Sample records for sequential chip experiments

  1. ChIP-re-ChIP: Co-occupancy Analysis by Sequential Chromatin Immunoprecipitation.

    PubMed

    Beischlag, Timothy V; Prefontaine, Gratien G; Hankinson, Oliver

    2018-01-01

    Chromatin immunoprecipitation (ChIP) exploits the specific interactions between DNA and DNA-associated proteins. It can be used to examine a wide range of experimental parameters. A number of proteins bound at the same genomic location can identify a multi-protein chromatin complex where several proteins work together to regulate gene transcription or chromatin configuration. In many instances, this can be achieved using sequential ChIP; or simply, ChIP-re-ChIP. Whether it is for the examination of specific transcriptional or epigenetic regulators, or for the identification of cistromes, the ability to perform a sequential ChIP adds a higher level of power and definition to these analyses. In this chapter, we describe a simple and reliable method for the sequential ChIP assay.

  2. Regeneration of glass nanofluidic chips through a multiple-step sequential thermochemical decomposition process at high temperatures.

    PubMed

    Xu, Yan; Wu, Qian; Shimatani, Yuji; Yamaguchi, Koji

    2015-10-07

    Due to the lack of regeneration methods, the reusability of nanofluidic chips is a significant technical challenge impeding the efficient and economic promotion of both fundamental research and practical applications on nanofluidics. Herein, a simple method for the total regeneration of glass nanofluidic chips was described. The method consists of sequential thermal treatment with six well-designed steps, which correspond to four sequential thermal and thermochemical decomposition processes, namely, dehydration, high-temperature redox chemical reaction, high-temperature gasification, and cooling. The method enabled the total regeneration of typical 'dead' glass nanofluidic chips by eliminating physically clogged nanoparticles in the nanochannels, removing chemically reacted organic matter on the glass surface and regenerating permanent functional surfaces of dissimilar materials localized in the nanochannels. The method provides a technical solution to significantly improve the reusability of glass nanofluidic chips and will be useful for the promotion and acceleration of research and applications on nanofluidics.

  3. Control and measurement of the phase behavior of aqueous solutions using microfluidics

    PubMed Central

    Shim, Jung-uk; Cristobal, Galder; Link, Darren R.; Thorsen, Todd; Jia, Yanwei; Piattelli, Katie; Fraden, Seth

    2008-01-01

    A microfluidic device denoted the Phase Chip has been designed to measure and manipulate the phase diagram of multi-component fluid mixtures. The Phase Chip exploits the permeation of water through poly(dimethylsiloxane) (PDMS) in order to controllably vary the concentration of solutes in aqueous nanoliter volume microdrops stored in wells. The permeation of water in the Phase Chip is modeled using the diffusion equation and good agreement between experiment and theory is obtained. The Phase Chip operates by first creating drops of the water/solute mixture whose composition varies sequentially. Next, drops are transported down channels and guided into storage wells using surface tension forces. Finally, the solute concentration of each stored drop is simultaneously varied and measured. Two applications of the Phase Chip are presented. First, the phase diagram of a polymer/salt mixture is measured on-chip and validated off-chip and second, protein crystallization rates are enhanced through the manipulation of the kinetics of nucleation and growth. PMID:17580868

  4. Sequential ChIP Protocol for Profiling Bivalent Epigenetic Modifications (ReChIP).

    PubMed

    Desvoyes, Bénédicte; Sequeira-Mendes, Joana; Vergara, Zaida; Madeira, Sofia; Gutierrez, Crisanto

    2018-01-01

    Identification of chromatin modifications, e.g., histone acetylation and methylation, among others, is widely carried out by using a chromatin immunoprecipitation (ChIP) strategy. The information obtained with these procedures is useful to gain an overall picture of modifications present in all cells of the population under study. It also serves as a basis to figure out the mechanisms of chromatin organization and gene regulation at the population level. However, the ultimate goal is to understand gene regulation at the level of single chromatin fibers. This requires the identification of chromatin modifications that occur at a given genomic location and within the same chromatin fiber. This is achieved by following a sequential ChIP strategy using two antibodies to distinguish different chromatin modifications. Here, we describe a sequential ChIP protocol (Re-ChIP), paying special attention to the controls needed and the required steps to obtain meaningful and reproducible results. The protocol is developed for young Arabidopsis seedlings but could be adapted to other plant materials.

  5. Chromatin immunoprecipitation assays: application of ChIP-on-chip for defining dynamic transcriptional mechanisms in bone cells.

    PubMed

    van der Deen, Margaretha; Hassan, Mohammad Q; Pratap, Jitesh; Teplyuk, Nadiya M; Young, Daniel W; Javed, Amjad; Zaidi, Sayyed K; Lian, Jane B; Montecino, Martin; Stein, Janet L; Stein, Gary S; van Wijnen, Andre J

    2008-01-01

    Normal cell growth and differentiation of bone cells requires the sequential expression of cell type specific genes to permit lineage specification and development of cellular phenotypes. Transcriptional activation and repression of distinct sets of genes support the anabolic functions of osteoblasts and the catabolic properties of osteoclasts. Furthermore, metastasis of tumors to the bone environment is controlled by transcriptional mechanisms. Insights into the transcriptional regulation of genes in bone cells may provide a conceptual basis for improved therapeutic approaches to treat bone fractures, genetic osteopathologies, and/or cancer metastases to bone. Chromatin immunoprecipitation (ChIP) is a powerful technique to establish in vivo binding of transcription factors to the promoters of genes that are either activated or repressed in bone cells. Combining ChIP with genomic microarray analysis, colloquially referred to as "ChIP-on-chip," has become a valuable method for analysis of endogenous protein/DNA interactions. This technique permits assessment of chromosomal binding sites for transcription factors or the location of histone modifications at a genomic scale. This chapter discusses protocols for performing chromatin immunoprecipitation experiments, with a focus on ChIP-on-chip analysis. The information presented is based on the authors' experience with defining interactions of Runt-related (RUNX) transcription factors with bone-related genes within the context of the native nucleosomal organization of intact osteoblastic cells.

  6. An Alternative Approach to the Total Probability Formula. Classroom Notes

    ERIC Educational Resources Information Center

    Wu, Dane W. Wu; Bangerter, Laura M.

    2004-01-01

    Given a set of urns, each filled with a mix of black chips and white chips, what is the probability of drawing a black chip from the last urn after some sequential random shifts of chips among the urns? The Total Probability Formula (TPF) is the common tool to solve such a problem. However, when the number of urns is more than two and the number…

  7. Sequential and selective localized optical heating in water via on-chip dielectric nanopatterning.

    PubMed

    Morsy, Ahmed M; Biswas, Roshni; Povinelli, Michelle L

    2017-07-24

    We study the use of nanopatterned silicon membranes to obtain optically-induced heating in water. We show that by varying the detuning between an absorptive optical resonance of the patterned membrane and an illumination laser, both the magnitude and response time of the temperature rise can be controlled. This allows for either sequential or selective heating of different patterned areas on chip. We obtain a steady-state temperature of approximately 100 °C for a 805.5nm CW laser power density of 66 µW/μm 2 and observe microbubble formation. The ability to spatially and temporally control temperature on the microscale should enable the study of heat-induced effects in a variety of chemical and biological lab-on-chip applications.

  8. VLSI Design of SVM-Based Seizure Detection System With On-Chip Learning Capability.

    PubMed

    Feng, Lichen; Li, Zunchao; Wang, Yuanfa

    2018-02-01

    Portable automatic seizure detection system is very convenient for epilepsy patients to carry. In order to make the system on-chip trainable with high efficiency and attain high detection accuracy, this paper presents a very large scale integration (VLSI) design based on the nonlinear support vector machine (SVM). The proposed design mainly consists of a feature extraction (FE) module and an SVM module. The FE module performs the three-level Daubechies discrete wavelet transform to fit the physiological bands of the electroencephalogram (EEG) signal and extracts the time-frequency domain features reflecting the nonstationary signal properties. The SVM module integrates the modified sequential minimal optimization algorithm with the table-driven-based Gaussian kernel to enable efficient on-chip learning. The presented design is verified on an Altera Cyclone II field-programmable gate array and tested using the two publicly available EEG datasets. Experiment results show that the designed VLSI system improves the detection accuracy and training efficiency.

  9. Real time on-chip sequential adaptive principal component analysis for data feature extraction and image compression

    NASA Technical Reports Server (NTRS)

    Duong, T. A.

    2004-01-01

    In this paper, we present a new, simple, and optimized hardware architecture sequential learning technique for adaptive Principle Component Analysis (PCA) which will help optimize the hardware implementation in VLSI and to overcome the difficulties of the traditional gradient descent in learning convergence and hardware implementation.

  10. On-chip liquid storage and dispensing for lab-on-a-chip applications

    NASA Astrophysics Data System (ADS)

    Bodén, Roger; Lehto, Marcus; Margell, Joakim; Hjort, Klas; Schweitz, Jan-Åke

    2008-07-01

    This work presents novel components for on-chip storage and dispensing inside a lab-on-a-chip (LOC) for applications in immunoassay point-of-care testing (POCT), where incubation and washing steps are essential. It involves easy-to-use on-chip solutions for the sequential thermo-hydraulic actuation of liquids. The novel concept of combining the use of a rubber plug, both as a non-return valve cap and as a liquid injection interface of a sealed reservoir, allows simple filling of a sterilized cavity, as well as the storage and dispensing of reagent and washing buffer liquids. Segmenting the flow with air spacers enables effective rinsing and the use of small volumes of on-chip stored liquids. The chip uses low-resistance resistors as heaters in the paraffin actuator, providing the low-voltage actuation that is preferred for handheld battery driven instruments.

  11. Programming Cell Adhesion for On-Chip Sequential Boolean Logic Functions.

    PubMed

    Qu, Xiangmeng; Wang, Shaopeng; Ge, Zhilei; Wang, Jianbang; Yao, Guangbao; Li, Jiang; Zuo, Xiaolei; Shi, Jiye; Song, Shiping; Wang, Lihua; Li, Li; Pei, Hao; Fan, Chunhai

    2017-08-02

    Programmable remodelling of cell surfaces enables high-precision regulation of cell behavior. In this work, we developed in vitro constructed DNA-based chemical reaction networks (CRNs) to program on-chip cell adhesion. We found that the RGD-functionalized DNA CRNs are entirely noninvasive when interfaced with the fluidic mosaic membrane of living cells. DNA toehold with different lengths could tunably alter the release kinetics of cells, which shows rapid release in minutes with the use of a 6-base toehold. We further demonstrated the realization of Boolean logic functions by using DNA strand displacement reactions, which include multi-input and sequential cell logic gates (AND, OR, XOR, and AND-OR). This study provides a highly generic tool for self-organization of biological systems.

  12. Rapid isolation of blood plasma using a cascaded inertial microfluidic device

    PubMed Central

    Robinson, M.; Hinsdale, T.; Coté, G.

    2017-01-01

    Blood, saliva, mucus, sweat, sputum, and other biological fluids are often hindered in their ability to be used in point-of-care (POC) diagnostics because their assays require some form of off-site sample pre-preparation to effectively separate biomarkers from larger components such as cells. The rapid isolation, identification, and quantification of proteins and other small molecules circulating in the blood plasma from larger interfering molecules are therefore particularly important factors for optical blood diagnostic tests, in particular, when using optical approaches that incur spectroscopic interference from hemoglobin-rich red blood cells (RBCs). In this work, a sequential spiral polydimethylsiloxane (PDMS) microfluidic device for rapid (∼1 min) on-chip blood cell separation is presented. The chip utilizes Dean-force induced migration via two 5-loop Archimedean spirals in series. The chip was characterized in its ability to filter solutions containing fluorescent beads and silver nanoparticles and further using blood solutions doped with a fluorescent protein. Through these experiments, both cellular and small molecule behaviors in the chip were assessed. The results exhibit an average RBC separation efficiency of ∼99% at a rate of 5.2 × 106 cells per second while retaining 95% of plasma components. This chip is uniquely suited for integration within a larger point-of-care diagnostic system for the testing of blood plasma, and the use of multiple filtering spirals allows for the tuning of filtering steps, making this device and the underlying technique applicable for a wide range of separation applications. PMID:28405258

  13. Power-Aware Compiler Controllable Chip Multiprocessor

    NASA Astrophysics Data System (ADS)

    Shikano, Hiroaki; Shirako, Jun; Wada, Yasutaka; Kimura, Keiji; Kasahara, Hironori

    A power-aware compiler controllable chip multiprocessor (CMP) is presented and its performance and power consumption are evaluated with the optimally scheduled advanced multiprocessor (OSCAR) parallelizing compiler. The CMP is equipped with power control registers that change clock frequency and power supply voltage to functional units including processor cores, memories, and an interconnection network. The OSCAR compiler carries out coarse-grain task parallelization of programs and reduces power consumption using architectural power control support and the compiler's power saving scheme. The performance evaluation shows that MPEG-2 encoding on the proposed CMP with four CPUs results in 82.6% power reduction in real-time execution mode with a deadline constraint on its sequential execution time. Furthermore, MP3 encoding on a heterogeneous CMP with four CPUs and four accelerators results in 53.9% power reduction at 21.1-fold speed-up in performance against its sequential execution in the fastest execution mode.

  14. A self-powered, one-step chip for rapid, quantitative and multiplexed detection of proteins from pinpricks of whole blood.

    PubMed

    Wang, Jun; Ahmad, Habib; Ma, Chao; Shi, Qihui; Vermesh, Ophir; Vermesh, Udi; Heath, James

    2010-11-21

    We describe an automated, self-powered chip based on lateral flow immunoassay for rapid, quantitative, and multiplex protein detection from pinpricks of whole blood. The device incorporates on-chip purification of blood plasma by employing inertial forces to focus blood cells away from the assay surface, where plasma proteins are captured and detected on antibody "barcode" arrays. Power is supplied from the capillary action of a piece of adsorbent paper, and sequentially drives, over a 40 minute period, the four steps required to capture serum proteins and then develop a multiplex immunoassay. An 11 protein panel is assayed from whole blood, with high sensitivity and high reproducibility. This inexpensive, self-contained, and easy to operate chip provides a useful platform for point-of-care diagnoses, particularly in resource-limited settings.

  15. A self-powered, one-step chip for rapid, quantitative and multiplexed detection of proteins from pinpricks of whole blood†

    PubMed Central

    Wang, Jun; Ahmad, Habib; Ma, Chao; Shi, Qihui; Vermesh, Ophir; Vermesh, Udi; Heath, James

    2012-01-01

    We describe an automated, self-powered chip based on lateral flow immunoassay for rapid, quantitative, and multiplex protein detection from pinpricks of whole blood. The device incorporates on-chip purification of blood plasma by employing inertial forces to focus blood cells away from the assay surface, where plasma proteins are captured and detected on antibody “barcode” arrays. Power is supplied from the capillary action of a piece of adsorbent paper, and sequentially drives, over a 40 minute period, the four steps required to capture serum proteins and then develop a multiplex immunoassay. An 11 protein panel is assayed from whole blood, with high sensitivity and high reproducibility. This inexpensive, self-contained, and easy to operate chip provides a useful platform for point-of-care diagnoses, particularly in resource-limited settings. PMID:20924527

  16. Pulsatile release of biomolecules from polydimethylsiloxane (PDMS) chips with hydrolytically degradable seals.

    PubMed

    Intra, Janjira; Glasgow, Justin M; Mai, Hoang Q; Salem, Aliasger K

    2008-05-08

    We demonstrate, for the first time, a robust novel polydimethylsiloxane (PDMS) chip that can provide controlled pulsatile release of DNA based molecules, proteins and oligonucleotides without external stimuli or triggers. The PDMS chip with arrays of wells was constructed by replica molding. Poly(lactic acid-co-glycolic acid) (PLGA) polymer films of varying composition and thickness were used as seals to the wells. The composition, molecular weight and thickness of the PLGA films were all parameters used to control the degradation rate of the seals and therefore the release profiles. Degradation of the films followed the PLGA composition order of 50:50 PLGA>75:25 PLGA>85:15 PLGA at all time-points beyond week 1. Scanning electron microscopy images showed that films were initially smooth, became porous and ruptured as the osmotic pressure pushed the degrading PLGA film outwards. Pulsatile release of DNA was controlled by the composition and thickness of the PLGA used to seal the well. Transfection experiments in a model Human Embryonic Kidney 293 (HEK293) cell line showed that plasmid DNA loaded in the wells was functional after pulsatile release in comparison to control plasmid DNA at all time-points. Thicker films degraded faster than thinner films and could be used to fine-tune the release of DNA over day length periods. Finally the PDMS chip was shown to provide repeated sequential release of CpG oligonucleotides and a model antigen, Ovalbumin (OVA), indicating significant potential for this device for vaccinations or applications that require defined complex release patterns of a variety of chemicals, drugs and biomolecules.

  17. Fluxless flip-chip bonding using a lead-free solder bumping technique

    NASA Astrophysics Data System (ADS)

    Hansen, K.; Kousar, S.; Pitzl, D.; Arab, S.

    2017-09-01

    With the LHC exceeding the nominal instantaneous luminosity, the current barrel pixel detector (BPIX) of the CMS experiment at CERN will reach its performance limits and undergo significant radiation damage. In order to improve detector performance in high luminosity conditions, the entire BPIX is replaced with an upgraded version containing an additional detection layer. Half of the modules comprising this additional layer are produced at DESY using fluxless and lead-free bumping and bonding techniques. Sequential solder-jetting technique is utilized to wet 40-μm SAC305 solder spheres on the silicon-sensor pads with electroless Ni, Pd and immersion Au (ENEPIG) under-bump metallization (UBM). The bumped sensors are flip-chip assembled with readout chips (ROCs) and then reflowed using a flux-less bonding facility. The challenges for jetting low solder volume have been analyzed and will be presented in this paper. An average speed of 3.4 balls per second is obtained to jet about 67 thousand solder balls on a single chip. On average, 7 modules have been produced per week. The bump-bond quality is evaluated in terms of electrical and mechanical properties. The peak-bump resistance is about 17.5 mΩ. The cross-section study revealed different types of intermetallic compounds (IMC) as a result of interfacial reactions between UBM and solder material. The effect of crystalline phases on the mechanical properties of the joint is discussed. The mean shear strength per bump after the final module reflow is about 16 cN. The results and sources of yield loss of module production are reported. The achieved yield is 95%.

  18. Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array.

    PubMed

    Bishara, Waheb; Sikora, Uzair; Mudanyali, Onur; Su, Ting-Wei; Yaglidere, Oguzhan; Luckhart, Shirley; Ozcan, Aydogan

    2011-04-07

    We report a portable lensless on-chip microscope that can achieve <1 µm resolution over a wide field-of-view of ∼ 24 mm(2) without the use of any mechanical scanning. This compact on-chip microscope weighs ∼ 95 g and is based on partially coherent digital in-line holography. Multiple fiber-optic waveguides are butt-coupled to light emitting diodes, which are controlled by a low-cost micro-controller to sequentially illuminate the sample. The resulting lensfree holograms are then captured by a digital sensor-array and are rapidly processed using a pixel super-resolution algorithm to generate much higher resolution holographic images (both phase and amplitude) of the objects. This wide-field and high-resolution on-chip microscope, being compact and light-weight, would be important for global health problems such as diagnosis of infectious diseases in remote locations. Toward this end, we validate the performance of this field-portable microscope by imaging human malaria parasites (Plasmodium falciparum) in thin blood smears. Our results constitute the first-time that a lensfree on-chip microscope has successfully imaged malaria parasites.

  19. On-Chip Laser-Power Delivery System for Dielectric Laser Accelerators

    NASA Astrophysics Data System (ADS)

    Hughes, Tyler W.; Tan, Si; Zhao, Zhexin; Sapra, Neil V.; Leedle, Kenneth J.; Deng, Huiyang; Miao, Yu; Black, Dylan S.; Solgaard, Olav; Harris, James S.; Vuckovic, Jelena; Byer, Robert L.; Fan, Shanhui; England, R. Joel; Lee, Yun Jo; Qi, Minghao

    2018-05-01

    We propose an on-chip optical-power delivery system for dielectric laser accelerators based on a fractal "tree-network" dielectric waveguide geometry. This system replaces experimentally demanding free-space manipulations of the driving laser beam with chip-integrated techniques based on precise nanofabrication, enabling access to orders-of-magnitude increases in the interaction length and total energy gain for these miniature accelerators. Based on computational modeling, in the relativistic regime, our laser delivery system is estimated to provide 21 keV of energy gain over an acceleration length of 192 μ m with a single laser input, corresponding to a 108-MV/m acceleration gradient. The system may achieve 1 MeV of energy gain over a distance of less than 1 cm by sequentially illuminating 49 identical structures. These findings are verified by detailed numerical simulation and modeling of the subcomponents, and we provide a discussion of the main constraints, challenges, and relevant parameters with regard to on-chip laser coupling for dielectric laser accelerators.

  20. Bone char effects on soil: sequential fractionations and XANES spectroscopy

    NASA Astrophysics Data System (ADS)

    Morshedizad, Mohsen; Panten, Kerstin; Klysubun, Wantana; Leinweber, Peter

    2018-01-01

    The acceptability of novel bone char fertilizers depends on their P release, but reactions at bone char surfaces and impacts on soil P speciation are insufficiently known. By using sequential fractionation and synchrotron-based X-ray absorption near-edge structure (XANES) spectroscopy we investigated whether and how the chemical composition of bone char particles has been altered in soil and has consequently affected the P speciation of amended soils. Therefore, two different kinds of bone char particles (BC produced by the pyrolysis of degreased animal bone chips at 800 °C and BCplus, a BC enriched with reduced sulfur compounds) were manually separated from the soil at the end of two different experiments: incubation leaching and ryegrass cultivation. Sequential P fractionation of amended soils showed P enrichment in all fractions compared to the control. The most P increase between all treatments significantly occurred in the NaOH-P and resin-P fractions in response to BCplus application in both incubation-leaching and ryegrass cultivation experiments. This increase in the readily available P fraction in BCplus-treated soils was confirmed by linear combination fitting (LCF) analysis on P K-edge XANES spectra of BC particles and amended soils. The proportion of Ca hydroxyapatite decreased, whereas the proportion of CaHPO4 increased in BCplus particles after amended soils had been incubated and leached and cropped by ryegrass. Based on P XANES speciation as determined by LCF analysis, the proportion of inorganic Ca(H2PO4)2 increased in amended soils after BCplus application. These results indicate that soil amendment with BCplus particles leads to elevated P concentration and maintains more soluble P species than BC particles even after 230 days of ryegrass cultivation.

  1. Ultra-Wide Band Non-reciprocity through Sequentially-Switched Delay Lines.

    PubMed

    Biedka, Mathew M; Zhu, Rui; Xu, Qiang Mark; Wang, Yuanxun Ethan

    2017-01-06

    Achieving non-reciprocity through unconventional methods without the use of magnetic material has recently become a subject of great interest. Towards this goal a time switching strategy known as the Sequentially-Switched Delay Line (SSDL) is proposed. The essential SSDL configuration consists of six transmission lines of equal length, along with five switches. Each switch is turned on and off sequentially to distribute and route the propagating electromagnetic wave, allowing for simultaneous transmission and receiving of signals through the device. Preliminary experimental results with commercial off the shelf parts are presented which demonstrated non-reciprocal behavior with greater than 40 dB isolation from 200 KHz to 200 MHz. The theory and experimental results demonstrated that the SSDL concept may lead to future on-chip circulators over multi-octaves of frequency.

  2. Ultra-Wide Band Non-reciprocity through Sequentially-Switched Delay Lines

    PubMed Central

    Biedka, Mathew M.; Zhu, Rui; Xu, Qiang Mark; Wang, Yuanxun Ethan

    2017-01-01

    Achieving non-reciprocity through unconventional methods without the use of magnetic material has recently become a subject of great interest. Towards this goal a time switching strategy known as the Sequentially-Switched Delay Line (SSDL) is proposed. The essential SSDL configuration consists of six transmission lines of equal length, along with five switches. Each switch is turned on and off sequentially to distribute and route the propagating electromagnetic wave, allowing for simultaneous transmission and receiving of signals through the device. Preliminary experimental results with commercial off the shelf parts are presented which demonstrated non-reciprocal behavior with greater than 40 dB isolation from 200 KHz to 200 MHz. The theory and experimental results demonstrated that the SSDL concept may lead to future on-chip circulators over multi-octaves of frequency. PMID:28059132

  3. Microfluidic Device for Sequential Injection and Flushing of Solutions and its Application to Immunosensing

    NASA Astrophysics Data System (ADS)

    Nashida, Norihiro; Suzuki, Hiroaki

    A microfluidic system with injecting and flushing functions was developed. In the system, hydrophilic flow channels have a dry-film photoresist layer which facilitates the introduction of solutions from four injection ports. The injection and flushing of solutions are controlled by valves operated by electrowetting. The valves consist of gold working electrodes in the flow channels or a through-hole in the glass substrate. Solutions can be sequentially introduced through the injection ports into a reaction chamber and flushed through a valve in the through-hole. Necessary immunoassay steps can be conducted on the chip, and a target antibody can be detected electrochemically.

  4. An Experimental Study of Dependence of Optimum TBM Cutter Spacing on Pre-set Penetration Depth in Sandstone Fragmentation

    NASA Astrophysics Data System (ADS)

    Han, D. Y.; Cao, P.; Liu, J.; Zhu, J. B.

    2017-12-01

    Cutter spacing is an essential parameter in the TBM design. However, few efforts have been made to study the optimum cutter spacing incorporating penetration depth. To investigate the influence of pre-set penetration depth and cutter spacing on sandstone breakage and TBM performance, a series of sequential laboratory indentation tests were performed in a biaxial compression state. Effects of parameters including penetration force, penetration depth, chip mass, chip size distribution, groove volume, specific energy and maximum angle of lateral crack were investigated. Results show that the total mass of chips, the groove volume and the observed optimum cutter spacing increase with increasing pre-set penetration depth. It is also found that the total mass of chips could be an alternative means to determine optimum cutter spacing. In addition, analysis of chip size distribution suggests that the mass of large chips is dominated by both cutter spacing and pre-set penetration depth. After fractal dimension analysis, we found that cutter spacing and pre-set penetration depth have negligible influence on the formation of small chips and that small chips are formed due to squeezing of cutters and surface abrasion caused by shear failure. Analysis on specific energy indicates that the observed optimum spacing/penetration ratio is 10 for the sandstone, at which, the specific energy and the maximum angle of lateral cracks are smallest. The findings in this paper contribute to better understanding of the coupled effect of cutter spacing and pre-set penetration depth on TBM performance and rock breakage, and provide some guidelines for cutter arrangement.

  5. Microfluidic Gut-liver chip for reproducing the first pass metabolism.

    PubMed

    Choe, Aerim; Ha, Sang Keun; Choi, Inwook; Choi, Nakwon; Sung, Jong Hwan

    2017-03-01

    After oral intake of drugs, drugs go through the first pass metabolism in the gut and the liver, which greatly affects the final outcome of the drugs' efficacy and side effects. The first pass metabolism is a complex process involving the gut and the liver tissue, with transport and reaction occurring simultaneously at various locations, which makes it difficult to be reproduced in vitro with conventional cell culture systems. In an effort to tackle this challenge, here we have developed a microfluidic gut-liver chip that can reproduce the dynamics of the first pass metabolism. The microfluidic chip consists of two separate layers for gut epithelial cells (Caco-2) and the liver cells (HepG2), and is designed so that drugs go through a sequential absorption in the gut chamber and metabolic reaction in the liver chamber. We fabricated the chip and showed that the two different cell lines can be successfully co-cultured on chip. When the two cells are cultured on chip, changes in the physiological function of Caco-2 and HepG2 cells were noted. The cytochrome P450 metabolic activity of both cells were significantly enhanced, and the absorptive property of Caco-2 cells on chip also changed in response to the presence of flow. Finally, first pass metabolism of a flavonoid, apigenin, was evaluated as a model compound, and co-culture of gut and liver cells on chip resulted in a metabolic profile that is closer to the reported profile than a monoculture of gut cells. This microfluidic gut-liver chip can potentially be a useful platform to study the complex first pass metabolism of drugs in vitro.

  6. Mass-manufacturable polymer microfluidic device for dual fiber optical trapping.

    PubMed

    De Coster, Diane; Ottevaere, Heidi; Vervaeke, Michael; Van Erps, Jürgen; Callewaert, Manly; Wuytens, Pieter; Simpson, Stephen H; Hanna, Simon; De Malsche, Wim; Thienpont, Hugo

    2015-11-30

    We present a microfluidic chip in Polymethyl methacrylate (PMMA) for optical trapping of particles in an 80µm wide microchannel using two counterpropagating single-mode beams. The trapping fibers are separated from the sample fluid by 70µm thick polymer walls. We calculate the optical forces that act on particles flowing in the microchannel using wave optics in combination with non-sequential ray-tracing and further mathematical processing. Our results are compared with a theoretical model and the Mie theory. We use a novel fabrication process that consists of a premilling step and ultraprecision diamond tooling for the manufacturing of the molds and double-sided hot embossing for replication, resulting in a robust microfluidic chip for optical trapping. In a proof-of-concept demonstration, we show the trapping capabilities of the hot embossed chip by trapping spherical beads with a diameter of 6µm, 8µm and 10µm and use the power spectrum analysis of the trapped particle displacements to characterize the trap strength.

  7. Consistent relationships between sensory properties of savory snack foods and calories influence food intake in rats.

    PubMed

    Swithers, S E; Doerflinger, A; Davidson, T L

    2006-11-01

    Determine the influence of experience with consistent or inconsistent relationships between the sensory properties of snack foods and their caloric consequences on the control of food intake or body weight in rats. Rats received plain and BBQ flavored potato chips as a dietary supplement, along with ad lib rat chow. For some rats the potato chips were a consistent source of high fat and high calories (regular potato chips). For other rats, the chips provided high fat and high calories on some occasions (regular potato chips) and provided no digestible fat and fewer calories at other times (light potato chips manufactured with a fat substitute). Thus, animals in the first group were given experiences that the sensory properties of potato chips were strong predictors of high calories, while animals in the second group were given experiences that the sensory properties of potato chips were not predictors of high calories. Juvenile and adult male Sprague-Dawley rats. Following exposure to varying potato chip-calorie contingencies, intake of a novel, high-fat snack food and subsequent chow intake were assessed. Body weight gain and body composition as measured by DEXA were also measured. In juvenile animals, exposure to a consistent relationship between potato chips and calories resulted in reduced chow intake, both when no chips were provided and following consumption of a novel high-fat, high-calorie snack chip. Long-term experience with these contingencies did not affect body weight gain or body composition in juveniles. In adult rats, exposure to an inconsistent relationship between potato chips and calories resulted in increased consumption of a novel high-fat, high-calorie snack chip premeal along with impaired compensation for the calories contained in the premeal. Consumption of foods in which the sensory properties are poor predictors of caloric consequences may alter subsequent food intake.

  8. On-board landmark navigation and attitude reference parallel processor system

    NASA Technical Reports Server (NTRS)

    Gilbert, L. E.; Mahajan, D. T.

    1978-01-01

    An approach to autonomous navigation and attitude reference for earth observing spacecraft is described along with the landmark identification technique based on a sequential similarity detection algorithm (SSDA). Laboratory experiments undertaken to determine if better than one pixel accuracy in registration can be achieved consistent with onboard processor timing and capacity constraints are included. The SSDA is implemented using a multi-microprocessor system including synchronization logic and chip library. The data is processed in parallel stages, effectively reducing the time to match the small known image within a larger image as seen by the onboard image system. Shared memory is incorporated in the system to help communicate intermediate results among microprocessors. The functions include finding mean values and summation of absolute differences over the image search area. The hardware is a low power, compact unit suitable to onboard application with the flexibility to provide for different parameters depending upon the environment.

  9. Digital PCR on an integrated self-priming compartmentalization chip.

    PubMed

    Zhu, Qiangyuan; Qiu, Lin; Yu, Bingwen; Xu, Yanan; Gao, Yibo; Pan, Tingting; Tian, Qingchang; Song, Qi; Jin, Wei; Jin, Qinhan; Mu, Ying

    2014-03-21

    An integrated on-chip valve-free and power-free microfluidic digital PCR device is for the first time developed by making use of a novel self-priming compartmentalization and simple dehydration control to realize 'divide and conquer' for single DNA molecule detection. The high gas solubility of PDMS is exploited to provide the built-in power of self-priming so that the sample and oil are sequentially sucked into the device to realize sample self-compartmentalization based on surface tension. The lifespan of its self-priming capability was about two weeks tested using an air-tight packaging bottle sealed with a small amount of petroleum jelly, which is significant for a practical platform. The SPC chip contains 5120 independent 5 nL microchambers, allowing the samples to be compartmentalized completely. Using this platform, three different abundances of lung cancer related genes are detected to demonstrate the feasibility and flexibility of the microchip for amplifying a single nucleic acid molecule. For maximal accuracy, within less than 5% of the measurement deviation, the optimal number of positive chambers is between 400 and 1250 evaluated by the Poisson distribution, which means one panel can detect an average of 480 to 4804 template molecules. This device without world-to-chip connections eliminates the constraint of the complex pipeline control, and is an integrated on-chip platform, which would be a significant improvement to digital PCR automation and more user-friendly.

  10. Challenges and Opportunities in Gen3 Embedded Cooling with High-Quality Microgap Flow

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Avram; Robinson, Franklin L.; Deisenroth, David C.

    2018-01-01

    Gen3, Embedded Cooling, promises to revolutionize thermal management of advanced microelectronic systems by eliminating the sequential conductive and interfacial thermal resistances which dominate the present 'remote cooling' paradigm. Single-phase interchip microfluidic flow with high thermal conductivity chips and substrates has been used successfully to cool single transistors dissipating more than 40kW/sq cm, but efficient heat removal from transistor arrays, larger chips, and chip stacks operating at these prodigious heat fluxes would require the use of high vapor fraction (quality), two-phase cooling in intra- and inter-chip microgap channels. The motivation, as well as the challenges and opportunities associated with evaporative embedded cooling in realistic form factors, is the focus of this paper. The paper will begin with a brief review of the history of thermal packaging, reflecting the 70-year 'inward migration' of cooling technology from the computer-room, to the rack, and then to the single chip and multichip module with 'remote' or attached air- and liquid-cooled coldplates. Discussion of the limitations of this approach and recent results from single-phase embedded cooling will follow. This will set the stage for discussion of the development challenges associated with application of this Gen3 thermal management paradigm to commercial semiconductor hardware, including dealing with the effects of channel length, orientation, and manifold-driven centrifugal acceleration on the governing behavior.

  11. Evaluation of the correctness of the feed selection based on the analysis of chip's shape

    NASA Astrophysics Data System (ADS)

    Chodor, Jaroslaw; Kukielka, Leon; Kaldunski, Pawel; Bohdal, Lukasz; Patyk, Radoslaw; Kulakowska, Agnieszka

    2018-05-01

    For the experiment needs, the own experiment plan was developed. The researches were carried out to determine the effect of variable, small feed on the chip's shape. To provide orthogonal free cutting special specimens were prepared. Obtained chips were divided according to shapes and also scanned using a scanning electron microscope (SEM). Conclusions from the experiments were given.

  12. Engagement of Metal Debris into a Gear Mesh

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Krantz, Timothy L.

    2009-01-01

    A series of bench top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock, and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined. INTRODUCTION In some space mechanisms the loading can be so high that there is some possibility that a gear chip might be liberated while in operation of the mechanism [1-5]. Also, due to the closely packed nature of some space mechanisms and the fact that a space grease is used for lubrication, chips that are released can then be introduced to other gear meshes within this mechanism. In this instance, it is desirable to know the consequences of a gear chip entering in between meshing gear teeth. To help provide some understanding, a series of bench-top experiments was conducted to engage chips of simulated and gear material fragments into a meshing gear pair. One purpose of the experiments was to determine the relationship of chip size to the torque required to rotate the gear set through the mesh cycle. The second purpose was to determine the condition of the gear chip material after engagement by the meshing gears, primarily to determine if the chip would break into pieces and to observe the motion of the chip as the engagement was completed. This document also presents preliminary testing done with metal debris other than chips from gears, namely steel shim stock and drill bits of various sizes and diameters.

  13. Hsp70 and Hsp90 Multichaperone Complexes Sequentially Regulate Thiazide-sensitive Cotransporter Endoplasmic Reticulum-associated Degradation and Biogenesis*

    PubMed Central

    Donnelly, Bridget F.; Needham, Patrick G.; Snyder, Avin C.; Roy, Ankita; Khadem, Shaheen; Brodsky, Jeffrey L.; Subramanya, Arohan R.

    2013-01-01

    The thiazide-sensitive NaCl cotransporter (NCC) is the primary mediator of salt reabsorption in the distal convoluted tubule and is a key determinant of the blood pressure set point. Given its complex topology, NCC is inefficiently processed and prone to endoplasmic reticulum (ER)-associated degradation (ERAD), although the mechanisms governing this process remain obscure. Here, we identify factors that impact the ER quality control of NCC. Analyses of NCC immunoprecipitates revealed that the cotransporter formed complexes with the core chaperones Hsp90, Hsp70, and Hsp40. Disruption of Hsp90 function accelerated NCC degradation, suggesting that Hsp90 promotes NCC folding. In addition, two cochaperones, the C terminus of Hsp70-interacting protein (CHIP) and the Hsp70/Hsp90 organizer protein, were associated with NCC. Although CHIP, an E3 ubiquitin ligase, promoted NCC ubiquitination and ERAD, the Hsp70/Hsp90 organizer protein stabilized NCC turnover, indicating that these two proteins differentially remodel the core chaperone systems to favor cotransporter degradation and biogenesis, respectively. Adjusting the folding environment in mammalian cells via reduced temperature enhanced NCC biosynthetic trafficking, increased Hsp90-NCC interaction, and diminished binding to Hsp70. In contrast, cotransporters harboring disease-causing mutations that impair NCC biogenesis failed to escape ERAD as efficiently as the wild type protein when cells were incubated at a lower temperature. Instead, these mutants interacted more strongly with Hsp70, Hsp40, and CHIP, consistent with a role for the Hsp70/Hsp40 system in selecting misfolded NCC for ERAD. Collectively, these observations indicate that Hsp70 and Hsp90 comprise two functionally distinct ER quality control checkpoints that sequentially monitor NCC biogenesis. PMID:23482560

  14. Solid-phase based on-chip DNA purification through a valve-free stepwise injection of multiple reagents employing centrifugal force combined with a hydrophobic capillary barrier pressure.

    PubMed

    Zhang, Hainan; Tran, Hong Hanh; Chung, Bong Hyun; Lee, Nae Yoon

    2013-03-21

    In this paper, we demonstrate a simple technique for sequentially introducing multiple sample liquids into microchannels driven by centrifugal force combined with a hydrophobic barrier pressure and apply the technique for performing solid-phase based on-chip DNA purification. Three microchannels with varying widths, all equipped with independent sample reservoirs at the inlets, were fabricated on a hydrophobic elastomer, poly(dimethylsiloxane) (PDMS). First, glass beads were packed inside the reaction chamber, and a whole cell containing the DNA extract was introduced into the widest channel by applying centrifugal force for physical adsorption of the DNA onto the glass beads. Next, washing and elution solutions were sequentially introduced into the intermediate and narrowest microchannels, respectively, by gradually increasing the amount of centrifugal force. Through a precise manipulation of the centrifugal force, the DNA adsorbed onto the glass beads was successfully washed and eluted in a continuous manner without the need to introduce each solution manually. A stepwise injection of liquids was successfully demonstrated using multiple ink solutions, the results of which corresponded well with the theoretical analyses. As a practical application, the D1S80 locus of human genomic DNA, which is widely used for forensic purposes, was successfully purified using the microdevice introduced in this study, as demonstrated through successful target amplification. This will pave the way for the construction of a control-free valve system for realizing on-chip DNA purification, which is one of the most labor-intensive and hard-to-miniaturize components, on a greatly simplified and miniaturized platform employing hydrophobic PDMS.

  15. Demosaiced pixel super-resolution in digital holography for multiplexed computational color imaging on-a-chip (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wu, Yichen; Zhang, Yibo; Luo, Wei; Ozcan, Aydogan

    2017-03-01

    Digital holographic on-chip microscopy achieves large space-bandwidth-products (e.g., >1 billion) by making use of pixel super-resolution techniques. To synthesize a digital holographic color image, one can take three sets of holograms representing the red (R), green (G) and blue (B) parts of the spectrum and digitally combine them to synthesize a color image. The data acquisition efficiency of this sequential illumination process can be improved by 3-fold using wavelength-multiplexed R, G and B illumination that simultaneously illuminates the sample, and using a Bayer color image sensor with known or calibrated transmission spectra to digitally demultiplex these three wavelength channels. This demultiplexing step is conventionally used with interpolation-based Bayer demosaicing methods. However, because the pixels of different color channels on a Bayer image sensor chip are not at the same physical location, conventional interpolation-based demosaicing process generates strong color artifacts, especially at rapidly oscillating hologram fringes, which become even more pronounced through digital wave propagation and phase retrieval processes. Here, we demonstrate that by merging the pixel super-resolution framework into the demultiplexing process, such color artifacts can be greatly suppressed. This novel technique, termed demosaiced pixel super-resolution (D-PSR) for digital holographic imaging, achieves very similar color imaging performance compared to conventional sequential R,G,B illumination, with 3-fold improvement in image acquisition time and data-efficiency. We successfully demonstrated the color imaging performance of this approach by imaging stained Pap smears. The D-PSR technique is broadly applicable to high-throughput, high-resolution digital holographic color microscopy techniques that can be used in resource-limited-settings and point-of-care offices.

  16. Neural Cell Chip Based Electrochemical Detection of Nanotoxicity

    PubMed Central

    Kafi, Md. Abdul; Cho, Hyeon-Yeol; Choi, Jeong Woo

    2015-01-01

    Development of a rapid, sensitive and cost-effective method for toxicity assessment of commonly used nanoparticles is urgently needed for the sustainable development of nanotechnology. A neural cell with high sensitivity and conductivity has become a potential candidate for a cell chip to investigate toxicity of environmental influences. A neural cell immobilized on a conductive surface has become a potential tool for the assessment of nanotoxicity based on electrochemical methods. The effective electrochemical monitoring largely depends on the adequate attachment of a neural cell on the chip surfaces. Recently, establishment of integrin receptor specific ligand molecules arginine-glycine-aspartic acid (RGD) or its several modifications RGD-Multi Armed Peptide terminated with cysteine (RGD-MAP-C), C(RGD)4 ensure farm attachment of neural cell on the electrode surfaces either in their two dimensional (dot) or three dimensional (rod or pillar) like nano-scale arrangement. A three dimensional RGD modified electrode surface has been proven to be more suitable for cell adhesion, proliferation, differentiation as well as electrochemical measurement. This review discusses fabrication as well as electrochemical measurements of neural cell chip with particular emphasis on their use for nanotoxicity assessments sequentially since inception to date. Successful monitoring of quantum dot (QD), graphene oxide (GO) and cosmetic compound toxicity using the newly developed neural cell chip were discussed here as a case study. This review recommended that a neural cell chip established on a nanostructured ligand modified conductive surface can be a potential tool for the toxicity assessments of newly developed nanomaterials prior to their use on biology or biomedical technologies. PMID:28347059

  17. The Receptor Tyrosine Kinase EphA2 Is a Direct Target Gene of Hypermethylated in Cancer 1 (HIC1)*

    PubMed Central

    Foveau, Bénédicte; Boulay, Gaylor; Pinte, Sébastien; Van Rechem, Capucine; Rood, Brian R.; Leprince, Dominique

    2012-01-01

    The tumor suppressor gene hypermethylated in cancer 1 (HIC1), which encodes a transcriptional repressor, is epigenetically silenced in many human tumors. Here, we show that ectopic expression of HIC1 in the highly malignant MDA-MB-231 breast cancer cell line severely impairs cell proliferation, migration, and invasion in vitro. In parallel, infection of breast cancer cell lines with a retrovirus expressing HIC1 also induces decreased mRNA and protein expression of the tyrosine kinase receptor EphA2. Moreover, chromatin immunoprecipitation (ChIP) and sequential ChIP experiments demonstrate that endogenous HIC1 proteins are bound, together with the MTA1 corepressor, to the EphA2 promoter in WI38 cells. Taken together, our results identify EphA2 as a new direct target gene of HIC1. Finally, we observe that inactivation of endogenous HIC1 through RNA interference in normal breast epithelial cells results in the up-regulation of EphA2 and is correlated with increased cellular migration. To conclude, our results involve the tumor suppressor HIC1 in the transcriptional regulation of the tyrosine kinase receptor EphA2, whose ligand ephrin-A1 is also a HIC1 target gene. Thus, loss of the regulation of this Eph pathway through HIC1 epigenetic silencing could be an important mechanism in the pathogenesis of epithelial cancers. PMID:22184117

  18. Multifunctional sample preparation kit and on-chip quantitative nucleic acid sequence-based amplification tests for microbial detection.

    PubMed

    Zhao, Xinyan; Dong, Tao

    2012-10-16

    This study reports a quantitative nucleic acid sequence-based amplification (Q-NASBA) microfluidic platform composed of a membrane-based sampling module, a sample preparation cassette, and a 24-channel Q-NASBA chip for environmental investigations on aquatic microorganisms. This low-cost and highly efficient sampling module, having seamless connection with the subsequent steps of sample preparation and quantitative detection, is designed for the collection of microbial communities from aquatic environments. Eight kinds of commercial membrane filters are relevantly analyzed using Saccharomyces cerevisiae, Escherichia coli, and Staphylococcus aureus as model microorganisms. After the microorganisms are concentrated on the membrane filters, the retentate can be easily conserved in a transport medium (TM) buffer and sent to a remote laboratory. A Q-NASBA-oriented sample preparation cassette is originally designed to extract DNA/RNA molecules directly from the captured cells on the membranes. Sequentially, the extract is analyzed within Q-NASBA chips that are compatible with common microplate readers in laboratories. Particularly, a novel analytical algorithmic method is developed for simple but robust on-chip Q-NASBA assays. The reported multifunctional microfluidic system could detect a few microorganisms quantitatively and simultaneously. Further research should be conducted to simplify and standardize ecological investigations on aquatic environments.

  19. Self-priming compartmentalization digital LAMP for point-of-care.

    PubMed

    Zhu, Qiangyuan; Gao, Yibo; Yu, Bingwen; Ren, Hao; Qiu, Lin; Han, Sihai; Jin, Wei; Jin, Qinhan; Mu, Ying

    2012-11-21

    Digital nucleic acid amplification provides unprecedented opportunities for absolute nucleic acid quantification by counting of single molecules. This technique is useful for molecular genetic analysis in cancer, stem cell, bacterial, non-invasive prenatal diagnosis in which many biologists are interested. This paper describes a self-priming compartmentalization (SPC) microfluidic chip platform for performing digital loop-mediated amplification (LAMP). The energy for the pumping is pre-stored in the degassed bulk PDMS by exploiting the high gas solubility of PDMS; therefore, no additional structures other than channels and reservoirs are required. The sample and oil are sequentially sucked into the channels, and the pressure difference of gas dissolved in PDMS allows sample self-compartmentalization without the need for further chip manipulation such as with pneumatic microvalves and control systems, and so on. The SPC digital LAMP chip can be used like a 384-well plate, so, the world-to-chip fluidic interconnections are avoided. The microfluidic chip contains 4 separate panels, each panel contains 1200 independent 6 nL chambers and can be used to detect 4 samples simultaneously. Digital LAMP on the microfluidic chip was tested quantitatively by using β-actin DNA from humans. The self-priming compartmentalization behavior is roughly predictable using a two-dimensional model. The uniformity of compartmentalization was analyzed by fluorescent intensity and fraction of volume. The results showed that the feasibility and flexibility of the microfluidic chip platform for amplifying single nucleic acid molecules in different chambers made by diluting and distributing sample solutions. The SPC chip has the potential to meet the requirements of a general laboratory: power-free, valve-free, operating at isothermal temperature, inexpensive, sensitive, economizing labour time and reagents. The disposable analytical devices with appropriate air-tight packaging should be useful for point-of-care, and enabling it to become one of the common tools for biology research, especially, in point-of-care testing.

  20. A fully sealed plastic chip for multiplex PCR and its application in bacteria identification.

    PubMed

    Xu, Youchun; Yan, He; Zhang, Yan; Jiang, Kewei; Lu, Ying; Ren, Yonghong; Wang, Hui; Wang, Shan; Xing, Wanli

    2015-07-07

    Multiplex PCR is an effective tool for simultaneous multiple target detection but is limited by the intrinsic interference and competition among primer pairs when it is performed in one reaction tube. Dividing a multiplex PCR into many single PCRs is a simple strategy to overcome this issue. Here, we constructed a plastic, easy-to-use, fully sealed multiplex PCR chip based on reversible centrifugation for the simultaneous detection of 63 target DNA sequences. The structure of the chip is quite simple, which contains sine-shaped infusing channels and a number of reaction chambers connecting to one side of these channels. Primer pairs for multiplex PCR were sequentially preloaded in the different reaction chambers, and the chip was enclosed with PCR-compatible adhesive tape. For usage, the PCR master mix containing a DNA template is pipetted into the infusing channels and centrifuged into the reaction chambers, leaving the infusing channels filled with air to avoid cross-contamination of the different chambers. Then, the chip is sealed and placed on a flat thermal cycler for PCR. Finally, amplification products can be detected in situ using a fluorescence scanner or recovered by reverse centrifugation for further analyses. Therefore, our chip possesses two functions: 1) it can be used for multi-target detection based on end-point in situ fluorescence detection; and 2) it can work as a sample preparation unit for analyses that need multiplex PCR such as hybridization and target sequencing. The performance of this chip was carefully examined and further illustrated in the identification of 8 pathogenic bacterial genomic DNA samples and 13 drug-resistance genes. Due to simplicity of its structure and operation, accuracy and generality, high-throughput capacity, and versatile functions (i.e., for in situ detection and sample preparation), our multiplex PCR chip has great potential in clinical diagnostics and nucleic acid-based point-of-care testing.

  1. Atom chip apparatus for experiments with ultracold rubidium and potassium gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivory, M. K.; Ziltz, A. R.; Fancher, C. T.

    2014-04-15

    We present a dual chamber atom chip apparatus for generating ultracold {sup 87}Rb and {sup 39}K atomic gases. The apparatus produces quasi-pure Bose-Einstein condensates of 10{sup 4} {sup 87}Rb atoms in an atom chip trap that features a dimple and good optical access. We have also demonstrated production of ultracold {sup 39}K and subsequent loading into the chip trap. We describe the details of the dual chamber vacuum system, the cooling lasers, the magnetic trap, the multicoil magnetic transport system, the atom chip, and two optical dipole traps. Due in part to the use of light-induced atom desorption, the lasermore » cooling chamber features a sufficiently good vacuum to also support optical dipole trap-based experiments. The apparatus is well suited for studies of atom-surface forces, quantum pumping and transport experiments, atom interferometry, novel chip-based traps, and studies of one-dimensional many-body systems.« less

  2. How Well Is CHIP Addressing Health Care Access and Affordability for Children?

    PubMed

    Clemans-Cope, Lisa; Kenney, Genevieve; Waidmann, Timothy; Huntress, Michael; Anderson, Nathaniel

    2015-01-01

    We examine how access to care and care experiences under the Children's Health Insurance Program (CHIP) compared to private coverage and being uninsured in 10 states. We report on findings from a 2012 survey of CHIP enrollees in 10 states. We examined a range of health care access and use measures among CHIP enrollees. Comparisons of the experiences of established CHIP enrollees to the experiences of uninsured and privately insured children were used to estimate differences in children's health care. Children with CHIP coverage had substantially better access to care across a range of outcomes, other things being equal, particularly compared to those with no coverage. Compared to being uninsured, CHIP enrollees were more likely to have specialty and mental health visits and to receive prescription drugs; and their parents were much more likely to feel confident in meeting the child's health care needs and were less likely to have trouble finding providers. CHIP enrollees were less likely to have unmet needs, but 1 in 4 had at least 1 unmet need. Compared to being privately insured, CHIP enrollees had generally similar health care use and unmet needs. Additionally, CHIP enrollees had lower financial burden related to their health care needs. The findings were generally robust with respect to alternative specifications and subgroup analyses, and they corroborated findings of previous studies. Enrolling more of the uninsured children who are eligible for CHIP improved their access to a range of care, including specialty and mental health services, and reduced the financial burden of meeting their health care needs; however, we found room for improvement in CHIP enrollees' access to care. Copyright © 2015 Academic Pediatric Association. All rights reserved.

  3. Thermoacoustic chips with carbon nanotube thin yarn arrays.

    PubMed

    Wei, Yang; Lin, Xiaoyang; Jiang, Kaili; Liu, Peng; Li, Qunqing; Fan, Shoushan

    2013-10-09

    Aligned carbon nanotube (CNT) films drawn from CNT arrays have shown the potential as thermoacoustic loudspeakers. CNT thermoacoustic chips with robust structures are proposed to promote the applications. The silicon-based chips can play sound and fascinating rhythms by feeding alternating currents and audio signal to the suspending CNT thin yarn arrays across grooves in them. In additional to the thin yarns, experiments further revealed more essential elements of the chips, the groove depth and the interdigital electrodes. The sound pressure depends on the depth of the grooves, and the thermal wavelength can be introduced to define the influence-free depth. The interdigital fingers can effectively reduce the driving voltage, making the chips safe and easy to use. The chips were successfully assembled into earphones and have been working stably for about one year. The thermoacoustic chips can find many applications in consumer electronics and possibly improve the audiovisual experience.

  4. Lensfree fluorescent on-chip imaging of transgenic Caenorhabditis elegans over an ultra-wide field-of-view.

    PubMed

    Coskun, Ahmet F; Sencan, Ikbal; Su, Ting-Wei; Ozcan, Aydogan

    2011-01-06

    We demonstrate lensfree on-chip fluorescent imaging of transgenic Caenorhabditis elegans (C. elegans) over an ultra-wide field-of-view (FOV) of e.g., >2-8 cm(2) with a spatial resolution of ∼10 µm. This is the first time that a lensfree on-chip platform has successfully imaged fluorescent C. elegans samples. In our wide-field lensfree imaging platform, the transgenic samples are excited using a prism interface from the side, where the pump light is rejected through total internal reflection occurring at the bottom facet of the substrate. The emitted fluorescent signal from C. elegans samples is then recorded on a large area opto-electronic sensor-array over an FOV of e.g., >2-8 cm(2), without the use of any lenses, thin-film interference filters or mechanical scanners. Because fluorescent emission rapidly diverges, such lensfree fluorescent images recorded on a chip look blurred due to broad point-spread-function of our platform. To combat this resolution challenge, we use a compressive sampling algorithm to uniquely decode the recorded lensfree fluorescent patterns into higher resolution images, demonstrating ∼10 µm resolution. We tested the efficacy of this compressive decoding approach with different types of opto-electronic sensors to achieve a similar resolution level, independent of the imaging chip. We further demonstrate that this wide FOV lensfree fluorescent imaging platform can also perform sequential bright-field imaging of the same samples using partially-coherent lensfree digital in-line holography that is coupled from the top facet of the same prism used in fluorescent excitation. This unique combination permits ultra-wide field dual-mode imaging of C. elegans on a chip which could especially provide a useful tool for high-throughput screening applications in biomedical research.

  5. A scalable self-priming fractal branching microchannel net chip for digital PCR.

    PubMed

    Zhu, Qiangyuan; Xu, Yanan; Qiu, Lin; Ma, Congcong; Yu, Bingwen; Song, Qi; Jin, Wei; Jin, Qinhan; Liu, Jinyu; Mu, Ying

    2017-05-02

    As an absolute quantification method at the single-molecule level, digital PCR has been widely used in many bioresearch fields, such as next generation sequencing, single cell analysis, gene editing detection and so on. However, existing digital PCR methods still have some disadvantages, including high cost, sample loss, and complicated operation. In this work, we develop an exquisite scalable self-priming fractal branching microchannel net digital PCR chip. This chip with a special design inspired by natural fractal-tree systems has an even distribution and 100% compartmentalization of the sample without any sample loss, which is not available in existing chip-based digital PCR methods. A special 10 nm nano-waterproof layer was created to prevent the solution from evaporating. A vacuum pre-packaging method called self-priming reagent introduction is used to passively drive the reagent flow into the microchannel nets, so that this chip can realize sequential reagent loading and isolation within a couple of minutes, which is very suitable for point-of-care detection. When the number of positive microwells stays in the range of 100 to 4000, the relative uncertainty is below 5%, which means that one panel can detect an average of 101 to 15 374 molecules by the Poisson distribution. This chip is proved to have an excellent ability for single molecule detection and quantification of low expression of hHF-MSC stem cell markers. Due to its potential for high throughput, high density, low cost, lack of sample and reagent loss, self-priming even compartmentalization and simple operation, we envision that this device will significantly expand and extend the application range of digital PCR involving rare samples, liquid biopsy detection and point-of-care detection with higher sensitivity and accuracy.

  6. Lensfree Fluorescent On-Chip Imaging of Transgenic Caenorhabditis elegans Over an Ultra-Wide Field-of-View

    PubMed Central

    Ozcan, Aydogan

    2011-01-01

    We demonstrate lensfree on-chip fluorescent imaging of transgenic Caenorhabditis elegans (C. elegans) over an ultra-wide field-of-view (FOV) of e.g., >2–8 cm2 with a spatial resolution of ∼10µm. This is the first time that a lensfree on-chip platform has successfully imaged fluorescent C. elegans samples. In our wide-field lensfree imaging platform, the transgenic samples are excited using a prism interface from the side, where the pump light is rejected through total internal reflection occurring at the bottom facet of the substrate. The emitted fluorescent signal from C. elegans samples is then recorded on a large area opto-electronic sensor-array over an FOV of e.g., >2–8 cm2, without the use of any lenses, thin-film interference filters or mechanical scanners. Because fluorescent emission rapidly diverges, such lensfree fluorescent images recorded on a chip look blurred due to broad point-spread-function of our platform. To combat this resolution challenge, we use a compressive sampling algorithm to uniquely decode the recorded lensfree fluorescent patterns into higher resolution images, demonstrating ∼10 µm resolution. We tested the efficacy of this compressive decoding approach with different types of opto-electronic sensors to achieve a similar resolution level, independent of the imaging chip. We further demonstrate that this wide FOV lensfree fluorescent imaging platform can also perform sequential bright-field imaging of the same samples using partially-coherent lensfree digital in-line holography that is coupled from the top facet of the same prism used in fluorescent excitation. This unique combination permits ultra-wide field dual-mode imaging of C. elegans on a chip which could especially provide a useful tool for high-throughput screening applications in biomedical research. PMID:21253611

  7. Intelligent Computation for Optimal Fabrication Condition of a Protein Chip with Ni-Co Alloy-Coated Surface.

    PubMed

    Chang, Yaw-Jen; Chang, Cheng-Hao

    2016-06-01

    Based on the principle of immobilized metal affinity chromatography (IMAC), it has been found that a Ni-Co alloy-coated protein chip is able to immobilize functional proteins with a His-tag attached. In this study, an intelligent computational approach was developed to promote the performance and repeatability of a Ni-Co alloy-coated protein chip. This approach was launched out of L18 experiments. Based on the experimental data, the fabrication process model of a Ni-Co protein chip was established by using an artificial neural network, and then an optimal fabrication condition was obtained using the Taguchi genetic algorithm. The result was validated experimentally and compared with a nitrocellulose chip. Consequentially, experimental outcomes revealed that the Ni-Co alloy-coated chip, fabricated using the proposed approach, had the best performance and repeatability compared with the Ni-Co chips of an L18 orthogonal array design and the nitrocellulose chip. Moreover, the low fluorescent background of the chip surface gives a more precise fluorescent detection. Based on a small quantity of experiments, this proposed intelligent computation approach can significantly reduce the experimental cost and improve the product's quality. © 2015 Society for Laboratory Automation and Screening.

  8. Microfluidics on liquid handling stations (μF-on-LHS): an industry compatible chip interface between microfluidics and automated liquid handling stations.

    PubMed

    Waldbaur, Ansgar; Kittelmann, Jörg; Radtke, Carsten P; Hubbuch, Jürgen; Rapp, Bastian E

    2013-06-21

    We describe a generic microfluidic interface design that allows the connection of microfluidic chips to established industrial liquid handling stations (LHS). A molding tool has been designed that allows fabrication of low-cost disposable polydimethylsiloxane (PDMS) chips with interfaces that provide convenient and reversible connection of the microfluidic chip to industrial LHS. The concept allows complete freedom of design for the microfluidic chip itself. In this setup all peripheral fluidic components (such as valves and pumps) usually required for microfluidic experiments are provided by the LHS. Experiments (including readout) can be carried out fully automated using the hardware and software provided by LHS manufacturer. Our approach uses a chip interface that is compatible with widely used and industrially established LHS which is a significant advancement towards near-industrial experimental design in microfluidics and will greatly facilitate the acceptance and translation of microfluidics technology in industry.

  9. Imaging and chemical surface analysis of biomolecular functionalization of monolithically integrated on silicon Mach-Zehnder interferometric immunosensors

    NASA Astrophysics Data System (ADS)

    Gajos, Katarzyna; Angelopoulou, Michailia; Petrou, Panagiota; Awsiuk, Kamil; Kakabakos, Sotirios; Haasnoot, Willem; Bernasik, Andrzej; Rysz, Jakub; Marzec, Mateusz M.; Misiakos, Konstantinos; Raptis, Ioannis; Budkowski, Andrzej

    2016-11-01

    Time-of-flight secondary ion mass spectrometry (imaging, micro-analysis) has been employed to evaluate biofunctionalization of the sensing arm areas of Mach-Zehnder interferometers monolithically integrated on silicon chips for the immunochemical (competitive) detection of bovine κ-casein in goat milk. Biosensor surfaces are examined after: modification with (3-aminopropyl)triethoxysilane, application of multiple overlapping spots of κ-casein solutions, blocking with 100-times diluted goat milk, and reaction with monoclonal mouse anti-κ-casein antibodies in blocking solution. The areas spotted with κ-casein solutions of different concentrations are examined and optimum concentration providing homogeneous coverage is determined. Coverage of biosensor surfaces with biomolecules after each of the sequential steps employed in immunodetection is also evaluated with TOF-SIMS, supplemented by Atomic force microscopy and X-ray photoelectron spectroscopy. Uniform molecular distributions are observed on the sensing arm areas after spotting with optimum κ-casein concentration, blocking and immunoreaction. The corresponding biomolecular compositions are determined with a Principal Component Analysis that distinguished between protein amino acids and milk glycerides, as well as between amino acids characteristic for Mabs and κ-casein, respectively. Use of the optimum conditions (κ-casein concentration) for functionalization of chips with arrays of ten Mach-Zehnder interferometers provided on-chips assays with dramatically improved both intra-chip response repeatability and assay detection sensitivity.

  10. Active books: the design of an implantable stimulator that minimizes cable count using integrated circuits very close to electrodes.

    PubMed

    Liu, Xiao; Demosthenous, Andreas; Vanhoestenberghe, Anne; Jiang, Dai; Donaldson, Nick

    2012-06-01

    This paper presents an integrated stimulator that can be embedded in implantable electrode books for interfacing with nerve roots at the cauda equina. The Active Book overcomes the limitation of conventional nerve root stimulators which can only support a small number of stimulating electrodes due to cable count restriction through the dura. Instead, a distributed stimulation system with many tripole electrodes can be configured using several Active Books which are addressed sequentially. The stimulator was fabricated in a 0.6-μm high-voltage CMOS process and occupies a silicon area of 4.2 × 6.5 mm(2). The circuit was designed to deliver up to 8 mA stimulus current to tripole electrodes from an 18 V power supply. Input pad count is limited to five (two power and three control lines) hence requiring a specific procedure for downloading stimulation commands to the chip and extracting information from it. Supported commands include adjusting the amplitude of stimulus current, varying the current ratio at the two anodes in each channel, and measuring relative humidity inside the chip package. In addition to stimulation mode, the chip supports quiescent mode, dissipating less than 100 nA current from the power supply. The performance of the stimulator chip was verified with bench tests including measurements using tripoles in saline.

  11. Grinding damage assessment on four high-strength ceramics.

    PubMed

    Canneto, Jean-Jacques; Cattani-Lorente, Maria; Durual, Stéphane; Wiskott, Anselm H W; Scherrer, Susanne S

    2016-02-01

    The purpose of this study was to assess surface and subsurface damage on 4 CAD-CAM high-strength ceramics after grinding with diamond disks of 75 μm, 54 μm and 18 μm and to estimate strength losses based on damage crack sizes. The materials tested were: 3Y-TZP (Lava), dense Al2O3 (In-Ceram AL), alumina glass-infiltrated (In-Ceram ALUMINA) and alumina-zirconia glass-infiltrated (In-Ceram ZIRCONIA). Rectangular specimens with 2 mirror polished orthogonal sides were bonded pairwise together prior to degrading the top polished surface with diamond disks of either 75 μm, 54 μm or 18 μm. The induced chip damage was evaluated on the bonded interface using SEM for chip depth measurements. Fracture mechanics were used to estimate fracture stresses based on average and maximum chip depths considering these as critical flaws subjected to tension and to calculate possible losses in strength compared to manufacturer's data. 3Y-TZP was hardly affected by grinding chip damage viewed on the bonded interface. Average chip depths were of 12.7±5.2 μm when grinding with 75 μm diamond inducing an estimated loss of 12% in strength compared to manufacturer's reported flexural strength values of 1100 MPa. Dense alumina showed elongated chip cracks and was suffering damage of an average chip depth of 48.2±16.3 μm after 75 μm grinding, representing an estimated loss in strength of 49%. Grinding with 54 μm was creating chips of 32.2±9.1 μm in average, representing a loss in strength of 23%. Alumina glass-infiltrated ceramic was exposed to chipping after 75 μm (mean chip size=62.4±19.3 μm) and 54 μm grinding (mean chip size=42.8±16.6 μm), with respectively 38% and 25% estimated loss in strength. Alumina-zirconia glass-infiltrated ceramic was mainly affected by 75 μm grinding damage with a chip average size of 56.8±15.1 μm, representing an estimated loss in strength of 34%. All four ceramics were not exposed to critical chipping at 18 μm diamond grinding. Reshaping a ceramic framework post sintering should be avoided with final diamond grits of 75 μm as a general rule. For alumina and the glass-infiltrated alumina, using a 54 μm diamond still induces chip damage which may affect strength. Removal of such damage from a reshaped framework is mandatory by using sequentially finer diamonds prior to the application of veneering ceramics especially in critical areas such as margins, connectors and inner surfaces. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Automated cellular sample preparation using a Centrifuge-on-a-Chip.

    PubMed

    Mach, Albert J; Kim, Jae Hyun; Arshi, Armin; Hur, Soojung Claire; Di Carlo, Dino

    2011-09-07

    The standard centrifuge is a laboratory instrument widely used by biologists and medical technicians for preparing cell samples. Efforts to automate the operations of concentration, cell separation, and solution exchange that a centrifuge performs in a simpler and smaller platform have had limited success. Here, we present a microfluidic chip that replicates the functions of a centrifuge without moving parts or external forces. The device operates using a purely fluid dynamic phenomenon in which cells selectively enter and are maintained in microscale vortices. Continuous and sequential operation allows enrichment of cancer cells from spiked blood samples at the mL min(-1) scale, followed by fluorescent labeling of intra- and extra-cellular antigens on the cells without the need for manual pipetting and washing steps. A versatile centrifuge-analogue may open opportunities in automated, low-cost and high-throughput sample preparation as an alternative to the standard benchtop centrifuge in standardized clinical diagnostics or resource poor settings.

  13. Growing Embossed Nanostructures of Polymer Brushes on Wet-Etched Silicon Templated via Block Copolymers

    PubMed Central

    Lu, Xiaobin; Yan, Qin; Ma, Yinzhou; Guo, Xin; Xiao, Shou-Jun

    2016-01-01

    Block copolymer nanolithography has attracted enormous interest in chip technologies, such as integrated silicon chips and biochips, due to its large-scale and mass production of uniform patterns. We further modified this technology to grow embossed nanodots, nanorods, and nanofingerprints of polymer brushes on silicon from their corresponding wet-etched nanostructures covered with pendent SiHx (X = 1–3) species. Atomic force microscopy (AFM) was used to image the topomorphologies, and multiple transmission-reflection infrared spectroscopy (MTR-IR) was used to monitor the surface molecular films in each step for the sequential stepwise reactions. In addition, two layers of polymethacrylic acid (PMAA) brush nanodots were observed, which were attributed to the circumferential convergence growth and the diffusion-limited growth of the polymer brushes. The pH response of PMAA nanodots in the same region was investigated by AFM from pH 3.0 to 9.0. PMID:26841692

  14. Growing Embossed Nanostructures of Polymer Brushes on Wet-Etched Silicon Templated via Block Copolymers

    NASA Astrophysics Data System (ADS)

    Lu, Xiaobin; Yan, Qin; Ma, Yinzhou; Guo, Xin; Xiao, Shou-Jun

    2016-02-01

    Block copolymer nanolithography has attracted enormous interest in chip technologies, such as integrated silicon chips and biochips, due to its large-scale and mass production of uniform patterns. We further modified this technology to grow embossed nanodots, nanorods, and nanofingerprints of polymer brushes on silicon from their corresponding wet-etched nanostructures covered with pendent SiHx (X = 1-3) species. Atomic force microscopy (AFM) was used to image the topomorphologies, and multiple transmission-reflection infrared spectroscopy (MTR-IR) was used to monitor the surface molecular films in each step for the sequential stepwise reactions. In addition, two layers of polymethacrylic acid (PMAA) brush nanodots were observed, which were attributed to the circumferential convergence growth and the diffusion-limited growth of the polymer brushes. The pH response of PMAA nanodots in the same region was investigated by AFM from pH 3.0 to 9.0.

  15. Fast single run of vanilla fingerprint markers on microfluidic-electrochemistry chip for confirmation of common frauds.

    PubMed

    Avila, Mónica; Zougagh, Mohammed; Escarpa, Alberto; Ríos, Angel

    2009-10-01

    A new strategy based on the fast separation of the fingerprint markers of Vanilla planifolia extracts and vanilla-related samples on microfluidic-electrochemistry chip is proposed. This methodology allowed the detection of all required markers for confirmation of common frauds in this field. The elution order was strategically connected with sequential sample screening and analyte confirmation steps, where first ethyl vanillin was detected to distinguish natural from adultered samples; second, vanillin as prominent marker in V. planifolia, but frequently added in its synthetic form; and third, the final detection of the fingerprint markers (p-hydroxybenzaldehyde, vanillic acid, and p-hydroxybenzoic acid) of V. planifolia with confirmation purposes. The reliability of the proposed methodology was demonstrated in the confirmation the natural or non-natural origin of vanilla in samples using V. planifolia extracts and other selected food samples containing this flavor.

