Surgical Treatment of Large or Giant Fusiform Middle Cerebral Artery Aneurysms: A Case Series.
Xu, Feng; Xu, Bin; Huang, Lei; Xiong, Ji; Gu, Yuxiang; Lawton, Michael T
2018-04-14
Management of large or giant fusiform middle cerebral artery (MCA) aneurysms represents a significant challenge. To describe the authors' experience in the treatment of large or giant fusiform MCA aneurysm by using various surgical techniques. We retrospectively reviewed a database of aneurysms treated at our division between 2015 and 2017. Overall, 20 patients (11 males, 9 females) were identified, with a mean age of 40.7 years (range, 13-65 years; median, 43 years). Six patients (30%) had ruptured aneurysms and 14 (70%) had unruptured aneurysms. The mean aneurysm size was 19 mm (range, 10-35 mm). The aneurysms involved the prebifurcation in 5 cases, bifurcation in 4 cases, and postbifurcation in 11 cases. The aneurysms were treated by clip reconstruction (n = 5), clip wrapping (n = 1), proximal occlusion or trapping (n = 4), and bypass revascularization (n = 10). Bypasses included 7 low-flow superficial temporal artery-MCA bypasses, 2 high-flow extracranial-intracranial bypasses, and 1 intracranial-intracranial bypass (reanastomosis). Bypass patency was 90%. Nineteen aneurysms (95%) were completely obliterated, and no rehemorrhage occurred during follow-up. There was no procedural-related mortality. Clinical outcomes were good (modified Rankin Scale score ≤2) in 18 of 20 patients (90%) at the last follow-up. Surgical treatment strategy for large or giant fusiform MCA aneurysms should be determined on an individual basis, based on aneurysm morphology, location, size, and clinical status. Favorable outcomes can be achieved by various surgical techniques, including clip reconstruction, wrap clipping, aneurysm trapping, aneurysm excision followed by reanastomosis, and partial trapping with bypass revascularization. Copyright © 2018 Elsevier Inc. All rights reserved.
Ferroli, P; Ciceri, E; Parati, E; Minati, L; Broggi, G
2007-06-01
Giant intracranial aneurysms may not be amenable to direct surgical clipping or endovascular coiling because of three critical factors: 1) lack of clear aneurysmal neck; 2) giant size; 3) involvement with critical perforating or branch vessels. Techniques of flow redirection, however, may offer an alternative treatment strategy for these difficult lesions. In this paper, we report on the use of this alternative strategy in the successful treatment of a left giant fusiform carotid terminus-M1 aneurysm in a 16 year-old boy suffering from Ehler-Danlos disease. This patient was admitted to our Institution because his aneurysm was continuing to be increasing in size, despite a previous ligation of his left cervical ICA which was performed at another institution 2 years earlier after the patient had experienced a hemorrhagic stroke. Upon admission, a neurological examination revealed a slight motor aphasia with mild right hemiparesis, remnant of the ancient stroke. Because of its size and the involvement with M1 perforating arteries, a direct aneurysm attack was deemed inadvisable. After an initial ECA-ICA high flow bypass which spontaneously thrombosed, we performed a repeated high flow bypass with the application of a single clip on M1, right distal to the fusiform dilatation. After an uneventful postoperative course, we were unable to observe any new neurological deficits after surgery. A CT scan on postoperative day 1 revealed that the aneurysm had undergone a spontaneous thrombosis which was completely obliterated at the time of a 6-month follow-up angiogram. At that time, the ECA-ICA bypass was found to be patent. In conclusion the alternative of flow alteration strategies can be successfully used in the treatment of aneurysms that cannot be safely trapped or occluded by traditional neurosurgical methods.
Epidemiology, genetic, natural history and clinical presentation of giant cerebral aneurysms.
Lonjon, M; Pennes, F; Sedat, J; Bataille, B
2015-12-01
Giant cerebral aneurysms represent 5% of intracranial aneurysms, and become symptomatic between 40 and 70 years with a female predominance. In the paediatric population, the giant aneurysm rate is higher than in the adult population. Classified as saccular, fusiform and serpentine, the natural history of giant cerebral aneurysms is characterized by thrombosis, growth and rupture. The pathogenesis of these giant aneurysms is influenced by a number of risk factors, including genetic variables. Genome-wide association studies have identified some chromosomes highlighting candidate genes. Although these giant aneurysms can occur at the same locations as their smaller counterparts, a predilection for the cavernous location has been observed. Giant aneurysms present with symptoms caused by a mass effect depending on their location or by rupture; ischemic manifestations rarely reveal the aneurysm. If the initial clinical descriptions have been back up by imagery, the clinical context with a pertinent analysis of the risk factors remain the cornerstone for the management decisions of these lesions. Five year cumulative rupture rates for patients with giant aneurysm were 40% for those located on the anterior part of circle of Willis and 50% for those on the posterior part. The poor outcome of untreated patients justifies the therapeutic risks. Copyright © 2015. Published by Elsevier Masson SAS.
Lin, Jo-Fu Lotus; Silva-Pereyra, Juan; Chou, Chih-Che; Lin, Fa-Hsuan
2018-04-11
Variability in neuronal response latency has been typically considered caused by random noise. Previous studies of single cells and large neuronal populations have shown that the temporal variability tends to increase along the visual pathway. Inspired by these previous studies, we hypothesized that functional areas at later stages in the visual pathway of face processing would have larger variability in the response latency. To test this hypothesis, we used magnetoencephalographic data collected when subjects were presented with images of human faces. Faces are known to elicit a sequence of activity from the primary visual cortex to the fusiform gyrus. Our results revealed that the fusiform gyrus showed larger variability in the response latency compared to the calcarine fissure. Dynamic and spectral analyses of the latency variability indicated that the response latency in the fusiform gyrus was more variable than in the calcarine fissure between 70 ms and 200 ms after the stimulus onset and between 4 Hz and 40 Hz, respectively. The sequential processing of face information from the calcarine sulcus to the fusiform sulcus was more reliably detected based on sizes of the response variability than instants of the maximal response peaks. With two areas in the ventral visual pathway, we show that the variability in response latency across brain areas can be used to infer the sequence of cortical activity.
NASA Technical Reports Server (NTRS)
Steyger, P. S.; Wiederhold, M. L.; Batten, J.
1995-01-01
Otoconia are calcified protein matrices within the gravity-sensing organs of the vertebrate vestibular system. Mammalian otoconia are barrel-shaped with triplanar facets at each end. Reptilian otoconia are commonly prismatic or fusiform in shape. Amphibians have all three otoconial morphologies, barrel-shaped otoconia within the utricle, with prismatic and fusiform otoconia in the saccule. Scanning electron microscopy revealed a sequential appearance of all three otoconial morphologies during larval development of the newt, Cynops pyrrhogaster. The first otoconia appear within a single, developing otolith, and some resemble adult barrel-shaped otoconia. As the larvae hatch, around stages 39-42, the single otolith divides into two anatomically separate regions, the utricle and saccule, and both contain otoconia similar to those seen in the single otolith. Throughout development, these otoconia may have variable morphologies, with serrated surfaces, or circumferential striations with either separated facets or adjacent facets in the triplanar end-regions. Small fusiform otoconia occur later, at stage 51, and only in the saccule. Prismatic otoconia appear later still, at stage 55, and again only in the saccule. Thus, although prismatic otoconia are the most numerous in adult newts, it is the last vestibular otoconial morphology to be expressed.
Chung, Joonho; Matsuda, Yoshikazu; Nelson, Jessica; Keigher, Kiffon; Lopes, Demetrius K
2018-01-01
Objectives The Low-profile Visualized Intraluminal Support (LVIS) device is a flexible intracranial stent. The first generation of this system had significant challenges in consistently providing good wall apposition and aneurysm neck coverage. A new modified LVIS, LVIS Blue (Blue), has been developed to address these issues. The purpose of this study is to report a laboratory comparison of wall apposition and aneurysm neck coverage between the original LVIS and Blue. Methods In bench-top experiments, we noted the visual appearance of the devices and evaluated changes in stent cell angles, neck coverage surface area (%), and stent cell crossing profile for microcatheters using a fusiform aneurysm model. Our in vitro experiments included evaluation of wall apposition and aneurysm neck coverage of the devices under direct radiographic visualization. Results Blue showed three definite different zones (a mid-zone, a high-density zone, and a transitional zone) and higher metal coverage in the straight fusiform aneurysm model compared to LVIS. Two commercially available microcatheters easily crossed the stent cell at the greater curvature for both devices. In in vitro experiments, Blue showed better wall apposition in tortuous arteries and achieved higher neck coverage in the bifurcation aneurysm compared to LVIS. Discussion Blue achieved better wall apposition in tortuous arteries and higher aneurysm neck coverage (higher metal-to-artery ratio) in bifurcation aneurysms than LVIS. Our results may provide informative physical properties of LVIS and Blue to be expected when those are used for stent-assisted coil embolization of a large-giant fusiform aneurysm or a bifurcation saccular aneurysm clinically.
Kanaan, M Z; Lorenzi, A R; Thampy, N; Pandit, R; Dayan, Margaret
2017-12-01
A 75-year-old hypertensive female with stable idiopathic intermediate uveitis presented with bilateral sequential optic neuropathy with optic disc swelling. The optic neuropathy in the first affected eye (right) was thought to be due to non-arteritic anterior ischaemic optic neuropathy (NAION). Asymptomatic left optic disc swelling was found at routine review 2 months later, and a diagnosis of giant cell arteritis (GCA) was sought. Temporal artery duplex ultrasound showed the "halo sign," but a subsequent temporal artery biopsy showed light-chain (AL) amyloidosis with no signs of giant cell arteritis. In this case, bilateral sequential ischaemic optic neuropathy mimicking non-arteritic anterior ischaemic optic neuropathy was the presenting sign of systemic amyloidosis involving the temporal arteries.
Giant morphea-form basal cell carcinoma of the umbilicus: Successful debulking with vismodegib.
Orduz Robledo, Mariana; Lebas, Eve; Reginster, Marie-Annick; Baghaie, Mahmoud; Groves, Sabine; Nikkels, Arjen F
2018-01-01
Basal cell carcinoma of the umbilicus is very rare. The nodular subtype is the main representative. Giant basal cell carcinomas represent around 1% of all basal cell carcinomas. The hedgehog pathway inhibitor vismodegib is indicated for advanced basal cell carcinoma and CD56-negative immunostaining seems indicative for successful treatment. A 54-year-old man presented a 10 cm × 14 cm large and 4.5 cm deep morphea-form basal cell carcinoma with faint immunohistochemical CD56 expression arising from the umbilicus. A sequential treatment was initiated with debulking using vismodegib 150 mg per day for 4 months, followed by reconstructive surgery. To the best of our knowledge, this is the first report of a giant basal cell carcinoma of the morphea-form type of the umbilicus. The sequential treatment plan reduces the duration of vismodegib inherent adverse effects and significantly reduces the tumor mass prior to surgery. Besides increasing adherence to vismodegib treatment, this approach facilitates the surgical technique and improves cosmetic outcome.
fMRI-adaptation studies of viewpoint tuning in the extrastriate and fusiform body areas.
Taylor, John C; Wiggett, Alison J; Downing, Paul E
2010-03-01
People are easily able to perceive the human body across different viewpoints, but the neural mechanisms underpinning this ability are currently unclear. In three experiments, we used functional MRI (fMRI) adaptation to study the view-invariance of representations in two cortical regions that have previously been shown to be sensitive to visual depictions of the human body--the extrastriate and fusiform body areas (EBA and FBA). The BOLD response to sequentially presented pairs of bodies was treated as an index of view invariance. Specifically, we compared trials in which the bodies in each image held identical poses (seen from different views) to trials containing different poses. EBA and FBA adapted to identical views of the same pose, and both showed a progressive rebound from adaptation as a function of the angular difference between views, up to approximately 30 degrees. However, these adaptation effects were eliminated when the body stimuli were followed by a pattern mask. Delaying the mask onset increased the response (but not the adaptation effect) in EBA, leaving FBA unaffected. We interpret these masking effects as evidence that view-dependent fMRI adaptation is driven by later waves of neuronal responses in the regions of interest. Finally, in a whole brain analysis, we identified an anterior region of the left inferior temporal sulcus (l-aITS) that responded linearly to stimulus rotation, but showed no selectivity for bodies. Our results show that body-selective cortical areas exhibit a similar degree of view-invariance as other object selective areas--such as the lateral occipitotemporal area (LO) and posterior fusiform gyrus (pFs).
Ho, Tiffany C; Zhang, Shunan; Sacchet, Matthew D; Weng, Helen; Connolly, Colm G; Henje Blom, Eva; Han, Laura K M; Mobayed, Nisreen O; Yang, Tony T
2016-01-01
While the extant literature has focused on major depressive disorder (MDD) as being characterized by abnormalities in processing affective stimuli (e.g., facial expressions), little is known regarding which specific aspects of cognition influence the evaluation of affective stimuli, and what are the underlying neural correlates. To investigate these issues, we assessed 26 adolescents diagnosed with MDD and 37 well-matched healthy controls (HCL) who completed an emotion identification task of dynamically morphing faces during functional magnetic resonance imaging (fMRI). We analyzed the behavioral data using a sequential sampling model of response time (RT) commonly used to elucidate aspects of cognition in binary perceptual decision making tasks: the Linear Ballistic Accumulator (LBA) model. Using a hierarchical Bayesian estimation method, we obtained group-level and individual-level estimates of LBA parameters on the facial emotion identification task. While the MDD and HCL groups did not differ in mean RT, accuracy, or group-level estimates of perceptual processing efficiency (i.e., drift rate parameter of the LBA), the MDD group showed significantly reduced responses in left fusiform gyrus compared to the HCL group during the facial emotion identification task. Furthermore, within the MDD group, fMRI signal in the left fusiform gyrus during affective face processing was significantly associated with greater individual-level estimates of perceptual processing efficiency. Our results therefore suggest that affective processing biases in adolescents with MDD are characterized by greater perceptual processing efficiency of affective visual information in sensory brain regions responsible for the early processing of visual information. The theoretical, methodological, and clinical implications of our results are discussed.
Ho, Tiffany C.; Zhang, Shunan; Sacchet, Matthew D.; Weng, Helen; Connolly, Colm G.; Henje Blom, Eva; Han, Laura K. M.; Mobayed, Nisreen O.; Yang, Tony T.
2016-01-01
While the extant literature has focused on major depressive disorder (MDD) as being characterized by abnormalities in processing affective stimuli (e.g., facial expressions), little is known regarding which specific aspects of cognition influence the evaluation of affective stimuli, and what are the underlying neural correlates. To investigate these issues, we assessed 26 adolescents diagnosed with MDD and 37 well-matched healthy controls (HCL) who completed an emotion identification task of dynamically morphing faces during functional magnetic resonance imaging (fMRI). We analyzed the behavioral data using a sequential sampling model of response time (RT) commonly used to elucidate aspects of cognition in binary perceptual decision making tasks: the Linear Ballistic Accumulator (LBA) model. Using a hierarchical Bayesian estimation method, we obtained group-level and individual-level estimates of LBA parameters on the facial emotion identification task. While the MDD and HCL groups did not differ in mean RT, accuracy, or group-level estimates of perceptual processing efficiency (i.e., drift rate parameter of the LBA), the MDD group showed significantly reduced responses in left fusiform gyrus compared to the HCL group during the facial emotion identification task. Furthermore, within the MDD group, fMRI signal in the left fusiform gyrus during affective face processing was significantly associated with greater individual-level estimates of perceptual processing efficiency. Our results therefore suggest that affective processing biases in adolescents with MDD are characterized by greater perceptual processing efficiency of affective visual information in sensory brain regions responsible for the early processing of visual information. The theoretical, methodological, and clinical implications of our results are discussed. PMID:26869950
Giant pituitary adenoma: histological types, clinical features and therapeutic approaches.
Iglesias, Pedro; Rodríguez Berrocal, Víctor; Díez, Juan José
2018-06-16
Giant pituitary adenomas comprise about 6-10% of all pituitary tumors. They are mostly clinically non-functioning adenomas and occur predominantly in males. The presenting symptoms are usually secondary to compression of neighboring structures, but also due to partial or total hypopituitarism. Functioning adenomas give rise to specific symptoms of hormonal hypersecretion. The use of dopamine agonists is considered a first-line treatment in patients with giant macroprolactinomas. Somatostatin analogs can also be used as primary treatment in cases of growth hormone and thyrotropin producing giant adenomas, although remission of the disease is not achieved in the vast majority of these patients. Neurosurgical treatment, either through transsphenoidal or transcranial surgery, continues to be the treatment of choice in the majority of patients with giant pituitary adenomas. The intrinsic complexity of these tumors requires the use of different therapies in a combined or sequential way. A multimodal approach and a therapeutic strategy involving a multidisciplinary team of expert professionals form the basis of the therapeutic success in these patients.
T.L Kubisiak; J.H. Roberds; P.C. Spaine; R.L. Doudrick
2004-01-01
This paper reports results obtained from microsatellite DNA analysis of genetic structure for populations of the native fungus Cronartium quercuum f. sp fusiforme infecting loblolly pine (Pinus taeda L.) over much of this host's natural range. Mostly all fusiform rust galls formed under field conditions are...
Interacting genes in the pine-fusiform rust forest pathosystem
H.V. Amerson; T.L. Kubisiak; S.A. Garcia; G.C. Kuhlman; C.D. Nelson; S.E. McKeand; T.J. Mullin; B. Li
2005-01-01
Fusiform rust (FR) disease of pines, caused by Cronartium quercuum f.sp. fusiforme (Cqf), is the most destructive disease in pine plantations of the southern U. S. The NCSU fusiform rust program, in conjunction with the USDA-Forest Service in Saucier, MS and Athens, GA, has research underway to elucidate some of the genetic interactions in this...
Changes in fatty acid composition in the giant clam Tridacna maxima in response to thermal stress
Dubousquet, Vaimiti; Gros, Emmanuelle; Berteaux-Lecellier, Véronique; Viguier, Bruno; Raharivelomanana, Phila; Bertrand, Cédric; Lecellier, Gaël J.
2016-01-01
ABSTRACT Temperature can modify membrane fluidity and thus affects cellular functions and physiological activities. This study examines lipid remodelling in the marine symbiotic organism, Tridacna maxima, during a time series of induced thermal stress, with an emphasis on the morphology of their symbiont Symbiodinium. First, we show that the French Polynesian giant clams harbour an important proportion of saturated fatty acids (SFA), which reflects their tropical location. Second, in contrast to most marine organisms, the total lipid content in giant clams remained constant under stress, though some changes in their composition were shown. Third, the stress-induced changes in fatty acid (FA) diversity were accompanied by an upregulation of genes involved in lipids and ROS pathways. Finally, our microscopic analysis revealed that for the giant clam's symbiont, Symbiodinium, thermal stress led to two sequential cell death processes. Our data suggests that the degradation of Symbiodinium cells could provide an additional source of energy to T. maxima in response to heat stress. PMID:27543058
Henrietta Myburg; Alison M. Morse; Henry V. Amerson; Thomas L. Kubisiak; Dudley Huber; Jason A. Osborne; Saul A. Garcia; C. Dana Nelson; John M. Davis; Sarah F. Covert; Leonel M. van Zyle
2006-01-01
Cronartium quercuum f.sp. fusiforme is the pathogen that incites fusiform rust disease of southern pine species. To date, a number of host resistance genes have been mapped. Although genomic mapping studies have provided valuable information on the genetic basis of disease interactions in this pine-rust pathosystem, the interaction...
Claire L Anderson; Thomas L Kubisiak; C Dana Nelson; Jason A Smith; John M Davis
2010-01-01
The genome size of the pine fusiform rust pathogen Cronartium quercuum f.sp. fusiforme (Cqf) was determined by flow cytometric analysis of propidium iodide-stained, intact haploid pycniospores with haploid spores of two genetically well characterized fungal species, Sclerotinia sclerotiorum and Puccinia graminis f.sp. tritici, as size standards. The Cqf haploid genome...
Long-Term Experience with Chinese Language Shapes the Fusiform Asymmetry of English Reading
Mei, Leilei; Xue, Gui; Lu, Zhong-Lin; Chen, Chuansheng; Wei, Miao; He, Qinghua; Dong, Qi
2015-01-01
Previous studies have suggested differential engagement of the bilateral fusiform gyrus in the processing of Chinese and English. The present study tested the possibility that long-term experience with Chinese language affects the fusiform laterality of English reading by comparing three samples: Chinese speakers, English speakers with Chinese experience, and English speakers without Chinese experience. We found that, when reading words in their respective native language, Chinese and English speakers without Chinese experience differed in functional laterality of the posterior fusiform region (right laterality for Chinese speakers, but left laterality for English speakers). More importantly, compared with English speakers without Chinese experience, English speakers with Chinese experience showed more recruitment of the right posterior fusiform cortex for English words and pseudowords, which is similar to how Chinese speakers processed Chinese. These results suggest that long-term experience with Chinese shapes the fusiform laterality of English reading and have important implications for our understanding of the cross-language influences in terms of neural organization and of the functions of different fusiform subregions in reading. PMID:25598049
Changes in fatty acid composition in the giant clam Tridacna maxima in response to thermal stress.
Dubousquet, Vaimiti; Gros, Emmanuelle; Berteaux-Lecellier, Véronique; Viguier, Bruno; Raharivelomanana, Phila; Bertrand, Cédric; Lecellier, Gaël J
2016-10-15
Temperature can modify membrane fluidity and thus affects cellular functions and physiological activities. This study examines lipid remodelling in the marine symbiotic organism, Tridacna maxima, during a time series of induced thermal stress, with an emphasis on the morphology of their symbiont Symbiodinium First, we show that the French Polynesian giant clams harbour an important proportion of saturated fatty acids (SFA), which reflects their tropical location. Second, in contrast to most marine organisms, the total lipid content in giant clams remained constant under stress, though some changes in their composition were shown. Third, the stress-induced changes in fatty acid (FA) diversity were accompanied by an upregulation of genes involved in lipids and ROS pathways. Finally, our microscopic analysis revealed that for the giant clam's symbiont, Symbiodinium, thermal stress led to two sequential cell death processes. Our data suggests that the degradation of Symbiodinium cells could provide an additional source of energy to T maxima in response to heat stress. © 2016. Published by The Company of Biologists Ltd.
Li, Qiang; Wang, Chaohua; Xu, Jianguo; You, Chao
2015-09-01
Fusiform dilation of the internal carotid artery complicates aggressive craniopharyngioma resection and occurs mainly in children. We report a case to describe the availability of endovascular treatment for this rare entity. A 13-year-old boy presented with headache for 2 years after resection of craniopharyngioma. A fusiform dilation of the right carotid artery was found and was coiled using stent-assisted technique. Follow-up showed satisfactory outcome and disappearance of headache. To our knowledge, this is the first report regarding endovascular treatment for fusiform dilation of the internal carotid artery after craniopharyngioma resection. Stent-assisted coiling is a useful approach for fusiform dilation of the internal carotid artery following craniopharyngioma surgery. © The Author(s) 2014.
Hitoshi Nakamura; Shigeru Kaneko; Pauline Spaine
1998-01-01
The molecular characteristics were compared among Cronartium quercuum f. sp. densiflorae and C. quercuum f. sp. thunbergii from Japan and C. quercuum f. sp. fusiforme, fusiform rust from the USA. The authors examined the PCR-amplified internal transcribed...
Identification of pathogen avirulencegenes in the fusiform rust pathosystem
John M. Davis; Katherine E. Smith; Amanda Pendleton; Jason A. Smith; C. Dana Nelson
2012-01-01
The Cronartium quercuum f.sp. fusiforme (Cqf) whole genome sequencing project will enable identification of avirulence genes in the most devastating pine fungal pathogen in the southeastern United States. Amerson and colleagues (unpublished) have mapped nine fusiform rust resistance genes in loblolly pine,...
Bulked fusiform rust inocula and Fr gene interactions in loblolly pine
Fikret Isik; Henry Amerson; Saul Garcia; Ross Whetten; Steve. McKeand
2012-01-01
Fusiform rust disease in loblolly (Pinus taeda L.) and slash (Pinus elliottii Engelm. var elliottii) pine plantations in the southern United States causes multi-million dollar annual losses. The disease is endemic to the region. The fusiform rust fungus (Cronartium quercuum sp.
Centanni, Tracy M; Norton, Elizabeth S; Park, Anne; Beach, Sara D; Halverson, Kelly; Ozernov-Palchik, Ola; Gaab, Nadine; Gabrieli, John DE
2018-03-05
A functional region of left fusiform gyrus termed "the visual word form area" (VWFA) develops during reading acquisition to respond more strongly to printed words than to other visual stimuli. Here, we examined responses to letters among 5- and 6-year-old early kindergarten children (N = 48) with little or no school-based reading instruction who varied in their reading ability. We used functional magnetic resonance imaging (fMRI) to measure responses to individual letters, false fonts, and faces in left and right fusiform gyri. We then evaluated whether signal change and size (spatial extent) of letter-sensitive cortex (greater activation for letters versus faces) and letter-specific cortex (greater activation for letters versus false fonts) in these regions related to (a) standardized measures of word-reading ability and (b) signal change and size of face-sensitive cortex (fusiform face area or FFA; greater activation for faces versus letters). Greater letter specificity, but not letter sensitivity, in left fusiform gyrus correlated positively with word reading scores. Across children, in the left fusiform gyrus, greater size of letter-sensitive cortex correlated with lesser size of FFA. These findings are the first to suggest that in beginning readers, development of letter responsivity in left fusiform cortex is associated with both better reading ability and also a reduction of the size of left FFA that may result in right-hemisphere dominance for face perception. © 2018 John Wiley & Sons Ltd.
Griffiths, Kate; Hou, Rong; Wang, Hairui; Zhang, Zhihe; Zhang, Liang; Zhang, Tong; Watson, David G; Burchmore, Richard J S; Loeffler, I Kati; Kennedy, Malcolm W
2015-10-01
Bears produce the most altricial neonates of any placental mammal. We hypothesized that the transition from colostrum to mature milk in bears reflects a temporal and biochemical adaptation for altricial development and immune protection. Comparison of bear milks with milks of other eutherians yielded distinctive protein profiles. Proteomic and metabolomic analysis of serial milk samples collected from six giant pandas showed a prolonged transition from colostrum to main-phase lactation over approximately 30 days. Particularly striking are the persistence or sequential appearance of adaptive and innate immune factors. The endurance of immunoglobulin G suggests an unusual duration of trans-intestinal absorption of maternal antibodies, and is potentially relevant to the underdeveloped lymphoid system of giant panda neonates. Levels of certain milk oligosaccharides known to exert anti-microbial activities and/or that are conducive to the development of neonatal gut microbiomes underwent an almost complete changeover around days 20-30 postpartum, coincident with the maturation of the protein profile. A potential metabolic marker of starvation was detected, the prominence of which may reflect the natural postpartum period of anorexia in giant panda mothers. Early lactation in giant pandas, and possibly in other ursids, appears to be adapted for the unique requirements of unusually altricial eutherian neonates.
Griffiths, Kate; Hou, Rong; Wang, Hairui; Zhang, Zhihe; Zhang, Liang; Zhang, Tong; Watson, David G.; Burchmore, Richard J. S.; Loeffler, I. Kati; Kennedy, Malcolm W.
