concentrated hard. Auditory performance and speech intelligibility were significantly better in female children than males. Parents of children using sequential implants were generally positive about their child's well-being and behaviour since receiving the second device; those who were less positive about well-being changes also generally reported their children less willing to wear the second device. Data from 78% of paediatric cochlear implant centres in the United Kingdom provide a real-world picture of outcomes of children with bilateral implants in the UK. This large reference data set can be used to identify children in the lower quartile for targeted intervention.
López-Torrijo, Manuel; Mengual-Andrés, Santiago; Estellés-Ferrer, Remedios
2015-06-01
This article carries out a literature review of the advantages and limitations of the simultaneous bilateral cochlear implantation (SCI) compared to those of the sequential bilateral cochlear implantation (SBCI) and the unilateral cochlear implantation (UCI). The variables analysed in said comparison are: safety and surgical technique, SCI incidence, effectiveness, impact of the inter-implant interval, costs and financing, impact on brain plasticity, impact on speech and language development, main benefits, main disadvantages and concerns, and predictive factors of prognosis. Although the results are not conclusive, all variables analysed seem to point towards observable benefits of SCI in comparison with SBCI or UCI. This tendency should be studied in more depth in multicentre studies with higher methodological rigour, more comprehensive samples and periods and other determining variables (age at the time of implantation, duration and degree of the hearing loss, rehabilitation methodologies used, family involvement, etc.). Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Chang, David T; Ko, Alvin B; Murray, Gail S; Arnold, James E; Megerian, Cliff A
2010-07-01
(1) To analyze if socioeconomic status influences access to cochlear implantation in an environment with adequate Medicaid reimbursement. (2) To determine the impact of socioeconomic status on outcomes after unilateral cochlear implantation. Retrospective cohort study. University Hospitals Case Medical Center and Rainbow Babies and Children's Hospital (tertiary referral center), Cleveland, Ohio. Pediatric patients (age range, newborn to 18 years) who received unilateral cochlear implantation during the period 1996 to 2008. Access to cochlear implantation after referral to a cochlear implant center, postoperative complications, compliance with follow-up appointments, and access to sequential bilateral cochlear implantation. A total of 133 pediatric patients were included in this study; 64 were Medicaid-insured patients and 69 were privately insured patients. There was no statistical difference in the odds of initial cochlear implantation, age at referral, or age at implantation between the 2 groups. The odds of prelingual Medicaid-insured patients receiving sequential bilateral cochlear implantation was less than half that of the privately insured group (odds ratio [OR], 0.43; P = .03). The odds of complications in Medicaid-insured children were almost 5-fold greater than the odds for privately insured children (OR, 4.6; P = .03). There were 10 complications in 51 Medicaid-insured patients (19.6%) as opposed to 3 in 61 privately insured patients (4.9%). Medicaid-insured patients missed substantially more follow-up appointments overall (35% vs 23%) and more consecutive visits (1.9 vs 1.1) compared with privately insured patients. In an environment with adequate Medicaid reimbursement, eligible children have equal access to cochlear implantation, regardless of socioeconomic background. However, lower socioeconomic background is associated with higher rates of postoperative complications, worse follow-up compliance, and lower rates of sequential bilateral implantation, observed herein in Medicaid-insured patients. These findings present opportunities for cochlear implant centers to create programs to address such downstream disparities.
Sequential Bilateral Cochlear Implantation in a Patient with Bilateral Meniere’s Disease
Holden, Laura K.; Neely, J. Gail; Gotter, Brenda D.; Mispagel, Karen M.; Firszt, Jill B.
2012-01-01
This case study describes a 45 year old female with bilateral, profound sensorineural hearing loss due to Meniere’s disease. She received her first cochlear implant in the right ear in 2008 and the second cochlear implant in the left ear in 2010. The case study examines the enhancement to speech recognition, particularly in noise, provided by bilateral cochlear implants. Speech recognition tests were administered prior to obtaining the second implant and at a number of test intervals following activation of the second device. Speech recognition in quiet and noise as well as localization abilities were assessed in several conditions to determine bilateral benefit and performance differences between ears. The results of the speech recognition testing indicated a substantial improvement in the patient’s ability to understand speech in noise and her ability to localize sound when using bilateral cochlear implants compared to using a unilateral implant or an implant and a hearing aid. In addition, the patient reported considerable improvement in her ability to communicate in daily life when using bilateral implants versus a unilateral implant. This case suggests that cochlear implantation is a viable option for patients who have lost their hearing to Meniere’s disease even when a number of medical treatments and surgical interventions have been performed to control vertigo. In the case presented, bilateral cochlear implantation was necessary for this patient to communicate successfully at home and at work. PMID:22463939
[Bilateral cochlear implants].
Müller, J
2017-07-01
Cochlear implants (CI) are standard for the hearing rehabilitation of severe to profound deafness. Nowadays, if bilaterally indicated, bilateral implantation is usually recommended (in accordance with German guidelines). Bilateral implantation enables better speech discrimination in quiet and in noise, and restores directional and spatial hearing. Children with bilateral CI are able to undergo hearing-based hearing and speech development. Within the scope of their individual possibilities, bilaterally implanted children develop faster than children with unilateral CI and attain, e.g., a larger vocabulary within a certain time interval. Only bilateral implantation allows "binaural hearing," with all the benefits that people with normal hearing profit from, namely: better speech discrimination in quiet and in noise, as well as directional and spatial hearing. Naturally, the developments take time. Binaural CI users benefit from the same effects as normal hearing persons: head shadow effect, squelch effect, and summation and redundancy effects. Sequential CI fitting is not necessarily disadvantageous-both simultaneously and sequentially fitted patients benefit in a similar way. For children, earliest possible fitting and shortest possible interval between the two surgeries seems to positively influence the outcome if bilateral CI are indicated.
Sparreboom, Marloes; Beynon, Andy J; Snik, Ad F M; Mylanus, Emmanuel A M
2016-07-01
In many studies evaluating the effect of sequential bilateral cochlear implantation in congenitally deaf children, device use is not taken into account. In this study, however, device use was analyzed in relation to auditory brainstem maturation and speech recognition, which were measured in children with early-onset deafness, 5-6 years after bilateral cochlear implantation. We hypothesized that auditory brainstem maturation is mostly functionally driven by auditory stimulation and is therefore influenced by device use and not mainly by inter-implant delay. Twenty-one children participated and had inter-implant delays between 1.2 and 7.2 years. The electrically-evoked auditory brainstem response was measured for both implants separately. The difference in interaural wave V latency and speech recognition between both implants were used in the analyses. Device use was measured with a Likert scale. Results showed that the less the second device is used, the larger the difference in interaural wave V latencies is, which consequently leads to larger differences in interaural speech recognition. In children with early-onset deafness, after various periods of unilateral deprivation, full-time device use can lead to similar auditory brainstem responses and speech recognition between both ears. Therefore, device use should be considered as a relevant factor contributing to outcomes after sequential bilateral cochlear implantation. These results are indicative for a longer window between implantations in children with early-onset deafness to obtain symmetrical auditory pathway maturation than is mentioned in the literature. Results, however, must be interpreted as preliminary findings as actual device use with data logging was not yet available at the time of the study. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Gordon, Karen A.; Deighton, Michael R.; Abbasalipour, Parvaneh; Papsin, Blake C.
2014-01-01
There are significant challenges to restoring binaural hearing to children who have been deaf from an early age. The uncoordinated and poor temporal information available from cochlear implants distorts perception of interaural timing differences normally important for sound localization and listening in noise. Moreover, binaural development can be compromised by bilateral and unilateral auditory deprivation. Here, we studied perception of both interaural level and timing differences in 79 children/adolescents using bilateral cochlear implants and 16 peers with normal hearing. They were asked on which side of their head they heard unilaterally or bilaterally presented click- or electrical pulse- trains. Interaural level cues were identified by most participants including adolescents with long periods of unilateral cochlear implant use and little bilateral implant experience. Interaural timing cues were not detected by new bilateral adolescent users, consistent with previous evidence. Evidence of binaural timing detection was, for the first time, found in children who had much longer implant experience but it was marked by poorer than normal sensitivity and abnormally strong dependence on current level differences between implants. In addition, children with prior unilateral implant use showed a higher proportion of responses to their first implanted sides than children implanted simultaneously. These data indicate that there are functional repercussions of developing binaural hearing through bilateral cochlear implants, particularly when provided sequentially; nonetheless, children have an opportunity to use these devices to hear better in noise and gain spatial hearing. PMID:25531107
Guerra-Jiménez, Gloria; Viera Artiles, Jaime; Mateos, Mar; González Aguado, Rocío; Falcón González, Juan Carlos; Borkoski Barreiro, Silvia; Ramos Macías, Angel
2013-01-01
Some studies suggest that simultaneous or sequential cochlear implantation in a short period of time offers additional benefits. There is controversy regarding the existence of an age limit after which a second implantation offers less benefit for the acquisition of communication skills. The objectives of this study were to confirm that sequential cochlear implantation offers benefits compared to unilateral implantation and to study whether, at 12 years of age, there are significant differences regarding the age at the time of the second implantation. Descriptive and observational study of a population of 12-year-old children carrying cochlear implants (n=69). A liminal pure tone audiometry and an open-field verbal discrimination test (disyllables, common phrases in an open context, with and without noise) were conducted to evaluate audiological benefits. Verbal discrimination results were better among patients who had been implanted before the age of 2 years, although the differences were not statistically significant (P>.5). Children who had received bilateral cochlear implants before the age of 2 years and with a period less than 4 years between both implants presented better verbal discrimination percentages (P<.05). In our sample, early cochlear implantation with a short period between both implants provided significant benefits regarding intelligibility. There seem to be a specific age and interimplant period, after which the auditory benefit on the first implant becomes reduced. Copyright © 2013 Elsevier España, S.L. All rights reserved.
Peters, B Robert; Litovsky, Ruth; Parkinson, Aaron; Lake, Jennifer
2007-08-01
Clinical trials in which children received bilateral cochlear implants in sequential operations were conducted to analyze the extent to which bilateral implantation offers benefits on a number of measures. The present investigation was particularly focused on measuring the effects of age at implantation and experience after activation of the second implant on speech perception performance. Thirty children aged 3 to 13 years were recipients of 2 cochlear implants, received in sequential operations, a minimum of 6 months apart. All children received their first implant before 5 years of age and had acquired speech perception capabilities with the first device. They were divided into 3 age groups on the basis of age at time of second ear implantation: Group I, 3 to 5 years; Group II, 5.1 to 8 years; and Group III, 8.1 to 13 years. Speech perception measures in quiet included the Multisyllabic Lexical Neighborhood Test (MLNT) for Group I, the Lexical Neighborhood Test (LNT) for Groups II and III, and the Hearing In Noise Test for Children (HINT-C) sentences in quiet for Group III. Speech perception in noise was assessed using the Children's Realistic Intelligibility and Speech Perception (CRISP) test. Testing was performed preoperatively and again postactivation of the second implant at 3, 6, and 12 months (CRISP at 3 and 9 mo) in both the unilateral and bilateral conditions in a repeated-measures study design. Two-way repeated-measures analysis of variance was used to analyze statistical significance among device configurations and performance over time. US Multicenter. Results for speech perception in quiet show that children implanted sequentially acquire open-set speech perception in the second ear relatively quickly (within 6 mo). However, children younger than 8 years do so more rapidly and to a higher level of speech perception ability at 12 months than older children (mean second ear MLNT/LNT scores at 12 months: Group I, 83.9%; range, 71-96%; Group II, 59.5%; range, 40-88%; Group III, 32%; range, 12-56%). The second-ear mean HINT-C score for Group III children remained far less than that of the first ear even after 12 months of device use (44 versus 89%; t, 6.48; p<0.001; critical value, 0.025). Speech intelligibility for spondees in noise was significantly better under bilateral conditions than with either ear alone when all children were analyzed as a single group and for Group III children. At the 9-month test interval, performance in the bilateral configuration was significantly better for all noise conditions (13.2% better for noise at first cochlear implant, 6.8% better for the noise front and noise at second cochlear implant conditions, t=2.32, p=0.024, critical level=0.05 for noise front; t=3.75, p<0.0001, critical level=0.05 for noise at first implant; t=2.73, p = 0.008, critical level=0.05 for noise at second implant side). The bilateral benefit in noise increased with time from 3 to 9 months after activation of the second implant. This bilateral advantage is greatest when noise is directed toward the first implanted ear, indicating that the head shadow effect is the most effective binaural mechanism. The bilateral condition produced small improvements in speech perception in quiet and for individual Group I and Group II patient results in noise that, in view of the relatively small number of subjects tested, do not reach statistical significance. Sequential bilateral cochlear implantation in children of diverse ages has the potential to improve speech perception abilities in the second implanted ear and to provide access to the use of binaural mechanisms such as the head shadow effect. The improvement unfolds over time and continues to grow during the 6 to 12 months after activation of the second implant. Younger children in this study achieved higher open-set speech perception scores in the second ear, but older children still demonstrate bilateral benefit in noise. Determining the long-term impact and cost-effectiveness that results from such potential capabilities in bilaterally implanted children requires additional study with larger groups of subjects and more prolonged monitoring.
Manzoor, Nauman F; Wick, Cameron C; Wahba, Marian; Gupta, Amit; Piper, Robin; Murray, Gail S; Otteson, Todd; Megerian, Cliff A; Semaan, Maroun T
2016-02-01
To analyze audiometric outcomes after bilateral cochlear implantation in patients with isolated enlarged vestibular aqueduct (EVA) syndrome and associated incomplete partition (IP) malformations. Secondary objective was to analyze rate of cerebrospinal fluid (CSF) gusher in patients with IP-EVA spectrum deformities and compare this with the existing literature. Retrospective chart review. Thirty-two patients with EVA syndrome who received unilateral or bilateral cochlear implants between June 1999 and January 2014 were identified in the University Hospitals Case Medical Center cochlear implant database. Isolated EVA (IEVA) and Incomplete Partition Type II (IP-II) malformations were identified by reviewing high-resolution computed tomography (HRCT) imaging. Demographic information, age at implantation, surgical details, postimplantation audiometric data including speech reception thresholds (SRT), word, and sentence scores were reviewed and analyzed. Intra- and postoperative complications were analyzed as well and compared with the literature. Seventeen patients (32 implanted ears) had pediatric cochlear implantation for EVA-associated hearing loss. Data from 16 controls (32 implanted ears) were used to compare audiometric and speech outcomes of EVA cohort. Mean age at implantation was 6.8 years for EVA cohort and 6.0 years for controls. There was no statistically significant difference in long-term postoperative SRT, monaurally aided word scores, and binaurally tested word scores between pediatric EVA group and controls. The EVA patients had a long-term mean sentence score of 85.92%. A subset of EVA patients implanted at mean age of 3.18 years (n = 15 ears) had similar audiometric outcomes to another control group with Connexin 26 mutations (n = 20 ears) implanted at a similar age. Further subset analysis revealed no significant differences in age at implantation, SRT, and word scores in patients with IEVA and IP-II malformation. There was no significant association between size of vestibular aqueduct and age at implantation. There was no CSF gusher or other intra- or postoperative complications reported in our series. Bilateral sequential cochlear implantation can be performed safely in patients with EVA. Audiometric outcomes are excellent and comparable to pediatric cochlear implant patients with no malformations. CSF gusher rates can be minimized by trans-round window approach. Further long-term studies are needed to identify differences within IP-EVA spectrum deformities, audiometric outcomes, and proportions of EVA patients who will need cochlear implantation for hearing rehabilitation.
Central masking with bilateral cochlear implants
Lin, Payton; Lu, Thomas; Zeng, Fan-Gang
2013-01-01
Across bilateral cochlear implants, contralateral threshold shift has been investigated as a function of electrode difference between the masking and probe electrodes. For contralateral electric masking, maximum threshold elevations occurred when the position of the masker and probe electrode was approximately place-matched across ears. The amount of masking diminished with increasing masker-probe electrode separation. Place-dependent masking occurred in both sequentially implanted ears, and was not affected by the masker intensity or the time delay from the masker onset. When compared to previous contralateral masking results in normal hearing, the similarities between place-dependent central masking patterns suggest comparable mechanisms of overlapping excitation in the central auditory nervous system. PMID:23363113
Cost-effectiveness of pediatric bilateral cochlear implantation in Spain.
Pérez-Martín, Jorge; Artaso, Miguel A; Díez, Francisco J
2017-12-01
To determine the incremental cost-effectiveness of bilateral versus unilateral cochlear implantation for 1-year-old children suffering from bilateral sensorineural severe to profound hearing loss from the perspective of the Spanish public health system. Cost-utility analysis. We conducted a general-population survey to estimate the quality-of-life increase contributed by the second implant. We built a Markov influence diagram and evaluated it for a life-long time horizon with a 3% discount rate in the base case. The incremental cost-effectiveness ratio of simultaneous bilateral implantation with respect to unilateral implantation for 1-year-old children with severe to profound deafness is €10,323 per quality-adjusted life year (QALY). For sequential bilateral implantation, it rises to €11,733/QALY. Both options are cost-effective for the Spanish health system, whose willingness to pay is estimated at around €30,000/QALY. The probabilistic sensitivity analysis shows that the probability of bilateral implantation being cost-effective reaches 100% for that cost-effectiveness threshold. Bilateral implantation is clearly cost-effective for the population considered. If possible, it should be done simultaneously (i.e., in one surgical operation), because it is as safe and effective as sequential implantation, and saves costs for the system and for users and their families. Sequential implantation is also cost-effective for children who have received the first implant recently, but it is difficult to determine when it ceases to be so because of the lack of detailed data. These results are specific for Spain, but the model can easily be adapted to other countries. 2C. Laryngoscope, 127:2866-2872, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.
Chadha, Neil K; Papsin, Blake C; Jiwani, Salima; Gordon, Karen A
2011-09-01
To measure speech detection in noise performance for children with bilateral cochlear implants (BiCI), to compare performance in children with simultaneous implant versus those with sequential implant, and to compare performance to normal-hearing children. Prospective cohort study. Tertiary academic pediatric center. Children with early-onset bilateral deafness and 2-year BiCI experience, comprising the "sequential" group (>2 yr interimplantation delay, n = 12) and "simultaneous group" (no interimplantation delay, n = 10) and normal-hearing controls (n = 8). Thresholds to speech detection (at 0-degree azimuth) were measured with noise at 0-degree azimuth or ± 90-degree azimuth. Spatial unmasking (SU) as the noise condition changed from 0-degree azimuth to ± 90-degree azimuth and binaural summation advantage (BSA) of 2 over 1 CI. Speech detection in noise was significantly poorer than controls for both BiCI groups (p < 0.0001). However, the SU in the simultaneous group approached levels found in normal controls (7.2 ± 0.6 versus 8.6 ± 0.6 dB, p > 0.05) and was significantly better than that in the sequential group (3.9 ± 0.4 dB, p < 0.05). Spatial unmasking was unaffected by the side of noise presentation in the simultaneous group but, in the sequential group, was significantly better when noise was moved to the second rather than the first implanted ear (4.8 ± 0.5 versus 3.0 ± 0.4 dB, p < 0.05). This was consistent with a larger BSA from the sequential group's second rather than first CI. Children with simultaneously implanted BiCI demonstrated an advantage over children with sequential implant by using spatial cues to improve speech detection in noise.
Kraaijenga, Véronique J C; Ramakers, Geerte G J; Smulders, Yvette E; van Zon, Alice; Stegeman, Inge; Smit, Adriana L; Stokroos, Robert J; Hendrice, Nadia; Free, Rolien H; Maat, Bert; Frijns, Johan H M; Briaire, Jeroen J; Mylanus, E A M; Huinck, Wendy J; Van Zanten, Gijsbert A; Grolman, Wilko
2017-09-01
To date, no randomized clinical trial on the comparison between simultaneous and sequential bilateral cochlear implants (BiCIs) has been performed. To investigate the hearing capabilities and the self-reported benefits of simultaneous BiCIs compared with those of sequential BiCIs. A multicenter randomized clinical trial was conducted between January 12, 2010, and September 2, 2012, at 5 tertiary referral centers among 40 participants eligible for BiCIs. Main inclusion criteria were postlingual severe to profound hearing loss, age 18 to 70 years, and a maximum duration of 10 years without hearing aid use in both ears. Data analysis was conducted from May 24 to June 12, 2016. The simultaneous BiCI group received 2 cochlear implants during 1 surgical procedure. The sequential BiCI group received 2 cochlear implants with an interval of 2 years between implants. First, the results 1 year after receiving simultaneous BiCIs were compared with the results 1 year after receiving sequential BiCIs. Second, the results of 3 years of follow-up for both groups were compared separately. The primary outcome measure was speech intelligibility in noise from straight ahead. Secondary outcome measures were speech intelligibility in noise from spatially separated sources, speech intelligibility in silence, localization capabilities, and self-reported benefits assessed with various hearing and quality of life questionnaires. Nineteen participants were randomized to receive simultaneous BiCIs (11 women and 8 men; median age, 52 years [interquartile range, 36-63 years]), and another 19 participants were randomized to undergo sequential BiCIs (8 women and 11 men; median age, 54 years [interquartile range, 43-64 years]). Three patients did not receive a second cochlear implant and were unavailable for follow-up. Comparable results were found 1 year after simultaneous or sequential BiCIs for speech intelligibility in noise from straight ahead (difference, 0.9 dB [95% CI, -3.1 to 4.4 dB]) and all secondary outcome measures except for localization with a 30° angle between loudspeakers (difference, -10% [95% CI, -20.1% to 0.0%]). In the sequential BiCI group, all participants performed significantly better after the BiCIs on speech intelligibility in noise from spatially separated sources and on all localization tests, which was consistent with most of the participants' self-reported hearing capabilities. Speech intelligibility-in-noise results improved in the simultaneous BiCI group up to 3 years following the BiCIs. This study shows comparable objective and subjective hearing results 1 year after receiving simultaneous BiCIs and sequential BiCIs with an interval of 2 years between implants. It also shows a significant benefit of sequential BiCIs over a unilateral cochlear implant. Until 3 years after receiving simultaneous BiCIs, speech intelligibility in noise significantly improved compared with previous years. trialregister.nl Identifier: NTR1722.
Results of a prospective surgical audit of bilateral paediatric cochlear implantation in the UK.
Broomfield, Stephen J; Murphy, John; Wild, Dominik C; Emmett, Stevan R; O'Donoghue, Gerard M
2014-09-01
Since being approved in 2009, bilateral simultaneous cochlear implantation (CI) has been the standard treatment for children in the UK who meet the criteria for CI. The aim was to report surgical outcomes of bilateral CI in the UK. Between January 2010 and December 2011, 14 UK CI centres collected data prospectively: demographics, aetiology, use of imaging, device type, surgery duration, use of intra-operative electrophysiology, length of stay, and post-operative complications. 1397 CI procedures in 961 CI recipients were included; 436 bilateral simultaneous, 394 bilateral sequential, and 131 unilateral. The majority (85%) were congenitally deaf. The commonest causes of acquired deafness were meningitis and cytomegalovirus infection. The median age for congenitally deaf bilateral simultaneous CI was 2.2 years, mean surgical duration 4.5 hours. 6.3% surgeries were day case procedures. Eight cases (2.0%) of planned bilateral CI had unilateral surgery. The overall major complication rate was 1.6% (0.9% excluding device failures), including explantation due to infection (0.2%), cerebrospinal fluid leak (0.2%), and meningitis (0.1%). There were no permanent facial nerve palsies and no deaths. Sixty-two (6.5%) immediate minor complications included 12 (1.3%) children with significant vestibular impairment. The complication rate was similar following bilateral CI compared to sequential and unilateral CI, and is comparable to other published series. This prospective multi-centre audit provides evidence that bilateral paediatric CI is a safe procedure in the UK, thus endorsing its role as a major therapeutic intervention in childhood deafness.
Auditory plasticity in deaf children with bilateral cochlear implants
NASA Astrophysics Data System (ADS)
Litovsky, Ruth
2005-04-01
Human children with cochlear implants represent a unique population of individuals who have undergone variable amounts of auditory deprivation prior to being able to hear. Even more unique are children who received bilateral cochlear implants (BICIs), in sequential surgical procedures, several years apart. Auditory deprivation in these individuals consists of a two-stage process, whereby complete deafness is experienced initially, followed by deafness in one ear. We studied the effects of post-implant experience on the ability of deaf children to localize sounds and to understand speech in noise. These are two of the most important functions that are known to depend on binaural hearing. Children were tested at time intervals ranging from 3-months to 24-months following implantation of the second ear, while listening with either implant alone or bilaterally. Our findings suggest that the period during which plasticity occurs in human binaural system is protracted, extending into middle-to-late childhood. The rate at which benefits from bilateral hearing abilities are attained following deprivation is faster for speech intelligibility in noise compared with sound localization. Finally, the age at which the second implant was received may play an important role in the acquisition of binaural abilities. [Work supported by NIH-NIDCD.
Yamamoto, Ryosuke; Naito, Yasushi; Tona, Risa; Moroto, Saburo; Tamaya, Rinko; Fujiwara, Keizo; Shinohara, Shogo; Takebayashi, Shinji; Kikuchi, Masahiro; Michida, Tetsuhiko
2017-11-01
An effect of audio-visual (AV) integration is observed when the auditory and visual stimuli are incongruent (the McGurk effect). In general, AV integration is helpful especially in subjects wearing hearing aids or cochlear implants (CIs). However, the influence of AV integration on spoken word recognition in individuals with bilateral CIs (Bi-CIs) has not been fully investigated so far. In this study, we investigated AV integration in children with Bi-CIs. The study sample included thirty one prelingually deafened children who underwent sequential bilateral cochlear implantation. We assessed their responses to congruent and incongruent AV stimuli with three CI-listening modes: only the 1st CI, only the 2nd CI, and Bi-CIs. The responses were assessed in the whole group as well as in two sub-groups: a proficient group (syllable intelligibility ≥80% with the 1st CI) and a non-proficient group (syllable intelligibility < 80% with the 1st CI). We found evidence of the McGurk effect in each of the three CI-listening modes. AV integration responses were observed in a subset of incongruent AV stimuli, and the patterns observed with the 1st CI and with Bi-CIs were similar. In the proficient group, the responses with the 2nd CI were not significantly different from those with the 1st CI whereas in the non-proficient group the responses with the 2nd CI were driven by visual stimuli more than those with the 1st CI. Our results suggested that prelingually deafened Japanese children who underwent sequential bilateral cochlear implantation exhibit AV integration abilities, both in monaural listening as well as in binaural listening. We also observed a higher influence of visual stimuli on speech perception with the 2nd CI in the non-proficient group, suggesting that Bi-CIs listeners with poorer speech recognition rely on visual information more compared to the proficient subjects to compensate for poorer auditory input. Nevertheless, poorer quality auditory input with the 2nd CI did not interfere with AV integration with binaural listening (with Bi-CIs). Overall, the findings of this study might be used to inform future research to identify the best strategies for speech training using AV integration effectively in prelingually deafened children. Copyright © 2017 Elsevier B.V. All rights reserved.
Bilateral cochlear implantation in a patient with bilateral temporal bone fractures.
Chung, Jae Ho; Shin, Myung Chul; Min, Hyun Jung; Park, Chul Won; Lee, Seung Hwan
2011-01-01
With the emphasis on bilateral hearing nowadays, bilateral cochlear implantation has been tried out for bilateral aural rehabilitation. Bilateral sensorineural hearing loss caused by head trauma can get help from cochlear implantation. We present the case of a 44-year-old man with bilateral otic capsule violating temporal bone fractures due to head trauma. The patient demonstrated much improved audiometric and psychoacoustic performance after bilateral cochlear implantation. We believe bilateral cochlear implantation in such patient can be a very effective tool for rehabilitation. Copyright © 2011 Elsevier Inc. All rights reserved.
Marsella, Pasquale; Scorpecci, Alessandro; Vecchiato, Giovanni; Colosimo, Alfredo; Maglione, Anton Giulio; Babiloni, Fabio
2014-05-01
To investigate by means of non-invasive neuroelectrical imaging the differences in the perceived pleasantness of music between children with cochlear implants (CI) and normal-hearing (NH) children. 5 NH children and 5 children who received a sequential bilateral CI were assessed by means of High-Resolution EEG with Source Reconstruction as they watched a musical cartoon. Implanted children were tested before and after the second implant. For each subject the scalp Power Spectral Density was calculated in order to investigate the EEG alpha asymmetry. The scalp topographic distribution of the EEG power spectrum in the alpha band was different in children using one CI as compared to NH children (see figure). With two CIs the cortical activation pattern changed significantly, becoming more similar to the one observed in NH children. The findings support the hypothesis that bilateral CI users have a closer-to-normal perception of the pleasantness of music than unilaterally implanted children.
Naito, Y; Okazawa, H; Honjo, I; Hirano, S; Takahashi, H; Shiomi, Y; Hoji, W; Kawano, M; Ishizu, K; Yonekura, Y
1995-07-01
Six postlingually deaf patients using multi-channel cochlear implants were examined by positron emission tomography (PET) using 15O-labeled water. Changes in regional cerebral blood flow (rCBF) were measured during different sound stimuli. The stimulation paradigms employed consisted of two sets of three different conditions; (1) no sound stimulation with the speech processor of the cochlear implant system switched off, (2) hearing white noise and (3) hearing sequential Japanese sentences. In the primary auditory area, the mean rCBF increase during noise stimulation was significantly greater on the side contralateral to the implant than on the ipsilateral side. Speech stimulation caused significantly greater rCBF increase compared with noise stimulation in the left immediate auditory association area (P < 0.01), the bilateral auditory association areas (P < 0.01), the posterior part of the bilateral inferior frontal gyri; the Broca's area (P < 0.01) and its right hemisphere homologue (P < 0.05). Activation of cortices related to verbal and non-verbal sound recognition was clearly demonstrated in the current subjects probably because complete silence was attained in the control condition.
Simultaneous versus sequential bilateral cochlear implants in adults: Cost analysis in a US setting.
Trinidade, Aaron; Page, Joshua C; Kennett, Sarah W; Cox, Matthew D; Dornhoffer, John L
2017-11-01
From a purely surgical efficiency point of view, simultaneous cochlear implantation (SimCI) is more cost-effective than sequential cochlear implantation (SeqCI) when total direct costs are considered (implant and hospital costs). However, in a setting where only SeqCI is practiced and a proportion of initially unilaterally implanted patients do not progress to a second implant, this may not be the case, especially when audiological costs are factored in. We present a cost analysis of such a scenario as would occur in our institution. Retrospective review and cost analysis. Between 2005 and 2015, 370 patients fulfilled the audiological criteria for bilateral implantation. Of those, 267 (72.1%) underwent unilateral cochlear implantation only, 101 (27.3%) progressed to SeqCI, and two underwent SimCI. The total hospital, surgical, and implant costs, and initial implant stimulation series audiological costs between August 2015 and August 2016 (29 adult patients) were used in this analysis. The total hospital, surgical, and implant costs for this period was $2,731,360.42. Based on previous local trends, if a projected eight (27.3%) of these patients decide to progress to SeqCI, this will cost an additional $750,811.04, resulting in an overall total of $3,482,171.46 for these 29 patients. Had all 29 undergone SimCI, the total projected cost would have been $3,332,991.75, representing a total potential saving of $149,179.67 (4.3%). In institutions where only SeqCI is allowed in adults, overall patient management may cost marginally more than if SimCI were practiced. This will be of interest to CI programs and health insurance companies. 4. Laryngoscope, 127:2615-2618, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.
Domville-Lewis, Chloe; Santa Maria, Peter L; Upson, Gemma; Chester-Browne, Ronel; Atlas, Marcus D
2015-01-01
The purpose of this study was to establish a statistical definition for stability in cochlear implant maps. Once defined, this study aimed to compare the duration taken to achieve a stable map in first and second implants in patients who underwent sequential bilateral cochlear implantation. This article also sought to evaluate a number of factors that potentially affect map stability. A retrospective cohort study of 33 patients with sensorineural hearing loss who received sequential bilateral cochlear implantation (Cochlear, Sydney, Australia), performed by the senior author. Psychophysical parameters of hearing threshold scores, comfort scores, and the dynamic range were measured for the apical, medial, and basal portions of the cochlear implant electrode at a range of intervals postimplantation. Stability was defined statistically as a less than 10% difference in threshold, comfort, and dynamic range scores over three consecutive mapping sessions. A senior cochlear implant audiologist, blinded to implant order and the statistical results, separately analyzed these psychophysical map parameters using current assessment methods. First and second implants were compared for duration to achieve stability, age, gender, the duration of deafness, etiology of deafness, time between the insertion of the first and second implant, and the presence or absence of preoperative hearing aids were evaluated and its relationship to stability. Statistical analysis included performing a two-tailed Student's t tests and least squares regression analysis, with a statistical significance set at p ≤ 0.05. There was a significant positive correlation between the devised statistical definition and the current audiology methods for assessing stability, with a Pearson correlation coefficient r = 0.36 and a least squares regression slope (b) of 0.41, df(58), 95% confidence interval 0.07 to 0.55 (p = 0.004). The average duration from device switch on to stability in the first implant was 87 days using current audiology methods and 81 days using the statistical definition, with no statistically significant difference between assessment methods (p = 0.2). The duration to achieve stability in the second implant was 51 days using current audiology methods and 60 days using the statistical method, and again no difference between the two assessment methods (p = 0.13). There was a significant reduction in the time to achieve stability in second implants for both audiology and statistical methods (p < 0.001 and p = 0.02, respectively). There was a difference in duration to achieve stability based on electrode array region, with basal portions taking longer to stabilize than apical in the first implant (p = 0.02) and both apical and medial segments in second implants (p = 0.004 and p = 0.01, respectively). No factors that were evaluated in this study, including gender, age, etiology of deafness, duration of deafness, time between implant insertion, and the preoperative hearing aid status, were correlated with stability duration in either stability assessment method. Our statistical definition can accurately predict cochlear implant map stability when compared with current audiology practices. Cochlear implants that are implanted second tend to stabilize sooner than the first, which has a significant impact on counseling before a second implant. No factors evaluated affected the duration required to achieve stability in this study.
Retrofacial approach to access the round window for cochlear implantation of malformed ears.
Rizk, Habib; O'Connell, Brendan; Stevens, Shawn; Meyer, Ted
2015-03-01
To report the use of the retrofacial approach for cochlear implantation in three cases of malformed ears with inaccessible round windows through the standard facial recess. Two children with bilateral profound sensorineural hearing loss who were cochlear implant candidates. One patient had bilateral sequential cochlear implantations and the other a unilateral implant. Retrofacial approach to access the posterior mesotympanum and visualize the round window. Ability to complete the surgery with full insertion of the implant and no complications such as facial nerve injury. We implanted three ears in two patients with multiple external and middle ear malformations with an aberrant facial nerve or a posteriorly displaced round window niche. The standard facial recess approach did not allow visualization of the round window. We resorted to a retrofacial approach to access the posterior mesotympanum and proceeded with the surgery through an anterior and inferior cochleostomy or through the round window. In cases with an aberrant facial nerve or inaccessible round window through the facial recess, the retrofacial approach is a good alternative but requires a certain level of expertise and familiarity with temporal bone anatomy. The decision to use an unconventional approach should be considered before surgery, but the ultimate decision may require intraoperative assessment.
[Cochlear implant in children: rational, indications and cost/efficacy].
Martini, A; Bovo, R; Trevisi, P; Forli, F; Berrettini, S
2013-06-01
A cochlear implant (CI) is a partially implanted electronic device that can help to provide a sense of sound and support speech to severely to profoundly hearing impaired patients. It is constituted by an external portion, that usually sits behind the ear and an internal portion surgically placed under the skin. The external components include a microphone connected to a speech processor that selects and arranges sounds pucked up by the microphone. This is connected to a transmitter coil, worn on the side of the head, which transmits data to an internal receiver coil placed under the skin. The received data are delivered to an array of electrodes that are surgically implanted within the cochlea. The primary neural targets of the electrodes are the spiral ganglion cells which innervate fibers of the auditory nerve. When the electrodes are activated by the signal, they send a current along the auditory nerve and auditory pathways to the auditory cortex. Children and adults who are profoundly or severely hearing impaired can be fitted with cochlear implants. According to the Food and Drug Administration, approximately 188,000 people worldwide have received implants. In Italy it is extimated that there are about 6-7000 implanted patients, with an average of 700 CI surgeries per year. Cochlear implantation, followed by intensive postimplantation speech therapy, can help young children to acquire speech, language, and social skills. Early implantation provides exposure to sounds that can be helpful during the critical period when children learn speech and language skills. In 2000, the Food and Drug Administration lowered the age of eligibility to 12 months for one type of CI. With regard to the results after cochlear implantation in relation to early implantation, better linguistic results are reported in children implanted before 12 months of life, even if no sufficient data exist regarding the relation between this advantage and the duration of implant use and how long this advantage persists in the subsequent years. With regard to cochlear implantation in children older than 12 months the studies show better hearing and linguistic results in children implanted at earlier ages. A sensitive period under 24-36 months has been identified over which cochlear implantation is reported to be less effective in terms of improvement in speech and hearing results. With regard to clinical effectiveness of bilateral cochlear implantation, greater benefits from bilateral implants compared to monolateral ones when assessing hearing in quiet and in noise and in sound localization abilities are reported to be present in both case of simultaneous or sequential bilateral implantation. However, with regard to the delay between the surgeries in sequential bilateral implantation, although benefit is reported to be present even after very long delays, on average long delays between surgeries seems to negatively affect the outcome with the second implant. With regard to benefits after cochlear implantation in children with multiple disabilities, benefits in terms of speech perception and communication as well as in quality of the daily life are reported even if benefits are slower and lower in comparison to those generally attained by implanted children without additional disabilities. Regarding the costs/efficacy ratio, the CI is expensive, in particular because of the cost of the high technological device, long life support, but even if healthcare costs are high, the savings in terms of indirect costs and quality of life are important. The CI, in fact, has a positive impact in terms of quality of life.
The effects of early auditory-based intervention on adult bilateral cochlear implant outcomes.
Lim, Stacey R
2017-09-01
The goal of this exploratory study was to determine the types of improvement that sequentially implanted auditory-verbal and auditory-oral adults with prelingual and childhood hearing loss received in bilateral listening conditions, compared to their best unilateral listening condition. Five auditory-verbal adults and five auditory-oral adults were recruited for this study. Participants were seated in the center of a 6-loudspeaker array. BKB-SIN sentences were presented from 0° azimuth, while multi-talker babble was presented from various loudspeakers. BKB-SIN scores in bilateral and the best unilateral listening conditions were compared to determine the amount of improvement gained. As a group, the participants had improved speech understanding scores in the bilateral listening condition. Although not statistically significant, the auditory-verbal group tended to have greater speech understanding with greater levels of competing background noise, compared to the auditory-oral participants. Bilateral cochlear implantation provides individuals with prelingual and childhood hearing loss with improved speech understanding in noise. A higher emphasis on auditory development during the critical language development years may add to increased speech understanding in adulthood. However, other demographic factors such as age or device characteristics must also be considered. Although both auditory-verbal and auditory-oral approaches emphasize spoken language development, they emphasize auditory development to different degrees. This may affect cochlear implant (CI) outcomes. Further consideration should be made in future auditory research to determine whether these differences contribute to performance outcomes. Additional investigation with a larger participant pool, controlled for effects of age and CI devices and processing strategies, would be necessary to determine whether language learning approaches are associated with different levels of speech understanding performance.
A longitudinal study of the bilateral benefit in children with bilateral cochlear implants.
Asp, Filip; Mäki-Torkko, Elina; Karltorp, Eva; Harder, Henrik; Hergils, Leif; Eskilsson, Gunnar; Stenfelt, Stefan
2015-02-01
To study the development of the bilateral benefit in children using bilateral cochlear implants by measurements of speech recognition and sound localization. Bilateral and unilateral speech recognition in quiet, in multi-source noise, and horizontal sound localization was measured at three occasions during a two-year period, without controlling for age or implant experience. Longitudinal and cross-sectional analyses were performed. Results were compared to cross-sectional data from children with normal hearing. Seventy-eight children aged 5.1-11.9 years, with a mean bilateral cochlear implant experience of 3.3 years and a mean age of 7.8 years, at inclusion in the study. Thirty children with normal hearing aged 4.8-9.0 years provided normative data. For children with cochlear implants, bilateral and unilateral speech recognition in quiet was comparable whereas a bilateral benefit for speech recognition in noise and sound localization was found at all three test occasions. Absolute performance was lower than in children with normal hearing. Early bilateral implantation facilitated sound localization. A bilateral benefit for speech recognition in noise and sound localization continues to exist over time for children with bilateral cochlear implants, but no relative improvement is found after three years of bilateral cochlear implant experience.
Sound-direction identification with bilateral cochlear implants.
Neuman, Arlene C; Haravon, Anita; Sislian, Nicole; Waltzman, Susan B
2007-02-01
The purpose of this study was to compare the accuracy of sound-direction identification in the horizontal plane by bilateral cochlear implant users when localization was measured with pink noise and with speech stimuli. Eight adults who were bilateral users of Nucleus 24 Contour devices participated in the study. All had received implants in both ears in a single surgery. Sound-direction identification was measured in a large classroom by using a nine-loudspeaker array. Localization was tested in three listening conditions (bilateral cochlear implants, left cochlear implant, and right cochlear implant), using two different stimuli (a speech stimulus and pink noise bursts) in a repeated-measures design. Sound-direction identification accuracy was significantly better when using two implants than when using a single implant. The mean root-mean-square error was 29 degrees for the bilateral condition, 54 degrees for the left cochlear implant, and 46.5 degrees for the right cochlear implant condition. Unilateral accuracy was similar for right cochlear implant and left cochlear implant performance. Sound-direction identification performance was similar for speech and pink noise stimuli. The data obtained in this study add to the growing body of evidence that sound-direction identification with bilateral cochlear implants is better than with a single implant. The similarity in localization performance obtained with the speech and pink noise supports the use of either stimulus for measuring sound-direction identification.
Use of data mining to predict significant factors and benefits of bilateral cochlear implantation.
Ramos-Miguel, Angel; Perez-Zaballos, Teresa; Perez, Daniel; Falconb, Juan Carlos; Ramosb, Angel
2015-11-01
Data mining (DM) is a technique used to discover pattern and knowledge from a big amount of data. It uses artificial intelligence, automatic learning, statistics, databases, etc. In this study, DM was successfully used as a predictive tool to assess disyllabic speech test performance in bilateral implanted patients with a success rate above 90%. 60 bilateral sequentially implanted adult patients were included in the study. The DM algorithms developed found correlations between unilateral medical records and Audiological test results and bilateral performance by establishing relevant variables based on two DM techniques: the classifier and the estimation. The nearest neighbor algorithm was implemented in the first case, and the linear regression in the second. The results showed that patients with unilateral disyllabic test results below 70% benefited the most from a bilateral implantation. Finally, it was observed that its benefits decrease as the inter-implant time increases.
Grieco-Calub, Tina M.; Litovsky, Ruth Y.
2010-01-01
Objectives To measure sound source localization in children who have sequential bilateral cochlear implants (BICIs); to determine if localization accuracy correlates with performance on a right-left discrimination task (i.e., spatial acuity); to determine if there is a measurable bilateral benefit on a sound source identification task (i.e., localization accuracy) by comparing performance under bilateral and unilateral listening conditions; to determine if sound source localization continues to improve with longer durations of bilateral experience. Design Two groups of children participated in this study: a group of 21 children who received BICIs in sequential procedures (5–14 years old) and a group of 7 typically-developing children with normal acoustic hearing (5 years old). Testing was conducted in a large sound-treated booth with loudspeakers positioned on a horizontal arc with a radius of 1.2 m. Children participated in two experiments that assessed spatial hearing skills. Spatial hearing acuity was assessed with a discrimination task in which listeners determined if a sound source was presented on the right or left side of center; the smallest angle at which performance on this task was reliably above chance is the minimum audible angle. Sound localization accuracy was assessed with a sound source identification task in which children identified the perceived position of the sound source from a multi-loudspeaker array (7 or 15); errors are quantified using the root-mean-square (RMS) error. Results Sound localization accuracy was highly variable among the children with BICIs, with RMS errors ranging from 19°–56°. Performance of the NH group, with RMS errors ranging from 9°–29° was significantly better. Within the BICI group, in 11/21 children RMS errors were smaller in the bilateral vs. unilateral listening condition, indicating bilateral benefit. There was a significant correlation between spatial acuity and sound localization accuracy (R2=0.68, p<0.01), suggesting that children who achieve small RMS errors tend to have the smallest MAAs. Although there was large intersubject variability, testing of 11 children in the BICI group at two sequential visits revealed a subset of children who show improvement in spatial hearing skills over time. Conclusions A subset of children who use sequential BICIs can acquire sound localization abilities, even after long intervals between activation of hearing in the first- and second-implanted ears. This suggests that children with activation of the second implant later in life may be capable of developing spatial hearing abilities. The large variability in performance among the children with BICIs suggests that maturation of sound localization abilities in children with BICIs may be dependent on various individual subject factors such as age of implantation and chronological age. PMID:20592615
Early Vocabulary Development in Children with Bilateral Cochlear Implants
ERIC Educational Resources Information Center
Välimaa, Taina; Kunnari, Sari; Laukkanen-Nevala, Päivi; Lonka, Eila
2018-01-01
Background: Children with unilateral cochlear implants (CIs) may have delayed vocabulary development for an extended period after implantation. Bilateral cochlear implantation is reported to be associated with improved sound localization and enhanced speech perception in noise. This study proposed that bilateral implantation might also promote…
Spectral-Temporal Modulated Ripple Discrimination by Children With Cochlear Implants.
Landsberger, David M; Padilla, Monica; Martinez, Amy S; Eisenberg, Laurie S
A postlingually implanted adult typically develops hearing with an intact auditory system, followed by periods of deafness (or near deafness) and adaptation to the implant. For an early implanted child whose brain is highly plastic, the auditory system matures with consistent input from a cochlear implant. It is likely that the auditory system of early implanted cochlear implant users is fundamentally different than postlingually implanted adults. The purpose of this study is to compare the basic psychophysical capabilities and limitations of these two populations on a spectral resolution task to determine potential effects of early deprivation and plasticity. Performance on a spectral resolution task (Spectral-temporally Modulated Ripple Test [SMRT]) was measured for 20 bilaterally implanted, prelingually deafened children (between 5 and 13 years of age) and 20 hearing children within the same age range. Additionally, 15 bilaterally implanted, postlingually deafened adults, and 10 hearing adults were tested on the same task. Cochlear implant users (adults and children) were tested bilaterally, and with each ear alone. Hearing listeners (adults and children) were tested with the unprocessed SMRT and with a vocoded version that simulates an 8-channel cochlear implant. For children with normal hearing, a positive correlation was found between age and SMRT score for both the unprocessed and vocoded versions. Older hearing children performed similarly to hearing adults in both the unprocessed and vocoded test conditions. However, for children with cochlear implants, no significant relationship was found between SMRT score and chronological age, age at implantation, or years of implant experience. Performance by children with cochlear implants was poorer than performance by cochlear implanted adults. It was also found that children implanted sequentially tended to have better scores with the first implant compared with the second implant. This difference was not observed for adults. An additional finding was that SMRT score was negatively correlated with age for adults with implants. Results from this study suggest that basic psychophysical capabilities of early implanted children and postlingually implanted adults differ when assessed in the sound field using their personal implant processors. Because spectral resolution does not improve with age for early implanted children, it seems likely that the sparse representation of the signal provided by a cochlear implant limits spectral resolution development. These results are supported by the finding that postlingually implanted adults, whose auditory systems matured before the onset of hearing loss, perform significantly better than early implanted children on the spectral resolution test.
Enduring Advantages of Early Cochlear Implantation for Spoken Language Development
Geers, Ann E.; Nicholas, Johanna G.
2013-01-01
Purpose To determine whether the precise age of implantation (AOI) remains an important predictor of spoken language outcomes in later childhood for those who received a cochlear implant (CI) between 12–38 months of age. Relative advantages of receiving a bilateral CI after age 4.5, better pre-CI aided hearing, and longer CI experience were also examined. Method Sixty children participated in a prospective longitudinal study of outcomes at 4.5 and 10.5 years of age. Twenty-nine children received a sequential second CI. Test scores were compared to normative samples of hearing age-mates and predictors of outcomes identified. Results Standard scores on language tests at 10.5 years of age remained significantly correlated with age of first cochlear implantation. Scores were not associated with receipt of a second, sequentially-acquired CI. Significantly higher scores were achieved for vocabulary as compared with overall language, a finding not evident when the children were tested at younger ages. Conclusion Age-appropriate spoken language skills continued to be more likely with younger AOI, even after an average of 8.6 years of additional CI use. Receipt of a second implant between ages 4–10 years and longer duration of device use did not provide significant added benefit. PMID:23275406
Cochlear Implantation after Bilateral Transverse Temporal Bone Fractures
Shin, Jong-Heon; Park, SooChan; Baek, Sam-Hyun
2008-01-01
Patients deafened by a severe head injury are rarely encountered. We report a case of a 65-yr-old man with bilateral transverse temporal bone fractures due to head injury. He underwent cochlear implant and achieved a satisfactory auditory rehabilitation. Imaging studies of temporal bone before performing a cochlear implantation provide important information on a patient with bilateral temporal bone fractures. Cochlear implantations with careful planning in such a patient may be a very effective method for aural rehabilitation. PMID:19434252
Hearing rehabilitation with a binaural cochlear implant in a patient with Erdheim-Chester disease.
Querat, Charlotte; Thai-Van, Hung; Durand, Denis Vital; Cotton, François; Gallego, Stéphane; Truy, Eric
2015-09-01
Erdheim-Chester disease (ECD) is a rare non-Langerhans form of histiocytosis. This paper reports an exceptional case of bilateral neural involvement, responsible for profound hearing loss. Bilateral cochlear implantation was performed. We present a 57-year-old man affected by ECD with profound bilateral hearing loss. The patient underwent cochlear implantation with a binaural Digisonic(®) cochlear implant, 7 years after the initial diagnosis. Speech intelligibility rose to a plateau after about 6 months of cochlear implant use. The average outcome of speech intelligibility over time was 55% for dissyllabic words without lip reading, and 70% for sentences. Perception score decreased before the patient died from ECD. A description of the ECD and its otological manifestations is presented. This paper reports the effective hearing rehabilitation of profound bilateral hearing loss by the means of a binaural Digisonic(®) cochlear implant.
Simultaneous bilateral cochlear implantation in a five-month-old child with Usher syndrome.
Alsanosi, A A
2015-09-01
To report a rare case of simultaneous bilateral cochlear implantation in a five-month-old child with Usher syndrome. Case report. A five-month-old boy with Usher syndrome and congenital profound bilateral deafness underwent simultaneous bilateral cochlear implantation. The decision to perform implantation in such a young child was based on his having a supportive family and the desire to foster his audiological development before his vision deteriorated. The subject experienced easily resolvable intra- and post-operative adverse events, and was first fitted with an externally worn audio processor four weeks after implantation. At 14 months of age, his audiological development was age-appropriate. Simultaneous bilateral cochlear implantation is possible, and even advisable, in children as young as five months old when performed by an experienced implantation team.
Vecchiato, G; Maglione, A G; Scorpecci, A; Malerba, P; Marsella, P; Di Francesco, G; Vitiello, S; Colosimo, A; Babiloni, Fabio
2012-01-01
Interestingly, the international debate about the quality of music fruition for cochlear implanted users does not take into account the hypothesis that bilateral users could perceive music in a more pleasant way with respect to monolateral users. In this scenario, the aim of the present study was to investigate if cerebral signs of pleasantness during music perception in healthy child are similar to those observed in monolateral and in bilateral cochlear implanted users. In fact, previous observations in literature on healthy subjects have indicated that variations of the frontal EEG alpha activity are correlated with the perceived pleasantness of the sensory stimulation received (approach-withdrawal theory). In particular, here we described differences between cortical activities estimated in the alpha frequency band for a healthy child and in patients having a monolateral or a bilateral cochlear implant during the fruition of a musical cartoon. The results of the present analysis showed that the alpha EEG asymmetry patterns observed in a healthy child and that of a bilateral cochlear implanted patient are congruent with the approach-withdrawal theory. Conversely, the scalp topographic distribution of EEG power spectra in the alpha band resulting from the monolateral cochlear user presents a different EEG pattern from the normal and bilateral implanted patients. Such differences could be explained at the light of the approach-withdrawal theory. In fact, the present findings support the hypothesis that a monolateral cochlear implanted user could perceive the music in a less pleasant way when compared to a healthy subject or to a bilateral cochlear user.
Huang, B Y; Roche, J P; Buchman, C A; Castillo, M
2010-11-01
Cranial abnormalities, including CND, are common in children with ANSD. The purpose of this study was to assess whether CND is associated with brain or inner ear abnormalities in a cohort of children with ANSD. Two neuroradiologists retrospectively reviewed cranial MR imaging examinations in 103 children with ANSD. Brain, cochlear nerve, and temporal bone abnormalities were described and tabulated. Findings were stratified on the basis of the presence and laterality of CND, and differences in the presence of associated inner ear or intracranial abnormalities were assessed by using 2-tailed Fisher exact tests. CND was identified in 33.0% of children and 26.9% of ears with ANSD. Significantly more patients with bilateral CND had intracranial abnormalities than those with unilateral CND (60.0% versus 15.8%; P = .012). Forty percent of patients with bilateral CND, 0% of patients with unilateral CND, and 10.1% of those without CND demonstrated hindbrain malformations. Patients with bilateral CND were more likely to demonstrate hindbrain malformations than patients with normal nerves (P = .01) or unilateral CND (P = .004). Labyrinthine abnormalities were significantly more common in patients with bilateral CND than in those without CND (P ≤ .001). Cochlear anomalies were more common in patients with bilateral versus unilateral CND (P = .01). IAC and cochlear aperture stenosis were more common in those with unilateral and bilateral CND than those without CND (both P < .001). Cochlear and hindbrain abnormalities are significantly more common among patients with ANSD with bilateral CND compared with those with at least 1 intact cochlear nerve.
Dunn, Camille C.; Perreau, Ann; Gantz, Bruce; Tyler, Richard
2009-01-01
Background Research suggests that for individuals with significant low-frequency hearing, implantation of a short-electrode cochlear implant may provide benefits of improved speech perception abilities. Because this strategy combines acoustic and electrical hearing within the same ear while at the same time preserving low-frequency residual acoustic hearing in both ears, localization abilities may also be improved. However, very little research has focused on the localization and spatial hearing abilities of users with a short-electrode cochlear implant. Purpose The purpose of this study was to evaluate localization abilities for listeners with a short-electrode cochlear implant who continue to wear hearing aids in both ears. A secondary purpose was to document speech perception abilities using a speech in noise test with spatially-separate noise sources. Research Design Eleven subjects that utilized a short-electrode cochlear implant and bilateral hearing aids were tested on localization and speech perception with multiple noise locations using an eight-loudspeaker array. Performance was assessed across four listening conditions using various combinations of cochlear implant and/or hearing aid use. Results Results for localization showed no significant difference between using bilateral hearing aids and bilateral hearing aids plus the cochlear implant. However, there was a significant difference between the bilateral hearing aid condition and the implant plus use of a contralateral hearing aid for all eleven subjects. Results for speech perception showed a significant benefit when using bilateral hearing aids plus the cochlear implant over use of the implant plus only one hearing aid. Conclusion Combined use of both hearing aids and the cochlear implant show significant benefits for both localization and speech perception in noise for users with a short-electrode cochlear implant. These results emphasize the importance of low-frequency information in two ears for the purpose of localization and speech perception in noise. PMID:20085199
Dunn, Camille C; Perreau, Ann; Gantz, Bruce; Tyler, Richard S
2010-01-01
Research suggests that for individuals with significant low-frequency hearing, implantation of a short-electrode cochlear implant may provide benefits of improved speech perception abilities. Because this strategy combines acoustic and electrical hearing within the same ear while at the same time preserving low-frequency residual acoustic hearing in both ears, localization abilities may also be improved. However, very little research has focused on the localization and spatial hearing abilities of users with a short-electrode cochlear implant. The purpose of this study was to evaluate localization abilities for listeners with a short-electrode cochlear implant who continue to wear hearing aids in both ears. A secondary purpose was to document speech perception abilities using a speech-in-noise test with spatially separate noise sources. Eleven subjects that utilized a short-electrode cochlear implant and bilateral hearing aids were tested on localization and speech perception with multiple noise locations using an eight-loudspeaker array. Performance was assessed across four listening conditions using various combinations of cochlear implant and/or hearing aid use. Results for localization showed no significant difference between using bilateral hearing aids and bilateral hearing aids plus the cochlear implant. However, there was a significant difference between the bilateral hearing aid condition and the implant plus use of a contralateral hearing aid for all 11 subjects. Results for speech perception showed a significant benefit when using bilateral hearing aids plus the cochlear implant over use of the implant plus only one hearing aid. Combined use of both hearing aids and the cochlear implant show significant benefits for both localization and speech perception in noise for users with a short-electrode cochlear implant. These results emphasize the importance of low-frequency information in two ears for the purpose of localization and speech perception in noise.
Caldas, Fernanda Ferreira; Cardoso, Carolina Costa; Barreto, Monique Antunes de Souza Chelminski; Teixeira, Marina Santos; Hilgenberg, Anacléia Melo da Silva; Serra, Lucieny Silva Martins; Bahmad Junior, Fayez
2016-01-01
The cochlear implant device has the capacity to measure the electrically evoked compound action potential of the auditory nerve. The neural response telemetry is used in order to measure the electrically evoked compound action potential of the auditory nerve. To analyze the electrically evoked compound action potential, through the neural response telemetry, in children with bilateral cochlear implants. This is an analytical, prospective, longitudinal, historical cohort study. Six children, aged 1-4 years, with bilateral cochlear implant were assessed at five different intervals during their first year of cochlear implant use. There were significant differences in follow-up time (p=0.0082) and electrode position (p=0.0019) in the T-NRT measure. There was a significant difference in the interaction between time of follow-up and electrode position (p=0.0143) when measuring the N1-P1 wave amplitude between the three electrodes at each time of follow-up. The electrically evoked compound action potential measurement using neural response telemetry in children with bilateral cochlear implants during the first year of follow-up was effective in demonstrating the synchronized bilateral development of the peripheral auditory pathways in the studied population. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Bilateral Cochlear Implantation in Children: Experiences and Considerations
ERIC Educational Resources Information Center
Bohnert, Andrea; Spitzlei, Vera; Lippert, Karl L.; Keilmann, Annerose
2006-01-01
Between 2000 and 2006, the University Clinic for Ear Nose and Throat and Communication Disorders in Mainz, Germany, performed 41 bilateral cochlear implantations in children. This article addresses some of the factors to be considered in a decision to bilaterally implant a child, including the age of the child at the first implant, the length of…
Bilateral cochlear implantation in the ferret: A novel animal model for behavioral studies
Hartley, Douglas E.H.; Vongpaisal, Tara; Xu, Jin; Shepherd, Robert K.; King, Andrew J.; Isaiah, Amal
2010-01-01
Bilateral cochlear implantation has recently been introduced with the aim of improving both speech perception in background noise and sound localization. Although evidence suggests that binaural perception is possible with two cochlear implants, results in humans are variable. To explore potential contributing factors to these variable outcomes, we have developed a behavioral animal model of bilateral cochlear implantation in a novel species, the ferret. Although ferrets are ideally suited to psychophysical and physiological assessments of binaural hearing, cochlear implantation has not been previously described in this species. This paper describes the techniques of deafening with aminoglycoside administration, surgical implantation of an intracochlear array and chronic intracochlear electrical stimulation with monitoring for electrode integrity and efficacy of stimulation. Experiments have been presented elsewhere to show that the model can be used to study behavioral and electrophysiological measures of binaural hearing in chronically implanted animals. This paper demonstrates that cochlear implantation and chronic intracochlear electrical stimulation are both safe and effective in ferrets, opening up the possibility of using this model to study potential protective effects of bilateral cochlear implantation on the developing central auditory pathway. Since ferrets can be used to assess psychophysical and physiological aspects of hearing along with the structure of the auditory pathway in the same animals, we anticipate that this model will help develop novel neuroprosthetic therapies for use in humans. PMID:20576507
Galvin, Karyn Louise; Mok, Mansze; Dowell, Richard C
2007-08-01
To evaluate the additional perceptual benefit provided to children through the use of two cochlear implants in comparison to one after 6 to 13 mo experience with sequential bilateral implants. A second cochlear implant was received by 11 children. The principal selection criteria were being age 4 to 15 yr with a bilateral profound hearing loss and being a consistent user of a first implant with a commitment to use of a second implant. Horizontal localization was assessed by using pink noise bursts presented from a 180 degrees , eight-loudspeaker array. Speech perception was assessed by using a four-alternative forced-choice spondee test, with speech presented from in front and adaptive background noise presented from 90 degrees to the left or right. Both tests were completed in the first implant alone and bilateral conditions. A questionnaire measured the pre- to postoperative change in the parent's ratings of the child's performance in specific listening situations. Items were related to speech perception, spatial hearing, or other qualities of hearing. Regular parental reports of device use, attitude and performance were collected. Most subjects were assessed at 6 mo after surgery, with two assessed at 13 mo. The 11 subjects demonstrated a great range of outcomes. For one subject, only anecdotal data were collected. Speech perception testing indicated that when noise was presented ipsilateral to the first implant, 8 of 10 subjects showed a benefit in the bilateral condition. None of the nine subjects tested showed a benefit when noise was contralateral to the first implant. Generally, there was no benefit to localization in the bilateral condition. For eight subjects, postoperative performance ratings were generally higher than preoperative ratings, particularly in the spatial hearing section. Anecdotal reports indicated that most subjects had a negative attitude toward, and gained limited experience with, the second implant alone. The subjects developed a range of speech perception skills, from detection to conversation level. Regarding the use of bilateral implants, attitudes were more positive and device use was consistent for eight subjects, and six parents reported some evidence of improved performance in daily life. Children over age 4 yr may gain significant additional benefit from a second implant, including improved speech perception in some noise contexts and functional advantages in daily life. There is, however, no evidence from this study to suggest that binaural listening skills, including localization, will develop during the first 6 mo. Furthermore, some children who may be committed users of a first implant may not adapt to or benefit from a second implant during the first 6 mo of device use. Although the factors influencing benefit cannot be clearly identified, limited preoperative auditory experience with the second ear, a delay of years between implants, relatively advanced age, and lack of second-implant-alone experience do not preclude benefit. Continued evaluation of these and additional subjects will clarify the factors that do contribute to benefit. Such information will be vital in helping families of implanted children to make an informed decision regarding a second implant.
Bilateral and Unilateral Cochlear Implant Users Compared on Speech Perception in Noise
Dunn, Camille C.; Noble, William; Tyler, Richard S.; Kordus, Monika; Gantz, Bruce J.; Ji, Haihong
2009-01-01
Objective Compare speech performance in noise with matched bilateral (CICI) and unilateral (CI-Only) cochlear implant users. Design Thirty CICI and 30 CI-Only subjects were tested on a battery of speech perception tests in noise that utilize an 8-loudspeaker array. Results On average, CICI subject's performance with speech in noise was significantly better than the CI-Only subjects. Conclusion The CICI group showed significantly better performance on speech perception in noise compared to the CI-Only subjects, supporting the hypothesis that bilateral cochlear implantation is more beneficial than unilateral implantation. PMID:19858720
Cullington, Helen E; Zeng, Fan-Gang
2011-02-01
Despite excellent performance in speech recognition in quiet, most cochlear implant users have great difficulty with speech recognition in noise, music perception, identifying tone of voice, and discriminating different talkers. This may be partly due to the pitch coding in cochlear implant speech processing. Most current speech processing strategies use only the envelope information; the temporal fine structure is discarded. One way to improve electric pitch perception is to use residual acoustic hearing via a hearing aid on the nonimplanted ear (bimodal hearing). This study aimed to test the hypothesis that bimodal users would perform better than bilateral cochlear implant users on tasks requiring good pitch perception. Four pitch-related tasks were used. 1. Hearing in Noise Test (HINT) sentences spoken by a male talker with a competing female, male, or child talker. 2. Montreal Battery of Evaluation of Amusia. This is a music test with six subtests examining pitch, rhythm and timing perception, and musical memory. 3. Aprosodia Battery. This has five subtests evaluating aspects of affective prosody and recognition of sarcasm. 4. Talker identification using vowels spoken by 10 different talkers (three men, three women, two boys, and two girls). Bilateral cochlear implant users were chosen as the comparison group. Thirteen bimodal and 13 bilateral adult cochlear implant users were recruited; all had good speech perception in quiet. There were no significant differences between the mean scores of the bimodal and bilateral groups on any of the tests, although the bimodal group did perform better than the bilateral group on almost all tests. Performance on the different pitch-related tasks was not correlated, meaning that if a subject performed one task well they would not necessarily perform well on another. The correlation between the bimodal users' hearing threshold levels in the aided ear and their performance on these tasks was weak. Although the bimodal cochlear implant group performed better than the bilateral group on most parts of the four pitch-related tests, the differences were not statistically significant. The lack of correlation between test results shows that the tasks used are not simply providing a measure of pitch ability. Even if the bimodal users have better pitch perception, the real-world tasks used are reflecting more diverse skills than pitch. This research adds to the existing speech perception, language, and localization studies that show no significant difference between bimodal and bilateral cochlear implant users.
Lichtenhan, J T; Hartsock, J; Dornhoffer, J R; Donovan, K M; Salt, A N
2016-11-01
Administering pharmaceuticals to the scala tympani of the inner ear is a common approach to study cochlear physiology and mechanics. We present here a novel method for in vivo drug delivery in a controlled manner to sealed ears. Injections of ototoxic solutions were applied from a pipette sealed into a fenestra in the cochlear apex, progressively driving solutions along the length of scala tympani toward the cochlear aqueduct at the base. Drugs can be delivered rapidly or slowly. In this report we focus on slow delivery in which the injection rate is automatically adjusted to account for varying cross sectional area of the scala tympani, therefore driving a solution front at uniform rate. Objective measurements originating from finely spaced, low- to high-characteristic cochlear frequency places were sequentially affected. Comparison with existing methods(s): Controlled administration of pharmaceuticals into the cochlear apex overcomes a number of serious limitations of previously established methods such as cochlear perfusions with an injection pipette in the cochlear base: The drug concentration achieved is more precisely controlled, drug concentrations remain in scala tympani and are not rapidly washed out by cerebrospinal fluid flow, and the entire length of the cochlear spiral can be treated quickly or slowly with time. Controlled administration of solutions into the cochlear apex can be a powerful approach to sequentially effect objective measurements originating from finely spaced cochlear regions and allows, for the first time, the spatial origin of CAPs to be objectively defined. Copyright © 2016 Elsevier B.V. All rights reserved.
Lichtenhan, JT; Hartsock, J; Dornhoffer, JR; Donovan, KM; Salt, AN
2016-01-01
Background Administering pharmaceuticals to the scala tympani of the inner ear is a common approach to study cochlear physiology and mechanics. We present here a novel method for in vivo drug delivery in a controlled manner to sealed ears. New method Injections of ototoxic solutions were applied from a pipette sealed into a fenestra in the cochlear apex, progressively driving solutions along the length of scala tympani toward the cochlear aqueduct at the base. Drugs can be delivered rapidly or slowly. In this report we focus on slow delivery in which the injection rate is automatically adjusted to account for varying cross sectional area of the scala tympani, therefore driving a solution front at uniform rate. Results Objective measurements originating from finely spaced, low- to high-characteristic cochlear frequency places were sequentially affected. Comparison with existing methods(s): Controlled administration of pharmaceuticals into the cochlear apex overcomes a number of serious limitations of previously established methods such as cochlear perfusions with an injection pipette in the cochlear base: The drug concentration achieved is more precisely controlled, drug concentrations remain in scala tympani and are not rapidly washed out by cerebrospinal fluid flow, and the entire length of the cochlear spiral can be treated quickly or slowly with time. Conclusions Controlled administration of solutions into the cochlear apex can be a powerful approach to sequentially effect objective measurements originating from finely spaced cochlear regions and allows, for the first time, the spatial origin of CAPs to be objectively defined. PMID:27506463
ERIC Educational Resources Information Center
Loiselle, Louise H.; Dorman, Michael F.; Yost, William A.; Cook, Sarah J.; Gifford, Rene H.
2016-01-01
Purpose: To assess the role of interaural time differences and interaural level differences in (a) sound-source localization, and (b) speech understanding in a cocktail party listening environment for listeners with bilateral cochlear implants (CIs) and for listeners with hearing-preservation CIs. Methods: Eleven bilateral listeners with MED-EL…
Steel, Morrison M; Papsin, Blake C; Gordon, Karen A
2015-01-01
Bilateral cochlear implants aim to provide hearing to both ears for children who are deaf and promote binaural/spatial hearing. Benefits are limited by mismatched devices and unilaterally-driven development which could compromise the normal integration of left and right ear input. We thus asked whether children hear a fused image (ie. 1 vs 2 sounds) from their bilateral implants and if this "binaural fusion" reduces listening effort. Binaural fusion was assessed by asking 25 deaf children with cochlear implants and 24 peers with normal hearing whether they heard one or two sounds when listening to bilaterally presented acoustic click-trains/electric pulses (250 Hz trains of 36 ms presented at 1 Hz). Reaction times and pupillary changes were recorded simultaneously to measure listening effort. Bilaterally implanted children heard one image of bilateral input less frequently than normal hearing peers, particularly when intensity levels on each side were balanced. Binaural fusion declined as brainstem asymmetries increased and age at implantation decreased. Children implanted later had access to acoustic input prior to implantation due to progressive deterioration of hearing. Increases in both pupil diameter and reaction time occurred as perception of binaural fusion decreased. Results indicate that, without binaural level cues, children have difficulty fusing input from their bilateral implants to perceive one sound which costs them increased listening effort. Brainstem asymmetries exacerbate this issue. By contrast, later implantation, reflecting longer access to bilateral acoustic hearing, may have supported development of auditory pathways underlying binaural fusion. Improved integration of bilateral cochlear implant signals for children is required to improve their binaural hearing.
Using Evoked Potentials to Match Interaural Electrode Pairs with Bilateral Cochlear Implants
Delgutte, Bertrand
2007-01-01
Bilateral cochlear implantation seeks to restore the advantages of binaural hearing to the profoundly deaf by providing binaural cues normally important for accurate sound localization and speech reception in noise. Psychophysical observations suggest that a key issue for the implementation of a successful binaural prosthesis is the ability to match the cochlear positions of stimulation channels in each ear. We used a cat model of bilateral cochlear implants with eight-electrode arrays implanted in each cochlea to develop and test a noninvasive method based on evoked potentials for matching interaural electrodes. The arrays allowed the cochlear location of stimulation to be independently varied in each ear. The binaural interaction component (BIC) of the electrically evoked auditory brainstem response (EABR) was used as an assay of binaural processing. BIC amplitude peaked for interaural electrode pairs at the same relative cochlear position and dropped with increasing cochlear separation in either direction. To test the hypothesis that BIC amplitude peaks when electrodes from the two sides activate maximally overlapping neural populations, we measured multiunit neural activity along the tonotopic gradient of the inferior colliculus (IC) with 16-channel recording probes and determined the spatial pattern of IC activation for each stimulating electrode. We found that the interaural electrode pairings that produced the best aligned IC activation patterns were also those that yielded maximum BIC amplitude. These results suggest that EABR measurements may provide a method for assigning frequency–channel mappings in bilateral implant recipients, such as pediatric patients, for which psychophysical measures of pitch ranking or binaural fusion are unavailable. PMID:17225976
Using evoked potentials to match interaural electrode pairs with bilateral cochlear implants.
Smith, Zachary M; Delgutte, Bertrand
2007-03-01
Bilateral cochlear implantation seeks to restore the advantages of binaural hearing to the profoundly deaf by providing binaural cues normally important for accurate sound localization and speech reception in noise. Psychophysical observations suggest that a key issue for the implementation of a successful binaural prosthesis is the ability to match the cochlear positions of stimulation channels in each ear. We used a cat model of bilateral cochlear implants with eight-electrode arrays implanted in each cochlea to develop and test a noninvasive method based on evoked potentials for matching interaural electrodes. The arrays allowed the cochlear location of stimulation to be independently varied in each ear. The binaural interaction component (BIC) of the electrically evoked auditory brainstem response (EABR) was used as an assay of binaural processing. BIC amplitude peaked for interaural electrode pairs at the same relative cochlear position and dropped with increasing cochlear separation in either direction. To test the hypothesis that BIC amplitude peaks when electrodes from the two sides activate maximally overlapping neural populations, we measured multiunit neural activity along the tonotopic gradient of the inferior colliculus (IC) with 16-channel recording probes and determined the spatial pattern of IC activation for each stimulating electrode. We found that the interaural electrode pairings that produced the best aligned IC activation patterns were also those that yielded maximum BIC amplitude. These results suggest that EABR measurements may provide a method for assigning frequency-channel mappings in bilateral implant recipients, such as pediatric patients, for which psychophysical measures of pitch ranking or binaural fusion are unavailable.
New Criteria of Indication and Selection of Patients to Cochlear Implant
Sampaio, André L. L.; Araújo, Mercêdes F. S.; Oliveira, Carlos A. C. P.
2011-01-01
Numerous changes continue to occur in cochlear implant candidacy. In general, these have been accompanied by concomitant and satisfactory changes in surgical techniques. Together, this has advanced the utility and safety of cochlear implantation. Most devices are now approved for use in patients with severe to profound unilateral hearing loss rather then the prior requirement of a bilateral profound loss. Furthermore, studies have begun utilizing short electrode arrays for shallow insertion in patients with considerable low-frequency residual hearing. This technique will allow the recipient to continue to use acoustically amplified hearing for the low frequencies simultaneously with a cochlear implant for the high frequencies. The advances in design of, and indications for, cochlear implants have been matched by improvements in surgical techniques and decrease in complications. The resulting improvements in safety and efficacy have further encouraged the use of these devices. This paper will review the new concepts in the candidacy of cochlear implant. Medline data base was used to search articles dealing with the following topics: cochlear implant in younger children, cochlear implant and hearing preservation, cochlear implant for unilateral deafness and tinnitus, genetic hearing loss and cochlear implant, bilateral cochlear implant, neuropathy and cochlear implant and neural plasticity, and the selection of patients for cochlear implant. PMID:22013448
Beneficial auditory and cognitive effects of auditory brainstem implantation in children.
Colletti, Liliana
2007-09-01
This preliminary study demonstrates the development of hearing ability and shows that there is a significant improvement in some cognitive parameters related to selective visual/spatial attention and to fluid or multisensory reasoning, in children fitted with auditory brainstem implantation (ABI). The improvement in cognitive paramenters is due to several factors, among which there is certainly, as demonstrated in the literature on a cochlear implants (CIs), the activation of the auditory sensory canal, which was previously absent. The findings of the present study indicate that children with cochlear or cochlear nerve abnormalities with associated cognitive deficits should not be excluded from ABI implantation. The indications for ABI have been extended over the last 10 years to adults with non-tumoral (NT) cochlear or cochlear nerve abnormalities that cannot benefit from CI. We demonstrated that the ABI with surface electrodes may provide sufficient stimulation of the central auditory system in adults for open set speech recognition. These favourable results motivated us to extend ABI indications to children with profound hearing loss who were not candidates for a CI. This study investigated the performances of young deaf children undergoing ABI, in terms of their auditory perceptual development and their non-verbal cognitive abilities. In our department from 2000 to 2006, 24 children aged 14 months to 16 years received an ABI for different tumour and non-tumour diseases. Two children had NF2 tumours. Eighteen children had bilateral cochlear nerve aplasia. In this group, nine children had associated cochlear malformations, two had unilateral facial nerve agenesia and two had combined microtia, aural atresia and middle ear malformations. Four of these children had previously been fitted elsewhere with a CI with no auditory results. One child had bilateral incomplete cochlear partition (type II); one child, who had previously been fitted unsuccessfully elsewhere with a CI, had auditory neuropathy; one child showed total cochlear ossification bilaterally due to meningitis; and one child had profound hearing loss with cochlear fractures after a head injury. Twelve of these children had multiple associated psychomotor handicaps. The retrosigmoid approach was used in all children. Intraoperative electrical auditory brainstem responses (EABRs) and postoperative EABRs and electrical middle latency responses (EMLRs) were performed. Perceptual auditory abilities were evaluated with the Evaluation of Auditory Responses to Speech (EARS) battery - the Listening Progress Profile (LIP), the Meaningful Auditory Integration Scale (MAIS), the Meaningful Use of Speech Scale (MUSS) - and the Category of Auditory Performance (CAP). Cognitive evaluation was performed on seven children using the Leiter International Performance Scale - Revised (LIPS-R) test with the following subtests: Figure ground, Form completion, Sequential order and Repeated pattern. No postoperative complications were observed. All children consistently used their devices for >75% of waking hours and had environmental sound awareness and utterance of words and simple sentences. Their CAP scores ranged from 1 to 7 (average =4); with MAIS they scored 2-97.5% (average =38%); MUSS scores ranged from 5 to 100% (average =49%) and LIP scores from 5 to 100% (average =45%). Owing to associated disabilities, 12 children were given other therapies (e.g. physical therapy and counselling) in addition to speech and aural rehabilitation therapy. Scores for two of the four subtests of LIPS-R in this study increased significantly during the first year of auditory brainstem implant use in all seven children selected for cognitive evaluation.
Bonnard, Damien; Lautissier, Sylvie; Bosset-Audoit, Amélie; Coriat, Géraldine; Beraha, Max; Maunoury, Antoine; Martel, Jacques; Darrouzet, Vincent; Bébéar, Jean-Pierre; Dauman, René
2013-01-01
An alternative to bilateral cochlear implantation is offered by the Neurelec Digisonic(®) SP Binaural cochlear implant, which allows stimulation of both cochleae within a single device. The purpose of this prospective study was to compare a group of Neurelec Digisonic(®) SP Binaural implant users (denoted BINAURAL group, n = 7) with a group of bilateral adult cochlear implant users (denoted BILATERAL group, n = 6) in terms of speech perception, sound localization, and self-assessment of health status and hearing disability. Speech perception was assessed using word recognition at 60 dB SPL in quiet and in a 'cocktail party' noise delivered through five loudspeakers in the hemi-sound field facing the patient (signal-to-noise ratio = +10 dB). The sound localization task was to determine the source of a sound stimulus among five speakers positioned between -90° and +90° from midline. Change in health status was assessed using the Glasgow Benefit Inventory and hearing disability was evaluated with the Abbreviated Profile of Hearing Aid Benefit. Speech perception was not statistically different between the two groups, even though there was a trend in favor of the BINAURAL group (mean percent word recognition in the BINAURAL and BILATERAL groups: 70 vs. 56.7% in quiet, 55.7 vs. 43.3% in noise). There was also no significant difference with regard to performance in sound localization and self-assessment of health status and hearing disability. On the basis of the BINAURAL group's performance in hearing tasks involving the detection of interaural differences, implantation with the Neurelec Digisonic(®) SP Binaural implant may be considered to restore effective binaural hearing. Based on these first comparative results, this device seems to provide benefits similar to those of traditional bilateral cochlear implantation, with a new approach to stimulate both auditory nerves. Copyright © 2013 S. Karger AG, Basel.
Steel, Morrison M.; Papsin, Blake C.; Gordon, Karen A.
2015-01-01
Bilateral cochlear implants aim to provide hearing to both ears for children who are deaf and promote binaural/spatial hearing. Benefits are limited by mismatched devices and unilaterally-driven development which could compromise the normal integration of left and right ear input. We thus asked whether children hear a fused image (ie. 1 vs 2 sounds) from their bilateral implants and if this “binaural fusion” reduces listening effort. Binaural fusion was assessed by asking 25 deaf children with cochlear implants and 24 peers with normal hearing whether they heard one or two sounds when listening to bilaterally presented acoustic click-trains/electric pulses (250 Hz trains of 36 ms presented at 1 Hz). Reaction times and pupillary changes were recorded simultaneously to measure listening effort. Bilaterally implanted children heard one image of bilateral input less frequently than normal hearing peers, particularly when intensity levels on each side were balanced. Binaural fusion declined as brainstem asymmetries increased and age at implantation decreased. Children implanted later had access to acoustic input prior to implantation due to progressive deterioration of hearing. Increases in both pupil diameter and reaction time occurred as perception of binaural fusion decreased. Results indicate that, without binaural level cues, children have difficulty fusing input from their bilateral implants to perceive one sound which costs them increased listening effort. Brainstem asymmetries exacerbate this issue. By contrast, later implantation, reflecting longer access to bilateral acoustic hearing, may have supported development of auditory pathways underlying binaural fusion. Improved integration of bilateral cochlear implant signals for children is required to improve their binaural hearing. PMID:25668423
ERIC Educational Resources Information Center
Dorman, Michael F.; Natale, Sarah; Spahr, Anthony; Castioni, Erin
2017-01-01
Purpose: The aim of this experiment was to compare, for patients with cochlear implants (CIs), the improvement for speech understanding in noise provided by a monaural adaptive beamformer and for two interventions that produced bilateral input (i.e., bilateral CIs and hearing preservation [HP] surgery). Method: Speech understanding scores for…
Bilateral and unilateral cochlear implant users compared on speech perception in noise.
Dunn, Camille C; Noble, William; Tyler, Richard S; Kordus, Monika; Gantz, Bruce J; Ji, Haihong
2010-04-01
Compare speech performance in noise with matched bilateral cochlear implant (CICI) and unilateral cochlear implant (CI only) users. Thirty CICI and 30 CI-only subjects were tested on a battery of speech perception tests in noise that use an eight-loudspeaker array. On average, CICI subject's performance with speech in noise was significantly better than the CI-only subjects. The CICI group showed significantly better performance on speech perception in noise compared with the CI-only subjects, supporting the hypothesis that CICI is more beneficial than CI only.
ERIC Educational Resources Information Center
Bartov, Tamar; Most, Tova
2014-01-01
Purpose: To examine song identification by preschoolers with normal hearing (NH) versus preschoolers with cochlear implants (CIs). Method: Participants included 45 children ages 3;8-7;3 (years;months): 12 with NH and 33 with CIs, including 10 with unilateral CI, 14 with bilateral CIs, and 9 bimodal users (CI-HA) with unilateral CI and…
ERIC Educational Resources Information Center
Sarant, Julia Z.; Harris, David C.; Bennet, Lisa A.
2015-01-01
Purpose: This study sought to (a) determine whether academic outcomes for children who received early cochlear implants (CIs) are age appropriate, (b) determine whether bilateral CI use significantly improves academic outcomes, and (c) identify other factors that are predictive of these outcomes. Method: Forty-four 8-year-old children with…
ERIC Educational Resources Information Center
Davis, Timothy J.; Gifford, René H.
2018-01-01
Purpose: The primary purpose of this study was to derive spatial release from masking (SRM) performance-azimuth functions for bilateral cochlear implant (CI) users to provide a thorough description of SRM as a function of target/distracter spatial configuration. The secondary purpose of this study was to investigate the effect of the microphone…
Gaudrain, Etienne; Carlyon, Robert P
2013-01-01
Previous studies have suggested that cochlear implant users may have particular difficulties exploiting opportunities to glimpse clear segments of a target speech signal in the presence of a fluctuating masker. Although it has been proposed that this difficulty is associated with a deficit in linking the glimpsed segments across time, the details of this mechanism are yet to be explained. The present study introduces a method called Zebra-speech developed to investigate the relative contribution of simultaneous and sequential segregation mechanisms in concurrent speech perception, using a noise-band vocoder to simulate cochlear implants. One experiment showed that the saliency of the difference between the target and the masker is a key factor for Zebra-speech perception, as it is for sequential segregation. Furthermore, forward masking played little or no role, confirming that intelligibility was not limited by energetic masking but by across-time linkage abilities. In another experiment, a binaural cue was used to distinguish the target and the masker. It showed that the relative contribution of simultaneous and sequential segregation depended on the spectral resolution, with listeners relying more on sequential segregation when the spectral resolution was reduced. The potential of Zebra-speech as a segregation enhancement strategy for cochlear implants is discussed.
Gaudrain, Etienne; Carlyon, Robert P.
2013-01-01
Previous studies have suggested that cochlear implant users may have particular difficulties exploiting opportunities to glimpse clear segments of a target speech signal in the presence of a fluctuating masker. Although it has been proposed that this difficulty is associated with a deficit in linking the glimpsed segments across time, the details of this mechanism are yet to be explained. The present study introduces a method called Zebra-speech developed to investigate the relative contribution of simultaneous and sequential segregation mechanisms in concurrent speech perception, using a noise-band vocoder to simulate cochlear implants. One experiment showed that the saliency of the difference between the target and the masker is a key factor for Zebra-speech perception, as it is for sequential segregation. Furthermore, forward masking played little or no role, confirming that intelligibility was not limited by energetic masking but by across-time linkage abilities. In another experiment, a binaural cue was used to distinguish target and masker. It showed that the relative contribution of simultaneous and sequential segregation depended on the spectral resolution, with listeners relying more on sequential segregation when the spectral resolution was reduced. The potential of Zebra-speech as a segregation enhancement strategy for cochlear implants is discussed. PMID:23297922
Yoon, Yang-soo; Li, Yongxin; Kang, Hou-Yong; Fu, Qian-Jie
2011-01-01
Objective The full benefit of bilateral cochlear implants may depend on the unilateral performance with each device, the speech materials, processing ability of the user, and/or the listening environment. In this study, bilateral and unilateral speech performances were evaluated in terms of recognition of phonemes and sentences presented in quiet or in noise. Design Speech recognition was measured for unilateral left, unilateral right, and bilateral listening conditions; speech and noise were presented at 0° azimuth. The “binaural benefit” was defined as the difference between bilateral performance and unilateral performance with the better ear. Study Sample 9 adults with bilateral cochlear implants participated. Results On average, results showed a greater binaural benefit in noise than in quiet for all speech tests. More importantly, the binaural benefit was greater when unilateral performance was similar across ears. As the difference in unilateral performance between ears increased, the binaural advantage decreased; this functional relationship was observed across the different speech materials and noise levels even though there was substantial intra- and inter-subject variability. Conclusions The results indicate that subjects who show symmetry in speech recognition performance between implanted ears in general show a large binaural benefit. PMID:21696329
Deep brain stimulation with a pre-existing cochlear implant: Surgical technique and outcome.
Eddelman, Daniel; Wewel, Joshua; Wiet, R Mark; Metman, Leo V; Sani, Sepehr
2017-01-01
Patients with previously implanted cranial devices pose a special challenge in deep brain stimulation (DBS) surgery. We report the implantation of bilateral DBS leads in a patient with a cochlear implant. Technical nuances and long-term interdevice functionality are presented. A 70-year-old patient with advancing Parkinson's disease and a previously placed cochlear implant for sensorineural hearing loss was referred for placement of bilateral DBS in the subthalamic nucleus (STN). Prior to DBS, the patient underwent surgical removal of the subgaleal cochlear magnet, followed by stereotactic MRI, frame placement, stereotactic computed tomography (CT), and merging of imaging studies. This technique allowed for successful computational merging, MRI-guided targeting, and lead implantation with acceptable accuracy. Formal testing and programming of both the devices were successful without electrical interference. Successful DBS implantation with high resolution MRI-guided targeting is technically feasible in patients with previously implanted cochlear implants by following proper precautions.
Cochlear implantation in adults: a systematic review and meta-analysis.