  16. Microscale Symmetrical Electroporator Array as a Versatile Molecular Delivery System

    NASA Astrophysics Data System (ADS)

    Ouyang, Mengxing; Hill, Winfield; Lee, Jung Hyun; Hur, Soojung Claire

    2017-03-01

    Successful developments of new therapeutic strategies often rely on the ability to deliver exogenous molecules into cytosol. We have developed a versatile on-chip vortex-assisted electroporation system, engineered to conduct sequential intracellular delivery of multiple molecules into various cell types at low voltage in a dosage-controlled manner. Micro-patterned planar electrodes permit substantial reduction in operational voltages and seamless integration with an existing microfluidic technology. Equipped with real-time process visualization functionality, the system enables on-chip optimization of electroporation parameters for cells with varying properties. Moreover, the system’s dosage control and multi-molecular delivery capabilities facilitate intracellular delivery of various molecules as a single agent or in combination and its utility in biological research has been demonstrated by conducting RNA interference assays. We envision the system to be a powerful tool, aiding a wide range of applications, requiring single-cell level co-administrations of multiple molecules with controlled dosages.

  17. Fully chip-embedded automation of a multi-step lab-on-a-chip process using a modularized timer circuit.

    PubMed

    Kang, Junsu; Lee, Donghyeon; Heo, Young Jin; Chung, Wan Kyun

    2017-11-07

    For highly-integrated microfluidic systems, an actuation system is necessary to control the flow; however, the bulk of actuation devices including pumps or valves has impeded the broad application of integrated microfluidic systems. Here, we suggest a microfluidic process control method based on built-in microfluidic circuits. The circuit is composed of a fluidic timer circuit and a pneumatic logic circuit. The fluidic timer circuit is a serial connection of modularized timer units, which sequentially pass high pressure to the pneumatic logic circuit. The pneumatic logic circuit is a NOR gate array designed to control the liquid-controlling process. By using the timer circuit as a built-in signal generator, multi-step processes could be done totally inside the microchip without any external controller. The timer circuit uses only two valves per unit, and the number of process steps can be extended without limitation by adding timer units. As a demonstration, an automation chip has been designed for a six-step droplet treatment, which entails 1) loading, 2) separation, 3) reagent injection, 4) incubation, 5) clearing and 6) unloading. Each process was successfully performed for a pre-defined step-time without any external control device.

  18. On-chip immobilization of planarians for in vivo imaging.

    PubMed

    Dexter, Joseph P; Tamme, Mary B; Lind, Christine H; Collins, Eva-Maria S

    2014-09-17

    Planarians are an important model organism for regeneration and stem cell research. A complete understanding of stem cell and regeneration dynamics in these animals requires time-lapse imaging in vivo, which has been difficult to achieve due to a lack of tissue-specific markers and the strong negative phototaxis of planarians. We have developed the Planarian Immobilization Chip (PIC) for rapid, stable immobilization of planarians for in vivo imaging without injury or biochemical alteration. The chip is easy and inexpensive to fabricate, and worms can be mounted for and removed after imaging within minutes. We show that the PIC enables significantly higher-stability immobilization than can be achieved with standard techniques, allowing for imaging of planarians at sub-cellular resolution in vivo using brightfield and fluorescence microscopy. We validate the performance of the PIC by performing time-lapse imaging of planarian wound closure and sequential imaging over days of head regeneration. We further show that the device can be used to immobilize Hydra, another photophobic regenerative model organism. The simple fabrication, low cost, ease of use, and enhanced specimen stability of the PIC should enable its broad application to in vivo studies of stem cell and regeneration dynamics in planarians and Hydra.

  19. On-chip immobilization of planarians for in vivo imaging

    PubMed Central

    Dexter, Joseph P.; Tamme, Mary B.; Lind, Christine H.; Collins, Eva-Maria S.

    2014-01-01

    Planarians are an important model organism for regeneration and stem cell research. A complete understanding of stem cell and regeneration dynamics in these animals requires time-lapse imaging in vivo, which has been difficult to achieve due to a lack of tissue-specific markers and the strong negative phototaxis of planarians. We have developed the Planarian Immobilization Chip (PIC) for rapid, stable immobilization of planarians for in vivo imaging without injury or biochemical alteration. The chip is easy and inexpensive to fabricate, and worms can be mounted for and removed after imaging within minutes. We show that the PIC enables significantly higher-stability immobilization than can be achieved with standard techniques, allowing for imaging of planarians at sub-cellular resolution in vivo using brightfield and fluorescence microscopy. We validate the performance of the PIC by performing time-lapse imaging of planarian wound closure and sequential imaging over days of head regeneration. We further show that the device can be used to immobilize Hydra, another photophobic regenerative model organism. The simple fabrication, low cost, ease of use, and enhanced specimen stability of the PIC should enable its broad application to in vivo studies of stem cell and regeneration dynamics in planarians and Hydra. PMID:25227263

  20. Sequential lineup laps and eyewitness accuracy.

    PubMed

    Steblay, Nancy K; Dietrich, Hannah L; Ryan, Shannon L; Raczynski, Jeanette L; James, Kali A

    2011-08-01

    Police practice of double-blind sequential lineups prompts a question about the efficacy of repeated viewings (laps) of the sequential lineup. Two laboratory experiments confirmed the presence of a sequential lap effect: an increase in witness lineup picks from first to second lap, when the culprit was a stranger. The second lap produced more errors than correct identifications. In Experiment 2, lineup diagnosticity was significantly higher for sequential lineup procedures that employed a single versus double laps. Witnesses who elected to view a second lap made significantly more errors than witnesses who chose to stop after one lap or those who were required to view two laps. Witnesses with prior exposure to the culprit did not exhibit a sequential lap effect.

  1. Exploring the sequential lineup advantage using WITNESS.

    PubMed

    Goodsell, Charles A; Gronlund, Scott D; Carlson, Curt A

    2010-12-01

    Advocates claim that the sequential lineup is an improvement over simultaneous lineup procedures, but no formal (quantitatively specified) explanation exists for why it is better. The computational model WITNESS (Clark, Appl Cogn Psychol 17:629-654, 2003) was used to develop theoretical explanations for the sequential lineup advantage. In its current form, WITNESS produced a sequential advantage only by pairing conservative sequential choosing with liberal simultaneous choosing. However, this combination failed to approximate four extant experiments that exhibited large sequential advantages. Two of these experiments became the focus of our efforts because the data were uncontaminated by likely suspect position effects. Decision-based and memory-based modifications to WITNESS approximated the data and produced a sequential advantage. The next step is to evaluate the proposed explanations and modify public policy recommendations accordingly.

  2. Spike-In Normalization of ChIP Data Using DNA-DIG-Antibody Complex.

    PubMed

    Eberle, Andrea B

    2018-01-01

    Chromatin immunoprecipitation (ChIP) is a widely used method to determine the occupancy of specific proteins within the genome, helping to unravel the function and activity of specific genomic regions. In ChIP experiments, normalization of the obtained data by a suitable internal reference is crucial. However, particularly when comparing differently treated samples, such a reference is difficult to identify. Here, a simple method to improve the accuracy and reliability of ChIP experiments by the help of an external reference is described. An artificial molecule, composed of a well-defined digoxigenin (DIG) labeled DNA fragment in complex with an anti-DIG antibody, is synthesized and added to each chromatin sample before immunoprecipitation. During the ChIP procedure, the DNA-DIG-antibody complex undergoes the same treatments as the chromatin and is therefore purified and quantified together with the chromatin of interest. This external reference compensates for variability during the ChIP routine and improves the similarity between replicates, thereby emphasizing the biological differences between samples.

  3. Scratching experiments on quartz crystals: Orientation effects in chipping

    NASA Astrophysics Data System (ADS)

    Tellier, C. R.; Benmessaouda, D.

    1994-06-01

    The deformation and microfracture properties of quartz crystals were studied by scratching experiments. The critical load at which microfractures are initiated was found to be orientation dependent, whereas the average width of ductile grooves and chips remained relatively insensitive to crystal orientation. In contrast, a marked anisotropy in the shape of chips was observed. This anisotropy has been interpreted in terms of microfractures propagating preferentially along slip planes. Simple geometrical conditions for the SEM (scanning electron microscopy) observation of active slip planes are proposed.

  4. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia.

    PubMed

    Landt, Stephen G; Marinov, Georgi K; Kundaje, Anshul; Kheradpour, Pouya; Pauli, Florencia; Batzoglou, Serafim; Bernstein, Bradley E; Bickel, Peter; Brown, James B; Cayting, Philip; Chen, Yiwen; DeSalvo, Gilberto; Epstein, Charles; Fisher-Aylor, Katherine I; Euskirchen, Ghia; Gerstein, Mark; Gertz, Jason; Hartemink, Alexander J; Hoffman, Michael M; Iyer, Vishwanath R; Jung, Youngsook L; Karmakar, Subhradip; Kellis, Manolis; Kharchenko, Peter V; Li, Qunhua; Liu, Tao; Liu, X Shirley; Ma, Lijia; Milosavljevic, Aleksandar; Myers, Richard M; Park, Peter J; Pazin, Michael J; Perry, Marc D; Raha, Debasish; Reddy, Timothy E; Rozowsky, Joel; Shoresh, Noam; Sidow, Arend; Slattery, Matthew; Stamatoyannopoulos, John A; Tolstorukov, Michael Y; White, Kevin P; Xi, Simon; Farnham, Peggy J; Lieb, Jason D; Wold, Barbara J; Snyder, Michael

    2012-09-01

    Chromatin immunoprecipitation (ChIP) followed by high-throughput DNA sequencing (ChIP-seq) has become a valuable and widely used approach for mapping the genomic location of transcription-factor binding and histone modifications in living cells. Despite its widespread use, there are considerable differences in how these experiments are conducted, how the results are scored and evaluated for quality, and how the data and metadata are archived for public use. These practices affect the quality and utility of any global ChIP experiment. Through our experience in performing ChIP-seq experiments, the ENCODE and modENCODE consortia have developed a set of working standards and guidelines for ChIP experiments that are updated routinely. The current guidelines address antibody validation, experimental replication, sequencing depth, data and metadata reporting, and data quality assessment. We discuss how ChIP quality, assessed in these ways, affects different uses of ChIP-seq data. All data sets used in the analysis have been deposited for public viewing and downloading at the ENCODE (http://encodeproject.org/ENCODE/) and modENCODE (http://www.modencode.org/) portals.

  5. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia

    PubMed Central

    Landt, Stephen G.; Marinov, Georgi K.; Kundaje, Anshul; Kheradpour, Pouya; Pauli, Florencia; Batzoglou, Serafim; Bernstein, Bradley E.; Bickel, Peter; Brown, James B.; Cayting, Philip; Chen, Yiwen; DeSalvo, Gilberto; Epstein, Charles; Fisher-Aylor, Katherine I.; Euskirchen, Ghia; Gerstein, Mark; Gertz, Jason; Hartemink, Alexander J.; Hoffman, Michael M.; Iyer, Vishwanath R.; Jung, Youngsook L.; Karmakar, Subhradip; Kellis, Manolis; Kharchenko, Peter V.; Li, Qunhua; Liu, Tao; Liu, X. Shirley; Ma, Lijia; Milosavljevic, Aleksandar; Myers, Richard M.; Park, Peter J.; Pazin, Michael J.; Perry, Marc D.; Raha, Debasish; Reddy, Timothy E.; Rozowsky, Joel; Shoresh, Noam; Sidow, Arend; Slattery, Matthew; Stamatoyannopoulos, John A.; Tolstorukov, Michael Y.; White, Kevin P.; Xi, Simon; Farnham, Peggy J.; Lieb, Jason D.; Wold, Barbara J.; Snyder, Michael

    2012-01-01

    Chromatin immunoprecipitation (ChIP) followed by high-throughput DNA sequencing (ChIP-seq) has become a valuable and widely used approach for mapping the genomic location of transcription-factor binding and histone modifications in living cells. Despite its widespread use, there are considerable differences in how these experiments are conducted, how the results are scored and evaluated for quality, and how the data and metadata are archived for public use. These practices affect the quality and utility of any global ChIP experiment. Through our experience in performing ChIP-seq experiments, the ENCODE and modENCODE consortia have developed a set of working standards and guidelines for ChIP experiments that are updated routinely. The current guidelines address antibody validation, experimental replication, sequencing depth, data and metadata reporting, and data quality assessment. We discuss how ChIP quality, assessed in these ways, affects different uses of ChIP-seq data. All data sets used in the analysis have been deposited for public viewing and downloading at the ENCODE (http://encodeproject.org/ENCODE/) and modENCODE (http://www.modencode.org/) portals. PMID:22955991

  6. Sequential Tests of Multiple Hypotheses Controlling Type I and II Familywise Error Rates

    PubMed Central

    Bartroff, Jay; Song, Jinlin

    2014-01-01

    This paper addresses the following general scenario: A scientist wishes to perform a battery of experiments, each generating a sequential stream of data, to investigate some phenomenon. The scientist would like to control the overall error rate in order to draw statistically-valid conclusions from each experiment, while being as efficient as possible. The between-stream data may differ in distribution and dimension but also may be highly correlated, even duplicated exactly in some cases. Treating each experiment as a hypothesis test and adopting the familywise error rate (FWER) metric, we give a procedure that sequentially tests each hypothesis while controlling both the type I and II FWERs regardless of the between-stream correlation, and only requires arbitrary sequential test statistics that control the error rates for a given stream in isolation. The proposed procedure, which we call the sequential Holm procedure because of its inspiration from Holm’s (1979) seminal fixed-sample procedure, shows simultaneous savings in expected sample size and less conservative error control relative to fixed sample, sequential Bonferroni, and other recently proposed sequential procedures in a simulation study. PMID:25092948

  7. A Spiking Strategy for ChIP-chip Data Normalization in S. cerevisiae.

    PubMed

    Jeronimo, Célia; Robert, François

    2017-01-01

    Chromatin immunoprecipitation coupled to DNA microarrays (ChIP-chip) is widely used in the chromatin field, notably to map the position of histone variants or histone modifications along the genome. Often, the position and the occupancy of these epigenetic marks are to be compared between different experiments. It is now increasingly recognized that such cross-sample comparison is better done using externally added exogenous controls for normalization but no such method has been described for ChIP-chip. Here we describe a spiking normalization strategy that makes use of phiX174 phage DNA as a spiked control for normalization of ChIP-chip signals across different experiments.

  8. The target-to-foils shift in simultaneous and sequential lineups.

    PubMed

    Clark, Steven E; Davey, Sherrie L

    2005-04-01

    A theoretical cornerstone in eyewitness identification research is the proposition that witnesses, in making decisions from standard simultaneous lineups, make relative judgments. The present research considers two sources of support for this proposal. An experiment by G. L. Wells (1993) showed that if the target is removed from a lineup, witnesses shift their responses to pick foils, rather than rejecting the lineups, a result we will term a target-to-foils shift. Additional empirical support is provided by results from sequential lineups which typically show higher accuracy than simultaneous lineups, presumably because of a decrease in the use of relative judgments in making identification decisions. The combination of these two lines of research suggests that the target-to-foils shift should be reduced in sequential lineups relative to simultaneous lineups. Results of two experiments showed an overall advantage for sequential lineups, but also showed a target-to-foils shift equal in size for simultaneous and sequential lineups. Additional analyses indicated that the target-to-foils shift in sequential lineups was moderated in part by an order effect and was produced with (Experiment 2) or without (Experiment 1) a shift in decision criterion. This complex pattern of results suggests that more work is needed to understand the processes which underlie decisions in simultaneous and sequential lineups.

  9. Sequential Effects on Speeded Information Processing: A Developmental Study

    ERIC Educational Resources Information Center

    Smulders, S.F.A.; Notebaert, W.; Meijer, M.; Crone, E.A.; van der Molen, M.W.; Soetens, E.

    2005-01-01

    Two experiments were performed to assess age-related changes in sequential effects on choice reaction time (RT). Sequential effects portray the influence of previous trials on the RT to the current stimulus. In Experiment 1, three age groups (7-9, 10-12, and 18-25 years) performed a spatially compatible choice task, with response-to-stimulus…

  10. Children with Special Health Care Needs in CHIP: Access, Use, and Child and Family Outcomes.

    PubMed

    Zickafoose, Joseph S; Smith, Kimberly V; Dye, Claire

    2015-01-01

    To assess how the Children's Health Insurance Program (CHIP) affects outcomes for children with special health care needs (CSHCN). We used data from a survey of parents of recent and established CHIP enrollees conducted from January 2012 through March 2013 as part of a congressionally mandated evaluation of CHIP. We identified CSHCN in the sample using the Child and Adolescent Health Measurement Initiative's CSHCN screener. We compared the health care experiences of established CHIP enrollees to the pre-enrollment experiences of previously uninsured and privately insured recent CHIP enrollees, controlling for observable characteristics. Parents of 4142 recent enrollees and 5518 established enrollees responded to the survey (response rates, 46% recent enrollees and 51% established enrollees). In the 10 survey states, about one-fourth of CHIP enrollees had a special health care need. Compared to being uninsured, parents of CSHCN who were established CHIP enrollees reported greater access to and use of medical and dental care, less difficulty meeting their child's health care needs, fewer unmet needs, and better dental health status for their child. Compared to having private insurance, parents of CSHCN who were established CHIP enrollees reported similar levels of access to and use of medical and dental care and unmet needs, and less difficulty meeting their child's health care needs. CHIP has significant benefits for eligible CSHCN and their families compared to being uninsured and appears to have some benefits compared to private insurance. Copyright © 2015 Academic Pediatric Association. All rights reserved.

  11. Coffee Cups, Canoes, Airplanes and the Lived Experience: Reflections on the Works of Bertram (Chip) Bruce

    ERIC Educational Resources Information Center

    Haythornthwaite, Caroline

    2014-01-01

    A career spent in research, teaching, and engagement with community entails a lifetime of assemblage of meaning from people, resources, technologies and experience. In his work, Bertram (Chip) Bruce has long engaged with how we create such an assemblage of meaning from our formal and found learning, and from the "lived experience" of…

  12. Toward Evolvable Hardware Chips: Experiments with a Programmable Transistor Array

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian

    1998-01-01

    Evolvable Hardware is reconfigurable hardware that self-configures under the control of an evolutionary algorithm. We search for a hardware configuration can be performed using software models or, faster and more accurate, directly in reconfigurable hardware. Several experiments have demonstrated the possibility to automatically synthesize both digital and analog circuits. The paper introduces an approach to automated synthesis of CMOS circuits, based on evolution on a Programmable Transistor Array (PTA). The approach is illustrated with a software experiment showing evolutionary synthesis of a circuit with a desired DC characteristic. A hardware implementation of a test PTA chip is then described, and the same evolutionary experiment is performed on the chip demonstrating circuit synthesis/self-configuration directly in hardware.

  13. Fast and Precise Emulation of Stochastic Biochemical Reaction Networks With Amplified Thermal Noise in Silicon Chips.

    PubMed

    Kim, Jaewook; Woo, Sung Sik; Sarpeshkar, Rahul

    2018-04-01

    The analysis and simulation of complex interacting biochemical reaction pathways in cells is important in all of systems biology and medicine. Yet, the dynamics of even a modest number of noisy or stochastic coupled biochemical reactions is extremely time consuming to simulate. In large part, this is because of the expensive cost of random number and Poisson process generation and the presence of stiff, coupled, nonlinear differential equations. Here, we demonstrate that we can amplify inherent thermal noise in chips to emulate randomness physically, thus alleviating these costs significantly. Concurrently, molecular flux in thermodynamic biochemical reactions maps to thermodynamic electronic current in a transistor such that stiff nonlinear biochemical differential equations are emulated exactly in compact, digitally programmable, highly parallel analog "cytomorphic" transistor circuits. For even small-scale systems involving just 80 stochastic reactions, our 0.35-μm BiCMOS chips yield a 311× speedup in the simulation time of Gillespie's stochastic algorithm over COPASI, a fast biochemical-reaction software simulator that is widely used in computational biology; they yield a 15 500× speedup over equivalent MATLAB stochastic simulations. The chip emulation results are consistent with these software simulations over a large range of signal-to-noise ratios. Most importantly, our physical emulation of Poisson chemical dynamics does not involve any inherently sequential processes and updates such that, unlike prior exact simulation approaches, they are parallelizable, asynchronous, and enable even more speedup for larger-size networks.

  14. Design and qualification of the SEU/TD Radiation Monitor chip

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Blaes, Brent R.; Soli, George A.; Zamani, Nasser; Hicks, Kenneth A.

    1992-01-01

    This report describes the design, fabrication, and testing of the Single-Event Upset/Total Dose (SEU/TD) Radiation Monitor chip. The Radiation Monitor is scheduled to fly on the Mid-Course Space Experiment Satellite (MSX). The Radiation Monitor chip consists of a custom-designed 4-bit SRAM for heavy ion detection and three MOSFET's for monitoring total dose. In addition the Radiation Monitor chip was tested along with three diagnostic chips: the processor monitor and the reliability and fault chips. These chips revealed the quality of the CMOS fabrication process. The SEU/TD Radiation Monitor chip had an initial functional yield of 94.6 percent. Forty-three (43) SEU SRAM's and 14 Total Dose MOSFET's passed the hermeticity and final electrical tests and were delivered to LL.

  15. Effects of wood chip amendments on the revegetation performance of plant species on eroded marly terrains in a Mediterranean mountainous climate (Southern Alps, France)

    NASA Astrophysics Data System (ADS)

    Breton, Vincent; Crosaz, Yves; Rey, Freddy

    2016-04-01

    The establishment of plant species can limit soil erosion dynamics in degraded lands. In marly areas in the Southern French Alps, both harsh water erosion and drought conditions in summer due to the Mediterranean mountainous climate prevent the natural implementation and regeneration of vegetation. Soil fertility improvement is sometimes necessary. With the purpose of revegetating such areas, we aimed to evaluate the effects of wood chip amendments on the revegetation performance of different native or sub-spontaneous plant species. We conducted two experiments on steep slopes over three growing seasons (2012-2014). The first consisted of planting seedlings (10 species), and the second consisted of seeding (nine species including six used in the first experiment). First we noted that wood chips were able to remain in place even in steep slope conditions. The planting of seedlings showed both an impact of wood chip amendment and differences between species. A positive effect of wood chips was shown with overall improvement of plant survival (increasing by 11 % on average, by up to 50 % for some species). In the seeding experiment, no plants survived after three growing seasons. However, intermediate results for the first and second years showed a positive effect of wood chips on seedling emergence: seeds of four species only sprouted on wood chips, and for the five other species the average emergence rate increased by 50 %.

  16. Sea otter dental enamel is highly resistant to chipping due to its microstructure

    PubMed Central

    Ziscovici, Charles; Lucas, Peter W.; Constantino, Paul J.; Bromage, Timothy G.; van Casteren, Adam

    2014-01-01

    Dental enamel is prone to damage by chipping with large hard objects at forces that depend on chip size and enamel toughness. Experiments on modern human teeth have suggested that some ante-mortem chips on fossil hominin enamel were produced by bite forces near physiological maxima. Here, we show that equivalent chips in sea otter enamel require even higher forces than human enamel. Increased fracture resistance correlates with more intense enamel prism decussation, often seen also in some fossil hominins. It is possible therefore that enamel chips in such hominins may have formed at even greater forces than currently envisaged. PMID:25319817

  17. Development of Two Color Fluorescent Imager and Integrated Fluidic System for Nanosatellite Biology Applications

    NASA Technical Reports Server (NTRS)

    Wu, Diana Terri; Ricco, Antonio Joseph; Lera, Matthew P.; Timucin, Linda R.; Parra, Macarena P.

    2012-01-01

    Nanosatellites offer frequent, low-cost space access as secondary payloads on launches of larger conventional satellites. We summarize the payload science and technology of the Microsatellite in-situ Space Technologies (MisST) nanosatellite for conducting automated biological experiments. The payload (two fused 10-cm cubes) includes 1) an integrated fluidics system that maintains organism viability and supports growth and 2) a fixed-focus imager with fluorescence and scattered-light imaging capabilities. The payload monitors temperature, pressure and relative humidity, and actively controls temperature. C. elegans (nematode, 50 m diameter x 1 mm long) was selected as a model organism due to previous space science experience, its completely sequenced genome, size, hardiness, and the variety of strains available. Three strains were chosen: two green GFP-tagged strains and one red tdTomato-tagged strain that label intestinal, nerve, and pharyngeal cells, respectively. The integrated fluidics system includes bioanalytical and reservoir modules. The former consists of four 150 L culture wells and a 4x5 mm imaging zone the latter includes two 8 mL fluid reservoirs for reagent and waste storage. The fluidic system is fabricated using multilayer polymer rapid prototyping: laser cutting, precision machining, die cutting, and pressure-sensitive adhesives it also includes eight solenoid-operated valves and one mini peristaltic pump. Young larval-state (L2) nematodes are loaded in C. elegans Maintenance Media (CeMM) in the bioanalytical module during pre-launch assembly. By the time orbit is established, the worms have grown to sufficient density to be imaged and are fed fresh CeMM. The strains are pumped sequentially into the imaging area, imaged, then pumped into waste. Reagent storage utilizes polymer bags under slight pressure to prevent bubble formation in wells or channels. The optical system images green and red fluorescence bands by excitation with blue (473 nm peak) and amber (587 nm peak) LEDs it achieves 8 m lateral resolution using a CMOS imaging chip (as configured for serial data speeds) or 4 m resolution using USB imaging chips. The imager consists of a modified commercial off-the-shelf CMOS chip camera, amber, blue and white LEDs, as well as a relay lens and dual-band filters to obviate moving parts while supporting both fluorescence wavelengths.

  18. COTS Ceramic Chip Capacitors: An Evaluation of the Parts and Assurance Methodologies

    NASA Technical Reports Server (NTRS)

    Sampson, Michael J.

    2004-01-01

    This viewgraph presentation profiles an experiment to evaluate the suitability of commercial off-the-shelf (COTS) ceramic chip capacitors for NASA spaceflight applications. The experiment included: 1) Voltage Conditioning ('Burn-In'); 2) Highly Accelerated Life Test (HALT); 3) Destructive Physical Analysis (DPA); 4) Ultimate Voltage Breakdown Strength. The presentation includes results for each of the capacitors used in the experiment.

  19. Controlling stray electric fields on an atom chip for experiments on Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Davtyan, D.; Machluf, S.; Soudijn, M. L.; Naber, J. B.; van Druten, N. J.; van Linden van den Heuvell, H. B.; Spreeuw, R. J. C.

    2018-02-01

    Experiments handling Rydberg atoms near surfaces must necessarily deal with the high sensitivity of Rydberg atoms to (stray) electric fields that typically emanate from adsorbates on the surface. We demonstrate a method to modify and reduce the stray electric field by changing the adsorbate distribution. We use one of the Rydberg excitation lasers to locally affect the adsorbed dipole distribution. By adjusting the averaged exposure time we change the strength (with the minimal value less than 0.2 V /cm at 78 μ m from the chip) and even the sign of the perpendicular field component. This technique is a useful tool for experiments handling Rydberg atoms near surfaces, including atom chips.

  20. Lineup composition, suspect position, and the sequential lineup advantage.

    PubMed

    Carlson, Curt A; Gronlund, Scott D; Clark, Steven E

    2008-06-01

    N. M. Steblay, J. Dysart, S. Fulero, and R. C. L. Lindsay (2001) argued that sequential lineups reduce the likelihood of mistaken eyewitness identification. Experiment 1 replicated the design of R. C. L. Lindsay and G. L. Wells (1985), the first study to show the sequential lineup advantage. However, the innocent suspect was chosen at a lower rate in the simultaneous lineup, and no sequential lineup advantage was found. This led the authors to hypothesize that protection from a sequential lineup might emerge only when an innocent suspect stands out from the other lineup members. In Experiment 2, participants viewed a simultaneous or sequential lineup with either the guilty suspect or 1 of 3 innocent suspects. Lineup fairness was varied to influence the degree to which a suspect stood out. A sequential lineup advantage was found only for the unfair lineups. Additional analyses of suspect position in the sequential lineups showed an increase in the diagnosticity of suspect identifications as the suspect was placed later in the sequential lineup. These results suggest that the sequential lineup advantage is dependent on lineup composition and suspect position. (c) 2008 APA, all rights reserved

  1. The hardwood chip market in 2005

    Treesearch

    Peter J. Ince

    2005-01-01

    The North American Pulp and Paper industry continues to experience challenges and changes much like most other business sectors of the hardwood industry. Marketing policies and the raw material supply chain of pulpwood and chips are being affected. The issues surrounding supply for pulpwood and chips have a broad reach in affecting timber and log purchases, logging...

  2. Magnetic-film atom chip with 10 μm period lattices of microtraps for quantum information science with Rydberg atoms.

    PubMed

    Leung, V Y F; Pijn, D R M; Schlatter, H; Torralbo-Campo, L; La Rooij, A L; Mulder, G B; Naber, J; Soudijn, M L; Tauschinsky, A; Abarbanel, C; Hadad, B; Golan, E; Folman, R; Spreeuw, R J C

    2014-05-01

    We describe the fabrication and construction of a setup for creating lattices of magnetic microtraps for ultracold atoms on an atom chip. The lattice is defined by lithographic patterning of a permanent magnetic film. Patterned magnetic-film atom chips enable a large variety of trapping geometries over a wide range of length scales. We demonstrate an atom chip with a lattice constant of 10 μm, suitable for experiments in quantum information science employing the interaction between atoms in highly excited Rydberg energy levels. The active trapping region contains lattice regions with square and hexagonal symmetry, with the two regions joined at an interface. A structure of macroscopic wires, cutout of a silver foil, was mounted under the atom chip in order to load ultracold (87)Rb atoms into the microtraps. We demonstrate loading of atoms into the square and hexagonal lattice sections simultaneously and show resolved imaging of individual lattice sites. Magnetic-film lattices on atom chips provide a versatile platform for experiments with ultracold atoms, in particular for quantum information science and quantum simulation.

  3. Anaerobic co-digestion of steam-treated Quercus serrata chips and sewage sludge under mesophilic and thermophilic conditions.

    PubMed

    Wang, Feng; Hidaka, Taira; Sakurai, Kensuke; Tsumori, Jun

    2014-08-01

    The biodegradation of Quercus serrata chips was evaluated by anaerobic digestion under various steam explosion conditions. In continuous experiments, untreated chips (W₀) and chips steam-treated at less than 1.0 MPa (W₁) and 2.0 MPa (W₄) were co-digested with sewage sludge (S₁ and S₂) taken from two different wastewater treatment plants. The apparent methane yield of W₁ and W₄ co-digested with S₁ (thermophilic) was 261 dm(3)/kgVS (volatile solids) and 248 dm(3)/kgVS, respectively. The apparent methane yield of W₄ co-digested with S₂ was 258 dm(3)/kgVS (mesophilic) and 271 dm(3)/kgVS (thermophilic). Methane production was inhibited by W₀ due to components released during hydrolysis. The methane conversion ratio of pretreated chips obtained in batch experiments varied from 40.5% to 53.8% (mesophilic) and from 49.0% to 63.7% (thermophilic). The methane conversion ratio increased with decreasing acid-soluble lignin content in the chips. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. A microfluidic microprocessor: controlling biomimetic containers and cells using hybrid integrated circuit/microfluidic chips.

    PubMed

    Issadore, David; Franke, Thomas; Brown, Keith A; Westervelt, Robert M

    2010-11-07

    We present an integrated platform for performing biological and chemical experiments on a chip based on standard CMOS technology. We have developed a hybrid integrated circuit (IC)/microfluidic chip that can simultaneously control thousands of living cells and pL volumes of fluid, enabling a wide variety of chemical and biological tasks. Taking inspiration from cellular biology, phospholipid bilayer vesicles are used as robust picolitre containers for reagents on the chip. The hybrid chip can be programmed to trap, move, and porate individual living cells and vesicles and fuse and deform vesicles using electric fields. The IC spatially patterns electric fields in a microfluidic chamber using 128 × 256 (32,768) 11 × 11 μm(2) metal pixels, each of which can be individually driven with a radio frequency (RF) voltage. The chip's basic functions can be combined in series to perform complex biological and chemical tasks and can be performed in parallel on the chip's many pixels for high-throughput operations. The hybrid chip operates in two distinct modes, defined by the frequency of the RF voltage applied to the pixels: Voltages at MHz frequencies are used to trap, move, and deform objects using dielectrophoresis and voltages at frequencies below 1 kHz are used for electroporation and electrofusion. This work represents an important step towards miniaturizing the complex chemical and biological experiments used for diagnostics and research onto automated and inexpensive chips.

  5. Brand placement and consumer choice: an in-store experiment.

    PubMed

    Sigurdsson, Valdimar; Saevarsson, Hugi; Foxall, Gordon

    2009-01-01

    An in-store experiment was performed to investigate the effects of shelf placement (high, middle, low) on consumers' purchases of potato chips. Placement of potato chips on the middle shelf was associated with the highest percentage of purchases. The results confirm the importance of item placement as a factor in consumers' buying behavior.

  6. Brand Placement and Consumer Choice: An in-Store Experiment

    ERIC Educational Resources Information Center

    Sigurdsson, Valdimar; Saevarsson, Hugi; Foxall, Gordon

    2009-01-01

    An in-store experiment was performed to investigate the effects of shelf placement (high, middle, low) on consumers' purchases of potato chips. Placement of potato chips on the middle shelf was associated with the highest percentage of purchases. The results confirm the importance of item placement as a factor in consumers' buying behavior.…

  7. A Filtration-based Method of Preparing High-quality Nuclei from Cross-linked Skeletal Muscle for Chromatin Immunoprecipitation.

    PubMed

    Nohara, Kazunari; Chen, Zheng; Yoo, Seung-Hee

    2017-07-06

    Chromatin immunoprecipitation (ChIP) is a powerful method to determine protein binding to chromatin DNA. Fiber-rich skeletal muscle, however, has been a challenge for ChIP due to technical difficulty in isolation of high-quality nuclei with minimal contamination of myofibrils. Previous protocols have attempted to purify nuclei before cross-linking, which incurs the risk of altered DNA-protein interaction during the prolonged nuclei preparation process. In the current protocol, we first cross-linked the skeletal muscle tissue collected from mice, and the tissues were minced and sonicated. Since we found that ultracentrifugation was not able to separate nuclei from myofibrils using cross-linked muscle tissue, we devised a sequential filtration procedure to obtain high-quality nuclei devoid of significant myofibril contamination. We subsequently prepared chromatin by using an ultrasonicator, and ChIP assays with anti-BMAL1 antibody revealed robust circadian binding pattern of BMAL1 to target gene promoters. This filtration protocol constitutes an easily applicable method to isolate high-quality nuclei from cross-linked skeletal muscle tissue, allowing consistent sample processing for circadian and other time-sensitive studies. In combination with next-generation sequencing (NGS), our method can be deployed for various mechanistic and genomic studies focusing on skeletal muscle function.

  8. Novel tool wear monitoring method in milling difficult-to-machine materials using cutting chip formation

    NASA Astrophysics Data System (ADS)

    Zhang, P. P.; Guo, Y.; Wang, B.

    2017-05-01

    The main problems in milling difficult-to-machine materials are the high cutting temperature and rapid tool wear. However it is impossible to investigate tool wear in machining. Tool wear and cutting chip formation are two of the most important representations for machining efficiency and quality. The purpose of this paper is to develop the model of tool wear with cutting chip formation (width of chip and radian of chip) on difficult-to-machine materials. Thereby tool wear is monitored by cutting chip formation. A milling experiment on the machining centre with three sets cutting parameters was performed to obtain chip formation and tool wear. The experimental results show that tool wear increases gradually along with cutting process. In contrast, width of chip and radian of chip decrease. The model is developed by fitting the experimental data and formula transformations. The most of monitored errors of tool wear by the chip formation are less than 10%. The smallest error is 0.2%. Overall errors by the radian of chip are less than the ones by the width of chip. It is new way to monitor and detect tool wear by cutting chip formation in milling difficult-to-machine materials.

  9. Using Existing NASA Satellites as Orbiting Testbeds to Accelerate Technology Infusion into Future Missions

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel; Ly, Vuong; Frye, Stuart

    2006-01-01

    One of the shared problems for new space mission developers is that it is extremely difficult to infuse new technology into new missions unless that technology has been flight validated. Therefore, the issue is that new technology is required to fly on a successful mission for flight validation. We have been experimenting with new technology on existing satellites by retrofitting primarily the flight software while the missions are on-orbit to experiment with new operations concepts. Experiments have been using Earth Observing 1 (EO-1), which is part of the New Millennium Program at NASA. EO-1 finished its prime mission one year after its launch on November 21,2000. From November 21,2001 until the present, EO-1 has been used in parallel with additional science data gathering to test out various sensor web concepts. Similarly, the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS) satellite was also a one year mission flown by the University of Berkeley, sponsored by NASA and whose prime mission ended August 30,2005. Presently, CHIPS is being used to experiment with a seamless space to ground interface by installing Core Flight System (cFS), a "plug-and-play" architecture developed by the Flight Software Branch at NASA/GSFC on top of the existing space-to-ground Internet Protocol (IP) interface that CHIPS implemented. For example, one targeted experiment is to connect CHIPS to a rover via this interface and the Internet, and trigger autonomous actions on CHIPS, the rover or both. Thus far, having satellites to experiment with new concepts has turned out to be an inexpensive way to infuse new technology for future missions. Relevant experiences thus far and future plans will be discussed in this presentation.

  10. Sea otter dental enamel is highly resistant to chipping due to its microstructure.

    PubMed

    Ziscovici, Charles; Lucas, Peter W; Constantino, Paul J; Bromage, Timothy G; van Casteren, Adam

    2014-10-01

    Dental enamel is prone to damage by chipping with large hard objects at forces that depend on chip size and enamel toughness. Experiments on modern human teeth have suggested that some ante-mortem chips on fossil hominin enamel were produced by bite forces near physiological maxima. Here, we show that equivalent chips in sea otter enamel require even higher forces than human enamel. Increased fracture resistance correlates with more intense enamel prism decussation, often seen also in some fossil hominins. It is possible therefore that enamel chips in such hominins may have formed at even greater forces than currently envisaged. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  11. Description and effects of sequential behavior practice in teacher education.

    PubMed

    Sharpe, T; Lounsbery, M; Bahls, V

    1997-09-01

    This study examined the effects of a sequential behavior feedback protocol on the practice-teaching experiences of undergraduate teacher trainees. The performance competencies of teacher trainees were analyzed using an alternative opportunities for appropriate action measure. Data support the added utility of sequential (Sharpe, 1997a, 1997b) behavior analysis information in systematic observation approaches to teacher education. One field-based undergraduate practicum using sequential behavior (i.e., field systems analysis) principles was monitored. Summarized are the key elements of the (a) classroom instruction provided as a precursor to the practice teaching experience, (b) practice teaching experience, and (c) field systems observation tool used for evaluation and feedback, including multiple-baseline data (N = 4) to support this approach to teacher education. Results point to (a) the strong relationship between sequential behavior feedback and the positive change in four preservice teachers' day-to-day teaching practices in challenging situational contexts, and (b) the relationship between changes in teacher practices and positive changes in the behavioral practices of gymnasium pupils. Sequential behavior feedback was also socially validated by the undergraduate participants and Professional Development School teacher supervisors in the study.

  12. The design of an adaptive predictive coder using a single-chip digital signal processor

    NASA Astrophysics Data System (ADS)

    Randolph, M. A.

    1985-01-01

    A speech coding processor architecture design study has been performed in which Texas Instruments TMS32010 has been selected from among three commercially available digital signal processing integrated circuits and evaluated in an implementation study of real-time Adaptive Predictive Coding (APC). The TMS32010 has been compared with AR&T Bell Laboratories DSP I and Nippon Electric Co. PD7720 and was found to be most suitable for a single chip implementation of APC. A preliminary design system based on TMS32010 has been performed, and several of the hardware and software design issues are discussed. Particular attention was paid to the design of an external memory controller which permits rapid sequential access of external RAM. As a result, it has been determined that a compact hardware implementation of the APC algorithm is feasible based of the TSM32010. Originator-supplied keywords include: vocoders, speech compression, adaptive predictive coding, digital signal processing microcomputers, speech processor architectures, and special purpose processor.

  13. Visual short-term memory for sequential arrays.

    PubMed

    Kumar, Arjun; Jiang, Yuhong

    2005-04-01

    The capacity of visual short-term memory (VSTM) for a single visual display has been investigated in past research, but VSTM for multiple sequential arrays has been explored only recently. In this study, we investigate the capacity of VSTM across two sequential arrays separated by a variable stimulus onset asynchrony (SOA). VSTM for spatial locations (Experiment 1), colors (Experiments 2-4), orientations (Experiments 3 and 4), and conjunction of color and orientation (Experiment 4) were tested, with the SOA across the two sequential arrays varying from 100 to 1,500 msec. We find that VSTM for the trailing array is much better than VSTM for the leading array, but when averaged across the two arrays VSTM has a constant capacity independent of the SOA. We suggest that multiple displays compete for retention in VSTM and that separating information into two temporally discrete groups does not enhance the overall capacity of VSTM.

  14. BRAND PLACEMENT AND CONSUMER CHOICE: AN IN-STORE EXPERIMENT

    PubMed Central

    Sigurdsson, Valdimar; Saevarsson, Hugi; Foxall, Gordon

    2009-01-01

    An in-store experiment was performed to investigate the effects of shelf placement (high, middle, low) on consumers' purchases of potato chips. Placement of potato chips on the middle shelf was associated with the highest percentage of purchases. The results confirm the importance of item placement as a factor in consumers' buying behavior. PMID:20190939

  15. Double-blind photo lineups using actual eyewitnesses: an experimental test of a sequential versus simultaneous lineup procedure.

    PubMed

    Wells, Gary L; Steblay, Nancy K; Dysart, Jennifer E

    2015-02-01

    Eyewitnesses (494) to actual crimes in 4 police jurisdictions were randomly assigned to view simultaneous or sequential photo lineups using laptop computers and double-blind administration. The sequential procedure used in the field experiment mimicked how it is conducted in actual practice (e.g., using a continuation rule, witness does not know how many photos are to be viewed, witnesses resolve any multiple identifications), which is not how most lab experiments have tested the sequential lineup. No significant differences emerged in rates of identifying lineup suspects (25% overall) but the sequential procedure produced a significantly lower rate (11%) of identifying known-innocent lineup fillers than did the simultaneous procedure (18%). The simultaneous/sequential pattern did not significantly interact with estimator variables and no lineup-position effects were observed for either the simultaneous or sequential procedures. Rates of nonidentification were not significantly different for simultaneous and sequential but nonidentifiers from the sequential procedure were more likely to use the "not sure" response option than were nonidentifiers from the simultaneous procedure. Among witnesses who made an identification, 36% (41% of simultaneous and 32% of sequential) identified a known-innocent filler rather than a suspect, indicating that eyewitness performance overall was very poor. The results suggest that the sequential procedure that is used in the field reduces the identification of known-innocent fillers, but the differences are relatively small.

  16. Flip-chip assembly and reliability using gold/tin solder bumps

    NASA Astrophysics Data System (ADS)

    Oppermann, Hermann; Hutter, Matthias; Klein, Matthias; Reichl, Herbert

    2004-09-01

    Au/Sn solder bumps are commonly used for flip chip assembly of optoelectronic and RF devices. They allow a fluxless assembly which is required to avoid contamination at optical interfaces. Flip chip assembly experiments were carried out using as plated Au/Sn bumps without prior bump reflow. An RF and reliability test vehicles comprise a GaAs chip which was flip chip soldered on a silicon substrate. Temperature cycling tests with and without underfiller were performed and the results are presented. The different failure modes for underfilled and non-underfilled samples were discussed and compared. Additional reliability tests were performed with flip chip bonding by gold thermocompression for comparison. The test results and the failure modes are discussed in detail.

  17. Fabrication and characterization of SPR chips with the modified bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Chen, Xing; Zhang, Lu-lu; Cui, Da-fu

    2016-03-01

    A facile surface plasmon resonance (SPR) chip is developed for small molecule determination and analysis. The SPR chip was prepared based on a self assembling principle, in which the modified bovine serum albumin (BSA) was directly self-assembled onto the bare gold surface. The surface morphology of the chip with the modified BSA was investigated by atomic force microscopy (AFM) and its optical properties were characterized. The surface binding capacity of the bare facile SPR chip with a uniform morphology is 8 times of that of the bare control SPR chip. Based on the experiments of immune reaction between cortisol antibody and cortisol derivative, the sensitivity of the facile SPR chip with the modified BSA is much higher than that of the control SPR chip with the un-modified BSA. The facile SPR chip has been successfully used to detect small molecules. The lowest detection limit is 5 ng/mL with a linear range of 5—100 ng/mL for cortisol analysis. The novel facile SPR chip can also be applied to detect other small molecules.

  18. Microfluidic valve array control system integrating a fluid demultiplexer circuit

    NASA Astrophysics Data System (ADS)

    Kawai, Kentaro; Arima, Kenta; Morita, Mizuho; Shoji, Shuichi

    2015-06-01

    This paper proposes an efficient control method for the large-scale integration of microvalves in microfluidic systems. The proposed method can control 2n individual microvalves with 2n + 2 control lines (where n is an integer). The on-chip valves are closed by applying pressure to a control line, similar to conventional pneumatic microvalves. Another control line closes gate valves between the control line to the on-chip valves and the on-chip valves themselves, to preserve the state of the on-chip valves. The remaining control lines select an activated gate valve. While the addressed gate valve is selected by the other control lines, the corresponding on-chip valve is actuated by applying input pressure to the control line to the on-chip valves. Using this method would substantially reduce the number of world-to-chip connectors and off-chip valve controllers. Experiments conducted using a fabricated 28 microvalve array device, comprising 256 individual on-chip valves controlled with 18 (2   ×   8 + 2) control lines, yielded switching speeds for the selected on-chip valve under 90 ms.

  19. CHIPS. Volume 29, Issue 2, April - June 2011

    DTIC Science & Technology

    2011-06-01

    CHIPS www.chips.navy.mil Dedicated to Sharing Information - Technology - Experience In an orchestra, each musician produces exquisite music ... Development Command, talks about the capabilities of the Navy Center for Advanced Modeling and Simulation, its value to naval, joint and coalition...Strategic Communications The Seawater Antenna By Holly Quick Developing a New Model for Maritime Tactical Information Dominance By Capt. Danelle

  20. Magnetic-film atom chip with 10 μm period lattices of microtraps for quantum information science with Rydberg atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, V. Y. F.; Complex Photonic Systems; Pijn, D. R. M.

    2014-05-15

    We describe the fabrication and construction of a setup for creating lattices of magnetic microtraps for ultracold atoms on an atom chip. The lattice is defined by lithographic patterning of a permanent magnetic film. Patterned magnetic-film atom chips enable a large variety of trapping geometries over a wide range of length scales. We demonstrate an atom chip with a lattice constant of 10 μm, suitable for experiments in quantum information science employing the interaction between atoms in highly excited Rydberg energy levels. The active trapping region contains lattice regions with square and hexagonal symmetry, with the two regions joined atmore » an interface. A structure of macroscopic wires, cutout of a silver foil, was mounted under the atom chip in order to load ultracold {sup 87}Rb atoms into the microtraps. We demonstrate loading of atoms into the square and hexagonal lattice sections simultaneously and show resolved imaging of individual lattice sites. Magnetic-film lattices on atom chips provide a versatile platform for experiments with ultracold atoms, in particular for quantum information science and quantum simulation.« less

  1. A 16-Channel Nonparametric Spike Detection ASIC Based on EC-PC Decomposition.

    PubMed

    Wu, Tong; Xu, Jian; Lian, Yong; Khalili, Azam; Rastegarnia, Amir; Guan, Cuntai; Yang, Zhi

    2016-02-01

    In extracellular neural recording experiments, detecting neural spikes is an important step for reliable information decoding. A successful implementation in integrated circuits can achieve substantial data volume reduction, potentially enabling a wireless operation and closed-loop system. In this paper, we report a 16-channel neural spike detection chip based on a customized spike detection method named as exponential component-polynomial component (EC-PC) algorithm. This algorithm features a reliable prediction of spikes by applying a probability threshold. The chip takes raw data as input and outputs three data streams simultaneously: field potentials, band-pass filtered neural data, and spiking probability maps. The algorithm parameters are on-chip configured automatically based on input data, which avoids manual parameter tuning. The chip has been tested with both in vivo experiments for functional verification and bench-top experiments for quantitative performance assessment. The system has a total power consumption of 1.36 mW and occupies an area of 6.71 mm (2) for 16 channels. When tested on synthesized datasets with spikes and noise segments extracted from in vivo preparations and scaled according to required precisions, the chip outperforms other detectors. A credit card sized prototype board is developed to provide power and data management through a USB port.

  2. Kullback-Leibler information function and the sequential selection of experiments to discriminate among several linear models. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Sidik, S. M.

    1972-01-01

    A sequential adaptive experimental design procedure for a related problem is studied. It is assumed that a finite set of potential linear models relating certain controlled variables to an observed variable is postulated, and that exactly one of these models is correct. The problem is to sequentially design most informative experiments so that the correct model equation can be determined with as little experimentation as possible. Discussion includes: structure of the linear models; prerequisite distribution theory; entropy functions and the Kullback-Leibler information function; the sequential decision procedure; and computer simulation results. An example of application is given.

  3. Shrink-film microfluidic education modules: Complete devices within minutes.

    PubMed

    Nguyen, Diep; McLane, Jolie; Lew, Valerie; Pegan, Jonathan; Khine, Michelle

    2011-06-01

    As advances in microfluidics continue to make contributions to diagnostics and life sciences, broader awareness of this expanding field becomes necessary. By leveraging low-cost microfabrication techniques that require no capital equipment or infrastructure, simple, accessible, and effective educational modules can be made available for a broad range of educational needs from middle school demonstrations to college laboratory classes. These modules demonstrate key microfluidic concepts such as diffusion and separation as well as "laboratory on-chip" applications including chemical reactions and biological assays. These modules are intended to provide an interdisciplinary hands-on experience, including chip design, fabrication of functional devices, and experiments at the microscale. Consequently, students will be able to conceptualize physics at small scales, gain experience in computer-aided design and microfabrication, and perform experiments-all in the context of addressing real-world challenges by making their own lab-on-chip devices.

  4. Label-Free Biomarker Detection from Whole Blood

    DTIC Science & Technology

    2010-02-01

    we overcome this limitation by using distinct components within the sensor to perform purification and detection. A microfluidic purification chip...nanosensors to purify biomarkers of interest. This microfluidic purification chip (MPC) captures cancer biomarkers from physiological solutions and, after...assay validation experiments (Fig. 2c). As shown in Fig. 1d, after a second valve switching step transfers MPC contents to the nanosen- sor chip, the

  5. Blocking for Sequential Political Experiments

    PubMed Central

    Moore, Sally A.

    2013-01-01

    In typical political experiments, researchers randomize a set of households, precincts, or individuals to treatments all at once, and characteristics of all units are known at the time of randomization. However, in many other experiments, subjects “trickle in” to be randomized to treatment conditions, usually via complete randomization. To take advantage of the rich background data that researchers often have (but underutilize) in these experiments, we develop methods that use continuous covariates to assign treatments sequentially. We build on biased coin and minimization procedures for discrete covariates and demonstrate that our methods outperform complete randomization, producing better covariate balance in simulated data. We then describe how we selected and deployed a sequential blocking method in a clinical trial and demonstrate the advantages of our having done so. Further, we show how that method would have performed in two larger sequential political trials. Finally, we compare causal effect estimates from differences in means, augmented inverse propensity weighted estimators, and randomization test inversion. PMID:24143061

  6. Self-regulated learning of important information under sequential and simultaneous encoding conditions.

    PubMed

    Middlebrooks, Catherine D; Castel, Alan D

    2018-05-01

    Learners make a number of decisions when attempting to study efficiently: they must choose which information to study, for how long to study it, and whether to restudy it later. The current experiments examine whether documented impairments to self-regulated learning when studying information sequentially, as opposed to simultaneously, extend to the learning of and memory for valuable information. In Experiment 1, participants studied lists of words ranging in value from 1-10 points sequentially or simultaneously at a preset presentation rate; in Experiment 2, study was self-paced and participants could choose to restudy. Although participants prioritized high-value over low-value information, irrespective of presentation, those who studied the items simultaneously demonstrated superior value-based prioritization with respect to recall, study selections, and self-pacing. The results of the present experiments support the theory that devising, maintaining, and executing efficient study agendas is inherently different under sequential formatting than simultaneous. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  7. Numerical modelling of orthogonal cutting: application to woodworking with a bench plane.

    PubMed

    Nairn, John A

    2016-06-06

    A numerical model for orthogonal cutting using the material point method was applied to woodcutting using a bench plane. The cutting process was modelled by accounting for surface energy associated with wood fracture toughness for crack growth parallel to the grain. By using damping to deal with dynamic crack propagation and modelling all contact between wood and the plane, simulations could initiate chip formation and proceed into steady-state chip propagation including chip curling. Once steady-state conditions were achieved, the cutting forces became constant and could be determined as a function of various simulation variables. The modelling details included a cutting tool, the tool's rake and grinding angles, a chip breaker, a base plate and a mouth opening between the base plate and the tool. The wood was modelled as an anisotropic elastic-plastic material. The simulations were verified by comparison to an analytical model and then used to conduct virtual experiments on wood planing. The virtual experiments showed interactions between depth of cut, chip breaker location and mouth opening. Additional simulations investigated the role of tool grinding angle, tool sharpness and friction.

  8. Direct biosensor detection of botulinum neurotoxin endopeptidase activity in sera from patients with type A botulism.

    PubMed

    Lévêque, Christian; Ferracci, Géraldine; Maulet, Yves; Mazuet, Christelle; Popoff, Michel; Seagar, Michael; El Far, Oussama

    2014-07-15

    Botulinum neurotoxin A (BoNT/A) has intrinsic endoprotease activity specific for SNAP-25, a key protein for presynaptic neurotransmitter release. The inactivation of SNAP-25 by BoNT/A underlies botulism, a rare but potentially fatal disease. There is a crucial need for a rapid and sensitive in vitro serological test for BoNT/A to replace the current in vivo mouse bioassay. Cleavage of SNAP-25 by BoNT/A generates neo-epitopes which can be detected by binding of a monoclonal antibody (mAb10F12) and thus measured by surface plasmon resonance (SPR). We have explored two SPR assay formats, with either mAb10F12 or His6-SNAP-25 coupled to the biosensor chip. When BoNT/A was incubated with SNAP-25 in solution and the reaction products were captured on a mAb-coated chip, a sensitivity of 5 fM (0.1LD50/ml serum) was obtained. However, this configuration required prior immunoprecipitation of BoNT/A. A sensitivity of 0.5 fM in 10% serum (0.1 LD50/ml serum) was attained when SNAP-25 was coupled directly to the chip, followed by sequential injection of BoNT/A samples and mAb10F12 into the flow system to achieve on-chip cleavage and detection, respectively. This latter format detected BoNT/A endoprotease activity in 50-100 µl serum samples from all patients (11/11) with type A botulism within 5h. No false positives occurred in sera from healthy subjects or patients with other neurological diseases. The automated chip-based procedure has excellent specificity and sensitivity, with significant advantages over the mouse bioassay in terms of rapidity, required sample volume and animal ethics. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Clonal haemopoiesis and therapy-related myeloid malignancies in elderly patients: a proof-of-concept, case-control study.

    PubMed

    Gillis, Nancy K; Ball, Markus; Zhang, Qing; Ma, Zhenjun; Zhao, YuLong; Yoder, Sean J; Balasis, Maria E; Mesa, Tania E; Sallman, David A; Lancet, Jeffrey E; Komrokji, Rami S; List, Alan F; McLeod, Howard L; Alsina, Melissa; Baz, Rachid; Shain, Kenneth H; Rollison, Dana E; Padron, Eric

    2017-01-01

    Clonal haemopoiesis of indeterminate potential (CHIP) is an age-associated genetic event linked to increased risk of primary haematological malignancies and increased all-cause mortality, but the prevalence of CHIP in patients who develop therapy-related myeloid neoplasms is unknown. We did this study to investigate whether chemotherapy-treated patients with cancer who have CHIP are at increased risk of developing therapy-related myeloid neoplasms. We did a nested, case-control, proof-of-concept study to compare the prevalence of CHIP between patients with cancer who later developed therapy-related myeloid neoplasms (cases) and patients who did not develop these neoplasms (controls). We identified cases from our internal biorepository of 123 357 patients who consented to participate in the Total Cancer Care biobanking protocol at Moffitt Cancer Center (Tampa, FL, USA) between Jan 1, 2006, and June 1, 2016. We included all individuals who were diagnosed with a primary malignancy, were treated with chemotherapy, subsequently developed a therapy-related myeloid neoplasm, and were 70 years or older at either diagnosis. For inclusion in this study, individuals must have had a peripheral blood or mononuclear cell sample collected before the diagnosis of therapy-related myeloid neoplasm. Controls were individuals who were diagnosed with a primary malignancy at age 70 years or older and were treated with chemotherapy but did not develop therapy-related myeloid neoplasms. Controls were matched to cases in at least a 4:1 ratio on the basis of sex, primary tumour type, age at diagnosis, smoking status, chemotherapy drug class, and duration of follow-up. We used sequential targeted and whole-exome sequencing and described clonal evolution in cases for whom paired CHIP and therapy-related myeloid neoplasm samples were available. The primary endpoint of this study was the development of therapy-related myeloid neoplasm and the primary exposure was CHIP. We identified 13 cases and 56 case-matched controls. The prevalence of CHIP in all patients (23 [33%] of 69 patients) was higher than has previously been reported in elderly individuals without cancer (about 10%). Cases had a significantly higher prevalence of CHIP than did matched controls (eight [62%] of 13 cases vs 15 [27%] of 56 controls, p=0·024; odds ratio 5·75, 95% CI 1·52-25·09, p=0·013). The most commonly mutated genes in cases with CHIP were TET2 (three [38%] of eight patients) and TP53(three [38%] of eight patients), whereas controls most often had TET2 mutations (six [40%] of 15 patients). In most (four [67%] of six patients) cases for whom paired CHIP and therapy-related myeloid neoplasm samples were available, the mean allele frequency of CHIP mutations had expanded by the time of the therapy-related myeloid neoplasm diagnosis. However, a subset of paired samples (two [33%] of six patients) had CHIP mutations that decreased in allele frequency, giving way to expansion of a distinct mutant clone. Patients with cancer who have CHIP are at increased risk of developing therapy-related myeloid neoplasms. The distribution of CHIP-related gene mutations differs between individuals with therapy-related myeloid neoplasm and those without, suggesting that mutation-specific differences might exist in therapy-related myeloid neoplasm risk. Moffitt Cancer Center. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Sequential Dependencies in Categorical Judgments of Radiographic Images

    ERIC Educational Resources Information Center

    Beckstead, Jason W.; Boutis, Kathy; Pecaric, Martin; Pusic, Martin V.

    2017-01-01

    Sequential context effects, the psychological interactions occurring between the events of successive trials when a sequence of similar stimuli are judged, have interested psychologists for decades. It has been well established that individuals exhibit sequential context effects in psychophysical experiments involving unidimensional stimuli.…

  11. Field-portable lensfree tomographic microscope†

    PubMed Central

    Isikman, Serhan O.; Bishara, Waheb; Sikora, Uzair; Yaglidere, Oguzhan; Yeah, John; Ozcan, Aydogan

    2011-01-01

    We present a field-portable lensfree tomographic microscope, which can achieve sectional imaging of a large volume (~20 mm3) on a chip with an axial resolution of <7 μm. In this compact tomographic imaging platform (weighing only ~110 grams), 24 light-emitting diodes (LEDs) that are each butt-coupled to a fibre-optic waveguide are controlled through a cost-effective micro-processor to sequentially illuminate the sample from different angles to record lensfree holograms of the sample that is placed on the top of a digital sensor array. In order to generate pixel super-resolved (SR) lensfree holograms and hence digitally improve the achievable lateral resolution, multiple sub-pixel shifted holograms are recorded at each illumination angle by electromagnetically actuating the fibre-optic waveguides using compact coils and magnets. These SR projection holograms obtained over an angular range of ~50° are rapidly reconstructed to yield projection images of the sample, which can then be back-projected to compute tomograms of the objects on the sensor-chip. The performance of this compact and light-weight lensfree tomographic microscope is validated by imaging micro-beads of different dimensions as well as a Hymenolepis nana egg, which is an infectious parasitic flatworm. Achieving a decent three-dimensional spatial resolution, this field-portable on-chip optical tomographic microscope might provide a useful toolset for telemedicine and high-throughput imaging applications in resource-poor settings. PMID:21573311

  12. Single event effect hardness for the front-end ASICs in the DAMPE satellite BGO calorimeter

    NASA Astrophysics Data System (ADS)

    Gao, Shan-Shan; Jiang, Di; Feng, Chang-Qing; Xi, Kai; Liu, Shu-Bin; An, Qi

    2016-01-01

    The Dark Matter Particle Explorer (DAMPE) is a Chinese scientific satellite designed for cosmic ray studies with a primary scientific goal of indirect detection of dark matter particles. As a crucial sub-detector, the BGO calorimeter measures the energy spectrum of cosmic rays in the energy range from 5 GeV to 10 TeV. In order to implement high-density front-end electronics (FEE) with the ability to measure 1848 signals from 616 photomultiplier tubes on the strictly constrained satellite platform, two kinds of 32-channel front-end ASICs, VA160 and VATA160, are customized. However, a space mission period of more than 3 years makes single event effects (SEEs) become threats to reliability. In order to evaluate SEE sensitivities of these chips and verify the effectiveness of mitigation methods, a series of laser-induced and heavy ion-induced SEE tests were performed. Benefiting from the single event latch-up (SEL) protection circuit for power supply, the triple module redundancy (TMR) technology for the configuration registers and the optimized sequential design for the data acquisition process, 52 VA160 chips and 32 VATA160 chips have been applied in the flight model of the BGO calorimeter with radiation hardness assurance. Supported by Strategic Priority Research Program on Space Science of the Chinese Academy of Sciences (XDA04040202-4) and Fundamental Research Funds for the Central Universities (WK2030040048)

  13. Considerations in detecting CDC select agents under field conditions

    NASA Astrophysics Data System (ADS)

    Spinelli, Charles; Soelberg, Scott; Swanson, Nathaneal; Furlong, Clement; Baker, Paul

    2008-04-01

    Surface Plasmon Resonance (SPR) has become a widely accepted technique for real-time detection of interactions between receptor molecules and ligands. Antibody may serve as receptor and can be attached to the gold surface of the SPR device, while candidate analyte fluids contact the detecting antibody. Minute, but detectable, changes in refractive indices (RI) indicate that analyte has bound to the antibody. A decade ago, an inexpensive, robust, miniature and fully integrated SPR chip, called SPREETA, was developed. University of Washington (UW) researchers subsequently developed a portable, temperature-regulated instrument, called SPIRIT, to simultaneously use eight of these three-channel SPREETA chips. A SPIRIT prototype instrument was tested in the field, coupled to a remote reporting system on a surrogate unmanned aerial vehicle (UAV). Two target protein analytes were released sequentially as aerosols with low analyte concentration during each of three flights and were successfully detected and verified. Laboratory experimentation with a more advanced SPIRIT instrument demonstrated detection of very low levels of several select biological agents that might be employed by bioterrorists. Agent detection under field-like conditions is more challenging, especially as analyte concentrations are reduced and complex matricies are introduced. Two different sample preconditioning protocols have been developed for select agents in complex matrices. Use of these preconditioning techniques has allowed laboratory detection in spiked heavy mud of Francisella tularensis at 10 3 CFU/ml, Bacillus anthracis spores at 10 3 CFU/ml, Staphylococcal enterotoxin B (SEB) at 1 ng/ml, and Vaccinia virus (a smallpox simulant) at 10 5 PFU/ml. Ongoing experiments are aimed at simultaneous detection of multiple agents in spiked heavy mud, using a multiplex preconditioning protocol.

  14. Effect of thermal cycling ramp rate on CSP assembly reliability

    NASA Technical Reports Server (NTRS)

    Ghaffarian, R.

    2001-01-01

    A JPL-led chip scale package consortium of enterprises recently joined together to pool in-kind resources for developing the quality and reliability of chip scale packages for a variety of projects. The experience of the consortium in building more than 150 test vehicle assemblies, single and double sided multilayer PWBs, and the environmental test results has now been published as a chip scale package guidelines document.

  15. Prototype detection unit for the CHIPS experiment

    NASA Astrophysics Data System (ADS)

    Pfützner, Maciej M.

    2017-09-01

    CHIPS (CHerenkov detectors In mine PitS) is an R&D project aiming to develop novel cost-effective neutrino detectors, focused on measuring the CP-violating neutrino mixing phase (δ CP). A single detector module, containing an enclosed volume of purified water, would be submerged in an existing lake, located in a neutrino beam. A staged approach is proposed with first detectors deployed in a flooded mine pit in Northern Minnesota, 7 mrad off-axis from the existing NuMI beam. A small proof-of-principle model (CHIPS-M) has already been tested and the first stage of a fully functional 10 kt module (CHIPS-10) is planned for 2018. One of the instruments submerged on board of CHIPS-M in autumn 2015 was a prototype detection unit, constructed at Nikhef. The unit contains hardware borrowed from the KM3NeT experiment, including 16 3 inch photomultiplier tubes and readout electronics. In addition to testing the mechanical design and data acquisition, the detector was used to record a large sample of cosmic ray muon events. The collected data is valuable for characterising the cosmic muon background and validating a Monte Carlo simulation used to optimise future designs. This paper introduces the CHIPS project, describes the design of the prototype unit, and presents the results of a preliminary data analysis.

  16. Effect of cooking method (baking compared with frying) on acrylamide level of potato chips.

    PubMed

    Palazoğlu, T Koray; Savran, Derya; Gökmen, Vural

    2010-01-01

    The effect of cooking method (baking compared with frying) on acrylamide level of potato chips was investigated in this study. Baking and frying experiments were conducted at 170, 180, and 190 degrees C using potato slices with a thickness of 1.4 mm. Raw potatoes were analyzed for reducing sugars and asparagine. Surface and internal temperatures of potato slices were monitored during the experiments to better explain the results. Fried and baked chips were analyzed for acrylamide content using an LC-MS method. The results showed that acrylamide level of potato chips prepared by frying increased with frying temperature (19.6 ng/g at 170 degrees C, 39 ng/g at 180 degrees C, and 95 ng/g at 190 degrees C). In baking, however, the highest acrylamide level was observed in potato chips prepared at 170 degrees C (47.8 ng/g at 170 degrees C, 19.3 ng/g at 180 degrees C, and 29.7 ng/g at 190 degrees C). The results showed that baking at 170 degrees C more than doubled the acrylamide amount that formed upon frying at the same temperature, whereas at 180 and 190 degrees C, the acrylamide levels of chips prepared by baking were lower than their fried counterparts.

  17. Sensitivity comparison of sequential monadic and side-by-side presentation protocols in affective consumer testing.

    PubMed

    Colyar, Jessica M; Eggett, Dennis L; Steele, Frost M; Dunn, Michael L; Ogden, Lynn V

    2009-09-01

    The relative sensitivity of side-by-side and sequential monadic consumer liking protocols was compared. In the side-by-side evaluation, all samples were presented at once and evaluated together 1 characteristic at a time. In the sequential monadic evaluation, 1 sample was presented and evaluated on all characteristics, then returned before panelists received and evaluated another sample. Evaluations were conducted on orange juice, frankfurters, canned chili, potato chips, and applesauce. Five commercial brands, having a broad quality range, were selected as samples for each product category to assure a wide array of consumer liking scores. Without their knowledge, panelists rated the same 5 retail brands by 1 protocol and then 3 wk later by the other protocol. For 3 of the products, both protocols yielded the same order of overall liking. Slight differences in order of overall liking for the other 2 products were not significant. Of the 50 pairwise overall liking comparisons, 44 were in agreement. The different results obtained by the 2 protocols in order of liking and significance of paired comparisons were due to the experimental variation and differences in sensitivity. Hedonic liking scores were subjected to statistical power analyses and used to calculate minimum number of panelists required to achieve varying degrees of sensitivity when using side-by-side and sequential monadic protocols. In most cases, the side-by-side protocol was more sensitive, thus providing the same information with fewer panelists. Side-by-side protocol was less sensitive in cases where sensory fatigue was a factor.

  18. Survey of critical failure events in on-chip interconnect by fault tree analysis

    NASA Astrophysics Data System (ADS)

    Yokogawa, Shinji; Kunii, Kyousuke

    2018-07-01

    In this paper, a framework based on reliability physics is proposed for adopting fault tree analysis (FTA) to the on-chip interconnect system of a semiconductor. By integrating expert knowledge and experience regarding the possibilities of failure on basic events, critical issues of on-chip interconnect reliability will be evaluated by FTA. In particular, FTA is used to identify the minimal cut sets with high risk priority. Critical events affecting the on-chip interconnect reliability are identified and discussed from the viewpoint of long-term reliability assessment. The moisture impact is evaluated as an external event.

  19. Microvalve controlled multi-functional microfluidic chip for divisional cell co-culture.

    PubMed

    Li, Rui; Zhang, Xingjian; Lv, Xuefei; Geng, Lina; Li, Yongrui; Qin, Kuiwei; Deng, Yulin

    2017-12-15

    Pneumatic micro-valve controlled microfluidic chip provides precise fluidic control for cell manipulation. In this paper, a multi-functional microfluidic chip was designed for three separate experiments: 1. Different cell lines were dispensed and cultured; 2. Three transfected SH-SY5Y cells were introduced and treated with methyl-phenyl-pyridinium (MPP + ) as drug delivery mode; 3. Specific protection and interaction were observed among cell co-culture after nerve damage. The outcomes revealed the potential and practicability of our entire multi-functional pneumatic chip system on different cell biology applications. Copyright © 2017. Published by Elsevier Inc.

  20. SVGA and XGA LCOS microdisplays for HMD applications

    NASA Astrophysics Data System (ADS)

    Bolotski, Michael; Alvelda, Phillip

    1999-07-01

    MicroDisplay liquid crystal on silicon (LCOS) display devices are based on a combination of technologies combined with the extreme integration capability of conventionally fabricated CMOS substrates. Two recent SVGA (800 X 600) pixel resolution designs were demonstrated based on 10 micron and 12.5-micron pixel pitch architectures. The resulting microdisplays measure approximately 10 mm and 12 mm in diagonal respectively. Further, an XGA (1024 X 768) resolution display fabricated with a 12.5-micron pixel pitch with a 16-mm diagonal was also demonstrated. Both the larger SVGA and the XGA design were based on the same 12.5-micron pixel-pitch design, demonstrating a quickly scalable design architecture for rapid prototyping life-cycles. All three microdisplay designs described above function in grayscale and high-performance Field-Sequential-Color (FSC) operating modes. The fast liquid crystal operating modes and new scalable high- performance pixel addressing architectures presented in this paper enable substantially improved color, contrast, and brightness while still satisfying the optical, packaging, and power requirements of portable commercial and defense applications including ultra-portable helmet, eyeglass, and heat-mounted systems. The entire suite of The MicroDisplay Corporation's technologies was devised to create a line of mixed-signal application-specific integrated circuits (ASIC) in single-chip display systems. Mixed-signal circuits can integrate computing, memory, and communication circuitry on the same substrate as the display drivers and pixel array for a multifunctional complete system-on-a-chip. For helmet and head-mounted displays this can include capabilities such as the incorporation of customized symbology and information storage directly on the display substrate. System-on-a-chip benefits also include reduced head supported weight requirements through the elimination of off-chip drive electronics.