2015-01-01
Bears produce the most altricial neonates of any placental mammal. We hypothesized that the transition from colostrum to mature milk in bears reflects a temporal and biochemical adaptation for altricial development and immune protection. Comparison of bear milks with milks of other eutherians yielded distinctive protein profiles. Proteomic and metabolomic analysis of serial milk samples collected from six giant pandas showed a prolonged transition from colostrum to main-phase lactation over approximately 30 days. Particularly striking are the persistence or sequential appearance of adaptive and innate immune factors. The endurance of immunoglobulin G suggests an unusual duration of trans-intestinal absorption of maternal antibodies, and is potentially relevant to the underdeveloped lymphoid system of giant panda neonates. Levels of certain milk oligosaccharides known to exert anti-microbial activities and/or that are conducive to the development of neonatal gut microbiomes underwent an almost complete changeover around days 20–30 postpartum, coincident with the maturation of the protein profile. A potential metabolic marker of starvation was detected, the prominence of which may reflect the natural postpartum period of anorexia in giant panda mothers. Early lactation in giant pandas, and possibly in other ursids, appears to be adapted for the unique requirements of unusually altricial eutherian neonates. PMID:26587250
Fusiform Rust Trends in East Texas: 1969 to 2002
Dean W. Coble; Young-Jin Lee
2004-01-01
Fusiform rust [Cronartium quercuum (Berk.) Miyabe ex Shirai f. sp. Fusiforme] infection rates in east Texas increased to nearly 50 percent in slash pine (Pinus elliottii Engelm.) and about 15 percent in loblolly pine (Pinus taeda L.) plantations during the 18-year period from 1969 to 1987. New...
Acevedo-Bolton, Gabriel; Jou, Liang-Der; Dispensa, Bradley P; Lawton, Michael T; Higashida, Randall T; Martin, Alastair J; Young, William L; Saloner, David
2006-08-01
The goal of this study was to use phase-contrast magnetic resonance imaging and computational fluid dynamics to estimate the hemodynamic outcome that might result from different interventional options for treating a patient with a giant fusiform aneurysm. We followed a group of patients with giant intracranial aneurysms who have no clear surgical options. One patient demonstrated dramatic aneurysm growth and was selected for further analysis. The aneurysm geometry and input and output flow conditions were measured with contrast-enhanced magnetic resonance angiography and phase-contrast magnetic resonance imaging. The data was imported into a computational fluid dynamics program and the velocity fields and wall shear stress distributions were calculated for the presenting physiological condition and for cases in which the opposing vertebral arteries were either occluded or opened. These models were validated with in vitro flow experiments using a geometrically exact silicone flow phantom. Simulation indicated that altering the flow ratio in the two vertebrals would deflect the main blood jet into the aneurysm belly, and that this would likely reduce the extent of the region of low wall shear stress in the growth zone. Computational fluid dynamics flow simulations in a complex patient-specific aneurysm geometry were validated by in vivo and in vitro phase-contrast magnetic resonance imaging, and were shown to be useful in modeling the likely hemodynamic impact of interventional treatment of the aneurysm.
Positive Returns from Investment in Fusiform Rust Research
John M. Pye; John E. Wagner; Thomas P. Holmes; Frederick W. Cubbage
1997-01-01
Fusiform rust [Cronartium quercuum (Berk.) Miy. ex Shirai f. sp. fusiforme Burdsall et Snow] is a widespread and damaging disease of loblolly and slash pine across much of the Southern United States. Research by government and university scientists has identified families of these species with improved genetic resistance to infection by the disease, allowing production...
Steve McKeand; Saul Garcia; Josh Steiger; Jim Grissom; Ross Whetten; Fikret Isik
2012-01-01
The elite breeding populations of loblolly pine (Pinus taeda L.) in the North Carolina State University Cooperative Tree Improvement Program are intensively managed for short-term genetic gain. Fusiform rust disease, caused by the fungus Cronartium quercuum f. sp. fusiforme, is the most economically...
Roger P. Belanger; Thomas Miller; Stanley J. Zarnoch; Stephen W. Fraedrich; John F. Godbee
2000-01-01
The primary objective of this study was to evaluate the selective thinning of trees with rust galls as a means of reducing losses to the fusiform rust (Cronartium quercuum (Berk.) Miyabe ex Shirai f. sp. fusiforme) disease in merchantable slash (Pinus elliottii Engelm. var. elliottii) and...
Nuclear behavior during basidiospore germination in Cronartium quercuum f. sp. fusiforme
P.C. Spaine; Shigeru Kaneko
1996-01-01
Nuclear behavior during basidiospore germination in Cronartiunz quercuum f. sp. fusiforme was examined on glass slides and host seedlings using 4,6-diamidino-2-phenylindolestaining. Mononucleate basidiospores of Cronartium quercuum f. sp. fusiforme normally were produced following meiosis in the teliospore. However, a subsequent mitotic division often occurred within...
Selectivity for the human body in the fusiform gyrus.
Peelen, Marius V; Downing, Paul E
2005-01-01
Functional neuroimaging studies have revealed human brain regions, notably in the fusiform gyrus, that respond selectively to images of faces as opposed to other kinds of objects. Here we use fMRI to show that the mid-fusiform gyrus responds with nearly the same level of selectivity to images of human bodies without faces, relative to tools and scenes. In a group-average analysis (n = 22), the fusiform activations identified by contrasting faces versus tools and bodies versus tools are very similar. Analyses of within-subjects regions of interest, however, show that the peaks of the two activations occupy close but distinct locations. In a second experiment, we find that the body-selective fusiform region, but not the face-selective region, responds more to stick figure depictions of bodies than to scrambled controls. This result further distinguishes the two foci and confirms that the body-selective response generalizes to abstract image formats. These results challenge accounts of the mid-fusiform gyrus that focus solely on faces and suggest that this region contains multiple distinct category-selective neural representations.
Zhang, Mingxia; Li, Jin; Chen, Chuansheng; Mei, Leilei; Xue, Gui; Lu, Zhonglin; Chen, Chunhui; He, Qinghua; Wei, Miao; Dong, Qi
2012-01-01
Previous functional neuroimaging studies have shown that the left mid-fusiform cortex plays a critical role in reading. However, there is very limited research relating this region’s anatomical structure to reading performance either in native or second language. Using structural MRI and three reading tasks (Chinese characters, English words, and alphabetic pseudowords) and a non-reading task (visual-auditory learning), this study investigated the contributions of the left mid-fusiform cortical thickness to reading in a large sample of 226 Chinese subjects. Results showed that cortical thickness in the left mid-fusiform gyrus was positively correlated with performance on all three reading tasks but not with the performance on the non-reading task. Our findings provide structural evidence for the left mid-fusiform cortex as the “gateway” region for reading Chinese and English. The absence of the association between the left mid-fusiform cortical thickness and non-reading performance implied the specific role of this area in reading skills, not in general language skills. PMID:23022094
Eichmann, Mischa; Kugel, Harald; Suslow, Thomas
2008-12-01
Difficulties in identifying and differentiating one's emotions are a central characteristic of alexithymia. In the present study, automatic activation of the fusiform gyrus to facial emotion was investigated as a function of alexithymia as assessed by the 20-item Toronto Alexithymia Scale. During 3 Tesla fMRI scanning, pictures of faces bearing sad, happy, and neutral expressions masked by neutral faces were presented to 22 healthy adults who also responded to the Toronto Alexithymia Scale. The fusiform gyrus was selected as the region of interest, and voxel values of this region were extracted, summarized as means, and tested among the different conditions (sad, happy, and neutral faces). Masked sad facial emotions were associated with greater bilateral activation of the fusiform gyrus than masked neutral faces. The subscale, Difficulty Identifying Feelings, was negatively correlated with the neural response of the fusiform gyrus to masked sad faces. The correlation results suggest that automatic hyporesponsiveness of the fusiform gyrus to negative emotion stimuli may reflect problems in recognizing one's emotions in everyday life.
Distinct but Overlapping Patterns of Response to Words and Faces in the Fusiform Gyrus.
Harris, Richard J; Rice, Grace E; Young, Andrew W; Andrews, Timothy J
2016-07-01
Converging evidence suggests that the fusiform gyrus is involved in the processing of both faces and words. We used fMRI to investigate the extent to which the representation of words and faces in this region of the brain is based on a common neural representation. In Experiment 1, a univariate analysis revealed regions in the fusiform gyrus that were only selective for faces and other regions that were only selective for words. However, we also found regions that showed both word-selective and face-selective responses, particularly in the left hemisphere. We then used a multivariate analysis to measure the pattern of response to faces and words. Despite the overlap in regional responses, we found distinct patterns of response to both faces and words in the left and right fusiform gyrus. In Experiment 2, fMR adaptation was used to determine whether information about familiar faces and names is integrated in the fusiform gyrus. Distinct regions of the fusiform gyrus showed adaptation to either familiar faces or familiar names. However, there was no adaptation to sequences of faces and names with the same identity. Taken together, these results provide evidence for distinct, but overlapping, neural representations for words and faces in the fusiform gyrus. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
An economic evaluation of fusiform rust protection research
F.W. Cubbage; John M. Pye; T.P. Holmes; J.E. Wagner
2000-01-01
Fusiform rust is a widespread and damaging disease of loblolly pine (P. taeda) and slash pine (P. elliottii) in the South. Research has identified families of these pines with improved genetic resistance to the disease, allowing production and planting of resistant seedlings in areas at risk. This study compared the cost of fusiform rust research to the simulated...
Long-term changes in fusiform rust incidence in the southeastern United States
KaDonna C. Randolph; Ellis B. Cowling; Dale A. Starkey
2015-01-01
Fusiform rust is the most devastating disease of slash pine (Pinus elliottii) and loblolly pine (Pinus taeda) in the southeastern United States. Since the 1970s, the USDA Forest Service Forest Inventory and Analysis (FIA) Program has assessed fusiform rust incidence on its network of ground plots in 13 states across the...
Harvest intensity and competition control impacts on loblolly pine fusiform rust incidence
Robert J. Eaton; Paula Spaine; Felipe G. Sanchez
2006-01-01
The Long Term Soil Productivity experiment tests the effects of soil compaction, surface organic matter removal, and understory control on net primary productivity. An unintended consequence of these treatments may be an effect on the incidence of fusiform rust [Cronartium quercuum (Berk.) Miy. ex Shirai f. sp. fusiforme Burdsall et Snow]. Loblolly pine (Pinus...
Fusiform Rust of Southern Pines
W. R. Phelps; F. L. Czabator
1978-01-01
Fusiform rust, caused by the fungus Cronartium fusiforme Hedg. & Hunt ex Cumm., is distributed in the Southern United States from Maryland to Florida and west to Texas and southern Arkansas. Infections by the fungus, which develops at or near the point of infection, result in tapered, spindle-shaped swells, called galls, on branches and stems of pines. (see photo...
Nelson, Jessica R.; Liu, Ying; Fiez, Julie; Perfetti, Charles A.
2017-01-01
Using fMRI, we compared the patterns of fusiform activity produced by viewing English and Chinese for readers who were either English speakers learning Chinese, or Chinese-English bilinguals. The pattern of fusiform activity depended on both the writing system and the reader’s native language. Native Chinese speakers fluent in English recruited bilateral fusiform areas when viewing both Chinese and English. English speakers learning Chinese, however, used heavily left-lateralized fusiform regions when viewing English, but recruited an additional right fusiform region for viewing Chinese. Thus, English learners of Chinese show an accommodation pattern, in which the reading network accommodates the new writing system by adding neural resources that support its specific graphic requirements. Chinese speakers show an assimilation pattern, in which the reading network established for L1 includes procedures sufficient for the graphic demands of L2 without major change. PMID:18381767
Differential Development of Selectivity for Faces and Bodies in the Fusiform Gyrus
ERIC Educational Resources Information Center
Peelen, Marius V.; Glaser, Bronwyn; Vuilleumier, Patrik; Eliez, Stephan
2009-01-01
Viewing faces or bodies activates category-selective areas of visual cortex, including the fusiform face area (FFA), fusiform body area (FBA), and extrastriate body area (EBA). Here, using fMRI, we investigate the development of these areas, focusing on the right FFA and FBA. Despite the overlap of functionally defined FFA and FBA (54%-75%…
Henry Amerson; C. Dana Nelson; Thomas L. Kubisiak; E.George Kuhlman; Saul Garcia
2015-01-01
Nearly two decades of research on the host-pathogen interaction in fusiform rust of loblolly pine is detailed. Results clearly indicate that pathotype-specific genes in the host interacting with pathogen avirulence cause resistance as defined by the non-gall phenotype under favorable environmental conditions for disease development. In particular, nine fusiform rust...
Mapping fusiform rust resistance genes within a complex mating design of loblolly pine
Tania Quesada; Marcio F.R. Resende Jr.; Patricio Munoz; Jill L. Wegrzyn; David B. Neale; Matias Kirst; Gary F. Peter; Salvador A. Gezan; C.Dana Nelson; John M. Davis
2014-01-01
Fusiform rust resistance can involve gene-for-gene interactions where resistance (Fr) genes in the host interact with corresponding avirulence genes in the pathogen, Cronartium quercuum f.sp. fusiforme (Cqf). Here, we identify trees with Fr genes in a loblolly pine population derived from a complex mating design challenged with two Cqf inocula (one gall and 10 gall...
Nasr, Deena M; Flemming, Kelly D; Lanzino, Giuseppe; Cloft, Harry J; Kallmes, David F; Murad, Mohammad Hassan; Brinjikji, Waleed
2018-01-01
Vertebrobasilar non-saccular and dolichoectatic aneurysms (VBDA) are a rare type of aneurysm and are generally associated with poor prognosis. In order to better characterize the natural history of VBDAs, we performed a systematic review and meta-analysis of the literature to determine rates of mortality, growth, rupture, ischemia, and intraparenchymal hemorrhage. We searched the literature for longitudinal natural history studies of VBDA patients reporting clinical and imaging outcomes. Studied outcomes included annualized rates of growth, rupture, ischemic stroke, intracerebral hemorrhage (ICH), and mortality. We also studied the association between aneurysm morphology (dolichoectatic versus fusiform) and natural history. Meta-analysis was performed using a random-effects model using summary statistics from included studies. Fifteen studies with 827 patients and 5,093 patient-years were included. The overall annual mortality rate among patients with VBDAs was 13%/year (95% CI 8-19). Patients with fusiform aneurysms had a higher mortality rate than those with dolichoectatic aneurysms, but this did not reach statistical significance (12 vs. 8%, p = 0.11). The overall growth rate was 6%/year (95% CI 4-13). Patients with fusiform aneurysms had higher growth rates than those with dolichoectatic aneurysms (12 vs. 3%, p < 0.0001). The overall rupture rate was 3%/year (95% CI 1-5). Patients with fusiform aneurysms had higher rupture rates than those with dolichoectatic aneurysms (3 vs. 0%, p < 0.0001). The overall rate of ischemic stroke was 6%/year (95% CI 4-9). Patients with dolichoectatic aneurysms had higher ischemic stroke rates than those with fusiform aneurysms, but this did not reach statistical significance (8 vs. 4%, p = 0.13). The overall rate of ICH was 2%/year (95% CI 0-8) with no difference in rates between dolichoectatic and fusiform aneurysms (2 vs. 2%, p = 0.65). In general, the natural history of -VBDAs is poor. However, dolichoectatic and fusiform -VBDAs appear to have distinct natural histories with substantially higher growth and rupture associated with fusiform aneurysms. These findings suggest that these aneurysms should be considered separate entities. Further studies on the natural history of vertebrobasilar dolichoectatic and fusiform aneurysms with more complete follow-up are needed to better understand the risk factors for progression of these aneurysms. © 2018 S. Karger AG, Basel.
Tolerance of Loblolly Pines to Fusiform Rust
Charles H. Walkinshaw; James P. Barnett
1995-01-01
Loblolly pines (Pinus taeda L.) that were 8 to 17 yr old tolerated one to three fusiform rust (Cronartium quercuum [Berk.] Miyabe ex Shirai f. sp. fusiforme) galls in their stems.Families with four or more galls in their stems lost 2.5% or more of the trees by age 17.In living trees with less than four stem galls, diameter growth was comparable to...
M.T. Highsmith; L.H. Lott; C.D. Nelson
2005-01-01
Tip moth damage and fusiform rust incidence among families of three loblolly pine (Pinus taeda) parent trees from Mississippi, Louisiana, and Texas that were selected for southern pine bark beetle resistance and three slash pines (Pinus elliotti var. elliotti) selected for different levels of fusiform rust resistance, and five of their interspecific...
H.E. Stelzer; Robert L. Doudrick; Thomas L. Kubisiak; C. Dana Nelson
1999-01-01
Single-urediniospore cultures of the fusiform rust fungus were used to inoculate seedlings from 10 full-sib families of a five-parent slash pine diallel at two different times in 1994. The presence or absence of fusiform rust galls was recorded for each inoculated seedling at 9 months postinoculation, and percent infection levels for each family-inoculum-time...
Stefanescu, Roxana A; Shore, Susan E
2017-03-01
Cholinergic modulation contributes to adaptive sensory processing by controlling spontaneous and stimulus-evoked neural activity and long-term synaptic plasticity. In the dorsal cochlear nucleus (DCN), in vitro activation of muscarinic acetylcholine receptors (mAChRs) alters the spontaneous activity of DCN neurons and interacts with N -methyl-d-aspartate (NMDA) and endocannabinoid receptors to modulate the plasticity of parallel fiber synapses onto fusiform cells by converting Hebbian long-term potentiation to anti-Hebbian long-term depression. Because noise exposure and tinnitus are known to increase spontaneous activity in fusiform cells as well as alter stimulus timing-dependent plasticity (StTDP), it is important to understand the contribution of mAChRs to in vivo spontaneous activity and plasticity in fusiform cells. In the present study, we blocked mAChRs actions by infusing atropine, a mAChR antagonist, into the DCN fusiform cell layer in normal hearing guinea pigs. Atropine delivery leads to decreased spontaneous firing rates and increased synchronization of fusiform cell spiking activity. Consistent with StTDP alterations observed in tinnitus animals, atropine infusion induced a dominant pattern of inversion of StTDP mean population learning rule from a Hebbian to an anti-Hebbian profile. Units preserving their initial Hebbian learning rules shifted toward more excitatory changes in StTDP, whereas units with initial suppressive learning rules transitioned toward a Hebbian profile. Together, these results implicate muscarinic cholinergic modulation as a factor in controlling in vivo fusiform cell baseline activity and plasticity, suggesting a central role in the maladaptive plasticity associated with tinnitus pathology. NEW & NOTEWORTHY This study is the first to use a novel method of atropine infusion directly into the fusiform cell layer of the dorsal cochlear nucleus coupled with simultaneous recordings of neural activity to clarify the contribution of muscarinic acetylcholine receptors (mAChRs) to in vivo fusiform cell baseline activity and auditory-somatosensory plasticity. We have determined that blocking the mAChRs increases the synchronization of spiking activity across the fusiform cell population and induces a dominant pattern of inversion in their stimulus timing-dependent plasticity. These modifications are consistent with similar changes established in previous tinnitus studies, suggesting that mAChRs might have a critical contribution in mediating the maladaptive alterations associated with tinnitus pathology. Blocking mAChRs also resulted in decreased fusiform cell spontaneous firing rates, which is in contrast with their tinnitus hyperactivity, suggesting that changes in the interactions between the cholinergic and GABAergic systems might also be an underlying factor in tinnitus pathology. Copyright © 2017 the American Physiological Society.
A genomic map enriched for markers linked to Avr1 in Cronartium quercuum f.sp. fusiforme
Thomas L Kubisiak; Claire L Anderson; Henry V Amerson; Jason A Smith; John M Davis; C Dana Nelson
2011-01-01
A novel approach is presented to map avirulence gene Avr1 in the basidiomycete Cronartium quercuum f.sp. fusiforme, the causal agent of fusiform rust disease in pines. DNA markers tightly linked to resistance gene Fr1 in loblolly pine tree 10-5 were used to classify 10-5 seedling progeny as either resistant or susceptible. A single dikaryotic isolate (P2) heterozygous...
H.E. Stelzel; Robert L. Doudrick; Thomas L. Kubisiak
1997-01-01
Seedlings from 20, full-sib families five-parent slash pine diallel were inoculated using two, single urediniospore-derived cultures of the fusiform rust fungus on two different dates during the 1994 growing season. Presence or absence of fusiform rust galls was recorded for each inoculated seedling at nine months post-inoculation and percent infection levels for each...
Park, Shin Young; Kang, Sujin; Ha, Sang-Do
2016-06-01
This study investigated the effects of gamma radiation (3-10 kGy) upon the inactivation of murine norovirus-1 (MNV-1), a human norovirus (NoV) surrogate. The edible green and brown algae, fulvescens (Capsosiphon fulvescens) and fusiforme (Hizikia fusiforme), respectively, were experimentally contaminated with 5-6 log10 plaque forming units (PFU)/ml MNV-1. The titer of MNV-1 significantly decreased (P < 0.05) as the dose of gamma radiation increased. MNV-1 titer decreased to 1.16-2.46 log10 PFU/ml in fulvescens and 0.37-2.21 log10 PFU/ml in fusiforme following irradiation. However, all Hunters ('L', 'a' and 'b') and sensory qualities (appearance, color, flavor, texture and overall acceptability) were not significantly (P > 0.05) different in both algae following gamma radiation. The Weibull model was used to generate non-linear survival curves and to calculate Gd values for 1, 2, and 3 log10 reductions of MNV-1 in fulvescens (R(2) = 0.992) and fusiforme (R(2) = 0.988). A Gd value of 1 (90% reduction) corresponded to 2.89 and 3.93 kGy in fulvescens and fusiforme, respectively. A Gd value of 2 (99% reduction) corresponded to 7.75 and 9.02 kGy in fulvescens and fusiforme, respectively, while a Gd value of 3 (99.9% reduction) in fulvescens and fusiforme corresponded with 13.83 and 14.93 kGy of gamma radiation, respectively. A combination of gamma radiation at medium doses and other treatments could be used to inactivate ≥ 3 log10 PFU/ml NoV in seaweed. The inactivation kinetics due to gamma radiation against NoV in these algae might provide basic information for use in seaweed processing and distribution. Copyright © 2015. Published by Elsevier Ltd.
Tom E. Starkey; Scott A. Enebak
2011-01-01
Laboratory, greenhouse, and field trials have shown Proline® to be efficacious against three fungal pathogens that cause damage and seedling mortality in forest seedling nurseries. Disease control using Proline® has been obtained at 365 ml/ha (5 fl oz/ac) for the control of fusiform rust (Cronartium quercuum f.sp. fusiforme) on loblolly pine (Pinus taeda) in both...
Giant Virus Megavirus chilensis Encodes the Biosynthetic Pathway for Uncommon Acetamido Sugars*
Piacente, Francesco; De Castro, Cristina; Jeudy, Sandra; Molinaro, Antonio; Salis, Annalisa; Damonte, Gianluca; Bernardi, Cinzia; Abergel, Chantal; Tonetti, Michela G.
2014-01-01
Giant viruses mimicking microbes, by the sizes of their particles and the heavily glycosylated fibrils surrounding their capsids, infect Acanthamoeba sp., which are ubiquitous unicellular eukaryotes. The glycans on fibrils are produced by virally encoded enzymes, organized in gene clusters. Like Mimivirus, Megavirus glycans are mainly composed of virally synthesized N-acetylglucosamine (GlcNAc). They also contain N-acetylrhamnosamine (RhaNAc), a rare sugar; the enzymes involved in its synthesis are encoded by a gene cluster specific to Megavirus close relatives. We combined activity assays on two enzymes of the pathway with mass spectrometry and NMR studies to characterize their specificities. Mg534 is a 4,6-dehydratase 5-epimerase; its three-dimensional structure suggests that it belongs to a third subfamily of inverting dehydratases. Mg535, next in the pathway, is a bifunctional 3-epimerase 4-reductase. The sequential activity of the two enzymes leads to the formation of UDP-l-RhaNAc. This study is another example of giant viruses performing their glycan synthesis using enzymes different from their cellular counterparts, raising again the question of the origin of these pathways. PMID:25035429
Wu, Chen; Xu, Bai-Nan; Sun, Zheng-Hui; Wang, Fu-Yu; Liu, Lei; Zhang, Xiao-Jun; Zhou, Ding-Biao
2012-01-01
Unclippable fusiform basilar trunk aneurysm is a formidable condition for surgical treatment. The aim of this study was to establish a computational model and to investigate the hemodynamic characteristics in a fusiform basilar trunk aneurysm. The three-dimensional digital model of a fusiform basilar trunk aneurysm was constructed using MIMICS, ANSYS and CFX software. Different hemodynamic modalities and border conditions were assigned to the model. Thirty points were selected randomly on the wall and within the aneurysm. Wall total pressure (WTP), wall shear stress (WSS), and blood flow velocity of each point were calculated and hemodynamic status was compared between different modalities. The quantitative average values of the 30 points on the wall and within the aneurysm were obtained by computational calculation point by point. The velocity and WSS in modalities A and B were different from those of the remaining 5 modalities; and the WTP in modalities A, E and F were higher than those of the remaining 4 modalities. The digital model of a fusiform basilar artery aneurysm is feasible and reliable. This model could provide some important information to clinical treatment options.
Paskaleva, Elena E; Lin, Xudong; Duus, Karen; McSharry, James J; Veille, Jean-Claude L; Thornber, Carol; Liu, Yanze; Lee, David Yu-Wei; Canki, Mario
2008-01-01
Sargassum fusiforme (Harvey) Setchell has been shown to be a highly effective inhibitor of HIV-1 infection. To identify its mechanism of action, we performed bioactivity-guided fractionation on Sargassum fusiforme mixture. Here, we report isolation of a bioactive fraction SP4-2 (S. fusiforme), which at 8 μg/ml inhibited HIV-1 infection by 86.9%, with IC50 value of 3.7 μg. That represents 230-fold enhancement of antiretroviral potency as compared to the whole extract. Inhibition was mediated against both CXCR4 (X4) and CCR5 (R5) tropic HIV-1. Specifically, 10 μg/ml SP4-2 blocked HIV-1 fusion and entry by 53%. This effect was reversed by interaction of SP4-2 with sCD4, suggesting that S. fusiforme inhibits HIV-1 infection by blocking CD4 receptor, which also explained observed inhibition of both X4 and R5-tropic HIV-1. SP4-2 also inhibited HIV-1 replication after virus entry, by directly inhibiting HIV-1 reverse transcriptase (RT) in a dose dependent manner by up to 79%. We conclude that the SP4-2 fraction contains at least two distinct and biologically active molecules, one that inhibits HIV-1 fusion by interacting with CD4 receptor, and another that directly inhibits HIV-1 RT. We propose that S. fusiforme is a lead candidate for anti-HIV-1 drug development. PMID:18197976
Neocortical neuron types in Xenarthra and Afrotheria: implications for brain evolution in mammals.
Sherwood, Chet C; Stimpson, Cheryl D; Butti, Camilla; Bonar, Christopher J; Newton, Alisa L; Allman, John M; Hof, Patrick R
2009-02-01
Interpreting the evolution of neuronal types in the cerebral cortex of mammals requires information from a diversity of species. However, there is currently a paucity of data from the Xenarthra and Afrotheria, two major phylogenetic groups that diverged close to the base of the eutherian mammal adaptive radiation. In this study, we used immunohistochemistry to examine the distribution and morphology of neocortical neurons stained for nonphosphorylated neurofilament protein, calbindin, calretinin, parvalbumin, and neuropeptide Y in three xenarthran species-the giant anteater (Myrmecophaga tridactyla), the lesser anteater (Tamandua tetradactyla), and the two-toed sloth (Choloepus didactylus)-and two afrotherian species-the rock hyrax (Procavia capensis) and the black and rufous giant elephant shrew (Rhynchocyon petersi). We also studied the distribution and morphology of astrocytes using glial fibrillary acidic protein as a marker. In all of these species, nonphosphorylated neurofilament protein-immunoreactive neurons predominated in layer V. These neurons exhibited diverse morphologies with regional variation. Specifically, high proportions of atypical neurofilament-enriched neuron classes were observed, including extraverted neurons, inverted pyramidal neurons, fusiform neurons, and other multipolar types. In addition, many projection neurons in layers II-III were found to contain calbindin. Among interneurons, parvalbumin- and calbindin-expressing cells were generally denser compared to calretinin-immunoreactive cells. We traced the evolution of certain cortical architectural traits using phylogenetic analysis. Based on our reconstruction of character evolution, we found that the living xenarthrans and afrotherians show many similarities to the stem eutherian mammal, whereas other eutherian lineages display a greater number of derived traits.