Gaylor, James M; Raman, Gowri; Chung, Mei; Lee, Jounghee; Rao, Madhumathi; Lau, Joseph; Poe, Dennis S
2013-03-01
Sensorineural hearing loss is the third leading cause of years lived with disability worldwide. Cochlear implants may provide a viable alternative to hearing aids for this type of hearing loss. The Coverage and Analysis Group at the Centers for Medicare & Medicaid Services was interested in an evaluation of recently published literature on this topic. In addition, this meta-analysis is to our knowledge the first to evaluate quality-of-life (QOL) outcomes in adults with cochlear implants. To evaluate the communication-related outcomes and health-related QOL outcomes after unilateral or bilateral cochlear implantation in adults with sensorineural hearing loss. MEDLINE, Cochrane Central Register of Controlled Trials, Scopus, and previous reports from January 1, 2004, through May 31, 2012. Published studies of adult patients undergoing unilateral or bilateral procedures with multichannel cochlear implants and assessments using open-set sentence tests, multisyllable word tests, or QOL measures. Five researchers extracted information on population characteristics, outcomes of interest, and study design and assessed the studies for risk of bias. Discrepancies were resolved by consensus. A total of 42 studies met the inclusion criteria. Most unilateral implant studies showed a statistically significant improvement in mean speech scores as measured by open-set sentence or multisyllable word tests; meta-analysis revealed a significant improvement in QOL after unilateral implantation. Results from studies assessing bilateral implantation showed improvement in communication-related outcomes compared with unilateral implantation and additional improvements in sound localization compared with unilateral device use or implantation only. Based on a few studies, the QOL outcomes varied across tests after bilateral implantation. Unilateral cochlear implants provide improved hearing and significantly improve QOL, and improvements in sound localization are noted for bilateral implantation. Future studies of longer duration, higher-quality reporting, and large databases or registries of patients with long-term follow-up data are needed to yield stronger evidence.
Härkönen, Kati; Kivekäs, Ilkka; Kotti, Voitto; Sivonen, Ville; Vasama, Juha-Pekka
2017-10-01
The objective of the present study is to evaluate the effect of hybrid cochlear implantation (hCI) on quality of life (QoL), quality of hearing (QoH), and working performance in adult patients, and to compare the long-term results of patients with hCI to those of patients with conventional unilateral cochlear implantation (CI), bilateral CI, and single-sided deafness (SSD) with CI. Sound localization accuracy and speech-in-noise test were also compared between these groups. Eight patients with high-frequency sensorineural hearing loss of unknown etiology were selected in the study. Patients with hCI had better long-term speech perception in noise than uni- or bilateral CI patients, but the difference was not statistically significant. The sound localization accuracy was equal in the hCI, bilateral CI, and SSD patients. QoH was statistically significantly better in bilateral CI patients than in the others. In hCI patients, residual hearing was preserved in all patients after the surgery. During the 3.6-year follow-up, the mean hearing threshold at 125-500 Hz decreased on average by 15 dB HL in the implanted ear. QoL and working performance improved significantly in all CI patients. Hearing outcomes with hCI are comparable to the results of bilateral CI or CI with SSD, but hearing in noise and sound localization are statistically significantly better than with unilateral CI. Interestingly, the impact of CI on QoL, QoH, and working performance was similar in all groups.
Bilateral cochlear implants in infants: a new approach--Nucleus Hybrid S12 project.
Gantz, Bruce J; Dunn, Camille C; Walker, Elizabeth A; Kenworthy, Maura; Van Voorst, Tanya; Tomblin, Bruce; Turner, Chris
2010-10-01
The purpose of this feasibility study was to evaluate whether the use of a shorter-length cochlear implant (10 mm) on one ear and a standard electrode (24 mm) on the contralateral ear is a viable bilateral option for children with profound bilateral sensorineural hearing loss. A secondary purpose of this study was to determine whether the ear with the shorter-length electrode performs similarly to the standard-length electrode. Our goal was to provide an option of electrical stimulation that theoretically might preserve the structures of the scala media and organ of Corti. The study is being conducted as a repeated-measure, single-subject experiment. University of Iowa-Department of Otolaryngology. Eight pediatric patients with profound bilateral sensorineural hearing loss between the ages of 12 and 24 months. Nucleus Hybrid S12 10-mm electrode and a Nucleus Freedom implant in the contralateral ear. The Infant-Toddler Meaningful Auditory Integration Scale (IT-MAIS) parent questionnaire, Early Speech Perception, Glendonald Auditory Screening Procedure word test, and Children's Vowel tests will be used to evaluate speech perception and the Minnesota Child Development Inventory and Preschool Language Scales 3 test will be used to evaluate language growth. Preliminary results for 8 children have been collected before and after the operation using the IT-MAIS. All 3 children showed incremental improvements in their IT-MAIS scores overtime. Early Speech Perception, Glendonald Auditory Screening Procedure word test, and Children's Vowel word perception results indicated no difference between the individual ears for the 2 children tested. Performance compared with age-matched children implanted with standard bilateral cochlear implants showed similar results to the children implanted with Nucleus Hybrid S12 10-mm electrode and a Nucleus Freedom implant in contralateral ears. The use of a shorter-length cochlear implant on one ear and a standard-length electrode on the contralateral ear might provide a viable option for bilateral cochlear implantation in children with bilateral profound sensorineural hearing loss. Further study of this patient population will be continued.
Bilateral Cochlear Implants in Infants: A New Approach—Nucleus Hybrid S12 Project
Gantz, Bruce J.; Dunn, Camille C.; Walker, Elizabeth A.; Kenworthy, Maura; Van Voorst, Tanya; Tomblin, Bruce; Turner, Chris
2010-01-01
Objective The purpose of this feasibility study was to evaluate whether the use of a shorter-length cochlear implant (10 mm) on one ear and a standard electrode (24 mm) on the contralateral ear is a viable bilateral option for children with profound bilateral sensorineural hearing loss. A secondary purpose of this study was to determine whether the ear with the shorter-length electrode performs similarly to the standard-length electrode. Our goal was to provide an option of electrical stimulation that theoretically might preserve the structures of the scala media and organ of Corti. Study Design The study is being conducted as a repeated-measure, single-subject experiment. Setting University of Iowa—Department of Otolaryngology. Patients Eight pediatric patients with profound bilateral sensorineural hearing loss between the ages of 12 and 24 months. Interventions Nucleus Hybrid S12 10-mm electrode and a Nucleus Freedom implant in the contralateral ear. Main Outcome Measures The Infant-Toddler Meaningful Auditory Integration Scale (IT-MAIS) parent questionnaire, Early Speech Perception, Glendonald Auditory Screening Procedure word test, and Children’s Vowel tests will be used to evaluate speech perception and the Minnesota Child Development Inventory and Preschool Language Scales 3 test will be used to evaluate language growth. Results Preliminary results for 8 children have been collected before and after the operation using the IT-MAIS. All 3 children showed incremental improvements in their IT-MAIS scores overtime. Early Speech Perception, Glendonald Auditory Screening Procedure word test, and Children’s Vowel word perception results indicated no difference between the individual ears for the 2 children tested. Performance compared with age-matched children implanted with standard bilateral cochlear implants showed similar results to the children implanted with Nucleus Hybrid S12 10-mm electrode and a Nucleus Freedom implant in contralateral ears. Conclusion The use of a shorter-length cochlear implant on one ear and a standard-length electrode on the contralateral ear might provide a viable option for bilateral cochlear implantation in children with bilateral profound sensorineural hearing loss. Further study of this patient population will be continued. PMID:20802369
Potts, Lisa G; Skinner, Margaret W; Litovsky, Ruth A; Strube, Michael J; Kuk, Francis
2009-06-01
The use of bilateral amplification is now common clinical practice for hearing aid users but not for cochlear implant recipients. In the past, most cochlear implant recipients were implanted in one ear and wore only a monaural cochlear implant processor. There has been recent interest in benefits arising from bilateral stimulation that may be present for cochlear implant recipients. One option for bilateral stimulation is the use of a cochlear implant in one ear and a hearing aid in the opposite nonimplanted ear (bimodal hearing). This study evaluated the effect of wearing a cochlear implant in one ear and a digital hearing aid in the opposite ear on speech recognition and localization. A repeated-measures correlational study was completed. Nineteen adult Cochlear Nucleus 24 implant recipients participated in the study. The participants were fit with a Widex Senso Vita 38 hearing aid to achieve maximum audibility and comfort within their dynamic range. Soundfield thresholds, loudness growth, speech recognition, localization, and subjective questionnaires were obtained six-eight weeks after the hearing aid fitting. Testing was completed in three conditions: hearing aid only, cochlear implant only, and cochlear implant and hearing aid (bimodal). All tests were repeated four weeks after the first test session. Repeated-measures analysis of variance was used to analyze the data. Significant effects were further examined using pairwise comparison of means or in the case of continuous moderators, regression analyses. The speech-recognition and localization tasks were unique, in that a speech stimulus presented from a variety of roaming azimuths (140 degree loudspeaker array) was used. Performance in the bimodal condition was significantly better for speech recognition and localization compared to the cochlear implant-only and hearing aid-only conditions. Performance was also different between these conditions when the location (i.e., side of the loudspeaker array that presented the word) was analyzed. In the bimodal condition, the speech-recognition and localization tasks were equal regardless of which side of the loudspeaker array presented the word, while performance was significantly poorer for the monaural conditions (hearing aid only and cochlear implant only) when the words were presented on the side with no stimulation. Binaural loudness summation of 1-3 dB was seen in soundfield thresholds and loudness growth in the bimodal condition. Measures of the audibility of sound with the hearing aid, including unaided thresholds, soundfield thresholds, and the Speech Intelligibility Index, were significant moderators of speech recognition and localization. Based on the questionnaire responses, participants showed a strong preference for bimodal stimulation. These findings suggest that a well-fit digital hearing aid worn in conjunction with a cochlear implant is beneficial to speech recognition and localization. The dynamic test procedures used in this study illustrate the importance of bilateral hearing for locating, identifying, and switching attention between multiple speakers. It is recommended that unilateral cochlear implant recipients, with measurable unaided hearing thresholds, be fit with a hearing aid.
Cochlear implant revision surgeries in children.
Amaral, Maria Stella Arantes do; Reis, Ana Cláudia Mirândola B; Massuda, Eduardo T; Hyppolito, Miguel Angelo
2018-02-16
The surgery during which the cochlear implant internal device is implanted is not entirely free of risks and may produce problems that will require revision surgeries. To verify the indications for cochlear implantation revision surgery for the cochlear implant internal device, its effectiveness and its correlation with certain variables related to language and hearing. A retrospective study of patients under 18 years submitted to cochlear implant Surgery from 2004 to 2015 in a public hospital in Brazil. Data collected were: age at the time of implantation, gender, etiology of the hearing loss, audiological and oral language characteristics of each patient before and after Cochlear Implant surgery and any need for surgical revision and the reason for it. Two hundred and sixty-five surgeries were performed in 236 patients. Eight patients received a bilateral cochlear implant and 10 patients required revision surgery. Thirty-two surgeries were necessary for these 10 children (1 bilateral cochlear implant), of which 21 were revision surgeries. In 2 children, cochlear implant removal was necessary, without reimplantation, one with cochlear malformation due to incomplete partition type I and another due to trauma. With respect to the cause for revision surgery, of the 8 children who were successfully reimplanted, four had cochlear calcification following meningitis, one followed trauma, one exhibited a facial nerve malformation, one experienced a failure of the cochlear implant internal device and one revision surgery was necessary because the electrode was twisted. The incidence of the cochlear implant revision surgery was 4.23%. The period following the revision surgeries revealed an improvement in the subject's hearing and language performance, indicating that these surgeries are valid in most cases. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
The Self-Regulation of a Child with Cochlear Implants within a School Environment
ERIC Educational Resources Information Center
Patton, Kristin L.
2013-01-01
The purpose of this qualitative research, which utilized a narrative design strategy, was to describe the process of self-regulation of a child who has bilateral cochlear implants within the social environment of school. The study investigated the use of self-regulatory strategies by the cochlear implant recipient. It also examined how the child…
Ramakers, Geerte G J; Smulders, Yvette E; van Zon, Alice; Van Zanten, Gijsbert A; Grolman, Wilko; Stegeman, Inge
2017-01-01
There are many methods for assessing hearing performance after cochlear implantation. Standard evaluations often encompass objective hearing tests only, while patients' subjective experiences gain importance in today's healthcare. The aim of the current study was to analyze the correlation between subjective (self-reported questionnaires) and objective (speech perception and localization) hearing test results in adult cochlear implant (CI) users. Secondary, the correlation between subjective and objective hearing tests was compared between bilateral and unilateral CI patients. Data for this study were prospectively collected as part of a multicentre randomized controlled trial. Thirty-eight postlingually deafened adult patients were randomly allocated to receive either unilateral ( n = 19) or bilateral ( n = 19) cochlear implantation. We used data gathered after one year of follow-up. We studied the correlation between objectively measured speech perception and localization skills on the one hand and related domains of the Speech, Spatial and Qualities of Hearing Scale (SSQ) and Nijmegen Cochlear Implant Questionnaire (NCIQ) on the other hand. We also compared these correlations between unilateral and bilateral CI users. We found significant weak to moderate negative correlations between the subjective test results (speech domain of the SSQ and the advanced speech perception domain of the NCIQ) and the related objective speech perception in noise test results ( r = -0.33 to -0.48). A significant moderate correlation was found between the subjective test results (spatial domain of the SSQ) and the related objective localization test results ( r = 0.59). The correlations in the group of bilateral CI patients ( r = -0.28 to -0.54) did not differ significantly from the correlations in the group of unilateral CI patients ( r = 0.15 to -0.40). Current objective tests do not fully reflect subjective everyday listening situations. This study elucidates the importance and necessity of questionnaires in the evaluation of cochlear implantation. Therefore, it is advised to evaluate both objective and subjective tests in CI patients on a regular basis. This trial was registered on March 11, 2009 in the Dutch Trial Register. Trial registration number: NTR1722.
Papsin, Blake C.; Paludetti, Gaetano; Gordon, Karen A.
2015-01-01
Children using unilateral cochlear implants abnormally rely on tempo rather than mode cues to distinguish whether a musical piece is happy or sad. This led us to question how this judgment is affected by the type of experience in early auditory development. We hypothesized that judgments of the emotional content of music would vary by the type and duration of access to sound in early life due to deafness, altered perception of musical cues through new ways of using auditory prostheses bilaterally, and formal music training during childhood. Seventy-five participants completed the Montreal Emotion Identification Test. Thirty-three had normal hearing (aged 6.6 to 40.0 years) and 42 children had hearing loss and used bilateral auditory prostheses (31 bilaterally implanted and 11 unilaterally implanted with contralateral hearing aid use). Reaction time and accuracy were measured. Accurate judgment of emotion in music was achieved across ages and musical experience. Musical training accentuated the reliance on mode cues which developed with age in the normal hearing group. Degrading pitch cues through cochlear implant-mediated hearing induced greater reliance on tempo cues, but mode cues grew in salience when at least partial acoustic information was available through some residual hearing in the contralateral ear. Finally, when pitch cues were experimentally distorted to represent cochlear implant hearing, individuals with normal hearing (including those with musical training) switched to an abnormal dependence on tempo cues. The data indicate that, in a western culture, access to acoustic hearing in early life promotes a preference for mode rather than tempo cues which is enhanced by musical training. The challenge to these preferred strategies during cochlear implant hearing (simulated and real), regardless of musical training, suggests that access to pitch cues for children with hearing loss must be improved by preservation of residual hearing and improvements in cochlear implant technology. PMID:26317976
Giannantonio, Sara; Polonenko, Melissa J; Papsin, Blake C; Paludetti, Gaetano; Gordon, Karen A
2015-01-01
Children using unilateral cochlear implants abnormally rely on tempo rather than mode cues to distinguish whether a musical piece is happy or sad. This led us to question how this judgment is affected by the type of experience in early auditory development. We hypothesized that judgments of the emotional content of music would vary by the type and duration of access to sound in early life due to deafness, altered perception of musical cues through new ways of using auditory prostheses bilaterally, and formal music training during childhood. Seventy-five participants completed the Montreal Emotion Identification Test. Thirty-three had normal hearing (aged 6.6 to 40.0 years) and 42 children had hearing loss and used bilateral auditory prostheses (31 bilaterally implanted and 11 unilaterally implanted with contralateral hearing aid use). Reaction time and accuracy were measured. Accurate judgment of emotion in music was achieved across ages and musical experience. Musical training accentuated the reliance on mode cues which developed with age in the normal hearing group. Degrading pitch cues through cochlear implant-mediated hearing induced greater reliance on tempo cues, but mode cues grew in salience when at least partial acoustic information was available through some residual hearing in the contralateral ear. Finally, when pitch cues were experimentally distorted to represent cochlear implant hearing, individuals with normal hearing (including those with musical training) switched to an abnormal dependence on tempo cues. The data indicate that, in a western culture, access to acoustic hearing in early life promotes a preference for mode rather than tempo cues which is enhanced by musical training. The challenge to these preferred strategies during cochlear implant hearing (simulated and real), regardless of musical training, suggests that access to pitch cues for children with hearing loss must be improved by preservation of residual hearing and improvements in cochlear implant technology.
The cochlear implant as a tinnitus treatment.
Vallés-Varela, Héctor; Royo-López, Juan; Carmen-Sampériz, Luis; Sebastián-Cortés, José M; Alfonso-Collado, Ignacio
2013-01-01
Tinnitus is a symptom of high prevalence in patients with cochlear pathology. We studied the evolution of tinnitus in patients undergoing unilateral cochlear implantation for treatment of profound hearing loss. This was a longitudinal, retrospective study of patients that underwent unilateral cochlear implantation and who had bilateral tinnitus. Tinnitus was assessed quantitatively and qualitatively before surgery and at 6 and 12 months after surgery. We evaluated 20 patients that underwent unilateral cochlear implantation with a Nucleus(®) CI24RE Contour Advance™ electrode device. During the periods in which the device was in operation, improvement or disappearance of tinnitus was evidenced in the ipsilateral ear in 65% of patients, and in the contralateral ear, in 50%. In periods in which the device was disconnected, improvement or disappearance of tinnitus was found in the ipsilateral ear in 50% of patients, and in the ear contralateral to the implant in 45% of the patients. In 10% of the patients, a new tinnitus appeared in the ipsilateral ear. The patients with profound hearing loss and bilateral tinnitus treated with unilateral cochlear implantation improved in a high percentage of cases, in the ipsilateral ear and in the contralateral ear. Copyright © 2012 Elsevier España, S.L. All rights reserved.
Current Research with Cochlear Implants at Arizona State University
Dorman, Michael F.; Spahr, Anthony; Gifford, Rene H.; Cook, Sarah; Zhang, Ting; Loiselle, Louise; Yost, William; Cardy, Lara; Whittingham, JoAnne; Schramm, David
2013-01-01
In this article we review, and discuss the clinical implications of, five projects currently underway in the Cochlear Implant Laboratory at Arizona State University. The projects are (1) norming the AzBio sentence test, (2) comparing the performance of bilateral and bimodal cochlear implant (CI) patients in realistic listening environments, (3) accounting for the benefit provided to bimodal patients by low-frequency acoustic stimulation, (4) assessing localization by bilateral hearing aid patients and the implications of that work for hearing preservation patients, and (5) studying heart rate variability as a possible measure for quantifying the stress of listening via an implant. The long-term goals of the laboratory are to improve the performance of patients fit with cochlear implants and to understand the mechanisms, physiological or electronic, that underlie changes in performance. We began our work with cochlear implant patients in the mid-1980s and received our first grant from the National Institutes of Health (NIH) for work with implanted patients in 1989. Since that date our work with cochlear implant patients has been funded continuously by the NIH. In this report we describe some of the research currently being conducted in our laboratory. PMID:22668760
Potts, Lisa G.; Skinner, Margaret W.; Litovsky, Ruth A.; Strube, Michael J; Kuk, Francis
2010-01-01
Background The use of bilateral amplification is now common clinical practice for hearing aid users but not for cochlear implant recipients. In the past, most cochlear implant recipients were implanted in one ear and wore only a monaural cochlear implant processor. There has been recent interest in benefits arising from bilateral stimulation that may be present for cochlear implant recipients. One option for bilateral stimulation is the use of a cochlear implant in one ear and a hearing aid in the opposite nonimplanted ear (bimodal hearing). Purpose This study evaluated the effect of wearing a cochlear implant in one ear and a digital hearing aid in the opposite ear on speech recognition and localization. Research Design A repeated-measures correlational study was completed. Study Sample Nineteen adult Cochlear Nucleus 24 implant recipients participated in the study. Intervention The participants were fit with a Widex Senso Vita 38 hearing aid to achieve maximum audibility and comfort within their dynamic range. Data Collection and Analysis Soundfield thresholds, loudness growth, speech recognition, localization, and subjective questionnaires were obtained six–eight weeks after the hearing aid fitting. Testing was completed in three conditions: hearing aid only, cochlear implant only, and cochlear implant and hearing aid (bimodal). All tests were repeated four weeks after the first test session. Repeated-measures analysis of variance was used to analyze the data. Significant effects were further examined using pairwise comparison of means or in the case of continuous moderators, regression analyses. The speech-recognition and localization tasks were unique, in that a speech stimulus presented from a variety of roaming azimuths (140 degree loudspeaker array) was used. Results Performance in the bimodal condition was significantly better for speech recognition and localization compared to the cochlear implant–only and hearing aid–only conditions. Performance was also different between these conditions when the location (i.e., side of the loudspeaker array that presented the word) was analyzed. In the bimodal condition, the speech-recognition and localization tasks were equal regardless of which side of the loudspeaker array presented the word, while performance was significantly poorer for the monaural conditions (hearing aid only and cochlear implant only) when the words were presented on the side with no stimulation. Binaural loudness summation of 1–3 dB was seen in soundfield thresholds and loudness growth in the bimodal condition. Measures of the audibility of sound with the hearing aid, including unaided thresholds, soundfield thresholds, and the Speech Intelligibility Index, were significant moderators of speech recognition and localization. Based on the questionnaire responses, participants showed a strong preference for bimodal stimulation. Conclusions These findings suggest that a well-fit digital hearing aid worn in conjunction with a cochlear implant is beneficial to speech recognition and localization. The dynamic test procedures used in this study illustrate the importance of bilateral hearing for locating, identifying, and switching attention between multiple speakers. It is recommended that unilateral cochlear implant recipients, with measurable unaided hearing thresholds, be fit with a hearing aid. PMID:19594084
Cranial MRI in a young child with cochlear implants after bilateral magnet removal.
Helbig, Silke; Stöver, Timo; Burck, Iris; Kramer, Sabine
2017-12-01
A young bilateral cochlear implant (CI) user required magnetic resonance imaging (MRI) to determine the cause of hydrocephalus. The images obtained with the CIs in place were not diagnostically useful due to large artefacts generated by the CI magnets. We obtained useful images by bilaterally explanting the CI-magnets and replacing them with non-magnetic placeholder dummies then conducted the imaging. The artefact in the new images was greatly reduced and the images were diagnostically useful. Lastly, we explanted the dummies and reimplanted the CI-magnets. This procedure should be useful to obtain useful images in CI users. Copyright © 2017 Elsevier B.V. All rights reserved.
Rader, T; Haerterich, M; Ernst, B P; Stöver, T; Strieth, S
2018-03-01
Persistent dizziness symptoms after cochlear implantation have an impact on quality of life. In this study, the effects of bilateral cochlear implants (CI) on quality of life as well as on subjective dizziness complaints are analyzed using questionnaires, some of which have never been applied before in these patient collectives. In this article, questionnaires for the assessment of dizziness symptoms and quality of life are introduced in order to realize quality assurance. A total of 32 patients with bilateral CI were questioned regarding dizziness symptoms and quality of life. The Nijmegen Cochlear Implant Questionnaire (NCIQ) was used. In the case of reported regular dizziness, the Vertigo Handicap Questionnaire (VHQ) and the Vertigo Symptom Scale (VSS) were also assessed. Persistent dizziness symptoms were shown in 8 of 32 patients. Quality of life was measured with the NCIQ and was improved significantly (p < 0.001) by 23.7% after the second CI. The dizziness symptoms changed slightly (VHQ -11.2%; VSS +16.4%) after the second implantation. The results show that the questionnaires are valid instruments for documenting quality of life and dizziness symptoms for quality assurance. These questionnaires may be applied as a complement or an alternative to device-based measurements of peripheral vestibular dysfunction.
Loiselle, Louise H; Dorman, Michael F; Yost, William A; Cook, Sarah J; Gifford, Rene H
2016-08-01
To assess the role of interaural time differences and interaural level differences in (a) sound-source localization, and (b) speech understanding in a cocktail party listening environment for listeners with bilateral cochlear implants (CIs) and for listeners with hearing-preservation CIs. Eleven bilateral listeners with MED-EL (Durham, NC) CIs and 8 listeners with hearing-preservation CIs with symmetrical low frequency, acoustic hearing using the MED-EL or Cochlear device were evaluated using 2 tests designed to task binaural hearing, localization, and a simulated cocktail party. Access to interaural cues for localization was constrained by the use of low-pass, high-pass, and wideband noise stimuli. Sound-source localization accuracy for listeners with bilateral CIs in response to the high-pass noise stimulus and sound-source localization accuracy for the listeners with hearing-preservation CIs in response to the low-pass noise stimulus did not differ significantly. Speech understanding in a cocktail party listening environment improved for all listeners when interaural cues, either interaural time difference or interaural level difference, were available. The findings of the current study indicate that similar degrees of benefit to sound-source localization and speech understanding in complex listening environments are possible with 2 very different rehabilitation strategies: the provision of bilateral CIs and the preservation of hearing.
Liu, Wen P; Azizian, Mahdi; Sorger, Jonathan; Taylor, Russell H; Reilly, Brian K; Cleary, Kevin; Preciado, Diego
2014-03-01
To our knowledge, this is the first reported cadaveric feasibility study of a master-slave-assisted cochlear implant procedure in the otolaryngology-head and neck surgery field using the da Vinci Si system (da Vinci Surgical System; Intuitive Surgical, Inc). We describe the surgical workflow adaptations using a minimally invasive system and image guidance integrating intraoperative cone beam computed tomography through augmented reality. To test the feasibility of da Vinci Si-assisted cochlear implant surgery with augmented reality, with visualization of critical structures and facilitation with precise cochleostomy for electrode insertion. Cadaveric case study of bilateral cochlear implant approaches conducted at Intuitive Surgical Inc, Sunnyvale, California. Bilateral cadaveric mastoidectomies, posterior tympanostomies, and cochleostomies were performed using the da Vinci Si system on a single adult human donor cadaveric specimen. Radiographic confirmation of successful cochleostomies, placement of a phantom cochlear implant wire, and visual confirmation of critical anatomic structures (facial nerve, cochlea, and round window) in augmented stereoendoscopy. With a surgical mean time of 160 minutes per side, complete bilateral cochlear implant procedures were successfully performed with no violation of critical structures, notably the facial nerve, chorda tympani, sigmoid sinus, dura, or ossicles. Augmented reality image overlay of the facial nerve, round window position, and basal turn of the cochlea was precise. Postoperative cone beam computed tomography scans confirmed successful placement of the phantom implant electrode array into the basal turn of the cochlea. To our knowledge, this is the first study in the otolaryngology-head and neck surgery literature examining the use of master-slave-assisted cochleostomy with augmented reality for cochlear implants using the da Vinci Si system. The described system for cochleostomy has the potential to improve the surgeon's confidence, as well as surgical safety, efficiency, and precision by filtering tremor. The integration of augmented reality may be valuable for surgeons dealing with complex cases of congenital anatomic abnormality, for revision cochlear implant with distorted anatomy and poorly pneumatized mastoids, and as a method of interactive teaching. Further research into the cost-benefit ratio of da Vinci Si-assisted otologic surgery, as well as refinements of the proposed workflow, are required before considering clinical studies.
De Raeve, Leo; Wouters, Annelies
2013-03-01
Belgium, and especially the northern region called Flanders, has been a center of expertise in cochlear implants and early hearing screening for many years. Some of their surgeons and engineers were pioneers in the development of cochlear implants and in 1998 Flanders was the first region in Europe to implement a universal hearing screening program for all neonates. The Belgian National Institute for Health and Disability Insurance has reimbursed cochlear implants in children and adults since 1994 and bilateral implantation in children under the age of 12 years since February 2010. These deaf children, screened and implanted early, achieve higher auditory, speech and language outcomes and increasing numbers are going to regular schools using fewer interpreters. In 2010, 93% of severe-to-profound deaf preschool children in Flanders had received cochlear implants and 25% had bilateral implants. Although on average twice as many adults as children are implanted a year in Belgium, we have less research data available from this adult population. Also very little is published about the growth curves and minimal rehabilitation requirements (intensity, duration etc.) after implantation for both children and adults. So, there still remain many challenges for the future.
2016-07-05
occlusion of the anterior inferior cerebellar artery (AICA) and downstream vessels leading to cochlear hypoxia (18-24). Relevant to this work, PAN has...macaques showed moderate lymphoplasmacytic to chronic-active perivascular inflammation of the inner ear adjacent to the cochlear nerve The...inflammation occasionally surrounded smaller branches of the cochlear nerve, resembling pathological changes seen in humans diagnosed with PAN (Fig. 3B-E) (21
Plant, Kerrie; Babic, Leanne
2016-01-01
The aim of the study was to quantify the benefit provided by having access to amplified acoustic hearing in the implanted ear for use in combination with contralateral acoustic hearing and the electrical stimulation provided by the cochlear implant. Measures of spatial and non-spatial hearing abilities were obtained to compare performance obtained with different configurations of acoustic hearing in combination with electrical stimulation. In the combined listening condition participants had access to bilateral acoustic hearing whereas the bimodal condition used acoustic hearing contralateral to the implanted ear only. Experience was provided with each of the listening conditions using a repeated-measures A-B-B-A experimental design. Sixteen post-linguistically hearing-impaired adults participated in the study. Group mean benefit was obtained with use of the combined mode on measures of speech recognition in coincident speech in noise, localization ability, subjective ratings of real-world benefit, and musical sound quality ratings. Access to bilateral acoustic hearing after cochlear implantation provides significant benefit on a range of functional measures.
Rader, T
2015-02-01
Cochlear implantation with the aim of hearing preservation for combined electric-acoustic stimulation (EAS) is the therapy of choice for patients with residual low-frequency hearing. Preserved residual acoustic hearing has a positive effect on speech intelligibility in difficult noise conditions. The goal of this study was to assess speech reception thresholds in various complex noise conditions for patients with EAS in comparison with patients using bilateral cochlear implants (CI). Speech perception in noise was measured for bilateral CI and EAS patient groups. A total of 22 listeners with normal hearing served as a control group. Speech reception thresholds (SRT) were measured using a closed-set sentence matrix test. Speech was presented with a single source in frontal position; noise was presented in frontal position or in a multisource noise field (MSNF) consisting of a four-loudspeaker array with independent noise sources. Modulated speech-simulating noise and pseudocontinuous noise served respectively as interference signal with different temporal characteristics. The average SRTs in the EAS group were significantly better in all test conditions than those of the group with bilateral CI. Both user groups showed significant improvement in the MSNF condition compared with the frontal noise condition as a result of bilateral interaction. The normal-hearing control group was able to use short temporal gaps in modulated noise to improve speech perception in noise (gap listening). This effect was absent in both implanted user groups. Patients with combined EAS in one ear and a hearing aid in the contralateral ear show significantly improved speech perception in complex noise conditions compared with bilateral CI recipients.
Availability of binaural cues for pediatric bilateral cochlear implant recipients.
Sheffield, Sterling W; Haynes, David S; Wanna, George B; Labadie, Robert F; Gifford, René H
2015-03-01
Bilateral implant recipients theoretically have access to binaural cues. Research in postlingually deafened adults with cochlear implants (CIs) indicates minimal evidence for true binaural hearing. Congenitally deafened children who experience spatial hearing with bilateral CIs, however, might perceive binaural cues in the CI signal differently. There is limited research examining binaural hearing in children with CIs, and the few published studies are limited by the use of unrealistic speech stimuli and background noise. The purposes of this study were to (1) replicate our previous study of binaural hearing in postlingually deafened adults with AzBio sentences in prelingually deafened children with the pediatric version of the AzBio sentences, and (2) replicate previous studies of binaural hearing in children with CIs using more open-set sentences and more realistic background noise (i.e., multitalker babble). The study was a within-participant, repeated-measures design. The study sample consisted of 14 children with bilateral CIs with at least 25 mo of listening experience. Speech recognition was assessed using sentences presented in multitalker babble at a fixed signal-to-noise ratio. Test conditions included speech at 0° with noise presented at 0° (S0N0), on the side of the first CI (90° or 270°) (S0N1stCI), and on the side of the second CI (S0N2ndCI) as well as speech presented at 0° with noise presented semidiffusely from eight speakers at 45° intervals. Estimates of summation, head shadow, squelch, and spatial release from masking were calculated. Results of test conditions commonly reported in the literature (S0N0, S0N1stCI, S0N2ndCI) are consistent with results from previous research in adults and children with bilateral CIs, showing minimal summation and squelch but typical head shadow and spatial release from masking. However, bilateral benefit over the better CI with speech at 0° was much larger with semidiffuse noise. Congenitally deafened children with CIs have similar availability of binaural hearing cues to postlingually deafened adults with CIs within the same experimental design. It is possible that the use of realistic listening environments, such as semidiffuse background noise as in Experiment II, would reveal greater binaural hearing benefit for bilateral CI recipients. Future research is needed to determine whether (1) availability of binaural cues for children correlates with interaural time and level differences, (2) different listening environments are more sensitive to binaural hearing benefits, and (3) differences exist between pediatric bilateral recipients receiving implants in the same or sequential surgeries. American Academy of Audiology.
Rana, Baljeet; Buchholz, Jörg M; Morgan, Catherine; Sharma, Mridula; Weller, Tobias; Konganda, Shivali Appaiah; Shirai, Kyoko; Kawano, Atsushi
2017-01-01
Binaural hearing helps normal-hearing listeners localize sound sources and understand speech in noise. However, it is not fully understood how far this is the case for bilateral cochlear implant (CI) users. To determine the potential benefits of bilateral over unilateral CIs, speech comprehension thresholds (SCTs) were measured in seven Japanese bilateral CI recipients using Helen test sentences (translated into Japanese) in a two-talker speech interferer presented from the front (co-located with the target speech), ipsilateral to the first-implanted ear (at +90° or -90°), and spatially symmetric at ±90°. Spatial release from masking was calculated as the difference between co-located and spatially separated SCTs. Localization was assessed in the horizontal plane by presenting either male or female speech or both simultaneously. All measurements were performed bilaterally and unilaterally (with the first implanted ear) inside a loudspeaker array. Both SCTs and spatial release from masking were improved with bilateral CIs, demonstrating mean bilateral benefits of 7.5 dB in spatially asymmetric and 3 dB in spatially symmetric speech mixture. Localization performance varied strongly between subjects but was clearly improved with bilateral over unilateral CIs with the mean localization error reduced by 27°. Surprisingly, adding a second talker had only a negligible effect on localization.
Eapen, Rose J.; Buss, Emily; Adunka, Marcia Clark; Pillsbury, Harold C.; Buchman, Craig A.
2012-01-01
Objective The purpose of this 4-year longitudinal study was to assess the stability of the binaural benefits of head shadow, summation, and squelch for bilateral cochlear implant recipients and to quantify these benefits for the understanding of speech in noise. Design This is a prospective study of 9 patients who received simultaneous bilateral insertion of MED-EL COMBI +40 cochlear implants in a single-stage operation at the University of North Carolina, Chapel Hill, NC. Each patient had postlingual deafness of short duration before insertion of the device. Each year, the patients were tested for word recognition using consonant-nucleus-consonant words in quiet and speech perception in noise using City University of New York sentences. These tests were administered using direct audio input to the implants. Head-related transfer functions were used to simulate speech in noise testing in a spatial environment. Speech was always presented at midline (0), and the noise masker was presented at either side or midline (−90, 0, +90 degrees). Results The binaural benefits of head shadow and summation effects developed early in the postoperative period and remained stable throughout the follow-up period. Squelch developed more slowly and was first demonstrated at 12 months after implantation but continued to increase beyond the first year of follow-up. Conclusion Benefits of head shadow and summation emerge early and remain stable. However, squelch has the most protracted period of development, with increasing benefit after a year or more of implant experience. These data support the idea that binaural integration continues several years after insertion of bilateral cochlear implant devices. PMID:19180675
Effect of simulated bilateral cochlear distortion on speech discrimination in normal subjects.
Hood, J D; Prasher, D K
1990-01-01
Bilateral sensorineural hearing loss may introduce grossly dissimilar cochlear distortion at the two ears, causing abnormal demands to be made upon the cortical analytical centres which normally receive congruent information. As a result, the prescription of binaural hearing aids may be a handicap rather than a help. In order to explore this possibility, 10 normal subjects were presented with simulated, dissimilar cochlear distortion at the two ears. Discrimination scores with binaural presentation were poorer than the best monaural score and there were clear indications that in the former, subjects selectively attended to one ear and neglected the other. In contrast, binaural presentation of the same simulated distortion resulted in a significant improvement, compared with the monaural discrimination score. Inability of the cortex to contend with discongruent speech input from the two ears may be a factor contributing to the rejection of binaural hearing aids in some individuals.
Boisvert, Isabelle; McMahon, Catherine M.; Dowell, Richard C.; Lyxell, Björn
2015-01-01
In many countries, a single cochlear implant is offered as a treatment for a bilateral hearing loss. In cases where there is asymmetry in the amount of sound deprivation between the ears, there is a dilemma in choosing which ear should be implanted. In many clinics, the choice of ear has been guided by an assumption that the reorganisation of the auditory pathways caused by longer duration of deafness in one ear is associated with poorer implantation outcomes for that ear. This assumption, however, is mainly derived from studies of early childhood deafness. This study compared outcomes following implantation of the better or poorer ear in cases of long-term hearing asymmetries. Audiological records of 146 adults with bilateral hearing loss using a single hearing aid were reviewed. The unaided ear had 15 to 72 years of unaided severe to profound hearing loss before unilateral cochlear implantation. 98 received the implant in their long-term sound-deprived ear. A multiple regression analysis was conducted to assess the relative contribution of potential predictors to speech recognition performance after implantation. Duration of bilateral significant hearing loss and the presence of a prelingual hearing loss explained the majority of variance in speech recognition performance following cochlear implantation. For participants with postlingual hearing loss, similar outcomes were obtained by implanting either ear. With prelingual hearing loss, poorer outcomes were obtained when implanting the long-term sound-deprived ear, but the duration of the sound deprivation in the implanted ear did not reliably predict outcomes. Contrary to an apparent clinical consensus, duration of sound deprivation in one ear has limited value in predicting speech recognition outcomes of cochlear implantation in that ear. Outcomes of cochlear implantation are more closely related to the period of time for which the brain is deprived of auditory stimulation from both ears. PMID:26043227
Binaural Speech Understanding With Bilateral Cochlear Implants in Reverberation.
Kokkinakis, Kostas
2018-03-08
The purpose of this study was to investigate whether bilateral cochlear implant (CI) listeners who are fitted with clinical processors are able to benefit from binaural advantages under reverberant conditions. Another aim of this contribution was to determine whether the magnitude of each binaural advantage observed inside a highly reverberant environment differs significantly from the magnitude measured in a near-anechoic environment. Ten adults with postlingual deafness who are bilateral CI users fitted with either Nucleus 5 or Nucleus 6 clinical sound processors (Cochlear Corporation) participated in this study. Speech reception thresholds were measured in sound field and 2 different reverberation conditions (0.06 and 0.6 s) as a function of the listening condition (left, right, both) and the noise spatial location (left, front, right). The presence of the binaural effects of head-shadow, squelch, summation, and spatial release from masking in the 2 different reverberation conditions tested was determined using nonparametric statistical analysis. In the bilateral population tested, when the ambient reverberation time was equal to 0.6 s, results indicated strong positive effects of head-shadow and a weaker spatial release from masking advantage, whereas binaural squelch and summation contributed no statistically significant benefit to bilateral performance under this acoustic condition. These findings are consistent with those of previous studies, which have demonstrated that head-shadow yields the most pronounced advantage in noise. The finding that spatial release from masking produced little to almost no benefit in bilateral listeners is consistent with the hypothesis that additive reverberation degrades spatial cues and negatively affects binaural performance. The magnitude of 4 different binaural advantages was measured on the same group of bilateral CI subjects fitted with clinical processors in 2 different reverberation conditions. The results of this work demonstrate the impeding properties of reverberation on binaural speech understanding. In addition, results indicate that CI recipients who struggle in everyday listening environments are also more likely to benefit less in highly reverberant environments from their bilateral processors.
Binaural hearing with electrical stimulation
Kan, Alan; Litovsky, Ruth Y.
2014-01-01
Bilateral cochlear implantation is becoming a standard of care in many clinics. While much benefit has been shown through bilateral implantation, patients who have bilateral cochlear implants (CIs) still do not perform as well as normal hearing listeners in sound localization and understanding speech in noisy environments. This difference in performance can arise from a number of different factors, including the areas of hardware and engineering, surgical precision and pathology of the auditory system in deaf persons. While surgical precision and individual pathology are factors that are beyond careful control, improvements can be made in the areas of clinical practice and the engineering of binaural speech processors. These improvements should be grounded in a good understanding of the sensitivities of bilateral CI patients to the acoustic binaural cues that are important to normal hearing listeners for sound localization and speech in noise understanding. To this end, we review the current state-of-the-art in the understanding of the sensitivities of bilateral CI patients to binaural cues in electric hearing, and highlight the important issues and challenges as they relate to clinical practice and the development of new binaural processing strategies. PMID:25193553
Maglione, A G; Scorpecci, A; Malerba, P; Marsella, P; Giannantonio, S; Colosimo, A; Babiloni, F; Vecchiato, G
2015-01-01
The aim of the present study is to investigate the variations of the electroencephalographic (EEG) alpha rhythm in order to measure the appreciation of bilateral and unilateral young cochlear implant users during the observation of a musical cartoon. The cartoon has been modified for the generation of three experimental conditions: one with the original audio, another one with a distorted sound and, finally, a mute version. The EEG data have been recorded during the observation of the cartoons in the three experimental conditions. The frontal alpha EEG imbalance has been calculated as a measure of motivation and pleasantness to be compared across experimental populations and conditions. The EEG frontal imbalance of the alpha rhythm showed significant variations during the perception of the different cartoons. In particular, the pattern of activation of normal-hearing children is very similar to the one elicited by the bilateral implanted patients. On the other hand, results related to the unilateral subjects do not present significant variations of the imbalance index across the three cartoons. The presented results suggest that the unilateral patients could not appreciate the difference in the audio format as well as bilaterally implanted and normal hearing subjects. The frontal alpha EEG imbalance is a useful tool to detect the differences in the appreciation of audiovisual stimuli in cochlear implant patients.
ERIC Educational Resources Information Center
Guo, Ling-Yu; McGregor, Karla K.; Spencer, Linda J.
2015-01-01
Purpose: The purpose of this study was to determine whether children with cochlear implants (CIs) are sensitive to statistical characteristics of words in the ambient spoken language, whether that sensitivity changes in expected ways as their spoken lexicon grows, and whether that sensitivity varies with unilateral or bilateral implantation.…
Buchholz, Jörg M.; Morgan, Catherine; Sharma, Mridula; Weller, Tobias; Konganda, Shivali Appaiah; Shirai, Kyoko; Kawano, Atsushi
2017-01-01
Binaural hearing helps normal-hearing listeners localize sound sources and understand speech in noise. However, it is not fully understood how far this is the case for bilateral cochlear implant (CI) users. To determine the potential benefits of bilateral over unilateral CIs, speech comprehension thresholds (SCTs) were measured in seven Japanese bilateral CI recipients using Helen test sentences (translated into Japanese) in a two-talker speech interferer presented from the front (co-located with the target speech), ipsilateral to the first-implanted ear (at +90° or −90°), and spatially symmetric at ±90°. Spatial release from masking was calculated as the difference between co-located and spatially separated SCTs. Localization was assessed in the horizontal plane by presenting either male or female speech or both simultaneously. All measurements were performed bilaterally and unilaterally (with the first implanted ear) inside a loudspeaker array. Both SCTs and spatial release from masking were improved with bilateral CIs, demonstrating mean bilateral benefits of 7.5 dB in spatially asymmetric and 3 dB in spatially symmetric speech mixture. Localization performance varied strongly between subjects but was clearly improved with bilateral over unilateral CIs with the mean localization error reduced by 27°. Surprisingly, adding a second talker had only a negligible effect on localization. PMID:28752811
Paediatric cochlear implantation factors that affect outcomes.
Driver, Sandra; Jiang, Dan
2017-01-01
Cochlear implantation is an established surgical intervention for individuals with bilateral severe to profound sensorineural hearing loss. The aim of the interevention is to provide the individual with a sensation of sound which they can learn to interpret with meaning. Outcomes vary considerably and the factors that impact on outcomes will be discussed. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Most, Tova; Gaon-Sivan, Gal; Shpak, Talma; Luntz, Michal
2012-01-01
Binaural hearing in cochlear implant (CI) users can be achieved either by bilateral implantation or bimodally with a contralateral hearing aid (HA). Binaural-bimodal hearing has the advantage of complementing the high-frequency electric information from the CI by low-frequency acoustic information from the HA. We examined the contribution of a…
Cochlear implantation in patient with Dandy-walker syndrome.
de Oliveira, Adriana Kosma Pires; Hamerschmidt, Rogerio; Mocelin, Marcos; Rezende, Rodrigo K
2012-07-01
Dandy Walker Syndrome is a congenital abnormality in the central nervous system, characterized by a deficiency in the development of middle cerebelar structures, cystic dilatation of the posterior pit communicating with the fourth ventricle and upward shift of the transverse sinuses, tentorium and dyes. Among the clinical signs are occipital protuberances, a progressive increase of the skull, bowing before the fontanels, papilledema, ataxia, gait disturbances, nystagmus, and intellectual impairment. To describe a case of female patient, 13 years old with a diagnosis of this syndrome and bilateral hearing loss underwent cochlear implant surgery under local anesthesia and sedation. CGS, 13 years old female was referred to the Otolaryngological Department of Otolaryngology Institute of Parana with a diagnosis of "Dandy-Walker syndrome" for Otolaryngological evaluation for bilateral hearing loss with no response to the use of hearing aids. Final Comments: The field of cochlear implants is growing rapidly. We believe that the presence of Dandy-Walker syndrome cannot be considered a contraindication to the performance of cochlear implant surgery, and there were no surgical complications due to neurological disorders with very favorable results for the patient who exhibits excellent discrimination. It has less need for lip reading with improvement in speech quality.
Sequential Bimodal Bilingual Acquisition: Mediation Using a Cochlear Implant as a Tool
ERIC Educational Resources Information Center
Cramér-Wolrath, Emelie
2013-01-01
Most deaf children are born to hearing families. During the last twenty years deaf children, in increasing numbers and at an early age, receive a cochlear implant, a highly technological hearing device. The aim of this qualitative, longitudinal, single-case study was to explore and describe critical changes in naturalistic, video-observed…
Sarant, Julia; Garrard, Philippa
2014-01-01
Little attention has been focused on stress levels of parents of children with cochlear implants (CIs). This study examined the stress experience of 70 parents of children with CIs by comparing stress levels in this group of parents to those in parents of children without disabilities, identifying primary stressors, examining the relationship between parent stress and child language, and comparing stress in parents of children with bilateral and unilateral CIs. Parents completed a parent stress questionnaire, and the receptive vocabulary and language abilities of the children were evaluated. Results indicated that these parents had a higher incidence of stress than the normative population. Parent stress levels and child language outcomes were negatively correlated. Child behavior and lack of spousal and social support were the prime causes of parent stress. Parents of children with bilateral CIs were significantly less stressed than were parents of children with unilateral CIs.
[Cochlear implantation through the middle fossa approach].
Szyfter, W; Colletti, V; Pruszewicz, A; Kopeć, T; Szymiec, E; Kawczyński, M; Karlik, M
2001-01-01
The inner part of cochlear implant is inserted into inner ear during surgery through mastoid and middle ear. It is a classical method, used in the majority cochlear centers in the world. This is not a suitable method in case of chronic otitis media and middle ear malformation. In these cases Colletti proposed the middle fossa approach and cochlear implant insertion omitting middle ear structures. In patient with bilateral chronic otitis media underwent a few ears operations without obtaining dry postoperative cavity. Cochlear implantation through the middle fossa approach was performed in this patient. The bone fenster was cut, temporal lobe was bent and petrosus pyramid upper surface was exposed. When the superficial petrosal greater nerve, facial nerve and arcuate eminence were localised, the cochlear was open in the basal turn and electrode were inserted. The patient achieves good results in the postoperative speech rehabilitation. It confirmed Colletti tesis that deeper electrode insertion in the cochlear implantation through the middle fossa approach enable use of low and middle frequencies, which are very important in speech understanding.
Speech recognition by bilateral cochlear implant users in a cocktail-party setting
Loizou, Philipos C.; Hu, Yi; Litovsky, Ruth; Yu, Gongqiang; Peters, Robert; Lake, Jennifer; Roland, Peter
2009-01-01
Unlike prior studies with bilateral cochlear implant users which considered only one interferer, the present study considered realistic listening situations wherein multiple interferers were present and in some cases originating from both hemifields. Speech reception thresholds were measured in bilateral users unilaterally and bilaterally in four different spatial configurations, with one and three interferers consisting of modulated noise or competing talkers. The data were analyzed in terms of binaural benefits including monaural advantage (better-ear listening) and binaural interaction. The total advantage (overall spatial release) received was 2–5 dB and was maintained with multiple interferers present. This advantage was dominated by the monaural advantage, which ranged from 1 to 6 dB and was largest when the interferers were mostly energetic. No binaural-interaction benefit was found in the present study with either type of interferer (speech or noise). While the total and monaural advantage obtained for noise interferers was comparable to that attained by normal-hearing listeners, it was considerably lower for speech interferers. This suggests that bilateral users are less capable of taking advantage of binaural cues, in particular, under conditions of informational masking. Furthermore, the use of noise interferers does not adequately reflect the difficulties experienced by bilateral users in real-life situations. PMID:19173424
Discrimination of intonation contours by adolescents with cochlear implants.
Holt, Colleen M; McDermott, Hugh J
2013-12-01
Differences in fundamental frequency (F0) contour peak alignment contribute to the perception of pitch accents in speech intonation. The present study assessed the discrimination of differences in F0 contour peak alignment by adolescent users of cochlear implants (CIs). In Experiment 1, subjects discriminated between rise-fall F0 contours located early in the syllable and those aligned late. Recorded utterances with manipulated F0 were used as stimuli and all subjects wore a unilateral CI. In Experiment 2, bilaterally-implanted subjects repeated Experiment 1 in the bilateral condition. Twenty-one CI users aged 12-21 years participated. A normally-hearing control group (n = 20) also completed Experiment 1. Listeners with normal hearing (NH) could discriminate between F0 peaks differing by 80 ms or more. Results varied among the CI users, with only four users displaying a pattern of results similar to that of the NH listeners. Sixteen CI users responded inconsistently or at chance levels (p > 0.05; binomial test). Ten CI users who were bilaterally implanted completed the tests in unilateral and bilateral listening conditions. Results suggest that CI users may have difficulty discriminating between F0 alignment and that use of bilateral implants did not provide an advantage to discrimination.
Are hearing losses among young Maori different to those found in the young NZ European population?
Digby, Janet E; Purdy, Suzanne C; Kelly, Andrea S; Welch, David; Thorne, Peter R
2014-07-18
This study was undertaken to determine if young Maori have more permanent bilateral hearing loss, or less severe and profound hearing loss than New Zealand (NZ) Europeans. Data include hearing-impaired children from birth to 19 years of age from the New Zealand Deafness Notification Database (DND) and covering the periods 1982-2005 and 2009-2013. These were retrospectively analysed, as was information on children and young people with cochlear implants. Young Maori are more likely to be diagnosed with permanent hearing loss greater than 26 dB HL, averaged across speech frequencies, with 39-43% of hearing loss notifications listed as Maori. Maori have a lower prevalence of severe/profound losses (n=1571, chi squared=22.08, p=0.01) but significantly more bilateral losses than their NZ European peers (n=595, Chi-squared=9.05, p=0.01). The difference in severity profile is supported by cochlear implant data showing Maori are less likely to receive a cochlear implant. There are significant differences in the proportion of bilateral (compared to unilateral) losses and in the rates and severity profile of hearing loss among young Maori when compared with their NZ European peers. This has implications for screening and other hearing services in NZ.
Todd, Ann E.; Goupell, Matthew J.; Litovsky, Ruth Y.
2016-01-01
Cochlear implants (CIs) provide children with access to speech information from a young age. Despite bilateral cochlear implantation becoming common, use of spatial cues in free field is smaller than in normal-hearing children. Clinically fit CIs are not synchronized across the ears; thus binaural experiments must utilize research processors that can control binaural cues with precision. Research to date has used single pairs of electrodes, which is insufficient for representing speech. Little is known about how children with bilateral CIs process binaural information with multi-electrode stimulation. Toward the goal of improving binaural unmasking of speech, this study evaluated binaural unmasking with multi- and single-electrode stimulation. Results showed that performance with multi-electrode stimulation was similar to the best performance with single-electrode stimulation. This was similar to the pattern of performance shown by normal-hearing adults when presented an acoustic CI simulation. Diotic and dichotic signal detection thresholds of the children with CIs were similar to those of normal-hearing children listening to a CI simulation. The magnitude of binaural unmasking was not related to whether the children with CIs had good interaural time difference sensitivity. Results support the potential for benefits from binaural hearing and speech unmasking in children with bilateral CIs. PMID:27475132
Todd, Ann E; Goupell, Matthew J; Litovsky, Ruth Y
2016-07-01
Cochlear implants (CIs) provide children with access to speech information from a young age. Despite bilateral cochlear implantation becoming common, use of spatial cues in free field is smaller than in normal-hearing children. Clinically fit CIs are not synchronized across the ears; thus binaural experiments must utilize research processors that can control binaural cues with precision. Research to date has used single pairs of electrodes, which is insufficient for representing speech. Little is known about how children with bilateral CIs process binaural information with multi-electrode stimulation. Toward the goal of improving binaural unmasking of speech, this study evaluated binaural unmasking with multi- and single-electrode stimulation. Results showed that performance with multi-electrode stimulation was similar to the best performance with single-electrode stimulation. This was similar to the pattern of performance shown by normal-hearing adults when presented an acoustic CI simulation. Diotic and dichotic signal detection thresholds of the children with CIs were similar to those of normal-hearing children listening to a CI simulation. The magnitude of binaural unmasking was not related to whether the children with CIs had good interaural time difference sensitivity. Results support the potential for benefits from binaural hearing and speech unmasking in children with bilateral CIs.
ERIC Educational Resources Information Center
Dorman, Michael F.; Liss, Julie; Wang, Shuai; Berisha, Visar; Ludwig, Cimarron; Natale, Sarah Cook
2016-01-01
Purpose: Five experiments probed auditory-visual (AV) understanding of sentences by users of cochlear implants (CIs). Method: Sentence material was presented in auditory (A), visual (V), and AV test conditions to listeners with normal hearing and CI users. Results: (a) Most CI users report that most of the time, they have access to both A and V…
Basta, Dietmar; Götze, Romy; Gröschel, Moritz; Jansen, Sebastian; Janke, Oliver; Tzschentke, Barbara; Boyle, Patrick; Ernst, Arne
2015-12-01
In recent years, cochlear implants have been applied successfully for the treatment of unilateral hearing loss with quite surprising benefit. One reason for this successful treatment, including the relief from tinnitus, could be the normalization of spontaneous activity in the central auditory pathway because of the electrical stimulation. The present study, therefore, investigated at a cellular level, the effect of a unilateral chronic intracochlear stimulation on key structures of the central auditory pathway. Normal-hearing guinea pigs were mechanically single-sided deafened through a standard HiFocus1j electrode array (on a HiRes 90k cochlear implant) being inserted into the first turn of the cochlea. Four to five electrode contacts could be used for the stimulation. Six weeks after surgery, the speech processor (Auria) was fitted, based on tNRI values and mounted on the animal's back. The two experimental groups were stimulated 16 hours per day for 90 days, using a HiRes strategy based on different stimulation rates (low rate (275 pps/ch), high rate (5000 pps/ch)). The results were compared with those of unilateral deafened controls (implanted but not stimulated), as well as between the treatment groups. All animals experienced a standardized free field auditory environment. The low-rate group showed a significantly lower average spontaneous activity bilaterally in the dorsal cochlear nucleus and the medial geniculate body than the controls. However, there was no difference in the inferior colliculus and the primary auditory cortex. Spontaneous activity of the high-rate group was also reduced bilaterally in the dorsal cochlear nucleus and in the primary auditory cortex. No differences could be observed between the high-rate group and the controls in the contra-lateral inferior colliculus and medial geniculate body. The high-rate group showed bilaterally a higher activity in the CN and the MGB compared with the low-rate group, whereas in the IC and in the AC a trend for an opposite effect could be determined. Unilateral intracochlear electrical stimulation seems to facilitate the homeostasis of the network activity, since it decreases the spontaneous activity that is usually elevated upon deafferentiation. The electrical stimulation per se seems to be responsible for the bilateral changes described above, rather than the particular nature of the electrical stimulation (e.g., rate). The normalization effects of electrical stimulation found in the present study are of particular importance in cochlear implant recipients with single-sided deafness.
Teissier, N; Doehring, I; Noel-Petroff, N; Elmaleh-Bergès, M; Viala, P; François, M; Faye, A; Van Den Abbeele, T; Lorrot, M
2013-06-01
Bacterial meningitis (BM) is the primary etiology of acquired sensorineural hearing loss (SNHL) in children and may compromise language development. Since the 1990 s, cochlear implants (CIs) have become part of the management of children with profound SNHL with encouraging results. The aim of this study was to analyze the audiophonological performance of children before and after cochlear implantation for SNHL following bacterial meningitis. Retrospective study of all children fitted with CIs for bilateral severe to profound SNHL after bacterial meningitis in the Robert-Debré pediatric ENT department between August 1990 and March 2009. Audiophonological performance was assessed using the APCEI profile. Of the 283 children receiving implants during that period, 16 children (6%; 6 boys, 10 girls) underwent CI implantation after bacterial meningitis (Streptococcus pneumoniae in 8 cases, Neisseria meningitidis in 2 cases, and Haemophilus influenzae in 4 cases). The mean time from meningitis to SNHL was 8.3 months (median, 1.5 months; range, 1 day to 13 years). The mean time from meningitis to cochlear implantation was 2 years and 3 months (median, 7 months; range, 1 month to 13 years 3 months). Twelve children (75%) presented partial cochlear and/or vestibular ossification on presurgical CT scan. Three children received bilateral implants. Thirteen children (81%) developed early SNHL in the first 3 months, whereas 3 children developed SNHL more than 10 months after meningitis. As for the benefits of cochlear implantation, 11 children presented near to normal intelligibility and optimal use of their cochlear implant; 5 children presented partial benefits due to neurological sequelae (1), a long delay before implantation (1), technical problems (2), or a social problem in relation to low socioeconomic status (1). After bacterial meningitis, audiological evaluation must be made carefully during the first 3 months to detect early SNHL, but SNHL may also develop several years later. In case of profound SNHL and a modified signal of the labyrinth on the MRI, cochlear implantation must be performed without delay before cochlear and/or vestibular ossification. Cochlear implantation is an effective technique with good long-term audiologic results. The coexistence of neurological lesions may compromise the results, but it should not contraindicate a cochlear implantation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Cochlear implantation in patients with bilateral cochlear trauma.
Serin, Gediz Murat; Derinsu, Ufuk; Sari, Murat; Gergin, Ozgül; Ciprut, Ayça; Akdaş, Ferda; Batman, Cağlar
2010-01-01
Temporal bone fracture, which involves the otic capsule, can lead to complete loss of auditory and vestibular functions, whereas the patients without fractures may experience profound sensorineural hearing loss due to cochlear concussion. Cochlear implant is indicated in profound sensorineural hearing loss due to cochlear trauma but who still have an intact auditory nerve. This is a retrospective review study. We report 5 cases of postlingually deafened patients caused by cochlear trauma, who underwent cochlear implantation. Preoperative and postoperative hearing performance will be presented. These patients are cochlear implanted after the cochlear trauma in our department between 2001 and 2006. All patients performed very well with their implants, obtained open-set speech understanding. They all became good telephone users after implantation. Their performance in speech understanding was comparable to standard postlingual adult patients implanted. Cochlear implantation is an effective aural rehabilitation in profound sensorineural hearing loss caused by temporal bone trauma. Preoperative temporal bone computed tomography, magnetic resonance imaging, and promontorium stimulation testing are necessary to make decision for the surgery and to determine the side to be implanted. Surgery could be challenging and complicated because of anatomical irregularity. Moreover, fibrosis and partial or total ossification within the cochlea must be expected. Copyright 2010. Published by Elsevier Inc.
Cochlear implantation in patient with Dandy-walker syndrome
de Oliveira, Adriana Kosma Pires; Hamerschmidt, Rogerio; Mocelin, Marcos; Rezende, Rodrigo K.
2012-01-01
Summary Introduction: Dandy Walker Syndrome is a congenital abnormality in the central nervous system, characterized by a deficiency in the development of middle cerebelar structures, cystic dilatation of the posterior pit communicating with the fourth ventricle and upward shift of the transverse sinuses, tentorium and dyes. Among the clinical signs are occipital protuberances, a progressive increase of the skull, bowing before the fontanels, papilledema, ataxia, gait disturbances, nystagmus, and intellectual impairment. Objectives: To describe a case of female patient, 13 years old with a diagnosis of this syndrome and bilateral hearing loss underwent cochlear implant surgery under local anesthesia and sedation. Case Report: CGS, 13 years old female was referred to the Otolaryngological Department of Otolaryngology Institute of Parana with a diagnosis of “Dandy-Walker syndrome” for Otolaryngological evaluation for bilateral hearing loss with no response to the use of hearing aids. Final Comments: The field of cochlear implants is growing rapidly. We believe that the presence of Dandy-Walker syndrome cannot be considered a contraindication to the performance of cochlear implant surgery, and there were no surgical complications due to neurological disorders with very favorable results for the patient who exhibits excellent discrimination. It has less need for lip reading with improvement in speech quality. PMID:25991966
The Development of Auditory Perception in Children Following Auditory Brainstem Implantation
Colletti, Liliana; Shannon, Robert V.; Colletti, Vittorio
2014-01-01
Auditory brainstem implants (ABI) can provide useful auditory perception and language development in deaf children who are not able to use a cochlear implant (CI). We prospectively followed-up a consecutive group of 64 deaf children up to 12 years following ABI implantation. The etiology of deafness in these children was: cochlear nerve aplasia in 49, auditory neuropathy in 1, cochlear malformations in 8, bilateral cochlear post-meningitic ossification in 3, NF2 in 2, and bilateral cochlear fractures due to a head injury in 1. Thirty five children had other congenital non-auditory disabilities. Twenty two children had previous CIs with no benefit. Fifty eight children were fitted with the Cochlear 24 ABI device and six with the MedEl ABI device and all children followed the same rehabilitation program. Auditory perceptual abilities were evaluated on the Categories of Auditory Performance (CAP) scale. No child was lost to follow-up and there were no exclusions from the study. All children showed significant improvement in auditory perception with implant experience. Seven children (11%) were able to achieve the highest score on the CAP test; they were able to converse on the telephone within 3 years of implantation. Twenty children (31.3%) achieved open set speech recognition (CAP score of 5 or greater) and 30 (46.9%) achieved a CAP level of 4 or greater. Of the 29 children without non-auditory disabilities, 18 (62%) achieved a CAP score of 5 or greater with the ABI. All children showed continued improvements in auditory skills over time. The long-term results of ABI implantation reveal significant auditory benefit in most children, and open set auditory recognition in many. PMID:25377987
Mynatt, Robert; Hale, Shane A; Gill, Ruth M; Plontke, Stefan K; Salt, Alec N
2006-06-01
Local applications of drugs to the inner ear are increasingly being used to treat patients' inner ear disorders. Knowledge of the pharmacokinetics of drugs in the inner ear fluids is essential for a scientific basis for such treatments. When auditory function is of primary interest, the drug's kinetics in scala tympani (ST) must be established. Measurement of drug levels in ST is technically difficult because of the known contamination of perilymph samples taken from the basal cochlear turn with cerebrospinal fluid (CSF). Recently, we reported a technique in which perilymph was sampled from the cochlear apex to minimize the influence of CSF contamination (J. Neurosci. Methods, doi: 10.1016/j.jneumeth.2005.10.008 ). This technique has now been extended by taking smaller fluid samples sequentially from the cochlear apex, which can be used to quantify drug gradients along ST. The sampling and analysis methods were evaluated using an ionic marker, trimethylphenylammonium (TMPA), that was applied to the round window membrane. After loading perilymph with TMPA, 10 1-muL samples were taken from the cochlear apex. The TMPA content of the samples was consistent with the first sample containing perilymph from apical regions and the fourth or fifth sample containing perilymph from the basal turn. TMPA concentration decreased in subsequent samples, as they increasingly contained CSF that had passed through ST. Sample concentration curves were interpreted quantitatively by simulation of the experiment with a finite element model and by an automated curve-fitting method by which the apical-basal gradient was estimated. The study demonstrates that sequential apical sampling provides drug gradient data for ST perilymph while avoiding the major distortions of sample composition associated with basal turn sampling. The method can be used for any substance for which a sensitive assay is available and is therefore of high relevance for the development of preclinical and clinical strategies for local drug delivery to the inner ear.
Mynatt, Robert; Hale, Shane A.; Gill, Ruth M.; Plontke, Stefan K.
2006-01-01
ABSTRACT Local applications of drugs to the inner ear are increasingly being used to treat patients' inner ear disorders. Knowledge of the pharmacokinetics of drugs in the inner ear fluids is essential for a scientific basis for such treatments. When auditory function is of primary interest, the drug's kinetics in scala tympani (ST) must be established. Measurement of drug levels in ST is technically difficult because of the known contamination of perilymph samples taken from the basal cochlear turn with cerebrospinal fluid (CSF). Recently, we reported a technique in which perilymph was sampled from the cochlear apex to minimize the influence of CSF contamination (J. Neurosci. Methods, doi: http://10.1016/j.jneumeth.2005.10.008). This technique has now been extended by taking smaller fluid samples sequentially from the cochlear apex, which can be used to quantify drug gradients along ST. The sampling and analysis methods were evaluated using an ionic marker, trimethylphenylammonium (TMPA), that was applied to the round window membrane. After loading perilymph with TMPA, 10 1-μL samples were taken from the cochlear apex. The TMPA content of the samples was consistent with the first sample containing perilymph from apical regions and the fourth or fifth sample containing perilymph from the basal turn. TMPA concentration decreased in subsequent samples, as they increasingly contained CSF that had passed through ST. Sample concentration curves were interpreted quantitatively by simulation of the experiment with a finite element model and by an automated curve-fitting method by which the apical–basal gradient was estimated. The study demonstrates that sequential apical sampling provides drug gradient data for ST perilymph while avoiding the major distortions of sample composition associated with basal turn sampling. The method can be used for any substance for which a sensitive assay is available and is therefore of high relevance for the development of preclinical and clinical strategies for local drug delivery to the inner ear. PMID:16718612
Should children who use cochlear implants wear hearing aids in the opposite ear?
Ching, T Y; Psarros, C; Hill, M; Dillon, H; Incerti, P
2001-10-01
The aim of this study was to investigate 1) whether a hearing aid needs to be adjusted differently depending on whether a child wears a cochlear implant or another hearing aid in the contralateral ear; 2) whether the use of a hearing aid and a cochlear implant in opposite ears leads to binaural interference; and 3) whether the use of a hearing aid and a cochlear implant in opposite ears leads to binaural benefits in speech perception, localization, and communicative functioning in real life. Sixteen children participated in this study. All children used a Nucleus 22 or Nucleus 24 cochlear implant system programmed with the SPEAK strategy in one ear. The hearing aid amplification requirements in the nonimplanted ear of these children were determined using two procedures. A paired comparison technique was used to identify the frequency response that was best for speech intelligibility in quiet, and a loudness balancing technique was used to match the loudness of speech in the ear with a hearing aid to that with a cochlear implant. Eleven of the 16 children participated in the investigation of binaural effects. Performance in speech perception, localization, and communicative functioning was assessed under four aided conditions: cochlear implant with hearing aid as worn, cochlear implant alone, hearing aid alone, and cochlear implant with hearing aid adjusted according to individual requirements. Fifteen of the 16 children whose amplification requirements were determined preferred a hearing aid frequency response that was within +/-6 dB/octave of the NAL-RP prescription. On average, the children required 6 dB more gain than prescribed to balance the loudness of the implanted ear for a speech signal presented at 65 dB SPL. For all 11 children whose performance was evaluated for investigating binaural effects, there was no indication of significantly poorer performance under bilaterally aided conditions compared with unilaterally aided conditions. On average, there were significant benefits in speech perception, localization, and aural/oral function when the children used cochlear implants with adjusted hearing aids than when they used cochlear implants alone. All individuals showed benefits in at least one of the measures. Hearing aids for children who also use cochlear implants can be selected using the NAL-RP prescription. Adjustment of hearing aid gain to match loudness in the implanted ear can facilitate integration of signals from both ears, leading to better speech perception. Given that there are binaural advantages from using cochlear implants with hearing aids in opposite ears, clinicians should advise parents and other professionals about these potential advantages, and facilitate bilateral amplification by adjusting hearing aids after stable cochlear implant MAPs are established.
Binaural hearing with electrical stimulation.
Kan, Alan; Litovsky, Ruth Y
2015-04-01
Bilateral cochlear implantation is becoming a standard of care in many clinics. While much benefit has been shown through bilateral implantation, patients who have bilateral cochlear implants (CIs) still do not perform as well as normal hearing listeners in sound localization and understanding speech in noisy environments. This difference in performance can arise from a number of different factors, including the areas of hardware and engineering, surgical precision and pathology of the auditory system in deaf persons. While surgical precision and individual pathology are factors that are beyond careful control, improvements can be made in the areas of clinical practice and the engineering of binaural speech processors. These improvements should be grounded in a good understanding of the sensitivities of bilateral CI patients to the acoustic binaural cues that are important to normal hearing listeners for sound localization and speech in noise understanding. To this end, we review the current state-of-the-art in the understanding of the sensitivities of bilateral CI patients to binaural cues in electric hearing, and highlight the important issues and challenges as they relate to clinical practice and the development of new binaural processing strategies. This article is part of a Special Issue entitled
Focused tight dressing does not prevent cochlear implant magnet migration under 1.5 Tesla MRI.
Cuda, D; Murri, A; Succo, G
2013-04-01
We report a retrospective case of inner magnet migration, which occurred after 1.5 Tesla MRI scanning in an adult recipient of a bilateral cochlear implant (CI) despite a focused head dressing. The patient, bilaterally implanted with Nucleus 5 CIs (Cochlear LTD, Sydney, Australia), underwent a 1.5 Tesla cholangio-MRI scan for biliary duct pathology. In subsequent days, a focal skin alteration appeared over the left inner coil. Plain skull radiographs showed partial magnet migration on the left side. Surgical exploration confirmed magnet twisting; the magnet was effectively repositioned. Left CI performance was restored to pre-migration level. The wound healed without complications. Thus, focused dressing does not prevent magnet migration in CI recipients undergoing 1.5 Tesla MRI. All patients should be counselled on this potential complication. A minor surgical procedure is required to reposition the magnet. Nevertheless, timely diagnosis is necessary to prevent skin breakdown and subsequent device contamination. Plain skull radiograph is very effective in identifying magnet twisting; it should be performed systematically after MRI or minimally on all suspected cases.
ERIC Educational Resources Information Center
Pyschny, Verena; Landwehr, Markus; Hahn, Moritz; Lang-Roth, Ruth; Walger, Martin; Meister, Hartmut
2014-01-01
Purpose: The objective of the study was to investigate the influence of noise (energetic) and speech (energetic plus informational) maskers on the head shadow (HS), squelch (SQ), and binaural summation (SU) effect in bilateral and bimodal cochlear implant (CI) users. Method: Speech recognition was measured in the presence of either a competing…
Churchill, Tyler H; Kan, Alan; Goupell, Matthew J; Litovsky, Ruth Y
2014-09-01
Most contemporary cochlear implant (CI) processing strategies discard acoustic temporal fine structure (TFS) information, and this may contribute to the observed deficits in bilateral CI listeners' ability to localize sounds when compared to normal hearing listeners. Additionally, for best speech envelope representation, most contemporary speech processing strategies use high-rate carriers (≥900 Hz) that exceed the limit for interaural pulse timing to provide useful binaural information. Many bilateral CI listeners are sensitive to interaural time differences (ITDs) in low-rate (<300 Hz) constant-amplitude pulse trains. This study explored the trade-off between superior speech temporal envelope representation with high-rate carriers and binaural pulse timing sensitivity with low-rate carriers. The effects of carrier pulse rate and pulse timing on ITD discrimination, ITD lateralization, and speech recognition in quiet were examined in eight bilateral CI listeners. Stimuli consisted of speech tokens processed at different electrical stimulation rates, and pulse timings that either preserved or did not preserve acoustic TFS cues. Results showed that CI listeners were able to use low-rate pulse timing cues derived from acoustic TFS when presented redundantly on multiple electrodes for ITD discrimination and lateralization of speech stimuli.
Lavie, Limor; Banai, Karen; Attias, Joseph; Karni, Avi
2014-03-01
The purpose of this study was to determine the effects of sequential versus simultaneous bilateral hearing aids fitting on patient compliance. Thirty-six older adults with hearing impairment participated in this study. Twelve were fitted with bilateral hearing aids simultaneously. The remaining participants were fitted sequentially: One hearing aid (to the left or to the right ear) was used initially; 1 month later, the other ear was also fitted with a hearing aid for bilateral use. Self-reports on usefulness and compliance were elicited after the first and second months of hearing aid use. In addition, the number of hours the hearing aids were used was extracted from the data loggings of each device. Simultaneous fitting resulted in high levels of compliance and consistent usage throughout the study period. Sequential fitting resulted in abrupt reduction in compliance and hours of use once the second hearing aid was added, both in the clinical scoring and in the data loggings. Simultaneous fitting of bilateral hearing aids results in better compliance compared with sequential fitting. The addition of a second hearing aid after a relatively short period of monaural use may lead to inconsistent use of both hearing aids.
Cochlear implantation in chronic demyelinating inflammatory polyneuropathy.
Mowry, Sarah E; King, Sarah
2017-03-01
To describe a case of chronic inflammatory demyelinating polyneuropathy (CDIP) with bilateral sudden sensorineural hearing loss who subsequently benefited from unilateral cochlear implantation. case history review and review of the literature for the terms CDIP, hearing loss, cochleovestibular dysfunction, and cochlear implantation. A 49-year-old woman presented with bilateral rapidly progressive sensorineural hearing loss (SNHL) 1 month after an upper respiratory tract infection. Hearing loss was not responsive to high-dose steroids and there were no other laboratory abnormalities or physical findings. Within 1 month, she developed ascending motor palsy, requiring long-term ventilator support. This neurologic condition was diagnosed as CDIP and she was successfully treated with plasmapheresis and intravenous immunoglobulin. Her hearing never recovered. At the time of cochlear implant, she had no response at the limits of the audiometer and obtained 0% on AzBio testing. No ABR could be recorded preoperatively. She underwent uneventful cochlear implantation with a perimodilar electrode. One year after activation, she had a PTA of 20 dB and 40% on AzBio sentence testing. Her eABR demonstrated a neuropathy pattern. Only two other cases of CDIP associated with dysfunction of the eighth nerve have been described, and neither had documented profound hearing loss. Severe SNHL associated with CDIP is rare. Although this patient has good access to sound, speech discrimination is poor at 1-year post implantation. This outcome may be due to incomplete recovery of myelination of the eighth nerve. Other possibilities include loss of peripheral nerve fibers due to the initial viral upper respiratory infection, which may lead to less neural substrate to stimulate.
Galletly, Cherrie A; Carnell, Benjamin L; Clarke, Patrick; Gill, Shane
2017-03-01
A great deal of research has established the efficacy of repetitive transcranial magnetic stimulation (rTMS) in the treatment of depression. However, questions remain about the optimal method to deliver treatment. One area requiring consideration is the difference in efficacy between bilateral and unilateral treatment protocols. This study aimed to compare the effectiveness of sequential bilateral rTMS and right unilateral rTMS. A total of 135 patients participated in the study, receiving either bilateral rTMS (N = 57) or right unilateral rTMS (N = 78). Treatment response was assessed using the Hamilton depression rating scale. Sequential bilateral rTMS had a higher response rate than right unilateral (43.9% vs 30.8%), but this difference was not statistically significant. This was also the case for remission rates (33.3% vs 21.8%, respectively). Controlling for pretreatment severity of depression, the results did not indicate a significant difference between the protocols with regard to posttreatment Hamilton depression rating scale scores. The current study found no statistically significant differences in response and remission rates between sequential bilateral rTMS and right unilateral rTMS. Given the shorter treatment time and the greater safety and tolerability of right unilateral rTMS, this may be a better choice than bilateral treatment in clinical settings.
The development of the Nucleus Freedom Cochlear implant system.
Patrick, James F; Busby, Peter A; Gibson, Peter J
2006-12-01
Cochlear Limited (Cochlear) released the fourth-generation cochlear implant system, Nucleus Freedom, in 2005. Freedom is based on 25 years of experience in cochlear implant research and development and incorporates advances in medicine, implantable materials, electronic technology, and sound coding. This article presents the development of Cochlear's implant systems, with an overview of the first 3 generations, and details of the Freedom system: the CI24RE receiver-stimulator, the Contour Advance electrode, the modular Freedom processor, the available speech coding strategies, the input processing options of Smart Sound to improve the signal before coding as electrical signals, and the programming software. Preliminary results from multicenter studies with the Freedom system are reported, demonstrating better levels of performance compared with the previous systems. The final section presents the most recent implant reliability data, with the early findings at 18 months showing improved reliability of the Freedom implant compared with the earlier Nucleus 3 System. Also reported are some of the findings of Cochlear's collaborative research programs to improve recipient outcomes. Included are studies showing the benefits from bilateral implants, electroacoustic stimulation using an ipsilateral and/or contralateral hearing aid, advanced speech coding, and streamlined speech processor programming.
ERIC Educational Resources Information Center
Huttunen, Kerttu; Ryder, Nuala
2012-01-01
This study explored the use of mental state and emotion terms and other evaluative expressions in the story generation of 65 children (aged 2-8 years) with normal hearing (NH) and 11 children (aged 3-7 years) using a cochlear implant (CI). Children generated stories on the basis of sets of sequential pictures. The stories of the children with CI…
Müller, Joachim
2005-01-01
Over the past two decades, the fascinating possibilities of cochlear implants for congenitally deaf or deafened children and adults developed tremendously and created a rapidly developing interdisciplinary research field. The main advancements of cochlear implantation in the past decade are marked by significant improvement of hearing and speech understanding in CI users. These improvements are attributed to the enhancement of speech coding strategies. The Implantation of more (and increasingly younger) children as well as the possibilities of the restoration of binaural hearing abilities with cochlear implants reflect the high standards reached by this development. Despite this progress, modern cochlear implants do not yet enable normal speech understanding, not even for the best patients. In particular speech understanding in noise remains problematic [1]. Until the mid 1990ies research concentrated on unilateral implantation. Remarkable and effective improvements have been made with bilateral implantation since 1996. Nowadays an increasing numbers of patients enjoy these benefits. PMID:22073052
Müller, Joachim
2005-01-01
Over the past two decades, the fascinating possibilities of cochlear implants for congenitally deaf or deafened children and adults developed tremendously and created a rapidly developing interdisciplinary research field.The main advancements of cochlear implantation in the past decade are marked by significant improvement of hearing and speech understanding in CI users. These improvements are attributed to the enhancement of speech coding strategies.The Implantation of more (and increasingly younger) children as well as the possibilities of the restoration of binaural hearing abilities with cochlear implants reflect the high standards reached by this development. Despite this progress, modern cochlear implants do not yet enable normal speech understanding, not even for the best patients. In particular speech understanding in noise remains problematic [1]. Until the mid 1990ies research concentrated on unilateral implantation. Remarkable and effective improvements have been made with bilateral implantation since 1996. Nowadays an increasing numbers of patients enjoy these benefits.
Binaural Pitch Fusion in Bilateral Cochlear Implant Users.
Reiss, Lina A J; Fowler, Jennifer R; Hartling, Curtis L; Oh, Yonghee
Binaural pitch fusion is the fusion of stimuli that evoke different pitches between the ears into a single auditory image. Individuals who use hearing aids or bimodal cochlear implants (CIs) experience abnormally broad binaural pitch fusion, such that sounds differing in pitch by as much as 3-4 octaves are fused across ears, leading to spectral averaging and speech perception interference. The goal of this study was to determine if adult bilateral CI users also experience broad binaural pitch fusion. Stimuli were pulse trains delivered to individual electrodes. Fusion ranges were measured using simultaneous, dichotic presentation of reference and comparison stimuli in opposite ears, and varying the comparison stimulus to find the range that fused with the reference stimulus. Bilateral CI listeners had binaural pitch fusion ranges varying from 0 to 12 mm (average 6.1 ± 3.9 mm), where 12 mm indicates fusion over all electrodes in the array. No significant correlations of fusion range were observed with any subject factors related to age, hearing loss history, or hearing device history, or with any electrode factors including interaural electrode pitch mismatch, pitch match bandwidth, or within-ear electrode discrimination abilities. Bilateral CI listeners have abnormally broad fusion, similar to hearing aid and bimodal CI listeners. This broad fusion may explain the variability of binaural benefits for speech perception in quiet and in noise in bilateral CI users.
Spectrum of temporal bone abnormalities in patients with Waardenburg syndrome and SOX10 mutations.
Elmaleh-Bergès, M; Baumann, C; Noël-Pétroff, N; Sekkal, A; Couloigner, V; Devriendt, K; Wilson, M; Marlin, S; Sebag, G; Pingault, V
2013-01-01
Waardenburg syndrome, characterized by deafness and pigmentation abnormalities, is clinically and genetically heterogeneous, consisting of 4 distinct subtypes and involving several genes. SOX10 mutations have been found both in types 2 and 4 Waardenburg syndrome and neurologic variants. The purpose of this study was to evaluate both the full spectrum and relative frequencies of inner ear malformations in these patients. Fifteen patients with Waardenburg syndrome and different SOX10 mutations were studied retrospectively. Imaging was performed between February 2000 and March 2010 for cochlear implant work-up, diagnosis of hearing loss, and/or evaluation of neurologic impairment. Eleven patients had both CT and MR imaging examinations, 3 had MR imaging only, and 1 had CT only. Temporal bone abnormalities were bilateral. The most frequent pattern associated agenesis or hypoplasia of ≥1 semicircular canal, an enlarged vestibule, and a cochlea with a reduced size and occasionally an abnormal shape, but with normal partition in the 13/15 cases that could be analyzed. Three patients lacked a cochlear nerve, bilaterally in 2 patients. In addition, associated abnormalities were found when adequate MR imaging sequences were available: agenesis of the olfactory bulbs (7/8), hypoplastic or absent lacrimal glands (11/14), hypoplastic parotid glands (12/14), and white matter signal anomalies (7/13). In the appropriate clinical context, bilateral agenesis or hypoplasia of the semicircular canals or both, associated with an enlarged vestibule and a cochlear deformity, strongly suggests a diagnosis of Waardenburg syndrome linked to a SOX10 mutation.
Olusesi, A D; Oyeniran, O
2017-05-01
Few studies have compared bilateral same-day with staged tympanoplasty using cartilage graft materials. A prospective randomised observational study was performed of 38 chronic suppurative otitis media patients (76 ears) who were assigned to undergo bilateral sequential same-day tympanoplasty (18 patients, 36 ears) or bilateral sequential tympanoplasty performed 3 months apart (20 patients, 40 ears). Disease duration, intra-operative findings, combined duration of surgery, post-operative graft appearance at 6 weeks, post-operative complications, re-do rate and relative cost of surgery were recorded. Tympanic membrane perforations were predominantly subtotal (p = 0.36, odds ratio = 0.75). Most grafts were harvested from the conchal cartilage and fewer from the tragus (p = 0.59, odds ratio = 1.016). Types of complication, post-operative hearing gain and revision rates were similar in both patient groups. Surgical outcomes are not significantly different for same-day and bilateral cartilage tympanoplasty, but same-day surgery has the added benefit of a lower cost.
Aronoff, Justin M.; Padilla, Monica; Fu, Qian-Jie; Landsberger, David M.
2015-01-01
Contralateral masking is the phenomenon where a masker presented to one ear affects the ability to detect a signal in the opposite ear. For normal hearing listeners, contralateral masking results in masking patterns that are both sharper and dramatically smaller in magnitude than ipsilateral masking. The goal of this study was to investigate whether medial olivocochlear (MOC) efferents are needed for the sharpness and relatively small magnitude of the contralateral masking function. To do this, bilateral cochlear implant patients were tested because, by directly stimulating the auditory nerve, cochlear implants circumvent the effects of the MOC efferents. The results indicated that, as with normal hearing listeners, the contralateral masking function was sharper than the ipsilateral masking function. However, although there was a reduction in the magnitude of the contralateral masking function compared to the ipsilateral masking function, it was relatively modest. This is in sharp contrast to the results of normal hearing listeners where the magnitude of the contralateral masking function is greatly reduced. These results suggest that MOC function may not play a large role in the sharpness of the contralateral masking function but may play a considerable role in the magnitude of the contralateral masking function. PMID:25798581
Falcón-González, Juan C; Borkoski-Barreiro, Silvia; Limiñana-Cañal, José María; Ramos-Macías, Angel
2014-01-01
Music is a universal, cross-cultural phenomenon. Perception and enjoyment of music are still not solved with current technological objectives of cochlear implants. The objective of this article was to advance the development and validation of a method of programming of cochlear implants that implements a frequency allocation strategy. We compared standard programming vs frequency programming in every subject. We studied a total of 40 patients with cochlear implants. Each patient was programmed with a optimal version of the standard program, using the Custom Sound Suite 3.2 cochlear platform. Speech tests in quiet were performed using syllable word lists from the protocol for the assessment of hearing in the Spanish language. Patients implanted bilaterally were tested in both ears at the same time. For assessing music listening habits we used the Munich Music Questionnaire and «MACarena»(minimum auditory capability) software. All patients achieved better results in recognition, instrument tests and tonal scales with frequency programming (P<.005). Likewise, there were better results with frequency programming in recognising harmonics and pitch test (P<.005). Frequency programming achieves better perception and recognition results in patients in comparison with standard programming. Bilateral stimulation patients have better perception of musical patterns and better performance in recognition of tonal scales, harmonics and musical instruments compared with patients with unilateral stimulation. Modification and frequency allocation during programming allows decreased levels of current intensity and increase the dynamic range, which allows mapping of each audio band less obtrusively and improves the quality of representation of the signal. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.
Comparison of ablation centration after bilateral sequential versus simultaneous LASIK.
Lin, Jane-Ming; Tsai, Yi-Yu
2005-01-01
To compare ablation centration after bilateral sequential and simultaneous myopic LASIK. A retrospective randomized case series was performed of 670 eyes of 335 consecutive patients who had undergone either bilateral sequential (group 1) or simultaneous (group 2) myopic LASIK between July 2000 and July 2001 at the China Medical University Hospital, Taichung, Taiwan. The ablation centrations of the first and second eyes in the two groups were compared 3 months postoperatively. Of 670 eyes, 274 eyes (137 patients) comprised the sequential group and 396 eyes (198 patients) comprised the simultaneous group. Three months post-operatively, 220 eyes of 110 patients (80%) in the sequential group and 236 eyes of 118 patients (60%) in the simultaneous group provided topographic data for centration analysis. For the first eyes, mean decentration was 0.39 +/- 0.26 mm in the sequential group and 0.41 +/- 0.19 mm in the simultaneous group (P = .30). For the second eyes, mean decentration was 0.28 +/- 0.23 mm in the sequential group and 0.30 +/- 0.21 mm in the simultaneous group (P = .36). Decentration in the second eyes significantly improved in both groups (group 1, P = .02; group 2, P < .01). The mean distance between the first and second eyes was 0.31 +/- 0.25 mm in the sequential group and 0.32 +/- 0.18 mm in the simultaneous group (P = .33). The difference of ablation center angles between the first and second eyes was 43.2 < or = 48.3 degrees in the sequential group and 45.1 +/- 50.8 degrees in the simultaneous group (P = .42). Simultaneous bilateral LASIK is comparable to sequential surgery in ablation centration.
Bilateral Cochlear Implants: Maximizing Expected Outcomes.