  1. [Professor GAO Yuchun's experience on "sequential acupuncture leads to smooth movement of qi"].

    PubMed

    Wang, Yanjun; Xing, Xiao; Cui, Linhua

    2016-01-01

    Professor GAO Yuchun is considered as the key successor of GAO's academic school of acupuncture and moxibustion in Yanzhao region. Professor GAO's clinical experience of, "sequential acupuncture" is introduced in details in this article. In Professor GAO's opinions, appropriate acupuncture sequence is the key to satisfactory clinical effects during treatment. Based on different acupoints, sequential acupuncture can achieve the aim of qi following needles and needles leading qi; based on different symptoms, sequential acupuncture can regulate qi movement; based on different body positions, sequential acupuncture can harmonize qi-blood and reinforcing deficiency and reducing excess. In all, according to the differences of disease condition and constitution, based on the accurate acupoint selection and appropriate manipulation, it is essential to capture the nature of diseases and make the order of acupuncture, which can achieve the aim of regulating qi movement and reinforcing deficiency and reducing excess.

  2. Involvement of Working Memory in College Students' Sequential Pattern Learning and Performance

    ERIC Educational Resources Information Center

    Kundey, Shannon M. A.; De Los Reyes, Andres; Rowan, James D.; Lee, Bern; Delise, Justin; Molina, Sabrina; Cogdill, Lindsay

    2013-01-01

    When learning highly organized sequential patterns of information, humans and nonhuman animals learn rules regarding the hierarchical structures of these sequences. In three experiments, we explored the role of working memory in college students' sequential pattern learning and performance in a computerized task involving a sequential…

  3. A neuromorphic VLSI device for implementing 2-D selective attention systems.

    PubMed

    Indiveri, G

    2001-01-01

    Selective attention is a mechanism used to sequentially select and process salient subregions of the input space, while suppressing inputs arriving from nonsalient regions. By processing small amounts of sensory information in a serial fashion, rather than attempting to process all the sensory data in parallel, this mechanism overcomes the problem of flooding limited processing capacity systems with sensory inputs. It is found in many biological systems and can be a useful engineering tool for developing artificial systems that need to process in real-time sensory data. In this paper we present a neuromorphic hardware model of a selective attention mechanism implemented on a very large scale integration (VLSI) chip, using analog circuits. The chip makes use of a spike-based representation for receiving input signals, transmitting output signals and for shifting the selection of the attended input stimulus over time. It can be interfaced to neuromorphic sensors and actuators, for implementing multichip selective attention systems. We describe the characteristics of the circuits used in the architecture and present experimental data measured from the system.

  4. Nano-optical conveyor belt with waveguide-coupled excitation.

    PubMed

    Wang, Guanghui; Ying, Zhoufeng; Ho, Ho-pui; Huang, Ying; Zou, Ningmu; Zhang, Xuping

    2016-02-01

    We propose a plasmonic nano-optical conveyor belt for peristaltic transport of nano-particles. Instead of illumination from the top, waveguide-coupled excitation is used for trapping particles with a higher degree of precision and flexibility. Graded nano-rods with individual dimensions coded to have resonance at specific wavelengths are incorporated along the waveguide in order to produce spatially addressable hot spots. Consequently, by switching the excitation wavelength sequentially, particles can be transported to adjacent optical traps along the waveguide. The feasibility of this design is analyzed using three-dimensional finite-difference time-domain and Maxwell stress tensor methods. Simulation results show that this system is capable of exciting addressable traps and moving particles in a peristaltic fashion with tens of nanometers resolution. It is the first, to the best of our knowledge, report about a nano-optical conveyor belt with waveguide-coupled excitation, which is very important for scalability and on-chip integration. The proposed approach offers a new design direction for integrated waveguide-based optical manipulation devices and its application in large scale lab-on-a-chip integration.

  5. Simplified transient isotachophoresis/capillary gel electrophoresis method for highly sensitive analysis of polymerase chain reaction samples on a microchip with laser-induced fluorescence detection.

    PubMed

    Liu, Dayu; Ou, Ziyou; Xu, Mingfei; Wang, Lihui

    2008-12-19

    We present a sensitive, simple and robust on-chip transient isotachophoresis/capillary gel electrophoresis (tITP/CGE) method for the analysis of polymerase chain reaction (PCR) samples. Using chloride ions in the PCR buffer and N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) in the background electrolyte, respectively, as the leading and terminating electrolytes, the tITP preconcentration was coupled with CGE separation with double-T shaped channel network. The tITP/CGE separation was carried out with a single running buffer. The separation process involved only two steps that were performed continuously with the sequential switching of four voltage outputs. The tITP/CGE method showed an analysis time and a separation efficiency comparable to those of standard CGE, while the signal intensity was enhanced by factors of over 20. The limit of detection of the chip-based tITP/CGE method was estimated to be 1.1 ng/mL of DNA in 1x PCR buffer using confocal fluorescence detection following 473 nm laser excitation.

  6. Combination of Ultrasonic Vibration and Cryogenic Cooling for Cutting Performance Improvement of Inconel 718 Turning

    NASA Astrophysics Data System (ADS)

    Lin, S. Y.; Chung, C. T.; Cheng, Y. Y.

    2011-01-01

    The main objective of this study is to develop a thermo-elastic-plastic coupling model, based on a combination skill of ultrasonically assisted cutting and cryogenic cooling, under large deformation for Inconel 718 alloy machining process. The improvement extent on cutting performance and tool life promotion may be examined from this investigation. The critical value of the strain energy density of the workpiece will be utilized as the chip separation and the discontinuous chip segmentation criteria. The forced convection cooling and a hydrodynamic lubrication model will be considered and formulated in the model. Finite element method will be applied to create a complete numerical solution for this ultrasonic vibration cutting model. During the analysis, the cutting tool is incrementally advanced forward with superimposed ultrasonic vibration in a back and forth step-by-step manner, from an incipient stage of tool-workpiece engagement to a steady state of chip formation, a whole simulation of orthogonal cutting process under plane strain deformation is thus undertaken. High shear strength induces a fluctuation phenomenon of shear angle, high shear strain rate, variation of chip types and chip morphology, tool-chip contact length variation, the temperature distributions within the workpiece, chip and tool, periodic fluctuation in cutting forces can be determined from the developed model. A complete comparison of machining characteristics between some different combinations of ultrasonically assisted cutting and cryogenic cooling with conventional cutting operation can be acquired. Finally, the high-speed turning experiment for Inconel 718 alloy will be taken in the laboratory to validate the accuracy of the model, and the progressive flank wear, crater wear, notching and chipping of the tool edge can also be measured in the experiments.

  7. Detection of solder bump defects on a flip chip using vibration analysis

    NASA Astrophysics Data System (ADS)

    Liu, Junchao; Shi, Tielin; Xia, Qi; Liao, Guanglan

    2012-03-01

    Flip chips are widely used in microelectronics packaging owing to the high demand of integration in IC fabrication. Solder bump defects on flip chips are difficult to detect, because the solder bumps are obscured by the chip and substrate. In this paper a nondestructive detection method combining ultrasonic excitation with vibration analysis is presented for detecting missing solder bumps, which is a typical defect in flip chip packaging. The flip chip analytical model is revised by considering the influence of spring mass on mechanical energy of the system. This revised model is then applied to estimate the flip chip resonance frequencies. We use an integrated signal generator and power amplifier together with an air-coupled ultrasonic transducer to excite the flip chips. The vibrations are measured by a laser scanning vibrometer to detect the resonance frequencies. A sensitivity coefficient is proposed to select the sensitive resonance frequency order for defect detection. Finite element simulation is also implemented for further investigation. The results of analytical computation, experiment, and simulation prove the efficacy of the revised flip chip analytical model and verify the effectiveness of this detection method. Therefore, it may provide a guide for the improvement and innovation of the flip chip on-line inspection systems.

  8. Intelligent structures technology

    NASA Astrophysics Data System (ADS)

    Crawley, Edward F.

    1991-07-01

    Viewgraphs on intelligent structures technology are presented. Topics covered include: embedding electronics; electrical and mechanical compatibility; integrated circuit chip packaged for embedding; embedding devices within composite structures; test of embedded circuit in G/E coupon; temperature/humidity/bias test; single-chip microcomputer control experiment; and structural shape determination.

  9. Intelligent structures technology

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.

    1991-01-01

    Viewgraphs on intelligent structures technology are presented. Topics covered include: embedding electronics; electrical and mechanical compatibility; integrated circuit chip packaged for embedding; embedding devices within composite structures; test of embedded circuit in G/E coupon; temperature/humidity/bias test; single-chip microcomputer control experiment; and structural shape determination.

  10. Herbicide and antibiotic removal by woodchip denitrification filters: Sorption processes

    USDA-ARS?s Scientific Manuscript database

    Batch sorption and desorption experiments to evaluate the retention of the agrichemicals onto wood chips from an in situ wood chip denitrification wall were conducted for atrazine, enrofloxacin, monensin and sulfamethazine. Estimated Freundlich distribution coefficients (Kf) showed that the order of...

  11. Herbicide and antibiotic removal by woodchip denitrification filters: Sorption processes

    USDA-ARS?s Scientific Manuscript database

    Batch sorption and desorption experiments to evaluate the retention of the agrichemicals onto wood chips from an in situ wood chip denitrification wall were conducted for atrazine, enrofloxacin, monensin, and sulfamethazine. Estimated Freundlich distribution coefficients (Kf) showed that the order o...

  12. Three levels of neuroelectronic interfacing: silicon chips with ion channels, nerve cells, and brain tissue.

    PubMed

    Fromherz, Peter

    2006-12-01

    We consider the direct electrical interfacing of semiconductor chips with individual nerve cells and brain tissue. At first, the structure of the cell-chip contact is studied. Then we characterize the electrical coupling of ion channels--the electrical elements of nerve cells--with transistors and capacitors in silicon chips. On that basis it is possible to implement signal transmission between microelectronics and the microionics of nerve cells in both directions. Simple hybrid neuroelectronic systems are assembled with neuron pairs and with small neuronal networks. Finally, the interfacing with capacitors and transistors is extended to brain tissue cultured on silicon chips. The application of highly integrated silicon chips allows an imaging of neuronal activity with high spatiotemporal resolution. The goal of the work is an integration of neuronal network dynamics with digital electronics on a microscopic level with respect to experiments in brain research, medical prosthetics, and information technology.

  13. Ubiquitin ligase CHIP functions as an oncogene and activates the AKT signaling pathway in prostate cancer.

    PubMed

    Cheng, Li; Zang, Jin; Dai, Han-Jue; Li, Feng; Guo, Feng

    2018-07-01

    Carboxyl terminus of Hsc-70-interacting protein (CHIP) is an E3 ubiquitin ligase that induces the ubiquitination and degradation of numerous tumor-associated proteins and serves as a suppressor or promoter in tumor progression. To date, the molecular mechanism of CHIP in prostate cancer remains unknown. Therefore, the present study investigated the biological function of CHIP in prostate cancer cells and obtained evidence that CHIP expression is upregulated in prostate cancer tissues. The CHIP vector was introduced into DU145 cancer cells and the cell biological behaviour was examined through a series of experiments, including cell growth, cell apoptosis and migration and invasion assays. The results indicated that the overexpression of CHIP in DU145 prostatic cancer cells promoted cell proliferation through activation of the protein kinase B (AKT) signaling pathway, which subsequently increased cyclin D1 protein levels and decreased p21 and p27 protein levels. The overexpression of CHIP significantly increased the migration and invasion of the DU145 cells, which is possible due to activation of the AKT signaling pathway and upregulation of vimentin. The expression level of CHIP was observed to be increased in human prostate cancer tissues compared with the adjacent normal tissue. Furthermore, the CHIP expression level exhibited a positively association with the Gleason score of the patents. These findings indicate that CHIP functions as an oncogene in prostate cancer.

  14. Orthographic Processing and Visual Sequential Memory in Unexpectedly Poor Spellers

    ERIC Educational Resources Information Center

    Holmes, Virginia M.; Malone, Aisling M.; Redenbach, Holly

    2008-01-01

    Does unexpectedly poor spelling in adults result from inferior visual sequential memory? In one experiment, unexpectedly poor spellers performed significantly worse than better spellers in the immediate reproduction of sequences of visual symbols, but in a second experiment, the effect was not replicated. Poor spellers were also no worse at the…

  15. Judgments Relative to Patterns: How Temporal Sequence Patterns Affect Judgments and Memory

    ERIC Educational Resources Information Center

    Kusev, Petko; Ayton, Peter; van Schaik, Paul; Tsaneva-Atanasova, Krasimira; Stewart, Neil; Chater, Nick

    2011-01-01

    RESix experiments studied relative frequency judgment and recall of sequentially presented items drawn from 2 distinct categories (i.e., city and animal). The experiments show that judged frequencies of categories of sequentially encountered stimuli are affected by certain properties of the sequence configuration. We found (a) a "first-run…

  16. Engineering of Neuron Growth and Enhancing Cell-Chip Communication via Mixed SAMs.

    PubMed

    Markov, Aleksandr; Maybeck, Vanessa; Wolf, Nikolaus; Mayer, Dirk; Offenhäusser, Andreas; Wördenweber, Roger

    2018-06-06

    The interface between cells and inorganic surfaces represents one of the key elements for bioelectronics experiments and applications ranging from cell cultures and bioelectronics devices to medical implants. In the present paper, we describe a way to tailor the biocompatibility of substrates in terms of cell growth and to significantly improve cell-chip communication, and we also demonstrate the reusability of the substrates for cell experiments. All these improvements are achieved by coating the substrates or chips with a self-assembled monolayer (SAM) consisting of a mixture of organic molecules, (3-aminopropyl)-triethoxysilane and (3-glycidyloxypropyl)-trimethoxysilane. By varying the ratio of these molecules, we are able to tune the cell density and live/dead ratios of rat cortical neurons cultured directly on the mixed SAM as well as neurons cultured on protein-coated SAMs. Furthermore, the use of the SAM leads to a significant improvement in cell-chip communications. Action potential signals of up to 9.4 ± 0.6 mV (signal-to-noise ratio up to 47) are obtained for HL-1 cells on microelectrode arrays. Finally, we demonstrate that the SAMs facilitate a reusability of the samples for all cell experiments with little re-processing.

  17. Characterization and recovery of Deep Sub Micron (DSM) technologies behavior under radiation

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian; Wang, Xiao

    2005-01-01

    This paper serves a twofold purpose: characterize the behavior of a reconfigurable chip exposed to radiation; and demonstrate a method for functionality recovery due to Total Ionizing Dose (TID) effects. The experiments are performed using a PL developed reconfigurable device, a Field Programmable Transistor Array (FPTA). The paper initially describes experiments on the characterization of the NMOS transistor behavior for TID values up to 300krad. The behavior of analog and digital circuits downloaded onto the FPTA chip is also assessed for TID effects. This paper also presents a novel approach for circuit functionality recovery due to radiation effects based on Evolvable Hardware. The key idea is to reconfigure a programmable device, in-situ, to compensate, or bypass its degraded or damaged components. Experiments with total radiation dose up to 300kRad show that while the functionality of a variety of circuits, including digital gates, a rectifier and a Digital to Analog Converter implemented on a FPTA-2 chip is degraded/lost at levels before 200kRad, the correct functionality can be recovered through the proposed evolutionary approach and the chips are able to survive higher radiation, for several functions in excess of total radiation dose of 250kRad.

  18. The fabrication of a double-layer atom chip with through silicon vias for an ultra-high-vacuum cell

    NASA Astrophysics Data System (ADS)

    Chuang, Ho-Chiao; Lin, Yun-Siang; Lin, Yu-Hsin; Huang, Chi-Sheng

    2014-04-01

    This study presents a double-layer atom chip that provides users with increased diversity in the design of the wire patterns and flexibility in the design of the magnetic field. It is more convenient for use in atomic physics experiments. A negative photoresist, SU-8, was used as the insulating layer between the upper and bottom copper wires. The electrical measurement results show that the upper and bottom wires with a width of 100 µm can sustain a 6 A current without burnout. Another focus of this study is the double-layer atom chips integrated with the through silicon via (TSV) technique, and anodically bonded to a Pyrex glass cell, which makes it a desired vacuum chamber for atomic physics experiments. Thus, the bonded glass cell not only significantly reduces the overall size of the ultra-high-vacuum (UHV) chamber but also conducts the high current from the backside to the front side of the atom chip via the TSV under UHV (9.5 × 10-10 Torr). The TSVs with a diameter of 70 µm were etched through by the inductively coupled plasma ion etching and filled by the bottom-up copper electroplating method. During the anodic bonding process, the electroplated copper wires and TSVs on atom chips also need to pass the examination of the required bonding temperature of 250 °C, under an applied voltage of 1000 V. Finally, the UHV test of the double-layer atom chips with TSVs at room temperature can be reached at 9.5 × 10-10 Torr, thus satisfying the requirements of atomic physics experiments under an UHV environment.

  19. 3D printed high density, reversible, chip-to-chip microfluidic interconnects.

    PubMed

    Gong, Hua; Woolley, Adam T; Nordin, Gregory P

    2018-02-13

    Our latest developments in miniaturizing 3D printed microfluidics [Gong et al., Lab Chip, 2016, 16, 2450; Gong et al., Lab Chip, 2017, 17, 2899] offer the opportunity to fabricate highly integrated chips that measure only a few mm on a side. For such small chips, an interconnection method is needed to provide the necessary world-to-chip reagent and pneumatic connections. In this paper, we introduce simple integrated microgaskets (SIMs) and controlled-compression integrated microgaskets (CCIMs) to connect a small device chip to a larger interface chip that implements world-to-chip connections. SIMs or CCIMs are directly 3D printed as part of the device chip, and therefore no additional materials or components are required to make the connection to the larger 3D printed interface chip. We demonstrate 121 chip-to-chip interconnections in an 11 × 11 array for both SIMs and CCIMs with an areal density of 53 interconnections per mm 2 and show that they withstand fluid pressures of 50 psi. We further demonstrate their reusability by testing the devices 100 times without seal failure. Scaling experiments show that 20 × 20 interconnection arrays are feasible and that the CCIM areal density can be increased to 88 interconnections per mm 2 . We then show the utility of spatially distributed discrete CCIMs by using an interconnection chip with 28 chip-to-world interconnects to test 45 3D printed valves in a 9 × 5 array. Each valve is only 300 μm in diameter (the smallest yet reported for 3D printed valves). Every row of 5 valves is tested to at least 10 000 actuations, with one row tested to 1 000 000 actuations. In all cases, there is no sign of valve failure, and the CCIM interconnections prove an effective means of using a single interface chip to test a series of valve array chips.

  20. Eyewitness decisions in simultaneous and sequential lineups: a dual-process signal detection theory analysis.

    PubMed

    Meissner, Christian A; Tredoux, Colin G; Parker, Janat F; MacLin, Otto H

    2005-07-01

    Many eyewitness researchers have argued for the application of a sequential alternative to the traditional simultaneous lineup, given its role in decreasing false identifications of innocent suspects (sequential superiority effect). However, Ebbesen and Flowe (2002) have recently noted that sequential lineups may merely bring about a shift in response criterion, having no effect on discrimination accuracy. We explored this claim, using a method that allows signal detection theory measures to be collected from eyewitnesses. In three experiments, lineup type was factorially combined with conditions expected to influence response criterion and/or discrimination accuracy. Results were consistent with signal detection theory predictions, including that of a conservative criterion shift with the sequential presentation of lineups. In a fourth experiment, we explored the phenomenological basis for the criterion shift, using the remember-know-guess procedure. In accord with previous research, the criterion shift in sequential lineups was associated with a reduction in familiarity-based responding. It is proposed that the relative similarity between lineup members may create a context in which fluency-based processing is facilitated to a greater extent when lineup members are presented simultaneously.

  1. Complexity and performance of on-chip biochemical assays

    NASA Astrophysics Data System (ADS)

    Kopf-Sill, Anne R.; Nikiforov, Theo; Bousse, Luc J.; Nagle, Rob; Parce, J. W.

    1997-03-01

    The use of microchips for performing biochemical processes has the potential to reduce reagent use and thus assay costs, increase throughput, and automate complex processes. We are building a multifunctional platform that provides sensing and actuation functions for a variety of microchip- based biochemical and analytical processes. Here we describe recent experiments that include on-chip dilution, reagent mixing, reaction, separation, and detection for important classes of biochemical assays. Issues in chip design and control are discussed.

  2. The use of sequential extraction to evaluate the remediation potential of heavy metals from contaminated harbour sediment

    NASA Astrophysics Data System (ADS)

    Nystrøm, G. M.; Ottosen, L. M.; Villumsen, A.

    2003-05-01

    In this work sequential extraction is performed with harbour sediment in order to evaluate the electrodialytic remediation potential for harbour sediments. Sequential extraction was performed on a sample of Norwegian harbour sediment; with the original sediment and after the sediment was treated with acid. The results from the sequential extraction show that 75% Zn and Pb and about 50% Cu are found in the most mobile phases in the original sediment and more than 90% Zn and Pb and 75% Cu are found in the most mobile phase in the sediment treated with acid. Electrodialytic remediation experiments were made. The method uses a low direct current as cleaning agent, removing the heavy metals towards the anode and cathode according to the charge of the heavy metals in the electric field. The electrodialytic experiments show that up to 50% Cu, 85% Zn and 60% Pb can be removed after 20 days. Thus, there is still a potential for a higher removal, with some changes in the experimental set-up and longer remediation time. The experiments show that thc use of sequential extraction can be used to predict the electrodialytic remediation potential for harbour sediments.

  3. Considerations on Experimental Design and Data Analysis of Chromatin Immunoprecipitation Experiments.

    PubMed

    Jordán-Pla, Antonio; Visa, Neus

    2018-01-01

    Arguably one of the most valuable techniques to study chromatin organization, ChIP is the method of choice to map the contacts established between proteins and genomic DNA. Ever since its inception, more than 30 years ago, ChIP has been constantly evolving, improving, and expanding its capabilities and reach. Despite its widespread use by many laboratories across a wide variety of disciplines, ChIP assays can be sometimes challenging to design, and are often sensitive to variations in practical implementation.In this chapter, we provide a general overview of the ChIP method and its most common variations, with a special focus on ChIP-seq. We try to address some of the most important aspects that need to be taken into account in order to design and perform experiments that generate the most reproducible, high-quality data. Some of the main topics covered include the use of properly characterized antibodies, alternatives to chromatin preparation, the need for proper controls, and some recommendations about ChIP-seq data analysis.

  4. Versatile single-chip event sequencer for atomic physics experiments

    NASA Astrophysics Data System (ADS)

    Eyler, Edward

    2010-03-01

    A very inexpensive dsPIC microcontroller with internal 32-bit counters is used to produce a flexible timing signal generator with up to 16 TTL-compatible digital outputs, with a time resolution and accuracy of 50 ns. This time resolution is easily sufficient for event sequencing in typical experiments involving cold atoms or laser spectroscopy. This single-chip device is capable of triggered operation and can also function as a sweeping delay generator. With one additional chip it can also concurrently produce accurately timed analog ramps, and another one-chip addition allows real-time control from an external computer. Compared to an FPGA-based digital pattern generator, this design is slower but simpler and more flexible, and it can be reprogrammed using ordinary `C' code without special knowledge. I will also describe the use of the same microcontroller with additional hardware to implement a digital lock-in amplifier and PID controller for laser locking, including a simple graphics-based control unit. This work is supported in part by the NSF.

  5. The science of computing - Parallel computation

    NASA Technical Reports Server (NTRS)

    Denning, P. J.

    1985-01-01

    Although parallel computation architectures have been known for computers since the 1920s, it was only in the 1970s that microelectronic components technologies advanced to the point where it became feasible to incorporate multiple processors in one machine. Concommitantly, the development of algorithms for parallel processing also lagged due to hardware limitations. The speed of computing with solid-state chips is limited by gate switching delays. The physical limit implies that a 1 Gflop operational speed is the maximum for sequential processors. A computer recently introduced features a 'hypercube' architecture with 128 processors connected in networks at 5, 6 or 7 points per grid, depending on the design choice. Its computing speed rivals that of supercomputers, but at a fraction of the cost. The added speed with less hardware is due to parallel processing, which utilizes algorithms representing different parts of an equation that can be broken into simpler statements and processed simultaneously. Present, highly developed computer languages like FORTRAN, PASCAL, COBOL, etc., rely on sequential instructions. Thus, increased emphasis will now be directed at parallel processing algorithms to exploit the new architectures.

  6. The Design, Fabrication and Characterization of a Transparent Atom Chip

    PubMed Central

    Chuang, Ho-Chiao; Huang, Chia-Shiuan; Chen, Hung-Pin; Huang, Chi-Sheng; Lin, Yu-Hsin

    2014-01-01

    This study describes the design and fabrication of transparent atom chips for atomic physics experiments. A fabrication process was developed to define the wire patterns on a transparent glass substrate to create the desired magnetic field for atom trapping experiments. An area on the chip was reserved for the optical access, so that the laser light can penetrate directly through the glass substrate for the laser cooling process. Furthermore, since the thermal conductivity of the glass substrate is poorer than other common materials for atom chip substrate, for example silicon, silicon carbide, aluminum nitride. Thus, heat dissipation copper blocks are designed on the front and back of the glass substrate to improve the electrical current conduction. The testing results showed that a maximum burnout current of 2 A was measured from the wire pattern (with a width of 100 μm and a height of 20 μm) without any heat dissipation design and it can increase to 2.5 A with a heat dissipation design on the front side of the atom chips. Therefore, heat dissipation copper blocks were designed and fabricated on the back of the glass substrate just under the wire patterns which increases the maximum burnout current to 4.5 A. Moreover, a maximum burnout current of 6 A was achieved when the entire backside glass substrate was recessed and a thicker copper block was electroplated, which meets most requirements of atomic physics experiments. PMID:24922456

  7. The Effects of Partial Reinforcement in the Acquisition and Extinction of Recurrent Serial Patterns.

    ERIC Educational Resources Information Center

    Dockstader, Steven L.

    The purpose of these 2 experiments was to determine whether sequential response pattern behavior is affected by partial reinforcement in the same way as other behavior systems. The first experiment investigated the partial reinforcement extinction effects (PREE) in a sequential concept learning task where subjects were required to learn a…

  8. Sequential-Injection Analysis: Principles, Instrument Construction, and Demonstration by a Simple Experiment

    ERIC Educational Resources Information Center

    Economou, A.; Tzanavaras, P. D.; Themelis, D. G.

    2005-01-01

    The sequential-injection analysis (SIA) is an approach to sample handling that enables the automation of manual wet-chemistry procedures in a rapid, precise and efficient manner. The experiments using SIA fits well in the course of Instrumental Chemical Analysis and especially in the section of Automatic Methods of analysis provided by chemistry…

  9. iHADAMAC: A complementary tool for sequential resonance assignment of globular and highly disordered proteins

    NASA Astrophysics Data System (ADS)

    Feuerstein, Sophie; Plevin, Michael J.; Willbold, Dieter; Brutscher, Bernhard

    2012-01-01

    An experiment, iHADAMAC, is presented that yields information on the amino-acid type of individual residues in a protein by editing the 1H- 15N correlations into seven different 2D spectra, each corresponding to a different class of amino-acid types. Amino-acid type discrimination is realized via a Hadamard encoding scheme based on four different spin manipulations as recently introduced in the context of the sequential HADAMAC experiment. Both sequential and intra-residue HADAMAC experiments yield highly complementary information that greatly facilitate resonance assignment of proteins with high frequency degeneracy, as demonstrated here for a 188-residue intrinsically disordered protein fragment of the hepatitis C virus protein NS5A.

  10. The effect of lineup member similarity on recognition accuracy in simultaneous and sequential lineups.

    PubMed

    Flowe, Heather D; Ebbesen, Ebbe B

    2007-02-01

    Two experiments investigated whether remembering is affected by the similarity of the study face relative to the alternatives in a lineup. In simultaneous and sequential lineups, choice rates and false alarms were larger in low compared to high similarity lineups, indicating criterion placement was affected by lineup similarity structure (Experiment 1). In Experiment 2, foil choices and similarity ranking data for target present lineups were compared to responses made when the target was removed from the lineup (only the 5 foils were presented). The results indicated that although foils were selected more often in target-removed lineups in the simultaneous compared to the sequential condition, responses shifted from the target to one of the foils at equal rates across lineup procedures.

  11. Lineup Composition, Suspect Position, and the Sequential Lineup Advantage

    ERIC Educational Resources Information Center

    Carlson, Curt A.; Gronlund, Scott D.; Clark, Steven E.

    2008-01-01

    N. M. Steblay, J. Dysart, S. Fulero, and R. C. L. Lindsay (2001) argued that sequential lineups reduce the likelihood of mistaken eyewitness identification. Experiment 1 replicated the design of R. C. L. Lindsay and G. L. Wells (1985), the first study to show the sequential lineup advantage. However, the innocent suspect was chosen at a lower rate…

  12. Cloning and characterization of carboxyl terminus of heat shock cognate 70-interacting protein gene from the silkworm, Bombyx mori.

    PubMed

    Ohsawa, Takeshi; Fujimoto, Shota; Tsunakawa, Akane; Shibano, Yuka; Kawasaki, Hideki; Iwanaga, Masashi

    2016-11-01

    Carboxyl terminus of heat shock cognate 70-interacting protein (CHIP) is an evolutionarily conserved E3 ubiquitin ligase across different eukaryotic species and is known to play a key role in protein quality control. CHIP has two distinct functional domains, an N-terminal tetratricopeptide repeat (TPR) and a C-terminal U-box domain, which are required for the ubiquitination of numerous labile client proteins that are chaperoned by heat shock proteins (HSPs) and heat shock cognate proteins (HSCs). During our screen for CHIP-like proteins in the Bombyx mori databases, we found a novel silkworm gene, Bombyx mori CHIP. Phylogenetic analysis showed that BmCHIP belongs to Lepidopteran lineages. Quantitative reverse transcription-PCR analysis indicated that BmCHIP was relatively highly expressed in the gonad and fat body. A pull-down experiment and auto-ubiquitination assay showed that BmCHIP interacted with BmHSC70 and had E3 ligase activity. Additionally, immunohistochemical analysis revealed that BmCHIP was partially co-localized with ubiquitin in BmN4 cells. These data support that BmCHIP plays an important role in the ubiquitin proteasome system as an E3 ubiquitin ligase in B. mori. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. CHIP/Stub1 regulates the Warburg effect by promoting degradation of PKM2 in ovarian carcinoma.

    PubMed

    Shang, Y; He, J; Wang, Y; Feng, Q; Zhang, Y; Guo, J; Li, J; Li, S; Wang, Y; Yan, G; Ren, F; Shi, Y; Xu, J; Zeps, N; Zhai, Y; He, D; Chang, Z

    2017-07-20

    Tumor cells preferentially adopt aerobic glycolysis for their energy supply, a phenomenon known as the Warburg effect. It remains a matter of debate as to how the Warburg effect is regulated during tumor progression. Here, we show that CHIP (carboxyl terminus of Hsc70-interacting protein), a U-box E3 ligase, suppresses tumor progression in ovarian carcinomas by inhibiting aerobic glycolysis. While CHIP is downregulated in ovarian carcinoma, induced expression of CHIP results in significant inhibition of the tumor growth examined by in vitro and in vivo experiments. Reciprocally, depletion of CHIP leads to promotion of tumor growth. By a SiLAD proteomics analysis, we identified pyruvate kinase isoenzyme M2 (PKM2), a critical regulator of glycolysis in tumors, as a target that CHIP mediated for degradation. Accordingly, we show that CHIP regulates PKM2 protein stability and thereafter the energy metabolic processes. Depletion or knockout of CHIP increased the glycolytic products in both tumor and mouse embryonic fibroblast cells. Simultaneously, we observed that CHIP expression inversely correlated with PKM2 levels in human ovarian carcinomas. This study reveals a mechanism that the Warburg effect is regulated by CHIP through its function as an E3 ligase, which mediates the degradation of PKM2 during tumor progression. Our findings shed new light into understanding of ovarian carcinomas and may provide a new therapeutic strategy for ovarian cancer.

  14. Investigating bone chip formation in craniotomy.

    PubMed

    Huiyu, He; Chengyong, Wang; Yue, Zhang; Yanbin, Zheng; Linlin, Xu; Guoneng, Xie; Danna, Zhao; Bin, Chen; Haoan, Chen

    2017-10-01

    In a craniotomy, the milling cutter is one of the most important cutting tools. The operating performance, tool durability and cutting damage to patients are influenced by the tool's sharpness, intensity and structure, whereas the cutting characteristics rely on interactions between the tool and the skull. In this study, an orthogonal cutting experiment during a craniotomy of fresh pig skulls was performed to investigate chip formation on the side cutting and face cutting of the skull using a high-speed camera. The cutting forces with different combinations of cutting parameters, such as the rake angle, clearance angle, depth of cut and cutting speed, were measured. The skull bone microstructure and cutting damage were observed by scanning electron microscope. Cutting models for different cutting approaches and various depths of cut were constructed and analyzed. The study demonstrated that the effects of shearing, tension and extrusion occur during chip formation. Various chip types, such as unit chips, splintering chips and continuous chips, were generated. Continuous pieces of chips, which are advisable for easy removal from the field of operation, were formed at greater depths of cut and tool rake angles greater than 10°. Cutting damage could be relieved with a faster recovery with clearance angles greater than 20°.

  15. ChIP-chip.

    PubMed

    Kim, Tae Hoon; Dekker, Job

    2018-05-01

    ChIP-chip can be used to analyze protein-DNA interactions in a region-wide and genome-wide manner. DNA microarrays contain PCR products or oligonucleotide probes that are designed to represent genomic sequences. Identification of genomic sites that interact with a specific protein is based on competitive hybridization of the ChIP-enriched DNA and the input DNA to DNA microarrays. The ChIP-chip protocol can be divided into two main sections: Amplification of ChIP DNA and hybridization of ChIP DNA to arrays. A large amount of DNA is required to hybridize to DNA arrays, and hybridization to a set of multiple commercial arrays that represent the entire human genome requires two rounds of PCR amplifications. The relative hybridization intensity of ChIP DNA and that of the input DNA is used to determine whether the probe sequence is a potential site of protein-DNA interaction. Resolution of actual genomic sites bound by the protein is dependent on the size of the chromatin and on the genomic distance between the probes on the array. As with expression profiling using gene chips, ChIP-chip experiments require multiple replicates for reliable statistical measure of protein-DNA interactions. © 2018 Cold Spring Harbor Laboratory Press.

  16. HNCA-TOCSY-CANH experiments with alternate 13C-12C labeling: a set of 3D experiment with unique supra-sequential information for mainchain resonance assignment

    PubMed Central

    Takeuchi, Koh; Gal, Maayan; Takahashi, Hideo; Shimada, Ichio

    2011-01-01

    Described here is a set of three-dimensional (3D) NMR experiments that rely on CACA-TOCSY magnetization transfer via the weak 3JCαCα coupling. These pulse sequences, which resemble recently described 13C detected CACA-TOCSY (Takeuchi et al. 2010) experiments, are recorded in 1H2O, and use 1H excitation and detection. These experiments require alternate 13C-12C labeling together with perdeuteration, which allows utilizing the small 3JCαCα scalar coupling that is otherwise masked by the stronger 1JCC couplings in uniformly 13C labeled samples. These new experiments provide a unique assignment ladder-mark that yields bidirectional supra-sequential information and can readily straddle proline residues. Unlike the conventional HNCA experiment, which contains only sequential information to the 13Cα of the preceding residue, the 3D hnCA-TOCSY-caNH experiment can yield sequential correlations to alpha carbons in positions i−1, i + 1 and i−2. Furthermore, the 3D hNca-TOCSY-caNH and Hnca-TOC-SY-caNH experiments, which share the same magnetization pathway but use a different chemical shift encoding, directly couple the 15N-1H spin pair of residue i to adjacent amide protons and nitrogens at positions i−2, i−1, i + 1 and i + 2, respectively. These new experimental features make protein backbone assignments more robust by reducing the degeneracy problem associated with the conventional 3D NMR experiments. PMID:21110064

  17. Continuous cell introduction and rapid dynamic lysis for high-throughput single-cell analysis on microfludic chips with hydrodynamic focusing.

    PubMed

    Xu, Chun-Xiu; Yin, Xue-Feng

    2011-02-04

    A chip-based microfluidic system for high-throughput single-cell analysis is described. The system was integrated with continuous introduction of individual cells, rapid dynamic lysis, capillary electrophoretic (CE) separation and laser induced fluorescence (LIF) detection. A cross microfluidic chip with one sheath-flow channel located on each side of the sampling channel was designed. The labeled cells were hydrodynamically focused by sheath-flow streams and sequentially introduced into the cross section of the microchip under hydrostatic pressure generated by adjusting liquid levels in the reservoirs. Combined with the electric field applied on the separation channel, the aligned cells were driven into the separation channel and rapidly lysed within 33ms at the entry of the separation channel by Triton X-100 added in the sheath-flow solution. The maximum rate for introducing individual cells into the separation channel was about 150cells/min. The introduction of sheath-flow streams also significantly reduced the concentration of phosphate-buffered saline (PBS) injected into the separation channel along with single cells, thus reducing Joule heating during electrophoretic separation. The performance of this microfluidic system was evaluated by analysis of reduced glutathione (GSH) and reactive oxygen species (ROS) in single erythrocytes. A throughput of 38cells/min was obtained. The proposed method is simple and robust for high-throughput single-cell analysis, allowing for analysis of cell population with considerable size to generate results with statistical significance. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Field-portable lensfree tomographic microscope.

    PubMed

    Isikman, Serhan O; Bishara, Waheb; Sikora, Uzair; Yaglidere, Oguzhan; Yeah, John; Ozcan, Aydogan

    2011-07-07

    We present a field-portable lensfree tomographic microscope, which can achieve sectional imaging of a large volume (∼20 mm(3)) on a chip with an axial resolution of <7 μm. In this compact tomographic imaging platform (weighing only ∼110 grams), 24 light-emitting diodes (LEDs) that are each butt-coupled to a fibre-optic waveguide are controlled through a cost-effective micro-processor to sequentially illuminate the sample from different angles to record lensfree holograms of the sample that is placed on the top of a digital sensor array. In order to generate pixel super-resolved (SR) lensfree holograms and hence digitally improve the achievable lateral resolution, multiple sub-pixel shifted holograms are recorded at each illumination angle by electromagnetically actuating the fibre-optic waveguides using compact coils and magnets. These SR projection holograms obtained over an angular range of ±50° are rapidly reconstructed to yield projection images of the sample, which can then be back-projected to compute tomograms of the objects on the sensor-chip. The performance of this compact and light-weight lensfree tomographic microscope is validated by imaging micro-beads of different dimensions as well as a Hymenolepis nana egg, which is an infectious parasitic flatworm. Achieving a decent three-dimensional spatial resolution, this field-portable on-chip optical tomographic microscope might provide a useful toolset for telemedicine and high-throughput imaging applications in resource-poor settings. This journal is © The Royal Society of Chemistry 2011

  19. Multifunctional microvalves control by optical illumination on nanoheaters and its application in centrifugal microfluidic devices.

    PubMed

    Park, Jong-Myeon; Cho, Yoon-Kyoung; Lee, Beom-Seok; Lee, Jeong-Gun; Ko, Christopher

    2007-05-01

    Valving is critical in microfluidic systems. Among many innovative microvalves used in lab-on-a-chip applications, phase change based microvalves using paraffin wax are particularly attractive for disposable biochip applications because they are simple to implement, cost-effective and biocompatible. However, previously reported paraffin-based valves require embedded microheaters and therefore multi-step operation of many microvalves was a difficult problem. Besides, the operation time was relatively long, 2-10 s. In this paper, we report a unique phase change based microvalve for rapid and versatile operation of multiple microvalves using a single laser diode. The valve is made of nanocomposite materials in which 10 nm-sized iron oxide nanoparticles are dispersed in paraffin wax and used as nanoheaters when excited by laser irradiation. Laser light of relatively weak intensity was able to melt the paraffin wax with the embedded iron oxide nanoparticles, whereas even a very intense laser beam does not melt wax alone. The microvalves are leak-free up to 403.0 +/- 7.6 kPa and the response times to operate both normally closed and normally opened microvalves are less than 0.5 s. Furthermore, a sequential operation of multiple microvalves on a centrifugal microfluidic device using a single laser diode was demonstrated. It showed that the optical control of multiple microvalves is fast, robust, simple to operate, and requires minimal chip space and thus is well suited for fully integrated lab-on-a-chip applications.

  20. Sequential and simultaneous SLAR block adjustment. [spline function analysis for mapping

    NASA Technical Reports Server (NTRS)

    Leberl, F.

    1975-01-01

    Two sequential methods of planimetric SLAR (Side Looking Airborne Radar) block adjustment, with and without splines, and three simultaneous methods based on the principles of least squares are evaluated. A limited experiment with simulated SLAR images indicates that sequential block formation with splines followed by external interpolative adjustment is superior to the simultaneous methods such as planimetric block adjustment with similarity transformations. The use of the sequential block formation is recommended, since it represents an inexpensive tool for satisfactory point determination from SLAR images.

  1. Engagement of Metal Debris into Gear Mesh

    NASA Technical Reports Server (NTRS)

    handschuh, Robert F.; Krantz, Timothy L.

    2010-01-01

    A series of bench-top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.

  2. The Integration of Study and Work-Integrated Learning Experience through the Sequential, Embedded Completion of Tertiary Qualifications

    ERIC Educational Resources Information Center

    Whannell, Patricia; Humphries, Judy; Whannell, Robert; Usher, Kim

    2015-01-01

    A number of different models have been developed to integrate both Vocational Education and Training (VET) and university study with a view to producing work-ready graduates. This paper describes one joint initiative which allows students to integrate their theoretical study and work-integrated learning (WIL) experience by supporting a sequential,…

  3. Real-time PCR machine system modeling and a systematic approach for the robust design of a real-time PCR-on-a-chip system.

    PubMed

    Lee, Da-Sheng

    2010-01-01

    Chip-based DNA quantification systems are widespread, and used in many point-of-care applications. However, instruments for such applications may not be maintained or calibrated regularly. Since machine reliability is a key issue for normal operation, this study presents a system model of the real-time Polymerase Chain Reaction (PCR) machine to analyze the instrument design through numerical experiments. Based on model analysis, a systematic approach was developed to lower the variation of DNA quantification and achieve a robust design for a real-time PCR-on-a-chip system. Accelerated lift testing was adopted to evaluate the reliability of the chip prototype. According to the life test plan, this proposed real-time PCR-on-a-chip system was simulated to work continuously for over three years with similar reproducibility in DNA quantification. This not only shows the robustness of the lab-on-a-chip system, but also verifies the effectiveness of our systematic method for achieving a robust design.

  4. An easy to assemble microfluidic perfusion device with a magnetic clamp

    PubMed Central

    Tkachenko, Eugene; Gutierrez, Edgar; Ginsberg, Mark H.; Groisman, Alex

    2009-01-01

    We have built and characterized a magnetic clamp for reversible sealing of PDMS microfluidic chips against cover glasses with cell cultures and a microfluidic chip for experiments on shear stress response of endothelial cells. The magnetic clamp exerts a reproducible uniform pressure on the microfluidic chip, achieving fast and reliable sealing for liquid pressures up to 40 kPa inside the chip with <10% deformations of microchannels and minimal variations of the substrate shear stress in perfusion flow. The microfluidic chip has 8 test regions with the substrate shear stress varying by a factor of 2 between each region, thus covering a 128-fold range from low venous to arterial. The perfusion is driven by differential pressure, which makes it possible to create pulsatile flows mimicking pulsing in the vasculature. The setup is tested by 15 – 40 hours perfusions over endothelial monolayers with shear stress in the range of 0.07 - 9 dyn/cm2. Excellent cell viability at all shear stresses and alignment of cells along the flow at high shear stresses are repeatedly observed. A scratch wound healing assay under a shear flow is demonstrated and cell migration velocities are measured. Transfection of cells with a fluorescent protein is performed, and migrating fluorescent cells are imaged at a high resolution under shear flow in real time. The magnetic clamp can be closed with minimal mechanical perturbation to cells on the substrate and used with a variety of microfluidic chips for experiments with adherent and non-adherent cells. PMID:19350090

  5. Biased lineups: sequential presentation reduces the problem.

    PubMed

    Lindsay, R C; Lea, J A; Nosworthy, G J; Fulford, J A; Hector, J; LeVan, V; Seabrook, C

    1991-12-01

    Biased lineups have been shown to increase significantly false, but not correct, identification rates (Lindsay, Wallbridge, & Drennan, 1987; Lindsay & Wells, 1980; Malpass & Devine, 1981). Lindsay and Wells (1985) found that sequential lineup presentation reduced false identification rates, presumably by reducing reliance on relative judgment processes. Five staged-crime experiments were conducted to examine the effect of lineup biases and sequential presentation on eyewitness recognition accuracy. Sequential lineup presentation significantly reduced false identification rates from fair lineups as well as from lineups biased with regard to foil similarity, instructions, or witness attire, and from lineups biased in all of these ways. The results support recommendations that police present lineups sequentially.

  6. CHIP: Facilitating Interprofessional and Culturally Competent Patient Care Through Experiential Learning in China.

    PubMed

    Mu, Keli; Peck, Kirk; Jensen, Lou; Bracciano, Al; Carrico, Cathy; Feldhacker, Diana

    2016-12-01

    Health care professionals have advocated for educating culturally competent practitioners. Immersion in international experiences has an impact on student cultural competency and interprofessional development. The China Honors Interprofessional Program (CHIP) at a university in the Midwest is designed to increase students' cultural competency and interprofessional development. From 2009 to 2013, a total of 25 professional students including twelve occupational therapy students, ten physical therapy students and three nursing students were enrolled in the programme. Using a one group pre and posttest research design, this study evaluated the impact of CHIP on the participating students. Both quantitative and qualitative data were collected in the study. Findings of the study revealed that CHIP has impact on students' cultural competency and professional development including gaining appreciation and understanding of the contributions of other healthcare professionals and knowledge and skills in team work. The findings of the study suggested that international immersion experience such as CHIP is an important way to increase students' cultural competency and interprofessional knowledge and skills. Limitations of the study included the small sample in the study, indirect outcome measures and the possible celling effect of the instruments of the study. Future research studies should include a larger and more representative sample, direct outcome measures such as behaviour observation and more rigorous design such as prospective experimental comparison group design. Future research should also examine the long-term effects of international experience on the professional development of occupational therapy students. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Improved Identification of Membrane Proteins by MALDI-TOF MS/MS Using Vacuum Sublimated Matrix Spots on an Ultraphobic Chip Surface

    PubMed Central

    Poetsch, Ansgar; Schlüsener, Daniela; Florizone, Christine; Eltis, Lindsay; Menzel, Christoph; Rögner, Matthias; Steinert, Kerstin; Roth, Udo

    2008-01-01

    Integral membrane proteins are notoriously difficult to identify and analyze by mass spectrometry because of their low abundance and limited number of trypsin cleavage sites. Our strategy to address this problem is based on a novel technology for MALDI-MS peptide sample preparation that increases the success rate of membrane protein identification by increasing the sensitivity of the MALDI-TOF system. For this, we used sample plates with predeposited matrix spots of CHCA crystals prepared by vacuum sublimation onto an extremely low wettable (ultraphobic) surface. In experiments using standard peptides, an up to 10-fold gain of sensitivity was found for on-chip preparations compared with classical dried-droplet preparations on a steel target. In order to assess the performance of the chips with membrane proteins, three model proteins (bacteriorhodopsin, subunit IV(a) of ATP synthase, and the cp47 subunit from photosystem II) were analyzed. To mimic realistic analysis conditions, purified proteins were separated by SDS-PAGE and digested with trypsin. The digest MALDI samples were prepared either by dried-droplet technique on steel plates using CHCA as matrix, or applied directly onto the matrix spots of the chip surface. Significantly higher signal-to-noise ratios were observed for all of the spectra resulting from on-chip preparations of different peptides. In a second series of experiments, the membrane proteome of Rhodococcus jostii RHA1 was investigated by AIEC/SDS-PAGE in combination with MALDI-TOF MS/MS. As in the first experiments, Coomassie-stained SDS-PAGE bands were digested and the two different preparation methods were compared. For preparations on the Mass·Spec·Turbo Chip, 43 of 60 proteins were identified, whereas only 30 proteins were reliably identified after classical sample preparation. Comparison of the obtained Mascot scores, which reflect the confidence level of the protein identifications, revealed that for 70% of the identified proteins, higher scores were obtained by on-chip sample preparation. Typically, this gain was a consequence of higher sequence coverage due to increased sensitivity. PMID:19137096

  8. Changes in the Chemical Composition of Plum Distillate During Maturation with Oak Chips under Different Conditions

    PubMed Central

    2017-01-01

    Summary This study investigates the effect of ageing on the qualitative and quantitative composition of plum distillate in contact with oak wood chips. Maturation was performed with lightly toasted French oak (Quercus sessiflora and Quercus robur) chips or oak chips made from fragments of empty barrels that had been used for ageing cognac. The effects of oak chip dose, process temperature, ageing system (static or circulatory) and ultrasound treatment were assessed. Maturation of plum distillate samples with oak chips resulted in higher levels of extractable organics (including tannins) and colour changes, which were correlated with the type and dose of oak chips, and the conditions of maturation. The content of sugars such as glucose, xylose and arabinose also increased, depending on the conditions and type of oak chips. Degradation of lignin resulted in liberation of sinapaldehyde, syringaldehyde, coniferaldehyde and vanillin, with intensities depending on the applied parameters. In terms of volatiles, decreases in the concentration of higher alcohols and aliphatic aldehydes were observed in the majority of maturation experiments, while concentrations of furanic aldehydes increased depending on the type and dose of oak chips, as well as on the conditions of maturation. The quantities of esters such as ethyl acetate decreased in the majority of experimental variants, whereas concentrations of ethyl caproate, ethyl caprylate and ethyl caprate increased gradually. Some phenols and lactones were detected in all matured samples, with the lowest levels found in the samples aged with oak chips made from cognac barrels. PMID:29089848

  9. Changes in the Chemical Composition of Plum Distillate During Maturation with Oak Chips under Different Conditions.

    PubMed

    Balcerek, Maria; Pielech-Przybylska, Katarzyna; Dziekońska-Kubczak, Urszula; Patelski, Piotr; Strąk, Ewelina

    2017-09-01

    This study investigates the effect of ageing on the qualitative and quantitative composition of plum distillate in contact with oak wood chips. Maturation was performed with lightly toasted French oak ( Quercus sessiflora and Quercus robur ) chips or oak chips made from fragments of empty barrels that had been used for ageing cognac. The effects of oak chip dose, process temperature, ageing system (static or circulatory) and ultrasound treatment were assessed. Maturation of plum distillate samples with oak chips resulted in higher levels of extractable organics (including tannins) and colour changes, which were correlated with the type and dose of oak chips, and the conditions of maturation. The content of sugars such as glucose, xylose and arabinose also increased, depending on the conditions and type of oak chips. Degradation of lignin resulted in liberation of sinapaldehyde, syringaldehyde, coniferaldehyde and vanillin, with intensities depending on the applied parameters. In terms of volatiles, decreases in the concentration of higher alcohols and aliphatic aldehydes were observed in the majority of maturation experiments, while concentrations of furanic aldehydes increased depending on the type and dose of oak chips, as well as on the conditions of maturation. The quantities of esters such as ethyl acetate decreased in the majority of experimental variants, whereas concentrations of ethyl caproate, ethyl caprylate and ethyl caprate increased gradually. Some phenols and lactones were detected in all matured samples, with the lowest levels found in the samples aged with oak chips made from cognac barrels.

  10. Floating Chip Mounting System Driven by Repulsive Force of Permanent Magnets for Multiple On-Site SPR Immunoassay Measurements

    PubMed Central

    Horiuchi, Tsutomu; Tobita, Tatsuya; Miura, Toru; Iwasaki, Yuzuru; Seyama, Michiko; Inoue, Suzuyo; Takahashi, Jun-ichi; Haga, Tsuneyuki; Tamechika, Emi

    2012-01-01

    We have developed a measurement chip installation/removal mechanism for a surface plasmon resonance (SPR) immunoassay analysis instrument designed for frequent testing, which requires a rapid and easy technique for changing chips. The key components of the mechanism are refractive index matching gel coated on the rear of the SPR chip and a float that presses the chip down. The refractive index matching gel made it possible to optically couple the chip and the prism of the SPR instrument easily via elastic deformation with no air bubbles. The float has an autonomous attitude control function that keeps the chip parallel in relation to the SPR instrument by employing the repulsive force of permanent magnets between the float and a float guide located in the SPR instrument. This function is realized by balancing the upward elastic force of the gel and the downward force of the float, which experiences a leveling force from the float guide. This system makes it possible to start an SPR measurement immediately after chip installation and to remove the chip immediately after the measurement with a simple and easy method that does not require any fine adjustment. Our sensor chip, which we installed using this mounting system, successfully performed an immunoassay measurement on a model antigen (spiked human-IgG) in a model real sample (non-homogenized milk) that included many kinds of interfering foreign substances without any sample pre-treatment. The ease of the chip installation/removal operation and simple measurement procedure are suitable for frequent on-site agricultural, environmental and medical testing. PMID:23202030

  11. An Innovative Method of Teaching Electronic System Design with PSoC

    ERIC Educational Resources Information Center

    Ye, Zhaohui; Hua, Chengying

    2012-01-01

    Programmable system-on-chip (PSoC), which provides a microprocessor and programmable analog and digital peripheral functions in a single chip, is very convenient for mixed-signal electronic system design. This paper presents the experience of teaching contemporary mixed-signal electronic system design with PSoC in the Department of Automation,…

  12. Fate of annatto tocotrienols during frying and effect on quality and stability of tortilla chips

    USDA-ARS?s Scientific Manuscript database

    Tocotrienols are antioxidant compounds that are increasingly valued for their health benefits. Annatto is a rich source of delta tocotrienol. Annatto extract containing tocotrienols was added to mid-oleic sunflower oil, and tortilla chips were fried in the oil over three-day frying experiments. The ...

  13. The impact of CHIP premium increases on insurance outcomes among CHIP eligible children

    PubMed Central

    2014-01-01

    Background Within the United States, public insurance premiums are used both to discourage private health policy holders from dropping coverage and to reduce state budget costs. Prior research suggests that the odds of having private coverage and being uninsured increase with increases in public insurance premiums. The aim of this paper is to test effects of Children’s Health Insurance Program (CHIP) premium increases on public insurance, private insurance, and uninsurance rates. Methods The fact that families just below and above a state-specific income cut-off are likely very similar in terms of observable and unobservable characteristics except the premium contribution provides a natural experiment for estimating the effect of premium increases. Using 2003 Medical Expenditure Panel Survey (MEPS) merged with CHIP premiums, we compare health insurance outcomes for CHIP eligible children as of January 2003 in states with a two-tier premium structure using a cross-sectional regression discontinuity methodology. We use difference-in-differences analysis to compare longitudinal insurance outcomes by December 2003. Results Higher CHIP premiums are associated with higher likelihood of private insurance. Disenrollment from CHIP in response to premium increases over time does not increase the uninsurance rate. Conclusions When faced with higher CHIP premiums, private health insurance may be a preferable alternative for CHIP eligible families with higher incomes. Therefore, competition in the insurance exchanges being formed under the Affordable Care Act could enhance choice. PMID:24589197

  14. The impact of CHIP premium increases on insurance outcomes among CHIP eligible children.

    PubMed

    Nikolova, Silviya; Stearns, Sally

    2014-03-03

    Within the United States, public insurance premiums are used both to discourage private health policy holders from dropping coverage and to reduce state budget costs. Prior research suggests that the odds of having private coverage and being uninsured increase with increases in public insurance premiums. The aim of this paper is to test effects of Children's Health Insurance Program (CHIP) premium increases on public insurance, private insurance, and uninsurance rates. The fact that families just below and above a state-specific income cut-off are likely very similar in terms of observable and unobservable characteristics except the premium contribution provides a natural experiment for estimating the effect of premium increases. Using 2003 Medical Expenditure Panel Survey (MEPS) merged with CHIP premiums, we compare health insurance outcomes for CHIP eligible children as of January 2003 in states with a two-tier premium structure using a cross-sectional regression discontinuity methodology. We use difference-in-differences analysis to compare longitudinal insurance outcomes by December 2003. Higher CHIP premiums are associated with higher likelihood of private insurance. Disenrollment from CHIP in response to premium increases over time does not increase the uninsurance rate. When faced with higher CHIP premiums, private health insurance may be a preferable alternative for CHIP eligible families with higher incomes. Therefore, competition in the insurance exchanges being formed under the Affordable Care Act could enhance choice.

  15. Fabrication of Quench Condensed Thin Films Using an Integrated MEMS Fab on a Chip

    NASA Astrophysics Data System (ADS)

    Lally, Richard; Reeves, Jeremy; Stark, Thomas; Barrett, Lawrence; Bishop, David

    Atomic calligraphy is a microelectromechanical systems (MEMS)-based dynamic stencil nanolithography technique. Integrating MEMS devices into a bonded stacked array of three die provides a unique platform for conducting quench condensed thin film mesoscopic experiments. The atomic calligraphy Fab on a Chip process incorporates metal film sources, electrostatic comb driven stencil plate, mass sensor, temperature sensor, and target surface into one multi-die assembly. Three separate die are created using the PolyMUMPs process and are flip-chip bonded together. A die containing joule heated sources must be prepared with metal for evaporation prior to assembly. A backside etch of the middle/central die exposes the moveable stencil plate allowing the flux to pass through the stencil from the source die to the target die. The chip assembly is mounted in a cryogenic system at ultra-high vacuum for depositing extremely thin films down to single layers of atoms across targeted electrodes. Experiments such as the effect of thin film alloys or added impurities on their superconductivity can be measured in situ with this process.

  16. Kidney-on-a-Chip: a New Technology for Predicting Drug Efficacy, Interactions, and Drug-induced Nephrotoxicity.

    PubMed

    Lee, Jeonghwan; Kim, Sejoong

    2018-03-08

    The kidneys play a pivotal role in most drug-removal processes and are important when evaluating drug safety. Kidney dysfunction resulting from various drugs is an important issue in clinical practice and during the drug development process. Traditional in vivo animal experiments are limited with respect to evaluating drug efficacy and nephrotoxicity due to discrepancies in drug pharmacokinetics and pharmacodynamics between humans and animals, and static cell culture experiments cannot fully reflect the actual microphysiological environment in humans. A kidney-on-a-chip is a microfluidic device that allows the culture of living renal cells in 3-dimensional channels and mimics the human microphysiological environment, thus simulating the actual drug filtering, absorption, and secretion process.. In this review, we discuss recent developments in microfluidic culturing technique and describe current and future kidney-on-a-chip applications. We focus on pharmacological interactions and drug-induced nephrotoxicity, and additionally discuss the development of multi-organ chips and their possible applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Parallel integrated frame synchronizer chip

    NASA Technical Reports Server (NTRS)

    Solomon, Jeffrey Michael (Inventor); Ghuman, Parminder Singh (Inventor); Bennett, Toby Dennis (Inventor)

    2000-01-01

    A parallel integrated frame synchronizer which implements a sequential pipeline process wherein serial data in the form of telemetry data or weather satellite data enters the synchronizer by means of a front-end subsystem and passes to a parallel correlator subsystem or a weather satellite data processing subsystem. When in a CCSDS mode, data from the parallel correlator subsystem passes through a window subsystem, then to a data alignment subsystem and then to a bit transition density (BTD)/cyclical redundancy check (CRC) decoding subsystem. Data from the BTD/CRC decoding subsystem or data from the weather satellite data processing subsystem is then fed to an output subsystem where it is output from a data output port.

  18. Plasmonic graded nano-disks as nano-optical conveyor belt.

    PubMed

    Kang, Zhiwen; Lu, Haifei; Chen, Jiajie; Chen, Kun; Xu, Fang; Ho, Ho-Pui

    2014-08-11

    We propose a plasmonic system consisting of nano-disks (NDs) with graded diameters for the realization of nano-optical conveyor belt. The system contains a couple of NDs with individual elements coded with different resonant wavelengths. By sequentially switching the wavelength and polarization of the excitation source, optically trapped target nano-particle can be transferred from one ND to another. The feasibility of such function is verified based on the three-dimensional finite-difference time-domain technique and the Maxwell stress tensor method. Our design may provide an alternative way to construct nano-optical conveyor belt with which target molecules can be delivered between trapping sites, thus enabling many on-chip optofluidic applications.

  19. Architecture, Design and Implementation of RC64, a Many-Core High-Performance DSP for Space Applications

    NASA Astrophysics Data System (ADS)

    Ginosar, Ran; Aviely, Peleg; Liran, Tuvia; Alon, Dov; Dobkin, Reuven; Goldberg, Michael

    2013-08-01

    RC64, a novel 64-core many-core signal processing chip targets DSP performance of 12.8 GIPS, 100 GOPS and 12.8 single precision GFLOS while dissipating only 3 Watts. RC64 employs advanced DSP cores, a multi-bank shared memory and a hardware scheduler, supports DDR2 memory and communicates over five proprietary 6.4 Gbps channels. The programming model employs sequential fine-grain tasks and a separate task map to define task dependencies. RC64 is implemented as a 200 MHz ASIC on Tower 130nm CMOS technology, assembled in hermetically sealed ceramic QFP package and qualified to the highest space standards.

  20. Experimental study of cassava sun drying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Njie, D.N.; Rumsey, T.R.

    1997-03-01

    Sun drying experiments were performed to compare drying of cassava chips in sheet-metal trays with drying on mesh wire trays. In the sheet-metal trays, there was air flow across the top of the bed chips, while the mesh wire trays permitted air to flow through the bed. Drying rate was faster and more uniform in the trays with through-flow air circulation. Higher temperatures were reached by chips in the sheet-metal trays than those in the mesh trays because of contact heating, but the drying rate was lower because of the reduced air flow.

  1. Influences of Cutting Speed and Material Mechanical Properties on Chip Deformation and Fracture during High-Speed Cutting of Inconel 718.

    PubMed

    Wang, Bing; Liu, Zhanqiang; Hou, Xin; Zhao, Jinfu

    2018-03-21

    The paper aims to investigate the influences of material constitutive and fracture parameters in addition to cutting speed on chip formation during high-speed cutting of Inconel 718. Finite element analyses for chip formation are conducted with Johnson-Cook constitutive and fracture models. Meanwhile, experiments of high-speed orthogonal cutting are performed to verify the simulation results with cutting speeds ranging from 50 m/min to 7000 m/min. The research indicates that the chip morphology transforms from serrated to fragmented at the cutting speed of 7000 m/min due to embrittlement of the workpiece material under ultra-high cutting speeds. The parameter of shear localization sensitivity is put forward to describe the influences of material mechanical properties on serrated chip formation. The results demonstrate that the effects of initial yield stress and thermal softening coefficient on chip shear localization are much more remarkable than the other constitutive parameters. For the material fracture parameters, the effects of initial fracture strain and exponential factor of stress state on chip shear localization are more much prominent. This paper provides guidance for controlling chip formation through the adjustment of material mechanical properties and the selection of appropriate cutting parameters.

  2. Influences of Cutting Speed and Material Mechanical Properties on Chip Deformation and Fracture during High-Speed Cutting of Inconel 718

    PubMed Central

    Hou, Xin; Zhao, Jinfu

    2018-01-01

    The paper aims to investigate the influences of material constitutive and fracture parameters in addition to cutting speed on chip formation during high-speed cutting of Inconel 718. Finite element analyses for chip formation are conducted with Johnson–Cook constitutive and fracture models. Meanwhile, experiments of high-speed orthogonal cutting are performed to verify the simulation results with cutting speeds ranging from 50 m/min to 7000 m/min. The research indicates that the chip morphology transforms from serrated to fragmented at the cutting speed of 7000 m/min due to embrittlement of the workpiece material under ultra-high cutting speeds. The parameter of shear localization sensitivity is put forward to describe the influences of material mechanical properties on serrated chip formation. The results demonstrate that the effects of initial yield stress and thermal softening coefficient on chip shear localization are much more remarkable than the other constitutive parameters. For the material fracture parameters, the effects of initial fracture strain and exponential factor of stress state on chip shear localization are more much prominent. This paper provides guidance for controlling chip formation through the adjustment of material mechanical properties and the selection of appropriate cutting parameters. PMID:29561770

  3. PC_Eyewitness and the sequential superiority effect: computer-based lineup administration.

    PubMed

    MacLin, Otto H; Zimmerman, Laura A; Malpass, Roy S

    2005-06-01

    Computer technology has become an increasingly important tool for conducting eyewitness identifications. In the area of lineup identifications, computerized administration offers several advantages for researchers and law enforcement. PC_Eyewitness is designed specifically to administer lineups. To assess this new lineup technology, two studies were conducted in order to replicate the results of previous studies comparing simultaneous and sequential lineups. One hundred twenty university students participated in each experiment. Experiment 1 used traditional paper-and-pencil lineup administration methods to compare simultaneous to sequential lineups. Experiment 2 used PC_Eyewitness to administer simultaneous and sequential lineups. The results of these studies were compared to the meta-analytic results reported by N. Steblay, J. Dysart, S. Fulero, and R. C. L. Lindsay (2001). No differences were found between paper-and-pencil and PC_Eyewitness lineup administration methods. The core findings of the N. Steblay et al. (2001) meta-analysis were replicated by both administration procedures. These results show that computerized lineup administration using PC_Eyewitness is an effective means for gathering eyewitness identification data.

  4. Microfluidic Pneumatic Logic Circuits and Digital Pneumatic Microprocessors for Integrated Microfluidic Systems

    PubMed Central

    Rhee, Minsoung

    2010-01-01

    We have developed pneumatic logic circuits and microprocessors built with microfluidic channels and valves in polydimethylsiloxane (PDMS). The pneumatic logic circuits perform various combinational and sequential logic calculations with binary pneumatic signals (atmosphere and vacuum), producing cascadable outputs based on Boolean operations. A complex microprocessor is constructed from combinations of various logic circuits and receives pneumatically encoded serial commands at a single input line. The device then decodes the temporal command sequence by spatial parallelization, computes necessary logic calculations between parallelized command bits, stores command information for signal transportation and maintenance, and finally executes the command for the target devices. Thus, such pneumatic microprocessors will function as a universal on-chip control platform to perform complex parallel operations for large-scale integrated microfluidic devices. To demonstrate the working principles, we have built 2-bit, 3-bit, 4-bit, and 8-bit microprecessors to control various target devices for applications such as four color dye mixing, and multiplexed channel fluidic control. By significantly reducing the need for external controllers, the digital pneumatic microprocessor can be used as a universal on-chip platform to autonomously manipulate microfluids in a high throughput manner. PMID:19823730

  5. 12-bit 32 channel 500 MS/s low-latency ADC for particle accelerators real-time control

    NASA Astrophysics Data System (ADS)

    Karnitski, Anton; Baranauskas, Dalius; Zelenin, Denis; Baranauskas, Gytis; Zhankevich, Alexander; Gill, Chris

    2017-09-01

    Particle beam control systems require real-time low latency digital feedback with high linearity and dynamic range. Densely packed electronic systems employ high performance multichannel digitizers causing excessive heat dissipation. Therefore, low power dissipation is another critical requirement for these digitizers. A described 12-bit 500 MS/s ADC employs a sub-ranging architecture based on a merged sample & hold circuit, a residue C-DAC and a shared 6-bit flash core ADC. The core ADC provides a sequential coarse and fine digitization featuring a latency of two clock cycles. The ADC is implemented in a 28 nm CMOS process and consumes 4 mW of power per channel from a 0.9 V supply (interfacing and peripheral circuits are excluded). Reduced power consumption and small on-chip area permits the implementation of 32 ADC channels on a 10.7 mm2 chip. The ADC includes a JESD204B standard compliant output data interface operated at the 7.5 Gbps/ch rate. To minimize the data interface related time latency, a special feature permitting to bypass the JESD204B interface is built in. DoE Phase I Award Number: DE-SC0017213.

  6. Sequential memory: Binding dynamics

    NASA Astrophysics Data System (ADS)

    Afraimovich, Valentin; Gong, Xue; Rabinovich, Mikhail

    2015-10-01

    Temporal order memories are critical for everyday animal and human functioning. Experiments and our own experience show that the binding or association of various features of an event together and the maintaining of multimodality events in sequential order are the key components of any sequential memories—episodic, semantic, working, etc. We study a robustness of binding sequential dynamics based on our previously introduced model in the form of generalized Lotka-Volterra equations. In the phase space of the model, there exists a multi-dimensional binding heteroclinic network consisting of saddle equilibrium points and heteroclinic trajectories joining them. We prove here the robustness of the binding sequential dynamics, i.e., the feasibility phenomenon for coupled heteroclinic networks: for each collection of successive heteroclinic trajectories inside the unified networks, there is an open set of initial points such that the trajectory going through each of them follows the prescribed collection staying in a small neighborhood of it. We show also that the symbolic complexity function of the system restricted to this neighborhood is a polynomial of degree L - 1, where L is the number of modalities.

  7. Sequential memory: Binding dynamics.

    PubMed

    Afraimovich, Valentin; Gong, Xue; Rabinovich, Mikhail

    2015-10-01

    Temporal order memories are critical for everyday animal and human functioning. Experiments and our own experience show that the binding or association of various features of an event together and the maintaining of multimodality events in sequential order are the key components of any sequential memories-episodic, semantic, working, etc. We study a robustness of binding sequential dynamics based on our previously introduced model in the form of generalized Lotka-Volterra equations. In the phase space of the model, there exists a multi-dimensional binding heteroclinic network consisting of saddle equilibrium points and heteroclinic trajectories joining them. We prove here the robustness of the binding sequential dynamics, i.e., the feasibility phenomenon for coupled heteroclinic networks: for each collection of successive heteroclinic trajectories inside the unified networks, there is an open set of initial points such that the trajectory going through each of them follows the prescribed collection staying in a small neighborhood of it. We show also that the symbolic complexity function of the system restricted to this neighborhood is a polynomial of degree L - 1, where L is the number of modalities.

  8. Microarray expression technology: from start to finish.

    PubMed

    Elvidge, Gareth

    2006-01-01

    The recent introduction of new microarray expression technologies and the further development of established platforms ensure that the researcher is presented with a range of options for performing an experiment. Whilst this has opened up the possibilities for future applications, such as exon-specific arrays, increased sample throughput and 'chromatin immunoprecipitation (ChIP) on chip' experiments, the initial decision processes and experiment planning are made more difficult. This review will give an overview of the various technologies that are available to perform a microarray expression experiment, from the initial planning stages through to the final data analysis. Both practical aspects and data analysis options will be considered. The relative advantages and disadvantages will be discussed with insights provided for future directions of the technology.

  9. Engagement of Metal Debris into a Gear Mesh

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Krantz, Timothy L.

    2010-01-01

    A series of bench top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock, and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.