Objects and categories: feature statistics and object processing in the ventral stream.
Tyler, Lorraine K; Chiu, Shannon; Zhuang, Jie; Randall, Billi; Devereux, Barry J; Wright, Paul; Clarke, Alex; Taylor, Kirsten I
2013-10-01
Recognizing an object involves more than just visual analyses; its meaning must also be decoded. Extensive research has shown that processing the visual properties of objects relies on a hierarchically organized stream in ventral occipitotemporal cortex, with increasingly more complex visual features being coded from posterior to anterior sites culminating in the perirhinal cortex (PRC) in the anteromedial temporal lobe (aMTL). The neurobiological principles of the conceptual analysis of objects remain more controversial. Much research has focused on two neural regions-the fusiform gyrus and aMTL, both of which show semantic category differences, but of different types. fMRI studies show category differentiation in the fusiform gyrus, based on clusters of semantically similar objects, whereas category-specific deficits, specifically for living things, are associated with damage to the aMTL. These category-specific deficits for living things have been attributed to problems in differentiating between highly similar objects, a process that involves the PRC. To determine whether the PRC and the fusiform gyri contribute to different aspects of an object's meaning, with differentiation between confusable objects in the PRC and categorization based on object similarity in the fusiform, we carried out an fMRI study of object processing based on a feature-based model that characterizes the degree of semantic similarity and difference between objects and object categories. Participants saw 388 objects for which feature statistic information was available and named the objects at the basic level while undergoing fMRI scanning. After controlling for the effects of visual information, we found that feature statistics that capture similarity between objects formed category clusters in fusiform gyri, such that objects with many shared features (typical of living things) were associated with activity in the lateral fusiform gyri whereas objects with fewer shared features (typical of nonliving things) were associated with activity in the medial fusiform gyri. Significantly, a feature statistic reflecting differentiation between highly similar objects, enabling object-specific representations, was associated with bilateral PRC activity. These results confirm that the statistical characteristics of conceptual object features are coded in the ventral stream, supporting a conceptual feature-based hierarchy, and integrating disparate findings of category responses in fusiform gyri and category deficits in aMTL into a unifying neurocognitive framework.
High molecular weight lectin isolated from the mucus of the giant African snail Achatina fulica.
Ito, Shigeru; Shimizu, Masahiro; Nagatsuka, Maki; Kitajima, Seiji; Honda, Michiyo; Tsuchiya, Takahide; Kanzawa, Nobuyuki
2011-01-01
To understand better the host defense mechanisms of mollusks against pathogens, we examined the anti-microbial activity of mucus from the giant African snail Achatina fulica. Hemagglutination activity of the mucus secreted by the integument of snails inoculated with Escherichia coli was observed to increase and to cause hemagglutination of rabbit red blood cells. Purification of the snail mucus lectin by sequential column chromatography revealed that the relative molecular mass of the lectin was 350 kDa. The hemagglutination activity of the lectin was Ca(2+)-dependent and was inhibited by galactose. Growth arrest tests showed that the lectin did not inhibit bacterial growth, but did induce agglutination of gram-positive and gram-negative bacteria. Tissue distribution analyses using a polyclonal antibody revealed that the lectin was expressed in the tissues of the mantle collar. The lectin isolated from the mucus of the snail appeared to contribute to its innate immunity.
Giant virus Megavirus chilensis encodes the biosynthetic pathway for uncommon acetamido sugars.
Piacente, Francesco; De Castro, Cristina; Jeudy, Sandra; Molinaro, Antonio; Salis, Annalisa; Damonte, Gianluca; Bernardi, Cinzia; Abergel, Chantal; Tonetti, Michela G
2014-08-29
Giant viruses mimicking microbes, by the sizes of their particles and the heavily glycosylated fibrils surrounding their capsids, infect Acanthamoeba sp., which are ubiquitous unicellular eukaryotes. The glycans on fibrils are produced by virally encoded enzymes, organized in gene clusters. Like Mimivirus, Megavirus glycans are mainly composed of virally synthesized N-acetylglucosamine (GlcNAc). They also contain N-acetylrhamnosamine (RhaNAc), a rare sugar; the enzymes involved in its synthesis are encoded by a gene cluster specific to Megavirus close relatives. We combined activity assays on two enzymes of the pathway with mass spectrometry and NMR studies to characterize their specificities. Mg534 is a 4,6-dehydratase 5-epimerase; its three-dimensional structure suggests that it belongs to a third subfamily of inverting dehydratases. Mg535, next in the pathway, is a bifunctional 3-epimerase 4-reductase. The sequential activity of the two enzymes leads to the formation of UDP-l-RhaNAc. This study is another example of giant viruses performing their glycan synthesis using enzymes different from their cellular counterparts, raising again the question of the origin of these pathways. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Design and model for the giant magnetostrictive actuator used on an electronic controlled injector
NASA Astrophysics Data System (ADS)
Xue, Guangming; Zhang, Peilin; He, Zhongbo; Li, Ben; Rong, Ce
2017-05-01
Giant magnetostrictive actuator (GMA) may be a promising candidate actuator to drive an electronic controlled injector as giant magnetostrictive material (GMM) has excellent performances as large output, fast response and high operating stability etc. To meet the driving requirement of the injector, the GMA should produce maximal shortening displacement when energized. An unbiased GMA with a ‘T’ shaped output rod is designed to reach the target. Furthermore, an open-hold-fall type driving voltage is exerted on the actuator coil to accelerate the response speed of the coil current. The actuator displacement is modeled from establishing the sub-models of coil current, magnetic field within GMM rod, magnetization and magnetostrictive strain sequentially. Two modifications are done to make the model more accurate. Firstly, consider the model fails to compute the transient-state response precisely, a dead-zone and delay links are embedded into the coil current sub-model. Secondly, as the magnetization and magnetostrictive strain sub-models just influence the change rule of the transient-state response the linear magnetostrictive strain-magnetic field sub-model is introduced. From experimental results, the modified model with linear magnetostrictive stain expression can predict the actuator displacement quite effectively.
Direct mechanical dispersion and in vitro culture of fusiform rust fungus single basidiospores
Alex M. Diner
1999-01-01
Single basidiospores of Cronartium quercuum f. sp. fusiforme were cast from telia suspended over a solidified nutritional medium affixed to an operating orbital shaker. Spores thus mechanically dispersed and isolated, germinated to develop single-genotype colonies.
Bidirectional synaptic plasticity in the cerebellum-like mammalian dorsal cochlear nucleus
NASA Astrophysics Data System (ADS)
Fujino, Kiyohiro; Oertel, Donata
2003-01-01
The dorsal cochlear nucleus integrates acoustic with multimodal sensory inputs from widespread areas of the brain. Multimodal inputs are brought to spiny dendrites of fusiform and cartwheel cells in the molecular layer by parallel fibers through synapses that are subject to long-term potentiation and long-term depression. Acoustic cues are brought to smooth dendrites of fusiform cells in the deep layer by auditory nerve fibers through synapses that do not show plasticity. Plasticity requires Ca2+-induced Ca2+ release; its sensitivity to antagonists of N-methyl-D-aspartate and metabotropic glutamate receptors differs in fusiform and cartwheel cells.
Zhou, Ge; Liang, Feng-Xia; Romih, Rok; Wang, Zefang; Liao, Yi; Ghiso, Jorge; Luque-Garcia, Jose L.; Neubert, Thomas A.; Kreibich, Gert; Alonso, Miguel A.; Schaeren-Wiemers, Nicole; Sun, Tung-Tien
2012-01-01
The apical surface of mammalian bladder urothelium is covered by large (500–1000 nm) two-dimensional (2D) crystals of hexagonally packed 16-nm uroplakin particles (urothelial plaques), which play a role in permeability barrier function and uropathogenic bacterial binding. How the uroplakin proteins are delivered to the luminal surface is unknown. We show here that myelin-and-lymphocyte protein (MAL), a 17-kDa tetraspan protein suggested to be important for the apical sorting of membrane proteins, is coexpressed with uroplakins in differentiated urothelial cell layers. MAL depletion in Madin–Darby canine kidney cells did not affect, however, the apical sorting of uroplakins, but it decreased the rate by which uroplakins were inserted into the apical surface. Moreover, MAL knockout in vivo led to the accumulation of fusiform vesicles in mouse urothelial superficial umbrella cells, whereas MAL transgenic overexpression in vivo led to enhanced exocytosis and compensatory endocytosis, resulting in the accumulation of the uroplakin-degrading multivesicular bodies. Finally, although MAL and uroplakins cofloat in detergent-resistant raft fractions, they are associated with distinct plaque and hinge membrane subdomains, respectively. These data suggest a model in which 1) MAL does not play a role in the apical sorting of uroplakins; 2) the propensity of uroplakins to polymerize forming 16-nm particles and later large 2D crystals that behave as detergent-resistant (giant) rafts may drive their apical targeting; 3) the exclusion of MAL from the expanding 2D crystals of uroplakins explains the selective association of MAL with the hinge areas in the uroplakin-delivering fusiform vesicles, as well as at the apical surface; and 4) the hinge-associated MAL may play a role in facilitating the incorporation of the exocytic uroplakin vesicles into the corresponding hinge areas of the urothelial apical surface. PMID:22323295
Manzoor, N.F.; Chen, G.; Kaltenbach, J.A.
2013-01-01
Increased spontaneous firing (hyperactivity) is induced in fusiform cells of the dorsal cochlear nucleus (DCN) following intense sound exposure and is implicated as a possible neural correlate of noise-induced tinnitus. Previous studies have shown that in normal hearing animals, fusiform cell activity can be modulated by activation of parallel fibers, which represent the axons of granule cells. The modulation consists of a transient excitation followed by a more prolonged period of inhibition, presumably reflecting direct excitatory inputs to fusiform cells and an indirect inhibitory input to fusiform cells from the granule cell-cartwheel cell system. We hypothesized that since granule cells can be activated by cholinergic inputs, it might be possible to suppress tinnitus-related hyperactivity of fusiform cells using the cholinergic agonist, carbachol. To test this hypothesis, we recorded multiunit spontaneous activity in the fusiform soma layer (FSL) of the DCN in control and tone-exposed hamsters (10 kHz, 115 dB SPL, 4 h) before and after application of carbachol to the DCN surface. In both exposed and control animals, 100 µM carbachol had a transient excitatory effect on spontaneous activity followed by a rapid weakening of activity to near or below normal levels. In exposed animals, the weakening of activity was powerful enough to completely abolish the hyperactivity induced by intense sound exposure. This suppressive effect was partially reversed by application of atropine and was not associated with significant changes in neural best frequencies (BF) or BF thresholds. These findings demonstrate that noise-induced hyperactivity can be pharmacologically controlled and raise the possibility that attenuation of tinnitus may be achievable by using an agonist of the cholinergic system. PMID:23721928
Manzoor, N F; Chen, G; Kaltenbach, J A
2013-07-26
Increased spontaneous firing (hyperactivity) is induced in fusiform cells of the dorsal cochlear nucleus (DCN) following intense sound exposure and is implicated as a possible neural correlate of noise-induced tinnitus. Previous studies have shown that in normal hearing animals, fusiform cell activity can be modulated by activation of parallel fibers, which represent the axons of granule cells. The modulation consists of a transient excitation followed by a more prolonged period of inhibition, presumably reflecting direct excitatory inputs to fusiform cells and an indirect inhibitory input to fusiform cells from the granule cell-cartwheel cell system. We hypothesized that since granule cells can be activated by cholinergic inputs, it might be possible to suppress tinnitus-related hyperactivity of fusiform cells using the cholinergic agonist, carbachol. To test this hypothesis, we recorded multiunit spontaneous activity in the fusiform soma layer (FSL) of the DCN in control and tone-exposed hamsters (10 kHz, 115 dB SPL, 4h) before and after application of carbachol to the DCN surface. In both exposed and control animals, 100 μM carbachol had a transient excitatory effect on spontaneous activity followed by a rapid weakening of activity to near or below normal levels. In exposed animals, the weakening of activity was powerful enough to completely abolish the hyperactivity induced by intense sound exposure. This suppressive effect was partially reversed by application of atropine and was usually not associated with significant changes in neural best frequencies (BF) or BF thresholds. These findings demonstrate that noise-induced hyperactivity can be pharmacologically controlled and raise the possibility that attenuation of tinnitus may be achievable by using an agonist of the cholinergic system. Copyright © 2013 Elsevier B.V. All rights reserved.
Liu, Feng; Pang, Shaojun; Luo, Minbo
2016-01-01
Sargassum fusiforme (Harvey) Setchell (=Hizikia fusiformis (Harvey) Okamura) is one of the most important economic seaweeds for mariculture in China. In this study, we present the complete mitochondrial genome of S. fusiforme. The genome is 34,696 bp in length with circular organization, encoding the standard set of three ribosomal RNA genes (rRNA), 25 transfer RNA genes (tRNA), 35 protein-coding genes, and two conserved open reading frames (ORFs). Its total AT content is 62.47%, lower than other brown algae except Pylaiella littoralis. The mitogenome carries 1571 bp of intergenic region constituting 4.53% of the genome, and 13 pairs of overlapping genes with the overlap size from 1 to 90 bp. The phylogenetic analyses based on 35 protein-coding genes reveal that S. fusiforme has a closer evolutionary relationship with Sargassum muticum than Sargassum horneri, indicating Hizikia are not distinct evolutionary entity and should be reduced to synonymy with Sargassum.
Equilibrium and Kinetic Studies of Cd2+ Biosorption by the Brown Algae Sargassum fusiforme
Zou, Hui-Xi; Li, Nan; Wang, Li-Hua; Yu, Ping; Yan, Xiu-Feng
2014-01-01
A fundamental investigation of the biosorption of Cd2+ from aqueous solution by the edible seaweed Sargassum fusiforme was performed under batch conditions. The influences of experimental parameters, such as the initial pH, sorption time, temperature, and initial Cd2+ concentration, on Cd2+ uptake by S. fusiforme were evaluated. The results indicated that the biosorption of Cd2+ depended on the initial Cd2+ concentration, as well as the pH. The uptake of Cd2+ could be described by the Langmuir isotherm model, and both the Langmuir biosorption equilibrium constant and the maximum biosorption capacity of the monolayer decreased with increasing temperature, thereby confirming the exothermic character of the sorption process. The biosorption kinetics follows the pseudo-second-order kinetic model, and intraparticle diffusion is the sole rate-limiting step for the entire biosorption period. These fundamental equilibrium and kinetic results can support further studies to the removal of cadmium from S. fusiforme harvested from cadmium-polluted waters. PMID:24736449
Chen, Peichao; He, Dan; Zhang, Ya; Yang, Shanshan; Chen, Liujun; Wang, Shengqin; Zou, Huixi; Liao, Zhiyong; Zhang, Xu; Wu, Mingjiang
2016-11-09
Aging is a complex issue, which results in a progressive decline process in cellular protection and physiological functions. Illustrating the causes of aging and pharmaceutical interference with the aging process has been a pivotal issue for thousands of years. Sargassum fusiforme (S. fusiforme), a kind of brown alga, is also named the "longevity vegetable" as it is not only a kind of food, but also used as an herb in traditional Chinese Medicine for maintaining health and treatment of thyroid disease, cardiovascular disease and so on. But how S. fusiforme promotes longevity is vastly equivocal. We got clues from S. fusiforme polysaccharides, which exhibited antioxidant activity, but the underlying mechanisms remained unclear. In this study, we evaluated the antioxidant effect and the possible mechanisms that S. fusiforme polysaccharides have against d-galactose-induced aging and chronic aging. We selected the SFPS as the candidate for antioxidant defense evaluation, which is a type of S. fusiforme polysaccharide with strong free radical scavenging activity and non-toxicity. It revealed that the antioxidant defense of the d-galactose-induced mice was markedly recovered when they were intragastrically administrated with the SFPS. However, oxidative damage may not be the only cause of aging. We further evaluated the function of the SFPS in the chronic aging mice. Intriguingly, we even found an obvious aging phenotype in the middle aged male ICR mice, which showed a significant decline in Nrf2-dependent cytoprotection. When 9-month old male ICR mice were treated with the SFPS for 2 months or even 11 months to their mean survival age, experimental measurements showed that the SFPS significantly promoted the antioxidant defense and mitochondrial integrity during aging. Furthermore, we suggest that the SFPS promotes Nrf2-dependent cytoprotection by upregulating the nuclear Nrf2 translocation, which may be mediated by p21 and JNK dependent pathways. These results suggest that the SFPS may decelerate the aging process by enhancing Nrf2-dependent cytoprotection, especially antioxidant defense.
Marui, Akira; Mochizuki, Takaaki; Koyama, Tadaaki; Mitsui, Norimasa
2007-11-01
Predicting the risk factors for late aortic events in patients with type B acute aortic dissection without complications may help to determine a therapeutic strategy for this disorder. We investigated whether late aortic events in type B acute aortic dissection can be predicted accurately by an index that expresses the degree of fusiform dilatation of the proximal descending aorta during the acute phase; this index can be calculated as follows: (maximum diameter of the proximal descending aorta)/(diameter of the distal aortic arch + diameter of the descending aorta at the pulmonary artery level). Patients with type B acute aortic dissection without complications (n = 141) were retrospectively analyzed to determine the predictors of late aortic events; these include aortic dilatation, rupture, refractory pain, organ ischemia, rapid aortic enlargement, and rapid enlargement of ulcer-like projections. The fusiform index in patients with late aortic events (0.59) was higher than that in patients without late aortic events (0.53, P < .01). Patients with a higher fusiform index exhibited aortic dilatation earlier than those with a lower fusiform index. By multivariate analysis, we conclude that the predominant independent predictors of late aortic events were a maximum aortic diameter of 40 mm or more, a patent false lumen, and a fusiform index of 0.64 or more (hazard ratios, 3.18, 2.64, and 2.73, respectively). The values of actuarial freedom from aortic events for patients with all 3 predictors at 1, 5, and 10 years were 22%, 17%, and 8%, respectively, whereas the values in those without these predictors were 97%, 94%, and 90%, respectively. The degree of fusiform dilatation of the proximal descending aorta, a patent false lumen, and a large aortic diameter can be predominant predictors of late aortic events in patients with type B acute aortic dissection. Patients with these predictors should be recommended to undergo early interventions (surgery or stent-graft implantation) or at least be closely followed up during the chronic phase before such events develop.
Excess copper induced proteomic changes in the marine brown algae Sargassum fusiforme.
Zou, Hui-Xi; Pang, Qiu-Ying; Zhang, Ai-Qin; Lin, Li-Dong; Li, Nan; Yan, Xiu-Feng
2015-01-01
Copper (Cu) is an essential micronutrient for algal growth and development; however, it is also generally considered to be one of the most toxic metals when present at higher levels. Seaweeds are often exposed to low concentrations of metals, including Cu, for long time periods. In cases of ocean outfall, they may even be abruptly exposed to high levels of metals. The physiological processes that are active under Cu stress are largely unknown. In this study, the brown macroalga Sargassum fusiforme was cultured in fresh seawater at final Cu concentrations of 0, 4, 8, 24 and 47 μM. The Cu(2+) concentration and chlorophyll autofluorescence were measured to establish the toxic effects of Cu on this economically important seaweed. The accumulation of Cu by S. fusiforme was also dependent upon the external Cu concentration. Algal growth displayed a general decline with increasing media Cu concentrations, indicating that S. fusiforme was able to tolerate Cu stress at low concentrations, while it was negatively impacted at high concentrations. The term "acute stress" was employed to indicate exposure to high Cu concentrations for 1 day in this study. On the other hand, "chronic stress" was defined as exposure to lower sub-lethal Cu concentrations for 7 days. Proteins were extracted from control and Cu-treated S. fusiforme samples and separated by two-dimensional gel electrophoresis. Distinct patterns of protein expression in the acute and chronic stress conditions were observed. Proteins related to energy metabolism and photosynthesis were reduced significantly, whereas those related to carbohydrate metabolism, protein destination, RNA degradation and signaling regulation were induced in S. fusiforme in response to acute copper stress. Energy metabolism-related proteins were significantly induced by chronic Cu stress. Proteins from other functional groups, such as those related to membranes and transport, were present in minor quantities. These results suggest that S. fusiforme is sensitive to excess Cu, regardless of the presence of acute or chronic stress. We discuss the possible function of these identified proteins, taking into consideration the information available from other plant models. Copyright © 2014 Elsevier Inc. All rights reserved.
Zhang, Tong; Zhang, Rong; Zhang, Liang; Zhang, Zhihe; Hou, Rong; Wang, Hairui; Loeffler, I Kati; Watson, David G; Kennedy, Malcolm W
2015-01-01
Ursids (bears) in general, and giant pandas in particular, are highly altricial at birth. The components of bear milks and their changes with time may be uniquely adapted to nourish relatively immature neonates, protect them from pathogens, and support the maturation of neonatal digestive physiology. Serial milk samples collected from three giant pandas in early lactation were subjected to untargeted metabolite profiling and multivariate analysis. Changes in milk metabolites with time after birth were analysed by Principal Component Analysis, Hierarchical Cluster Analysis and further supported by Orthogonal Partial Least Square-Discriminant Analysis, revealing three phases of milk maturation: days 1-6 (Phase 1), days 7-20 (Phase 2), and beyond day 20 (Phase 3). While the compositions of Phase 1 milks were essentially indistinguishable among individuals, divergences emerged during the second week of lactation. OPLS regression analysis positioned against the growth rate of one cub tentatively inferred a correlation with changes in the abundance of a trisaccharide, isoglobotriose, previously observed to be a major oligosaccharide in ursid milks. Three artificial milk formulae used to feed giant panda cubs were also analysed, and were found to differ markedly in component content from natural panda milk. These findings have implications for the dependence of the ontogeny of all species of bears, and potentially other members of the Carnivora and beyond, on the complexity and sequential changes in maternal provision of micrometabolites in the immediate period after birth.
Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics
NASA Astrophysics Data System (ADS)
Weiss, Marian; Frohnmayer, Johannes Patrick; Benk, Lucia Theresa; Haller, Barbara; Janiesch, Jan-Willi; Heitkamp, Thomas; Börsch, Michael; Lira, Rafael B.; Dimova, Rumiana; Lipowsky, Reinhard; Bodenschatz, Eberhard; Baret, Jean-Christophe; Vidakovic-Koch, Tanja; Sundmacher, Kai; Platzman, Ilia; Spatz, Joachim P.
2018-01-01
Compartments for the spatially and temporally controlled assembly of biological processes are essential towards cellular life. Synthetic mimics of cellular compartments based on lipid-based protocells lack the mechanical and chemical stability to allow their manipulation into a complex and fully functional synthetic cell. Here, we present a high-throughput microfluidic method to generate stable, defined sized liposomes termed `droplet-stabilized giant unilamellar vesicles (dsGUVs)’. The enhanced stability of dsGUVs enables the sequential loading of these compartments with biomolecules, namely purified transmembrane and cytoskeleton proteins by microfluidic pico-injection technology. This constitutes an experimental demonstration of a successful bottom-up assembly of a compartment with contents that would not self-assemble to full functionality when simply mixed together. Following assembly, the stabilizing oil phase and droplet shells are removed to release functional self-supporting protocells to an aqueous phase, enabling them to interact with physiologically relevant matrices.
A Common Neural Substrate for Perceiving and Knowing about Color
ERIC Educational Resources Information Center
Simmons, W. Kyle; Ramjee, Vimal; Beauchamp, Michael S.; McRae, Ken; Martin, Alex; Barsalou, Lawrence W.
2007-01-01
Functional neuroimaging research has demonstrated that retrieving information about object-associated colors activates the left fusiform gyrus in posterior temporal cortex. Although regions near the fusiform have previously been implicated in color perception, it remains unclear whether color knowledge retrieval actually activates the color…
Dickerson, B C; Miller, S L; Greve, D N; Dale, A M; Albert, M S; Schacter, D L; Sperling, R A
2007-01-01
The ability to spontaneously recall recently learned information is a fundamental mnemonic activity of daily life, but has received little study using functional neuroimaging. We developed a functional MRI (fMRI) paradigm to study regional brain activity during encoding that predicts free recall. In this event-related fMRI study, ten lists of fourteen pictures of common objects were shown to healthy young individuals and regional brain activity during encoding was analyzed based on subsequent free recall performance. Free recall of items was predicted by activity during encoding in hippocampal, fusiform, and inferior prefrontal cortical regions. Within-subject variance in free recall performance for the ten lists was predicted by a linear combination of condition-specific inferior prefrontal, hippocampal, and fusiform activity. Recall performance was better for lists in which prefrontal activity was greater for all items of the list and hippocampal and fusiform activity were greater specifically for items that were recalled from the list. Thus, the activity of medial temporal, fusiform, and prefrontal brain regions during the learning of new information is important for the subsequent free recall of this information. These fronto-temporal brain regions act together as a large-scale memory-related network, the components of which make distinct yet interacting contributions during encoding that predict subsequent successful free recall performance.
Dickerson, B.C.; Miller, S.L.; Greve, D.N.; Dale, A.M.; Albert, M.S.; Schacter, D.L.; Sperling, R.A.
2009-01-01
The ability to spontaneously recall recently learned information is a fundamental mnemonic activity of daily life, but has received little study using functional neuroimaging. We developed a functional MRI (fMRI) paradigm to study regional brain activity during encoding that predicts free recall. In this event-related fMRI study, ten lists of fourteen pictures of common objects were shown to healthy young individuals and regional brain activity during encoding was analyzed based on subsequent free recall performance. Free recall of items was predicted by activity during encoding in hippocampal, fusiform, and inferior prefrontal cortical regions. Within-subject variance in free recall performance for the ten lists was predicted by a linear combination of condition-specific inferior prefrontal, hippocampal, and fusiform activity. Recall performance was better for lists in which pre-frontal activity was greater for all items of the list and hippocampal and fusi-form activity were greater specifically for items that were recalled from the list. Thus, the activity of medial temporal, fusiform, and prefrontal brain regions during the learning of new information is important for the subsequent free recall of this information. These fronto-temporal brain regions act together as a large-scale memory-related network, the components of which make distinct yet interacting contributions during encoding that predict subsequent successful free recall performance. PMID:17604356
L.G. Baker; Pauline Spaine; S.F. Covert
2006-01-01
Cronartium quercuum f. sp. fusiforme is an obligate pathogen of pine and oak. Its basidiospores are specifically adapted to recognize and establish infections on the pine host. Depending on environmental cues, the basidiospores can germinate directly, which typically leads to infection of pine,...
NASA Astrophysics Data System (ADS)
Zhang, Hang; Yao, Li; Long, Zhiying
2011-03-01
Motor imagery training, as an effective strategy, has been more and more applied to mental disorders rehabilitation and motor skill learning. Studies on the neural mechanism underlying motor imagery have suggested that such effectiveness may be related to the functional congruence between motor execution and motor imagery. However, as compared to the studies on motor imagery, the studies on motor imagery training are much fewer. The functional alterations associated with motor imagery training and the effectiveness of motor imagery training on motor performance improvement still needs further investigation. Using fMRI, we employed a sequential finger tapping paradigm to explore the functional alterations associated with motor imagery training in both motor execution and motor imagery task. We hypothesized through 14 consecutive days motor imagery training, the motor performance could be improved and the functional congruence between motor execution and motor imagery would be sustained form pre-training phase to post-training phase. Our results confirmed the effectiveness of motor imagery training in improving motor performance and demonstrated in both pre and post-training phases, motor imagery and motor execution consistently sustained the congruence in functional neuroanatomy, including SMA (supplementary motor cortex), PMA (premotor area); M1( primary motor cortex) and cerebellum. Moreover, for both execution and imagery tasks, a similar functional alteration was observed in fusiform through motor imagery training. These findings provided an insight into the effectiveness of motor imagery training and suggested its potential therapeutic value in motor rehabilitation.