Wallis, Kate E; Blum, Nathan J; Waryasz, Stephanie A; Augustyn, Marilyn
Sonia is a 4 years 1 month-year-old girl with Waardenburg syndrome and bilateral sensorineural hearing loss who had bilateral cochlear implants at 2 years 7 months years of age. She is referred to Developmental-Behavioral Pediatrics by her speech/language pathologist because of concerns that her language skills are not progressing as expected after the cochlear implant. At the time of the implant, she communicated using approximately 20 signs and 1 spoken word (mama). At the time of the evaluation (18 months after the implant) she had approximately 70 spoken words (English and Spanish) and innumerable signs that she used to communicate. She could follow 1-step directions in English but had more difficulty after 2-step directions.Sonia was born in Puerto Rico at 40 weeks gestation after an uncomplicated pregnancy. She failed her newborn hearing test and was given hearing aids that did not seem to help.At age 2 years, Sonia, her mother, and younger sister moved to the United States where she was diagnosed with bilateral severe-to-profound hearing loss. Genetic testing led to a diagnosis of Waardenburg syndrome (group of genetic conditions that can cause hearing loss and changes in coloring [pigmentation] of the hair, skin, and eyes). She received bilateral cochlear implants 6 months later.Sonia's mother is primarily Spanish-speaking and mostly communicates with her in Spanish or with gestures but has recently begun to learn American Sign Language (ASL). In a preschool program at a specialized school for the deaf, Sonia is learning both English and ASL. Sonia seems to prefer to use ASL to communicate.Sonia receives speech and language therapy (SLT) 3 times per week (90 minutes total) individually in school and once per week within a group. She is also receiving outpatient SLT once per week. Therapy sessions are completed in English, with the aid of an ASL interpreter. Sonia's language scores remain low, with her receptive skills in the first percentile, and her expressive skills in the fifth percentile.During her evaluation in Developmental and Behavioral Pediatrics, an ASL interpreter was present, and the examiner is a fluent Spanish speaker. Testing was completed through a combination of English, Spanish, and ASL. Sonia seemed to prefer ASL to communicate, although she used some English words with errors of pronunciation. On the Beery Visual-Motor Integration Test, she obtained a standard score of 95. Parent and teacher rating scales were not significant for symptoms of attention-deficit/hyperactivity disorder.What factors are contributing to her slow language acquisition and how would you modify her treatment plan?
Involving young people in decision making about sequential cochlear implantation.
Ion, Rebecca; Cropper, Jenny; Walters, Hazel
2013-11-01
The National Institute for Health and Clinical Excellence guidelines recommended young people who currently have one cochlear implant be offered assessment for a second, sequential implant, due to the reported improvements in sound localization and speech perception in noise. The possibility and benefits of group information and counselling assessments were considered. Previous research has shown advantages of group sessions involving young people and their families and such groups which also allow young people opportunity to discuss their concerns separately to their parents/guardians are found to be 'hugely important'. Such research highlights the importance of involving children in decision-making processes. Families considering a sequential cochlear implant were invited to a group information/counselling session, which included time for parents and children to meet separately. Fourteen groups were held with approximately four to five families in each session, totalling 62 patients. The sessions were facilitated by the multi-disciplinary team, with a particular psychological focus in the young people's session. Feedback from families has demonstrated positive support for this format. Questionnaire feedback, to which nine families responded, indicated that seven preferred the group session to an individual session and all approved of separate groups for the child and parents/guardians. Overall the group format and psychological focus were well received in this typically surgical setting and emphasized the importance of involving the young person in the decision-making process. This positive feedback also opens up the opportunity to use a group format in other assessment processes.
Eustaquio-Martín, Almudena; Stohl, Joshua S.; Wolford, Robert D.; Schatzer, Reinhold; Wilson, Blake S.
2016-01-01
Objectives: In natural hearing, cochlear mechanical compression is dynamically adjusted via the efferent medial olivocochlear reflex (MOCR). These adjustments probably help understanding speech in noisy environments and are not available to the users of current cochlear implants (CIs). The aims of the present study are to: (1) present a binaural CI sound processing strategy inspired by the control of cochlear compression provided by the contralateral MOCR in natural hearing; and (2) assess the benefits of the new strategy for understanding speech presented in competition with steady noise with a speech-like spectrum in various spatial configurations of the speech and noise sources. Design: Pairs of CI sound processors (one per ear) were constructed to mimic or not mimic the effects of the contralateral MOCR on compression. For the nonmimicking condition (standard strategy or STD), the two processors in a pair functioned similarly to standard clinical processors (i.e., with fixed back-end compression and independently of each other). When configured to mimic the effects of the MOCR (MOC strategy), the two processors communicated with each other and the amount of back-end compression in a given frequency channel of each processor in the pair decreased/increased dynamically (so that output levels dropped/increased) with increases/decreases in the output energy from the corresponding frequency channel in the contralateral processor. Speech reception thresholds in speech-shaped noise were measured for 3 bilateral CI users and 2 single-sided deaf unilateral CI users. Thresholds were compared for the STD and MOC strategies in unilateral and bilateral listening conditions and for three spatial configurations of the speech and noise sources in simulated free-field conditions: speech and noise sources colocated in front of the listener, speech on the left ear with noise in front of the listener, and speech on the left ear with noise on the right ear. In both bilateral and unilateral listening, the electrical stimulus delivered to the test ear(s) was always calculated as if the listeners were wearing bilateral processors. Results: In both unilateral and bilateral listening conditions, mean speech reception thresholds were comparable with the two strategies for colocated speech and noise sources, but were at least 2 dB lower (better) with the MOC than with the STD strategy for spatially separated speech and noise sources. In unilateral listening conditions, mean thresholds improved with increasing the spatial separation between the speech and noise sources regardless of the strategy but the improvement was significantly greater with the MOC strategy. In bilateral listening conditions, thresholds improved significantly with increasing the speech-noise spatial separation only with the MOC strategy. Conclusions: The MOC strategy (1) significantly improved the intelligibility of speech presented in competition with a spatially separated noise source, both in unilateral and bilateral listening conditions; (2) produced significant spatial release from masking in bilateral listening conditions, something that did not occur with fixed compression; and (3) enhanced spatial release from masking in unilateral listening conditions. The MOC strategy as implemented here, or a modified version of it, may be usefully applied in CIs and in hearing aids. PMID:26862711
Lopez-Poveda, Enrique A; Eustaquio-Martín, Almudena; Stohl, Joshua S; Wolford, Robert D; Schatzer, Reinhold; Wilson, Blake S
2016-01-01
In natural hearing, cochlear mechanical compression is dynamically adjusted via the efferent medial olivocochlear reflex (MOCR). These adjustments probably help understanding speech in noisy environments and are not available to the users of current cochlear implants (CIs). The aims of the present study are to: (1) present a binaural CI sound processing strategy inspired by the control of cochlear compression provided by the contralateral MOCR in natural hearing; and (2) assess the benefits of the new strategy for understanding speech presented in competition with steady noise with a speech-like spectrum in various spatial configurations of the speech and noise sources. Pairs of CI sound processors (one per ear) were constructed to mimic or not mimic the effects of the contralateral MOCR on compression. For the nonmimicking condition (standard strategy or STD), the two processors in a pair functioned similarly to standard clinical processors (i.e., with fixed back-end compression and independently of each other). When configured to mimic the effects of the MOCR (MOC strategy), the two processors communicated with each other and the amount of back-end compression in a given frequency channel of each processor in the pair decreased/increased dynamically (so that output levels dropped/increased) with increases/decreases in the output energy from the corresponding frequency channel in the contralateral processor. Speech reception thresholds in speech-shaped noise were measured for 3 bilateral CI users and 2 single-sided deaf unilateral CI users. Thresholds were compared for the STD and MOC strategies in unilateral and bilateral listening conditions and for three spatial configurations of the speech and noise sources in simulated free-field conditions: speech and noise sources colocated in front of the listener, speech on the left ear with noise in front of the listener, and speech on the left ear with noise on the right ear. In both bilateral and unilateral listening, the electrical stimulus delivered to the test ear(s) was always calculated as if the listeners were wearing bilateral processors. In both unilateral and bilateral listening conditions, mean speech reception thresholds were comparable with the two strategies for colocated speech and noise sources, but were at least 2 dB lower (better) with the MOC than with the STD strategy for spatially separated speech and noise sources. In unilateral listening conditions, mean thresholds improved with increasing the spatial separation between the speech and noise sources regardless of the strategy but the improvement was significantly greater with the MOC strategy. In bilateral listening conditions, thresholds improved significantly with increasing the speech-noise spatial separation only with the MOC strategy. The MOC strategy (1) significantly improved the intelligibility of speech presented in competition with a spatially separated noise source, both in unilateral and bilateral listening conditions; (2) produced significant spatial release from masking in bilateral listening conditions, something that did not occur with fixed compression; and (3) enhanced spatial release from masking in unilateral listening conditions. The MOC strategy as implemented here, or a modified version of it, may be usefully applied in CIs and in hearing aids.
Fitzgerald, Matthew B.; Prosolovich, Ksenia; Tan, Chin-Tuan; Glassman, E. Katelyn; Svirsky, Mario A.
2017-01-01
Background Many recipients of bilateral cochlear implants (CIs) may have differences in electrode insertion depth. Previous reports indicate that when a bilateral mismatch is imposed, performance on tests of speech understanding or sound localization becomes worse. If recipients of bilateral CIs cannot adjust to a difference in insertion depth, adjustments to the frequency table may be necessary to maximize bilateral performance. Purpose The purpose of this study was to examine the feasibility of using real-time manipulations of the frequency table to offset any decrements in performance resulting from a bilateral mismatch. Research Design A simulation of a CI was used because it allows for explicit control of the size of a bilateral mismatch. Such control is not available with users of CIs. Study Sample A total of 31 normal-hearing young adults participated in this study. Data Collection and Analysis Using a CI simulation, four bilateral mismatch conditions (0, 0.75, 1.5, and 3 mm) were created. In the left ear, the analysis filters and noise bands of the CI simulation were the same. In the right ear, the noise bands were shifted higher in frequency to simulate a bilateral mismatch. Then, listeners selected a frequency table in the right ear that was perceived as maximizing bilateral speech intelligibility. Word-recognition scores were then assessed for each bilateral mismatch condition. Listeners were tested with both a standard frequency table, which preserved a bilateral mismatch, or with their self-selected frequency table. Results Consistent with previous reports, bilateral mismatches of 1.5 and 3 mm yielded decrements in word recognition when the standard table was used in both ears. However, when listeners used the self-selected frequency table, performance was the same regardless of the size of the bilateral mismatch. Conclusions Self-selection of a frequency table appears to be a feasible method for ameliorating the negative effects of a bilateral mismatch. These data may have implications for recipients of bilateral CIs who cannot adapt to a bilateral mismatch, because they suggest that (1) such individuals may benefit from modification of the frequency table in one ear and (2) self-selection of a “most intelligible” frequency table may be a useful tool for determining how the frequency table should be altered to optimize speech recognition. PMID:28534729
Sudden Bilateral Sensorineural Hearing Loss Following Postpartum Hemorrhage: A Case Report
Mirzaeian, Sara; Ayati, Sedigheh; Maleki, Asieh
2017-01-01
The prevalence of bilateral sudden sensorineural hearing loss (SSNHL) is less than 5% and the etiology of most cases is unknown. Due to many structural and functional similarities between the kidney and inner ear, many conditions, diseases, and drugs have both renal and cochlear effects and toxicities. There are several reports of SSNHL in patients with CRF, uraemic patient, hemodialysis treatment, and ARF. Here, we report a rare manifestation of SSNHL following severe postpartum hemorrhage that has simultaneous renal failure and cochlear impairment. The patient was a 22-year-old primigravida woman with term pregnancy who after delivery and episiotomy hematoma and postpartum hemorrhage subsequently suffered from kidney failure, oliguria, and SSNHL that occurred after 3 days of delivery. In conditions such as severe postpartum bleeding leading to acute renal involvement, the possibility of simultaneous involvement of cochlea due to hypoxia or received drugs should be considered. PMID:28761208
Binaural enhancement for bilateral cochlear implant users.
Brown, Christopher A
2014-01-01
Bilateral cochlear implant (BCI) users receive limited binaural cues and, thus, show little improvement to speech intelligibility from spatial cues. The feasibility of a method for enhancing the binaural cues available to BCI users is investigated. This involved extending interaural differences of levels, which typically are restricted to high frequencies, into the low-frequency region. Speech intelligibility was measured in BCI users listening over headphones and with direct stimulation, with a target talker presented to one side of the head in the presence of a masker talker on the other side. Spatial separation was achieved by applying either naturally occurring binaural cues or enhanced cues. In this listening configuration, BCI patients showed greater speech intelligibility with the enhanced binaural cues than with naturally occurring binaural cues. In some situations, it is possible for BCI users to achieve greater speech intelligibility when binaural cues are enhanced by applying interaural differences of levels in the low-frequency region.
Pinyon, Jeremy L; Tadros, Sherif F; Froud, Kristina E; Y Wong, Ann C; Tompson, Isabella T; Crawford, Edward N; Ko, Myungseo; Morris, Renée; Klugmann, Matthias; Housley, Gary D
2014-04-23
The cochlear implant is the most successful bionic prosthesis and has transformed the lives of people with profound hearing loss. However, the performance of the "bionic ear" is still largely constrained by the neural interface itself. Current spread inherent to broad monopolar stimulation of the spiral ganglion neuron somata obviates the intrinsic tonotopic mapping of the cochlear nerve. We show in the guinea pig that neurotrophin gene therapy integrated into the cochlear implant improves its performance by stimulating spiral ganglion neurite regeneration. We used the cochlear implant electrode array for novel "close-field" electroporation to transduce mesenchymal cells lining the cochlear perilymphatic canals with a naked complementary DNA gene construct driving expression of brain-derived neurotrophic factor (BDNF) and a green fluorescent protein (GFP) reporter. The focusing of electric fields by particular cochlear implant electrode configurations led to surprisingly efficient gene delivery to adjacent mesenchymal cells. The resulting BDNF expression stimulated regeneration of spiral ganglion neurites, which had atrophied 2 weeks after ototoxic treatment, in a bilateral sensorineural deafness model. In this model, delivery of a control GFP-only vector failed to restore neuron structure, with atrophied neurons indistinguishable from unimplanted cochleae. With BDNF therapy, the regenerated spiral ganglion neurites extended close to the cochlear implant electrodes, with localized ectopic branching. This neural remodeling enabled bipolar stimulation via the cochlear implant array, with low stimulus thresholds and expanded dynamic range of the cochlear nerve, determined via electrically evoked auditory brainstem responses. This development may broadly improve neural interfaces and extend molecular medicine applications.
The Relationship Between Intensity Coding and Binaural Sensitivity in Adults With Cochlear Implants.
Todd, Ann E; Goupell, Matthew J; Litovsky, Ruth Y
Many bilateral cochlear implant users show sensitivity to binaural information when stimulation is provided using a pair of synchronized electrodes. However, there is large variability in binaural sensitivity between and within participants across stimulation sites in the cochlea. It was hypothesized that within-participant variability in binaural sensitivity is in part affected by limitations and characteristics of the auditory periphery which may be reflected by monaural hearing performance. The objective of this study was to examine the relationship between monaural and binaural hearing performance within participants with bilateral cochlear implants. Binaural measures included dichotic signal detection and interaural time difference discrimination thresholds. Diotic signal detection thresholds were also measured. Monaural measures included dynamic range and amplitude modulation detection. In addition, loudness growth was compared between ears. Measures were made at three stimulation sites per listener. Greater binaural sensitivity was found with larger dynamic ranges. Poorer interaural time difference discrimination was found with larger difference between comfortable levels of the two ears. In addition, poorer diotic signal detection thresholds were found with larger differences between the dynamic ranges of the two ears. No relationship was found between amplitude modulation detection thresholds or symmetry of loudness growth and the binaural measures. The results suggest that some of the variability in binaural hearing performance within listeners across stimulation sites can be explained by factors nonspecific to binaural processing. The results are consistent with the idea that dynamic range and comfortable levels relate to peripheral neural survival and the width of the excitation pattern which could affect the fidelity with which central binaural nuclei process bilateral inputs.
Van Hoesel, Richard; Ramsden, Richard; Odriscoll, Martin
2002-04-01
To characterize some of the benefits available from using two cochlear implants compared with just one, sound-direction identification (ID) abilities, sensitivity to interaural time delays (ITDs) and speech intelligibility in noise were measured for a bilateral multi-channel cochlear implant user. Sound-direction ID in the horizontal plane was tested with a bilateral cochlear implant user. The subject was tested both unilaterally and bilaterally using two independent behind-the-ear ESPRIT (Cochlear Ltd.) processors, as well as bilaterally using custom research processors. Pink noise bursts were presented using an 11-loudspeaker array spanning the subject's frontal 180 degrees arc in an anechoic room. After each burst, the subject was asked to identify which loudspeaker had produced the sound. No explicit training, and no feedback were given. Presentation levels were nominally at 70 dB SPL, except for a repeat experiment using the clinical devices where the presentation levels were reduced to 60 dB SPL to avoid activation of the devices' automatic gain control (AGC) circuits. Overall presentation levels were randomly varied by +/- 3 dB. For the research processor, a "low-update-rate" and a "high-update-rate" strategy were tested. Direct measurements of ITD just noticeable differences (JNDs) were made using a 3 AFC paradigm targeting 70% correct performance on the psychometric function. Stimuli included simple, low-rate electrical pulse trains as well as high-rate pulse trains modulated at 100 Hz. Speech data comparing monaural and binaural performance in noise were also collected with both low, and high update-rate strategies on the research processors. Open-set sentences were presented from directly in front of the subject and competing multi-talker babble noise was presented from the same loudspeaker, or from a loudspeaker placed 90 degrees to the left or right of the subject. For the sound-direction ID task, monaural performance using the clinical devices showed large mean absolute errors of 81 degrees and 73 degrees, with standard deviations (averaged across all 11 loud-speakers) of 10 degrees and 17 degrees, for left and right ears, respectively. Fore bilateral device use at a presentation level of 70 dB SPL, the mean error improved to about 16 degrees with an average standard deviation of 18 degrees. When the presentation level was decreased to 60 dB SPL to avoid activation of the automatic gain control (AGC) circuits in the clinical processors, the mean response error improved further to 8 degrees with a standard deviation of 13 degrees. Further tests with the custom research processors, which had a higher stimulation rate and did not include AGCs, showed comparable response errors: around 8 or 9 degrees and a standard deviation of about 11 degrees for both update rates. The best ITD JNDs measured for this subject were between 350 to 400 microsec for simple low-rate pulse trains. Speech results showed a substantial headshadow advantage for bilateral device use when speech and noise were spatially separated, but little evidence of binaural unmasking. For spatially coincident speech and noise, listening with both ears showed similar results to listening with either side alone when loudness summation was compensated for. No significant differences were observed between binaural results for high and low update-rates in any test configuration. Only for monaural listening in one test configuration did the high rate show a small significant improvement over the low rate. Results show that even if interaural time delay cues are not well coded or perceived, bilateral implants can offer important advantages, both for speech in noise as well as for sound-direction identification.
Pros and cons of immediately sequential bilateral cataract surgery (ISBCS).
Grzybowski, Andrzej; Wasinska-Borowiec, Weronika; Claoué, Charles
2016-01-01
Immediately sequential bilateral cataract surgery (ISBCS) is currently a "hot topic" in ophthalmology. There are well-documented advantages in terms of quicker visual rehabilitation and reduced costs. The risk of bilateral simultaneous endophthalmitis and bilateral blindness is now recognized to be minuscule with the advent of intracameral antibiotics and modern management of endophthalmitis. Refractive surprises are rare for normal eyes and with the use of optical biometry. Where a general anesthetic is indicated for cataract surgery, the risk of death from a second anesthetic is much higher than the risk of blindness. A widely recognized protocol from the International Society of Bilateral Cataract Surgeons needs to be adhered to if surgeons wish to start practicing ISBCS.
Choi, Ji Eun; Moon, Il Joon; Kim, Eun Yeon; Park, Hee-Sung; Kim, Byung Kil; Chung, Won-Ho; Cho, Yang-Sun; Brown, Carolyn J; Hong, Sung Hwa
The aim of this study was to compare binaural performance of auditory localization task and speech perception in babble measure between children who use a cochlear implant (CI) in one ear and a hearing aid (HA) in the other (bimodal fitting) and those who use bilateral CIs. Thirteen children (mean age ± SD = 10 ± 2.9 years) with bilateral CIs and 19 children with bimodal fitting were recruited to participate. Sound localization was assessed using a 13-loudspeaker array in a quiet sound-treated booth. Speakers were placed in an arc from -90° azimuth to +90° azimuth (15° interval) in horizontal plane. To assess the accuracy of sound location identification, we calculated the absolute error in degrees between the target speaker and the response speaker during each trial. The mean absolute error was computed by dividing the sum of absolute errors by the total number of trials. We also calculated the hemifield identification score to reflect the accuracy of right/left discrimination. Speech-in-babble perception was also measured in the sound field using target speech presented from the front speaker. Eight-talker babble was presented in the following four different listening conditions: from the front speaker (0°), from one of the two side speakers (+90° or -90°), from both side speakers (±90°). Speech, spatial, and quality questionnaire was administered. When the two groups of children were directly compared with each other, there was no significant difference in localization accuracy ability or hemifield identification score under binaural condition. Performance in speech perception test was also similar to each other under most babble conditions. However, when the babble was from the first device side (CI side for children with bimodal stimulation or first CI side for children with bilateral CIs), speech understanding in babble by bilateral CI users was significantly better than that by bimodal listeners. Speech, spatial, and quality scores were comparable with each other between the two groups. Overall, the binaural performance was similar to each other between children who are fit with two CIs (CI + CI) and those who use bimodal stimulation (HA + CI) in most conditions. However, the bilateral CI group showed better speech perception than the bimodal CI group when babble was from the first device side (first CI side for bilateral CI users or CI side for bimodal listeners). Therefore, if bimodal performance is significantly below the mean bilateral CI performance on speech perception in babble, these results suggest that a child should be considered to transit from bimodal stimulation to bilateral CIs.
Litovsky, Ruth Y.; Gordon, Karen
2017-01-01
Spatial hearing skills are essential for children as they grow, learn and play. They provide critical cues for determining the locations of sources in the environment, and enable segregation of important sources, such as speech, from background maskers or interferers. Spatial hearing depends on availability of monaural cues and binaural cues. The latter result from integration of inputs arriving at the two ears from sounds that vary in location. The binaural system has exquisite mechanisms for capturing differences between the ears in both time of arrival and intensity. The major cues that are thus referred to as being vital for binaural hearing are: interaural differences in time (ITDs) and interaural differences in levels (ILDs). In children with normal hearing (NH), spatial hearing abilities are fairly well developed by age 4–5 years. In contrast, children who are deaf and hear through cochlear implants (CIs) do not have an opportunity to experience normal, binaural acoustic hearing early in life. These children may function by having to utilize auditory cues that are degraded with regard to numerous stimulus features. In recent years there has been a notable increase in the number of children receiving bilateral CIs, and evidence suggests that while having two CIs helps them function better than when listening through a single CI, they generally perform worse than their NH peers. This paper reviews some of the recent work on bilaterally implanted children. The focus is on measures of spatial hearing, including sound localization, release from masking for speech understanding in noise and binaural sensitivity using research processors. Data from behavioral and electrophysiological studies are included, with a focus on the recent work of the authors and their collaborators. The effects of auditory plasticity and deprivation on the emergence of binaural and spatial hearing are discussed along with evidence for reorganized processing from both behavioral and electrophysiological studies. The consequences of both unilateral and bilateral auditory deprivation during development suggest that the relevant set of issues is highly complex with regard to successes and the limitations experienced by children receiving bilateral cochlear implants. PMID:26828740
Della Santina, Charles C.; Migliaccio, Americo A.; Hayden, Russell; Melvin, Thuy-Anh; Fridman, Gene Y.; Chiang, Bryce; Davidovics, Natan S.; Dai, Chenkai; Carey, John P.; Minor, Lloyd B.; Anderson, Iee-Ching; Park, HongJu; Lyford-Pike, Sofia; Tang, Shan
2012-01-01
Bilateral loss of vestibular sensation can disable individuals whose vestibular hair cells are injured by ototoxic medications, infection, Ménière’s disease or other insults to the labyrinth including surgical trauma during cochlear implantation. Without input to vestibulo-ocular and vestibulo-spinal reflexes that normally stabilize the eyes and body, affected patients suffer blurred vision during head movement, postural instability, and chronic disequilibrium. While individuals with some residual sensation often compensate for their loss through rehabilitation exercises, those who fail to do so are left with no adequate treatment options. An implantable neuroelectronic vestibular prosthesis that emulates the normal labyrinth by sensing head movement and modulating activity on appropriate branches of the vestibular nerve could significantly improve quality of life for these otherwise chronically dizzy patients. This brief review describes the impact and current management of bilateral loss of vestibular sensation, animal studies supporting the feasibility of prosthetic vestibular stimulation, and a vestibular prosthesis designed to restore sensation of head rotation in all directions. Similar to a cochlear implant in concept and size, the Johns Hopkins Multichannel Vestibular Prosthesis (MVP) includes miniature gyroscopes to sense head rotation, a microcontroller to process inputs and control stimulus timing, and current sources switched between pairs of electrodes implanted within the vestibular labyrinth. In rodents and rhesus monkeys rendered bilaterally vestibular-deficient via treatment with gentamicin and/or plugging of semicircular canals, the MVP partially restores the vestibulo-ocular reflex for head rotations about any axis of rotation in 3-dimensional space. Our efforts now focus on addressing issues prerequisite to human implantation, including refinement of electrode designs and surgical technique to enhance stimulus selectivity and preserve cochlear function, optimization of stimulus protocols, and reduction of device size and power consumption. PMID:21756683
Morita, Shinya; Fujiwara, Keishi; Fukuda, Atsushi; Fukuda, Satoshi; Nishio, Shin-Ya; Kitoh, Ryosuke; Hato, Naohito; Ikezono, Tetsuo; Ishikawa, Kotaro; Kaga, Kimitaka; Matsubara, Atsushi; Matsunaga, Tatsuo; Murata, Takaaki; Naito, Yasushi; Nishizaki, Kazunori; Ogawa, Kaoru; Sano, Hajime; Sato, Hiroaki; Sone, Michihiko; Suzuki, Mikio; Takahashi, Haruo; Tono, Tetsuya; Yamashita, Hiroshi; Yamasoba, Tatsuya; Usami, Shin-Ichi
2017-01-01
The majority of hearing loss due to mumps presents as unilateral profound sensorineural hearing loss, which is refractory to treatment. In rare cases of bilateral total deafness, cochlear implants were beneficial for speech perception. Vaccination against mumps is recommended to prevent mumps-associated hearing loss. The objective of this study is to investigate the clinical characteristics of hearing loss due to mumps and to evaluate hearing outcomes. The clinical parameters were analyzed under a retrospective multi-institutional study design in patients diagnosed with hearing loss due to mumps at the Otolaryngology departments of 19 hospitals between 1987 and 2016. Sixty-seven patients with hearing loss due to mumps were enrolled. The study population consisted of 35 males and 32 females, ranging in age from 1 to 54, with a median age of 9.5 years. Sixty-three patients presented with unilateral, and 4 with bilateral hearing loss. Profound hearing loss was observed in 65 ears. Only one ear with severe hearing loss showed complete recovery. Four patients with bilateral hearing loss received cochlear implant surgery. Most of the patients with hearing loss due to mumps had no history of vaccination.
Fonoff, Erich Talamoni; Azevedo, Angelo; Angelos, Jairo Silva Dos; Martinez, Raquel Chacon Ruiz; Navarro, Jessie; Reis, Paul Rodrigo; Sepulveda, Miguel Ernesto San Martin; Cury, Rubens Gisbert; Ghilardi, Maria Gabriela Dos Santos; Teixeira, Manoel Jacobsen; Lopez, William Omar Contreras
2016-07-01
OBJECT Currently, bilateral procedures involve 2 sequential implants in each of the hemispheres. The present report demonstrates the feasibility of simultaneous bilateral procedures during the implantation of deep brain stimulation (DBS) leads. METHODS Fifty-seven patients with movement disorders underwent bilateral DBS implantation in the same study period. The authors compared the time required for the surgical implantation of deep brain electrodes in 2 randomly assigned groups. One group of 28 patients underwent traditional sequential electrode implantation, and the other 29 patients underwent simultaneous bilateral implantation. Clinical outcomes of the patients with Parkinson's disease (PD) who had undergone DBS implantation of the subthalamic nucleus using either of the 2 techniques were compared. RESULTS Overall, a reduction of 38.51% in total operating time for the simultaneous bilateral group (136.4 ± 20.93 minutes) as compared with that for the traditional consecutive approach (220.3 ± 27.58 minutes) was observed. Regarding clinical outcomes in the PD patients who underwent subthalamic nucleus DBS implantation, comparing the preoperative off-medication condition with the off-medication/on-stimulation condition 1 year after the surgery in both procedure groups, there was a mean 47.8% ± 9.5% improvement in the Unified Parkinson's Disease Rating Scale Part III (UPDRS-III) score in the simultaneous group, while the sequential group experienced 47.5% ± 15.8% improvement (p = 0.96). Moreover, a marked reduction in the levodopa-equivalent dose from preoperatively to postoperatively was similar in these 2 groups. The simultaneous bilateral procedure presented major advantages over the traditional sequential approach, with a shorter total operating time. CONCLUSIONS A simultaneous stereotactic approach significantly reduces the operation time in bilateral DBS procedures, resulting in decreased microrecording time, contributing to the optimization of functional stereotactic procedures.
Phonological Awareness at 5 years of age in Children who use Hearing Aids or Cochlear Implants
Ching, Teresa Y.C.; Cupples, Linda
2015-01-01
Children with hearing loss typically underachieve in reading, possibly as a result of their underdeveloped phonological skills. This study addressed the questions of whether the development of phonological awareness (PA) is influenced by 1) the degree of hearing loss; and 2) whether performance of children with severe-profound hearing loss differed according to the hearing devices used. Drawing on data collected as part of the Longitudinal Outcomes of Children with Hearing Impairment (LOCHI, www.outcomes.nal.gov.au) study, the authors found that sound-matching scores of children with hearing loss ranging from mild to profound degrees were, on average, within the normal range. The degree of hearing loss did not have a significant impact on scores, but there was a non-significant tendency for the proportion of children who achieved zero scores to increase with increase in hearing loss. For children with severe hearing loss, there was no significant group difference in scores among children who used bilateral hearing aids, bimodal fitting (a cochlear implant and a hearing aid in contralateral ears), and bilateral cochlear implants. Although there is a need for further prospective research, professionals have an important role in targeting PA skills for rehabilitation of young children with hearing loss. PMID:26929789
Is there a best side for cochlear implants in post-lingual patients?
Amaral, Maria Stella Arantes do; Damico, Thiago A; Gonçales, Alina S; Reis, Ana C M B; Isaac, Myriam de Lima; Massuda, Eduardo T; Hyppolito, Miguel Angelo
2017-07-29
Cochlear Implant is a sensory prosthesis capable of restoring hearing in patients with severe or profound bilateral sensorineural hearing loss. To evaluate if there is a better side to be implanted in post-lingual patients. Retrospective longitudinal study. Participants were 40 subjects, of both sex, mean age of 47 years, with post-lingual hearing loss, users of unilateral cochlear implant for more than 12 months and less than 24 months, with asymmetric auditor reserve between the ears (difference of 10dBNA, In at least one of the frequencies with a response, between the ears), divided into two groups. Group A was composed of individuals with cochlear implant in the ear with better auditory reserve and Group B with auditory reserve lower in relation to the contralateral side. There was no statistical difference for the tonal auditory threshold before and after cochlear implant. A better speech perception in pre-cochlear implant tests was present in B (20%), but the final results are similar in both groups. The cochlear implant in the ear with the worst auditory residue favors a bimodal hearing, which would allow the binaural summation, without compromising the improvement of the audiometric threshold and the speech perception. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Baumgärtel, Regina M; Hu, Hongmei; Krawczyk-Becker, Martin; Marquardt, Daniel; Herzke, Tobias; Coleman, Graham; Adiloğlu, Kamil; Bomke, Katrin; Plotz, Karsten; Gerkmann, Timo; Doclo, Simon; Kollmeier, Birger; Hohmann, Volker; Dietz, Mathias
2015-12-30
Several binaural audio signal enhancement algorithms were evaluated with respect to their potential to improve speech intelligibility in noise for users of bilateral cochlear implants (CIs). 50% speech reception thresholds (SRT50) were assessed using an adaptive procedure in three distinct, realistic noise scenarios. All scenarios were highly nonstationary, complex, and included a significant amount of reverberation. Other aspects, such as the perfectly frontal target position, were idealized laboratory settings, allowing the algorithms to perform better than in corresponding real-world conditions. Eight bilaterally implanted CI users, wearing devices from three manufacturers, participated in the study. In all noise conditions, a substantial improvement in SRT50 compared to the unprocessed signal was observed for most of the algorithms tested, with the largest improvements generally provided by binaural minimum variance distortionless response (MVDR) beamforming algorithms. The largest overall improvement in speech intelligibility was achieved by an adaptive binaural MVDR in a spatially separated, single competing talker noise scenario. A no-pre-processing condition and adaptive differential microphones without a binaural link served as the two baseline conditions. SRT50 improvements provided by the binaural MVDR beamformers surpassed the performance of the adaptive differential microphones in most cases. Speech intelligibility improvements predicted by instrumental measures were shown to account for some but not all aspects of the perceptually obtained SRT50 improvements measured in bilaterally implanted CI users. © The Author(s) 2015.
van Hoesel, Richard J M
2015-04-01
One of the key benefits of using cochlear implants (CIs) in both ears rather than just one is improved localization. It is likely that in complex listening scenes, improved localization allows bilateral CI users to orient toward talkers to improve signal-to-noise ratios and gain access to visual cues, but to date, that conjecture has not been tested. To obtain an objective measure of that benefit, seven bilateral CI users were assessed for both auditory-only and audio-visual speech intelligibility in noise using a novel dynamic spatial audio-visual test paradigm. For each trial conducted in spatially distributed noise, first, an auditory-only cueing phrase that was spoken by one of four talkers was selected and presented from one of four locations. Shortly afterward, a target sentence was presented that was either audio-visual or, in another test configuration, audio-only and was spoken by the same talker and from the same location as the cueing phrase. During the target presentation, visual distractors were added at other spatial locations. Results showed that in terms of speech reception thresholds (SRTs), the average improvement for bilateral listening over the better performing ear alone was 9 dB for the audio-visual mode, and 3 dB for audition-alone. Comparison of bilateral performance for audio-visual and audition-alone showed that inclusion of visual cues led to an average SRT improvement of 5 dB. For unilateral device use, no such benefit arose, presumably due to the greatly reduced ability to localize the target talker to acquire visual information. The bilateral CI speech intelligibility advantage over the better ear in the present study is much larger than that previously reported for static talker locations and indicates greater everyday speech benefits and improved cost-benefit than estimated to date.
The Relationship Between Intensity Coding and Binaural Sensitivity in Adults With Cochlear Implants
Todd, Ann E.; Goupell, Matthew J.; Litovsky, Ruth Y.
2016-01-01
Objectives Many bilateral cochlear implant users show sensitivity to binaural information when stimulation is provided using a pair of synchronized electrodes. However, there is large variability in binaural sensitivity between and within participants across stimulation sites in the cochlea. It was hypothesized that within-participant variability in binaural sensitivity is in part affected by limitations and characteristics of the auditory periphery which may be reflected by monaural hearing performance. The objective of this study was to examine the relationship between monaural and binaural hearing performance within participants with bilateral cochlear implants. Design Binaural measures included dichotic signal detection and interaural time difference discrimination thresholds. Diotic signal detection thresholds were also measured. Monaural measures included dynamic range and amplitude modulation detection. In addition, loudness growth was compared between ears. Measures were made at three stimulation sites per listener. Results Greater binaural sensitivity was found with larger dynamic ranges. Poorer interaural time difference discrimination was found with larger difference between comfortable levels of the two ears. In addition, poorer diotic signal detection thresholds were found with larger differences between the dynamic ranges of the two ears. No relationship was found between amplitude modulation detection thresholds or symmetry of loudness growth and the binaural measures. Conclusions The results suggest that some of the variability in binaural hearing performance within listeners across stimulation sites can be explained by factors non-specific to binaural processing. The results are consistent with the idea that dynamic range and comfortable levels relate to peripheral neural survival and the width of the excitation pattern which could affect the fidelity with which central binaural nuclei process bilateral inputs. PMID:27787393
Verhaert, N; Willems, M; Van Kerschaver, E; Desloovere, C
2008-05-01
Early intervention in hearing-impaired children may improve language outcomes and subsequent school and occupational performance. The objective of this study was to retrospectively analyze over 6 years the educational outcome and language development of a first cohort of children, detected by the Flemish universal newborn hearing screening (UNHS) program based on automated auditory brainstem response (AABR), with the oldest children being in primary school. We studied 229 hearing-impaired children from 1998 till 2003. The following variables were considered: the age during the school year 2005-2006, the degree of hearing loss, additional impairments including presence of intellectual disability, school placement and early intervention. Analysis showed that 85.4% of the children with moderate, severe or profound hearing loss and no additional disability, older than 5.5 years, reach mainstream education. Further detailed description was provided for the outcomes of children with uni- and bilateral cochlear implants. Overall results stress that 46% of all children with a cochlear implant obtain mainstream education. Of all cochlear implant (CI) children above 5.5 years, without additional handicaps, 78.9% of children attend primary mainstream school. Data on language development show that up to 45% of the children with unilateral cochlear implant and no additional disabilities had normal to slight delay on language development. These data are fulfilling the goals stated by the JCIH and the American Academy of Pediatrics (AAP) in 2000. The role and impact of additional handicaps is discussed. The importance of early hearing loss identification and hearing therapy for appropriate language development is highlighted. Finally our preliminary results on children with bilateral cochlear implants without additional handicaps present an improved language development in comparison to unilateral CI-children. A vast majority of the children detected by the UNHS program, with moderate, severe or profound hearing loss and no additional disability, older than 5.5 years, reach mainstream education. Additional disabilities have a major influence.
Cochlear implantation for severe sensorineural hearing loss caused by lightning.
Myung, Nam-Suk; Lee, Il-Woo; Goh, Eui-Kyung; Kong, Soo-Keun
2012-01-01
Lightning strike can produce an array of clinical symptoms and injuries. It may damage multiple organs and cause auditory injuries ranging from transient hearing loss and vertigo to complete disruption of the auditory system. Tympanic-membrane rupture is relatively common in patients with lightning injury. The exact pathogenetic mechanisms of auditory lesions in lightning survivors have not been fully elucidated. We report the case of a 45-year-old woman with bilateral profound sensorineural hearing loss caused by a lightning strike, who was successfully rehabilitated after a cochlear implantation. Copyright © 2012 Elsevier Inc. All rights reserved.
Behavioral preference in sequential decision-making and its association with anxiety.
Zhang, Dandan; Gu, Ruolei
2018-06-01
In daily life, people often make consecutive decisions before the ultimate goal is reached (i.e., sequential decision-making). However, this kind of decision-making has been largely overlooked in the literature. The current study investigated whether behavioral preference would change during sequential decisions, and the neural processes underlying the potential changes. For this purpose, we revised the classic balloon analogue risk task and recorded the electroencephalograph (EEG) signals associated with each step of decision-making. Independent component analysis performed on EEG data revealed that four EEG components elicited by periodic feedback in the current step predicted participants' decisions (gamble vs. no gamble) in the next step. In order of time sequence, these components were: bilateral occipital alpha rhythm, bilateral frontal theta rhythm, middle frontal theta rhythm, and bilateral sensorimotor mu rhythm. According to the information flows between these EEG oscillations, we proposed a brain model that describes the temporal dynamics of sequential decision-making. Finally, we found that the tendency to gamble (as well as the power intensity of bilateral frontal theta rhythms) was sensitive to the individual level of trait anxiety in certain steps, which may help understand the role of emotion in decision-making. © 2018 Wiley Periodicals, Inc.
Dave, Hreem; Phoenix, Vidya; Becker, Edmund R.; Lambert, Scott R.
2015-01-01
OBJECTIVES To compare the incidence of adverse events, visual outcomes and economic costs of sequential versus simultaneous bilateral cataract surgery for infants with congenital cataracts. METHODS We retrospectively reviewed the incidence of adverse events, visual outcomes and medical payments associated with simultaneous versus sequential bilateral cataract surgery for infants with congenital cataracts who underwent cataract surgery when 6 months of age or younger at our institution. RESULTS Records were available for 10 children who underwent sequential surgery at a mean age of 49 days for the first eye and 17 children who underwent simultaneous surgery at a mean age of 68 days (p=.25). We found a similar incidence of adverse events between the two treatment groups. Intraoperative or postoperative complications occurred in 14 eyes. The most common postoperative complication was glaucoma. No eyes developed endophthalmitis. The mean absolute interocular difference in logMAR visual acuities between the two treatment groups was 0.47±0.76 for the sequential group and 0.44±0.40 for the simultaneous group (p=.92). Hospital, drugs, supplies and professional payments were on average 21.9% lower per patient in the simultaneous group. CONCLUSIONS Simultaneous bilateral cataract surgery for infants with congenital cataracts was associated with a 21.9% reduction in medical payments and no discernible difference in the incidence of adverse events or visual outcome. PMID:20697007
Zwolan, Teresa A; O'Sullivan, Mary Beth; Fink, Nancy E; Niparko, John K
2008-02-01
To evaluate mapping characteristics of children with cochlear implants who are enrolled in the Childhood Development After Cochlear Implantation (CDACI) multicenter study. Longitudinal evaluation during 24 months of speech processor maps of children with cochlear implants prospectively enrolled in the study. Six tertiary referral centers. One hundred eighty-eight children enrolled in the CDACI study who were 5 years old or younger at the time of enrollment. Of these children, 184 received unilateral implants, and 4 received simultaneous bilateral implants. Children attended regular mapping sessions at their implant clinic as part of the study protocol. Maps were examined for each subject at 4 different time intervals: at device activation and 6, 12, and 24 months postactivation. Mean C/M levels (in charge per phase) were compared for 4 different time intervals, for 3 different devices, for 6 different implant centers, and for children with normal and abnormal cochleae. All 3 types of implant devices demonstrate significant increases in C/M levels between device activation and the 24-month appointment. Significant differences in mean C/M levels were noted between devices. Children with cochlear anomalies demonstrate significantly greater C/M levels than children with normal cochleae. The CDACI study has enabled us to evaluate the mapping characteristics of pediatric patients who use 3 different devices and were implanted at a variety of implant centers. Analysis of such data enables us to better understand the mapping characteristics of children with cochlear implants.
Serotonin projection patterns to the cochlear nucleus.
Thompson, A M; Thompson, G C
2001-07-13
The cochlear nucleus is well known as an obligatory relay center for primary auditory nerve fibers. Perhaps not so well known is the neural input to the cochlear nucleus from cells containing serotonin that reside near the midline in the midbrain raphe region. Although the specific locations of the main, if not sole, sources of serotonin within the dorsal cochlear nucleus subdivision are known to be the dorsal and median raphe nuclei, sources of serotonin located within other cochlear nucleus subdivisions are not currently known. Anterograde tract tracing was used to label fibers originating from the dorsal and median raphe nuclei while fluorescence immunohistochemistry was used to simultaneously label specific serotonin fibers in cat. Biotinylated dextran amine was injected into the dorsal and median raphe nuclei and was visualized with Texas Red, while serotonin was visualized with fluorescein. Thus, double-labeled fibers were unequivocally identified as serotoninergic and originating from one of the labeled neurons within the dorsal and median raphe nuclei. Double-labeled fiber segments, typically of fine caliber with oval varicosities, were observed in many areas of the cochlear nucleus. They were found in the molecular layer of the dorsal cochlear nucleus, in the small cell cap region, and in the granule cell and external regions of the cochlear nuclei, bilaterally, of all cats. However, the density of these double-labeled fiber segments varied considerably depending upon the exact region in which they were found. Fiber segments were most dense in the dorsal cochlear nucleus (especially in the molecular layer) and the large spherical cell area of the anteroventral cochlear nucleus; they were moderately dense in the small cell cap region; and fiber segments were least dense in the octopus and multipolar cell regions of the posteroventral cochlear nucleus. Because of the presence of labeled fiber segments in subdivisions of the cochlear nucleus other than the dorsal cochlear nucleus, we concluded that the serotoninergic projection pattern to the cochlear nucleus is divergent and non-specific. Double-labeled fiber segments were also present, but sparse, in the superior olive, localized mainly in periolivary regions; this indicated that the divergence of dorsal and median raphe neurons that extends throughout regions of the cochlear nucleus also extended well beyond the cochlear nucleus to include at least the superior olivary complex as well.
Lopez-Poveda, Enrique A; Eustaquio-Martín, Almudena; Stohl, Joshua S; Wolford, Robert D; Schatzer, Reinhold; Gorospe, José M; Ruiz, Santiago Santa Cruz; Benito, Fernando; Wilson, Blake S
2017-05-01
We have recently proposed a binaural cochlear implant (CI) sound processing strategy inspired by the contralateral medial olivocochlear reflex (the MOC strategy) and shown that it improves intelligibility in steady-state noise (Lopez-Poveda et al., 2016, Ear Hear 37:e138-e148). The aim here was to evaluate possible speech-reception benefits of the MOC strategy for speech maskers, a more natural type of interferer. Speech reception thresholds (SRTs) were measured in six bilateral and two single-sided deaf CI users with the MOC strategy and with a standard (STD) strategy. SRTs were measured in unilateral and bilateral listening conditions, and for target and masker stimuli located at azimuthal angles of (0°, 0°), (-15°, +15°), and (-90°, +90°). Mean SRTs were 2-5 dB better with the MOC than with the STD strategy for spatially separated target and masker sources. For bilateral CI users, the MOC strategy (1) facilitated the intelligibility of speech in competition with spatially separated speech maskers in both unilateral and bilateral listening conditions; and (2) led to an overall improvement in spatial release from masking in the two listening conditions. Insofar as speech is a more natural type of interferer than steady-state noise, the present results suggest that the MOC strategy holds potential for promising outcomes for CI users. Copyright © 2017. Published by Elsevier B.V.
Bittar, Roseli Saraiva Moreira; Sato, Eduardo Setsuo; Ribeiro, Douglas Jósimo Silva; Tsuji, Robinson Koji
Cochlear implants are undeniably an effective method for the recovery of hearing function in patients with hearing loss. To describe the preoperative vestibular assessment protocol in subjects who will be submitted to cochlear implants. Our institutional protocol provides the vestibular diagnosis through six simple tests: Romberg and Fukuda tests, assessment for spontaneous nystagmus, Head Impulse Test, evaluation for Head Shaking Nystagmus and caloric test. 21 patients were evaluated with a mean age of 42.75±14.38 years. Only 28% of the sample had all normal test results. The presence of asymmetric vestibular information was documented through the caloric test in 32% of the sample and spontaneous nystagmus was an important clue for the diagnosis. Bilateral vestibular areflexia was present in four subjects, unilateral arreflexia in three and bilateral hyporeflexia in two. The Head Impulse Test was a significant indicator for the diagnosis of areflexia in the tested ear (p=0.0001). The sensitized Romberg test using a foam pad was able to diagnose severe vestibular function impairment (p=0.003). The six clinical tests were able to identify the presence or absence of vestibular function and function asymmetry between the ears of the same individual. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Firszt, Jill B; Reeder, Ruth M; Holden, Laura K
At a minimum, unilateral hearing loss (UHL) impairs sound localization ability and understanding speech in noisy environments, particularly if the loss is severe to profound. Accompanying the numerous negative consequences of UHL is considerable unexplained individual variability in the magnitude of its effects. Identification of covariables that affect outcome and contribute to variability in UHLs could augment counseling, treatment options, and rehabilitation. Cochlear implantation as a treatment for UHL is on the rise yet little is known about factors that could impact performance or whether there is a group at risk for poor cochlear implant outcomes when hearing is near-normal in one ear. The overall goal of our research is to investigate the range and source of variability in speech recognition in noise and localization among individuals with severe to profound UHL and thereby help determine factors relevant to decisions regarding cochlear implantation in this population. The present study evaluated adults with severe to profound UHL and adults with bilateral normal hearing. Measures included adaptive sentence understanding in diffuse restaurant noise, localization, roving-source speech recognition (words from 1 of 15 speakers in a 140° arc), and an adaptive speech-reception threshold psychoacoustic task with varied noise types and noise-source locations. There were three age-sex-matched groups: UHL (severe to profound hearing loss in one ear and normal hearing in the contralateral ear), normal hearing listening bilaterally, and normal hearing listening unilaterally. Although the normal-hearing-bilateral group scored significantly better and had less performance variability than UHLs on all measures, some UHL participants scored within the range of the normal-hearing-bilateral group on all measures. The normal-hearing participants listening unilaterally had better monosyllabic word understanding than UHLs for words presented on the blocked/deaf side but not the open/hearing side. In contrast, UHLs localized better than the normal-hearing unilateral listeners for stimuli on the open/hearing side but not the blocked/deaf side. This suggests that UHLs had learned strategies for improved localization on the side of the intact ear. The UHL and unilateral normal-hearing participant groups were not significantly different for speech in noise measures. UHL participants with childhood rather than recent hearing loss onset localized significantly better; however, these two groups did not differ for speech recognition in noise. Age at onset in UHL adults appears to affect localization ability differently than understanding speech in noise. Hearing thresholds were significantly correlated with speech recognition for UHL participants but not the other two groups. Auditory abilities of UHLs varied widely and could be explained only in part by hearing threshold levels. Age at onset and length of hearing loss influenced performance on some, but not all measures. Results support the need for a revised and diverse set of clinical measures, including sound localization, understanding speech in varied environments, and careful consideration of functional abilities as individuals with severe to profound UHL are being considered potential cochlear implant candidates.
Binaural unmasking of multi-channel stimuli in bilateral cochlear implant users.
Van Deun, Lieselot; van Wieringen, Astrid; Francart, Tom; Büchner, Andreas; Lenarz, Thomas; Wouters, Jan
2011-10-01
Previous work suggests that bilateral cochlear implant users are sensitive to interaural cues if experimental speech processors are used to preserve accurate interaural information in the electrical stimulation pattern. Binaural unmasking occurs in adults and children when an interaural delay is applied to the envelope of a high-rate pulse train. Nevertheless, for speech perception, binaural unmasking benefits have not been demonstrated consistently, even with coordinated stimulation at both ears. The present study aimed at bridging the gap between basic psychophysical performance on binaural signal detection tasks on the one hand and binaural perception of speech in noise on the other hand. Therefore, binaural signal detection was expanded to multi-channel stimulation and biologically relevant interaural delays. A harmonic complex, consisting of three sinusoids (125, 250, and 375 Hz), was added to three 125-Hz-wide noise bands centered on the sinusoids. When an interaural delay of 700 μs was introduced, an average BMLD of 3 dB was established. Outcomes are promising in view of real-life benefits. Future research should investigate the generalization of the observed benefits for signal detection to speech perception in everyday listening situations and determine the importance of coordination of bilateral speech processors and accentuation of envelope cues.
Comparison of Interaural Electrode Pairing Methods for Bilateral Cochlear Implants
Dietz, Mathias
2015-01-01
In patients with bilateral cochlear implants (CIs), pairing matched interaural electrodes and stimulating them with the same frequency band is expected to facilitate binaural functions such as binaural fusion, localization, and spatial release from masking. Because clinical procedures typically do not include patient-specific interaural electrode pairing, it remains the case that each electrode is allocated to a generic frequency range, based simply on the electrode number. Two psychoacoustic techniques for determining interaurally paired electrodes have been demonstrated in several studies: interaural pitch comparison and interaural time difference (ITD) sensitivity. However, these two methods are rarely, if ever, compared directly. A third, more objective method is to assess the amplitude of the binaural interaction component (BIC) derived from electrically evoked auditory brainstem responses for different electrode pairings; a method has been demonstrated to be a potential candidate for bilateral CI users. Here, we tested all three measures in the same eight CI users. We found good correspondence between the electrode pair producing the largest BIC and the electrode pair producing the maximum ITD sensitivity. The correspondence between the pairs producing the largest BIC and the pitch-matched electrode pairs was considerably weaker, supporting the previously proposed hypothesis that whilst place pitch might adapt over time to accommodate mismatched inputs, sensitivity to ITDs does not adapt to the same degree. PMID:26631108
Rader, Tobias; Fastl, Hugo; Baumann, Uwe
2013-01-01
The aim of the study was to measure and compare speech perception in users of electric-acoustic stimulation (EAS) supported by a hearing aid in the unimplanted ear and in bilateral cochlear implant (CI) users under different noise and sound field conditions. Gap listening was assessed by comparing performance in unmodulated and modulated Comité Consultatif International Téléphonique et Télégraphique (CCITT) noise conditions, and binaural interaction was investigated by comparing single source and multisource sound fields. Speech perception in noise was measured using a closed-set sentence test (Oldenburg Sentence Test, OLSA) in a multisource noise field (MSNF) consisting of a four-loudspeaker array with independent noise sources and a single source in frontal position (S0N0). Speech simulating noise (Fastl-noise), CCITT-noise (continuous), and OLSA-noise (pseudo continuous) served as noise sources with different temporal patterns. Speech tests were performed in two groups of subjects who were using either EAS (n = 12) or bilateral CIs (n = 10). All subjects in the EAS group were fitted with a high-power hearing aid in the opposite ear (bimodal EAS). The average group score on monosyllable in quiet was 68.8% (EAS) and 80.5% (bilateral CI). A group of 22 listeners with normal hearing served as controls to compare and evaluate potential gap listening effects in implanted patients. Average speech reception thresholds in the EAS group were significantly lower than those for the bilateral CI group in all test conditions (CCITT 6.1 dB, p = 0.001; Fastl-noise 5.4 dB, p < 0.01; Oldenburg-(OL)-noise 1.6 dB, p < 0.05). Bilateral CI and EAS user groups showed a significant improvement of 4.3 dB (p = 0.004) and 5.4 dB (p = 0.002) between S0N0 and MSNF sound field conditions respectively, which signifies advantages caused by bilateral interaction in both groups. Performance in the control group showed a significant gap listening effect with a difference of 6.5 dB between modulated and unmodulated noise in S0N0, and a difference of 3.0 dB in MSNF. The ability to "glimpse" into short temporal masker gaps was absent in both groups of implanted subjects. Combined EAS in one ear supported by a hearing aid on the contralateral ear provided significantly improved speech perception compared with bilateral cochlear implantation. Although the scores for monosyllable words in quiet were higher in the bilateral CI group, the EAS group performed better in different noise and sound field conditions. Furthermore, the results indicated that binaural interaction between EAS in one ear and residual acoustic hearing in the opposite ear enhances speech perception in complex noise situations. Both bilateral CI and bimodal EAS users did not benefit from short temporal masker gaps, therefore the better performance of the EAS group in modulated noise conditions could be explained by the improved transmission of fundamental frequency cues in the lower-frequency region of acoustic hearing, which might foster the grouping of auditory objects.
Arndt, Susan; Aschendorff, Antje; Laszig, Roland; Wesarg, Thomas
2016-01-01
The ability to detect a target signal masked by noise is improved in normal-hearing listeners when interaural phase differences (IPDs) between the ear signals exist either in the masker or in the signal. To improve binaural hearing in bilaterally implanted cochlear implant (BiCI) users, a coding strategy providing the best possible access to IPD is highly desirable. In this study, we compared two coding strategies in BiCI users provided with CI systems from MED-EL (Innsbruck, Austria). The CI systems were bilaterally programmed either with the fine structure processing strategy FS4 or with the constant rate strategy high definition continuous interleaved sampling (HDCIS). Familiarization periods between 6 and 12 weeks were considered. The effect of IPD was measured in two types of experiments: (a) IPD detection thresholds with tonal signals addressing mainly one apical interaural electrode pair and (b) with speech in noise in terms of binaural speech intelligibility level differences (BILD) addressing multiple electrodes bilaterally. The results in (a) showed improved IPD detection thresholds with FS4 compared with HDCIS in four out of the seven BiCI users. In contrast, 12 BiCI users in (b) showed similar BILD with FS4 (0.6 ± 1.9 dB) and HDCIS (0.5 ± 2.0 dB). However, no correlation between results in (a) and (b) both obtained with FS4 was found. In conclusion, the degree of IPD sensitivity determined on an apical interaural electrode pair was not an indicator for BILD based on bilateral multielectrode stimulation. PMID:27659487
Zirn, Stefan; Arndt, Susan; Aschendorff, Antje; Laszig, Roland; Wesarg, Thomas
2016-09-22
The ability to detect a target signal masked by noise is improved in normal-hearing listeners when interaural phase differences (IPDs) between the ear signals exist either in the masker or in the signal. To improve binaural hearing in bilaterally implanted cochlear implant (BiCI) users, a coding strategy providing the best possible access to IPD is highly desirable. In this study, we compared two coding strategies in BiCI users provided with CI systems from MED-EL (Innsbruck, Austria). The CI systems were bilaterally programmed either with the fine structure processing strategy FS4 or with the constant rate strategy high definition continuous interleaved sampling (HDCIS). Familiarization periods between 6 and 12 weeks were considered. The effect of IPD was measured in two types of experiments: (a) IPD detection thresholds with tonal signals addressing mainly one apical interaural electrode pair and (b) with speech in noise in terms of binaural speech intelligibility level differences (BILD) addressing multiple electrodes bilaterally. The results in (a) showed improved IPD detection thresholds with FS4 compared with HDCIS in four out of the seven BiCI users. In contrast, 12 BiCI users in (b) showed similar BILD with FS4 (0.6 ± 1.9 dB) and HDCIS (0.5 ± 2.0 dB). However, no correlation between results in (a) and (b) both obtained with FS4 was found. In conclusion, the degree of IPD sensitivity determined on an apical interaural electrode pair was not an indicator for BILD based on bilateral multielectrode stimulation. © The Author(s) 2016.
The case for earlier cochlear implantation in postlingually deaf adults.
Dowell, Richard C
2016-01-01
This paper aimed to estimate the difference in speech perception outcomes that may occur due to timing of cochlear implantation in relation to the progression of hearing loss. Data from a large population-based sample of adults with acquired hearing loss using cochlear implants (CIs) was used to estimate the effects of duration of hearing loss, age, and pre-implant auditory skills on outcomes for a hypothetical standard patient. A total of 310 adults with acquired severe/profound bilateral hearing loss who received a CI in Melbourne, Australia between 1994 and 2006 provided the speech perception data and demographic information to derive regression equations for estimating CI outcomes. For a hypothetical CI candidate with progressive sensorineural hearing loss, the estimates of speech perception scores following cochlear implantation are significantly better if implantation occurs relatively soon after onset of severe hearing loss and before the loss of all functional auditory skills. Improved CI outcomes and quality of life benefit may be achieved for adults with progressive severe hearing loss if they are implanted earlier in the progression of the pathology.
Temporal stability of music perception and appraisal scores of adult cochlear implant recipients.
Gfeller, Kate; Jiang, Dingfeng; Oleson, Jacob J; Driscoll, Virginia; Knutson, John F
2010-01-01
An extensive body of literature indicates that cochlear implants (CIs) are effective in supporting speech perception of persons with severe to profound hearing losses who do not benefit to any great extent from conventional hearing aids. Adult CI recipients tend to show significant improvement in speech perception within 3 mo following implantation as a result of mere experience. Furthermore, CI recipients continue to show modest improvement as long as 5yr postimplantation. In contrast, data taken from single testing protocols of music perception and appraisal indicate that CIs are less than ideal in transmitting important structural features of music, such as pitch, melody, and timbre. However, there is presently little information documenting changes in music perception or appraisal over extended time as a result of mere experience. This study examined two basic questions: (1) Do adult CI recipients show significant improvement in perceptual acuity or appraisal of specific music listening tasks when tested in two consecutive years? (2) If there are tasks for which CI recipients show significant improvement with time, are there particular demographic variables that predict those CI recipients most likely to show improvement with extended CI use? A longitudinal cohort study. Implant recipients return annually for visits to the clinic. The study included 209 adult cochlear implant recipients with at least 9 mo implant experience before their first year measurement. Outcomes were measured on the patient's annual visit in two consecutive years. Paired t-tests were used to test for significant improvement from one year to the next. Those variables demonstrating significant improvement were subjected to regression analyses performed to detect the demographic variables useful in predicting said improvement. There were no significant differences in music perception outcomes as a function of type of device or processing strategy used. Only familiar melody recognition (FMR) and recognition of melody excerpts with lyrics (MERT-L) showed significant improvement from one year to the next. After controlling for the baseline value, hearing aid use, months of use, music listening habits after implantation, and formal musical training in elementary school were significant predictors of FMR improvement. Bilateral CI use, formal musical training in high school and beyond, and a measure of sequential cognitive processing were significant predictors of MERT-L improvement. These adult CI recipients as a result of mere experience demonstrated fairly consistent music perception and appraisal on measures gathered in two consecutive years. Gains made tend to be modest, and can be associated with characteristics such as use of hearing aids, listening experiences, or bilateral use (in the case of lyrics). These results have implications for counseling of CI recipients with regard to realistic expectations and strategies for enhancing music perception and enjoyment.
Immediately sequential bilateral cataract surgery: advantages and disadvantages.
Singh, Ranjodh; Dohlman, Thomas H; Sun, Grace
2017-01-01
The number of cataract surgeries performed globally will continue to rise to meet the needs of an aging population. This increased demand will require healthcare systems and providers to find new surgical efficiencies while maintaining excellent surgical outcomes. Immediately sequential bilateral cataract surgery (ISBCS) has been proposed as a solution and is increasingly being performed worldwide. The purpose of this review is to discuss the advantages and disadvantages of ISBCS. When appropriate patient selection occurs and guidelines are followed, ISBCS is comparable with delayed sequential bilateral cataract surgery in long-term patient satisfaction, visual acuity and complication rates. In addition, the risk of bilateral postoperative endophthalmitis and concerns of poorer refractive outcomes have not been supported by the literature. ISBCS is cost-effective for the patient, healthcare payors and society, but current reimbursement models in many countries create significant financial barriers for facilities and surgeons. As demand for cataract surgery rises worldwide, ISBCS will become increasingly important as an alternative to delayed sequential bilateral cataract surgery. Advantages include potentially decreased wait times for surgery, patient convenience and cost savings for healthcare payors. Although they are comparable in visual acuity and complication rates, hurdles that prevent wide adoption include liability concerns as ISBCS is not an established standard of care, economic constraints for facilities and surgeons and inability to fine-tune intraocular lens selection in the second eye. Given these considerations, an open discussion regarding the advantages and disadvantages of ISBCS is important for appropriate patient selection.
Evaluation on health-related quality of life in deaf children with cochlear implant in China.
Liu, Hong; Liu, Hong-Xiang; Kang, Hou-Yong; Gu, Zheng; Hong, Su-Ling
2016-09-01
Previous studies have shown that deaf children benefit considerably from cochlear implants. These improvements are found in areas such as speech perception, speech production, and audiology-verbal performance. Despite the increasing prevalence of cochlear implants in China, few studies have reported on health-related quality of life in children with cochlear implants. The main objective of this study was to explore health-related quality of life on children with cochlear implants in South-west China. A retrospective observational study of 213 CI users in Southwest China between 2010 and 2013. Participants were 213 individuals with bilateral severe-to-profound hearing loss who wore unilateral cochlear implants. The Nijmegen Cochlear Implant Questionnaire and Health Utility Index Mark III were used pre-implantation and 1 year post-implantation. Additionally, 1-year postoperative scores for Mandarin speech perception were compared with preoperative scores. Health-related quality of life improved post-operation with scores on the Nijmegen Cochlear Implant Questionnaire improving significantly in all subdomains, and the Health Utility Index 3 showing a significant improvement in the utility score and the subdomains of ''hearing," ''speech," and "emotion". Additionally, a significant improvement in speech recognition scores was found. No significant correlation was found between increased in quality of life and speech perception scores. Health-related quality of life and speech recognition in prelingual deaf children significantly improved post-operation. The lack of correlation between quality of life and speech perception suggests that when evaluating performance post-implantation in prelingual deaf children and adolescents, measures of both speech perception and quality of life should be used. Copyright © 2016. Published by Elsevier Ireland Ltd.
Eftekharian, Ali; Mahani, Mozhgan Hosseinerezai
2015-09-01
To share our experience in cochlear implanted patients with Jervell and Lange-Nielsen syndrome (JLNS), to review the literature results and to disclose precautions which have to be taken dealing with these patients. Electrocardiograms (ECG) of 503 children with congenital bilateral profound hearing loss which were cochlear implanted in cochlear implant center of a tertiary hospital were evaluated for long QT syndrome. Clinical reports of the patients with JLNS were evaluated and a review of literature performed. The prevalence of disease was 0.79% (four cases) in our center which is in the range of literature reports (0-2.6%). None of our patients had a history of syncopal attack. Two patients (50%) were born from parents with consanguineous marriage. Considering all precautions their cochlear implant surgeries were done uneventfully. A review of the literature has identified sixteen reports on cochlear implantation in a total of 38 children with JLNS. Similar to our cases none of the authors reported cardiac events during device switch-on. Nine available reports about the outcome of cochlear implantation in these patients indicated good auditory outcome. It is recommended that all congenitally deaf patients have an ECG taken as a part of the evaluation. As auditory stimuli is reported to be a specific trigger, it is prudent to activate the processor with continuous heart monitoring even though there is no reported cardiac event during device switch-on. Cochlear implantation can be performed relatively safely in these patients if necessary precautions have been taken appropriately and their auditory outcome is good. Triggers of the cardiac events should be avoided throughout their life. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Hey, Constanze; Shaaban, Mohamed S; Elabd, Amr M; Hassan, Hebatallah H M; Gruber-Rouh, Tatjana; Kaltenbach, Benjamin; Harth, Marc; Ackermann, Hanns; Stöver, Timo; Vogl, Thomas J; Nour-Eldin, Nour-Eldin A
2017-01-01
Objective: To test using the facial nerve as a reference for assessment of the cochlear nerve size in patients with acquired long-standing sensorineural hearing loss (SNHL) using MRI multiplanar reconstruction. Methods: The study was retrospectively performed on 86 patients. Group 1 (study group, n = 53) with bilateral long-standing SNHL. Group 2 (control group, n = 33) without hearing loss. The nerve size was measured by drawing a region of interest around the cross-sectional circumference of the nerve in multiplanar reconstruction images. Results: No significant correlation was noted between the cochlear nerve and facial nerve size, and the patient's age, gender and weight (p > 0.05). In Group 1, the mean ratio of the cochlear to facial nerve size was 0.99 ± 0.30 (range: 0.52–1.86) and 1.12 ± 0.35 (range: 0.34–2.3) for the right and left sides, respectively. In Group 2, it was 1.18 ± 0.23 (range: 0.78–1.71) and 1.25 ± 0.25 (range: 0.85–1.94) for the right and left sides, respectively. The cochlear nerve size was statistically (p = 0.0004) smaller in Group 1 than in Group 2. Conclusion: The cochlear nerve size and the cochlear to facial nerve size ratio are significantly smaller in patients with acquired long-standing SNHL. Advances in knowledge: The facial nerve can be used as a reference for assessment of the cochlear nerve in patients with acquired long-standing SNHL. PMID:28368665
Auditory Speech Perception Development in Relation to Patient's Age with Cochlear Implant
Ciscare, Grace Kelly Seixas; Mantello, Erika Barioni; Fortunato-Queiroz, Carla Aparecida Urzedo; Hyppolito, Miguel Angelo; Reis, Ana Cláudia Mirândola Barbosa dos
2017-01-01
Introduction A cochlear implant in adolescent patients with pre-lingual deafness is still a debatable issue. Objective The objective of this study is to analyze and compare the development of auditory speech perception in children with pre-lingual auditory impairment submitted to cochlear implant, in different age groups in the first year after implantation. Method This is a retrospective study, documentary research, in which we analyzed 78 reports of children with severe bilateral sensorineural hearing loss, unilateral cochlear implant users of both sexes. They were divided into three groups: G1, 22 infants aged less than 42 months; G2, 28 infants aged between 43 to 83 months; and G3, 28 older than 84 months. We collected medical record data to characterize the patients, auditory thresholds with cochlear implants, assessment of speech perception, and auditory skills. Results There was no statistical difference in the association of the results among groups G1, G2, and G3 with sex, caregiver education level, city of residence, and speech perception level. There was a moderate correlation between age and hearing aid use time, age and cochlear implants use time. There was a strong correlation between age and the age cochlear implants was performed, hearing aid use time and age CI was performed. Conclusion There was no statistical difference in the speech perception in relation to the patient's age when cochlear implant was performed. There were statistically significant differences for the variables of auditory deprivation time between G3 - G1 and G2 - G1 and hearing aid use time between G3 - G2 and G3 - G1. PMID:28680487
Dave, Hreem; Phoenix, Vidya; Becker, Edmund R; Lambert, Scott R
2010-08-01
To compare the incidence of adverse events and visual outcomes and to compare the economic costs of sequential vs simultaneous bilateral cataract surgery for infants with congenital cataracts. Retrospective review of simultaneous vs sequential bilateral cataract surgery for infants with congenital cataracts who underwent cataract surgery when 6 months or younger at our institution. Records were available for 10 children who underwent sequential surgery at a mean age of 49 days for the first eye and 17 children who underwent simultaneous surgery at a mean age of 68 days (P = .25). We found a similar incidence of adverse events between the 2 treatment groups. Intraoperative or postoperative complications occurred in 14 eyes. The most common postoperative complication was glaucoma. No eyes developed endophthalmitis. The mean (SD) absolute interocular difference in logMAR visual acuities between the 2 treatment groups was 0.47 (0.76) for the sequential group and 0.44 (0.40) for the simultaneous group (P = .92). Payments for the hospital, drugs, supplies, and professional services were on average 21.9% lower per patient in the simultaneous group. Simultaneous bilateral cataract surgery for infants with congenital cataracts is associated with a 21.9% reduction in medical payments and no discernible difference in the incidence of adverse events or visual outcomes. However, our small sample size limits our ability to make meaningful comparisons of the relative risks and visual benefits of the 2 procedures.
Cochlear Implantation in Siblings With Refsum's Disease.
Stähr, Kerstin; Kuechler, Alma; Gencik, Martin; Arnolds, Judith; Dendy, Meaghan; Lang, Stephan; Arweiler-Harbeck, Diana
2017-08-01
Whether the origin of severe hearing loss in Refsum's syndrome is caused by cochlear impairment or retrocochlear degeneration remains unclear. This case report aims to investigate hearing performance before and after cochlear implantation to shed light on this question. Also, identification of new mutations causing Refsum's syndrome would be helpful in generating additional means of diagnosis. A family of 4 individuals was subjected to genetic testing. Two siblings (56 and 61 years old) suffered from severe hearing and vision loss and received bilateral cochlear implants. Genetic analysis, audiological outcome, and clinical examinations were performed. One new mutation in the PHYH gene (c.768del63bp) causing Refsum's disease was found. Preoperative distortion product otoacoustic emissions (DPAOEs) were absent. Postoperative speech perception in Freiburger speech test was 100% for bisyllabic words and 85% (patient No. 1) and 65% (patient No. 2), respectively, for monosyllabic words. Five years after implantation, speech perception remained stable for bisyllabic words but showed decreasing capabilities for monosyllabic words. A new mutation causing Refsum's disease is presented. Cochlear implantation in case of severe hearing loss leads to an improvement in speech perception and should be recommended for patients with Refsum's disease, especially when the hearing loss is combined with a severe loss of vision. Decrease of speech perception in the long-term follow-up could indicate an additional retrocochlear degeneration.
Jin, Yong-Ming; Godfrey, Donald A; Sun, Yizhe
2005-07-01
Using microdissection and quantitative microassay, choline acetyltransferase (ChAT) activity was mapped in the cochlear nucleus (CN) and in the source nuclei of the olivocochlear bundle, the lateral superior olive and ventral nucleus of the trapezoid body. In control rats, gradients of ChAT activity were found within the major subdivisions of the CN and in the lateral superior olive. These gradients correlated with the known tonotopic organizations, with higher activities corresponding to locations representing higher sound frequencies. No gradient was found in the ventral nucleus of the trapezoid body. In rats surviving 7 days or 1 or 2 months after cochlear ablation, ChAT activity was increased 1 month after ablation in the anteroventral CN by 30-50% in most parts of the lesion-side and by 40% in the contralateral ventromedial part. ChAT activity in the lesion-side posteroventral CN was increased by approximately 40-50% at all survival times. Little change was found in the dorsal CN. Decreases of ChAT activity were also found ipsilaterally in the lateral superior olive and bilaterally in the ventral nucleus of the trapezoid body. Our results suggest that cholinergic neurons are involved in plasticity within the CN and superior olive following cochlear lesions. Copyright 2005 Wiley-Liss, Inc.
Shah, Parth V; Kozin, Elliott D; Kaplan, Alyson B; Lee, Daniel J
2016-01-01
The auditory brainstem implant (ABI) is a neuroprosthetic device that provides sound sensations to individuals with profound hearing loss who are not candidates for a cochlear implant (CI) because of anatomic constraints. Herein we describe the ABI for family physicians. PubMed was searched to identify articles relevant to the ABI, as well as articles that contain outcomes data for pediatric patients (age <18 years) who have undergone ABI surgery. The ABI was originally developed for patients with neurofibromatosis type 2 (NF2) who become deaf from bilateral vestibular schwannomas. Over the past decade, indications for an ABI have expanded to adult patients without tumors (without NF2) who cannot receive a CI and children with no cochlea or cochlear nerve. Outcomes among NF2 ABI users are modest compared to cochlear implant patients, but recent studies from Europe suggest that some non-tumor adult and pediatric ABI users achieve speech perception. The ABI is a reasonable surgical option for children with profound hearing loss due to severe cochlear or cochlear nerve deformities. Continued prospective data collection from several clinical trials in the U.S. will provide greater understanding on long term outcomes that focus on speech intelligibility. © Copyright 2016 by the American Board of Family Medicine.
Leivo, Tiina; Sarikkola, Anna-Ulrika; Uusitalo, Risto J; Hellstedt, Timo; Ess, Sirje-Linda; Kivelä, Tero
2011-06-01
To present an economic-analysis comparison of simultaneous and sequential bilateral cataract surgery. Helsinki University Eye Hospital, Helsinki, Finland. Economic analysis. Effects were estimated from data in a study in which patients were randomized to have bilateral cataract surgery on the same day (study group) or sequentially (control group). The main clinical outcomes were corrected distance visual acuity, refraction, complications, Visual Function Index-7 (VF-7) scores, and patient-rated satisfaction with vision. Health-care costs of surgeries and preoperative and postoperative visits were estimated, including the cost of staff, equipment, material, floor space, overhead, and complications. The data were obtained from staff measurements, questionnaires, internal hospital records, and accountancy. Non-health-care costs of travel, home care, and time were estimated based on questionnaires from a random subset of patients. The main economic outcome measures were cost per VF-7 score unit change and cost per patient in simultaneous versus sequential surgery. The study comprised 520 patients (241 patients included non-health-care and time cost analyses). Surgical outcomes and patient satisfaction were similar in both groups. Simultaneous cataract surgery saved 449 Euros (€) per patient in health-care costs and €739 when travel and paid home-care costs were included. The savings added up to €849 per patient when the cost of lost working time was included. Compared with sequential bilateral cataract surgery, simultaneous bilateral cataract surgery provided comparable clinical outcomes with substantial savings in health-care and non-health-care-related costs. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Dietz, Mathias; Hohmann, Volker; Jürgens, Tim
2015-01-01
For normal-hearing listeners, speech intelligibility improves if speech and noise are spatially separated. While this spatial release from masking has already been quantified in normal-hearing listeners in many studies, it is less clear how spatial release from masking changes in cochlear implant listeners with and without access to low-frequency acoustic hearing. Spatial release from masking depends on differences in access to speech cues due to hearing status and hearing device. To investigate the influence of these factors on speech intelligibility, the present study measured speech reception thresholds in spatially separated speech and noise for 10 different listener types. A vocoder was used to simulate cochlear implant processing and low-frequency filtering was used to simulate residual low-frequency hearing. These forms of processing were combined to simulate cochlear implant listening, listening based on low-frequency residual hearing, and combinations thereof. Simulated cochlear implant users with additional low-frequency acoustic hearing showed better speech intelligibility in noise than simulated cochlear implant users without acoustic hearing and had access to more spatial speech cues (e.g., higher binaural squelch). Cochlear implant listener types showed higher spatial release from masking with bilateral access to low-frequency acoustic hearing than without. A binaural speech intelligibility model with normal binaural processing showed overall good agreement with measured speech reception thresholds, spatial release from masking, and spatial speech cues. This indicates that differences in speech cues available to listener types are sufficient to explain the changes of spatial release from masking across these simulated listener types. PMID:26721918
Inoue, Tadahisa; Ishii, Norimitsu; Kobayashi, Yuji; Kitano, Rena; Sakamoto, Kazumasa; Ohashi, Tomohiko; Nakade, Yukiomi; Sumida, Yoshio; Ito, Kiyoaki; Nakao, Haruhisa; Yoneda, Masashi
2017-09-01
Endoscopic bilateral self-expandable metallic stent (SEMS) placement for malignant hilar biliary obstructions (MHBOs) is technically demanding, and a second SEMS insertion is particularly challenging. A simultaneous side-by-side (SBS) placement technique using a thinner delivery system may mitigate these issues. We aimed to examine the feasibility and efficacy of simultaneous SBS SEMS placement for treating MHBOs using a novel SEMS that has a 5.7-Fr ultra-thin delivery system. Thirty-four patients with MHBOs underwent SBS SEMS placement between 2010 and 2016. We divided the patient cohort into those who underwent sequential (conventional) SBS placement between 2010 and 2014 (sequential group) and those who underwent simultaneous SBS placement between 2015 and 2016 (simultaneous group), and compared the groups with respect to the clinical outcomes. The technical success rates were 71% (12/17) and 100% (17/17) in the sequential and simultaneous groups, respectively, a difference that was significant (P = .045). The median procedure time was significantly shorter in the simultaneous group (22 min) than in the sequential group (52 min) (P = .017). There were no significant group differences in the time to recurrent biliary obstruction (sequential group: 113 days; simultaneous group: 140 days) or other adverse event rates (sequential group: 12%; simultaneous group: 12%). Simultaneous SBS placement using the novel 5.7-Fr SEMS delivery system may be more straightforward and have a higher success rate compared to that with sequential SBS placement. This new method may be useful for bilateral stenting to treat MHBOs.
Music training improves pitch perception in prelingually deafened children with cochlear implants.
Chen, Joshua Kuang-Chao; Chuang, Ann Yi Chiun; McMahon, Catherine; Hsieh, Jen-Chuen; Tung, Tao-Hsin; Li, Lieber Po-Hung
2010-04-01
The comparatively poor music appreciation in patients with cochlear implants might be ascribed to an inadequate exposure to music; however, the effect of training on music perception in prelingually deafened children with cochlear implants remains unknown. This study aimed to investigate whether previous musical education improves pitch perception ability in these children. Twenty-seven children with congenital/prelingual deafness of profound degree were studied. Test stimuli consisted of 2 sequential piano tones, ranging from C (256 Hz) to B (495 Hz). Children were asked to identify the pitch relationship between the 2 tones (same, higher, or lower). Effects of musical training duration, pitch-interval size, current age, age of implantation, gender, and type of cochlear implant on accuracy of pitch perception were evaluated. The duration of musical training positively correlated with the correct rate of pitch perception. Pitch perception performance was better in children who had a cochlear implant and were older than 6 years than in those who were aged < or =6 years (ie, preschool). Effect of pitch-interval size was insignificant on pitch perception, and there was no correlation between pitch perception and the age of implantation, gender, or type of cochlear implant. Musical training seems to improve pitch perception ability in prelingually deafened children with a cochlear implant. Auditory plasticity might play an important role in such enhancement. This suggests that incorporation of a structured training program on music perception early in life and as part of the postoperative rehabilitation program for prelingually deafened children with cochlear implants would be beneficial. A longitudinal study is needed to show whether improvement of music performance in these children is measurable by use of auditory evoked potentials.
Madanat, Rami; Hussey, Daniel K; Donahue, Gabrielle S; Potter, Hollis G; Wallace, Robert; Bragdon, Charles R; Muratoglu, Orhun K; Malchau, Henrik
2015-10-01
The purpose of this study was to evaluate whether patients with bilateral metal-on-metal (MoM) hip replacements have symmetric adverse local tissue reactions (ALTRs) at follow-up. An MRI of both hips was performed at a mean time of six years after surgery in 43 patients. The prevalence and severity of ALTRs were found to be similar in simultaneous hips but differences were observed in sequential hips. The order and timing of sequential hip arthroplasties did not affect the severity of ALTRs. Thus, in addition to metal ion exposure from an earlier MoM implant other factors may also play a role in the progression of ALTRs. Bilateral implants should be given special consideration in risk stratification algorithms for management of patients with MoM hip arthroplasty. Copyright © 2015 Elsevier Inc. All rights reserved.
Tumors Presenting as Multiple Cranial Nerve Palsies
Kumar, Kishore; Ahmed, Rafeeq; Bajantri, Bharat; Singh, Amandeep; Abbas, Hafsa; Dejesus, Eddy; Khan, Rana Raheel; Niazi, Masooma; Chilimuri, Sridhar
2017-01-01
Cranial nerve palsy could be one of the presenting features of underlying benign or malignant tumors of the head and neck. The tumor can involve the cranial nerves by local compression, direct infiltration or by paraneoplastic process. Cranial nerve involvement depends on the anatomical course of the cranial nerve and the site of the tumor. Patients may present with single or multiple cranial nerve palsies. Multiple cranial nerve involvement could be sequential or discrete, unilateral or bilateral, painless or painful. The presentation could be acute, subacute or recurrent. Anatomic localization is the first step in the evaluation of these patients. The lesion could be in the brain stem, meninges, base of skull, extracranial or systemic disease itself. We present 3 cases of underlying neoplasms presenting as cranial nerve palsies: a case of glomus tumor presenting as cochlear, glossopharyngeal, vagus and hypoglossal nerve palsies, clivus tumor presenting as abducens nerve palsy, and diffuse large B-cell lymphoma presenting as oculomotor, trochlear, trigeminal and abducens nerve palsies due to paraneoplastic involvement. History and physical examination, imaging, autoantibodies and biopsy if feasible are useful for the diagnosis. Management outcomes depend on the treatment of the underlying tumor. PMID:28553221
Spatial Release From Masking in 2-Year-Olds With Normal Hearing and With Bilateral Cochlear Implants
Hess, Christi L.; Misurelli, Sara M.; Litovsky, Ruth Y.
2018-01-01
This study evaluated spatial release from masking (SRM) in 2- to 3-year-old children who are deaf and were implanted with bilateral cochlear implants (BiCIs), and in age-matched normal-hearing (NH) toddlers. Here, we examined whether early activation of bilateral hearing has the potential to promote SRM that is similar to age-matched NH children. Listeners were 13 NH toddlers and 13 toddlers with BiCIs, ages 27 to 36 months. Speech reception thresholds (SRTs) were measured for target speech in front (0°) and for competitors that were either Colocated in front (0°) or Separated toward the right (+90°). SRM was computed as the difference between SRTs in the front versus in the asymmetrical condition. Results show that SRTs were higher in the BiCI than NH group in all conditions. Both groups had higher SRTs in the Colocated and Separated conditions compared with Quiet, indicating masking. SRM was significant only in the NH group. In the BiCI group, the group effect of SRM was not significant, likely limited by the small sample size; however, all but two children had SRM values within the NH range. This work shows that to some extent, the ability to use spatial cues for source segregation develops by age 2 to 3 in NH children and is attainable in most of the children in the BiCI group. There is potential for the paradigm used here to be used in clinical settings to evaluate outcomes of bilateral hearing in very young children. PMID:29761735
Hearing loss and enlarged internal auditory canal in children.
Santos, Saturnino; Domínguez, M Jesús; Cervera, Javier; Suárez, Alicia; Bueno, Antonio; Bartolomé, Margarita; López, Rafael
2014-01-01
Among the temporal bone abnormalities that can be found in the etiological study of paediatric sensorineural hearing loss (SNHL) by imaging techniques, those related to the internal auditory canal (IAC) are the least frequent. The most prevalent of these abnormalities that is associated with SNHL is stenotic IAC due to its association with cochlear nerve deficiencies. Less frequent and less concomitant with SNHL is the finding of an enlarged IAC (>8mm). Retrospective and descriptive review of clinical associations, imaging, audiological patterns and treatment of 9 children with hearing loss and enlarged IAC in the period 1999 to 2012. Two groups of patients are described. The first, without association with vestibulocochlear dysplasias, consisted of: 2 patients with SNHL without other temporal bone or systemic abnormalities, one with bilateral mixed HL from chromosome 18q deletion, one with a genetic X-linked DFN3 hearing loss, one with unilateral hearing loss in neurofibromatosis type 2 with bilateral acoustic neuroma, and one with unilateral hearing loss with cochlear nerve deficiency. The second group, with association with vestibulocochlear dysplasias, was comprised of: one patient with moderate bilateral mixed hearing loss in branchio-oto-renal syndrome, one with profound unilateral SNHL with recurrent meningitis, and another with profound bilateral SNHL with congenital hypothyroidism. The presence of an enlarged IAC in children can be found in different clinical and audiological settings with relevancies that can range from life-threatening situations, such as recurrent meningitis, to isolated hearing loss with no other associations. Copyright © 2013 Elsevier España, S.L. All rights reserved.
ERIC Educational Resources Information Center
Gifford, Rene H.; Dorman, Michael F.; McKarns, Sharon A.; Spahr, Anthony J.
2007-01-01
Purpose: The authors assessed whether (a) a full-insertion cochlear implant would provide a higher level of speech understanding than bilateral low-frequency acoustic hearing, (b) contralateral acoustic hearing would add to the speech understanding provided by the implant, and (c) the level of performance achieved with electric stimulation plus…
Binaural unmasking with multiple adjacent masking electrodes in bilateral cochlear implant users
Lu, Thomas; Litovsky, Ruth; Zeng, Fan-Gang
2011-01-01
Bilateral cochlear implant (BiCI) users gain an advantage in noisy situations from a second implant, but their bilateral performance falls short of normal hearing listeners. Channel interactions due to overlapping electrical fields between electrodes can impair speech perception, but its role in limiting binaural hearing performance has not been well characterized. To address the issue, binaural masking level differences (BMLD) for a 125 Hz tone in narrowband noise were measured using a pair of pitch-matched electrodes while simultaneously presenting the same masking noise to adjacent electrodes, representing a more realistic stimulation condition compared to prior studies that used only a single electrode pair. For five subjects, BMLDs averaged 8.9 ± 1.0 dB (mean ± s.e.) in single electrode pairs but dropped to 2.1 ± 0.4 dB when presenting noise on adjacent masking electrodes, demonstrating a negative impact of the additional maskers. Removing the masking noise from only the pitch-matched electrode pair not only lowered thresholds but also resulted in smaller BMLDs. The degree of channel interaction estimated from auditory nerve evoked potentials in three subjects was significantly and negatively correlated with BMLD. The data suggest that if the amount of channel interactions can be reduced, BiCI users may experience some performance improvements related to binaural hearing. PMID:21682415
Binaural sensitivity in children who use bilateral cochlear implants.
Ehlers, Erica; Goupell, Matthew J; Zheng, Yi; Godar, Shelly P; Litovsky, Ruth Y
2017-06-01
Children who are deaf and receive bilateral cochlear implants (BiCIs) perform better on spatial hearing tasks using bilateral rather than unilateral inputs; however, they underperform relative to normal-hearing (NH) peers. This gap in performance is multi-factorial, including the inability of speech processors to reliably deliver binaural cues. Although much is known regarding binaural sensitivity of adults with BiCIs, less is known about how the development of binaural sensitivity in children with BiCIs compared to NH children. Sixteen children (ages 9-17 years) were tested using synchronized research processors. Interaural time differences and interaural level differences (ITDs and ILDs, respectively) were presented to pairs of pitch-matched electrodes. Stimuli were 300-ms, 100-pulses-per-second, constant-amplitude pulse trains. In the first and second experiments, discrimination of interaural cues (either ITDs or ILDs) was measured using a two-interval left/right task. In the third experiment, subjects reported the perceived intracranial position of ITDs and ILDs in a lateralization task. All children demonstrated sensitivity to ILDs, possibly due to monaural level cues. Children who were born deaf had weak or absent sensitivity to ITDs; in contrast, ITD sensitivity was noted in children with previous exposure to acoustic hearing. Therefore, factors such as auditory deprivation, in particular, lack of early exposure to consistent timing differences between the ears, may delay the maturation of binaural circuits and cause insensitivity to binaural differences.