  10. Printing Peptide arrays with a complementary metal oxide semiconductor chip.

    PubMed

    Loeffler, Felix F; Cheng, Yun-Chien; Muenster, Bastian; Striffler, Jakob; Liu, Fanny C; Ralf Bischoff, F; Doersam, Edgar; Breitling, Frank; Nesterov-Mueller, Alexander

    2013-01-01

    : In this chapter, we discuss the state-of-the-art peptide array technologies, comparing the spot technique, lithographical methods, and microelectronic chip-based approaches. Based on this analysis, we describe a novel peptide array synthesis method with a microelectronic chip printer. By means of a complementary metal oxide semiconductor chip, charged bioparticles can be patterned on its surface. The bioparticles serve as vehicles to transfer molecule monomers to specific synthesis spots. Our chip offers 16,384 pixel electrodes on its surface with a spot-to-spot pitch of 100 μm. By switching the voltage of each pixel between 0 and 100 V separately, it is possible to generate arbitrary particle patterns for combinatorial molecule synthesis. Afterwards, the patterned chip surface serves as a printing head to transfer the particle pattern from its surface to a synthesis substrate. We conducted a series of proof-of-principle experiments to synthesize high-density peptide arrays. Our solid phase synthesis approach is based on the 9-fluorenylmethoxycarbonyl protection group strategy. After melting the particles, embedded monomers diffuse to the surface and participate in the coupling reaction to the surface. The method demonstrated herein can be easily extended to the synthesis of more complicated artificial molecules by using bioparticles with artificial molecular building blocks. The possibility of synthesizing artificial peptides was also shown in an experiment in which we patterned biotin particles in a high-density array format. These results open the road to the development of peptide-based functional modules for diverse applications in biotechnology.

  11. Optimizing Standard Sequential Extraction Protocol With Lake And Ocean Sediments

    EPA Science Inventory

    The environmental mobility/availability behavior of radionuclides in soils and sediments depends on their speciation. Experiments have been carried out to develop a simple but robust radionuclide sequential extraction method for identification of radionuclide partitioning in sed...

  12. Topics in the Sequential Design of Experiments

    DTIC Science & Technology

    1992-03-01

    decision , unless so designated by other documentation. 12a. DISTRIBUTION /AVAILABIIUTY STATEMENT 12b. DISTRIBUTION CODE Approved for public release...3 0 1992 D 14. SUBJECT TERMS 15. NUMBER OF PAGES12 Design of Experiments, Renewal Theory , Sequential Testing 1 2. PRICE CODE Limit Theory , Local...distributions for one parameter exponential families," by Michael Woodroofe. Stntca, 2 (1991), 91-112. [6] "A non linear renewal theory for a functional of

  13. Williams works with LOCAD-PTS Experiment Hardware in the US Lab during Expedition 15

    NASA Image and Video Library

    2007-05-05

    ISS015-E-06773 (5 May 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, sets up a video camera inside a flame resistant covering to film a chip during Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) Swab Operations in the Destiny laboratory of the International Space Station.

  14. The Influence of Directional Associations on Directed Forgetting and Interference

    ERIC Educational Resources Information Center

    Sahakyan, Lili; Goodmon, Leilani B.

    2007-01-01

    Two experiments examined how cross-list directional associations influenced list-method directed forgetting and the degree of interference observed on each list. Each List 1 item had a (a) bidirectionally related item on List 2 (chip ?? potato), (b) forward association with an item on List 2 (chip ? wood), (c) backward association from an item on…

  15. ISS Expedition 18 Lab-On-a-Chip Applications Development (LOCAD) OPS

    NASA Image and Video Library

    2009-01-10

    ISS018-E-018995 (10 Jan. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.

  16. Air Drying of Chunkwood and Chips

    Treesearch

    Joseph B. Sturos; Lynne A. Coyer; Rodger A. Arola

    1983-01-01

    A new method of communicating wood has resulted in a new wood particle form called chunkwood, which is much larger than the common pulp-size chip. Chunkwood appears well suited for use as a fuel but nothing is yet known about its storage, drying, or combustion characteristics. This paper reports on two exploratory drying experiments we conducted to see whether chunks...

  17. A Single-Chip CMOS Pulse Oximeter with On-Chip Lock-In Detection.

    PubMed

    He, Diwei; Morgan, Stephen P; Trachanis, Dimitrios; van Hese, Jan; Drogoudis, Dimitris; Fummi, Franco; Stefanni, Francesco; Guarnieri, Valerio; Hayes-Gill, Barrie R

    2015-07-14

    Pulse oximetry is a noninvasive and continuous method for monitoring the blood oxygen saturation level. This paper presents the design and testing of a single-chip pulse oximeter fabricated in a 0.35 µm CMOS process. The chip includes photodiode, transimpedance amplifier, analogue band-pass filters, analogue-to-digital converters, digital signal processor and LED timing control. The experimentally measured AC and DC characteristics of individual circuits including the DC output voltage of the transimpedance amplifier, transimpedance gain of the transimpedance amplifier, and the central frequency and bandwidth of the analogue band-pass filters, show a good match (within 1%) with the circuit simulations. With modulated light source and integrated lock-in detection the sensor effectively suppresses the interference from ambient light and 1/f noise. In a breath hold and release experiment the single chip sensor demonstrates consistent and comparable performance to commercial pulse oximetry devices with a mean of 1.2% difference. The single-chip sensor enables a compact and robust design solution that offers a route towards wearable devices for health monitoring.

  18. A Single-Chip CMOS Pulse Oximeter with On-Chip Lock-In Detection

    PubMed Central

    He, Diwei; Morgan, Stephen P.; Trachanis, Dimitrios; van Hese, Jan; Drogoudis, Dimitris; Fummi, Franco; Stefanni, Francesco; Guarnieri, Valerio; Hayes-Gill, Barrie R.

    2015-01-01

    Pulse oximetry is a noninvasive and continuous method for monitoring the blood oxygen saturation level. This paper presents the design and testing of a single-chip pulse oximeter fabricated in a 0.35 µm CMOS process. The chip includes photodiode, transimpedance amplifier, analogue band-pass filters, analogue-to-digital converters, digital signal processor and LED timing control. The experimentally measured AC and DC characteristics of individual circuits including the DC output voltage of the transimpedance amplifier, transimpedance gain of the transimpedance amplifier, and the central frequency and bandwidth of the analogue band-pass filters, show a good match (within 1%) with the circuit simulations. With modulated light source and integrated lock-in detection the sensor effectively suppresses the interference from ambient light and 1/f noise. In a breath hold and release experiment the single chip sensor demonstrates consistent and comparable performance to commercial pulse oximetry devices with a mean of 1.2% difference. The single-chip sensor enables a compact and robust design solution that offers a route towards wearable devices for health monitoring. PMID:26184225

  19. Radiation hard analog circuits for ALICE ITS upgrade

    NASA Astrophysics Data System (ADS)

    Gajanana, D.; Gromov, V.; Kuijer, P.; Kugathasan, T.; Snoeys, W.

    2016-03-01

    The ALICE experiment is planning to upgrade the ITS (Inner Tracking System) [1] detector during the LS2 shutdown. The present ITS will be fully replaced with a new one entirely based on CMOS monolithic pixel sensor chips fabricated in TowerJazz CMOS 0.18 μ m imaging technology. The large (3 cm × 1.5 cm = 4.5 cm2) ALPIDE (ALICE PIxel DEtector) sensor chip contains about 500 Kpixels, and will be used to cover a 10 m2 area with 12.5 Gpixels distributed over seven cylindrical layers. The ALPOSE chip was designed as a test chip for the various building blocks foreseen in the ALPIDE [2] pixel chip from CERN. The building blocks include: bandgap and Temperature sensor in four different flavours, and LDOs for powering schemes. One flavour of bandgap and temperature sensor will be included in the ALPIDE chip. Power consumption numbers have dropped very significantly making the use of LDOs less interesting, but in this paper all blocks are presented including measurement results before and after irradiation with neutrons to characterize robustness against displacement damage.

  20. Real-time PCR Machine System Modeling and a Systematic Approach for the Robust Design of a Real-time PCR-on-a-Chip System

    PubMed Central

    Lee, Da-Sheng

    2010-01-01

    Chip-based DNA quantification systems are widespread, and used in many point-of-care applications. However, instruments for such applications may not be maintained or calibrated regularly. Since machine reliability is a key issue for normal operation, this study presents a system model of the real-time Polymerase Chain Reaction (PCR) machine to analyze the instrument design through numerical experiments. Based on model analysis, a systematic approach was developed to lower the variation of DNA quantification and achieve a robust design for a real-time PCR-on-a-chip system. Accelerated lift testing was adopted to evaluate the reliability of the chip prototype. According to the life test plan, this proposed real-time PCR-on-a-chip system was simulated to work continuously for over three years with similar reproducibility in DNA quantification. This not only shows the robustness of the lab-on-a-chip system, but also verifies the effectiveness of our systematic method for achieving a robust design. PMID:22315563

  1. Macromolecular Crystal Growth by Means of Microfluidics

    NASA Technical Reports Server (NTRS)

    vanderWoerd, Mark; Ferree, Darren; Spearing, Scott; Monaco, Lisa; Molho, Josh; Spaid, Michael; Brasseur, Mike; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    We have performed a feasibility study in which we show that chip-based, microfluidic (LabChip(TM)) technology is suitable for protein crystal growth. This technology allows for accurate and reliable dispensing and mixing of very small volumes while minimizing bubble formation in the crystallization mixture. The amount of (protein) solution remaining after completion of an experiment is minimal, which makes this technique efficient and attractive for use with proteins, which are difficult or expensive to obtain. The nature of LabChip(TM) technology renders it highly amenable to automation. Protein crystals obtained in our initial feasibility studies were of excellent quality as determined by X-ray diffraction. Subsequent to the feasibility study, we designed and produced the first LabChip(TM) device specifically for protein crystallization in batch mode. It can reliably dispense and mix from a range of solution constituents into two independent growth wells. We are currently testing this design to prove its efficacy for protein crystallization optimization experiments. In the near future we will expand our design to incorporate up to 10 growth wells per LabChip(TM) device. Upon completion, additional crystallization techniques such as vapor diffusion and liquid-liquid diffusion will be accommodated. Macromolecular crystallization using microfluidic technology is envisioned as a fully automated system, which will use the 'tele-science' concept of remote operation and will be developed into a research facility for the International Space Station as well as on the ground.

  2. Demosaiced pixel super-resolution for multiplexed holographic color imaging

    PubMed Central

    Wu, Yichen; Zhang, Yibo; Luo, Wei; Ozcan, Aydogan

    2016-01-01

    To synthesize a holographic color image, one can sequentially take three holograms at different wavelengths, e.g., at red (R), green (G) and blue (B) parts of the spectrum, and digitally merge them. To speed up the imaging process by a factor of three, a Bayer color sensor-chip can also be used to demultiplex three wavelengths that simultaneously illuminate the sample and digitally retrieve individual set of holograms using the known transmission spectra of the Bayer color filters. However, because the pixels of different channels (R, G, B) on a Bayer color sensor are not at the same physical location, conventional demosaicing techniques generate color artifacts in holographic imaging using simultaneous multi-wavelength illumination. Here we demonstrate that pixel super-resolution can be merged into the color de-multiplexing process to significantly suppress the artifacts in wavelength-multiplexed holographic color imaging. This new approach, termed Demosaiced Pixel Super-Resolution (D-PSR), generates color images that are similar in performance to sequential illumination at three wavelengths, and therefore improves the speed of holographic color imaging by 3-fold. D-PSR method is broadly applicable to holographic microscopy applications, where high-resolution imaging and multi-wavelength illumination are desired. PMID:27353242

  3. MuTRiG: a mixed signal Silicon Photomultiplier readout ASIC with high timing resolution and gigabit data link

    NASA Astrophysics Data System (ADS)

    Chen, H.; Briggl, K.; Eckert, P.; Harion, T.; Munwes, Y.; Shen, W.; Stankova, V.; Schultz-Coulon, H. C.

    2017-01-01

    MuTRiG is a mixed signal Silicon Photomultiplier readout ASIC designed in UMC 180 nm CMOS technology for precise timing and high event rate applications in high energy physics experiments and medical imaging. It is dedicated to the readout of the scintillating fiber detector and the scintillating tile detector of the Mu3e experiment. The MuTRiG chip extends the excellent timing performance of the STiCv3 chip with a fast digital readout for high rate applications. The high timing performance of the fully differential SiPM readout channels and 50 ps time binning TDCs are complemented by an upgraded digital readout logic and a 1.28 Gbps LVDS serial data link. The design of the chip and the characterization results of the analog front-end, TDC and the LVDS data link are presented.

  4. Monitoring CO2 invasion processes at the pore scale using geological labs on chip.

    PubMed

    Morais, S; Liu, N; Diouf, A; Bernard, D; Lecoutre, C; Garrabos, Y; Marre, S

    2016-09-21

    In order to investigate at the pore scale the mechanisms involved during CO2 injection in a water saturated pore network, a series of displacement experiments is reported using high pressure micromodels (geological labs on chip - GLoCs) working under real geological conditions (25 < T (°C) < 75 and 4.5 < p (MPa) < 8). The experiments were focused on the influence of three experimental parameters: (i) the p, T conditions, (ii) the injection flow rates and (iii) the pore network characteristics. By using on-chip optical characterization and imaging approaches, the CO2 saturation curves as a function of either time or the number of pore volume injected were determined. Three main mechanisms were observed during CO2 injection, namely, invasion, percolation and drying, which are discussed in this paper. Interestingly, besides conventional mechanisms, two counterintuitive situations were observed during the invasion and drying processes.

  5. Readout and trigger for the AFP detector at ATLAS experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocian, M.

    AFP, the ATLAS Forward Proton consists of silicon detectors at 205 m and 217 m on each side of ATLAS. In 2016 two detectors in one side were installed. The FEI4 chips are read at 160 Mbps over the optical fibers. The DAQ system uses a FPGA board with Artix chip and a mezzanine card with RCE data processing module based on a Zynq chip with ARM processor running ArchLinux. Finally, in this paper we give an overview of the AFP detector with the commissioning steps taken to integrate with the ATLAS TDAQ. Furthermore first performance results are presented.

  6. Readout and trigger for the AFP detector at ATLAS experiment

    DOE PAGES

    Kocian, M.

    2017-01-25

    AFP, the ATLAS Forward Proton consists of silicon detectors at 205 m and 217 m on each side of ATLAS. In 2016 two detectors in one side were installed. The FEI4 chips are read at 160 Mbps over the optical fibers. The DAQ system uses a FPGA board with Artix chip and a mezzanine card with RCE data processing module based on a Zynq chip with ARM processor running ArchLinux. Finally, in this paper we give an overview of the AFP detector with the commissioning steps taken to integrate with the ATLAS TDAQ. Furthermore first performance results are presented.

  7. Towards an on-chip platform for the controlled application of forces via magnetic particles: A novel device for mechanobiology

    NASA Astrophysics Data System (ADS)

    Monticelli, M.; Albisetti, E.; Petti, D.; Conca, D. V.; Falcone, M.; Sharma, P. P.; Bertacco, R.

    2015-05-01

    In-vitro tests and analyses are of fundamental importance for investigating biological mechanisms in cells and bio-molecules. The controlled application of forces to activate specific bio-pathways and investigate their effects, mimicking the role of the cellular environment, is becoming a prominent approach in this field. In this work, we present a non-invasive magnetic on-chip platform which allows for the manipulation of magnetic particles, through micrometric magnetic conduits of Permalloy patterned on-chip. We show, from simulations and experiments, that this technology permits to exert a finely controlled force on magnetic beads along the chip surface. This force can be tuned from few to hundreds pN by applying a variable external magnetic field.

  8. Single event effects on the APV25 front-end chip

    NASA Astrophysics Data System (ADS)

    Friedl, M.; Bauer, T.; Pernicka, M.

    2003-03-01

    The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider at CERN will include a Silicon Strip Tracker covering a sensitive area of 206 m2. About ten million channels will be read out by APV25 front-end chips, fabricated in the 0.25 μm deep submicron process. Although permanent damage is not expected within CMS radiation levels, transient Single Event Upsets are inevitable. Moreover, localized ionization can also produce fake signals in the analog circuitry. Eight APV25 chips were exposed to a high-intensity pion beam at the Paul Scherrer Institute (Villigen/CH) to study the radiation induced effects in detail. The results, which are compatible to similar measurements performed with heavy ions, are used to predict the chip error rate at CMS.

  9. A 0.5 cm(3) four-channel 1.1 mW wireless biosignal interface with 20 m range.

    PubMed

    Morrison, Tim; Nagaraju, Manohar; Winslow, Brent; Bernard, Amy; Otis, Brian P

    2014-02-01

    This paper presents a self-contained, single-chip biosignal monitoring system with wireless programmability and telemetry interface suitable for mainstream healthcare applications. The system consists of low-noise front end amplifiers, ADC, MICS/ISM transmitter and infrared programming capability to configure the state of the chip. An on-chip packetizer ensures easy pairing with standard off-the-shelf receivers. The chip is realized in the IBM 130 nm CMOS process with an area of 2×2 mm(2). The entire system consumes 1.07 mW from a 1.2 V supply. It weighs 0.6 g including a zinc-air battery. The system has been extensively tested in in vivo biological experiments and requires minimal human interaction or calibration.

  10. Proceedings of the Conference on the Design of Experiments in Army Research, Development and Testing (29th)

    DTIC Science & Technology

    1984-06-01

    SEQUENTIAL TESTING (Bldg. A, Room C) 1300-1330 ’ 1330-1415 1415-1445 1445-1515 BREAK 1515-1545 A TRUNCATED SEQUENTIAL PROBABILITY RATIO TEST J...suicide optical data operational testing reliability random numbers bootstrap methods missing data sequential testing fire support complex computer model carcinogenesis studies EUITION Of 1 NOV 68 I% OBSOLETE a ...contributed papers can be ascertained from the titles of the

  11. NMR spectroscopy of single sub-nL ova with inductive ultra-compact single-chip probes

    PubMed Central

    Grisi, Marco; Vincent, Franck; Volpe, Beatrice; Guidetti, Roberto; Harris, Nicola; Beck, Armin; Boero, Giovanni

    2017-01-01

    Nuclear magnetic resonance (NMR) spectroscopy enables non-invasive chemical studies of intact living matter. However, the use of NMR at the volume scale typical of microorganisms is hindered by sensitivity limitations, and experiments on single intact organisms have so far been limited to entities having volumes larger than 5 nL. Here we show NMR spectroscopy experiments conducted on single intact ova of 0.1 and 0.5 nL (i.e. 10 to 50 times smaller than previously achieved), thereby reaching the relevant volume scale where life development begins for a broad variety of organisms, humans included. Performing experiments with inductive ultra-compact (1 mm2) single-chip NMR probes, consisting of a low noise transceiver and a multilayer 150 μm planar microcoil, we demonstrate that the achieved limit of detection (about 5 pmol of 1H nuclei) is sufficient to detect endogenous compounds. Our findings suggest that single-chip probes are promising candidates to enable NMR-based study and selection of microscopic entities at biologically relevant volume scales. PMID:28317887

  12. Experimental Investigation on Cutting Characteristics in Nanometric Plunge-Cutting of BK7 and Fused Silica Glasses

    PubMed Central

    An, Qinglong; Ming, Weiwei; Chen, Ming

    2015-01-01

    Ductile cutting are most widely used in fabricating high-quality optical glass components to achieve crack-free surfaces. For ultra-precision machining of brittle glass materials, critical undeformed chip thickness (CUCT) commonly plays a pivotal role in determining the transition point from ductile cutting to brittle cutting. In this research, cutting characteristics in nanometric cutting of BK7 and fused silica glasses, including machined surface morphology, surface roughness, cutting force and specific cutting energy, were investigated with nanometric plunge-cutting experiments. The same cutting speed of 300 mm/min was used in the experiments with single-crystal diamond tool. CUCT was determined according to the mentioned cutting characteristics. The results revealed that 320 nm was found as the CUCT in BK7 cutting and 50 nm was determined as the size effect of undeformed chip thickness. A high-quality machined surface could be obtained with the undeformed chip thickness between 50 and 320 nm at ductile cutting stage. Moreover, no CUCT was identified in fused silica cutting with the current cutting conditions, and brittle-fracture mechanism was confirmed as the predominant chip-separation mode throughout the nanometric cutting operation. PMID:28788010

  13. Experimental Investigation on Cutting Characteristics in Nanometric Plunge-Cutting of BK7 and Fused Silica Glasses.

    PubMed

    An, Qinglong; Ming, Weiwei; Chen, Ming

    2015-03-27

    Ductile cutting are most widely used in fabricating high-quality optical glass components to achieve crack-free surfaces. For ultra-precision machining of brittle glass materials, critical undeformed chip thickness (CUCT) commonly plays a pivotal role in determining the transition point from ductile cutting to brittle cutting. In this research, cutting characteristics in nanometric cutting of BK7 and fused silica glasses, including machined surface morphology, surface roughness, cutting force and specific cutting energy, were investigated with nanometric plunge-cutting experiments. The same cutting speed of 300 mm/min was used in the experiments with single-crystal diamond tool. CUCT was determined according to the mentioned cutting characteristics. The results revealed that 320 nm was found as the CUCT in BK7 cutting and 50 nm was determined as the size effect of undeformed chip thickness. A high-quality machined surface could be obtained with the undeformed chip thickness between 50 and 320 nm at ductile cutting stage. Moreover, no CUCT was identified in fused silica cutting with the current cutting conditions, and brittle-fracture mechanism was confirmed as the predominant chip-separation mode throughout the nanometric cutting operation.

  14. Effects of pea chips on pig performance, carcass quality and composition, and palatability of pork.

    PubMed

    Newman, D J; Harris, E K; Lepper, A N; Berg, E P; Stein, H H

    2011-10-01

    Pea chips are produced as a by-product when field peas are processed to produce split peas for human consumption. The objective of this experiment was to test the hypothesis that inclusion of pea chips in diets fed to finishing pigs does not negatively influence pig growth performance, carcass composition, and the palatability of pork. A total of 24 barrows (initial BW: 58.0 ± 6.6 kg) were allotted to 1 of 4 treatments and fed early finishing diets for 35 d and late finishing diets for 35 d. A corn-soybean meal (SBM) control diet and 3 diets containing pea chips were formulated for each phase. Pea chips replaced 33.3, 66.6, or 100% of the SBM in the control diet. Pigs were housed individually, and all pigs were slaughtered at the conclusion of the experiment. Overall, there were no differences (P > 0.11) in final BW, ADFI, and G:F of pigs among treatments, but there was a quadratic response in ADG (P = 0.04), with the smallest value observed in pigs fed the control diet. Dressing percentage linearly decreased (P = 0.04) as pea chips replaced SBM in diets, but there were no differences (P > 0.20) among treatments in HCW, LM area, 10th-rib backfat, lean meat percentage, and marbling. Likewise, pH in loin and ham, drip loss, and purge loss were not influenced (P > 0.13) by treatment. However, there was a quadratic response (P = 0.08) in 24-h pH in the shoulder, with the smallest value present in pigs fed the diet, in which 66.6% of the SBM was replaced by pea chips. Subjective LM color and Japanese color score standard were reduced (quadratic, P = 0.03 and 0.05, respectively) and LM b* values and hue angle were increased (quadratic, P = 0.09 and 0.10, respectively) when pea chips replaced SBM in the diets. Ham L* (quadratic, P = 0.04), a* (linear, P = 0.02), b* (quadratic, P = 0.07), color saturation (linear, P = 0.02), and hue angle (quadratic, P = 0.05) were increased when pea chips replaced SBM. However, there were no differences (P > 0.16) in shoulder and fat color. Moreover, cook loss percentage, shear force, juiciness, and pork flavor of pork chops were not different (P > 0.10) among treatments, but tenderness of pork chops linearly decreased (P = 0.04) as SBM replaced pea chips. It is concluded that all the SBM in diets fed to growing-finishing pigs may be replaced by pea chips without negatively influencing growth performance or carcass composition. However, pigs fed pea chips will have pork chops and hams that are lighter, and chops may be less tender if pigs are fed pea chips rather than corn and SBM.

  15. Sequential electrokinetic treatment and oxalic acid extraction for the removal of Cu, Cr and As from wood.

    PubMed

    Isosaari, Pirjo; Marjavaara, Pieti; Lehmus, Eila

    2010-10-15

    Removal of Cu, Cr and As from utility poles treated with chromated copper arsenate (CCA) was investigated using different one- to three-step combinations of oxalic acid extraction and electrokinetic treatment. The experiments were carried out at room temperature, using 0.8% oxalic acid and 30 V (200 V/m) of direct current (DC) or alternating current in combination (DC/AC). Six-hour extraction removed only 15%, 11% and 28% and 7-day electrokinetic treatment 57%, 0% and 17% of Cu, Cr and As from wood chips, respectively. The best combination for all the metals was a three-step process consisting of pre-extraction, electrokinetics and post-extraction steps, yielding removals of 67% for Cu, 64% for Cr and 81% for As. Oxalic acid extraction prior to electrokinetic treatment was deleterious to further removal of Cu, but it was necessary for Cr and As removal. Chemical equilibrium modelling was used to explain the differences in the behaviour of Cu, Cr and As. Due to the dissimilar nature of these metals, it appeared that even more process sequences and/or stricter control of the process conditions would be needed to obtain the >99% removals required for safe recycling of the purified wood material. 2010 Elsevier B.V. All rights reserved.

  16. Quality assessment of SPR sensor chips; case study on L1 chips.

    PubMed

    Olaru, Andreea; Gheorghiu, Mihaela; David, Sorin; Polonschii, Cristina; Gheorghiu, Eugen

    2013-07-15

    Surface quality of the Surface Plasmon Resonance (SPR) chips is a major limiting issue in most SPR analyses, even more for supported lipid membranes experiments, where both the organization of the lipid matrix and the subsequent incorporation of the target molecule depend on the surface quality. A novel quantitative method to characterize the quality of SPR sensors chips is described for L1 chips subject to formation of lipid films, injection of membrane disrupting compounds, followed by appropriate regeneration procedures. The method consists in analysis of the SPR reflectivity curves for several standard solutions (e.g. PBS, HEPES or deionized water). This analysis reveals the decline of sensor surface as a function of the number of experimental cycles (consisting in biosensing assay and regeneration step) and enables active control of surface regeneration for enhanced reproducibility. We demonstrate that quantitative evaluation of the changes in reflectivity curves (shape of the SPR dip) and of the slope of the calibration curve provides a rapid and effective procedure for surface quality assessment. Whereas the method was tested on L1 SPR sensors chips, we stress on its amenability to assess the quality of other types of SPR chips, as well. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Experiences in flip chip production of radiation detectors

    NASA Astrophysics Data System (ADS)

    Savolainen-Pulli, Satu; Salonen, Jaakko; Salmi, Jorma; Vähänen, Sami

    2006-09-01

    Modern imaging devices often require heterogeneous integration of different materials and technologies. Because of yield considerations, material availability, and various technological limitations, an extremely fine pitch is necessary to realize high-resolution images. Thus, there is a need for a hybridization technology that is able to join together readout amplifiers and pixel detectors at a very fine pitch. This paper describes radiation detector flip chip production at VTT. Our flip chip technology utilizes 25-μm diameter tin-lead solder bumps at a 50-μm pitch and is based on flux-free bonding. When preprocessed wafers are used, as is the case here, the total yield is defined only partly by the flip chip process. Wafer preprocessing done by a third-party silicon foundry and the flip chip process create different process defects. Wafer-level yield maps (based on probing) provided by the customer are used to select good readout chips for assembly. Wafer probing is often done outside of a real clean room environment, resulting in particle contamination and/or scratches on the wafers. Factors affecting the total yield of flip chip bonded detectors are discussed, and some yield numbers of the process are given. Ways to improve yield are considered, and finally guidelines for process planning and device design with respect to yield optimization are given.

  18. Polydimethylsiloxane SlipChip for mammalian cell culture applications.

    PubMed

    Chang, Chia-Wen; Peng, Chien-Chung; Liao, Wei-Hao; Tung, Yi-Chung

    2015-11-07

    This paper reports a polydimethylsiloxane (PDMS) SlipChip for in vitro cell culture applications, multiple-treatment assays, cell co-cultures, and cytokine detection assays. The PDMS SlipChip is composed of two PDMS layers with microfluidic channels on each surface that are separated by a thin silicone fluid (Si-fluid) layer. The integration of Si-fluid enables the two PDMS layers to be slid to different positions; therefore, the channel patterns can be re-arranged for various applications. The SlipChip design significantly reduces the complexity of sample handling, transportation, and treatment processes. To apply the developed SlipChip for cell culture applications, human lung adenocarcinoma epithelial cells (A549) and lung fibroblasts (MRC-5) were cultured to examine the biocompatibility of the developed PDMS SlipChip. Moreover, embryonic pluripotent stem cells (ES-D3) were also cultured in the device to evaluate the retention of their stemness in the device. The experimental results show that cell morphology, viability and proliferation are not affected when the cells are cultured in the SlipChip, indicating that the device is highly compatible with mammalian cell culture. In addition, the stemness of the ES-D3 cells was highly retained after they were cultured in the device, suggesting the feasibility of using the SlipChip for stem cell research. Various cell experiments, such as simultaneous triple staining of cells and co-culture of MRC-5 with A549 cells, were also performed to demonstrate the functionalities of the PDMS SlipChip. Furthermore, we used a cytokine detection assay to evaluate the effect of endotoxin (lipopolysaccharides, LPS) treatment on the cytokine secretion of A549 cells using the SlipChip. The developed PDMS SlipChip provides a straightforward and effective platform for various on-chip in vitro cell cultures and consequent analysis, which is promising for a number of cell biology studies and biomedical applications.

  19. Drivers Motivating Community Health Improvement Plan Completion by Local Public Health Agencies and Community Partners in the Rocky Mountain Region and Western Plains.

    PubMed

    Hill, Anne; Wolf, Holly J; Scallan, Elaine; Case, Jenny; Kellar-Guenther, Yvonne

    There are numerous drivers that motivate completion of community health improvement plans (CHIPs). Some are more obvious and include voluntary public health accreditation, state requirements, federal and state funding, and nonprofit hospital requirements through IRS regulations. Less is known about other drivers, including involvement of diverse partners and belief in best practices, that may motivate CHIP completion. This research investigated the drivers that motivated CHIP completion based on experiences of 51 local public health agencies (LPHAs). An explanatory mixed-methods design, including closed- and open-ended survey questions and key informant interviews, was used to understand the drivers that motivated CHIP completion. Analysis of survey data involved descriptive statistics. Classical content analysis was used for qualitative data to clarify survey findings. The surveys and key informant interviews were conducted in the Rocky Mountain Region and Western Plains among 51 medium and large LPHAs in Colorado, Kansas, Montana, Nebraska, North Dakota, South Dakota, Utah, and Wyoming. More than 50% of respondents were public health directors; the balance of the respondents were division/program directors, accreditation coordinators, and public health planners. CHIP completion. Most LPHAs in the Rocky Mountains and Western Plains have embraced developing and publishing a CHIP, with 80% having completed their plan and another 13% working on it. CHIP completion is motivated by a belief in best practices, with LPHAs and partners seeing the benefit of quality improvement activities linked to the CHIP and the investment of nonprofit hospitals in the process. Completing a CHIP is strengthened through engagement of diverse partners and a well-functioning partnership. The future of CHIP creation depends on LPHAs and partners investing in the CHIP as a best practice, dedicating personnel to CHIP activities, and enhancing leadership skills to contribute to a synergistic partnership by effectively working and communicating with diverse partners and developing and achieving common goals.

  20. Thermal-Aware Test Access Mechanism and Wrapper Design Optimization for System-on-Chips

    NASA Astrophysics Data System (ADS)

    Yu, Thomas Edison; Yoneda, Tomokazu; Chakrabarty, Krishnendu; Fujiwara, Hideo

    Rapid advances in semiconductor manufacturing technology have led to higher chip power densities, which places greater emphasis on packaging and temperature control during testing. For system-on-chips, peak power-based scheduling algorithms have been used to optimize tests under specified power constraints. However, imposing power constraints does not always solve the problem of overheating due to the non-uniform distribution of power across the chip. This paper presents a TAM/Wrapper co-design methodology for system-on-chips that ensures thermal safety while still optimizing the test schedule. The method combines a simplified thermal-cost model with a traditional bin-packing algorithm to minimize test time while satisfying temperature constraints. Furthermore, for temperature checking, thermal simulation is done using cycle-accurate power profiles for more realistic results. Experiments show that even a minimal sacrifice in test time can yield a considerable decrease in test temperature as well as the possibility of further lowering temperatures beyond those achieved using traditional power-based test scheduling.

  1. DIVERSITY in binding, regulation, and evolution revealed from high-throughput ChIP.

    PubMed

    Mitra, Sneha; Biswas, Anushua; Narlikar, Leelavati

    2018-04-01

    Genome-wide in vivo protein-DNA interactions are routinely mapped using high-throughput chromatin immunoprecipitation (ChIP). ChIP-reported regions are typically investigated for enriched sequence-motifs, which are likely to model the DNA-binding specificity of the profiled protein and/or of co-occurring proteins. However, simple enrichment analyses can miss insights into the binding-activity of the protein. Note that ChIP reports regions making direct contact with the protein as well as those binding through intermediaries. For example, consider a ChIP experiment targeting protein X, which binds DNA at its cognate sites, but simultaneously interacts with four other proteins. Each of these proteins also binds to its own specific cognate sites along distant parts of the genome, a scenario consistent with the current view of transcriptional hubs and chromatin loops. Since ChIP will pull down all X-associated regions, the final reported data will be a union of five distinct sets of regions, each containing binding sites of one of the five proteins, respectively. Characterizing all five different motifs and the corresponding sets is important to interpret the ChIP experiment and ultimately, the role of X in regulation. We present diversity which attempts exactly this: it partitions the data so that each partition can be characterized with its own de novo motif. Diversity uses a Bayesian approach to identify the optimal number of motifs and the associated partitions, which together explain the entire dataset. This is in contrast to standard motif finders, which report motifs individually enriched in the data, but do not necessarily explain all reported regions. We show that the different motifs and associated regions identified by diversity give insights into the various complexes that may be forming along the chromatin, something that has so far not been attempted from ChIP data. Webserver at http://diversity.ncl.res.in/; standalone (Mac OS X/Linux) from https://github.com/NarlikarLab/DIVERSITY/releases/tag/v1.0.0.

  2. SPMBR: a scalable algorithm for mining sequential patterns based on bitmaps

    NASA Astrophysics Data System (ADS)

    Xu, Xiwei; Zhang, Changhai

    2013-12-01

    Now some sequential patterns mining algorithms generate too many candidate sequences, and increase the processing cost of support counting. Therefore, we present an effective and scalable algorithm called SPMBR (Sequential Patterns Mining based on Bitmap Representation) to solve the problem of mining the sequential patterns for large databases. Our method differs from previous related works of mining sequential patterns. The main difference is that the database of sequential patterns is represented by bitmaps, and a simplified bitmap structure is presented firstly. In this paper, First the algorithm generate candidate sequences by SE(Sequence Extension) and IE(Item Extension), and then obtain all frequent sequences by comparing the original bitmap and the extended item bitmap .This method could simplify the problem of mining the sequential patterns and avoid the high processing cost of support counting. Both theories and experiments indicate that the performance of SPMBR is predominant for large transaction databases, the required memory size for storing temporal data is much less during mining process, and all sequential patterns can be mined with feasibility.

  3. The bandwidth of consolidation into visual short-term memory (VSTM) depends on the visual feature

    PubMed Central

    Miller, James R.; Becker, Mark W.; Liu, Taosheng

    2014-01-01

    We investigated the nature of the bandwidth limit in the consolidation of visual information into visual short-term memory. In the first two experiments, we examined whether previous results showing differential consolidation bandwidth for color and orientation resulted from methodological differences by testing the consolidation of color information with methods used in prior orientation experiments. We briefly presented two color patches with masks, either sequentially or simultaneously, followed by a location cue indicating the target. Participants identified the target color via button-press (Experiment 1) or by clicking a location on a color wheel (Experiment 2). Although these methods have previously demonstrated that two orientations are consolidated in a strictly serial fashion, here we found equivalent performance in the sequential and simultaneous conditions, suggesting that two colors can be consolidated in parallel. To investigate whether this difference resulted from different consolidation mechanisms or a common mechanism with different features consuming different amounts of bandwidth, Experiment 3 presented a color patch and an oriented grating either sequentially or simultaneously. We found a lower performance in the simultaneous than the sequential condition, with orientation showing a larger impairment than color. These results suggest that consolidation of both features share common mechanisms. However, it seems that color requires less information to be encoded than orientation. As a result two colors can be consolidated in parallel without exceeding the bandwidth limit, whereas two orientations or an orientation and a color exceed the bandwidth and appear to be consolidated serially. PMID:25317065

  4. Ultrafast-laser dicing of thin silicon wafers: strategies to improve front- and backside breaking strength

    NASA Astrophysics Data System (ADS)

    Domke, Matthias; Egle, Bernadette; Stroj, Sandra; Bodea, Marius; Schwarz, Elisabeth; Fasching, Gernot

    2017-12-01

    Thin 50-µm silicon wafers are used to improve heat dissipation of chips with high power densities. However, mechanical dicing methods cause chipping at the edges of the separated dies that reduce the mechanical stability. Thermal load changes may then lead to sudden chip failure. Recent investigations showed that the mechanical stability of the cut chips could be increased using ultrashort-pulsed lasers, but only at the laser entrance (front) side and not at the exit (back) side. The goal of this study was to find strategies to improve both front- and backside breaking strength of chips that were cut out of an 8″ wafer with power metallization using an ultrafast laser. In a first experiment, chips were cut by scanning the laser beam in single lines across the wafer using varying fluencies and scan speeds. Three-point bending tests of the cut chips were performed to measure front and backside breaking strengths. The results showed that the breaking strength of both sides increased with decreasing accumulated fluence per scan. Maximum breaking strengths of about 1100 MPa were achieved at the front side, but only below 600 MPa were measured for the backside. A second experiment was carried out to optimize the backside breaking strength. Here, parallel line scans to increase the distance between separated dies and step cuts to minimize the effect of decreasing fluence during scribing were performed. Bending tests revealed that breaking strengths of about 1100 MPa could be achieved also on the backside using the step cut. A reason for the superior performance could be found by calculating the fluence absorbed by the sidewalls. The calculations suggested that an optimal fluence level to minimize thermal side effects and periodic surface structures was achieved due to the step cut. Remarkably, the best breaking strengths values achieved in this study were even higher than the values obtained on state of the art ns-laser and mechanical dicing machines. This is the first study to the knowledge of the authors, which demonstrates that ultrafast-laser dicing improves the mechanical stability of thin silicon chips.

  5. Imaging label-free biosensor with microfluidic system

    NASA Astrophysics Data System (ADS)

    Jahns, S.; Glorius, P.; Hansen, M.; Nazirizadeh, Y.; Gerken, M.

    2015-06-01

    We present a microfluidic system suitable for parallel label-free detection of several biomarkers utilizing a compact imaging measurement system. The microfluidic system contains a filter unit to separate the plasma from human blood and a functionalized, photonic crystal slab sensor chip. The nanostructure of the photonic crystal slab sensor chip is fabricated by nanoimprint lithography of a period grating surface into a photoresist and subsequent deposition of a TiO2 layer. Photonic crystal slabs are slab waveguides supporting quasi-guided modes coupling to far-field radiation, which are sensitive to refractive index changes due to biomarker binding on the functionalized surface. In our imaging read-out system the resulting resonance shift of the quasi-guided mode in the transmission spectrum is converted into an intensity change detectable with a simple camera. By continuously taking photographs of the sensor surface local intensity changes are observed revealing the binding kinetics of the biomarker to its specific target. Data from two distinct measurement fields are used for evaluation. For testing the sensor chip, 1 μM biotin as well as 1 μM recombinant human CD40 ligand were immobilized in spotsvia amin coupling to the sensor surface. Each binding experiment was performed with 250 nM streptavidin and 90 nM CD40 ligand antibody dissolved in phosphate buffered saline. In the next test series, a functionalized sensor chip was bonded onto a 15 mm x 15 mm opening of the 75 mm x 25 mm x 2 mm microfluidic system. We demonstrate the functionality of the microfluidic system for filtering human blood such that only blood plasma was transported to the sensor chip. The results of first binding experiments in buffer with this test chip will be presented.

  6. RC64, a Rad-Hard Many-Core High- Performance DSP for Space Applications

    NASA Astrophysics Data System (ADS)

    Ginosar, Ran; Aviely, Peleg; Gellis, Hagay; Liran, Tuvia; Israeli, Tsvika; Nesher, Roy; Lange, Fredy; Dobkin, Reuven; Meirov, Henri; Reznik, Dror

    2015-09-01

    RC64, a novel rad-hard 64-core signal processing chip targets DSP performance of 75 GMACs (16bit), 150 GOPS and 38 single precision GFLOPS while dissipating less than 10 Watts. RC64 integrates advanced DSP cores with a multi-bank shared memory and a hardware scheduler, also supporting DDR2/3 memory and twelve 3.125 Gbps full duplex high speed serial links using SpaceFibre and other protocols. The programming model employs sequential fine-grain tasks and a separate task map to define task dependencies. RC64 is implemented as a 300 MHz integrated circuit on a 65nm CMOS technology, assembled in hermetically sealed ceramic CCGA624 package and qualified to the highest space standards.

  7. RC64, a Rad-Hard Many-Core High-Performance DSP for Space Applications

    NASA Astrophysics Data System (ADS)

    Ginosar, Ran; Aviely, Peleg; Liran, Tuvia; Alon, Dov; Mandler, Alberto; Lange, Fredy; Dobkin, Reuven; Goldberg, Miki

    2014-08-01

    RC64, a novel rad-hard 64-core signal processing chip targets DSP performance of 75 GMACs (16bit), 150 GOPS and 20 single precision GFLOPS while dissipating less than 10 Watts. RC64 integrates advanced DSP cores with a multi-bank shared memory and a hardware scheduler, also supporting DDR2/3 memory and twelve 2.5 Gbps full duplex high speed serial links using SpaceFibre and other protocols. The programming model employs sequential fine-grain tasks and a separate task map to define task dependencies. RC64 is implemented as a 300 MHz integrated circuit on a 65nm CMOS technology, assembled in hermetically sealed ceramic CCGA624 package and qualified to the highest space standards.

  8. Design of the ANTARES LCM-DAQ board test bench using a FPGA-based system-on-chip approach

    NASA Astrophysics Data System (ADS)

    Anvar, S.; Kestener, P.; Le Provost, H.

    2006-11-01

    The System-on-Chip (SoC) approach consists in using state-of-the-art FPGA devices with embedded RISC processor cores, high-speed differential LVDS links and ready-to-use multi-gigabit transceivers allowing development of compact systems with substantial number of IO channels. Required performances are obtained through a subtle separation of tasks between closely cooperating programmable hardware logic and user-friendly software environment. We report about our experience in using the SoC approach for designing the production test bench of the off-shore readout system for the ANTARES neutrino experiment.

  9. Cytometer on a Chip

    NASA Technical Reports Server (NTRS)

    Fernandez, Salvador M.

    2011-01-01

    A cytometer now under development exploits spatial sorting of sampled cells on a microarray chip followed by use of grating-coupled surface-plasmon-resonance imaging (GCSPRI) to detect the sorted cells. This cytometer on a chip is a prototype of contemplated future miniature cytometers that would be suitable for rapidly identifying pathogens and other cells of interest in both field and laboratory applications and that would be attractive as alternatives to conventional flow cytometers. The basic principle of operation of a conventional flow cytometer requires fluorescent labeling of sampled cells, stringent optical alignment of a laser beam with a narrow orifice, and flow of the cells through the orifice, which is subject to clogging. In contrast, the principle of operation of the present cytometer on a chip does not require fluorescent labeling of cells, stringent optical alignment, or flow through a narrow orifice. The basic principle of operation of the cytometer on a chip also reduces the complexity, mass, and power of the associated laser and detection systems, relative to those needed in conventional flow cytometry. Instead of making cells flow in single file through a narrow flow orifice for sequential interrogation as in conventional flow cytometry, a liquid containing suspended sampled cells is made to flow over the front surface of a microarray chip on which there are many capture spots. Each capture spot is coated with a thin (approximately 50-nm) layer of gold that is, in turn, coated with antibodies that bind to cell-surface molecules characteristic of one the cell species of interest. The multiplicity of capture spots makes it possible to perform rapid, massively parallel analysis of a large cell population. The binding of cells to each capture spot gives rise to a minute change in the index of refraction at the surface of the chip. This change in the index of refraction is what is sensed in GCSPRI, as described briefly below. The identities of the various species in a sample of cells is spatially encoded in the chip by the pattern of capture spots. The number of cells of a particular species is determined from the magnitude of the GCSPRI signal from that spot. GCSPRI as used here can be summarized as follows: The cytometer chip is fabricated with a diffraction grating on its front surface. The chip is illuminated with a light emitting diode (LED) from the front. By proper choice of grating parameters and of the wavelength and the angle of incidence of a laser beam, laser light can be made to be coupled into an electromagnetic mode that resonates with surface plasmons and thus couples light into surface plasmons. Coupling of light into a surface plasmon at a given location reduces the amount of incident light reflected from that location. A change in the index of refraction at the surface of a capture spot gives rise to a change in the resonance condition. Depending on the specific design, the change in the index of refraction could manifest itself as a brightening or darkening, a change in the wavelength needed to excite the plasmon at a given angle of incidence, or a change in the angle of incidence needed to excite the plasmon at a given wavelength. Whereas a multiwavelength laser system with multichannel detection would be needed to detect multiple species in conventional flow cytometry, it suffices to use an LED and a single detector channel in the GCSPRI approach: this contributes significantly to reductions in cost, complexity, size, mass, and power. GCSPRI cytometer chips could be made of plastic and could be mass-produced cheaply by use of molding and other methods adopted from the manufacture of digital video disks. These methods are amenable to a high degree of miniaturization: such additional features as fluidic channels, reaction chambers, and fluid-coupling ports could readily be incorporated into the chips, without incurring substantial additional costs.

  10. Cytometer on a Chip

    NASA Technical Reports Server (NTRS)

    Fernandez, Salvador M.

    2011-01-01

    A cytometer now under development exploits spatial sorting of sampled cells on a microarray chip followed by use of grating-coupled surface-plasmon-resonance imaging (GCSPRI) to detect the sorted cells. This cytometer on a chip is a prototype of contemplated future miniature cytometers that would be suitable for rapidly identifying pathogens and other cells of interest in both field and laboratory applications and that would be attractive as alternatives to conventional flow cytometers. The basic principle of operation of a conventional flow cytometer requires fluorescent labeling of sampled cells, stringent optical alignment of a laser beam with a narrow orifice, and flow of the cells through the orifice, which is subject to clogging. In contrast, the principle of operation of the present cytometer on a chip does not require fluorescent labeling of cells, stringent optical alignment, or flow through a narrow orifice. The basic principle of operation of the cytometer on a chip also reduces the complexity, mass, and power of the associated laser and detection systems, relative to those needed in conventional flow cytometry. Instead of making cells flow in single file through a narrow flow orifice for sequential interrogation as in conventional flow cytometry, a liquid containing suspended sampled cells is made to flow over the front surface of a microarray chip on which there are many capture spots. Each capture spot is coated with a thin (.50-nm) layer of gold that is, in turn, coated with antibodies that bind to cell-surface molecules characteristic of the cell species of interest. The multiplicity of capture spots makes it possible to perform rapid, massively parallel analysis of a large cell population. The binding of cells to each capture spot gives rise to a minute change in the index of refraction at the surface of the chip. This change in the index of refraction is what is sensed in GCSPRI, as described briefly below. The identities of the various species in a sample of cells is spatially encoded in the chip by the pattern of capture spots. The number of cells of a particular species is determined from the magnitude of the GCSPRI signal from that spot. GCSPRI as used here can be summarized as follows: The cytometer chip is fabricated with a diffraction grating on its front surface. The chip is illuminated with a light emitting diode (LED) from the front. By proper choice of grating parameters and of the wavelength and the angle of incidence of a laser beam, laser light can be made to be coupled into an electromagnetic mode that resonates with surface plasmons and thus couples light into surface plasmons. Coupling of light into a surface plasmon at a given location reduces the amount of incident light reflected from that location. A change in the index of refraction at the surface of a capture spot gives rise to a change in the resonance condition. Depending on the specific design, the change in the index of refraction could manifest itself as a brightening or darkening, a change in the wavelength needed to excite the plasmon at a given angle of incidence, or a change in the angle of incidence needed to excite the plasmon at a given wavelength. Whereas a multiwavelength laser system with multichannel detection would be needed to detect multiple species in conventional flow cytometry, it suffices to use an LED and a single detector channel in the GCSPRI approach: this contributes significantly to reductions in cost, complexity, size, mass, and power. GCSPRI cytometer chips could be made of plastic and could be mass-produced cheaply by use of molding and other methods adopted from the manufacture of digital video disks. These methods are amenable to a high degree of miniaturization: such additional features as fluidic channels, reaction chambers, and fluid-coupling ports could readily be incorporated into the chips, without incurring substantial additional costs.

  11. Temporal variation in antibiotic environments slows down resistance evolution in pathogenic Pseudomonas aeruginosa

    PubMed Central

    Roemhild, Roderich; Barbosa, Camilo; Beardmore, Robert E; Jansen, Gunther; Schulenburg, Hinrich

    2015-01-01

    Antibiotic resistance is a growing concern to public health. New treatment strategies may alleviate the situation by slowing down the evolution of resistance. Here, we evaluated sequential treatment protocols using two fully independent laboratory-controlled evolution experiments with the human pathogen Pseudomonas aeruginosa PA14 and two pairs of clinically relevant antibiotics (doripenem/ciprofloxacin and cefsulodin/gentamicin). Our results consistently show that the sequential application of two antibiotics decelerates resistance evolution relative to monotherapy. Sequential treatment enhanced population extinction although we applied antibiotics at sublethal dosage. In both experiments, we identified an order effect of the antibiotics used in the sequential protocol, leading to significant variation in the long-term efficacy of the tested protocols. These variations appear to be caused by asymmetric evolutionary constraints, whereby adaptation to one drug slowed down adaptation to the other drug, but not vice versa. An understanding of such asymmetric constraints may help future development of evolutionary robust treatments against infectious disease. PMID:26640520

  12. Experiences with Lab-on-a-chip Technology in Support of NASA Supported Research

    NASA Technical Reports Server (NTRS)

    Monaco, Lisa

    2003-01-01

    Under the auspices of the Microgravity Sciences and Application Department at Marshall Space Flight Center, we have custom designed and fabricated a lab-on-a-chip (LOC) device, along with Caliper Technologies, for macromolecular crystal growth. The chip has been designed to deliver specified proportions of up-to five various constituents to one of two growth wells (on-chip) for crystal growth. To date, we have grown crystals of thaumatin, glucose isomerase and appoferitin on the chip. The LOC approach offered many advantages that rendered it highly suitable for space based hardware to perform crystal growth on the International Space Station. The same hardware that was utilized for the crystal growth investigations, has also been used by researchers at Glenn Research Center to investigate aspects of microfluidic phenomenon associated with two-phase flow. Additionally, our LOCAD (Lab-on-a-chip Application Development) team has lent its support to Johnson Space Center s Modular Assay for Solar System Exploration project. At present, the LOCAD team is working on the design and build of a unique lab-on-a-chip breadboard control unit whose function is not commercially available. The breadboard can be used as a test bed for the development of chip size labs for environmental monitoring, crew health monitoring assays, extended flight pharmacological preparations, and many more areas. This unique control unit will be configured for local use and/or remote operation, via the Internet, by other NASA centers. The lab-on-a-chip control unit is being developed with the primary goal of meeting Agency level strategic goals.

  13. Reducing interaction in simultaneous paired stimulation with CI.

    PubMed

    Vellinga, Dirk; Bruijn, Saskia; Briaire, Jeroen J; Kalkman, Randy K; Frijns, Johan H M

    2017-01-01

    In this study simultaneous paired stimulation of electrodes in cochlear implants is investigated by psychophysical experiments in 8 post-lingually deaf subjects (and one extra subject who only participated in part of the experiments). Simultaneous and sequential monopolar stimulation modes are used as references and are compared to channel interaction compensation, partial tripolar stimulation and a novel sequential stimulation strategy named phased array compensation. Psychophysical experiments are performed to investigate both the loudness integration during paired stimulation at the main electrodes as well as the interaction with the electrode contact located halfway between the stimulating pair. The study shows that simultaneous monopolar stimulation has more loudness integration on the main electrodes and more interaction in between the electrodes than sequential stimulation. Channel interaction compensation works to reduce the loudness integration at the main electrodes, but does not reduce the interaction in between the electrodes caused by paired stimulation. Partial tripolar stimulation uses much more current to reach the needed loudness, but shows the same interaction in between the electrodes as sequential monopolar stimulation. In phased array compensation we have used the individual impedance matrix of each subject to calculate the current needed on each electrode to exactly match the stimulation voltage along the array to that of sequential stimulation. The results show that the interaction in between the electrodes is the same as monopolar stimulation. The strategy uses less current than partial tripolar stimulation, but more than monopolar stimulation. In conclusion, the paper shows that paired stimulation is possible if the interaction is compensated.

  14. Technologies for autonomous integrated lab-on-chip systems for space missions

    NASA Astrophysics Data System (ADS)

    Nascetti, A.; Caputo, D.; Scipinotti, R.; de Cesare, G.

    2016-11-01

    Lab-on-chip devices are ideal candidates for use in space missions where experiment automation, system compactness, limited weight and low sample and reagent consumption are required. Currently, however, most microfluidic systems require external desktop instrumentation to operate and interrogate the chip, thus strongly limiting their use as stand-alone systems. In order to overcome the above-mentioned limitations our research group is currently working on the design and fabrication of "true" lab-on-chip systems that integrate in a single device all the analytical steps from the sample preparation to the detection without the need for bulky external components such as pumps, syringes, radiation sources or optical detection systems. Three critical points can be identified to achieve 'true' lab-on-chip devices: sample handling, analytical detection and signal transduction. For each critical point, feasible solutions are presented and evaluated. Proposed microfluidic actuation and control is based on electrowetting on dielectrics, autonomous capillary networks and active valves. Analytical detection based on highly specific chemiluminescent reactions is used to avoid external radiation sources. Finally, the integration on the same chip of thin film sensors based on hydrogenated amorphous silicon is discussed showing practical results achieved in different sensing tasks.

  15. Sequential lineup presentation promotes less-biased criterion setting but does not improve discriminability.

    PubMed

    Palmer, Matthew A; Brewer, Neil

    2012-06-01

    When compared with simultaneous lineup presentation, sequential presentation has been shown to reduce false identifications to a greater extent than it reduces correct identifications. However, there has been much debate about whether this difference in identification performance represents improved discriminability or more conservative responding. In this research, data from 22 experiments that compared sequential and simultaneous lineups were analyzed using a compound signal-detection model, which is specifically designed to describe decision-making performance on tasks such as eyewitness identification tests. Sequential (cf. simultaneous) presentation did not influence discriminability, but produced a conservative shift in response bias that resulted in less-biased choosing for sequential than simultaneous lineups. These results inform understanding of the effects of lineup presentation mode on eyewitness identification decisions.

  16. Lab-on-a-Chip Application Development-Portable Test System (LOCAD) Phase 2

    NASA Image and Video Library

    2009-03-21

    ISS018-E-041370 (21 March 2009) --- Astronaut Sandra Magnus, STS-119 mission specialist, prepares to work with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory while Space Shuttle Discovery remains docked with the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.

  17. New results on diamond pixel sensors using ATLAS frontend electronics

    NASA Astrophysics Data System (ADS)

    Keil, M.; Adam, W.; Berdermann, E.; Bergonzo, P.; de Boer, W.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Dulinski, W.; Doroshenko, J.; Doucet, M.; van Eijk, B.; Fallou, A.; Fischer, P.; Fizzotti, F.; Kania, D.; Gan, K. K.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kaplon, J.; Kass, R.; Knöpfle, K. T.; Koeth, T.; Krammer, M.; Logiudice, A.; mac Lynne, L.; Manfredotti, C.; Meier, D.; Menichelli, D.; Meuser, S.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pan, L. S.; Pernicka, M.; Perera, L.; Riester, J. L.; Roe, S.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Trischuk, W.; Tromson, D.; Vittone, E.; Weilhammer, P.; Wermes, N.; Wetstein, M.; Zeuner, W.; Zoeller, M.

    2003-03-01

    Diamond is a promising sensor material for future collider experiments due to its radiation hardness. Diamond pixel sensors have been bump bonded to an ATLAS pixel readout chip using PbSn solder bumps. Single chip devices have been characterised by lab measurements and in a high-energy pion beam at CERN. Results on charge collection, spatial resolution, efficiency and the charge carrier lifetime are presented.

  18. CHIP Demonstrator: Semantics-Driven Recommendations and Museum Tour Generation

    NASA Astrophysics Data System (ADS)

    Aroyo, Lora; Stash, Natalia; Wang, Yiwen; Gorgels, Peter; Rutledge, Lloyd

    The main objective of the CHIP project is to demonstrate how Semantic Web technologies can be deployed to provide personalized access to digital museum collections. We illustrate our approach with the digital database ARIA of the Rijksmuseum Amsterdam. For the semantic enrichment of the Rijksmuseum ARIA database we collaborated with the CATCH STITCH project to produce mappings to Iconclass, and with the MultimediaN E-culture project to produce the RDF/OWL of the ARIA and Adlib databases. The main focus of CHIP is on exploring the potential of applying adaptation techniques to provide personalized experience for the museum visitors both on the Web site and in the museum.

  19. Microfluidic proportional flow controller

    PubMed Central

    Prentice-Mott, Harrison; Toner, Mehmet; Irimia, Daniel

    2011-01-01

    Precise flow control in microfluidic chips is important for many biochemical assays and experiments at microscale. While several technologies for controlling fluid flow have been implemented either on- or off-chip, these can provide either high-speed or high-precision control, but seldom could accomplish both at the same time. Here we describe a new on-chip, pneumatically activated flow controller that allows for fast and precise control of the flow rate through a microfluidic channel. Experimental results show that the new proportional flow controllers exhibited a response time of approximately 250 ms, while our numerical simulations suggest that faster actuation down to approximately 50 ms could be achieved with alternative actuation schemes. PMID:21874096

  20. E3 Ubiquitin Ligase CHIP and NBR1-Mediated Selective Autophagy Protect Additively against Proteotoxicity in Plant Stress Responses

    PubMed Central

    Qi, Jingxia; Chi, Yingjin; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2014-01-01

    Plant stress responses require both protective measures that reduce or restore stress-inflicted damage to cellular structures and mechanisms that efficiently remove damaged and toxic macromolecules, such as misfolded and damaged proteins. We have recently reported that NBR1, the first identified plant autophagy adaptor with a ubiquitin-association domain, plays a critical role in plant stress tolerance by targeting stress-induced, ubiquitinated protein aggregates for degradation by autophagy. Here we report a comprehensive genetic analysis of CHIP, a chaperone-associated E3 ubiquitin ligase from Arabidopsis thaliana implicated in mediating degradation of nonnative proteins by 26S proteasomes. We isolated two chip knockout mutants and discovered that they had the same phenotypes as the nbr1 mutants with compromised tolerance to heat, oxidative and salt stresses and increased accumulation of insoluble proteins under heat stress. To determine their functional interactions, we generated chip nbr1 double mutants and found them to be further compromised in stress tolerance and in clearance of stress-induced protein aggregates, indicating additive roles of CHIP and NBR1. Furthermore, stress-induced protein aggregates were still ubiquitinated in the chip mutants. Through proteomic profiling, we systemically identified heat-induced protein aggregates in the chip and nbr1 single and double mutants. These experiments revealed that highly aggregate-prone proteins such as Rubisco activase and catalases preferentially accumulated in the nbr1 mutant while a number of light-harvesting complex proteins accumulated at high levels in the chip mutant after a relatively short period of heat stress. With extended heat stress, aggregates for a large number of intracellular proteins accumulated in both chip and nbr1 mutants and, to a greater extent, in the chip nbr1 double mutant. Based on these results, we propose that CHIP and NBR1 mediate two distinct but complementary anti-proteotoxic pathways and protein's propensity to aggregate under stress conditions is one of the critical factors for pathway selection of protein degradation. PMID:24497840

  1. Episodic Contributions to Sequential Control: Learning from a Typist's Touch

    ERIC Educational Resources Information Center

    Crump, Matthew J. C.; Logan, Gordon D.

    2010-01-01

    Sequential control over routine action is widely assumed to be controlled by stable, highly practiced representations. Our findings demonstrate that the processes controlling routine actions in the domain of skilled typing can be flexibly manipulated by memory processes coding recent experience with typing particular words and letters. In two…

  2. Decomposition of Copper (II) Sulfate Pentahydrate: A Sequential Gravimetric Analysis.

    ERIC Educational Resources Information Center

    Harris, Arlo D.; Kalbus, Lee H.

    1979-01-01

    Describes an improved experiment of the thermal dehydration of copper (II) sulfate pentahydrate. The improvements described here are control of the temperature environment and a quantitative study of the decomposition reaction to a thermally stable oxide. Data will suffice to show sequential gravimetric analysis. (Author/SA)

  3. Sequential Pointing in Children and Adults.

    ERIC Educational Resources Information Center

    Badan, Maryse; Hauert, Claude-Alain; Mounoud, Pierre

    2000-01-01

    Four experiments investigated the development of visuomotor control in sequential pointing in tasks varying in difficulty among 6- to 10-year-olds and adults. Comparisons across difficulty levels and ages suggest that motor development is not a uniform fine-tuning of stable strategies. Findings raise argument for stage characteristics of…

  4. Adult Word Recognition and Visual Sequential Memory

    ERIC Educational Resources Information Center

    Holmes, V. M.

    2012-01-01

    Two experiments were conducted investigating the role of visual sequential memory skill in the word recognition efficiency of undergraduate university students. Word recognition was assessed in a lexical decision task using regularly and strangely spelt words, and nonwords that were either standard orthographically legal strings or items made from…

  5. Sequential Dependencies in Driving

    ERIC Educational Resources Information Center

    Doshi, Anup; Tran, Cuong; Wilder, Matthew H.; Mozer, Michael C.; Trivedi, Mohan M.

    2012-01-01

    The effect of recent experience on current behavior has been studied extensively in simple laboratory tasks. We explore the nature of sequential effects in the more naturalistic setting of automobile driving. Driving is a safety-critical task in which delayed response times may have severe consequences. Using a realistic driving simulator, we find…

  6. Microfabrication of human organs-on-chips.

    PubMed

    Huh, Dongeun; Kim, Hyun Jung; Fraser, Jacob P; Shea, Daniel E; Khan, Mohammed; Bahinski, Anthony; Hamilton, Geraldine A; Ingber, Donald E

    2013-11-01

    'Organs-on-chips' are microengineered biomimetic systems containing microfluidic channels lined by living human cells, which replicate key functional units of living organs to reconstitute integrated human organ-level pathophysiology in vitro. These microdevices can be used to test efficacy and toxicity of drugs and chemicals, and to create in vitro models of human disease. Thus, they potentially represent low-cost alternatives to conventional animal models for pharmaceutical, chemical and environmental applications. Here we describe a protocol for the fabrication, microengineering and operation of these microfluidic organ-on-chip systems. First, microengineering is used to fabricate a multilayered microfluidic device that contains two parallel elastomeric microchannels separated by a thin porous flexible membrane, along with two full-height, hollow vacuum chambers on either side; this requires ∼3.5 d to complete. To create a 'breathing' lung-on-a-chip that mimics the mechanically active alveolar-capillary interface of the living human lung, human alveolar epithelial cells and microvascular endothelial cells are cultured in the microdevice with physiological flow and cyclic suction applied to the side chambers to reproduce rhythmic breathing movements. We describe how this protocol can be easily adapted to develop other human organ chips, such as a gut-on-a-chip lined by human intestinal epithelial cells that experiences peristalsis-like motions and trickling fluid flow. Also, we discuss experimental techniques that can be used to analyze the cells in these organ-on-chip devices.

  7. Attraction of Cerambycid Beetles to Their Aggregation-Sex Pheromones Is Influenced by Volatiles From Host Plants of Their Larvae.

    PubMed

    Wong, J C H; Zou, Y; Millar, J G; Hanks, L M

    2017-06-01

    Here, we describe a field experiment that tested for attraction of cerambycid beetles to odors from angiosperm hosts, and whether plant volatiles also serve to enhance attraction of beetles to their aggregation-sex pheromones. Traps were baited with a blend of synthesized chemicals that are common pheromone components of species in the subfamilies Cerambycinae and Lamiinae. The source of plant volatiles was chipped wood from trees of three angiosperm species, as well as from one nonhost, gymnosperm species. Bioassays were conducted in wooded areas of east-central Illinois. Traps were baited with the pheromone blend alone, the blend + wood chips from one tree species, wood chips alone, or a solvent control lure. Seven species of cerambycids were significantly attracted to the pheromone blend, with or without wood chips. In two cases, wood chips from angiosperms appeared to enhance attraction to pheromones, whereas they inhibited attraction in another three cases. Pine chips did not strongly influence attraction of any species. Overall, our results suggest that host plant volatiles from wood chips may improve trap catch with synthesized pheromones for some cerambycid species, but the effect is not general, necessitating case-by-case testing to determine how individual target species are affected. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Implementation Strategies for a Universal Acquisition and Tracking Channel Applied to Real GNSS Signals.

    PubMed

    Fortin, Marc-Antoine; Landry, René

    2016-05-02

    This paper presents a universal GNSS receiver channel capable of tracking any civil GNSS signal. This fundamentally differs from dedicated channels, each customized for a given signal. A mobile device could integrate fewer universal channels to harvest all available signals. This would allow securing signal availability, while minimizing power consumption and chip size, thus maximizing battery lifetime. In fact, the universal channel allows sequential acquisition and tracking of any chipping rate, carrier frequency, FDMA channel, modulation, or constellation, and is totally configurable (any integration time, any discriminator, etc.). It can switch from one signal to another in 1.07 ms, making it possible for the receiver to rapidly adapt to its sensed environment. All this would consume 3.5 mW/channel in an ASIC implementation, i.e., with a slight overhead compared to the original GPS L1 C/A dedicated channel from which it was derived. After extensive surveys on GNSS signals and tracking channels, this paper details the implementation strategies that led to the proposed universal channel architecture. Validation is achieved using GNSS signals issued from different constellations, frequency bands, modulations and spreading code schemes. A discussion on acquisition approaches and conclusive remarks follow, which open up a new signal selection challenge, rather than satellite selection.

  9. Implementation Strategies for a Universal Acquisition and Tracking Channel Applied to Real GNSS Signals

    PubMed Central

    Fortin, Marc-Antoine; Landry, René

    2016-01-01

    This paper presents a universal GNSS receiver channel capable of tracking any civil GNSS signal. This fundamentally differs from dedicated channels, each customized for a given signal. A mobile device could integrate fewer universal channels to harvest all available signals. This would allow securing signal availability, while minimizing power consumption and chip size, thus maximizing battery lifetime. In fact, the universal channel allows sequential acquisition and tracking of any chipping rate, carrier frequency, FDMA channel, modulation, or constellation, and is totally configurable (any integration time, any discriminator, etc.). It can switch from one signal to another in 1.07 ms, making it possible for the receiver to rapidly adapt to its sensed environment. All this would consume 3.5 mW/channel in an ASIC implementation, i.e., with a slight overhead compared to the original GPS L1 C/A dedicated channel from which it was derived. After extensive surveys on GNSS signals and tracking channels, this paper details the implementation strategies that led to the proposed universal channel architecture. Validation is achieved using GNSS signals issued from different constellations, frequency bands, modulations and spreading code schemes. A discussion on acquisition approaches and conclusive remarks follow, which open up a new signal selection challenge, rather than satellite selection. PMID:27144569

  10. Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels.

    PubMed

    Wang, Xiaolin; Phan, Duc T T; Sobrino, Agua; George, Steven C; Hughes, Christopher C W; Lee, Abraham P

    2016-01-21

    This paper reports a method for generating an intact and perfusable microvascular network that connects to microfluidic channels without appreciable leakage. This platform incorporates different stages of vascular development including vasculogenesis, endothelial cell (EC) lining, sprouting angiogenesis, and anastomosis in sequential order. After formation of a capillary network inside the tissue chamber via vasculogenesis, the adjacent microfluidic channels are lined with a monolayer of ECs, which then serve as the high-pressure input ("artery") and low pressure output ("vein") conduits. To promote a tight interconnection between the artery/vein and the capillary network, sprouting angiogenesis is induced, which promotes anastomosis of the vasculature inside the tissue chamber with the EC lining along the microfluidic channels. Flow of fluorescent microparticles confirms the perfusability of the lumenized microvascular network, and minimal leakage of 70 kDa FITC-dextran confirms physiologic tightness of the EC junctions and completeness of the interconnections between artery/vein and the capillary network. This versatile device design and its robust construction methodology establish a physiological transport model of interconnected perfused vessels from artery to vascularized tissue to vein. The system has utility in a wide range of organ-on-a-chip applications as it enables the physiological vascular interconnection of multiple on-chip tissue constructs that can serve as disease models for drug screening.

  11. Single-pipetting microfluidic assay device for rapid detection of Salmonella from poultry package.

    PubMed

    Fronczek, Christopher F; You, David J; Yoon, Jeong-Yeol

    2013-02-15

    A direct, sensitive, near-real-time, handheld optical immunoassay device was developed to detect Salmonella typhimurium in the naturally occurring liquid from fresh poultry packages (hereafter "chicken matrix"), with just single pipetting of sample (i.e., no filtration, culturing and/or isolation, thus reducing the assay time and the error associated with them). Carboxylated, polystyrene microparticles were covalently conjugated with anti-Salmonella, and the immunoagglutination due to the presence of Salmonella was detected by reading the Mie scatter signals from the microfluidic channels using a handheld device. The presence of chicken matrix did not affect the light scatter signal, since the optical parameters (particle size d, wavelength of incident light λ and scatter angle θ) were optimized to minimize the effect of sample matrix (animal tissues and blood proteins, etc.). The sample was loaded into a microfluidic chip that was split into two channels, one pre-loaded with vacuum-dried, antibody-conjugated particles and the other with vacuum-dried, bovine serum albumin-conjugated particles. This eliminated the need for a separate negative control, effectively minimizing chip-to-chip and sample-to-sample variations. Particles and the sample were diffused in-channel through chemical agitation by Tween 80, also vacuum-dried within the microchannels. Sequential mixing of the sample to the reagents under a strict laminar flow condition synergistically improved the reproducibility and linearity of the assay. In addition, dried particles were shown to successfully detect lower Salmonella concentrations for up to 8 weeks. The handheld device contains simplified circuitry eliminating unnecessary adjustment stages, providing a stable signal, thus maximizing sensitivity. Total assay time was 10 min, and the detection limit 10 CFU mL(-1) was observed in all matrices, demonstrating the suitability of this device for field assays. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. A fine structure genetic analysis evaluating ecoregional adaptability of a Bos taurus breed (Hereford)

    PubMed Central

    Krehbiel, B.; Ericsson, S. A.; Wilson, C.; Caetano, A. R.; Paiva, S. R.