Neurons in the Fusiform Gyrus are Fewer and Smaller in Autism
ERIC Educational Resources Information Center
van Kooten, Imke A. J.; Palmen, Saskia J. M. C.; von Cappeln, Patricia; Steinbusch, Harry W. M.; Korr, Hubert; Heinsen, Helmut; Hof, Patrick R.; van Engeland, Herman; Schmitz, Christoph
2008-01-01
Abnormalities in face perception are a core feature of social disabilities in autism. Recent functional magnetic resonance imaging studies showed that patients with autism could perform face perception tasks. However, the fusiform gyrus (FG) and other cortical regions supporting face processing in controls are hypoactive in patients with autism.…
Decline in Values of Slash Pine Stands Infected with Fusiform Rust
F.E. Bridgwater; W.D. Smith
2002-01-01
Losses in product values due tofusiform rust, caused by Cronartium quercuum (Berk.) Miyabe ex Shirai f. sp. fusiforme, were estimated from four, 2.5-yr-old slash pine, Pinus elliotii Engelm., plantations planted in southern Mississippi over a range of sites with different growth potential and expected rust infection levels. The...
S.J. Rowan
1979-01-01
The susceptibility (percentage of seedlings infected) of Pinus taeda seedlings to infection by Cronartium quercuum f. sp. fusiforme was not affected by fertilization with calcium, magnesium, or aluminum-iron. Fertilization with Al as Al2(SO4)2,and Fe as FeCl
Seed Treatment with Systemic Fungicides for the Control of Fusiform Rust in Loblolly Pine
John G. Mexal; Glenn A. Snow
1978-01-01
A new systemic fungicide, Bayleton, may economically control fusiform rust in southern pine nurseries. Stratified seeds of loblolly pine (Pinus taeda L.) were imbibed with Bayleton and two other systemic fungicides, and the seedlings were inoculated at three stages of emergence with spores of Cronartium quercuum (Berk.) Miyabe ex...
The Left Fusiform Area Is Affected by Written Frequency of Words
ERIC Educational Resources Information Center
Proverbio, Alice M.; Zani, Alberto; Adorni, Roberta
2008-01-01
The recent neuroimaging literature gives conflicting evidence about whether the left fusiform gyrus (FG) might recognize words as unitary visual objects. The sensitivity of the left FG to word frequency might provide a neural basis for the orthographic input lexicon theorized by reading models [Patterson, K., Marshall, J. C., & Coltheart, M.…
Brandy, Dominic A
2003-03-01
As the human face ages, there is a depletion of fat that occurs in the submalar region. Various techniques such as fat transfers, fillers, alloplastic implants, and composite rhytidectomies have been used to augment this area in the past. To describe a technique that augments the submalar areas during facelift surgery without the use of fat transfer, fillers, alloplastic implants, or a risky composite technique. An oval is scribed over the depressed submalar areas preoperatively. During facelift surgery, a fusiform area is scribed over the SMAS. This fusiform is scribed so that the medial end is directed at the center of the submalar depression, and the lateral end is toward the posterior earlobe. A defect is created within the lateral aspect of the fusiform, but not the medial portion. The fusiform is subsequently closed with a 2-0 Ethibond suture using three horizontal mattress sutures and two interrupted sutures. Upon closure of this defect, SMAS, subSMAS, and subcutaneous tissue overlying the SMAS are recruited into the submalar defect by the simple phenomenon of dog-ear formation. Additionally, there is a component of frank elevation of the tissues inferior to the medial aspect of the fusiform and submalar space. The aforementioned technique has been performed on 123 patients over 7 years and has resulted in consistently good improvement in the submalar space. The procedure is not difficult to learn, and good results can be achieved with initial cases. The learning curve was not found to be steep, with good results being achieved quickly. Depression of the submalar space plays a significant role in creating an aged face. In the past, various fillers and/or alloplastic implants have been used to augment this region. A low-risk method is described that mobilizes SMAS, subSMAS, and subcutaneous tissues into the submalar space through the phenomenon of dog-ear formation after fusiform closure.
Paskaleva, Elena E; Lin, Xudong; Li, Wen; Cotter, Robin; Klein, Michael T; Roberge, Emily; Yu, Er K; Clark, Bruce; Veille, Jean-Claude; Liu, Yanze; Lee, David Y-W; Canki, Mario
2006-01-01
Background The high rate of HIV-1 mutation and increasing resistance to currently available antiretroviral (ART) therapies highlight the need for new antiviral agents. Products derived from natural sources have been shown to inhibit HIV-1 replication during various stages of the virus life cycle, and therefore represent a potential source of novel therapeutic agents. To expand our arsenal of therapeutics against HIV-1 infection, we investigated aqueous extract from Sargassum fusiforme (S. fusiforme) for ability to inhibit HIV-1 infection in the periphery, in T cells and human macrophages, and for ability to inhibit in the central nervous system (CNS), in microglia and astrocytes. Results S. fusiforme extract blocked HIV-1 infection and replication by over 90% in T cells, human macrophages and microglia, and it also inhibited pseudotyped HIV-1 (VSV/NL4-3) infection in human astrocytes by over 70%. Inhibition was mediated against both CXCR4 (X4) and CCR5 (R5)-tropic HIV-1, was dose dependant and long lasting, did not inhibit cell growth or viability, was not toxic to cells, and was comparable to inhibition by the nucleoside analogue 2', 3'-didoxycytidine (ddC). S. fusiforme treatment blocked direct cell-to-cell infection spread. To investigate at which point of the virus life cycle this inhibition occurs, we infected T cells and CD4-negative primary human astrocytes with HIV-1 pseudotyped with envelope glycoprotein of vesicular stomatitis virus (VSV), which bypasses the HIV receptor requirements. Infection by pseudotyped HIV-1 (VSV/NL4-3) was also inhibited in a dose dependant manner, although up to 57% less, as compared to inhibition of native NL4-3, indicating post-entry interferences. Conclusion This is the first report demonstrating S. fusiforme to be a potent inhibitor of highly productive HIV-1 infection and replication in T cells, in primary human macrophages, microglia, and astrocytes. Results with VSV/NL4-3 infection, suggest inhibition of both entry and post-entry events of the virus life cycle. Absence of cytotoxicity and high viability of treated cells also suggest that S. fusiforme is a potential source of novel naturally occurring antiretroviral compounds that inhibit HIV-1 infection and replication at more than one site of the virus life cycle. PMID:16725040
Screening for resistance to fusiform rust in southern United States forest trees
Josh Bronson
2012-01-01
The Resistance Screening Center (RSC) is operated by the Forest Health Protection unit of the U.S. Department of Agriculture, Forest Service, Southern Region, State and Private Forestry. The RSC is located at the Bent Creek Experimental Forest near Asheville, North Carolina. The center evaluates seedlings for resistance to disease, primarily fusiform rust (caused by...
Genetic interaction of the fusiform rust fungus with resistance gene FR1 in loblolly pine
Thomas L. Kubisiak; Henry V. Amerson; C. Dana Nelson
2005-01-01
We propose a method for defining DNA markers linked to Cronartium quercuum f. sp. fusiforme avirulence (Avr) genes. However, before this method can be successfully employed, a spore competition study was needed to determine the genetic composition of single pycnial drops and multiple drops on single galls when using the standard...
James H. Roberds; Thomas L. Kubisiak; Pauline C. Spaine; S.F. Covert; R.L. Doudrick
1997-01-01
research to determine patterns of genetic differentiation among and within field populations of Cronartium quercuum f. sp. fusiforme using RAPD markers is currently underway in the molecular genetics laboratory at the Southern Institute of Forest Genetics. Fungal tissue was collected as a drop of spermatia or scrapings of a...
Selection of loblolly pine varieties resistant to fusiform rust for commercial deployment
Andy Benowicz; Robert J. Weir
2012-01-01
Benowicz, Andy; Weir, Robert J. 2013. Selection of loblolly pine varieties resistant to fusiform rust for commercial deployment . In: Sniezko, Richard A.; Yanchuk, Alvin D.; Kliejunas, John T.; Palmieri, Katharine M.; Alexander, Janice M.; Frankel, Susan J., tech. coords. Proceedings of the fourth international workshop on the genetics of host-parasite interactions in...
Zhang, Tong; Zhang, Rong; Zhang, Liang; Zhang, Zhihe; Hou, Rong; Wang, Hairui; Loeffler, I. Kati; Watson, David G.; Kennedy, Malcolm W.
2015-01-01
Ursids (bears) in general, and giant pandas in particular, are highly altricial at birth. The components of bear milks and their changes with time may be uniquely adapted to nourish relatively immature neonates, protect them from pathogens, and support the maturation of neonatal digestive physiology. Serial milk samples collected from three giant pandas in early lactation were subjected to untargeted metabolite profiling and multivariate analysis. Changes in milk metabolites with time after birth were analysed by Principal Component Analysis, Hierarchical Cluster Analysis and further supported by Orthogonal Partial Least Square-Discriminant Analysis, revealing three phases of milk maturation: days 1–6 (Phase 1), days 7–20 (Phase 2), and beyond day 20 (Phase 3). While the compositions of Phase 1 milks were essentially indistinguishable among individuals, divergences emerged during the second week of lactation. OPLS regression analysis positioned against the growth rate of one cub tentatively inferred a correlation with changes in the abundance of a trisaccharide, isoglobotriose, previously observed to be a major oligosaccharide in ursid milks. Three artificial milk formulae used to feed giant panda cubs were also analysed, and were found to differ markedly in component content from natural panda milk. These findings have implications for the dependence of the ontogeny of all species of bears, and potentially other members of the Carnivora and beyond, on the complexity and sequential changes in maternal provision of micrometabolites in the immediate period after birth. PMID:26630345
Processing deficits for familiar and novel faces in patients with left posterior fusiform lesions.
Roberts, Daniel J; Lambon Ralph, Matthew A; Kim, Esther; Tainturier, Marie-Josephe; Beeson, Pelagie M; Rapcsak, Steven Z; Woollams, Anna M
2015-11-01
Pure alexia (PA) arises from damage to the left posterior fusiform gyrus (pFG) and the striking reading disorder that defines this condition has meant that such patients are often cited as evidence for the specialisation of this region to processing of written words. There is, however, an alternative view that suggests this region is devoted to processing of high acuity foveal input, which is particularly salient for complex visual stimuli like letter strings. Previous reports have highlighted disrupted processing of non-linguistic visual stimuli after damage to the left pFG, both for familiar and unfamiliar objects and also for novel faces. This study explored the nature of face processing deficits in patients with left pFG damage. Identification of famous faces was found to be compromised in both expressive and receptive tasks. Discrimination of novel faces was also impaired, particularly for those that varied in terms of second-order spacing information, and this deficit was most apparent for the patients with the more severe reading deficits. Interestingly, discrimination of faces that varied in terms of feature identity was considerably better in these patients and it was performance in this condition that was related to the size of the length effects shown in reading. This finding complements functional imaging studies showing left pFG activation for faces varying only in spacing and frontal activation for faces varying only on features. These results suggest that the sequential part-based processing strategy that promotes the length effect in the reading of these patients also allows them to discriminate between faces on the basis of feature identity, but processing of second-order configural information is most compromised due to their left pFG lesion. This study supports a view in which the left pFG is specialised for processing of high acuity foveal visual information that supports processing of both words and faces. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Processing deficits for familiar and novel faces in patients with left posterior fusiform lesions
Roberts, Daniel J.; Lambon Ralph, Matthew A.; Kim, Esther; Tainturier, Marie-Josephe; Beeson, Pelagie M.; Rapcsak, Steven Z.; Woollams, Anna M.
2015-01-01
Pure alexia (PA) arises from damage to the left posterior fusiform gyrus (pFG) and the striking reading disorder that defines this condition has meant that such patients are often cited as evidence for the specialisation of this region to processing of written words. There is, however, an alternative view that suggests this region is devoted to processing of high acuity foveal input, which is particularly salient for complex visual stimuli like letter strings. Previous reports have highlighted disrupted processing of non-linguistic visual stimuli after damage to the left pFG, both for familiar and unfamiliar objects and also for novel faces. This study explored the nature of face processing deficits in patients with left pFG damage. Identification of famous faces was found to be compromised in both expressive and receptive tasks. Discrimination of novel faces was also impaired, particularly for those that varied in terms of second-order spacing information, and this deficit was most apparent for the patients with the more severe reading deficits. Interestingly, discrimination of faces that varied in terms of feature identity was considerably better in these patients and it was performance in this condition that was related to the size of the length effects shown in reading. This finding complements functional imaging studies showing left pFG activation for faces varying only in spacing and frontal activation for faces varying only on features. These results suggest that the sequential part-based processing strategy that promotes the length effect in the reading of these patients also allows them to discriminate between faces on the basis of feature identity, but processing of second-order configural information is most compromised due to their left pFG lesion. This study supports a view in which the left pFG is specialised for processing of high acuity foveal visual information that supports processing of both words and faces. PMID:25837867
Reading words, seeing style: the neuropsychology of word, font and handwriting perception.
Barton, Jason J S; Sekunova, Alla; Sheldon, Claire; Johnston, Samantha; Iaria, Giuseppe; Scheel, Michael
2010-11-01
The reading of text is predominantly a left hemisphere function. However, it is also possible to process text for attributes other than word or letter identity, such as style of font or handwriting. Anecdotal observations have suggested that processing the latter may involve the right hemisphere. We devised a test that, using the identical stimuli, required subjects first to match on the basis of word identity and second to match on the basis of script style. We presented two versions, one using various computer fonts, and the other using the handwriting of different individuals. We tested four subjects with unilateral lesions who had been well characterized by neuropsychological testing and structural and/or functional MRI. We found that two prosopagnosic subjects with right lateral fusiform damage eliminating the fusiform face area and likely the right visual word form area were impaired in completion times and/or accuracy when sorting for script style, but performed better when sorting for word identity. In contrast, one alexic subject with left fusiform damage showed normal accuracy for sorting by script style and normal or mildly elevated completion times for sorting by style, but markedly prolonged reading times for sorting by word identity. A prosopagnosic subject with right medial occipitotemporal damage sparing areas in the lateral fusiform gyrus performed well on both tasks. The contrast in the performance of patients with right versus left fusiform damage suggests an important distinction in hemispheric processing that reflects not the type of stimulus but the nature of processing required. Copyright © 2010 Elsevier Ltd. All rights reserved.
T. Miller; K.P. Gramacho; R.A. Schmidt; H.V. Amerson; E.G. Kuhlman
1998-01-01
In 1991, a series of experiments was initiated to examine the effectiveness and research value of inoculating 6-week-old seedlings of slash (Pinus elliottii var. elliottii) and loblolly pine (P. raeda) with suspensions of basidiospores of Cronartium quercuum f. sp. fusiforme...
Earl R. Sluder; H.R. Powers
1982-01-01
Seedlings from progenies of slash and loblolly pines were divided into two groups. One group was exposed to the fusiform rust fungus in greenhouse inoculations by the concentrated basidiospore spray system and the other was exposed to natural infection in field progeny tests. Within families, correlations between percentages of seedlings infected after field and...
James D. Haywood; Allan E. Tiarks
1994-01-01
Slash pine was grown in central Louisiana under four levels of culture with or without repeated sprayings of the systematic fungicide triadimefon for protection against fusiform rust. The eight treatment combinations were: (1)no fungicide, weed control, or fertilizer; (2)weeded; (3)weeded, applied inorganic fertilizer, and bedded before planting; (4)weeded, bedded,...
Floyd Bridgwater; Tom Kubisiak; Tom Byram; Steve Mckeand
2004-01-01
In the southeastern USA, fusiform rust resistant loblolly and slash pines may be deployed as 1) ulked seed orchard mixes. 2) half-sibling (sib) family mixtures. 3) single half-sib families. 4) full-sib cross seeds or as 6) clones of individual genotypes. These deployment types are respectively greater genetic gains from higher selection intensity. Currently, bulked...
Bohun B. Kinloch Jr.; Roy W. Stonecypher
1969-01-01
Striking genetic variation in susceptibility to fusiform rust was observed among SS controlled-pollinated (CP) and 48 wind-pollinated (WP) families from parent trees of loblolly pine selected at random in a natural forest stand in southwest Georgia. The mating design permitted statistical tests for estimating both additive and total genetic variance. WP families were...
ERIC Educational Resources Information Center
Guo, Yi; Burgund, E. Darcy
2010-01-01
The left mid-fusiform gyrus is repeatedly reported to be involved in visual word processing. Nevertheless, it is controversial whether this area responds to orthographic processing of reading. To examine this idea, neural activity was measured using functional magnetic resonance imaging in the present study while subjects performed phonological,…
Fusiform-Rust-Hazard Maps for Loblolly and Slash Pines
Robert L. Anderson; Thomas C. McCartney; Noel D. Cost; Hugh Devine; Martin Botkin
1988-01-01
Rust-hazard saps made from Forest Inventory and Analysis plot data show that fusiform rust on slash pine is most common in north-central Florida, in southeastern Georgia, and in areas north of slash pine's natural range. On loblolly pine, the disease is most common in central and southeastern Georgia and in portions of South Carolina. These maps show the general...
On the origin of fusiform rust resistance in loblolly pine
R.C. Schmidtling; C.D. Nelson; T.L. Kubisiak
2005-01-01
Studies of geographic variation in loblolly pine have shown that seed sources from the western (generally west of the Mississippi River) and the northeastern part of the natural distribution are relatively resistant to fusiform rust disease, while those from elsewhere are more susceptible. The greatest problem with rust infection, on the other hand, is in the center of...
Control of Fusiform Rust in Slash Pine with Bayleton (Triadimefon) Seed Treatment
Robert C. Hare; Glenn A. Snow
1983-01-01
The Bayleton® seed treatment protects pine seedlings against fusiform rust for at least 4 weeks after sowing. If nurserymen use treated seed, no more than three foliar sprays are needed during the season. These can be timed to give maximum protection during the most hazardous period and adequate protection for the remainder of the infection season.
CD Nelson; TL Kubisiak; HV Amerson
2010-01-01
Fusiform rust disease remains the most destructive disease in pine plantations in the southern United States. Our ongoing research is designed to identify, map, and clone the interacting genes of the host and pathogen. Several resistance (R) genes have been identified and genetically mapped using informative pine families and single-spore isolate inoculations. In...
Sound Richness of Music Might Be Mediated by Color Perception: A PET Study.
Satoh, Masayuki; Nagata, Ken; Tomimoto, Hidekazu
2015-01-01
We investigated the role of the fusiform cortex in music processing with the use of PET, focusing on the perception of sound richness. Musically naïve subjects listened to familiar melodies with three kinds of accompaniments: (i) an accompaniment composed of only three basic chords (chord condition), (ii) a simple accompaniment typically used in traditional music text books in elementary school (simple condition), and (iii) an accompaniment with rich and flowery sounds composed by a professional composer (complex condition). Using a PET subtraction technique, we studied changes in regional cerebral blood flow (rCBF) in simple minus chord, complex minus simple, and complex minus chord conditions. The simple minus chord, complex minus simple, and complex minus chord conditions regularly showed increases in rCBF at the posterior portion of the inferior temporal gyrus, including the LOC and fusiform gyrus. We may conclude that certain association cortices such as the LOC and the fusiform cortex may represent centers of multisensory integration, with foreground and background segregation occurring at the LOC level and the recognition of richness and floweriness of stimuli occurring in the fusiform cortex, both in terms of vision and audition.
Sequential then Interactive Processing of Letters and Words in the Left Fusiform Gyrus
Thesen, Thomas; McDonald, Carrie R.; Carlson, Chad; Doyle, Werner; Cash, Syd; Sherfey, Jason; Felsovalyi, Olga; Girard, Holly; Barr, William; Devinsky, Orrin; Kuzniecky, Ruben; Halgren, Eric
2013-01-01
Despite decades of cognitive, neuropsychological, and neuroimaging studies, it is unclear if letters are identified prior to word-form encoding during reading, or if letters and their combinations are encoded simultaneously and interactively. Here, using functional magnetic resonance imaging, we show that a ‘letter-form’ area (responding more to consonant strings than false fonts) can be distinguished from an immediately anterior ‘visual word-form area’ in ventral occipitotemporal cortex (responding more to words than consonant strings). Letter-selective magnetoencephalographic responses begin in the letter-form area ~60ms earlier than word-selective responses in the word-form area. Local field potentials confirm the latency and location of letter-selective responses. This area shows increased high gamma power for ~400ms, and strong phase-locking with more anterior areas supporting lexico-semantic processing. These findings suggest that during reading, visual stimuli are first encoded as letters before their combinations are encoded as words. Activity then rapidly spreads anteriorly, and the entire network is engaged in sustained integrative processing. PMID:23250414
Typical and atypical neurodevelopment for face specialization: An fMRI study
Joseph, Jane E.; Zhu, Xun; Gundran, Andrew; Davies, Faraday; Clark, Jonathan D.; Ruble, Lisa; Glaser, Paul; Bhatt, Ramesh S.
2014-01-01
Individuals with Autism Spectrum Disorder (ASD) and their relatives process faces differently from typically developed (TD) individuals. In an fMRI face-viewing task, TD and undiagnosed sibling (SIB) children (5–18 years) showed face specialization in the right amygdala and ventromedial prefrontal cortex (vmPFC), with left fusiform and right amygdala face specialization increasing with age in TD subjects. SIBs showed extensive antero-medial temporal lobe activation for faces that was not present in any other group, suggesting a potential compensatory mechanism. In ASD, face specialization was minimal but increased with age in the right fusiform and decreased with age in the left amygdala, suggesting atypical development of a frontal-amygdala-fusiform system which is strongly linked to detecting salience and processing facial information. PMID:25479816
E. George Kuhlman; Harry R. Powers; William D. Pepper
1995-01-01
Loblolly and slash pine seedlings from the fusiform rust resistant orchards developed cooperatively by the USDA Forest Service and the Georgia Forestry Commission had significantly less rust 7 to 8 years after planting on four of five sites in the Southeastern United States than seedlings of the same species from orchard sources developed primarily for silvicultural...
Reynolds, Matthew R; Heiferman, Daniel M; Boucher, Andrew B; Serrone, Joseph C; Barrow, Daniel L; Dion, Jacques E
2018-05-24
Fusiform dilatation of the internal carotid artery (FDICA) is a well-described radiographic finding following resection of childhood craniopharyngioma (CP). A 39-year-old woman with right-sided FDICA was successfully treated for lesion enlargement with endovascular flow diversion, which has not been described in the literature. Published by Elsevier Ltd.
Research on the biology of fusiform rust in the southeastern United States
Pauline Spaine
1998-01-01
The incidence of fusiform rust has continued to be one of the major forest disease problems in the Southeastern United States. In the past, much of the research has concentrated on field studies with provenance selection and genetic breeding of pine families to increase resistance in the host. In the last 10 years, there has been an increased interest in the actual...
Using Bayleton (Triadimefon) to Control Fusiform Rust in Pine Tree Nurseries
G.A. Snow; S.J. Rowan; J.P. Jones; W. D. Kelley; J.G. Mexal
1979-01-01
Bayletor® was field-tested for fusiform rust control at eight pine tree nurseries during the spring of 1978. Four to six foliar sprays of this systemic fungicide were as effective as ferbam sprayed 16 to 36 times. Seed treatment with Bayleton reduced infection levels but did not significantly improve rust control in plots sprayed with Bayleton. At high rates, Bayleton...
A golgi study of the optic tectum of the tegu lizard, Tupinambis nigropunctatus.
Butler, A B; Ebbesson, O E
1975-06-01
The dendritic patterns of cells in the optic tectum of the tegu lizard, Tupinambis nigropunctatus, were analyzed with the Ramon-Moliner modification of the Golgi-Cox technique. Cell types were compared with those described by other authors in the tectum of other reptiles; particular comparisons of our results were made with the description of cell types in the chameleon (Ramń, 1896), as the latter is the most complete analysis in the literature. The periventricular gray layers 3 and 5 consist primarily of two cell types--piriform or pyramidal shaped cells and horizontal cells. Cells in the medial portion of the tectum, in an area coextensive with the bilateral spinal projection zone, possess dendrites that extend across the midline. The latter cells have either fusiform or pyramidal shaped somas. The central white zone, layer 6, contains fibers, large fusiform or pyramidal shaped cells, fusiform cells, and small horizontal cells. The central gray zone, layer 7, is composed predominately of fusiform cells which have dendrites extending to the superficial optic layers, large polygonal cells, and horizontal cells. The superficial gray and white layers, layers 8-13, contain polygonal, fusiform, stellate, and horizontal elements. Layer 14 is composed solely of afferent optic tract fibers. Several differences in the occurrence and distribution of cell types between the tegu and the other reptiles studied are noted. Additionally, the laminar distribution of retinal, tectotectal, telencephalic, and spinal projections in the tegutectum can be related to the distribution of cell types, and those cells which may be postsynaptic to specific inputs can be identified. The highly differentiated laminar structure of the reptilian optic tectum, both in regard to cell type and to afferent and efferent connections, may serve as a model for studying some functional properties of lamination common to cortical structures.
Bogousslavsky, J; Miklossy, J; Deruaz, J P; Assal, G; Regli, F
1987-01-01
A macular-sparing superior altitudinal hemianopia with no visuo-psychic disturbance, except impaired visual learning, was associated with bilateral ischaemic necrosis of the lingual gyrus and only partial involvement of the fusiform gyrus on the left side. It is suggested that bilateral destruction of the lingual gyrus alone is not sufficient to affect complex visual processing. The fusiform gyrus probably has a critical role in colour integration, visuo-spatial processing, facial recognition and corresponding visual imagery. Involvement of the occipitotemporal projection system deep to the lingual gyri probably explained visual memory dysfunction, by a visuo-limbic disconnection. Impaired verbal memory may have been due to posterior involvement of the parahippocampal gyrus and underlying white matter, which may have disconnected the intact speech areas from the left medial temporal structures. Images PMID:3585386
R.C. Froelich; Ronald C. Schmidtling
1998-01-01
Probabilities of death of young slash pine infected by fusiform rust pathogen varied with timing and severity of infection. Trees in nine slash pine plantations varying widely in site quality and initial number of trees per acre had similar probabilities of death from rust. About 90 percent of trees with stem infections in the first three growing seasons died by age 15...
How music alters a kiss: superior temporal gyrus controls fusiform-amygdalar effective connectivity.
Pehrs, Corinna; Deserno, Lorenz; Bakels, Jan-Hendrik; Schlochtermeier, Lorna H; Kappelhoff, Hermann; Jacobs, Arthur M; Fritz, Thomas Hans; Koelsch, Stefan; Kuchinke, Lars
2014-11-01
While watching movies, the brain integrates the visual information and the musical soundtrack into a coherent percept. Multisensory integration can lead to emotion elicitation on which soundtrack valences may have a modulatory impact. Here, dynamic kissing scenes from romantic comedies were presented to 22 participants (13 females) during functional magnetic resonance imaging scanning. The kissing scenes were either accompanied by happy music, sad music or no music. Evidence from cross-modal studies motivated a predefined three-region network for multisensory integration of emotion, consisting of fusiform gyrus (FG), amygdala (AMY) and anterior superior temporal gyrus (aSTG). The interactions in this network were investigated using dynamic causal models of effective connectivity. This revealed bilinear modulations by happy and sad music with suppression effects on the connectivity from FG and AMY to aSTG. Non-linear dynamic causal modeling showed a suppressive gating effect of aSTG on fusiform-amygdalar connectivity. In conclusion, fusiform to amygdala coupling strength is modulated via feedback through aSTG as region for multisensory integration of emotional material. This mechanism was emotion-specific and more pronounced for sad music. Therefore, soundtrack valences may modulate emotion elicitation in movies by differentially changing preprocessed visual information to the amygdala. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Ratner, Kyle G; Kaul, Christian; Van Bavel, Jay J
2013-10-01
Several theories suggest that people do not represent race when it does not signify group boundaries. However, race is often associated with visually salient differences in skin tone and facial features. In this study, we investigated whether race could be decoded from distributed patterns of neural activity in the fusiform gyri and early visual cortex when visual features that often covary with race were orthogonal to group membership. To this end, we used multivariate pattern analysis to examine an fMRI dataset that was collected while participants assigned to mixed-race groups categorized own-race and other-race faces as belonging to their newly assigned group. Whereas conventional univariate analyses provided no evidence of race-based responses in the fusiform gyri or early visual cortex, multivariate pattern analysis suggested that race was represented within these regions. Moreover, race was represented in the fusiform gyri to a greater extent than early visual cortex, suggesting that the fusiform gyri results do not merely reflect low-level perceptual information (e.g. color, contrast) from early visual cortex. These findings indicate that patterns of activation within specific regions of the visual cortex may represent race even when overall activation in these regions is not driven by racial information.