Firszt, Jill B.; Reeder, Ruth M.; Holden, Laura K.
2016-01-01
Objectives At a minimum, unilateral hearing loss (UHL) impairs sound localization ability and understanding speech in noisy environments, particularly if the loss is severe to profound. Accompanying the numerous negative consequences of UHL is considerable unexplained individual variability in the magnitude of its effects. Identification of co-variables that affect outcome and contribute to variability in UHLs could augment counseling, treatment options, and rehabilitation. Cochlear implantation as a treatment for UHL is on the rise yet little is known about factors that could impact performance or whether there is a group at risk for poor cochlear implant outcomes when hearing is near-normal in one ear. The overall goal of our research is to investigate the range and source of variability in speech recognition in noise and localization among individuals with severe to profound UHL and thereby help determine factors relevant to decisions regarding cochlear implantation in this population. Design The present study evaluated adults with severe to profound UHL and adults with bilateral normal hearing. Measures included adaptive sentence understanding in diffuse restaurant noise, localization, roving-source speech recognition (words from 1 of 15 speakers in a 140° arc) and an adaptive speech-reception threshold psychoacoustic task with varied noise types and noise-source locations. There were three age-gender-matched groups: UHL (severe to profound hearing loss in one ear and normal hearing in the contralateral ear), normal hearing listening bilaterally, and normal hearing listening unilaterally. Results Although the normal-hearing-bilateral group scored significantly better and had less performance variability than UHLs on all measures, some UHL participants scored within the range of the normal-hearing-bilateral group on all measures. The normal-hearing participants listening unilaterally had better monosyllabic word understanding than UHLs for words presented on the blocked/deaf side but not the open/hearing side. In contrast, UHLs localized better than the normal hearing unilateral listeners for stimuli on the open/hearing side but not the blocked/deaf side. This suggests that UHLs had learned strategies for improved localization on the side of the intact ear. The UHL and unilateral normal hearing participant groups were not significantly different for speech-in-noise measures. UHL participants with childhood rather than recent hearing loss onset localized significantly better; however, these two groups did not differ for speech recognition in noise. Age at onset in UHL adults appears to affect localization ability differently than understanding speech in noise. Hearing thresholds were significantly correlated with speech recognition for UHL participants but not the other two groups. Conclusions Auditory abilities of UHLs varied widely and could be explained only in part by hearing threshold levels. Age at onset and length of hearing loss influenced performance on some, but not all measures. Results support the need for a revised and diverse set of clinical measures, including sound localization, understanding speech in varied environments and careful consideration of functional abilities as individuals with severe to profound UHL are being considered potential cochlear implant candidates. PMID:28067750
Lin, Jean-Pierre; Kaminska, Margaret; Perides, Sarah; Gimeno, Hortensia; Baker, Lesley; Lumsden, Daniel E; Britz, Anzell; Driver, Sandra; Fitzgerald-O'Connor, Alec; Selway, Richard
2017-01-01
Early onset dystonia (dyskinesia) and deafness in childhood pose significant challenges for children and carers and are the cause of multiple disability. It is particularly tragic when the child cannot make use of early cochlear implantation (CI) technology to relieve deafness and improve language and communication, because severe cervical and truncal dystonia brushes off the magnetic amplifier behind the ears. Bilateral globus pallidus internus (GPi) deep brain stimulation (DBS) neuromodulation can reduce dyskinesia, thus supporting CI neuromodulation success. We describe the importance of the order of dual neuromodulation surgery for dystonia and deafness. First with bilateral GPi DBS using a rechargeable ACTIVA-RC neurostimulator followed 5 months later by unilateral CI with a Harmony (BTE) Advanced Bionics Hi Res 90 K cochlear device. This double neuromodulation was performed in series in a 12.5 kg 5 year-old ex-24 week gestation-born twin without a cerebellum. Relief of dyskinesia enabled continuous use of the CI amplifier. Language understanding and communication improved. Dystonic storms abated. Tolerance of sitting increased with emergence of manual function. Status dystonicus ensued 10 days after ACTIVA-RC removal for infection-erosion at 3 years and 10 months. He required intensive care and DBS re-implantation 3 weeks later together with 8 months of hospital care. Today he is virtually back to the level of functioning before the DBS removal in 2012 and background medication continues to be slowly weaned. This case illustrates that early neuromodulation with DBS for dystonic cerebral palsy followed by CI for deafness is beneficial. Both should be considered early i.e. under the age of five years. The DBS should precede the CI to maximise dystonia reduction and thus benefits from CI. This requires close working between the paediatric DBS and CI services. Copyright © 2016. Published by Elsevier Ltd.
Hess, Christi; Zettler-Greeley, Cynthia; Godar, Shelly P; Ellis-Weismer, Susan; Litovsky, Ruth Y
2014-01-01
Growing evidence suggests that children who are deaf and use cochlear implants (CIs) can communicate effectively using spoken language. Research has reported that age of implantation and length of experience with the CI play an important role in a predicting a child's linguistic development. In recent years, the increase in the number of children receiving bilateral CIs (BiCIs) has led to interest in new variables that may also influence the development of hearing, speech, and language abilities, such as length of bilateral listening experience and the length of time between the implantation of the two CIs. One goal of the present study was to determine how a cohort of children with BiCIs performed on standardized measures of language and nonverbal cognition. This study examined the relationship between performance on language and nonverbal intelligence quotient (IQ) tests and the ages at implantation of the first CI and second CI. This study also examined whether early bilateral activation is related to better language scores. Children with BiCIs (n = 39; ages 4 to 9 years) were tested on two standardized measures, the Test of Language Development and the Leiter International Performance Scale-Revised, to evaluate their expressive/receptive language skills and nonverbal IQ/memory. Hierarchical regression analyses were used to evaluate whether BiCI hearing experience predicts language performance. While large intersubject variability existed, on average, almost all the children with BiCIs scored within or above normal limits on measures of nonverbal cognition. Expressive and receptive language scores were highly variable, less likely to be above the normative mean, and did not correlate with Length of first CI Use, defined as length of auditory experience with one cochlear implant, or Length of second CI Use, defined as length of auditory experience with two cochlear implants. All children in the present study had BiCIs. Most IQ scores were either at or above that found in the general population of typically hearing children. However, there was greater variability in their performance on a standardized test of expressive and receptive language. This cohort of children, who are mainstreamed in schools at age-appropriate grades, whose mothers' education is high, and whose families' socioecononomic status is high, had, as a group, on average, language scores within the same range as the normative sample of hearing children. Further research identifying the predictors that contribute to the high variability in both expressive and receptive language scores in children with BiCIs will provide useful information that can aid in clinical management and decision making.
The early days of the multi channel cochlear implant: efforts and achievement in France.
Chouard, C H
2015-04-01
On September 10th 2013, the clinical medical research Lasker award winners were rewarded for their work on multichannel cochlear implant. It has been my pleasure to see that such a major topic had caught the attention of the Members of the Jury for this prestigious award. That is why I accepted an invitation to participate in a special issue of Hearing Research devoted to the three winners. Here I highlight four scientific contributions made by the French team in late 1970s and early 1980s to modern multichannel cochlear implant development. 1) Chouard and MacLeod plotted an approximate frequency map of the whole length of the human cochlea, including its "hidden face" corresponding to speech frequencies. Moreover MacLeod suggested a sequential display of electrical stimulation as a function of each electrode, a precursor to today's electrodogram and interleaved stimulation. 2) Chouard performed total cochlear implantation in a deaf adult male with 8 electrically independent electrodes that were evenly distributed along the cochlea. 3) Chouard and MacLeod described in a patent detailed sound signal processing for a functional multichannel cochlear implant and reported speech discrimination without help of lip reading in some totally deafened patients. 4) Chouard experimentally demonstrated in the guinea pig the advantage of early cochlear implantation in treating profound neonatal deafness. This article is part of a Special Issue entitled
Schvartz-Leyzac, Kara C; Pfingst, Bryan E
2016-11-01
Electrically evoked compound action potential (ECAP) measures of peak amplitude, and amplitude-growth function (AGF) slope have been shown to reflect characteristics of cochlear health (primarily spiral ganglion density) in anesthetized cochlear-implanted guinea pigs. Likewise, the effect of increasing the interphase gap (IPG) in each of these measures also reflects SGN density in the implanted guinea pig. Based on these findings, we hypothesize that suprathreshold ECAP measures, and also how they change as the IPG is increased, have the potential to be clinically applicable in human subjects. However, further work is first needed in order to determine the characteristics of these measures in humans who use cochlear implants. The current study examined across-site patterns of suprathreshold ECAP measures in 10 bilaterally-implanted, adult cochlear implant users. Results showed that both peak amplitude and slope of the AGF varied significantly from electrode to electrode in ear-specific patterns across the subjects' electrode arrays. As expected, increasing the IPG on average increased the peak amplitude and slope. Across ears, there was a significant, negative correlation between the slope of the ECAP AGF and the duration of hearing loss. Across-site patterns of ECAP peak amplitude and AGF slopes were also compared with common ground impedance values and significant correlations were observed in some cases, depending on the subject and condition. The results of this study, coupled with previous studies in animals, suggest that it is feasible to measure the change in suprathreshold ECAP measures as the IPG increases on most electrodes. Further work is needed to investigate the relationship between these measures and cochlear implant outcomes, and determine how these measures might be used when programming a cochlear-implant processor. Published by Elsevier B.V.
Łukaszewicz-Moszyńska, Zuzanna; Lachowska, Magdalena; Niemczyk, Kazimierz
2014-01-01
The purpose of this study was to evaluate possible relationships between duration of cochlear implant use and results of positron emission tomography (PET) measurements in the temporal lobes performed while subjects listened to speech stimuli. Other aspects investigated were whether implantation side impacts significantly on cortical representations of functions related to understanding speech (ipsi- or contralateral to the implanted side) and whether any correlation exists between cortical activation and speech therapy results. Objective cortical responses to acoustic stimulation were measured, using PET, in nine cochlear implant patients (age range: 15 to 50 years). All the patients suffered from bilateral deafness, were right-handed, and had no additional neurological deficits. They underwent PET imaging three times: immediately after the first fitting of the speech processor (activation of the cochlear implant), and one and two years later. A tendency towards increasing levels of activation in areas of the primary and secondary auditory cortex on the left side of the brain was observed. There was no clear effect of the side of implantation (left or right) on the degree of cortical activation in the temporal lobe. However, the PET results showed a correlation between degree of cortical activation and speech therapy results.
Łukaszewicz-Moszyńska, Zuzanna; Lachowska, Magdalena; Niemczyk, Kazimierz
2014-01-01
Summary The purpose of this study was to evaluate possible relationships between duration of cochlear implant use and results of positron emission tomography (PET) measurements in the temporal lobes performed while subjects listened to speech stimuli. Other aspects investigated were whether implantation side impacts significantly on cortical representations of functions related to understanding speech (ipsi- or contralateral to the implanted side) and whether any correlation exists between cortical activation and speech therapy results. Objective cortical responses to acoustic stimulation were measured, using PET, in nine cochlear implant patients (age range: 15 to 50 years). All the patients suffered from bilateral deafness, were right-handed, and had no additional neurological deficits. They underwent PET imaging three times: immediately after the first fitting of the speech processor (activation of the cochlear implant), and one and two years later. A tendency towards increasing levels of activation in areas of the primary and secondary auditory cortex on the left side of the brain was observed. There was no clear effect of the side of implantation (left or right) on the degree of cortical activation in the temporal lobe. However, the PET results showed a correlation between degree of cortical activation and speech therapy results. PMID:25306122
How to quantify binaural hearing in patients with unilateral hearing using hearing implants.
Snik, Ad; Agterberg, Martijn; Bosman, Arjan
2015-01-01
Application of bilateral hearing devices in bilateral hearing loss and unilateral application in unilateral hearing loss (second ear with normal hearing) does not a priori lead to binaural hearing. An overview is presented on several measures of binaural benefits that have been used in patients with unilateral or bilateral deafness using one or two cochlear implants, respectively, and in patients with unilateral or bilateral conductive/mixed hearing loss using one or two percutaneous bone conduction implants (BCDs), respectively. Overall, according to this overview, the most significant and sensitive measure is the benefit in directional hearing. Measures using speech (viz. binaural summation, binaural squelch or use of the head shadow effect) showed minor benefits, except for patients with bilateral conductive/mixed hearing loss using two BCDs. Although less feasible in daily practise, the binaural masking level difference test seems to be a promising option in the assessment of binaural function. © 2015 S. Karger AG, Basel.
Recognition and production of emotions in children with cochlear implants.
Mildner, Vesna; Koska, Tena
2014-01-01
The aim of this study was to examine auditory recognition and vocal production of emotions in three prelingually bilaterally profoundly deaf children aged 6-7 who received cochlear implants before age 2, and compare them with age-matched normally hearing children. No consistent advantage was found for the normally hearing participants. In both groups, sadness was recognized best and disgust was the most difficult. Confusion matrices among other emotions (anger, happiness, and fear) showed that children with and without hearing impairment may rely on different cues. Both groups of children showed that perception is superior to production. Normally hearing children were more successful in the production of sadness, happiness, and fear, but not anger or disgust. The data set is too small to draw any definite conclusions, but it seems that a combination of early implantation and regular auditory-oral-based therapy enables children with cochlear implants to process and produce emotional content comparable with children with normal hearing.
Personal reflections on the multichannel cochlear implant and a view of the future.
Clark, Graeme M
2008-01-01
The multichannel cochlear implant is the first neural prosthesis to effectively and safely bring electronic technology into a direct physiological relation with the central nervous system and human consciousness. It is also the first cochlear implant to give speech understanding to tens of thousands of persons with profound deafness and spoken language to children born deaf in more than 80 countries. In so doing, it is the first major advance in research and technology to help deaf children communicate since Sign Language of the Deaf was developed at the Paris deaf school (L'Institut National de Jeunes Sourds de Paris) >200 years ago. Furthermore, biomedical research has been fundamental for ensuring that the multielectrode implant is safe as well as effective. More recent research has also shown that bilateral implants confer the benefits of binaural hearing. Future research using nanotechnology should see high-fidelity sound received, which would help deaf persons communicate in noise and enjoy music. Research should also lead to implants in ears with useful hearing.
BERRETTINI, S.; ARSLAN, E.; BAGGIANI, A.; BURDO, S.; CASSANDRO, E.; CUDA, D.; FILIPO, R.; GIORGI ROSSI, P.; MANCINI, P.; MARTINI, A.; QUARANTA, A.; QUARANTA, N.; TURCHETTI, G.; FORLI, F.
2011-01-01
SUMMARY The aim of Health Technology Assessment (HTA) is to provide decision-makers, distributors and recipients with information on the effectiveness, cost and impact of health technologies. The present study constitutes a subproject within the wider project “Analysis of the impact of professional involvement in evidence generation for the HTA process”, which is part of the strategic programme “Transfer of the results of the research in clinical practice and organisation of healthcare services”, coordinated by Laziosanità – Agency of Public Healthcare of the Lazio Region and AgeNaS (National Agency for Regional Healthcare Services). The objectives of the present subproject (cochlear implants) are as follows: a) to produce a report regarding the health impact of cochlear implants (CI) on their recipients, through a systematic review of literature and extensive selection of relative studies, combining the outcomes with metanalytical techniques. Output: report on the indications of usage in the groups of population for which benefits are controversial; b) to create a registry of patients using cochlear implants. The registry should contain a selection of anagraphic and clinical information relative to patient follow-up in order to assess factors associated with safety and impact on cochlear implant users. This source of information is essential for future observational studies. This was divided into 4 phases: 1st phase: definition of key participants in the assessment process; 2nd phase: definition of methods and timing of “Aims” (definition of the objective); 3rd phase: definition of the methods and times of the “assessment process”, 4th phase: production of the final report. From the analysis of systematic reviews and italian and international guidelines, the Working Group members approved recommendations on the following topics: results after CI in children in relation to age at implantation, bilateral CI in children, CI in deaf children with associated disabilities, CI in adults with advanced age, bilateral CI in adults and CI in adults with pre-lingual deafness. These recommendations have also been evaluated by the Consulting Committee members and approved with minimal suggestions. PMID:22287819
Adverse Outcomes in Infantile Bilateral Developmental Dysplasia of the Hip.
Morbi, Abigail H M; Carsi, Belen; Gorianinov, Vitalli; Clarke, Nicholas M P
2015-01-01
It is believed that bilateral developmental dysplasia of the hip (DDH) has poorer outcomes with higher rates of avascular necrosis (AVN) and reintervention, compared with unilateral DDH. However, there is limited evidence in the literature, with few studies looking specifically at bilateral cases. A retrospective review of 36 patients (72 hips) with >4 years of follow-up. Patient population included surgically treated DDH including late presentations and failures of conservative treatment. The dislocated hips underwent either simultaneous closed or 1 open and 1 closed, or sequential open reduction. AVN and secondary procedures were used as endpoints for analysis as well as clinical and radiologic outcomes. At the last follow-up, 33% of hips had radiologic signs of AVN. Those hips that had no ossific nucleus (ON) at the time of surgery had an odds ratio of developing AVN of 3.05 and a statistically significant association between the 2 variables, whereas open/closed or simultaneous/sequential reduction did not increase the risk for AVN. In addition, 45.8% of those hips required further surgery. The estimated odds ratio of needing additional surgery after simultaneous reduction was 4.04. Clinically, 79.2% of the hips were graded as McKay I, whereas radiologically only 38.8% were Severin I. The AVN rate in bilateral DDH treated surgically is greater than the rate noted in unilateral cases from the same institution undergoing identical protocols. There was no difference in AVN rates between simultaneous and sequential or between the first and second hip to be sequentially reduced. Presence of ON decreases the risk for AVN, suggesting that in bilateral cases, awaiting the appearance of the ON is an important tool to reduce the incidence of AVN. IV.
McCombe Waller, Sandy; Whitall, Jill; Jenkins, Toye; Magder, Laurence S; Hanley, Daniel F; Goldberg, Andrew; Luft, Andreas R
2014-12-14
Recovering useful hand function after stroke is a major scientific challenge for patients with limited motor recovery. We hypothesized that sequential training beginning with proximal bilateral followed by unilateral task oriented training is superior to time-matched unilateral training alone. Proximal bilateral training could optimally prepare the motor system to respond to the more challenging task-oriented training. Twenty-six participants with moderate severity hemiparesis Intervention: PARTICIPANTS received either 6-weeks of bilateral proximal training followed sequentially by 6-weeks unilateral task-oriented training (COMBO) or 12-weeks of unilateral task-oriented training alone (SAEBO). A subset of 8 COMB0 and 9 SAEBO participants underwent three functional magnetic resonance imaging (fMRI) scans of hand and elbow movement every 6 weeks. Fugl-Meyer Upper extremity scale, Modified Wolf Motor Function Test, University of Maryland Arm Questionnaire for Stroke, Motor cortex activation (fMRI). The COMBO group demonstrated significantly greater gains between baseline and 12-weeks over all outcome measures (p = .018 based on a MANOVA test) and specifically in the Modified Wolf Motor Function test (time). Both groups demonstrated within-group gains on the Fugl-Meyer Upper Extremity test (impairment) and University of Maryland Arm Questionnaire for Stroke (functional use). fMRI subset analyses showed motor cortex (primary and premotor) activation during hand movement was significantly increased by sequential combination training but not by task-oriented training alone. Sequentially combining a proximal bilateral before a unilateral task-oriented training may be an effective way to facilitate gains in arm and hand function in those with moderate to severe paresis post-stroke compared to unilateral task oriented training alone.
Lane, John I; Witte, Robert J; Driscoll, Colin L W; Shallop, Jon K; Beatty, Charles W; Primak, Andrew N
2007-08-01
To use the improved resolution available with 64-slice multidetector computed tomography (MDCT) in vivo to localize the cochlear implant electrode array within the basal turn. Sixty-four-slice MDCT examinations of the temporal bones were retrospectively reviewed in 17 patients. Twenty-three implants were evaluated. Tertiary referral facility. All patients with previous cochlear implantation evaluated at our center between January 2004 and March 2006 were offered a computed tomographic examination as part of the study. In addition, preoperative computed tomographic examinations in patients being evaluated for a second bilateral device were included. Sixty-four-slice MDCT examination of the temporal bones. Localization of the electrode array within the basal turn from multiplanar reconstructions of the cochlea. Twenty-three implants were imaged in 17 patients. We were able to localize the electrode array within the scala tympani within the basal turn in 10 implants. In 3 implants, the electrode array was localized to the scala vestibuli. Migration of the electrode array from scala tympani to scala vestibuli was observed in three implants. Of the 7 implants in which localization of the electrode array was indeterminate, all had disease entities that obscured the definition of the normal cochlear anatomy. Sixty-four-slice MDCT with multiplanar reconstructions of the postoperative cochlea after cochlear implantation allows for accurate localization of the electrode array within the basal turn where normal cochlear anatomy is not obscured by the underlying disease process. Correlating the position of the electrode in the basal turn with surgical technique and implant design could be helpful in improving outcomes.
Audiological outcomes of cochlear implantation in Waardenburg Syndrome.
Magalhães, Ana Tereza de Matos; Samuel, Paola Angélica; Goffi-Gomez, Maria Valeria Schimdt; Tsuji, Robinson Koji; Brito, Rubens; Bento, Ricardo Ferreira
2013-07-01
The most relevant clinical symptom in Waardenburg syndrome is profound bilateral sensorioneural hearing loss. To characterize and describe hearing outcomes after cochlear implantation in patients with Waardenburg syndrome to improve preoperative expectations. This was an observational and retrospective study of a series of cases. Children who were diagnosed with Waardenburg syndrome and who received a multichannel cochlear implant between March 1999 and July 2012 were included in the study. Intraoperative neural response telemetry, hearing evaluation, speech perception, and speech production data before and after surgery were assessed. During this period, 806 patients received a cochlear implant and 10 of these (1.2%) were diagnosed with Waardenburg syndrome. Eight of the children received a Nucleus 24(®) implant and 1 child and 1 adult received a DigiSonic SP implant. The mean age at implantation was 44 months among the children. The average duration of use of a cochlear implant at the time of the study was 43 months. Intraoperative neural responses were present in all cases. Patients who could use the speech processor effectively had a pure tone average of 31 dB in free-field conditions. In addition, the MUSS and MAIS questionnaires revealed improvements in speech perception and production. Four patients did not have a good outcome, which might have been associated with ineffective use of the speech processor. Despite the heterogeneity of the group, patients with Waardenburg syndrome who received cochlear implants were found to have hearing thresholds that allowed access to speech sounds. However, patients who received early intervention and rehabilitation showed better evolution of auditory perception.
FRIDMAN, GENE Y.; DELLA SANTINA, CHARLES C.
2014-01-01
This article reviews vestibular pathology and the requirements and progress made in the design and construction of a vestibular prosthesis. Bilateral loss of vestibular sensation is disabling. When vestibular hair cells are injured by ototoxic medications or other insults to the labyrinth, the resulting loss of sensory input disrupts vestibulo-ocular reflexes (VORs) and vestibulo-spinal reflexes that normally stabilize the eyes and body. Affected individuals suffer poor vision during head movement, postural instability, chronic disequilibrium, and cognitive distraction. Although most individuals with residual sensation compensate for their loss over time, others fail to do so and have no adequate treatment options. A vestibular prosthesis analogous to cochlear implants but designed to modulate vestibular nerve activity during head movement should improve quality of life for these chronically dizzy individuals. We describe the impact of bilateral loss of vestibular sensation, animal studies supporting feasibility of prosthetic vestibular stimulation, the current status of multichannel vestibular sensory replacement prosthesis development, and challenges to successfully realizing this approach in clinical practice. In bilaterally vestibular-deficient rodents and rhesus monkeys, the Johns Hopkins multichannel vestibular prosthesis (MVP) partially restores the three-dimensional (3D) VOR for head rotations about any axis. Attempts at prosthetic vestibular stimulation of humans have not yet included the 3D eye movement assays necessary to accurately evaluate VOR alignment, but these initial forays have revealed responses that are otherwise comparable to observations in animals. Current efforts now focus on refining electrode design and surgical technique to enhance stimulus selectivity and preserve cochlear function, optimizing stimulus protocols to improve dynamic range and reduce excitation–inhibition asymmetry, and adapting laboratory MVP prototypes into devices appropriate for use in clinical trials. PMID:23044664
Rossitto, Giacomo; Battistel, Michele; Barbiero, Giulio; Bisogni, Valeria; Maiolino, Giuseppe; Diego, Miotto; Seccia, Teresa M; Rossi, Gian Paolo
2018-02-01
The pulsatile secretion of adrenocortical hormones and a stress reaction occurring when starting adrenal vein sampling (AVS) can affect the selectivity and also the assessment of lateralization when sequential blood sampling is used. We therefore tested the hypothesis that a simulated sequential blood sampling could decrease the diagnostic accuracy of lateralization index for identification of aldosterone-producing adenoma (APA), as compared with bilaterally simultaneous AVS. In 138 consecutive patients who underwent subtyping of primary aldosteronism, we compared the results obtained simultaneously bilaterally when starting AVS (t-15) and 15 min after (t0), with those gained with a simulated sequential right-to-left AVS technique (R ⇒ L) created by combining hormonal values obtained at t-15 and at t0. The concordance between simultaneously obtained values at t-15 and t0, and between simultaneously obtained values and values gained with a sequential R ⇒ L technique, was also assessed. We found a marked interindividual variability of lateralization index values in the patients with bilaterally selective AVS at both time point. However, overall the lateralization index simultaneously determined at t0 provided a more accurate identification of APA than the simulated sequential lateralization indexR ⇒ L (P = 0.001). Moreover, regardless of which side was sampled first, the sequential AVS technique induced a sequence-dependent overestimation of lateralization index. While in APA patients the concordance between simultaneous AVS at t0 and t-15 and between simultaneous t0 and sequential technique was moderate-to-good (K = 0.55 and 0.66, respectively), in non-APA patients, it was poor (K = 0.12 and 0.13, respectively). Sequential AVS generates factitious between-sides gradients, which lower its diagnostic accuracy, likely because of the stress reaction arising upon starting AVS.
Impact of a Moving Noise Masker on Speech Perception in Cochlear Implant Users
Weissgerber, Tobias; Rader, Tobias; Baumann, Uwe
2015-01-01
Objectives Previous studies investigating speech perception in noise have typically been conducted with static masker positions. The aim of this study was to investigate the effect of spatial separation of source and masker (spatial release from masking, SRM) in a moving masker setup and to evaluate the impact of adaptive beamforming in comparison with fixed directional microphones in cochlear implant (CI) users. Design Speech reception thresholds (SRT) were measured in S0N0 and in a moving masker setup (S0Nmove) in 12 normal hearing participants and 14 CI users (7 subjects bilateral, 7 bimodal with a hearing aid in the contralateral ear). Speech processor settings were a moderately directional microphone, a fixed beamformer, or an adaptive beamformer. The moving noise source was generated by means of wave field synthesis and was smoothly moved in a shape of a half-circle from one ear to the contralateral ear. Noise was presented in either of two conditions: continuous or modulated. Results SRTs in the S0Nmove setup were significantly improved compared to the S0N0 setup for both the normal hearing control group and the bilateral group in continuous noise, and for the control group in modulated noise. There was no effect of subject group. A significant effect of directional sensitivity was found in the S0Nmove setup. In the bilateral group, the adaptive beamformer achieved lower SRTs than the fixed beamformer setting. Adaptive beamforming improved SRT in both CI user groups substantially by about 3 dB (bimodal group) and 8 dB (bilateral group) depending on masker type. Conclusions CI users showed SRM that was comparable to normal hearing subjects. In listening situations of everyday life with spatial separation of source and masker, directional microphones significantly improved speech perception with individual improvements of up to 15 dB SNR. Users of bilateral speech processors with both directional microphones obtained the highest benefit. PMID:25970594
Temporal Stability of Music Perception and Appraisal Scores of Adult Cochlear Implant Recipients
Gfeller, Kate; Jiang, Dingfeng; Oleson, Jacob; Driscoll, Virginia; Knutson, John F.
2010-01-01
Background An extensive body of literature indicates that cochlear implants are effective in supporting speech perception of persons with severe to profound hearing losses who do not benefit to any great extent from conventional hearing aids. Adult CI recipients tend to show significant improvement in speech perception within 3 months following implantation as a result of mere experience. Furthermore, CI recipients continue to show modest improvement as long as 5 years post implantation. In contrast, data taken from single testing protocols of music perception and appraisal indicate that CIs are less than ideal in transmitting important structural features of music, such as pitch, melody and timbre. However, there is presently little information documenting changes in music perception or appraisal over extended time as a result of mere experience. Purpose This study examined two basic questions: 1) Do adult CI recipients show significant improvement in perceptual acuity or appraisal of specific music listening tasks when tested in two consecutive years? 2) If there are tasks for which CI recipients show significant improvement with time, are there particular demographic variables that predict those CI recipients most likely to show improvement with extended CI use? Research Design A longitudinal cohort study. Implant recipients return annually for visits to the clinic. Study Sample The study included 209 adult cochlear implant recipients with at least 9 months implant experience before their first year measurement. Data collection and analysis Outcomes were measured on the patient’s annual visit in two consecutive years. Paired t-tests were used to test for significant improvement from one year to the next. Those variables demonstrating significant improvement were subjected to regression analyses performed to detect the demographic variables useful in predicting said improvement. Results There were no significant differences in music perception outcomes as a function of type of device or processing strategy used. Only familiar melody recognition (FMR) and recognition of melody excerpts with lyrics (MERT-L) showed significant improvement from one year to the next. After controlling for the baseline value, hearing aid use, months of use, music listening habits after implantation and formal musical training in elementary school were significant predictors of FMR improvement. Bilateral CI use, formal musical training in high school and beyond, and a measure of sequential cognitive processing were significant predictors of MERT-L improvement. Conclusions These adult CI recipients as a result of mere experience demonstrated fairly consistent music perception and appraisal on measures gathered in two consecutive years. Gains made tend to be modest, and can be associated with characteristics such as use of hearing aids, listening experiences, or bilateral use (in the case of lyrics). These results have implications for counseling of CI recipients with regard to realistic expectations and strategies for enhancing music perception and enjoyment. PMID:20085197
Kanaan, M Z; Lorenzi, A R; Thampy, N; Pandit, R; Dayan, Margaret
2017-12-01
A 75-year-old hypertensive female with stable idiopathic intermediate uveitis presented with bilateral sequential optic neuropathy with optic disc swelling. The optic neuropathy in the first affected eye (right) was thought to be due to non-arteritic anterior ischaemic optic neuropathy (NAION). Asymptomatic left optic disc swelling was found at routine review 2 months later, and a diagnosis of giant cell arteritis (GCA) was sought. Temporal artery duplex ultrasound showed the "halo sign," but a subsequent temporal artery biopsy showed light-chain (AL) amyloidosis with no signs of giant cell arteritis. In this case, bilateral sequential ischaemic optic neuropathy mimicking non-arteritic anterior ischaemic optic neuropathy was the presenting sign of systemic amyloidosis involving the temporal arteries.
Henkin, Yael; Kishon-Rabin, Liat; Tatin-Schneider, Simona; Urbach, Doron; Hildesheimer, Minka; Kileny, Paul R
2004-12-01
The current preliminary report describes the utilization of low-resolution electromagnetic tomography (LORETA) in a small group of highly performing children using the Nucleus 22 cochlear implant (CI) and in normal-hearing (NH) adults. LORETA current density estimations were performed on an averaged target P3 component that was elicited by non-speech and speech oddball discrimination tasks. The results indicated that, when stimulated with tones, patients with right implants and NH adults (regardless of stimulated ear) showed enhanced activation in the right temporal lobe, whereas patients with left implants showed enhanced activation in the left temporal lobe. When stimulated with speech, patients with right implants showed bilateral activation of the temporal and frontal lobes, whereas patients with left implants showed only left temporal lobe activation. NH adults (regardless of stimulated ear) showed enhanced bilateral activation of the temporal and parietal lobes. The differences in activation patterns between patients with CI and NH subjects may be attributed to the long-term exposure to degraded input conditions which may have resulted in reorganization in terms of functional specialization. The difference between patients with right versus left implants, however, is intriguing and requires further investigation.
Discrimination between sequential and simultaneous virtual channels with electrical hearing
Landsberger, David; Galvin, John J.
2011-01-01
In cochlear implants (CIs), simultaneous or sequential stimulation of adjacent electrodes can produce intermediate pitch percepts between those of the component electrodes. However, it is unclear whether simultaneous and sequential virtual channels (VCs) can be discriminated. In this study, CI users were asked to discriminate simultaneous and sequential VCs; discrimination was measured for monopolar (MP) and bipolar + 1 stimulation (BP + 1), i.e., relatively broad and focused stimulation modes. For sequential VCs, the interpulse interval (IPI) varied between 0.0 and 1.8 ms. All stimuli were presented at comfortably loud, loudness-balanced levels at a 250 pulse per second per electrode (ppse) stimulation rate. On average, CI subjects were able to reliably discriminate between sequential and simultaneous VCs. While there was no significant effect of IPI or stimulation mode on VC discrimination, some subjects exhibited better VC discrimination with BP + 1 stimulation. Subjects’ discrimination between sequential and simultaneous VCs was correlated with electrode discrimination, suggesting that spatial selectivity may influence perception of sequential VCs. To maintain equal loudness, sequential VC amplitudes were nearly double those of simultaneous VCs, presumably resulting in a broader spread of excitation. These results suggest that perceptual differences between simultaneous and sequential VCs might be explained by differences in the spread of excitation. PMID:21895094
Discrimination between sequential and simultaneous virtual channels with electrical hearing.
Landsberger, David; Galvin, John J
2011-09-01
In cochlear implants (CIs), simultaneous or sequential stimulation of adjacent electrodes can produce intermediate pitch percepts between those of the component electrodes. However, it is unclear whether simultaneous and sequential virtual channels (VCs) can be discriminated. In this study, CI users were asked to discriminate simultaneous and sequential VCs; discrimination was measured for monopolar (MP) and bipolar + 1 stimulation (BP + 1), i.e., relatively broad and focused stimulation modes. For sequential VCs, the interpulse interval (IPI) varied between 0.0 and 1.8 ms. All stimuli were presented at comfortably loud, loudness-balanced levels at a 250 pulse per second per electrode (ppse) stimulation rate. On average, CI subjects were able to reliably discriminate between sequential and simultaneous VCs. While there was no significant effect of IPI or stimulation mode on VC discrimination, some subjects exhibited better VC discrimination with BP + 1 stimulation. Subjects' discrimination between sequential and simultaneous VCs was correlated with electrode discrimination, suggesting that spatial selectivity may influence perception of sequential VCs. To maintain equal loudness, sequential VC amplitudes were nearly double those of simultaneous VCs, presumably resulting in a broader spread of excitation. These results suggest that perceptual differences between simultaneous and sequential VCs might be explained by differences in the spread of excitation. © 2011 Acoustical Society of America
Ichikawa, Kazunori; Kashio, Akinori; Mori, Harushi; Ochi, Atushi; Karino, Shotaro; Sakamoto, Takashi; Kakigi, Akinobu; Yamasoba, Tatsuya
2014-04-01
To develop a new method to determine the presence of intracochlear ossification and/or fibrosis in cochlear implantation candidates with bilateral profound deafness following meningitis. Diagnostic test assessment. A university hospital. This study involved 15 ears from 13 patients with profound deafness following meningitis who underwent cochlear implantation. These ears showed normal structures, soft tissue, partial bony occlusion, and complete bony occlusion in 4, 3, 2, and 6 ears, respectively. We measured radiodensity in Hounsfield units (HU) using 0.5-mm-thick axial high-resolution computed tomography image slices at 3 different levels in the basal turn, the fenestration, and inferior and ascending segment sites, located along the electrode-insertion path. Pixel-level analysis on the DICOM viewer yielded actual computed tomography values of intracochlear soft tissues by eliminating the partial volume effect. The values were compared with the intraoperative findings. Values for ossification (n = 12) ranged from +547 HU to +1137 HU; for fibrosis (n = 11), from +154 HU to +574 HU; and for fluid (n = 22), from -49 HU to +255 HU. From these values, we developed 2 presets of window width (WW) and window level (WL): (1) WW: 1800, WL: 1100 (200 HU to 2000 HU) and (2) WW: 1500, WL: 1250 (500 HU to 2000 HU). The results using these 2 presets corresponded well to the intraoperative findings. Our new method is easy and feasible for preoperative determination of the presence of cochlear ossification and/or fibrosis that develops following meningitis.
Silva, Liliane Aparecida Fagundes; Couto, Maria Inês Vieira; Tsuji, Robinson Koji; Bento, Ricardo Ferreira; de Carvalho, Ana Claudia Martinho; Matas, Carla Gentile
2015-01-01
The purpose of this study was to longitudinally assess the behavioral and electrophysiological hearing changes of a girl inserted in a CI program, who had bilateral profound sensorineural hearing loss and underwent surgery of cochlear implantation with electrode activation at 21 months of age. She was evaluated using the P1 component of Long Latency Auditory Evoked Potential (LLAEP); speech perception tests of the Glendonald Auditory Screening Procedure (GASP); Infant Toddler Meaningful Auditory Integration Scale (IT-MAIS); and Meaningful Use of Speech Scales (MUSS). The study was conducted prior to activation and after three, nine, and 18 months of cochlear implant activation. The results of the LLAEP were compared with data from a hearing child matched by gender and chronological age. The results of the LLAEP of the child with cochlear implant showed gradual decrease in latency of the P1 component after auditory stimulation (172 ms–134 ms). In the GASP, IT-MAIS, and MUSS, gradual development of listening skills and oral language was observed. The values of the LLAEP of the hearing child were expected for chronological age (132 ms–128 ms). The use of different clinical instruments allow a better understanding of the auditory habilitation and rehabilitation process via CI. PMID:26881163
Leigh, Jaime R; Dettman, Shani J; Dowell, Richard C
2016-01-01
Establish up-to-date evidence-based guidelines for recommending cochlear implantation for young children. Speech perception results for early-implanted children were compared to children using traditional amplification. Equivalent pure-tone average (PTA) hearing loss for cochlear implant (CI) users was established. Language of early-implanted children was assessed over six years and compared to hearing peers. Seventy-eight children using CIs and 62 children using traditional amplification with hearing losses ranging 25-120 dB HL PTA (speech perception study). Thirty-two children who received a CI before 2.5 years of age (language study). Speech perception outcomes suggested that children with a PTA greater than 60 dB HL have a 75% chance of benefit over traditional amplification. More conservative criteria applied to the data suggested that children with PTA greater than 82 dB HL have a 95% chance of benefit. Children implanted under 2.5 years with no significant cognitive deficits made normal language progress but retained a delay approximately equal to their age at implantation. Hearing-impaired children under three years of age may benefit from cochlear implantation if their PTA exceeds 60 dB HL bilaterally. Implantation as young as possible should minimize any language delay resulting from an initial period of auditory deprivation.
Lohuis, P J; Börjesson, P K; Klis, S F; Smoorenburg, G F
2000-05-01
Circulating adrenal hormones affect strial function. Removal of endogenous levels of adrenal steroids by bilateral adrenalectomy (ADX) in rats causes a decrease of Na(+)/K(+)-ATPase activity in the cochlear lateral wall [Rarey et al., 1989. Arch. Otolaryngol. Head Neck Surg. 115, 817-821] and a decrease of the volume of the marginal cells in the stria vascularis [Lohuis et al., 1990. Acta Otolaryngol. (Stockh.) 110, 348-356]. To study further the effect of absence of circulating adrenocorticosteroids on cochlear function, 18 male Long Evans rats underwent either an ADX or a SHAM operation. Electrocochleography was performed 1 week after surgery for tone bursts in a frequency range of 1-16 kHz. Thereafter, the cochleas were harvested and examined histologically. No significant changes in the amplitude growth curves of the summating potential (SP), the compound action potential (CAP) and the cochlear microphonics (CM) were detected after ADX. However, visually, there appeared to be a decrease of endolymphatic volume (tentatively called imdrops). Reissner's membrane (RM) extended less into scala vestibuli in ADX animals than in SHAM-operated animals. The ratio between the length of RM and the straight distance between the medial and lateral attachment points of RM were used as an objective measure to quantify this effect in each sub-apical half turn of the cochlea. The decrease in length of RM was statistically significant. Thus, circulating adrenal hormones appear to be necessary for normal cochlear fluid homeostasis. Absence of one or more of these hormones leads to shrinkage of the scala media (imdrops). However, the absence of adrenal hormones does not affect the gross cochlear potentials. Apparently, the cochlea is capable of compensating for the absence of circulating adrenal hormones to sustain the conditions necessary for proper cochlear transduction.
The Impact of Cochlear Implant in the Oral Language of Children with Congenital Deafness.
Ramos, Daniela; Jorge, João Xavier; Teixeira, António; Ribeiro, Carlos; Paiva, António
2015-01-01
Children with severe to profound sensorineural deafness can acquire vocabulary and syntactic structures to communicate by oral language, after cochlear implant. Identify the linguistic skills of children with cochlear implant. Eighteen children of both gender, between 9 and 10 years, with congenital bilateral deafness, using cochlear implant, were studied. The evaluation instrument used was Observation Chart of Language-School Level. The results were compared with standard of normal-hearing children with the same hearing age. The scores registered in the linguistics structures studied, comparing implanted children and standard, was: phonology, 29.44 ± 8.4 vs. 29.68 ± 5.90, p = 0.91; semantics, 18.55 ± 8.89 vs. 19.20 ± 4.85, p = 0.76; morpho-syntax 21.89 ± 12.85 vs. 26.35 ± 10.36, p = 0.159. Regarding the tests of semantics, there was no significant difference. Concerning the tests of morpho-syntactic structure, the difference was significant in the derivation of words, 2.83 ± 2.81 vs. 4.65 ± 1.64, p = 0.014. In the phonology, a significant difference was found comparing implanted children and standard, in the discrimination of pseudo words, 6.6 ± 2.8 vs. 8.37 ± 2.32, p = 0.023. However, in syllabic segmentation, implanted children had a mean score 8.56 ± 1.6 significantly higher than standard, 5.9 ± 1.58, p < 0.001. The similarity of the scores obtained by children with cochlear implants with the standard, in the language components studied confirms that cochlear implant promotes the development of oral verbal language in children with congenital deafness. Implanted children had acquired language skills similar to normal-hearing children with the same hearing age.
Cozma, Romică Sebastian; Dima-Cozma, Lucia Corina; Rădulescu, Luminiţa Mihaela; Hera, Maria Cristina; Mârţu, Cristian; Olariu, Raluca; Cobzeanu, Bogdan Mihail; Bitere, Oana Roxana; Cobzeanu, Mihail Dan
2018-01-01
Patients with hearing loss who underwent cochlear implantation can present symptomatic or asymptomatic vestibular damages earlier or later after the surgery. The vestibular permanent lesions could be acute, produced by surgical trauma or could be progressive due to local morphological changes made by the presence of the portelectrode in the inner ear (fibrosis related, ossification, basilar membrane distortion, endolymphatic hydrops). Besides histopathological findings in inner ear of cochlear implanted patients, the vestibular permanent damages could be found by assessment of clinical vestibular status. This study reports the sensorial vestibular functional findings for adults in cochlear implanted ears related to the electrode insertion type (cochleostomy or round window approach) and comparing to non-implanted deaf ears. A total of 20 adult patients with 32 cochlear implanted ears (12 patients with binaural cochlear implant and eight with monoaural) were selected for postoperatory vestibular examination by cervical and ocular vestibular myogenic potentials and vestibular caloric tests. The same tests were made for a control group of 22 non-implanted deaf ears. Functional testing results were reported related to the electrode insertion approach. For the cochleostomy group, we found different deficits: in 40% for saccular function, 44% for utricular function, and 12% horizontal canal dysfunction. In round window group, the deficit was present in 14.29% for saccular function, 28.57% for utricular function, and 28.58% for horizontal canal. In 46.88% of implanted ears, the vestibular function was completely preserved on all tested sensors. In conclusion, the vestibular functional status after inner ear surgery presents sensorial damages in 53.12% ears compare with the vestibular dysfunction existing in 50% of deaf non-operated ears. Round window insertion allows for better conservation of the vestibular function.
Audiological outcomes of cochlear implantation in Waardenburg Syndrome
Magalhães, Ana Tereza de Matos; Samuel, Paola Angélica; Goffi-Gomez, Maria Valeria Schimdt; Tsuji, Robinson Koji; Brito, Rubens; Bento, Ricardo Ferreira
2013-01-01
Summary Introduction: The most relevant clinical symptom in Waardenburg syndrome is profound bilateral sensorioneural hearing loss. Aim: To characterize and describe hearing outcomes after cochlear implantation in patients with Waardenburg syndrome to improve preoperative expectations. Method: This was an observational and retrospective study of a series of cases. Children who were diagnosed with Waardenburg syndrome and who received a multichannel cochlear implant between March 1999 and July 2012 were included in the study. Intraoperative neural response telemetry, hearing evaluation, speech perception, and speech production data before and after surgery were assessed. Results: During this period, 806 patients received a cochlear implant and 10 of these (1.2%) were diagnosed with Waardenburg syndrome. Eight of the children received a Nucleus 24® implant and 1 child and 1 adult received a DigiSonic SP implant. The mean age at implantation was 44 months among the children. The average duration of use of a cochlear implant at the time of the study was 43 months. Intraoperative neural responses were present in all cases. Patients who could use the speech processor effectively had a pure tone average of 31 dB in free-field conditions. In addition, the MUSS and MAIS questionnaires revealed improvements in speech perception and production. Four patients did not have a good outcome, which might have been associated with ineffective use of the speech processor. Conclusion: Despite the heterogeneity of the group, patients with Waardenburg syndrome who received cochlear implants were found to have hearing thresholds that allowed access to speech sounds. However, patients who received early intervention and rehabilitation showed better evolution of auditory perception. PMID:25992025
Sequential stream segregation in normally-hearing and cochlear-implant listenersa)
Tejani, Viral D.; Schvartz-Leyzac, Kara C.; Chatterjee, Monita
2017-01-01
Sequential stream segregation by normal hearing (NH) and cochlear implant (CI) listeners was investigated using an irregular rhythm detection (IRD) task. Pure tones and narrowband noises of different bandwidths were presented monaurally to older and younger NH listeners via headphones. For CI users, stimuli were delivered as pure tones via soundfield and via direct electrical stimulation. Results confirmed that tonal pitch is not essential for stream segregation by NH listeners and that aging does not reduce NH listeners' stream segregation. CI listeners' stream segregation was significantly poorer than NH listeners' with pure tone stimuli. With direct stimulation, however, CI listeners showed significantly stronger stream segregation, with a mean normalized pattern similar to NH listeners, implying that the CI speech processors possibly degraded acoustic cues. CI listeners' performance on an electrode discrimination task indicated that cues that are salient enough to make two electrodes highly discriminable may not be sufficiently salient for stream segregation, and that gap detection/discrimination, which must depend on perceptual electrode differences, did not play a role in the IRD task. Although the IRD task does not encompass all aspects of full stream segregation, these results suggest that some CI listeners may demonstrate aspects of stream segregation. PMID:28147600
Salt, A N; Gill, R M; Hartsock, J J
2015-06-01
Understanding how drugs are distributed in perilymph following local applications is important as local drug therapies are increasingly used to treat disorders of the inner ear. The potential contribution of cerebrospinal fluid (CSF) entry to perilymph homeostasis has been controversial for over half a century, largely due to artifactual contamination of collected perilymph samples with CSF. Measures of perilymph flow and of drug distribution following round window niche applications have both suggested a slow, apically directed flow occurs along scala tympani (ST) in the normal, sealed cochlea. In the present study, we have used fluorescein isothiocyanate-dextran as a marker to study perilymph kinetics in guinea pigs. Dextran is lost from perilymph more slowly than other substances so far quantified. Dextran solutions were injected from pipettes sealed into the lateral semicircular canal (SCC), the cochlear apex, or the basal turn of ST. After varying delays, sequential perilymph samples were taken from the cochlear apex or lateral SCC, allowing dextran distribution along the perilymphatic spaces to be quantified. Variability was low and findings were consistent with the injection procedure driving volume flow towards the cochlear aqueduct, and with volume flow during perilymph sampling driven by CSF entry at the aqueduct. The decline of dextran with time in the period between injection and sampling was consistent with both a slow volume influx of CSF (~30 nL/min) entering the basal turn of ST at the cochlear aqueduct and a CSF-perilymph exchange driven by pressure-driven fluid oscillation across the cochlear aqueduct. Sample data also allowed contributions of other processes, such as communications with adjacent compartments, to be quantified. The study demonstrates that drug kinetics in the basal turn of ST is complex and is influenced by a considerable number of interacting processes.
Bilateral versus unilateral cochlear implants in children: a study of spoken language outcomes.
Sarant, Julia; Harris, David; Bennet, Lisa; Bant, Sharyn
2014-01-01
Although it has been established that bilateral cochlear implants (CIs) offer additional speech perception and localization benefits to many children with severe to profound hearing loss, whether these improved perceptual abilities facilitate significantly better language development has not yet been clearly established. The aims of this study were to compare language abilities of children having unilateral and bilateral CIs to quantify the rate of any improvement in language attributable to bilateral CIs and to document other predictors of language development in children with CIs. The receptive vocabulary and language development of 91 children was assessed when they were aged either 5 or 8 years old by using the Peabody Picture Vocabulary Test (fourth edition), and either the Preschool Language Scales (fourth edition) or the Clinical Evaluation of Language Fundamentals (fourth edition), respectively. Cognitive ability, parent involvement in children's intervention or education programs, and family reading habits were also evaluated. Language outcomes were examined by using linear regression analyses. The influence of elements of parenting style, child characteristics, and family background as predictors of outcomes were examined. Children using bilateral CIs achieved significantly better vocabulary outcomes and significantly higher scores on the Core and Expressive Language subscales of the Clinical Evaluation of Language Fundamentals (fourth edition) than did comparable children with unilateral CIs. Scores on the Preschool Language Scales (fourth edition) did not differ significantly between children with unilateral and bilateral CIs. Bilateral CI use was found to predict significantly faster rates of vocabulary and language development than unilateral CI use; the magnitude of this effect was moderated by child age at activation of the bilateral CI. In terms of parenting style, high levels of parental involvement, low amounts of screen time, and more time spent by adults reading to children facilitated significantly better vocabulary and language outcomes. In terms of child characteristics, higher cognitive ability and female sex were predictive of significantly better language outcomes. When family background factors were examined, having tertiary-educated primary caregivers and a family history of hearing loss were significantly predictive of better outcomes. Birth order was also found to have a significant negative effect on both vocabulary and language outcomes, with each older sibling predicting a 5 to 10% decrease in scores. Children with bilateral CIs achieved significantly better vocabulary outcomes, and 8-year-old children with bilateral CIs had significantly better language outcomes than did children with unilateral CIs. These improvements were moderated by children's ages at both first and second CIs. The outcomes were also significantly predicted by a number of factors related to parenting, child characteristics, and family background. Fifty-one percent of the variance in vocabulary outcomes and between 59 to 69% of the variance in language outcomes was predicted by the regression models.
Orendorz-Fraczkowska, Krystyna; Jaworska, Marzena; Gawron, Wojciech; Badowski, Roman; Nadolska, Beata
2007-01-01
Symptoms encompassing sensorineural hearing loss, tinnitus and vertigo occur in many diseases of various origin. The diagnostics in such cases is especially difficult and often requires interdisciplinary cooperation. Despite of that many cases remain unexplained. The two cases with above mentioned symptoms (52 year-old woman and 46 year-old man) with differentiated clinical course were presented. The woman for one year experienced left sided, extreme tinnitus with paroxysmal vertigo and dizziness. The man with sudden monolateral hearing loss and tinnitus that disappeared after corticosteroid therapy, complained about recurrence of fluctuating hearing loss and tinnitus accompanied by chronic instability. The diagnostics of hearing and balance organs was performed (pure tone audiometry, impedance audiometry, DPOAE, ABR, ENG) complemented with computed tomography and Nuclear Resonance. Female patient presented bilateral mild sensorineural hearing loss, more intensive on the left side, male patient right sided sensorineural hearing loss in the frequencies from 250 to 1500 Hz. The elongation of some peak values in ABR test (with bilaterally proper otoacoustic emissions) as well as partial canal paresis on the hearing loss side suggested primary diagnosis of neoplasmatic process. It was an indication to perform radiological diagnostics. The radiologic findings revealed the contact of vestibulo-cochlear nerve with the loop of cerebellar inferior anterior artery within the internal acoustic canal. The course of the disease and diagnostic tests do not provide characteristic data that let diagnose neuro-vascular conflict. One has to be aware of such possibility in patients with intensive vertigo and dizziness that do not improve after treatment when other causes do not justify the symptoms.
A speech processing study using an acoustic model of a multiple-channel cochlear implant
NASA Astrophysics Data System (ADS)
Xu, Ying
1998-10-01
A cochlear implant is an electronic device designed to provide sound information for adults and children who have bilateral profound hearing loss. The task of representing speech signals as electrical stimuli is central to the design and performance of cochlear implants. Studies have shown that the current speech- processing strategies provide significant benefits to cochlear implant users. However, the evaluation and development of speech-processing strategies have been complicated by hardware limitations and large variability in user performance. To alleviate these problems, an acoustic model of a cochlear implant with the SPEAK strategy is implemented in this study, in which a set of acoustic stimuli whose psychophysical characteristics are as close as possible to those produced by a cochlear implant are presented on normal-hearing subjects. To test the effectiveness and feasibility of this acoustic model, a psychophysical experiment was conducted to match the performance of a normal-hearing listener using model- processed signals to that of a cochlear implant user. Good agreement was found between an implanted patient and an age-matched normal-hearing subject in a dynamic signal discrimination experiment, indicating that this acoustic model is a reasonably good approximation of a cochlear implant with the SPEAK strategy. The acoustic model was then used to examine the potential of the SPEAK strategy in terms of its temporal and frequency encoding of speech. It was hypothesized that better temporal and frequency encoding of speech can be accomplished by higher stimulation rates and a larger number of activated channels. Vowel and consonant recognition tests were conducted on normal-hearing subjects using speech tokens processed by the acoustic model, with different combinations of stimulation rate and number of activated channels. The results showed that vowel recognition was best at 600 pps and 8 activated channels, but further increases in stimulation rate and channel numbers were not beneficial. Manipulations of stimulation rate and number of activated channels did not appreciably affect consonant recognition. These results suggest that overall speech performance may improve by appropriately increasing stimulation rate and number of activated channels. Future revision of this acoustic model is necessary to provide more accurate amplitude representation of speech.
Direct recordings from the auditory cortex in a cochlear implant user.
Nourski, Kirill V; Etler, Christine P; Brugge, John F; Oya, Hiroyuki; Kawasaki, Hiroto; Reale, Richard A; Abbas, Paul J; Brown, Carolyn J; Howard, Matthew A
2013-06-01
Electrical stimulation of the auditory nerve with a cochlear implant (CI) is the method of choice for treatment of severe-to-profound hearing loss. Understanding how the human auditory cortex responds to CI stimulation is important for advances in stimulation paradigms and rehabilitation strategies. In this study, auditory cortical responses to CI stimulation were recorded intracranially in a neurosurgical patient to examine directly the functional organization of the auditory cortex and compare the findings with those obtained in normal-hearing subjects. The subject was a bilateral CI user with a 20-year history of deafness and refractory epilepsy. As part of the epilepsy treatment, a subdural grid electrode was implanted over the left temporal lobe. Pure tones, click trains, sinusoidal amplitude-modulated noise, and speech were presented via the auxiliary input of the right CI speech processor. Additional experiments were conducted with bilateral CI stimulation. Auditory event-related changes in cortical activity, characterized by the averaged evoked potential and event-related band power, were localized to posterolateral superior temporal gyrus. Responses were stable across recording sessions and were abolished under general anesthesia. Response latency decreased and magnitude increased with increasing stimulus level. More apical intracochlear stimulation yielded the largest responses. Cortical evoked potentials were phase-locked to the temporal modulations of periodic stimuli and speech utterances. Bilateral electrical stimulation resulted in minimal artifact contamination. This study demonstrates the feasibility of intracranial electrophysiological recordings of responses to CI stimulation in a human subject, shows that cortical response properties may be similar to those obtained in normal-hearing individuals, and provides a basis for future comparisons with extracranial recordings.
Development of Sound Localization Strategies in Children with Bilateral Cochlear Implants
Zheng, Yi; Godar, Shelly P.; Litovsky, Ruth Y.
2015-01-01
Localizing sounds in our environment is one of the fundamental perceptual abilities that enable humans to communicate, and to remain safe. Because the acoustic cues necessary for computing source locations consist of differences between the two ears in signal intensity and arrival time, sound localization is fairly poor when a single ear is available. In adults who become deaf and are fitted with cochlear implants (CIs) sound localization is known to improve when bilateral CIs (BiCIs) are used compared to when a single CI is used. The aim of the present study was to investigate the emergence of spatial hearing sensitivity in children who use BiCIs, with a particular focus on the development of behavioral localization patterns when stimuli are presented in free-field horizontal acoustic space. A new analysis was implemented to quantify patterns observed in children for mapping acoustic space to a spatially relevant perceptual representation. Children with normal hearing were found to distribute their responses in a manner that demonstrated high spatial sensitivity. In contrast, children with BiCIs tended to classify sound source locations to the left and right; with increased bilateral hearing experience, they developed a perceptual map of space that was better aligned with the acoustic space. The results indicate experience-dependent refinement of spatial hearing skills in children with CIs. Localization strategies appear to undergo transitions from sound source categorization strategies to more fine-grained location identification strategies. This may provide evidence for neural plasticity, with implications for training of spatial hearing ability in CI users. PMID:26288142
Development of Sound Localization Strategies in Children with Bilateral Cochlear Implants.
Zheng, Yi; Godar, Shelly P; Litovsky, Ruth Y
2015-01-01
Localizing sounds in our environment is one of the fundamental perceptual abilities that enable humans to communicate, and to remain safe. Because the acoustic cues necessary for computing source locations consist of differences between the two ears in signal intensity and arrival time, sound localization is fairly poor when a single ear is available. In adults who become deaf and are fitted with cochlear implants (CIs) sound localization is known to improve when bilateral CIs (BiCIs) are used compared to when a single CI is used. The aim of the present study was to investigate the emergence of spatial hearing sensitivity in children who use BiCIs, with a particular focus on the development of behavioral localization patterns when stimuli are presented in free-field horizontal acoustic space. A new analysis was implemented to quantify patterns observed in children for mapping acoustic space to a spatially relevant perceptual representation. Children with normal hearing were found to distribute their responses in a manner that demonstrated high spatial sensitivity. In contrast, children with BiCIs tended to classify sound source locations to the left and right; with increased bilateral hearing experience, they developed a perceptual map of space that was better aligned with the acoustic space. The results indicate experience-dependent refinement of spatial hearing skills in children with CIs. Localization strategies appear to undergo transitions from sound source categorization strategies to more fine-grained location identification strategies. This may provide evidence for neural plasticity, with implications for training of spatial hearing ability in CI users.
Gifford, René H.; Grantham, D. Wesley; Sheffield, Sterling W.; Davis, Timothy J.; Dwyer, Robert; Dorman, Michael F.
2014-01-01
The purpose of this study was to investigate horizontal plane localization and interaural time difference (ITD) thresholds for 14 adult cochlear implant recipients with hearing preservation in the implanted ear. Localization to broadband noise was assessed in an anechoic chamber with a 33-loudspeaker array extending from −90 to +90°. Three listening conditions were tested including bilateral hearing aids, bimodal (implant + contralateral hearing aid) and best aided (implant + bilateral hearing aids). ITD thresholds were assessed, under headphones, for low-frequency stimuli including a 250-Hz tone and bandpass noise (100–900 Hz). Localization, in overall rms error, was significantly poorer in the bimodal condition (mean: 60.2°) as compared to both bilateral hearing aids (mean: 46.1°) and the best-aided condition (mean: 43.4°). ITD thresholds were assessed for the same 14 adult implant recipients as well as 5 normal-hearing adults. ITD thresholds were highly variable across the implant recipients ranging from the range of normal to ITDs not present in real-world listening environments (range: 43 to over 1600 μs). ITD thresholds were significantly correlated with localization, the degree of interaural asymmetry in low-frequency hearing, and the degree of hearing preservation related benefit in the speech reception threshold (SRT). These data suggest that implant recipients with hearing preservation in the implanted ear have access to binaural cues and that the sensitivity to ITDs is significantly correlated with localization and degree of preserved hearing in the implanted ear. PMID:24607490
Gifford, René H; Grantham, D Wesley; Sheffield, Sterling W; Davis, Timothy J; Dwyer, Robert; Dorman, Michael F
2014-06-01
The purpose of this study was to investigate horizontal plane localization and interaural time difference (ITD) thresholds for 14 adult cochlear implant recipients with hearing preservation in the implanted ear. Localization to broadband noise was assessed in an anechoic chamber with a 33-loudspeaker array extending from -90 to +90°. Three listening conditions were tested including bilateral hearing aids, bimodal (implant + contralateral hearing aid) and best aided (implant + bilateral hearing aids). ITD thresholds were assessed, under headphones, for low-frequency stimuli including a 250-Hz tone and bandpass noise (100-900 Hz). Localization, in overall rms error, was significantly poorer in the bimodal condition (mean: 60.2°) as compared to both bilateral hearing aids (mean: 46.1°) and the best-aided condition (mean: 43.4°). ITD thresholds were assessed for the same 14 adult implant recipients as well as 5 normal-hearing adults. ITD thresholds were highly variable across the implant recipients ranging from the range of normal to ITDs not present in real-world listening environments (range: 43 to over 1600 μs). ITD thresholds were significantly correlated with localization, the degree of interaural asymmetry in low-frequency hearing, and the degree of hearing preservation related benefit in the speech reception threshold (SRT). These data suggest that implant recipients with hearing preservation in the implanted ear have access to binaural cues and that the sensitivity to ITDs is significantly correlated with localization and degree of preserved hearing in the implanted ear. Copyright © 2014. Published by Elsevier B.V.
Sensitivity to binaural timing in bilateral cochlear implant users.
van Hoesel, Richard J M
2007-04-01
Various measures of binaural timing sensitivity were made in three bilateral cochlear implant users, who had demonstrated moderate-to-good interaural time delay (ITD) sensitivity at 100 pulses-per-second (pps). Overall, ITD thresholds increased at higher pulse rates, lower levels, and shorter durations, although intersubject differences were evident. Monaural rate-discrimination thresholds, using the same stimulation parameters, showed more substantial elevation than ITDs with increased rate. ITD sensitivity with 6000 pps stimuli, amplitude-modulated at 100 Hz, was similar to that with unmodulated pulse trains at 100 pps, but at 200 and 300 Hz performance was poorer than with unmodulated signals. Measures of sensitivity to binaural beats with unmodulated pulse-trains showed that all three subjects could use time-varying ITD cues at 100 pps, but not 300 pps, even though static ITD sensitivity was relatively unaffected over that range. The difference between static and dynamic ITD thresholds is discussed in terms of relative contributions from initial and later arriving cues, which was further examined in an experiment using two-pulse stimuli as a function of interpulse separation. In agreement with the binaural-beat data, findings from that experiment showed poor discrimination of ITDs on the second pulse when the interval between pulses was reduced to a few milliseconds.
Goupell, Matthew J
2015-03-01
Bilateral cochlear implant (CI) listeners can perform binaural tasks, but they are typically worse than normal-hearing (NH) listeners. To understand why this difference occurs and the mechanisms involved in processing dynamic binaural differences, interaural envelope correlation change discrimination sensitivity was measured in real and simulated CI users. In experiment 1, 11 CI (eight late deafened, three early deafened) and eight NH listeners were tested in an envelope correlation change discrimination task. Just noticeable differences (JNDs) were best for a matched place-of-stimulation and increased for an increasing mismatch. In experiment 2, attempts at intracranially centering stimuli did not produce lower JNDs. In experiment 3, the percentage of correct identifications of antiphasic carrier pulse trains modulated by correlated envelopes was measured as a function of mismatch and pulse rate. Sensitivity decreased for increasing mismatch and increasing pulse rate. The experiments led to two conclusions. First, envelope correlation change discrimination necessitates place-of-stimulation matched inputs. However, it is unclear if previous experience with acoustic hearing is necessary for envelope correlation change discrimination. Second, NH listeners presented with CI simulations demonstrated better performance than real CI listeners. If the simulations are realistic representations of electrical stimuli, real CI listeners appear to have difficulty processing interaural information in modulated signals.
Binaural hearing in children using Gaussian enveloped and transposed tones.
Ehlers, Erica; Kan, Alan; Winn, Matthew B; Stoelb, Corey; Litovsky, Ruth Y
2016-04-01
Children who use bilateral cochlear implants (BiCIs) show significantly poorer sound localization skills than their normal hearing (NH) peers. This difference has been attributed, in part, to the fact that cochlear implants (CIs) do not faithfully transmit interaural time differences (ITDs) and interaural level differences (ILDs), which are known to be important cues for sound localization. Interestingly, little is known about binaural sensitivity in NH children, in particular, with stimuli that constrain acoustic cues in a manner representative of CI processing. In order to better understand and evaluate binaural hearing in children with BiCIs, the authors first undertook a study on binaural sensitivity in NH children ages 8-10, and in adults. Experiments evaluated sound discrimination and lateralization using ITD and ILD cues, for stimuli with robust envelope cues, but poor representation of temporal fine structure. Stimuli were spondaic words, Gaussian-enveloped tone pulse trains (100 pulse-per-second), and transposed tones. Results showed that discrimination thresholds in children were adult-like (15-389 μs for ITDs and 0.5-6.0 dB for ILDs). However, lateralization based on the same binaural cues showed higher variability than seen in adults. Results are discussed in the context of factors that may be responsible for poor representation of binaural cues in bilaterally implanted children.
Growing up with a cochlear implant: education, vocation, and affiliation.
Spencer, Linda J; Tomblin, J Bruce; Gantz, Bruce J
2012-01-01
The long-term educational/vocational, affiliation, and quality-of-life outcomes of the first and second cohorts of children with bilateral, profound hearing loss who received cochlear implants under a large National Institutes of Health-funded study was investigated in 41 of 61 eligible participants. Educational and vocational outcomes were collected from user survey data. Affiliation and quality-of-life data were collected from the Satisfaction-with-Life scale and the Deaf Identity Scale. Qualitative results indicated that compared with their hearing, adult-age peers, this group obtained high educational achievement, and they reported a very high satisfaction of life. With respect to forming an identity in these first 2 cohorts of cochlear implant users, we found that most of the individuals endorsed a dual identity, which indicates they feel just as comfortable with Deaf individuals as they do with hearing individuals. Quantitative results revealed a significant relationship between ability to hear and ability to speak, in addition to consistency of device use. Additional relationships were found between mother's and the individual's educational statuses, hearing scores, and communication system used. Younger individuals scored higher on satisfaction-with-life measures, and they also tended to endorse a dual identity more often. Taken together, these findings diminish concerns that profoundly deaf individuals growing up with cochlear implants will become culturally bereft and unable to function in the hearing world.
Surgical timing for bilateral simultaneous cochlear implants: When is best?
Franchella, Sebastiano; Bovo, Roberto; Bandolin, Luigia; Gheller, Flavia; Montino, Silvia; Borsetto, Daniele; Ghiselli, Sara; Martini, Alessandro
2018-06-01
Hearing loss is considered the most common congenital disease and the prevalence of neonatal deafness can be estimated between 1 and 2 cases per 1000 live births. Infant deafness must be diagnosed as early as possible and an effective therapeutic intervention needs to be carried out in order to avoid the serious consequences of hearing deprivation during the evolutionary period: alterations in the development of central auditory pathways and lack of language acquisition. The cochlear implant (CI) has proved to be the best instrument to solve the problem of auditory deprivation. In particular, the bilateral CI gives the patient access to binaural hearing which results in benefits in terms of sound localisation and discrimination. The optimal age of application of the CI is a widely discussed topic in the scientific community and the current guidelines indicate a period between 12 and 24 months of age, even though the supporters of the application before 12 months of age are nowadays increasing. The study is observational, retrospective, monocentric. 49 paediatric patients (<18 years) with simultaneous bilateral CIs were included. The audiometric threshold and speech tests were carried out during the follow-up 3, 6 and 12 months after the CIs activation and when the patient reached 2 years of age. The statistical analysis showed that undergoing bilateral implantation surgery before 2 years of age allows a satisfactory audiometric performance, while there are no particular benefits in performing the surgery before 1 year of age. As far as the speech outcome is concerned, the statistical analysis didn't show significant correlation between the earlier age of implantation and better speech performance if the operation is carried out before 2.5 years of age. The results of the study indicate that the optimal age to perform the simultaneous bilateral CIs surgery is between 12 and 24 months, without demonstrating any particular benefit in carrying out the procedure before 1 year of age. This may be clinically relevant in terms of avoiding the risks of diagnostic mistakes and reducing the related surgical risk in children under 1 year of age. Copyright © 2018. Published by Elsevier B.V.
Click-Evoked Auditory Efferent Activity: Rate and Level Effects.
Boothalingam, Sriram; Kurke, Julianne; Dhar, Sumitrajit
2018-05-07
There currently are no standardized protocols to evaluate auditory efferent function in humans. Typical tests use broadband noise to activate the efferents, but only test the contralateral efferent pathway, risk activating the middle ear muscle reflex (MEMR), and are laborious for clinical use. In an attempt to develop a clinical test of bilateral auditory efferent function, we have designed a method that uses clicks to evoke efferent activity, obtain click-evoked otoacoustic emissions (CEOAEs), and monitor MEMR. This allows for near-simultaneous estimation of cochlear and efferent function. In the present study, we manipulated click level (60, 70, and 80 dB peak-equivalent sound pressure level [peSPL]) and rate (40, 50, and 62.5 Hz) to identify an optimal rate-level combination that evokes measurable efferent modulation of CEOAEs. Our findings (n = 58) demonstrate that almost all click levels and rates used caused significant inhibition of CEOAEs, with a significant interaction between level and rate effects. Predictably, bilateral activation produced greater inhibition compared to stimulating the efferents only in the ipsilateral or contralateral ear. In examining the click rate-level effects during bilateral activation in greater detail, we observed a 1-dB inhibition of CEOAE level for each 10-dB increase in click level, with rate held constant at 62.5 Hz. Similarly, a 10-Hz increase in rate produced a 0.74-dB reduction in CEOAE level, with click level held constant at 80 dB peSPL. The effect size (Cohen's d) was small for either monaural condition and medium for bilateral, faster-rate, and higher-level conditions. We were also able to reliably extract CEOAEs from efferent eliciting clicks. We conclude that clicks can indeed be profitably employed to simultaneously evaluate cochlear health using CEOAEs as well as their efferent modulation. Furthermore, using bilateral clicks allows the evaluation of both the crossed and uncrossed elements of the auditory efferent nervous system, while yielding larger, more discernible, inhibition of the CEOAEs relative to either ipsilateral or contralateral condition.
Preserved Acoustic Hearing in Cochlear Implantation Improves Speech Perception
Sheffield, Sterling W.; Jahn, Kelly; Gifford, René H.
2015-01-01
Background With improved surgical techniques and electrode design, an increasing number of cochlear implant (CI) recipients have preserved acoustic hearing in the implanted ear, thereby resulting in bilateral acoustic hearing. There are currently no guidelines, however, for clinicians with respect to audio-metric criteria and the recommendation of amplification in the implanted ear. The acoustic bandwidth necessary to obtain speech perception benefit from acoustic hearing in the implanted ear is unknown. Additionally, it is important to determine if, and in which listening environments, acoustic hearing in both ears provides more benefit than hearing in just one ear, even with limited residual hearing. Purpose The purposes of this study were to (1) determine whether acoustic hearing in an ear with a CI provides as much speech perception benefit as an equivalent bandwidth of acoustic hearing in the non-implanted ear, and (2) determine whether acoustic hearing in both ears provides more benefit than hearing in just one ear. Research Design A repeated-measures, within-participant design was used to compare performance across listening conditions. Study Sample Seven adults with CIs and bilateral residual acoustic hearing (hearing preservation) were recruited for the study. Data Collection and Analysis Consonant-nucleus-consonant word recognition was tested in four conditions: CI alone, CI + acoustic hearing in the nonimplanted ear, CI + acoustic hearing in the implanted ear, and CI + bilateral acoustic hearing. A series of low-pass filters were used to examine the effects of acoustic bandwidth through an insert earphone with amplification. Benefit was defined as the difference among conditions. The benefit of bilateral acoustic hearing was tested in both diffuse and single-source background noise. Results were analyzed using repeated-measures analysis of variance. Results Similar benefit was obtained for equivalent acoustic frequency bandwidth in either ear. Acoustic hearing in the nonimplanted ear provided more benefit than the implanted ear only in the wideband condition, most likely because of better audiometric thresholds (>500 Hz) in the nonimplanted ear. Bilateral acoustic hearing provided more benefit than unilateral hearing in either ear alone, but only in diffuse background noise. Conclusions Results support use of amplification in the implanted ear if residual hearing is present. The benefit of bilateral acoustic hearing (hearing preservation) should not be tested in quiet or with spatially coincident speech and noise, but rather in spatially separated speech and noise (e.g., diffuse background noise). PMID:25690775
Chen, Joshua Kuang-Chao; Chuang, Ann Yi-Chiun; McMahon, Catherine; Tung, Tao-Hsin; Li, Lieber Po-Hung
2014-09-01
Bimodal stimulation (BMS) has been shown to be beneficial for the performance of pitch ranking in postlingually deafened adults. However, the contribution of nonimplanted ears to pitch perception with respect to duration of hearing aid (HAs) use for prelingually cochlear implantees remained unclear. This study aimed to investigate whether experiences/duration of HAs use in the nonimplanted ear improved pitch perception ability in this population of subjects. Twenty-nine children with congenital/prelingual deafness of profound degree were studied. Test stimuli consisted of 2 sequential piano tones, ranging from C (256 Hz) to B (495 Hz). Children were asked to identify the pitch relationship between the 2 tones (i.e., same, higher, or lower). Duration of HAs use was the major factor related to the correct rate for pitch perception. Overall correct rate for pitch perception (O) could be best predicted by duration of HAs use (DuA) (O = 0.561XDuA, r = 0. 315, p = 0.002). Experiences of HAs use appear to improve pitch perception ability in prelingually cochlear implantees. This suggests that incorporation of HAs use early in life and through the postoperative rehabilitation program for prelingually deafened children with cochlear implants would be beneficial, although an association does not guarantee causality. A longitudinal study is needed to show whether improvement of music performance with duration of HAs use in these children is measurable using auditory evoked potentials.
A Challenge for Cochlear Implantation: Duplicated Internal Auditory Canal.
Binnetoğlu, Adem; Bağlam, Tekin; Sarı, Murat; Gündoğdu, Yavuz; Batman, Çağlar
2016-08-01
Duplication of the internal auditory canal is an uncommon, congenital malformation that can be associated with sensorineural hearing loss owing to aplasia/hypoplasia of the vestibulocochlear nerve. Only 14 such cases have been reported to date. We report the case of a 13-month-old girl with bilateral, congenital, sensorineural hearing loss caused by narrow, duplicated internal auditory canals and discuss the challenges encountered in the diagnosis and treatment of this condition.
Enhancing sequential time perception and storytelling ability of deaf and hard of hearing children.
Ingber, Sara; Eden, Sigal
2011-01-01
A 3-month intervention was conducted to enhance the sequential time perception and storytelling ability of young children with hearing loss. The children were trained to arrange pictorial episodes of temporal scripts and tell the stories they created. Participants (N = 34, aged 4-7 years) were divided into 2 groups based on whether their spoken-language gap was more or less than 1 year compared to age norms. They completed A. Kaufman and N. Kaufman's (1983) picture series subtest and Guralnik's (1982) storytelling test at pretest and posttest. Measures demonstrated significant improvement in sequential time and storytelling achievement postintervention. Three of the examined demographic variables revealed correlations: Participants with genetic etiology showed greater improvement in time sequencing and storytelling than participants with unknown etiology; early onset of treatment correlated with better achievement in time sequencing; cochlear implant users showed greater storytelling improvement than hearing aid users.
Wolfe, Jace; Schafer, Erin; Parkinson, Aaron; John, Andrew; Hudson, Mary; Wheeler, Julie; Mucci, Angie
2013-01-01
The objective of this study was to compare speech recognition in quiet and in noise for cochlear implant recipients using two different types of personal frequency modulation (FM) systems (directly coupled [direct auditory input] versus induction neckloop) with each of two sound processors (Cochlear Nucleus Freedom versus Cochlear Nucleus 5). Two different experiments were conducted within this study. In both these experiments, mixing of the FM signal within the Freedom processor was implemented via the same scheme used clinically for the Freedom sound processor. In Experiment 1, the aforementioned comparisons were conducted with the Nucleus 5 programmed so that the microphone and FM signals were mixed and then the mixed signals were subjected to autosensitivity control (ASC). In Experiment 2, comparisons between the two FM systems and processors were conducted again with the Nucleus 5 programmed to provide a more complex multistage implementation of ASC during the preprocessing stage. This study was a within-subject, repeated-measures design. Subjects were recruited from the patient population at the Hearts for Hearing Foundation in Oklahoma City, OK. Fifteen subjects participated in Experiment 1, and 16 subjects participated in Experiment 2. Subjects were adults who had used either unilateral or bilateral cochlear implants for at least 1 year. In this experiment, no differences were found in speech recognition in quiet obtained with the two different FM systems or the various sound-processor conditions. With each sound processor, speech recognition in noise was better with the directly coupled direct auditory input system relative to the neckloop system. The multistage ASC processing of the Nucleus 5 sound processor provided better performance than the single-stage approach for the Nucleus 5 and the Nucleus Freedom sound processor. Speech recognition in noise is substantially affected by the type of sound processor, FM system, and implementation of ASC used by a Cochlear implant recipient.
Bilateral Versus Unilateral Cochlear Implants in Children: A Study of Spoken Language Outcomes
Harris, David; Bennet, Lisa; Bant, Sharyn
2014-01-01
Objectives: Although it has been established that bilateral cochlear implants (CIs) offer additional speech perception and localization benefits to many children with severe to profound hearing loss, whether these improved perceptual abilities facilitate significantly better language development has not yet been clearly established. The aims of this study were to compare language abilities of children having unilateral and bilateral CIs to quantify the rate of any improvement in language attributable to bilateral CIs and to document other predictors of language development in children with CIs. Design: The receptive vocabulary and language development of 91 children was assessed when they were aged either 5 or 8 years old by using the Peabody Picture Vocabulary Test (fourth edition), and either the Preschool Language Scales (fourth edition) or the Clinical Evaluation of Language Fundamentals (fourth edition), respectively. Cognitive ability, parent involvement in children’s intervention or education programs, and family reading habits were also evaluated. Language outcomes were examined by using linear regression analyses. The influence of elements of parenting style, child characteristics, and family background as predictors of outcomes were examined. Results: Children using bilateral CIs achieved significantly better vocabulary outcomes and significantly higher scores on the Core and Expressive Language subscales of the Clinical Evaluation of Language Fundamentals (fourth edition) than did comparable children with unilateral CIs. Scores on the Preschool Language Scales (fourth edition) did not differ significantly between children with unilateral and bilateral CIs. Bilateral CI use was found to predict significantly faster rates of vocabulary and language development than unilateral CI use; the magnitude of this effect was moderated by child age at activation of the bilateral CI. In terms of parenting style, high levels of parental involvement, low amounts of screen time, and more time spent by adults reading to children facilitated significantly better vocabulary and language outcomes. In terms of child characteristics, higher cognitive ability and female sex were predictive of significantly better language outcomes. When family background factors were examined, having tertiary-educated primary caregivers and a family history of hearing loss were significantly predictive of better outcomes. Birth order was also found to have a significant negative effect on both vocabulary and language outcomes, with each older sibling predicting a 5 to 10% decrease in scores. Conclusions: Children with bilateral CIs achieved significantly better vocabulary outcomes, and 8-year-old children with bilateral CIs had significantly better language outcomes than did children with unilateral CIs. These improvements were moderated by children’s ages at both first and second CIs. The outcomes were also significantly predicted by a number of factors related to parenting, child characteristics, and family background. Fifty-one percent of the variance in vocabulary outcomes and between 59 to 69% of the variance in language outcomes was predicted by the regression models. PMID:24557003
Ganesh, Sri; Brar, Sheetal; Sreenath, Rohit
2017-01-01
Purpose: The purpose of this study is to evaluate the safety and benefits of immediate sequential bilateral cataract surgery. Patients and Methods: Retrospective data analysis of patients who underwent immediate sequential bilateral phacoemulsification with foldable intraocular lens (IOL) implantation under topical anesthesia from January 2011 to September 2016 was performed. Patients with visually significant bilateral cataract within the axial length range of 21.0–26.5 mm were included in the study. Intraoperative and postoperative complications were evaluated. Results: Two thousand four hundred and seventy eyes from 1235 patients with a mean age of 68.34 years (range: 4–90 years) were analyzed. Best-corrected visual acuity improved from 0.40 ± 0.17 to 0.08 ± 0.10 (logarithm of the minimum angle of resolution). Nearly 92.05% eyes achieved a target postoperative refraction of ± 0.5 D spherical equivalent. Main complications observed were prolonged postoperative inflammation in 25% (n = 31), posterior capsular tears in 0.45% (n = 11), and unilateral cystoid macular edema in 0.08% (n = 2) eyes. No sight-threatening complications such as endophthalmitis, retinal detachment, corneal decompensation and intraocular hemorrhage occurred in any of the eyes. Out of the 288 (23.2%) patients who underwent bilateral multifocal IOL implantation, 23 patients (46 eyes) had femtolaser-assisted cataract surgery procedure. Two pediatric and one Downs syndrome patient underwent bilateral cataract surgery under general anesthesia and intravenous sedation, respectively. Conclusion: IBSCS may be considered as a preferred practice in eligible cases considering significant patient benefits such as early visual rehabilitation, time and cost-effectiveness, and better compliance with postoperative medications. In debilitated patients and special situations, such as pediatric cataract and Downs syndrome requiring general anesthesia it may be the ideal procedure. PMID:28573990
Zeitler, Daniel M; Dorman, Michael F; Natale, Sarah J; Loiselle, Louise; Yost, William A; Gifford, Rene H
2015-09-01
To assess improvements in sound source localization and speech understanding in complex listening environments after unilateral cochlear implantation for single-sided deafness (SSD). Nonrandomized, open, prospective case series. Tertiary referral center. Nine subjects with a unilateral cochlear implant (CI) for SSD (SSD-CI) were tested. Reference groups for the task of sound source localization included young (n = 45) and older (n = 12) normal-hearing (NH) subjects and 27 bilateral CI (BCI) subjects. Unilateral cochlear implantation. Sound source localization was tested with 13 loudspeakers in a 180 arc in front of the subject. Speech understanding was tested with the subject seated in an 8-loudspeaker sound system arrayed in a 360-degree pattern. Directionally appropriate noise, originally recorded in a restaurant, was played from each loudspeaker. Speech understanding in noise was tested using the Azbio sentence test and sound source localization quantified using root mean square error. All CI subjects showed poorer-than-normal sound source localization. SSD-CI subjects showed a bimodal distribution of scores: six subjects had scores near the mean of those obtained by BCI subjects, whereas three had scores just outside the 95th percentile of NH listeners. Speech understanding improved significantly in the restaurant environment when the signal was presented to the side of the CI. Cochlear implantation for SSD can offer improved speech understanding in complex listening environments and improved sound source localization in both children and adults. On tasks of sound source localization, SSD-CI patients typically perform as well as BCI patients and, in some cases, achieve scores at the upper boundary of normal performance.
Buechner, Andreas; Dyballa, Karl-Heinz; Hehrmann, Phillipp; Fredelake, Stefan; Lenarz, Thomas
2014-01-01
Objective To investigate the performance of monaural and binaural beamforming technology with an additional noise reduction algorithm, in cochlear implant recipients. Method This experimental study was conducted as a single subject repeated measures design within a large German cochlear implant centre. Twelve experienced users of an Advanced Bionics HiRes90K or CII implant with a Harmony speech processor were enrolled. The cochlear implant processor of each subject was connected to one of two bilaterally placed state-of-the-art hearing aids (Phonak Ambra) providing three alternative directional processing options: an omnidirectional setting, an adaptive monaural beamformer, and a binaural beamformer. A further noise reduction algorithm (ClearVoice) was applied to the signal on the cochlear implant processor itself. The speech signal was presented from 0° and speech shaped noise presented from loudspeakers placed at ±70°, ±135° and 180°. The Oldenburg sentence test was used to determine the signal-to-noise ratio at which subjects scored 50% correct. Results Both the adaptive and binaural beamformer were significantly better than the omnidirectional condition (5.3 dB±1.2 dB and 7.1 dB±1.6 dB (p<0.001) respectively). The best score was achieved with the binaural beamformer in combination with the ClearVoice noise reduction algorithm, with a significant improvement in SRT of 7.9 dB±2.4 dB (p<0.001) over the omnidirectional alone condition. Conclusions The study showed that the binaural beamformer implemented in the Phonak Ambra hearing aid could be used in conjunction with a Harmony speech processor to produce substantial average improvements in SRT of 7.1 dB. The monaural, adaptive beamformer provided an averaged SRT improvement of 5.3 dB. PMID:24755864
Noise-induced cochlear synaptopathy in rhesus monkeys (Macaca mulatta).
Valero, M D; Burton, J A; Hauser, S N; Hackett, T A; Ramachandran, R; Liberman, M C
2017-09-01
Cochlear synaptopathy can result from various insults, including acoustic trauma, aging, ototoxicity, or chronic conductive hearing loss. For example, moderate noise exposure in mice can destroy up to ∼50% of synapses between auditory nerve fibers (ANFs) and inner hair cells (IHCs) without affecting outer hair cells (OHCs) or thresholds, because the synaptopathy occurs first in high-threshold ANFs. However, the fiber loss likely impairs temporal processing and hearing-in-noise, a classic complaint of those with sensorineural hearing loss. Non-human primates appear to be less vulnerable to noise-induced hair-cell loss than rodents, but their susceptibility to synaptopathy has not been studied. Because establishing a non-human primate model may be important in the development of diagnostics and therapeutics, we examined cochlear innervation and the damaging effects of acoustic overexposure in young adult rhesus macaques. Anesthetized animals were exposed bilaterally to narrow-band noise centered at 2 kHz at various sound-pressure levels for 4 h. Cochlear function was assayed for up to 8 weeks following exposure via auditory brainstem responses (ABRs) and otoacoustic emissions (OAEs). A moderate loss of synaptic connections (mean of 12-27% in the basal half of the cochlea) followed temporary threshold shifts (TTS), despite minimal hair-cell loss. A dramatic loss of synapses (mean of 50-75% in the basal half of the cochlea) was seen on IHCs surviving noise exposures that produced permanent threshold shifts (PTS) and widespread hair-cell loss. Higher noise levels were required to produce PTS in macaques compared to rodents, suggesting that primates are less vulnerable to hair-cell loss. However, the phenomenon of noise-induced cochlear synaptopathy in primates is similar to that seen in rodents. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Jenny R; Yuen, Heng W; Shipp, David B; Stewart, Suzanne; Lin, Vincent Y W; Chen, Joseph M; Nedzelski, Julian M
2010-12-01
Evaluate the characteristics and outcomes of patients with autoimmune inner ear disease (AIED) who have undergone cochlear implantation (CI) and compare post-CI performance in AIED to matched controls. Retrospective case control study. Study cohort was comprised of 25 adult implantees (AIED [n = 18], Cogan syndrome [n = 7]). The AIED group was defined by rapidly progressive bilateral sensorineural hearing loss leading to unusable hearing within weeks to months. Patients with Cogan syndrome, the archetypal inner ear autoimmune disease, were also examined and used for within-cohort comparison. Clinical and operative records were reviewed. Post-CI performance was assessed using open-set sentence tests. Age- and sex-matched individuals deafened by other postlingual causes were used as controls. Of 25 patients, 24 had uneventful, full electrode insertions. One AIED patient had partial insertion due to cochlear ossification and did not achieve open-set speech perception post-CI. Mean open-set sentence scores for study patients with uneventful insertions were 92.8%, 97.3%, and 96.4% at 6 months, 1 year, and ≥ 2 years, respectively. Compared to matched controls, patients deafened by autoimmune causes had significantly higher post-CI performance at all postoperative test intervals (P < .05). There was no significant difference in postimplantation performance between Cogan syndrome and AIED patients. To our knowledge this was the largest study of cochlear implantation in AIED and Cogan syndrome patients. In our experience, both groups generally attained high levels of post-CI speech perception and performed above average. Cochlear ossification affecting implantation in Cogan syndrome patients was not observed in our series, contrary to some reports.