    2017-01-01

    Ecoregional differences contribute to genetic environmental interactions and impact animal performance. These differences may become more important under climate change scenarios. Utilizing genetic diversity within a species to address such problems has not been fully explored. In this study Hereford cattle were genotyped with 50K Bead Chip or 770K Bovine Bead Chip to test the existence of genetic structure in five U.S. ecoregions characterized by precipitation, temperature and humidity and designated: cool arid (CA), cool humid (CH), transition zone (TZ), warm arid (WA), and warm humid (WH). SNP data were analyzed in three sequential analyses. Broad genetic structure was evaluated with STRUCTURE, and ADMIXTURE software using 14,312 SNPs after passing quality control variables. The second analysis was performed using principal coordinate analysis with 66 Tag SNPs associated in the literature with various aspects of environmental stressors (e.g., heat tolerance) or production (e.g., milk production). In the third analysis TreeSelect was used with the 66 SNPs to evaluate if ecoregional allelic frequencies deviated from a central frequency and by so doing are indicative of directional selection. The three analyses suggested subpopulation structures associated with ecoregions from where animals were derived. ADMIXTURE and PCA results illustrated the importance of temperature and humidity and confirm subpopulation assignments. Comparisons of allele frequencies with TreeSelect showed ecoregion differences, in particular the divergence between arid and humid regions. Patterns of genetic variability obtained by medium and high density SNP chips can be used to acclimatize a temperately derived breed to various ecoregions. As climate change becomes an important factor in cattle production, this study should be used as a proof of concept to review future breeding and conservation schemes aimed at adaptation to climatic events. PMID:28459870

  13. Postmortem endogenous ethanol production and diffusion from the lung due to aspiration of wood chip dust in the work place.

    PubMed

    Furumiya, Junichi; Nishimura, Hiroyuki; Nakanishi, Akinori; Hashimoto, Yoshiaki

    2011-07-01

    We report an autopsy case of postmortem ethanol diffusion into the cardiac blood after aspiration of wood chips, although antemortem ethanol consumption was not evident. A man in his twenties, who was loading a truck with small wood chips in a hot, humid storehouse, was accidentally buried in a heap of chips. At the time the body was discovered, 20 h after the accident, rectal temperature was 36°C. Autopsy showed the cause of death to be asphyxia due to obstruction of the airway by aspiration of wood chips. The ethanol and n-propanol levels were significantly higher in the lungs (left, 0.603 and 0.009 mg/g; right, 0.571 and 0.006 mg/g) than in other tissues. A significant difference in ethanol concentration was observed between the left cardiac blood (0.243 mg/g) and the right femoral blood (0.042 mg/g). Low levels of ethanol and n-propanol were detected in the stomach contents (0.105 and 0.001 mg/g, respectively). In order to determine whether aspiration of wood chips affects postmortem ethanol production in the lung, we measured the ethanol and n-propanol levels of homogenized rabbit lung tissue incubated with autoclaved or non-autoclaved wood chips. Levels of ethanol and n-propanol were significantly higher in the homogenates incubated with non-autoclaved chips for 24h. The results of this animal experiment suggested that the ethanol detected in the lung was produced by putrefactive bacteria within the wood chips. After death, the ethanol produced endogenously in the lung appears to have diffused and affected the ethanol concentration of the left cardiac blood. 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Improvement and Analysis of the Radiation Response of RADFET Dosimeters

    DTIC Science & Technology

    1992-06-15

    TLD ), silicon p-i-n diode responses and silicon calorimetry (AWE Dosimetry Service). Intensive preparations were made by REM and the experiments were...SUB-GROUP dose: RADFET : tactical dosimetry silicon : metal-oxide- 0705 emiconductor (MOS) field effect transistor (FET) : silicon Idioxide space...1.1 Principle of a dosimetry system, based on the RADFET (radiation-sensitive field-effect transistor) (a) microscopic cross-section of chip (b) chip

  15. Array Receivers and Sound Sources for Three Dimensional Shallow Water Acoustic Field Experiments

    DTIC Science & Technology

    2016-12-06

    upgrade included improving the SHRU clocks by utilizing chip- scale atomic clocks (CSAC), enlarging battery packs to extend the operation duration, and...instrument upgrade included improving the SHRU clocks by utilizing chip-scale atomic clocks (CSAC), enlarging battery packs to extend the operation...Changing the deployment configuration to use dual pressure housings to augment the alkaline primary battery payload to achieve the one-year duration

  16. A preliminary study of the deterioration of alder and Douglas-fir chips in outdoor piles.

    Treesearch

    Ernest. Wright

    1954-01-01

    In the fall of 1952, E. E. Matson of the Pacific Northwest Forest and Range Experiment Station learned that the Fir-Tex Insulating Board Company bf St. Helens, Oregon was considering mixing alder with Douglas-fir chips for outside storage. Since alder heartwood i s more susceptible to decay than that of Douglas-fir, the question arose whether mixing the two might...

  17. Organization principles in visual working memory: Evidence from sequential stimulus display.

    PubMed

    Gao, Zaifeng; Gao, Qiyang; Tang, Ning; Shui, Rende; Shen, Mowei

    2016-01-01

    Although the mechanisms of visual working memory (VWM) have been studied extensively in recent years, the active property of VWM has received less attention. In the current study, we examined how VWM integrates sequentially presented stimuli by focusing on the role of Gestalt principles, which are important organizing principles in perceptual integration. We manipulated the level of Gestalt cues among three or four sequentially presented objects that were memorized. The Gestalt principle could not emerge unless all the objects appeared together. We distinguished two hypotheses: a perception-alike hypothesis and an encoding-specificity hypothesis. The former predicts that the Gestalt cue will play a role in information integration within VWM; the latter predicts that the Gestalt cue will not operate within VWM. In four experiments, we demonstrated that collinearity (Experiment 1) and closure (Experiment 2) cues significantly improved VWM performance, and this facilitation was not affected by the testing manner (Experiment 3) or by adding extra colors to the memorized objects (Experiment 4). Finally, we re-established the Gestalt cue benefit with similarity cues (Experiment 5). These findings together suggest that VWM realizes and uses potential Gestalt principles within the stored representations, supporting a perception-alike hypothesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Simultaneous Versus Sequential Presentation in Testing Recognition Memory for Faces.

    PubMed

    Finley, Jason R; Roediger, Henry L; Hughes, Andrea D; Wahlheim, Christopher N; Jacoby, Larry L

    2015-01-01

    Three experiments examined the issue of whether faces could be better recognized in a simul- taneous test format (2-alternative forced choice [2AFC]) or a sequential test format (yes-no). All experiments showed that when target faces were present in the test, the simultaneous procedure led to superior performance (area under the ROC curve), whether lures were high or low in similarity to the targets. However, when a target-absent condition was used in which no lures resembled the targets but the lures were similar to each other, the simultaneous procedure yielded higher false alarm rates (Experiments 2 and 3) and worse overall performance (Experi- ment 3). This pattern persisted even when we excluded responses that participants opted to withhold rather than volunteer. We conclude that for the basic recognition procedures used in these experiments, simultaneous presentation of alternatives (2AFC) generally leads to better discriminability than does sequential presentation (yes-no) when a target is among the alterna- tives. However, our results also show that the opposite can occur when there is no target among the alternatives. An important future step is to see whether these patterns extend to more realistic eyewitness lineup procedures. The pictures used in the experiment are available online at http://www.press.uillinois.edu/journals/ajp/media/testing_recognition/.

  19. Intelligent operations of the data acquisition system of the ATLAS experiment at LHC

    NASA Astrophysics Data System (ADS)

    Anders, G.; Avolio, G.; Lehmann Miotto, G.; Magnoni, L.

    2015-05-01

    The ATLAS experiment at the Large Hadron Collider at CERN relies on a complex and highly distributed Trigger and Data Acquisition (TDAQ) system to gather and select particle collision data obtained at unprecedented energy and rates. The Run Control (RC) system is the component steering the data acquisition by starting and stopping processes and by carrying all data-taking elements through well-defined states in a coherent way. Taking into account all the lessons learnt during LHC's Run 1, the RC has been completely re-designed and re-implemented during the LHC Long Shutdown 1 (LS1) phase. As a result of the new design, the RC is assisted by the Central Hint and Information Processor (CHIP) service that can be truly considered its “brain”. CHIP is an intelligent system able to supervise the ATLAS data taking, take operational decisions and handle abnormal conditions. In this paper, the design, implementation and performances of the RC/CHIP system will be described. A particular emphasis will be put on the way the RC and CHIP cooperate and on the huge benefits brought by the Complex Event Processing engine. Additionally, some error recovery scenarios will be analysed for which the intervention of human experts is now rendered unnecessary.

  20. A free-running, time-based readout method for particle detectors

    NASA Astrophysics Data System (ADS)

    Goerres, A.; Bugalho, R.; Di Francesco, A.; Gastón, C.; Gonçalves, F.; Mazza, G.; Mignone, M.; Di Pietro, V.; Riccardi, A.; Ritman, J.; Rivetti, A.; Rolo, M. D.; da Silva, J. C.; Silva, R.; Stockmanns, T.; Varela, J.; Veckalns, V.; Wheadon, R.

    2014-03-01

    For the EndoTOFPET-US experiment, the TOFPET ASIC has been developed as a front-end chip to read out data from silicon photomultipliers (SiPM) [1]. It introduces a time of flight information into the measurement of a PET scanner and hence reduces radiation exposure of the patient [2]. The chip is designed to work with a high event rate up to 100 kHz and a time resolution of 50 ps LSB. Using two threshold levels, it can measure the leading edge of the event pulse precisely while successfully suppressing dark counts from the SiPM. This also enables a time over threshold determination, leading to a charge measurement of the signal's pulse. The same, time-based concept is chosen for the PASTA chip used in the PANDA experiment. This high-energy particle detector contains sub-systems for specific measurement goals. The innermost of these is the Micro Vertex Detector, a silicon-based tracking system. The PASTA chip's approach is much like the TOFPET ASIC with some differences. The most significant ones are a changed amplifying part for different input signals as well as protection for radiation effects of the high-radiation environment. Apart from that, the simple and general concept combined with a small area and low power consumption support the choice for using this approach.

  1. Transient deformation of a droplet near a microfluidic constriction: A quantitative analysis

    NASA Astrophysics Data System (ADS)

    Trégouët, Corentin; Salez, Thomas; Monteux, Cécile; Reyssat, Mathilde

    2018-05-01

    We report on experiments that consist of deforming a collection of monodisperse droplets produced by a microfluidic chip through a flow-focusing device. We show that a proper numerical modeling of the flow is necessary to access the stress applied by the latter on the droplet along its trajectory through the chip. This crucial step enables the full integration of the differential equation governing the dynamical deformation, and consequently the robust measurement of the interfacial tension by fitting the experiments with the calculated deformation. Our study thus demonstrates the feasibility of quantitative in situ rheology in microfluidic flows involving, e.g., droplets, capsules, or cells.

  2. LLL 8080 BASIC-II interpreter user's manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGoldrick, P.R.; Dickinson, J.; Allison, T.G.

    1978-04-03

    Scientists are finding increased applications for microprocessors as process controllers in their experiments. However, while microprocessors are small and inexpensive, they are difficult to program in machine or assembly language. A high-level language is needed to enable scientists to develop their own microcomputer programs for their experiments on location. Recognizing this need, LLL contracted to have such a language developed. This report describes the resulting LLL BASIC interpreter, which opeates with LLL's 8080-based MCS-8 microcomputer system. All numerical operations are done using Advanced Micro Device's Am9511 arithmetic processor chip or optionally by using a software simulation of that chip. 1more » figure.« less

  3. Back-end and interface implementation of the STS-XYTER2 prototype ASIC for the CBM experiment

    NASA Astrophysics Data System (ADS)

    Kasinski, K.; Szczygiel, R.; Zabolotny, W.

    2016-11-01

    Each front-end readout ASIC for the High-Energy Physics experiments requires robust and effective hit data streaming and control mechanism. A new STS-XYTER2 full-size prototype chip for the Silicon Tracking System and Muon Chamber detectors in the Compressed Baryonic Matter experiment at Facility for Antiproton and Ion Research (FAIR, Germany) is a 128-channel time and amplitude measuring solution for silicon microstrip and gas detectors. It operates at 250 kHit/s/channel hit rate, each hit producing 27 bits of information (5-bit amplitude, 14-bit timestamp, position and diagnostics data). The chip back-end implements fast front-end channel read-out, timestamp-wise hit sorting, and data streaming via a scalable interface implementing the dedicated protocol (STS-HCTSP) for chip control and hit transfer with data bandwidth from 9.7 MHit/s up to 47 MHit/s. It also includes multiple options for link diagnostics, failure detection, and throttling features. The back-end is designed to operate with the data acquisition architecture based on the CERN GBTx transceivers. This paper presents the details of the back-end and interface design and its implementation in the UMC 180 nm CMOS process.

  4. Practice-induced and sequential modulations of the Simon effect.

    PubMed

    Soetens, Eric; Maetens, Kathleen; Zeischka, Peter

    2010-05-01

    People react more quickly and more accurately to stimuli presented in locations corresponding to the response, as compared with noncorresponding locations, even when stimulus location is irrelevant (Simon effect [SE]). The explanation that SEs are caused by the automatic priming of a corresponding response has been questioned, because of the many exceptions to the effect. We replicated practice-induced and sequential modulations of the SE in two experiments--first, by training participants with blocks of location-relevant stimuli, and second, by mixing location-relevant and location-irrelevant trials. The decrease of the SE with incompatible training was relatively permanent in the blocked experiment, whereas the effect was temporary in the mixed experiment. The difference was caused by a more permanent reversal of the SE after incongruent trials, showing that sequential modulations depend on long-term practice effects. We suggest that there is a formation of a contralateral long-term memory stimulus-response link in blocked conditions and that short-term and long-term memory links are primed by preceding events.

  5. Novel 2D Triple-Resonance NMR Experiments for Sequential Resonance Assignments of Proteins

    NASA Astrophysics Data System (ADS)

    Ding, Keyang; Gronenborn, Angela M.

    2002-06-01

    We present 2D versions of the popular triple resonance HN(CO) CACB, HN(COCA)CACB, HN(CO)CAHA, and HN(COCA) CAHA experiments, commonly used for sequential resonance assignments of proteins. These experiments provide information about correlations between amino proton and nitrogen chemical shifts and the α- and β-carbon and α-proton chemical shifts within and between amino acid residues. Using these 2D spectra, sequential resonance assignments of H N, N, C α, C β, and H α nuclei are easily achieved. The resolution of these spectra is identical to the well-resolved 2D 15N- 1H HSQC and H(NCO)CA spectra, with slightly reduced sensitivity compared to their 3D and 4D versions. These types of spectra are ideally suited for exploitation in automated assignment procedures and thereby constitute a fast and efficient means for NMR structural determination of small and medium-sized proteins in solution in structural genomics programs.

  6. Win-Stay, Lose-Sample: a simple sequential algorithm for approximating Bayesian inference.

    PubMed

    Bonawitz, Elizabeth; Denison, Stephanie; Gopnik, Alison; Griffiths, Thomas L

    2014-11-01

    People can behave in a way that is consistent with Bayesian models of cognition, despite the fact that performing exact Bayesian inference is computationally challenging. What algorithms could people be using to make this possible? We show that a simple sequential algorithm "Win-Stay, Lose-Sample", inspired by the Win-Stay, Lose-Shift (WSLS) principle, can be used to approximate Bayesian inference. We investigate the behavior of adults and preschoolers on two causal learning tasks to test whether people might use a similar algorithm. These studies use a "mini-microgenetic method", investigating how people sequentially update their beliefs as they encounter new evidence. Experiment 1 investigates a deterministic causal learning scenario and Experiments 2 and 3 examine how people make inferences in a stochastic scenario. The behavior of adults and preschoolers in these experiments is consistent with our Bayesian version of the WSLS principle. This algorithm provides both a practical method for performing Bayesian inference and a new way to understand people's judgments. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Rural Oregon community perspectives: introducing community-based participatory research into a community health coalition.

    PubMed

    Young-Lorion, Julia; Davis, Melinda M; Kirks, Nancy; Hsu, Anna; Slater, Jana Kay; Rollins, Nancy; Aromaa, Susan; McGinnis, Paul

    2013-01-01

    The Community Health Improvement Partnership (CHIP) model has supported community health development in more than 100 communities nationally. In 2011, four rural Oregon CHIPs collaborated with investigators from the Oregon Rural Practice-based Research Network (ORPRN), a component of the Oregon Clinical and Translational Research Institute (OCTRI), to obtain training on research methods, develop and implement pilot research studies on childhood obesity, and explore matches with academic partners. This article summarizes the experiences of the Lincoln County CHIP, established in 2003, as it transitioned from CHIP to Community Health Improvement and Research Partnership (CHIRP). Our story and lessons learned may inform rural community-based health coalitions and academicians who are engaged in or considering Community-based participatory research (CBPR) partnerships. Utilizing existing infrastructure and relationships in community and academic settings provides an ideal starting point for rural, bidirectional research partnerships.

  8. On-chip microlasers for biomolecular detection via highly localized deposition of a multifunctional phospholipid ink.

    PubMed

    Bog, Uwe; Laue, Thomas; Grossmann, Tobias; Beck, Torsten; Wienhold, Tobias; Richter, Benjamin; Hirtz, Michael; Fuchs, Harald; Kalt, Heinz; Mappes, Timo

    2013-07-21

    We report on a novel approach to realize on-chip microlasers, by applying highly localized and material-saving surface functionalization of passive photonic whispering gallery mode microresonators. We apply dip-pen nanolithography on a true three-dimensional structure. We coat solely the light-guiding circumference of pre-fabricated poly(methyl methacrylate) resonators with a multifunctional molecular ink. The functionalization is performed in one single fabrication step and simultaneously provides optical gain as well as molecular binding selectivity. This allows for a direct and flexible realization of on-chip microlasers, which can be utilized as biosensors in optofluidic lab-on-a-chip applications. In a proof-of-concept we show how this highly localized molecule deposition suffices for low-threshold lasing in air and water, and demonstrate the capability of the ink-lasers as biosensors in a biotin-streptavidin binding experiment.

  9. Measuring Incompatible Observables by Exploiting Sequential Weak Values.

    PubMed

    Piacentini, F; Avella, A; Levi, M P; Gramegna, M; Brida, G; Degiovanni, I P; Cohen, E; Lussana, R; Villa, F; Tosi, A; Zappa, F; Genovese, M

    2016-10-21

    One of the most intriguing aspects of quantum mechanics is the impossibility of measuring at the same time observables corresponding to noncommuting operators, because of quantum uncertainty. This impossibility can be partially relaxed when considering joint or sequential weak value evaluation. Indeed, weak value measurements have been a real breakthrough in the quantum measurement framework that is of the utmost interest from both a fundamental and an applicative point of view. In this Letter, we show how we realized for the first time a sequential weak value evaluation of two incompatible observables using a genuine single-photon experiment. These (sometimes anomalous) sequential weak values revealed the single-operator weak values, as well as the local correlation between them.

  10. Measuring Incompatible Observables by Exploiting Sequential Weak Values

    NASA Astrophysics Data System (ADS)

    Piacentini, F.; Avella, A.; Levi, M. P.; Gramegna, M.; Brida, G.; Degiovanni, I. P.; Cohen, E.; Lussana, R.; Villa, F.; Tosi, A.; Zappa, F.; Genovese, M.

    2016-10-01

    One of the most intriguing aspects of quantum mechanics is the impossibility of measuring at the same time observables corresponding to noncommuting operators, because of quantum uncertainty. This impossibility can be partially relaxed when considering joint or sequential weak value evaluation. Indeed, weak value measurements have been a real breakthrough in the quantum measurement framework that is of the utmost interest from both a fundamental and an applicative point of view. In this Letter, we show how we realized for the first time a sequential weak value evaluation of two incompatible observables using a genuine single-photon experiment. These (sometimes anomalous) sequential weak values revealed the single-operator weak values, as well as the local correlation between them.

  11. Using Zebra-speech to study sequential and simultaneous speech segregation in a cochlear-implant simulation.

    PubMed

    Gaudrain, Etienne; Carlyon, Robert P

    2013-01-01

    Previous studies have suggested that cochlear implant users may have particular difficulties exploiting opportunities to glimpse clear segments of a target speech signal in the presence of a fluctuating masker. Although it has been proposed that this difficulty is associated with a deficit in linking the glimpsed segments across time, the details of this mechanism are yet to be explained. The present study introduces a method called Zebra-speech developed to investigate the relative contribution of simultaneous and sequential segregation mechanisms in concurrent speech perception, using a noise-band vocoder to simulate cochlear implants. One experiment showed that the saliency of the difference between the target and the masker is a key factor for Zebra-speech perception, as it is for sequential segregation. Furthermore, forward masking played little or no role, confirming that intelligibility was not limited by energetic masking but by across-time linkage abilities. In another experiment, a binaural cue was used to distinguish the target and the masker. It showed that the relative contribution of simultaneous and sequential segregation depended on the spectral resolution, with listeners relying more on sequential segregation when the spectral resolution was reduced. The potential of Zebra-speech as a segregation enhancement strategy for cochlear implants is discussed.

  12. Using Zebra-speech to study sequential and simultaneous speech segregation in a cochlear-implant simulation

    PubMed Central

    Gaudrain, Etienne; Carlyon, Robert P.

    2013-01-01

    Previous studies have suggested that cochlear implant users may have particular difficulties exploiting opportunities to glimpse clear segments of a target speech signal in the presence of a fluctuating masker. Although it has been proposed that this difficulty is associated with a deficit in linking the glimpsed segments across time, the details of this mechanism are yet to be explained. The present study introduces a method called Zebra-speech developed to investigate the relative contribution of simultaneous and sequential segregation mechanisms in concurrent speech perception, using a noise-band vocoder to simulate cochlear implants. One experiment showed that the saliency of the difference between the target and the masker is a key factor for Zebra-speech perception, as it is for sequential segregation. Furthermore, forward masking played little or no role, confirming that intelligibility was not limited by energetic masking but by across-time linkage abilities. In another experiment, a binaural cue was used to distinguish target and masker. It showed that the relative contribution of simultaneous and sequential segregation depended on the spectral resolution, with listeners relying more on sequential segregation when the spectral resolution was reduced. The potential of Zebra-speech as a segregation enhancement strategy for cochlear implants is discussed. PMID:23297922

  13. The Impact of Body Image on the WTP Values for Reduced-Fat and Low-Salt Content Potato Chips among Obese and Non-Obese Consumers.

    PubMed

    de-Magistris, Tiziana; López-Galán, Belinda; Caputo, Vincenzina

    2016-12-21

    The aim of this study is to assess the influence of body image on consumers' willingness to pay (WTP) for potato chips carrying nutritional claims among obese and non-obese people. About 309 non-clinical individuals participated in a Real Choice Experiment. They were recruited by a company and grouped in: (i) non-obese with good body image; (ii) non-obese with body image dissatisfaction; (iii) obese with good body image; (iv) obese with body image dissatisfaction. Results indicate differences in consumers' willingness to pay among consumer groups. Body image dissatisfaction of normal people did not influence the WTP for healthier chips. Obese people with body image dissatisfaction were willing to pay more for healthier chips (i.e., low-salt content potato chips) than normal ones with body image dissatisfaction. Examining the role of knowledge in the light of how this could impact on body image is relevant to improve the health status of individuals and their diet. Knowledge about nutrition could improve the body image of obese people.

  14. Microfluidic liquid-air dual-gradient chip for synergic effect bio-evaluation of air pollutant.

    PubMed

    Liu, Xian-Jun; Hu, Shan-Wen; Xu, Bi-Yi; Zhao, Ge; Li, Xiang; Xie, Fu-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2018-05-15

    In this paper, a novel prototype liquid-air dual gradient chip is introduced, which has paved the way for effective synergic effect bio-evaluation of air pollutant. The chip is composed of an array of the agarose liquid-air interfaces, top air gradient layer and bottom liquid gradient layer. The novel agarose liquid-air interface allows for non-biased exposure of cells to all the substances in the air and diffusive interactions with the liquid phase; while the dual liquid-air gradient provides powerful screening abilities, which well reduced errors, saved time and cost from repeated experiment. Coupling the two functions, the chip subsequently facilitates synergic effect evaluation of both liquid and air factors on cells. Here cigarette smoke was taken as the model air pollutant, and its strong synergic effects with inflammatory level of A549 lung cancer cells on their fate were successfully quantified for the first time. These results well testified that the proposed dual-gradient chip is powerful and indispensable for bio-evaluation of air pollutant. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. The Impact of Body Image on the WTP Values for Reduced-Fat and Low-Salt Content Potato Chips among Obese and Non-Obese Consumers

    PubMed Central

    de-Magistris, Tiziana; López-Galán, Belinda; Caputo, Vincenzina

    2016-01-01

    The aim of this study is to assess the influence of body image on consumers’ willingness to pay (WTP) for potato chips carrying nutritional claims among obese and non-obese people. About 309 non-clinical individuals participated in a Real Choice Experiment. They were recruited by a company and grouped in: (i) non-obese with good body image; (ii) non-obese with body image dissatisfaction; (iii) obese with good body image; (iv) obese with body image dissatisfaction. Results indicate differences in consumers’ willingness to pay among consumer groups. Body image dissatisfaction of normal people did not influence the WTP for healthier chips. Obese people with body image dissatisfaction were willing to pay more for healthier chips (i.e., low-salt content potato chips) than normal ones with body image dissatisfaction. Examining the role of knowledge in the light of how this could impact on body image is relevant to improve the health status of individuals and their diet. Knowledge about nutrition could improve the body image of obese people. PMID:28009815

  16. A Medipix3 readout system based on the National Instruments FlexRIO card and using the LabVIEW programming environment

    NASA Astrophysics Data System (ADS)

    Horswell, I.; Gimenez, E. N.; Marchal, J.; Tartoni, N.

    2011-01-01

    Hybrid silicon photon-counting detectors are becoming standard equipment for many synchrotron applications. The latest in the Medipix family of read-out chips designed as part of the Medipix Collaboration at CERN is the Medipix3, which while maintaining the same pixel size as its predecessor, offers increased functionality and operating modes. The active area of the Medipix3 chip is approx 14mm × 14mm (containing 256 × 256 pixels) which is not large enough for many detector applications, this results in the need to tile many sensors and chips. As a first step on the road to develop such a detector, it was decided to build a prototype single chip readout system to gain the necessary experience in operating a Medipix3 chip. To provide a flexible learning and development tool it was decided to build an interface based on the recently released FlexRIOTM system from National Instruments and to use the LabVIEWTM graphical programming environment. This system and the achieved performance are described in this paper.

  17. On-chip Magnetic Separation and Cell Encapsulation in Droplets

    NASA Astrophysics Data System (ADS)

    Chen, A.; Byvank, T.; Bharde, A.; Miller, B. L.; Chalmers, J. J.; Sooryakumar, R.; Chang, W.-J.; Bashir, R.

    2012-02-01

    The demand for high-throughput single cell assays is gaining importance because of the heterogeneity of many cell suspensions, even after significant initial sorting. These suspensions may display cell-to-cell variability at the gene expression level that could impact single cell functional genomics, cancer, stem-cell research and drug screening. The on-chip monitoring of individual cells in an isolated environment could prevent cross-contamination, provide high recovery yield and ability to study biological traits at a single cell level These advantages of on-chip biological experiments contrast to conventional methods, which require bulk samples that provide only averaged information on cell metabolism. We report on a device that integrates microfluidic technology with a magnetic tweezers array to combine the functionality of separation and encapsulation of objects such as immunomagnetically labeled cells or magnetic beads into pico-liter droplets on the same chip. The ability to control the separation throughput that is independent of the hydrodynamic droplet generation rate allows the encapsulation efficiency to be optimized. The device can potentially be integrated with on-chip labeling and/or bio-detection to become a powerful single-cell analysis device.

  18. Kullback-Leibler information function and the sequential selection of experiments to discriminate among several linear models

    NASA Technical Reports Server (NTRS)

    Sidik, S. M.

    1972-01-01

    The error variance of the process prior multivariate normal distributions of the parameters of the models are assumed to be specified, prior probabilities of the models being correct. A rule for termination of sampling is proposed. Upon termination, the model with the largest posterior probability is chosen as correct. If sampling is not terminated, posterior probabilities of the models and posterior distributions of the parameters are computed. An experiment was chosen to maximize the expected Kullback-Leibler information function. Monte Carlo simulation experiments were performed to investigate large and small sample behavior of the sequential adaptive procedure.

  19. Repeated exposure to two stressors in sequence demonstrates that corticosterone and paraventricular nucleus of the hypothalamus interleukin-1β responses habituate independently.

    PubMed

    Lovelock, D F; Deak, T

    2017-09-01

    A wide range of stress-related pathologies such as post-traumatic stress disorder are considered to arise from aberrant or maladaptive forms of stress adaptation. The hypothalamic-pituitary-adrenal (HPA) axis readily adapts to repeated stressor exposure, yet little is known about adaptation in neuroimmune responses to repeated or sequential stress challenges. In Experiment 1, rats were exposed to 10 days of restraint alone (60 minutes daily), forced swim alone (30 minutes daily) or daily sequential exposure to restraint (60 minutes) followed immediately by forced swim (30 minutes), termed sequential stress exposure. Habituation of the corticosterone (CORT) response occurred to restraint by 5 days and swim at 10 days, whereas rats exposed to sequential stress exposure failed to display habituation to the combined challenge. Experiment 2 compared 1 or 5 days of forced swim with sequential stress exposure and examined how each affected expression of several neuroimmune and cellular activation genes in the paraventricular nucleus of the hypothalamus (PVN), prefrontal cortex (PFC) and hippocampus (HPC). Sequential exposure to restraint and swim increased interleukin (IL)-1β in the PVN, an effect that was attenuated after 5 days. Sequential stress exposure also elicited IL-6 and tumour necrosis factor-α responses in the HPC and PFC, respectively, which did not habituate after 5 days. Experiment 3 tested whether prior habituation to restraint (5 days) would alter the IL-1β response evoked by swim exposure imposed immediately after the sixth day of restraint. Surprisingly, a history of repeated exposure to restraint attenuated the PVN IL-1β response after swim in comparison to acutely-exposed subjects despite an equivalent CORT response. Overall, these findings suggest that habituation of neuroimmune responses to stress proceeds: (i) independent of HPA axis habituation; (ii) likely requires more daily sessions of stress to develop; and (iii) IL-1β displays a greater tendency to habituate after repeated stress challenges compared to other stress-reactive cytokines. © 2017 British Society for Neuroendocrinology.

  20. [Effect of organic materials in controlling cucumber seedling diseases].

    PubMed

    Yuan, Fei; Peng, Yu; Zhang, Chunlan; Shen, Qirong

    2004-05-01

    In this work, pot experiments with organic materials were carried out to study the alleviation of Fusarim wilt and Rhizictonia wilt of cucumber and the changes of soil microorganism. The results showed that rice straw, pig feces and wood chip could alleviate Fusarium wiltand Rhizoctonia wilt of cucumber, and the effect of rice strawwas most significant, followed by pig feces and wood chip. The amount of soil microbes was higher in organic materials treatments than in control. The total amount of actinomyces and epidhyte which can inhibit the growth of pathogen was the highest in rice straw treatment, followed by pig feces treatment. No significant change of soil microbial amount was found in wood chip treatment.

  1. Teaching Improvisation through Melody and Blues-Based Harmony: A Comprehensive and Sequential Approach

    ERIC Educational Resources Information Center

    Heil, Leila

    2017-01-01

    This article describes a sequential approach to improvisation teaching that can be used with students at various age and ability levels by any educator, regardless of improvisation experience. The 2014 National Core Music Standards include improvisation as a central component in musical learning and promote instructional approaches that are…

  2. (Pea)nuts and Bolts of Visual Narrative: Structure and Meaning in Sequential Image Comprehension

    ERIC Educational Resources Information Center

    Cohn, Neil; Paczynski, Martin; Jackendoff, Ray; Holcomb, Phillip J.; Kuperberg, Gina R.

    2012-01-01

    Just as syntax differentiates coherent sentences from scrambled word strings, the comprehension of sequential images must also use a cognitive system to distinguish coherent narrative sequences from random strings of images. We conducted experiments analogous to two classic studies of language processing to examine the contributions of narrative…

  3. Apollo experience report: Command and service module sequential events control subsystem

    NASA Technical Reports Server (NTRS)

    Johnson, G. W.

    1975-01-01

    The Apollo command and service module sequential events control subsystem is described, with particular emphasis on the major systems and component problems and solutions. The subsystem requirements, design, and development and the test and flight history of the hardware are discussed. Recommendations to avoid similar problems on future programs are outlined.

  4. Judgments relative to patterns: how temporal sequence patterns affect judgments and memory.

    PubMed

    Kusev, Petko; Ayton, Peter; van Schaik, Paul; Tsaneva-Atanasova, Krasimira; Stewart, Neil; Chater, Nick

    2011-12-01

    Six experiments studied relative frequency judgment and recall of sequentially presented items drawn from 2 distinct categories (i.e., city and animal). The experiments show that judged frequencies of categories of sequentially encountered stimuli are affected by certain properties of the sequence configuration. We found (a) a first-run effect whereby people overestimated the frequency of a given category when that category was the first repeated category to occur in the sequence and (b) a dissociation between judgments and recall; respondents may judge 1 event more likely than the other and yet recall more instances of the latter. Specifically, the distribution of recalled items does not correspond to the frequency estimates for the event categories, indicating that participants do not make frequency judgments by sampling their memory for individual items as implied by other accounts such as the availability heuristic (Tversky & Kahneman, 1973) and the availability process model (Hastie & Park, 1986). We interpret these findings as reflecting the operation of a judgment heuristic sensitive to sequential patterns and offer an account for the relationship between memory and judged frequencies of sequentially encountered stimuli.

  5. Micro Machining of Injection Mold Inserts for Fluidic Channel of Polymeric Biochips

    PubMed Central

    Jung, Woo-Chul; Heo, Young-Moo; Yoon, Gil-Sang; Shin, Kwang-Ho; Chang, Sung-Ho; Kim, Gun-Hee; Cho, Myeong-Woo

    2007-01-01

    Recently, the polymeric micro-fluidic biochip, often called LOC (lab-on-a-chip), has been focused as a cheap, rapid and simplified method to replace the existing biochemical laboratory works. It becomes possible to form miniaturized lab functionalities on a chip with the development of MEMS technologies. The micro-fluidic chips contain many micro-channels for the flow of sample and reagents, mixing, and detection tasks. Typical substrate materials for the chip are glass and polymers. Typical techniques for microfluidic chip fabrication are utilizing various micro pattern forming methods, such as wet-etching, micro-contact printing, and hot-embossing, micro injection molding, LIGA, and micro powder blasting processes, etc. In this study, to establish the basis of the micro pattern fabrication and mass production of polymeric micro-fluidic chips using injection molding process, micro machining method was applied to form micro-channels on the LOC molds. In the research, a series of machining experiments using micro end-mills were performed to determine optimum machining conditions to improve surface roughness and shape accuracy of designed simplified micro-channels. Obtained conditions were used to machine required mold inserts for micro-channels using micro end-mills. Test injection processes using machined molds and COC polymer were performed, and then the results were investigated.

  6. Microfluidic Platform for the Long-Term On-Chip Cultivation of Mammalian Cells for Lab-On-A-Chip Applications.

    PubMed

    Bunge, Frank; Driesche, Sander van den; Vellekoop, Michael J

    2017-07-10

    Lab-on-a-Chip (LoC) applications for the long-term analysis of mammalian cells are still very rare due to the lack of convenient cell cultivation devices. The difficulties are the integration of suitable supply structures, the need of expensive equipment like an incubator and sophisticated pumps as well as the choice of material. The presented device is made out of hard, but non-cytotoxic materials (silicon and glass) and contains two vertical arranged membranes out of hydrogel. The porous membranes are used to separate the culture chamber from two supply channels for gases and nutrients. The cells are fed continuously by diffusion through the membranes without the need of an incubator and low requirements on the supply of medium to the assembly. The diffusion of oxygen is modelled in order to find the optimal dimensions of the chamber. The chip is connected via 3D-printed holders to the macroscopic world. The holders are coated with Parlyene C to ensure that only biocompatible materials are in contact with the culture medium. The experiments with MDCK-cells show the successful seeding inside the chip, culturing and passaging. Consequently, the presented platform is a step towards Lab-on-a-Chip applications that require long-term cultivation of mammalian cells.

  7. Simple, low-cost fabrication of semi-circular channel using the surface tension of solder paste and its application to microfluidic valves.

    PubMed

    Yan, Sheng; Li, Yuxing; Zhu, Yuanqing; Liu, Minsu; Zhao, Qianbin; Yuan, Dan; Yun, Guolin; Zhang, Shiwu; Wen, Weijia; Tang, Shi-Yang; Li, Weihua

    2018-06-01

    This work presents a simple, low-cost method to fabricate semi-circular channels using solder paste, which can amalgamate the cooper surface to form a half-cylinder mold using the surface tension of Sn-Pd alloy (the main component in solder paste). This technique enables semi-circular channels to be manufactured with different dimensions. These semi-circular channels will then be integrated with a polymethylmethacrylate frame and machine screws to create miniaturized, portable microfluidic valves for sequential liquid delivery and particle synthesis. This approach avoids complicated fabrication processes and expensive facilities and thus has the potential to be a useful tool for lab-on-a-chip applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Deciding the liveness for a subclass of weighted Petri nets based on structurally circular wait

    NASA Astrophysics Data System (ADS)

    Liu, GuanJun; Chen, LiJing

    2016-05-01

    Weighted Petri nets as a kind of formal language are widely used to model and verify discrete event systems related to resource allocation like flexible manufacturing systems. System of Simple Sequential Processes with Multi-Resources (S3PMR, a subclass of weighted Petri nets and an important extension to the well-known System of Simple Sequential Processes with Resources, can model many discrete event systems in which (1) multiple processes may run in parallel and (2) each execution step of each process may use multiple units from multiple resource types. This paper gives a necessary and sufficient condition for the liveness of S3PMR. A new structural concept called Structurally Circular Wait (SCW) is proposed for S3PMR. Blocking Marking (BM) associated with an SCW is defined. It is proven that a marked S3PMR is live if and only if each SCW has no BM. We use an example of multi-processor system-on-chip to show that SCW and BM can precisely characterise the (partial) deadlocks for S3PMR. Simultaneously, two examples are used to show the advantages of SCW in preventing deadlocks of S3PMR. These results are significant for the further research on dealing with the deadlock problem.

  9. A 400 MHz Wireless Neural Signal Processing IC With 625 $\\times$ On-Chip Data Reduction and Reconfigurable BFSK/QPSK Transmitter Based on Sequential Injection Locking.

    PubMed

    Teng, Kok-Hin; Wu, Tong; Liu, Xiayun; Yang, Zhi; Heng, Chun-Huat

    2017-06-01

    An 8-channel wireless neural signal processing IC, which can perform real-time spike detection, alignment, and feature extraction, and wireless data transmission is proposed. A reconfigurable BFSK/QPSK transmitter (TX) at MICS/MedRadio band is incorporated to support different data rate requirement. By using an Exponential Component-Polynomial Component (EC-PC) spike processing unit with an incremental principal component analysis (IPCA) engine, the detection of neural spikes with poor SNR is possible while achieving 625× data reduction. For the TX, a dual-channel at 401 MHz and 403.8 MHz are supported by applying sequential injection locked techniques while attaining phase noise of -102 dBc/Hz at 100 kHz offset. From the measurement, error vector magnitude (EVM) of 4.60%/9.55% with power amplifier (PA) output power of -15 dBm is achieved for the QPSK at 8 Mbps and the BFSK at 12.5 kbps. Fabricated in 65 nm CMOS with an active area of 1 mm 2 , the design consumes a total current of 5  ∼ 5.6 mA with a maximum energy efficiency of 0.7 nJ/b.

  10. Biostability of an implantable glucose sensor chip

    NASA Astrophysics Data System (ADS)

    Fröhlich, M.; Birkholz, M.; Ehwald, K. E.; Kulse, P.; Fursenko, O.; Katzer, J.

    2012-12-01

    Surface materials of an implantable microelectronic chip intended for medical applications were evaluated with respect to their long-term stability in bio-environments. The sensor chip shall apply in a glucose monitor by operating as a microviscosimeter according to the principle of affinity viscosimetry. A monolithic integration of a microelectromechanical system (MEMS) into the sensor chip was successfully performed in a combined 0.25 μm CMOS/BiCMOS technology. In order to study material durability and biostability of the surfaces, sensor chips were exposed to various in vitro and in vivo tests. Corrosional damage of SiON, SiO2 and TiN surfaces was investigated by optical microscopy, ellipsometry and AFM. The results served for optimizing the Back-end-of-Line (BEoL) stack, from which the MEMS was prepared. Corrosion of metal lines could significantly be reduced by improving the topmost passivation layer. The experiments revealed no visible damage of the actuator or other functionally important MEMS elements. Sensor chips were also exposed to human body fluid for three month by implantation into the abdomen of a volunteer. Only small effects were observed for layer thickness and Ra roughness after explantation. In particular, TiN as used for the actuator beam showed no degradation by biocorrosion. The highest degradation rate of about 50 nm per month was revealed for the SiON passivation layer. These results suggest that the sensor chip may safely operate in subcutaneous tissue for a period of several months.

  11. A Single-Chip Solar Energy Harvesting IC Using Integrated Photodiodes for Biomedical Implant Applications.

    PubMed

    Chen, Zhiyuan; Law, Man-Kay; Mak, Pui-In; Martins, Rui P

    2017-02-01

    In this paper, an ultra-compact single-chip solar energy harvesting IC using on-chip solar cell for biomedical implant applications is presented. By employing an on-chip charge pump with parallel connected photodiodes, a 3.5 × efficiency improvement can be achieved when compared with the conventional stacked photodiode approach to boost the harvested voltage while preserving a single-chip solution. A photodiode-assisted dual startup circuit (PDSC) is also proposed to improve the area efficiency and increase the startup speed by 77%. By employing an auxiliary charge pump (AQP) using zero threshold voltage (ZVT) devices in parallel with the main charge pump, a low startup voltage of 0.25 V is obtained while minimizing the reversion loss. A 4 V in gate drive voltage is utilized to reduce the conduction loss. Systematic charge pump and solar cell area optimization is also introduced to improve the energy harvesting efficiency. The proposed system is implemented in a standard 0.18- [Formula: see text] CMOS technology and occupies an active area of 1.54 [Formula: see text]. Measurement results show that the on-chip charge pump can achieve a maximum efficiency of 67%. With an incident power of 1.22 [Formula: see text] from a halogen light source, the proposed energy harvesting IC can deliver an output power of 1.65 [Formula: see text] at 64% charge pump efficiency. The chip prototype is also verified using in-vitro experiment.

  12. Precision tracking with a single gaseous pixel detector

    NASA Astrophysics Data System (ADS)

    Tsigaridas, S.; van Bakel, N.; Bilevych, Y.; Gromov, V.; Hartjes, F.; Hessey, N. P.; de Jong, P.; Kluit, R.

    2015-09-01

    The importance of micro-pattern gaseous detectors has grown over the past few years after successful usage in a large number of applications in physics experiments and medicine. We develop gaseous pixel detectors using micromegas-based amplification structures on top of CMOS pixel readout chips. Using wafer post-processing we add a spark-protection layer and a grid to create an amplification region above the chip, allowing individual electrons released above the grid by the passage of ionising radiation to be recorded. The electron creation point is measured in 3D, using the pixel position for (x, y) and the drift time for z. The track can be reconstructed by fitting a straight line to these points. In this work we have used a pixel-readout-chip which is a small-scale prototype of Timepix3 chip (designed for both silicon and gaseous detection media). This prototype chip has several advantages over the existing Timepix chip, including a faster front-end (pre-amplifier and discriminator) and a faster TDC which reduce timewalk's contribution to the z position error. Although the chip is very small (sensitive area of 0.88 × 0.88mm2), we have built it into a detector with a short drift gap (1.3 mm), and measured its tracking performance in an electron beam at DESY. We present the results obtained, which lead to a significant improvement for the resolutions with respect to Timepix-based detectors.

  13. Exploring Liquid Sequential Injection Chromatography to Teach Fundamentals of Separation Methods: A Very Fast Analytical Chemistry Experiment

    ERIC Educational Resources Information Center

    Penteado, Jose C.; Masini, Jorge Cesar

    2011-01-01

    Influence of the solvent strength determined by the addition of a mobile-phase organic modifier and pH on chromatographic separation of sorbic acid and vanillin has been investigated by the relatively new technique, liquid sequential injection chromatography (SIC). This technique uses reversed-phase monolithic stationary phase to execute fast…

  14. Extinction and Renewal of Pavlovian Modulation in Human Sequential Feature Positive Discrimination Learning

    ERIC Educational Resources Information Center

    Baeyens, Frank; Vansteenwegen, Debora; Beckers, Tom; Hermans, Dirk; Kerkhof, Ineke; De Ceulaer, Annick

    2005-01-01

    Using a conditioned suppression task, we investigated extinction and renewal of Pavlovian modulation in human sequential Feature Positive (FP) discrimination learning. In Experiment 1, in context a participants were first trained on two FP discriminations, X[right arrow]A+/A- and Y[right arrow]B+/B-. Extinction treatment was administered in the…

  15. Sequential processing of GNSS-R delay-Doppler maps (DDM's) for ocean wind retrieval

    NASA Astrophysics Data System (ADS)

    Garrison, J. L.; Rodriguez-Alvarez, N.; Hoffman, R.; Annane, B.; Leidner, M.; Kaitie, S.

    2016-12-01

    The delay-Doppler map (DDM) is the fundamental data product from GNSS-Reflectometry (GNSS-R), generated by cross-correlating the scattered signal with a local signal model over a range of delays and Doppler frequencies. Delay and Doppler form a set of coordinates on the ocean surface and the shape of the DDM is related to the distribution of ocean slopes. Wind speed can thus be estimated by fitting a scattering model to the shape of the observed DDM or defining an observable (e.g. average power or leading edge slope) which characterizes the change in DDM shape. For spaceborne measurements, the DDM is composed of signals scattered from a glistening zone, which can extend for up to 100 km or more. Setting a reasonable resolution requirement (25 km or less) will limit the usable portion of the DDM at each observation to only a small region near the specular point. Cyclone-GNSS (CYGNSS) is a NASA mission to study developing tropical cyclones using GNSS-R. CYGNSS science requirements call for wind retrieval with an accuracy of 10 percent above 20 m/s within a 25 km resolution. This requirement can be met using an observable defined for DDM samples between +/- 0.25 chips in delay and +/- 1 kHz in Doppler, with some filtering of the observations using a minimum threshold for range corrected gain (RCG). An improved approach, to be reviewed in this presentation, sequentially processes multiple DDM's, to combine observations generated from different "looks" at the same points on the surface. Applying this sequential process to synthetic data indicates a significant improvement in wind retrieval accuracy over a 10 km grid covering a region around the specular point. The attached figure illustrates this improvement, using simulated CYGNSS DDM's generated using the wind fields from hurricanes Earl and Danielle (left). The middle plots show wind retrievals using only an observable defined within the 25 km resolution cell. The plots on the right side show the retrievals from sequential processing of multiple DDM's. Recently, the assimilation of GNSS-R retrievals into weather forecast models has been studied. The authors have begun to investigate the direct assimilation of other data products, such as the DDM itself, or the results of sequential processing.

  16. Evaluation of sequential extraction procedures for soluble and insoluble hexavalent chromium compounds in workplace air samples.

    PubMed

    Ashley, Kevin; Applegate, Gregory T; Marcy, A Dale; Drake, Pamela L; Pierce, Paul A; Carabin, Nathalie; Demange, Martine

    2009-02-01

    Because toxicities may differ for Cr(VI) compounds of varying solubility, some countries and organizations have promulgated different occupational exposure limits (OELs) for soluble and insoluble hexavalent chromium (Cr(VI)) compounds, and analytical methods are needed to determine these species in workplace air samples. To address this need, international standard methods ASTM D6832 and ISO 16740 have been published that describe sequential extraction techniques for soluble and insoluble Cr(VI) in samples collected from occupational settings. However, no published performance data were previously available for these Cr(VI) sequential extraction procedures. In this work, the sequential extraction methods outlined in the relevant international standards were investigated. The procedures tested involved the use of either deionized water or an ammonium sulfate/ammonium hydroxide buffer solution to target soluble Cr(VI) species. This was followed by extraction in a sodium carbonate/sodium hydroxide buffer solution to dissolve insoluble Cr(VI) compounds. Three-step sequential extraction with (1) water, (2) sulfate buffer and (3) carbonate buffer was also investigated. Sequential extractions were carried out on spiked samples of soluble, sparingly soluble and insoluble Cr(VI) compounds, and analyses were then generally carried out by using the diphenylcarbazide method. Similar experiments were performed on paint pigment samples and on airborne particulate filter samples collected from stainless steel welding. Potential interferences from soluble and insoluble Cr(III) compounds, as well as from Fe(II), were investigated. Interferences from Cr(III) species were generally absent, while the presence of Fe(II) resulted in low Cr(VI) recoveries. Two-step sequential extraction of spiked samples with (first) either water or sulfate buffer, and then carbonate buffer, yielded quantitative recoveries of soluble Cr(VI) and insoluble Cr(VI), respectively. Three-step sequential extraction gave excessively high recoveries of soluble Cr(VI), low recoveries of sparingly soluble Cr(VI), and quantitative recoveries of insoluble Cr(VI). Experiments on paint pigment samples using two-step extraction with water and carbonate buffer yielded varying percentages of relative fractions of soluble and insoluble Cr(VI). Sequential extractions of stainless steel welding fume air filter samples demonstrated the predominance of soluble Cr(VI) compounds in such samples. The performance data obtained in this work support the Cr(VI) sequential extraction procedures described in the international standards.

  17. Study on the Simultaneously Quantitative Detection for β-Lactoglobulin and Lactoferrin of Cow Milk by Using Protein Chip Technique.

    PubMed

    Yin, Ji Yong; Huo, Jun Sheng; Ma, Xin Xin; Sun, Jing; Huang, Jian

    2017-12-01

    To research a protein chip method which can simultaneously quantitative detect β-Lactoglobulin (β-L) and Lactoferrin (Lf) at one time. Protein chip printer was used to print both anti-β-L antibodies and anti-Lf antibodies on each block of protein chip. And then an improved sandwich detection method was applied while the other two detecting antibodies for the two antigens were added in the block after they were mixed. The detection conditions of the quantitative detection for simultaneous measurement of β-L and Lf with protein chip were optimized and evaluated. Based on these detected conditions, two standard curves of the two proteins were simultaneously established on one protein chip. Finally, the new detection method was evaluated by using the analysis of precision and accuracy. By comparison experiment, mouse monoclonal antibodies of the two antigens were chosen as the printing probe. The concentrations of β-L and Lf probes were 0.5 mg/mL and 0.5 mg/mL, respectively, while the titers of detection antibodies both of β-L and Lf were 1:2,000. Intra- and inter-assay variability was between 4.88% and 38.33% for all tests. The regression coefficients of protein chip comparing with ELISA for β-L and Lf were better than 0.734, and both of the two regression coefficients were statistically significant (r = 0.734, t = 2.644, P = 0.038; and r = 0.774, t = 2.998, P = 0.024). A protein chip method of simultaneously quantitative detection for β-L and Lf has been established and this method is worthy in further application. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  18. Multiple independent identification decisions: a method of calibrating eyewitness identifications.

    PubMed

    Pryke, Sean; Lindsay, R C L; Dysart, Jennifer E; Dupuis, Paul

    2004-02-01

    Two experiments (N = 147 and N = 90) explored the use of multiple independent lineups to identify a target seen live. In Experiment 1, simultaneous face, body, and sequential voice lineups were used. In Experiment 2, sequential face, body, voice, and clothing lineups were used. Both studies demonstrated that multiple identifications (by the same witness) from independent lineups of different features are highly diagnostic of suspect guilt (G. L. Wells & R. C. L. Lindsay, 1980). The number of suspect and foil selections from multiple independent lineups provides a powerful method of calibrating the accuracy of eyewitness identification. Implications for use of current methods are discussed. ((c) 2004 APA, all rights reserved)

  19. Two CMOS gate arrays for the EPACT experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkert, G.

    1992-08-01

    Two semicustom CMOS digital gate arrays are described in this paper which have been developed for the Energetic Particles: Acceleration, Composition, and Transport (EPACT) experiment. The first device, the 'Event Counters: 16 by 24-bit' (EC1624), implements sixteen 24-bit ripple counters and has flexible counting and readout options. The second device, the 'Serial Transmitter/Receiver' (SXR), is a multi-personality chip that can be used at either end of a serial, synchronous communications data link. It can be configured as a master in a central control unit, or as one of many slaves within remote assemblies. Together a network of SXRs allows formore » commanding and verification of distributed control signals. Both gate arrays are radiation hardened and qualified for space flight use. The architecture of each chip is presented and the benefits to the experiment summarized.« less

  20. Investigation of electromigration behavior in lead-free flip chip solder bumps

    NASA Astrophysics Data System (ADS)

    Kalkundri, Kaustubh Jayant

    Packaging technology has also evolved over time in an effort to keep pace with the demanding requirements. Wirebond and flip chip packaging technologies have become extremely versatile and ubiquitous in catering to myriad applications due to their inherent potential. This research is restricted strictly to flip chip technology. This technology incorporates a process in which the bare chip is turned upside down, i.e., active face down, and is bonded through the I/O to the substrate, hence called flip chip. A solder interconnect that provides electrical connection between the chip and substrate is bumped on a processed silicon wafer prior to dicing for die-attach. The assembly is then reflow-soldered followed by the underfill process to provide the required encapsulation. The demand for smaller and lighter products has increased the number of I/Os without increasing the package sizes, thereby drastically reducing the size of the flip chip solder bumps and their pitch. Reliability assessment and verification of these devices has gained tremendous importance due to their shrinking size. To add to the complexity, changing material sets that are results of recently enacted lead-free solder legislations have raised some compatibility issues that are already being researched. In addition to materials and process related flip chip challenges such as solder-flux compatibility, Coefficient of Thermal Expansion (CTE) mismatch, underfill-flux compatibility and thermal management, flip chip packages are vulnerable to a comparatively newer challenge, namely electromigration observed in solder bumps. It is interesting to note that electromigration has come to the forefront of challenges only recently. It has been exacerbated by the reduction in bump cross-section due to the seemingly continuous shrinking in package size over time. The focus of this research was to understand the overall electromigration behavior in lead-free (SnAg) flip chip solder bumps. The objectives of the research were to comprehend the physics of failure mechanism in electromigration for lead-free solder bumps assembled in a flip chip ceramic package having thick copper under bump metallization and to estimate the unknown critical material parameters from Black's equation that describe failure due to electromigration. In addition, the intent was to verify the 'use condition reliability' by extrapolation from experimental conditions. The methodology adopted for this research was comprised of accelerated electromigration tests on SnAg flip chip solder bumps assembled on ceramic substrate with a thick copper under bump metallization. The experimental approach was comprised of elaborate measurement of the temperature of each sample by separate metallization resistance exhibiting positive resistance characteristics to overcome the variation in Joule heating. After conducting the constant current experiments and analyzing the failed samples, it was found that the primary electromigration failure mode observed was the dissolution of the thick copper under bump metallization in the solder, leading to a change in resistance. The lifetime data obtained from different experiments was solved simultaneously using a multiple regression approach to yield the unknown Black's equation parameters of current density exponent and activation energy. In addition to the implementation of a systematic failure analysis and data analysis procedure, it was also deduced that thermomigration due to the temperature gradient across the chip does impact the overall electromigration behavior. This research and the obtained results were significant in bridging the gap for an overall understanding of this critical failure mode observed in flip chip solder bumps. The measurement of each individual sample temperature instead of an average temperature enabled an accurate analysis for predicting the 'use condition reliability' of a comparable product. The obtained results and the conclusions can be used as potential inputs in future designs and newer generations of flip chip devices that might undergo aggressive scaling. This will enable these devices to retain their functionality during their intended useful life with minimal threat of failure due to the potent issue of electromigration. (Abstract shortened by UMI.)

  1. An integrated microfluidic analysis microsystems with bacterial capture enrichment and in-situ impedance detection

    NASA Astrophysics Data System (ADS)

    Liu, Hai-Tao; Wen, Zhi-Yu; Xu, Yi; Shang, Zheng-Guo; Peng, Jin-Lan; Tian, Peng

    2017-09-01

    In this paper, an integrated microfluidic analysis microsystems with bacterial capture enrichment and in-situ impedance detection was purposed based on microfluidic chips dielectrophoresis technique and electrochemical impedance detection principle. The microsystems include microfluidic chip, main control module, and drive and control module, and signal detection and processing modulet and result display unit. The main control module produce the work sequence of impedance detection system parts and achieve data communication functions, the drive and control circuit generate AC signal which amplitude and frequency adjustable, and it was applied on the foodborne pathogens impedance analysis microsystems to realize the capture enrichment and impedance detection. The signal detection and processing circuit translate the current signal into impendence of bacteria, and transfer to computer, the last detection result is displayed on the computer. The experiment sample was prepared by adding Escherichia coli standard sample into chicken sample solution, and the samples were tested on the dielectrophoresis chip capture enrichment and in-situ impedance detection microsystems with micro-array electrode microfluidic chips. The experiments show that the Escherichia coli detection limit of microsystems is 5 × 104 CFU/mL and the detection time is within 6 min in the optimization of voltage detection 10 V and detection frequency 500 KHz operating conditions. The integrated microfluidic analysis microsystems laid the solid foundation for rapid real-time in-situ detection of bacteria.

  2. Sequential induction of Fur-regulated genes in response to iron limitation in Bacillus subtilis.

    PubMed

    Pi, Hualiang; Helmann, John D

    2017-11-28

    Bacterial cells modulate transcription in response to changes in iron availability. The ferric uptake regulator (Fur) senses intracellular iron availability and plays a central role in maintaining iron homeostasis in Bacillus subtilis Here we utilized FrvA, a high-affinity Fe 2+ efflux transporter from Listeria monocytogenes , as an inducible genetic tool to deplete intracellular iron. We then characterized the responses of the Fur, FsrA, and PerR regulons as cells transition from iron sufficiency to deficiency. Our results indicate that the Fur regulon is derepressed in three distinct waves. First, uptake systems for elemental iron ( efeUOB ), ferric citrate ( fecCDEF ), and petrobactin ( fpbNOPQ ) are induced to prevent iron deficiency. Second, B. subtilis synthesizes its own siderophore bacillibactin ( dhbACEBF ) and turns on bacillibactin ( feuABC ) and hydroxamate siderophore ( fhuBCGD ) uptake systems to scavenge iron from the environment and flavodoxins ( ykuNOP ) to replace ferredoxins. Third, as iron levels decline further, an "iron-sparing" response ( fsrA , fbpAB , and fbpC ) is induced to block the translation of abundant iron-utilizing proteins and thereby permit the most essential iron-dependent enzymes access to the limited iron pools. ChIP experiments demonstrate that in vivo occupancy of Fur correlates with derepression of each operon, and the graded response observed here results, at least in part, from higher-affinity binding of Fur to the "late"-induced genes.

  3. The perceptual processing capacity of summary statistics between and within feature dimensions

    PubMed Central

    Attarha, Mouna; Moore, Cathleen M.

    2015-01-01

    The simultaneous–sequential method was used to test the processing capacity of statistical summary representations both within and between feature dimensions. Sixteen gratings varied with respect to their size and orientation. In Experiment 1, the gratings were equally divided into four separate smaller sets, one of which with a mean size that was larger or smaller than the other three sets, and one of which with a mean orientation that was tilted more leftward or rightward. The task was to report the mean size and orientation of the oddball sets. This therefore required four summary representations for size and another four for orientation. The sets were presented at the same time in the simultaneous condition or across two temporal frames in the sequential condition. Experiment 1 showed evidence of a sequential advantage, suggesting that the system may be limited with respect to establishing multiple within-feature summaries. Experiment 2 eliminates the possibility that some aspect of the task, other than averaging, was contributing to this observed limitation. In Experiment 3, the same 16 gratings appeared as one large superset, and therefore the task only required one summary representation for size and another one for orientation. Equal simultaneous–sequential performance indicated that between-feature summaries are capacity free. These findings challenge the view that within-feature summaries drive a global sense of visual continuity across areas of the peripheral visual field, and suggest a shift in focus to seeking an understanding of how between-feature summaries in one area of the environment control behavior. PMID:26360153

  4. The hammer QSD-quick stop device for high speed machining and rubbing

    NASA Technical Reports Server (NTRS)

    Black, J. T.; James, C. R.

    1980-01-01

    A quick stop device (QSD) was designed for use in orthogonal machining and rubbing experiments. QSD's are used to obtain chip root samples that are representative of the deformation taking place during dynamic (actual) cutting conditions. These 'frozen' specimens are helpful in examining the plastic deformation that occurs in the regions of compression and shear which form the chip; the secondary shear at the tool-chip interface; and the nose ploughing/flank rubbing action which operates on the newly machined surface. The Hammer QSD employs a shear pin mechanism, broken by a flying hammer, which is traveling at the same velocity as the workpiece. The device has been successfully tested up to 6000 sfpm (30.48 m/sec).

  5. Modular 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms

    NASA Astrophysics Data System (ADS)

    Podwin, Agnieszka; Dziuban, Jan A.

    2017-10-01

    The paper presents the sandwiched polymer 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms. Euglenas and yeast were separately and simultaneously cultured for 10 d in the chip. As a result of the experiments, euglenas, light-initialized and nourished by CO2—a product of ethanol fermentation handled by yeast—generated oxygen, based on the photosynthesis process. The presence of oxygen in the bio-reactor was confirmed by the colorimetric method—a bicarbonate (pH) indicator. Preliminary studies towards the obtainment of an effective source of oxygen are promising and further research should be done to enable the utility of the bio-reactor in, for instance, microbial fuel cells.

  6. First results of the front-end ASIC for the strip detector of the PANDA MVD

    NASA Astrophysics Data System (ADS)

    Quagli, T.; Brinkmann, K.-T.; Calvo, D.; Di Pietro, V.; Lai, A.; Riccardi, A.; Ritman, J.; Rivetti, A.; Rolo, M. D.; Stockmanns, T.; Wheadon, R.; Zambanini, A.

    2017-03-01

    PANDA is a key experiment of the future FAIR facility and the Micro Vertex Detector (MVD) is the innermost part of its tracking system. PASTA (PAnda STrip ASIC) is the readout chip for the strip part of the MVD. The chip is designed to provide high resolution timestamp and charge information with the Time over Threshold (ToT) technique. Its architecture is based on Time to Digital Converters with analog interpolators, with a time bin width of 50 ps. The chip implements Single Event Upset (SEU) protection techniques for its digital parts. A first full-size prototype with 64 channels was produced in a commercial 110 nm CMOS technology and the first characterizations of the prototype were performed.

  7. Temporal texture of associative encoding modulates recall processes.

    PubMed

    Tibon, Roni; Levy, Daniel A

    2014-02-01

    Binding aspects of an experience that are distributed over time is an important element of episodic memory. In the current study, we examined how the temporal complexity of an experience may govern the processes required for its retrieval. We recorded event-related potentials during episodic cued recall following pair associate learning of concurrently and sequentially presented object-picture pairs. Cued recall success effects over anterior and posterior areas were apparent in several time windows. In anterior locations, these recall success effects were similar for concurrently and sequentially encoded pairs. However, in posterior sites clustered over parietal scalp the effect was larger for the retrieval of sequentially encoded pairs. We suggest that anterior aspects of the mid-latency recall success effects may reflect working-with-memory operations or direct access recall processes, while more posterior aspects reflect recollective processes which are required for retrieval of episodes of greater temporal complexity. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Enhancing lineup identification accuracy: two codes are better than one.

    PubMed

    Melara, R D; DeWitt-Rickards, T S; O'Brien, T P

    1989-10-01

    Ways of improving identification accuracy were explored by comparing the conventional visual lineup with an auditory/visual lineup, one that paired color photographs with voice recordings. This bimodal lineup necessitated sequential presentation of lineup members; Experiment 1 showed that performance in sequential lineups was better than performance in traditional simultaneous lineups. In Experiments 2A and 2B unimodal and bimodal lineups were compared by using a multiple-lineup paradigm: Ss viewed 3 videotaped episodes depicting standard police procedures and were tested in 4 sequential lineups. Bimodal lineups were more diagnostic than either visual or auditory lineups alone. The bimodal lineup led to a 126% improvement in number of correct identifications over the conventional visual lineup, with no concomitant increase in number of false identifications. These results imply strongly that bimodal procedures should be adopted in real-world lineups. The nature of memorial processes underlying this bimodal advantage is discussed.

  9. Asphalt Roofing Shingles Into Energy Project Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jameson, Rex, PE

    2008-04-28

    Based on a widely cited September, 1999 report by the Vermont Agency of Natural Resources, nearly 11 million tons of asphalt roofing shingle wastes are produced in the United States each year. Recent data suggests that the total is made up of about 9.4 million tons from roofing tear-offs and about 1.6 million tons from manufacturing scrap. Developing beneficial uses for these materials would conserve natural resources, promote protection of the environment and strengthen the economy. This project explored the feasibility of using chipped asphalt shingle materials in cement manufacturing kilns and circulating fluidized bed (CFB) boilers. A method ofmore » enhancing the value of chipped shingle materials for use as fuel by removing certain fractions for use as substitute raw materials for the manufacture of new shingles was also explored. Procedures were developed to prevent asbestos containing materials from being processed at the chipping facilities, and the frequency of the occurrence of asbestos in residential roofing tear-off materials was evaluated. The economic feasibility of each potential use was evaluated based on experience gained during the project and on a review of the well established use of shingle materials in hot mix asphalt. This project demonstrated that chipped asphalt shingle materials can be suitable for use as fuel in circulating fluidized boilers and cement kilns. More experience would be necessary to determine the full benefits that could be derived and to discover long term effects, but no technical barriers to full scale commercial use of chipped asphalt shingle materials in these applications were discovered. While the technical feasibility of various options was demonstrated, only the use of asphalt shingle materials in hot mix asphalt applications is currently viable economically.« less

  10. Rapid and simple half-quantitative measurement alpha-fetoprotein by poly(dimethylsiloxane) microfluidic chip immunochromatographic assay

    NASA Astrophysics Data System (ADS)

    Tong, Chao; Jin, Qinghui; Zhao, Jianlong

    2008-03-01

    In this article, a kind of microfluidic method based on MEMS technology combined with gold immunochromatographic assay (GICA) is developed and discussed. Compared to the traditional GICA, this method supplies us convenient, multi-channel, in-parallel, low cost and similar efficiency approach in the fields of alpha-fetopro-tei (AFP)detection. Firstly, we improved the adhesion between the model material SU-8 and Silicon wafer, optimized approaches of the fabrication of the SU-8 model systematically, and fabricate the PDMS micro fluid chip with good reproduction successfully. Secondly, Surface modification and antibody immobilization methods with the GICA on the PDMS micro fluid analysis chip are studied, we choose the PDMS material and transfer GICA to the PDMS micro fluid chip successfully after researching the antibody immobilization efficiency of different materials utilized in fabrication of the micro fluid chip. In order to improve the reaction efficiency of the immobilized antibody, we studied the characteristics of micro fluid without the gas drive, and the fluid velocity control in our design; we also design structure of grove to strengthen the ability of immobilizing the antibody. The stimulation of the structure shows that it achieves great improvement and experiments prove the design is feasible.

  11. AM06: the Associative Memory chip for the Fast TracKer in the upgraded ATLAS detector

    NASA Astrophysics Data System (ADS)

    Annovi, A.; Beretta, M. M.; Calderini, G.; Crescioli, F.; Frontini, L.; Liberali, V.; Shojaii, S. R.; Stabile, A.

    2017-04-01

    This paper describes the AM06 chip, which is a highly parallel processor for pattern recognition in the ATLAS high energy physics experiment. The AM06 contains memory banks that store data organized in 18 bit words; a group of 8 words is called "pattern". Each AM06 chip can store up to 131 072 patterns. The AM06 is a large chip, designed in 65 nm CMOS, and it combines full-custom memory arrays, standard logic cells and serializer/deserializer IP blocks at 2 Gbit/s for input/output communication. The overall silicon area is 168 mm2 and the chip contains about 421 million transistors. The AM06 receives the detector data for each event accepted by Level-1 trigger, up to 100 kHz, and it performs a track reconstruction based on hit information from channels of the ATLAS silicon detectors. Thanks to the design of a new associative memory cell and to the layout optimization, the AM06 consumption is only about 1 fJ/bit per comparison. The AM06 has been fabricated and successfully tested with a dedicated test system.

  12. NASA DOE POD NDE Capabilities Data Book

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    2015-01-01

    This data book contains the Directed Design of Experiments for Validating Probability of Detection (POD) Capability of NDE Systems (DOEPOD) analyses of the nondestructive inspection data presented in the NTIAC, Nondestructive Evaluation (NDE) Capabilities Data Book, 3rd ed., NTIAC DB-97-02. DOEPOD is designed as a decision support system to validate inspection system, personnel, and protocol demonstrating 0.90 POD with 95% confidence at critical flaw sizes, a90/95. The test methodology used in DOEPOD is based on the field of statistical sequential analysis founded by Abraham Wald. Sequential analysis is a method of statistical inference whose characteristic feature is that the number of observations required by the procedure is not determined in advance of the experiment. The decision to terminate the experiment depends, at each stage, on the results of the observations previously made. A merit of the sequential method, as applied to testing statistical hypotheses, is that test procedures can be constructed which require, on average, a substantially smaller number of observations than equally reliable test procedures based on a predetermined number of observations.

  13. Sequentially Simulated Outcomes: Kind Experience versus Nontransparent Description

    ERIC Educational Resources Information Center

    Hogarth, Robin M.; Soyer, Emre

    2011-01-01

    Recently, researchers have investigated differences in decision making based on description and experience. We address the issue of when experience-based judgments of probability are more accurate than are those based on description. If description is well understood ("transparent") and experience is misleading ("wicked"), it…

  14. VLSI design of lossless frame recompression using multi-orientation prediction

    NASA Astrophysics Data System (ADS)

    Lee, Yu-Hsuan; You, Yi-Lun; Chen, Yi-Guo

    2016-01-01

    Pursuing an experience of high-end visual quality drives human to demand a higher display resolution and a higher frame rate. Hence, a lot of powerful coding tools are aggregated together in emerging video coding standards to improve coding efficiency. This also makes video coding standards suffer from two design challenges: heavy computation and tremendous memory bandwidth. The first issue can be properly solved by a careful hardware architecture design with advanced semiconductor processes. Nevertheless, the second one becomes a critical design bottleneck for a modern video coding system. In this article, a lossless frame recompression using multi-orientation prediction technique is proposed to overcome this bottleneck. This work is realised into a silicon chip with the technology of TSMC 0.18 µm CMOS process. Its encoding capability can reach full-HD (1920 × 1080)@48 fps. The chip power consumption is 17.31 mW@100 MHz. Core area and chip area are 0.83 × 0.83 mm2 and 1.20 × 1.20 mm2, respectively. Experiment results demonstrate that this work exhibits an outstanding performance on lossless compression ratio with a competitive hardware performance.

  15. Wireless Amperometric Neurochemical Monitoring Using an Integrated Telemetry Circuit

    PubMed Central

    Roham, Masoud; Halpern, Jeffrey M.; Martin, Heidi B.; Chiel, Hillel J.