Successful decoding of famous faces in the fusiform face area.
Axelrod, Vadim; Yovel, Galit
2015-01-01
What are the neural mechanisms of face recognition? It is believed that the network of face-selective areas, which spans the occipital, temporal, and frontal cortices, is important in face recognition. A number of previous studies indeed reported that face identity could be discriminated based on patterns of multivoxel activity in the fusiform face area and the anterior temporal lobe. However, given the difficulty in localizing the face-selective area in the anterior temporal lobe, its role in face recognition is still unknown. Furthermore, previous studies limited their analysis to occipito-temporal regions without testing identity decoding in more anterior face-selective regions, such as the amygdala and prefrontal cortex. In the current high-resolution functional Magnetic Resonance Imaging study, we systematically examined the decoding of the identity of famous faces in the temporo-frontal network of face-selective and adjacent non-face-selective regions. A special focus has been put on the face-area in the anterior temporal lobe, which was reliably localized using an optimized scanning protocol. We found that face-identity could be discriminated above chance level only in the fusiform face area. Our results corroborate the role of the fusiform face area in face recognition. Future studies are needed to further explore the role of the more recently discovered anterior face-selective areas in face recognition.
Functional dissociation of the left and right fusiform gyrus in self-face recognition.
Ma, Yina; Han, Shihui
2012-10-01
It is well known that the fusiform gyrus is engaged in face perception, such as the processes of face familiarity and identity. However, the functional role of the fusiform gyrus in face processing related to high-level social cognition remains unclear. The current study assessed the functional role of individually defined fusiform face area (FFA) in the processing of self-face physical properties and self-face identity. We used functional magnetic resonance imaging to monitor neural responses to rapidly presented face stimuli drawn from morph continua between self-face (Morph 100%) and a gender-matched friend's face (Morph 0%) in a face recognition task. Contrasting Morph 100% versus Morph 60% that differed in self-face physical properties but were both recognized as the self uncovered neural activity sensitive to self-face physical properties in the left FFA. Contrasting Morphs 50% that were recognized as the self versus a friend on different trials revealed neural modulations associated with self-face identity in the right FFA. Moreover, the right FFA activity correlated with the frequency of recognizing Morphs 50% as the self. Our results provide evidence for functional dissociations of the left and right FFAs in the representations of self-face physical properties and self-face identity. Copyright © 2011 Wiley Periodicals, Inc.
Crossmodal plasticity in the fusiform gyrus of late blind individuals during voice recognition.
Hölig, Cordula; Föcker, Julia; Best, Anna; Röder, Brigitte; Büchel, Christian
2014-12-01
Blind individuals are trained in identifying other people through voices. In congenitally blind adults the anterior fusiform gyrus has been shown to be active during voice recognition. Such crossmodal changes have been associated with a superiority of blind adults in voice perception. The key question of the present functional magnetic resonance imaging (fMRI) study was whether visual deprivation that occurs in adulthood is followed by similar adaptive changes of the voice identification system. Late blind individuals and matched sighted participants were tested in a priming paradigm, in which two voice stimuli were subsequently presented. The prime (S1) and the target (S2) were either from the same speaker (person-congruent voices) or from two different speakers (person-incongruent voices). Participants had to classify the S2 as either coming from an old or a young person. Only in late blind but not in matched sighted controls, the activation in the anterior fusiform gyrus was modulated by voice identity: late blind volunteers showed an increase of the BOLD signal in response to person-incongruent compared with person-congruent trials. These results suggest that the fusiform gyrus adapts to input of a new modality even in the mature brain and thus demonstrate an adult type of crossmodal plasticity. Copyright © 2014 Elsevier Inc. All rights reserved.
Encoding deficit during face processing within the right fusiform face area in schizophrenia.
Walther, Sebastian; Federspiel, Andrea; Horn, Helge; Bianchi, Piero; Wiest, Roland; Wirth, Miranka; Strik, Werner; Müller, Thomas Jörg
2009-06-30
Face processing is crucial to social interaction, but is impaired in schizophrenia patients, who experience delays in face recognition, difficulties identifying others, and misperceptions of affective content. The right fusiform face area plays an important role in the early stages of human face processing and thus may be affected in schizophrenia. The aim of the study was therefore to investigate whether face processing deficits are related to dysfunctions of the right fusiform face area in schizophrenia patients compared with controls. In a rapid, event-related functional magnetic resonance imaging (fMRI) design, we investigated the encoding of new faces, as well as the recognition of newly learned, famous, and unfamiliar faces, in 13 schizophrenia patients and 21 healthy controls. We applied region of interest analysis to each individual's right fusiform face area and tested for group differences. Controls displayed higher blood oxygenation level dependent (BOLD) activation during the memorization of faces that were later successfully recognized. In schizophrenia patients, this effect was not observed. During the recognition task, schizophrenia patients exhibited lower BOLD responses, less accuracy, and longer reaction times to famous and unfamiliar faces. Our results support the hypothesis that impaired face processing in schizophrenia is related to early-stage deficits during the encoding and recognition of faces.
Wada, Y; Yamamoto, T
2001-01-01
A 67 year old right handed Japanese man developed prosopagnosia caused by a haemorrhage. His only deficit was the inability to perceive and discriminate unfamiliar faces, and to recognise familiar faces. He did not show deficits in visual or visuospatial perception of non-facial stimuli, alexia, visual agnosia, or topographical disorientation. Brain MRI showed a haematoma limited to the right fusiform and the lateral occipital region. Single photon emission computed tomography confirmed that there was no decreased blood flow in the opposite left cerebral hemisphere. The present case indicates that a well placed small right fusiform gyrus and the adjacent area can cause isolated impairment of facial recognition. As far as we know, there has been no published case that has demonstrated this exact lesion site, which was indicated by recent functional MRI studies as the most critical area in facial recognition. PMID:11459906
Successful Decoding of Famous Faces in the Fusiform Face Area
Axelrod, Vadim; Yovel, Galit
2015-01-01
What are the neural mechanisms of face recognition? It is believed that the network of face-selective areas, which spans the occipital, temporal, and frontal cortices, is important in face recognition. A number of previous studies indeed reported that face identity could be discriminated based on patterns of multivoxel activity in the fusiform face area and the anterior temporal lobe. However, given the difficulty in localizing the face-selective area in the anterior temporal lobe, its role in face recognition is still unknown. Furthermore, previous studies limited their analysis to occipito-temporal regions without testing identity decoding in more anterior face-selective regions, such as the amygdala and prefrontal cortex. In the current high-resolution functional Magnetic Resonance Imaging study, we systematically examined the decoding of the identity of famous faces in the temporo-frontal network of face-selective and adjacent non-face-selective regions. A special focus has been put on the face-area in the anterior temporal lobe, which was reliably localized using an optimized scanning protocol. We found that face-identity could be discriminated above chance level only in the fusiform face area. Our results corroborate the role of the fusiform face area in face recognition. Future studies are needed to further explore the role of the more recently discovered anterior face-selective areas in face recognition. PMID:25714434
Brunyé, Tad T; Moran, Joseph M; Holmes, Amanda; Mahoney, Caroline R; Taylor, Holly A
2017-04-01
The human extrastriate cortex contains a region critically involved in face detection and memory, the right fusiform gyrus. The present study evaluated whether transcranial direct current stimulation (tDCS) targeting this anatomical region would selectively influence memory for faces versus non-face objects (houses). Anodal tDCS targeted the right fusiform gyrus (Brodmann's Area 37), with the anode at electrode site PO10, and cathode at FP2. Two stimulation conditions were compared in a repeated-measures design: 0.5mA versus 1.5mA intensity; a separate control group received no stimulation. Participants completed a working memory task for face and house stimuli, varying in memory load from 1 to 4 items. Individual differences measures assessed trait-based differences in facial recognition skills. Results showed 1.5mA intensity stimulation (versus 0.5mA and control) increased performance at high memory loads, but only with faces. Lower overall working memory capacity predicted a positive impact of tDCS. Results provide support for the notion of functional specialization of the right fusiform regions for maintaining face (but not non-face object) stimuli in working memory, and further suggest that low intensity electrical stimulation of this region may enhance demanding face working memory performance particularly in those with relatively poor baseline working memory skills. Published by Elsevier Inc.
Nguyen, Hai M.; Matsumoto, Jumpei; Tran, Anh H.; Ono, Taketoshi; Nishijo, Hisao
2014-01-01
Previous studies have reported that multiple brain regions are activated during spatial navigation. However, it is unclear whether these activated brain regions are specifically associated with spatial updating or whether some regions are recruited for parallel cognitive processes. The present study aimed to localize current sources of event related potentials (ERPs) associated with spatial updating specifically. In the control phase of the experiment, electroencephalograms (EEGs) were recorded while subjects sequentially traced 10 blue checkpoints on the streets of a virtual town, which were sequentially connected by a green line, by manipulating a joystick. In the test phase of the experiment, the checkpoints and green line were not indicated. Instead, a tone was presented when the subjects entered the reference points where they were then required to trace the 10 invisible spatial reference points corresponding to the checkpoints. The vertex-positive ERPs with latencies of approximately 340 ms from the moment when the subjects entered the unmarked reference points were significantly larger in the test than in the control phases. Current source density analysis of the ERPs by standardized low-resolution brain electromagnetic tomography (sLORETA) indicated activation of brain regions in the test phase that are associated with place and landmark recognition (entorhinal cortex/hippocampus, parahippocampal and retrosplenial cortices, fusiform, and lingual gyri), detecting self-motion (posterior cingulate and posterior insular cortices), motor planning (superior frontal gyrus, including the medial frontal cortex), and regions that process spatial attention (inferior parietal lobule). The present results provide the first identification of the current sources of ERPs associated with spatial updating, and suggest that multiple systems are active in parallel during spatial updating. PMID:24624067
Semen characteristics and refrigeration in free-ranging giant anteaters (Myrmecophaga tridactyla).
Luba, Camila do Nascimento; Boakari, Yatta Linhares; Costa Lopes, Alexandre Martins; da Silva Gomes, Marcelo; Miranda, Flávia Regina; Papa, Frederico Ozanan; Ferreira, João Carlos Pinheiro
2015-12-01
The giant anteater (Myrmecophaga tridactyla) is considered vulnerable to extinction. Scientific data on the reproductive parameters of this species are scarce. Semen from eight free-ranging giant anteaters was collected to establish its characteristics and the effects of cooling and storage at 5 °C after dilution with the BotuCrio extender without cryoprotectant. The ejaculate presented two distinct sequential fractions, including a whitish fraction, which was milky and rich in sperm cells, and a gel fraction, which was colorless, viscous, and azoospermic. The mean ± standard error of the mean values of the seminal characteristics were as follows: volume of the first fraction, 0.75 ± 0.1 mL; motility, 75 ± 2.9%; vigor, 3.2 ± 0.3; sperm motility index, 68.8 ± 4.3; concentration, 108.5 ± 13.4 × 10(6)/mL; plasma membrane integrity index, 71 ± 4.0%; spermatic defects detected using modified Karras staining, 35.5 ± 3.3%; and spermatic alterations identified by differential interference contrast microscopy, 48.3 ± 6.8%. During refrigeration, the semen presented decreasing motility from 0 to 18 hours, sperm motility index decreased from 0 to 24 hours, and vigor did not change in the first 6 hours and then decreased to 18 hours. Copyright © 2015 Elsevier Inc. All rights reserved.
Treatment Challenges of a Primary Vertebral Artery Aneurysm Causing Recurrent Ischemic Strokes.
Strambo, Davide; Peruzzotti-Jametti, Luca; Semerano, Aurora; Fanelli, Giovanna; Simionato, Franco; Chiesa, Roberto; Rinaldi, Enrico; Martinelli, Vittorio; Comi, Giancarlo; Bacigaluppi, Marco; Sessa, Maria
2017-01-01
Background . Extracranial vertebral artery aneurysms are a rare cause of embolic stroke; surgical and endovascular therapy options are debated and long-term complication may occur. Case Report . A 53-year-old man affected by neurofibromatosis type 1 (NF1) came to our attention for recurrent vertebrobasilar embolic strokes, caused by a primary giant, partially thrombosed, fusiform aneurysm of the left extracranial vertebral artery. The aneurysm was treated by endovascular approach through deposition of Guglielmi Detachable Coils in the proximal segment of the left vertebral artery. Six years later the patient presented stroke recurrence. Cerebral angiography and Color Doppler Ultrasound well characterized the unique hemodynamic condition developed over the years responsible for the new embolic event: the aneurysm had been revascularized from its distal portion by reverse blood flow coming from the patent vertebrobasilar axis. A biphasic Doppler signal in the left vertebral artery revealed a peculiar behavior of the blood flow, alternately directed to the aneurysm and backwards to the basilar artery. Surgical ligation of the distal left vertebral artery and excision of the aneurysm were thus performed. Conclusion . This is the first described case of NF1-associated extracranial vertebral artery aneurysm presenting with recurrent embolic stroke. Complete exclusion of the aneurysm from the blood circulation is advisable to achieve full resolution of the embolic source.
[Prosopagnosia and facial expression recognition].
Koyama, Shinichi
2014-04-01
This paper reviews clinical neuropsychological studies that have indicated that the recognition of a person's identity and the recognition of facial expressions are processed by different cortical and subcortical areas of the brain. The fusiform gyrus, especially the right fusiform gyrus, plays an important role in the recognition of identity. The superior temporal sulcus, amygdala, and medial frontal cortex play important roles in facial-expression recognition. Both facial recognition and facial-expression recognition are highly intellectual processes that involve several regions of the brain.
Zhou, Jing; Hu, Nan; Wu, Ya-lin; Pan, Yuan-jiang; Sun, Cui-rong
2008-01-01
In order to investigate the antioxidant properties of the polysaccharides from the brown alga Sargassum fusiforme, the crude polysaccharides from S. fusiforme (SFPS) were extracted in hot water, and the lipid peroxidation inhibition assay exhibited that SFPS possessed a potential antioxidant activity. Hence, two purely polymeric fractions, SFPS-1 and SFPS-2 were isolated by the column of DEAE (2-diethylaminoethanol)-Sepharose Fast Flow, with their molecular weights of 51.4 and 30.3 kDa determined by high performance gel permeation chromatography (HPGPC). They were preliminarily characterized using chemical analysis in combination of infrared (IR) and nuclear magnetic resonance (NMR) spectroscopies and found to contain large amounts of uronic acids and β-glycosidical linkages. The antioxidant activities of these two SFPS fractions were evaluated using superoxide and hydroxyl radical-scavenging assays. The results show that the antioxidant ability of SFPS-2 was higher than that of SFPS-1, probably correlating with the molecular weight and uronic acid content. PMID:18763305
Zhou, Jing; Hu, Nan; Wu, Ya-lin; Pan, Yuan-jiang; Sun, Cui-rong
2008-09-01
In order to investigate the antioxidant properties of the polysaccharides from the brown alga Sargassum fusiforme, the crude polysaccharides from S. fusiforme (SFPS) were extracted in hot water, and the lipid peroxidation inhibition assay exhibited that SFPS possessed a potential antioxidant activity. Hence, two purely polymeric fractions, SFPS-1 and SFPS-2 were isolated by the column of DEAE (2-diethylaminoethanol)-Sepharose Fast Flow, with their molecular weights of 51.4 and 30.3 kDa determined by high performance gel permeation chromatography (HPGPC). They were preliminarily characterized using chemical analysis in combination of infrared (IR) and nuclear magnetic resonance (NMR) spectroscopies and found to contain large amounts of uronic acids and beta-glycosidical linkages. The antioxidant activities of these two SFPS fractions were evaluated using superoxide and hydroxyl radical-scavenging assays. The results show that the antioxidant ability of SFPS-2 was higher than that of SFPS-1, probably correlating with the molecular weight and uronic acid content.
Davies-Thompson, Jodie; Johnston, Samantha; Tashakkor, Yashar; Pancaroglu, Raika; Barton, Jason J S
2016-08-01
Visual words and faces activate similar networks but with complementary hemispheric asymmetries, faces being lateralized to the right and words to the left. A recent theory proposes that this reflects developmental competition between visual word and face processing. We investigated whether this results in an inverse correlation between the degree of lateralization of visual word and face activation in the fusiform gyri. 26 literate right-handed healthy adults underwent functional MRI with face and word localizers. We derived lateralization indices for cluster size and peak responses for word and face activity in left and right fusiform gyri, and correlated these across subjects. A secondary analysis examined all face- and word-selective voxels in the inferior occipitotemporal cortex. No negative correlations were found. There were positive correlations for the peak MR response between word and face activity within the left hemisphere, and between word activity in the left visual word form area and face activity in the right fusiform face area. The face lateralization index was positively rather than negatively correlated with the word index. In summary, we do not find a complementary relationship between visual word and face lateralization across subjects. The significance of the positive correlations is unclear: some may reflect the influences of general factors such as attention, but others may point to other factors that influence lateralization of function. Copyright © 2016 Elsevier B.V. All rights reserved.
Schreur, Vivian; Domanian, Artin; Liefers, Bart; Venhuizen, Freerk G; Klevering, B Jeroen; Hoyng, Carel B; de Jong, Eiko K; Theelen, Thomas
2018-06-20
To investigate retinal microaneurysms in patients with diabetic macular oedema (DME) by optical coherence tomography angiography (OCTA) according to their location and morphology in relationship to their clinical properties, leakage on fundus fluorescein angiography (FFA) and retinal thickening on structural OCT. OCTA and FFA images of 31 eyes of 24 subjects were graded for the presence of microaneurysms. The topographical and morphological appearance of microaneurysms on OCTA was evaluated and classified. For each microaneurysm, the presence of focal leakage on FFA and associated retinal thickening on OCT was determined. Of all microaneurysms flagged on FFA, 295 out of 513 (58%) were also visible on OCTA. Microaneurysms with focal leakage and located in a thickened retinal area were more likely to be detected on OCTA than not leaking microaneurysms in non-thickened retinal areas (p=0.001). Most microaneurysms on OCTA were seen in the intermediate (23%) and deep capillary plexus (22%). Of all microaneurysms visualised on OCTA, saccular microaneurysms were detected most often (31%), as opposed to pedunculated microaneurysms (9%). Irregular, fusiform and mixed fusiform/saccular-shaped microaneurysms had the highest likeliness to leak and to be located in thickened retinal areas (p<0.001, p<0.001 and p=0.001). Retinal microaneurysms in DME could be classified topographically and morphologically by OCTA. OCTA detected less microaneurysms than FFA, and this appeared to be dependent on leakage activity and retinal thickening. Morphological appearance of microaneurysms (irregular, fusiform and mixed saccular/fusiform) was associated with increased leakage activity and retinal thickening.
Neural correlates of processing facial identity based on features versus their spacing.
Maurer, D; O'Craven, K M; Le Grand, R; Mondloch, C J; Springer, M V; Lewis, T L; Grady, C L
2007-04-08
Adults' expertise in recognizing facial identity involves encoding subtle differences among faces in the shape of individual facial features (featural processing) and in the spacing among features (a type of configural processing called sensitivity to second-order relations). We used fMRI to investigate the neural mechanisms that differentiate these two types of processing. Participants made same/different judgments about pairs of faces that differed only in the shape of the eyes and mouth, with minimal differences in spacing (featural blocks), or pairs of faces that had identical features but differed in the positions of those features (spacing blocks). From a localizer scan with faces, objects, and houses, we identified regions with comparatively more activity for faces, including the fusiform face area (FFA) in the right fusiform gyrus, other extrastriate regions, and prefrontal cortices. Contrasts between the featural and spacing conditions revealed distributed patterns of activity differentiating the two conditions. A region of the right fusiform gyrus (near but not overlapping the localized FFA) showed greater activity during the spacing task, along with multiple areas of right frontal cortex, whereas left prefrontal activity increased for featural processing. These patterns of activity were not related to differences in performance between the two tasks. The results indicate that the processing of facial features is distinct from the processing of second-order relations in faces, and that these functions are mediated by separate and lateralized networks involving the right fusiform gyrus, although the FFA as defined from a localizer scan is not differentially involved.
Left fusiform BOLD responses are inversely related to word-likeness in a one-back task.
Wang, Xiaojuan; Yang, Jianfeng; Shu, Hua; Zevin, Jason D
2011-04-01
Although its precise functional contribution to reading remains unclear, there is broad consensus that an activity in the left mid-fusiform gyrus is highly sensitive to written words and word-like stimuli. In the current study, we take advantage of a particularity of the Chinese writing system in order to manipulate word-likeness parametrically, from real characters, to pseudo-characters that vary in whether they contain phonological and semantic cues, to artificial stimuli with varying surface similarity to real characters. In a one-back task, BOLD activity in the left mid-fusiform was inversely related to word-likeness, such that the least activity was observed in response to real characters, and the greatest to artificial stimuli that violate the orthotactic constraints of the writing system. One possible explanation for this surprising result is that the short-term memory demands of the one-back task put more pressure on the visual system when other sources of information cannot be used to aid in detecting repeated stimuli. For real characters and, to a lesser extent for pseudo-characters, information about meaning and pronunciation can contribute to performance, whereas artificial stimuli are entirely dependent on visual information. Consistent with this view, functional connectivity analyses revealed a strong positive relationship between left mid-fusiform and other visual areas, whereas areas typically involved in phonological and semantic processing for text were negatively correlated with this region. Copyright © 2011 Elsevier Inc. All rights reserved.
Molecular Characterization of Macrophage-Biomaterial Interactions
Moore, Laura Beth; Kyriakides, Themis R.
2015-01-01
Implantation of biomaterials in vascularized tissues elicits the sequential engagement of molecular and cellular elements that constitute the foreign body response. Initial events include the non-specific adsorption of proteins to the biomaterial surface that render it adhesive for cells such as neutrophils and macrophages. The latter undergo unique activation and in some cases undergo cell-cell fusion to form foreign body giant cells that contribute to implant damage and fibrotic encapsulation. In this review, we discuss the molecular events that contribute to macrophage activation and fusion with a focus on the role of the inflammasome, signaling pathways such as JAK/STAT and NF-κB, and the putative involvement of micro RNAs in the regulation of these processes. PMID:26306446
Molecular Characterization of Macrophage-Biomaterial Interactions.
Moore, Laura Beth; Kyriakides, Themis R
2015-01-01
Implantation of biomaterials in vascularized tissues elicits the sequential engagement of molecular and cellular elements that constitute the foreign body response. Initial events include the non-specific adsorption of proteins to the biomaterial surface that render it adhesive for cells such as neutrophils and macrophages. The latter undergo unique activation and in some cases undergo cell-cell fusion to form foreign body giant cells that contribute to implant damage and fibrotic encapsulation. In this review, we discuss the molecular events that contribute to macrophage activation and fusion with a focus on the role of the inflammasome, signaling pathways such as JAK/STAT and NF-κB, and the putative involvement of micro RNAs in the regulation of these processes.
Endocide-Induced Abnormal Growth Forms of Invasive Giant Salvinia (Salvinia molesta).
Li, Shiyou; Wang, Ping; Su, Zushang; Lozano, Emily; LaMaster, Olivia; Grogan, Jason B; Weng, Yuhui; Decker, Thomas; Findeisen, John; McGarrity, Monica
2018-05-22
Giant salvinia (Salvinia molesta) is one of the most noxious invasive species in the world. The fern is known to have primary, secondary, and tertiary growth forms, which are also commonly hypothesized as growth stages. The identification of these forms is primarily based on the size and folding status of the floating leaves. However, we identified 12 forms in the greenhouse and the field. Our experiments showed that the folding of floating leaves is a reversible trait dependent on water access. The floating leaves quickly fold in response to water shortage, reducing water loss and needs, decreasing growth, and avoiding trichome damage. The leaves re-open to allow trichomes repel water and enhance growth when having adequate water supply. Larger secondary or tertiary forms do not produce small-leaf primary forms without high intensity stress. These results do not support the hypothesis that three growth forms represent sequential growth stages. The abnormal small-leaf forms are the result of endocide-induced autotoxicity and some of them never grow into other forms. The development of abnormal forms and reversible leaf folding strategy in response to high stress along with rapid asexual reproduction are major adaptive traits contributing to the invasiveness of S. molesta.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi Liange; Du Fanglin
2007-08-07
Fusiform hexagonal prism SrCO{sub 3} microrods were prepared by a simple solvothermal route at 120 deg. C, and characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and Fourier transform infrared (FT-IR) spectroscopy. By controlling the content of ethylene glycol (EG), it was found that ethylene glycol (EG) played an important role in the formation of such SrCO{sub 3} microrods. Finally, effects of other solvents on the products, including 1,2-propanediol and glycerin, were also investigated.
Rajpal, Sharad; Moftakhar, Roham; Bauer, Andrew M; Turk, Aquilla S; Niemann, David B
2011-09-01
Spontaneous fusiform aneurysms of the middle cerebral artery (sfaMCA) are quite uncommon and tend to occur in young adults. The use of superselective angiography for ruptured and unruptured aneurysms can help delineate vital angioarchitecture and assist with perioperative planning and treatment modality. The use of superselective Wada testing (SWT) for treatment of a ruptured sfaMCA involving the dominant hemisphere, however, has never been described in the English literature. We report a case of a ruptured sfaMCA involving the dominant hemisphere where superselective angiography and SWT were utilized to predict the ability to occlude a major vessel without adverse neurological sequelae. A healthy young patient presented with subarachnoid hemorrhage. Initial CT-angiogram of the head identified a left-sided fusiform MCA aneurysm measuring 1.3 cm by 0.5 cm in maximum dimensions. Diagnostic angiography evaluation demonstrated an irregular, fusiform aneurysm involving the central (Rolandic) trunk of the left MCA. An SWT was then performed through an SL 10 microcatheter with injection of sodium amytal. Verbal, motor and cognitive testing were performed twice and revealed no neurological defects. The patient underwent subsequent coil embolization of the aneurysm. Formal post-procedure evaluation revealed no speech, language or cognitive deficits. She was eventually discharged home and remained without neurological deficits at her follow-up appointment 12 months after her initial presentation. Intraoperative SWT can be performed as part of the initial evaluation for patients with sfaMCA of the dominant cerebral hemisphere to help choose the appropriate treatment algorithm and predict post-treatment neurological deficits.
Vuilleumier, Patrik; Richardson, Mark P; Armony, Jorge L; Driver, Jon; Dolan, Raymond J
2004-11-01
Emotional visual stimuli evoke enhanced responses in the visual cortex. To test whether this reflects modulatory influences from the amygdala on sensory processing, we used event-related functional magnetic resonance imaging (fMRI) in human patients with medial temporal lobe sclerosis. Twenty-six patients with lesions in the amygdala, the hippocampus or both, plus 13 matched healthy controls, were shown pictures of fearful or neutral faces in task-releant or task-irrelevant positions on the display. All subjects showed increased fusiform cortex activation when the faces were in task-relevant positions. Both healthy individuals and those with hippocampal damage showed increased activation in the fusiform and occipital cortex when they were shown fearful faces, but this was not the case for individuals with damage to the amygdala, even though visual areas were structurally intact. The distant influence of the amygdala was also evidenced by the parametric relationship between amygdala damage and the level of emotional activation in the fusiform cortex. Our data show that combining the fMRI and lesion approaches can help reveal the source of functional modulatory influences between distant but interconnected brain regions.