Vlastarakos, Petros V; Vasileiou, Alexandra; Nikolopoulos, Thomas P
2017-12-01
We conducted an analysis to assess the relative contribution of auditory brainstem response (ABR) testing and auditory steady-state response (ASSR) testing in providing appropriate hearing aid fitting in hearing-impaired children with difficult or unreliable behavioral audiometry. Of 150 infants and children who had been referred to us for hearing assessment as part of a neonatal hearing screening and cochlear implantation program, we identified 5 who exhibited significant discrepancies between click-ABR and ASSR testing results and difficult or unreliable behavioral audiometry. Hearing aid fitting in pediatric cochlear implant candidates for a trial period of 3 to 6 months is a common practice in many implant programs, but monitoring the progress of the amplified infants and providing appropriate hearing aid fitting can be challenging. If we accept the premise that we can assess the linguistic progress of amplified infants with an acceptable degree of certainty, the auditory behavior that we are monitoring presupposes appropriate bilateral hearing aid fitting. This may become very challenging in young children, or even in older children with difficult or unreliable behavioral audiometry results. This challenge can be addressed by using data from both ABR and ASSR testing. Fitting attempts that employ data from only ABR testing provide amplification that involves the range of spoken language but is not frequency-specific. Hearing aid fitting should also incorporate and take into account ASSR data because reliance on ABR testing alone might compromise the validity of the monitoring process. In conclusion, we believe that ASSR threshold-based bilateral hearing aid fitting is necessary to provide frequency-specific amplification of hearing and appropriate propulsion in the prelinguistic vocalizations of monitored infants.
Lawler, Marshall; Yu, Jeffrey; Aronoff, Justin M
Although speech perception is the gold standard for measuring cochlear implant (CI) users' performance, speech perception tests often require extensive adaptation to obtain accurate results, particularly after large changes in maps. Spectral ripple tests, which measure spectral resolution, are an alternate measure that has been shown to correlate with speech perception. A modified spectral ripple test, the spectral-temporally modulated ripple test (SMRT) has recently been developed, and the objective of this study was to compare speech perception and performance on the SMRT for a heterogeneous population of unilateral CI users, bilateral CI users, and bimodal users. Twenty-five CI users (eight using unilateral CIs, nine using bilateral CIs, and eight using a CI and a hearing aid) were tested on the Arizona Biomedical Institute Sentence Test (AzBio) with a +8 dB signal to noise ratio, and on the SMRT. All participants were tested with their clinical programs. There was a significant correlation between SMRT and AzBio performance. After a practice block, an improvement of one ripple per octave for SMRT corresponded to an improvement of 12.1% for AzBio. Additionally, there was no significant difference in slope or intercept between any of the CI populations. The results indicate that performance on the SMRT correlates with speech recognition in noise when measured across unilateral, bilateral, and bimodal CI populations. These results suggest that SMRT scores are strongly associated with speech recognition in noise ability in experienced CI users. Further studies should focus on increasing both the size and diversity of the tested participants, and on determining whether the SMRT technique can be used for early predictions of long-term speech scores, or for evaluating differences among different stimulation strategies or parameter settings.
Hoskison, Emma; Mitchell, Scott; Coulson, Chris
2017-07-01
Cochlear implantation (CI) has developed from its origins in the 1980s. Initially, CI was for profound bilateral hearing impairment. However, candidacy for CI have become more widespread in recent years with unilateral implantation and an emphasis on hearing preservation. Evidence supports full electrode insertion in an atraumatic fashion into the scala tympani (ST) provides optimal hearing outcomes. The main aim of this systematic review was to elucidate the degree of trauma associated with CI insertion. A systematic literature search was undertaken using PubMed Medline. A grading system described by Eshraghi was used to classify cochlear trauma. Both radiological and histological studies were included. Twenty one papers were identified which were relevant to our search. In total, 653 implants were inserted and 115 (17.6%) showed evidence of trauma. The cochleas with trauma had basilar membrane elevation in 5.2%, ruptured in 5.2%, the electrode passed from the ST to the SV in 84.4% and there was grade 4 trauma in 5.2%. The studies used a variety of histological and radiological methods to assess for evidence of trauma in both cadaveric temporal bones and live recipients. Minimizing cochlear trauma during implant insertion is important to preserve residual hearing and optimize audiological performance. An overall 17.6% trauma rate suggests that CI insertion could be improved with more accurate and consistent electrode insertion such as in the form of robotic guidance. The correlation of cochlea trauma with post-operative hearing has yet to be determined.
Fgf10 is required for specification of non-sensory regions of the cochlear epithelium
Urness, Lisa D.; Wang, Xiaofen; Shibata, Shumei; Ohyama, Takahiro; Mansour, Suzanne L.
2015-01-01
The vertebrate inner ear is a morphologically complex sensory organ comprised of two compartments, the dorsal vestibular apparatus and the ventral cochlear duct, required for motion and sound detection, respectively. Fgf10, in addition to Fgf3, is necessary for the earliest stage of otic placode induction, but continued expression of Fgf10 in the developing otic epithelium, including the prosensory domain and later in Kolliker’s organ, suggests additional roles for this gene during morphogenesis of the labyrinth. While loss of Fgf10 was implicated previously in semicircular canal agenesis, we show that Fgf10−/+ embryos also exhibit a reduction or absence of the posterior semicircular canal, revealing a dosage-sensitive requirement for FGF10 in vestibular development. In addition, we show that Fgf10−/− embryos have previously unappreciated defects of cochlear morphogenesis, including a somewhat shortened duct, and, surprisingly, a substantially narrower duct. The mutant cochlear epithelium lacks Reissner’s membrane and a large portion of the outer sulcus--two non-contiguous, non-sensory domains. Marker gene analyses revealed effects on Reissner’s membrane as early as E12.5–E13.5 and on the outer sulcus by E15.5, stages when Fgf10 is expressed in close proximity to Fgfr2b, but these effects were not accompanied by changes in epithelial cell proliferation or death. These data indicate a dual role for Fgf10 in cochlear development: to regulate outgrowth of the duct and subsequently as a bidirectional signal that sequentially specifies Reissner’s membrane and outer sulcus non-sensory domains. These findings may help to explain the hearing loss sometimes observed in LADD syndrome subjects with FGF10 mutations. PMID:25624266
Cortical Plasticity after Cochlear Implantation
Petersen, B.; Gjedde, A.; Wallentin, M.; Vuust, P.
2013-01-01
The most dramatic progress in the restoration of hearing takes place in the first months after cochlear implantation. To map the brain activity underlying this process, we used positron emission tomography at three time points: within 14 days, three months, and six months after switch-on. Fifteen recently implanted adult implant recipients listened to running speech or speech-like noise in four sequential PET sessions at each milestone. CI listeners with postlingual hearing loss showed differential activation of left superior temporal gyrus during speech and speech-like stimuli, unlike CI listeners with prelingual hearing loss. Furthermore, Broca's area was activated as an effect of time, but only in CI listeners with postlingual hearing loss. The study demonstrates that adaptation to the cochlear implant is highly related to the history of hearing loss. Speech processing in patients whose hearing loss occurred after the acquisition of language involves brain areas associated with speech comprehension, which is not the case for patients whose hearing loss occurred before the acquisition of language. Finally, the findings confirm the key role of Broca's area in restoration of speech perception, but only in individuals in whom Broca's area has been active prior to the loss of hearing. PMID:24377050
A practical method of predicting the loudness of complex electrical stimuli
NASA Astrophysics Data System (ADS)
McKay, Colette M.; Henshall, Katherine R.; Farrell, Rebecca J.; McDermott, Hugh J.
2003-04-01
The output of speech processors for multiple-electrode cochlear implants consists of current waveforms with complex temporal and spatial patterns. The majority of existing processors output sequential biphasic current pulses. This paper describes a practical method of calculating loudness estimates for such stimuli, in addition to the relative loudness contributions from different cochlear regions. The method can be used either to manipulate the loudness or levels in existing processing strategies, or to control intensity cues in novel sound processing strategies. The method is based on a loudness model described by McKay et al. [J. Acoust. Soc. Am. 110, 1514-1524 (2001)] with the addition of the simplifying approximation that current pulses falling within a temporal integration window of several milliseconds' duration contribute independently to the overall loudness of the stimulus. Three experiments were carried out with six implantees who use the CI24M device manufactured by Cochlear Ltd. The first experiment validated the simplifying assumption, and allowed loudness growth functions to be calculated for use in the loudness prediction method. The following experiments confirmed the accuracy of the method using multiple-electrode stimuli with various patterns of electrode locations and current levels.
Jones, Heath G; Kan, Alan; Litovsky, Ruth Y
2016-01-01
This study examined the effect of microphone placement on the interaural level differences (ILDs) available to bilateral cochlear implant (BiCI) users, and the subsequent effects on horizontal-plane sound localization. Virtual acoustic stimuli for sound localization testing were created individually for eight BiCI users by making acoustic transfer function measurements for microphones placed in the ear (ITE), behind the ear (BTE), and on the shoulders (SHD). The ILDs across source locations were calculated for each placement to analyze their effect on sound localization performance. Sound localization was tested using a repeated-measures, within-participant design for the three microphone placements. The ITE microphone placement provided significantly larger ILDs compared to BTE and SHD placements, which correlated with overall localization errors. However, differences in localization errors across the microphone conditions were small. The BTE microphones worn by many BiCI users in everyday life do not capture the full range of acoustic ILDs available, and also reduce the change in cue magnitudes for sound sources across the horizontal plane. Acute testing with an ITE placement reduced sound localization errors along the horizontal plane compared to the other placements in some patients. Larger improvements may be observed if patients had more experience with the new ILD cues provided by an ITE placement.
Chen, Chee Kean; Lau, Francis C S; Lee, Woo Guan; Phui, Vui Eng
2016-09-01
To compare the anesthetic potency and safety of spinal anesthesia with higher dosages of levobupivacaine and bupivacaine in patients for bilateral sequential for total knee arthroplasty (TKA). Retrospective cohort study. Operation theater with postoperative inpatient follow-up. The medical records of 315 patients who underwent sequential bilateral TKA were reviewed. Patients who received intrathecal levobupicavaine 0.5% were compared with patients who received hyperbaric bupivacaine 0.5% with fentanyl 25 μg for spinal anesthesia. The primary outcome was the use of rescue analgesia (systemic opioids, conversion to general anesthesia) during surgery for both groups. Secondary outcomes included adverse effects of local anesthetics (hypotension and bradycardia) during surgery and morbidity related to spinal anesthesia (postoperative nausea, vomiting, and bleeding) during hospital stay. One hundred fifty patients who received intrathecal levobupivacaine 0.5% (group L) were compared with 90 patients given hyperbaric bupivacaine 0.5% with fentanyl 25 μg (group B). The mean volume of levobupivacaine administered was 5.8 mL (range, 5.0-6.0 mL), and that of bupivacaine was 3.8 mL (range, 3.5-4.0 mL). Both groups achieved similar maximal sensory level of block (T6). The time to maximal height of sensory block was significantly shorter in group B than group L, 18.2 ± 4.5 vs 23.9 ± 3.8 minutes (P< .001). The time to motor block of Bromage 3 was also shorter in group B (8.7 ± 4.1 minutes) than group L (16.0 ± 4.5 minutes) (P< .001). Patients in group B required more anesthetic supplement than group L (P< .001). Hypotension and postoperative bleeding were significantly less common in group L than group B. Levobupivacaine at a higher dosage provided longer duration of spinal anesthesia with better safety profile in sequential bilateral TKA. Copyright © 2016 Elsevier Inc. All rights reserved.
Galvin, Karyn Louise; Holland, Jennifer Frances; Hughes, Kathryn Clare
2014-01-01
First, to document a broad range of functional outcomes of bilateral implantation for young children through young adults at a postoperative point at which stable outcomes could be expected. Second, to evaluate the relationship between functional outcomes and age at bilateral implantation and time between implants. A study-specific questionnaire was administered to parents in an interview 3.5 years or more after sequential (n = 50) or simultaneous (n = 7) implants were received by their child. Median age at bilateral implantation was 4.1 years (range 0.7 to 19.8) and time between implants was 2.7 years (range 0.0 to 16.7). On the basis of parent report, 72% of the sequentially implanted children and young adults found it easy/only "a bit difficult" to adapt to the second implant, and were "happily wearing both implants together most of the time" by 6 months or before; 26% had not adapted, with both implants not worn most of the time or worn as a parental requirement. Seventy-two percent of sequentially implanted children and young adults had a positive attitude toward the second implant, including 9 whose early postoperative attitude was negative or neutral. The majority of children and young adults preferred bilateral implants (70%) and used the two full time (72%), while around half demonstrated similar performance with each implant alone. The proportion of nonusers or very minimal users of the second implant was just 9%. Eighty-eight percent of parents reported superior performance with bilateral versus a unilateral implant (n = 40), or that only bilateral implants were worn (n = 10) so performance could not be compared. The most commonly identified areas of superiority were localization, less need for repetition, and increased responsiveness. In balancing risks and costs with benefits, most parents (86%) considered the second implant worthwhile. Regarding the relationship between outcomes and demographic factors, the group achieving similar performance with each implant alone was younger at bilateral implantation and had less time between implants, and the group bilaterally implanted before 3.5 years of age (who also had less than 2 years between implants) had a higher proportion of positive outcomes on all functional outcome measures. Overall, the results indicate primarily positive functional outcomes for children and young adults receiving bilateral implants at all ages, including when the delay between implants is long. The results are important for evidence-based preoperative counseling, which helps families to make informed decisions and develop appropriate expectations. The results are also important for the development of clinical management practices that support and encourage the minority of recipients who have difficulty adapting to bilateral implants or achieving full-time use.
Binaural interaction in the auditory brainstem response: a normative study.
Van Yper, Lindsey N; Vermeire, Katrien; De Vel, Eddy F J; Battmer, Rolf-Dieter; Dhooge, Ingeborg J M
2015-04-01
Binaural interaction can be investigated using auditory evoked potentials. A binaural interaction component can be derived from the auditory brainstem response (ABR-BIC) and is considered evidence for binaural interaction at the level of the brainstem. Although click ABR-BIC has been investigated thoroughly, data on 500 Hz tone-burst (TB) ABR-BICs are scarce. In this study, characteristics of click and 500 Hz TB ABR-BICs are described. Furthermore, reliability of both click and 500 Hz TB ABR-BIC are investigated. Eighteen normal hearing young adults (eight women, ten men) were included. ABRs were recorded in response to clicks and 500 Hz TBs. ABR-BICs were derived by subtracting the binaural response from the sum of the monaural responses measured in opposite ears. Good inter-rater reliability is obtained for both click and 500 Hz TB ABR-BICs. The most reliable peak in click ABR-BIC occurs at a mean latency of 6.06 ms (SD 0.354 ms). Reliable 500 Hz TB ABR-BIC are obtained with a mean latency of 9.47 ms (SD 0.678 ms). Amplitudes are larger for 500 Hz TB ABR-BIC than for clicks. The most reliable peak in click ABR-BIC occurs at the downslope of wave V. Five hundred Hertz TB ABR-BIC is characterized by a broad positivity occurring at the level of wave V. The ABR-BIC is a useful technique to investigate binaural interaction in certain populations. Examples are bilateral hearing aid users, bilateral cochlear implant users and bimodal listeners. The latter refers to the combination of unilateral cochlear implantation and contralateral residual hearing. The majority of these patients have residual hearing in the low frequencies. The current study suggests that 500 Hz TB ABR-BIC may be a suitable technique to assess binaural interaction in this specific population of cochlear implant users. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Deshpande, Aniruddha K; Tan, Lirong; Lu, Long J; Altaye, Mekibib; Holland, Scott K
2018-05-01
The trends in cochlear implantation candidacy and benefit have changed rapidly in the last two decades. It is now widely accepted that early implantation leads to better postimplant outcomes. Although some generalizations can be made about postimplant auditory and language performance, neural mechanisms need to be studied to predict individual prognosis. The aim of this study was to use functional magnetic resonance imaging (fMRI) to identify preimplant neuroimaging biomarkers that predict children's postimplant auditory and language outcomes as measured by parental observation/reports. This is a pre-post correlational measures study. Twelve possible cochlear implant candidates with bilateral severe to profound hearing loss were recruited via referrals for a clinical magnetic resonance imaging to ensure structural integrity of the auditory nerve for implantation. Participants underwent cochlear implantation at a mean age of 19.4 mo. All children used the advanced combination encoder strategy (ACE, Cochlear Corporation™, Nucleus ® Freedom cochlear implants). Three participants received an implant in the right ear; one in the left ear whereas eight participants received bilateral implants. Participants' preimplant neuronal activation in response to two auditory stimuli was studied using an event-related fMRI method. Blood oxygen level dependent contrast maps were calculated for speech and noise stimuli. The general linear model was used to create z-maps. The Auditory Skills Checklist (ASC) and the SKI-HI Language Development Scale (SKI-HI LDS) were administered to the parents 2 yr after implantation. A nonparametric correlation analysis was implemented between preimplant fMRI activation and postimplant auditory and language outcomes based on ASC and SKI-HI LDS. Statistical Parametric Mapping software was used to create regression maps between fMRI activation and scores on the aforementioned tests. Regression maps were overlaid on the Imaging Research Center infant template and visualized in MRIcro. Regression maps revealed two clusters of brain activation for the speech versus silence contrast and five clusters for the noise versus silence contrast that were significantly correlated with the parental reports. These clusters included auditory and extra-auditory regions such as the middle temporal gyrus, supramarginal gyrus, precuneus, cingulate gyrus, middle frontal gyrus, subgyral, and middle occipital gyrus. Both positive and negative correlations were observed. Correlation values for the different clusters ranged from -0.90 to 0.95 and were significant at a corrected p value of <0.05. Correlations suggest that postimplant performance may be predicted by activation in specific brain regions. The results of the present study suggest that (1) fMRI can be used to identify neuroimaging biomarkers of auditory and language performance before implantation and (2) activation in certain brain regions may be predictive of postimplant auditory and language performance as measured by parental observation/reports. American Academy of Audiology.
Sheffield, Benjamin M; Schuchman, Gerald; Bernstein, Joshua G W
2015-01-01
As cochlear implant (CI) acceptance increases and candidacy criteria are expanded, these devices are increasingly recommended for individuals with less than profound hearing loss. As a result, many individuals who receive a CI also retain acoustic hearing, often in the low frequencies, in the nonimplanted ear (i.e., bimodal hearing) and in some cases in the implanted ear (i.e., hybrid hearing) which can enhance the performance achieved by the CI alone. However, guidelines for clinical decisions pertaining to cochlear implantation are largely based on expectations for postsurgical speech-reception performance with the CI alone in auditory-only conditions. A more comprehensive prediction of postimplant performance would include the expected effects of residual acoustic hearing and visual cues on speech understanding. An evaluation of auditory-visual performance might be particularly important because of the complementary interaction between the speech information relayed by visual cues and that contained in the low-frequency auditory signal. The goal of this study was to characterize the benefit provided by residual acoustic hearing to consonant identification under auditory-alone and auditory-visual conditions for CI users. Additional information regarding the expected role of residual hearing in overall communication performance by a CI listener could potentially lead to more informed decisions regarding cochlear implantation, particularly with respect to recommendations for or against bilateral implantation for an individual who is functioning bimodally. Eleven adults 23 to 75 years old with a unilateral CI and air-conduction thresholds in the nonimplanted ear equal to or better than 80 dB HL for at least one octave frequency between 250 and 1000 Hz participated in this study. Consonant identification was measured for conditions involving combinations of electric hearing (via the CI), acoustic hearing (via the nonimplanted ear), and speechreading (visual cues). The results suggest that the benefit to CI consonant-identification performance provided by the residual acoustic hearing is even greater when visual cues are also present. An analysis of consonant confusions suggests that this is because the voicing cues provided by the residual acoustic hearing are highly complementary with the mainly place-of-articulation cues provided by the visual stimulus. These findings highlight the need for a comprehensive prediction of trimodal (acoustic, electric, and visual) postimplant speech-reception performance to inform implantation decisions. The increased influence of residual acoustic hearing under auditory-visual conditions should be taken into account when considering surgical procedures or devices that are intended to preserve acoustic hearing in the implanted ear. This is particularly relevant when evaluating the candidacy of a current bimodal CI user for a second CI (i.e., bilateral implantation). Although recent developments in CI technology and surgical techniques have increased the likelihood of preserving residual acoustic hearing, preservation cannot be guaranteed in each individual case. Therefore, the potential gain to be derived from bilateral implantation needs to be weighed against the possible loss of the benefit provided by residual acoustic hearing.
Cochlear implantation in adults with asymmetric hearing loss.
Firszt, Jill B; Holden, Laura K; Reeder, Ruth M; Cowdrey, Lisa; King, Sarah
2012-01-01
Bilateral severe to profound sensorineural hearing loss is a standard criterion for cochlear implantation. Increasingly, patients are implanted in one ear and continue to use a hearing aid in the nonimplanted ear to improve abilities such as sound localization and speech understanding in noise. Patients with severe to profound hearing loss in one ear and a more moderate hearing loss in the other ear (i.e., asymmetric hearing) are not typically considered candidates for cochlear implantation. Amplification in the poorer ear is often unsuccessful because of limited benefit, restricting the patient to unilateral listening from the better ear alone. The purpose of this study was to determine whether patients with asymmetric hearing loss could benefit from cochlear implantation in the poorer ear with continued use of a hearing aid in the better ear. Ten adults with asymmetric hearing between ears participated. In the poorer ear, all participants met cochlear implant candidacy guidelines; seven had postlingual onset, and three had pre/perilingual onset of severe to profound hearing loss. All had open-set speech recognition in the better-hearing ear. Assessment measures included word and sentence recognition in quiet, sentence recognition in fixed noise (four-talker babble) and in diffuse restaurant noise using an adaptive procedure, localization of word stimuli, and a hearing handicap scale. Participants were evaluated preimplant with hearing aids and postimplant with the implant alone, the hearing aid alone in the better ear, and bimodally (the implant and hearing aid in combination). Postlingual participants were evaluated at 6 mo postimplant, and pre/perilingual participants were evaluated at 6 and 12 mo postimplant. Data analysis compared the following results: (1) the poorer-hearing ear preimplant (with hearing aid) and postimplant (with cochlear implant); (2) the device(s) used for everyday listening pre- and postimplant; and (3) the hearing aid-alone and bimodal listening conditions postimplant. The postlingual participants showed significant improvements in speech recognition after 6 mo cochlear implant use in the poorer ear. Five postlingual participants had a bimodal advantage over the hearing aid-alone condition on at least one test measure. On average, the postlingual participants had significantly improved localization with bimodal input compared with the hearing aid-alone. Only one pre/perilingual participant had open-set speech recognition with the cochlear implant. This participant had better hearing than the other two pre/perilingual participants in both the poorer and better ear. Localization abilities were not significantly different between the bimodal and hearing aid-alone conditions for the pre/perilingual participants. Mean hearing handicap ratings improved postimplant for all participants indicating perceived benefit in everyday life with the addition of the cochlear implant. Patients with asymmetric hearing loss who are not typical cochlear implant candidates can benefit from using a cochlear implant in the poorer ear with continued use of a hearing aid in the better ear. For this group of 10, the 7 postlingually deafened participants showed greater benefits with the cochlear implant than the pre/perilingual participants; however, further study is needed to determine maximum benefit for those with early onset of hearing loss.
Cochlear Implantation in Adults with Asymmetric Hearing Loss
Firszt, Jill B.; Holden, Laura K.; Reeder, Ruth M.; Cowdrey, Lisa; King, Sarah
2012-01-01
Objective Bilateral severe-to-profound sensorineural hearing loss is a standard criterion for cochlear implantation. Increasingly, patients are implanted in one ear and continue to use a hearing aid in the non-implanted ear to improve abilities such as sound localization and speech understanding in noise. Patients with severe-to-profound hearing loss in one ear and a more moderate hearing loss in the other ear (i.e., asymmetric hearing) are not typically considered candidates for cochlear implantation. Amplification in the poorer ear is often unsuccessful due to limited benefit, restricting the patient to unilateral listening from the better ear alone. The purpose of this study was to determine if patients with asymmetric hearing loss could benefit from cochlear implantation in the poorer ear with continued use of a hearing aid in the better ear. Design Ten adults with asymmetric hearing between ears participated. In the poorer ear, all participants met cochlear implant candidacy guidelines; seven had postlingual onset and three had pre/perilingual onset of severe-to-profound hearing loss. All had open-set speech recognition in the better hearing ear. Assessment measures included word and sentence recognition in quiet, sentence recognition in fixed noise (four-talker babble) and in diffuse restaurant noise using an adaptive procedure, localization of word stimuli and a hearing handicap scale. Participants were evaluated pre-implant with hearing aids and post-implant with the implant alone, the hearing aid alone in the better ear and bimodally (the implant and hearing aid in combination). Postlingual participants were evaluated at six months post-implant and pre/perilingual participants were evaluated at six and 12 months post-implant. Data analysis compared results 1) of the poorer hearing ear pre-implant (with hearing aid) and post-implant (with cochlear implant), 2) with the device(s) used for everyday listening pre- and post-implant and, 3) between the hearing aid-alone and bimodal listening conditions post-implant. Results The postlingual participants showed significant improvements in speech recognition after six months cochlear implant use in the poorer ear. Five postlingual participants had a bimodal advantage over the hearing aid-alone condition on at least one test measure. On average, the postlingual participants had significantly improved localization with bimodal input compared to the hearing aid-alone. Only one pre/perilingual participant had open-set speech recognition with the cochlear implant. This participant had better hearing than the other two pre/perilingual participants in both the poorer and better ear. Localization abilities were not significantly different between the bimodal and hearing aid-alone conditions for the pre/perilingual participants. Mean hearing handicap ratings improved post-implant for all participants indicating perceived benefit in everyday life with the addition of the cochlear implant. Conclusions Patients with asymmetric hearing loss who are not typical cochlear implant candidates can benefit from using a cochlear implant in the poorer ear with continued use of a hearing aid in the better ear. For this group of ten, the seven postlingually deafened participants showed greater benefits with the cochlear implant than the pre/perilingual participants; however, further study is needed to determine maximum benefit for those with early onset of hearing loss. PMID:22441359
Silverman, Carol A; Silman, Shlomo; Emmer, Michele B
2017-06-01
To enhance the understanding of tinnitus origin by disseminating two case studies of vestibular schwannoma (VS) involving behavioural auditory adaptation testing (AAT). Retrospective case study. Two adults who presented with unilateral, non-pulsatile subjective tinnitus and bilateral normal-hearing sensitivity. At the initial evaluation, the otolaryngologic and audiologic findings were unremarkable, bilaterally. Upon retest, years later, VS was identified. At retest, the tinnitus disappeared in one patient and was slightly attenuated in the other patient. In the former, the results of AAT were positive for left retrocochlear pathology; in the latter, the results were negative for the left ear although a moderate degree of auditory adaptation was present despite bilateral normal-hearing sensitivity. Imaging revealed a small VS in both patients, confirmed surgically. Behavioural AAT in patients with tinnitus furnishes a useful tool for exploring tinnitus origin. Decrease or disappearance of tinnitus in patients with auditory adaptation suggests that the tinnitus generator is the cochlea or the cochlear nerve adjacent to the cochlea. Patients with unilateral tinnitus and bilateral, symmetric, normal-hearing thresholds, absent other audiovestibular symptoms, should be routinely monitored through otolaryngologic and audiologic re-evaluations. Tinnitus decrease or disappearance may constitute a red flag for retrocochlear pathology.
Nicholas, Johanna; Tobey, Emily; Davidson, Lisa
2016-01-01
Purpose The purpose of the present investigation is to differentiate children using cochlear implants (CIs) who did or did not achieve age-appropriate language scores by midelementary grades and to identify risk factors for persistent language delay following early cochlear implantation. Materials and Method Children receiving unilateral CIs at young ages (12–38 months) were tested longitudinally and classified with normal language emergence (n = 19), late language emergence (n = 22), or persistent language delay (n = 19) on the basis of their test scores at 4.5 and 10.5 years of age. Relative effects of demographic, audiological, linguistic, and academic characteristics on language emergence were determined. Results Age at CI was associated with normal language emergence but did not differentiate late emergence from persistent delay. Children with persistent delay were more likely to use left-ear implants and older speech processor technology. They experienced higher aided thresholds and lower speech perception scores. Persistent delay was foreshadowed by low morphosyntactic and phonological diversity in preschool. Logistic regression analysis predicted normal language emergence with 84% accuracy and persistent language delay with 74% accuracy. Conclusion CI characteristics had a strong effect on persistent versus resolving language delay, suggesting that right-ear (or bilateral) devices, technology upgrades, and improved audibility may positively influence long-term language outcomes. PMID:26501740
Evaluation of high-resolution MRI for preoperative screening for cochlear implantation
NASA Astrophysics Data System (ADS)
Madzivire, Mambidzeni; Camp, Jon J.; Lane, John; Witte, Robert J.; Robb, Richard A.
2002-05-01
The success of a cochlear implant is dependent on a functioning auditory nerve. An accurate noninvasive method for screening cochlear implant patients to help determine viability of the auditory nerve would allow physicians to better predict the success of the operation. In this study we measured the size of the auditory nerve relative to the size of the juxtaposed facial nerve and correlated these measurements with audiologic test results. The study involved 15 patients, and three normal volunteers. Noninvasive high-resolution bilateral MRI images were acquired from both 1.5T and 3T scanners. The images were reformatted to obtain an anatomically referenced oblique plane perpendicular to the auditory nerve. The cross- sectional areas of the auditory and facial nerves were determined in this plane. Assessment of the data is encouraging. The ratios of auditory to facial nerve size in the control subjects are close to the expected value of 1.0. Patient data ratios range from 0.73 to 1.3, with numbers significantly less than 1.0 suggesting auditory nerve atrophy. The acoustic nerve area correlated to audiologic test findings, particularly (R2equals0.68) to the count of words understood from a list of 100 words. These preliminary analyses suggest that a threshold of size may be determined to differentiate functional from nonfunctional auditory nerves.
Koka, Kanthaiah; Saoji, Aniket A; Attias, Joseph; Litvak, Leonid M
2017-01-01
Although, cochlear implants (CI) traditionally have been used to treat individuals with bilateral profound sensorineural hearing loss, a recent trend is to implant individuals with residual low-frequency hearing. Notably, many of these individuals demonstrate an air-bone gap (ABG) in low-frequency, pure-tone thresholds following implantation. An ABG is the difference between audiometric thresholds measured using air conduction (AC) and bone conduction (BC) stimulation. Although, behavioral AC thresholds are straightforward to assess, BC thresholds can be difficult to measure in individuals with severe-to-profound hearing loss because of vibrotactile responses to high-level, low-frequency stimulation and the potential contribution of hearing in the contralateral ear. Because of these technical barriers to measuring behavioral BC thresholds in implanted patients with residual hearing, it would be helpful to have an objective method for determining ABG. This study evaluated an innovative technique for measuring electrocochleographic (ECochG) responses using the cochlear microphonic (CM) response to assess AC and BC thresholds in implanted patients with residual hearing. Results showed high correlations between CM thresholds and behavioral audiograms for AC and BC conditions, thereby demonstrating the feasibility of using ECochG as an objective tool for quantifying ABG in CI recipients.
Wang, Z; Tian, Y; Jiang, X J
2016-12-01
Objective: To analyze the relationship of tinnitus and early stage damage of cochlear, to explore the clinical applied value of distortion product otoacoustic emission(DPOAE) and auditory brainstem response(ABR) in the bilateral tinnitus patients with normal hearing capability. Method: There are 30 cases(60 ears) in the tinnitus group with bilateral tinnitus patients with normal hearing capability, and there are 30 cases(60 ears) in the control group without tinnitus of normal hearing capability. The two groups both test the DPOAE and ABR,and compare the results of the DPOAE and ABR. Result: The passing rate of DPOAE in all frequencies was 100% in the control group,42.67% in the tinnitus group. Significant differences existed between the two groups( P <0.05).The DPOAE could be checked out at all frequencies under 2 kHz except 0.75 kHz in the tinnitus group, and the passing rates of DPOAE were significantly lower than those in control group( P <0.05).There were 3 cases could not be checked out at 0.75 kHz frequency, but there were no significant difference( P >0.05).The DPOAE amplitudes at frequencies of 3 to 8 kHz in tinnitus ears were significantly lower than those in nontinnitus ears(the P value were 0.011,0.013,0.008,0.027 ).Wave Ⅰ,Ⅲ and Ⅴcould be detected in all ears tested at 80 dB nHL. The latencies of WaveⅠin tinnitus group were obviously prolonged.The latencies of Wave Ⅲ and Ⅴ in tinnitus group were also prolonged, but there was no significant difference( P >0.05).The interval between waves Ⅰand Ⅲ,waves Ⅲ and Ⅴand wavesⅠand Ⅴ showed no difference. Conclusion: The maybe cochlear early injury in fractional bilateral tinnitus patients with normal hearing capability, DPOAE and ABR can act as an objective method for diagnosing peripheral tinnitus. Copyright© by the Editorial Department of Journal of Clinical Otorhinolaryngology Head and Neck Surgery.
Investigations in mechanisms and strategies to enhance hearing with cochlear implants
NASA Astrophysics Data System (ADS)
Churchill, Tyler H.
Cochlear implants (CIs) produce hearing sensations by stimulating the auditory nerve (AN) with current pulses whose amplitudes are modulated by filtered acoustic temporal envelopes. While this technology has provided hearing for multitudinous CI recipients, even bilaterally-implanted listeners have more difficulty understanding speech in noise and localizing sounds than normal hearing (NH) listeners. Three studies reported here have explored ways to improve electric hearing abilities. Vocoders are often used to simulate CIs for NH listeners. Study 1 was a psychoacoustic vocoder study examining the effects of harmonic carrier phase dispersion and simulated CI current spread on speech intelligibility in noise. Results showed that simulated current spread was detrimental to speech understanding and that speech vocoded with carriers whose components' starting phases were equal was the least intelligible. Cross-correlogram analyses of AN model simulations confirmed that carrier component phase dispersion resulted in better neural envelope representation. Localization abilities rely on binaural processing mechanisms in the brainstem and mid-brain that are not fully understood. In Study 2, several potential mechanisms were evaluated based on the ability of metrics extracted from stereo AN simulations to predict azimuthal locations. Results suggest that unique across-frequency patterns of binaural cross-correlation may provide a strong cue set for lateralization and that interaural level differences alone cannot explain NH sensitivity to lateral position. While it is known that many bilateral CI users are sensitive to interaural time differences (ITDs) in low-rate pulsatile stimulation, most contemporary CI processing strategies use high-rate, constant-rate pulse trains. In Study 3, we examined the effects of pulse rate and pulse timing on ITD discrimination, ITD lateralization, and speech recognition by bilateral CI listeners. Results showed that listeners were able to use low-rate pulse timing cues presented redundantly on multiple electrodes for ITD discrimination and lateralization of speech stimuli even when mixed with high rates on other electrodes. These results have contributed to a better understanding of those aspects of the auditory system that support speech understanding and binaural hearing, suggested vocoder parameters that may simulate aspects of electric hearing, and shown that redundant, low-rate pulse timing supports improved spatial hearing for bilateral CI listeners.
Lathuillière, Marine; Merklen, Fanny; Piron, Jean-Pierre; Sicard, Marielle; Villemus, Françoise; Menjot de Champfleur, Nicolas; Venail, Frédéric; Uziel, Alain; Mondain, Michel
2017-01-01
To assess the feasibility of using cone-beam computed tomography (CBCT) in young children with cochlear implants (CIs) and study the effect of intracochlear position on electrophysiological and behavioral measurements. A total of 40 children with either unilateral or bilateral cochlear implants were prospectively included in the study. Electrode placement and insertion angles were studied in 55 Cochlear ® implants (16 straight arrays and 39 perimodiolar arrays), using either CBCT or X-ray imaging. CBCT or X-ray imaging were scheduled when the children were leaving the recovery room. We recorded intraoperative and postoperative neural response telemetry threshold (T-NRT) values, intraoperative and postoperative electrode impedance values, as well as behavioral T (threshold) and C (comfort) levels on electrodes 1, 5, 10, 15 and 20. CBCT imaging was feasible without any sedation in 24 children (60%). Accidental scala vestibuli insertion was observed in 3 out of 24 implants as assessed by CBCT. The mean insertion angle was 339.7°±35.8°. The use of a perimodiolar array led to higher angles of insertion, lower postoperative T-NRT, as well as decreased behavioral T and C levels. We found no significant effect of either electrode array position or angle of insertion on electrophysiological data. CBCT appears to be a reliable tool for anatomical assessment of young children with CIs. Intracochlear position had no significant effect on the electrically evoked compound action potential (ECAP) threshold. Our CBCT protocol must be improved to increase the rate of successful investigations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Ozone Prevents Cochlear Damage From Ischemia-Reperfusion Injury in Guinea Pigs.
Onal, Merih; Elsurer, Cagdas; Selimoglu, Nebil; Yilmaz, Mustafa; Erdogan, Ender; Bengi Celik, Jale; Kal, Oznur; Onal, Ozkan
2017-08-01
The cochlea is an end organ, which is metabolically dependent on a nutrient and oxygen supply to maintain its normal physiological function. Cochlear ischemia and reperfusion (IR) injury is considered one of the most important causes of human idiopathic sudden sensorineural hearing loss. The aim of the present study was to study the efficacy of ozone therapy against cochlear damage caused by IR injury and to investigate the potential clinical use of this treatment for sudden deafness. Twenty-eight guinea pigs were randomized into four groups. The sham group (S) (n = 7) was administered physiological saline intraperitoneally (i.p.) for 7 days. The ozone group (O) (n = 7) was administered 1 mg/kg of ozone i.p. for 7 days. In the IR + O group (n = 7), 1 mg/kg of ozone was administered i.p. for 7 days before IR injury. On the eighth day, the IR + O group was subjected to cochlear ischemia for 15 min by occluding the bilateral vertebral artery and vein with a nontraumatic clamp and then reperfusion for 2 h. The IR group was subjected to cochlear IR injury. After the IR procedure, the guinea pigs were sacrificed on the same day. In a general histological evaluation, cochlear and spiral ganglionic tissues were examined with a light microscope, and apoptotic cells were counted by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. The apoptotic index (AI) was then calculated. Blood samples were sent for analyses of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase, malondialdehyde (MDA), the total oxidant score (TOS), and total antioxidant capacity (TAC). Data were evaluated statistically using the Kruskal-Wallis test. The AI was highest in the IR group. The AI of the IR + O group was lower than that of the IR group. The biochemical antioxidant parameters SOD and GSH-Px and the TAC values were highest in the O group and lowest in the IR group. The MDA level and TOS were highest in the IR group and lowest in the O group. Controlled ozone administration stimulated endogenous antioxidant defense systems, thereby helping the body to combat IR injury. Although this study revealed a statistically significant decrease in cochlear IR damage following ozone therapy, further studies will be necessary to explain the protective mechanisms of ozone therapy in cochlear IR injury. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Ganesh, J S; Rogers, C A; Bonser, R S; Banner, N R
2005-06-01
Cystic fibrosis (CF) patients requiring transplantation for respiratory failure may undergo either heart-lung (HLT) or bilateral sequential lung (BSLT) transplantation. The choice of operation varies between surgeons, centres and countries. The current authors investigated whether operation type influenced outcome in adult CF patients transplanted in the UK between July 1995 and June 2002. Propensity scores for receipt of BSLT versus HLT were derived using logistic regression. Cox regression was used to compare survival. In total, 88 BSLTs and 93 HLTs were identified. Patient characteristics were similar overall, but HLT recipients were more likely to be on long-term oxygen therapy and to have had prior resuscitation. There were 72 deaths (29 BSLT and 43 HLT) within 4 yrs. There was a trend towards higher unadjusted survival following BSLT, but, after adjustment, no difference was found (hazard ratio = 0.77; 95% confidence interval 0.29-2.06). Time to the first rejection episode and infection rates were also similar. A total of 82% of hearts from HLT recipients were used as domino heart transplants. In conclusion, after adjusting for comorbidity, donor factors and ischaemia time, it was found that heart-lung and bilateral sequential lung transplantation achieved a similar outcome. The use of domino heart transplantation ameliorated the impact of heart-lung transplantation on total organ availability.
Kandathil, Cherian K; Stakhovskaya, Olga; Leake, Patricia A
2016-12-01
Many previous studies have shown significant neurotrophic effects of intracochlear delivery of BDNF in preventing degeneration of cochlear spiral ganglion (SG) neurons after deafness in rodents and our laboratory has shown similar results in developing cats deafened prior to hearing onset. This study examined the morphology of the cochlear nucleus (CN) in a group of neonatally deafened cats from a previous study in which infusion of BDNF elicited a significant improvement in survival of the SG neurons. Five cats were deafened by systemic injections of neomycin sulfate (60 mg/kg, SQ, SID) starting one day after birth, and continuing for 16-18 days until auditory brainstem response (ABR) testing demonstrated profound bilateral hearing loss. The animals were implanted unilaterally at about 1 month of age using custom-designed electrodes with a drug-delivery cannula connected to an osmotic pump. BDNF (94 μg/ml; 0.25 μl/hr) was delivered for 10 weeks. The animals were euthanized and studied at 14-23 weeks of age. Consistent with the neurotrophic effects of BDNF on SG survival, the total CN volume in these animals was significantly larger on the BDNF-treated side than on the contralateral side. However, total CN volume, both ipsi- and contralateral to the implants in these deafened juvenile animals, was markedly smaller than the CN in normal adult animals, reflecting the severe effects of deafness on the central auditory system during development. Data from the individual major CN subdivisions (DCN, Dorsal Cochlear Nucleus; PVCN, Posteroventral Cochlear Nucleus; AVCN, Anteroventral Cochlear Nucleus) also were analyzed. A significant difference was observed between the BDNF-treated and control sides only in the AVCN. Measurements of the cross-sectional areas of spherical cells showed that cells were significantly larger in the AVCN ipsilateral to the implant than on the contralateral side. Further, the numerical density of spherical cells was significantly lower in the AVCN ipsilateral to the implant than on the contralateral side, consistent with the larger AVCN volume observed with BDNF treatment. Together, findings indicate significant neurotrophic effects of intracochlear BDNF infusion on the developing CN. Copyright © 2016 Elsevier B.V. All rights reserved.
Derks, Laura S M; Wegner, Inge; Smit, Adriana L; Thomeer, Hans G X M; Topsakal, Vedat; Grolman, Wilko
2016-01-01
Introduction Cochlear implantation is an increasingly common procedure in the treatment of severe to profound sensorineural hearing loss (SNHL) in children and adults. It is often performed as a day-case procedure. The major drive towards day-case surgery has been from a logistical, economical and societal perspective, but we also speculate that the patient's quality of life (QoL) is at least equal to inpatient surgery if not increased as a result of rapid discharge and rehabilitation. Even though cochlear implantation seems well suited to a day-case approach and this even seems to be common practice in some countries, evidence is scarce and of low quality to guide us towards the preferred treatment option. Methods and analysis A single-centre, non-blinded, randomised, controlled trial was designed to (primarily) investigate the effect on general QoL of day-case cochlear implantation compared to inpatient cochlear implantation and (secondarily) the effect of both methods on (subjective) hearing improvement, disease-specific QoL, tinnitus, vertigo and cost-effectiveness. 30 adult patients with severe to profound bilateral postlingual SNHL who are eligible for unilateral cochlear implantation will be randomly assigned to either the day-case or inpatient treatment group. The outcome measures will be assessed using auditory evaluations, questionnaires (preoperatively, at 1-week, 3-week, 3-month and 1-year follow-up) and costs diaries (weekly during the first month postoperatively, after which once in a month until 1-year follow-up). Preoperative and postoperative outcomes will be compared. The difference in costs and benefit will be represented using the incremental cost utility/effectiveness ratio. The analyses will be carried out on an intention-to-treat basis. Ethics and dissemination This research protocol was approved by the Institutional Review Board of the UMC Utrecht (NL45590.041.13; V.5, November 2015). The trial results will be disseminated through peer-reviewed medical journals and presented at scientific conferences. Trial registration number NTR4464; Pre-results. PMID:27697874
Blanks, Deidra A.; Buss, Emily; Grose, John H.; Fitzpatrick, Douglas C.; Hall, Joseph W.
2009-01-01
Objectives The present study investigated interaural time discrimination for binaurally mismatched carrier frequencies in listeners with normal hearing. One goal of the investigation was to gain insights into binaural hearing in patients with bilateral cochlear implants, where the coding of interaural time differences may be limited by mismatches in the neural populations receiving stimulation on each side. Design Temporal envelopes were manipulated to present low frequency timing cues to high frequency auditory channels. Carrier frequencies near 4 kHz were amplitude modulated at 128 Hz via multiplication with a half-wave rectified sinusoid, and that modulation was either in-phase across ears or delayed to one ear. Detection thresholds for non-zero interaural time differences were measured for a range of stimulus levels and a range of carrier frequency mismatches. Data were also collected under conditions designed to limit cues based on stimulus spectral spread, including masking and truncation of sidebands associated with modulation. Results Listeners with normal hearing can detect interaural time differences in the face of substantial mismatches in carrier frequency across ears. Conclusions The processing of interaural time differences in listeners with normal hearing is likely based on spread of excitation into binaurally matched auditory channels. Sensitivity to interaural time differences in listeners with cochlear implants may depend upon spread of current that results in the stimulation of neural populations that share common tonotopic space bilaterally. PMID:18596646
Chilosi, A M; Scusa, M F; Comparini, A; Genovese, E; Forli, F; Berrettini, S; Cipriani, P
2012-04-01
Sensorineural hearing loss (SNHL) is complicated by additional disabilities in about 30% of cases, but the epidemiology of associated disorders, in terms of type, frequency and aetiology is still not clearly defined. Additional disabilities in a deaf child have important consequences in assessing and choosing a therapeutic treatment, in particular when considering cochlear implantation (CI) or hearing aids (HA). The aim of this paper was to evaluate frequency, type and severity of additional neurodevelopmental disabilities in children with profound bilateral sensorineural hearing loss and to investigate the relationship between disability and the etiology of deafness. Eighty children with profound bilateral sensorineural hearing loss (mean age 5.4 years) were investigated by means of a diagnostic protocol including clinical, neurodevelopmental, and audiological procedures together with genetic and neurometabolic tests and neuroradiological investigation by brain MRI. Fifty-five percent of the sample exhibited one or more disabilities in addition to deafness, with cognitive, behavioural-emotional and motor disorders being the most frequent. The risk of additional disabilities varied according to aetiology, with a higher incidence in hereditary syndromic deafness, in cases due to pre-perinatal pathology (in comparison to unknown and hereditary non syndromic forms) and in the presence of major brain abnormalities at MRI. Our results suggest that the aetiology of deafness may be a significant risk indicator for the presence of neuropsychiatric disorders. A multidimensional evaluation, including aetiological, neurodevelopmental and MRI investigation is needed for formulating prognosis and for planning therapeutic intervention, especially in those children candidated to cochlear implant.
Acoustic Analysis of Speech of Cochlear Implantees and Its Implications
Patadia, Rajesh; Govale, Prajakta; Rangasayee, R.; Kirtane, Milind
2012-01-01
Objectives Cochlear implantees have improved speech production skills compared with those using hearing aids, as reflected in their acoustic measures. When compared to normal hearing controls, implanted children had fronted vowel space and their /s/ and /∫/ noise frequencies overlapped. Acoustic analysis of speech provides an objective index of perceived differences in speech production which can be precursory in planning therapy. The objective of this study was to compare acoustic characteristics of speech in cochlear implantees with those of normal hearing age matched peers to understand implications. Methods Group 1 consisted of 15 children with prelingual bilateral severe-profound hearing loss (age, 5-11 years; implanted between 4-10 years). Prior to an implant behind the ear, hearing aids were used; prior & post implantation subjects received at least 1 year of aural intervention. Group 2 consisted of 15 normal hearing age matched peers. Sustained productions of vowels and words with selected consonants were recorded. Using Praat software for acoustic analysis, digitized speech tokens were measured for F1, F2, and F3 of vowels; centre frequency (Hz) and energy concentration (dB) in burst; voice onset time (VOT in ms) for stops; centre frequency (Hz) of noise in /s/; rise time (ms) for affricates. A t-test was used to find significant differences between groups. Results Significant differences were found in VOT for /b/, F1 and F2 of /e/, and F3 of /u/. No significant differences were found for centre frequency of burst, energy concentration for stops, centre frequency of noise in /s/, or rise time for affricates. These findings suggest that auditory feedback provided by cochlear implants enable subjects to monitor production of speech sounds. Conclusion Acoustic analysis of speech is an essential method for discerning characteristics which have or have not been improved by cochlear implantation and thus for planning intervention. PMID:22701768
Evaluation of cochlear involvement by distortion product otoacoustic emission in Behçet's disease.
Dagli, Muharrem; Eryilmaz, Adil; Tanrikulu, Salih; Aydin, Acar; Gonul, Muzeyyen; Gul, Ulker; Gocer, Celil
2008-09-01
The aim of this study was to investigate cochlear involvement in patients with Behçet's disease. Twenty-six Behçet's disease patients (52 ears) and 24 sex and age-matched healthy control subjects (48 ears) were included in the study. Pure-tone audiometry at frequencies 250, 500, 1000, 2000, 4000, 6000 Hz, immittance measures including tympanometry and acoustic reflex testing and DPOAE (distortion product otoacoustic emission) testing were performed in the patients and controls. A sensorineural hearing loss was found in eight patients (30.7%) as it was bilateral in five and unilateral in three patients. Although no typical audiometric configuration was found, one patient had a flat type audiogram, and the others had a high frequency hearing loss. The DPOAE responses of the patients and controls were significantly different in all frequencies (p<0.05). These results indicate that cochlea is affected by damage of outer hair cells in Behçet's disease.
Geers, Ann E; Davidson, Lisa S; Uchanski, Rosalie M; Nicholas, Johanna G
2013-09-01
This study documented the ability of experienced pediatric cochlear implant (CI) users to perceive linguistic properties (what is said) and indexical attributes (emotional intent and talker identity) of speech, and examined the extent to which linguistic (LSP) and indexical (ISP) perception skills are related. Preimplant-aided hearing, age at implantation, speech processor technology, CI-aided thresholds, sequential bilateral cochlear implantation, and academic integration with hearing age-mates were examined for their possible relationships to both LSP and ISP skills. Sixty 9- to 12-year olds, first implanted at an early age (12 to 38 months), participated in a comprehensive test battery that included the following LSP skills: (1) recognition of monosyllabic words at loud and soft levels, (2) repetition of phonemes and suprasegmental features from nonwords, and (3) recognition of key words from sentences presented within a noise background, and the following ISP skills: (1) discrimination of across-gender and within-gender (female) talkers and (2) identification and discrimination of emotional content from spoken sentences. A group of 30 age-matched children without hearing loss completed the nonword repetition, and talker- and emotion-perception tasks for comparison. Word-recognition scores decreased with signal level from a mean of 77% correct at 70 dB SPL to 52% at 50 dB SPL. On average, CI users recognized 50% of key words presented in sentences that were 9.8 dB above background noise. Phonetic properties were repeated from nonword stimuli at about the same level of accuracy as suprasegmental attributes (70 and 75%, respectively). The majority of CI users identified emotional content and differentiated talkers significantly above chance levels. Scores on LSP and ISP measures were combined into separate principal component scores and these components were highly correlated (r = 0.76). Both LSP and ISP component scores were higher for children who received a CI at the youngest ages, upgraded to more recent CI technology and had lower CI-aided thresholds. Higher scores, for both LSP and ISP components, were also associated with higher language levels and mainstreaming at younger ages. Higher ISP scores were associated with better social skills. Results strongly support a link between indexical and linguistic properties in perceptual analysis of speech. These two channels of information appear to be processed together in parallel by the auditory system and are inseparable in perception. Better speech performance, for both linguistic and indexical perception, is associated with younger age at implantation and use of more recent speech processor technology. Children with better speech perception demonstrated better spoken language, earlier academic mainstreaming, and placement in more typically sized classrooms (i.e., >20 students). Well-developed social skills were more highly associated with the ability to discriminate the nuances of talker identity and emotion than with the ability to recognize words and sentences through listening. The extent to which early cochlear implantation enabled these early-implanted children to make use of both linguistic and indexical properties of speech influenced not only their development of spoken language, but also their ability to function successfully in a hearing world.
Geers, Ann; Davidson, Lisa; Uchanski, Rosalie; Nicholas, Johanna
2013-01-01
Objectives This study documented the ability of experienced pediatric cochlear implant (CI) users to perceive linguistic properties (what is said) and indexical attributes (emotional intent and talker identity) of speech, and examined the extent to which linguistic (LSP) and indexical (ISP) perception skills are related. Pre-implant aided hearing, age at implantation, speech processor technology, CI-aided thresholds, sequential bilateral cochlear implantation, and academic integration with hearing age-mates were examined for their possible relationships to both LSP and ISP skills. Design Sixty 9–12 year olds, first implanted at an early age (12–38 months), participated in a comprehensive test battery that included the following LSP skills: 1) recognition of monosyllabic words at loud and soft levels, 2) repetition of phonemes and suprasegmental features from non-words, and 3) recognition of keywords from sentences presented within a noise background, and the following ISP skills: 1) discrimination of male from female and female from female talkers and 2) identification and discrimination of emotional content from spoken sentences. A group of 30 age-matched children without hearing loss completed the non-word repetition, and talker- and emotion-perception tasks for comparison. Results Word recognition scores decreased with signal level from a mean of 77% correct at 70 dB SPL to 52% at 50 dB SPL. On average, CI users recognized 50% of keywords presented in sentences that were 9.8 dB above background noise. Phonetic properties were repeated from non-word stimuli at about the same level of accuracy as suprasegmental attributes (70% and 75%, respectively). The majority of CI users identified emotional content and differentiated talkers significantly above chance levels. Scores on LSP and ISP measures were combined into separate principal component scores and these components were highly correlated (r = .76). Both LSP and ISP component scores were higher for children who received a CI at the youngest ages, upgraded to more recent CI technology and had lower CI-aided thresholds. Higher scores, for both LSP and ISP components, were also associated with higher language levels and mainstreaming at younger ages. Higher ISP scores were associated with better social skills. Conclusions Results strongly support a link between indexical and linguistic properties in perceptual analysis of speech. These two channels of information appear to be processed together in parallel by the auditory system and are inseparable in perception. Better speech performance, for both linguistic and indexical perception, is associated with younger age at implantation and use of more recent speech processor technology. Children with better speech perception demonstrated better spoken language, earlier academic mainstreaming, and placement in more typically-sized classrooms (i.e., >20 students). Well-developed social skills were more highly associated with the ability to discriminate the nuances of talker identity and emotion than with the ability to recognize words and sentences through listening. The extent to which early cochlear implantation enabled these early-implanted children to make use of both linguistic and indexical properties of speech influenced not only their development of spoken language, but also their ability to function successfully in a hearing world. PMID:23652814
Hu, Hongmei; Kollmeier, Birger; Dietz, Mathias
2016-01-01
Although bilateral cochlear implants (BiCIs) have succeeded in improving the spatial hearing performance of bilateral CI users, the overall performance is still not comparable with normal hearing listeners. Limited success can be partially caused by an interaural mismatch of the place-of-stimulation in each cochlea. Pairing matched interaural CI electrodes and stimulating them with the same frequency band is expected to facilitate binaural functions such as binaural fusion, localization, or spatial release from masking. It has been shown in animal experiments that the magnitude of the binaural interaction component (BIC) derived from the wave-eV decreases for increasing interaural place of stimulation mismatch. This motivated the investigation of the suitability of an electroencephalography-based objective electrode-frequency fitting procedure based on the BIC for BiCI users. A 61 channel monaural and binaural electrically evoked auditory brainstem response (eABR) recording was performed in 7 MED-EL BiCI subjects so far. These BiCI subjects were directly stimulated at 60% dynamic range with 19.9 pulses per second via a research platform provided by the University of Innsbruck (RIB II). The BIC was derived for several interaural electrode pairs by subtracting the response from binaural stimulation from their summed monaural responses. The BIC based pairing results are compared with two psychoacoustic pairing methods: interaural pulse time difference sensitivity and interaural pitch matching. The results for all three methods analyzed as a function of probe electrode allow for determining a matched pair in more than half of the subjects, with a typical accuracy of ± 1 electrode. This includes evidence for statistically significant tuning of the BIC as a function of probe electrode in human subjects. However, results across the three conditions were sometimes not consistent. These discrepancies will be discussed in the light of pitch plasticity versus less plastic brainstem processing.
Finke, Mareike; Strauß-Schier, Angelika; Kludt, Eugen; Büchner, Andreas; Illg, Angelika
2017-05-01
Treatment with cochlear implants (CIs) in single-sided deaf individuals started less than a decade ago. CIs can successfully reduce incapacitating tinnitus on the deaf ear and allow, so some extent, the restoration of binaural hearing. Until now, systematic evaluations of subjective CI benefit in post-lingually single-sided deaf individuals and analyses of speech intelligibility outcome for the CI in isolation have been lacking. For the prospective part of this study, the Bern Benefit in Single-Sided Deafness Questionnaire (BBSS) was administered to 48 single-sided deaf CI users to evaluate the subjectively perceived CI benefit across different listening situations. In the retrospective part, speech intelligibility outcome with the CI up to 12 month post-activation was compared between 100 single-sided deaf CI users and 125 bilaterally implanted CI users (2nd implant). The positive median ratings in the BBSS differed significantly from zero for all items suggesting that most individuals with single-sided deafness rate their CI as beneficial across listening situations. The speech perception scores in quiet and noise improved significantly over time in both groups of CI users. Speech intelligibility with the CI in isolation was significantly better in bilaterally implanted CI users (2nd implant) compared to the scores obtained from single-sided deaf CI users. Our results indicate that CI users with single-sided deafness can reach open set speech understanding with their CI in isolation, encouraging the extension of the CI indication to individuals with normal hearing on the contralateral ear. Compared to the performance reached with bilateral CI users' second implant, speech reception threshold are lower, indicating an aural preference and dominance of the normal hearing ear. The results from the BBSS propose good satisfaction with the CI across several listening situations. Copyright © 2017 Elsevier B.V. All rights reserved.
Perilymph pharmacokinetics of marker applied through a cochlear implant in guinea pigs
Hartsock, Jared; Gill, Ruth; Smyth, Daniel; Kirk, Jonathon; Verhoeven, Kristien
2017-01-01
Patients undergoing cochlear implantation could benefit from a simultaneous application of drugs into the ear, helping preserve residual low-frequency hearing and afferent nerve fiber populations. One way to apply drugs is to incorporate a cannula into the implant, through which drug solution is driven. For such an approach, perilymph concentrations achieved and the distribution in the ear over time have not previously been documented. We used FITC-labeled dextran as a marker, delivering it into perilymph of guinea pigs at 10 or 100 nL/min though a cannula incorporated into a cochlear implant with the outlet in the mid basal turn. After injections of varying duration (2 hours, 1 day or 7 days) perilymph was collected from the cochlear apex using a sequential sampling technique, allowing dextran levels and gradients along scala tympani to be quantified. Data were interpreted quantitatively using computer simulations of the experiments. For injections of 2 hours duration, dextran levels were critically influenced by the presence or absence of fluid leakage at the cochleostomy site. When the cochleostomy was fluid-tight, substantially higher perilymph levels were achieved at the injection site, with concentration declining along scala tympani towards the apex. Contrary to expectations, large dextran gradients along scala tympani persisted after 24 hours of sustained injection and were still present in some animals after 7 days injection. Functional changes associated with implantation and dextran delivery, and the histological state of the implant and cannula were also documented. The persistent longitudinal gradients of dextan along the ear were not readily explained by computer simulations of the experiments based on prior pharmacokinetic data. One explanation is that inner ear pharmacokinetics are altered in the period after cochlear implantation, possibly by a permeabilization of the blood-labyrinth barrier as part of the immune response to the implant. PMID:28817653
Santarelli, Rosamaria; Starr, Arnold; Michalewski, Henry J; Arslan, Edoardo
2008-05-01
Transtympanic electrocochleography (ECochG) was recorded bilaterally in children and adults with auditory neuropathy (AN) to evaluate receptor and neural generators. Test stimuli were clicks from 60 to 120dB p.e. SPL. Measures obtained from eight AN subjects were compared to 16 normally hearing children. Receptor cochlear microphonics (CMs) in AN were of normal or enhanced amplitude. Neural compound action potentials (CAPs) and receptor summating potentials (SPs) were identified in five AN ears. ECochG potentials in those ears without CAPs were of negative polarity and of normal or prolonged duration. We used adaptation to rapid stimulus rates to distinguish whether the generators of the negative potentials were of neural or receptor origin. Adaptation in controls resulted in amplitude reduction of CAP twice that of SP without affecting the duration of ECochG potentials. In seven AN ears without CAP and with prolonged negative potential, adaptation was accompanied by reduction of both amplitude and duration of the negative potential to control values consistent with neural generation. In four ears without CAP and with normal duration potentials, adaptation was without effect consistent with receptor generation. In five AN ears with CAP, there was reduction in amplitude of CAP and SP as controls but with a significant decrease in response duration. Three patterns of cochlear potentials were identified in AN: (1) presence of receptor SP without CAP consistent with pre-synaptic disorder of inner hair cells; (2) presence of both SP and CAP consistent with post-synaptic disorder of proximal auditory nerve; (3) presence of prolonged neural potentials without a CAP consistent with post-synaptic disorder of nerve terminals. Cochlear potential measures may identify pre- and post-synaptic disorders of inner hair cells and auditory nerves in AN.
DI NARDO, W.; GIANNANTONIO, S.; DI GIUDA, D.; DE CORSO, E.; SCHINAIA, L.; PALUDETTI, G.
2013-01-01
SUMMARY Pre-surgery evaluation, indications for cochlear implantation and expectations in terms of post-operative functional results remain challenging topics in pre-lingually deaf adults. Our study has the purpose of determining the benefits of Single Photon Emission Tomography (SPECT) assessment in pre-surgical evaluation of pre-lingually deaf adults who are candidates for cochlear implantation. In 7 pre-lingually profoundly deaf patients, brain SPECT was performed at baseline conditions and in bilateral simultaneous multi-frequency acoustic stimulation. Six sagittal tomograms of both temporal cortices were used for semi-quantitative analysis in each patient. Percentage increases in cortical perfusion resulting from auditory stimulation were calculated. The results showed an inter-hemispherical asymmetry of the activation extension and intensity in the stimulated temporal areas. Consistent with the obtained brain activation data, patients were implanted preferring the side that showed higher activation after acoustic stimulus. Considering the increment in auditory perception performances, it was possible to point out a relationship between cortical brain activity shown by SPECT and hearing performances, and, even more significant, a correlation between post-operative functional performances and the activation of the most medial part of the sagittal temporal tomograms, corresponding to medium-high frequencies. In light of these findings, we believe that brain SPECT could be considered in the evaluation of deaf patients candidate for cochlear implantation, and that it plays a major role in functional assessment of the auditory cortex of pre-lingually deaf subjects, even if further studies are necessary to conclusively establish its utility. Further developments of this technique are possible by using trans-tympanic electrical stimulation of the cochlear promontory, which could give the opportunity to study completely deaf patients, whose evaluation is objectively difficult with current audiological methods. PMID:23620636
Daneshi, Ahmad; Mirsalehi, Marjan; Hashemi, Seyed Basir; Ajalloueyan, Mohammad; Rajati, Mohsen; Ghasemi, Mohammad Mahdi; Emamdjomeh, Hesamaldin; Asghari, Alimohamad; Mohammadi, Shabahang; Mohseni, Mohammad; Mohebbi, Saleh; Farhadi, Mohammad
2018-05-01
To evaluate the auditory performance and speech production outcome in children with auditory neuropathy spectrum disorder (ANSD). The effect of age on the outcomes of the surgery at the time of implantation was also evaluated. Cochlear implantation was performed in 136 children with bilateral severe-to- profound hearing loss due to ANSD, at four tertiary academic centers. The patients were divided into two groups based on the age at the time of implantation; Group I: Children ≤24 months, and Group II: subjects >24 months. The categories of auditory performance (CAP) and speech intelligibility rating (SIR) scores were evaluated after the first and second years of implantation. The differences between the CAP and SIR scores in the two groups were assessed. The median CAP scores improved significantly after the cochlear implantation in all the patients (p value < 0.001). The improvement in the CAP scores during the first year in Group II was greater than Group I (p value: 0.007), but the improvement in CAP scores tended to be significantly higher in patients who were implanted at ≤24 months (p value < 0.001). There was no significant difference between two groups in SIR scores at first-year and second-year follow-ups. The evaluation of the SIR improvement revealed significantly higher values for Group I during the second-year follow-up (p value: 0.003). The auditory performance and speech production skills of the children with ANSD improved significantly after cochlear implantation, and this improvement was affected by age at the time of implantation. Copyright © 2018 Elsevier B.V. All rights reserved.
Canale, Andrea; Dalmasso, Giulia; Dagna, Federico; Lacilla, Michelangelo; Montuschi, Carla; Rosa, Rosalba Di; Albera, Roberto
2016-08-01
To determine whether speech recognition scores (SRS) differ between adults with long-term auditory deprivation in the implanted ear and adults who received cochlear implant (CI) in the nonsound-deprived ear, either for hearing aid-assisted or due to rapidly deteriorating hearing loss. Retrospective study. Speech recognition scores at evaluations (3 and 14 months postimplantation) conducted with CI alone at 60-dB sound pressure level intensity were compared in 15 patients (4 with bilateral severe hearing loss; 11 with asymmetric hearing loss, 7 of which had contralateral hearing aid), all with long-term auditory deprivation (mean duration 16.9 years) (group A), and in 15 other patients with postlingual hearing loss (10 symmetric, 5 asymmetric with bimodal stimulation) (controls, group B). Comparison of mean percentage of correctly recognized words on speech audiometry at 3 and 14 months showed improvement within each group (P < 0.05). Between-group comparison showed no significant difference at 3 (P = 0.17) or 14 months (P = 0.46). Comparison of SRSs in group A (bimodal stimulation [n = 7] and binaural sound deprivation [n = 4]) versus group B showed no significant differences at 3 (bimodal stimulation P = 0.16; binaural sound deprivation P = 0.19) or 14 months (bimodal stimulation P = 0.14; binaural sound deprivation P = 0.82). Speech recognition scores in monaural and binaural sound-deprived ears did not significantly differ from ears with unilateral cochlear implantation in nonsound-deprived ears when tested with CI alone. Improvement in the implanted worse ear indicates that it could be a potential candidate ear for cochlear implantation even when sound deprived. 4. Laryngoscope, 126:1905-1910, 2016. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
Gómez-Nieto, Ricardo; Horta-Júnior, José de Anchieta C.; Castellano, Orlando; Millian-Morell, Lymarie; Rubio, Maria E.; López, Dolores E.
2014-01-01
The acoustic startle reflex (ASR) is a survival mechanism of alarm, which rapidly alerts the organism to a sudden loud auditory stimulus. In rats, the primary ASR circuit encompasses three serially connected structures: cochlear root neurons (CRNs), neurons in the caudal pontine reticular nucleus (PnC), and motoneurons in the medulla and spinal cord. It is well-established that both CRNs and PnC neurons receive short-latency auditory inputs to mediate the ASR. Here, we investigated the anatomical origin and functional role of these inputs using a multidisciplinary approach that combines morphological, electrophysiological and behavioral techniques. Anterograde tracer injections into the cochlea suggest that CRNs somata and dendrites receive inputs depending, respectively, on their basal or apical cochlear origin. Confocal colocalization experiments demonstrated that these cochlear inputs are immunopositive for the vesicular glutamate transporter 1 (VGLUT1). Using extracellular recordings in vivo followed by subsequent tracer injections, we investigated the response of PnC neurons after contra-, ipsi-, and bilateral acoustic stimulation and identified the source of their auditory afferents. Our results showed that the binaural firing rate of PnC neurons was higher than the monaural, exhibiting higher spike discharges with contralateral than ipsilateral acoustic stimulations. Our histological analysis confirmed the CRNs as the principal source of short-latency acoustic inputs, and indicated that other areas of the cochlear nucleus complex are not likely to innervate PnC. Behaviorally, we observed a strong reduction of ASR amplitude in monaural earplugged rats that corresponds with the binaural summation process shown in our electrophysiological findings. Our study contributes to understand better the role of neuronal mechanisms in auditory alerting behaviors and provides strong evidence that the CRNs-PnC pathway mediates fast neurotransmission and binaural summation of the ASR. PMID:25120419
Lee, Tae Hoon; Park, Do Hyun; Lee, Sang Soo; Choi, Hyun Jong; Lee, Jun Kyu; Kim, Tae Hyeon; Kim, Jong Hyeok; Jeong, Seok; Park, Sang-Heum; Moon, Jong Ho
2013-02-01
Theoretically, the side-by-side bilateral placement of metal stents may be technically easier than stent-in-stent bilateral placement in stent revision. However, side-by-side placement can be technically challenging, as the deployment of the first stent can preclude the passage of the second stent. We explored the technical feasibility and revision efficacy of endoscopic bilateral side-by-side stent placement for malignant hilar biliary strictures. Forty-four patients with Bismuth type II or higher malignant hilar biliary strictures were enrolled in seven academic tertiary referral centers. Endoscopic placement of side-by-side bilateral metal stents with 7F thin delivery shaft was performed. The outcome measurements were the technical and functional success, adverse events, endoscopic revision success rate, and stent patency. Overall, the technical and functional success rates were 91 % (40/44), and 98 % (39/40), respectively. Two of the failed patients were converted successfully with subsequent contralateral stent-in-stent placement, and the other patients underwent percutaneous intervention. Early stent-related adverse events occurred in 10 %. The endoscopic revision rate due to stent malfunction during follow-up (median: 180 days) was 45 % (18/40; tumor ingrowth in 4 and in-stent sludge impaction/stone formation in 14 patients). The endoscopic revision success rate was 92 % (12/13). Five patients with comorbidity underwent initial percutaneous intervention. The median survival and stent patency periods were 180 and 157 days, respectively. The sequential placement of a metal stent with a 7F thin delivery shaft in bilateral side-by-side procedures may be feasible and effective for malignant hilar biliary strictures and for endoscopic stent revision.
Goykhburg, M V; Bakhshinyan, V V; Petrova, I P; Wazybok, A; Kollmeier, B; Tavartkiladze, G A
The deterioration of speech intelligibility in the patients using cochlear implantation (CI) systems is especially well apparent in the noisy environment. It explains why phrasal speech tests, such as a Matrix sentence test, have become increasingly more popular in the speech audiometry during rehabilitation after CI. The Matrix test allows to estimate speech perception by the patients in a real life situation. The objective of this study was to assess the effectiveness of audiological rehabilitation of CI patients using the Russian-language version of the matrix test (RUMatrix) in free field in the noisy environment. 33 patients aged from 5 to 40 years with a more than 3 year experience of using cochlear implants inserted at the National Research Center for Audiology and Hearing Rehabilitation were included in our study. Five of these patients were implanted bilaterally. The results of our study showed a statistically significant improvement of speech intelligibility in the noisy environment after the speech processor adjustment; dynamics of the signal-to-noise ratio changes was -1.7 dB (p<0.001). The RUMatrix test is a highly efficient method for the estimation of speech intelligibility in the patients undergoing clinical investigations in the noisy environment. The high degree of comparability of the RUMatrix test with the Matrix tests in other languages makes possible its application in international multicenter studies.
Two Ears and Two (or More?) Devices: A Pediatric Case Study of Bilateral Profound Hearing Loss
Uchanski, Rosalie M.; Davidson, Lisa S.; Quadrizius, Sharon; Reeder, Ruth; Cadieux, Jamie; Kettel, Jerrica; Chole, Richard A.
2009-01-01
Advances in technology and expanding candidacy guidelines have motivated many clinics to consider children with precipitously sloping high-frequency hearing loss as candidates for cochlear implants (CIs). A case study is presented of a pediatric CI patient whose hearing thresholds were preserved within 10 dB of preimplant levels (125–750 Hz) after receiving a fully inserted 31.5-mm electrode array at one ear. The primary goal of this study was to explore the possible benefit of using both a hearing aid (HA) and a CI at one ear while using a HA at the opposite ear. The authors find that although the use of bilateral hearing aids with a CI may only provide a slight benefit, careful attention must be paid to the coordinated fitting of devices, especially at the ear with two devices. PMID:19447765
Two ears and two (or more?) devices: a pediatric case study of bilateral profound hearing loss.
Uchanski, Rosalie M; Davidson, Lisa S; Quadrizius, Sharon; Reeder, Ruth; Cadieux, Jamie; Kettel, Jerrica; Chole, Richard A
2009-06-01
Advances in technology and expanding candidacy guidelines have motivated many clinics to consider children with precipitously sloping high-frequency hearing loss as candidates for cochlear implants (CIs). A case study is presented of a pediatric CI patient whose hearing thresholds were preserved within 10 dB of preimplant levels (125-750 Hz) after receiving a fully inserted 31.5-mm electrode array at one ear. The primary goal of this study was to explore the possible benefit of using both a hearing aid (HA) and a CI at one ear while using a HA at the opposite ear. The authors find that although the use of bilateral hearing aids with a CI may only provide a slight benefit, careful attention must be paid to the coordinated fitting of devices, especially at the ear with two devices.
Muthialu, Nagarajan; Mussa, Shafi; Owens, Catherine M; Bulstrode, Neil; Elliott, Martin J
2014-10-01
Jeune syndrome (asphyxiating thoracic dystrophy) is a rare disorder characterized by skeletal dysplasia, reduced diameter of the thoracic cage and extrathoracic organ involvement. Fatal, early respiratory insufficiency may occur. Two-stage lateral thoracic expansion has been reported, addressing each side sequentially over 3-12 months. While staged repair theoretically provides less invasive surgery in a small child with respiratory distress, we utilized a single stage, bilateral procedure aiming to rapidly maximize lung development. Combined bilateral surgery also offered the chance of rapid recovery, and reduced hospital stay. We present our early experience of this modification of existing surgical treatment for an extremely rare condition, thought to be generally fatal in early childhood. Nine children (6 males, 3 females; median age 30 months [3.5-75]) underwent thoracic expansion for Jeune syndrome in our centre. All patients required preoperative respiratory support (5 with tracheostomy, 8 requiring positive pressure ventilation regularly within each day/night cycle). Two children underwent sequential unilateral (2-month interval between stages) and 7 children bilateral thoracic expansion by means of staggered osteotomies of third to eighth ribs and plate fixation of fourth to fifth rib and sixth to seventh rib, leaving the remaining ribs floating. There was no operative mortality. There were 2 deaths within 3 months of surgery, due to pulmonary hypertension (1 following two-stage and 1 following single-stage thoracic expansion). At the median follow-up of 11 months (1-15), 3 children have been discharged home from their referring unit and 2 have significantly reduced respiratory support. One child remains on non-invasive ventilation and another is still ventilated with a high oxygen requirement. Jeune syndrome is a difficult condition to manage, but bilateral thoracic expansion offers an effective reduction in ventilator requirements in these children. While two-stage repair has been described previously, this is the first report of single-stage bilateral thoracic expansion. Single-stage repair is feasible and may offer better resource management and significant cost savings by potentially reducing theatre usage and overall length of stay (intensive care and hospital) without compromising clinical outcomes. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Di Nardo, W; Cattani, P; Lopizzo, T; Cantore, I; Marchese, M R; Marchetti, S; Scorpecci, A; Giannantonio, S; Parrilla, C; Cianfrone, F; Fadda, G; Paludetti, G
2009-01-01
The cause of about 30% of bilateral sensorineural hearing loss (SNHL) is still unknown. A viral etiology is among the most frequently proposed ones and the supposed diagnosis is only based upon few clinical and laboratory data. The detection of viral presence within a damaged compartment may represent a way to supply interesting data for confirmation of viral etiology and to explain pathogenic mechanisms. The aim of our study was to identify the possible presence of pathogenic viruses in the inner ear extracellular compartment in patients with bilateral severe sensorineural deafness of unknown etiology who underwent cochlear implant surgery. 4 patients, aged from 2 to 7 years and affected by SNHL underwent cochlear implantation surgery and, at the same time, endolabyrinthine fluid sampling. The samples were subsequently sent for viral nucleic acid extraction and polymerase chain reaction (PCR) treatment: multiplex PCR and realtime-PCR were used. In each endolabyrinthine fluid sample, cytomegalovirus (CMV), Epstein-Barr virus (EBV), varicella-zoster virus (VZV), herpes simplex virus type 1 and 2 (HSV-1, HSV-2) and enterovirus genomes were searched for. One patient was positive for intracochlear CMV, as confirmed by another base-pair segment PCR. EBV, VZV, HSV and enterovirus were detected in none of the 4 patients. Our finding of CMV genome within the cochlea of a deaf patient without any evidence of acute and prenatal CMV infection suggests its possible role in postnatal inner ear injury through reactivation of latent virus within the cochlea. This hypothesis could also be considered valid for some patients with anti-CMV-IgG-positive serology and absence of endolabyrinthine viral genome since viruses can be in an inactive state at the time of fluid collection. PCR has proved to be a very useful tool in order to investigate infectious causes of deafness even for more than one virus type at a time and in a limited quantity of sample, such as the small volume of endolabyrinthine liquid collected from children during cochlear implant surgery. Copyright (C) 2009 S. Karger AG, Basel.
Unilateral hearing during development: hemispheric specificity in plastic reorganizations
Kral, Andrej; Heid, Silvia; Hubka, Peter; Tillein, Jochen
2013-01-01
The present study investigates the hemispheric contributions of neuronal reorganization following early single-sided hearing (unilateral deafness). The experiments were performed on ten cats from our colony of deaf white cats. Two were identified in early hearing screening as unilaterally congenitally deaf. The remaining eight were bilaterally congenitally deaf, unilaterally implanted at different ages with a cochlear implant. Implanted animals were chronically stimulated using a single-channel portable signal processor for two to five months. Microelectrode recordings were performed at the primary auditory cortex under stimulation at the hearing and deaf ear with bilateral cochlear implants. Local field potentials (LFPs) were compared at the cortex ipsilateral and contralateral to the hearing ear. The focus of the study was on the morphology and the onset latency of the LFPs. With respect to morphology of LFPs, pronounced hemisphere-specific effects were observed. Morphology of amplitude-normalized LFPs for stimulation of the deaf and the hearing ear was similar for responses recorded at the same hemisphere. However, when comparisons were performed between the hemispheres, the morphology was more dissimilar even though the same ear was stimulated. This demonstrates hemispheric specificity of some cortical adaptations irrespective of the ear stimulated. The results suggest a specific adaptation process at the hemisphere ipsilateral to the hearing ear, involving specific (down-regulated inhibitory) mechanisms not found in the contralateral hemisphere. Finally, onset latencies revealed that the sensitive period for the cortex ipsilateral to the hearing ear is shorter than that for the contralateral cortex. Unilateral hearing experience leads to a functionally-asymmetric brain with different neuronal reorganizations and different sensitive periods involved. PMID:24348345
Unilateral hearing during development: hemispheric specificity in plastic reorganizations.
Kral, Andrej; Heid, Silvia; Hubka, Peter; Tillein, Jochen
2013-01-01
The present study investigates the hemispheric contributions of neuronal reorganization following early single-sided hearing (unilateral deafness). The experiments were performed on ten cats from our colony of deaf white cats. Two were identified in early hearing screening as unilaterally congenitally deaf. The remaining eight were bilaterally congenitally deaf, unilaterally implanted at different ages with a cochlear implant. Implanted animals were chronically stimulated using a single-channel portable signal processor for two to five months. Microelectrode recordings were performed at the primary auditory cortex under stimulation at the hearing and deaf ear with bilateral cochlear implants. Local field potentials (LFPs) were compared at the cortex ipsilateral and contralateral to the hearing ear. The focus of the study was on the morphology and the onset latency of the LFPs. With respect to morphology of LFPs, pronounced hemisphere-specific effects were observed. Morphology of amplitude-normalized LFPs for stimulation of the deaf and the hearing ear was similar for responses recorded at the same hemisphere. However, when comparisons were performed between the hemispheres, the morphology was more dissimilar even though the same ear was stimulated. This demonstrates hemispheric specificity of some cortical adaptations irrespective of the ear stimulated. The results suggest a specific adaptation process at the hemisphere ipsilateral to the hearing ear, involving specific (down-regulated inhibitory) mechanisms not found in the contralateral hemisphere. Finally, onset latencies revealed that the sensitive period for the cortex ipsilateral to the hearing ear is shorter than that for the contralateral cortex. Unilateral hearing experience leads to a functionally-asymmetric brain with different neuronal reorganizations and different sensitive periods involved.
Rich, Shanit; Levinger, Miriam; Werner, Shirli; Adelman, Cahtia
2013-08-01
The cochlear implant has revolutionized functioning with severe-to-profound sensori-neural loss. A deaf child implanted at an early age with good habilitation may have good language abilities and function well in daily life. As the implanted child grows up, managing in the world of hearing people may become more complex. During adolescence, the teenager copes with many issues, including identity, socialization with the peer group, and managing in the school setting. These issues may be even more challenging for the adolescents using a cochlear implant. This study was designed to shed light on how adolescents with cochlear implants experience coping with the issues mentioned. Twelve teenagers (14-18 years old), fairly similar to the entire adolescent implanted population at the center at which the study was conducted, participated in the study. They had been unilaterally or bilaterally implanted at differing ages. The participants filled out a questionnaire dealing with their functioning in the educational setting, their social preferences and functioning, and their identity as hearing or deaf. The results were analyzed using the principles of thematic analysis. At school, some reported better achievements than others but they all expressed some difficulty functioning in class mainly in situations involving several speakers. From a social point of view, some reported a preference for association with normal hearing peers, whereas others favored hard-of-hearing friends, and one had no preference. Of those who touched on the topic of self-identity, one referred to herself as deaf, eight defined themselves as hard-of-hearing, and two consider themselves hearing. From the responses of these teenagers, it is clear that adolescents with cochlear implants are a heterogeneous group. Parents and teachers should be aware that adolescents with implants, even when successful academically, may experience difficulties in the classroom setting. Most of the participants in this study learning in a mainstream setting, preferred social relationships with hearing peers (to hard of hearing/deaf). The responses of these adolescents with cochlear implants support the conjecture that they have both a hearing identity and a deaf identity, which may be expressed at varying intensities depending on the situation at the time. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Cochlear perfusion with a viscous fluid.
Wang, Yi; Olson, Elizabeth S
2016-07-01
The flow of viscous fluid in the cochlea induces shear forces, which could provide benefit in clinical practice, for example to guide cochlear implant insertion or produce static pressure to the cochlear partition or wall. From a research standpoint, studying the effects of a viscous fluid in the cochlea provides data for better understanding cochlear fluid mechanics. However, cochlear perfusion with a viscous fluid may damage the cochlea. In this work we studied the physiological and anatomical effects of perfusing the cochlea with a viscous fluid. Gerbil cochleae were perfused at a rate of 2.4 μL/min with artificial perilymph (AP) and sodium hyaluronate (Healon, HA) in four different concentrations (0.0625%, 0.125%, 0.25%, 0.5%). The different HA concentrations were applied either sequentially in the same cochlea or individually in different cochleae. The perfusion fluid entered from the round window and was withdrawn from basal scala vestibuli, in order to perfuse the entire perilymphatic space. Compound action potentials (CAP) were measured after each perfusion. After perfusion with increasing concentrations of HA in the order of increasing viscosity, the CAP thresholds generally increased. The threshold elevation after AP and 0.0625% HA perfusion was small or almost zero, and the 0.125% HA was a borderline case, while the higher concentrations significantly elevated CAP thresholds. Histology of the cochleae perfused with the 0.0625% HA showed an intact Reissner's membrane (RM), while in cochleae perfused with 0.125% and 0.25% HA RM was torn. Thus, the CAP threshold elevation was likely due to the broken RM, likely caused by the shear stress produced by the flow of the viscous fluid. Our results and analysis indicate that the cochlea can sustain, without a significant CAP threshold shift, up to a 1.5 Pa shear stress. Beside these finding, in the 0.125% and 0.25% HA perfusion cases, a temporary CAP threshold shift was observed, perhaps due to the presence and then clearance of viscous fluid within the cochlea, or to a temporary position shift of the Organ of Corti. After 0.5% HA perfusion, a short latency positive peak (P0) appeared in the CAP waveform. This P0 might be due to a change in the cochlea's traveling-wave pattern, or distortion in the cochlear microphonic. Copyright © 2016 Elsevier B.V. All rights reserved.
Cochlear perfusion with a viscous fluid
Wang, Yi; Olson, Elizabeth S.
2016-01-01
The flow of viscous fluid in the cochlea induces shear forces, which could provide benefit in clinical practice, for example to guide cochlear implant insertion or produce static pressure to the cochlear partition or wall. From a research standpoint, studying the effects of a viscous fluid in the cochlea provides data for better understanding cochlear fluid mechanics. However, cochlear perfusion with a viscous fluid may damage the cochlea. In this work we studied the physiological and anatomical effects of perfusing the cochlea with a viscous fluid. Gerbil cochleae were perfused at a rate of 2.4 μL/min with artificial perilymph (AP) and sodium hyaluronate (Healon, HA) in four different concentrations (0.0625%, 0.125%, 0.25%, 0.5%). The different HA concentrations were applied either sequentially in the same cochlea or individually in different cochleae. The perfusion fluid entered from the round window and was withdrawnfrom basal scala vestibuli, in order to perfuse the entire perilymphatic space. Compound action potentials (CAP) were measured after each perfusion. After perfusion with increasing concentrations of HA in the order of increasing viscosity, the CAP thresholds generally increased. The threshold elevation after AP and 0.0625% HA perfusion was small or almost zero, and the 0.125% HA was a borderline case, while the higher concentrations significantly elevated CAP thresholds. Histology of the cochleae perfused with the 0.0625% HA showed an intact Reissner’s membrane, while in cochleae perfused with 0.125% and 0.25% HA Reissner’s membrane (RM) was torn. Thus, the CAP threshold elevation was likely due to the broken of RM, which likely caused by the shear stress produced by the flow of the viscous fluid. Our results and analysis indicate that the cochlea can sustain, without a significant CAP threshold shift, up to a 1.5 Pa shear stress. Beside these finding, in the 0.125% and 0.25% HA perfusion cases, a temporary CAP threshold shift was observed, perhaps due to the presence and then clearance of viscous fluid within the cochlea, or to a temporary position shift of the Organ of Corti. After 0.5% HA perfusion, a short latency positive peak (P0) appeared in the CAP wavefrom. This P0 might be due to a change in the cochlea’s traveling-wave pattern, or distortion in the cochlear microphonic. PMID:27220484
Bharadwaj, Sneha V; Maricle, Denise; Green, Laura; Allman, Tamby
2015-10-01
The objective of the study was to examine short-term memory and working memory through both visual and auditory tasks in school-age children with cochlear implants. The relationship between the performance on these cognitive skills and reading as well as language outcomes were examined in these children. Ten children between the ages of 7 and 11 years with early-onset bilateral severe-profound hearing loss participated in the study. Auditory and visual short-term memory, auditory and visual working memory subtests and verbal knowledge measures were assessed using the Woodcock Johnson III Tests of Cognitive Abilities, the Wechsler Intelligence Scale for Children-IV Integrated and the Kaufman Assessment Battery for Children II. Reading outcomes were assessed using the Woodcock Reading Mastery Test III. Performance on visual short-term memory and visual working memory measures in children with cochlear implants was within the average range when compared to the normative mean. However, auditory short-term memory and auditory working memory measures were below average when compared to the normative mean. Performance was also below average on all verbal knowledge measures. Regarding reading outcomes, children with cochlear implants scored below average for listening and passage comprehension tasks and these measures were positively correlated to visual short-term memory, visual working memory and auditory short-term memory. Performance on auditory working memory subtests was not related to reading or language outcomes. The children with cochlear implants in this study demonstrated better performance in visual (spatial) working memory and short-term memory skills than in auditory working memory and auditory short-term memory skills. Significant positive relationships were found between visual working memory and reading outcomes. The results of the study provide support for the idea that WM capacity is modality specific in children with hearing loss. Based on these findings, reading instruction that capitalizes on the strengths in visual short-term memory and working memory is suggested for young children with early-onset hearing loss. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Staisloff, Hannah E; Lee, Daniel H; Aronoff, Justin M
2016-07-01
For bilateral cochlear implant users, the left and right arrays are typically not physically aligned, resulting in a degradation of binaural fusion, which can be detrimental to binaural abilities. Perceptually aligning the two arrays can be accomplished by disabling electrodes in one ear that do not have a perceptually corresponding electrode in the other side. However, disabling electrodes at the edges of the array will cause compression of the input frequency range into a smaller cochlear extent, which may result in reduced spectral resolution. An alternative approach to overcome this mismatch would be to only align one edge of the array. By aligning either only the apical or basal end of the arrays, fewer electrodes would be disabled, potentially causing less reduction in spectral resolution. The goal of this study was to determine the relative effect of aligning either the basal or apical end of the electrode with regards to binaural fusion. A vocoder was used to simulate cochlear implant listening conditions in normal hearing listeners. Speech signals were vocoded such that the two ears were either predominantly aligned at only the basal or apical end of the simulated arrays. The experiment was then repeated with a spectrally inverted vocoder to determine whether the detrimental effects on fusion were related to the spectral-temporal characteristics of the stimuli or the location in the cochlea where the misalignment occurred. In Experiment 1, aligning the basal portion of the simulated arrays led to significantly less binaural fusion than aligning the apical portions of the simulated array. However, when the input was spectrally inverted, aligning the apical portion of the simulated array led to significantly less binaural fusion than aligning the basal portions of the simulated arrays. These results suggest that, for speech, with its predominantly low frequency spectral-temporal modulations, it is more important to perceptually align the apical portion of the array to better preserve binaural fusion. By partially aligning these arrays, cochlear implant users could potentially increase their ability to fuse speech sounds presented to the two ears while maximizing spectral resolution. Copyright © 2016 Elsevier B.V. All rights reserved.