    2015-01-01

    An integrated circuit for wireless real-time monitoring of neurochemical activity in the nervous system is described. The chip is capable of conducting high-resolution amperometric measurements in four settings of the input current. The chip architecture includes a first-order ΔΣ modulator (ΔΣM) and a frequency-shift-keyed (FSK) voltage-controlled oscillator (VCO) operating near 433 MHz. It is fabricated using the AMI 0.5 μm double-poly triple-metal n-well CMOS process, and requires only one off-chip component for operation. Measured dc current resolutions of ~250 fA, ~1.5 pA, ~4.5 pA, and ~17 pA were achieved for input currents in the range of ±5, ±37, ±150, and ±600 nA, respectively. The chip has been interfaced with a diamond-coated, quartz-insulated, microneedle, tungsten electrode, and successfully recorded dopamine concentration levels as low as 0.5 μM wirelessly over a transmission distance of ~0.5 m in flow injection analysis experiments. PMID:18990633

  16. Wireless amperometric neurochemical monitoring using an integrated telemetry circuit.

    PubMed

    Roham, Masoud; Halpern, Jeffrey M; Martin, Heidi B; Chiel, Hillel J; Mohseni, Pedram

    2008-11-01

    An integrated circuit for wireless real-time monitoring of neurochemical activity in the nervous system is described. The chip is capable of conducting high-resolution amperometric measurements in four settings of the input current. The chip architecture includes a first-order Delta Sigma modulator (Delta Sigma M) and a frequency-shift-keyed (FSK) voltage-controlled oscillator (VCO) operating near 433 MHz. It is fabricated using the AMI 0.5 microm double-poly triple-metal n-well CMOS process, and requires only one off-chip component for operation. Measured dc current resolutions of approximately 250 fA, approximately 1.5 pA, approximately 4.5 pA, and approximately 17 pA were achieved for input currents in the range of +/-5, +/-37, +/-150, and +/-600 nA, respectively. The chip has been interfaced with a diamond-coated, quartz-insulated, microneedle, tungsten electrode, and successfully recorded dopamine concentration levels as low as 0.5 microM wirelessly over a transmission distance of approximately 0.5 m in flow injection analysis experiments.

  17. Lab-on-CMOS Integration of Microfluidics and Electrochemical Sensors

    PubMed Central

    Huang, Yue; Mason, Andrew J.

    2013-01-01

    This paper introduces a CMOS-microfluidics integration scheme for electrochemical microsystems. A CMOS chip was embedded into a micro-machined silicon carrier. By leveling the CMOS chip and carrier surface to within 100 nm, an expanded obstacle-free surface suitable for photolithography was achieved. Thin film metal planar interconnects were microfabricated to bridge CMOS pads to the perimeter of the carrier, leaving a flat and smooth surface for integrating microfluidic structures. A model device containing SU-8 microfluidic mixers and detection channels crossing over microelectrodes on a CMOS integrated circuit was constructed using the chip-carrier assembly scheme. Functional integrity of microfluidic structures and on-CMOS electrodes was verified by a simultaneous sample dilution and electrochemical detection experiment within multi-channel microfluidics. This lab-on-CMOS integration process is capable of high packing density, is suitable for wafer-level batch production, and opens new opportunities to combine the performance benefits of on-CMOS sensors with lab-on-chip platforms. PMID:23939616

  18. Lab-on-CMOS integration of microfluidics and electrochemical sensors.

    PubMed

    Huang, Yue; Mason, Andrew J

    2013-10-07

    This paper introduces a CMOS-microfluidics integration scheme for electrochemical microsystems. A CMOS chip was embedded into a micro-machined silicon carrier. By leveling the CMOS chip and carrier surface to within 100 nm, an expanded obstacle-free surface suitable for photolithography was achieved. Thin film metal planar interconnects were microfabricated to bridge CMOS pads to the perimeter of the carrier, leaving a flat and smooth surface for integrating microfluidic structures. A model device containing SU-8 microfluidic mixers and detection channels crossing over microelectrodes on a CMOS integrated circuit was constructed using the chip-carrier assembly scheme. Functional integrity of microfluidic structures and on-CMOS electrodes was verified by a simultaneous sample dilution and electrochemical detection experiment within multi-channel microfluidics. This lab-on-CMOS integration process is capable of high packing density, is suitable for wafer-level batch production, and opens new opportunities to combine the performance benefits of on-CMOS sensors with lab-on-chip platforms.

  19. Design of an MR image processing module on an FPGA chip

    NASA Astrophysics Data System (ADS)

    Li, Limin; Wyrwicz, Alice M.

    2015-06-01

    We describe the design and implementation of an image processing module on a single-chip Field-Programmable Gate Array (FPGA) for real-time image processing. We also demonstrate that through graphical coding the design work can be greatly simplified. The processing module is based on a 2D FFT core. Our design is distinguished from previously reported designs in two respects. No off-chip hardware resources are required, which increases portability of the core. Direct matrix transposition usually required for execution of 2D FFT is completely avoided using our newly-designed address generation unit, which saves considerable on-chip block RAMs and clock cycles. The image processing module was tested by reconstructing multi-slice MR images from both phantom and animal data. The tests on static data show that the processing module is capable of reconstructing 128 × 128 images at speed of 400 frames/second. The tests on simulated real-time streaming data demonstrate that the module works properly under the timing conditions necessary for MRI experiments.

  20. Design of an MR image processing module on an FPGA chip

    PubMed Central

    Li, Limin; Wyrwicz, Alice M.

    2015-01-01

    We describe the design and implementation of an image processing module on a single-chip Field-Programmable Gate Array (FPGA) for real-time image processing. We also demonstrate that through graphical coding the design work can be greatly simplified. The processing module is based on a 2D FFT core. Our design is distinguished from previously reported designs in two respects. No off-chip hardware resources are required, which increases portability of the core. Direct matrix transposition usually required for execution of 2D FFT is completely avoided using our newly-designed address generation unit, which saves considerable on-chip block RAMs and clock cycles. The image processing module was tested by reconstructing multi-slice MR images from both phantom and animal data. The tests on static data show that the processing module is capable of reconstructing 128 × 128 images at speed of 400 frames/second. The tests on simulated real-time streaming data demonstrate that the module works properly under the timing conditions necessary for MRI experiments. PMID:25909646

  1. Groundwater nitrate remediation using plant-chip bioreactors under phosphorus-limited environment

    NASA Astrophysics Data System (ADS)

    Satake, Shunichi; Tang, Changyuan

    2018-02-01

    Groundwater denitrification bioreactors under limited phosphorus conditions were studied in column experiments using four types of plant-chips. When the phosphate-P concentration in the influent increased from 0.04 mg/L to 0.4 mg/L, the nitrate removal ratio increased from 61.6% to 86.1% in reed, from 7.2% to 12.6% in Japanese cedar, from 37.0% to 73.6% in Moso bamboo, and from 19.2% to 50.5% in Lithocarpus edulis. The carbon source of the denitrifiers' growth was indicated by the content of acid detergent soluble organic matter in the chips. Furthermore, according to the modified Michaelis-Menten-type equation proposed in the study, the denitrification rate was largely limited by the phosphate-P concentration in reed and L. eduilis, and by the dissolved organic carbon (DOC) in Japanese cedar. Denitrification in Moso bamboo was affected by both phosphate-P and DOC. Besides the DOC, phosphorus emerged as an important limiting element of denitrification in some bioreactor plant-chips.

  2. A Multipurpose CMOS Platform for Nanosensing

    PubMed Central

    Bonanno, Alberto; Sanginario, Alessandro; Marasso, Simone L.; Miccoli, Beatrice; Bejtka, Katarzyna; Benetto, Simone; Demarchi, Danilo

    2016-01-01

    This paper presents a customizable sensing system based on functionalized nanowires (NWs) assembled onto complementary metal oxide semiconductor (CMOS) technology. The Micro-for-Nano (M4N) chip integrates on top of the electronics an array of aluminum microelectrodes covered with gold by means of a customized electroless plating process. The NW assembly process is driven by an array of on-chip dielectrophoresis (DEP) generators, enabling a custom layout of different nanosensors on the same microelectrode array. The electrical properties of each assembled NW are singularly sensed through an in situ CMOS read-out circuit (ROC) that guarantees a low noise and reliable measurement. The M4N chip is directly connected to an external microcontroller for configuration and data processing. The processed data are then redirected to a workstation for real-time data visualization and storage during sensing experiments. As proof of concept, ZnO nanowires have been integrated onto the M4N chip to validate the approach that enables different kind of sensing experiments. The device has been then irradiated by an external UV source with adjustable power to measure the ZnO sensitivity to UV-light exposure. A maximum variation of about 80% of the ZnO-NW resistance has been detected by the M4N system when the assembled 5 μm × 500 nm single ZnO-NW is exposed to an estimated incident radiant UV-light flux in the range of 1 nW–229 nW. The performed experiments prove the efficiency of the platform conceived for exploiting any kind of material that can change its capacitance and/or resistance due to an external stimulus. PMID:27916911

  3. A Multipurpose CMOS Platform for Nanosensing.

    PubMed

    Bonanno, Alberto; Sanginario, Alessandro; Marasso, Simone L; Miccoli, Beatrice; Bejtka, Katarzyna; Benetto, Simone; Demarchi, Danilo

    2016-11-30

    This paper presents a customizable sensing system based on functionalized nanowires (NWs) assembled onto complementary metal oxide semiconductor (CMOS) technology. The Micro-for-Nano (M4N) chip integrates on top of the electronics an array of aluminum microelectrodes covered with gold by means of a customized electroless plating process. The NW assembly process is driven by an array of on-chip dielectrophoresis (DEP) generators, enabling a custom layout of different nanosensors on the same microelectrode array. The electrical properties of each assembled NW are singularly sensed through an in situ CMOS read-out circuit (ROC) that guarantees a low noise and reliable measurement. The M4N chip is directly connected to an external microcontroller for configuration and data processing. The processed data are then redirected to a workstation for real-time data visualization and storage during sensing experiments. As proof of concept, ZnO nanowires have been integrated onto the M4N chip to validate the approach that enables different kind of sensing experiments. The device has been then irradiated by an external UV source with adjustable power to measure the ZnO sensitivity to UV-light exposure. A maximum variation of about 80% of the ZnO-NW resistance has been detected by the M4N system when the assembled 5 μ m × 500 nm single ZnO-NW is exposed to an estimated incident radiant UV-light flux in the range of 1 nW-229 nW. The performed experiments prove the efficiency of the platform conceived for exploiting any kind of material that can change its capacitance and/or resistance due to an external stimulus.

  4. Simultaneous versus sequential optimal experiment design for the identification of multi-parameter microbial growth kinetics as a function of temperature.

    PubMed

    Van Derlinden, E; Bernaerts, K; Van Impe, J F

    2010-05-21

    Optimal experiment design for parameter estimation (OED/PE) has become a popular tool for efficient and accurate estimation of kinetic model parameters. When the kinetic model under study encloses multiple parameters, different optimization strategies can be constructed. The most straightforward approach is to estimate all parameters simultaneously from one optimal experiment (single OED/PE strategy). However, due to the complexity of the optimization problem or the stringent limitations on the system's dynamics, the experimental information can be limited and parameter estimation convergence problems can arise. As an alternative, we propose to reduce the optimization problem to a series of two-parameter estimation problems, i.e., an optimal experiment is designed for a combination of two parameters while presuming the other parameters known. Two different approaches can be followed: (i) all two-parameter optimal experiments are designed based on identical initial parameter estimates and parameters are estimated simultaneously from all resulting experimental data (global OED/PE strategy), and (ii) optimal experiments are calculated and implemented sequentially whereby the parameter values are updated intermediately (sequential OED/PE strategy). This work exploits OED/PE for the identification of the Cardinal Temperature Model with Inflection (CTMI) (Rosso et al., 1993). This kinetic model describes the effect of temperature on the microbial growth rate and encloses four parameters. The three OED/PE strategies are considered and the impact of the OED/PE design strategy on the accuracy of the CTMI parameter estimation is evaluated. Based on a simulation study, it is observed that the parameter values derived from the sequential approach deviate more from the true parameters than the single and global strategy estimates. The single and global OED/PE strategies are further compared based on experimental data obtained from design implementation in a bioreactor. Comparable estimates are obtained, but global OED/PE estimates are, in general, more accurate and reliable. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  5. Multi-atlas segmentation of the cartilage in knee MR images with sequential volume- and bone-mask-based registrations

    NASA Astrophysics Data System (ADS)

    Lee, Han Sang; Kim, Hyeun A.; Kim, Hyeonjin; Hong, Helen; Yoon, Young Cheol; Kim, Junmo

    2016-03-01

    In spite of its clinical importance in diagnosis of osteoarthritis, segmentation of cartilage in knee MRI remains a challenging task due to its shape variability and low contrast with surrounding soft tissues and synovial fluid. In this paper, we propose a multi-atlas segmentation of cartilage in knee MRI with sequential atlas registrations and locallyweighted voting (LWV). First, bone is segmented by sequential volume- and object-based registrations and LWV. Second, to overcome the shape variability of cartilage, cartilage is segmented by bone-mask-based registration and LWV. In experiments, the proposed method improved the bone segmentation by reducing misclassified bone region, and enhanced the cartilage segmentation by preventing cartilage leakage into surrounding similar intensity region, with the help of sequential registrations and LWV.

  6. Speech Perception and Production by Sequential Bilingual Children: A Longitudinal Study of Voice Onset Time Acquisition

    PubMed Central

    McCarthy, Kathleen M; Mahon, Merle; Rosen, Stuart; Evans, Bronwen G

    2014-01-01

    The majority of bilingual speech research has focused on simultaneous bilinguals. Yet, in immigrant communities, children are often initially exposed to their family language (L1), before becoming gradually immersed in the host country's language (L2). This is typically referred to as sequential bilingualism. Using a longitudinal design, this study explored the perception and production of the English voicing contrast in 55 children (40 Sylheti-English sequential bilinguals and 15 English monolinguals). Children were tested twice: when they were in nursery (52-month-olds) and 1 year later. Sequential bilinguals' perception and production of English plosives were initially driven by their experience with their L1, but after starting school, changed to match that of their monolingual peers. PMID:25123987

  7. Short-Term Free Recall and Sequential Memory for Pictures and Words: A Simultaneous-Successive Processing Interpretation.

    ERIC Educational Resources Information Center

    Randhawa, Bikkar S.; And Others

    1982-01-01

    Replications of two basic experiments in support of the dual-coding processing model with grade 10 and college subjects used pictures, concrete words, and abstract words as stimuli presented at fast and slow rates for immediate and sequential recall. Results seem to be consistent with predictions of simultaneous-successive cognitive theory. (MBR)

  8. Greater trochanter chip fractures in the direct anterior approach for total hip arthroplasty.

    PubMed

    Homma, Yasuhiro; Baba, Tomonori; Ochi, Hironori; Ozaki, Yu; Kobayashi, Hideo; Matsumoto, Mikio; Yuasa, Takahito; Kaneko, Kazuo

    2016-08-01

    The direct anterior approach (DAA) for the treatment of total hip arthroplasty (THA) has gained popularity in recent years. Chip fractures of the greater trochanter are frequently seen, but the risk factors for such fractures are unknown. The study aimed to identify the risk factors for chip fractures in patients undergoing primary THA by the DAA during the surgeons' learning curve. From November 2011 to April 2015, the first experiences of three surgeons who performed 120 THAs by the DAA (120 hips; 40 cases per beginner surgeon) were included. The incidence of chip fracture of the greater trochanter, the size of the greater trochanter as measured by computed tomography, and the patients' characteristics were retrospectively investigated. After exclusion of 11 hips, the remaining 109 hips were investigated. Chip fracture of the greater trochanter was identified in 32 hips (29.4 %). Univariate analysis with and without fractures showed that the width and depth of the greater trochanter were statistically significant risk factors (p = 0.02 and p < 0.001, respectively). Multivariate analysis using a logistic regression model demonstrated that the depth of the greater trochanter was an independent risk factor for chip fracture of the greater trochanter (OR 1.725; 95 % CI 1.367-2.177; p < 0.001). The size of the greater trochanter was identified as a risk factor for chip fracture of the greater trochanter. Novice surgeons should pay attention to the size of the greater trochanter when performing THA by the DAA.

  9. An SOI CMOS-Based Multi-Sensor MEMS Chip for Fluidic Applications.

    PubMed

    Mansoor, Mohtashim; Haneef, Ibraheem; Akhtar, Suhail; Rafiq, Muhammad Aftab; De Luca, Andrea; Ali, Syed Zeeshan; Udrea, Florin

    2016-11-04

    An SOI CMOS multi-sensor MEMS chip, which can simultaneously measure temperature, pressure and flow rate, has been reported. The multi-sensor chip has been designed keeping in view the requirements of researchers interested in experimental fluid dynamics. The chip contains ten thermodiodes (temperature sensors), a piezoresistive-type pressure sensor and nine hot film-based flow rate sensors fabricated within the oxide layer of the SOI wafers. The silicon dioxide layers with embedded sensors are relieved from the substrate as membranes with the help of a single DRIE step after chip fabrication from a commercial CMOS foundry. Very dense sensor packing per unit area of the chip has been enabled by using technologies/processes like SOI, CMOS and DRIE. Independent apparatuses were used for the characterization of each sensor. With a drive current of 10 µA-0.1 µA, the thermodiodes exhibited sensitivities of 1.41 mV/°C-1.79 mV/°C in the range 20-300 °C. The sensitivity of the pressure sensor was 0.0686 mV/(V excit kPa) with a non-linearity of 0.25% between 0 and 69 kPa above ambient pressure. Packaged in a micro-channel, the flow rate sensor has a linearized sensitivity of 17.3 mV/(L/min) -0.1 in the tested range of 0-4.7 L/min. The multi-sensor chip can be used for simultaneous measurement of fluid pressure, temperature and flow rate in fluidic experiments and aerospace/automotive/biomedical/process industries.

  10. An SOI CMOS-Based Multi-Sensor MEMS Chip for Fluidic Applications †

    PubMed Central

    Mansoor, Mohtashim; Haneef, Ibraheem; Akhtar, Suhail; Rafiq, Muhammad Aftab; De Luca, Andrea; Ali, Syed Zeeshan; Udrea, Florin

    2016-01-01

    An SOI CMOS multi-sensor MEMS chip, which can simultaneously measure temperature, pressure and flow rate, has been reported. The multi-sensor chip has been designed keeping in view the requirements of researchers interested in experimental fluid dynamics. The chip contains ten thermodiodes (temperature sensors), a piezoresistive-type pressure sensor and nine hot film-based flow rate sensors fabricated within the oxide layer of the SOI wafers. The silicon dioxide layers with embedded sensors are relieved from the substrate as membranes with the help of a single DRIE step after chip fabrication from a commercial CMOS foundry. Very dense sensor packing per unit area of the chip has been enabled by using technologies/processes like SOI, CMOS and DRIE. Independent apparatuses were used for the characterization of each sensor. With a drive current of 10 µA–0.1 µA, the thermodiodes exhibited sensitivities of 1.41 mV/°C–1.79 mV/°C in the range 20–300 °C. The sensitivity of the pressure sensor was 0.0686 mV/(Vexcit kPa) with a non-linearity of 0.25% between 0 and 69 kPa above ambient pressure. Packaged in a micro-channel, the flow rate sensor has a linearized sensitivity of 17.3 mV/(L/min)−0.1 in the tested range of 0–4.7 L/min. The multi-sensor chip can be used for simultaneous measurement of fluid pressure, temperature and flow rate in fluidic experiments and aerospace/automotive/biomedical/process industries. PMID:27827904

  11. Universal lab-on-a-chip platform for complex, perfused 3D cell cultures

    NASA Astrophysics Data System (ADS)

    Sonntag, F.; Schmieder, F.; Ströbel, J.; Grünzner, S.; Busek, M.; Günther, K.; Steege, T.; Polk, C.; Klotzbach, U.

    2016-03-01

    The miniaturization, rapid prototyping and automation of lab-on-a-chip technology play nowadays a very important role. Lab-on-a-chip technology is successfully implemented not only for environmental analysis and medical diagnostics, but also as replacement of animals used for the testing of substances in the pharmaceutical and cosmetics industries. For that purpose the Fraunhofer IWS and partners developed a lab-on-a-chip platform for perfused cell-based assays in the last years, which includes different micropumps, valves, channels, reservoirs and customized cell culture modules. This technology is already implemented for the characterization of different human cell cultures and organoids, like skin, liver, endothelium, hair follicle and nephron. The advanced universal lab-on-a-chip platform for complex, perfused 3D cell cultures is divided into a multilayer basic chip with integrated micropump and application-specific 3D printed cell culture modules. Moreover a technology for surface modification of the printed cell culture modules by laser micro structuring and a complex and flexibly programmable controlling device based on an embedded Linux system was developed. A universal lab-on-a-chip platform with an optional oxygenator and a cell culture module for cubic scaffolds as well as first cell culture experiments within the cell culture device will be presented. The module is designed for direct interaction with robotic dispenser systems. This offers the opportunity to combine direct organ printing of cells and scaffolds with the microfluidic cell culture module. The characterization of the developed system was done by means of Micro-Particle Image Velocimetry (μPIV) and an optical oxygen measuring system.

  12. Lab-on a-Chip

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Labs on chips are manufactured in many shapes and sizes and can be used for numerous applications, from medical tests to water quality monitoring to detecting the signatures of life on other planets. The eight holes on this chip are actually ports that can be filled with fluids or chemicals. Tiny valves control the chemical processes by mixing fluids that move in the tiny channels that look like lines, connecting the ports. Scientists at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama designed this chip to grow biological crystals on the International Space Station (ISS). Through this research, they discovered that this technology is ideally suited for solving the challenges of the Vision for Space Exploration. For example, thousands of chips the size of dimes could be loaded on a Martian rover looking for biosignatures of past or present life. Other types of chips could be placed in handheld devices used to monitor microbes in water or to quickly conduct medical tests on astronauts. The portable, handheld Lab-on-a Chip Application Development Portable Test System (LOCAD-PTS) made its debut flight aboard Discovery during the STS-116 mission launched December 9, 2006. The system allowed crew members to monitor their environment for problematic contaminants such as yeast, mold, and even E.coli, and salmonella. Once LOCAD-PTS reached the ISS, the Marshall team continued to manage the experiment, monitoring the study from a console in the Payload Operations Center at MSFC. The results of these studies will help NASA researchers refine the technology for future Moon and Mars missions. (NASA/MSFC/D.Stoffer)

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britton, C.L.; Jagadish, U.; Bryan, W.L.

    An Integrated Circuit (IC) readout chip with four channels arranged so as to receive input charge from the corners of the chip was designed for use with 5- to 7-mm pixel detectors. This Application Specific IC (ASIC) can be used for cold neutron imaging, for study of structural order in materials using cold neutron scattering or for particle physics experiments. The ASIC is fabricated in a 0.5-{micro}m n-well AMI process. The design of the ASIC and the test measurements made is reported. Noise measurements are also reported.

  14. Reduction of Trapped-Ion Anomalous Heating by in situ Surface Plasma Cleaning

    DTIC Science & Technology

    2015-04-29

    the trap chip temperature. To load ions, we initially cool 88Sr atoms into a remotely-located magneto - optical trap (MOT), then use a resonant push beam... trap heating rates [10]. Furthermore, some previous experiments have shown an improvement in the heating rates of surface-electrode ion traps after...rate when the trap chip is held at 4 K is not significantly improved by the plasma cleaning. While the observed frequency scaling is not the same in

  15. Multiplexed detection of serological cancer markers with plasmon-enhanced Raman spectro-immunoassay.

    PubMed

    Li, Ming; Kang, Jeon Woong; Sukumar, Saraswati; Dasari, Ramachandra Rao; Barman, Ishan

    2015-07-01

    Circulating biomarkers have emerged as promising non-invasive, real-time surrogates for cancer diagnosis, prognostication and monitoring of therapeutic response. Emerging data, however, suggest that single markers are inadequate in describing complex pathologic transformations. Architecting assays capable of parallel measurements of multiple biomarkers can help achieve the desired clinical sensitivity and specificity while conserving patient specimen and reducing turn-around time. Here we describe a plasmon-enhanced Raman spectroscopic assay featuring nanostructured biomolecular probes and spectroscopic imaging for multiplexed detection of disseminated breast cancer markers cancer antigen (CA) 15-3, CA 27-29 and cancer embryonic antigen (CEA). In the developed SERS assay, both the assay chip and surface-enhanced Raman spectroscopy (SERS) tags are functionalized with monoclonal antibodies against CA15-3, CA27-29 and CEA, respectively. Sequential addition of biomarkers and functionalized SERS tags onto the functionalized assay chip enable the specific recognition of these biomarkers through the antibody-antigen interactions, leading to a sandwich spectro-immunoassay. In addition to offering extensive multiplexing capability, our method provides higher sensitivity than conventional immunoassays and demonstrates exquisite specificity owing to selective formation of conjugated complexes and fingerprint spectra of the Raman reporter. We envision that clinical translation of this assay may further enable asymptomatic surveillance of cancer survivors and speedy assessment of treatment benefit through a simple blood test.

  16. CENPT bridges adjacent CENPA nucleosomes on young human α-satellite dimers

    PubMed Central

    Thakur, Jitendra; Henikoff, Steven

    2016-01-01

    Nucleosomes containing the CenH3 (CENPA or CENP-A) histone variant replace H3 nucleosomes at centromeres to provide a foundation for kinetochore assembly. CENPA nucleosomes are part of the constitutive centromere associated network (CCAN) that forms the inner kinetochore on which outer kinetochore proteins assemble. Two components of the CCAN, CENPC and the histone-fold protein CENPT, provide independent connections from the ∼171-bp centromeric α-satellite repeat units to the outer kinetochore. However, the spatial relationship between CENPA nucleosomes and these two branches remains unclear. To address this issue, we use a base-pair resolution genomic readout of protein–protein interactions, comparative chromatin immunoprecipitation (ChIP) with sequencing, together with sequential ChIP, to infer the in vivo molecular architecture of the human CCAN. In contrast to the currently accepted model in which CENPT associates with H3 nucleosomes, we find that CENPT is centered over the CENPB box between two well-positioned CENPA nucleosomes on the most abundant centromeric young α-satellite dimers and interacts with the CENPB/CENPC complex. Upon cross-linking, the entire CENPA/CENPB/CENPC/CENPT complex is nuclease-protected over an α-satellite dimer that comprises the fundamental unit of centromeric chromatin. We conclude that CENPA/CENPC and CENPT pathways for kinetochore assembly are physically integrated over young α-satellite dimers. PMID:27384170

  17. Utilisation of chip thickness models in grinding

    NASA Astrophysics Data System (ADS)

    Singleton, Roger

    Grinding is now a well established process utilised for both stock removal and finish applications. Although significant research is performed in this field, grinding still experiences problems with burn and high forces which can lead to poor quality components and damage to equipment. This generally occurs in grinding when the process deviates from its safe working conditions. In milling, chip thickness parameters are utilised to predict and maintain process outputs leading to improved control of the process. This thesis looks to further the knowledge of the relationship between chip thickness and the grinding process outputs to provide an increased predictive and maintenance modelling capability. Machining trials were undertaken using different chip thickness parameters to understand how these affect the process outputs. The chip thickness parameters were maintained at different grinding wheel diameters for a constant productivity process to determine the impact of chip thickness at a constant material removal rate.. Additional testing using a modified pin on disc test rig was performed to provide further information on process variables. The different chip thickness parameters provide control of different process outputs in the grinding process. These relationships can be described using contact layer theory and heat flux partitioning. The contact layer is defined as the immediate layer beneath the contact arc at the wheel workpiece interface. The size of the layer governs the force experienced during the process. The rate of contact layer removal directly impacts the net power required from the system. It was also found that the specific grinding energy of a process is more dependent on the productivity of a grinding process rather than the value of chip thickness. Changes in chip thickness at constant material removal rate result in microscale changes in the rate of contact layer removal when compared to changes in process productivity. This is a significant piece of information in relation to specific grinding energy where conventional theory states it is primarily dependent on chip thickness..

  18. Cellular membrane collapse by atmospheric-pressure plasma jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kangil; Sik Yang, Sang, E-mail: jsjlee@ajou.ac.kr, E-mail: ssyang@ajou.ac.kr; Jun Ahn, Hak

    2014-01-06

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation,more » and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.« less

  19. Kinetic Titration Series with Biolayer Interferometry

    PubMed Central

    Frenzel, Daniel; Willbold, Dieter

    2014-01-01

    Biolayer interferometry is a method to analyze protein interactions in real-time. In this study, we illustrate the usefulness to quantitatively analyze high affinity protein ligand interactions employing a kinetic titration series for characterizing the interactions between two pairs of interaction patterns, in particular immunoglobulin G and protein G B1 as well as scFv IC16 and amyloid beta (1–42). Kinetic titration series are commonly used in surface plasmon resonance and involve sequential injections of analyte over a desired concentration range on a single ligand coated sensor chip without waiting for complete dissociation between the injections. We show that applying this method to biolayer interferometry is straightforward and i) circumvents problems in data evaluation caused by unavoidable sensor differences, ii) saves resources and iii) increases throughput if screening a multitude of different analyte/ligand combinations. PMID:25229647

  20. Kinetic titration series with biolayer interferometry.

    PubMed

    Frenzel, Daniel; Willbold, Dieter

    2014-01-01

    Biolayer interferometry is a method to analyze protein interactions in real-time. In this study, we illustrate the usefulness to quantitatively analyze high affinity protein ligand interactions employing a kinetic titration series for characterizing the interactions between two pairs of interaction patterns, in particular immunoglobulin G and protein G B1 as well as scFv IC16 and amyloid beta (1-42). Kinetic titration series are commonly used in surface plasmon resonance and involve sequential injections of analyte over a desired concentration range on a single ligand coated sensor chip without waiting for complete dissociation between the injections. We show that applying this method to biolayer interferometry is straightforward and i) circumvents problems in data evaluation caused by unavoidable sensor differences, ii) saves resources and iii) increases throughput if screening a multitude of different analyte/ligand combinations.

  1. Digital TV tri-state delta modulation system for Space Shuttle ku-band downlink

    NASA Technical Reports Server (NTRS)

    Udalov, S.; Huth, G. K.; Roberts, D.; Batson, B. H.

    1982-01-01

    A tri-state delta modulation/demodulation (TSDM) technique which provides for efficient run-length coding of constant-intensity segments of a TV picture is described. Aspects of the hardware implementation of a high-speed TSDM transmitter and receiver for black-and-white TV or field-sequential color or NTSC format color are reviewed. Run-length encoding of the TSDM output can consistently reduce the required channel data rate well below one bit per sample. As compared with a bistate delta modulation system, the present technique eliminates granularity in the reconstructed video without degrading rise or fall times. About 40 chips are used by TSDM when used to handle the luminance information in a color link. A possible overall space and ground functional configuration to accommodate Shuttle digital TV with scrambling for privacy is presented.

  2. Auditory processing and phonological awareness skills of five-year-old children with and without musical experience.

    PubMed

    Escalda, Júlia; Lemos, Stela Maris Aguiar; França, Cecília Cavalieri

    2011-09-01

    To investigate the relations between musical experience, auditory processing and phonological awareness of groups of 5-year-old children with and without musical experience. Participants were 56 5-year-old subjects of both genders, 26 in the Study Group, consisting of children with musical experience, and 30 in the Control Group, consisting of children without musical experience. All participants were assessed with the Simplified Auditory Processing Assessment and Phonological Awareness Test and the data was statistically analyzed. There was a statistically significant difference between the results of the sequential memory test for verbal and non-verbal sounds with four stimuli, phonological awareness tasks of rhyme recognition, phonemic synthesis and phonemic deletion. Analysis of multiple binary logistic regression showed that, with exception of the sequential verbal memory with four syllables, the observed difference in subjects' performance was associated with their musical experience. Musical experience improves auditory and metalinguistic abilities of 5-year-old children.

  3. Rats' preferences for corn versus wood-based bedding and nesting materials.

    PubMed

    Ras, T; van de Ven, M; Patterson-Kane, E G; Nelson, K

    2002-10-01

    Corn by-products can be used as bedding and nesting products. Corn-cob bedding resists ammonia build-up and corn-husk nesting material resists dampness. It is not clear whether these advantages are at the expense of animal comfort. Corn cob was compared to aspen chip bedding, and corn husk to paper strip nesting material. Data from 20 rats with differential early bedding experience suggested that they prefer aspen chip, but are also biased towards the bedding they were raised on. Data from 10 rats with no prior nesting material experience suggested that paper strip was preferred over cornhusk. Thus, corn-cob products are not recommended except in situations where air quality and/or flooding are significant problems.

  4. A pixel read-out architecture implementing a two-stage token ring, zero suppression and compression

    NASA Astrophysics Data System (ADS)

    Heuvelmans, S.; Boerrigter, M.

    2011-01-01

    Increasing luminosity in high energy physics experiments leads to new challenges in the design of data acquisition systems for pixel detectors. With the upgrade of the LHCb experiment, the data processing will be changed; hit data from every collision will be transported off the pixel chip, without any trigger selection. A read-out architecture is proposed which is able to obtain low hit data loss on limited silicon area by using the logic beneath the pixels as a data buffer. Zero suppression and redundancy reduction ensure that the data rate off chip is minimized. A C++ model has been created for simulation of functionality and data loss, and for system development. A VHDL implementation has been derived from this model.

  5. Simultaneous, But Not Consecutive, Combination With Folinate Salts Potentiates 5-Fluorouracil Antitumor Activity In Vitro and In Vivo.

    PubMed

    Di Paolo, Antonello; Orlandi, Paola; Di Desidero, Teresa; Danesi, Romano; Bocci, Guido

    2017-08-07

    The combination of folinate salts to 5-fluoruracil (5-FU)-based schedules is an established clinical routine in the landscape of colorectal cancer treatment. The aim of this study was to investigate the pharmacological differences between the sequential administration of folinate salts (1 h before, as in clinical routine) followed by 5-FU and the simultaneous administration of both drugs. Proliferation and apoptotic assays were performed on human colon cancer cells exposed to 5-FU, calcium (CaLV), or disodium (NaLV) levofolinate or their simultaneous and sequential combination for 24 and 72 h. TYMS and SLC19A1 gene expression was performed with real-time PCR. In vivo experiments were performed in xenografted nude mice, which were treated with 5-FU escalating doses and CaLV or NaLV alone or in simultaneous and sequential combination. The simultaneous combination of folinate salts and 5-FU was synergistic (NaLV) or additive (CaLV) in a 24-h treatment in both cell lines. In contrast, the sequential combination of both folinate salts and 5-FU was antagonistic at 24 and 72 h. The simultaneous combination of 5-FU and NaLV or CaLV inhibited TYMS gene expression at 24 h, whereas the sequential combination reduced SLC19A1 gene expression. In vivo experiments confirmed the enhanced antitumor activity of the 5-FU + NaLV simultaneous combination with a good toxicity profile, whereas the sequential combination with CaLV failed to potentiate 5-FU activity. In conclusion, only the simultaneous, but not the consecutive, in vitro and in vivo combination of 5-FU and both folinate salt formulations potentiated the antiproliferative effects of the drugs.

  6. Shrink-film microfluidic education modules: Complete devices within minutes

    PubMed Central

    Nguyen, Diep; McLane, Jolie; Lew, Valerie; Pegan, Jonathan; Khine, Michelle

    2011-01-01

    As advances in microfluidics continue to make contributions to diagnostics and life sciences, broader awareness of this expanding field becomes necessary. By leveraging low-cost microfabrication techniques that require no capital equipment or infrastructure, simple, accessible, and effective educational modules can be made available for a broad range of educational needs from middle school demonstrations to college laboratory classes. These modules demonstrate key microfluidic concepts such as diffusion and separation as well as “laboratory on-chip” applications including chemical reactions and biological assays. These modules are intended to provide an interdisciplinary hands-on experience, including chip design, fabrication of functional devices, and experiments at the microscale. Consequently, students will be able to conceptualize physics at small scales, gain experience in computer-aided design and microfabrication, and perform experiments—all in the context of addressing real-world challenges by making their own lab-on-chip devices. PMID:21799715

  7. Robust sequential working memory recall in heterogeneous cognitive networks

    PubMed Central

    Rabinovich, Mikhail I.; Sokolov, Yury; Kozma, Robert

    2014-01-01

    Psychiatric disorders are often caused by partial heterogeneous disinhibition in cognitive networks, controlling sequential and spatial working memory (SWM). Such dynamic connectivity changes suggest that the normal relationship between the neuronal components within the network deteriorates. As a result, competitive network dynamics is qualitatively altered. This dynamics defines the robust recall of the sequential information from memory and, thus, the SWM capacity. To understand pathological and non-pathological bifurcations of the sequential memory dynamics, here we investigate the model of recurrent inhibitory-excitatory networks with heterogeneous inhibition. We consider the ensemble of units with all-to-all inhibitory connections, in which the connection strengths are monotonically distributed at some interval. Based on computer experiments and studying the Lyapunov exponents, we observed and analyzed the new phenomenon—clustered sequential dynamics. The results are interpreted in the context of the winnerless competition principle. Accordingly, clustered sequential dynamics is represented in the phase space of the model by two weakly interacting quasi-attractors. One of them is similar to the sequential heteroclinic chain—the regular image of SWM, while the other is a quasi-chaotic attractor. Coexistence of these quasi-attractors means that the recall of the normal information sequence is intermittently interrupted by episodes with chaotic dynamics. We indicate potential dynamic ways for augmenting damaged working memory and other cognitive functions. PMID:25452717

  8. Sequential Tool Use in Great Apes

    PubMed Central

    Martin-Ordas, Gema; Schumacher, Lena; Call, Josep

    2012-01-01

    Sequential tool use is defined as using a tool to obtain another non-food object which subsequently itself will serve as a tool to act upon a further (sub)goal. Previous studies have shown that birds and great apes succeed in such tasks. However, the inclusion of a training phase for each of the sequential steps and the low cost associated with retrieving the longest tools limits the scope of the conclusions. The goal of the experiments presented here was, first to replicate a previous study on sequential tool use conducted on New Caledonian crows and, second, extend this work by increasing the cost of retrieving a tool in order to test tool selectivity of apes. In Experiment 1, we presented chimpanzees, orangutans and bonobos with an out-of-reach reward, two tools that were available but too short to reach the food and four out-of-reach tools differing in functionality. Similar to crows, apes spontaneously used up to 3 tools in sequence to get the reward and also showed a strong preference for the longest out-of reach tool independently of the distance of the food. In Experiment 2, we increased the cost of reaching for the longest out-of reach tool. Now apes used up to 5 tools in sequence to get the reward and became more selective in their choice of the longest tool as the costs of its retrieval increased. The findings of the studies presented here contribute to the growing body of comparative research on tool use. PMID:23300592

  9. Sequential congruency effects: disentangling priming and conflict adaptation.

    PubMed

    Puccioni, Olga; Vallesi, Antonino

    2012-09-01

    Responding to the color of a word is slower and less accurate if the word refers to a different color (incongruent condition) than if it refers to the same color (congruent condition). This phenomenon, known as the Stroop effect, is modulated by sequential effects: it is bigger when the current trial is preceded by a congruent condition than by an incongruent one in the previous trial. Whether this phenomenon is due to priming mechanisms or to cognitive control is still debated. To disentangle the contribution of priming with respect to conflict adaptation mechanisms in determining sequential effects, two experiments were designed here with a four-alternative forced choice (4-AFC) Stroop task: in the first one only trials with complete alternations of features were used, while in the second experiment all possible types of repetitions were presented. Both response times (RTs) and errors were evaluated. Conflict adaptation effects on RTs were limited to congruent trials and were exclusively due to priming: they disappeared in the priming-free experiment and, in the second experiment, they occurred in sequences with feature repetitions but not in complete alternation sequences. Error results, instead, support the presence of conflict adaptation effects in incongruent trials. In priming-free sequences (experiment 1 and complete alternation sequences of experiment 2) with incongruent previous trials there was no error Stroop effect, while this effect was significant with congruent previous trials. These results indicate that cognitive control may modulate performance above and beyond priming effects.

  10. The Emergence of Explicit Knowledge in a Serial Reaction Time Task: The Role of Experienced Fluency and Strength of Representation.

    PubMed

    Esser, Sarah; Haider, Hilde

    2017-01-01

    The Serial Reaction Time Task (SRTT) is an important paradigm to study the properties of unconscious learning processes. One specifically interesting and still controversially discussed topic are the conditions under which unconsciously acquired knowledge becomes conscious knowledge. The different assumptions about the underlying mechanisms can contrastively be separated into two accounts: single system views in which the strengthening of associative weights throughout training gradually turns implicit knowledge into explicit knowledge, and dual system views in which implicit knowledge itself does not become conscious. Rather, it requires a second process which detects changes in performance and is able to acquire conscious knowledge. In a series of three experiments, we manipulated the arrangement of sequential and deviant trials. In an SRTT training, participants either received mini-blocks of sequential trials followed by mini-blocks of deviant trials (22 trials each) or they received sequential and deviant trials mixed randomly. Importantly the number of correct and deviant transitions was the same for both conditions. Experiment 1 showed that both conditions acquired a comparable amount of implicit knowledge, expressed in different test tasks. Experiment 2 further demonstrated that both conditions differed in their subjectively experienced fluency of the task, with more fluency experienced when trained with mini-blocks. Lastly, Experiment 3 revealed that the participants trained with longer mini-blocks of sequential and deviant material developed more explicit knowledge. Results are discussed regarding their compatibility with different assumptions about the emergence of explicit knowledge in an implicit learning situation, especially with respect to the role of metacognitive judgements and more specifically the Unexpected-Event Hypothesis.

  11. The Emergence of Explicit Knowledge in a Serial Reaction Time Task: The Role of Experienced Fluency and Strength of Representation

    PubMed Central

    Esser, Sarah; Haider, Hilde

    2017-01-01

    The Serial Reaction Time Task (SRTT) is an important paradigm to study the properties of unconscious learning processes. One specifically interesting and still controversially discussed topic are the conditions under which unconsciously acquired knowledge becomes conscious knowledge. The different assumptions about the underlying mechanisms can contrastively be separated into two accounts: single system views in which the strengthening of associative weights throughout training gradually turns implicit knowledge into explicit knowledge, and dual system views in which implicit knowledge itself does not become conscious. Rather, it requires a second process which detects changes in performance and is able to acquire conscious knowledge. In a series of three experiments, we manipulated the arrangement of sequential and deviant trials. In an SRTT training, participants either received mini-blocks of sequential trials followed by mini-blocks of deviant trials (22 trials each) or they received sequential and deviant trials mixed randomly. Importantly the number of correct and deviant transitions was the same for both conditions. Experiment 1 showed that both conditions acquired a comparable amount of implicit knowledge, expressed in different test tasks. Experiment 2 further demonstrated that both conditions differed in their subjectively experienced fluency of the task, with more fluency experienced when trained with mini-blocks. Lastly, Experiment 3 revealed that the participants trained with longer mini-blocks of sequential and deviant material developed more explicit knowledge. Results are discussed regarding their compatibility with different assumptions about the emergence of explicit knowledge in an implicit learning situation, especially with respect to the role of metacognitive judgements and more specifically the Unexpected-Event Hypothesis. PMID:28421018

  12. Sequential effects in judgements of attractiveness: the influences of face race and sex.

    PubMed

    Kramer, Robin S S; Jones, Alex L; Sharma, Dinkar

    2013-01-01

    In perceptual decision-making, a person's response on a given trial is influenced by their response on the immediately preceding trial. This sequential effect was initially demonstrated in psychophysical tasks, but has now been found in more complex, real-world judgements. The similarity of the current and previous stimuli determines the nature of the effect, with more similar items producing assimilation in judgements, while less similarity can cause a contrast effect. Previous research found assimilation in ratings of facial attractiveness, and here, we investigated whether this effect is influenced by the social categories of the faces presented. Over three experiments, participants rated the attractiveness of own- (White) and other-race (Chinese) faces of both sexes that appeared successively. Through blocking trials by race (Experiment 1), sex (Experiment 2), or both dimensions (Experiment 3), we could examine how sequential judgements were altered by the salience of different social categories in face sequences. For sequences that varied in sex alone, own-race faces showed significantly less opposite-sex assimilation (male and female faces perceived as dissimilar), while other-race faces showed equal assimilation for opposite- and same-sex sequences (male and female faces were not differentiated). For sequences that varied in race alone, categorisation by race resulted in no opposite-race assimilation for either sex of face (White and Chinese faces perceived as dissimilar). For sequences that varied in both race and sex, same-category assimilation was significantly greater than opposite-category. Our results suggest that the race of a face represents a superordinate category relative to sex. These findings demonstrate the importance of social categories when considering sequential judgements of faces, and also highlight a novel approach for investigating how multiple social dimensions interact during decision-making.

  13. Sequential Effects in Judgements of Attractiveness: The Influences of Face Race and Sex

    PubMed Central

    Kramer, Robin S. S.; Jones, Alex L.; Sharma, Dinkar

    2013-01-01

    In perceptual decision-making, a person’s response on a given trial is influenced by their response on the immediately preceding trial. This sequential effect was initially demonstrated in psychophysical tasks, but has now been found in more complex, real-world judgements. The similarity of the current and previous stimuli determines the nature of the effect, with more similar items producing assimilation in judgements, while less similarity can cause a contrast effect. Previous research found assimilation in ratings of facial attractiveness, and here, we investigated whether this effect is influenced by the social categories of the faces presented. Over three experiments, participants rated the attractiveness of own- (White) and other-race (Chinese) faces of both sexes that appeared successively. Through blocking trials by race (Experiment 1), sex (Experiment 2), or both dimensions (Experiment 3), we could examine how sequential judgements were altered by the salience of different social categories in face sequences. For sequences that varied in sex alone, own-race faces showed significantly less opposite-sex assimilation (male and female faces perceived as dissimilar), while other-race faces showed equal assimilation for opposite- and same-sex sequences (male and female faces were not differentiated). For sequences that varied in race alone, categorisation by race resulted in no opposite-race assimilation for either sex of face (White and Chinese faces perceived as dissimilar). For sequences that varied in both race and sex, same-category assimilation was significantly greater than opposite-category. Our results suggest that the race of a face represents a superordinate category relative to sex. These findings demonstrate the importance of social categories when considering sequential judgements of faces, and also highlight a novel approach for investigating how multiple social dimensions interact during decision-making. PMID:24349226

  14. Winning and positive affect can lead to reckless gambling.

    PubMed

    Cummins, Lori F; Nadorff, Michael R; Kelly, Anita E

    2009-06-01

    Experiments 1 and 2 examined whether winning versus losing led to reckless betting for real prize money. Experiment 2 also assessed whether positive or negative emotions were linked to such reckless betting. College students were randomly assigned to experience primarily either wins or losses during the rigged first round of a computerized card tournament that had 2 independent rounds. For the second round, participants' chip totals were reset and cards were dealt randomly. In Experiment 1 (N=107), participants in the Initial-Winning, as compared with the Initial-Losing, condition bet more recklessly (i.e., bet too many chips when a loss was likely). Experiment 2 (N=72) again showed that Initial-Winning participants bet significantly more recklessly than did Initial-Losing participants. It also revealed that positive affect was significantly positively correlated with such reckless betting. These findings have implications for understanding how college students, those at an age when they are especially vulnerable to problem gambling, can come to lose more money than they can afford. Initially winning and positive affect when gambling could be risk factors. Copyright (c) 2009 APA, all rights reserved.

  15. Sequential determination of multi-nutrient elements in natural water samples with a reverse flow injection system.

    PubMed

    Lin, Kunning; Ma, Jian; Yuan, Dongxing; Feng, Sichao; Su, Haitao; Huang, Yongming; Shangguan, Qipei

    2017-05-15

    An integrated system was developed for automatic and sequential determination of NO 2 - , NO 3 - , PO 4 3- , Fe 2+ , Fe 3+ and Mn 2+ in natural waters based on reverse flow injection analysis combined with spectrophotometric detection. The system operation was controlled by a single chip microcomputer and laboratory-programmed software written in LabVIEW. The experimental parameters for each nutrient element analysis were optimized based on a univariate experimental design, and interferences from common ions were evaluated. The upper limits of the linear range (along with detection limit, µmolL -1 ) of the proposed method was 20 (0.03), 200 (0.7), 12 (0.3), 5 (0.03), 5 (0.03), 9 (0.2) µmolL -1 , for NO 2 - , NO 3 - , PO 4 3- , Fe 2+ , Fe 3+ and Mn 2+ , respectively. The relative standard deviations were below 5% (n=9-13) and the recoveries varied from 88.0±1.0% to 104.5±1.0% for spiked water samples. The sample throughput was about 20h -1 . This system has been successfully applied for the determination of multi-nutrient elements in different kinds of water samples and showed good agreement with reference methods (slope 1.0260±0.0043, R 2 =0.9991, n=50). Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Digital PCR on a SlipChip.

    PubMed

    Shen, Feng; Du, Wenbin; Kreutz, Jason E; Fok, Alice; Ismagilov, Rustem F

    2010-10-21

    This paper describes a SlipChip to perform digital PCR in a very simple and inexpensive format. The fluidic path for introducing the sample combined with the PCR mixture was formed using elongated wells in the two plates of the SlipChip designed to overlap during sample loading. This fluidic path was broken up by simple slipping of the two plates that removed the overlap among wells and brought each well in contact with a reservoir preloaded with oil to generate 1280 reaction compartments (2.6 nL each) simultaneously. After thermal cycling, end-point fluorescence intensity was used to detect the presence of nucleic acid. Digital PCR on the SlipChip was tested quantitatively by using Staphylococcus aureus genomic DNA. As the concentration of the template DNA in the reaction mixture was diluted, the fraction of positive wells decreased as expected from the statistical analysis. No cross-contamination was observed during the experiments. At the extremes of the dynamic range of digital PCR the standard confidence interval determined using a normal approximation of the binomial distribution is not satisfactory. Therefore, statistical analysis based on the score method was used to establish these confidence intervals. The SlipChip provides a simple strategy to count nucleic acids by using PCR. It may find applications in research applications such as single cell analysis, prenatal diagnostics, and point-of-care diagnostics. SlipChip would become valuable for diagnostics, including applications in resource-limited areas after integration with isothermal nucleic acid amplification technologies and visual readout.

  17. Microfluidic magnetic bead conveyor belt.

    PubMed

    van Pelt, Stijn; Frijns, Arjan; den Toonder, Jaap

    2017-11-07

    Magnetic beads play an important role in the miniaturization of clinical diagnostics systems. In lab-on-chip platforms, beads can be made to link to a target species and can then be used for the manipulation and detection of this species. Current bead actuation systems utilize complex on-chip coil systems that offer low field strengths and little versatility. We demonstrate a novel system based on an external rotating magnetic field and on-chip soft-magnetic structures to focus the field locally. These structures were designed and optimized using finite element simulations in order to create a number of local flux density maxima. These maxima, to which the magnetic beads are attracted, move over the chip surface in a continuous way together with the rotation of the external field, resulting in a mechanism similar to that of a conveyor belt. A prototype was fabricated using PDMS molding techniques mixed with iron powder for the magnetic structures. In the subsequent experiments, a quadrupole electromagnet was used to create the rotating external field. We observed that beads formed agglomerates that rolled over the chip surface, just above the magnetic structures. Field rotation frequencies between 0.1-50 Hz were tested resulting in magnetic bead speeds of over 1 mm s -1 for the highest frequency. With this, we have shown that our novel concept works, combining a simple design and simple operation with a powerful and versatile method for bead actuation. This makes it a promising method for further research and utilization in lab-on-chip systems.

  18. Microchip-based Integration of Cell Immobilization, Electrophoresis, Post-column Derivatization, and Fluorescence Detection for Monitoring the Release of Dopamine from PC 12 Cells

    PubMed Central

    Li, Michelle W.; Martin, R. Scott

    2008-01-01

    In this paper, we describe the fabrication and evaluation of a multilayer microchip device that can be used to quantitatively measure the amount of catecholamines released from PC 12 cells immobilized within the same device. This approach allows immobilized cells to be stimulated on-chip and, through rapid actuation of integrated microvalves, the products released from the cells are repeatedly injected into the electrophoresis portion of the microchip, where the analytes are separated based upon mass and charge and detected through post-column derivatization and fluorescence detection. Following optimization of the post-column derivatization detection scheme (using naphthalene-2,3-dicarboxaldehyde and 2-β-mercaptoethanol), off-chip cell stimulation experiments were performed to demonstrate the ability of this device to detect dopamine from a population of PC 12 cells. The final 3-dimensional device that integrates an immobilized PC 12 cell reactor with the bilayer continuous flow sampling/electrophoresis microchip was used to continuously monitor the on-chip stimulated release of dopamine from PC 12 cells. Similar dopamine release was seen when stimulating on-chip versus off-chip yet the on-chip immobilization studies could be carried out with 500 times fewer cells in a much reduced volume. While this paper is focused on PC 12 cells and neurotransmitter analysis, the final device is a general analytical tool that is amenable to immobilization of a variety of cell lines and analysis of various released analytes by electrophoretic means. PMID:18810283

  19. Organ/body-on-a-chip based on microfluidic technology for drug discovery.

    PubMed

    Kimura, Hiroshi; Sakai, Yasuyuki; Fujii, Teruo

    2018-02-01

    Although animal experiments are indispensable for preclinical screening in the drug discovery process, various issues such as ethical considerations and species differences remain. To solve these issues, cell-based assays using human-derived cells have been actively pursued. However, it remains difficult to accurately predict drug efficacy, toxicity, and organs interactions, because cultivated cells often do not retain their original organ functions and morphologies in conventional in vitro cell culture systems. In the μTAS research field, which is a part of biochemical engineering, the technologies of organ-on-a-chip, based on microfluidic devices built using microfabrication, have been widely studied recently as a novel in vitro organ model. Since it is possible to physically and chemically mimic the in vitro environment by using microfluidic device technology, maintenance of cellular function and morphology, and replication of organ interactions can be realized using organ-on-a-chip devices. So far, functions of various organs and tissues, such as the lung, liver, kidney, and gut have been reproduced as in vitro models. Furthermore, a body-on-a-chip, integrating multi organ functions on a microfluidic device, has also been proposed for prediction of organ interactions. We herein provide a background of microfluidic systems, organ-on-a-chip, Body-on-a-chip technologies, and their challenges in the future. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  20. The use of small (2.7 mm) screws for arthroscopically guided repair of carpal chip fractures.

    PubMed

    Wright, I M; Smith, M R W

    2011-05-01

    Removal of large chip fractures of the carpal bones and the osteochondral deficits that result, have been associated with a worse prognosis than removal of small fragments in similar locations. Reducing the articular defects by repair of large osteochondral fragments may have advantages over removal. Horses with osteochondral chip fractures that were of sufficient size and infrastructure to be repaired with small (2.7 mm diameter) AO/ASIF cortex screws were identified and repair effected by arthroscopically guided internal fixation. Thirty-three horses underwent surgery to repair 35 fractures of the dorsodistal radial carpal bone (n = 25), the dorsal margin of the radial facet of the third carpal bone (n = 9) and the intermediate facet of the distal radius (n = 1). There were no surgical complications and fractures healed satisfactorily in 26 of 28 horses and 23 horses returned to racing performance. Arthroscopically guided repair of carpal chip fractures with small diameter cortex screws is technically feasible and experiences with 33 cases suggest that this may have advantages over fragment removal in managing such cases. Surgeons treating horses with large chip fractures of the carpal bones should consider arthroscopically guided internal fixation as an alternative to removal. © 2010 EVJ Ltd.

  1. The Effects of Express Lane Eligibility on Medicaid and CHIP Enrollment among Children

    PubMed Central

    Blavin, Fredric; Kenney, Genevieve M; Huntress, Michael

    2014-01-01

    Objective To estimate the impact of Express Lane Eligible (ELE) implementation on Medicaid/CHIP enrollment in eight states. Data Sources/Study Setting 2007 to 2011 data from the Statistical Enrollment Data System (SEDS) on Medicaid/CHIP enrollment. Study Design We estimate difference-in-difference equations, with quarter and state fixed effects. The key independent variable is an indicator for whether the state had ELE in place in the given quarter, allowing the experience of statistically matched non-ELE states to serve as a formal counterfactual against which to assess the changes in the eight ELE states. The model also controls for time-varying economic and policy factors within each state. Data Collection/Extraction Methods We obtained SEDS enrollment data from CMS. Principal Findings Across model specifications, the ELE effects on Medicaid enrollment among children were consistently positive, ranging between 4.0 and 7.3 percent, with most estimates statistically significant at the 5 percent level. We also find that ELE increased combined Medicaid/CHIP enrollment. Conclusions Our results imply that ELE has been an effective way for states to increase enrollment and retention among children eligible for Medicaid/CHIP. These results also imply that ELE-like policies could improve take-up of subsidized coverage under the ACA. PMID:24476128

  2. Laboratory study of fungal bioreceptivity of different fractions of composite flooring tiles showing efflorescence.

    PubMed

    Masaphy, Segula; Lavi, Ido; Sultz, Stephan; Zabari, Limor

    2014-06-01

    Fungi can grow in extreme habitats, such as natural stone and mineral building materials, sometimes causing deterioration. Efflorescence-concentrated salt deposits-results from water movement through building material; it can damage masonry materials and other bricks. Fungal isolate KUR1, capable of growth on, and dissolution of stone chips composing terrazzo-type floor tiles, was isolated from such tiles showing fiber-like crystalline efflorescence. The isolate's ribosomal DNA sequences were 100 % identical to those of Nigrospora sphaerica. The ability of KUR1 to colonize and degrade the different stone chips composing the tiles was studied in axenic culture experiments. When exposed to each of the different mineral chip types composed of dolomite, calcite, or calcite-apatite mineral in low-nutrition medium, the fungus showed selective nutrient consumption, and different growth and stone mineral dissolution rates. Micromorphological examination of the fungus-colonized chips by electron microscopy showed the production of a fungal biofilm with thin films around the hyphae on the surface of the examined chips and disintegration of the calcite-apatite fraction. More than 70 % dissolution of the introduced powdered (<1 mm particle size) mineral was obtained within 10 days of incubation for the soft calcite-apatite fraction.

  3. Universal shape evolution of particles by bed-load

    NASA Astrophysics Data System (ADS)

    Jerolmack, D. J.; Domokos, G.; Shaw, S.; Sipos, A.; Szabo, T.

    2016-12-01

    River currents, wind and waves drive bed-load transport, in which sediment particles collide with each other and the Earth's surface. A generic consequence is erosion and rounding of particles as a result of chipping, often referred to in geological literature as abrasion. Recent studies have shown that the erosion of river pebbles can be modeled as diffusion of surface curvature, indicating that geometric aspects of chipping erosion are insensitive to details of collisions and material properties. Here we present data from fluvial, aeolian and coastal environments that suggest a universal relation between particle circularity and mass lost due to bed-load chipping. Simulations and experiments support the diffusion model and demonstrate that three constraints are required to produce this universal curve: (i) initial particles are fragments; (ii) erosion is dominated by collisions among like-sized particles; and (iii) collision energy is small enough that chipping dominates over fragmentation. We show that the mechanics of bedrock weathering and bed-load transport select these constraints, providing the foundation to estimate a particle's erosion rate from its shape alone in most sedimentary environments. These findings may be used to determine the contribution of chipping to downstream fining in rivers and deserts, and to infer transport conditions using only images of sediment grains.

  4. Dr. Monaco Examines Lab-on a-Chip

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Dr. Lisa Monaco, Marshall Space Flight Center's (MSFC's) project scientist for the Lab-on-a-Chip Applications Development (LOCAD) program, examines a lab on a chip. The small dots are actually ports where fluids and chemicals can be mixed or samples can be collected for testing. Tiny channels, only clearly visible under a microscope, form pathways between the ports. Many chemical and biological processes, previously conducted on large pieces of laboratory equipment, can now be performed on these small glass or plastic plates. Monaco and other researchers at MSFC in Huntsville, Alabama, are customizing the chips to be used for many space applications, such as monitoring microbes inside spacecraft and detecting life on other planets. The portable, handheld Lab-on-a Chip Application Development Portable Test System (LOCAD-PTS) made its debut flight aboard Discovery during the STS-116 mission launched December 9, 2006. The system allowed crew members to monitor their environment for problematic contaminants such as yeast, mold, and even E.coli, and salmonella. Once LOCAD-PTS reached the International Space Station (ISS), the Marshall team continued to manage the experiment, monitoring the study from a console in the Payload Operations Center at MSFC. The results of these studies will help NASA researchers refine the technology for future Moon and Mars missions. (NASA/MSFC/D.Stoffer)

  5. Chip-based three-dimensional cell culture in perfused micro-bioreactors.

    PubMed

    Gottwald, Eric; Lahni, Brigitte; Thiele, David; Giselbrecht, Stefan; Welle, Alexander; Weibezahn, Karl-Friedrich

    2008-05-21

    We have developed a chip-based cell culture system for the three-dimensional cultivation of cells. The chip is typically manufactured from non-biodegradable polymers, e.g., polycarbonate or polymethyl methacrylate by micro injection molding, micro hot embossing or micro thermo-forming. But, it can also be manufactured from bio-degradable polymers. Its overall dimensions are 0.7 1 x 20 x 20 x 0.7 1 mm (h x w x l). The main features of the chips used are either a grid of up to 1156 cubic micro-containers (cf-chip) each the size of 120-300 x 300 x 300 micron (h x w x l) or round recesses with diameters of 300 micron and a depth of 300 micron (r-chip). The scaffold can house 10 Mio. cells in a three-dimensional configuration. For an optimal nutrient and gas supply, the chip is inserted in a bioreactor housing. The bioreactor is part of a closed sterile circulation loop that, in the simplest configuration, is additionally comprised of a roller pump and a medium reservoir with a gas supply. The bioreactor can be run in perfusion, superfusion, or even a mixed operation mode. We have successfully cultivated cell lines as well as primary cells over periods of several weeks. For rat primary liver cells we could show a preservation of organotypic functions for more than 2 weeks. For hepatocellular carcinoma cell lines we could show the induction of liver specific genes not or only slightly expressed in standard monolayer culture. The system might also be useful as a stem cell cultivation system since first differentiation experiments with stem cell lines were promising.

  6. Impacts of chipping on surrogates for the longhorned beetle Anoplophora glabripennis (Coleoptera: Cerambycidae) in logs.

    PubMed

    Wang, B; Mastro, V C; McLane, W H

    2000-12-01

    As part of the eradication program for recent introductions of the longhorned beetle Anoplophora glabripennis (Motschulsky) in the United States, wood from infested trees is chipped and incinerated. Two tests were conducted to evaluate the efficiency of chipping wood from infested trees on the survival of the beetle. In the first test, plastic worms were used as surrogates for larvae of the beetle. Plastic worms of different sizes were placed in holes drilled in logs of sugar maple, Acer saccharum Marsh. In a second test, in addition to plastic worms, we used different instars and pupae of gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae); larvae of the beetle Phyllophaga annina Lewis (Coleoptera: Scarabaeidae); and larvae of an unidentified weevil (Coleoptera: Curculionidae). Although chipping did not result in an obvious damage to all plastic worms, it did kill all larvae and pupae of insects placed in holes of maple logs. The overall recovery rate (percent recovered) for the plastic worms was 96% in the first (1997) test, and 71 and 98% for 10 and 40 mm long plastic worms in the second (1998) test, respectively. Logistic regression analysis of the data from the first experiment indicates that larger worms receive more severe damage. Size of logs did not have a significant effect on the level of damage received by plastic worms. All recovered insects were severely damaged after chipping logs and we could not determine recovery rates. Results of the two tests indicate that chipping wood from infested trees without incineration of the resulting chips provides a highly effective method for destroying wood inhabiting insect pests such as A. glabripennis. The elimination of incineration saves considerable resources while effectively eliminating risks associated with movements of wood containing living wood-boring insects.

  7. Reduced dimensionality tailored HN(C)N experiments for facile backbone resonance assignment of proteins through unambiguous identification of sequential HSQC peaks

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh

    2013-12-01

    Two novel reduced dimensionality (RD) tailored HN(C)N [S.C. Panchal, N.S. Bhavesh, R.V. Hosur, Improved 3D triple resonance experiments, HNN and HN(C)N, for HN and 15N sequential correlations in (13C, 15N) labeled proteins: application to unfolded proteins, J. Biomol. NMR 20 (2001) 135-147] experiments are proposed to facilitate the backbone resonance assignment of proteins both in terms of its accuracy and speed. These experiments - referred here as (4,3)D-hNCOcaNH and (4,3)D-hNcoCANH - exploit the linear combination of backbone 15N and 13C‧/13Cα chemical shifts simultaneously to achieve higher peak dispersion and randomness along their respective F1 dimensions. Simply, this has been achieved by modulating the backbone 15N(i) chemical shifts with that of 13C‧ (i - 1)/13Cα (i - 1) spins following the established reduced dimensionality NMR approach [T. Szyperski, D.C. Yeh, D.K. Sukumaran, H.N. Moseley, G.T. Montelione, Reduced-dimensionality NMR spectroscopy for high-throughput protein resonance assignment, Proc. Natl. Acad. Sci. USA 99 (2002) 8009-8014]. Though the modification is simple it has resulted an ingenious improvement of HN(C)N both in terms of peak dispersion and easiness of establishing the sequential connectivities. The increased dispersion along F1 dimension solves two purposes here: (i) resolves the ambiguities arising because of degenerate 15N chemical shifts and (ii) reduces the signal overlap in F2(15N)-F3(1H) planes (an important requisite in HN(C)N based assignment protocol for facile and unambiguous identification of sequentially connected HSQC peaks). The performance of both these experiments and the assignment protocol has been demonstrated using bovine apo Calbindin-d9k (75 aa) and urea denatured UNC60B (a 152 amino acid ADF/cofilin family protein of Caenorhabditis elegans), as representatives of folded and unfolded protein systems, respectively.

  8. A controlled experiment on the impact of software structure on maintainability

    NASA Technical Reports Server (NTRS)

    Rombach, Dieter H.

    1987-01-01

    The impact of software structure on maintainability aspects including comprehensibility, locality, modifiability, and reusability in a distributed system environment is studied in a controlled maintenance experiment involving six medium-size distributed software systems implemented in LADY (language for distributed systems) and six in an extended version of sequential PASCAL. For all maintenance aspects except reusability, the results were quantitatively given in terms of complexity metrics which could be automated. The results showed LADY to be better suited to the development of maintainable software than the extension of sequential PASCAL. The strong typing combined with high parametrization of units is suggested to improve the reusability of units in LADY.

  9. Parallelization of NAS Benchmarks for Shared Memory Multiprocessors

    NASA Technical Reports Server (NTRS)

    Waheed, Abdul; Yan, Jerry C.; Saini, Subhash (Technical Monitor)

    1998-01-01

    This paper presents our experiences of parallelizing the sequential implementation of NAS benchmarks using compiler directives on SGI Origin2000 distributed shared memory (DSM) system. Porting existing applications to new high performance parallel and distributed computing platforms is a challenging task. Ideally, a user develops a sequential version of the application, leaving the task of porting to new generations of high performance computing systems to parallelization tools and compilers. Due to the simplicity of programming shared-memory multiprocessors, compiler developers have provided various facilities to allow the users to exploit parallelism. Native compilers on SGI Origin2000 support multiprocessing directives to allow users to exploit loop-level parallelism in their programs. Additionally, supporting tools can accomplish this process automatically and present the results of parallelization to the users. We experimented with these compiler directives and supporting tools by parallelizing sequential implementation of NAS benchmarks. Results reported in this paper indicate that with minimal effort, the performance gain is comparable with the hand-parallelized, carefully optimized, message-passing implementations of the same benchmarks.

  10. MSFC Skylab airlock module, volume 1. [systems design and performance

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The history and development of the Skylab Airlock Module and Payload Shroud is presented from initial concept through final design. A summary is given of the Airlock features and systems. System design and performance are presented for the Spent Stage Experiment Support Module, structure and mechanical systems, mass properties, thermal and environmental control systems, EVA/IVA suite system, electrical power system, sequential system, sequential system, and instrumentation system.

  11. Orthographic Structure and Reading Experience Affect the Transfer from Iconic to Short Term Memory

    ERIC Educational Resources Information Center

    Lefton, Lester A.; Spragins, Anne B.

    1974-01-01

    The basic hypothesis of these experiments was that the processing strategy for the transfer of alphabetic material from iconic storage to short-term memory involves a sequential left-to-right factor that develops with increases in experience with reading. (Author)

  12. Ductile-regime turning of germanium and silicon

    NASA Technical Reports Server (NTRS)

    Blake, Peter N.; Scattergood, Ronald O.

    1989-01-01

    Single-point diamond turning of silicon and germanium was investigated in order to clarify the role of cutting depth in coaxing a ductile chip formation in normally brittle substances. Experiments based on the rapid withdrawal of the tool from the workpiece have shown that microfracture damage is a function of the effective depth of cut (as opposed to the nominal cutting depth). In essence, damage created by the leading edge of the tool is removed several revolutions later by lower sections of the tool edge, where the effective cutting depth is less. It appears that a truly ductile cutting response can be achieved only when the effective cutting depth, or critical chip thickness, is less than about 20 nm. Factors such as tool rake angle are significant in that they will affect the actual value of the critical chip thickness for transition from brittle to ductile response. It is concluded that the critical chip thickness is an excellent parameter for measuring the effects of machining conditions on the ductility of the cut and for designing tool-workpiece geometry in both turning and grinding.

  13. Preparation of Low-Input and Ligation-Free ChIP-seq Libraries Using Template-Switching Technology.

    PubMed

    Bolduc, Nathalie; Lehman, Alisa P; Farmer, Andrew

    2016-10-10

    Chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq) has become the gold standard for mapping of transcription factors and histone modifications throughout the genome. However, for ChIP experiments involving few cells or targeting low-abundance transcription factors, the small amount of DNA recovered makes ligation of adapters very challenging. In this unit, we describe a ChIP-seq workflow that can be applied to small cell numbers, including a robust single-tube and ligation-free method for preparation of sequencing libraries from sub-nanogram amounts of ChIP DNA. An example ChIP protocol is first presented, resulting in selective enrichment of DNA-binding proteins and cross-linked DNA fragments immobilized on beads via an antibody bridge. This is followed by a protocol for fast and easy cross-linking reversal and DNA recovery. Finally, we describe a fast, ligation-free library preparation protocol, featuring DNA SMART technology, resulting in samples ready for Illumina sequencing. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  14. A 0.18 μm CMOS low-power radiation sensor for asynchronous event-driven UWB wireless transmission

    NASA Astrophysics Data System (ADS)

    Bastianini, S.; Crepaldi, M.; Demarchi, D.; Gabrielli, A.; Lolli, M.; Margotti, A.; Villani, G.; Zhang, Z.; Zoccoli, G.