The anatomical and functional specialization of the fusiform gyrus
Weiner, Kevin S.; Zilles, Karl
2015-01-01
The fusiform gyrus (FG) is commonly included in anatomical atlases and is considered a key structure for functionally-specialized computations of high-level vision such as face perception, object recognition, and reading. However, it is not widely known that the FG has a contentious history. In this review, we first provide a historical analysis of the discovery of the FG and why certain features, such as the mid-fusiform sulcus, were discovered and then forgotten. We then discuss how observer-independent methods for identifying cytoarchitectonical boundaries of the cortex revolutionized our understanding of cytoarchitecture and the correspondence between those boundaries and cortical folding patterns of the FG. We further explain that the co-occurrence between cortical folding patterns and cytoarchitectonical boundaries are more common than classically thought and also, are functionally meaningful especially on the FG and probably in high-level visual cortex more generally. We conclude by proposing a series of alternatives for how the anatomical organization of the FG can accommodate seemingly different theoretical aspects of functional processing, such as domain specificity and perceptual expertise. PMID:26119921
Encoding in the visual word form area: an fMRI adaptation study of words versus handwriting.
Barton, Jason J S; Fox, Christopher J; Sekunova, Alla; Iaria, Giuseppe
2010-08-01
Written texts are not just words but complex multidimensional stimuli, including aspects such as case, font, and handwriting style, for example. Neuropsychological reports suggest that left fusiform lesions can impair the reading of text for word (lexical) content, being associated with alexia, whereas right-sided lesions may impair handwriting recognition. We used fMRI adaptation in 13 healthy participants to determine if repetition-suppression occurred for words but not handwriting in the left visual word form area (VWFA) and the reverse in the right fusiform gyrus. Contrary to these expectations, we found adaptation for handwriting but not for words in both the left VWFA and the right VWFA homologue. A trend to adaptation for words but not handwriting was seen only in the left middle temporal gyrus. An analysis of anterior and posterior subdivisions of the left VWFA also failed to show any adaptation for words. We conclude that the right and the left fusiform gyri show similar patterns of adaptation for handwriting, consistent with a predominantly perceptual contribution to text processing.
Lin, Li-Dong; Zhang, Ai-Qin; Li, Nan; Lin, Yan-Qing; Li, Lu-Min; Wu, Qin-Qin; Yan, Xiu-Feng
2014-01-01
Aquatic agriculture in heavy-metal-polluted coastal areas faces major problems due to heavy metal transfer into aquatic organisms, leading to various unexpected changes in nutrition and primary and/or secondary metabolism. In the present study, the dual role of heavy metal copper (Cu) played in the metabolism of photosynthetic organism, the edible seaweed Sargassum fusiforme, was evaluated by characterization of biochemical and metabolic responses using both 1H NMR and GC-MS techniques under acute (47 µM, 1 day) and chronic stress (8 µM, 7 days). Consequently, photosynthesis may be seriously inhibited by acute Cu exposure, resulting in decreasing levels of carbohydrates, e.g., mannitol, the main products of photosynthesis. Ascorbate may play important roles in the antioxidant system, whose content was much more seriously decreased under acute than that under chronic Cu stress. Overall, these results showed differential toxicological responses on metabolite profiles of S. fusiforme subjected to acute and chronic Cu exposures that allowed assessment of impact of Cu on marine organisms. PMID:25025229
The literate brain: the relationship between spelling and reading.
Rapp, Brenda; Lipka, Kate
2011-05-01
We report the results of an fMRI investigation of the neural bases of written language comprehension (reading) and production (spelling). Both tasks were examined in the same individuals, allowing greater precision in establishing the relationship between the neural underpinnings of these two cognitive functions. Also examined was the relationship between written language substrates and those involved in face and object (house) processing. The results reveal that reading and spelling share specific left hemisphere substrates in the mid-fusiform gyrus and in the inferior frontal gyrus/junction. Furthermore, the results indicate that the left mid-fusiform substrates are specifically involved in lexical orthographic processing. We also find that written language and face processing exhibit largely complementary activation patterns in both the fusiform and the inferior frontal/junction areas, with left and right lateralization, respectively. In sum, these results provide perhaps the strongest evidence to date of components that are shared by written language comprehension (reading) and production (spelling), and they further our understanding of the role of literacy within the larger repertoire of cognitive operations and their neural substrates.
Fusiform aneurysm associated with fenestration of the posterior communicating artery.
Baba, Shiro; Fukuda, Yuutaka; Mizota, Shingo; Hayashi, Kentaro; Suyama, Kazuhiko; Nagata, Izumi
2010-01-01
A 62-year-old male presented with a rare case of fenestration of the supraclinoid segment of the internal carotid artery (ICA) at the origin of the posterior communicating artery (PCoA). The patient had a fusiform aneurysm at the proximal branch of the PCoA, which was successfully clipped, sparing the anterograde blood flow. The double origin and fenestration of the PCoA branching off at the C(2) segment of the left ICA suggested that this anomalous fenestration might have developed as the origin of the PCoA rather than the supraclinoid ICA during the early embryonal stage.
Intraoperative sonographic assessment of graft patency during extracranial-intracranial bypass.
Badie, B; Lee, F T; Pozniak, M A; Strother, C M
2000-09-01
Extracranial-intracranial (EC-IC) bypass may be necessary to facilitate treatment of unclippable posterior circulation fusiform aneurysms. Although intraoperative digital subtraction angiography (DSA) allows assessment of graft patency, this technique, because of difficulties inherent in performing selective catheterization and angiography in the operating room, has limitations. Duplex sonography, in contrast, is easily performed, and provides information regarding graft patency and blood flow direction during EC-IC bypass procedures. This latter information proved useful in determining the time of parent artery occlusion after two EC-IC bypass procedures performed for treatment of a fusiform midbasilar artery aneurysm.
Near infrared observations of S155. evidence of induced star formation?
NASA Astrophysics Data System (ADS)
Hunt, L. K.; Lisi, F.; Felli, M.; Tofani, G.
At the interface of the giant molecular cloud Cepheus OB3, S155 represents one of the most interesting examples of bright rim produced by the ionization of a nearby O-star. The interaction between the ionized HII region S155 and the hot molecular core Cepheus B may constitute the ideal site for new stars, according to the sequential star-formation theory. Past observations of molecular lines have shown the evidence of a hot spot in the cloud core, probably a compact region associated to a young stellar object. New J,H,K images recently obtained with the ARNICA array at the TIRGO telescope give evidence of stars with strong near-infrared excess, which must represent the newest generation of young stars.
Li, Bingbing; Cheng, Gang; Zhang, Dajun; Wei, Dongtao; Qiao, Lei; Wang, Xiangpeng; Che, Xianwei
2016-01-01
Recent neuroimaging studies suggest that neutral infant faces compared to neutral adult faces elicit greater activity in brain areas associated with face processing, attention, empathic response, reward, and movement. However, whether infant facial expressions evoke larger brain responses than adult facial expressions remains unclear. Here, we performed event-related functional magnetic resonance imaging in nulliparous women while they were presented with images of matched unfamiliar infant and adult facial expressions (happy, neutral, and uncomfortable/sad) in a pseudo-randomized order. We found that the bilateral fusiform and right lingual gyrus were overall more activated during the presentation of infant facial expressions compared to adult facial expressions. Uncomfortable infant faces compared to sad adult faces evoked greater activation in the bilateral fusiform gyrus, precentral gyrus, postcentral gyrus, posterior cingulate cortex-thalamus, and precuneus. Neutral infant faces activated larger brain responses in the left fusiform gyrus compared to neutral adult faces. Happy infant faces compared to happy adult faces elicited larger responses in areas of the brain associated with emotion and reward processing using a more liberal threshold of p < 0.005 uncorrected. Furthermore, the level of the test subjects' Interest-In-Infants was positively associated with the intensity of right fusiform gyrus response to infant faces and uncomfortable infant faces compared to sad adult faces. In addition, the Perspective Taking subscale score on the Interpersonal Reactivity Index-Chinese was significantly correlated with precuneus activity during uncomfortable infant faces compared to sad adult faces. Our findings suggest that regional brain areas may bias cognitive and emotional responses to infant facial expressions compared to adult facial expressions among nulliparous women, and this bias may be modulated by individual differences in Interest-In-Infants and perspective taking ability.
Chouinard, Philippe A; Goodale, Melvyn A
2012-02-01
We used fMRI to identify brain areas that adapted to either animals or manipulable artifacts while participants classified highly-rendered color photographs into subcategories. Several key brain areas adapted more strongly to one class of objects compared to the other. Namely, we observed stronger adaptation for animals in the lingual gyrus bilaterally, which are known to analyze the color of objects, and in the right frontal operculum and in the anterior insular cortex bilaterally, which are known to process emotional content. In contrast, the left anterior intraparietal sulcus, which is important for configuring the hand to match the three-dimensional structure of objects during grasping, adapted more strongly to manipulable artifacts. Contrary to what a previous study has found using gray-scale photographs, we did not replicate categorical-specific adaptation in the lateral fusiform gyrus for animals and categorical-specific adaptation in the medial fusiform gyrus for manipulable artifacts. Both categories of objects adapted strongly in the fusiform gyrus without any clear preference in location along its medial-lateral axis. We think that this is because the fusiform gyrus has an important role to play in color processing and hence its responsiveness to color stimuli could be very different than its responsiveness to gray-scale photographs. Nevertheless, on the basis of what we found, we propose that the recognition and subsequent classification of animals may depend primarily on perceptual properties, such as their color, and on their emotional content whereas other factors, such as their function, may play a greater role for classifying manipulable artifacts. Copyright © 2011 Elsevier Inc. All rights reserved.
Zhang, Dajun; Wei, Dongtao; Qiao, Lei; Wang, Xiangpeng; Che, Xianwei
2016-01-01
Recent neuroimaging studies suggest that neutral infant faces compared to neutral adult faces elicit greater activity in brain areas associated with face processing, attention, empathic response, reward, and movement. However, whether infant facial expressions evoke larger brain responses than adult facial expressions remains unclear. Here, we performed event-related functional magnetic resonance imaging in nulliparous women while they were presented with images of matched unfamiliar infant and adult facial expressions (happy, neutral, and uncomfortable/sad) in a pseudo-randomized order. We found that the bilateral fusiform and right lingual gyrus were overall more activated during the presentation of infant facial expressions compared to adult facial expressions. Uncomfortable infant faces compared to sad adult faces evoked greater activation in the bilateral fusiform gyrus, precentral gyrus, postcentral gyrus, posterior cingulate cortex-thalamus, and precuneus. Neutral infant faces activated larger brain responses in the left fusiform gyrus compared to neutral adult faces. Happy infant faces compared to happy adult faces elicited larger responses in areas of the brain associated with emotion and reward processing using a more liberal threshold of p < 0.005 uncorrected. Furthermore, the level of the test subjects’ Interest-In-Infants was positively associated with the intensity of right fusiform gyrus response to infant faces and uncomfortable infant faces compared to sad adult faces. In addition, the Perspective Taking subscale score on the Interpersonal Reactivity Index-Chinese was significantly correlated with precuneus activity during uncomfortable infant faces compared to sad adult faces. Our findings suggest that regional brain areas may bias cognitive and emotional responses to infant facial expressions compared to adult facial expressions among nulliparous women, and this bias may be modulated by individual differences in Interest-In-Infants and perspective taking ability. PMID:27977692
Xu, David S; Levitt, Michael R; Kalani, M Yashar S; Rangel-Castilla, Leonardo; Mulholland, Celene B; Abecassis, Isaac J; Morton, Ryan P; Nerva, John D; Siddiqui, Adnan H; Levy, Elad I; Spetzler, Robert F; Albuquerque, Felipe C; McDougall, Cameron G
2018-02-01
OBJECTIVE Fusiform dolichoectatic vertebrobasilar aneurysms are rare, challenging lesions. The natural history of these lesions and medium- and long-term patient outcomes are poorly understood. The authors sought to evaluate patient prognosis after diagnosis of fusiform dolichoectatic vertebrobasilar aneurysms and to identify clinical and radiographic predictors of neurological deterioration. METHODS The authors reviewed multiple, prospectively maintained, single-provider databases at 3 large-volume cerebrovascular centers to obtain data on patients with unruptured, fusiform, basilar artery dolichoectatic aneurysms diagnosed between January 1, 2000, and January 1, 2015. RESULTS A total of 50 patients (33 men, 17 women) were identified; mean clinical follow-up was 50.1 months and mean radiographic follow-up was 32.4 months. At last follow-up, 42% (n = 21) of aneurysms had progressed and 44% (n = 22) of patients had deterioration of their modified Rankin Scale scores. When patients were dichotomized into 2 groups- those who worsened and those who did not-univariate analysis showed 5 variables to be statistically significantly different: sex (p = 0.007), radiographic brainstem compression (p = 0.03), clinical posterior fossa compression (p < 0.001), aneurysmal growth on subsequent imaging (p = 0.001), and surgical therapy (p = 0.006). A binary logistic regression was then created to evaluate these variables. The only variable found to be a statistically significant predictor of clinical worsening was clinical symptoms of posterior fossa compression at presentation (p = 0.01). CONCLUSIONS Fusiform dolichoectatic vertebrobasilar aneurysms carry a poor prognosis, with approximately one-half of the patients deteriorating or experiencing progression of their aneurysm within 5 years. Despite being high risk, intervention-when carefully timed (before neurological decline)-may be beneficial in select patients.
Wu, Xiaodan; Jiang, Wei; Lu, Jiajia; Yu, Ying; Wu, Bin
2014-02-15
Sargassum fusiforme (hijiki) is the well-known edible algae, whose polysaccharides have been proved to possess interesting bioactivities like antitumor, antioxidant, antimicrobial and immunomodulatory activities. A facile and sensitive method based on high-performance liquid chromatography method of pre-column derivatization with 1-phenyl-3-methyl-5-pyrazolone (PMP) coupled with electrospray ionisation mass spectrometry (HPLC/ESI-MS) has been established for the analysis of the monosaccharide composition of polysaccharides in S. fusiforme. Monosaccharides have been converted into PMP-labelled derivatives with aqueous ammonia as a catalyst at 70 °C for 30 min. The optimisation of the pre-column derivatization process was studied. The LODs of the monosaccharides were in the range from 0.01 to 0.02 nmol. PMP-labelled mixture of monosaccharides has been well separated by a reverse-phase HPLC and detected by on-line ESI-MS method under optimised conditions. The mobile phase of elution system was chosen as acetonitrile (solvent A) and 20mM aqueous ammonium acetate (solvent B) (pH 3.0) with Zorbax XDB-C18 column at 30 °C for the separation of the monosaccharide derivatives. Identification of the monosaccharides composition was carried out by analysis with mass spectral behaviour and chromatography characteristics of 1-phenyl-3-methyl-5-pyrazolone (PMP) labelled monosaccharides. All PMP-labelled derivatives display high chemical stabilities, whose regular MS fragmentation is specific for reducing labelled sugars. The result showed that the S. fusiforme polysaccharide consisted of mannose, glucose, galactose, xylose, fucose and glucuronic acid or galacturonic acid, or both uronic acids. Copyright © 2013 Elsevier Ltd. All rights reserved.
Olivares, Ela I; Lage-Castellanos, Agustín; Bobes, María A; Iglesias, Jaime
2018-01-01
We investigated the neural correlates of the access to and retrieval of face structure information in contrast to those concerning the access to and retrieval of person-related verbal information, triggered by faces. We experimentally induced stimulus familiarity via a systematic learning procedure including faces with and without associated verbal information. Then, we recorded event-related potentials (ERPs) in both intra-domain (face-feature) and cross-domain (face-occupation) matching tasks while N400-like responses were elicited by incorrect eyes-eyebrows completions and occupations, respectively. A novel Bayesian source reconstruction approach plus conjunction analysis of group effects revealed that in both cases the generated N170s were of similar amplitude but had different neural origin. Thus, whereas the N170 of faces was associated predominantly to right fusiform and occipital regions (the so-called "Fusiform Face Area", "FFA" and "Occipital Face Area", "OFA", respectively), the N170 of occupations was associated to a bilateral very posterior activity, suggestive of basic perceptual processes. Importantly, the right-sided perceptual P200 and the face-related N250 were evoked exclusively in the intra-domain task, with sources in OFA and extensively in the fusiform region, respectively. Regarding later latencies, the intra-domain N400 seemed to be generated in right posterior brain regions encompassing mainly OFA and, to some extent, the FFA, likely reflecting neural operations triggered by structural incongruities. In turn, the cross-domain N400 was related to more anterior left-sided fusiform and temporal inferior sources, paralleling those described previously for the classic verbal N400. These results support the existence of differentiated neural streams for face structure and person-related verbal processing triggered by faces, which can be activated differentially according to specific task demands.
Right fusiform response patterns reflect visual object identity rather than semantic similarity.
Bruffaerts, Rose; Dupont, Patrick; De Grauwe, Sophie; Peeters, Ronald; De Deyne, Simon; Storms, Gerrit; Vandenberghe, Rik
2013-12-01
We previously reported the neuropsychological consequences of a lesion confined to the middle and posterior part of the right fusiform gyrus (case JA) causing a partial loss of knowledge of visual attributes of concrete entities in the absence of category-selectivity (animate versus inanimate). We interpreted this in the context of a two-step model that distinguishes structural description knowledge from associative-semantic processing and implicated the lesioned area in the former process. To test this hypothesis in the intact brain, multi-voxel pattern analysis was used in a series of event-related fMRI studies in a total of 46 healthy subjects. We predicted that activity patterns in this region would be determined by the identity of rather than the conceptual similarity between concrete entities. In a prior behavioral experiment features were generated for each entity by more than 1000 subjects. Based on a hierarchical clustering analysis the entities were organised into 3 semantic clusters (musical instruments, vehicles, tools). Entities were presented as words or pictures. With foveal presentation of pictures, cosine similarity between fMRI response patterns in right fusiform cortex appeared to reflect both the identity of and the semantic similarity between the entities. No such effects were found for words in this region. The effect of object identity was invariant for location, scaling, orientation axis and color (grayscale versus color). It also persisted for different exemplars referring to a same concrete entity. The apparent semantic similarity effect however was not invariant. This study provides further support for a neurobiological distinction between structural description knowledge and processing of semantic relationships and confirms the role of right mid-posterior fusiform cortex in the former process, in accordance with previous lesion evidence. © 2013.
Poo, Kyung-Min; Son, Eun-Bi; Chang, Jae-Soo; Ren, Xianghao; Choi, Yun-Jung; Chae, Kyu-Jung
2018-01-15
For the purpose of reusing wasted marine macro-algae generated during cultivation, harvesting, processing and selling processes, biochars derived from Saccharina japonica (known as kelp) and Sargassum fusiforme (known as hijikia) were characterized and their removal capacities for Cu, Cd, and Zn in aqueous solution were assessed. Feedstocks, S. japonica, S. fusiforme, and also pinewood sawdust as a control, were pyrolyzed at 250, 400, 500, 600 and 700 °C. In evaluating heavy metal removal capacities, SJB (S. japonica biochar) showed the best performance, with removal efficiencies of more than 98% for the three heavy metals when pyrolyzed at over 400 °C. SFB (S. fusiforme biochar) also showed good potential as an adsorbent, with removal efficiencies for the three heavy metals of more than 86% when pyrolyzed at over 500 °C. On the contrary, the maximum removal efficiencies of PSB (pinewood sawdust biochar) were 81%, 46%, and 47% for Cu, Cd, and Zn, respectively, even at 700 °C, the highest pyrolysis temperature. This demonstrates that marine macro-algae were advantageous in terms of production energy for removing heavy metals even at relatively low pyrolysis temperatures, compared with PSB. The excellent heavy metal adsorption capacities of marine macro-algae biochars were considered due to their higher pH and more oxygen-containing functional groups, although the specific surface areas of SJB and SFB were significantly lower than that of PSB. This research confirmed that the use of marine macro-algae as a heavy metal adsorbent was suitable not only in the removal of heavy metals, but also in terms of resource recycling and energy efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sedlacek, Miloslav; Brenowitz, Stephan D
2014-01-01
Feed-forward inhibition (FFI) represents a powerful mechanism by which control of the timing and fidelity of action potentials in local synaptic circuits of various brain regions is achieved. In the cochlear nucleus, the auditory nerve provides excitation to both principal neurons and inhibitory interneurons. Here, we investigated the synaptic circuit associated with fusiform cells (FCs), principal neurons of the dorsal cochlear nucleus (DCN) that receive excitation from auditory nerve fibers and inhibition from tuberculoventral cells (TVCs) on their basal dendrites in the deep layer of DCN. Despite the importance of these inputs in regulating fusiform cell firing behavior, the mechanisms determining the balance of excitation and FFI in this circuit are not well understood. Therefore, we examined the timing and plasticity of auditory nerve driven FFI onto FCs. We find that in some FCs, excitatory and inhibitory components of FFI had the same stimulation thresholds indicating they could be triggered by activation of the same fibers. In other FCs, excitation and inhibition exhibit different stimulus thresholds, suggesting FCs and TVCs might be activated by different sets of fibers. In addition, we find that during repetitive activation, synapses formed by the auditory nerve onto TVCs and FCs exhibit distinct modes of short-term plasticity. Feed-forward inhibitory post-synaptic currents (IPSCs) in FCs exhibit short-term depression because of prominent synaptic depression at the auditory nerve-TVC synapse. Depression of this feedforward inhibitory input causes a shift in the balance of fusiform cell synaptic input towards greater excitation and suggests that fusiform cell spike output will be enhanced by physiological patterns of auditory nerve activity.
Greater Working Memory Load Results in Greater Medial Temporal Activity at Retrieval
Quiroz, Yakeel T.; Hasselmo, Michael E.; Stern, Chantal E.
2009-01-01
Most functional magnetic resonance imaging (fMRI) studies examining working memory (WM) load have focused on the prefrontal cortex (PFC) and have demonstrated increased prefrontal activity with increased load. Here we examined WM load effects in the medial temporal lobe (MTL) using an fMRI Sternberg task with novel complex visual scenes. Trials consisted of 3 sequential events: 1) sample presentation (encoding), 2) delay period (maintenance), and 3) probe period (retrieval). During sample encoding, subjects saw either 2 or 4 pictures consecutively. During retrieval, subjects indicated whether the probe picture matched one of the sample pictures. Results revealed that activity in the left anterior hippocampal formation, bilateral retrosplenial area, and left amygdala was greater at retrieval for trials with larger memory load, whereas activity in the PFC was greater at encoding for trials with larger memory load. There was no load effect during the delay. When encoding, maintenance, and retrieval periods were compared with fixation, activity was present in the hippocampal body/tail and fusiform gyrus bilaterally during encoding and retrieval, but not maintenance. Bilateral dorsolateral prefrontal activity was present during maintenance, but not during encoding or retrieval. The results support models of WM predicting that activity in the MTL should be modulated by WM load. PMID:19224975
Tidal Barrier and the Asymptotic Mass of Proto-Gas Giant Planets
NASA Astrophysics Data System (ADS)
Dobbs-Dixon, Ian; Li, Shu Lin; Lin, D. N. C.
2007-05-01
According to the conventional sequential accretion scenario, observed extrasolar planets acquired their current masses via efficient gas accretion onto super-Earth cores with accretion timescales that rapidly increase with mass. Gas accretion in weak-line T Tauri disks may be quenched by global depletion of gas, but such a mechanism is unlikely to have stalled the growth in planetary systems that contain relatively low-mass, close-in planets together with more massive, longer period companions. Here, we suggest a potential solution for this conundrum. In general, supersonic infall of surrounding gas onto a protoplanet is only possible interior to both its Bondi and Roche radii. Above the critical mass where the Roche and Bondi radii are equal to the disk thickness, the protoplanet's tidal perturbation induces the formation of a gap. However, despite continued diffusion into the gap, the azimuthal flux across the protoplanet's Roche lobe will be quenched. Using two different schemes, we present the results of numerical simulations and analysis to show that the accretion rate increases rapidly with the ratio of the protoplanet's Roche to Bondi radii or equivalently to the disk thickness. Gas accretion is quenched, yielding relatively low protoplanetary masses, in regions with low aspect ratios. This becomes important for determining the gas giant planet's mass function, the distribution of their masses within multiple-planet systems, and for suppressing the emergence of gas giants around low-mass stars. Finally, we find that accretion rates onto protoplanets declines gradually on a characteristic timescale of a few Myr, during which the protracted accretion timescale onto circumplanetary disks may allow for the formation and retention of regular satellites.
Effects of channel blocking on information transmission and energy efficiency in squid giant axons.
Liu, Yujiang; Yue, Yuan; Yu, Yuguo; Liu, Liwei; Yu, Lianchun
2018-04-01
Action potentials are the information carriers of neural systems. The generation of action potentials involves the cooperative opening and closing of sodium and potassium channels. This process is metabolically expensive because the ions flowing through open channels need to be restored to maintain concentration gradients of these ions. Toxins like tetraethylammonium can block working ion channels, thus affecting the function and energy cost of neurons. In this paper, by computer simulation of the Hodgkin-Huxley neuron model, we studied the effects of channel blocking with toxins on the information transmission and energy efficiency in squid giant axons. We found that gradually blocking sodium channels will sequentially maximize the information transmission and energy efficiency of the axons, whereas moderate blocking of potassium channels will have little impact on the information transmission and will decrease the energy efficiency. Heavy blocking of potassium channels will cause self-sustained oscillation of membrane potentials. Simultaneously blocking sodium and potassium channels with the same ratio increases both information transmission and energy efficiency. Our results are in line with previous studies suggesting that information processing capacity and energy efficiency can be maximized by regulating the number of active ion channels, and this indicates a viable avenue for future experimentation.
Blood-urine barrier formation in mouse urinary bladder development.
Jezernik, K; Pipan, N
1993-04-01
Formation of the blood-urine permeability barrier in differentiating mouse transitional urothelium was studied. It was established that the development of superficial cell barrier is a two-phase process: beginning with formation of the tight junctions, followed by formation of fusiform vesicles and asymmetric apical plasma membranes. Fusiform vesicles differentiate during days 15 and 17 of gestation and fuse with the apical plasmalemma. Thus a thick membrane is formed before the excretion of hypertonic urine into the embryonic bladder. Through some degenerative superficial cells slough between fetal day 17 and the day of birth, the bladder epithelium in mice does not lack an effective permeability barrier.
Majidi, Shahram; Leon Guerrero, Christopher R; Gandhy, Shreya; Burger, Kathleen M; Sigounas, Dimitri
2017-07-01
Central nervous system (CNS) involvement occurs in up to 50% of patients with systemic lupus erythematosus (SLE). Cerebral aneurysm formation is a rare complication of CNS lupus. The majority of these patients present with subarachnoid hemorrhage. We report a patient with an active SLE flare who presented with a recurrent ischemic stroke and was found to have numerous unruptured fusiform and saccular aneurysms in multiple vascular territories. He was treated with high-dose steroid and rituximab along with aspirin and blood pressure control for stroke prevention. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Nestor, Paul G; Onitsuka, Toshiaki; Gurrera, Ronald J; Niznikiewicz, Margaret; Frumin, Melissa; Shenton, Martha E; McCarley, Robert W
2007-03-01
We sought to identify the functional correlates of reduced magnetic resonance imaging (MRI) volumes of the superior temporal gyrus (STG) and the fusiform gyrus (FG) in patients with chronic schizophrenia. MRI volumes, positive/negative symptoms, and neuropsychological tests of facial memory and executive functioning were examined within the same subjects. The results indicated two distinct, dissociable brain structure-function relationships: (1) reduced left STG volume-positive symptoms-executive deficits; (2) reduced left FG-negative symptoms-facial memory deficits. STG and FG volume reductions may each make distinct contributions to symptoms and cognitive deficits of schizophrenia.
One-year-old fear memories rapidly activate human fusiform gyrus
Pizzagalli, Diego A.