Mahon, M; Vickers, D; McCarthy, K; Barker, R; Merritt, R; Szagun, G; Mann, W; Rajput, K
2011-05-01
A 5-year retrospective audit of demographic, audiological, and other records of 147 children implanted at one London centre was conducted. The aim was to detail the number of children implanted, with a specific focus on children from families with English as an additional language (EAL), and to compare these children with children from monolingual English-speaking families on a variety of characteristics known to affect paediatric cochlear implant outcomes. In all, 28% of children were from families where English is an additional language, with 15 different languages recorded. There were no differences between EAL and English-speaking children with respect to age of implantation; bilateral versus unilateral implants or hearing levels in better ear. There were differences between these groups in aetiology, in the occurrence of additional needs, and in educational placements. Information about speech and language outcomes was difficult to gather. Conclusions indicate the need for more detailed record-keeping especially about children's home languages for purposes of planning intervention and for the inclusion of children with EAL in future studies.
Sensory integration functions of children with cochlear implants.
Koester, AnjaLi Carrasco; Mailloux, Zoe; Coleman, Gina Geppert; Mori, Annie Baltazar; Paul, Steven M; Blanche, Erna; Muhs, Jill A; Lim, Deborah; Cermak, Sharon A
2014-01-01
OBJECTIVE. We investigated sensory integration (SI) function in children with cochlear implants (CIs). METHOD. We analyzed deidentified records from 49 children ages 7 mo to 83 mo with CIs. Records included Sensory Integration and Praxis Tests (SIPT), Sensory Processing Measure (SPM), Sensory Profile (SP), Developmental Profile 3 (DP-3), and Peabody Developmental Motor Scales (PDMS), with scores depending on participants' ages. We compared scores with normative population mean scores and with previously identified patterns of SI dysfunction. RESULTS. One-sample t tests revealed significant differences between children with CIs and the normative population on the majority of the SIPT items associated with the vestibular and proprioceptive bilateral integration and sequencing (VPBIS) pattern. Available scores for children with CIs on the SPM, SP, DP-3, and PDMS indicated generally typical ratings. CONCLUSION. SIPT scores in a sample of children with CIs reflected the VPBIS pattern of SI dysfunction, demonstrating the need for further examination of SI functions in children with CIs during occupational therapy assessment and intervention planning. Copyright © 2014 by the American Occupational Therapy Association, Inc.
Most, Tova; Gaon-Sivan, Gal; Shpak, Talma; Luntz, Michal
2012-01-01
Binaural hearing in cochlear implant (CI) users can be achieved either by bilateral implantation or bimodally with a contralateral hearing aid (HA). Binaural-bimodal hearing has the advantage of complementing the high-frequency electric information from the CI by low-frequency acoustic information from the HA. We examined the contribution of a contralateral HA in 25 adult implantees to their perception of fundamental frequency-cued speech characteristics (initial consonant voicing, intonation, and emotions). Testing with CI alone, HA alone, and bimodal hearing showed that all three characteristics were best perceived under the bimodal condition. Significant differences were recorded between bimodal and HA conditions in the initial voicing test, between bimodal and CI conditions in the intonation test, and between both bimodal and CI conditions and between bimodal and HA conditions in the emotion-in-speech test. These findings confirmed that such binaural-bimodal hearing enhances perception of these speech characteristics and suggest that implantees with residual hearing in the contralateral ear may benefit from a HA in that ear.
2013-01-01
Children with severe hearing loss most likely receive the greatest benefit from a cochlear implant (CI) when implanted at less than 2 years of age. Children with a hearing loss may also benefit greater from binaural sensory stimulation. Four children who received their first CI under 12 months of age were included in this study. Effects on auditory development were determined using the German LittlEARS Auditory Questionnaire, closed- and open-set monosyllabic word tests, aided free-field, the Mainzer and Göttinger speech discrimination tests, Monosyllabic-Trochee-Polysyllabic (MTP), and Listening Progress Profile (LiP). Speech production and grammar development were evaluated using a German language speech development test (SETK), reception of grammar test (TROG-D) and active vocabulary test (AWST-R). The data showed that children implanted under 12 months of age reached open-set monosyllabic word discrimination at an age of 24 months. LiP results improved over time, and children recognized 100% of words in the MTP test after 12 months. All children performed as well as or better than their hearing peers in speech production and grammar development. SETK showed that the speech development of these children was in general age appropriate. The data suggests that early hearing loss intervention benefits speech and language development and supports the trend towards early cochlear implantation. Furthermore, the data emphasizes the potential benefits associated with bilateral implantation. PMID:23509653
May-Mederake, Birgit; Shehata-Dieler, Wafaa
2013-01-01
Children with severe hearing loss most likely receive the greatest benefit from a cochlear implant (CI) when implanted at less than 2 years of age. Children with a hearing loss may also benefit greater from binaural sensory stimulation. Four children who received their first CI under 12 months of age were included in this study. Effects on auditory development were determined using the German LittlEARS Auditory Questionnaire, closed- and open-set monosyllabic word tests, aided free-field, the Mainzer and Göttinger speech discrimination tests, Monosyllabic-Trochee-Polysyllabic (MTP), and Listening Progress Profile (LiP). Speech production and grammar development were evaluated using a German language speech development test (SETK), reception of grammar test (TROG-D) and active vocabulary test (AWST-R). The data showed that children implanted under 12 months of age reached open-set monosyllabic word discrimination at an age of 24 months. LiP results improved over time, and children recognized 100% of words in the MTP test after 12 months. All children performed as well as or better than their hearing peers in speech production and grammar development. SETK showed that the speech development of these children was in general age appropriate. The data suggests that early hearing loss intervention benefits speech and language development and supports the trend towards early cochlear implantation. Furthermore, the data emphasizes the potential benefits associated with bilateral implantation.
Davidson, Lisa S; Geers, Ann E; Brenner, Christine
2010-10-01
Updated cochlear implant technology and optimized fitting can have a substantial impact on speech perception. The effects of upgrades in processor technology and aided thresholds on word recognition at soft input levels and sentence recognition in noise were examined. We hypothesized that updated speech processors and lower aided thresholds would allow improved recognition of soft speech without compromising performance in noise. 109 teenagers who had used a Nucleus 22-cochlear implant since preschool were tested with their current speech processor(s) (101 unilateral and 8 bilateral): 13 used the Spectra, 22 the ESPrit 22, 61 the ESPrit 3G, and 13 the Freedom. The Lexical Neighborhood Test (LNT) was administered at 70 and 50 dB SPL and the Bamford Kowal Bench sentences were administered in quiet and in noise. Aided thresholds were obtained for frequency-modulated tones from 250 to 4,000 Hz. Results were analyzed using repeated measures analysis of variance. Aided thresholds for the Freedom/3G group were significantly lower (better) than the Spectra/Sprint group. LNT scores at 50 dB were significantly higher for the Freedom/3G group. No significant differences between the 2 groups were found for the LNT at 70 or sentences in quiet or noise. Adolescents using updated processors that allowed for aided detection thresholds of 30 dB HL or better performed the best at soft levels. The BKB in noise results suggest that greater access to soft speech does not compromise listening in noise.
Zeitooni, Mehrnaz; Mäki-Torkko, Elina; Stenfelt, Stefan
The purpose of this study is to evaluate binaural hearing ability in adults with normal hearing when bone conduction (BC) stimulation is bilaterally applied at the bone conduction hearing aid (BCHA) implant position as well as at the audiometric position on the mastoid. The results with BC stimulation are compared with bilateral air conduction (AC) stimulation through earphones. Binaural hearing ability is investigated with tests of spatial release from masking and binaural intelligibility level difference using sentence material, binaural masking level difference with tonal chirp stimulation, and precedence effect using noise stimulus. In all tests, results with bilateral BC stimulation at the BCHA position illustrate an ability to extract binaural cues similar to BC stimulation at the mastoid position. The binaural benefit is overall greater with AC stimulation than BC stimulation at both positions. The binaural benefit for BC stimulation at the mastoid and BCHA position is approximately half in terms of decibels compared with AC stimulation in the speech based tests (spatial release from masking and binaural intelligibility level difference). For binaural masking level difference, the binaural benefit for the two BC positions with chirp signal phase inversion is approximately twice the benefit with inverted phase of the noise. The precedence effect results with BC stimulation at the mastoid and BCHA position are similar for low frequency noise stimulation but differ with high-frequency noise stimulation. The results confirm that binaural hearing processing with bilateral BC stimulation at the mastoid position is also present at the BCHA implant position. This indicates the ability for binaural hearing in patients with good cochlear function when using bilateral BCHAs.
Dotan, Gad; Kesler, Anat; Naftaliev, Elvira; Skarf, Barry
2015-05-01
To report on the correlation of structural damage to the axons of the optic nerve and visual outcome following bilateral non-arteritic anterior ischemic optic neuropathy. A retrospective review of the medical records of 25 patients with bilateral sequential non-arteritic anterior ischemic optic neuropathy was performed. Outcome measures were peripapillary retinal nerve fiber layer thickness measured with the Stratus optical coherence tomography scanner, visual acuity and visual field loss. Median peripapillary retinal nerve fiber layer (RNFL) thickness, mean deviation (MD) of visual field, and visual acuity of initially involved NAION eyes (54.00 µm, -17.77 decibels (dB), 0.4, respectively) were comparable to the same parameters measured following development of second NAION event in the other eye (53.70 µm, p = 0.740; -16.83 dB, p = 0.692; 0.4, p = 0.942, respectively). In patients with bilateral NAION, there was a significant correlation of peripapillary RNFL thickness (r = 0.583, p = 0.002) and MD of the visual field (r = 0.457, p = 0.042) for the pairs of affected eyes, whereas a poor correlation was found in visual acuity of these eyes (r = 0.279, p = 0.176). Peripapillary RNFL thickness following NAION was positively correlated with MD of visual field (r = 0.312, p = 0.043) and negatively correlated with logMAR visual acuity (r = -0.365, p = 0.009). In patients who experience bilateral NAION, the magnitude of RNFL loss is similar in each eye. There is a greater similarity in visual field loss than in visual acuity between the two affected eyes with NAION of the same individual.
Reducing interaction in simultaneous paired stimulation with CI.
Vellinga, Dirk; Bruijn, Saskia; Briaire, Jeroen J; Kalkman, Randy K; Frijns, Johan H M
2017-01-01
In this study simultaneous paired stimulation of electrodes in cochlear implants is investigated by psychophysical experiments in 8 post-lingually deaf subjects (and one extra subject who only participated in part of the experiments). Simultaneous and sequential monopolar stimulation modes are used as references and are compared to channel interaction compensation, partial tripolar stimulation and a novel sequential stimulation strategy named phased array compensation. Psychophysical experiments are performed to investigate both the loudness integration during paired stimulation at the main electrodes as well as the interaction with the electrode contact located halfway between the stimulating pair. The study shows that simultaneous monopolar stimulation has more loudness integration on the main electrodes and more interaction in between the electrodes than sequential stimulation. Channel interaction compensation works to reduce the loudness integration at the main electrodes, but does not reduce the interaction in between the electrodes caused by paired stimulation. Partial tripolar stimulation uses much more current to reach the needed loudness, but shows the same interaction in between the electrodes as sequential monopolar stimulation. In phased array compensation we have used the individual impedance matrix of each subject to calculate the current needed on each electrode to exactly match the stimulation voltage along the array to that of sequential stimulation. The results show that the interaction in between the electrodes is the same as monopolar stimulation. The strategy uses less current than partial tripolar stimulation, but more than monopolar stimulation. In conclusion, the paper shows that paired stimulation is possible if the interaction is compensated.
Carlson, Matthew L; Sladen, Douglas P; Gurgel, Richard K; Tombers, Nicole M; Lohse, Christine M; Driscoll, Colin L
2018-01-01
To examine practice variance of cochlear implant candidacy assessment and off-label indications across centers in the United States. Cross-sectional survey of the American Neurotology Society (ANS). A total of 81 surveys were returned from ANS members who report regular involvement in cochlear implant care. Overall there was a broad distribution in age and clinical experience, with most respondents reporting ACGME accreditation in neurotology and employment at an academic center. The annual volume of cochlear implant surgeries varied considerably across centers.Seventy-eight percent of respondents performed cochlear implantation for at least one of the following indications within the last 2 years: profound hearing loss in children less than 12 months of age (35, 43%), children with asymmetrical hearing loss where at least one ear was better than performance cutoff for age (25, 31%), adults with asymmetrical hearing where at least one ear was better than the performance cutoff for adult criteria (49, 61%), single-sided deafness (37, 46%), and ipsilateral vestibular schwannoma (28, 35%). Centers with a higher annual implant volume more frequently performed off-label implantation in all queried populations (all, p≤0.001), and performed surgery on infants with congenital deafness at a younger age (p = 0.013), compared with centers with lower surgical volume.When surveyed regarding speech perception testing practices for adult candidacy assessment, 75 (100%) respondents who answered this question reported routine use of AzBio sentences, 42 (56%) CNC word scores, and 26 (35%) HINT testing; only 7 (9%) reported using BKB-SIN testing and 6 (8%) reported using CUNY scores. Fifty-one (68%) reported routine use of speech-in-noise testing to determine adult cochlear implant candidacy, 21 (28%) reported selective use only when patient scores were borderline in quiet, and 3 (4%) reported that their center does not currently use testing in noise for candidacy determination. Nineteen (26%) solely used +10 dB signal-to-noise ratio (SNR), 12 (16%) solely used +5 dB SNR, and 41 (55%) used both +10 and +5 dB SNR. Overall, 19% (N = 14) only perform unilateral implantation in the Medicare population, while 81% (N = 58) consider bilateral implantation. Significant variation in cochlear implant candidacy assessment and off-label implantation exists across centers and providers in the United States resulting in healthcare inequities. The high percentage of surgeons performing implantations for off-label or nontraditional indications reflects the overly restrictive and dated status of current implant guidelines. With greater adoption of more difficult speech perception testing in noise, careful clinical judgment is needed to maintain a favorable risk-benefit balance for prospective implant candidates.
Lamotrigine-induced tubulointerstitial nephritis and uveitis-atypical Cogan syndrome.
Kolomeyer, Anton M; Kodati, Shyam
2015-12-01
To report a case of lamotrigine-induced tubulointerstitial nephritis and uveitis (TINU)-atypical Cogan syndrome. Case report. A 16-year-old boy with traumatic brain injury and seizures presented to the emergency department with facial swelling, rash, and back pain several days after increasing lamotrigine dose secondary to a breakthrough seizure. Creatinine, urine β2 microglobulin, and eosinophils were elevated. Antinuclear antibodies, antineutrophil cytoplasmic antibodies, angiotensin-converting enzyme, and complement were normal. Renal biopsy showed acute granulomatous tubulointerstitial nephritis. Lamotrigine was discontinued, intravenous steroids were initiated, and the patient was discharged on Ativan and prednisone. Subsequently, he was diagnosed with bilateral anterior uveitis (vision 20/30 bilaterally) and started on prednisolone and cyclopentolate. Two months later, he developed a branch retinal artery occlusion in the right eye (vision 20/70) and bilateral ocular hypertension for which timolol-brimonidine and dorzolamide were added. Neuroimaging and hypercoagulability workup was unremarkable. Vision and intraocular pressure improved, while uveitis remained recalcitrant. Several months later, the patient developed central serous retinopathy in the right eye (vision 20/30). Prednisone was stopped but restarted due to methotrexate intolerance. A month later, he reported dizziness and was diagnosed with severe bilateral sensorineural hearing loss. Brain magnetic resonance imaging showed foci of perivascular, subcortical, and cochlear enhancement. Transtympanic Decadron injections and infliximab infusions were initiated. At the final visit, vision remained at 20/30 with trace anterior chamber reaction bilaterally while on timolol-brimonidine, dorzolamide, and prednisolone. An idiosyncratic drug reaction should be considered in the differential diagnosis of TINU-atypical Cogan syndrome.
Bilingualism modulates the white matter structure of language-related pathways.
Hämäläinen, Sini; Sairanen, Viljami; Leminen, Alina; Lehtonen, Minna
2017-05-15
Learning and speaking a second language (L2) may result in profound changes in the human brain. Here, we investigated local structural differences along two language-related white matter trajectories, the arcuate fasciculus and the inferior fronto-occipital fasciculus (IFOF), between early simultaneous bilinguals and late sequential bilinguals. We also examined whether early exposure to two languages might lead to a more bilateral structural organization of the arcuate fasciculus. Fractional anisotropy, mean and radial diffusivities (FA, MD, and RD respectively) were extracted to analyse tract-specific changes. Additionally, global voxel-wise effects were investigated with Tract-Based Spatial Statistics (TBSS). We found that relative to late exposure, early exposure to L2 leads to increased FA along a phonology-related segment of the arcuate fasciculus, but induces no modulations along the IFOF, associated to semantic processing. Late sequential bilingualism, however, was associated with decreased MD along the bilateral IFOF. Our results suggest that early vs. late bilingualism may lead to qualitatively different kind of changes in the structural language-related network. Furthermore, we show that early bilingualism contributes to the structural laterality of the arcuate fasciculus, leading to a more bilateral organization of these perisylvian language-related tracts. Copyright © 2017 Elsevier Inc. All rights reserved.
Hearing history influences voice gender perceptual performance in cochlear implant users.
Kovačić, Damir; Balaban, Evan
2010-12-01
The study was carried out to assess the role that five hearing history variables (chronological age, age at onset of deafness, age of first cochlear implant [CI] activation, duration of CI use, and duration of known deafness) play in the ability of CI users to identify speaker gender. Forty-one juvenile CI users participated in two voice gender identification tasks. In a fixed, single-interval task, subjects listened to a single speech item from one of 20 adult male or 20 adult female speakers and had to identify speaker gender. In an adaptive speech-based voice gender discrimination task with the fundamental frequency difference between the voices as the adaptive parameter, subjects listened to a pair of speech items presented in sequential order, one of which was always spoken by an adult female and the other by an adult male. Subjects had to identify the speech item spoken by the female voice. Correlation and regression analyses between perceptual scores in the two tasks and the hearing history variables were performed. Subjects fell into three performance groups: (1) those who could distinguish voice gender in both tasks, (2) those who could distinguish voice gender in the adaptive but not the fixed task, and (3) those who could not distinguish voice gender in either task. Gender identification performance for single voices in the fixed task was significantly and negatively related to the duration of deafness before cochlear implantation (shorter deafness yielded better performance), whereas performance in the adaptive task was weakly but significantly related to age at first activation of the CI device, with earlier activations yielding better scores. The existence of a group of subjects able to perform adaptive discrimination but unable to identify the gender of singly presented voices demonstrates the potential dissociability of the skills required for these two tasks, suggesting that duration of deafness and age of cochlear implantation could have dissociable effects on the development of different skills required by CI users to identify speaker gender.
Cochlear implants: a remarkable past and a brilliant future
Wilson, Blake S.; Dorman, Michael F.
2013-01-01
The aims of this paper are to (i) provide a brief history of cochlear implants; (ii) present a status report on the current state of implant engineering and the levels of speech understanding enabled by that engineering; (iii) describe limitations of current signal processing strategies and (iv) suggest new directions for research. With current technology the “average” implant patient, when listening to predictable conversations in quiet, is able to communicate with relative ease. However, in an environment typical of a workplace the average patient has a great deal of difficulty. Patients who are “above average” in terms of speech understanding, can achieve 100% correct scores on the most difficult tests of speech understanding in quiet but also have significant difficulty when signals are presented in noise. The major factors in these outcomes appear to be (i) a loss of low-frequency, fine structure information possibly due to the envelope extraction algorithms common to cochlear implant signal processing; (ii) a limitation in the number of effective channels of stimulation due to overlap in electric fields from electrodes, and (iii) central processing deficits, especially for patients with poor speech understanding. Two recent developments, bilateral implants and combined electric and acoustic stimulation, have promise to remediate some of the difficulties experienced by patients in noise and to reinstate low-frequency fine structure information. If other possibilities are realized, e.g., electrodes that emit drugs to inhibit cell death following trauma and to induce the growth of neurites toward electrodes, then the future is very bright indeed. PMID:18616994
Children with bilateral cochlear implants identify emotion in speech and music.
Volkova, Anna; Trehub, Sandra E; Schellenberg, E Glenn; Papsin, Blake C; Gordon, Karen A
2013-03-01
This study examined the ability of prelingually deaf children with bilateral implants to identify emotion (i.e. happiness or sadness) in speech and music. Participants in Experiment 1 were 14 prelingually deaf children from 5-7 years of age who had bilateral implants and 18 normally hearing children from 4-6 years of age. They judged whether linguistically neutral utterances produced by a man and woman sounded happy or sad. Participants in Experiment 2 were 14 bilateral implant users from 4-6 years of age and the same normally hearing children as in Experiment 1. They judged whether synthesized piano excerpts sounded happy or sad. Child implant users' accuracy of identifying happiness and sadness in speech was well above chance levels but significantly below the accuracy achieved by children with normal hearing. Similarly, their accuracy of identifying happiness and sadness in music was well above chance levels but significantly below that of children with normal hearing, who performed at ceiling. For the 12 implant users who participated in both experiments, performance on the speech task correlated significantly with performance on the music task and implant experience was correlated with performance on both tasks. Child implant users' accurate identification of emotion in speech exceeded performance in previous studies, which may be attributable to fewer response alternatives and the use of child-directed speech. Moreover, child implant users' successful identification of emotion in music indicates that the relevant cues are accessible at a relatively young age.
Bilateral aldosterone-producing adenomas: differentiation from bilateral adrenal hyperplasia.
Wu, V C; Chueh, S C; Chang, H W; Lin, W C; Liu, K L; Li, H Y; Lin, Y H; Wu, K D; Hsieh, B S
2008-01-01
Primary aldosteronism (PA) is a common curable disease of secondary hypertension. Most such patients have either idiopathic bilateral adrenal hyperplasia (BAH) or unilateral aldosterone-producing adenoma (APA). Bilateral APAs are reportedly extremely rare. To compare the distinctive characteristics, clinical course, and outcomes of bilateral APA vs. BAH. Retrospective record review. From July 1994 to Jan 2007, 190 patients diagnosed with PA underwent surgical intervention at our hospital. Bilateral APA was diagnosed in 7/164 patients with histologically-proven APA. Twenty-one patients diagnosed as BAH, and 21 randomly selected of unilateral APA patients, matched by age and sex served as controls. Patients with bilateral APA had similar blood pressure, arterial blood gas analysis, spot urinary potassium to creatinine ratio and clinical symptoms to those with BAH, but lower serum potassium levels (p = 0.027), lower plasma renin activity (p = 0.037), and higher plasma aldosterone concentrations (p = 0.029). Aldosterone-renin ratio (ARR) after administration of 50 mg captopril was higher in bilateral APA than in BAH patients (p = 0.023), but not different between unilateral APA and BAH (p = 0.218). A cut-off of ARR >100 ng/dl per ng/ml/h and plasma aldosterone >20 ng/dl after captopril significantly differentiated bilateral APA from BAH. Bilateral subtotal adrenalectomy normalized blood pressure and biochemistry in all patients with bilateral APA. Bilateral APA, presenting simultaneously or sequentially, may not be a rare disease, accounting for 4.3% of APA in this sample. The clinical presentations of bilateral functional adenoma are not different from BAH, but patients with low serum potassium and ARR >100 after captopril should be carefully evaluated for bilateral adenoma.
Attias, Joseph; Greenstein, Tally; Peled, Miriam; Ulanovski, David; Wohlgelernter, Jay; Raveh, Eyal
The aim of the study was to compare auditory and speech outcomes and electrical parameters on average 8 years after cochlear implantation between children with isolated auditory neuropathy (AN) and children with sensorineural hearing loss (SNHL). The study was conducted at a tertiary, university-affiliated pediatric medical center. The cohort included 16 patients with isolated AN with current age of 5 to 12.2 years who had been using a cochlear implant for at least 3.4 years and 16 control patients with SNHL matched for duration of deafness, age at implantation, type of implant, and unilateral/bilateral implant placement. All participants had had extensive auditory rehabilitation before and after implantation, including the use of conventional hearing aids. Most patients received Cochlear Nucleus devices, and the remainder either Med-El or Advanced Bionics devices. Unaided pure-tone audiograms were evaluated before and after implantation. Implantation outcomes were assessed by auditory and speech recognition tests in quiet and in noise. Data were also collected on the educational setting at 1 year after implantation and at school age. The electrical stimulation measures were evaluated only in the Cochlear Nucleus implant recipients in the two groups. Similar mapping and electrical measurement techniques were used in the two groups. Electrical thresholds, comfortable level, dynamic range, and objective neural response telemetry threshold were measured across the 22-electrode array in each patient. Main outcome measures were between-group differences in the following parameters: (1) Auditory and speech tests. (2) Residual hearing. (3) Electrical stimulation parameters. (4) Correlations of residual hearing at low frequencies with electrical thresholds at the basal, middle, and apical electrodes. The children with isolated AN performed equally well to the children with SNHL on auditory and speech recognition tests in both quiet and noise. More children in the AN group than the SNHL group were attending mainstream educational settings at school age, but the difference was not statistically significant. Significant between-group differences were noted in electrical measurements: the AN group was characterized by a lower current charge to reach subjective electrical thresholds, lower comfortable level and dynamic range, and lower telemetric neural response threshold. Based on pure-tone audiograms, the children with AN also had more residual hearing before and after implantation. Highly positive coefficients were found on correlation analysis between T levels across the basal and midcochlear electrodes and low-frequency acoustic thresholds. Prelingual children with isolated AN who fail to show expected oral and auditory progress after extensive rehabilitation with conventional hearing aids should be considered for cochlear implantation. Children with isolated AN had similar pattern as children with SNHL on auditory performance tests after cochlear implantation. The lower current charge required to evoke subjective and objective electrical thresholds in children with AN compared with children with SNHL may be attributed to the contribution to electrophonic hearing from the remaining neurons and hair cells. In addition, it is also possible that mechanical stimulation of the basilar membrane, as in acoustic stimulation, is added to the electrical stimulation of the cochlear implant.
Sequential motion of the ossicular chain measured by laser Doppler vibrometry.
Kunimoto, Yasuomi; Hasegawa, Kensaku; Arii, Shiro; Kataoka, Hideyuki; Yazama, Hiroaki; Kuya, Junko; Fujiwara, Kazunori; Takeuchi, Hiromi
2017-12-01
In order to help a surgeon make the best decision, a more objective method of measuring ossicular motion is required. A laser Doppler vibrometer was mounted on a surgical microscope. To measure ossicular chain vibrations, eight patients with cochlear implants were investigated. To assess the motions of the ossicular chain, velocities at five points were measured with tonal stimuli of 1 and 3 kHz, which yielded reproducible results. The sequential amplitude change at each point was calculated with phase shifting from the tonal stimulus. Motion of the ossicular chain was visualized from the averaged results using the graphics application. The head of the malleus and the body of the incus showed synchronized movement as one unit. In contrast, the stapes (incudostapedial joint and posterior crus) moved synchronously in opposite phase to the malleus and incus. The amplitudes at 1 kHz were almost twice those at 3 kHz. Our results show that the malleus and incus unit and the stapes move with a phase difference.
Guillen-Ahlers, Hector; Erbe, Christy B; Chevalier, Frédéric D; Montoya, Maria J; Zimmerman, Kip D; Langefeld, Carl D; Olivier, Michael; Runge, Christina L
2018-04-19
Sensorineural hearing loss (SNHL) is a common form of hearing loss that can be inherited or triggered by environmental insults; auditory neuropathy spectrum disorder (ANSD) is a SNHL subtype with unique diagnostic criteria. The genetic factors associated with these impairments are vast and diverse, but causal genetic factors are rarely characterized. A family dyad, both cochlear implant recipients, presented with a hearing history of bilateral, progressive SNHL, and ANSD. Whole-exome sequencing was performed to identify coding sequence variants shared by both family members, and screened against genes relevant to hearing loss and variants known to be associated with SNHL and ANSD. Both family members are successful cochlear implant users, demonstrating effective auditory nerve stimulation with their devices. Genetic analyses revealed a mutation (rs35725509) in the TMTC2 gene, which has been reported previously as a likely genetic cause of SNHL in another family of Northern European descent. This study represents the first confirmation of the rs35725509 variant in an independent family as a likely cause for the complex hearing loss phenotype (SNHL and ANSD) observed in this family dyad. © 2018 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.
Emotional Perception of Music in Children With Bimodal Fitting and Unilateral Cochlear Implant.
Shirvani, Sareh; Jafari, Zahra; Motasaddi Zarandi, Masoud; Jalaie, Shohre; Mohagheghi, Hamed; Tale, Mohammad Reza
2016-06-01
Biological, structural, and acoustical constraints faced by cochlear implant (CI) users can alter the perception of music. Bimodal fitting not only provides bilateral hearing but can also improve auditory skills. This study was conducted to assess the impact of this amplification style on the emotional perception of music among children with hearing loss (HL). Twenty-five children with congenital severe to profound HL and unilateral CIs, 20 children with bimodal fitting, and 30 children with normal hearing participated in this study. Their emotional perceptions of music were measured using a method where children indicated happy or sad feelings induced by music by pointing to pictures of faces showing these emotions. Children with bimodal fitting obtained significantly higher mean scores than children with unilateral CIs for both happy and sad music items and in overall test scores (P < .001). Both groups with HL obtained significantly lower scores than children with normal hearing (P < .001). Bimodal fitting results in a better emotional perception of music compared to unilateral CI. Given the influence of music in neurological and linguistic development and social interactions, it is important to evaluate the possible benefits of bimodal fitting prescriptions for individuals with unilateral CIs. © The Author(s) 2015.
Functional outcomes of simultaneous bilateral versus unilateral total knee arthroplasty.
Bagsby, Deren; Pierson, Jeffery L
2015-01-01
Many patients in need of total knee arthroplasty (TKA) have bilateral symptoms and require surgery to both extremities. Performance of a bilateral procedure under a single anesthetic provides a reduced hospitalization time, an isolated anesthesia risk, a single rehabilitation, and substantial cost savings. While most current research examines postoperative complication rates, the primary purpose of TKA is the alleviation of pain and improved quality of life. The purpose of this study was to assess pain and functional outcomes associated with simultaneous bilateral TKA. The authors believe that patients with advanced destructive arthritis to numerous joints cannot achieve complete restoration of their functional status until comprehensive treatment of their disease process occurs. A retrospective review of 697 TKAs in 511 consecutive patients with bilateral knee arthritis was performed. Patients underwent either simultaneous bilateral TKA (n=186), performed sequentially under the same anesthetic, or unilateral TKA (n=325). The same intra- and postoperative protocols were followed in each group. There was no statistically significant difference in postoperative pain, represented by Knee Society Score (P=.161). However, there was a significantly higher postoperative functional outcomes-including increased total range of motion (P=.001), flexion (P=.003), and function score (P<.001)-associated with bilateral TKA. Simultaneous bilateral TKA is an effective treatment option and may be worth possible added risk in appropriate patients because it produces a better functional outcome. Copyright 2015, SLACK Incorporated.
Neben, Nicole; Lenarz, Thomas; Schuessler, Mark; Harpel, Theo; Buechner, Andreas
2013-05-01
Results for speech recognition in noise tests when using a new research coding strategy designed to introduce the virtual channel effect provided no advantage over MP3(000™). Although statistically significant smaller just noticeable differences (JNDs) were obtained, the findings for pitch ranking proved to have little clinical impact. The aim of this study was to explore whether modifications to MP3000 by including sequential virtual channel stimulation would lead to further improvements in hearing, particularly for speech recognition in background noise and in competing-talker conditions, and to compare results for pitch perception and melody recognition, as well as informally collect subjective impressions on strategy preference. Nine experienced cochlear implant subjects were recruited for the prospective study. Two variants of the experimental strategy were compared to MP3000. The study design was a single-blinded ABCCBA cross-over trial paradigm with 3 weeks of take-home experience for each user condition. Comparing results of pitch-ranking, a significantly reduced JND was identified. No significant effect of coding strategy on speech understanding in noise or competing-talker materials was found. Melody recognition skills were the same under all user conditions.
Progressive Susac syndrome with bilateral visual loss and disability.
Entezari, Morteza; Karimi, Saeed; Feizi, Mohammadali
2016-09-01
Susac syndrome (SS) is a rare retinal-cochlear-cerebral disease with an unclear etiology. A 35-year-old man presented with sudden painless vision loss in the right eye and 2 months later in the left eye with hemiparesis, behavioral changes, and hearing loss. Ophthalmic examinations revealed multiple branch retinal artery occlusions (BRAOs) in both eyes. Brain magnetic resonance imaging showed inflammatory changes with multiple "punched-out" lesions in the corpus callosum which confirmed the diagnosis of SS. Despite intravenous and oral corticosteroid therapy, the disease progressed with the development of new BRAOs, low vision in both eyes, and disability. Prompt diagnosis and early treatment may save the vision and even patient's life.
Majdak, Piotr; Laback, Bernhard; Baumgartner, Wolf-Dieter
2006-10-01
Bilateral cochlear implant (CI) listeners currently use stimulation strategies which encode interaural time differences (ITD) in the temporal envelope but which do not transmit ITD in the fine structure, due to the constant phase in the electric pulse train. To determine the utility of encoding ITD in the fine structure, ITD-based lateralization was investigated with four CI listeners and four normal hearing (NH) subjects listening to a simulation of electric stimulation. Lateralization discrimination was tested at different pulse rates for various combinations of independently controlled fine structure ITD and envelope ITD. Results for electric hearing show that the fine structure ITD had the strongest impact on lateralization at lower pulse rates, with significant effects for pulse rates up to 800 pulses per second. At higher pulse rates, lateralization discrimination depended solely on the envelope ITD. The data suggest that bilateral CI listeners benefit from transmitting fine structure ITD at lower pulse rates. However, there were strong interindividual differences: the better performing CI listeners performed comparably to the NH listeners.
The timing of language learning shapes brain structure associated with articulation.
Berken, Jonathan A; Gracco, Vincent L; Chen, Jen-Kai; Klein, Denise
2016-09-01
We compared the brain structure of highly proficient simultaneous (two languages from birth) and sequential (second language after age 5) bilinguals, who differed only in their degree of native-like accent, to determine how the brain develops when a skill is acquired from birth versus later in life. For the simultaneous bilinguals, gray matter density was increased in the left putamen, as well as in the left posterior insula, right dorsolateral prefrontal cortex, and left and right occipital cortex. For the sequential bilinguals, gray matter density was increased in the bilateral premotor cortex. Sequential bilinguals with better accents also showed greater gray matter density in the left putamen, and in several additional brain regions important for sensorimotor integration and speech-motor control. Our findings suggest that second language learning results in enhanced brain structure of specific brain areas, which depends on whether two languages are learned simultaneously or sequentially, and on the extent to which native-like proficiency is acquired.
Beeres-Scheenstra, Renske; Ohnsorg, Claudia; Candreia, Claudia; Heinzmann, Sybille; Castellanos, Susana; De Min, Nicola; Linder, Thomas E
2017-07-01
To evaluate foreign language acquisition at school in cochlear implant patients. Cohort study. CI center. Forty three cochlear implants (CI) patients (10-18 yr) were evaluated. CI nonusers and patients with CI-explantation, incomplete datasets, mental retardation, or concomitant medical disorders were excluded. Additional data (type of schooling, foreign language learning, and bilingualism) were obtained with questionnaires. German-speaking children with foreign tuition language (English and/or French) at school were enrolled for further testing. General patient data, auditory data, and foreign language data from both questionnaires and tests were collected and analyzed. Thirty seven out of 43 questionnaires (86%) were completed. Sixteen (43%) were in mainstream education. Twenty-seven CI users (73%) have foreign language learning at school. Fifteen of these were in mainstream education (55%), others in special schooling. From 10 CI users without foreign language learning, one CI user was in mainstream education (10%) and nine patients (90%) were in special schooling. Eleven German-speaking CI users were further tested in English and six additionally in French. For reading skills, the school objectives for English were reached in 7 of 11 pupils (64%) and for French in 3 of 6 pupils (50%). For listening skills, 3 of 11 pupils (27%) reached the school norm in English and none in French. Almost 75% of our CI users learn foreign language(s) at school. A small majority of the tested CI users reached the current school norm for in English and French in reading skills, whereas for hearing skills most of them were not able to reach the norm.
Distortion product otoacoustic emissions in college music majors and nonmusic majors
Henning, Rebecca L. Warner; Bobholz, Kate
2016-01-01
The presence and absence of distortion product otoacoustic emissions (DPOAEs) as well as DPOAE amplitudes were compared between college music majors and a control group of nonmusic majors. Participants included 28 music majors and 35 nonmusic majors enrolled at a university with ages ranging from 18-25 years. DPOAEs and hearing thresholds were measured bilaterally on all the participants. DPOAE amplitudes were analyzed at the following f2 frequencies: 1,187 Hz, 1,500 Hz, 1,906 Hz, 2,531 Hz, 3,031 Hz, 3812 Hz, 4,812 Hz, and 6,031 Hz. Significantly more music majors (7/28) than nonmusic majors (0/35) exhibited absent DPOAEs for at least one frequency in at least one ear. Both groups of students reported similar histories of recreational and occupational noise exposures that were unrelated to studying music, and none of the students reported high levels of noise exposure within the previous 48 h. There were no differences in audiometric thresholds between the groups at any frequency. At DPOAE f2 frequencies from 3,031 Hz to 6,031 Hz, nonsignificantly lower amplitudes of 2-4 dB were seen in the right ears of music majors versus nonmajors, and in the right ears of music majors playing brass instruments compared to music majors playing nonbrass instruments. Given the greater prevalence of absent DPOAEs in university music majors compared to nonmusic majors, it appears that early stages of cochlear damage may be occurring in this population. Additional research, preferably longitudinal and across multiple colleges/universities, would be beneficial to more definitively determine when the music students begin to show signs of cochlear damage, and to identify whether any particular subgroups of music majors are at a greater risk of cochlear damage. PMID:26780957
Distortion product otoacoustic emissions in college music majors and nonmusic majors.
Henning, Rebecca L Warner; Bobholz, Kate
2016-01-01
The presence and absence of distortion product otoacoustic emissions (DPOAEs) as well as DPOAE amplitudes were compared between college music majors and a control group of nonmusic majors. Participants included 28 music majors and 35 nonmusic majors enrolled at a university with ages ranging from 18-25 years. DPOAEs and hearing thresholds were measured bilaterally on all the participants. DPOAE amplitudes were analyzed at the following f2 frequencies: 1,187 Hz, 1,500 Hz, 1,906 Hz, 2,531 Hz, 3,031 Hz, 3812 Hz, 4,812 Hz, and 6,031 Hz. Significantly more music majors (7/28) than nonmusic majors (0/35) exhibited absent DPOAEs for at least one frequency in at least one ear. Both groups of students reported similar histories of recreational and occupational noise exposures that were unrelated to studying music, and none of the students reported high levels of noise exposure within the previous 48 h. There were no differences in audiometric thresholds between the groups at any frequency. At DPOAE f2 frequencies from 3,031 Hz to 6,031 Hz, nonsignificantly lower amplitudes of 2-4 dB were seen in the right ears of music majors versus nonmajors, and in the right ears of music majors playing brass instruments compared to music majors playing nonbrass instruments. Given the greater prevalence of absent DPOAEs in university music majors compared to nonmusic majors, it appears that early stages of cochlear damage may be occurring in this population. Additional research, preferably longitudinal and across multiple colleges/universities, would be beneficial to more definitively determine when the music students begin to show signs of cochlear damage, and to identify whether any particular subgroups of music majors are at a greater risk of cochlear damage.
Kumar, U Ajith; Maruthy, Sandeep; Chandrakant, Vishwakarma
2009-03-01
Distortion product otoacoustic emissions are one form of evoked otoacoustic emissions. DPOAEs provide the frequency specific information about the hearing status in mid and high frequency regions. But in most screening protocols TEOAEs are preferred as it requires less time compared to DPOAE. This is because, in DPOAE each stimulus is presented one after the other and responses are analyzed. Grason and Stadler Incorporation 60 (GSI-60) offer simultaneous presentation of four sets of primary tones at a time and checks for the DPOAE. In this mode of presentation, all the pairs are presented at a time and following that response is extracted separately whereas, in sequential mode primaries are presented in orderly fashion one after the other. In this article simultaneous and sequential protocols were used to compare the Distortion product otoacoustic emission amplitude, noise floor and administration time in individuals with normal hearing and mild sensori-neural (SN) hearing loss. In simultaneous protocols four sets of primary tones (i.e. 8 tones) were presented together whereas, in sequential presentation mode one set of primary tones was presented each time. Simultaneous protocol was completed in less than half the time required for the completion of sequential protocol. Two techniques yielded similar results at frequencies above 1000 Hz only in normal hearing group. In SN hearing loss group simultaneous presentation yielded signifi cantly higher noise floors and distortion product amplitudes. This result challenges the use of simultaneous presentation technique in neonatal hearing screening programmes and on other pathologies. This discrepancy between two protocols may be due to some changes in biomechanical process in the cochlear and/or due to higher distortion/noise produced by the system during the simultaneous presentation mode.
Distributional Preferences, Reciprocity-Like Behavior, and Efficiency in Bilateral Exchange
Benjamin, Daniel J.
2014-01-01
Under what conditions do distributional preferences, such as altruism or a concern for fair outcomes, generate efficient trade? I analyze theoretically a simple bilateral exchange game: each player sequentially takes an action that reduces his own material payoff but increases the other player’s. Each player’s preferences may depend on both his/her own material payoff and the other player’s. I identify two key properties of the second-mover’s preferences: indifference curves kinked around “fair” material-payoff distributions, and materials payoffs entering preferences as “normal goods.” Either property can drive reciprocity-like behavior and generate a Pareto efficient outcome. PMID:25664144
Comparing Binaural Pre-processing Strategies II
Hu, Hongmei; Krawczyk-Becker, Martin; Marquardt, Daniel; Herzke, Tobias; Coleman, Graham; Adiloğlu, Kamil; Bomke, Katrin; Plotz, Karsten; Gerkmann, Timo; Doclo, Simon; Kollmeier, Birger; Hohmann, Volker; Dietz, Mathias
2015-01-01
Several binaural audio signal enhancement algorithms were evaluated with respect to their potential to improve speech intelligibility in noise for users of bilateral cochlear implants (CIs). 50% speech reception thresholds (SRT50) were assessed using an adaptive procedure in three distinct, realistic noise scenarios. All scenarios were highly nonstationary, complex, and included a significant amount of reverberation. Other aspects, such as the perfectly frontal target position, were idealized laboratory settings, allowing the algorithms to perform better than in corresponding real-world conditions. Eight bilaterally implanted CI users, wearing devices from three manufacturers, participated in the study. In all noise conditions, a substantial improvement in SRT50 compared to the unprocessed signal was observed for most of the algorithms tested, with the largest improvements generally provided by binaural minimum variance distortionless response (MVDR) beamforming algorithms. The largest overall improvement in speech intelligibility was achieved by an adaptive binaural MVDR in a spatially separated, single competing talker noise scenario. A no-pre-processing condition and adaptive differential microphones without a binaural link served as the two baseline conditions. SRT50 improvements provided by the binaural MVDR beamformers surpassed the performance of the adaptive differential microphones in most cases. Speech intelligibility improvements predicted by instrumental measures were shown to account for some but not all aspects of the perceptually obtained SRT50 improvements measured in bilaterally implanted CI users. PMID:26721921
Immediate Sequential Bilateral Pediatric Vitreoretinal Surgery: An International Multicenter Study.
Yonekawa, Yoshihiro; Wu, Wei-Chi; Kusaka, Shunji; Robinson, Joshua; Tsujioka, Daishi; Kang, Kai B; Shapiro, Michael J; Padhi, Tapas R; Jain, Lubhani; Sears, Jonathan E; Kuriyan, Ajay E; Berrocal, Audina M; Quiram, Polly A; Gerber, Amanda E; Paul Chan, R V; Jonas, Karyn E; Wong, Sui Chien; Patel, C K; Abbey, Ashkan M; Spencer, Rand; Blair, Michael P; Chang, Emmanuel Y; Papakostas, Thanos D; Vavvas, Demetrios G; Sisk, Robert A; Ferrone, Philip J; Henderson, Robert H; Olsen, Karl R; Hartnett, M Elizabeth; Chau, Felix Y; Mukai, Shizuo; Murray, Timothy G; Thomas, Benjamin J; Meza, P Anthony; Drenser, Kimberly A; Trese, Michael T; Capone, Antonio
2016-08-01
To determine the feasibility and safety of bilateral simultaneous vitreoretinal surgery in pediatric patients. International, multicenter, interventional, retrospective case series. Patients 17 years of age or younger from 24 centers worldwide who underwent immediate sequential bilateral vitreoretinal surgery (ISBVS)-defined as vitrectomy, scleral buckle, or lensectomy using the vitreous cutter-performed in both eyes sequentially during the same anesthesia session. Clinical history, surgical details and indications, time under anesthesia, and intraoperative and postoperative ophthalmic and systemic adverse events were reviewed. Ocular and systemic adverse events. A total of 344 surgeries from 172 ISBVS procedures in 167 patients were included in the study. The mean age of the cohort was 1.3±2.6 years. Nonexclusive indications for ISBVS were rapidly progressive disease (74.6%), systemic morbidity placing the child at high anesthesia risk (76.0%), and residence remote from surgery location (30.2%). The most common diagnoses were retinopathy of prematurity (ROP; 72.7% [P < 0.01]; stage 3, 4.8%; stage 4A, 44.4%; stage 4B, 22.4%; stage 5, 26.4%), familial exudative vitreoretinopathy (7.0%), abusive head trauma (4.1%), persistent fetal vasculature (3.5%), congenital cataract (1.7%), posterior capsular opacification (1.7%), rhegmatogenous retinal detachment (1.7%), congenital X-linked retinoschisis (1.2%), Norrie disease (2.3%), and viral retinitis (1.2%). Mean surgical time was 143±59 minutes for both eyes. Higher ROP stage correlated with longer surgical time (P = 0.02). There were no reported intraoperative ocular complications. During the immediate postoperative period, 2 eyes from different patients demonstrated unilateral vitreous hemorrhage (0.6%). No cases of endophthalmitis, choroidal hemorrhage, or hypotony occurred. Mean total anesthesia time was 203±87 minutes. There were no cases of anesthesia-related death, malignant hyperthermia, anaphylaxis, or cardiac event. There was 1 case of reintubation (0.6%) and 1 case of prolonged oxygen desaturation (0.6%). Mean follow-up after surgery was 103 weeks, and anatomic success and globe salvage rates were 89.8% and 98.0%, respectively. This study found ISBVS to be a feasible and safe treatment paradigm for pediatric patients with bilateral vitreoretinal pathologic features when repeated general anesthesia is undesirable or impractical. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Immediate Sequential Bilateral Pediatric Vitreoretinal Surgery
Yonekawa, Yoshihiro; Wu, Wei-Chi; Kusaka, Shunji; Robinson, Joshua; Tsujioka, Daishi; Kang, Kai B.; Shapiro, Michael J.; Padhi, Tapas R.; Jain, Lubhani; Sears, Jonathan E.; Kuriyan, Ajay E.; Berrocal, Audina M.; Quiram, Polly A.; Gerber, Amanda E.; Chan, R.V. Paul; Jonas, Karyn E.; Wong, Sui Chien; Patel, C.K.; Abbey, Ashkan M.; Spencer, Rand; Blair, Michael P.; Chang, Emmanuel Y.; Papakostas, Thanos D.; Vavvas, Demetrios G.; Sisk, Robert A.; Ferrone, Philip J.; Henderson, Robert H.; Olsen, Karl R.; Hartnett, M. Elizabeth; Chau, Felix Y.; Mukai, Shizuo; Murray, Timothy G.; Thomas, Benjamin J.; Meza, P. Anthony; Drenser, Kimberly A.; Trese, Michael T.; Capone, Antonio
2017-01-01
Purpose To determine the feasibility and safety of bilateral simultaneous vitreoretinal surgery in pediatric patients. Design International, multicenter, interventional, retrospective case series. Participants Patients 17 years of age or younger from 24 centers worldwide who underwent immediate sequential bilateral vitreoretinal surgery (ISBVS)—defined as vitrectomy, scleral buckle, or lensectomy using the vitreous cutter—performed in both eyes sequentially during the same anesthesia session. Methods Clinical history, surgical details and indications, time under anesthesia, and intraoperative and postoperative ophthalmic and systemic adverse events were reviewed. Main Outcome Measures Ocular and systemic adverse events. Results A total of 344 surgeries from 172 ISBVS procedures in 167 patients were included in the study. The mean age of the cohort was 1.3±2.6 years. Nonexclusive indications for ISBVS were rapidly progressive disease (74.6%), systemic morbidity placing the child at high anesthesia risk (76.0%), and residence remote from surgery location (30.2%). The most common diagnoses were retinopathy of prematurity (ROP; 72.7% [P < 0.01]; stage 3, 4.8%; stage 4A, 44.4%; stage 4B, 22.4%; stage 5, 26.4%), familial exudative vitreoretinopathy (7.0%), abusive head trauma (4.1%), persistent fetal vasculature (3.5%), congenital cataract (1.7%), posterior capsular opacification (1.7%), rhegmatogenous retinal detachment (1.7%), congenital X-linked retinoschisis (1.2%), Norrie disease (2.3%), and viral retinitis (1.2%). Mean surgical time was 143±59 minutes for both eyes. Higher ROP stage correlated with longer surgical time (P=0.02). There were no reported intraoperative ocular complications. During the immediate postoperative period, 2 eyes from different patients demonstrated unilateral vitreous haemorrhage (0.6%). No cases of endophthalmitis, choroidal hemorrhage, or hypotony occurred. Mean total anesthesia time was 203±87 minutes. There were no cases of anesthesia-related death, malignant hyperthermia, anaphylaxis, or cardiac event. There was 1 case of reintubation (0.6%) and 1 case of prolonged oxygen desaturation (0.6%). Mean follow-up after surgery was 103 weeks, and anatomic success and globe salvage rates were 89.8% and 98.0%, respectively. Conclusions This study found ISBVS to be a feasible and safe treatment paradigm for pediatric patients with bilateral vitreoretinal pathologic features when repeated general anesthesia is undesirable or impractical. PMID:27221737
Dorman, Michael F; Natale, Sarah; Loiselle, Louise
2018-03-01
Sentence understanding scores for patients with cochlear implants (CIs) when tested in quiet are relatively high. However, sentence understanding scores for patients with CIs plummet with the addition of noise. To assess, for patients with CIs (MED-EL), (1) the value to speech understanding of two new, noise-reducing microphone settings and (2) the effect of the microphone settings on sound source localization. Single-subject, repeated measures design. For tests of speech understanding, repeated measures on (1) number of CIs (one, two), (2) microphone type (omni, natural, adaptive beamformer), and (3) type of noise (restaurant, cocktail party). For sound source localization, repeated measures on type of signal (low-pass [LP], high-pass [HP], broadband noise). Ten listeners, ranging in age from 48 to 83 yr (mean = 57 yr), participated in this prospective study. Speech understanding was assessed in two noise environments using monaural and bilateral CIs fit with three microphone types. Sound source localization was assessed using three microphone types. In Experiment 1, sentence understanding scores (in terms of percent words correct) were obtained in quiet and in noise. For each patient, noise was first added to the signal to drive performance off of the ceiling in the bilateral CI-omni microphone condition. The other conditions were then administered at that signal-to-noise ratio in quasi-random order. In Experiment 2, sound source localization accuracy was assessed for three signal types using a 13-loudspeaker array over a 180° arc. The dependent measure was root-mean-score error. Both the natural and adaptive microphone settings significantly improved speech understanding in the two noise environments. The magnitude of the improvement varied between 16 and 19 percentage points for tests conducted in the restaurant environment and between 19 and 36 percentage points for tests conducted in the cocktail party environment. In the restaurant and cocktail party environments, both the natural and adaptive settings, when implemented on a single CI, allowed scores that were as good as, or better, than scores in the bilateral omni test condition. Sound source localization accuracy was unaltered by either the natural or adaptive settings for LP, HP, or wideband noise stimuli. The data support the use of the natural microphone setting as a default setting. The natural setting (1) provides better speech understanding in noise than the omni setting, (2) does not impair sound source localization, and (3) retains low-frequency sensitivity to signals from the rear. Moreover, bilateral CIs equipped with adaptive beamforming technology can engender speech understanding scores in noise that fall only a little short of scores for a single CI in quiet. American Academy of Audiology
Effects of surgical lesions on choline acetyltransferase activity in the cat cochlea.
Frilling, Mark J; Wiet, Gregory J; Godfrey, Donald A; Parli, Judy A; Dunn, Jon D; Ross, C David
2017-12-01
Although it is well established that the choline acetyltransferase (ChAT, the enzyme for acetylcholine synthesis) in the mammalian cochlea is associated with its olivocochlear innervation, the distribution of this innervation in the cochlea varies somewhat among mammalian species. The quantitative distribution of ChAT activity in the cochlea has been reported for guinea pigs and rats. The present study reports the distribution of ChAT activity within the organ of Corti among the three turns of the cat cochlea and the effects of removing olivocochlear innervation either by a lateral cut aimed to totally transect the left olivocochlear bundle or a more medial cut additionally damaging the superior olivary complex on the same side. Similarly to results for guinea pig and rat, the distribution of ChAT activity in the cat outer hair cell region showed a decrease from base to apex, but, unlike in the guinea pig and rat, the cat inner hair cell region did not. As in the rat, little ChAT activity was measured in the outer supporting cell region. As previously reported for whole cat cochlea and for rat cochlear regions, transection of the olivocochlear bundle resulted in almost total loss of ChAT activity in the hair cell regions of the cat cochlea. Lesions of the superior olivary complex resulted in loss of ChAT activity in the inner hair cell region of all cochlear turns only on the lesion side but bilateral losses in the outer hair cell region of all turns. The results are consistent with previous evidence that virtually all cholinergic synapses in the mammalian cochlea are associated with its olivocochlear innervation, that the olivocochlear innervation to the inner hair cell region is predominantly ipsilateral, and that the olivocochlear innervation to the outer hair cells is bilateral. Copyright © 2017 Elsevier B.V. All rights reserved.
Monaghan, Jessica J. M.; Seeber, Bernhard U.
2017-01-01
The ability of normal-hearing (NH) listeners to exploit interaural time difference (ITD) cues conveyed in the modulated envelopes of high-frequency sounds is poor compared to ITD cues transmitted in the temporal fine structure at low frequencies. Sensitivity to envelope ITDs is further degraded when envelopes become less steep, when modulation depth is reduced, and when envelopes become less similar between the ears, common factors when listening in reverberant environments. The vulnerability of envelope ITDs is particularly problematic for cochlear implant (CI) users, as they rely on information conveyed by slowly varying amplitude envelopes. Here, an approach to improve access to envelope ITDs for CIs is described in which, rather than attempting to reduce reverberation, the perceptual saliency of cues relating to the source is increased by selectively sharpening peaks in the amplitude envelope judged to contain reliable ITDs. Performance of the algorithm with room reverberation was assessed through simulating listening with bilateral CIs in headphone experiments with NH listeners. Relative to simulated standard CI processing, stimuli processed with the algorithm generated lower ITD discrimination thresholds and increased extents of laterality. Depending on parameterization, intelligibility was unchanged or somewhat reduced. The algorithm has the potential to improve spatial listening with CIs. PMID:27586742
Carlyon, Robert P.; Long, Christopher J.; Deeks, John M.
2008-01-01
Experiment 1 measured rate discrimination of electric pulse trains by bilateral cochlear implant (CI) users, for standard rates of 100, 200, and 300 pps. In the diotic condition the pulses were presented simultaneously to the two ears. Consistent with previous results with unilateral stimulation, performance deteriorated at higher standard rates. In the signal interval of each trial in the dichotic condition, the standard rate was presented to the left ear and the (higher) signal rate was presented to the right ear; the non-signal intervals were the same as in the diotic condition. Performance in the dichotic condition was better for some listeners than in the diotic condition for standard rates of 100 and 200 pps, but not at 300 pps. It is concluded that the deterioration in rate discrimination observed for CI users at high rates cannot be alleviated by the introduction of a binaural cue, and is unlikely to be limited solely by central pitch processes. Experiment 2 performed an analogous experiment in which 300-pps acoustic pulse trains were bandpass filtered (3900-5400 Hz) and presented in a noise background to normal-hearing listeners. Unlike the results of experiment 1, performance was superior in the dichotic than in the diotic condition. PMID:18397032
Predictors of Hearing-Aid Outcomes
Johannesen, Peter T.; Pérez-González, Patricia; Blanco, José L.; Kalluri, Sridhar; Edwards, Brent
2017-01-01
Over 360 million people worldwide suffer from disabling hearing loss. Most of them can be treated with hearing aids. Unfortunately, performance with hearing aids and the benefit obtained from using them vary widely across users. Here, we investigate the reasons for such variability. Sixty-eight hearing-aid users or candidates were fitted bilaterally with nonlinear hearing aids using standard procedures. Treatment outcome was assessed by measuring aided speech intelligibility in a time-reversed two-talker background and self-reported improvement in hearing ability. Statistical predictive models of these outcomes were obtained using linear combinations of 19 predictors, including demographic and audiological data, indicators of cochlear mechanical dysfunction and auditory temporal processing skills, hearing-aid settings, working memory capacity, and pretreatment self-perceived hearing ability. Aided intelligibility tended to be better for younger hearing-aid users with good unaided intelligibility in quiet and with good temporal processing abilities. Intelligibility tended to improve by increasing amplification for low-intensity sounds and by using more linear amplification for high-intensity sounds. Self-reported improvement in hearing ability was hard to predict but tended to be smaller for users with better working memory capacity. Indicators of cochlear mechanical dysfunction, alone or in combination with hearing settings, did not affect outcome predictions. The results may be useful for improving hearing aids and setting patients’ expectations. PMID:28929903
Teymouri, Jessica; Hullar, Timothy E; Holden, Timothy A; Chole, Richard A
2011-08-01
To determine the efficacy of clinical computed tomographic (CT) imaging to verify postoperative electrode array placement in cochlear implant (CI) patients. Nine fresh cadaver heads underwent clinical CT scanning, followed by bilateral CI insertion and postoperative clinical CT scanning. Temporal bones were removed, trimmed, and scanned using micro-CT. Specimens were then dehydrated, embedded in either methyl methacrylate or LR White resin, and sectioned with a diamond wafering saw. Histology sections were examined by 3 blinded observers to determine the position of individual electrodes relative to soft tissue structures within the cochlea. Electrodes were judged to be within the scala tympani, scala vestibuli, or in an intermediate position between scalae. The position of the array could be estimated accurately from clinical CT scans in all specimens using micro-CT and histology as a criterion standard. Verification using micro-CT yielded 97% agreement, and histologic analysis revealed 95% agreement with clinical CT results. A composite, 3-dimensional image derived from a patient's preoperative and postoperative CT images using a clinical scanner accurately estimates the position of the electrode array as determined by micro-CT imaging and histologic analyses. Information obtained using the CT method provides valuable insight into numerous variables of interest to patient performance such as surgical technique, array design, and processor programming and troubleshooting.
Musical hallucination associated with hearing loss.
Sanchez, Tanit Ganz; Rocha, Savya Cybelle Milhomem; Knobel, Keila Alessandra Baraldi; Kii, Márcia Akemi; Santos, Rosa Maria Rodrigues dos; Pereira, Cristiana Borges
2011-01-01
In spite of the fact that musical hallucination have a significant impact on patients' lives, they have received very little attention of experts. Some researchers agree on a combination of peripheral and central dysfunctions as the mechanism that causes hallucination. The most accepted physiopathology of musical hallucination associated to hearing loss (caused by cochlear lesion, cochlear nerve lesion or by interruption of mesencephalon or pontine auditory information) is the disinhibition of auditory memory circuits due to sensory deprivation. Concerning the cortical area involved in musical hallucination, there is evidence that the excitatory mechanism of the superior temporal gyrus, as in epilepsies, is responsible for musical hallucination. In musical release hallucination there is also activation of the auditory association cortex. Finally, considering the laterality, functional studies with musical perception and imagery in normal individuals showed that songs with words cause bilateral temporal activation and melodies activate only the right lobe. The effect of hearing aids on the improvement of musical hallucination as a result of the hearing loss improvement is well documented. It happens because auditory hallucination may be influenced by the external acoustical environment. Neuroleptics, antidepressants and anticonvulsants have been used in the treatment of musical hallucination. Cases of improvement with the administration of carbamazepine, meclobemide and donepezil were reported, but the results obtained were not consistent.
Inner ear involvement in Behçet's disease.
Süslü, Ahmet Emre; Polat, Mualla; Köybaşi, Serap; Biçer, Yusuf Ozgür; Funda, Yasemin Ongun; Parlak, Ali Haydar
2010-06-01
To assess cochlear involvement and hearing loss in patients with Behçet's disease (BD). Forty-two patients with BD and 24 sex and age matched healthy subjects were included in the study. pure-tone audiometry including high frequencies (250-16000Hz) and DPOAE were performed to all participants. Results of the audiological evaluation were compared and correlation between the audiologic status and clinical manifestations of the BD were investigated. Bilateral sensorineural hearing loss was detected in 27 (64.3%) patients. Hearing thresholds were found to be higher in patients with BD at all of the frequencies except at 500Hz when compared to control group (p<0.05). The difference in the hearing levels tend to increase in high frequencies. Compared with control group, distortion products and SNR of the BD patients were lower in all of the tested frequencies (p<0.05) which indicates weaker outer hair cell motility. There was no correlation between the clinical manifestations and the audiological parameters. Even having hearing levels within normal limits in speech frequencies, increased hearing thresholds in high frequencies and decreased signal-noise ratios (SNR) in distortion product otoacoustic emission (DPOAE) indicate a cochlear involvement in patients with BD. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.
Monaural Congenital Deafness Affects Aural Dominance and Degrades Binaural Processing
Tillein, Jochen; Hubka, Peter; Kral, Andrej
2016-01-01
Cortical development extensively depends on sensory experience. Effects of congenital monaural and binaural deafness on cortical aural dominance and representation of binaural cues were investigated in the present study. We used an animal model that precisely mimics the clinical scenario of unilateral cochlear implantation in an individual with single-sided congenital deafness. Multiunit responses in cortical field A1 to cochlear implant stimulation were studied in normal-hearing cats, bilaterally congenitally deaf cats (CDCs), and unilaterally deaf cats (uCDCs). Binaural deafness reduced cortical responsiveness and decreased response thresholds and dynamic range. In contrast to CDCs, in uCDCs, cortical responsiveness was not reduced, but hemispheric-specific reorganization of aural dominance and binaural interactions were observed. Deafness led to a substantial drop in binaural facilitation in CDCs and uCDCs, demonstrating the inevitable role of experience for a binaural benefit. Sensitivity to interaural time differences was more reduced in uCDCs than in CDCs, particularly at the hemisphere ipsilateral to the hearing ear. Compared with binaural deafness, unilateral hearing prevented nonspecific reduction in cortical responsiveness, but extensively reorganized aural dominance and binaural responses. The deaf ear remained coupled with the cortex in uCDCs, demonstrating a significant difference to deprivation amblyopia in the visual system. PMID:26803166
Monaural Congenital Deafness Affects Aural Dominance and Degrades Binaural Processing.
Tillein, Jochen; Hubka, Peter; Kral, Andrej
2016-04-01
Cortical development extensively depends on sensory experience. Effects of congenital monaural and binaural deafness on cortical aural dominance and representation of binaural cues were investigated in the present study. We used an animal model that precisely mimics the clinical scenario of unilateral cochlear implantation in an individual with single-sided congenital deafness. Multiunit responses in cortical field A1 to cochlear implant stimulation were studied in normal-hearing cats, bilaterally congenitally deaf cats (CDCs), and unilaterally deaf cats (uCDCs). Binaural deafness reduced cortical responsiveness and decreased response thresholds and dynamic range. In contrast to CDCs, in uCDCs, cortical responsiveness was not reduced, but hemispheric-specific reorganization of aural dominance and binaural interactions were observed. Deafness led to a substantial drop in binaural facilitation in CDCs and uCDCs, demonstrating the inevitable role of experience for a binaural benefit. Sensitivity to interaural time differences was more reduced in uCDCs than in CDCs, particularly at the hemisphere ipsilateral to the hearing ear. Compared with binaural deafness, unilateral hearing prevented nonspecific reduction in cortical responsiveness, but extensively reorganized aural dominance and binaural responses. The deaf ear remained coupled with the cortex in uCDCs, demonstrating a significant difference to deprivation amblyopia in the visual system. © The Author 2016. Published by Oxford University Press.
Naganawa, Shinji; Koshikawa, Tokiko; Nakamura, Tatsuya; Fukatsu, Hiroshi; Ishigaki, Takeo; Aoki, Ikuo
2003-12-01
The small structures in the temporal bone are surrounded by bone and air. The objectives of this study were (a) to compare contrast-enhanced T1-weighted images acquired by fast spin-echo-based three-dimensional real inversion recovery (3D rIR) against those acquired by gradient echo-based 3D SPGR in the visualization of the enhancement of small structures in the temporal bone, and (b) to determine whether either 3D rIR or 3D SPGR is useful for visualizing enhancement of the cochlear lymph fluid. Seven healthy men (age range 27-46 years) volunteered to participate in this study. All MR imaging was performed using a dedicated bilateral quadrature surface phased-array coil for temporal bone imaging at 1.5 T (Visart EX, Toshiba, Tokyo, Japan). The 3D rIR images (TR/TE/TI: 1800 ms/10 ms/500 ms) and flow-compensated 3D SPGR images (TR/TE/FA: 23 ms/10 ms/25 degrees) were obtained with a reconstructed voxel size of 0.6 x 0.7 x 0.8 mm3. Images were acquired before and 1, 90, 180, and 270 min after the administration of triple-dose Gd-DTPA-BMA (0.3 mmol/kg). In post-contrast MR images, the degree of enhancement of the cochlear aqueduct, endolymphatic sac, subarcuate artery, geniculate ganglion of the facial nerve, and cochlear lymph fluid space was assessed by two radiologists. The degree of enhancement was scored as follows: 0 (no enhancement); 1 (slight enhancement); 2 (intermediate between 1 and 3); and 3 (enhancement similar to that of vessels). Enhancement scores for the endolymphatic sac, subarcuate artery, and geniculate ganglion were higher in 3D rIR than in 3D SPGR. Washout of enhancement in the endolymphatic sac appeared to be delayed compared with that in the subarcuate artery, suggesting that the enhancement in the endolymphatic sac may have been due in part to non-vascular tissue enhancement. Enhancement of the cochlear lymph space was not observed in any of the subjects in 3D rIR and 3D SPGR. The 3D rIR sequence may be more sensitive than the 3D SPGR sequence in visualizing the enhancement of small structures in the temporal bone; however, enhancement of the cochlear fluid space could not be visualized even with 3D rIR, triple-dose contrast, and dedicated coils at 1.5 T.
Tuberculous Otitis Media Leading to Sequentialib Bilateral Facial Nerve Paralysis.
Gupta, Nitin; Dass, Arjun; Goel, Neha; Tiwari, Sandeep
2015-05-01
Tuberculous otitis media (TOM) is an uncommon, insidious, and frequently misdiagnosed form of tuberculosis (TB). In particular, TOM is usually secondary to direct transmission from adjacent organs, while the primary form has been rarely reported. The main aim of treatment is to start the patient on an antitubercular regime and early surgical intervention to decompress the facial nerve if involved. The case report of a twenty year-old male with bilateral tuberculous otitis media, who presented himself with fever followed by sequential bilateral facial nerve paralysis, bilateral profound hearing loss, and abdominal tuberculosis leading to intestinal perforation, is presented. To the best available knowledge and after researching literature, no such case depicting the extensive otological complications of tuberculosis has been reported till date. Tuberculosis of the ear is a rare entity and in most cases the clinical features resemble that of chronic otitis media. The diagnosis is often delayed due to varied clinical presentations and this can lead to irreversible complications. Early diagnosis is essential for prompt administration of antitubercular therapy and to prevent complications.
Tuberculous Otitis Media Leading to Sequentialib Bilateral Facial Nerve Paralysis
Gupta, Nitin; Dass, Arjun; Goel, Neha; Tiwari, Sandeep
2015-01-01
Introduction: Tuberculous otitis media (TOM) is an uncommon, insidious, and frequently misdiagnosed form of tuberculosis (TB). In particular, TOM is usually secondary to direct transmission from adjacent organs, while the primary form has been rarely reported. The main aim of treatment is to start the patient on an antitubercular regime and early surgical intervention to decompress the facial nerve if involved. Case Report: The case report of a twenty year-old male with bilateral tuberculous otitis media, who presented himself with fever followed by sequential bilateral facial nerve paralysis, bilateral profound hearing loss, and abdominal tuberculosis leading to intestinal perforation, is presented. To the best available knowledge and after researching literature, no such case depicting the extensive otological complications of tuberculosis has been reported till date. Conclusion: Tuberculosis of the ear is a rare entity and in most cases the clinical features resemble that of chronic otitis media. The diagnosis is often delayed due to varied clinical presentations and this can lead to irreversible complications. Early diagnosis is essential for prompt administration of antitubercular therapy and to prevent complications. PMID:26082906
2013-01-01
Background Using the isovolumetric bladder rhythmic contraction (BRC) model in anesthetized rats, we have quantified the responsiveness to unilateral and bilateral stimulation of the L6 spinal nerve (SN) and characterized the relationship between stimulus intensity and inhibition of the bladder micturition reflex. Methods A wire electrode was placed under either one or both of the L6 SN roots. A cannula was placed into the bladder via the urethra and the urethra was ligated. Saline infusion induced BRC. Results At motor threshold (Tmot) intensity, SN stimulation of both roots (10 Hz) for 10 min reduced bladder contraction frequency from 0.63 ± 0.04 to 0.17 ± 0.09 contractions per min (26 ± 14% of baseline control; n = 10, p < 0.05). However, the same intensity of unilateral stimulation (n = 15) or sequential stimulation of both SNs (e.g. 5 min per side alternatively for a total of 10 min or 20 min) was less efficacious. The greater sensitivity to bilateral stimulation is not dependent upon precise bilateral timing of the stimulation pulses. Bilateral stimulation also produced both acute and prolonged- inhibition on bladder contractions in a stimulation intensity dependent fashion. Conclusions Using the bladder rhythmic contraction model, bilateral stimulation was more effective than unilateral stimulation of the SN. Clinical testing should be conducted to further compare efficacies of unilateral and bilateral stimulation. Bilateral stimulation may allow the use of lower stimulation intensities to achieve higher efficacy for neurostimulation therapies on urinary tract control. PMID:23866931
Melodic interval perception by normal-hearing listeners and cochlear implant users
Luo, Xin; Masterson, Megan E.; Wu, Ching-Chih
2014-01-01
The perception of melodic intervals (sequential pitch differences) is essential to music perception. This study tested melodic interval perception in normal-hearing (NH) listeners and cochlear implant (CI) users. Melodic interval ranking was tested using an adaptive procedure. CI users had slightly higher interval ranking thresholds than NH listeners. Both groups' interval ranking thresholds, although not affected by root note, significantly increased with standard interval size and were higher for descending intervals than for ascending intervals. The pitch direction effect may be due to a procedural artifact or a difference in central processing. In another test, familiar melodies were played with all the intervals scaled by a single factor. Subjects rated how in tune the melodies were and adjusted the scaling factor until the melodies sounded the most in tune. CI users had lower final interval ratings and less change in interval rating as a function of scaling factor than NH listeners. For CI users, the root-mean-square error of the final scaling factors and the width of the interval rating function were significantly correlated with the average ranking threshold for ascending rather than descending intervals, suggesting that CI users may have focused on ascending intervals when rating and adjusting the melodies. PMID:25324084
Meyers, B F; Lynch, J P; Trulock, E P; Guthrie, T; Cooper, J D; Patterson, G A
2000-07-01
Between July 1988 and July 1998, we performed 433 lung transplants. Forty-five patients had idiopathic pulmonary fibrosis, and operations for these patients included 32 single lung transplants and 13 bilateral sequential lung transplants. This study reviews this experience and compares single lung transplantation and bilateral lung transplantation for pulmonary fibrosis. We performed a retrospective review, including inpatient hospital charts, outpatient clinic records, and telephone contact with patients to verify current health status. Perioperative mortality was 4 (8.9%) patients. One patient underwent redo bilateral lung transplantation for reperfusion injury and graft failure after single lung transplantation. The median hospitalization was 22 days. Actuarial survival at 1 and 5 years was 75.5% and 53.5%, respectively, which was not significantly different from our survival for all recipients (85.5% and 56.4%, respectively). Seventeen (41%) of 41 operative survivors have died. Late causes of death included obliterative bronchiolitis with respiratory failure (9), malignancy (3), and cytomegalovirus pneumonitis (2). Hospital mortality was 3 (9.4%) of 32 after single lung transplantation and 1 (7.7%) of 13 after bilateral lung transplantation. There was no difference between single and bilateral lung transplantation with regard to hospital stay. Four (12.5%) of the 32 patients undergoing single lung transplantation required tracheostomy, whereas 3 (23%) of 13 recipients undergoing bilateral lung transplantation required tracheostomy. Single or bilateral lung transplantations offer viable therapy for patients with pulmonary fibrosis. We demonstrate no benefit of bilateral over single lung transplantation for patients with this diagnosis. Survival after transplantation appears better than that of historic control subjects receiving standard medical care at other institutions.
Sequential evolution of bacterial morphology by co-option of a developmental regulator.
Jiang, Chao; Brown, Pamela J B; Ducret, Adrien; Brun, Yves V
2014-02-27
What mechanisms underlie the transitions responsible for the diverse shapes observed in the living world? Although bacteria exhibit a myriad of morphologies, the mechanisms responsible for the evolution of bacterial cell shape are not understood. We investigated morphological diversity in a group of bacteria that synthesize an appendage-like extension of the cell envelope called the stalk. The location and number of stalks varies among species, as exemplified by three distinct subcellular positions of stalks within a rod-shaped cell body: polar in the genus Caulobacter and subpolar or bilateral in the genus Asticcacaulis. Here we show that a developmental regulator of Caulobacter crescentus, SpmX, is co-opted in the genus Asticcacaulis to specify stalk synthesis either at the subpolar or bilateral positions. We also show that stepwise evolution of a specific region of SpmX led to the gain of a new function and localization of this protein, which drove the sequential transition in stalk positioning. Our results indicate that changes in protein function, co-option and modularity are key elements in the evolution of bacterial morphology. Therefore, similar evolutionary principles of morphological transitions apply to both single-celled prokaryotes and multicellular eukaryotes.
Fujimoto, Chisato; Kinoshita, Makoto; Kamogashira, Teru; Egami, Naoya; Sugasawa, Keiko; Yamasoba, Tatsuya; Iwasaki, Shinichi
2016-01-01
Vertigo attacks in IBV patients involving both the superior and inferior vestibular nerve systems were significantly more severe than vertigo attacks in patients with selective involvement of the inferior vestibular nerve system alone. To investigate the relationship between the frequency and duration of vertigo and the affected vestibular nerve system in idiopathic bilateral vestibulopathy (IBV). This study categorized 44 IBV patients into the following three sub-groups according to the affected vestibular nerve system: superior, inferior, and mixed type. These patients were also categorized into the following three sub-groups according to their clinical time course: progressive type showing no episodes of vertigo, sequential type showing recurrent vertigo attacks and single-attack type showing a single episode of vertigo. Ten, 11 and 23 patients were classified as the superior, the inferior, and the mixed type, respectively. Seventeen, 23, and four patients were classified as the progressive, the sequential, and the single-attack type, respectively. For the patients having one or more vertigo attacks, the duration of the vertigo attack was longer than 24 h in 69% of the mixed type, and the duration of vertigo in the mixed type was significantly longer than that in the inferior type (p < 0.05).
Guo, S-X; Li, B-Y; Zhang, Y; Zhou, L-J; Liu, L; Widmalm, S-E; Wang, M-Q
2017-08-01
Mandibular functions are associated with electromyographic activity of the jaw muscles and also the sternocleidomastoid muscle (SCM). The precise spatiotemporal relation of SCM and masticatory muscles activities during chewing is worthy of investigation. To analyse the sequential recruitment of SCM and masseter activities during chewing as indicated by the spatiotemporal locations of their activity peaks. Jaw movements and bilateral surface electromyographic activity of SCM and masseter were recorded during gum chewing in 20 healthy subjects. The timing order was decided by comparing the length of time from the time when the opening started to the time when the surface electromyographic activity reached its peak value. Spatial order was analysed by locating the peak electromyographic activity onto a standard chewing cycle which was created based on 15 unilateral chewing cycles. Paired t-test, one-way ANOVA and Student-Newman-Keuls post-test were used for comparisons. Although the Time to Peak for the balancing side SCM appeared shorter than for the other three tested muscles, most often it did not reach a level of significance. However, the location of the balancing side SCM's peak activity was further from the terminal chewing position (TCP) than the working side SCM and bilateral masseters (P < 0·05). The balancing side SCM activity reached its peak significantly further away from TCP than the other three tested muscles during chewing. Further studies with spatiotemporal variables included should be helpful to understand the roles of the head, neck and jaw muscles in orofacial and cervical dysfunctional problems. © 2017 John Wiley & Sons Ltd.
Pediatric and adult lung transplantation for cystic fibrosis.
Mendeloff, E N; Huddleston, C B; Mallory, G B; Trulock, E P; Cohen, A H; Sweet, S C; Lynch, J; Sundaresan, S; Cooper, J D; Patterson, G A
1998-02-01
This paper was undertaken to review the experience at our institution with bilateral sequential lung transplantation for cystic fibrosis. Since 1989, 103 bilateral sequential lung transplants for cystic fibrosis have been performed (46 pediatric, 48 adult, 9 redo); the mean age was 21 +/- 10 years. Cardiopulmonary bypass was used in all but one pediatric (age <18) transplant, and in 15% of adults. Hospital mortality was 4.9%, with 80% of early deaths related to infection. Bronchial anastomotic complications occurred with equal frequency in the pediatric and the adult populations (7.3%). One- and 3-year actuarial survival are 84% and 61%, respectively (no significant difference between pediatric and adult age groups; average follow-up 2.1 +/- 1.6 years). Mean forced expiratory volume in 1 second increased from 25% +/- 9% before transplantation to 79% +/- 35% 1 year after transplantation. Acute rejection occurred 1.7 times per patient-year, with most episodes taking place within the first 6 months after transplantation. The need for treatment of lower respiratory tract infections occurred 1.2 times per patient in the first year after transplantation. Actuarial freedom from bronchiolitis obliterans was 63% at 2 years and 43% at 3 years. Redo transplantation was performed only in the pediatric population and was associated with an early mortality of 33%. Eight living donor transplants (four primary transplants, four redo transplants) were performed with an early survival of 87.5%. Patients with end-stage cystic fibrosis can undergo bilateral lung transplantation with morbidity and mortality comparable to that seen in pulmonary transplantation for other disease entities.
[Prospective study with auditory evoked potentials of the brain stem in children at risk].
Navarro Rivero, B; González Díaz, E; Marrero Santos, L; Martínez Toledano, I; Murillo Díaz, M J; Valiño Colás, M J
1999-04-01
The aim of this study was to evaluate methods of hypoacusis screening. The early detection of audition problems is vital for quick rehabilitation. For this reason, resting on the criteria of the Comisión Española para la Detección Precoz de la Hipoacusia (Spanish Commission for the Early Detection of Hypoacusis), we have carried out a prospective study, from January to May 1998, evaluating patients at risk of suffering from hypoacusis. The study included 151 patients with ages between birth and 14 years. Medical records and brainstem auditory evoked responses (BAER) were carried out. The most common reason for requesting a consultation for the 151 patients included in our study was the suspicion of hypoacusis. Seventy-one (47%) presented pathological BAER, 37 of them were bilateral. In most cases the loss of audition was of cochlear origin, with 11 patients having a serious deafness, 4 with bilateral affection (3 suspicious of hypoacusis and 1 of hyperbilirubinemia) and 7 unilateral deafness. BAER is a good screening method for children at risk. It is an innocuous, objective and specific test that does not require the patient's collaboration. The level of positives is high (47%).
Guber, Ivo; Rémont, Laurent; Bergin, Ciara
2015-01-01
To evaluate the predictability of refraction following immediate sequential bilateral cataract surgery (ISBCS) performed under general anaesthesia. This is a retrospective review of all ISBCS performed at Kantonsspital Winterthur, Switzerland, between April 2000 and September 2013. The case notes of 250 patients were reviewed. Patients having full refraction reported (110 patients/220 eyes) were included. 210 (95 %) eyes had a straight forward phacoemulsification with posterior chamber intraocular lens implantation, seven eyes had a planned extracapsular cataract extraction (ECCE); three eyes had an intracapsular cataract extraction. Both eyes of 110 patients (64 women, 46 men) with a mean age of 79.0 years, standard deviation (SD) ±11.4 (range 26 to 97 years) were included. Median preoperative best corrected visual acuity (BCVA) was 0.5 LogMAR in the first eye, the interquartile range (IQR) was [0.4, 1.2]; 0.7 LogMAR in the second eye with IQR [0.4, 1.8]. At one month, the median BCVA was 0.2 LogMAR, IQR [0.1, 0.3] in the first eye, median BCVA was 0.1 LogMAR and IQR [0.0, 0.5] in the second eye. There were 3 eyes (3 %) that lost 3 lines or more in BCVA at one month (control vs. pre-operatively). In all three cases, poor visual acuity had been recorded pre-operatively (>1 LogMAR). Achieved refraction was within ±1.0 D of the target in 83 % of eyes. There were only 5 % (n = 6) of cases where if delayed sequential bilateral extraction had been performed could potentially intraocular lens (IOL) choice have been adjusted, in four of these cases, target refraction was within ±1.0 D in the second eye. ISBCS performed under general anaesthesia achieves target refraction in 83 % of eyes after consideration of complications, ocular co-morbidities and systemic restrictions. In the majority of cases where IOL power calculation could be considered, the achieved refraction of the second surgical eye was within ±1.0 D of intended refraction. This undermines the utility of IOL power adjustments in the second surgical eye.
Bilateral transfer for learning to control timing but not for learning to control fine force.
Yao, Wan X; Cordova, Alberto; Huang, Yufei; Wang, Yan; Lu, Xing
2014-04-01
This study examined the characteristics of bilateral transfer of learning to control timing and fine force from a dominant limb to a nondominant limb. 20 right-handed college students (12 women, 8 men; M age = 21.5 yr., SD = 2.3) learned a sequential task consisting of timing and force control. Each participant completed a pre-test of the task with both hands and then performed 100 practice trials with the dominant hand. A post-test was conducted 1 hr. later. The results showed that after training, participants learned to control the timing and force. Nevertheless, only the time-control learning was transferred to the untrained hand, whereas the force-control learning did not transfer to the untrained hand.
Factors Affecting Daily Cochlear Implant Use in Children: Datalogging Evidence.
Easwar, Vijayalakshmi; Sanfilippo, Joseph; Papsin, Blake; Gordon, Karen
Children with profound hearing loss can gain access to sound through cochlear implants (CIs), but these devices must be worn consistently to promote auditory development. Although subjective parent reports have identified several factors limiting long-term CI use in children, it is also important to understand the day-to-day issues which may preclude consistent device use. In the present study, objective measures gathered through datalogging software were used to quantify the following in children: (1) number of hours of CI use per day, (2) practical concerns including repeated disconnections between the external transmission coil and the internal device (termed "coil-offs"), and (3) listening environments experienced during daily use. This study aimed to (1) objectively measure daily CI use and factors influencing consistent device use in children using one or two CIs and (2) evaluate the intensity levels and types of listening environments children are exposed to during daily CI use. Retrospective analysis. Measures of daily CI use were obtained from 146 pediatric users of Cochlear Nucleus 6 speech processors. The sample included 5 unilateral, 40 bimodal, and 101 bilateral CI users (77 simultaneously and 24 sequentially implanted). Daily CI use, duration, and frequency of coil-offs per day, and the time spent in multiple intensity ranges and environment types were extracted from the datalog saved during clinic appointments. Multiple regression analyses were completed to predict daily CI use based on child-related demographic variables, and to evaluate the effects of age on coil-offs and environment acoustics. Children used their CIs for 9.86 ± 3.43 hr on average on a daily basis, with use exceeding 9 hr per day in ∼64% of the children. Daily CI use reduced significantly with increasing durations of coil-off (p = 0.027) and increased significantly with longer CI experience (p < 0.001) and pre-CI acoustic experience (p < 0.001), when controlled for the child's age. Total time in sound (sum of CI and pre-CI experience) was positively correlated with CI use (r = 0.72, p < 0.001). Longer durations of coil-off were associated with higher frequency of coil-offs (p < 0.001). The frequency of coil-offs ranged from 0.99 to 594.10 times per day and decreased significantly with age (p < 0.001). Daily CI use and frequency of coil-offs did not vary significantly across known etiologies. Listening environments of all children typically ranged between 50 and 70 dBA. Children of all ages were exposed to speech in noisy environments. Environment classified as "music" was identified more often in younger children. The majority of children use their CIs consistently, even during the first year of implantation. The frequency of coil-offs is a practical challenge in infants and young children, and demonstrates the need for improved coil retention methods for pediatric use. Longer hearing experience and shorter coil-off time facilitates consistent CI use. Children are listening to speech in noisy environments most often, thereby indicating a need for better access to binaural cues, signal processing, and stimulation strategies to aid listening. Study findings could be useful in parent counseling of young and/or new CI users. American Academy of Audiology
Brockmeyer, Alison M; Potts, Lisa G
2011-02-01
Difficulty understanding in background noise is a common complaint of cochlear implant (CI) recipients. Programming options are available to improve speech recognition in noise for CI users including automatic dynamic range optimization (ADRO), autosensitivity control (ASC), and a two-stage adaptive beamforming algorithm (BEAM). However, the processing option that results in the best speech recognition in noise is unknown. In addition, laboratory measures of these processing options often show greater degrees of improvement than reported by participants in everyday listening situations. To address this issue, Compton-Conley and colleagues developed a test system to replicate a restaurant environment. The R-SPACE™ consists of eight loudspeakers positioned in a 360 degree arc and utilizes a recording made at a restaurant of background noise. The present study measured speech recognition in the R-SPACE with four processing options: standard dual-port directional (STD), ADRO, ASC, and BEAM. A repeated-measures, within-subject design was used to evaluate the four different processing options at two noise levels. Twenty-seven unilateral and three bilateral adult Nucleus Freedom CI recipients. The participants' everyday program (with no additional processing) was used as the STD program. ADRO, ASC, and BEAM were added individually to the STD program to create a total of four programs. Participants repeated Hearing in Noise Test sentences presented at 0 degrees azimuth with R-SPACE restaurant noise at two noise levels, 60 and 70 dB SPL. The reception threshold for sentences (RTS) was obtained for each processing condition and noise level. In 60 dB SPL noise, BEAM processing resulted in the best RTS, with a significant improvement over STD and ADRO processing. In 70 dB SPL noise, ASC and BEAM processing had significantly better mean RTSs compared to STD and ADRO processing. Comparison of noise levels showed that STD and BEAM processing resulted in significantly poorer RTSs in 70 dB SPL noise compared to the performance with these processing conditions in 60 dB SPL noise. Bilateral participants demonstrated a bilateral improvement compared to the better monaural condition for both noise levels and all processing conditions, except ASC in 60 dB SPL noise. The results of this study suggest that the use of processing options that utilize noise reduction, like those available in ASC and BEAM, improve a CI recipient's ability to understand speech in noise in listening situations similar to those experienced in the real world. The choice of the best processing option is dependent on the noise level, with BEAM best at moderate noise levels and ASC best at loud noise levels for unilateral CI recipients. Therefore, multiple noise programs or a combination of processing options may be necessary to provide CI users with the best performance in a variety of listening situations. American Academy of Audiology.