    2013-12-01

    The paper describes the design of a readout element, proposed as a radiation monitor, which implements an embedded sensor based on a floating-gate transistor. The paper shows the design of a microelectronic circuit composed of a sensor, an oscillator, a modulator, a transmitter and an integrated antenna. A prototype chip has recently been fabricated and tested exploiting a commercial 180 nm, four metal CMOS technology. Simulation results of the entire behavior of the circuit before submission are presented along with some measurements of the actual chip response. In addition, preliminary tests of the performance of the Ultra-Wide Band transmission via the integrated antenna are summarized. As the complete chip prototype area is less than 1 mm2, the chip fits a large variety of applications, from spot radiation monitoring systems in medicine to punctual measurements of radiation level in High-Energy Physics experiments. A sensitivity of 1 mV/rad was estimated within an absorbed dose range up to 10 krad and a total power consumption of about 165 μW.

  15. Design of an MR image processing module on an FPGA chip.

    PubMed

    Li, Limin; Wyrwicz, Alice M

    2015-06-01

    We describe the design and implementation of an image processing module on a single-chip Field-Programmable Gate Array (FPGA) for real-time image processing. We also demonstrate that through graphical coding the design work can be greatly simplified. The processing module is based on a 2D FFT core. Our design is distinguished from previously reported designs in two respects. No off-chip hardware resources are required, which increases portability of the core. Direct matrix transposition usually required for execution of 2D FFT is completely avoided using our newly-designed address generation unit, which saves considerable on-chip block RAMs and clock cycles. The image processing module was tested by reconstructing multi-slice MR images from both phantom and animal data. The tests on static data show that the processing module is capable of reconstructing 128×128 images at speed of 400 frames/second. The tests on simulated real-time streaming data demonstrate that the module works properly under the timing conditions necessary for MRI experiments. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Spotting and validation of a genome wide oligonucleotide chip with duplicate measurement of each gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomassen, Mads; Skov, Vibe; Eiriksdottir, Freyja

    2006-06-16

    The quality of DNA microarray based gene expression data relies on the reproducibility of several steps in a microarray experiment. We have developed a spotted genome wide microarray chip with oligonucleotides printed in duplicate in order to minimise undesirable biases, thereby optimising detection of true differential expression. The validation study design consisted of an assessment of the microarray chip performance using the MessageAmp and FairPlay labelling kits. Intraclass correlation coefficient (ICC) was used to demonstrate that MessageAmp was significantly more reproducible than FairPlay. Further examinations with MessageAmp revealed the applicability of the system. The linear range of the chips wasmore » three orders of magnitude, the precision was high, as 95% of measurements deviated less than 1.24-fold from the expected value, and the coefficient of variation for relative expression was 13.6%. Relative quantitation was more reproducible than absolute quantitation and substantial reduction of variance was attained with duplicate spotting. An analysis of variance (ANOVA) demonstrated no significant day-to-day variation.« less

  17. Micro-chromatin Immunoprecipation (μChIP) Protocol for Real-time PCR Analysis of a Limited Amount of Cells.

    PubMed

    Gillotin, Sébastien; Guillemot, François

    2016-06-20

    Chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) is an important strategy to study gene regulation. When availability of cells is limited, however, it can be useful to focus on specific genes to investigate in depth the role of transcription factors or histone marks. Unfortunately, performing ChIP experiments to study transcription factors' binding to DNA can be difficult when biological material is restricted. This protocol describes a robust method to perform μChIP for over-expressed or endogenous transcription factors using ~100,000 cells per ChIP experiment (Masserdotti et al ., 2015). We also describe optimization steps, which we think are critical for this protocol to work and which can be used to further reduce the number of cells.

  18. The Orthogonal In-Situ Machining of Single and Polycrystalline Aluminum and Copper, Volume 1. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Cohen, P. H.

    1982-01-01

    Metal cutting is a unique deformation process characterized by large strains, exceptionally high strain rates and few constraints to the deformation. These factors, along with the difficulty of directly measuring the shear angle, make chip formation difficult to model and understand. One technique for skirting the difficulty of post mortem chip measurement is to perform a cutting experiment dynamically in a scanning electron microscope. The performance of the in-situ experiment with full instrumentation allows for component force measurement, orientation measurement (on a round single crystal disk) and a timing device, all superimposed below the deformation on the TV monitor and recorded for future viewing. This allows the sher angle to be directly measured for the screen along with the other needed information.

  19. Superconducting Switch for Fast On-Chip Routing of Quantum Microwave Fields

    NASA Astrophysics Data System (ADS)

    Pechal, M.; Besse, J.-C.; Mondal, M.; Oppliger, M.; Gasparinetti, S.; Wallraff, A.

    2016-08-01

    A switch capable of routing microwave signals at cryogenic temperatures is a desirable component for state-of-the-art experiments in many fields of applied physics, including but not limited to quantum-information processing, communication, and basic research in engineered quantum systems. Conventional mechanical switches provide low insertion loss but disturb operation of dilution cryostats and the associated experiments by heat dissipation. Switches based on semiconductors or microelectromechanical systems have a lower thermal budget but are not readily integrated with current superconducting circuits. Here we design and test an on-chip switch built by combining tunable transmission-line resonators with microwave beam splitters. The device is superconducting and as such dissipates a negligible amount of heat. It is compatible with current superconducting circuit fabrication techniques, operates with a bandwidth exceeding 100 MHz, is capable of handling photon fluxes on the order of 1 05 μ s-1 , equivalent to powers exceeding -90 dBm , and can be switched within approximately 6-8 ns. We successfully demonstrate operation of the device in the quantum regime by integrating it on a chip with a single-photon source and using it to route nonclassical itinerant microwave fields at the single-photon level.

  20. Silicon photonic integrated circuit for fast and precise dual-comb distance metrology.

    PubMed

    Weimann, C; Lauermann, M; Hoeller, F; Freude, W; Koos, C

    2017-11-27

    We demonstrate an optical distance sensor integrated on a silicon photonic chip with a footprint of well below 1 mm 2 . The integrated system comprises a heterodyne receiver structure with tunable power splitting ratio and on-chip photodetectors. The functionality of the device is demonstrated in a synthetic-wavelength interferometry experiment using frequency combs as optical sources. We obtain accurate and fast distance measurements with an unambiguity range of 3.75 mm, a root-mean-square error of 3.4 µm and acquisition times of 14 µs.

  1. Production of DOUBLE-Λ Hypernuclei:. Bnl-Ags E906

    NASA Astrophysics Data System (ADS)

    Fukuda, T.; Nagae, T.; Outa, H.; Sekimoto, M.; Hotchi, H.; Miyachi, T.; Nakano, J.; Tamagawa, T.; Tanida, K.; Chrien, R. E.; May, M.; Meyer, E.; Pile, P.; Rusek, A.; Sutter, R.; Berdoz, A.; Carman, D.; Eugenio, P.; Franklin, G. B.; Khaustov, P.; Koran, P.; Meyer, C.; Paschke, K.; Quinn, B. P.; Schumacher, R. A.; Gan, L.; Tang, L.; Yuan, L.; Kurepin, A.; Rasin, V.; Prokhavatilov, M.; Shileev, K.; Ahn, J. K.; Akikawa, H.; Imai, K.; Ichikawa, A.; Yamamoto, K.; Yosoi, M.; Ajimura, S.; Kishimoto, T.; Kori, H.; Minami, S.; Shimizu, Y.; Meziani, Z.; Fischer, H.; Franz, J.; Schmitt, H.; Davis, C. A.; Landry, M.; Bassalleck, B.

    2000-09-01

    We have carried out an experiment at BNL-AGS (E906) to search for double-Λ hypernuclei by observing sequential pionic decays. We will describe the principle of the experiment and report the present status.

  2. Sequential Design of Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson-Cook, Christine Michaela

    2017-06-30

    A sequential design of experiments strategy is being developed and implemented that allows for adaptive learning based on incoming results as the experiment is being run. The plan is to incorporate these strategies for the NCCC and TCM experimental campaigns to be run in the coming months. This strategy for experimentation has the advantages of allowing new data collected during the experiment to inform future experimental runs based on their projected utility for a particular goal. For example, the current effort for the MEA capture system at NCCC plans to focus on maximally improving the quality of prediction of COmore » 2 capture efficiency as measured by the width of the confidence interval for the underlying response surface that is modeled as a function of 1) Flue Gas Flowrate [1000-3000] kg/hr; 2) CO 2 weight fraction [0.125-0.175]; 3) Lean solvent loading [0.1-0.3], and; 4) Lean solvent flowrate [3000-12000] kg/hr.« less

  3. A UVM simulation environment for the study, optimization and verification of HL-LHC digital pixel readout chips

    NASA Astrophysics Data System (ADS)

    Marconi, S.; Conti, E.; Christiansen, J.; Placidi, P.

    2018-05-01

    The operating conditions of the High Luminosity upgrade of the Large Hadron Collider are very demanding for the design of next generation hybrid pixel readout chips in terms of particle rate, radiation level and data bandwidth. To this purpose, the RD53 Collaboration has developed for the ATLAS and CMS experiments a dedicated simulation and verification environment using industry-consolidated tools and methodologies, such as SystemVerilog and the Universal Verification Methodology (UVM). This paper presents how the so-called VEPIX53 environment has first guided the design of digital architectures, optimized for processing and buffering very high particle rates, and secondly how it has been reused for the functional verification of the first large scale demonstrator chip designed by the collaboration, which has recently been submitted.

  4. Flow-orthogonal bead oscillation in a microfluidic chip with a magnetic anisotropic flux-guide array.

    PubMed

    van Pelt, Stijn; Derks, Roy; Matteucci, Marco; Hansen, Mikkel Fougt; Dietzel, Andreas

    2011-04-01

    A new concept for the manipulation of superparamagnetic beads inside a microfluidic chip is presented in this paper. The concept allows for bead actuation orthogonal to the flow direction inside a microchannel. Basic manipulation functionalities were studied by means of finite element simulations and results were oval-shaped steady state oscillations with bead velocities up to 500 μm/s. The width of the trajectory could be controlled by prescribing external field rotation. Successful verification experiments were performed on a prototype chip fabricated with excimer laser ablation in polycarbonate and electroforming of nickel flux-guides. Bead velocities up to 450 μm/s were measured in a 75 μm wide channel. By prescribing the currents in the external quadrupole magnet, the shape of the bead trajectory could be controlled.

  5. Quality of Health Insurance Coverage and Access to Care for Children in Low-Income Families.

    PubMed

    Kreider, Amanda R; French, Benjamin; Aysola, Jaya; Saloner, Brendan; Noonan, Kathleen G; Rubin, David M

    2016-01-01

    An increasing diversity of children's health coverage options under the US Patient Protection and Affordable Care Act, together with uncertainty regarding reauthorization of the Children's Health Insurance Program (CHIP) beyond 2017, merits renewed attention on the quality of these options for children. To compare health care access, quality, and cost outcomes by insurance type (Medicaid, CHIP, private, and uninsured) for children in households with low to moderate incomes. A repeated cross-sectional analysis was conducted using data from the 2003, 2007, and 2011-2012 US National Surveys of Children's Health, comprising 80,655 children 17 years or younger, weighted to 67 million children nationally, with household incomes between 100% and 300% of the federal poverty level. Multivariable logistic regression models compared caregiver-reported outcomes across insurance types. Analysis was conducted between July 14, 2014, and May 6, 2015. Insurance type was ascertained using a caregiver-reported measure of insurance status and each household's poverty status (percentage of the federal poverty level). Caregiver-reported outcomes related to access to primary and specialty care, unmet needs, out-of-pocket costs, care coordination, and satisfaction with care. Among the 80,655 children, 51,123 (57.3%) had private insurance, 11,853 (13.6%) had Medicaid, 9554 (18.4%) had CHIP, and 8125 (10.8%) were uninsured. In a multivariable logistic regression model (with results reported as adjusted probabilities [95% CIs]), children insured by Medicaid and CHIP were significantly more likely to receive a preventive medical (Medicaid, 88% [86%-89%]; P < .01; CHIP, 88% [87%-89%]; P < .01) and dental (Medicaid, 80% [78%-81%]; P < .01; CHIP, 77% [76%-79%]; P < .01) visits than were privately insured children (medical, 83% [82%-84%]; dental, 73% [72%-74%]). Children with all insurance types experienced challenges in access to specialty care, with caregivers of children insured by CHIP reporting the highest rates of difficulty accessing specialty care (28% [24%-32%]), problems obtaining a referral (23% [18%-29%]), and frustration obtaining health care services (26% [23%-28%]). These challenges were also magnified for privately insured children with special health care needs, whose caregivers reported significantly greater problems accessing specialty care (29% [26%-33%]) and frustration obtaining health care services (36% [32%-41%]) than did caregivers of children insured by Medicaid, and a lower likelihood of insurance always meeting the child's needs (63% [60%-67%]) than children insured by Medicaid or CHIP. Caregivers of privately insured children were also significantly more likely to experience out-of-pocket costs (77% [75%-78%]) than were caregivers of children insured by Medicaid (26% [23%-28%]; P < .01) or CHIP (38% [35%-40%]; P < .01). This examination of caregiver experiences across insurance types revealed important differences that can help guide future policymaking regarding coverage for families with low to moderate incomes.

  6. Pericellular oxygen monitoring with integrated sensor chips for reproducible cell culture experiments.

    PubMed

    Kieninger, J; Aravindalochanan, K; Sandvik, J A; Pettersen, E O; Urban, G A

    2014-04-01

    Here we present an application, in two tumour cell lines, based on the Sensing Cell Culture Flask system as a cell culture monitoring tool for pericellular oxygen sensing. T-47D (human breast cancer) and T98G (human brain cancer) cells were cultured either in atmospheric air or in a glove-box set at 4% oxygen, in both cases with 5% CO2 in the gas phase. Pericellular oxygen tension was measured with the help of an integrated sensor chip comprising oxygen sensor arrays. Obtained results illustrate variation of pericellular oxygen tension in attached cells covered by stagnant medium. Independent of incubation conditions, low pericellular oxygen concentration levels, usually associated with hypoxia, were found in dense cell cultures. Respiration alone brought pericellular oxygen concentration down to levels which could activate hypoxia-sensing regulatory processes in cultures believed to be aerobic. Cells in culture believed to experience conditions of mild hypoxia may, in reality, experience severe hypoxia. This would lead to incorrect assumptions and suggests that pericellular oxygen concentration readings are of great importance to obtain reproducible results when dealing with hypoxic and normoxic (aerobic) incubation conditions. The Sensing Cell Culture Flask system allows continuous monitoring of pericellular oxygen concentration with outstanding long-term stability and no need for recalibration during cell culture experiments. The sensor is integrated into the flask bottom, thus in direct contact with attached cells. No additional equipment needs to be inserted into the flask during culturing. Transparency of the electrochemical sensor chip allows optical inspection of cells attached on top of the sensor. © 2014 John Wiley & Sons Ltd.

  7. Probing finite coarse-grained virtual Feynman histories with sequential weak values

    NASA Astrophysics Data System (ADS)

    Georgiev, Danko; Cohen, Eliahu

    2018-05-01

    Feynman's sum-over-histories formulation of quantum mechanics has been considered a useful calculational tool in which virtual Feynman histories entering into a coherent quantum superposition cannot be individually measured. Here we show that sequential weak values, inferred by consecutive weak measurements of projectors, allow direct experimental probing of individual virtual Feynman histories, thereby revealing the exact nature of quantum interference of coherently superposed histories. Because the total sum of sequential weak values of multitime projection operators for a complete set of orthogonal quantum histories is unity, complete sets of weak values could be interpreted in agreement with the standard quantum mechanical picture. We also elucidate the relationship between sequential weak values of quantum histories with different coarse graining in time and establish the incompatibility of weak values for nonorthogonal quantum histories in history Hilbert space. Bridging theory and experiment, the presented results may enhance our understanding of both weak values and quantum histories.

  8. Multidimensional oriented solid-state NMR experiments enable the sequential assignment of uniformly 15N labeled integral membrane proteins in magnetically aligned lipid bilayers.

    PubMed

    Mote, Kaustubh R; Gopinath, T; Traaseth, Nathaniel J; Kitchen, Jason; Gor'kov, Peter L; Brey, William W; Veglia, Gianluigi

    2011-11-01

    Oriented solid-state NMR is the most direct methodology to obtain the orientation of membrane proteins with respect to the lipid bilayer. The method consists of measuring (1)H-(15)N dipolar couplings (DC) and (15)N anisotropic chemical shifts (CSA) for membrane proteins that are uniformly aligned with respect to the membrane bilayer. A significant advantage of this approach is that tilt and azimuthal (rotational) angles of the protein domains can be directly derived from analytical expression of DC and CSA values, or, alternatively, obtained by refining protein structures using these values as harmonic restraints in simulated annealing calculations. The Achilles' heel of this approach is the lack of suitable experiments for sequential assignment of the amide resonances. In this Article, we present a new pulse sequence that integrates proton driven spin diffusion (PDSD) with sensitivity-enhanced PISEMA in a 3D experiment ([(1)H,(15)N]-SE-PISEMA-PDSD). The incorporation of 2D (15)N/(15)N spin diffusion experiments into this new 3D experiment leads to the complete and unambiguous assignment of the (15)N resonances. The feasibility of this approach is demonstrated for the membrane protein sarcolipin reconstituted in magnetically aligned lipid bicelles. Taken with low electric field probe technology, this approach will propel the determination of sequential assignment as well as structure and topology of larger integral membrane proteins in aligned lipid bilayers. © Springer Science+Business Media B.V. 2011

  9. Time and Order Effects on Causal Learning

    ERIC Educational Resources Information Center

    Alvarado, Angelica; Jara, Elvia; Vila, Javier; Rosas, Juan M.

    2006-01-01

    Five experiments were conducted to explore trial order and retention interval effects upon causal predictive judgments. Experiment 1 found that participants show a strong effect of trial order when a stimulus was sequentially paired with two different outcomes compared to a condition where both outcomes were presented intermixed. Experiment 2…

  10. Tracking Time Evolution of Collective Attention Clusters in Twitter: Time Evolving Nonnegative Matrix Factorisation.

    PubMed

    Saito, Shota; Hirata, Yoshito; Sasahara, Kazutoshi; Suzuki, Hideyuki

    2015-01-01

    Micro-blogging services, such as Twitter, offer opportunities to analyse user behaviour. Discovering and distinguishing behavioural patterns in micro-blogging services is valuable. However, it is difficult and challenging to distinguish users, and to track the temporal development of collective attention within distinct user groups in Twitter. In this paper, we formulate this problem as tracking matrices decomposed by Nonnegative Matrix Factorisation for time-sequential matrix data, and propose a novel extension of Nonnegative Matrix Factorisation, which we refer to as Time Evolving Nonnegative Matrix Factorisation (TENMF). In our method, we describe users and words posted in some time interval by a matrix, and use several matrices as time-sequential data. Subsequently, we apply Time Evolving Nonnegative Matrix Factorisation to these time-sequential matrices. TENMF can decompose time-sequential matrices, and can track the connection among decomposed matrices, whereas previous NMF decomposes a matrix into two lower dimension matrices arbitrarily, which might lose the time-sequential connection. Our proposed method has an adequately good performance on artificial data. Moreover, we present several results and insights from experiments using real data from Twitter.

  11. Numerical study on the sequential Bayesian approach for radioactive materials detection

    NASA Astrophysics Data System (ADS)

    Qingpei, Xiang; Dongfeng, Tian; Jianyu, Zhu; Fanhua, Hao; Ge, Ding; Jun, Zeng

    2013-01-01

    A new detection method, based on the sequential Bayesian approach proposed by Candy et al., offers new horizons for the research of radioactive detection. Compared with the commonly adopted detection methods incorporated with statistical theory, the sequential Bayesian approach offers the advantages of shorter verification time during the analysis of spectra that contain low total counts, especially in complex radionuclide components. In this paper, a simulation experiment platform implanted with the methodology of sequential Bayesian approach was developed. Events sequences of γ-rays associating with the true parameters of a LaBr3(Ce) detector were obtained based on an events sequence generator using Monte Carlo sampling theory to study the performance of the sequential Bayesian approach. The numerical experimental results are in accordance with those of Candy. Moreover, the relationship between the detection model and the event generator, respectively represented by the expected detection rate (Am) and the tested detection rate (Gm) parameters, is investigated. To achieve an optimal performance for this processor, the interval of the tested detection rate as a function of the expected detection rate is also presented.

  12. Method of making gold thiolate and photochemically functionalized microcantilevers

    DOEpatents

    Boiadjiev, Vassil I [Knoxville, TN; Brown, Gilbert M [Knoxville, TN; Pinnaduwage, Lal A [Knoxville, TN; Thundat, Thomas G [Knoxville, TN; Bonnesen, Peter V [Knoxville, TN; Goretzki, Gudrun [Nottingham, GB

    2009-08-25

    Highly sensitive sensor platforms for the detection of specific reagents, such as chromate, gasoline and biological species, using microcantilevers and other microelectromechanical systems (MEMS) whose surfaces have been modified with photochemically attached organic monolayers, such as self-assembled monolayers (SAM), or gold-thiol surface linkage are taught. The microcantilever sensors use photochemical hydrosilylation to modify silicon surfaces and gold-thiol chemistry to modify metallic surfaces thereby enabling individual microcantilevers in multicantilever array chips to be modified separately. Terminal vinyl substituted hydrocarbons with a variety of molecular recognition sites can be attached to the surface of silicon via the photochemical hydrosilylation process. By focusing the activating UV light sequentially on selected silicon or silicon nitride hydrogen terminated surfaces and soaking or spotting selected metallic surfaces with organic thiols, sulfides, or disulfides, the microcantilevers are functionalized. The device and photochemical method are intended to be integrated into systems for detecting specific agents including chromate groundwater contamination, gasoline, and biological species.

  13. Layout optimization with algebraic multigrid methods

    NASA Technical Reports Server (NTRS)

    Regler, Hans; Ruede, Ulrich

    1993-01-01

    Finding the optimal position for the individual cells (also called functional modules) on the chip surface is an important and difficult step in the design of integrated circuits. This paper deals with the problem of relative placement, that is the minimization of a quadratic functional with a large, sparse, positive definite system matrix. The basic optimization problem must be augmented by constraints to inhibit solutions where cells overlap. Besides classical iterative methods, based on conjugate gradients (CG), we show that algebraic multigrid methods (AMG) provide an interesting alternative. For moderately sized examples with about 10000 cells, AMG is already competitive with CG and is expected to be superior for larger problems. Besides the classical 'multiplicative' AMG algorithm where the levels are visited sequentially, we propose an 'additive' variant of AMG where levels may be treated in parallel and that is suitable as a preconditioner in the CG algorithm.

  14. iPhone-imaged and cell-powered electrophoresis titration chip for the alkaline phosphatase assay in serum by the moving reaction boundary.

    PubMed

    Cao, Xin-Yu; Kong, Fan-Zhi; Zhang, Qiang; Liu, Wei-Wen; Liu, Xiao-Ping; Li, Guo-Qing; Zhong, Ran; Fan, Liu-Yin; Xiao, Hua; Cao, Cheng-Xi

    2018-05-21

    As a vital enzyme, alkaline phosphatase (ALP) has great clinical significance in diagnoses of bone or liver cancer, bone metastases, rickets, and extrahepatic biliary obstruction. However, there is still no really portable chip for the ALP assay in blood. Herein, a simple electrophoresis titration (ET) model was developed for ALP detection via a moving reaction boundary (MRB). In the model, ALP catalyzed the dephosphorylation of a 4-methylumbelliferyl phosphate disodium salt (4-MUP) substrate in the cathode well to 4-methylumbelliferone ([4-MU]-) with a negative charge and blue fluorescence under UV excitation. After the catalysis, an electric field was used between the cathode and the anode. Under the electric field, [4-MU]- moved into the channel and neutralized the acidic Tris-HCl buffer, resulting in the quenching of [4-MU]- and creating a MRB. The ET system just had an ET chip, a lithium cell, a UV LED and an iPhone used as a recorder, having no traditional expensive power supply and fluorescence detector. The relevant method was developed, and a series of experiments were conducted via the ET chip. The experiments showed: (i) a MRB could be formed between the [4-MU]- base and the acidic buffer, and the MRB motion had a linear relationship with the ALP activity, validating the ET model; (ii) the ET run was not impacted by many interferences, implying good selectivity; and (iii) the ET chip could be used for portable detection within 10 min, implying an on-site and rapid analysis. In addition, the ET method had a relatively good sensitivity (0.1 U L-1), linearity (V = 0.033A + 3.87, R2 = 0.9980), stability (RSD 2.4-6.8%) and recoveries (101-105%). Finally, the ET method was successfully used for ALP assays in real serum samples. All the results implied that the developed method was simple, rapid and low-cost, and had potential for POCT clinical ALP assays.

  15. Microfluidic Chips for In Situ Crystal X-ray Diffraction and In Situ Dynamic Light Scattering for Serial Crystallography.

    PubMed

    Gicquel, Yannig; Schubert, Robin; Kapis, Svetlana; Bourenkov, Gleb; Schneider, Thomas; Perbandt, Markus; Betzel, Christian; Chapman, Henry N; Heymann, Michael

    2018-04-24

    This protocol describes fabricating microfluidic devices with low X-ray background optimized for goniometer based fixed target serial crystallography. The devices are patterned from epoxy glue using soft lithography and are suitable for in situ X-ray diffraction experiments at room temperature. The sample wells are lidded on both sides with polymeric polyimide foil windows that allow diffraction data collection with low X-ray background. This fabrication method is undemanding and inexpensive. After the sourcing of a SU-8 master wafer, all fabrication can be completed outside of a cleanroom in a typical research lab environment. The chip design and fabrication protocol utilize capillary valving to microfluidically split an aqueous reaction into defined nanoliter sized droplets. This loading mechanism avoids the sample loss from channel dead-volume and can easily be performed manually without using pumps or other equipment for fluid actuation. We describe how isolated nanoliter sized drops of protein solution can be monitored in situ by dynamic light scattering to control protein crystal nucleation and growth. After suitable crystals are grown, complete X-ray diffraction datasets can be collected using goniometer based in situ fixed target serial X-ray crystallography at room temperature. The protocol provides custom scripts to process diffraction datasets using a suite of software tools to solve and refine the protein crystal structure. This approach avoids the artefacts possibly induced during cryo-preservation or manual crystal handling in conventional crystallography experiments. We present and compare three protein structures that were solved using small crystals with dimensions of approximately 10-20 µm grown in chip. By crystallizing and diffracting in situ, handling and hence mechanical disturbances of fragile crystals is minimized. The protocol details how to fabricate a custom X-ray transparent microfluidic chip suitable for in situ serial crystallography. As almost every crystal can be used for diffraction data collection, these microfluidic chips are a very efficient crystal delivery method.

  16. Effect of composting on the Cd, Zn and Mn content and fractionation in feedstock mixtures with wood chips from a short-rotation coppice and bark.

    PubMed

    Vandecasteele, B; Willekens, K; Zwertvaegher, A; Degrande, L; Tack, F M G; Du Laing, G

    2013-11-01

    Micronutrient content and availability in composts may be affected by the addition of wood chips or tree bark as a bulking agent in the compost feedstock. In the first part of this study, micronutrient levels were assessed in bark and wood of poplar and willow clones in a short-rotation coppice. Large differences between species were observed in bark concentrations for Cd, Zn and Mn. In the second part of the study, we aimed to determine the effect of feedstock composition and composting on Cd, Zn and Mn concentrations and availability. By means of three composting experiments we examined the effect of (a) bark of different tree species, (b) the amount of bark, and (c) the use of bark versus wood chips. In general, compost characteristics such as pH, organic matter and nutrient content varied due to differences in feedstock mixture and composting process. During the composting process, the availability of Cd, Zn and Mn decreased, although the use of willow and poplar bark or wood chips resulted in elevated total Cd, Zn or Mn concentrations in the compost. Cd concentrations in some composts even exceeded legal criteria. Cd and Zn were mainly bound in the reducible fraction extracted with 0.5M NH2OH⋅HCl. A higher acid-extractable fraction for Mn than for Cd and Zn was found. Higher Cd concentrations in the compost due to the use of bark or wood chips did not result in higher risk of Cd leaching. The results of the pH-stat experiment with gradual acidification of composts illustrated that only a strong pH decline in the compost results in higher availability of Cd, Zn and Mn. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Exploring Group Cohesion in a Higher Education Field Experience

    ERIC Educational Resources Information Center

    Malcarne, Brian Keith

    2012-01-01

    The purpose of this study was to gain understanding into the experience of group cohesion for university students participating in an academic field experience. A mixed methods approach was used following a two-phase, sequential research design to help provide a more complete explanation of how group cohesion was impacted by the field experience.…

  18. A Microfluidic Platform for Correlative Live-Cell and Super-Resolution Microscopy

    PubMed Central

    Tam, Johnny; Cordier, Guillaume Alan; Bálint, Štefan; Sandoval Álvarez, Ángel; Borbely, Joseph Steven; Lakadamyali, Melike

    2014-01-01

    Recently, super-resolution microscopy methods such as stochastic optical reconstruction microscopy (STORM) have enabled visualization of subcellular structures below the optical resolution limit. Due to the poor temporal resolution, however, these methods have mostly been used to image fixed cells or dynamic processes that evolve on slow time-scales. In particular, fast dynamic processes and their relationship to the underlying ultrastructure or nanoscale protein organization cannot be discerned. To overcome this limitation, we have recently developed a correlative and sequential imaging method that combines live-cell and super-resolution microscopy. This approach adds dynamic background to ultrastructural images providing a new dimension to the interpretation of super-resolution data. However, currently, it suffers from the need to carry out tedious steps of sample preparation manually. To alleviate this problem, we implemented a simple and versatile microfluidic platform that streamlines the sample preparation steps in between live-cell and super-resolution imaging. The platform is based on a microfluidic chip with parallel, miniaturized imaging chambers and an automated fluid-injection device, which delivers a precise amount of a specified reagent to the selected imaging chamber at a specific time within the experiment. We demonstrate that this system can be used for live-cell imaging, automated fixation, and immunostaining of adherent mammalian cells in situ followed by STORM imaging. We further demonstrate an application by correlating mitochondrial dynamics, morphology, and nanoscale mitochondrial protein distribution in live and super-resolution images. PMID:25545548

  19. Bubble-free on-chip continuous-flow polymerase chain reaction: concept and application.

    PubMed

    Wu, Wenming; Kang, Kyung-Tae; Lee, Nae Yoon

    2011-06-07

    Bubble formation inside a microscale channel is a significant problem in general microfluidic experiments. The problem becomes especially crucial when performing a polymerase chain reaction (PCR) on a chip which is subject to repetitive temperature changes. In this paper, we propose a bubble-free sample injection scheme applicable for continuous-flow PCR inside a glass/PDMS hybrid microfluidic chip, and attempt to provide a theoretical basis concerning bubble formation and elimination. Highly viscous paraffin oil plugs are employed in both the anterior and posterior ends of a sample plug, completely encapsulating the sample and eliminating possible nucleation sites for bubbles. In this way, internal channel pressure is increased, and vaporization of the sample is prevented, suppressing bubble formation. Use of an oil plug in the posterior end of the sample plug aids in maintaining a stable flow of a sample at a constant rate inside a heated microchannel throughout the entire reaction, as compared to using an air plug. By adopting the proposed sample injection scheme, we demonstrate various practical applications. On-chip continuous-flow PCR is performed employing genomic DNA extracted from a clinical single hair root sample, and its D1S80 locus is successfully amplified. Also, chip reusability is assessed using a plasmid vector. A single chip is used up to 10 times repeatedly without being destroyed, maintaining almost equal intensities of the resulting amplicons after each run, ensuring the reliability and reproducibility of the proposed sample injection scheme. In addition, the use of a commercially-available and highly cost-effective hot plate as a potential candidate for the heating source is investigated.

  20. Enzyme catalysis-electrophoresis titration for multiplex enzymatic assay via moving reaction boundary chip.

    PubMed

    Zhong, Ran; Xie, Haiyang; Kong, Fanzhi; Zhang, Qiang; Jahan, Sharmin; Xiao, Hua; Fan, Liuyin; Cao, Chengxi

    2016-09-21

    In this work, we developed the concept of enzyme catalysis-electrophoresis titration (EC-ET) under ideal conditions, the theory of EC-ET for multiplex enzymatic assay (MEA), and a related method based on a moving reaction boundary (MRB) chip with a collateral channel and cell phone imaging. As a proof of principle, the model enzymes horseradish peroxidase (HRP), laccase and myeloperoxidase (MPO) were chosen for the tests of the EC-ET model. The experiments revealed that the EC-ET model could be achieved via coupling EC with ET within a MRB chip; particularly the MEA analyses of catalysis rate, maximum rate, activity, Km and Kcat could be conducted via a single run of the EC-ET chip, systemically demonstrating the validity of the EC-ET theory. Moreover, the developed method had these merits: (i) two orders of magnitude higher sensitivity than a fluorescence microplate reader, (ii) simplicity and low cost, and (iii) fairly rapid (30 min incubation, 20 s imaging) analysis, fair stability (<5.0% RSD) and accuracy, thus validating the EC-ET method. Finally, the developed EC-ET method was used for the clinical assay of MPO activity in blood samples; the values of MPO activity detected via the EC-ET chip were in agreement with those obtained by a traditional fluorescence microplate reader, indicating the applicability of the EC-ET method. The work opens a window for the development of enzymatic research, enzyme assay, immunoassay, and point-of-care testing as well as titration, one of the oldest methods of analysis, based on a simple chip.

  1. Properties of coatings on RFID p-Chips that support plasmonic fluorescence enhancement in bioassays

    PubMed Central

    Rich, Ryan; Li, Ji; Fudala, Rafal; Gryczynski, Zygmunt; Gryczynski, Ignacy; Mandecki, Wlodek

    2012-01-01

    Microtransponders (RFID p-Chips) derivatized with silver island film (SIF) have previously seen success as a platform for the quantification of low-abundance biomolecules in nucleic acid-based assays and immunoassays. In this study, we further characterized the morphology of the SIF as well as the polymer matrix enveloping it by scanning electron microscopy (SEM). The polymer was a two-layer silane-based matrix engulfing the p-Chip and SIF. Through a series of SEM and confocal fluorescence microscopy experiments we found the depth of the polymer matrix to be 1–2 µm. The radiative effects of the SIF/polymer layer were assessed by fluorescence lifetime imaging (FLIM) of p-Chips coated with the polymer to which a fluorophore (Alexa Fluor 555) was conjugated. FLIM images showed an 8.7-fold increase in fluorescence intensity and an increased rate of radiative decay, the latter of which is associated with improved photostability and both of which are linked to plasmonic enhancement by the SIF. Plasmonic enhancement was found to extend uniformly across the p-Chip and, interestingly, to a depth of about 1.2 µm. The substantial depth of enhancement suggests that the SIF/polymer layer constitutes a three-dimensional matrix that is accessible to solvent and small molecules such as fluorescent dyes. Finally, we confirmed that no surface-enhanced Raman scattering (SERS) is seen from the SIF/polymer combination. The analysis provides a possible mechanism by which the SIF/polymer-coated p-Chips allow a highly sensitive immunoassay and, as a result, leads to an improved bioassay platform. PMID:22960796

  2. Fabrication and characteristics of MOSFET protein chip for detection of ribosomal protein.

    PubMed

    Park, Keun-Yong; Kim, Min-Suk; Choi, Sie-Young

    2005-04-15

    A metal oxide silicon field effect transistor (MOSFET) protein chip for the easy detection of protein was fabricated and its characteristics were investigated. Generally, the drain current of the MOSFET is varied by the gate potential. It is expected that the formation of an antibody-antigen complex on the gate of MOSFET would lead to a detectable change in the charge distribution and thus, directly modulate the drain current of MOSFET. As such, the drain current of the MOSFET protein chip can be varied by ribosomal proteins absorbed by the self-assembled monolayer (SAM) immobilized on the gate (Au) surface, as ribosomal protein has positive charge, and these current variations then used as the response of the protein chip. The gate of MOSFET protein chip is not directly biased by an external voltage source, so called open gate or floating gate MOSFET, but rather chemically modified by immobilized molecular receptors called self-assembled monolayer (SAM). In our experiments, the current variation in the proposed protein chip was about 8% with a protein concentration of 0.7 mM. As the protein concentration increased, the drain current also gradually increased. In addition, there were some drift of the drain current in the device. It is considered that these drift might be caused by the drift from the MOSFET itself or protein absorption procedures that are relied on the facile attachment of thiol (-S) ligands to the gate (Au) surface. We verified the formation of SAM on the gold surface and the absorption of protein through the surface plasmon resonance (SPR) measurement.

  3. Dry matter losses and quality changes during short rotation coppice willow storage in chip or rod form.

    PubMed

    Whittaker, Carly; Yates, Nicola E; Powers, Stephen J; Misselbrook, Tom; Shield, Ian

    2018-05-01

    This study compares dry matter losses and quality changes during the storage of SRC willow as chips and as rods. A wood chip stack consisting of approximately 74 tonnes of fresh biomass, or 31 tonnes dry matter (DM) was built after harvesting in the spring. Three weeks later, four smaller stacks of rods with an average weight of 0.8 tonnes, or 0.4 tonnes DM were built. During the course of the experiment temperature recorders placed in the stacks found that the wood chip pile reached 60 °C within 10 days of construction, but the piles of rods remained mostly at ambient temperatures. Dry matter losses were calculated by using pre-weighed independent samples within the stacks and by weighing the whole stack before and after storage. After 6 months the wood chip stack showed a DM loss of between 19.8 and 22.6%, and mean losses of 23.1% were measured from the 17 independent samples. In comparison, the rod stacks showed an average stack DM loss of between 0 and 9%, and between 1.4% and 10.6% loss from the independent samples. Analysis of the stored material suggests that storing willow in small piles of rods produces a higher quality fuel in terms of lower moisture and ash content; however, it has a higher fine content compared to storage in chip form. Therefore, according to the two storage methods tested here, there may be a compromise between maximising the net dry matter yield from SRC willow and the final fine content of the fuel.

  4. [The study and manufacture of spinning counter for experimental animals].

    PubMed

    Qi, X P; Zhou, C; Liu, F J; Chen, Z; Jiang, L; Yan, Z

    1997-09-01

    The single-chip microcomputer technique is used in the present study of spinning counter, which has 4 observation tunnels, the spinning behave of four experiment animals can be recorded at same time. The function of this instrument has four selections according to different experiment, and the recording data can be compute processed.

  5. Synthesis of pulping processes with fiber loading methods for lightweight papers

    Treesearch

    John H. Klungness; Roland Gleisner; Masood Akhtar; Eric G. Horn; Mike Lentz

    2003-01-01

    Pulping technologies can be synthesized with fiber loading with simultaneous alkaline peroxide bleaching to produce lightweight high-opacity printing papers. We compared the results of recent experiments on combining oxalic acid pretreated wood chips used for thermomechanical pulp (TMP) with fiber loading and previous experiments on combining similar pulps treated with...

  6. Genome wide approaches to identify protein-DNA interactions.

    PubMed

    Ma, Tao; Ye, Zhenqing; Wang, Liguo

    2018-05-29

    Transcription factors are DNA-binding proteins that play key roles in many fundamental biological processes. Unraveling their interactions with DNA is essential to identify their target genes and understand the regulatory network. Genome-wide identification of their binding sites became feasible thanks to recent progress in experimental and computational approaches. ChIP-chip, ChIP-seq, and ChIP-exo are three widely used techniques to demarcate genome-wide transcription factor binding sites. This review aims to provide an overview of these three techniques including their experiment procedures, computational approaches, and popular analytic tools. ChIP-chip, ChIP-seq, and ChIP-exo have been the major techniques to study genome-wide in vivo protein-DNA interaction. Due to the rapid development of next-generation sequencing technology, array-based ChIP-chip is deprecated and ChIP-seq has become the most widely used technique to identify transcription factor binding sites in genome-wide. The newly developed ChIP-exo further improves the spatial resolution to single nucleotide. Numerous tools have been developed to analyze ChIP-chip, ChIP-seq and ChIP-exo data. However, different programs may employ different mechanisms or underlying algorithms thus each will inherently include its own set of statistical assumption and bias. So choosing the most appropriate analytic program for a given experiment needs careful considerations. Moreover, most programs only have command line interface so their installation and usage will require basic computation expertise in Unix/Linux. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Increasing efficiency of preclinical research by group sequential designs

    PubMed Central

    Piper, Sophie K.; Rex, Andre; Florez-Vargas, Oscar; Karystianis, George; Schneider, Alice; Wellwood, Ian; Siegerink, Bob; Ioannidis, John P. A.; Kimmelman, Jonathan; Dirnagl, Ulrich

    2017-01-01

    Despite the potential benefits of sequential designs, studies evaluating treatments or experimental manipulations in preclinical experimental biomedicine almost exclusively use classical block designs. Our aim with this article is to bring the existing methodology of group sequential designs to the attention of researchers in the preclinical field and to clearly illustrate its potential utility. Group sequential designs can offer higher efficiency than traditional methods and are increasingly used in clinical trials. Using simulation of data, we demonstrate that group sequential designs have the potential to improve the efficiency of experimental studies, even when sample sizes are very small, as is currently prevalent in preclinical experimental biomedicine. When simulating data with a large effect size of d = 1 and a sample size of n = 18 per group, sequential frequentist analysis consumes in the long run only around 80% of the planned number of experimental units. In larger trials (n = 36 per group), additional stopping rules for futility lead to the saving of resources of up to 30% compared to block designs. We argue that these savings should be invested to increase sample sizes and hence power, since the currently underpowered experiments in preclinical biomedicine are a major threat to the value and predictiveness in this research domain. PMID:28282371

  8. Improving lumen maintenance by nanopore array dispersed quantum dots for on-chip light emitting diodes

    NASA Astrophysics Data System (ADS)

    Chen, Quan; Yang, Fan; Wan, Renzhuo; Fang, Dong

    2017-12-01

    The temperature stability of quantum dots (QDs), which is crucial for integrating into high power light-emitting diodes (LEDs) in the on-chip configuration, needs to be further improved. In this letter, we report warm white LEDs, where CdSe/ZnS nanoparticles were incorporated into a porous anodic alumina (PAA) matrix with a chain structure by the self-assembly method. Experiments demonstrate that the QD concentration range in toluene solvent from 1% mg/μl to 1.2% mg/μl in combination with the PAA matrix shows the best luminous property. To verify the reliability of the as-prepared device, a comparison experiment was conducted. It indicates excellent lumen maintenance of the light source and less chromaticity coordinate shift under accelerated life testing conditions. Experiments also prove that optical depreciation was only up to 4.6% of its initial value after the 1500 h aging test at the junction temperature of 76 °C.

  9. Analog pixel array detectors.

    PubMed

    Ercan, A; Tate, M W; Gruner, S M

    2006-03-01

    X-ray pixel array detectors (PADs) are generally thought of as either digital photon counters (DPADs) or X-ray analog-integrating pixel array detectors (APADs). Experiences with APADs, which are especially well suited for X-ray imaging experiments where transient or high instantaneous flux events must be recorded, are reported. The design, characterization and experimental applications of several APAD designs developed at Cornell University are discussed. The simplest design is a ;flash' architecture, wherein successive integrated X-ray images, as short as several hundred nanoseconds in duration, are stored in the detector chips for later off-chip digitization. Radiography experiments using a prototype flash APAD are summarized. Another design has been implemented that combines flash capability with the ability to continuously stream X-ray images at slower (e.g. milliseconds) rates. Progress is described towards radiation-hardened APADs that can be tiled to cover a large area. A mixed-mode PAD, design by combining many of the attractive features of both APADs and DPADs, is also described.

  10. Dynamics of microbial community composition and function during in-situ bioremediation of a uranium-contaminated aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nostrand, J.D. Van; Wu, L.; Wu, W.M.

    2010-08-15

    A pilot-scale system was established to examine the feasibility of in situ U(VI) immobilization at a highly contaminated aquifer (U.S. DOE Integrated Field Research Challenge site, Oak Ridge, TN). Ethanol was injected intermittently as an electron donor to stimulate microbial U(VI) reduction, and U(VI) concentrations fell to below the Environmental Protection Agency drinking water standard (0.03 mg liter{sup -1}). Microbial communities from three monitoring wells were examined during active U(VI) reduction and maintenance phases with GeoChip, a high-density, comprehensive functional gene array. The overall microbial community structure exhibited a considerable shift over the remediation phases examined. GeoChip-based analysis revealed thatmore » Fe(III)-reducing bacterial (FeRB), nitrate-reducing bacterial (NRB), and sulfate-reducing bacterial (SRB) functional populations reached their highest levels during the active U(VI) reduction phase (days 137 to 370), in which denitrification and Fe(III) and sulfate reduction occurred sequentially. A gradual decrease in these functional populations occurred when reduction reactions stabilized, suggesting that these functional populations could play an important role in both active U(VI) reduction and maintenance of the stability of reduced U(IV). These results suggest that addition of electron donors stimulated the microbial community to create biogeochemical conditions favorable to U(VI) reduction and prevent the reduced U(IV) from reoxidation and that functional FeRB, SRB, and NRB populations within this system played key roles in this process.« less

  11. A Microfluidic Chip Integrated with Hyaluronic Acid-Functionalized Electrospun Chitosan Nanofibers for Specific Capture and Nondestructive Release of CD44-Overexpressing Circulating Tumor Cells.

    PubMed

    Wang, Mengyuan; Xiao, Yunchao; Lin, Lizhou; Zhu, Xiaoyue; Du, Lianfang; Shi, Xiangyang

    2018-04-18

    Detection of circulating tumor cells (CTCs) in peripheral blood is of paramount significance for early-stage cancer diagnosis, estimation of cancer development, and individualized cancer therapy. Herein, we report the development of hyaluronic acid (HA)-functionalized electrospun chitosan nanofiber (CNF)-integrated microfludic platform for highly specific capture and nondestructive release of CTCs. First, electrospun CNFs were formed and modified with zwitterion of carboxyl betaine acrylamide (CBAA) via Michael addition reaction and then targeting ligand HA through a disulfide bond. We show that the formed nanofibers still maintain the smooth fibrous morphology after sequential surface modifications, have a good hemocompatibility, and exhibit an excellent antifouling property due to the CBAA modification. After being embedded within a microfluidic chip, the fibrous mat can capture cancer cells (A549, a human lung cancer cell line) with an efficiency of 91% at a flow rate of 1.0 mL/h. Additionally, intact release of cancer cells is able to be achieved after treatment with glutathione for 40 min to have a release efficiency of 90%. Clinical applications show that 9 of 10 nonsmall-cell lung cancer patients and 5 of 5 breast cancer patients are diagnosed to have CTCs (1 to 18 CTCs per mL of blood). Our results suggest that the developed microfluidic system integrated with functionalized CNF mats may be employed for effective CTCs capture for clinical diagnosis of cancer.

  12. Dynamics of Microbial Community Composition and Function during In Situ Bioremediation of a Uranium-Contaminated Aquifer▿‡

    PubMed Central

    Van Nostrand, Joy D.; Wu, Liyou; Wu, Wei-Min; Huang, Zhijian; Gentry, Terry J.; Deng, Ye; Carley, Jack; Carroll, Sue; He, Zhili; Gu, Baohua; Luo, Jian; Criddle, Craig S.; Watson, David B.; Jardine, Philip M.; Marsh, Terence L.; Tiedje, James M.; Hazen, Terry C.; Zhou, Jizhong

    2011-01-01

    A pilot-scale system was established to examine the feasibility of in situ U(VI) immobilization at a highly contaminated aquifer (U.S. DOE Integrated Field Research Challenge site, Oak Ridge, TN). Ethanol was injected intermittently as an electron donor to stimulate microbial U(VI) reduction, and U(VI) concentrations fell to below the Environmental Protection Agency drinking water standard (0.03 mg liter−1). Microbial communities from three monitoring wells were examined during active U(VI) reduction and maintenance phases with GeoChip, a high-density, comprehensive functional gene array. The overall microbial community structure exhibited a considerable shift over the remediation phases examined. GeoChip-based analysis revealed that Fe(III)-reducing bacterial (FeRB), nitrate-reducing bacterial (NRB), and sulfate-reducing bacterial (SRB) functional populations reached their highest levels during the active U(VI) reduction phase (days 137 to 370), in which denitrification and Fe(III) and sulfate reduction occurred sequentially. A gradual decrease in these functional populations occurred when reduction reactions stabilized, suggesting that these functional populations could play an important role in both active U(VI) reduction and maintenance of the stability of reduced U(IV). These results suggest that addition of electron donors stimulated the microbial community to create biogeochemical conditions favorable to U(VI) reduction and prevent the reduced U(IV) from reoxidation and that functional FeRB, SRB, and NRB populations within this system played key roles in this process. PMID:21498771

  13. Multi-channel imaging cytometry with a single detector

    NASA Astrophysics Data System (ADS)

    Locknar, Sarah; Barton, John; Entwistle, Mark; Carver, Gary; Johnson, Robert

    2018-02-01

    Multi-channel microscopy and multi-channel flow cytometry generate high bit data streams. Multiple channels (both spectral and spatial) are important in diagnosing diseased tissue and identifying individual cells. Omega Optical has developed techniques for mapping multiple channels into the time domain for detection by a single high gain, high bandwidth detector. This approach is based on pulsed laser excitation and a serial array of optical fibers coated with spectral reflectors such that up to 15 wavelength bins are sequentially detected by a single-element detector within 2.5 μs. Our multichannel microscopy system uses firmware running on dedicated DSP and FPGA chips to synchronize the laser, scanning mirrors, and sampling clock. The signals are digitized by an NI board into 14 bits at 60MHz - allowing for 232 by 174 pixel fields in up to 15 channels with 10x over sampling. Our multi-channel imaging cytometry design adds channels for forward scattering and back scattering to the fluorescence spectral channels. All channels are detected within the 2.5 μs - which is compatible with fast cytometry. Going forward, we plan to digitize at 16 bits with an A-toD chip attached to a custom board. Processing these digital signals in custom firmware would allow an on-board graphics processing unit to display imaging flow cytometry data over configurable scanning line lengths. The scatter channels can be used to trigger data buffering when a cell is present in the beam. This approach enables a low cost mechanically robust imaging cytometer.

  14. Wood species affect the degradation of crude oil in beach sand.

    PubMed

    Jandl, Gerald; Rodríguez Arranz, Alberto; Baum, Christel; Leinweber, Peter

    2015-01-01

    The addition of wood chips as a co-substrate can promote the degradation of oil in soil. Therefore, in the present study, the tree species-specific impact of wood chips of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L.) and Western balsam poplar (Populus trichocarpa L.) on the degradation of crude oil was tested in beach sand in a 4-week incubation experiment. The CO2-C release increased in the order of control without wood chips < +spruce < +pine < +poplar. Initial and final hydrocarbon concentrations (C10 to C40), as indicators for the oil degradation, were determined with gas chromatography-flame ionization detection (GC-FID). The degradation increased for the light fraction (C10 to C22), the heavy fraction (C23 to C40) as well as the whole range (C10 to C40) in the order of control without wood chips (f(degrad.) = 23% vs. 0% vs. 12%) < +poplar (f(degrad.) = 49% vs. 19% vs. 36%) < +spruce (f(degrad.) = 55% vs. 34% vs. 46%) < +pine (f(degrad.) = 60% vs. 44% vs. 53%), whereas the heavy fraction was less degraded in comparison to the light fraction. It can be concluded, that the tree species-specific wood quality is a significant control of the impact on the degradation of hydrocarbons, and pine wood chips might be promising, possibly caused by their lower decomposability and lower substrate replacement than the other wood species.

  15. Microfluidic Mixing Technology for a Universal Health Sensor

    NASA Technical Reports Server (NTRS)

    Chan, Eugene Y.; Bae, Candice

    2009-01-01

    A highly efficient means of microfluidic mixing has been created for use with the rHEALTH sensor an elliptical mixer and passive curvilinear mixing patterns. The rHEALTH sensor provides rapid, handheld, complete blood count, cell differential counts, electrolyte measurements, and other lab tests based on a reusable, flow-based microfluidic platform. These geometries allow for cleaning in a reusable manner, and also allow for complete mixing of fluid streams. The microfluidic mixing is performed by flowing two streams of fluid into an elliptical or curvilinear design that allows the combination of the flows into one channel. The mixing is accomplished by either chaotic advection around micro - fluidic loops. All components of the microfluidic chip are flow-through, meaning that cleaning solution can be introduced into the chip to flush out cells, plasma proteins, and dye. Tests were performed on multiple chip geometries to show that cleaning is efficient in any flowthrough design. The conclusion from these experiments is that the chip can indeed be flushed out with microliter volumes of solution and biological samples are cleaned readily from the chip with minimal effort. The technology can be applied in real-time health monitoring at patient s bedside or in a doctor s office, and real-time clinical intervention in acute situations. It also can be used for daily measurement of hematocrit for patients on anticoagulant drugs, or to detect acute myocardial damage outside a hospital.

  16. Heat-driven liquid metal cooling device for the thermal management of a computer chip

    NASA Astrophysics Data System (ADS)

    Ma, Kun-Quan; Liu, Jing

    2007-08-01

    The tremendous heat generated in a computer chip or very large scale integrated circuit raises many challenging issues to be solved. Recently, liquid metal with a low melting point was established as the most conductive coolant for efficiently cooling the computer chip. Here, by making full use of the double merits of the liquid metal, i.e. superior heat transfer performance and electromagnetically drivable ability, we demonstrate for the first time the liquid-cooling concept for the thermal management of a computer chip using waste heat to power the thermoelectric generator (TEG) and thus the flow of the liquid metal. Such a device consumes no external net energy, which warrants it a self-supporting and completely silent liquid-cooling module. Experiments on devices driven by one or two stage TEGs indicate that a dramatic temperature drop on the simulating chip has been realized without the aid of any fans. The higher the heat load, the larger will be the temperature decrease caused by the cooling device. Further, the two TEGs will generate a larger current if a copper plate is sandwiched between them to enhance heat dissipation there. This new method is expected to be significant in future thermal management of a desk or notebook computer, where both efficient cooling and extremely low energy consumption are of major concern.

  17. Photoelectric radar servo control system based on ARM+FPGA

    NASA Astrophysics Data System (ADS)

    Wu, Kaixuan; Zhang, Yue; Li, Yeqiu; Dai, Qin; Yao, Jun

    2016-01-01

    In order to get smaller, faster, and more responsive requirements of the photoelectric radar servo control system. We propose a set of core ARM + FPGA architecture servo controller. Parallel processing capability of FPGA to be used for the encoder feedback data, PWM carrier modulation, A, B code decoding processing and so on; Utilizing the advantage of imaging design in ARM Embedded systems achieves high-speed implementation of the PID algorithm. After the actual experiment, the closed-loop speed of response of the system cycles up to 2000 times/s, in the case of excellent precision turntable shaft, using a PID algorithm to achieve the servo position control with the accuracy of + -1 encoder input code. Firstly, This article carry on in-depth study of the embedded servo control system hardware to determine the ARM and FPGA chip as the main chip with systems based on a pre-measured target required to achieve performance requirements, this article based on ARM chip used Samsung S3C2440 chip of ARM7 architecture , the FPGA chip is chosen xilinx's XC3S400 . ARM and FPGA communicate by using SPI bus, the advantage of using SPI bus is saving a lot of pins for easy system upgrades required thereafter. The system gets the speed datas through the photoelectric-encoder that transports the datas to the FPGA, Then the system transmits the datas through the FPGA to ARM, transforms speed datas into the corresponding position and velocity data in a timely manner, prepares the corresponding PWM wave to control motor rotation by making comparison between the position data and the velocity data setted in advance . According to the system requirements to draw the schematics of the photoelectric radar servo control system and PCB board to produce specially. Secondly, using PID algorithm to control the servo system, the datas of speed obtained from photoelectric-encoder is calculated position data and speed data via high-speed digital PID algorithm and coordinate models. Finally, a large number of experiments verify the reliability of embedded servo control system's functions, the stability of the program and the stability of the hardware circuit. Meanwhile, the system can also achieve the satisfactory of user experience, to achieve a multi-mode motion, real-time motion status monitoring, online system parameter changes and other convenient features.

  18. Assessing the effect of sodium dichloroisocyanurate concentration on transfer of Salmonella enterica serotype Typhimurium in wash water for production of minimally processed iceberg lettuce (Lactuca sativa L.).

    PubMed

    Maffei, D F; Sant'Ana, A S; Monteiro, G; Schaffner, D W; Franco, B D G M

    2016-06-01

    This study evaluated the impact of sodium dichloroisocyanurate (5, 10, 20, 30, 40, 50 and 250 mg l(-1) ) in wash water on transfer of Salmonella Typhimurium from contaminated lettuce to wash water and then to other noncontaminated lettuces washed sequentially in the same water. Experiments were designed mimicking the conditions commonly seen in minimally processed vegetable (MPV) processing plants in Brazil. The scenarios were as follows: (1) Washing one inoculated lettuce portion in nonchlorinated water, followed by washing 10 noninoculated portions sequentially. (2) Washing one inoculated lettuce portion in chlorinated water followed by washing five noninoculated portions sequentially. (3) Washing five inoculated lettuce portions in chlorinated water sequentially, followed by washing five noninoculated portions sequentially. (4) Washing five noninoculated lettuce portions in chlorinated water sequentially, followed by washing five inoculated portions sequentially and then by washing five noninoculated portions sequentially in the same water. Salm. Typhimurium transfer from inoculated lettuce to wash water and further dissemination to noninoculated lettuces occurred when nonchlorinated water was used (scenario 1). When chlorinated water was used (scenarios 2, 3 and 4), no measurable Salm. Typhimurium transfer occurred if the sanitizer was ≥10 mg l(-1) . Use of sanitizers in correct concentrations is important to minimize the risk of microbial transfer during MPV washing. In this study, the impact of sodium dichloroisocyanurate in the wash water on transfer of Salmonella Typhimurium from inoculated lettuce to wash water and then to other noninoculated lettuces washed sequentially in the same water was evaluated. The use of chlorinated water, at concentration above 10 mg l(-1) , effectively prevented Salm. Typhimurium transfer under several different washing scenarios. Conversely, when nonchlorinated water was used, Salm. Typhimurium transfer occurred in up to at least 10 noninoculated batches of lettuce washed sequentially in the same water. © 2016 The Society for Applied Microbiology.

  19. SRAM Detector Calibration

    NASA Technical Reports Server (NTRS)

    Soli, G. A.; Blaes, B. R.; Beuhler, M. G.

    1994-01-01

    Custom proton sensitive SRAM chips are being flown on the BMDO Clementine missions and Space Technology Research Vehicle experiments. This paper describes the calibration procedure for the SRAM proton detectors and their response to the space environment.

  20. IFSA: a microfluidic chip-platform for frit-based immunoassay protocols

    NASA Astrophysics Data System (ADS)

    Hlawatsch, Nadine; Bangert, Michael; Miethe, Peter; Becker, Holger; Gärtner, Claudia

    2013-03-01

    Point-of-care diagnostics (POC) is one of the key application fields for lab-on-a-chip devices. While in recent years much of the work has concentrated on integrating complex molecular diagnostic assays onto a microfluidic device, there is a need to also put comparatively simple immunoassay-type protocols on a microfluidic platform. In this paper, we present the development of a microfluidic cartridge using an immunofiltration approach. In this method, the sandwich immunoassay takes place in a porous frit on which the antibodies have immobilized. The device is designed to be able to handle three samples in parallel and up to four analytical targets per sample. In order to meet the critical cost targets for the diagnostic market, the microfluidic chip has been designed and manufactured using high-volume manufacturing technologies in mind. Validation experiments show comparable sensitivities in comparison with conventional immunofiltration kits.

  1. The Level 0 Pixel Trigger system for the ALICE experiment

    NASA Astrophysics Data System (ADS)

    Aglieri Rinella, G.; Kluge, A.; Krivda, M.; ALICE Silicon Pixel Detector project

    2007-01-01

    The ALICE Silicon Pixel Detector contains 1200 readout chips. Fast-OR signals indicate the presence of at least one hit in the 8192 pixel matrix of each chip. The 1200 bits are transmitted every 100 ns on 120 data readout optical links using the G-Link protocol. The Pixel Trigger System extracts and processes them to deliver an input signal to the Level 0 trigger processor targeting a latency of 800 ns. The system is compact, modular and based on FPGA devices. The architecture allows the user to define and implement various trigger algorithms. The system uses advanced 12-channel parallel optical fiber modules operating at 1310 nm as optical receivers and 12 deserializer chips closely packed in small area receiver boards. Alternative solutions with multi-channel G-Link deserializers implemented directly in programmable hardware devices were investigated. The design of the system and the progress of the ALICE Pixel Trigger project are described in this paper.

  2. Carbon nanotubes for voltage reduction and throughput enhancement of electrical cell lysis on a lab-on-a-chip.

    PubMed

    Shahini, Mehdi; Yeow, John T W

    2011-08-12

    We report on the enhancement of electrical cell lysis using carbon nanotubes (CNTs). Electrical cell lysis systems are widely utilized in microchips as they are well suited to integration into lab-on-a-chip devices. However, cell lysis based on electrical mechanisms has high voltage requirements. Here, we demonstrate that by incorporating CNTs into microfluidic electrolysis systems, the required voltage for lysis is reduced by half and the lysis throughput at low voltages is improved by ten times, compared to non-CNT microchips. In our experiment, E. coli cells are lysed while passing through an electric field in a microchannel. Based on the lightning rod effect, the electric field strengthened at the tip of the CNTs enhances cell lysis at lower voltage and higher throughput. This approach enables easy integration of cell lysis with other on-chip high-throughput sample-preparation processes.

  3. Validation of a Brief Structured Interview: The Children's Interview for Psychiatric Syndromes (ChIPS).

    PubMed

    Young, Matthew E; Bell, Ziv E; Fristad, Mary A

    2016-12-01

    Evidence-based assessment is important in the treatment of childhood psychopathology. While researchers and clinicians frequently use structured diagnostic interviews to ensure reliability, the most commonly used instrument, the Schedule for Affective Disorders and Schizophrenia for School Aged Children (K-SADS) is too long for most clinical applications. The Children's Interview for Psychiatric Syndromes (ChIPS/P-ChIPS) is a highly-structured brief diagnostic interview. The present study compared K-SADS and ChIPS/P-ChIPS diagnoses in an outpatient clinical sample of 50 parent-child pairs aged 7-14. Agreement between most diagnoses was moderate to high between the instruments and with consensus clinical diagnoses. ChIPS was significantly briefer to administer than the K-SADS. Interviewer experience level and participant demographics did not appear to affect agreement. Results provide further evidence for the validity of the ChIPS and support its use in clinical and research settings.

  4. Fault Tolerant Characteristics of Artificial Neural Network Electronic Hardware

    NASA Technical Reports Server (NTRS)

    Zee, Frank

    1995-01-01

    The fault tolerant characteristics of analog-VLSI artificial neural network (with 32 neurons and 532 synapses) chips are studied by exposing them to high energy electrons, high energy protons, and gamma ionizing radiations under biased and unbiased conditions. The biased chips became nonfunctional after receiving a cumulative dose of less than 20 krads, while the unbiased chips only started to show degradation with a cumulative dose of over 100 krads. As the total radiation dose increased, all the components demonstrated graceful degradation. The analog sigmoidal function of the neuron became steeper (increase in gain), current leakage from the synapses progressively shifted the sigmoidal curve, and the digital memory of the synapses and the memory addressing circuits began to gradually fail. From these radiation experiments, we can learn how to modify certain designs of the neural network electronic hardware without using radiation-hardening techniques to increase its reliability and fault tolerance.

  5. The DIRC front-end electronics chain for BaBar

    NASA Astrophysics Data System (ADS)

    Bailly, P.; Beigbeder, C.; Bernier, R.; Breton, D.; Bonneaud, G.; Caceres, T.; Chase, R.; Chauveau, J.; Del Buono, L.; Dohou, F.; Ducorps, A.; Gastaldi, F.; Genat, J. F.; Hrisoho, A.; Imbert, P.; Lebbolo, H.; Matricon, P.; Oxoby, G.; Renard, C.; Roos, L.; Sen, S.; Thiebaux, C.; Truong, K.; Tocut, V.; Vasileiadis, G.; Va'Vra, J.; Verderi, M.; Warner, D.; Wilson, R. J.; Wormser, G.; Zhang, B.; Zomer, F.

    2000-12-01

    Recent results from the Front-End electronics of the Detector of Internally Reflected Cerenkov light (DIRC) for the BaBar experiment at SLAC (Stanford, USA) are presented. It measures to better than 1 ns the arrival time of Cerenkov photoelectrons detected in a 11000 phototubes array and their amplitude spectra. It mainly comprises 64-channel DIRC Front-End Boards (DFB) equipped with eight full-custom analog chips performing zero-cross discrimination with 2 mV threshold and pulse shaping, four full-custom digital time to digital chips (TDC) for timing measurements with 500 ps binning and a readout logic selecting hits in the trigger window, and DIRC Crate Controller cards (DCC) serializing the data collected front up to 16 DFBs onto a 1.2 Gb/s optical link. Extensive test results of the pre-production chips are presented, as well as system tests.

  6. A Functional Measurement Study on Averaging Numerosity

    ERIC Educational Resources Information Center

    Tira, Michael D.; Tagliabue, Mariaelena; Vidotto, Giulio

    2014-01-01

    In two experiments, participants judged the average numerosity between two sequentially presented dot patterns to perform an approximate arithmetic task. In Experiment 1, the response was given on a 0-20 numerical scale (categorical scaling), and in Experiment 2, the response was given by the production of a dot pattern of the desired numerosity…

  7. Modeling Valuations from Experience: A Comment on Ashby and Rakow (2014)

    ERIC Educational Resources Information Center

    Wulff, Dirk U.; Pachur, Thorsten

    2016-01-01

    What are the cognitive mechanisms underlying subjective valuations formed on the basis of sequential experiences of an option's possible outcomes? Ashby and Rakow (2014) have proposed a sliding window model (SWIM), according to which people's valuations represent the average of a limited sample of recent experiences (the size of which is estimated…

  8. Prototyping of Silicon Strip Detectors for the Inner Tracker of the ALICE Experiment

    NASA Astrophysics Data System (ADS)

    Sokolov, Oleksiy

    2006-04-01

    The ALICE experiment at CERN will study heavy ion collisions at a center-of-mass energy 5.5˜TeV per nucleon. Particle tracking around the interaction region at radii r<45 cm is done by the Inner Tracking System (ITS), consisting of six cylindrical layers of silicon detectors. The outer two layers of the ITS use double-sided silicon strip detectors. This thesis focuses on testing of these detectors and performance studies of the detector module prototypes at the beam test. Silicon strip detector layers will require about 20 thousand HAL25 front-end readout chips and about 3.5 thousand hybrids each containing 6 HAL25 chips. During the assembly procedure, chips are bonded on a patterned TAB aluminium microcables which connect to all the chip input and output pads, and then the chips are assembled on the hybrids. Bonding failures at the chip or hybrid level may either render the component non-functional or deteriorate its the performance such that it can not be used for the module production. After each bonding operation, the component testing is done to reject the non-functional or poorly performing chips and hybrids. The LabView-controlled test station for this operation has been built at Utrecht University and was successfully used for mass production acceptance tests of chips and hybrids at three production labs. The functionality of the chip registers, bonding quality and analogue functionality of the chips and hybrids are addressed in the test. The test routines were optimized to minimize the testing time to make sure that testing is not a bottleneck of the mass production. For testing of complete modules the laser scanning station with 1060 nm diode laser has been assembled at Utrecht University. The testing method relies of the fact that a response of the detector module to a short collimated laser beam pulse resembles a response to a minimum ionizing particle. A small beam spot size (˜7 μm ) allows to deposit the charge in a narrow region and measure the response of individual detector channels. First several module prototypes have been studied with this setup, the strip gain and charge sharing function have been measured, the later is compared with the model predictions. It was also shown that for a laser beam of a high monochromaticity, interference in the sensor bulk significantly modulates the deposited charge and introduces a systematic error of the gain measurement. Signatures of disconnected strips and pinholes defects have been observed, the response of the disconnected strips to the laser beam has been correlated with the noise measurements. Beam test of four prototype modules have been carried out at PS accelerator at CERN using 7 GeV/c pions. It was demonstrated that the modules provide an excellent signal-to-noise ratio in the range 40-75. The estimated spatial resolution for the normally incident tracks is about 18 μm using the center-of-gravity cluster reconstruction method. A non-iterative method for spatial resolution determination was developed, it was shown that in order to determine the resolution of each individual detector in the telescope, the telescope should consist of at least 5 detectors. The detectors showed high detection efficiency, in the order 99%. It was shown that the particle loss occurs mostly in the defected regions near the noisy strips or strips with a very low gain. The efficiency of the sensor area with nominal characteristics is consistent with 100%.

  9. On the specificity of sequential congruency effects in implicit learning of motor and perceptual sequences.

    PubMed

    D'Angelo, Maria C; Jiménez, Luis; Milliken, Bruce; Lupiáñez, Juan

    2013-01-01

    Individuals experience less interference from conflicting information following events that contain conflicting information. Recently, Jiménez, Lupiáñez, and Vaquero (2009) demonstrated that such adaptations to conflict occur even when the source of conflict arises from implicit knowledge of sequences. There is accumulating evidence that momentary changes in adaptations made in response to conflicting information are conflict-type specific (e.g., Funes, Lupiáñez, & Humphreys, 2010a), suggesting that there are multiple modes of control. The current study examined whether conflict-specific sequential congruency effects occur when the 2 sources of conflict are implicitly learned. Participants implicitly learned a motor sequence while simultaneously learning a perceptual sequence. In a first experiment, after learning the 2 orthogonal sequences, participants expressed knowledge of the 2 sequences independently of each other in a transfer phase. In Experiments 2 and 3, within each sequence, the presence of a single control trial disrupted the expression of this specific type of learning on the following trial. There was no evidence of cross-conflict modulations in the expression of sequence learning. The results suggest that the mechanisms involved in transient shifts in conflict-specific control, as reflected in sequential congruency effects, are also engaged when the source of conflict is implicit. (c) 2013 APA, all rights reserved.

  10. A reverse order interview does not aid deception detection regarding intentions

    PubMed Central

    Fenn, Elise; McGuire, Mollie; Langben, Sara; Blandón-Gitlin, Iris

    2015-01-01

    Promising recent research suggests that more cognitively demanding interviews improve deception detection accuracy. Would these cognitively demanding techniques work in the same way when discriminating between true and false future intentions? In Experiment 1 participants planned to complete a task, but instead were intercepted and interviewed about their intentions. Participants lied or told the truth, and were subjected to high (reverse order) or low (sequential order) cognitive load interviews. Third-party observers watched these interviews and indicated whether they thought the person was lying or telling the truth. Subjecting participants to a reverse compared to sequential interview increased the misidentification rate and the appearance of cognitive load in truth tellers. People lying about false intentions were not better identified. In Experiment 2, a second set of third-party observers rated behavioral cues. Consistent with Experiment 1, truth tellers, but not liars, exhibited more behaviors associated with lying and fewer behaviors associated with truth telling in the reverse than sequential interview. Together these results suggest that certain cognitively demanding interviews may be less useful when interviewing to detect false intentions. Explaining a true intention while under higher cognitive demand places truth tellers at risk of being misclassified. There may be such a thing as too much cognitive load induced by certain techniques PMID:26379610

  11. A reverse order interview does not aid deception detection regarding intentions.

    PubMed

    Fenn, Elise; McGuire, Mollie; Langben, Sara; Blandón-Gitlin, Iris

    2015-01-01

    Promising recent research suggests that more cognitively demanding interviews improve deception detection accuracy. Would these cognitively demanding techniques work in the same way when discriminating between true and false future intentions? In Experiment 1 participants planned to complete a task, but instead were intercepted and interviewed about their intentions. Participants lied or told the truth, and were subjected to high (reverse order) or low (sequential order) cognitive load interviews. Third-party observers watched these interviews and indicated whether they thought the person was lying or telling the truth. Subjecting participants to a reverse compared to sequential interview increased the misidentification rate and the appearance of cognitive load in truth tellers. People lying about false intentions were not better identified. In Experiment 2, a second set of third-party observers rated behavioral cues. Consistent with Experiment 1, truth tellers, but not liars, exhibited more behaviors associated with lying and fewer behaviors associated with truth telling in the reverse than sequential interview. Together these results suggest that certain cognitively demanding interviews may be less useful when interviewing to detect false intentions. Explaining a true intention while under higher cognitive demand places truth tellers at risk of being misclassified. There may be such a thing as too much cognitive load induced by certain techniques.