2016-01-01
Fast threat detection is crucial for survival. In line with such evolutionary pressure, threat-signaling fear-conditioned faces have been found to rapidly (<80 ms) activate visual brain regions including the fusiform gyrus on the conditioning day. Whether remotely fear conditioned stimuli (CS) evoke similar early processing enhancements is unknown. Here, 16 participants who underwent a differential face fear-conditioning and extinction procedure on day 1 were presented the initial CS 24 h after conditioning (Recent Recall Test) as well as 9-17 months later (Remote Recall Test) while EEG was recorded. Using a data-driven segmentation procedure of CS evoked event-related potentials, five distinct microstates were identified for both the recent and the remote memory test. To probe intracranial activity, EEG activity within each microstate was localized using low resolution electromagnetic tomography analysis (LORETA). In both the recent (41–55 and 150–191 ms) and remote (45–90 ms) recall tests, fear conditioned faces potentiated rapid activation in proximity of fusiform gyrus, even in participants unaware of the contingencies. These findings suggest that rapid processing enhancements of conditioned faces persist over time. PMID:26416784
A common neural substrate for perceiving and knowing about color
Simmons, W. Kyle; Ramjee, Vimal; Beauchamp, Michael S.; McRae, Ken; Martin, Alex; Barsalou, Lawrence W.
2013-01-01
Functional neuroimaging research has demonstrated that retrieving information about object-associated colors activates the left fusiform gyrus in posterior temporal cortex. Although regions near the fusiform have previously been implicated in color perception, it remains unclear whether color knowledge retrieval actually activates the color perception system. Evidence to this effect would be particularly strong if color perception cortex was activated by color knowledge retrieval triggered strictly with linguistic stimuli. To address this question, subjects performed two tasks while undergoing fMRI. First, subjects performed a property verification task using only words to assess conceptual knowledge. On each trial, subjects verified whether a named color or motor property was true of a named object (e.g., TAXI-yellow, HAIR-combed). Next, subjects performed a color perception task. A region of the left fusiform gyrus that was highly responsive during color perception also showed greater activity for retrieving color than motor property knowledge. These data provide the first evidence for a direct overlap in the neural bases of color perception and stored information about object-associated color, and they significantly add to accumulating evidence that conceptual knowledge is grounded in the brain’s modality-specific systems. PMID:17575989
NASA Astrophysics Data System (ADS)
Sun, Yuhao; Chen, Xiaolin; Liu, Song; Yu, Huahua; Li, Rongfeng; Wang, Xueqin; Qin, Yukun; Li, Pengcheng
2017-10-01
Heparin has been used as an anticoagulant drug for many years, but it has significant side effects. In the search for good substitutes, low molecular weight (MW) polysaccharides from Sargassum fusiforme have been examined and confirmed to possess biological activities. Here, S. fusiforme polysaccharides (SFP) were extracted and subjected to a hydrogen peroxide (H2O2) oxidation method for the preparation of low-MW SFP (LSFP). The effects of temperature, pH, and H2O2 concentration on the degradation process were also examined. Several LSFP of 36, 9, 5.7, and 2.7 kDa were obtained under different conditions, and their anticoagulant activities studied in vitro. The results showed that SFP and LSFP prolonged activated partial thromboplastin (APTT), prothrombin (PT) and thrombin times (TT) significantly, indicating that these low MW polysaccharides possessed anticoagulant activity in the intrinsic, extrinsic, and common coagulation pathways. As these effects were related to the MW of the polysaccharides in APTT and TT but not in PT, the contents of the monosaccharide fucose and sulfate and the polysaccharide MW could have exerted combined effects. The details of this mechanism require further verification.
Neural correlates of the perception of dynamic versus static facial expressions of emotion.
Kessler, Henrik; Doyen-Waldecker, Cornelia; Hofer, Christian; Hoffmann, Holger; Traue, Harald C; Abler, Birgit
2011-04-20
This study investigated brain areas involved in the perception of dynamic facial expressions of emotion. A group of 30 healthy subjects was measured with fMRI when passively viewing prototypical facial expressions of fear, disgust, sadness and happiness. Using morphing techniques, all faces were displayed as still images and also dynamically as a film clip with the expressions evolving from neutral to emotional. Irrespective of a specific emotion, dynamic stimuli selectively activated bilateral superior temporal sulcus, visual area V5, fusiform gyrus, thalamus and other frontal and parietal areas. Interaction effects of emotion and mode of presentation (static/dynamic) were only found for the expression of happiness, where static faces evoked greater activity in the medial prefrontal cortex. Our results confirm previous findings on neural correlates of the perception of dynamic facial expressions and are in line with studies showing the importance of the superior temporal sulcus and V5 in the perception of biological motion. Differential activation in the fusiform gyrus for dynamic stimuli stands in contrast to classical models of face perception but is coherent with new findings arguing for a more general role of the fusiform gyrus in the processing of socially relevant stimuli.
Zhu, Bi; Chen, Chuansheng; Loftus, Elizabeth F; He, Qinghua; Lei, Xuemei; Dong, Qi; Lin, Chongde
2016-11-01
There is a keen interest in identifying specific brain regions that are related to individual differences in true and false memories. Previous functional neuroimaging studies showed that activities in the hippocampus, right fusiform gyrus, and parahippocampal gyrus were associated with true and false memories, but no study thus far has examined whether the structures of these brain regions are associated with short-term and long-term true and false memories. To address that question, the current study analyzed data from 205 healthy young adults, who had valid data from both structural brain imaging and a misinformation task. In the misinformation task, subjects saw the crime scenarios, received misinformation, and took memory tests about the crimes an hour later and again after 1.5 years. Results showed that bilateral hippocampal volume was associated with short-term true and false memories, whereas right fusiform gyrus volume and surface area were associated with long-term true and false memories. This study provides the first evidence for the structural neural bases of individual differences in short-term and long-term true and false memories.
A common neural substrate for perceiving and knowing about color.
Simmons, W Kyle; Ramjee, Vimal; Beauchamp, Michael S; McRae, Ken; Martin, Alex; Barsalou, Lawrence W
2007-09-20
Functional neuroimaging research has demonstrated that retrieving information about object-associated colors activates the left fusiform gyrus in posterior temporal cortex. Although regions near the fusiform have previously been implicated in color perception, it remains unclear whether color knowledge retrieval actually activates the color perception system. Evidence to this effect would be particularly strong if color perception cortex was activated by color knowledge retrieval triggered strictly with linguistic stimuli. To address this question, subjects performed two tasks while undergoing fMRI. First, subjects performed a property verification task using only words to assess conceptual knowledge. On each trial, subjects verified whether a named color or motor property was true of a named object (e.g., TAXI-yellow, HAIR-combed). Next, subjects performed a color perception task. A region of the left fusiform gyrus that was highly responsive during color perception also showed greater activity for retrieving color than motor property knowledge. These data provide the first evidence for a direct overlap in the neural bases of color perception and stored information about object-associated color, and they significantly add to accumulating evidence that conceptual knowledge is grounded in the brain's modality-specific systems.
Modulation of human extrastriate visual processing by selective attention to colours and words.
Nobre, A C; Allison, T; McCarthy, G
1998-07-01
The present study investigated the effect of visual selective attention upon neural processing within functionally specialized regions of the human extrastriate visual cortex. Field potentials were recorded directly from the inferior surface of the temporal lobes in subjects with epilepsy. The experimental task required subjects to focus attention on words from one of two competing texts. Words were presented individually and foveally. Texts were interleaved randomly and were distinguishable on the basis of word colour. Focal field potentials were evoked by words in the posterior part of the fusiform gyrus. Selective attention strongly modulated long-latency potentials evoked by words. The attention effect co-localized with word-related potentials in the posterior fusiform gyrus, and was independent of stimulus colour. The results demonstrated that stimuli receive differential processing within specialized regions of the extrastriate cortex as a function of attention. The late onset of the attention effect and its co-localization with letter string-related potentials but not with colour-related potentials recorded from nearby regions of the fusiform gyrus suggest that the attention effect is due to top-down influences from downstream regions involved in word processing.
Intrinsic and synaptic properties of vertical cells of the mouse dorsal cochlear nucleus
Kuo, Sidney P.; Lu, Hsin-Wei
2012-01-01
Multiple classes of inhibitory interneurons shape the activity of principal neurons of the dorsal cochlear nucleus (DCN), a primary target of auditory nerve fibers in the mammalian brain stem. Feedforward inhibition mediated by glycinergic vertical cells (also termed tuberculoventral or corn cells) is thought to contribute importantly to the sound-evoked response properties of principal neurons, but the cellular and synaptic properties that determine how vertical cells function are unclear. We used transgenic mice in which glycinergic neurons express green fluorescent protein (GFP) to target vertical cells for whole cell patch-clamp recordings in acute slices of DCN. We found that vertical cells express diverse intrinsic spiking properties and could fire action potentials at high, sustained spiking rates. Using paired recordings, we directly examined synapses made by vertical cells onto fusiform cells, a primary DCN principal cell type. Vertical cell synapses produced unexpectedly small-amplitude unitary currents in fusiform cells, and additional experiments indicated that multiple vertical cells must be simultaneously active to inhibit fusiform cell spike output. Paired recordings also revealed that a major source of inhibition to vertical cells comes from other vertical cells. PMID:22572947
Tsapkini, Kyrana; Vindiola, Manuel; Rapp, Brenda
2011-04-01
Little is known about the neural reorganization that takes place subsequent to lesions that affect orthographic processing (reading and/or spelling). We report on an fMRI investigation of an individual with a left mid-fusiform resection that affected both reading and spelling (Tsapkini & Rapp, 2010). To investigate possible patterns of functional reorganization, we compared the behavioral and neural activation patterns of this individual with those of a group of control participants for the tasks of silent reading of words and pseudowords and the passive viewing of faces and objects, all tasks that typically recruit the inferior temporal lobes. This comparison was carried out with methods that included a novel application of Mahalanobis distance statistics, and revealed: (1) normal behavioral and neural responses for face and object processing, (2) evidence of neural reorganization bilaterally in the posterior fusiform that supported normal performance in pseudoword reading and which contributed to word reading (3) evidence of abnormal recruitment of the bilateral anterior temporal lobes indicating compensatory (albeit insufficient) recruitment of mechanisms for circumventing the word reading deficit. Copyright © 2010 Elsevier Inc. All rights reserved.
Li, Yajing; Fu, Xiaoting; Duan, Delin; Liu, Xiaoyong; Xu, Jiachao; Gao, Xin
2017-01-01
Phlorotannins are a group of complex polymers of phloroglucinol (1,3,5-trihydroxybenzene), which are unique compounds from marine brown algae. In our present study, a procedure for extraction and enrichment of phlorotannins from S. fusiforme with highly antioxidant potentials was established. After comparison of different extraction methods, the optimal extraction conditions were established as follows. The freeze-dried seaweed powder was extracted with 30% ethanol-water solvent with a solid/liquid ratio of 1:5 at temperature of 25 °C for 30 min. After extraction, the phlorotannins were fractioned by different solvents, among which the ethyl acetate fraction exhibited both the highest total phlorotannin content (88.48 ± 0.30 mg PGE/100 mg extract) and the highest antioxidant activities. The extracts obtained from these locations were further purified and characterized using a modified UHPLC-QQQ-MS method. Compounds with 42 different molecular weights were detected and tentatively identified, among which the fuhalol-type phlorotannins were the dominant compounds, followed by phlorethols and fucophlorethols with diverse degree of polymerization. Eckol-type phlorotannins including some newly discovered carmalol derivatives were detected in Sargassum species for the first time. Our study not only described the complex phlorotannins composition in S. fusiforme, but also highlighted the challenges involved in structural elucidation of these compounds. PMID:28230766
The structural and functional correlates of the efficiency in fearful face detection.
Wang, Yongchao; Guo, Nana; Zhao, Li; Huang, Hui; Yao, Xiaonan; Sang, Na; Hou, Xin; Mao, Yu; Bi, Taiyong; Qiu, Jiang
2017-06-01
Human visual system is found to be much efficient in searching for a fearful face. Some individuals are more sensitive to this threat-related stimulus. However, we still know little about the neural correlates of such variability. In the current study, we exploited a visual search paradigm, and asked the subjects to search for a fearful face or a target gender. Every subject showed a shallower search function for fearful face search than face gender search, indicating a stable fearful face advantage. We then used voxel-based morphometry (VBM) analysis and correlated this advantage to the gray matter volume (GMV) of some presumably face related cortical areas. The result revealed that only the left fusiform gyrus showed a significant positive correlation. Next, we defined the left fusiform gyrus as the seed region and calculated its resting state functional connectivity to the whole brain. Correlations were also calculated between fearful face advantage and these connectivities. In this analysis, we found positive correlations in the inferior parietal lobe and the ventral medial prefrontal cortex. These results suggested that the anatomical structure of the left fusiform gyrus might determine the search efficiency of fearful face, and frontoparietal attention network involved in this process through top-down attentional modulation. Copyright © 2017. Published by Elsevier Ltd.
Buchy, Lisa; Barbato, Mariapaola; Makowski, Carolina; Bray, Signe; MacMaster, Frank P; Deighton, Stephanie; Addington, Jean
2017-11-01
People with psychosis show deficits recognizing facial emotions and disrupted activation in the underlying neural circuitry. We evaluated associations between facial emotion recognition and cortical thickness using a correlation-based approach to map structural covariance networks across the brain. Fifteen people with an early psychosis provided magnetic resonance scans and completed the Penn Emotion Recognition and Differentiation tasks. Fifteen historical controls provided magnetic resonance scans. Cortical thickness was computed using CIVET and analyzed with linear models. Seed-based structural covariance analysis was done using the mapping anatomical correlations across the cerebral cortex methodology. To map structural covariance networks involved in facial emotion recognition, the right somatosensory cortex and bilateral fusiform face areas were selected as seeds. Statistics were run in SurfStat. Findings showed increased cortical covariance between the right fusiform face region seed and right orbitofrontal cortex in controls than early psychosis subjects. Facial emotion recognition scores were not significantly associated with thickness in any region. A negative effect of Penn Differentiation scores on cortical covariance was seen between the left fusiform face area seed and right superior parietal lobule in early psychosis subjects. Results suggest that facial emotion recognition ability is related to covariance in a temporal-parietal network in early psychosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Weiner, Kevin S.; Golarai, Golijeh; Caspers, Julian; Chuapoco, Miguel R.; Mohlberg, Hartmut; Zilles, Karl; Amunts, Katrin; Grill-Spector, Kalanit
2014-01-01
Human ventral temporal cortex (VTC) plays a pivotal role in high-level vision. An under-studied macroanatomical feature of VTC is the mid-fusiform sulcus (MFS), a shallow longitudinal sulcus separating the lateral and medial fusiform gyrus (FG). Here, we quantified the morphological features of the MFS in 69 subjects (ages 7–40), and investigated its relationship to both cytoarchitectonic and functional divisions of VTC with four main findings. First, despite being a minor sulcus, we found that the MFS is a stable macroanatomical structure present in all 138 hemispheres with morphological characteristics developed by age 7. Second, the MFS is the locus of a lateral-medial cytoarchitechtonic transition within the posterior FG serving as the boundary between cytoarchitectonic regions FG1 and FG2. Third, the MFS predicts a lateral-medial functional transition in eccentricity bias representations in children, adolescents, and adults. Fourth, the anterior tip of the MFS predicts the location of a face-selective region, mFus-faces/FFA-2. These findings are the first to illustrate that a macroanatomical landmark identifies both cytoarchitectonic and functional divisions of high-level sensory cortex in humans and have important implications for understanding functional and structural organization in the human brain. PMID:24021838
The role of the fusiform face area in social cognition: implications for the pathobiology of autism.
Schultz, Robert T; Grelotti, David J; Klin, Ami; Kleinman, Jamie; Van der Gaag, Christiaan; Marois, René; Skudlarski, Pawel
2003-01-01
A region in the lateral aspect of the fusiform gyrus (FG) is more engaged by human faces than any other category of image. It has come to be known as the 'fusiform face area' (FFA). The origin and extent of this specialization is currently a topic of great interest and debate. This is of special relevance to autism, because recent studies have shown that the FFA is hypoactive to faces in this disorder. In two linked functional magnetic resonance imaging (fMRI) studies of healthy young adults, we show here that the FFA is engaged by a social attribution task (SAT) involving perception of human-like interactions among three simple geometric shapes. The amygdala, temporal pole, medial prefrontal cortex, inferolateral frontal cortex and superior temporal sulci were also significantly engaged. Activation of the FFA to a task without faces challenges the received view that the FFA is restricted in its activities to the perception of faces. We speculate that abstract semantic information associated with faces is encoded in the FG region and retrieved for social computations. From this perspective, the literature on hypoactivation of the FFA in autism may be interpreted as a reflection of a core social cognitive mechanism underlying the disorder. PMID:12639338
Two-stage selection in slash pine produces good gains in fusiform rust resistance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sluder, E.R.
The best 6 of 21 progeny-tested first-generation slash pine selections were crossed in a half diallel to study inheritance patterns of their superior fusiform rust resistance (5 trees) and height (1 tree). Their six first-test progenies were duplicated and included in the study. These two groups of progenies, along with two commercial check lots, were planted on an Upper Coastal Plain and a Flatwoods site in Georgia. At age 10 yr, the 15 progenies in the half diallel averaged 23% rust-infected compared with 54% for the check lots. First-test progenies averaged 30% infected. For percentage infection, the six parents differedmore » in general combining ability (GCA) (0.01>P>0.001) on both test sites and in specific combining ability (0.05>P>0.01) on one site. GCA variation for height was significant (0.05>P>0.01) on one site. The parent selected for height had the highest breeding value for height at age 10 yr. These results show that resistance to the fusiform rust disease, a serious problem in management of the species, can be improved in slash pine. These 6 parents and their 15 progenies in the half-diallel cross are a good source of rust resistance genes for use in slash pine improvement programs.« less
Zhen, Xing-Hua; Quan, Ying-Chun; Jiang, Hai-Ying; Wen, Zheng-Shun; Qu, You-Le; Guan, Li-Ping
2015-12-05
We previously showed that extracts of Sargassum fusiforme significantly reduce immobility time in the forced swim test and tail suspension test, suggesting that these extracts possess antidepressant-like effects. Here, fucosterol extracted from S. fusiforme was evaluated for antidepressant and anticonvulsant activities in mice. Fucosterol (10, 20, 30 and 40mg/kg) significantly shortened immobility time in the forced swim test and tail suspension test for30min after treatment but had no effect on locomotor activity in the open field test. Fucosterol significantly increased serotonin, norepinephrine and the metabolite 5-hydroxyindoleacetic acid in mouse brain, suggesting that the effects of fucosterol may be mediated through these neurotransmitters. As assessed using maximal electroshock, fucosterol (20, 40, 100mg/kg) possessed anticonvulsant activity, whereas rotarod toxicity test results indicated that fucosterol did not induce neurotoxicity at the same dose levels in mice. Thus, fucosterol may be a useful antidepressant adjunct candidate for treating depression in patients with epilepsy. A significant increase in hippocampal brain-derived neurotrophic factor (BDNF) levels was found in the fucosterol 20mg/kg group (P<0.05). Our findings suggested that fucosterol may possess an antidepressant-like effect, which may be mediated by increasing central BDNF levels. Copyright © 2015 Elsevier B.V. All rights reserved.
Vilas, R; Sanmartín, M L; Paniagua, E
2004-08-01
Allozyme variation within and among populations of 3 species of the genus Lecithochirium (Trematoda: Hemiuridae) was studied by starch gel electrophoresis. In total, 19 loci were analysed in 7 populations. The level of genetic variability was relatively high in all populations. The percentage of polymorphic loci (0.95 criterion) observed per population varied from 21.0% to 55.5%, and expected heterozygosity levels varied from 0.082 to 0.197. All populations showed significant heterozygote deficiencies. In Lecithochirium fusiforme most of the deviations from Hardy-Weinberg proportions were within the populations and this species showed moderate population structuring (F(IS)=0.486, F(ST)=0.142, Nm= 1.51) and accordingly low intraspecific genetic distances (D=0.003 to 0.027). A significant lack of heterozygotes for several polymorphic loci was revealed in Lecithochirium rufoviride and Lecithochirium musculus. The most probable cause of the population genetic subdivision in L. rufoviride is the presence of at least 1 cryptic species in the populations studied. Although the lowest percentage of fixed genetic differences was that between L. fusiforme and L. musculus, two different algorithms for the construction of evolutionary trees on a matrix of genetic distances confirmed that L. fusiforme and L. rufoviride are phenetically the most closely related species.
Olivares, Ela I.; Lage-Castellanos, Agustín; Bobes, María A.; Iglesias, Jaime
2018-01-01
We investigated the neural correlates of the access to and retrieval of face structure information in contrast to those concerning the access to and retrieval of person-related verbal information, triggered by faces. We experimentally induced stimulus familiarity via a systematic learning procedure including faces with and without associated verbal information. Then, we recorded event-related potentials (ERPs) in both intra-domain (face-feature) and cross-domain (face-occupation) matching tasks while N400-like responses were elicited by incorrect eyes-eyebrows completions and occupations, respectively. A novel Bayesian source reconstruction approach plus conjunction analysis of group effects revealed that in both cases the generated N170s were of similar amplitude but had different neural origin. Thus, whereas the N170 of faces was associated predominantly to right fusiform and occipital regions (the so-called “Fusiform Face Area”, “FFA” and “Occipital Face Area”, “OFA”, respectively), the N170 of occupations was associated to a bilateral very posterior activity, suggestive of basic perceptual processes. Importantly, the right-sided perceptual P200 and the face-related N250 were evoked exclusively in the intra-domain task, with sources in OFA and extensively in the fusiform region, respectively. Regarding later latencies, the intra-domain N400 seemed to be generated in right posterior brain regions encompassing mainly OFA and, to some extent, the FFA, likely reflecting neural operations triggered by structural incongruities. In turn, the cross-domain N400 was related to more anterior left-sided fusiform and temporal inferior sources, paralleling those described previously for the classic verbal N400. These results support the existence of differentiated neural streams for face structure and person-related verbal processing triggered by faces, which can be activated differentially according to specific task demands. PMID:29628877
Castelló, María E; Rodríguez-Cattáneo, Alejo; Aguilera, Pedro A; Iribarne, Leticia; Pereira, Ana Carolina; Caputi, Angel A
2009-05-01
This article deals with the electric organ and its discharge in Gymnotus coropinae, a representative species of one of the three main clades of the genus. Three regions with bilateral symmetry are described: (1) subopercular (medial and lateral columns of complex shaped electrocytes); (2) abdominal (medial and lateral columns of cuboidal and fusiform electrocytes); and (3) main [four columns, one dorso-lateral (containing fusiform electrocytes) and three medial (containing cuboidal electrocytes)]. Subopercular electrocytes are all caudally innervated whereas two of the medial subopercular ones are also rostrally innervated. Fusiform electrocytes are medially innervated at the abdominal portion, and at their rostral and caudal poles at the main portion. Cuboidal electrocytes are always caudally innervated. The subopercular portion generates a slow head-negative wave (V(1r)) followed by a head-positive spike (V(3r)). The abdominal and main portions generate a fast tetra-phasic complex (V(2345ct)). Since subopercular components prevail in the near field and the rest in the far field, time coincidence of V(3r) with V(2) leads to different waveforms depending on the position of the receiver. This confirms the splitting hypothesis of communication and exploration channels based on the different timing, frequency band and reach of the regional waveforms. The following hypothesis is compatible with the observed anatomo-functional organization: V(1r) corresponds to the rostral activation of medial subopercular electrocytes and V(3r) to the caudal activation of all subopercular electrocytes; V(2), and part of V(3ct), corresponds to the successive activation of the rostral and caudal poles of dorso-lateral fusiform electrocytes; and V(345ct) is initiated in the caudal face of cuboidal electrocytes by synaptic activation (V(3ct)) and it is completed (V(45ct)) by the successive activation of rostral and caudal faces by the action currents evoked in the opposite face.
Dissecting contributions of prefrontal cortex and fusiform face area to face working memory.
Druzgal, T Jason; D'Esposito, Mark
2003-08-15
Interactions between prefrontal cortex (PFC) and stimulus-specific visual cortical association areas are hypothesized to mediate visual working memory in behaving monkeys. To clarify the roles for homologous regions in humans, event-related fMRI was used to assess neural activity in PFC and fusiform face area (FFA) of subjects performing a delay-recognition task for faces. In both PFC and FFA, activity increased parametrically with memory load during encoding and maintenance of face stimuli, despite quantitative differences in the magnitude of activation. Moreover, timing differences in PFC and FFA activation during memory encoding and retrieval implied a context dependence in the flow of neural information. These results support existing neurophysiological models of visual working memory developed in the nonhuman primate.
Visual processing of words in a patient with visual form agnosia: a behavioural and fMRI study.
Cavina-Pratesi, Cristiana; Large, Mary-Ellen; Milner, A David
2015-03-01
Patient D.F. has a profound and enduring visual form agnosia due to a carbon monoxide poisoning episode suffered in 1988. Her inability to distinguish simple geometric shapes or single alphanumeric characters can be attributed to a bilateral loss of cortical area LO, a loss that has been well established through structural and functional fMRI. Yet despite this severe perceptual deficit, D.F. is able to "guess" remarkably well the identity of whole words. This paradoxical finding, which we were able to replicate more than 20 years following her initial testing, raises the question as to whether D.F. has retained specialized brain circuitry for word recognition that is able to function to some degree without the benefit of inputs from area LO. We used fMRI to investigate this, and found regions in the left fusiform gyrus, left inferior frontal gyrus, and left middle temporal cortex that responded selectively to words. A group of healthy control subjects showed similar activations. The left fusiform activations appear to coincide with the area commonly named the visual word form area (VWFA) in studies of healthy individuals, and appear to be quite separate from the fusiform face area (FFA). We hypothesize that there is a route to this area that lies outside area LO, and which remains relatively unscathed in D.F. Copyright © 2014 Elsevier Ltd. All rights reserved.
Acute pancreatitis complicating choledochal cysts in children.
Muthucumaru, Mathievathaniy; Ljuhar, Damir; Panabokke, Gayathri; Paul, Eldho; Nataraja, Ramesh; Ferguson, Peter; Dagia, Charuta; Clarnette, Tom; King, Sebastian
2017-03-01
To analyse the characteristics of patients with choledochal cysts presenting with acute pancreatitis. Multicenter retrospective review of all paediatric patients (<18 years) with choledochal cysts managed over a 14-year period (2001-2014) at two tertiary paediatric surgical centres. Patient data were analysed for demographics, presentation, radiological classification of cyst type (Todani), operative interventions, complications and long-term follow-up. A total of 49 patients with choledochal cysts were identified with 15 (31%) being Type I fusiform, 18 (37%) Type I cystic and 16 (32%) Type IV-A. Seventeen (35%) patients presented with acute pancreatitis, one having had an ante-natally diagnosed choledochal cyst. Patients presenting with pancreatitis were older when compared to the non-pancreatitis group (5.1 vs. 1.2 years, P = 0.005). Nine out of 16 (53%) patients with Type IV-A cysts presented with pancreatitis compared to five (33%) of Type I fusiform and three (17%) of Type I cystic. There was however no statistically significant association between Todani types and the development of pancreatitis (Type I fusiform, P = 1.0; Type I cystic, P = 0.063; Type IV-A, P = 0.053). The rate of complications was similar in both groups. Pancreatitis was a common presentation in children with a choledochal cyst, however, there was no clear statistically significant association with Todani types and pancreatitis. © 2016 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).
Engell, Andrew D; McCarthy, Gregory
2013-07-01
Neuroimaging research has identified several category-selective regions in visual cortex that respond most strongly when viewing an exemplar image from a preferred category, such as faces. Recent studies, however, have suggested a more complex pattern of activation that has been heretofore unrecognized, e.g., the presence of additional patches of activation to faces beyond the well-studied fusiform face area, and the activation of ostensible face selective regions by animate motion of non-biological forms. Here, we characterize the spatial pattern of brain activity evoked by viewing faces or biological motion in large fMRI samples (N>120). We create probabilistic atlases for both face and biological motion activation, and directly compare their spatial patterns of activation. Our findings support the suggestion that the fusiform face area is composed of at least two separable foci of activation. The face-evoked response in the fusiform and nearby ventral temporal cortex has good reliability across runs; however, we found surprisingly high variability in lateral brain regions by faces, and for all brain regions by biological motion, which had an overall much lower effect size. We found that faces and biological motion evoke substantially overlapping activation distributions in both ventral and lateral occipitotemporal cortices. The peaks of activation for these different categories within these overlapping regions were close but distinct. Copyright © 2013 Elsevier Inc. All rights reserved.