Hutter, E; Argstatter, H; Grapp, M; Plinkert, P K
2015-09-01
Although cochlear implant (CI) users achieve good speech comprehension, they experience difficulty perceiving music and prosody in speech. As the provision of music training in rehabilitation is limited, a novel concept of music therapy for rehabilitation of adult CI users was developed and evaluated in this pilot study. Twelve unilaterally implanted, postlingually deafened CI users attended ten sessions of individualized and standardized training. The training started about 6 weeks after the initial activation of the speech processor. Before and after therapy, psychological and musical tests were applied in order to evaluate the effects of music therapy. CI users completed the musical tests in two conditions: bilateral (CI + contralateral, unimplanted ear) and unilateral (CI only). After therapy, improvements were observed in the subjective sound quality (Hearing Implant Sound Quality Index) and the global score on the self-concept questionnaire (Multidimensional Self-Concept Scales) as well as in the musical subtests for melody recognition and for timbre identification in the unilateral condition. Discussion Preliminary results suggest improvements in subjective hearing and music perception, with an additional increase in global self-concept and enhanced daily listening capacities. The novel concept of individualized music therapy seems to provide an effective treatment option in the rehabilitation of adult CI users. Further investigations are necessary to evaluate effects in the area of prosody perception and to separate therapy effects from general learning effects in CI rehabilitation.
Yang, Chan Joo; Lee, Jee Yeon; Ahn, Joong Ho; Lee, Kwang-Sun
2016-09-01
This study shows that, in cochlear implantation (CI) surgery, pre-operative caloric test results are not correlated with post-operative outcomes of dizziness or speech perception. To determine the role of pre-operative caloric tests in CI. The records of 95 patients who underwent unilateral CI were reviewed retrospectively. Patients were divided into four groups according to caloric response. Forty-six patients with normal caloric responses were classified as Group A, 19 patients who underwent CI in the ear with worse caloric responses as Group B, 18 patients with bilateral loss of caloric responses as Group C, and 12 patients who underwent CI in the ear with better caloric responses as Group D. Speech performance and post-operative dizziness were compared between the four groups. Speech perception was determined by evaluating consonant-vowel phoneme detection, closed-set word and open-set mono-syllabic and bi-syllabic word identification, and sentence comprehension test scores. The speech perception and aided pure-tone average (PTA) test results at 3 and 6 months and at 1, 2, and 3 years after implantation were not significantly different between Groups A, B, C, and D (p > 0.05). Eight patients (8.4%) reported post-operative dizziness, but there was no significant difference between the four groups (p = 0.627).
Initial Development of a Spatially Separated Speech-in-Noise and Localization Training Program
Tyler, Richard S.; Witt, Shelley A.; Dunn, Camille C.; Wang, Wenjun
2010-01-01
Objective This article describes the initial development of a novel approach for training hearing-impaired listeners to improve their ability to understand speech in the presence of background noise and to also improve their ability to localize sounds. Design Most people with hearing loss, even those well fit with hearing devices, still experience significant problems understanding speech in noise. Prior research suggests that at least some subjects can experience improved speech understanding with training. However, all training systems that we are aware of have one basic, critical limitation. They do not provide spatial separation of the speech and noise, therefore ignoring the potential benefits of training binaural hearing. In this paper we describe our initial experience with a home-based training system that includes spatially separated speech-in-noise and localization training. Results Throughout the development of this system patient input, training and preliminary pilot data from individuals with bilateral cochlear implants were utilized. Positive feedback from subjective reports indicated that some individuals were engaged in the treatment, and formal testing showed benefit. Feedback and practical issues resulted from the reduction of an eight-loudspeaker to a two-loudspeaker system. Conclusions These preliminary findings suggest we have successfully developed a viable spatial hearing training system that can improve binaural hearing in noise and localization. Applications include, but are not limited to, hearing with hearing aids and cochlear implants. PMID:20701836
Shepherd, R K; Clark, G M; Xu, S A; Pyman, B C
1995-03-01
The histopathologic consequence of removing and reimplanting intracochlear electrode arrays on residual auditory nerve fibers is an important issue when evaluating the safety of cochlear prostheses. The authors have examined this issue by implanting multichannel intracochlear electrodes in macaque monkeys. Macaques were selected because of the similarity of the surgical technique used to insert electrodes into the cochlea compared to that in humans, in particular the ability to insert the arrays into the upper basal turn. Five macaques were bilaterally implanted with the Melbourne/Cochlear banded electrode array. Following a minimum implant period of 5 months, the electrode array on one side of each animal was removed and another immediately implanted. The animals were sacrificed a minimum of 5 months following the reinsertion procedure, and the cochleas prepared for histopathologic analysis. Long-term implantation of the electrode resulted in a relatively mild tissue response within the cochlea. Results also showed that inner and outer hair cell survival, although significantly reduced adjacent to the array, was normal in 8 of the 10 cochleas apicalward. Moreover, the electrode reinsertion procedure did not appear to adversely affect this apical hair cell population. Significant new bone formation was frequently observed in both control and reimplanted cochleas close to the electrode fenestration site and was associated with trauma to the endosteum and/or the introduction of bone chips into the cochlea at the time of surgery. Electrode insertion trauma, involving the osseous spiral lamina or basilar membrane, was more commonly observed in reimplanted cochleas. This damage was usually restricted to the lower basal turn and resulted in a more extensive ganglion cell loss. Finally, in a number of cochleas part of the electrode array was located within the scala media or scala vestibuli. These electrodes did not appear to evoke a more extensive tissue response or result in more extensive neural degeneration compared with electrodes located within the scala tympani. In conclusion, the present study has shown that the reimplantation of a multichannel scala, tympani electrode array can be achieved with minimal damage to the majority of cochlear structures. Increased insertion trauma, resulting in new bone formation and spiral ganglion cell loss, can occur in the lower basal turn in cases where the electrode entry point is difficult to identify due to proliferation of granulation and fibrous tissue.
Oryadi-Zanjani, Mohammad Majid; Vahab, Maryam; Rahimi, Zahra; Mayahi, Anis
2017-02-01
It is important for clinician such as speech-language pathologists and audiologists to develop more efficient procedures to assess the development of auditory, speech and language skills in children using hearing aid and/or cochlear implant compared to their peers with normal hearing. So, the aim of study was the comparison of the performance of 5-to-7-year-old Persian-language children with and without hearing loss in visual-only, auditory-only, and audiovisual presentation of sentence repetition task. The research was administered as a cross-sectional study. The sample size was 92 Persian 5-7 year old children including: 60 with normal hearing and 32 with hearing loss. The children with hearing loss were recruited from Soroush rehabilitation center for Persian-language children with hearing loss in Shiraz, Iran, through consecutive sampling method. All the children had unilateral cochlear implant or bilateral hearing aid. The assessment tool was the Sentence Repetition Test. The study included three computer-based experiments including visual-only, auditory-only, and audiovisual. The scores were compared within and among the three groups through statistical tests in α = 0.05. The score of sentence repetition task between V-only, A-only, and AV presentation was significantly different in the three groups; in other words, the highest to lowest scores belonged respectively to audiovisual, auditory-only, and visual-only format in the children with normal hearing (P < 0.01), cochlear implant (P < 0.01), and hearing aid (P < 0.01). In addition, there was no significant correlationship between the visual-only and audiovisual sentence repetition scores in all the 5-to-7-year-old children (r = 0.179, n = 92, P = 0.088), but audiovisual sentence repetition scores were found to be strongly correlated with auditory-only scores in all the 5-to-7-year-old children (r = 0.943, n = 92, P = 0.000). According to the study's findings, audiovisual integration occurs in the 5-to-7-year-old Persian children using hearing aid or cochlear implant during sentence repetition similar to their peers with normal hearing. Therefore, it is recommended that audiovisual sentence repetition should be used as a clinical criterion for auditory development in Persian-language children with hearing loss. Copyright © 2016. Published by Elsevier B.V.
The impact of ethnicity on cochlear implantation in Norwegian children.
Amundsen, Viktoria Vedeler; Wie, Ona Bø; Myhrum, Marte; Bunne, Marie
2017-02-01
To explore the impact of parental ethnicity on cochlear implantation in children in Norway with regard to incidence rates of cochlear implants (CIs), comorbidies, age at onset of profound deafness (AOD), age at first implantation, uni- or bilateral CI, and speech recognition. This retrospective cohort study included all children (N = 278) aged <18 years in Norway who received their first CI during the years 2004-2010. 86 children (30.9%) in our study sample had parents of non-Nordic ethnicity, of whom 46 were born in Nordic countries with two non-Nordic parents. Compared with the background population, children with non-Nordic parents were 1.9 times more likely to have received CI than Nordic children (i.e., born in Nordic countries with Nordic parents). When looking at AOD, uni-vs. bilateral CIs, and comorbidities, no significant differences were found between Nordic children and children with a non-Nordic ethnicity. Among children with AOD <1 year (n = 153), those born in non-Nordic countries with two non-Nordic parents (n = 6) and adopted non-Nordic children (n = 6) received their first CI on average 14.9 and 21.1 months later than Nordic children (n = 104), respectively (p = 0.006 and 0.005). Among children with AOD <1 year, those born in Nordic countries with two non-Nordic parents (n = 31) received their CI at an older age than Nordic children, but this difference was not significant after adjusting for calendar year of implantation and excluding comorbidity as a potential cause of delayed implantation. The mean age at implantation for children with AOD <1 year dropped 2.3 months/year over the study period. The mean monosyllable speech recognition score was 84.7% for Nordic children and 76.3% for children born in Norway with two non-Nordic parents (p = 0.002). The incidence of CI was significantly higher in children with a non-Nordic vs. a Nordic ethnicity, reflecting a higher incidence of profound deafness. Children born in Norway have equal access to CIs regardless of their ethnicity, but despite being born and receiving care in Norway, prelingually deaf children with non-Nordic parents are at risk of receiving CI later than Nordic children. Moreover, prelingually deaf children who arrive in Norway at an older age may be at risk for a worse prognosis after receiving a CI due to lack of auditory stimulation in early childhood, which is critical for language development and late implantation; this is a serious issue with regard to deafness among refugees. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Sternal approximation for bilateral anterolateral transsternal thoracotomy for lung transplantation.
McGiffin, David C; Alonso, Jorge E; Zorn, George L; Kirklin, James K; Young, K Randall; Wille, Keith M; Leon, Kevin; Hart, Katherine
2005-02-01
The traditional incision for bilateral sequential lung transplantation is the bilateral anterolateral transsternal thoracotomy with approximation of the sternal fragments with interrupted stainless steel wire loops; this technique may be associated with an unacceptable incidence of postoperative sternal disruption causing chronic pain and deformity. Approximation of the sternal ends was achieved with peristernal cables that passed behind the sternum two intercostal spaces above and below the sternal division, which were then passed through metal sleeves in front of the sternum, the cables tensioned, and the sleeves then crimped. Forty-seven patients underwent sternal closure with this method, and satisfactory bone union occurred in all patients. Six patients underwent removal of the peristernal cables: 1 for infection (with satisfactory bone union after the removal of the cables), 3 for cosmetic reasons, 1 during the performance of a median sternotomy for an aortic valve replacement, and 1 in a patient who requested removal before commencing participation in football. This technique of peristernal cable approximation of sternal ends has successfully eliminated the problem of sternal disruption associated with this incision and is a useful alternative for preventing this complication after bilateral lung transplantation.
Coco, Anne; Epp, Stephanie B.; Fallon, James B.; Xu, Jin; Millard, Rodney E.; Shepherd, Robert K.
2007-01-01
Increasing numbers of cochlear implant subjects have some level of residual hearing at the time of implantation. The present study examined whether (i) hair cells that have survived one pathological insult (aminoglycoside deafening), can survive and function following long-term cochlear implantation and electrical stimulation (ES); and (ii) chronic ES in these cochleae results in greater trophic support of spiral ganglion neurons (SGNs) compared with cochleae devoid of hair cells. Eight cats, with either partial (n=4) or severe (n=4) sensorineural hearing loss, were bilaterally implanted with scala tympani electrode arrays 2 months after deafening, and received unilateral ES using charge balanced biphasic current pulses for periods of up to 235 days. Frequency-specific compound action potentials and click-evoked auditory brainstem responses (ABRs) were recorded periodically to monitor the residual acoustic hearing. Electrically-evoked ABRs (EABRs) were recorded to confirm the stimulus levels were 3-6 dB above the EABR threshold. On completion of the ES program the cochleae were examined histologically. Partially deafened animals showed no significant increase in acoustic thresholds over the implantation period. Moreover, chronic ES of an electrode array located in the base of the cochlea did not adversely affect hair cells in the middle or apical turns. There was evidence of a small but statistically significant rescue of SGNs in the middle and apical turns of stimulated cochleae in animals with partial hearing. Chronic ES did not, however, prevent a reduction in SGN density for the severely deaf cohort, although SGNs adjacent to the stimulating electrodes did exhibit a significant increase in soma area (p<0.01). In sum, chronic ES in partial hearing animals does not adversely affect functioning residual hair cells apical to the electrode array. Moreover, while there is an increase in the soma area of SGNs close to the stimulating electrodes in severely deaf cochleae, this trophic effect does not result in increased SGN survival. PMID:17258411
Song, Jae-Jin; Lee, Hyo-Jeong; Kang, Hyejin; Lee, Dong Soo; Chang, Sun O; Oh, Seung Ha
2015-03-01
While deafness-induced plasticity has been investigated in the visual and auditory domains, not much is known about language processing in audiovisual multimodal environments for patients with restored hearing via cochlear implant (CI) devices. Here, we examined the effect of agreeing or conflicting visual inputs on auditory processing in deaf patients equipped with degraded artificial hearing. Ten post-lingually deafened CI users with good performance, along with matched control subjects, underwent H 2 (15) O-positron emission tomography scans while carrying out a behavioral task requiring the extraction of speech information from unimodal auditory stimuli, bimodal audiovisual congruent stimuli, and incongruent stimuli. Regardless of congruency, the control subjects demonstrated activation of the auditory and visual sensory cortices, as well as the superior temporal sulcus, the classical multisensory integration area, indicating a bottom-up multisensory processing strategy. Compared to CI users, the control subjects exhibited activation of the right ventral premotor-supramarginal pathway. In contrast, CI users activated primarily the visual cortices more in the congruent audiovisual condition than in the null condition. In addition, compared to controls, CI users displayed an activation focus in the right amygdala for congruent audiovisual stimuli. The most notable difference between the two groups was an activation focus in the left inferior frontal gyrus in CI users confronted with incongruent audiovisual stimuli, suggesting top-down cognitive modulation for audiovisual conflict. Correlation analysis revealed that good speech performance was positively correlated with right amygdala activity for the congruent condition, but negatively correlated with bilateral visual cortices regardless of congruency. Taken together these results suggest that for multimodal inputs, cochlear implant users are more vision-reliant when processing congruent stimuli and are disturbed more by visual distractors when confronted with incongruent audiovisual stimuli. To cope with this multimodal conflict, CI users activate the left inferior frontal gyrus to adopt a top-down cognitive modulation pathway, whereas normal hearing individuals primarily adopt a bottom-up strategy.
NASA Astrophysics Data System (ADS)
Misurelli, Sara M.
The ability to analyze an "auditory scene"---that is, to selectively attend to a target source while simultaneously segregating and ignoring distracting information---is one of the most important and complex skills utilized by normal hearing (NH) adults. The NH adult auditory system and brain work rather well to segregate auditory sources in adverse environments. However, for some children and individuals with hearing loss, selectively attending to one source in noisy environments can be extremely challenging. In a normal auditory system, information arriving at each ear is integrated, and thus these binaural cues aid in speech understanding in noise. A growing number of individuals who are deaf now receive cochlear implants (CIs), which supply hearing through electrical stimulation to the auditory nerve. In particular, bilateral cochlear implants (BICIs) are now becoming more prevalent, especially in children. However, because CI sound processing lacks both fine structure cues and coordination between stimulation at the two ears, binaural cues may either be absent or inconsistent. For children with NH and with BiCIs, this difficulty in segregating sources is of particular concern because their learning and development commonly occurs within the context of complex auditory environments. This dissertation intends to explore and understand the ability of children with NH and with BiCIs to function in everyday noisy environments. The goals of this work are to (1) Investigate source segregation abilities in children with NH and with BiCIs; (2) Examine the effect of target-interferer similarity and the benefits of source segregation for children with NH and with BiCIs; (3) Investigate measures of executive function that may predict performance in complex and realistic auditory tasks of source segregation for listeners with NH; and (4) Examine source segregation abilities in NH listeners, from school-age to adults.
A partial hearing animal model for chronic electro-acoustic stimulation
NASA Astrophysics Data System (ADS)
Irving, S.; Wise, A. K.; Millard, R. E.; Shepherd, R. K.; Fallon, J. B.
2014-08-01
Objective. Cochlear implants (CIs) have provided some auditory function to hundreds of thousands of people around the world. Although traditionally carried out only in profoundly deaf patients, the eligibility criteria for implantation have recently been relaxed to include many partially-deaf patients with useful levels of hearing. These patients receive both electrical stimulation from their implant and acoustic stimulation via their residual hearing (electro-acoustic stimulation; EAS) and perform very well. It is unclear how EAS improves speech perception over electrical stimulation alone, and little evidence exists about the nature of the interactions between electric and acoustic stimuli. Furthermore, clinical results suggest that some patients that undergo cochlear implantation lose some, if not all, of their residual hearing, reducing the advantages of EAS over electrical stimulation alone. A reliable animal model with clinically-relevant partial deafness combined with clinical CIs is important to enable these issues to be studied. This paper outlines such a model that has been successfully used in our laboratory. Approach. This paper outlines a battery of techniques used in our laboratory to generate, validate and examine an animal model of partial deafness and chronic CI use. Main results. Ototoxic deafening produced bilaterally symmetrical hearing thresholds in neonatal and adult animals. Electrical activation of the auditory system was confirmed, and all animals were chronically stimulated via adapted clinical CIs. Acoustic compound action potentials (CAPs) were obtained from partially-hearing cochleae, using the CI amplifier. Immunohistochemical analysis allows the effects of deafness and electrical stimulation on cell survival to be studied. Significance. This animal model has applications in EAS research, including investigating the functional interactions between electric and acoustic stimulation, and the development of techniques to maintain residual hearing following cochlear implantation. The ability to record CAPs via the CI has clinical direct relevance for obtaining objective measures of residual hearing.
ERIC Educational Resources Information Center
Clark, Catherine; Scott, Larry
This brochure explains what a cochlear implant is, lists the types of individuals with deafness who may be helped by a cochlear implant, describes the process of evaluating people for cochlear implants, discusses the surgical process for implanting the aid, traces the path of sound through the cochlear implant to the brain, notes the costs of…
Ku, Yixuan; Zhao, Di; Hao, Ning; Hu, Yi; Bodner, Mark; Zhou, Yong-Di
2015-01-01
Both monkey neurophysiological and human EEG studies have shown that association cortices, as well as primary sensory cortical areas, play an essential role in sequential neural processes underlying cross-modal working memory. The present study aims to further examine causal and sequential roles of the primary sensory cortex and association cortex in cross-modal working memory. Individual MRI-based single-pulse transcranial magnetic stimulation (spTMS) was applied to bilateral primary somatosensory cortices (SI) and the contralateral posterior parietal cortex (PPC), while participants were performing a tactile-visual cross-modal delayed matching-to-sample task. Time points of spTMS were 300 ms, 600 ms, 900 ms after the onset of the tactile sample stimulus in the task. The accuracy of task performance and reaction time were significantly impaired when spTMS was applied to the contralateral SI at 300 ms. Significant impairment on performance accuracy was also observed when the contralateral PPC was stimulated at 600 ms. SI and PPC play sequential and distinct roles in neural processes of cross-modal associations and working memory. Copyright © 2015 Elsevier Inc. All rights reserved.
Muthalib, Makii; Besson, Pierre; Rothwell, John; Ward, Tomas; Perrey, Stephane
2016-01-01
Transcranial direct current stimulation (tDCS) is a non-invasive electrical brain stimulation technique that can modulate cortical neuronal excitability and activity. This study utilized functional near infrared spectroscopy (fNIRS) neuroimaging to determine the effects of anodal high-definition (HD)-tDCS on bilateral sensorimotor cortex (SMC) activation. Before (Pre), during (Online), and after (Offline) anodal HD-tDCS (2 mA, 20 min) targeting the left SMC, eight healthy subjects performed a simple finger sequence (SFS) task with their right or left hand in an alternating blocked design (30-s rest and 30-s SFS task, repeated five times). In order to determine the level of bilateral SMC activation during the SFS task, an Oxymon MkIII fNIRS system was used to measure from the left and right SMC, changes in oxygenated (O2Hb) and deoxygenated (HHb) haemoglobin concentration values. The fNIRS data suggests a finding that compared to the Pre condition both the "Online" and "Offline" anodal HD-tDCS conditions induced a significant reduction in bilateral SMC activation (i.e., smaller decrease in HHb) for a similar motor output (i.e., SFS tap rate). These findings could be related to anodal HD-tDCS inducing a greater efficiency of neuronal transmission in the bilateral SMC to perform the same SFS task.
Conway, Christopher M.; Deocampo, Joanne A.; Walk, Anne M.; Anaya, Esperanza M.; Pisoni, David B.
2015-01-01
Purpose The authors investigated the ability of deaf children with cochlear implants (CIs) to use sentence context to facilitate the perception of spoken words. Method Deaf children with CIs (n = 24) and an age-matched group of children with normal hearing (n = 31) were presented with lexically controlled sentences and were asked to repeat each sentence in its entirety. Performance was analyzed at each of 3 word positions of each sentence (first, second, and third key word). Results Whereas the children with normal hearing showed robust effects of contextual facilitation—improved speech perception for the final words in a sentence—the deaf children with CIs on average showed no such facilitation. Regression analyses indicated that for the deaf children with CIs, Forward Digit Span scores significantly predicted accuracy scores for all 3 positions, whereas performance on the Stroop Color and Word Test, Children’s Version (Golden, Freshwater, & Golden, 2003) predicted how much contextual facilitation was observed at the final word. Conclusions The pattern of results suggests that some deaf children with CIs do not use sentence context to improve spoken word recognition. The inability to use sentence context may be due to possible interactions between language experience and cognitive factors that affect the ability to successfully integrate temporal–sequential information in spoken language. PMID:25029170
Lung transplantation for cystic fibrosis.
Coloni, G F; Venuta, F; Ciccone, A M; Rendina, E A; De Giacomo, T; Filice, M J; Diso, D; Anile, M; Andreetti, C; Aratari, M T; Mercadante, E; Moretti, M; Ibrahim, M
2004-04-01
Lung transplantation is a robust therapeutic option to treat patients with cystic fibrosis. Since 1996, 109 patients with cystic fibrosis were accepted onto our waiting list with 58 bilateral sequential lung transplants performed in 56 patients and two patients retransplanted for obliterative bronchiolitis syndrome. Preoperative mean FEV(1) was 0.64 L/s, mean PaO(2) with supplemental oxygen was 56 mm Hg, and the mean 6-minute walking test was 320 m. Transplantation was performed through a "clam shell incision" in the first 29 patients and via bilateral anterolateral thoracotomies without sternal division in the remaining patients. Cardiopulmonary bypass was required in 14 patients. In 21 patients the donor lungs had to be trimmed by wedge resections with mechanical staplers and bovine pericardium buttressing to fit the recipient chest size. Eleven patients were extubated in the operating room immediately after the procedure. Hospital mortality of 13.8% was related to infection (n = 5), primary graft failure (n = 2), and myocardial infarction (n = 1). Acute rejection episodes occurred 1.6 times per patient/year; lower respiratory tract infections occurred 1.4 times per patient in the first year after transplantation. The mean FEV(1) increased to 82% at 1 year after operation. The 5-year survival rate was 61%. A cyclosporine-based immunosuppressive regimen was initially employed in all patients; 24 were subsequently switched to tacrolimus because of central nervous system toxicity, cyclosporine-related myopathy, or renal failure, obliterative bronchiolitis syndrome, gingival hyperplasia, or hypertrichosis. Ten patients were subsequently switched to sirolimus. Freedom from bronchiolitis obliterans at 5 years was 60%. Our results confirm that bilateral sequential lung transplantation is a robust therapeutic option for patients with cystic fibrosis.
Aggarwal, Sandeep; Yadav, Kunal; Sharma, Aditya P; Sethi, Vrishketan
2013-06-01
Laparoscopic adrenalectomy is well established for treatment of adrenal lesions. However, bilateral adrenalectomy for Cushing syndrome is a challenging and time-consuming operation. We report our experience of laparoscopic bilateral adrenalectomy for this disease in 19 patients. From September 2009 to August 2012, we have operated 19 patients with Cushing syndrome and performed bilateral laparoscopic adrenalectomy using the transperitoneal approach; synchronous in 15 patients and staged in 4 patients. In 15 patients, the surgery was carried out sequentially on both the sides in lateral position with intraoperative change in position. Complete adrenalectomy including periadrenal fat was carried out on both the sides. Nineteen patients were referred from Department of Endocrinology for bilateral adrenalectomy for adrenocorticotropin hormone (ACTH)-dependent and ACTH-independent Cushing syndrome. The indications for surgery were Cushing disease in 15 patients, occult/ectopic source of ACTH in 2 patients, and primary adrenal hyperplasia in 2 patients. Fifteen patients underwent bilateral adrenalectomy during the same operation. Four patients underwent staged procedures. All procedures were completed laparoscopically with no conversions. The mean operating time for simultaneous bilateral adrenalectomy was 210 minutes (range, 150 to 240 min). This included the repositioning and reprepping time. There were no major intraoperative complications. The average blood loss was 100 mL (range, 50 to 200 mL). None of the patients required blood transfusions in the postoperative period. The postoperative complications included minor port-site infection in 2 patients. One severely debilitated patient died on the 14th postoperative day because of hospital-acquired pneumonia. The remaining 18 patients have done well in terms of impact on the disease. Laparoscopic bilateral adrenalectomy for Cushing syndrome is feasible and safe. It confers all the advantages of minimally invasive approach such as less postoperative pain, shorter hospitalization, lesser wound complications, and faster recovery. The advantages of the laparoscopic approach have led to an earlier referral for bilateral adrenalectomy by endocrinologist in patients with failed pituitary surgery.
Gifford, René H; Davis, Timothy J; Sunderhaus, Linsey W; Menapace, Christine; Buck, Barbara; Crosson, Jillian; O'Neill, Lori; Beiter, Anne; Segel, Phil
The primary objective of this study was to assess the effect of electric and acoustic overlap for speech understanding in typical listening conditions using semidiffuse noise. This study used a within-subjects, repeated measures design including 11 experienced adult implant recipients (13 ears) with functional residual hearing in the implanted and nonimplanted ear. The aided acoustic bandwidth was fixed and the low-frequency cutoff for the cochlear implant (CI) was varied systematically. Assessments were completed in the R-SPACE sound-simulation system which includes a semidiffuse restaurant noise originating from eight loudspeakers placed circumferentially about the subject's head. AzBio sentences were presented at 67 dBA with signal to noise ratio varying between +10 and 0 dB determined individually to yield approximately 50 to 60% correct for the CI-alone condition with full CI bandwidth. Listening conditions for all subjects included CI alone, bimodal (CI + contralateral hearing aid), and bilateral-aided electric and acoustic stimulation (EAS; CI + bilateral hearing aid). Low-frequency cutoffs both below and above the original "clinical software recommendation" frequency were tested for all patients, in all conditions. Subjects estimated listening difficulty for all conditions using listener ratings based on a visual analog scale. Three primary findings were that (1) there was statistically significant benefit of preserved acoustic hearing in the implanted ear for most overlap conditions, (2) the default clinical software recommendation rarely yielded the highest level of speech recognition (1 of 13 ears), and (3) greater EAS overlap than that provided by the clinical recommendation yielded significant improvements in speech understanding. For standard-electrode CI recipients with preserved hearing, spectral overlap of acoustic and electric stimuli yielded significantly better speech understanding and less listening effort in a laboratory-based, restaurant-noise simulation. In conclusion, EAS patients may derive more benefit from greater acoustic and electric overlap than given in current software fitting recommendations, which are based solely on audiometric threshold. These data have larger scientific implications, as previous studies may not have assessed outcomes with optimized EAS parameters, thereby underestimating the benefit afforded by hearing preservation.
[Inspecting the cochlear scala tympanic with flexible and semi-flexible micro-endoscope].
Zhang, Daoxcing; Zhang, Yankun
2006-02-01
Flexible and semi-flexible micro-endoscopes were used in cochlear scala tympani inspection , to explore their application in inner ear examination. Fifteen profound hearing loss patients preparing for cochlear implant were included in this study. During the operation, micro-endoscopy was performed after opening the cochlear scala tympani. And 1 mm diameter semi-flexible micro-endoscope could go as deep as 9 mm into the cochlear scala tympani, while 0. 5 mm diameter flexible micro-endoscope could go as deep as 25 mm. The inspecting results were compared with video recording. Using 0.5 mm flexible micro-endoscope, we canould check cochlear scala tympani with depth range of 15-25 mm, but the video imaging was not clear enough to examine the microstructure in the cochlear. With 1 mm diameter semi-flexible micro-endoscope, we could reach 9 mm deep into the cochlear. During the examination, we found 3 cases with calcification deposit in osseous spiral lamina, l case with granulation tissue in the lateral wall of scala tympani, no abnormal findings in the other 11 cases. Inspecting the cochlear scala tympani with 0.5 mm flexible micro-endoscope, even though we can reach the second circuit of the cochlear, it is difficult to find the pathology in the cochlear because of the poor video imaging. With 1 mm semi-flexible micro-endoscope, we can identify the microstructure of the cochlear clearly and find the pathologic changes, but the inserting depth was limited to 9 mm with limitation to examine the whole cochlear.
What Does Music Sound Like for a Cochlear Implant User?
Jiam, Nicole T; Caldwell, Meredith T; Limb, Charles J
2017-09-01
Cochlear implant research and product development over the past 40 years have been heavily focused on speech comprehension with little emphasis on music listening and enjoyment. The relatively little understanding of how music sounds in a cochlear implant user stands in stark contrast to the overall degree of importance the public places on music and quality of life. The purpose of this article is to describe what music sounds like to cochlear implant users, using a combination of existing research studies and listener descriptions. We examined the published literature on music perception in cochlear implant users, particularly postlingual cochlear implant users, with an emphasis on the primary elements of music and recorded music. Additionally, we administered an informal survey to cochlear implant users to gather first-hand descriptions of music listening experience and satisfaction from the cochlear implant population. Limitations in cochlear implant technology lead to a music listening experience that is significantly distorted compared with that of normal hearing listeners. On the basis of many studies and sources, we describe how music is frequently perceived as out-of-tune, dissonant, indistinct, emotionless, and weak in bass frequencies, especially for postlingual cochlear implant users-which may in part explain why music enjoyment and participation levels are lower after implantation. Additionally, cochlear implant users report difficulty in specific musical contexts based on factors including but not limited to genre, presence of lyrics, timbres (woodwinds, brass, instrument families), and complexity of the perceived music. Future research and cochlear implant development should target these areas as parameters for improvement in cochlear implant-mediated music perception.
Progress in Cochlear Physiology after Békésy
Guinan, John J.; Salt, Alec; Cheatham, Mary Ann
2012-01-01
In the fifty years since Békésy was awarded the Nobel Prize, cochlear physiology has blossomed. Many topics that are now current are things Békésy could not have imagined. In this review we start by describing progress in understanding the origin of cochlear gross potentials, particularly the cochlear microphonic, an area in which Békésy had extensive experience. We then review progress in areas of cochlear physiology that were mostly unknown to Békésy, including: (1) stereocilia mechano-electrical transduction, force production, and response amplification, (2) outer hair cell (OHC) somatic motility and its molecular basis in prestin, (3) cochlear amplification and related micromechanics, including the evidence that prestin is the main motor for cochlear amplification, (4) the influence of the tectorial membrane, (5) cochlear micromechanics and the mechanical drives to inner hair cell stereocilia, (6) otoacoustic emissions, and (7) olivocochlear efferents and their influence on cochlear physiology. We then return to a subject that Békésy knew well: cochlear fluids and standing currents, as well as our present understanding of energy dependence on the lateral wall of the cochlea. Finally, we touch on cochlear pathologies including noise damage and aging, with an emphasis on where the field might go in the future. PMID:22633944
Effect of cochlear nerve electrocautery on the adult cochlear nucleus.
Iseli, Claire E; Merwin, William H; Klatt-Cromwell, Cristine; Hutson, Kendall A; Ewend, Matthew G; Adunka, Oliver F; Fitzpatrick, Douglas C; Buchman, Craig A
2015-04-01
Electrocauterization and subsequent transection of the cochlear nerve induce greater injury to the cochlear nucleus than sharp transection alone. Some studies show that neurofibromatosis Type 2 (NF2) patients fit with auditory brainstem implants (ABIs) fail to achieve speech perception abilities similar to ABI recipients without NF2. Reasons for these differences remain speculative. One hypothesis posits poorer performance to surgically induced trauma to the cochlear nucleus from electrocautery. Sustained electrosurgical depolarization of the cochlear nerve may cause excitotoxic-induced postsynaptic nuclear injury. Equally plausible is that cautery in the vicinity of the cochlear nucleus induces necrosis. The cochlear nerve was transected in anesthetized adult gerbils sharply with or without bipolar electrocautery at varying intensities. Gerbils were perfused at 1, 3, 5, and 7 days postoperatively; their brainstem and cochleas were embedded in paraffin and sectioned at 10 μm. Alternate sections were stained with flourescent markers for neuronal injury or Nissl substance. In additional experiments, anterograde tracers were applied directly to a sectioned eighth nerve to verify that fluorescent-labeled profiles seen were terminating auditory nerve fibers. Cochlear nerve injury was observed from 72 hours postoperatively and was identical across cases regardless of surgical technique. Postsynaptic cochlear nucleus injury was not seen after distal transection of the nerve. By contrast, proximal transection was associated with trauma to the cochlear nucleus. Distal application of bipolar electrocautery seems safe for the cochlear nucleus. Application near the root entry zone must be used cautiously because this may compromise nuclear viability needed to support ABI stimulation.
Hsiao, Feilin; Gfeller, Kate
2013-01-01
This review of literature presents a systematic analysis of the capabilities and limitations of cochlear implant recipients regarding music perception. Specifically, it a) analyzes individual components of music (e.g., rhythm, timbre, and pitch) as they interface with the technical characteristics of cochlear implants and the perceptual abilities of cochlear implant recipients; and b) describes accommodations for music instruction that support successful participation of children with cochlear implants. This article consolidates research studies from various disciplines (audiology, hearing science, speech-language pathology, cochlear implants, and music therapy) to provide practical recommendations for educators in fostering the musical growth of children with cochlear implants. PMID:23469365
Outcomes of cochlear implantation in deaf children of deaf parents: comparative study.
Hassanzadeh, S
2012-10-01
This retrospective study compared the cochlear implantation outcomes of first- and second-generation deaf children. The study group consisted of seven deaf, cochlear-implanted children with deaf parents. An equal number of deaf children with normal-hearing parents were selected by matched sampling as a reference group. Participants were matched based on onset and severity of deafness, duration of deafness, age at cochlear implantation, duration of cochlear implantation, gender, and cochlear implant model. We used the Persian Auditory Perception Test for the Hearing Impaired, the Speech Intelligibility Rating scale, and the Sentence Imitation Test, in order to measure participants' speech perception, speech production and language development, respectively. Both groups of children showed auditory and speech development. However, the second-generation deaf children (i.e. deaf children of deaf parents) exceeded the cochlear implantation performance of the deaf children with hearing parents. This study confirms that second-generation deaf children exceed deaf children of hearing parents in terms of cochlear implantation performance. Encouraging deaf children to communicate in sign language from a very early age, before cochlear implantation, appears to improve their ability to learn spoken language after cochlear implantation.
Parental expectations and outcomes of pediatric cochlear implantation.
Piazza, Elizabeth; Kandathil, Cherian; Carron, Jeffrey D
2009-10-01
Cochlear implants have been used with increasing frequency over the past twenty years, including very young patients. To determine if parents are satisfied with their children's performance after cochlear implantation. Survey mailed to parents of children receiving cochlear implants. 31 questionnaires were returned out of 69 mailed (45 %). The vast majority of responding parents felt that their children benefited substantially from cochlear implant surgery. Cochlear implantation is effective in helping children develop auditory-oral communication skills. Access to auditory/oral communication programs in this state remains an obstacle in postoperative habilitation.
Dhanasekar, G; Jones, N S
2011-02-01
We report a case of cholesterol granuloma of the petrous apex which was surgically treated via an endoscopic trans-sphenoidal approach. Case report and review of the literature concerning cholesterol granulomas of the petrous apex and their management. The lesion was approached endoscopically via a bilateral sphenoidotomy with removal of the vomer. A large cholesterol granuloma was evacuated and marsupialised. The patient made an uneventful recovery. Trans-sphenoidal access to the petrous apex represents an alternative route for the drainage and ventilation of cholesterol granulomas. This approach is the technique of choice when the cholesterol granuloma abuts the posterior wall of the sphenoid sinus. The trans-sphenoid approach, unlike other lateral approaches to the petrous apex, spares cochlear and vestibular function and allows post-operative endoscopic follow up.
International survey of cochlear implant candidacy.
Vickers, D; De Raeve, L; Graham, J
2016-04-01
The goal of this work was to determine international differences in candidacy based on audiometric and speech perception measures, and to evaluate the information in light of the funding structure and access to implants within different countries. An online questionnaire was circulated to professionals in 25 countries. There were 28 respondents, representing the candidacy practice in 17 countries. Results showed differences in the funding model between countries. Unilateral implants for both adults and children and bilateral implants for children were covered by national funding in approximately 60% of countries (30% used medical insurance, and 10% self-funding). Fewer countries provided bilateral implants routinely for adults: national funding was available in only 22% (37% used medical insurance and 41% self-funding). Main evolving candidacy areas are asymmetric losses, auditory neuropathy spectrum disorders and electro-acoustic stimulation. For countries using speech-based adult candidacy assessments, the majority (40%) used word tests, 24% used sentence tests, and 36% used a mixture of both. For countries using audiometry for candidacy (70-80% of countries), the majority used levels of 75-85 dB HL at frequencies above 1 kHz. The United Kingdom and Belgium had the most conservative audiometric criteria, and countries such as Australia, Germany, and Italy were the most lenient. Countries with a purely self-funding model had greater flexibility in candidacy requirements.
Vestibular dysfunction in Turner syndrome: a case report.
Baxter, Michael; Agrawal, Yuri
2014-02-01
Turner syndrome is a well-known cause of sensorineural hearing loss, and the lack of estrogen has been implicated in cochlear dysfunction. It has never been associated with vestibular dysfunction. We report a case of a patient with Turner syndrome who was found to have bilateral vestibular dysfunction based on video-oculography (VOG) testing. A single patient with a history of Turner syndrome who was found to have significant bilateral vestibular dysfunction. After noticing a deficit in the vestibulo-ocular reflexes on qualitative horizontal head impulse examination, the patient underwent VOG testing. VOG testing quantatively measures angular vestibulo-ocular reflex (AVOR) gain in the horizontal semicircular canal plane. AVOR gain represents the eye movement response to a head movement; in normal individuals the eye movement is fully compensatory and gain values are close to unity. VOG results showed AVOR gains of 0.29 and 0.36 on the right and left sides, respectively. We have presented a case of a woman with Turner syndrome with asymptomatic vestibular dysfunction demonstrated with VOG testing. Although there is a documented relationship between Turner syndrome and sensorineural hearing loss, there are no previous studies or case reports linking Turner syndrome and vestibular dysfunction. Additional research and added vigilance in monitoring Turner syndrome patients may be warranted.
Effects of neostriatal 6-OHDA lesion on performance in a rat sequential reaction time task.
Domenger, D; Schwarting, R K W
2008-10-31
Work in humans and monkeys has provided evidence that the basal ganglia, and the neurotransmitter dopamine therein, play an important role for sequential learning and performance. Compared to primates, experimental work in rodents is rather sparse, largely due to the fact that tasks comparable to the human ones, especially serial reaction time tasks (SRTT), had been lacking until recently. We have developed a rat model of the SRTT, which allows to study neural correlates of sequential performance and motor sequence execution. Here, we report the effects of dopaminergic neostriatal lesions, performed using bilateral 6-hydroxydopamine injections, on performance of well-trained rats tested in our SRTT. Sequential behavior was measured in two ways: for one, the effects of small violations of otherwise well trained sequences were examined as a measure of attention and automation. Secondly, sequential versus random performance was compared as a measure of sequential learning. Neurochemically, the lesions led to sub-total dopamine depletions in the neostriatum, which ranged around 60% in the lateral, and around 40% in the medial neostriatum. These lesions led to a general instrumental impairment in terms of reduced speed (response latencies) and response rate, and these deficits were correlated with the degree of striatal dopamine loss. Furthermore, the violation test indicated that the lesion group conducted less automated responses. The comparison of random versus sequential responding showed that the lesion group did not retain its superior sequential performance in terms of speed, whereas they did in terms of accuracy. Also, rats with lesions did not improve further in overall performance as compared to pre-lesion values, whereas controls did. These results support previous results that neostriatal dopamine is involved in instrumental behaviour in general. Also, these lesions are not sufficient to completely abolish sequential performance, at least when acquired before lesion as tested here.
Dickins, Daina S. E.; Sale, Martin V.; Kamke, Marc R.
2015-01-01
Intermanual transfer refers to the phenomenon whereby unilateral motor training induces performance gains in both the trained limb and in the opposite, untrained limb. Evidence indicates that intermanual transfer is attenuated in older adults following training on a simple ballistic movement task, but not after training on a complex task. This study investigated whether differences in plasticity in bilateral motor cortices underlie these differential intermanual transfer effects in older adults. Twenty young (<35 years-old) and older adults (>65 years) trained on a simple (repeated ballistic thumb abduction) and complex (sequential finger-thumb opposition) task in separate sessions. Behavioral performance was used to quantify intermanual transfer between the dominant (trained) and non-dominant (untrained) hands. The amplitude of motor-evoked potentials induced by single pulse transcranial magnetic stimulation was used to investigate excitability changes in bilateral motor cortices. Contrary to predictions, both age groups exhibited performance improvements in both hands after unilateral skilled motor training with simple and complex tasks. These performance gains were accompanied by bilateral increases in cortical excitability in both groups for the simple but not the complex task. The findings suggest that advancing age does not necessarily influence the capacity for intermanual transfer after training with the dominant hand. PMID:25999856
Mertens, Griet; Van Rompaey, Vincent; Van de Heyning, Paul
2018-05-17
A suggested solution to suppress tinnitus is to restore the normal sensory input. This is based on the auditory deprivation hypothesis. It is known that hearing aids can provide sufficient activation of the auditory nervous system and reduce tinnitus in subjects with mild to moderate hearing loss and that cochlear implantation can reduce tinnitus in subjects with severe to profound hearing loss. This applies to subjects with single-sided deafness (SSD) or bilateral hearing loss. To investigate if electric-acoustic stimulation (EAS) can reduce severe tinnitus in a subject with residual hearing in the ipsilateral ear and contralateral normal hearing (high-frequency SSD) by restoring the auditory input. Tinnitus reduction was investigated for 1 year after implantation in a subject with high-frequency SSD, who uses EAS, and was compared to 11 subjects with a cochlear implant (CI) with SSD. The Visual Analogue Scale (VAS) and the Tinnitus Questionnaire (TQ) were administered pre-operatively and at 1, 3, 6, and 12 months after implantation. Significant tinnitus reduction was observed 1 month after implantation on the VAS in the subjects with SSD using a CI. Tinnitus reduction was also observed in the subject with high-frequency SSD using EAS. A further decrease was observed 3 months after implantation. The TQ and VAS scores remained stable up to 1 year after implantation. A CI can significantly reduce ipsilateral severe tinnitus in a subject with SSD. Ipsilateral severe tinnitus can also be reduced using EAS in subjects with high-frequency SSD.
Adiloğlu, K.; Herzke, T.
2015-01-01
We present the first portable, binaural, real-time research platform compatible with Oticon Medical SP and XP generation cochlear implants. The platform consists of (a) a pair of behind-the-ear devices, each containing front and rear calibrated microphones, (b) a four-channel USB analog-to-digital converter, (c) real-time PC-based sound processing software called the Master Hearing Aid, and (d) USB-connected hardware and output coils capable of driving two implants simultaneously. The platform is capable of processing signals from the four microphones simultaneously and producing synchronized binaural cochlear implant outputs that drive two (bilaterally implanted) SP or XP implants. Both audio signal preprocessing algorithms (such as binaural beamforming) and novel binaural stimulation strategies (within the implant limitations) can be programmed by researchers. When the whole research platform is combined with Oticon Medical SP implants, interaural electrode timing can be controlled on individual electrodes to within ±1 µs and interaural electrode energy differences can be controlled to within ±2%. Hence, this new platform is particularly well suited to performing experiments related to interaural time differences in combination with interaural level differences in real-time. The platform also supports instantaneously variable stimulation rates and thereby enables investigations such as the effect of changing the stimulation rate on pitch perception. Because the processing can be changed on the fly, researchers can use this platform to study perceptual changes resulting from different processing strategies acutely. PMID:26721923
Backus, B; Adiloğlu, K; Herzke, T
2015-12-30
We present the first portable, binaural, real-time research platform compatible with Oticon Medical SP and XP generation cochlear implants. The platform consists of (a) a pair of behind-the-ear devices, each containing front and rear calibrated microphones, (b) a four-channel USB analog-to-digital converter, (c) real-time PC-based sound processing software called the Master Hearing Aid, and (d) USB-connected hardware and output coils capable of driving two implants simultaneously. The platform is capable of processing signals from the four microphones simultaneously and producing synchronized binaural cochlear implant outputs that drive two (bilaterally implanted) SP or XP implants. Both audio signal preprocessing algorithms (such as binaural beamforming) and novel binaural stimulation strategies (within the implant limitations) can be programmed by researchers. When the whole research platform is combined with Oticon Medical SP implants, interaural electrode timing can be controlled on individual electrodes to within ±1 µs and interaural electrode energy differences can be controlled to within ±2%. Hence, this new platform is particularly well suited to performing experiments related to interaural time differences in combination with interaural level differences in real-time. The platform also supports instantaneously variable stimulation rates and thereby enables investigations such as the effect of changing the stimulation rate on pitch perception. Because the processing can be changed on the fly, researchers can use this platform to study perceptual changes resulting from different processing strategies acutely. © The Author(s) 2015.
Emotional perception of music in children with unilateral cochlear implants.
Shirvani, Sareh; Jafari, Zahra; Sheibanizadeh, Abdolreza; Motasaddi Zarandy, Masoud; Jalaie, Shohre
2014-10-01
Cochlear implantation (CI) improves language skills among children with hearing loss. However, children with CIs still fall short of fulfilling some other needs, including musical perception. This is often attributed to the biological, technological, and acoustic limitations of CIs. Emotions play a key role in the understanding and enjoyment of music. The present study aimed to investigate the emotional perception of music in children with bilaterally severe-to-profound hearing loss and unilateral CIs. Twenty-five children with congenital severe-to-profound hearing loss and unilateral CIs and 30 children with normal hearing participated in the study. The children's emotional perceptions of music, as defined by Peretz (1998), were measured. Children were instructed to indicate happy or sad feelings fostered in them by the music by pointing to pictures of faces showing these emotions. Children with CI obtained significantly lower scores than children with normal hearing, for both happy and sad items of music as well as in overall test scores (P<0.001). Furthermore, both in CI group (P=0.49) and the control one (P<0.001), the happy items were more often recognized correctly than the sad items. Hearing-impaired children with CIs had poorer emotional perception of music than their normal peers. Due to the importance of music in the development of language, cognitive and social interaction skills, aural rehabilitation programs for children with CIs should focus particularly on music. Furthermore, it is essential to enhance the quality of musical perception by improving the quality of implant prostheses.
Cochlear implant in Hong Kong Cantonese.
Tang, S O; Luk, W S; Lau, C C; So, K W; Wong, C M; Yiu, M L; Kwok, C L
1990-11-01
Cochlear implant surgery was performed in four Cantonese-speaking postlingually deaf Chinese adults, using the House/3M single channel device. This article outlines the methodology, including preoperative assessment and postoperative rehabilitation; and explains the necessary modifications in speech and audiologic work-up in Cantonese-speaking patients. Salient features of Cantonese phonetics, especially its tonal characteristics, are described. The findings of the study are presented. The results of the cochlear implant would suggest a performance superior to that of the hearing aid. Furthermore, the cochlear implant is able to detect tonal cues. This quality of the cochlear implant may prove to be a valuable asset to a tonal language-speaking cochlear implantee.
Dai, Min; Nuttall, Alfred; Yang, Yue; Shi, Xiaorui
2009-08-01
Pericytes, mural cells located on microvessels, are considered to play an important role in the formation of the vasculature and the regulation of local blood flow in some organs. Little is known about the physiology of cochlear pericytes. In order to investigate the function of cochlear pericytes, we developed a method to visualize cochlear pericytes using diaminofluorescein-2 diacetate (DAF-2DA) and intravital fluorescence microscopy. This method can permit the study of the effect of vasoactive agents on pericytes under the in vivo and normal physiological condition. The specificity of the labeling method was verified by the immunofluorescence labeling of pericyte maker proteins such as desmin, neural proteoglycan (NG2), and thymocyte differentiation antigen 1 (Thy-1). Superfused K(+) and Ca(2+) to the cochlear lateral wall resulted in localized constriction of capillaries at pericyte locations both in vivo and in vitro, while there was no obvious change in cochlear capillary diameters with application of the adrenergic neurotransmitter noradrenaline. The method could be an effective way to visualize cochlear pericytes and microvessels and study lateral wall vascular physiology. Moreover, we demonstrate for the first time that cochlear pericytes have contractility, which may be important for regulation of cochlear blood flow.
Temma, Takashi; Yamazaki, Makoto; Miyanohara, Jun; Shirakawa, Hisashi; Kondo, Naoya; Koshino, Kazuhiro; Kaneko, Shuji; Iida, Hidehiro
2017-10-01
Positron emission tomography with 15 O-labeled gases ( 15 O-PET) is important for in vivo measurement of cerebral oxygen metabolism both in clinical and basic settings. However, there are currently no reports concerning 15 O-PET in mice. Here, we developed an 15 O-PET method applicable to mice with spontaneous respiration of 15 O-gas without a tracheotomy catheter. Sequential 15 O-PET was also performed in a mouse model of chronic cerebral hypoperfusion with bilateral common carotid artery stenosis (BCAS) induced by placement of microcoils. 15 O-gas with isoflurane was supplied to the nose of mouse with evacuation of excess 15 O-gas surrounding the body. 15 O-PET was performed on days 3, 7, 14, 21, and 28 after surgery. Cerebral blood flow (CBF), cerebral blood volume, oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO 2 ) were calculated in whole brains. A significant decrease in CBF and compensatory increase in OEF in the BCAS group produced CMRO 2 values comparable to that of the sham group at three days post-operation. Although CBF and OEF in the BCAS group gradually recovered over the first 28 days, the CMRO 2 showed a gradual decrease to 68% of sham values at 28 days post-operation. In conclusion, we successfully developed a noninvasive 15 O-PET method for mice.
Cochlear implants: system design, integration, and evaluation.
Zeng, Fan-Gang; Rebscher, Stephen; Harrison, William; Sun, Xiaoan; Feng, Haihong
2008-01-01
As the most successful neural prosthesis, cochlear implants have provided partial hearing to more than 120000 persons worldwide; half of which being pediatric users who are able to develop nearly normal language. Biomedical engineers have played a central role in the design, integration and evaluation of the cochlear implant system, but the overall success is a result of collaborative work with physiologists, psychologists, physicians, educators, and entrepreneurs. This review presents broad yet in-depth academic and industrial perspectives on the underlying research and ongoing development of cochlear implants. The introduction accounts for major events and advances in cochlear implants, including dynamic interplays among engineers, scientists, physicians, and policy makers. The review takes a system approach to address critical issues in cochlear implant research and development. First, the cochlear implant system design and specifications are laid out. Second, the design goals, principles, and methods of the subsystem components are identified from the external speech processor and radio frequency transmission link to the internal receiver, stimulator and electrode arrays. Third, system integration and functional evaluation are presented with respect to safety, reliability, and challenges facing the present and future cochlear implant designers and users. Finally, issues beyond cochlear implants are discussed to address treatment options for the entire spectrum of hearing impairment as well as to use the cochlear implant as a model to design and evaluate other similar neural prostheses such as vestibular and retinal implants.
Luo, Xin; Fu, Qian-Jie; Galvin, John J.
2007-01-01
The present study investigated the ability of normal-hearing listeners and cochlear implant users to recognize vocal emotions. Sentences were produced by 1 male and 1 female talker according to 5 target emotions: angry, anxious, happy, sad, and neutral. Overall amplitude differences between the stimuli were either preserved or normalized. In experiment 1, vocal emotion recognition was measured in normal-hearing and cochlear implant listeners; cochlear implant subjects were tested using their clinically assigned processors. When overall amplitude cues were preserved, normal-hearing listeners achieved near-perfect performance, whereas listeners with cochlear implant recognized less than half of the target emotions. Removing the overall amplitude cues significantly worsened mean normal-hearing and cochlear implant performance. In experiment 2, vocal emotion recognition was measured in listeners with cochlear implant as a function of the number of channels (from 1 to 8) and envelope filter cutoff frequency (50 vs 400 Hz) in experimental speech processors. In experiment 3, vocal emotion recognition was measured in normal-hearing listeners as a function of the number of channels (from 1 to 16) and envelope filter cutoff frequency (50 vs 500 Hz) in acoustic cochlear implant simulations. Results from experiments 2 and 3 showed that both cochlear implant and normal-hearing performance significantly improved as the number of channels or the envelope filter cutoff frequency was increased. The results suggest that spectral, temporal, and overall amplitude cues each contribute to vocal emotion recognition. The poorer cochlear implant performance is most likely attributable to the lack of salient pitch cues and the limited functional spectral resolution. PMID:18003871
Inner ear dysplasia is common in children with Down syndrome (trisomy 21).
Blaser, Susan; Propst, Evan J; Martin, Daniel; Feigenbaum, Annette; James, Adrian L; Shannon, Patrick; Papsin, Blake C
2006-12-01
Middle and external ear anomalies are well recognized in Down syndrome (DS, trisomy 21). Inner ear anomalies are much less frequently described. This study reviews inner ear morphology on imaging to determine the prevalence of cochlear and vestibular anomalies in children with DS. The authors conducted a retrospective review of imaging features of (DS) inner ear structures. Fifty-nine sequential patients with DS with imaging of the inner ear were identified by a radiology report text search program. Quantitative biometric assessment of the inner ear was performed on patients with high-resolution computed tomography or magnetic resonance images of the petrous bone. Petrous imaging was performed for evaluation of inflammatory disease or hearing loss. Spinal imaging, which included petrous views, was performed in most cases to exclude C1 to 2 dislocation, a potential complication of DS. Measurements were compared with normative data. Inner ear dysplasia is much more common in DS than previously reported. Inner ear structures are universally hypoplastic. Vestibular malformations are particularly common and a small bony island of the lateral semicircular canal (<3 mm in diameter) appears highly typical. Additional findings in some patients were persistent lateral semicircular anlage with fusion of the lateral semicircular canal and vestibule into a single cavity, vestibular aqueduct and endolymphatic sac fossa enlargement, cochlear nerve canal hypoplasia, and stenosis or duplication of the internal auditory canal. Stenosis of the external meatus, poor mastoid pneumatization, middle ear and mastoid opacification, and cholesteatoma were common, as expected.
Transaction costs and sequential bargaining in transferable discharge permit markets.
Netusil, N R; Braden, J B
2001-03-01
Market-type mechanisms have been introduced and are being explored for various environmental programs. Several existing programs, however, have not attained the cost savings that were initially projected. Modeling that acknowledges the role of transactions costs and the discrete, bilateral, and sequential manner in which trades are executed should provide a more realistic basis for calculating potential cost savings. This paper presents empirical evidence on potential cost savings by examining a market for the abatement of sediment from farmland. Empirical results based on a market simulation model find no statistically significant change in mean abatement costs under several transaction cost levels when contracts are randomly executed. An alternative method of contract execution, gain-ranked, yields similar results. At the highest transaction cost level studied, trading reduces the total cost of compliance relative to a uniform standard that reflects current regulations.
Kocjan, Tomaz; Janez, Andrej; Stankovic, Milenko; Vidmar, Gaj; Jensterle, Mojca
2016-05-01
Adrenal venous sampling (AVS) is the only available method to distinguish bilateral from unilateral primary aldosteronism (PA). AVS has several drawbacks, so it is reasonable to avoid this procedure when the results would not affect clinical management. Our objective was to identify a clinical criterion that can reliably predict nonlateralized AVS as a surrogate for bilateral PA that is not treated surgically. A retrospective diagnostic cross-sectional study conducted at Slovenian national endocrine referral center included 69 consecutive patients (mean age 56 ± 8 years, 21 females) with PA who underwent AVS. PA was confirmed with the saline infusion test (SIT). AVS was performed sequentially during continuous adrenocorticotrophic hormone (ACTH) infusion. The main outcome measures were variables associated with nonlateralized AVS to derive a clinical prediction rule. Sixty-seven (97%) patients had a successful AVS and were included in the statistical analysis. A total of 39 (58%) patients had nonlateralized AVS. The combined criterion of serum potassium ≥3.5 mmol/L, post-SIT aldosterone <18 ng/dL, and either no or bilateral tumor found on computed tomography (CT) imaging had perfect estimated specificity (and thus 100% positive predictive value) for bilateral PA, saving an estimated 16% of the patients (11/67) from unnecessary AVS. The best overall classification accuracy (50/67 = 75%) was achieved using the post-SIT aldosterone level <18 ng/dL alone, which yielded 74% sensitivity and 75% specificity for predicting nonlateralized AVS. Our clinical prediction criterion appears to accurately determine a subset of patients with bilateral PA who could avoid unnecessary AVS and immediately commence with medical treatment.
Visualization of spiral ganglion neurites within the scala tympani with a cochlear implant in situ
Chikar, Jennifer A.; Batts, Shelley A.; Pfingst, Bryan E.; Raphael, Yehoash
2009-01-01
Current cochlear histology methods do not allow in situ processing of cochlear implants. The metal components of the implant preclude standard embedding and mid-modiolar sectioning, and whole mounts do not have the spatial resolution needed to view the implant within the scala tympani. One focus of recent auditory research is the regeneration of structures within the cochlea, particularly the ganglion cells and their processes, and there are multiple potential benefits to cochlear implant users from this work. To facilitate experimental investigations of auditory nerve regeneration performed in conjunction with cochlear implantation, it is critical to visualize the cochlear tissue and the implant together to determine if the nerve has made contact with the implant. This paper presents a novel histological technique that enables simultaneous visualization of the in situ cochlear implant and neurofilament – labeled nerve processes within the scala tympani, and the spatial relationship between them. PMID:19428528
Visualization of spiral ganglion neurites within the scala tympani with a cochlear implant in situ.
Chikar, Jennifer A; Batts, Shelley A; Pfingst, Bryan E; Raphael, Yehoash
2009-05-15
Current cochlear histology methods do not allow in situ processing of cochlear implants. The metal components of the implant preclude standard embedding and mid-modiolar sectioning, and whole mounts do not have the spatial resolution needed to view the implant within the scala tympani. One focus of recent auditory research is the regeneration of structures within the cochlea, particularly the ganglion cells and their processes, and there are multiple potential benefits to cochlear implant users from this work. To facilitate experimental investigations of auditory nerve regeneration performed in conjunction with cochlear implantation, it is critical to visualize the cochlear tissue and the implant together to determine if the nerve has made contact with the implant. This paper presents a novel histological technique that enables simultaneous visualization of the in situ cochlear implant and neurofilament-labeled nerve processes within the scala tympani, and the spatial relationship between them.
[Emotional response to music by postlingually-deafened adult cochlear implant users].
Wang, Shuo; Dong, Ruijuan; Zhou, Yun; Li, Jing; Qi, Beier; Liu, Bo
2012-10-01
To assess the emotional response to music by postlingually-deafened adult cochlear implant users. Munich music questionnaire (MUMU) was used to match the music experience and the motivation of use of music between 12 normal-hearing and 12 cochlear implant subjects. Emotion rating test in Musical Sounds in Cochlear Implants (MuSIC) test battery was used to assess the emotion perception ability for both normal-hearing and cochlear implant subjects. A total of 15 pieces of music phases were used. Responses were given by selecting the rating scales from 1 to 10. "1" represents "very sad" feeling, and "10" represents "very happy feeling. In comparison with normal-hearing subjects, 12 cochlear implant subjects made less active use of music for emotional purpose. The emotion ratings for cochlear implant subjects were similar to normal-hearing subjects, but with large variability. Post-lingually deafened cochlear implant subjects on average performed similarly in emotion rating tasks relative to normal-hearing subjects, but their active use of music for emotional purpose was obviously less than normal-hearing subjects.
The cochlear size of bats and rodents derived from MRI images and histology.
Hsiao, Chun Jen; Jen, Philip Hung-Sun; Wu, Chung Hsin
2015-05-27
From the evolutionary perspective, the ear of each animal species is built for effective processing of the biologically relevant signals used for communication and acoustically guided orientation. Because the sound pulses used by echolocating bats for orientation and rodents for communication are quite different, the basic design of the mammalian auditory system commonly shared by echolocating bats must be specialized in some manner to effectively process their species-specific sounds. The present study examines the difference in the cochlea of these animal species using MRI images and histological techniques. We report here that, although all these animal species share a similar cochlear structure, they vary in their cochlear size and turns. Bats using constant frequency-frequency-modulated pulses (CF-FM bats) and frequency-modulated pulses (FM bats) for echolocation have a larger cochlear size and more cochlear turns than rodents (mice and rats). However, CF-FM bats have the largest cochlear size and most cochlear turns. This difference in cochlear size and turns of these animal species is discussed in relation to their biologically relevant sounds and acoustic behavior.
[Enlarged vestibular aqueduct syndrome. A review of 55 paediatric patients].
Santos, Saturnino; Sgambatti, Luciano; Bueno, Antonio; Albi, Gustavo; Suárez, Alicia; Domínguez, Maria Jesús
2010-01-01
Enlarged vestibular aqueduct (EVA) is the commonest congenital anomaly found with imaging techniques in paediatric sensorineural hearing loss (SNHL). Our aim was to describe clinical and audiological findings in paediatric hearing loss associated to EVA. Retrospective review of 55 children with imaging-technique EVA findings from 2000 to 2009. Subjective and/or objective audiological tests were analysed and audiological findings related to clinical features were described. Thirty-seven patients (67.27%) showed bilateral EVA and 18 (32.72%) were unilateral. Hearing loss was bilateral in 46 (83.63%) patients and unilateral in 9 (16.36%). Mean age at diagnosis was 3.78 years. Fifty-three (96.36%) children showed SNHL (28 bilateral and profound), while 2 (3.63%) patients had mixed hearing loss. There were 3 cases of hearing loss progression, 2 fluctuations, 2 of them were asymmetric and 2 patients suffered from vestibular symptoms. Concomitant image findings were 6 cochlear hypoplasia, 2 enlarged internal auditory canals, 1 enlarged vestibule and 1 hypoplastic lateral semicircular canal. Six clinical syndromes were found (2 cases of Down's, and 1 each of Jacobsen, Pendred, Waardenburg and branchio-oto-renal). One child was positive for GJB2 mutation. Familial hearing loss was demonstrated on 12 (21.8%) cases. The clinical picture of hearing loss associated to EVA is characterised by great variability. It should be included in the differential diagnosis of unexplained mixed hearing loss. Familial and syndromic findings have to be taken into consideration in the diagnostic evaluations of such patients. Knowledge about the natural history of this illness is needed so as to give parents prognostic information. Copyright © 2010 Elsevier España, S.L. All rights reserved.
Guideline on cochlear implants.
Manrique, Manuel; Ramos, Ángel; de Paula Vernetta, Carlos; Gil-Carcedo, Elisa; Lassaleta, Luis; Sanchez-Cuadrado, Isabel; Espinosa, Juan Manuel; Batuecas, Ángel; Cenjor, Carlos; Lavilla, María José; Núñez, Faustino; Cavalle, Laura; Huarte, Alicia
2018-03-26
In the last decade numerous hospitals have started to work with patients who are candidates for a cochlear implant (CI) and there have been numerous and relevant advances in the treatment of sensorineural hearing loss that extended the indications for cochlear implants. To provide a guideline on cochlear implants to specialists in otorhinolaryngology, other medical specialities, health authorities and society in general. The Scientific Committees of Otology, Otoneurology and Audiology from the Spanish Society of Otolaryngology and Head and Neck Surgery (SEORL-CCC), in a coordinated and agreed way, performed a review of the current state of CI based on the existing regulations and in the scientific publications referenced in the bibliography of the document drafted. The clinical guideline on cochlear implants provides information on: a) Definition and description of Cochlear Implant; b) Indications for cochlear implants; c) Organizational requirements for a cochlear implant programme. A clinical guideline on cochlear implants has been developed by a Committee of Experts of the SEORL-CCC, to help and guide all the health professionals involved in this field of CI in decision-making to treathearing impairment. Copyright © 2018 Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. Publicado por Elsevier España, S.L.U. All rights reserved.
Cochlear implants in children implanted in Jordan: A parental overview.
Alkhamra, Rana A
2015-07-01
Exploring the perspective of parents on the cochlear implant process in Jordan. Sixty parents of deaf children were surveyed on the information gathering process prior to cochlear implant surgery, and their implant outcome expectations post-surgery. Whether child or parent characteristics may impact parents' post-surgical expectations was explored. Although parents used a variety of information sources when considering a cochlear implant, the ear, nose and throat doctor comprised their major source of information (60%). Parents received a range of information prior to cochlear implant but agreed (93.3%) on the need for a multidisciplinary team approach. Post-surgically, parents' expected major developments in the areas of spoken language (97%), and auditory skills (100%). Receiving education in mainstream schools (92%) was expected too. Parents perceived the cochlear implant decision as the best decision they can make for their child (98.3%). A significant correlation was found between parents contentment with the cochlear implant decision and expecting developments in the area of reading and writing (r=0.7). Child's age at implantation and age at hearing loss diagnosis significantly affected parents' post-implant outcome expectations (p<0.05). Despite the general satisfaction from the information quantity and quality prior to cochlear implant, parents agree on the need for a comprehensive multidisciplinary team approach during the different stages of the cochlear implant process. Parents' education about cochlear implants prior to the surgery can affect their post-surgical outcome expectations. The parental perspective presented in this study can help professionals develop better understanding of parents' needs and expectations and henceforth improve their services and support during the different stages of the cochlear implant process. Copyright © 2015. Published by Elsevier Ireland Ltd.
In vivo imaging of mammalian cochlear blood flow using fluorescence microendoscopy.
Monfared, Ashkan; Blevins, Nikolas H; Cheung, Eunice L M; Jung, Juergen C; Popelka, Gerald; Schnitzer, Mark J
2006-02-01
We sought to develop techniques for visualizing cochlear blood flow in live mammalian subjects using fluorescence microendoscopy. Inner ear microcirculation appears to be intimately involved in cochlear function. Blood velocity measurements suggest that intense sounds can alter cochlear blood flow. Disruption of cochlear blood flow may be a significant cause of hearing impairment, including sudden sensorineural hearing loss. However, inability to image cochlear blood flow in a nondestructive manner has limited investigation of the role of inner ear microcirculation in hearing function. Present techniques for imaging cochlear microcirculation using intravital light microscopy involve extensive perturbations to cochlear structure, precluding application in human patients. The few previous endoscopy studies of the cochlea have suffered from optical resolution insufficient for visualizing cochlear microvasculature. Fluorescence microendoscopy is an emerging minimally invasive imaging modality that provides micron-scale resolution in tissues inaccessible to light microscopy. In this article, we describe the use of fluorescence microendoscopy in live guinea pigs to image capillary blood flow and movements of individual red blood cells within the basal turn of the cochlea. We anesthetized eight adult guinea pigs and accessed the inner ear through the mastoid bulla. After intravenous injection of fluorescein dye, we made a limited cochleostomy and introduced a compound doublet gradient refractive index endoscope probe 1 mm in diameter into the inner ear. We then imaged cochlear blood flow within individual vessels in an epifluorescence configuration using one-photon fluorescence microendoscopy. We observed single red blood cells passing through individual capillaries in several cochlear structures, including the round window membrane, spiral ligament, osseous spiral lamina, and basilar membrane. Blood flow velocities within inner ear capillaries varied widely, with observed speeds reaching up to approximately 500 microm/s. Fluorescence microendoscopy permits visualization of cochlear microcirculation with micron-scale optical resolution and determination of blood flow velocities through analysis of video sequences.
Razza, Sergio; Zaccone, Monica; Meli, Aannalisa; Cristofari, Eliana
2017-12-01
Children affected by hearing loss can experience difficulties in challenging and noisy environments even when deafness is corrected by Cochlear implant (CI) devices. These patients have a selective attention deficit in multiple listening conditions. At present, the most effective ways to improve the performance of speech recognition in noise consists of providing CI processors with noise reduction algorithms and of providing patients with bilateral CIs. The aim of this study was to compare speech performances in noise, across increasing noise levels, in CI recipients using two kinds of wireless remote-microphone radio systems that use digital radio frequency transmission: the Roger Inspiro accessory and the Cochlear Wireless Mini Microphone accessory. Eleven Nucleus Cochlear CP910 CI young user subjects were studied. The signal/noise ratio, at a speech reception threshold (SRT) value of 50%, was measured in different conditions for each patient: with CI only, with the Roger or with the MiniMic accessory. The effect of the application of the SNR-noise reduction algorithm in each of these conditions was also assessed. The tests were performed with the subject positioned in front of the main speaker, at a distance of 2.5 m. Another two speakers were positioned at 3.50 m. The main speaker at 65 dB issued disyllabic words. Babble noise signal was delivered through the other speakers, with variable intensity. The use of both wireless remote microphones improved the SRT results. Both systems improved gain of speech performances. The gain was higher with the Mini Mic system (SRT = -4.76) than the Roger system (SRT = -3.01). The addition of the NR algorithm did not statistically further improve the results. There is significant improvement in speech recognition results with both wireless digital remote microphone accessories, in particular with the Mini Mic system when used with the CP910 processor. The use of a remote microphone accessory surpasses the benefit of application of NR algorithm. Copyright © 2017. Published by Elsevier B.V.
Pianesi, Federica; Scorpecci, Alessandro; Giannantonio, Sara; Micardi, Mariella; Resca, Alessandra; Marsella, Pasquale
2016-03-01
To assess when prelingually deaf children with a cochlear implant (CI) achieve the First Milestone of Oral Language, to study the progression of their prelingual auditory skills in the first year after CI and to investigate a possible correlation between such skills and the timing of initial oral language development. The sample included 44 prelingually deaf children (23 M and 21 F) from the same tertiary care institution, who received unilateral or bilateral cochlear implants. Achievement of the First Milestone of Oral Language (FMOL) was defined as speech comprehension of at least 50 words and speech production of a minimum of 10 words, as established by administration of a validated Italian test for the assessment of initial language competence in infants. Prelingual auditory-perceptual skills were assessed over time by means of a test battery consisting of: the Infant Toddler Meaningful Integration Scale (IT-MAIS); the Infant Listening Progress Profile (ILiP) and the Categories of Auditory Performance (CAP). On average, the 44 children received their CI at 24±9 months and experienced FMOL after 8±4 months of continuous CI use. The IT-MAIS, ILiP and CAP scores increased significantly over time, the greatest improvement occurring between baseline and six months of CI use. On multivariate regression analysis, age at diagnosis and age at CI did not appear to bear correlation with FMOL timing; instead, the only variables contributing to its variance were IT-MAIS and ILiP scores after six months of CI use, accounting for 43% and 55%, respectively. Prelingual auditory skills of implanted children assessed via a test battery six months after CI treatment, can act as indicators of the timing of initial oral language development. Accordingly, the period from CI switch-on to six months can be considered as a window of opportunity for appropriate intervention in children failing to show the expected progression of their auditory skills and who would have higher risk of delayed oral language development. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Wu, Helen C.; Nagasawa, Tetsuro; Brown, Erik C.; Juhasz, Csaba; Rothermel, Robert; Hoechstetter, Karsten; Shah, Aashit; Mittal, Sandeep; Fuerst, Darren; Sood, Sandeep; Asano, Eishi
2011-01-01
Objective We measured cortical gamma-oscillations in response to visual-language tasks consisting of picture naming and word reading in an effort to better understand human visual-language pathways. Methods We studied six patients with focal epilepsy who underwent extraoperative electrocorticography (ECoG) recording. Patients were asked to overtly name images presented sequentially in the picture naming task and to overtly read written words in the reading task. Results Both tasks commonly elicited gamma-augmentation (maximally at 80–100 Hz) on ECoG in the occipital, inferior-occipital-temporal and inferior-Rolandic areas, bilaterally. Picture naming, compared to reading task, elicited greater gamma-augmentation in portions of pre-motor areas as well as occipital and inferior-occipital-temporal areas, bilaterally. In contrast, word reading elicited greater gamma-augmentation in portions of bilateral occipital, left occipital-temporal and left superior-posterior-parietal areas. Gamma-attenuation was elicited by both tasks in portions of posterior cingulate and ventral premotor-prefrontal areas bilaterally. The number of letters in a presented word was positively correlated to the degree of gamma-augmentation in the medial occipital areas. Conclusions Gamma-augmentation measured on ECoG identified cortical areas commonly and differentially involved in picture naming and reading tasks. Longer words may activate the primary visual cortex for the more peripheral field. Significance The present study increases our understanding of the visual-language pathways. PMID:21498109
Determinants of virtual water flows in the Mediterranean.
Fracasso, Andrea; Sartori, Martina; Schiavo, Stefano
2016-02-01
The aim of the paper is to investigate the main determinants of the bilateral virtual water (water used in the production of a commodity or service) flows associated with international trade in agricultural goods across the Mediterranean basin. We consider the bilateral gross flows of virtual water in the area and study what export-specific and import-specific factors are significantly associated with virtual water flows. We follow a sequential approach. Through a gravity model of trade, we obtain a "refined" version of the variable we aim to explain, one that is free of the amount of flows due to pair-specific factors affecting bilateral trade flows and that fully reflects the impact of country-specific determinants of virtual water trade. A number of country-specific potential explanatory variables, ranging from water endowments to trade barriers, from per capita GDP to irrigation prices, is presented and tested. To identify the variables that help to explain the bilateral flows of virtual water, we adopt a model selection procedure based on model averaging. Our findings confirm one of the main controversial results in the literature: larger water endowments do not necessarily lead to a larger 'export' of virtual water, as one could expect. We also find some evidence that higher water irrigation prices reduce (increase) virtual water 'exports' ('imports'). Copyright © 2015 Elsevier B.V. All rights reserved.
Wiefferink, Carin H; Rieffe, Carolien; Ketelaar, Lizet; Frijns, Johan H M
2012-06-01
The purpose of the present study was to compare children with a cochlear implant and normal hearing children on aspects of emotion regulation (emotion expression and coping strategies) and social functioning (social competence and externalizing behaviors) and the relation between emotion regulation and social functioning. Participants were 69 children with cochlear implants (CI children) and 67 normal hearing children (NH children) aged 1.5-5 years. Parents answered questionnaires about their children's language skills, social functioning, and emotion regulation. Children also completed simple tasks to measure their emotion regulation abilities. Cochlear implant children had fewer adequate emotion regulation strategies and were less socially competent than normal hearing children. The parents of cochlear implant children did not report fewer externalizing behaviors than those of normal hearing children. While social competence in normal hearing children was strongly related to emotion regulation, cochlear implant children regulated their emotions in ways that were unrelated with social competence. On the other hand, emotion regulation explained externalizing behaviors better in cochlear implant children than in normal hearing children. While better language skills were related to higher social competence in both groups, they were related to fewer externalizing behaviors only in cochlear implant children. Our results indicate that cochlear implant children have less adequate emotion-regulation strategies and less social competence than normal hearing children. Since they received their implants relatively recently, they might eventually catch up with their hearing peers. Longitudinal studies should further explore the development of emotion regulation and social functioning in cochlear implant children. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
[The development of musicality in children after cochlear implantation].
Zheng, Yan; Liu, Bo; Dong, Ruijuan; Xu, Tianqiu; Chen, Jing; Chen, Xuejing; Zhong, Yan; Meng, Chao; Wang, Hong; Chen, Xueqing
2014-08-01
The purpose of this study is to analyze the development of musicality in children after cochlear implantation, and provide a clinical database for the evaluation of their musicality. Twenty-six children with cochlear implants (CI group) participated in this research. They received cochlear implants at the age of 11 to 68 months with a mean of 35.6 months. Seventy-six infants as a control group aged from 1 to 24 months with a mean of 6.1 months participated in this study, whose hearing were considered normal by passing the case history collection, high-risk registers for hearing loss and hearing screening using DPOAE. The music and young children with CIs: Musicality Rating Scale was used to evaluate their musicality. The evaluation was performed before cochlear implantation and 1, 3, 6, 9, 12, 24 months after cochlear implantation for children with cochlear implants. The evaluation was also performed at 1, 3, 6, 9, 12, 24 months for children with normal hearing. The mean scores of musicality showed significant improvements with time of CI use for CI group (P<0.05). The mean scores of musicality also showed significant improvements with time for control group (P<0.05). There were no significant differences in mean scores between CI group and control group at 1, 3, 6, 9, 12 months of hearing age by rank sum test (P>0.05). Significant difference was noted between the two groups at 24 months (P<0.05). The musicality of children with cochlear implants improved significantly with time after cochlear implantation. The most rapid growth was found in the first year after cochlear implantation.
Cochlear Implants:System Design, Integration and Evaluation
Rebscher, Stephen; Harrison, William V.; Sun, Xiaoan; Feng, Haihong
2009-01-01
As the most successful neural prosthesis, cochlear implants have provided partial hearing to more than 120,000 persons worldwide; half of which being pediatric users who are able to develop nearly normal language. Biomedical engineers have played a central role in the design, integration and evaluation of the cochlear implant system, but the overall success is a result of collaborative work with physiologists, psychologists, physicians, educators, and entrepreneurs. This review presents broad yet in-depth academic and industrial perspectives on the underlying research and ongoing development of cochlear implants. The introduction accounts for major events and advances in cochlear implants, including dynamic interplays among engineers, scientists, physicians, and policy makers. The review takes a system approach to address critical issues from design and specifications to integration and evaluation. First, the cochlear implant system design and specifications are laid out. Second, the design goals, principles, and methods of the subsystem components are identified from the external speech processor and radio frequency transmission link to the internal receiver, stimulator and electrode arrays. Third, system integration and functional evaluation are presented with respect to safety, reliability, and challenges facing the present and future cochlear implant designers and users. Finally, issues beyond cochlear implants are discussed to address treatment options for the entire spectrum of hearing impairment as well as to use the cochlear implant as a model to design and evaluate other similar neural prostheses such as vestibular and retinal implants. PMID:19946565
Remote programming of cochlear implants: a telecommunications model.
McElveen, John T; Blackburn, Erin L; Green, J Douglas; McLear, Patrick W; Thimsen, Donald J; Wilson, Blake S
2010-09-01
Evaluate the effectiveness of remote programming for cochlear implants. Retrospective review of the cochlear implant performance for patients who had undergone mapping and programming of their cochlear implant via remote connection through the Internet. Postoperative Hearing in Noise Test and Consonant/Nucleus/Consonant word scores for 7 patients who had undergone remote mapping and programming of their cochlear implant were compared with the mean scores of 7 patients who had been programmed by the same audiologist over a 12-month period. Times required for remote and direct programming were also compared. The quality of the Internet connection was assessed using standardized measures. Remote programming was performed via a virtual private network with a separate software program used for video and audio linkage. All 7 patients were programmed successfully via remote connectivity. No untoward patient experiences were encountered. No statistically significant differences could be found in comparing postoperative Hearing in Noise Test and Consonant/Nucleus/Consonant word scores for patients who had undergone remote programming versus a similar group of patients who had their cochlear implant programmed directly. Remote programming did not require a significantly longer programming time for the audiologist with these 7 patients. Remote programming of a cochlear implant can be performed safely without any deterioration in the quality of the programming. This ability to remotely program cochlear implant patients gives the potential to extend cochlear implantation to underserved areas in the United States and elsewhere.
Li, Xu; Mao, Xiao-Bo; Hei, Ren-Yi; Zhang, Zhi-Bin; Wen, Li-Ting; Zhang, Peng-Zhi; Qiu, Jian-Hua; Qiao, Li
2011-01-01
A reduction in cochlear blood flow plays an essential role in noise-induced hearing loss (NIHL). The timely regulation of cochlear perfusion determines the progression and prognosis of NIHL. Hydrogen sulfide (H(2)S) has attracted increasing interest as a vasodilator in cardiovascular systems. This study identified the role of H(2)S in cochlear blood flow regulation and noise protection. The gene and protein expression of the H(2)S synthetase cystathionine-γ-lyase (CSE) in the rat cochlea was examined using immunofluorescence and real-time PCR. Cochlear CSE mRNA levels varied according to the duration of noise exposure. A chronic intracochlear infusion model was built and artificial perilymph (AP), NaHS or DL-propargylglycine (PPG) were locally administered. Local sodium hydrosulfide (NaHS) significantly increased cochlear perfusion post-noise exposure. Cochlear morphological damage and hearing loss were alleviated in the NaHS group as measured by conventional auditory brainstem response (ABR), cochlear scanning electron microscope (SEM) and outer hair cell (OHC) count. The highest percentage of OHC loss occurred in the PPG group. Our results suggest that H(2)S plays an important role in the regulation of cochlear blood flow and the protection against noise. Further studies may identify a new preventive and therapeutic perspective on NIHL and other blood supply-related inner ear diseases.
Cochlear Patency After Transmastoid Labyrinthectomy for Ménière's Syndrome.
Sargent, Eric W; Liao, Eric; Gonda, Roger L
2016-08-01
Labyrinthectomy is considered the "gold standard" in the treatment of intractable vertigo attacks because of Ménière's Disease (MD) but sacrifices all residual hearing. Interest in auditory rehabilitation has lead to cochlear implantation in some patients. Concern remains that the cochlear lumen may fill with tissue or bone after surgery. This study sought to determine the incidence of obliteration of the cochlea after transmastoid labyrinthectomy. Retrospective observational study. Tertiary referral center. Eighteen patients with intractable vertigo from MD who underwent surgery. Transmastoid labyrinthectomy between 2008 and 2013. Cochleas were imaged with unenhanced, heavily T2-weighted magnetic resonance imaging (MRI). Presence of symmetrical cochlear fluid signals on MRI. There was no loss of fluid signal in the cochleas of operated ear compared with the contralateral, unoperated ear in any subject an average of 3 years (standard deviation [SD]: 1.2) after surgery. Five of 18 patients had the vestibule blocked with bone wax at the time of surgery. Blocking the vestibule with bone wax did not change the cochlear fluid signal. The risk of cochlear obstruction after labyrinthectomy for MD is very low. The significance of this finding is that patients with MD who undergo labyrinthectomy will likely remain candidates for cochlear implantation in the labyrinthectomized ear long after surgery if this becomes needed. Immediate cochlear implantation or placement of a cochlear lumen keeper during labyrinthectomy for MD is probably not necessary.
Music mixing preferences of cochlear implant recipients: a pilot study.
Buyens, Wim; van Dijk, Bas; Moonen, Marc; Wouters, Jan
2014-05-01
Music perception and appraisal are generally poor in cochlear implant recipients. Simple musical structures, lyrics that are easy to follow, and clear rhythm/beat have been reported among the top factors to enhance music enjoyment. The present study investigated the preference for modified relative instrument levels in music with normal-hearing and cochlear implant subjects. In experiment 1, test subjects were given a mixing console and multi-track recordings to determine their most enjoyable audio mix. In experiment 2, a preference rating experiment based on the preferred relative level settings in experiment 1 was performed. Experiment 1 was performed with four postlingually deafened cochlear implant subjects, experiment 2 with ten normal-hearing and ten cochlear implant subjects. A significant difference in preference rating was found between normal-hearing and cochlear implant subjects. The latter preferred an audio mix with larger vocals-to-instruments ratio. In addition, given an audio mix with clear vocals and attenuated instruments, cochlear implant subjects preferred the bass/drum track to be louder than the other instrument tracks. The original audio mix in real-world music might not be suitable for cochlear implant recipients. Modifying the relative instrument level settings potentially improves music enjoyment.
Bertlich, Mattis; Ihler, Fritz; Sharaf, Kariem; Weiss, Bernhard G; Strupp, Michael; Canis, Martin
2014-10-01
Betahistine is a histamine-like drug that is used in the treatment of Ménière's disease. It is commonly believed that betahistine increases cochlear blood flow and thus decreases the endolymphatic hydrops that is the cause of Ménière's. Despite common clinical use, there is little understanding of the kinetics or effects of its metabolites. This study investigated the effect of the betahistine metabolites aminoethylpyridine, hydroxyethylpyridine, and pyridylacetic acid on cochlear microcirculation. Guinea pigs were randomly assigned to one of the groups: placebo, betahistine, or equimolar amounts of aminoethylpyridine, hydroxyethylpyridine, or pyridylacetic acid. Cochlear blood flow and mean arterial pressure were recorded for three minutes before and 15 minutes after treatment. Thirty Dunkin-Hartley guinea pigs assigned to one of five groups with six guinea pigs per group. Betahistine, aminoethylpyridine, and hydroxyethylpyridine caused a significant increase in cochlear blood flow in comparison to placebo. The effect seen under aminoethylpyridin was greatest. The group treated with pyridylacetic acid showed no significant effect on cochlear blood flow. Aminoethylpyridine and hydroxyethylpyridine are, like betahistine, able to increase cochlear blood flow significantly. The effect of aminoethylpyridine was greatest. Pyridylacetic acid had no effect on cochlear microcirculation.