  12. Generalizing attentional control across dimensions and tasks: evidence from transfer of proportion-congruent effects.

    PubMed

    Wühr, Peter; Duthoo, Wout; Notebaert, Wim

    2015-01-01

    Three experiments investigated transfer of list-wide proportion congruent (LWPC) effects from a set of congruent and incongruent items with different frequency (inducer task) to a set of congruent and incongruent items with equal frequency (diagnostic task). Experiments 1 and 2 mixed items from horizontal and vertical Simon tasks. Tasks always involved different stimuli that varied on the same dimension (colour) in Experiment 1 and on different dimensions (colour, shape) in Experiment 2. Experiment 3 mixed trials from a manual Simon task with trials from a vocal Stroop task, with colour being the relevant stimulus in both tasks. There were two major results. First, we observed transfer of LWPC effects in Experiments 1 and 3, when tasks shared the relevant dimension, but not in Experiment 2. Second, sequential modulations of congruency effects transferred in Experiment 1 only. Hence, the different transfer patterns suggest that LWPC effects and sequential modulations arise from different mechanisms. Moreover, the observation of transfer supports an account of LWPC effects in terms of list-wide cognitive control, while being at odds with accounts in terms of stimulus-response (contingency) learning and item-specific control.

  13. [A research on real-time ventricular QRS classification methods for single-chip-microcomputers].

    PubMed

    Peng, L; Yang, Z; Li, L; Chen, H; Chen, E; Lin, J

    1997-05-01

    Ventricular QRS classification is key technique of ventricular arrhythmias detection in single-chip-microcomputer based dynamic electrocardiogram real-time analyser. This paper adopts morphological feature vector including QRS amplitude, interval information to reveal QRS morphology. After studying the distribution of QRS morphology feature vector of MIT/BIH DB ventricular arrhythmia files, we use morphological feature vector cluster to classify multi-morphology QRS. Based on the method, morphological feature parameters changing method which is suitable to catch occasional ventricular arrhythmias is presented. Clinical experiments verify missed ventricular arrhythmia is less than 1% by this method.

  14. Experimental study on deep hole drilling of 17-4PH material

    NASA Astrophysics Data System (ADS)

    Uzhanfeng, LI; Uquantai, LI

    2018-02-01

    This paper uses 17-4PH material as the research object, according to the material characteristics of 17-4PH, designed and carried out deep hole drilling test. The purpose of the experiment is to study and discuss the three major problems of tool wear, chip shape and axial deviation of the hole in the process of deep hole drilling of 17-4PH materials. Through the deep hole drilling test of 17-4PH material, the variation of the chip shape and the deflection of the hole axis was obtained under different wear conditions.

  15. Trainee Teachers' Experience of Reflection

    ERIC Educational Resources Information Center

    McKenzie, Liz

    2015-01-01

    This article reports an investigation of trainee teachers' experience of reflection whilst undertaking a teaching qualification for the post-compulsory sector. The study used a sequential, mixed-methods design, employing a structured questionnaire and a semi-structured interview; 127 individuals completed the questionnaire about their experience…

  16. A method for simultaneously counterbalancing condition order and assignment of stimulus materials to conditions.

    PubMed

    Zeelenberg, René; Pecher, Diane

    2015-03-01

    Counterbalanced designs are frequently used in the behavioral sciences. Studies often counterbalance either the order in which conditions are presented in the experiment or the assignment of stimulus materials to conditions. Occasionally, researchers need to simultaneously counterbalance both condition order and stimulus assignment to conditions. Lewis (1989; Behavior Research Methods, Instruments, & Computers 25:414-415, 1993) presented a method for constructing Latin squares that fulfill these requirements. The resulting Latin squares counterbalance immediate sequential effects, but not remote sequential effects. Here, we present a new method for generating Latin squares that simultaneously counterbalance both immediate and remote sequential effects and assignment of stimuli to conditions. An Appendix is provided to facilitate implementation of these Latin square designs.

  17. Adaptive WTA with an analog VLSI neuromorphic learning chip.

    PubMed

    Häfliger, Philipp

    2007-03-01

    In this paper, we demonstrate how a particular spike-based learning rule (where exact temporal relations between input and output spikes of a spiking model neuron determine the changes of the synaptic weights) can be tuned to express rate-based classical Hebbian learning behavior (where the average input and output spike rates are sufficient to describe the synaptic changes). This shift in behavior is controlled by the input statistic and by a single time constant. The learning rule has been implemented in a neuromorphic very large scale integration (VLSI) chip as part of a neurally inspired spike signal image processing system. The latter is the result of the European Union research project Convolution AER Vision Architecture for Real-Time (CAVIAR). Since it is implemented as a spike-based learning rule (which is most convenient in the overall spike-based system), even if it is tuned to show rate behavior, no explicit long-term average signals are computed on the chip. We show the rule's rate-based Hebbian learning ability in a classification task in both simulation and chip experiment, first with artificial stimuli and then with sensor input from the CAVIAR system.

  18. Design and fabrication of a micron scale free-standing specimen for uniaxial micro-tensile tests

    NASA Astrophysics Data System (ADS)

    Tang, Jun; Wang, Hong; Li, Shi Chen; Liu, Rui; Mao, Sheng Ping; Li, Xue Ping; Zhang, Cong Chun; Ding, Guifu

    2009-10-01

    This paper presents a novel design and fabrication of test chips with a nickel free-standing specimen for the micro uniaxial tensile test. To fabricate test chips on the quartz substrate significantly reduces the fabrication time, minimizes the number of steps and eliminates the effect of the wet anisotropic etching process on mechanical properties. The test chip can be gripped tightly to the test machine and aligned accurately in the pulling direction; furthermore, the approximately straight design of the specimen rather than the traditional dog-bone structure enables the strain be directly measured by a displacement sensor. Both finite-element method (FEM) analysis and experimental results indicate the reliability of the new design. The test chip can also be extended to other materials. The experimental measured Young's modulus of a thin nickel film and the ultimate tensile strength are approximately 94.5 Gpa and 1.76 Gpa, respectively. The results were substantially supported by the experiment on larger gauge specimens by a commercial dynamic mechanical analysis (DMA) instrument. These specimens were electroplated under the same conditions. The low Young's modulus and the high ultimate tensile strength might be explained by the fine grain in the electroplated structure.

  19. Scalable Device for Automated Microbial Electroporation in a Digital Microfluidic Platform.

    PubMed

    Madison, Andrew C; Royal, Matthew W; Vigneault, Frederic; Chen, Liji; Griffin, Peter B; Horowitz, Mark; Church, George M; Fair, Richard B

    2017-09-15

    Electrowetting-on-dielectric (EWD) digital microfluidic laboratory-on-a-chip platforms demonstrate excellent performance in automating labor-intensive protocols. When coupled with an on-chip electroporation capability, these systems hold promise for streamlining cumbersome processes such as multiplex automated genome engineering (MAGE). We integrated a single Ti:Au electroporation electrode into an otherwise standard parallel-plate EWD geometry to enable high-efficiency transformation of Escherichia coli with reporter plasmid DNA in a 200 nL droplet. Test devices exhibited robust operation with more than 10 transformation experiments performed per device without cross-contamination or failure. Despite intrinsic electric-field nonuniformity present in the EP/EWD device, the peak on-chip transformation efficiency was measured to be 8.6 ± 1.0 × 10 8 cfu·μg -1 for an average applied electric field strength of 2.25 ± 0.50 kV·mm -1 . Cell survival and transformation fractions at this electroporation pulse strength were found to be 1.5 ± 0.3 and 2.3 ± 0.1%, respectively. Our work expands the EWD toolkit to include on-chip microbial electroporation and opens the possibility of scaling advanced genome engineering methods, like MAGE, into the submicroliter regime.

  20. Chromatin Immunoprecipitation in Early Mouse Embryos.

    PubMed

    García-González, Estela G; Roque-Ramirez, Bladimir; Palma-Flores, Carlos; Hernández-Hernández, J Manuel

    2018-01-01

    Epigenetic regulation is achieved at many levels by different factors such as tissue-specific transcription factors, members of the basal transcriptional apparatus, chromatin-binding proteins, and noncoding RNAs. Importantly, chromatin structure dictates the availability of a specific genomic locus for transcriptional activation as well as the efficiency with which transcription can occur. Chromatin immunoprecipitation (ChIP) is a method that allows elucidating gene regulation at the molecular level by assessing if chromatin modifications or proteins are present at a specific locus. Initially, the majority of ChIP experiments were performed on cultured cell lines and more recently this technique has been adapted to a variety of tissues in different model organisms. Using ChIP on mouse embryos, it is possible to document the presence or absence of specific proteins and chromatin modifications at genomic loci in vivo during mammalian development and to get biological meaning from observations made on tissue culture analyses. We describe here a ChIP protocol on freshly isolated mouse embryonic somites for in vivo analysis of muscle specific transcription factor binding on chromatin. This protocol has been easily adapted to other mouse embryonic tissues and has also been successfully scaled up to perform ChIP-Seq.

  1. Planar patch clamp for neuronal networks--considerations and future perspectives.

    PubMed

    Bosca, Alessandro; Martina, Marzia; Py, Christophe

    2014-01-01

    The patch-clamp technique is generally accepted as the gold standard for studying ion channel activity allowing investigators to either "clamp" membrane voltage and directly measure transmembrane currents through ion channels, or to passively monitor spontaneously occurring intracellular voltage oscillations. However, this resulting high information content comes at a price. The technique is labor-intensive and requires highly trained personnel and expensive equipment. This seriously limits its application as an interrogation tool for drug development. Patch-clamp chips have been developed in the last decade to overcome the tedious manipulations associated with the use of glass pipettes in conventional patch-clamp experiments. In this chapter, we describe some of the main materials and fabrication protocols that have been developed to date for the production of patch-clamp chips. We also present the concept of a patch-clamp chip array providing high resolution patch-clamp recordings from individual cells at multiple sites in a network of communicating neurons. On this chip, the neurons are aligned with the aperture-probes using chemical patterning. In the discussion we review the potential use of this technology for pharmaceutical assays, neuronal physiology and synaptic plasticity studies.

  2. A hydrophilic polymer based microfluidic system with planar patch clamp electrode array for electrophysiological measurement from cells.

    PubMed

    Xu, Baojian; Ye, WeiWei; Zhang, Yu; Shi, JingYu; Chan, ChunYu; Yao, XiaoQiang; Yang, Mo

    2014-03-15

    This paper presents a microfluidic planar patch clamp system based on a hydrophilic polymer poly(ethylene glycol) diacrylate (PEGDA) for whole cell current recording. The whole chip is fabricated by UV-assisted molding method for both microfluidic channel structure and planar electrode partition. This hydrophilic patch clamp chip has demonstrated a relatively high gigaseal success rate of 44% without surface modification compared with PDMS based patch clamp devices. This chip also shows a capability of rapid intracellular and extracellular solution exchange with high stability of gigaseals. The capillary flow kinetic experiments demonstrate that the flow rates of PEGDA microfluidic channels are around two orders of magnitude greater than those for PDMS-glass channels with the same channel dimensions. This hydrophilic polymer based patch clamp chips have significant advantages over current PDMS elastomer based systems such as no need for surface modification, much higher success rate of cell gigaseals and rapid solution exchange with stable cell gigaseals. Our results indicate the potential of these devices to serve as useful tools for pharmaceutical screening and biosensing tasks. © 2013 Elsevier B.V. All rights reserved.

  3. Fast and sensitive method for detecting volatile species in liquids

    NASA Astrophysics Data System (ADS)

    Trimarco, Daniel B.; Pedersen, Thomas; Hansen, Ole; Chorkendorff, Ib; Vesborg, Peter C. K.

    2015-07-01

    This paper presents a novel apparatus for extracting volatile species from liquids using a "sniffer-chip." By ultrafast transfer of the volatile species through a perforated and hydrophobic membrane into an inert carrier gas stream, the sniffer-chip is able to transport the species directly to a mass spectrometer through a narrow capillary without the use of differential pumping. This method inherits features from differential electrochemical mass spectrometry (DEMS) and membrane inlet mass spectrometry (MIMS), but brings the best of both worlds, i.e., the fast time-response of a DEMS system and the high sensitivity of a MIMS system. In this paper, the concept of the sniffer-chip is thoroughly explained and it is shown how it can be used to quantify hydrogen and oxygen evolution on a polycrystalline platinum thin film in situ at absolute faradaic currents down to ˜30 nA. To benchmark the capabilities of this method, a CO-stripping experiment is performed on a polycrystalline platinum thin film, illustrating how the sniffer-chip system is capable of making a quantitative in situ measurement of <1 % of a monolayer of surface adsorbed CO being electrochemically stripped off an electrode at a potential scan-rate of 50 mV s-1.

  4. Revising the role of pH and thermal treatments in aflatoxin content reduction during the tortilla and deep frying processes.

    PubMed

    Torres, P; Guzmán-Ortiz, M; Ramírez-Wong, B

    2001-06-01

    Naturally aflatoxin-contaminated corn (Zea mays L.) was made into tortillas, tortilla chips, and corn chips by the traditional and commercial alkaline cooking processes. The traditional nixtamalization (alkaline-cooking) process involved cooking and steeping the corn, whereas the commercial nixtamalization process only steeps the corn in a hot alkaline solution (initially boiling). A pilot plant that includes the cooker, stone grinder, celorio cutter, and oven was used for the experiments. The traditional process eliminated 51.7, 84.5, and 78.8% of the aflatoxins content in tortilla, tortilla chips, and corn chips, respectively. The commercial process was less effective: it removed 29.5, 71.2, and 71.2 of the aflatoxin in the same products. Intermediate and final products did not reach a high enough pH to allow permanent aflatoxin reduction during thermal processing. The cooking or steeping liquor (nejayote) is the only component of the system with a sufficiently high pH (10.2-10.7) to allow modification and detoxification of aflatoxins present in the corn grain. The importance of removal of tip, pericarp, and germ during nixtamalization for aflatoxin reduction in tortilla is evident.

  5. Board Games and Board Game Design as Learning Tools for Complex Scientific Concepts: Some Experiences

    ERIC Educational Resources Information Center

    Chiarello, Fabio; Castellano, Maria Gabriella

    2016-01-01

    In this paper the authors report different experiences in the use of board games as learning tools for complex and abstract scientific concepts such as Quantum Mechanics, Relativity or nano-biotechnologies. In particular we describe "Quantum Race," designed for the introduction of Quantum Mechanical principles, "Lab on a chip,"…

  6. Electricity generation and brewery wastewater treatment from sequential anode-cathode microbial fuel cell.

    PubMed

    Wen, Qing; Wu, Ying; Zhao, Li-xin; Sun, Qian; Kong, Fan-ying

    2010-02-01

    A sequential anode-cathode double-chamber microbial fuel cell (MFC), in which the effluent of anode chamber was used as a continuous feed for an aerated cathode chamber, was constructed in this experiment to investigate the performance of brewery wastewater treatment in conjugation with electricity generation. Carbon fiber was used as anode and plain carbon felt with biofilm as cathode. When hydraulic retention time (HRT) was 14.7 h, a relatively high chemical oxygen demand (COD) removal efficiency of 91.7%-95.7% was achieved under long-term stable operation. The MFC displayed an open circuit voltage of 0.434 V and a maximum power density of 830 mW/m(3) at an external resistance of 300 Omega. To estimate the electrochemical performance of the MFC, electrochemical measurements were carried out and showed that polarization resistance of anode was the major limiting factor in the MFC. Since a high COD removal efficiency was achieved, we conclude that the sequential anode-cathode MFC constructed with bio-cathode in this experiment could provide a new approach for brewery wastewater treatment.

  7. A Complementary Note to 'A Lag-1 Smoother Approach to System-Error Estimation': The Intrinsic Limitations of Residual Diagnostics

    NASA Technical Reports Server (NTRS)

    Todling, Ricardo

    2015-01-01

    Recently, this author studied an approach to the estimation of system error based on combining observation residuals derived from a sequential filter and fixed lag-1 smoother. While extending the methodology to a variational formulation, experimenting with simple models and making sure consistency was found between the sequential and variational formulations, the limitations of the residual-based approach came clearly to the surface. This note uses the sequential assimilation application to simple nonlinear dynamics to highlight the issue. Only when some of the underlying error statistics are assumed known is it possible to estimate the unknown component. In general, when considerable uncertainties exist in the underlying statistics as a whole, attempts to obtain separate estimates of the various error covariances are bound to lead to misrepresentation of errors. The conclusions are particularly relevant to present-day attempts to estimate observation-error correlations from observation residual statistics. A brief illustration of the issue is also provided by comparing estimates of error correlations derived from a quasi-operational assimilation system and a corresponding Observing System Simulation Experiments framework.

  8. Bridging the qualitative-quantitative divide: Experiences from conducting a mixed methods evaluation in the RUCAS programme.

    PubMed

    Makrakis, Vassilios; Kostoulas-Makrakis, Nelly

    2016-02-01

    Quantitative and qualitative approaches to planning and evaluation in education for sustainable development have often been treated by practitioners from a single research paradigm. This paper discusses the utility of mixed method evaluation designs which integrate qualitative and quantitative data through a sequential transformative process. Sequential mixed method data collection strategies involve collecting data in an iterative process whereby data collected in one phase contribute to data collected in the next. This is done through examples from a programme addressing the 'Reorientation of University Curricula to Address Sustainability (RUCAS): A European Commission Tempus-funded Programme'. It is argued that the two approaches are complementary and that there are significant gains from combining both. Using methods from both research paradigms does not, however, mean that the inherent differences among epistemologies and methodologies should be neglected. Based on this experience, it is recommended that using a sequential transformative mixed method evaluation can produce more robust results than could be accomplished using a single approach in programme planning and evaluation focussed on education for sustainable development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Electricity generation and brewery wastewater treatment from sequential anode-cathode microbial fuel cell*

    PubMed Central

    Wen, Qing; Wu, Ying; Zhao, Li-xin; Sun, Qian; Kong, Fan-ying

    2010-01-01

    A sequential anode-cathode double-chamber microbial fuel cell (MFC), in which the effluent of anode chamber was used as a continuous feed for an aerated cathode chamber, was constructed in this experiment to investigate the performance of brewery wastewater treatment in conjugation with electricity generation. Carbon fiber was used as anode and plain carbon felt with biofilm as cathode. When hydraulic retention time (HRT) was 14.7 h, a relatively high chemical oxygen demand (COD) removal efficiency of 91.7%–95.7% was achieved under long-term stable operation. The MFC displayed an open circuit voltage of 0.434 V and a maximum power density of 830 mW/m3 at an external resistance of 300 Ω. To estimate the electrochemical performance of the MFC, electrochemical measurements were carried out and showed that polarization resistance of anode was the major limiting factor in the MFC. Since a high COD removal efficiency was achieved, we conclude that the sequential anode-cathode MFC constructed with bio-cathode in this experiment could provide a new approach for brewery wastewater treatment. PMID:20104642

  10. Dizocilpine (MK-801) impairs learning in the active place avoidance task but has no effect on the performance during task/context alternation.

    PubMed

    Vojtechova, Iveta; Petrasek, Tomas; Hatalova, Hana; Pistikova, Adela; Vales, Karel; Stuchlik, Ales

    2016-05-15

    The prevention of engram interference, pattern separation, flexibility, cognitive coordination and spatial navigation are usually studied separately at the behavioral level. Impairment in executive functions is often observed in patients suffering from schizophrenia. We have designed a protocol for assessing these functions all together as behavioral separation. This protocol is based on alternated or sequential training in two tasks testing different hippocampal functions (the Morris water maze and active place avoidance), and alternated or sequential training in two similar environments of the active place avoidance task. In Experiment 1, we tested, in adult rats, whether the performance in two different spatial tasks was affected by their order in sequential learning, or by their day-to-day alternation. In Experiment 2, rats learned to solve the active place avoidance task in two environments either alternately or sequentially. We found that rats are able to acquire both tasks and to discriminate both similar contexts without obvious problems regardless of the order or the alternation. We used two groups of rats, controls and a rat model of psychosis induced by a subchronic intraperitoneal application of 0.08mg/kg of dizocilpine (MK-801), a non-competitive antagonist of NMDA receptors. Dizocilpine had no selective effect on parallel/sequential learning of tasks/contexts. However, it caused hyperlocomotion and a significant deficit in learning in the active place avoidance task regardless of the task alternation. Cognitive coordination tested by this task is probably more sensitive to dizocilpine than spatial orientation because no hyperactivity or learning impairment was observed in the Morris water maze. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Strategies for comparing gene expression profiles from different microarray platforms: application to a case-control experiment.

    PubMed

    Severgnini, Marco; Bicciato, Silvio; Mangano, Eleonora; Scarlatti, Francesca; Mezzelani, Alessandra; Mattioli, Michela; Ghidoni, Riccardo; Peano, Clelia; Bonnal, Raoul; Viti, Federica; Milanesi, Luciano; De Bellis, Gianluca; Battaglia, Cristina

    2006-06-01

    Meta-analysis of microarray data is increasingly important, considering both the availability of multiple platforms using disparate technologies and the accumulation in public repositories of data sets from different laboratories. We addressed the issue of comparing gene expression profiles from two microarray platforms by devising a standardized investigative strategy. We tested this procedure by studying MDA-MB-231 cells, which undergo apoptosis on treatment with resveratrol. Gene expression profiles were obtained using high-density, short-oligonucleotide, single-color microarray platforms: GeneChip (Affymetrix) and CodeLink (Amersham). Interplatform analyses were carried out on 8414 common transcripts represented on both platforms, as identified by LocusLink ID, representing 70.8% and 88.6% of annotated GeneChip and CodeLink features, respectively. We identified 105 differentially expressed genes (DEGs) on CodeLink and 42 DEGs on GeneChip. Among them, only 9 DEGs were commonly identified by both platforms. Multiple analyses (BLAST alignment of probes with target sequences, gene ontology, literature mining, and quantitative real-time PCR) permitted us to investigate the factors contributing to the generation of platform-dependent results in single-color microarray experiments. An effective approach to cross-platform comparison involves microarrays of similar technologies, samples prepared by identical methods, and a standardized battery of bioinformatic and statistical analyses.

  12. Statistical evaluation of metal fill widths for emulated metal fill in parasitic extraction methodology

    NASA Astrophysics Data System (ADS)

    J-Me, Teh; Noh, Norlaili Mohd.; Aziz, Zalina Abdul

    2015-05-01

    In the chip industry today, the key goal of a chip development organization is to develop and market chips within a short time frame to gain foothold on market share. This paper proposes a design flow around the area of parasitic extraction to improve the design cycle time. The proposed design flow utilizes the usage of metal fill emulation as opposed to the current flow which performs metal fill insertion directly. By replacing metal fill structures with an emulation methodology in earlier iterations of the design flow, this is targeted to help reduce runtime in fill insertion stage. Statistical design of experiments methodology utilizing the randomized complete block design was used to select an appropriate emulated metal fill width to improve emulation accuracy. The experiment was conducted on test cases of different sizes, ranging from 1000 gates to 21000 gates. The metal width was varied from 1 x minimum metal width to 6 x minimum metal width. Two-way analysis of variance and Fisher's least significant difference test were used to analyze the interconnect net capacitance values of the different test cases. This paper presents the results of the statistical analysis for the 45 nm process technology. The recommended emulated metal fill width was found to be 4 x the minimum metal width.

  13. Filling of high aspect ratio micro features of a microfluidic flow cytometer chip using micro injection moulding

    NASA Astrophysics Data System (ADS)

    Zhang, Haoyang; Fang, Fengzhou; Gilchrist, Michael D.; Zhang, Nan

    2018-07-01

    Micro injection moulding has been demonstrated as one of the most efficient mass production technologies for manufacturing polymeric microfluidic devices, which have been widely used in life sciences, environmental and analytical fields and agro-food industries. However, the filling of micro features for typical microfluidic devices is complicated and not yet fully understood, which consequently restricts the chip development. In the present work, a microfluidic flow cytometer chip with essential high aspect ratio micro features was used as a typical model to study their filling process. Short-shot experiments and single factor experiments were performed to examine the filling progress of such features during the injection and packing stages of the micro injection moulding process. The influence of process parameters such as shot size, packing pressure, packing time and mould temperature were systematically monitored, characterised and correlated with 3D measurements and real response of the machine such as screw velocity and screw position. A combined melt flow and creep deformation model was proposed to explain the complex influence of process on replication. An approach of over-shot micro injection moulding was proposed and was shown to be effective at improving the replication quality of high aspect ratio micro features.

  14. ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data

    PubMed Central

    2010-01-01

    Background Chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq) or ChIP followed by genome tiling array analysis (ChIP-chip) have become standard technologies for genome-wide identification of DNA-binding protein target sites. A number of algorithms have been developed in parallel that allow identification of binding sites from ChIP-seq or ChIP-chip datasets and subsequent visualization in the University of California Santa Cruz (UCSC) Genome Browser as custom annotation tracks. However, summarizing these tracks can be a daunting task, particularly if there are a large number of binding sites or the binding sites are distributed widely across the genome. Results We have developed ChIPpeakAnno as a Bioconductor package within the statistical programming environment R to facilitate batch annotation of enriched peaks identified from ChIP-seq, ChIP-chip, cap analysis of gene expression (CAGE) or any experiments resulting in a large number of enriched genomic regions. The binding sites annotated with ChIPpeakAnno can be viewed easily as a table, a pie chart or plotted in histogram form, i.e., the distribution of distances to the nearest genes for each set of peaks. In addition, we have implemented functionalities for determining the significance of overlap between replicates or binding sites among transcription factors within a complex, and for drawing Venn diagrams to visualize the extent of the overlap between replicates. Furthermore, the package includes functionalities to retrieve sequences flanking putative binding sites for PCR amplification, cloning, or motif discovery, and to identify Gene Ontology (GO) terms associated with adjacent genes. Conclusions ChIPpeakAnno enables batch annotation of the binding sites identified from ChIP-seq, ChIP-chip, CAGE or any technology that results in a large number of enriched genomic regions within the statistical programming environment R. Allowing users to pass their own annotation data such as a different Chromatin immunoprecipitation (ChIP) preparation and a dataset from literature, or existing annotation packages, such as GenomicFeatures and BSgenome, provides flexibility. Tight integration to the biomaRt package enables up-to-date annotation retrieval from the BioMart database. PMID:20459804

  15. Detection of pathogenic copy number variants in children with idiopathic intellectual disability using 500 K SNP array genomic hybridization

    PubMed Central

    2009-01-01

    Background Array genomic hybridization is being used clinically to detect pathogenic copy number variants in children with intellectual disability and other birth defects. However, there is no agreement regarding the kind of array, the distribution of probes across the genome, or the resolution that is most appropriate for clinical use. Results We performed 500 K Affymetrix GeneChip® array genomic hybridization in 100 idiopathic intellectual disability trios, each comprised of a child with intellectual disability of unknown cause and both unaffected parents. We found pathogenic genomic imbalance in 16 of these 100 individuals with idiopathic intellectual disability. In comparison, we had found pathogenic genomic imbalance in 11 of 100 children with idiopathic intellectual disability in a previous cohort who had been studied by 100 K GeneChip® array genomic hybridization. Among 54 intellectual disability trios selected from the previous cohort who were re-tested with 500 K GeneChip® array genomic hybridization, we identified all 10 previously-detected pathogenic genomic alterations and at least one additional pathogenic copy number variant that had not been detected with 100 K GeneChip® array genomic hybridization. Many benign copy number variants, including one that was de novo, were also detected with 500 K array genomic hybridization, but it was possible to distinguish the benign and pathogenic copy number variants with confidence in all but 3 (1.9%) of the 154 intellectual disability trios studied. Conclusion Affymetrix GeneChip® 500 K array genomic hybridization detected pathogenic genomic imbalance in 10 of 10 patients with idiopathic developmental disability in whom 100 K GeneChip® array genomic hybridization had found genomic imbalance, 1 of 44 patients in whom 100 K GeneChip® array genomic hybridization had found no abnormality, and 16 of 100 patients who had not previously been tested. Effective clinical interpretation of these studies requires considerable skill and experience. PMID:19917086

  16. Heterogeneous Suppression of Sequential Effects in Random Sequence Generation, but Not in Operant Learning.

    PubMed

    Shteingart, Hanan; Loewenstein, Yonatan

    2016-01-01

    There is a long history of experiments in which participants are instructed to generate a long sequence of binary random numbers. The scope of this line of research has shifted over the years from identifying the basic psychological principles and/or the heuristics that lead to deviations from randomness, to one of predicting future choices. In this paper, we used generalized linear regression and the framework of Reinforcement Learning in order to address both points. In particular, we used logistic regression analysis in order to characterize the temporal sequence of participants' choices. Surprisingly, a population analysis indicated that the contribution of the most recent trial has only a weak effect on behavior, compared to more preceding trials, a result that seems irreconcilable with standard sequential effects that decay monotonously with the delay. However, when considering each participant separately, we found that the magnitudes of the sequential effect are a monotonous decreasing function of the delay, yet these individual sequential effects are largely averaged out in a population analysis because of heterogeneity. The substantial behavioral heterogeneity in this task is further demonstrated quantitatively by considering the predictive power of the model. We show that a heterogeneous model of sequential dependencies captures the structure available in random sequence generation. Finally, we show that the results of the logistic regression analysis can be interpreted in the framework of reinforcement learning, allowing us to compare the sequential effects in the random sequence generation task to those in an operant learning task. We show that in contrast to the random sequence generation task, sequential effects in operant learning are far more homogenous across the population. These results suggest that in the random sequence generation task, different participants adopt different cognitive strategies to suppress sequential dependencies when generating the "random" sequences.

  17. A Bayesian Theory of Sequential Causal Learning and Abstract Transfer.

    PubMed

    Lu, Hongjing; Rojas, Randall R; Beckers, Tom; Yuille, Alan L

    2016-03-01

    Two key research issues in the field of causal learning are how people acquire causal knowledge when observing data that are presented sequentially, and the level of abstraction at which learning takes place. Does sequential causal learning solely involve the acquisition of specific cause-effect links, or do learners also acquire knowledge about abstract causal constraints? Recent empirical studies have revealed that experience with one set of causal cues can dramatically alter subsequent learning and performance with entirely different cues, suggesting that learning involves abstract transfer, and such transfer effects involve sequential presentation of distinct sets of causal cues. It has been demonstrated that pre-training (or even post-training) can modulate classic causal learning phenomena such as forward and backward blocking. To account for these effects, we propose a Bayesian theory of sequential causal learning. The theory assumes that humans are able to consider and use several alternative causal generative models, each instantiating a different causal integration rule. Model selection is used to decide which integration rule to use in a given learning environment in order to infer causal knowledge from sequential data. Detailed computer simulations demonstrate that humans rely on the abstract characteristics of outcome variables (e.g., binary vs. continuous) to select a causal integration rule, which in turn alters causal learning in a variety of blocking and overshadowing paradigms. When the nature of the outcome variable is ambiguous, humans select the model that yields the best fit with the recent environment, and then apply it to subsequent learning tasks. Based on sequential patterns of cue-outcome co-occurrence, the theory can account for a range of phenomena in sequential causal learning, including various blocking effects, primacy effects in some experimental conditions, and apparently abstract transfer of causal knowledge. Copyright © 2015 Cognitive Science Society, Inc.

  18. Beam test results of a monolithic pixel sensor in the 0.18 μm tower-jazz technology with high resistivity epitaxial layer

    NASA Astrophysics Data System (ADS)

    Mattiazzo, S.; Aimo, I.; Baudot, J.; Bedda, C.; La Rocca, P.; Perez, A.; Riggi, F.; Spiriti, E.

    2015-10-01

    The ALICE experiment at CERN will undergo a major upgrade in the second Long LHC Shutdown in the years 2018-2019; this upgrade includes the full replacement of the Inner Tracking System (ITS), deploying seven layers of Monolithic Active Pixel Sensors (MAPS). For the development of the new ALICE ITS, the Tower-Jazz 0.18 μm CMOS imaging sensor process has been chosen as it is possible to use full CMOS in the pixel and different silicon wafers (including high resistivity epitaxial layers). A large test campaign has been carried out on several small prototype chips, designed to optimize the pixel sensor layout and the front-end electronics. Results match the target requirements both in terms of performance and of radiation hardness. Following this development, the first full scale chips have been designed, submitted and are currently under test, with promising results. A telescope composed of 4 planes of Mimosa-28 and 2 planes of Mimosa-18 chips is under development at the DAFNE Beam Test Facility (BTF) at the INFN Laboratori Nazionali di Frascati (LNF) in Italy with the final goal to perform a comparative test of the full scale prototypes. The telescope has been recently used to test a Mimosa-22THRb chip (a monolithic pixel sensor built in the 0.18 μm Tower-Jazz process) and we foresee to perform tests on the full scale chips for the ALICE ITS upgrade at the beginning of 2015. In this contribution we will describe some first measurements of spatial resolution, fake hit rate and detection efficiency of the Mimosa-22THRb chip obtained at the BTF facility in June 2014 with an electron beam of 500 MeV.

  19. Stratified randomization controls better for batch effects in 450K methylation analysis: a cautionary tale.

    PubMed

    Buhule, Olive D; Minster, Ryan L; Hawley, Nicola L; Medvedovic, Mario; Sun, Guangyun; Viali, Satupaitea; Deka, Ranjan; McGarvey, Stephen T; Weeks, Daniel E

    2014-01-01

    Batch effects in DNA methylation microarray experiments can lead to spurious results if not properly handled during the plating of samples. Two pilot studies examining the association of DNA methylation patterns across the genome with obesity in Samoan men were investigated for chip- and row-specific batch effects. For each study, the DNA of 46 obese men and 46 lean men were assayed using Illumina's Infinium HumanMethylation450 BeadChip. In the first study (Sample One), samples from obese and lean subjects were examined on separate chips. In the second study (Sample Two), the samples were balanced on the chips by lean/obese status, age group, and census region. We used methylumi, watermelon, and limma R packages, as well as ComBat, to analyze the data. Principal component analysis and linear regression were, respectively, employed to identify the top principal components and to test for their association with the batches and lean/obese status. To identify differentially methylated positions (DMPs) between obese and lean males at each locus, we used a moderated t-test. Chip effects were effectively removed from Sample Two but not Sample One. In addition, dramatic differences were observed between the two sets of DMP results. After "removing" batch effects with ComBat, Sample One had 94,191 probes differentially methylated at a q-value threshold of 0.05 while Sample Two had zero differentially methylated probes. The disparate results from Sample One and Sample Two likely arise due to the confounding of lean/obese status with chip and row batch effects. Even the best possible statistical adjustments for batch effects may not completely remove them. Proper study design is vital for guarding against spurious findings due to such effects.

  20. Stratified randomization controls better for batch effects in 450K methylation analysis: a cautionary tale

    PubMed Central

    Buhule, Olive D.; Minster, Ryan L.; Hawley, Nicola L.; Medvedovic, Mario; Sun, Guangyun; Viali, Satupaitea; Deka, Ranjan; McGarvey, Stephen T.; Weeks, Daniel E.

    2014-01-01

    Background: Batch effects in DNA methylation microarray experiments can lead to spurious results if not properly handled during the plating of samples. Methods: Two pilot studies examining the association of DNA methylation patterns across the genome with obesity in Samoan men were investigated for chip- and row-specific batch effects. For each study, the DNA of 46 obese men and 46 lean men were assayed using Illumina's Infinium HumanMethylation450 BeadChip. In the first study (Sample One), samples from obese and lean subjects were examined on separate chips. In the second study (Sample Two), the samples were balanced on the chips by lean/obese status, age group, and census region. We used methylumi, watermelon, and limma R packages, as well as ComBat, to analyze the data. Principal component analysis and linear regression were, respectively, employed to identify the top principal components and to test for their association with the batches and lean/obese status. To identify differentially methylated positions (DMPs) between obese and lean males at each locus, we used a moderated t-test. Results: Chip effects were effectively removed from Sample Two but not Sample One. In addition, dramatic differences were observed between the two sets of DMP results. After “removing” batch effects with ComBat, Sample One had 94,191 probes differentially methylated at a q-value threshold of 0.05 while Sample Two had zero differentially methylated probes. The disparate results from Sample One and Sample Two likely arise due to the confounding of lean/obese status with chip and row batch effects. Conclusion: Even the best possible statistical adjustments for batch effects may not completely remove them. Proper study design is vital for guarding against spurious findings due to such effects. PMID:25352862

  1. A design of LED adaptive dimming lighting system based on incremental PID controller

    NASA Astrophysics Data System (ADS)

    He, Xiangyan; Xiao, Zexin; He, Shaojia

    2010-11-01

    As a new generation energy-saving lighting source, LED is applied widely in various technology and industry fields. The requirement of its adaptive lighting technology is more and more rigorous, especially in the automatic on-line detecting system. In this paper, a closed loop feedback LED adaptive dimming lighting system based on incremental PID controller is designed, which consists of MEGA16 chip as a Micro-controller Unit (MCU), the ambient light sensor BH1750 chip with Inter-Integrated Circuit (I2C), and constant-current driving circuit. A given value of light intensity required for the on-line detecting environment need to be saved to the register of MCU. The optical intensity, detected by BH1750 chip in real time, is converted to digital signal by AD converter of the BH1750 chip, and then transmitted to MEGA16 chip through I2C serial bus. Since the variation law of light intensity in the on-line detecting environment is usually not easy to be established, incremental Proportional-Integral-Differential (PID) algorithm is applied in this system. Control variable obtained by the incremental PID determines duty cycle of Pulse-Width Modulation (PWM). Consequently, LED's forward current is adjusted by PWM, and the luminous intensity of the detection environment is stabilized by self-adaptation. The coefficients of incremental PID are obtained respectively after experiments. Compared with the traditional LED dimming system, it has advantages of anti-interference, simple construction, fast response, and high stability by the use of incremental PID algorithm and BH1750 chip with I2C serial bus. Therefore, it is suitable for the adaptive on-line detecting applications.

  2. A Novel Ship-Tracking Method for GF-4 Satellite Sequential Images.

    PubMed

    Yao, Libo; Liu, Yong; He, You

    2018-06-22

    The geostationary remote sensing satellite has the capability of wide scanning, persistent observation and operational response, and has tremendous potential for maritime target surveillance. The GF-4 satellite is the first geostationary orbit (GEO) optical remote sensing satellite with medium resolution in China. In this paper, a novel ship-tracking method in GF-4 satellite sequential imagery is proposed. The algorithm has three stages. First, a local visual saliency map based on local peak signal-to-noise ratio (PSNR) is used to detect ships in a single frame of GF-4 satellite sequential images. Second, the accuracy positioning of each potential target is realized by a dynamic correction using the rational polynomial coefficients (RPCs) and automatic identification system (AIS) data of ships. Finally, an improved multiple hypotheses tracking (MHT) algorithm with amplitude information is used to track ships by further removing the false targets, and to estimate ships’ motion parameters. The algorithm has been tested using GF-4 sequential images and AIS data. The results of the experiment demonstrate that the algorithm achieves good tracking performance in GF-4 satellite sequential images and estimates the motion information of ships accurately.

  3. Learning Sequential Composition Control.

    PubMed

    Najafi, Esmaeil; Babuska, Robert; Lopes, Gabriel A D

    2016-11-01

    Sequential composition is an effective supervisory control method for addressing control problems in nonlinear dynamical systems. It executes a set of controllers sequentially to achieve a control specification that cannot be realized by a single controller. As these controllers are designed offline, sequential composition cannot address unmodeled situations that might occur during runtime. This paper proposes a learning approach to augment the standard sequential composition framework by using online learning to handle unforeseen situations. New controllers are acquired via learning and added to the existing supervisory control structure. In the proposed setting, learning experiments are restricted to take place within the domain of attraction (DOA) of the existing controllers. This guarantees that the learning process is safe (i.e., the closed loop system is always stable). In addition, the DOA of the new learned controller is approximated after each learning trial. This keeps the learning process short as learning is terminated as soon as the DOA of the learned controller is sufficiently large. The proposed approach has been implemented on two nonlinear systems: 1) a nonlinear mass-damper system and 2) an inverted pendulum. The results show that in both cases a new controller can be rapidly learned and added to the supervisory control structure.

  4. On the origin of reproducible sequential activity in neural circuits

    NASA Astrophysics Data System (ADS)

    Afraimovich, V. S.; Zhigulin, V. P.; Rabinovich, M. I.

    2004-12-01

    Robustness and reproducibility of sequential spatio-temporal responses is an essential feature of many neural circuits in sensory and motor systems of animals. The most common mathematical images of dynamical regimes in neural systems are fixed points, limit cycles, chaotic attractors, and continuous attractors (attractive manifolds of neutrally stable fixed points). These are not suitable for the description of reproducible transient sequential neural dynamics. In this paper we present the concept of a stable heteroclinic sequence (SHS), which is not an attractor. SHS opens the way for understanding and modeling of transient sequential activity in neural circuits. We show that this new mathematical object can be used to describe robust and reproducible sequential neural dynamics. Using the framework of a generalized high-dimensional Lotka-Volterra model, that describes the dynamics of firing rates in an inhibitory network, we present analytical results on the existence of the SHS in the phase space of the network. With the help of numerical simulations we confirm its robustness in presence of noise in spite of the transient nature of the corresponding trajectories. Finally, by referring to several recent neurobiological experiments, we discuss possible applications of this new concept to several problems in neuroscience.

  5. On the origin of reproducible sequential activity in neural circuits.

    PubMed

    Afraimovich, V S; Zhigulin, V P; Rabinovich, M I

    2004-12-01

    Robustness and reproducibility of sequential spatio-temporal responses is an essential feature of many neural circuits in sensory and motor systems of animals. The most common mathematical images of dynamical regimes in neural systems are fixed points, limit cycles, chaotic attractors, and continuous attractors (attractive manifolds of neutrally stable fixed points). These are not suitable for the description of reproducible transient sequential neural dynamics. In this paper we present the concept of a stable heteroclinic sequence (SHS), which is not an attractor. SHS opens the way for understanding and modeling of transient sequential activity in neural circuits. We show that this new mathematical object can be used to describe robust and reproducible sequential neural dynamics. Using the framework of a generalized high-dimensional Lotka-Volterra model, that describes the dynamics of firing rates in an inhibitory network, we present analytical results on the existence of the SHS in the phase space of the network. With the help of numerical simulations we confirm its robustness in presence of noise in spite of the transient nature of the corresponding trajectories. Finally, by referring to several recent neurobiological experiments, we discuss possible applications of this new concept to several problems in neuroscience.

  6. Experiences with digital processing of images at INPE

    NASA Technical Reports Server (NTRS)

    Mascarenhas, N. D. A. (Principal Investigator)

    1984-01-01

    Four different research experiments with digital image processing at INPE will be described: (1) edge detection by hypothesis testing; (2) image interpolation by finite impulse response filters; (3) spatial feature extraction methods in multispectral classification; and (4) translational image registration by sequential tests of hypotheses.

  7. Three-year-olds obey the sample size principle of induction: the influence of evidence presentation and sample size disparity on young children's generalizations.

    PubMed

    Lawson, Chris A

    2014-07-01

    Three experiments with 81 3-year-olds (M=3.62years) examined the conditions that enable young children to use the sample size principle (SSP) of induction-the inductive rule that facilitates generalizations from large rather than small samples of evidence. In Experiment 1, children exhibited the SSP when exemplars were presented sequentially but not when exemplars were presented simultaneously. Results from Experiment 3 suggest that the advantage of sequential presentation is not due to the additional time to process the available input from the two samples but instead may be linked to better memory for specific individuals in the large sample. In addition, findings from Experiments 1 and 2 suggest that adherence to the SSP is mediated by the disparity between presented samples. Overall, these results reveal that the SSP appears early in development and is guided by basic cognitive processes triggered during the acquisition of input. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Advanced approach to the analysis of a series of in-situ nuclear forward scattering experiments

    NASA Astrophysics Data System (ADS)

    Vrba, Vlastimil; Procházka, Vít; Smrčka, David; Miglierini, Marcel

    2017-03-01

    This study introduces a sequential fitting procedure as a specific approach to nuclear forward scattering (NFS) data evaluation. Principles and usage of this advanced evaluation method are described in details and its utilization is demonstrated on NFS in-situ investigations of fast processes. Such experiments frequently consist of hundreds of time spectra which need to be evaluated. The introduced procedure allows the analysis of these experiments and significantly decreases the time needed for the data evaluation. The key contributions of the study are the sequential use of the output fitting parameters of a previous data set as the input parameters for the next data set and the model suitability crosscheck option of applying the procedure in ascending and descending directions of the data sets. Described fitting methodology is beneficial for checking of model validity and reliability of obtained results.

  9. Does solar radiation affect the growth of tomato seeds relative to their environment?

    NASA Technical Reports Server (NTRS)

    Holzer, Kristi

    1995-01-01

    The purpose of this experiment is to sequentially study and analyze the data collected from the germination and growth of irradiated Rutgers Supreme tomato seeds to adult producing plants. This experiment will not use irradiated seeds as a control as I plan to note growth in artificial verses natural environment as the basic experiment.

  10. Preparing the Teacher of Tomorrow

    ERIC Educational Resources Information Center

    Hemp, Paul E.

    1976-01-01

    Suggested ways of planning and conducting high quality teacher preparation programs are discussed under major headings of student selection, sequential courses and experiences, and program design. (HD)

  11. Dark sequential Z ' portal: Collider and direct detection experiments

    NASA Astrophysics Data System (ADS)

    Arcadi, Giorgio; Campos, Miguel D.; Lindner, Manfred; Masiero, Antonio; Queiroz, Farinaldo S.

    2018-02-01

    We revisit the status of a Majorana fermion as a dark matter candidate when a sequential Z' gauge boson dictates the dark matter phenomenology. Direct dark matter detection signatures rise from dark matter-nucleus scatterings at bubble chamber and liquid xenon detectors, and from the flux of neutrinos from the Sun measured by the IceCube experiment, which is governed by the spin-dependent dark matter-nucleus scattering. On the collider side, LHC searches for dilepton and monojet + missing energy signals play an important role. The relic density and perturbativity requirements are also addressed. By exploiting the dark matter complementarity we outline the region of parameter space where one can successfully have a Majorana dark matter particle in light of current and planned experimental sensitivities.

  12. Parallel algorithm for computation of second-order sequential best rotations

    NASA Astrophysics Data System (ADS)

    Redif, Soydan; Kasap, Server

    2013-12-01

    Algorithms for computing an approximate polynomial matrix eigenvalue decomposition of para-Hermitian systems have emerged as a powerful, generic signal processing tool. A technique that has shown much success in this regard is the sequential best rotation (SBR2) algorithm. Proposed is a scheme for parallelising SBR2 with a view to exploiting the modern architectural features and inherent parallelism of field-programmable gate array (FPGA) technology. Experiments show that the proposed scheme can achieve low execution times while requiring minimal FPGA resources.

  13. Bolometeric detector arrays for CMB polarimetry

    NASA Technical Reports Server (NTRS)

    Kuo, C. L.; Bock, J. J.; Day, P.; Goldin, A.; Golwala, S.; Holmes, W.; Irwin, K.; Kenyon, M.; Lange, A. E.; LeDuc, H. G.; hide

    2005-01-01

    We describe the development of antenna coupled bolometers for CMB polarization experiments. The necessary components of a bolometric CMB polarimeter - a beam forming element, a band defining filter, and detectors - are all fabricated on a silicon chip with photolithography.

  14. Analysis of filter tuning techniques for sequential orbit determination

    NASA Technical Reports Server (NTRS)

    Lee, T.; Yee, C.; Oza, D.

    1995-01-01

    This paper examines filter tuning techniques for a sequential orbit determination (OD) covariance analysis. Recently, there has been a renewed interest in sequential OD, primarily due to the successful flight qualification of the Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (TONS) using Doppler data extracted onboard the Extreme Ultraviolet Explorer (EUVE) spacecraft. TONS computes highly accurate orbit solutions onboard the spacecraft in realtime using a sequential filter. As the result of the successful TONS-EUVE flight qualification experiment, the Earth Observing System (EOS) AM-1 Project has selected TONS as the prime navigation system. In addition, sequential OD methods can be used successfully for ground OD. Whether data are processed onboard or on the ground, a sequential OD procedure is generally favored over a batch technique when a realtime automated OD system is desired. Recently, OD covariance analyses were performed for the TONS-EUVE and TONS-EOS missions using the sequential processing options of the Orbit Determination Error Analysis System (ODEAS). ODEAS is the primary covariance analysis system used by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD). The results of these analyses revealed a high sensitivity of the OD solutions to the state process noise filter tuning parameters. The covariance analysis results show that the state estimate error contributions from measurement-related error sources, especially those due to the random noise and satellite-to-satellite ionospheric refraction correction errors, increase rapidly as the state process noise increases. These results prompted an in-depth investigation of the role of the filter tuning parameters in sequential OD covariance analysis. This paper analyzes how the spacecraft state estimate errors due to dynamic and measurement-related error sources are affected by the process noise level used. This information is then used to establish guidelines for determining optimal filter tuning parameters in a given sequential OD scenario for both covariance analysis and actual OD. Comparisons are also made with corresponding definitive OD results available from the TONS-EUVE analysis.

  15. Development of cryogenic CMOS Readout ASICs for the Point-Contact HPGe Detectors for Dark Matter Search and Neutrino Experiments

    NASA Astrophysics Data System (ADS)

    Deng, Zhi; He, Li; Liu, Feng; Liu, Yinong; Xue, Tao; Li, Yulan; Yue, Qian

    2017-05-01

    The paper presents the developments of two cryogenic readout ASICs for the point-contact HPGe detectors for dark matter search and neutrino experiments. Extremely low noise readout electronics were demanded and the capability of working at cryogenic temperatures may bring great advantages. The first ASIC was a monolithic CMOS charge sensitive preamplifier with its noise optimized for ∼1 pF input capacitance. The second ASIC was a waveform recorder based on switched capacitor array. These two ASICs were fabricated in CMOS 350 nm and 180 nm processes respectively. The prototype chips were tested and showed promising results. Both ASICs worked well at low temperature. The preamplifier had achieved ENC of 10.3 electrons with 0.7 pF input capacitance and the SCA chip could run at 9 bit effective resolution and 25 MSPS sampling rate.

  16. Quantitative detection of liver-relevant biomarkers by SERS-immunolabeled gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Payne, William Mark

    Lab-on-a-chip technology has the potential to rapidly change the way experiments are conducted in a variety of fields ranging from medicine to environmental science. Specifically, sensors, detectors, and monitoring devices are increasingly being miniaturized to perform many experiments or measurements on a single chip. In this research, we develop an immunolabeled gold nanoparticle complex capable of detecting liver organoid biomarkers intended for use in a microfluidic device. Human Serum Albumin (HSA) and alpha-Glutathione S-Transferase (alpha-GST) are liver biomarkers that indicate liver health and damage respectively. Herein we demonstrate detection of the liver organoid biomarkers at nanomolar concentrations. Through plasmonic coupling induced by aggregation in the presence of analyte, the SERS signal obtained from the nanoparticles is dramatically increased. Furthermore, detection is demonstrated in a simple fluidic device to show the feasibility of implementing an optimized SERS-immunolabeled nanoparticle for translational application.

  17. Coherent phonon optics in a chip with an electrically controlled active device.

    PubMed

    Poyser, Caroline L; Akimov, Andrey V; Campion, Richard P; Kent, Anthony J

    2015-02-05

    Phonon optics concerns operations with high-frequency acoustic waves in solid media in a similar way to how traditional optics operates with the light beams (i.e. photons). Phonon optics experiments with coherent terahertz and sub-terahertz phonons promise a revolution in various technical applications related to high-frequency acoustics, imaging, and heat transport. Previously, phonon optics used passive methods for manipulations with propagating phonon beams that did not enable their external control. Here we fabricate a phononic chip, which includes a generator of coherent monochromatic phonons with frequency 378 GHz, a sensitive coherent phonon detector, and an active layer: a doped semiconductor superlattice, with electrical contacts, inserted into the phonon propagation path. In the experiments, we demonstrate the modulation of the coherent phonon flux by an external electrical bias applied to the active layer. Phonon optics using external control broadens the spectrum of prospective applications of phononics on the nanometer scale.

  18. Real-time Tracking of DNA Fragment Separation by Smartphone.

    PubMed

    Tao, Chunxian; Yang, Bo; Li, Zhenqing; Zhang, Dawei; Yamaguchi, Yoshinori

    2017-06-01

    Slab gel electrophoresis (SGE) is the most common method for the separation of DNA fragments; thus, it is broadly applied to the field of biology and others. However, the traditional SGE protocol is quite tedious, and the experiment takes a long time. Moreover, the chemical consumption in SGE experiments is very high. This work proposes a simple method for the separation of DNA fragments based on an SGE chip. The chip is made by an engraving machine. Two plastic sheets are used for the excitation and emission wavelengths of the optical signal. The fluorescence signal of the DNA bands is collected by smartphone. To validate this method, 50, 100, and 1,000 bp DNA ladders were separated. The results demonstrate that a DNA ladder smaller than 5,000 bp can be resolved within 12 min and with high resolution when using this method, indicating that it is an ideal substitute for the traditional SGE method.

  19. On-chip quantum interference of a superconducting microsphere

    NASA Astrophysics Data System (ADS)

    Pino, H.; Prat-Camps, J.; Sinha, K.; Prasanna Venkatesh, B.; Romero-Isart, O.

    2018-04-01

    We propose and analyze an all-magnetic scheme to perform a Young’s double slit experiment with a micron-sized superconducting sphere of mass ≳ {10}13 amu. We show that its center of mass could be prepared in a spatial quantum superposition state with an extent of the order of half a micrometer. The scheme is based on magnetically levitating the sphere above a superconducting chip and letting it skate through a static magnetic potential landscape where it interacts for short intervals with quantum circuits. In this way, a protocol for fast quantum interferometry using quantum magnetomechanics is passively implemented. Such a table-top earth-based quantum experiment would operate in a parameter regime where gravitational energy scales become relevant. In particular, we show that the faint parameter-free gravitationally-induced decoherence collapse model, proposed by Diósi and Penrose, could be unambiguously falsified.

  20. Analysis on storage off-gas emissions from woody, herbaceous, and torrefied biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumuluru, Jaya Shankar; Lim, C. Jim; Bi, Xiaotao T.

    Wood chips, torrefied wood chips, ground switchgrass, and wood pellets were tested for off-gas emissions during storage. Storage canisters with gas-collection ports were used to conduct experiments at room temperature of 20 °C and in a laboratory oven set at 40 °C. Commercially-produced wood pellets yielded the highest carbon monoxide (CO) emissions at both 20 and 40 °C (1600 and 13,000 ppmv), whereas torrefied wood chips emitted the lowest of about <200 and <2000 ppmv. Carbon dioxide (CO₂) emissions from wood pellets were 3000 ppmv and 42,000 ppmv, whereas torrefied wood chips registered at about 2000 and 25,000 ppmv, atmore » 20 and 40 °C at the end of 11 days of storage. CO emission factors (milligrams per kilogram of biomass) calculated were lowest for ground switchgrass and torrefied wood chips (2.68 and 4.86 mg/kg) whereas wood pellets had the highest CO of about 10.60 mg/kg, respectively, at 40 °C after 11 days of storage. In the case of CO₂, wood pellets recorded the lowest value of 55.46 mg/kg, whereas switchgrass recorded the highest value of 318.72 mg/kg. This study concludes that CO emission factor is highest for wood pellets, CO₂ is highest for switchgrass and CH₄ is negligible for all feedstocks except for wood pellets, which is about 0.374 mg/kg at the end of 11-day storage at 40 °C.« less

  1. Analysis on storage off-gas emissions from woody, herbaceous, and torrefied biomass

    DOE PAGES

    Tumuluru, Jaya Shankar; Lim, C. Jim; Bi, Xiaotao T.; ...

    2015-03-02

    Wood chips, torrefied wood chips, ground switchgrass, and wood pellets were tested for off-gas emissions during storage. Storage canisters with gas-collection ports were used to conduct experiments at room temperature of 20 °C and in a laboratory oven set at 40 °C. Commercially-produced wood pellets yielded the highest carbon monoxide (CO) emissions at both 20 and 40 °C (1600 and 13,000 ppmv), whereas torrefied wood chips emitted the lowest of about <200 and <2000 ppmv. Carbon dioxide (CO₂) emissions from wood pellets were 3000 ppmv and 42,000 ppmv, whereas torrefied wood chips registered at about 2000 and 25,000 ppmv, atmore » 20 and 40 °C at the end of 11 days of storage. CO emission factors (milligrams per kilogram of biomass) calculated were lowest for ground switchgrass and torrefied wood chips (2.68 and 4.86 mg/kg) whereas wood pellets had the highest CO of about 10.60 mg/kg, respectively, at 40 °C after 11 days of storage. In the case of CO₂, wood pellets recorded the lowest value of 55.46 mg/kg, whereas switchgrass recorded the highest value of 318.72 mg/kg. This study concludes that CO emission factor is highest for wood pellets, CO₂ is highest for switchgrass and CH₄ is negligible for all feedstocks except for wood pellets, which is about 0.374 mg/kg at the end of 11-day storage at 40 °C.« less

  2. On-chip Magnetic Separation and Cell Encapsulation in Droplets†

    PubMed Central

    Chen, Aaron; Byvank, Tom; Chang, Woo-Jin; Bharde, Atul; Vieira, Greg; Miller, Brandon; Chalmers, Jeffrey J.; Bashir, Rashid; Sooryakumar, Ratnasingham

    2014-01-01

    The demand for high-throughput single cell assays is gaining importance because of the heterogeneity of many cell suspensions, even after significant initial sorting. These suspensions may display cell-to-cell variability at the gene expression level that could impact single cell functional genomics, cancer, stem-cell research and drug screening. The on-chip monitoring of individual cells in an isolated environment would prevent cross-contamination, provide high recovery yield, and enable study of biological traits at a single cell level. These advantages of on-chip biological experiments is a significant improvement for myriad of cell analyses over conventional methods, which require bulk samples providing only averaged information on cell metabolism. We report on a device that integrates mobile magnetic trap array with microfluidic technology to provide, combined functionality of separation of immunomagnetically labeled cells or magnetic beads and their encapsulation with reagents into pico-liter droplets. This scheme of simultaneous reagent delivery and compartmentalization of the cells immediately after sorting, all performed seamlessly within the same chip, offers unique advantages such as the ability to capture cell traits as originated from its native environment, reduced chance of contamination, minimal use and freshness of the reagent solution that reacts only with separated objects, and tunable encapsulation characteristics independent of the input flow. In addition to the demonstrated preliminary cell viability assay, the device can potentially be integrated with other up- or downstream on-chip modules to become a powerful single-cell analysis tool. PMID:23370785

  3. Visual feature binding in younger and older adults: encoding and suffix interference effects.

    PubMed

    Brown, Louise A; Niven, Elaine H; Logie, Robert H; Rhodes, Stephen; Allen, Richard J

    2017-02-01

    Three experiments investigated younger (18-25 yrs) and older (70-88 yrs) adults' temporary memory for colour-shape combinations (binding). We focused upon estimating the magnitude of the binding cost for each age group across encoding time (Experiment 1; 900/1500 ms), presentation format (Experiment 2; simultaneous/sequential), and interference (Experiment 3; control/suffix) conditions. In Experiment 1, encoding time did not differentially influence binding in the two age groups. In Experiment 2, younger adults exhibited poorer binding performance with sequential relative to simultaneous presentation, and serial position analyses highlighted a particular age-related difficulty remembering the middle item of a series (for all memory conditions). Experiments 1-3 demonstrated small to medium binding effect sizes in older adults across all encoding conditions, with binding less accurate than shape memory. However, younger adults also displayed negative effects of binding (small to large) in two of the experiments. Even when older adults exhibited a greater suffix interference effect in Experiment 3, this was for all memory types, not just binding. We therefore conclude that there is no consistent evidence for a visual binding deficit in healthy older adults. This relative preservation contrasts with the specific and substantial deficits in visual feature binding found in several recent studies of Alzheimer's disease.

  4. Signaling Hierarchical and Sequential Organization in Expository Text

    ERIC Educational Resources Information Center

    Lorch, Robert; Lemarie, Julie; Grant, Russell

    2011-01-01

    Four experiments tested a hypothesized function of signaling devices, namely, to communicate information about text organization. Experiments 1 and 2 compared headings that communicated the hierarchical organization of text topics with headings that did not communicate the hierarchical organization. Signaling organization led to more complete and…

  5. Small Laccase from "Streptomyces Coelicolor"--An Ideal Model Protein/Enzyme for Undergraduate Laboratory Experience

    ERIC Educational Resources Information Center

    Cook, Ryan; Hannon, Drew; Southard, Jonathan N.; Majumdar, Sudipta

    2018-01-01

    A one semester undergraduate biochemistry laboratory experience is described for an understanding of recombinant technology from gene cloning to protein characterization. An integrated experimental design includes three sequential modules: molecular cloning, protein expression and purification, and protein analysis and characterization. Students…

  6. Extraction and [superscript 1]H NMR Analysis of Fats from Convenience Foods: A Laboratory Experiment for Organic Chemistry

    ERIC Educational Resources Information Center

    Hartel, Aaron M.; Moore, Amy C.

    2014-01-01

    The extraction and analysis of fats from convenience foods (crackers, cookies, chips, candies) has been developed as an experiment for a second-year undergraduate organic chemistry laboratory course. Students gravimetrically determine the fat content per serving and then perform a [superscript 1]H NMR analysis of the recovered fat to determine the…

  7. Williams working on the LOCAD-PTS Experiment in the US Lab during Expedition 15

    NASA Image and Video Library

    2007-04-30

    ISS015-E-05649 (30 April 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.

  8. Williams works on the LOCAD-PTS Experiment in the US Lab during Expedition 15

    NASA Image and Video Library

    2007-05-05

    ISS015-E-06777 (5 May 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.

  9. Williams working on the LOCAD-PTS Experiment in the US Lab during Expedition 15

    NASA Image and Video Library

    2007-04-30

    ISS015-E-05640 (30 April 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.

  10. Three-body effects in the Hoyle-state decay

    NASA Astrophysics Data System (ADS)

    Refsgaard, J.; Fynbo, H. O. U.; Kirsebom, O. S.; Riisager, K.

    2018-04-01

    We use a sequential R-matrix model to describe the breakup of the Hoyle state into three α particles via the ground state of 8Be. It is shown that even in a sequential picture, features resembling a direct breakup branch appear in the phase-space distribution of the α particles. We construct a toy model to describe the Coulomb interaction in the three-body final state and its effects on the decay spectrum are investigated. The framework is also used to predict the phase-space distribution of the α particles emitted in a direct breakup of the Hoyle state and the possibility of interference between a direct and sequential branch is discussed. Our numerical results are compared to the current upper limit on the direct decay branch determined in recent experiments.

  11. Sequential Multiplex Analyte Capturing for Phosphoprotein Profiling*

    PubMed Central

    Poetz, Oliver; Henzler, Tanja; Hartmann, Michael; Kazmaier, Cornelia; Templin, Markus F.; Herget, Thomas; Joos, Thomas O.

    2010-01-01

    Microarray-based sandwich immunoassays can simultaneously detect dozens of proteins. However, their use in quantifying large numbers of proteins is hampered by cross-reactivity and incompatibilities caused by the immunoassays themselves. Sequential multiplex analyte capturing addresses these problems by repeatedly probing the same sample with different sets of antibody-coated, magnetic suspension bead arrays. As a miniaturized immunoassay format, suspension bead array-based assays fulfill the criteria of the ambient analyte theory, and our experiments reveal that the analyte concentrations are not significantly changed. The value of sequential multiplex analyte capturing was demonstrated by probing tumor cell line lysates for the abundance of seven different receptor tyrosine kinases and their degree of phosphorylation and by measuring the complex phosphorylation pattern of the epidermal growth factor receptor in the same sample from the same cavity. PMID:20682761

  12. Direct quantum process tomography via measuring sequential weak values of incompatible observables.

    PubMed

    Kim, Yosep; Kim, Yong-Su; Lee, Sang-Yun; Han, Sang-Wook; Moon, Sung; Kim, Yoon-Ho; Cho, Young-Wook

    2018-01-15

    The weak value concept has enabled fundamental studies of quantum measurement and, recently, found potential applications in quantum and classical metrology. However, most weak value experiments reported to date do not require quantum mechanical descriptions, as they only exploit the classical wave nature of the physical systems. In this work, we demonstrate measurement of the sequential weak value of two incompatible observables by making use of two-photon quantum interference so that the results can only be explained quantum physically. We then demonstrate that the sequential weak value measurement can be used to perform direct quantum process tomography of a qubit channel. Our work not only demonstrates the quantum nature of weak values but also presents potential new applications of weak values in analyzing quantum channels and operations.

  13. Evaluation of forest decontamination using radiometric measurements.

    PubMed

    Cresswell, Alan J; Kato, Hiroaki; Onda, Yuichi; Nanba, Kenji

    2016-11-01

    An experiment has been conducted to evaluate the additional dose reduction by clear felling contaminated forestry in Fukushima Prefecture, Japan, and using the timber to cover the areas with wood chips. A portable gamma spectrometry system, comprising a backpack containing a 3 × 3″ NaI(Tl) detector with digital spectrometer and GPS receiver, has been used to map dose rate and radionuclide activity concentrations before, after and at stages during this experiment. The data show the effect of the different stages of the experiment on dose rate at different locations around the site. The spectrometric data have allowed the assessment of the contributions of natural and anthropogenic radionuclides to the dose rate at different parts of the site before and after the experiment. This has clearly demonstrated the value of radiometric methods in evaluating remediation, and the effect of other environmental processes. The value of spectrometric methods which directly measure radionuclide concentrations has also been shown, especially through the identification of the contribution of natural and anthropogenic activity to the measured dose rate. The experiment has shown that clearing trees and applying wood chips can reduce dose rates by 10-15% beyond that achieved by just clearing the forest litter and natural redistribution of radiocaesium. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Research based on the SoPC platform of feature-based image registration

    NASA Astrophysics Data System (ADS)

    Shi, Yue-dong; Wang, Zhi-hui

    2015-12-01

    This paper focuses on the study of implementing feature-based image registration by System on a Programmable Chip (SoPC) hardware platform. We solidify the image registration algorithm on the FPGA chip, in which embedded soft core processor Nios II can speed up the image processing system. In this way, we can make image registration technology get rid of the PC. And, consequently, this kind of technology will be got an extensive use. The experiment result indicates that our system shows stable performance, particularly in terms of matching processing which noise immunity is good. And feature points of images show a reasonable distribution.

  15. Design of the micro pressure multi-node measuring system for micro-fluidic chip

    NASA Astrophysics Data System (ADS)

    Mu, Lili; Guo, Shuheng; Rong, Li; Yin, Ke

    2016-01-01

    An online multi-node microfludic pressure measuring system was designed in the paper. The research focused on the design of pressure test circuit system and methods on dealing with pressure data collecting. The MPXV7002 micro-pressure sensor was selected to measure the chip inside channel pressure and installed by a silicone tube on different micro-channel measured nodes. The pressure transmission loss was estimated in the paper, and corrected by the filtering and smoothing method. The pressure test experiment was carried out and the data were analyzed. Finally, the measuring system was calibrated. The results showed that the measuring system had high testing precision.

  16. Forgetting the Past: Individual Differences in Recency in Subjective Valuations from Experience

    ERIC Educational Resources Information Center

    Ashby, Nathaniel J. S.; Rakow, Tim

    2014-01-01

    Recent research investigating decisions from experience suggests that not all information is treated equally in the decision process, with more recently encountered information having a greater impact. We report 2 studies investigating how this differential treatment of sequentially encountered information affects subjective valuations of risky…

  17. A Sequential Insect Dispenser for Behavioral Experiments

    ERIC Educational Resources Information Center

    Gans, Carl; Mix, Harold

    1974-01-01

    Describes the construction and operation of an automatic insect dispenser suitable for feeding small vertebrates that are being maintained for behavioral experiments. The food morsels are squirted from their chambers an an air jet, and may be directed at a particluar portion of the cage or distributed to different areas. (JR)

  18. Student Teachers' Team Teaching during Field Experiences: An Evaluation by Their Mentors

    ERIC Educational Resources Information Center

    Simons, Mathea; Baeten, Marlies

    2016-01-01

    Since collaboration within schools gains importance, teacher educators are looking for alternative models of field experience inspired by collaborative learning. Team teaching is such a model. This study explores two team teaching models (parallel and sequential teaching) by investigating the mentors' perspective. Semi-structured interviews were…

  19. Effects of Experimenting with Physical and Virtual Manipulatives on Students' Conceptual Understanding in Heat and Temperature

    ERIC Educational Resources Information Center

    Zacharia, Zacharias C.; Olympiou, Georgios; Papaevripidou, Marios

    2008-01-01

    This study aimed to investigate the comparative value of experimenting with physical manipulatives (PM) in a sequential combination with virtual manipulatives (VM), with the use of PM preceding the use of VM, and of experimenting with PM alone, with respect to changes in students' conceptual understanding in the domain of heat and temperature. A…

  20. C4'/H4' selective, non-uniformly sampled 4D HC(P)CH experiment for sequential assignments of (13)C-labeled RNAs.

    PubMed

    Saxena, Saurabh; Stanek, Jan; Cevec, Mirko; Plavec, Janez; Koźmiński, Wiktor

    2014-11-01

    A through bond, C4'/H4' selective, "out and stay" type 4D HC(P)CH experiment is introduced which provides sequential connectivity via H4'(i)-C4'(i)-C4'(i-1)-H4'(i-1) correlations. The (31)P dimension (used in the conventional 3D HCP experiment) is replaced with evolution of better dispersed C4' dimension. The experiment fully utilizes (13)C-labeling of RNA by inclusion of two C4' evolution periods. An additional evolution of H4' is included to further enhance peak resolution. Band selective (13)C inversion pulses are used to achieve selectivity and prevent signal dephasing due to the of C4'-C3' and C4'-C5' homonuclear couplings. For reasonable resolution, non-uniform sampling is employed in all indirect dimensions. To reduce sensitivity losses, multiple quantum coherences are preserved during shared-time evolution and coherence transfer delays. In the experiment the intra-nucleotide peaks are suppressed whereas inter-nucleotide peaks are enhanced to reduce the ambiguities. The performance of the experiment is verified on a fully (13)C, (15)N-labeled 34-nt hairpin RNA comprising typical structure elements.

Top