Bertlich, Mattis; Ihler, Friedrich; Freytag, Saskia; Weiss, Bernhard G; Strupp, Michael; Canis, Martin
2015-01-01
Betahistine is a histamine-like drug that is considered beneficial in Ménière's disease by increasing cochlear blood flow. Acting as an agonist at the histamine H1-receptor and as an inverse agonist at the H3-receptor, these receptors as well as the adrenergic α2-receptor were investigated for betahistine effects on cochlear blood flow. A total of 54 Dunkin-Hartley guinea pigs were randomly assigned to one of nine groups treated with a selection of H1-, H3- or α2-selective agonists and antagonists together with betahistine. Cochlear blood flow and mean arterial pressure were recorded for 3 min before and 15 min after infusion. Blockage of the H3- or α2-receptors caused a suppression of betahistine-mediated typical changes in cochlear blood flow or blood pressure. Activation of H3-receptors caused a drop in cochlear blood flow and blood pressure. H1-receptors showed no involvement in betahistine-mediated changes of cochlear blood flow. Betahistine most likely affects cochlear blood flow through histaminergic H3-heteroreceptors. © 2015 S. Karger AG, Basel.
Bertlich, Mattis; Ihler, Friedrich; Weiss, Bernhard G; Freytag, Saskia; Jakob, Mark; Strupp, Michael; Pellkofer, Hannah; Canis, Martin
2017-09-01
The potential of Fingolimod (FTY-720), a sphingosine-1-phosphate analogue, to revoke the changes in cochlear blood flow induced by tumor necrosis factor (TNF) was investigated. Impairment of cochlear blood flow has often been considered as the common final pathway of various inner ear pathologies. TNF, an ubiquitous cytokine, plays a major role in these pathologies, reducing cochlear blood flow via sphingosine-1-phosphate-signaling. Fifteen Dunkin-Hartley guinea pigs were randomly assigned to one of three groups (placebo/placebo, TNF/placebo, TNF/FTY-720). Cochlear microcirculation was quantified over 60 minutes by in vivo fluorescence microscopy before and after topical application of placebo or TNF (5 ng/ml) and after subsequent application of placebo or FTY-720 (200 μg/ml). Treatment with TNF led to a significant decrease of cochlear blood flow.Following this, application of placebo caused no significant changes while application of FTY-720 caused a significant rise in cochlear blood flow. FTY-720 is capable of reversing changes in cochlear blood flow induced by application of TNF. This makes FTY-720 a valid candidate for potential treatment of numerous inner ear pathologies.
Visual and neurologic sequelae of methanol poisoning in Saudi Arabia
Galvez-Ruiz, Alberto; Elkhamary, Sahar M.; Asghar, Nasira; Bosley, Thomas M.
2015-01-01
Objectives: To present the visual sequelae of methanol poisoning and to emphasize the characteristics of methanol exposure in the Kingdom of Saudi Arabia (KSA). Methods: A retrospective case series was carried out on 50 sequential patients with methanol poisoning seen at the King Khaled Eye Specialist Hospital and King Saud University Hospitals in Riyadh, KSA between 2008 and 2014. All patients were examined by a neuro-ophthalmologist at least one month after methanol intoxication. Results: All 50 patients were young or middle-aged males. All admitted to drinking unbranded alcohol within 2-3 days before profound or relatively profound, painless, bilateral visual loss. Mean visual acuity in this group was hand motions (logMAR 2.82; range 0.1 - 5.0) with some eye to eye variability within individuals. Worse visual acuity was correlated with advancing age (Pearson correlation: oculus dextrus [right eye] - 0.37, p=0.008; oculus sinister [left eye] - 0.36, p=0.011). All patients had optic atrophy bilaterally, and all tested patients had visual field defects. Tremors with or without rigidity were present in 12 patients, and 11 of 30 patients who had neuroimaging performed had evidence of putaminal necrosis. Conclusion: Methanol intoxication causes visual loss within 12-48 hours due to relatively severe, painless, bilateral optic nerve damage that may be somewhat variable between eyes, and is generally worse with advancing age. The coincidence of bilateral optic nerve damage and bilateral putaminal necrosis in a young or middle-aged male is very suspicious for methanol-induced damage. PMID:25935177
[Cochlear implantation in patients with Waardenburg syndrome type II].
Wan, Liangcai; Guo, Menghe; Chen, Shuaijun; Liu, Shuangriu; Chen, Hao; Gong, Jian
2010-05-01
To describe the multi-channel cochlear implantation in patients with Waardenburg syndrome including surgeries, pre and postoperative hearing assessments as well as outcomes of speech recognition. Multi-channel cochlear implantation surgeries have been performed in 12 cases with Waardenburg syndrome type II in our department from 2000 to 2008. All the patients received multi-channel cochlear implantation through transmastoid facial recess approach. The postoperative outcomes of 12 cases were compared with 12 cases with no inner ear malformation as a control group. The electrodes were totally inserted into the cochlear successfully, there was no facial paralysis and cerebrospinal fluid leakage occurred after operation. The hearing threshold in this series were similar to that of the normal cochlear implantation. After more than half a year of speech rehabilitation, the abilities of speech discrimination and spoken language of all the patients were improved compared with that of preoperation. Multi-channel cochlear implantation could be performed in the cases with Waardenburg syndrome, preoperative hearing and images assessments should be done.
Tabuchi, Keiji; Nishimura, Bungo; Tanaka, Shuho; Hayashi, Kentaro; Hirose, Yuki; Hara, Akira
2010-06-01
A large amount of energy produced by active aerobic metabolism is necessary for the cochlea to maintain its function. This makes the cochlea vulnerable to blockade of cochlear blood flow and interruption of the oxygen supply. Although certain forms of human idiopathic sudden sensorineural hearing loss reportedly arise from ischemic injury, the pathological mechanism of cochlear ischemia-reperfusion injury has not been fully elucidated. Recent animal studies have shed light on the mechanisms of cochlear ischemia-reperfusion injury. It will help in the understanding of the pathology of cochlear ischemia-reperfusion injury to classify this injury into ischemic injury and reperfusion injury. Excitotoxicity, mainly observed during the ischemic period, aggravates the injury of primary auditory neurons. On the other hand, oxidative damage induced by hydroxyl radicals and nitric oxide enhances cochlear reperfusion injury. This article briefly summarizes the generation mechanisms of cochlear ischemia-reperfusion injury and potential therapeutic targets that could be developed for the effective management of this injury type.
Musical ear syndrome in adult cochlear implant patients.
Low, W-K; Tham, C A; D'Souza, V-D; Teng, S-W
2013-09-01
Except for a single case report, musical ear syndrome in cochlear implantees has not been studied. We aimed to study the prevalence and nature of musical ear syndrome among adult cochlear implant patients, as well as the effect on their emotional well-being. STUDY DESIGN, PATIENTS AND INTERVENTION: A cross-sectional survey of patients aged 18 years and above who had received cochlear implants for profound hearing loss between 1997 and 2010. Of the 82 patients studied, 18 (22 per cent) were found to have experienced musical ear syndrome. Seven and 11 patients had musical ear syndrome prior to and after cochlear implantation, respectively. The character of musical ear syndrome symptoms was described as instrumental music (n = 2), singing (6) or both (10). Fourteen patients reported an adverse emotional effect, with three expressing ‘intolerance’. In this study, 22 per cent of cochlear implantees experienced musical ear syndrome. These symptoms affected patients’ emotional state, but most coped well. Musical ear syndrome can occur prior to and after cochlear implantation.
Chroni, M; Prappa, E; Kokkevi, I
2018-04-01
Septic emboli are an unusual cause of sudden sensorineural hearing loss, for which few reports exist in the literature. This paper presents two cases of sudden sensorineural hearing loss, initially considered as idiopathic, but which were caused by septic emboli. Hearing loss in these cases was bilateral, sequential and total. The first patient had mild fever one week prior to their presentation with sudden sensorineural hearing loss; the other patient had no additional symptoms at presentation. These patients were later diagnosed with infective endocarditis, at two and seven months following the sudden sensorineural hearing loss respectively, showing that septic emboli had been the cause of sudden sensorineural hearing loss. Septic emboli should be considered as a possible cause of sudden sensorineural hearing loss in cases of total hearing loss. This form of hearing loss should prompt the otolaryngologist to further investigate for infective endocarditis.
Importance of cochlear health for implant function.
Pfingst, Bryan E; Zhou, Ning; Colesa, Deborah J; Watts, Melissa M; Strahl, Stefan B; Garadat, Soha N; Schvartz-Leyzac, Kara C; Budenz, Cameron L; Raphael, Yehoash; Zwolan, Teresa A
2015-04-01
Amazing progress has been made in providing useful hearing to hearing-impaired individuals using cochlear implants, but challenges remain. One such challenge is understanding the effects of partial degeneration of the auditory nerve, the target of cochlear implant stimulation. Here we review studies from our human and animal laboratories aimed at characterizing the health of the implanted cochlea and the auditory nerve. We use the data on cochlear and neural health to guide rehabilitation strategies. The data also motivate the development of tissue-engineering procedures to preserve or build a healthy cochlea and improve performance obtained by cochlear implant recipients or eventually replace the need for a cochlear implant. This article is part of a Special Issue entitled
The influence of cochlear shape on low-frequency hearing.
Manoussaki, Daphne; Chadwick, Richard S; Ketten, Darlene R; Arruda, Julie; Dimitriadis, Emilios K; O'Malley, Jen T
2008-04-22
The conventional theory about the snail shell shape of the mammalian cochlea is that it evolved essentially and perhaps solely to conserve space inside the skull. Recently, a theory proposed that the spiral's graded curvature enhances the cochlea's mechanical response to low frequencies. This article provides a multispecies analysis of cochlear shape to test this theory and demonstrates that the ratio of the radii of curvature from the outermost and innermost turns of the cochlear spiral is a significant cochlear feature that correlates strongly with low-frequency hearing limits. The ratio, which is a measure of curvature gradient, is a reflection of the ability of cochlear curvature to focus acoustic energy at the outer wall of the cochlear canal as the wave propagates toward the apex of the cochlea.
Physiopathology of the cochlear microcirculation.
Shi, Xiaorui
2011-12-01
Normal blood supply to the cochlea is critically important for establishing the endocochlear potential and sustaining production of endolymph. Abnormal cochlear microcirculation has long been considered an etiologic factor in noise-induced hearing loss, age-related hearing loss (presbycusis), sudden hearing loss or vestibular function, and Meniere's disease. Knowledge of the mechanisms underlying the pathophysiology of cochlear microcirculation is of fundamental clinical importance. A better understanding of cochlear blood flow (CoBF) will enable more effective management of hearing disorders resulting from aberrant blood flow. This review focuses on recent discoveries and findings related to the physiopathology of the cochlear microvasculature. Published by Elsevier B.V.
Physiopathology of the Cochlear Microcirculation
Shi, Xiaorui
2011-01-01
Normal blood supply to the cochlea is critically important for establishing the endocochlear potential and sustaining production of endolymph. Abnormal cochlear microcirculation has long been considered an etiologic factor in noise-induced hearing loss, age-related hearing loss (presbycusis), sudden hearing loss or vestibular function, and Meniere's disease. Knowledge of the mechanisms underlying the pathophysiology of cochlear microcirculation is of fundamental clinical importance. A better understanding of cochlear blood flow (CoBF) will enable more effective management of hearing disorders resulting from aberrant blood flow. This review focuses on recent discoveries and findings related to the physiopathology of the cochlear microvasculature. PMID:21875658
Sininger, Yvonne S; Grimes, Alison; Christensen, Elizabeth
2010-04-01
The purpose of this study was to determine the influence of selected predictive factors, primarily age at fitting of amplification and degree of hearing loss, on auditory-based outcomes in young children with bilateral sensorineural hearing loss. Forty-four infants and toddlers, first identified with mild to profound bilateral hearing loss, who were being fitted with amplification were enrolled in the study and followed longitudinally. Subjects were otherwise typically developing with no evidence of cognitive, motor, or visual impairment. A variety of subject factors were measured or documented and used as predictor variables, including age at fitting of amplification, degree of hearing loss in the better hearing ear, cochlear implant status, intensity of oral education, parent-child interaction, and the number of languages spoken in the home. These factors were used in a linear multiple regression analysis to assess their contribution to auditory-based communication outcomes. Five outcome measures, evaluated at regular intervals in children starting at age 3, included measures of speech perception (Pediatric Speech Intelligibility and Online Imitative Test of Speech Pattern Contrast Perception), speech production (Arizona-3), and spoken language (Reynell Expressive and Receptive Language). The age at fitting of amplification ranged from 1 to 72 mo, and the degree of hearing loss ranged from mild to profound. Age at fitting of amplification showed the largest influence and was a significant factor in all outcome models. The degree of hearing loss was an important factor in the modeling of speech production and spoken language outcomes. Cochlear implant use was the other factor that contributed significantly to speech perception, speech production, and language outcomes. Other factors contributed sparsely to the models. Prospective longitudinal studies of children are important to establish relationships between subject factors and outcomes. This study clearly demonstrated the importance of early amplification on communication outcomes. This demonstration required a participant pool that included children who have been fit at very early ages and who represent all degrees of hearing loss. Limitations of longitudinal studies include selection biases. Families who enroll tend to have high levels of education and rate highly on cooperation and compliance measures. Although valuable information can be extracted from prospective studies, not all factors can be evaluated because of enrollment constraints.
Working memory in Farsi-speaking children with normal development and cochlear implant.
Soleymani, Zahra; Amidfar, Meysam; Dadgar, Hooshang; Jalaie, Shohre
2014-04-01
Working memory has an important role in language acquisition and development of cognition skills. The ability of encoding, storage and retrieval of phonological codes, as activities of working memory, acquired by audition sense. Children with cochlear implant experience a period that they are not able to perceive sounds. In order to assess the effect of hearing on working memory, we investigated working memory as a cognition skill in children with normal development and cochlear implant. Fifty students with normal hearing and 50 students with cochlear implant aged 5-7 years participated in this study. Children educated in the preschool, the first and second grades. Children with normal development were matched based on age, gender, and grade of education with cochlear implant. Two components of working memory including phonological loop and central executive were compared between two groups. Phonological loop assessed by nonword repetition task and forward digit span. To assess central executive component backward digit span was used. The developmental trend was studied in children with normal development and cochlear implant as well. The effect of age at implantation in children with cochlear implants on components of working memory was investigated. There are significant differences between children with normal development and cochlear implant in all tasks that assess working memory (p < 0.001). The children's age at implantation was negatively correlated with all tasks (p < 0.001). In contrast, duration of usage of cochlear implant set was positively correlated with all tasks (p < 0.001). The comparison of working memory between different grades showed significant differences both in children with normal development and in children with cochlear implant (p < 0.05). These results implied that children with cochlear implant may experience difficulties in working memory. Therefore, these children have problems in encoding, practicing, and repeating phonological units. The results also suggested working memory develops when the child grows up. In cochlear implant children, with decreasing age at implantation and increasing their experience in perceiving sound, working memory skills improved. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
[Reflex epilepsy evoked by decision making: report of a case (author's transl)].
Mutani, R; Ganga, A; Agnetti, V
1980-01-01
A 17-year-old girl with a story of Gran Mal attacks occurring during lessons of mathematics or solving mathematical problems, was investigated with prolonged EEG recordings. During the sessions, relax periods were alternated with arithmetical or mathematical testing, with card or checkers games and solution of puzzles and crossword problems, and with different neuropsychological tests. EGG recordings were characterized by the appearance, on a normal background, of bilaterally synchronous and symmetrical spike-and-wave and polispike-and-wave discharges, associated with loss of consciousness. During relax their mean frequency was one/54 min., it doubled during execution of tests involved with nonsequential decision making, and was eight times as high (one/7 min.) during tests involving sequential decision making. Some tension, challenge and complexity of the performance were also important as precipitating factors. Their lack deprived sequential tests of their efficacy, while on the contrary their presence sometimes gave nonsequential tests full efficacy.
Lilaonitkul, Watjana
2012-01-01
The medial-olivocochlear (MOC) acoustic reflex is thought to provide frequency-specific feedback that adjusts the gain of cochlear amplification, but little is known about how frequency specific the reflex actually is. We measured human MOC tuning through changes in stimulus frequency otoacoustic emissions (SFOAEs) from 40-dB-SPL tones at probe frequencies (fps) near 0.5, 1.0, and 4.0 kHz. MOC activity was elicited by 60-dB-SPL ipsilateral, contralateral, or bilateral tones or half-octave noise bands, with elicitor frequency (fe) varied in half-octave steps. Tone and noise elicitors produced similar results. At all probe frequencies, SFOAE changes were produced by a wide range of elicitor frequencies with elicitor frequencies near 0.7–2.0 kHz being particularly effective. MOC-induced changes in SFOAE magnitude and SFOAE phase were surprisingly different functions of fe: magnitude inhibition largest for fe close to fp, phase change largest for fe remote from fp. The metric ΔSFOAE, which combines both magnitude and phase changes, provided the best match to reported (cat) MOC neural inhibition. Ipsilateral and contralateral MOC reflexes often showed dramatic differences in plots of MOC effect vs. elicitor frequency, indicating that the contralateral reflex does not give an accurate picture of ipsilateral-reflex properties. These differences in MOC effects appear to imply that ipsilateral and contralateral reflexes have different actions in the cochlea. The implication of these results for MOC function, cochlear mechanics, and the production of SFOAEs are discussed. PMID:22190630
Tan, Justin; Wang, Yajun; Caruso, Frank; Shepherd, Robert K.
2016-01-01
Cochlear implants electrically stimulate spiral ganglion neurons (SGNs) in order to provide speech cues to severe-profoundly deaf patients. In normal hearing cochleae the SGNs depend on endogenous neurotrophins secreted by sensory cells in the organ of Corti for survival. SGNs gradually degenerate following deafness and consequently there is considerable interest in developing clinically relevant strategies to provide exogenous neurotrophins to preserve SGN survival. The present study investigated the safety and efficacy of a drug delivery system for the cochlea using nanoengineered silica supraparticles. In the present study we delivered Brain-derived neurotrophic factor (BDNF) over a period of four weeks and evaluated SGN survival as a measure of efficacy. Supraparticles were bilaterally implanted into the basal turn of cochleae in profoundly deafened guinea pigs. One ear received BDNF-loaded supraparticles and the other ear control (unloaded) supraparticles. After one month of treatment the cochleae were examined histologically. There was significantly greater survival of SGNs in cochleae that received BDNF supraparticles compared to the contralateral control cochleae (repeated measures ANOVA, p = 0.009). SGN survival was observed over a wide extent of the cochlea. The supraparticles were well tolerated within the cochlea with a tissue response that was localised to the site of implantation in the cochlear base. Although mild, the tissue response was significantly greater in cochleae treated with BDNF supraparticles compared to the controls (repeated measures ANOVA, p = 0.003). These data support the clinical potential of this technology particularly as the supraparticles can be loaded with a variety of therapeutic drugs. PMID:27788219
Dichotic Listening Can Improve Perceived Clarity of Music in Cochlear Implant Users.
Vannson, Nicolas; Innes-Brown, Hamish; Marozeau, Jeremy
2015-08-26
Musical enjoyment for cochlear implant (CI) recipients is often reported to be unsatisfactory. Our goal was to determine whether the musical experience of postlingually deafened adult CI recipients could be enriched by presenting the bass and treble clef parts of short polyphonic piano pieces separately to each ear (dichotic). Dichotic presentation should artificially enhance the lateralization cues of each part and help the listeners to better segregate them and thus provide greater clarity. We also hypothesized that perception of the intended emotion of the pieces and their overall enjoyment would be enhanced in the dichotic mode compared with the monophonic (both parts in the same ear) and the diotic mode (both parts in both ears). Twenty-eight piano pieces specifically composed to induce sad or happy emotions were selected. The tempo of the pieces, which ranged from lento to presto covaried with the intended emotion (from sad to happy). Thirty participants (11 normal-hearing listeners, 11 bimodal CI and hearing-aid users, and 8 bilaterally implanted CI users) participated in this study. Participants were asked to rate the perceived clarity, the intended emotion, and their preference of each piece in different listening modes. Results indicated that dichotic presentation produced small significant improvements in subjective ratings based on perceived clarity and preference. We also found that preference and clarity ratings were significantly higher for pieces with fast tempi compared with slow tempi. However, no significant differences between diotic and dichotic presentation were found for the participants' preference ratings, or their judgments of intended emotion. © The Author(s) 2015.
Emotional Perception of Music in Children with Unilateral Cochlear Implants
Shirvani, Sareh; Jafari, Zahra; Sheibanizadeh, Abdolreza; Motasaddi Zarandy, Masoud; Jalaie, Shohre
2014-01-01
Introduction: Cochlear implantation (CI) improves language skills among children with hearing loss. However, children with CIs still fall short of fulfilling some other needs, including musical perception. This is often attributed to the biological, technological, and acoustic limitations of CIs. Emotions play a key role in the understanding and enjoyment of music. The present study aimed to investigate the emotional perception of music in children with bilaterally severe-to-profound hearing loss and unilateral CIs. Materials and Methods: Twenty-five children with congenital severe-to-profound hearing loss and unilateral CIs and 30 children with normal hearing participated in the study. The children’s emotional perceptions of music, as defined by Peretz (1998), were measured. Children were instructed to indicate happy or sad feelings fostered in them by the music by pointing to pictures of faces showing these emotions. Results: Children with CI obtained significantly lower scores than children with normal hearing, for both happy and sad items of music as well as in overall test scores (P<0.001). Furthermore, both in CI group (P=0.49) and the control one (P<0.001), the happy items were more often recognized correctly than the sad items. Conclusion: Hearing-impaired children with CIs had poorer emotional perception of music than their normal peers. Due to the importance of music in the development of language, cognitive and social interaction skills, aural rehabilitation programs for children with CIs should focus particularly on music. Furthermore, it is essential to enhance the quality of musical perception by improving the quality of implant prostheses. PMID:25320700
Vuksanović, Jasmina; Jelić, Milan B; Milanović, Sladjan D; Kačar, Katarina; Konstantinović, Ljubica; Filipović, Saša R
2015-01-01
In chronic non-fluent aphasia patients, inhibition of the intact right hemisphere (RH), by transcranial magnetic stimulation (TMS) or similar methods, can induce improvement in language functions. The supposed mechanism behind this improvement is a release of preserved left hemisphere (LH) language networks from RH transcallosal inhibition. Direct stimulation of the damaged LH can sometimes bring similar results too. Therefore, we developed a novel treatment approach that combined direct LH (Broca's area (BA)) stimulation, by intermittent theta burst stimulation (TBS), with homologue RH area's inhibition, by continuous TBS. We present the results of application of 15 daily sessions of the described treatment approach in a right-handed patient with chronic post-stroke non-fluent aphasia. The intervention appeared to improve several language functions, but most notably propositional speech, semantic fluency, short-term verbal memory, and verbal learning. Bilateral TBS modulation of activation of the language-related areas of both hemispheres seems to be a feasible and promising way to induce recovery in chronic aphasic patients. Due to potentially cumulative physiological effects of bilateral stimulation, the improvements may be even greater than following unilateral interventions.
Vertigo-related cerebral blood flow changes on magnetic resonance imaging.
Chang, Feiyan; Li, Zhongshi; Xie, Sheng; Liu, Hui; Wang, Wu
2014-11-01
A prospective study using magnetic resonance imaging on a consecutive cohort of patients with cervical vertigo. To quantitatively investigate the cerebral blood flow (CBF) changes associated with cervical vertigo by using 3-dimensional pseudocontinuous arterial spin labeling. Previous studies reported blood flow velocity reduction in posterior circulation during vertigo. However, the detailed information of CBF related to cervical vertigo has not been provided. A total of 33 patients with cervical vertigo and 14 healthy volunteers were recruited in this study. Three-dimensional pseudocontinuous arterial spin labeling was performed on each subject to evaluate the CBF before and after the cervical hyperextension-hyperflexion movement tests, which was used to induce cervical vertigo. Repeated-measures analysis of variance was conducted to assess the effect of subjects and tests. There were time effects of CBF in the territory of bilateral superior cerebellar artery, bilateral posterior cerebral artery, bilateral middle cerebral artery, and right anterior cerebral artery, but no group effect was observed. The analysis of CBF revealed a significant main effect of tests (P=0.024) and participants (P=0.038) in the dorsal pons. Cervical vertigo onset may be related to CBF reduction in the dorsal pons, which sequentially evokes the vestibular nuclei. 2.
Moein, Narges; Khoddami, Seyyedeh Maryam; Shahbodaghi, Mohammad Rahim
2017-10-01
Cochlear implant prosthesis facilitates spoken language development and speech comprehension in children with severe-profound hearing loss. However, this prosthesis is limited in encoding information about fundamental frequency and pitch that are essentially for recognition of speech prosody. The purpose of the present study is to investigate the perception and production of intonation in cochlear implant children and comparison with normal hearing children. This study carried out on 25 cochlear implanted children and 50 children with normal hearing. First, using 10 action pictures statements and questions sentences were extracted. Fundamental frequency and pitch changes were identified using Praat software. Then, these sentences were judged by 7 adult listeners. In second stage 20 sentences were played for child and he/she determined whether it was in a question form or statement one. Performance of cochlear implanted children in perception and production of intonation was significantly lower than children with normal hearing. The difference between fundamental frequency and pitch changes in cochlear implanted children and children with normal hearing was significant (P < 0/05). Cochlear implanted children performance in perception and production of intonation has significant correlation with child's age surgery and duration of prosthesis use (P < 0/05). The findings of the current study show that cochlear prostheses have limited application in facilitating the perception and production of intonation in cochlear implanted children. It should be noted that the child's age at the surgery and duration of prosthesis's use is important in reduction of this limitation. According to these findings, speech and language pathologists should consider intervention of intonation in treatment program of cochlear implanted children. Copyright © 2017 Elsevier B.V. All rights reserved.
Bae, Y J; Jeon, Y J; Choi, B S; Koo, J-W; Song, J-J
2017-06-01
Typewriter tinnitus, a symptom characterized by paroxysmal attacks of staccato sounds, has been thought to be caused by neurovascular compression of the cochlear nerve, but the correlation between radiologic evidence of neurovascular compression of the cochlear nerve and symptom presentation has not been thoroughly investigated. The purpose of this study was to examine whether radiologic evidence of neurovascular compression of the cochlear nerve is pathognomonic in typewriter tinnitus. Fifteen carbamazepine-responding patients with typewriter tinnitus and 8 control subjects were evaluated with a 3D T2-weighted volume isotropic turbo spin-echo acquisition sequence. Groups 1 (16 symptomatic sides), 2 (14 asymptomatic sides), and 3 (16 control sides) were compared with regard to the anatomic relation between the vascular loop and the internal auditory canal and the presence of neurovascular compression of the cochlear nerve with/without angulation/indentation. The anatomic location of the vascular loop was not significantly different among the 3 groups (all, P > .05). Meanwhile, neurovascular compression of the cochlear nerve on MR imaging was significantly higher in group 1 than in group 3 ( P = .032). However, considerable false-positive (no symptoms with neurovascular compression of the cochlear nerve on MR imaging) and false-negative (typewriter tinnitus without demonstrable neurovascular compression of the cochlear nerve) findings were also observed. Neurovascular compression of the cochlear nerve was more frequently detected on the symptomatic side of patients with typewriter tinnitus compared with the asymptomatic side of these patients or on both sides of control subjects on MR imaging. However, considering false-positive and false-negative findings, meticulous history-taking and the response to the initial carbamazepine trial should be regarded as more reliable diagnostic clues than radiologic evidence of neurovascular compression of the cochlear nerve. © 2017 by American Journal of Neuroradiology.
Zeng, Fan-Gang
2004-01-01
More than 60,000 people worldwide use cochlear implants as a means to restore functional hearing. Although individual performance variability is still high, an average implant user can talk on the phone in a quiet environment. Cochlear-implant research has also matured as a field, as evidenced by the exponential growth in both the patient population and scientific publication. The present report examines current issues related to audiologic, clinical, engineering, anatomic, and physiologic aspects of cochlear implants, focusing on their psychophysical, speech, music, and cognitive performance. This report also forecasts clinical and research trends related to presurgical evaluation, fitting protocols, signal processing, and postsurgical rehabilitation in cochlear implants. Finally, a future landscape in amplification is presented that requires a unique, yet complementary, contribution from hearing aids, middle ear implants, and cochlear implants to achieve a total solution to the entire spectrum of hearing loss treatment and management.
Response Properties of Cochlear Nucleus Neurons in Monkeys
Roth, G. Linn; Recio, A.
2009-01-01
Much of what is known about how the cochlear nuclei participate in mammalian hearing comes from studies of non-primate mammalian species. To determine to what extent the cochlear nuclei of primates resemble those of other mammalian orders, we have recorded responses to sound in three primate species: marmosets, Cynomolgus macaques, and squirrel monkeys. These recordings show that the same types of temporal firing patterns are found in primates that have been described in other mammals. Responses to tones of neurons in the ventral cochlear nucleus have similar tuning, latencies, post-stimulus time and interspike interval histograms as those recorded in non-primate cochlear nucleus neurons. In the dorsal cochlear nucleus, too, responses were similar. From these results it is evident that insights gained from non-primate studies can be applied to the peripheral auditory system of primates. PMID:19531377
Monshizadeh, Leila; Vameghi, Roshanak; Sajedi, Firoozeh; Yadegari, Fariba; Hashemi, Seyed Basir; Kirchem, Petra; Kasbi, Fatemeh
2018-04-01
A cochlear implant is a device that helps hearing-impaired children by transmitting sound signals to the brain and helping them improve their speech, language, and social interaction. Although various studies have investigated the different aspects of speech perception and language acquisition in cochlear-implanted children, little is known about their social skills, particularly Persian-speaking cochlear-implanted children. Considering the growing number of cochlear implants being performed in Iran and the increasing importance of developing near-normal social skills as one of the ultimate goals of cochlear implantation, this study was performed to compare the social interaction between Iranian cochlear-implanted children who have undergone rehabilitation (auditory verbal therapy) after surgery and normal-hearing children. This descriptive-analytical study compared the social interaction level of 30 children with normal hearing and 30 with cochlear implants who were conveniently selected. The Raven test was administered to the both groups to ensure normal intelligence quotient. The social interaction status of both groups was evaluated using the Vineland Adaptive Behavior Scale, and statistical analysis was performed using Statistical Package for Social Sciences (SPSS) version 21. After controlling age as a covariate variable, no significant difference was observed between the social interaction scores of both the groups (p > 0.05). In addition, social interaction had no correlation with sex in either group. Cochlear implantation followed by auditory verbal rehabilitation helps children with sensorineural hearing loss to have normal social interactions, regardless of their sex.
Effects of residual hearing on cochlear implant outcomes in children: A systematic-review.
Chiossi, Julia Santos Costa; Hyppolito, Miguel Angelo
2017-09-01
to investigate if preoperative residual hearing in prelingually deafened children can interfere on cochlear implant indication and outcomes. a systematic-review was conducted in five international databases up to November-2016, to locate articles that evaluated cochlear implantation in children with some degree of preoperative residual hearing. Outcomes were auditory, language and cognition performances after cochlear implant. The quality of the studies was assessed and classified according to the Oxford Levels of Evidence table - 2011. Risk of biases were also described. From the 30 articles reviewed, two types of questions were identified: (a) what are the benefits of cochlear implantation in children with residual hearing? (b) is the preoperative residual hearing a predictor of cochlear implant outcome? Studies ranged from 04 to 188 subjects, evaluating populations between 1.8 and 10.3 years old. The definition of residual hearing varied between studies. The majority of articles (n = 22) evaluated speech perception as the outcome and 14 also assessed language and speech production. There is evidence that cochlear implant is beneficial to children with residual hearing. Preoperative residual hearing seems to be valuable to predict speech perception outcomes after cochlear implantation, even though the mechanism of how it happens is not clear. More extensive researches must be conducted in order to make recommendations and to set prognosis for cochlear implants based on children preoperative residual hearing. Copyright © 2017 Elsevier B.V. All rights reserved.
Bilateral Endolymphatic Hydrops in a Patient With Migraine Variant Without Vertigo: A Case Report.
Liu, Isabelle Y; Ishiyama, Akira; Sepahdari, Ali R; Johnson, Kevin; Ishiyama, Gail
2017-03-01
To use modern high-resolution inner ear imaging modalities to evaluate for endolymphatic hydrops (EH) in a patient with migraine-associated fluctuating hearing loss without vertigo spells or dizziness. EH has been well described in patients with Meniere's disease on both human temporal bone studies and modern high-resolution imaging; however, there is no study to date, to our knowledge, that examines the presence of EH in a patient with migraine and bilateral hearing loss. We present the MRI findings using a sequence for detecting EH in a unique case of a patient experiencing migraine headaches accompanied by fluctuating hearing loss without vertigo. Magnetic resonance imaging sequences included "cisternographic" three-dimensional T2, and delayed intravenous-enhanced three-dimensional fluid-attenuation inversion recovery (DIVE-3D-FLAIR) sequences, performed with 2350 ms (bright perilymph) and 2050 ms (bright endolymph) inversion times. The bright endolymph images were subtracted from bright perilymph images to create a composite image with bright perilymph, dark endolymph, and intermediate bone signals. A 40-year-old female presented with a left-sided sensorineural hearing loss and severe migraine headaches that began at age 12. For the past year, she experienced severe migraines with right-sided fluctuating sensorineural hearing loss, tinnitus, and aural fullness. Audiometry confirmed a drop of right-sided hearing at times of migraines and increased symptom severity. Vestibular testing was within normal limits. MRI demonstrated the presence of severe bilateral vestibular and cochlear EH. EH of both the cochlea and vestibule can be present in patients without Meniere's disease or vertigo. The relationship between migraine and Meniere's disease may be complex, as demonstrated in this patient with migraine-associated bilateral hearing loss with MRI documentation of severe bilateral EH. The fact that migraine can be associated with EH is important and demonstrates a potential relationship between the pathophysiology of migraine and that of EH. Given this patient's previous association of migraine and hearing loss at age 12, it appears that migrainous attacks occur simultaneously with the hearing loss, and may be potentially causative of the fluctuating hearing loss, mediated possibly through the development of EH. New imaging modalities allow for studies into the field of inner ear pathology, with significant implications for future research. © 2016 American Headache Society.
Adrenal vein sampling in primary aldosteronism: concordance of simultaneous vs sequential sampling.
Almarzooqi, Mohamed-Karji; Chagnon, Miguel; Soulez, Gilles; Giroux, Marie-France; Gilbert, Patrick; Oliva, Vincent L; Perreault, Pierre; Bouchard, Louis; Bourdeau, Isabelle; Lacroix, André; Therasse, Eric
2017-02-01
Many investigators believe that basal adrenal venous sampling (AVS) should be done simultaneously, whereas others opt for sequential AVS for simplicity and reduced cost. This study aimed to evaluate the concordance of sequential and simultaneous AVS methods. Between 1989 and 2015, bilateral simultaneous sets of basal AVS were obtained twice within 5 min, in 188 consecutive patients (59 women and 129 men; mean age: 53.4 years). Selectivity was defined by adrenal-to-peripheral cortisol ratio ≥2, and lateralization was defined as an adrenal aldosterone-to-cortisol ratio ≥2, the contralateral side. Sequential AVS was simulated using right sampling at -5 min (t = -5) and left sampling at 0 min (t = 0). There was no significant difference in mean selectivity ratio (P = 0.12 and P = 0.42 for the right and left sides respectively) and in mean lateralization ratio (P = 0.93) between t = -5 and t = 0. Kappa for selectivity between 2 simultaneous AVS was 0.71 (95% CI: 0.60-0.82), whereas it was 0.84 (95% CI: 0.76-0.92) and 0.85 (95% CI: 0.77-0.93) between sequential and simultaneous AVS at respectively -5 min and at 0 min. Kappa for lateralization between 2 simultaneous AVS was 0.84 (95% CI: 0.75-0.93), whereas it was 0.86 (95% CI: 0.78-0.94) and 0.80 (95% CI: 0.71-0.90) between sequential AVS and simultaneous AVS at respectively -5 min at 0 min. Concordance between simultaneous and sequential AVS was not different than that between 2 repeated simultaneous AVS in the same patient. Therefore, a better diagnostic performance is not a good argument to select the AVS method. © 2017 European Society of Endocrinology.
Use of suprathreshold stochastic resonance in cochlear implant coding
NASA Astrophysics Data System (ADS)
Allingham, David; Stocks, Nigel G.; Morse, Robert P.
2003-05-01
In this article we discuss the possible use of a novel form of stochastic resonance, termed suprathreshold stochastic resonance (SSR), to improve signal encoding/transmission in cochlear implants. A model, based on the leaky-integrate-and-fire (LIF) neuron, has been developed from physiological data and use to model information flow in a population of cochlear nerve fibers. It is demonstrated that information flow can, in principle, be enhanced by the SSR effect. Furthermore, SSR was found to enhance information transmission for signal parameters that are commonly encountered in cochlear implants. This, therefore, gives hope that SSR may be implemented in cochlear implants to improve speech comprehension.
The Effects of Pre-processing Strategies for Pediatric Cochlear Implant Recipients
Rakszawski, Bernadette; Wright, Rose; Cadieux, Jamie H.; Davidson, Lisa S.; Brenner, Christine
2016-01-01
Background Cochlear implants (CIs) have been shown to improve children’s speech recognition over traditional amplification when severe to profound sensorineural hearing loss is present. Despite improvements, understanding speech at low-level intensities or in the presence of background noise remains difficult. In an effort to improve speech understanding in challenging environments, Cochlear Ltd. offers pre-processing strategies that apply various algorithms prior to mapping the signal to the internal array. Two of these strategies include Autosensitivity Control™ (ASC) and Adaptive Dynamic Range Optimization (ADRO®). Based on previous research, the manufacturer’s default pre-processing strategy for pediatrics’ everyday programs combines ASC+ADRO®. Purpose The purpose of this study is to compare pediatric speech perception performance across various pre-processing strategies while applying a specific programming protocol utilizing increased threshold (T) levels to ensure access to very low-level sounds. Research Design This was a prospective, cross-sectional, observational study. Participants completed speech perception tasks in four pre-processing conditions: no pre-processing, ADRO®, ASC, ASC+ADRO®. Study Sample Eleven pediatric Cochlear Ltd. cochlear implant users were recruited: six bilateral, one unilateral, and four bimodal. Intervention Four programs, with the participants’ everyday map, were loaded into the processor with different pre-processing strategies applied in each of the four positions: no pre-processing, ADRO®, ASC, and ASC+ADRO®. Data Collection and Analysis Participants repeated CNC words presented at 50 and 70 dB SPL in quiet and HINT sentences presented adaptively with competing R-Space noise at 60 and 70 dB SPL. Each measure was completed as participants listened with each of the four pre-processing strategies listed above. Test order and condition were randomized. A repeated-measures analysis of variance (ANOVA) was used to compare each pre-processing strategy across group data. Critical differences were utilized to determine significant score differences between each pre-processing strategy for individual participants. Results For CNC words presented at 50 dB SPL, the group data revealed significantly better scores using ASC+ADRO® compared to all other pre-processing conditions while ASC resulted in poorer scores compared to ADRO® and ASC+ADRO®. Group data for HINT sentences presented in 70 dB SPL of R-Space noise revealed significantly improved scores using ASC and ASC+ADRO® compared to no pre-processing, with ASC+ADRO® scores being better than ADRO® alone scores. Group data for CNC words presented at 70 dB SPL and adaptive HINT sentences presented in 60 dB SPL of R-Space noise showed no significant difference among conditions. Individual data showed that the pre-processing strategy yielding the best scores varied across measures and participants. Conclusions Group data reveals an advantage with ASC+ADRO® for speech perception presented at lower levels and in higher levels of background noise. Individual data revealed that the optimal pre-processing strategy varied among participants; indicating that a variety of pre-processing strategies should be explored for each CI user considering his or her performance in challenging listening environments. PMID:26905529
Round-window delivery of neurotrophin 3 regenerates cochlear synapses after acoustic overexposure.
Suzuki, Jun; Corfas, Gabriel; Liberman, M Charles
2016-04-25
In acquired sensorineural hearing loss, such as that produced by noise or aging, there can be massive loss of the synaptic connections between cochlear sensory cells and primary sensory neurons, without loss of the sensory cells themselves. Because the cell bodies and central projections of these cochlear neurons survive for months to years, there is a long therapeutic window in which to re-establish functional connections and improve hearing ability. Here we show in noise-exposed mice that local delivery of neurotrophin-3 (NT-3) to the round window niche, 24 hours after an exposure that causes an immediate loss of up to 50% loss of synapses in the cochlear basal region, can regenerate pre- and post-synaptic elements at the hair cell / cochlear nerve interface. This synaptic regeneration, as documented by confocal microscopy of immunostained cochlear sensory epithelia, was coupled with a corresponding functional recovery, as seen in the suprathreshold amplitude of auditory brainstem response Wave 1. Cochlear delivery of neurotrophins in humans is likely achievable as an office procedure via transtympanic injection, making our results highly significant in a translational context.
Prevention of Noise Damage to Cochlear Synapses
2015-10-01
AWARD NUMBER: W81XWH-14-1-0494 TITLE: Prevention of Noise Damage to Cochlear Synapses PRINCIPAL INVESTIGATOR: Steven Green CONTRACTING...to Cochlear Synapses 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0494 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Steven Green 5d. PROJECT...ABSTRACT Noise-induced synaptopathy is the result of excitotoxic trauma to cochlear synapses due to glutamate released from the hair cells. Excitotoxic
Preventing Ototoxic Synergy of Prior Noise Trauma During Aminoglycoside Therapy
2015-12-01
cochlear blood flow . Hearing Research 313, 38-46 (2014). 12. Koo, J.-W. et al. Endotoxemia-mediated inflammation potentiates cochlear uptake of...event in response to a need for higher cochlear blood flow . A 3.7% dilation was adequate for a 20% increase of blood flow 10. On the contrary...summation of the two insults. We have found that prior sound exposure enhances cochlear uptake of aminoglycosides, providing a mechanistic basis for the
Scala vestibuli cochlear implantation in patients with partially ossified cochleas.
Berrettini, Stefano; Forli, Francesca; Neri, Emanuele; Segnini, Giovanni; Franceschini, Stefano Sellari
2002-11-01
Partial cochlear obstruction is a relatively common finding in candidates for cochlear implants and frequently involves the inferior segment of the scala tympani in the basal turn of the cochlea. In such patients, the scala vestibuli is often patent and offers an alternative site for implantation. The current report describes two patients with such partial obstruction of the inferior segment of the basal cochlear turn, caused in one case by systemic vasculitis (Takayasu's disease) and in the other by obliterative otosclerosis. A scala vestibuli implantation allowed for complete insertion of the electrode array. No problems were encountered during the surgical procedures and the good post-operative hearing and communicative outcomes achieved were similar to those reported in patients without cochlear ossification. The importance of accurate pre-operative radiological study of the inner ear is underscored, to disclose the presence and define the features of the cochlear ossification and ultimately to properly plan the surgical approach.
Spiral Form of the Human Cochlea Results from Spatial Constraints.
Pietsch, M; Aguirre Dávila, L; Erfurt, P; Avci, E; Lenarz, T; Kral, A
2017-08-08
The human inner ear has an intricate spiral shape often compared to shells of mollusks, particularly to the nautilus shell. It has inspired many functional hearing theories. The reasons for this complex geometry remain unresolved. We digitized 138 human cochleae at microscopic resolution and observed an astonishing interindividual variability in the shape. A 3D analytical cochlear model was developed that fits the analyzed data with high precision. The cochlear geometry neither matched a proposed function, namely sound focusing similar to a whispering gallery, nor did it have the form of a nautilus. Instead, the innate cochlear blueprint and its actual ontogenetic variants were determined by spatial constraints and resulted from an efficient packing of the cochlear duct within the petrous bone. The analytical model predicts well the individual 3D cochlear geometry from few clinical measures and represents a clinical tool for an individualized approach to neurosensory restoration with cochlear implants.
Zeng, Fan-Gang
2004-01-01
More than 60,000 people worldwide use cochlear implants as a means to restore functional hearing. Although individual performance variability is still high, an average implant user can talk on the phone in a quiet environment. Cochlear-implant research has also matured as a field, as evidenced by the exponential growth in both the patient population and scientific publication. The present report examines current issues related to audiologic, clinical, engineering, anatomic, and physiologic aspects of cochlear implants, focusing on their psychophysical, speech, music, and cognitive performance. This report also forecasts clinical and research trends related to presurgical evaluation, fitting protocols, signal processing, and postsurgical rehabilitation in cochlear implants. Finally, a future landscape in amplification is presented that requires a unique, yet complementary, contribution from hearing aids, middle ear implants, and cochlear implants to achieve a total solution to the entire spectrum of hearing loss treatment and management. PMID:15247993
Ion flow in cochlear hair cells and the regulation of hearing sensitivity.
Patuzzi, Robert
2011-10-01
This paper discusses how ion transport proteins in the hair cells of the mammalian cochlea work to produce a sensitive but stable hearing organ. The transport proteins in the inner and outer hair cells are summarized (including their current voltage characteristics), and the roles of these proteins in determining intracellular Ca(2+), membrane potential, and ultimately cochlear sensitivity are discussed. The paper also discusses the role of the Ca(2+) sequestration sacs in outer hair cells in the autoregulation of hair cell membrane potential and cochlear gain, and how the underdamped control of Ca(2+) within these sacs may produce the observed slow oscillations in cochlear sensitivity and otoacoustic emissions after cochlear perturbations, including perilymphatic perfusions and prolonged low-frequency tones. The relative insensitivity of cochlear gain to short-term changes in the endocochlear potential is also discussed. Copyright © 2011 Elsevier B.V. All rights reserved.
The Hearing Outcomes of Cochlear Implantation in Waardenburg Syndrome.
Koyama, Hajime; Kashio, Akinori; Sakata, Aki; Tsutsumiuchi, Katsuhiro; Matsumoto, Yu; Karino, Shotaro; Kakigi, Akinobu; Iwasaki, Shinichi; Yamasoba, Tatsuya
2016-01-01
Objectives. This study aimed to determine the feasibility of cochlear implantation for sensorineural hearing loss in patients with Waardenburg syndrome. Method. A retrospective chart review was performed on patients who underwent cochlear implantation at the University of Tokyo Hospital. Clinical classification, genetic mutation, clinical course, preoperative hearing threshold, high-resolution computed tomography of the temporal bone, and postoperative hearing outcome were assessed. Result. Five children with Waardenburg syndrome underwent cochlear implantation. The average age at implantation was 2 years 11 months (ranging from 1 year 9 months to 6 years 3 months). Four patients had congenital profound hearing loss and one patient had progressive hearing loss. Two patients had an inner ear malformation of cochlear incomplete partition type 2. No surgical complication or difficulty was seen in any patient. All patients showed good hearing outcome postoperatively. Conclusion. Cochlear implantation could be a good treatment option for Waardenburg syndrome.
The Hearing Outcomes of Cochlear Implantation in Waardenburg Syndrome
Koyama, Hajime; Kashio, Akinori; Sakata, Aki; Tsutsumiuchi, Katsuhiro; Matsumoto, Yu; Karino, Shotaro; Kakigi, Akinobu; Iwasaki, Shinichi; Yamasoba, Tatsuya
2016-01-01
Objectives. This study aimed to determine the feasibility of cochlear implantation for sensorineural hearing loss in patients with Waardenburg syndrome. Method. A retrospective chart review was performed on patients who underwent cochlear implantation at the University of Tokyo Hospital. Clinical classification, genetic mutation, clinical course, preoperative hearing threshold, high-resolution computed tomography of the temporal bone, and postoperative hearing outcome were assessed. Result. Five children with Waardenburg syndrome underwent cochlear implantation. The average age at implantation was 2 years 11 months (ranging from 1 year 9 months to 6 years 3 months). Four patients had congenital profound hearing loss and one patient had progressive hearing loss. Two patients had an inner ear malformation of cochlear incomplete partition type 2. No surgical complication or difficulty was seen in any patient. All patients showed good hearing outcome postoperatively. Conclusion. Cochlear implantation could be a good treatment option for Waardenburg syndrome. PMID:27376080
Akhoun, Idrick; McKay, Colette; El-Deredy, Wael
2015-01-15
Independent-components-analysis (ICA) successfully separated electrically-evoked compound action potentials (ECAPs) from the stimulation artefact and noise (ECAP-ICA, Akhoun et al., 2013). This paper shows how to automate the ECAP-ICA artefact cancellation process. Raw-ECAPs without artefact rejection were consecutively recorded for each stimulation condition from at least 8 intra-cochlear electrodes. Firstly, amplifier-saturated recordings were discarded, and the data from different stimulus conditions (different current-levels) were concatenated temporally. The key aspect of the automation procedure was the sequential deductive source categorisation after ICA was applied with a restriction to 4 sources. The stereotypical aspect of the 4 sources enables their automatic classification as two artefact components, a noise and the sought ECAP based on theoretical and empirical considerations. The automatic procedure was tested using 8 cochlear implant (CI) users and one to four stimulus electrodes. The artefact and noise sources were successively identified and discarded, leaving the ECAP as the remaining source. The automated ECAP-ICA procedure successfully extracted the correct ECAPs compared to standard clinical forward masking paradigm in 22 out of 26 cases. ECAP-ICA does not require extracting the ECAP from a combination of distinct buffers as it is the case with regular methods. It is an alternative that does not have the possible bias of traditional artefact rejections such as alternate-polarity or forward-masking paradigms. The ECAP-ICA procedure bears clinical relevance, for example as the artefact rejection sub-module of automated ECAP-threshold detection techniques, which are common features of CI clinical fitting software. Copyright © 2014. Published by Elsevier B.V.
Francis, Howard W; Pulsifer, Margaret B; Chinnici, Jill; Nutt, Robert; Venick, Holly S; Yeagle, Jennifer D; Niparko, John K
2004-05-01
This study explored factors associated with speech recognition outcomes in postmeningitic deafness (PMD). The results of cochlear implantation may vary in children with PMD because of sequelae that extend beyond the auditory periphery. To determine which factors might be most determinative of outcome of cochlear implantation in children with PMD. Retrospective chart review. A referral center for pediatric cochlear implantation and rehabilitation. Thirty children with cochlear implants who were deafened by meningitis were matched with subjects who were deafened by other causes based on the age at diagnosis, age at cochlear implantation, age at which hearing aids were first used, and method of communication used at home or in the classroom. Speech perception performance within the first 2 years after cochlear implantation and its relationship with presurgical cognitive measures and medical history. There was no difference in the overall cognitive or postoperative speech perception performance between the children with PMD and those deafened by other causes. The presence of postmeningitic hydrocephalus, however, posed greater challenges to the rehabilitation process, as indicated by significantly smaller gains in speech perception and a predilection for behavioral problems. By comparison, cochlear scarring and incomplete electrode insertion had no impact on speech perception results. Although the results demonstrated no significant delay in cognitive or speech perception performance in the PMD group, central nervous system residua, when present, can impede the acquisition of speech perception with a cochlear implant. Central effects associated with PMD may thus impact language learning potential; cognitive and behavioral therapy should be considered in rehabilitative planning and in establishing expectations of outcome.
Banakis Hartl, Renee M; Mattingly, Jameson K; Greene, Nathaniel T; Jenkins, Herman A; Cass, Stephen P; Tollin, Daniel J
2016-10-01
A cochlear implant electrode within the cochlea contributes to the air-bone gap (ABG) component of postoperative changes in residual hearing after electrode insertion. Preservation of residual hearing after cochlear implantation has gained importance as simultaneous electric-acoustic stimulation allows for improved speech outcomes. Postoperative loss of residual hearing has previously been attributed to sensorineural changes; however, presence of increased postoperative ABG remains unexplained and could result in part from altered cochlear mechanics. Here, we sought to investigate changes to these mechanics via intracochlear pressure measurements before and after electrode implantation to quantify the contribution to postoperative ABG. Human cadaveric heads were implanted with titanium fixtures for bone conduction transducers. Velocities of stapes capitulum and cochlear promontory between the two windows were measured using single-axis laser Doppler vibrometry and fiber-optic sensors measured intracochlear pressures in scala vestibuli and tympani for air- and bone-conducted stimuli before and after cochlear implant electrode insertion through the round window. Intracochlear pressures revealed only slightly reduced responses to air-conducted stimuli consistent with previous literature. No significant changes were noted to bone-conducted stimuli after implantation. Velocities of the stapes capitulum and the cochlear promontory to both stimuli were stable after electrode placement. Presence of a cochlear implant electrode causes alterations in intracochlear sound pressure levels to air, but not bone, conducted stimuli and helps to explain changes in residual hearing noted clinically. These results suggest the possibility of a cochlear conductive component to postoperative changes in hearing sensitivity.
Future technology in cochlear implants: assessing the benefit.
Briggs, Robert J S
2011-05-01
It has been over 50 years since Djourno and Eyries first attempted electric stimulation in a patient with deafness. Over this time, the Cochlear Implant (CI) has become not only remarkably successful, but increasingly complex. Although the basic components of the system still comprise an implanted receiver stimulator and electrode, externally worn speech processor, microphone, control system, and power source, there are now several alternative designs of these components with different attributes that can be variably combined to meet the needs of specific patient groups. Development by the manufacturers has been driven both by these various patient needs, and also by the desire to achieve technological superiority, or at least differentiation, ultimately in pursuit of market share. Assessment of benefit is the responsibility of clinicians. It is incumbent on both industry and clinicians to ensure appropriate, safe, and affordable introduction of new technology. For example, experience with the totally implanted cochlear implant (TIKI) has demonstrated that quality of hearing is the over-riding consideration for CI users. To date, improved hearing outcomes have been achieved by improvements in: speech processing strategies; microphone technology; pre-processing strategies; electrode placement; bilateral implantation; use of a hearing aid in the opposite ear (bimodal stimulation); and the combination of electric and acoustic stimulation in the same ear. The resulting expansion of CI candidacy, with more residual hearing, further improves the outcomes achieved. Largely facilitated by advances in electronic capability and computerization, it can be expected that these improvements will continue. However, marked variability of results still occurs and we cannot assure any individual patient of their outcome. Realistic goals for implementation of new technology include: improved hearing in noise and music perception; effective invisible hearing (no external apparatus); automated fitting; and reduction in outcome variability. This paper provides examples of relevant potential future technologies that can be applied to reach these goals. In the quest for better outcomes, future technology must deliver improved reliability and usability for both clinicians and recipients that does not compromise safety and is affordable. One of the challenges related to the introduction of new technologies is the 'classification' of CI systems and the framework under which sufficient change and increased benefit can be demonstrated to establish a claim of 'new generation CI' and hence increased reimbursement from third-party payers. Significant improvements in hearing outcomes and quality of life associated with CI design changes are difficult to measure, particularly when there is such dramatic benefit from the intervention of cochlear implantation from the individual's perspective. Manufacturers and clinicians need to be objective and undertake appropriate safety studies and long-term and multi-centre clinical trials to ensure that the introduction of new technology is both safe and effective and supported by health systems worldwide.
Impact of socioeconomic factors on paediatric cochlear implant outcomes.
Sharma, Shalabh; Bhatia, Khyati; Singh, Satinder; Lahiri, Asish Kumar; Aggarwal, Asha
2017-11-01
The study was aimed at evaluating the impact of certain socioeconomic factors such as family income, level of parents' education, distance between the child's home and auditory verbal therapy clinic, and age of the child at implantation on postoperative cochlear implant outcomes. Children suffering from congenital bilateral profound sensorineural hearing loss and a chronologic age of 4 years or younger at the time of implantation were included in the study. Children who were able to complete a prescribed period of a 1-year follow-up were included in the study. These children underwent cochlear implantation surgery, and their postoperative outcomes were measured and documented using categories of auditory perception (CAP), meaningful auditory integration (MAIS), and speech intelligibility rating (SIR) scores. Children were divided into three groups based on the level of parental education, family income, and distance of their home from the rehabilitation-- auditory verbal therapy clinic. A total of 180 children were studied. The age at implantation had a significant impact on the postoperative outcomes, with an inverse correlation. The younger the child's age at the time of implantation, the better were the postoperative outcomes. However, there were no significant differences among the CAP, MAIS, and SIR scores and each of the three subgroups. Children from families with an annual income of less than $7,500, between $7,500 and $15,000, and more than $15,000 performed equally well, except for significantly higher SIR scores in children with family incomes more than $15,000. Children with of parents who had attended high school or possessed a bachelor's or Master's master's degree had similar scores, with no significant difference. Also, distance from the auditory verbal therapy clinic failed to have any significantimpact on a child's performance. These results have been variable, similar to those of previously published studies. A few of the earlier studies concurred with our results, but most of the studies had suggested that children in families of higher socioeconomic status had have better speech and language acquisition. Cochlear implantation significantly improves auditory perception and speech intelligibility of children suffering from profound sensorineural hearing loss. Younger The younger the age at implantation, the better are the results. Hence, early implantation should be promoted and encouraged. Our study suggests that children who followed the designated program of postoperative mapping and auditory verbal therapy for a minimum period of 1 year seemed to do equally well in terms of hearing perception and speech intelligibility, irrespective of the socioeconomic status of the family. Further studies are essential to assess the impact of these factors on long-term speech acquisition andlanguage development. Copyright © 2017 Elsevier B.V. All rights reserved.
Cochlear implants in Waardenburg syndrome.
Cullen, Robert D; Zdanski, Carlton; Roush, Patricia; Brown, Carolyn; Teagle, Holly; Pillsbury, Harold C; Buchman, Craig
2006-07-01
Waardenburg syndrome is an autosomal-dominant syndrome characterized by dystopia canthorum, hyperplasia of the eyebrows, heterochromia irides, a white forelock, and sensorineural hearing loss in 20% to 55% of patients. This patient population accounts for approximately 2% of congenitally deaf children. The purpose of this retrospective case review was to describe the outcomes for those children with Waardenburg syndrome who have undergone cochlear implantation. Pediatric cochlear implant recipients with documented evidence of Waardenburg syndrome underwent retrospective case review. All patients received their cochlear implants at the study institution followed by outpatient auditory habilitation. Charts were reviewed for etiology and duration of deafness, age at time of cochlear implantation, perioperative complications, duration of use, and performance outcomes. Results of standard tests batteries for speech perception and production administered as a part of the patients' auditory habilitation were reviewed. Seven patients with Waardenburg syndrome and cochlear implants were identified. The average age at implantation was 37 months (range, 18-64 months) and the average duration of use was 69 months (range, 12-143 months). All of these patients are active users of their devices and perform very well after implantation. There were no major complications in this small group of patients. Children with congenital sensorineural hearing loss without other comorbidities (e.g., developmental delay, inner ear malformations) perform well when they receive cochlear implantation and auditory habilitation. Patients with Waardenburg syndrome can be expected to have above-average performance after cochlear implantation.
Surgical Management of the Pediatric Cochlear Implant Patient.
ERIC Educational Resources Information Center
Cohen, Seth M.; Haynes, David S.
2003-01-01
This article discusses the surgical management of children receiving cochlear implants. It identifies preoperative considerations to select patients likely to benefit, contraindications, some new surgical techniques, complications, special considerations (otitis media, meningitis, head growth, inner ear malformations, and cochlear obstruction).…
Wu, Helen C; Nagasawa, Tetsuro; Brown, Erik C; Juhasz, Csaba; Rothermel, Robert; Hoechstetter, Karsten; Shah, Aashit; Mittal, Sandeep; Fuerst, Darren; Sood, Sandeep; Asano, Eishi
2011-10-01
We measured cortical gamma-oscillations in response to visual-language tasks consisting of picture naming and word reading in an effort to better understand human visual-language pathways. We studied six patients with focal epilepsy who underwent extraoperative electrocorticography (ECoG) recording. Patients were asked to overtly name images presented sequentially in the picture naming task and to overtly read written words in the reading task. Both tasks commonly elicited gamma-augmentation (maximally at 80-100 Hz) on ECoG in the occipital, inferior-occipital-temporal and inferior-Rolandic areas, bilaterally. Picture naming, compared to reading task, elicited greater gamma-augmentation in portions of pre-motor areas as well as occipital and inferior-occipital-temporal areas, bilaterally. In contrast, word reading elicited greater gamma-augmentation in portions of bilateral occipital, left occipital-temporal and left superior-posterior-parietal areas. Gamma-attenuation was elicited by both tasks in portions of posterior cingulate and ventral premotor-prefrontal areas bilaterally. The number of letters in a presented word was positively correlated to the degree of gamma-augmentation in the medial occipital areas. Gamma-augmentation measured on ECoG identified cortical areas commonly and differentially involved in picture naming and reading tasks. Longer words may activate the primary visual cortex for the more peripheral field. The present study increases our understanding of the visual-language pathways. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Quantitative polarized light microscopy of unstained mammalian cochlear sections
NASA Astrophysics Data System (ADS)
Kalwani, Neil M.; Ong, Cheng Ai; Lysaght, Andrew C.; Haward, Simon J.; McKinley, Gareth H.; Stankovic, Konstantina M.
2013-02-01
Hearing loss is the most common sensory deficit in the world, and most frequently it originates in the inner ear. Yet, the inner ear has been difficult to access for diagnosis because of its small size, delicate nature, complex three-dimensional anatomy, and encasement in the densest bone in the body. Evolving optical methods are promising to afford cellular diagnosis of pathologic changes in the inner ear. To appropriately interpret results from these emerging technologies, it is important to characterize optical properties of cochlear tissues. Here, we focus on that characterization using quantitative polarized light microscopy (qPLM) applied to unstained cochlear sections of the mouse, a common animal model of human hearing loss. We find that the most birefringent cochlear materials are collagen fibrils and myelin. Retardance of the otic capsule, the spiral ligament, and the basilar membrane are substantially higher than that of other cochlear structures. Retardance of the spiral ligament and the basilar membrane decrease from the cochlear base to the apex, compared with the more uniform retardance of other structures. The intricate structural details revealed by qPLM of unstained cochlear sections ex vivo strongly motivate future application of polarization-sensitive optical coherence tomography to human cochlea in vivo.
Quantitative polarized light microscopy of unstained mammalian cochlear sections
Kalwani, Neil M.; Ong, Cheng Ai; Lysaght, Andrew C.; Haward, Simon J.; McKinley, Gareth H.
2013-01-01
Abstract. Hearing loss is the most common sensory deficit in the world, and most frequently it originates in the inner ear. Yet, the inner ear has been difficult to access for diagnosis because of its small size, delicate nature, complex three-dimensional anatomy, and encasement in the densest bone in the body. Evolving optical methods are promising to afford cellular diagnosis of pathologic changes in the inner ear. To appropriately interpret results from these emerging technologies, it is important to characterize optical properties of cochlear tissues. Here, we focus on that characterization using quantitative polarized light microscopy (qPLM) applied to unstained cochlear sections of the mouse, a common animal model of human hearing loss. We find that the most birefringent cochlear materials are collagen fibrils and myelin. Retardance of the otic capsule, the spiral ligament, and the basilar membrane are substantially higher than that of other cochlear structures. Retardance of the spiral ligament and the basilar membrane decrease from the cochlear base to the apex, compared with the more uniform retardance of other structures. The intricate structural details revealed by qPLM of unstained cochlear sections ex vivo strongly motivate future application of polarization-sensitive optical coherence tomography to human cochlea in vivo. PMID:23407909
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jae Ho; Pradhan, Jonu; Maskey, Dhiraj
Research highlights: {yields} Glutamate co-transmission is enhanced in kanamycin-treated rats. {yields} VGLUT3 expression is increased in kanamycin-treated rats. {yields} GlyR expression is decreased in kanamycin-treated rats. {yields} GlyR, VGLUT3 expression patterns are asymmetric in unilaterally cochlear ablated rat. -- Abstract: Cochlear dependency of glutamate co-transmission at the medial nucleus of the trapezoid body (MNTB) - the lateral superior olive (LSO) synapses was investigated using developing rats treated with high dose kanamycin. Rats were treated with kanamycin from postnatal day (P) 3 to P8. A scanning electron microscopic study on P9 demonstrated partial cochlear hair cell damage. A whole cell voltagemore » clamp experiment demonstrated the increased glutamatergic portion of postsynaptic currents (PSCs) elicited by MNTB stimulation in P9-P11 kanamycin-treated rats. The enhanced VGLUT3 immunoreactivities (IRs) in kanamycin-treated rats and asymmetric VGLUT3 IRs in the LSO of unilaterally cochlear ablated rats supported the electrophysiologic data. Taken together, it is concluded that glutamate co-transmission is cochlear-dependent and enhanced glutamate co-transmission in kanamycin-treated rats is induced by partial cochlear damage.« less
Acute hyperfibrinogenemia impairs cochlear blood flow and hearing function in guinea pigs in vivo.
Ihler, Fritz; Strieth, Sebastian; Pieri, Nicos; Göhring, Peter; Canis, Martin
2012-03-01
Impairment of microcirculation is a possible cause of sudden sensorineural hearing loss (SSNHL). Fibrinogen is known as a risk factor for both microvascular dysfunction and SSNHL. Therefore, the aim of this study was to investigate the effect of elevated serum levels of fibrinogen on cochlear blood flow and hearing function in vivo. One group of guinea pigs received two consecutive injections of 100 mg fibrinogen while a control group received equimolar doses of albumin. Measurements of cochlear microcirculation by intravital microscopy and of hearing thresholds by auditory brainstem response (ABR) recordings were carried out before, after first and after second injection. Ten healthy guinea pigs were randomly assigned to a treatment group or a control group of five animals each. Serum fibrinogen levels were elevated after the first and second injections of fibrinogen compared to basal values and control group respectively. Increasing levels of fibrinogen were paralleled by decreasing cochlear blood flow as well as increasing hearing thresholds. Hearing threshold correlated negatively with cochlear blood flow. The effect of microcirculatory impairment on hearing function could be explained by a malfunction of the cochlear amplifier. Further investigation is needed to quantify cochlear potentials under elevated serum fibrinogen levels.
Arnold, W; Bredberg, G; Gstöttner, W; Helms, J; Hildmann, H; Kiratzidis, T; Müller, J; Ramsden, R T; Roland, P; Walterspiel, J N
2002-01-01
Pneumococcal otogenic meningitis is a rare postsurgical complication that can develop following stapedectomy or after cochlear implantation. The bacterial infection can be fatal in some instances. A recent increase in the incidence of otogenic meningitis among cochlear implant wearers is of concern. The majority of meningitis cases are associated with a 2-component electrode manufactured by one cochlear implant company. The device with the added 'positioner' component has been withdrawn from the market (FDA Public Health Web Notification: Cochlear Implant Recipients may be at Greater Risk for Meningitis, Updated: August 29, 2002, www.fda.gov/cdrh/safety/cochlear.html). Not all cases have been subsequent to otitis media and symptoms have developed from less than 24 h up to a few years after implantation. The purpose of this paper is to review and discuss the pathogenesis, pathology/bacteriology and to elaborate on some clinical features of otogenic meningitis in implanted children and adults. Essential aspects of surgery, electrode design, and cochleostomy seal are discussed. Conclusions are drawn from the available data and recommendations are made for good practice in cochlear implantation and follow-up. Copyright 2002 S. Karger AG, Basel
Benito-González, Fernando; Benito, Jose; Sánchez, Luis Alberto Guardado; Estevez Alonso, Santiago; Muñoz Herrera, Angel; Batuecas-Caletrio, Angel
2014-09-01
The objective was to report the effectiveness of salvage treatment in soft tissue infection around cochlear implants with an absorbable gentamicin collagen sheet and a periosteum and skin rotation flaps. Three patients with cochlear implant and persistent surrounding soft tissue infection are included. All of them underwent antibiotic treatment prior to surgery without any response. In this study preoperative and postoperative audiograms were practiced. Surgical excision of infectious skin and a periosteum and skin rotation flaps were performed. The cochlear implant was refixed in the temporal bone and a gentamicin-impregnated collagen sheet was located covering the cochlear implant. headings In all patients with soft tissue infection around the cochlear implant, infection was completely resolved. It was not necessary to remove the device in any case. The use of an absorbable gentamicin-impregnated collagen sheet is not described for the management of soft tissue complications in pediatric cochlear implant patients. The local application of high concentrations of antibiotic administered by this sheet may be effective against resistant bacteria and, in conjunction with surgery, may resolve this type of complications.
Edwards, Lindsey; Aitkenhead, Lynne; Langdon, Dawn
2016-11-01
This study aimed to establish the relationship between short-term memory capacity and reading skills in adolescents with cochlear implants. A between-groups design compared a group of young people with cochlear implants with a group of hearing peers on measures of reading, and auditory and visual short-term memory capacity. The groups were matched for non-verbal IQ and age. The adolescents with cochlear implants were recruited from the Cochlear Implant Programme at a specialist children's hospital. The hearing participants were recruited from the same schools as those attended by the implanted adolescents. Participants were 18 cochlear implant users and 14 hearing controls, aged between 12 and 18 years. All used English as their main language and had no significant learning disability or neuro-developmental disorder. Short-term memory capacity was assessed in the auditory modality using Forward and Reverse Digit Span from the WISC IV UK, and visually using Forward and Reverse Memory from the Leiter-R. Individual word reading, reading comprehension and pseudoword decoding were assessed using the WIAT II UK. A series of ANOVAs revealed that the adolescents with cochlear implants had significantly poorer auditory short-term memory capacity and reading skills (on all measures) compared with their hearing peers. However, when Forward Digit Span was entered into the analyses as a covariate, none of the differences remained statistically significant. Deficits in immediate auditory memory persist into adolescence in deaf children with cochlear implants. Short-term auditory memory capacity is an important neurocognitive process in the development of reading skills after cochlear implantation in childhood that remains evident in later adolescence. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Banakis Hartl, Renee M.; Mattingly, Jameson K.; Greene, Nathaniel T.; Jenkins, Herman A.; Cass, Stephen P.; Tollin, Daniel J.
2016-01-01
Hypothesis A cochlear implant electrode within the cochlea contributes to the air-bone gap (ABG) component of postoperative changes in residual hearing after electrode insertion. Background Preservation of residual hearing after cochlear implantation has gained importance as simultaneous electric-acoustic stimulation allows for improved speech outcomes. Postoperative loss of residual hearing has previously been attributed to sensorineural changes; however, presence of increased postoperative air-bone gap remains unexplained and could result in part from altered cochlear mechanics. Here, we sought to investigate changes to these mechanics via intracochlear pressure measurements before and after electrode implantation to quantify the contribution to postoperative air-bone gap. Methods Human cadaveric heads were implanted with titanium fixtures for bone conduction transducers. Velocities of stapes capitulum and cochlear promontory between the two windows were measured using single-axis laser Doppler vibrometry and fiber-optic sensors measured intracochlear pressures in scala vestibuli and tympani for air- and bone-conducted stimuli before and after cochlear implant electrode insertion through the round window. Results Intracochlear pressures revealed only slightly reduced responses to air-conducted stimuli consistent with prior literature. No significant changes were noted to bone-conducted stimuli after implantation. Velocities of the stapes capitulum and the cochlear promontory to both stimuli were stable following electrode placement. Conclusion Presence of a cochlear implant electrode causes alterations in intracochlear sound pressure levels to air, but not bone, conducted stimuli and helps to explain changes in residual hearing noted clinically. These results suggest the possibility of a cochlear conductive component to postoperative changes in hearing sensitivity. PMID:27579835
ERIC Educational Resources Information Center
Ben-Itzhak, D.; Most, T.; Weisel, A.
2005-01-01
The present study examined the relationships between teachers' and communication clinicians' self-reported knowledge on cochlear implants and their expectations of CIs. The authors also explored these professionals' views regarding the child's communication mode, educational setting, and social options following cochlear implantation. The…
The Relationship between Cochlear Implants and Deaf Identity
ERIC Educational Resources Information Center
Chapman, Madeline; Dammeyer, Jesper
2017-01-01
The degree to which individuals with cochlear implants (CIs) experience communication difficulties has implications for social participation and identity development. However, few studies have examined the relationship between cochlear implantation, identity, and social participation. Using data from a Danish national survey of deaf adults, the…
Riggs, G H; Schweitzer, L
1994-01-01
Various studies have suggested that glycoconjugates may influence connectivity and lamination in the developing central nervous system and may function as barriers to neuritic extension. It has been proposed that the peanut agglutinin lectin labels a glycoconjugate subserving a barrier function. We chose to investigate the distribution of this peanut-agglutinin-labelled glycoconjugate in the dorsal cochlear nucleus of the developing hamster since the development of the dorsal cochlear nucleus is well characterised and its axons obey laminar boundaries. The distribution of peanut agglutinin label throughout the cochlear nucleus delineated zones that cochlear axons fail to invade. In the dorsal cochlear nucleus, laminar differences were reduced on postnatal d 13 and virtually disappearing by postnatal d 23. Label in the molecular layer dissipated as axons and dendrites grew into this layer. These patterns of peanut agglutinin binding correspond to axonal ingrowth and are consistent with a barrier function for glycoconjugates in the molecular layer. Images Fig. 1 Fig. 2 Fig. 4 PMID:7961144
Modulation of Mcl-1 expression reduces age-related cochlear degeneration
Yang, Wei Ping; Xu, Yang; Guo, Wei Wei; Liu, Hui Zhan; Hu, Bo Hua
2013-01-01
Mcl-1 is an anti-apoptotic member of the Bcl-2 family that modulates apoptosis-related signaling pathways and promotes cell survival. We have previously demonstrated a reduction of Mcl-1 expression in aging cochleae. To investigate whether restoring Mcl-1 expression would reduce aging-related cochlear degeneration, we developed a rat model of Mcl-1 overexpression. A plasmid encoding human Mcl-1/enhanced green fluorescent protein was applied to the round window of the cochlea. This in vivo treatment transfected both the sensory and supporting cells of the cochlear sensory epithelium and enhanced Mcl-1 expression at both the mRNA and the protein level. The upregulation of Mcl-1 expression reduced the progression of age-related cochlear dysfunction and sensory cell death. Furthermore, the transfection of Mcl-1 exerted its protective effect by suppressing cochlear apoptosis at the mitochondrial level. This study demonstrates that the genetic modulation of Mcl-1 expression reduces the progression of age-related cochlear degeneration. PMID:23790646
Gain and frequency tuning within the mouse cochlear apex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oghalai, John S.; Raphael, Patrick D.; Gao, Simon
Normal mammalian hearing requires cochlear outer hair cell active processes that amplify the traveling wave with high gain and sharp tuning, termed cochlear amplification. We have used optical coherence tomography to study cochlear amplification within the apical turn of the mouse cochlea. We measured not only classical basilar membrane vibratory tuning curves but also vibratory responses from the rest of the tissues that compose the organ of Corti. Basilar membrane tuning was sharp in live mice and broad in dead mice, whereas other regions of the organ of Corti demonstrated phase shifts consistent with additional filtering beyond that provided bymore » basilar membrane mechanics. We use these experimental data to support a conceptual framework of how cochlear amplification is tuned within the mouse cochlear apex. We will also study transgenic mice with targeted mutations that affect different biomechanical aspects of the organ of Corti in an effort to localize the underlying processes that produce this additional filtering.« less
Won, Jong Ho; Jones, Gary L; Drennan, Ward R; Jameyson, Elyse M; Rubinstein, Jay T
2011-10-01
Spectral-ripple discrimination has been used widely for psychoacoustical studies in normal-hearing, hearing-impaired, and cochlear implant listeners. The present study investigated the perceptual mechanism for spectral-ripple discrimination in cochlear implant listeners. The main goal of this study was to determine whether cochlear implant listeners use a local intensity cue or global spectral shape for spectral-ripple discrimination. The effect of electrode separation on spectral-ripple discrimination was also evaluated. Results showed that it is highly unlikely that cochlear implant listeners depend on a local intensity cue for spectral-ripple discrimination. A phenomenological model of spectral-ripple discrimination, as an "ideal observer," showed that a perceptual mechanism based on discrimination of a single intensity difference cannot account for performance of cochlear implant listeners. Spectral modulation depth and electrode separation were found to significantly affect spectral-ripple discrimination. The evidence supports the hypothesis that spectral-ripple discrimination involves integrating information from multiple channels. © 2011 Acoustical Society of America
Ho Won, Jong; Jones, Gary L.; Drennan, Ward R.; Jameyson, Elyse M.; Rubinstein, Jay T.
2011-01-01
Spectral-ripple discrimination has been used widely for psychoacoustical studies in normal-hearing, hearing-impaired, and cochlear implant listeners. The present study investigated the perceptual mechanism for spectral-ripple discrimination in cochlear implant listeners. The main goal of this study was to determine whether cochlear implant listeners use a local intensity cue or global spectral shape for spectral-ripple discrimination. The effect of electrode separation on spectral-ripple discrimination was also evaluated. Results showed that it is highly unlikely that cochlear implant listeners depend on a local intensity cue for spectral-ripple discrimination. A phenomenological model of spectral-ripple discrimination, as an “ideal observer,” showed that a perceptual mechanism based on discrimination of a single intensity difference cannot account for performance of cochlear implant listeners. Spectral modulation depth and electrode separation were found to significantly affect spectral-ripple discrimination. The evidence supports the hypothesis that spectral-ripple discrimination involves integrating information from multiple channels. PMID:21973363
International classification of reliability for implanted cochlear implant receiver stimulators.
Battmer, Rolf-Dieter; Backous, Douglas D; Balkany, Thomas J; Briggs, Robert J S; Gantz, Bruce J; van Hasselt, Andrew; Kim, Chong Sun; Kubo, Takeshi; Lenarz, Thomas; Pillsbury, Harold C; O'Donoghue, Gerard M
2010-10-01
To design an international standard to be used when reporting reliability of the implanted components of cochlear implant systems to appropriate governmental authorities, cochlear implant (CI) centers, and for journal editors in evaluating manuscripts involving cochlear implant reliability. The International Consensus Group for Cochlear Implant Reliability Reporting was assembled to unify ongoing efforts in the United States, Europe, Asia, and Australia to create a consistent and comprehensive classification system for the implanted components of CI systems across manufacturers. All members of the consensus group are from tertiary referral cochlear implant centers. None. A clinically relevant classification scheme adapted from principles of ISO standard 5841-2:2000 originally designed for reporting reliability of cardiac pacemakers, pulse generators, or leads. Standard definitions for device failure, survival time, clinical benefit, reduced clinical benefit, and specification were generated. Time intervals for reporting back to implant centers for devices tested to be "out of specification," categorization of explanted devices, the method of cumulative survival reporting, and content of reliability reports to be issued by manufacturers was agreed upon by all members. The methodology for calculating Cumulative survival was adapted from ISO standard 5841-2:2000. The International Consensus Group on Cochlear Implant Device Reliability Reporting recommends compliance to this new standard in reporting reliability of implanted CI components by all manufacturers of CIs and the adoption of this standard as a minimal reporting guideline for editors of journals publishing cochlear implant research results.
Dai, Chuanfu; Zhao, Zeqi; Zhang, Duo; Lei, Guanxiong
2018-01-01
Background The aim of this study was to explore the value of the spectral ripple discrimination test in speech recognition evaluation among a deaf (post-lingual) Mandarin-speaking population in China following cochlear implantation. Material/Methods The study included 23 Mandarin-speaking adult subjects with normal hearing (normal-hearing group) and 17 deaf adults who were former Mandarin-speakers, with cochlear implants (cochlear implantation group). The normal-hearing subjects were divided into men (n=10) and women (n=13). The spectral ripple discrimination thresholds between the groups were compared. The correlation between spectral ripple discrimination thresholds and Mandarin speech recognition rates in the cochlear implantation group were studied. Results Spectral ripple discrimination thresholds did not correlate with age (r=−0.19; p=0.22), and there was no significant difference in spectral ripple discrimination thresholds between the male and female groups (p=0.654). Spectral ripple discrimination thresholds of deaf adults with cochlear implants were significantly correlated with monosyllabic recognition rates (r=0.84; p=0.000). Conclusions In a Mandarin Chinese speaking population, spectral ripple discrimination thresholds of normal-hearing individuals were unaffected by both gender and age. Spectral ripple discrimination thresholds were correlated with Mandarin monosyllabic recognition rates of Mandarin-speaking in post-lingual deaf adults with cochlear implants. The spectral ripple discrimination test is a promising method for speech recognition evaluation in adults following cochlear implantation in China. PMID:29806954
Dai, Chuanfu; Zhao, Zeqi; Shen, Weidong; Zhang, Duo; Lei, Guanxiong; Qiao, Yuehua; Yang, Shiming
2018-05-28
BACKGROUND The aim of this study was to explore the value of the spectral ripple discrimination test in speech recognition evaluation among a deaf (post-lingual) Mandarin-speaking population in China following cochlear implantation. MATERIAL AND METHODS The study included 23 Mandarin-speaking adult subjects with normal hearing (normal-hearing group) and 17 deaf adults who were former Mandarin-speakers, with cochlear implants (cochlear implantation group). The normal-hearing subjects were divided into men (n=10) and women (n=13). The spectral ripple discrimination thresholds between the groups were compared. The correlation between spectral ripple discrimination thresholds and Mandarin speech recognition rates in the cochlear implantation group were studied. RESULTS Spectral ripple discrimination thresholds did not correlate with age (r=-0.19; p=0.22), and there was no significant difference in spectral ripple discrimination thresholds between the male and female groups (p=0.654). Spectral ripple discrimination thresholds of deaf adults with cochlear implants were significantly correlated with monosyllabic recognition rates (r=0.84; p=0.000). CONCLUSIONS In a Mandarin Chinese speaking population, spectral ripple discrimination thresholds of normal-hearing individuals were unaffected by both gender and age. Spectral ripple discrimination thresholds were correlated with Mandarin monosyllabic recognition rates of Mandarin-speaking in post-lingual deaf adults with cochlear implants. The spectral ripple discrimination test is a promising method for speech recognition evaluation in adults following cochlear implantation in China.
The Modified Rambo Transcanal Approach for Cochlear Implantation in CHARGE Syndrome.
Wick, Cameron C; Moore, Amy M; Killeen, Daniel E; Isaacson, Brandon
2017-10-01
CHARGE syndrome is associated with a variety of temporal bone anomalies and deafness. The lack of surgical landmarks and facial nerve irregularities make cochlear implantation in this population a challenging endeavor. This study aims to describe a safe and efficacious transcanal approach for cochlear implantation that obviates the need to perform a mastoidectomy and facial recess. Three children with profound hearing loss secondary to CHARGE syndrome. Transcanal cochlear implantation with closure of the ear canal via a modified Rambo meatoplasty. Retrospective chart review of temporal bone anomalies associated with CHARGE syndrome, technical nuances of this transcanal approach, and cochlear implant outcomes. The mean patient age was 2.5 years (range 1.5-3.8 yr). Two were male and two were left ears. All patients had a hypoplastic mastoid, semicircular canal aplasia, and had some degree of cochlear dysplasia. A full cochlear implant insertion was achieved in all cases, even in the presence of grossly abnormal middle ear and facial nerve anatomy. There were no intraoperative or postoperative complications. The mean follow-up was 12.4 months (range, 3.9-25.2 mo). All three patients use their device daily. Their guardians report improved vocalization and environmental awareness. The modified Rambo transcanal approach provides a safe corridor for cochlear implantation in patients with CHARGE syndrome. This approach minimizes the anatomical variations associated with the syndrome and may reduce the risk of electrode extrusion. Implant outcomes in this patient population remain highly variable based on the patient's global cognitive capacity.
Deafblind People's Experiences of Cochlear Implantation
ERIC Educational Resources Information Center
Soper, Janet
2006-01-01
Cochlear implants are electronic devices that create the sensation of hearing in those who cannot obtain any benefit from conventional hearing aids. This article examines the experience of cochlear implantation in a select group of individuals with acquired deafblindness, focusing on three key themes: access to communication, information and…
The benefits of remote microphone technology for adults with cochlear implants.
Fitzpatrick, Elizabeth M; Séguin, Christiane; Schramm, David R; Armstrong, Shelly; Chénier, Josée
2009-10-01
Cochlear implantation has become a standard practice for adults with severe to profound hearing loss who demonstrate limited benefit from hearing aids. Despite the substantial auditory benefits provided by cochlear implants, many adults experience difficulty understanding speech in noisy environments and in other challenging listening conditions such as television. Remote microphone technology may provide some benefit in these situations; however, little is known about whether these systems are effective in improving speech understanding in difficult acoustic environments for this population. This study was undertaken with adult cochlear implant recipients to assess the potential benefits of remote microphone technology. The objectives were to examine the measurable and perceived benefit of remote microphone devices during television viewing and to assess the benefits of a frequency-modulated system for speech understanding in noise. Fifteen adult unilateral cochlear implant users were fit with remote microphone devices in a clinical environment. The study used a combination of direct measurements and patient perceptions to assess speech understanding with and without remote microphone technology. The direct measures involved a within-subject repeated-measures design. Direct measures of patients' speech understanding during television viewing were collected using their cochlear implant alone and with their implant device coupled to an assistive listening device. Questionnaires were administered to document patients' perceptions of benefits during the television-listening tasks. Speech recognition tests of open-set sentences in noise with and without remote microphone technology were also administered. Participants showed improved speech understanding for television listening when using remote microphone devices coupled to their cochlear implant compared with a cochlear implant alone. This benefit was documented both when listening to news and talk show recordings. Questionnaire results also showed statistically significant differences between listening with a cochlear implant alone and listening with a remote microphone device. Participants judged that remote microphone technology provided them with better comprehension, more confidence, and greater ease of listening. Use of a frequency-modulated system coupled to a cochlear implant also showed significant improvement over a cochlear implant alone for open-set sentence recognition in +10 and +5 dB signal to noise ratios. Benefits were measured during remote microphone use in focused-listening situations in a clinical setting, for both television viewing and speech understanding in noise in the audiometric sound suite. The results suggest that adult cochlear implant users should be counseled regarding the potential for enhanced speech understanding in difficult listening environments through the use of remote microphone technology.
Melodic contour identification by cochlear implant listeners.
Galvin, John J; Fu, Qian-Jie; Nogaki, Geraldine
2007-06-01
While the cochlear implant provides many deaf patients with good speech understanding in quiet, music perception and appreciation with the cochlear implant remains a major challenge for most cochlear implant users. The present study investigated whether a closed-set melodic contour identification (MCI) task could be used to quantify cochlear implant users' ability to recognize musical melodies and whether MCI performance could be improved with moderate auditory training. The present study also compared MCI performance with familiar melody identification (FMI) performance, with and without MCI training. For the MCI task, test stimuli were melodic contours composed of 5 notes of equal duration whose frequencies corresponded to musical intervals. The interval between successive notes in each contour was varied between 1 and 5 semitones; the "root note" of the contours was also varied (A3, A4, and A5). Nine distinct musical patterns were generated for each interval and root note condition, resulting in a total of 135 musical contours. The identification of these melodic contours was measured in 11 cochlear implant users. FMI was also evaluated in the same subjects; recognition of 12 familiar melodies was tested with and without rhythm cues. MCI was also trained in 6 subjects, using custom software and melodic contours presented in a different frequency range from that used for testing. Results showed that MCI recognition performance was highly variable among cochlear implant users, ranging from 14% to 91% correct. For most subjects, MCI performance improved as the number of semitones between successive notes was increased; performance was slightly lower for the A3 root note condition. Mean FMI performance was 58% correct when rhythm cues were preserved and 29% correct when rhythm cues were removed. Statistical analyses revealed no significant correlation between MCI performance and FMI performance (with or without rhythmic cues). However, MCI performance was significantly correlated with vowel recognition performance; FMI performance was not correlated with cochlear implant subjects' phoneme recognition performance. Preliminary results also showed that the MCI training improved all subjects' MCI performance; the improved MCI performance also generalized to improved FMI performance. Preliminary data indicate that the closed-set MCI task is a viable approach toward quantifying an important component of cochlear implant users' music perception. The improvement in MCI performance and generalization to FMI performance with training suggests that MCI training may be useful for improving cochlear implant users' music perception and appreciation; such training may be necessary to properly evaluate patient performance, as acute measures may underestimate the amount of musical information transmitted by the cochlear implant device and received by cochlear implant listeners.
Negotiating Reassurance: Parents' Narratives on Follow-Up after Cochlear Implantation
ERIC Educational Resources Information Center
Bruin, Marieke; Ohna, Stein Erik
2015-01-01
This study presents an analysis of parental experiences on follow-up after cochlear implantation. Data were constructed in semi-structured, individual interviews with the parents of 14 children who use cochlear implants. Drawing on narrative analysis, the study explores parental responses to insecurity concerning children's learning and…