Task-irrelevant fear enhances amygdala-FFG inhibition and decreases subsequent face processing.
Schulte Holthausen, Barbara; Habel, Ute; Kellermann, Thilo; Schelenz, Patrick D; Schneider, Frank; Christopher Edgar, J; Turetsky, Bruce I; Regenbogen, Christina
2016-09-01
Facial threat is associated with changes in limbic activity as well as modifications in the cortical face-related N170. It remains unclear if task-irrelevant threat modulates the response to a subsequent facial stimulus, and whether the amygdala's role in early threat perception is independent and direct, or modulatory. In 19 participants, crowds of emotional faces were followed by target faces and a rating task while simultaneous EEG-fMRI were recorded. In addition to conventional analyses, fMRI-informed EEG analyses and fMRI dynamic causal modeling (DCM) were performed. Fearful crowds reduced EEG N170 target face amplitudes and increased responses in a fMRI network comprising insula, amygdala and inferior frontal cortex. Multimodal analyses showed that amygdala response was present ∼60 ms before the right fusiform gyrus-derived N170. DCM indicated inhibitory connections from amygdala to fusiform gyrus, strengthened when fearful crowds preceded a target face. Results demonstrated the suppressing influence of task-irrelevant fearful crowds on subsequent face processing. The amygdala may be sensitive to task-irrelevant fearful crowds and subsequently strengthen its inhibitory influence on face-responsive fusiform N170 generators. This provides spatiotemporal evidence for a feedback mechanism of the amygdala by narrowing attention in order to focus on potential threats. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Kastberger, Gerald; Weihmann, Frank; Hoetzl, Thomas; Weiss, Sara E.; Maurer, Michael; Kranner, Ilse
2012-01-01
Shimmering is a collective defence behaviour in Giant honeybees (Apis dorsata) whereby individual bees flip their abdomen upwards, producing Mexican wave-like patterns on the nest surface. Bucket bridging has been used to explain the spread of information in a chain of members including three testable concepts: first, linearity assumes that individual “agent bees” that participate in the wave will be affected preferentially from the side of wave origin. The directed-trigger hypothesis addresses the coincidence of the individual property of trigger direction with the collective property of wave direction. Second, continuity describes the transfer of information without being stopped, delayed or re-routed. The active-neighbours hypothesis assumes coincidence between the direction of the majority of shimmering-active neighbours and the trigger direction of the agents. Third, the graduality hypothesis refers to the interaction between an agent and her active neighbours, assuming a proportional relationship in the strength of abdomen flipping of the agent and her previously active neighbours. Shimmering waves provoked by dummy wasps were recorded with high-resolution video cameras. Individual bees were identified by 3D-image analysis, and their strength of abdominal flipping was assessed by pixel-based luminance changes in sequential frames. For each agent, the directedness of wave propagation was based on wave direction, trigger direction, and the direction of the majority of shimmering-active neighbours. The data supported the bucket bridging hypothesis, but only for a small proportion of agents: linearity was confirmed for 2.5%, continuity for 11.3% and graduality for 0.4% of surface bees (but in 2.6% of those agents with high wave-strength levels). The complimentary part of 90% of surface bees did not conform to bucket bridging. This fuzziness is discussed in terms of self-organisation and evolutionary adaptedness in Giant honeybee colonies to respond to rapidly changing threats such as predatory wasps scanning in front of the nest. PMID:22662123
Kastberger, Gerald; Weihmann, Frank; Hoetzl, Thomas; Weiss, Sara E; Maurer, Michael; Kranner, Ilse
2012-01-01
Shimmering is a collective defence behaviour in Giant honeybees (Apis dorsata) whereby individual bees flip their abdomen upwards, producing Mexican wave-like patterns on the nest surface. Bucket bridging has been used to explain the spread of information in a chain of members including three testable concepts: first, linearity assumes that individual "agent bees" that participate in the wave will be affected preferentially from the side of wave origin. The directed-trigger hypothesis addresses the coincidence of the individual property of trigger direction with the collective property of wave direction. Second, continuity describes the transfer of information without being stopped, delayed or re-routed. The active-neighbours hypothesis assumes coincidence between the direction of the majority of shimmering-active neighbours and the trigger direction of the agents. Third, the graduality hypothesis refers to the interaction between an agent and her active neighbours, assuming a proportional relationship in the strength of abdomen flipping of the agent and her previously active neighbours. Shimmering waves provoked by dummy wasps were recorded with high-resolution video cameras. Individual bees were identified by 3D-image analysis, and their strength of abdominal flipping was assessed by pixel-based luminance changes in sequential frames. For each agent, the directedness of wave propagation was based on wave direction, trigger direction, and the direction of the majority of shimmering-active neighbours. The data supported the bucket bridging hypothesis, but only for a small proportion of agents: linearity was confirmed for 2.5%, continuity for 11.3% and graduality for 0.4% of surface bees (but in 2.6% of those agents with high wave-strength levels). The complimentary part of 90% of surface bees did not conform to bucket bridging. This fuzziness is discussed in terms of self-organisation and evolutionary adaptedness in Giant honeybee colonies to respond to rapidly changing threats such as predatory wasps scanning in front of the nest.
Distinct spatial frequency sensitivities for processing faces and emotional expressions.
Vuilleumier, Patrik; Armony, Jorge L; Driver, Jon; Dolan, Raymond J
2003-06-01
High and low spatial frequency information in visual images is processed by distinct neural channels. Using event-related functional magnetic resonance imaging (fMRI) in humans, we show dissociable roles of such visual channels for processing faces and emotional fearful expressions. Neural responses in fusiform cortex, and effects of repeating the same face identity upon fusiform activity, were greater with intact or high-spatial-frequency face stimuli than with low-frequency faces, regardless of emotional expression. In contrast, amygdala responses to fearful expressions were greater for intact or low-frequency faces than for high-frequency faces. An activation of pulvinar and superior colliculus by fearful expressions occurred specifically with low-frequency faces, suggesting that these subcortical pathways may provide coarse fear-related inputs to the amygdala.
Integrated Microfluidic System for Size-Based Selection and Trapping of Giant Vesicles.
Kazayama, Yuki; Teshima, Tetsuhiko; Osaki, Toshihisa; Takeuchi, Shoji; Toyota, Taro
2016-01-19
Vesicles composed of phospholipids (liposomes) have attracted interest as artificial cell models and have been widely studied to explore lipid-lipid and lipid-protein interactions. However, the size dispersity of liposomes prepared by conventional methods was a major problem that inhibited their use in high-throughput analyses based on monodisperse liposomes. In this study, we developed an integrative microfluidic device that enables both the size-based selection and trapping of liposomes. This device consists of hydrodynamic selection and trapping channels in series, which made it possible to successfully produce an array of more than 60 monodisperse liposomes from a polydisperse liposome suspension with a narrow size distribution (the coefficient of variation was less than 12%). We successfully observed a size-dependent response of the liposomes to sequential osmotic stimuli, which had not clarified so far, by using this device. Our device will be a powerful tool to facilitate the statistical analysis of liposome dynamics.
EC-IC bypass for cavernous carotid aneurysms: An initial experience with twelve patients
Menon, G.; Jayanand, Sudhir; Krishnakumar, K.; Nair, S.
2014-01-01
Aims: Need for performing a bypass procedure prior to parent artery occlusion in patients with good cerebral vascular reserve is controversial. We analyze our experience of 12 giant internal carotid artery aneurysms treated with extracranial-intracranial (EC-IC) bypass and proximal artery occlusion. Materials and Methods: Retrospective analysis of the case records of all complex carotid aneurysms operated in our institute since January 2009. Results: The study included eleven cavernous carotid aneurysms and one large fusiform cervical carotid aneurysm reaching the skull base. Preoperative assessment of cerebral vascular reserve was limited to Balloon test occlusion with hypotensive challenge. Eleven patients who successfully completed a Balloon test occlusion (BTO) underwent low flow superficial temporal artery to middle cerebral artery (STA-MCA) bypass, while one patient with a failed BTO underwent a high flow bypass using a saphenous vein graft. Parent artery ligation was performed in all patients following the bypass procedure. Check angiogram revealed thrombosis of the aneurysm in all patients with a graft patency rate of 81.8%. We had one operative mortality, probably related to a leak from the anastomotic site. The only patient who had a high flow bypass developed contralateral hemispheric infarcts and remained vegetative. All the other patients had a good recovery and with a Glasgow outcome score of 5 at last follow-up. Conclusion: We feel that combining EC-IC bypass prior to parent vessel occlusion helps in reducing the risk of post operative ischemic complications especially in situations where a complete mandated cerebral blood flow studies are not feasible. PMID:25126123
Two cases of cerebral aneurysms in HIV+ children.
Fulmer, B B; Dillard, S C; Musulman, E M; Palmer, C A; Oakes, J
1998-01-01
Two cases of fusiform cerebral aneurysms in human immunodeficiency virus (HIV) positive children are presented. To our knowledge, only 9 patients with this association have been reported. One of our patients represents the first report of a patient with an aneurysm associated with varicella-zoster vasculitis. One patient presented with a subarachnoid hemorrhage, Hunt-Hess grade IV, and posed difficult surgical management. The other patient suffered a cerebral infarct with a resulting hemiparesis. The first patient had a ventriculostomy placed, initially improved, and subsequently died from rebleeding. The second patient improved with medical management. AIDS arteriopathy, and specifically fusiform aneurysms, are being increasingly reported. The various presentations of this surgically challenging entity in light of other AIDS-related syndromes pose difficult management decisions. On occasion, the intracranial aneurysm may be the initial form of presentation as was present in our first patient.
Elliptical excisions: variations and the eccentric parallelogram.
Goldberg, Leonard H; Alam, Murad
2004-02-01
The elliptical (fusiform) excision is a basic tool of cutaneous surgery. To assess the design, functionality, ease of construction, and aesthetic outcomes of the ellipse. A systematic review of elliptical designs and their site-specific benefits and limitations. In particular, we consider the (1). context of prevailing relaxed skin tension lines and tissue laxity; and (2). removal of the smallest possible amount of tissue around the lesion and in the "dog-ears." Attention is focused on intuitive methods that can be reproducibly planned and executed. Elliptical variations are easily designed and can be adapted to many situations. The eccentric parallelogram excision is offered as a new technique that minimizes notching and focal tension in the center of an elliptical closure. Conclusion The elliptical (fusiform) excision is an efficient, elegant, and versatile technique that will remain a mainstay of the cutaneous surgical armamentarium.
The neuroanatomy of grapheme-color synesthesia.
Jäncke, Lutz; Beeli, Gian; Eulig, Cornelia; Hänggi, Jürgen
2009-03-01
Grapheme-color synesthetes perceive particular colors when seeing a letter, word or number (grapheme). Functional neuroimaging studies have provided some evidence in favor of a neural basis for this type of synesthesia. Most of these studies have reported extra activations in the fusiform gyrus, which is known to be involved in color, letter and word processing. The present study examined different neuroanatomical features (i.e. cortical thickness, cortical volume and cortical surface area) in a sample of 48 subjects (24 grapheme-color synesthetes and 24 control subjects), and revealed increased cortical thickness, volume and surface area in the right and left fusiform gyrus and in adjacent regions, such as the lingual gyrus and the calcarine cortex, in grapheme-color synesthetes. In addition, we set out to analyze structural connectivity based on fractional anisotropy (FA) measurements in a subsample of 28 subjects (14 synesthetes and 14 control subjects). In contrast to the findings of a recent neuroanatomical study using modern diffusion tensor imaging measurement techniques, we did not detect any statistically significant difference in FA between synesthetes and non-synesthetes in the fusiform gyri. Our study thus supports the hypothesis of local anatomical differences in cortical characteristics in the vicinity of the V4 complex. The observed altered brain anatomy in grapheme-color synesthetes might be the anatomical basis for this particular form of synesthesia but it is also possible that the detected effects are a consequence (rather than the primary cause) of the life-long experience of grapheme-color synesthesia.
Sauer, Carina; Montag, Christian; Wörner, Christiane; Kirsch, Peter; Reuter, Martin
2012-05-01
The intranasal application of oxytocin (OT) has been shown to influence behavioral and neural correlates of social processing. These effects are probably mediated by genetic variations within the OT system. One potential candidate could be the CD38 gene, which codes for a transmembrane protein engaged in OT secretion processes. A common variation in this gene (rs3796863) was recently found to be associated with autism spectrum disorders (ASD). Using an imaging genetics approach, we studied differential effects of an intranasal OT application on neural processing of social stimuli in 55 healthy young men depending on their CD38 gene variant in a double-blind placebo-controlled crossover design. Genotype had a significant influence on both behavioral and neuronal measures of social processing. Homozygotic risk allele carriers showed slower reaction times (RT) and higher activation of left fusiform gyrus during visual processing of social stimuli. Under OT activation differences between genotypes were more evident (though not statistically significantly increased) and RT were accelerated in homozygotic risk allele carriers. According to our data, rs3796863 mainly influences fusiform gyrus activation, an area which has been widely discussed in ASD research. OT seems to modulate this effect by enhancing activation differences between allele groups, which suggests an interaction between genetic makeup and OT availability on fusiform gyrus activation. These results support recent approaches to apply OT as a pharmacological treatment of ASD symptoms.
Caspers, Julian; Zilles, Karl; Amunts, Katrin; Laird, Angela R.; Fox, Peter T.; Eickhoff, Simon B.
2016-01-01
The ventral stream of the human extrastriate visual cortex shows a considerable functional heterogeneity from early visual processing (posterior) to higher, domain-specific processing (anterior). The fusiform gyrus hosts several of those “high-level” functional areas. We recently found a subdivision of the posterior fusiform gyrus on the microstructural level, that is, two distinct cytoarchitectonic areas, FG1 and FG2 (Caspers et al., Brain Structure & Function, 2013). To gain a first insight in the function of these two areas, here we studied their behavioral involvement and coactivation patterns by means of meta-analytic connectivity modeling based on the BrainMap database (www.brainmap.org), using probabilistic maps of these areas as seed regions. The coactivation patterns of the areas support the concept of a common involvement in a core network subserving different cognitive tasks, that is, object recognition, visual language perception, or visual attention. In addition, the analysis supports the previous cytoarchitectonic parcellation, indicating that FG1 appears as a transitional area between early and higher visual cortex and FG2 as a higher-order one. The latter area is furthermore lateralized, as it shows strong relations to the visual language processing system in the left hemisphere, while its right side is stronger associated with face selective regions. These findings indicate that functional lateralization of area FG2 relies on a different pattern of connectivity rather than side-specific cytoarchitectonic features. PMID:24038902
Bentley, P; Driver, J; Dolan, R J
2009-09-01
Cholinergic influences on memory are likely to be expressed at several processing stages, including via well-recognized effects of acetylcholine on stimulus processing during encoding. Since previous studies have shown that cholinesterase inhibition enhances visual extrastriate cortex activity during stimulus encoding, especially under attention-demanding tasks, we tested whether this effect correlates with improved subsequent memory. In a within-subject physostigmine versus placebo design, we measured brain activity with functional magnetic resonance imaging while healthy and mild Alzheimer's disease subjects performed superficial and deep encoding tasks on face (and building) visual stimuli. We explored regions in which physostigmine modulation of face-selective neural responses correlated with physostigmine effects on subsequent recognition performance. In healthy subjects physostigmine led to enhanced later recognition for deep- versus superficially-encoded faces, which correlated across subjects with a physostigmine-induced enhancement of face-selective responses in right fusiform cortex during deep- versus superficial-encoding tasks. In contrast, the Alzheimer's disease group showed neither a depth of processing effect nor restoration of this with physostigmine. Instead, patients showed a task-independent improvement in confident memory with physostigmine, an effect that correlated with enhancements in face-selective (but task-independent) responses in bilateral fusiform cortices. Our results indicate that one mechanism by which cholinesterase inhibitors can improve memory is by enhancing extrastriate cortex stimulus selectivity at encoding, in a manner that for healthy people but not in Alzheimer's disease is dependent upon depth of processing.
Rossion, Bruno; Dricot, Laurence; Goebel, Rainer; Busigny, Thomas
2011-01-01
How a visual stimulus is initially categorized as a face in a network of human brain areas remains largely unclear. Hierarchical neuro-computational models of face perception assume that the visual stimulus is first decomposed in local parts in lower order visual areas. These parts would then be combined into a global representation in higher order face-sensitive areas of the occipito-temporal cortex. Here we tested this view in fMRI with visual stimuli that are categorized as faces based on their global configuration rather than their local parts (two-tones Mooney figures and Arcimboldo's facelike paintings). Compared to the same inverted visual stimuli that are not categorized as faces, these stimuli activated the right middle fusiform gyrus (“Fusiform face area”) and superior temporal sulcus (pSTS), with no significant activation in the posteriorly located inferior occipital gyrus (i.e., no “occipital face area”). This observation is strengthened by behavioral and neural evidence for normal face categorization of these stimuli in a brain-damaged prosopagnosic patient whose intact right middle fusiform gyrus and superior temporal sulcus are devoid of any potential face-sensitive inputs from the lesioned right inferior occipital cortex. Together, these observations indicate that face-preferential activation may emerge in higher order visual areas of the right hemisphere without any face-preferential inputs from lower order visual areas, supporting a non-hierarchical view of face perception in the visual cortex. PMID:21267432
Perlman, Susan B; Fournier, Jay C; Bebko, Genna; Bertocci, Michele A; Hinze, Amanda K; Bonar, Lisa; Almeida, Jorge R C; Versace, Amelia; Schirda, Claudiu; Travis, Michael; Gill, Mary Kay; Demeter, Christine; Diwadkar, Vaibhav A; Sunshine, Jeffrey L; Holland, Scott K; Kowatch, Robert A; Birmaher, Boris; Axelson, David; Horwitz, Sarah M; Arnold, L Eugene; Fristad, Mary A; Youngstrom, Eric A; Findling, Robert L; Phillips, Mary L
2013-12-01
Pediatric bipolar disorder involves poor social functioning, but the neural mechanisms underlying these deficits are not well understood. Previous neuroimaging studies have found deficits in emotional face processing localized to emotional brain regions. However, few studies have examined dysfunction in other regions of the face processing circuit. This study assessed hypoactivation in key face processing regions of the brain in pediatric bipolar disorder. Youth with a bipolar spectrum diagnosis (n = 20) were matched to a nonbipolar clinical group (n = 20), with similar demographics and comorbid diagnoses, and a healthy control group (n = 20). Youth participated in a functional magnetic resonance imaging (fMRI) scanning which employed a task-irrelevant emotion processing design in which processing of facial emotions was not germane to task performance. Hypoactivation, isolated to the fusiform gyrus, was found when viewing animated, emerging facial expressions of happiness, sadness, fearfulness, and especially anger in pediatric bipolar participants relative to matched clinical and healthy control groups. The results of the study imply that differences exist in visual regions of the brain's face processing system and are not solely isolated to emotional brain regions such as the amygdala. Findings are discussed in relation to facial emotion recognition and fusiform gyrus deficits previously reported in the autism literature. Behavioral interventions targeting attention to facial stimuli might be explored as possible treatments for bipolar disorder in youth. Copyright © 2013 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
Wittfoth, Matthias; Buck, Daniela; Fahle, Manfred; Herrmann, Manfred
2006-08-15
The present study aimed at characterizing the neural correlates of conflict resolution in two variations of the Simon effect. We introduced two different Simon tasks where subjects had to identify shapes on the basis of form-from-motion perception (FFMo) within a randomly moving dot field, while (1) motion direction (motion-based Simon task) or (2) stimulus location (location-based Simon task) had to be ignored. Behavioral data revealed that both types of Simon tasks induced highly significant interference effects. Using event-related fMRI, we could demonstrate that both tasks share a common cluster of activated brain regions during conflict resolution (pre-supplementary motor area (pre-SMA), superior parietal lobule (SPL), and cuneus) but also show task-specific activation patterns (left superior temporal cortex in the motion-based, and the left fusiform gyrus in the location-based Simon task). Although motion-based and location-based Simon tasks are conceptually very similar (Type 3 stimulus-response ensembles according to the taxonomy of [Kornblum, S., Stevens, G. (2002). Sequential effects of dimensional overlap: findings and issues. In: Prinz, W., Hommel., B. (Eds.), Common mechanism in perception and action. Oxford University Press, Oxford, pp. 9-54]) conflict resolution in both tasks results in the activation of different task-specific regions probably related to the different sources of task-irrelevant information. Furthermore, the present data give evidence those task-specific regions are most likely to detect the relationship between task-relevant and task-irrelevant information.
Resistance of Loblolly Pine Sources to Fusiform Rust in Field Progeny Tests
H.R. Powers; E.G. Kuhlman
1987-01-01
Results of concentrated basidiospore spray (CBS) inoculations correlated well with field infection. Generally, the CBS system correctly classified resistant and susceptible sources, but it classed seven sources with field resistance as susceptible.
Brain Responses to Dynamic Facial Expressions: A Normative Meta-Analysis.
Zinchenko, Oksana; Yaple, Zachary A; Arsalidou, Marie
2018-01-01
Identifying facial expressions is crucial for social interactions. Functional neuroimaging studies show that a set of brain areas, such as the fusiform gyrus and amygdala, become active when viewing emotional facial expressions. The majority of functional magnetic resonance imaging (fMRI) studies investigating face perception typically employ static images of faces. However, studies that use dynamic facial expressions (e.g., videos) are accumulating and suggest that a dynamic presentation may be more sensitive and ecologically valid for investigating faces. By using quantitative fMRI meta-analysis the present study examined concordance of brain regions associated with viewing dynamic facial expressions. We analyzed data from 216 participants that participated in 14 studies, which reported coordinates for 28 experiments. Our analysis revealed bilateral fusiform and middle temporal gyri, left amygdala, left declive of the cerebellum and the right inferior frontal gyrus. These regions are discussed in terms of their relation to models of face processing.
Fusiform gyrus face selectivity relates to individual differences in facial recognition ability.
Furl, Nicholas; Garrido, Lúcia; Dolan, Raymond J; Driver, Jon; Duchaine, Bradley
2011-07-01
Regions of the occipital and temporal lobes, including a region in the fusiform gyrus (FG), have been proposed to constitute a "core" visual representation system for faces, in part because they show face selectivity and face repetition suppression. But recent fMRI studies of developmental prosopagnosics (DPs) raise questions about whether these measures relate to face processing skills. Although DPs manifest deficient face processing, most studies to date have not shown unequivocal reductions of functional responses in the proposed core regions. We scanned 15 DPs and 15 non-DP control participants with fMRI while employing factor analysis to derive behavioral components related to face identification or other processes. Repetition suppression specific to facial identities in FG or to expression in FG and STS did not show compelling relationships with face identification ability. However, we identified robust relationships between face selectivity and face identification ability in FG across our sample for several convergent measures, including voxel-wise statistical parametric mapping, peak face selectivity in individually defined "fusiform face areas" (FFAs), and anatomical extents (cluster sizes) of those FFAs. None of these measures showed associations with behavioral expression or object recognition ability. As a group, DPs had reduced face-selective responses in bilateral FFA when compared with non-DPs. Individual DPs were also more likely than non-DPs to lack expected face-selective activity in core regions. These findings associate individual differences in face processing ability with selectivity in core face processing regions. This confirms that face selectivity can provide a valid marker for neural mechanisms that contribute to face identification ability.
Kitada, Ryo; Johnsrude, Ingrid S; Kochiyama, Takanori; Lederman, Susan J
2009-10-01
Humans can recognize common objects by touch extremely well whenever vision is unavailable. Despite its importance to a thorough understanding of human object recognition, the neuroscientific study of this topic has been relatively neglected. To date, the few published studies have addressed the haptic recognition of nonbiological objects. We now focus on haptic recognition of the human body, a particularly salient object category for touch. Neuroimaging studies demonstrate that regions of the occipito-temporal cortex are specialized for visual perception of faces (fusiform face area, FFA) and other body parts (extrastriate body area, EBA). Are the same category-sensitive regions activated when these components of the body are recognized haptically? Here, we use fMRI to compare brain organization for haptic and visual recognition of human body parts. Sixteen subjects identified exemplars of faces, hands, feet, and nonbiological control objects using vision and haptics separately. We identified two discrete regions within the fusiform gyrus (FFA and the haptic face region) that were each sensitive to both haptically and visually presented faces; however, these two regions differed significantly in their response patterns. Similarly, two regions within the lateral occipito-temporal area (EBA and the haptic body region) were each sensitive to body parts in both modalities, although the response patterns differed. Thus, although the fusiform gyrus and the lateral occipito-temporal cortex appear to exhibit modality-independent, category-sensitive activity, our results also indicate a degree of functional specialization related to sensory modality within these structures.
Cone, Nadia E.; Burman, Douglas D.; Bitan, Tali; Bolger, Donald J.; Booth, James R.
2008-01-01
Developmental differences in brain activation of 9- to 15-year-old children were examined during an auditory rhyme decision task to spoken words using functional magnetic resonance imaging (fMRI). As a group, children showed activation in left superior/middle temporal gyri (BA 22, 21), right middle temporal gyrus (BA 21), dorsal (BA 45, pars opercularis) and ventral (BA 46, pars triangularis) aspects of left inferior frontal gyrus, and left fusiform gyrus (BA 37). There was a developmental increase in activation in left middle temporal gyrus (BA 22) across all lexical conditions, suggesting that automatic semantic processing increases with age regardless of task demands. Activation in left dorsal inferior frontal gyrus also showed developmental increases for the conflicting (e.g. PINT-MINT) compared to the non-conflicting (e.g. PRESS-LIST) non-rhyming conditions, indicating that this area becomes increasingly involved in strategic phonological processing in the face of conflicting orthographic and phonological representations. Left inferior temporal/fusiform gyrus (BA 37) activation was also greater for the conflicting (e.g. PINT-MINT) condition, and a developmental increase was found in the positive relationship between individuals' reaction time and activation in left lingual/fusiform gyrus (BA 18) in this condition, indicating an age-related increase in the association between longer reaction times and greater visual-orthographic processing in this conflicting condition. These results suggest that orthographic processing is automatically engaged by children in a task that does not require access to orthographic information for correct performance, especially when orthographic and phonological representations conflict, and especially for longer response latencies in older children. PMID:18413290
McGugin, Rankin Williams; Gatenby, J. Christopher; Gore, John C.; Gauthier, Isabel
2012-01-01
The fusiform face area (FFA) is a region of human cortex that responds selectively to faces, but whether it supports a more general function relevant for perceptual expertise is debated. Although both faces and objects of expertise engage many brain areas, the FFA remains the focus of the strongest modular claims and the clearest predictions about expertise. Functional MRI studies at standard-resolution (SR-fMRI) have found responses in the FFA for nonface objects of expertise, but high-resolution fMRI (HR-fMRI) in the FFA [Grill-Spector K, et al. (2006) Nat Neurosci 9:1177–1185] and neurophysiology in face patches in the monkey brain [Tsao DY, et al. (2006) Science 311:670–674] reveal no reliable selectivity for objects. It is thus possible that FFA responses to objects with SR-fMRI are a result of spatial blurring of responses from nonface-selective areas, potentially driven by attention to objects of expertise. Using HR-fMRI in two experiments, we provide evidence of reliable responses to cars in the FFA that correlate with behavioral car expertise. Effects of expertise in the FFA for nonface objects cannot be attributed to spatial blurring beyond the scale at which modular claims have been made, and within the lateral fusiform gyrus, they are restricted to a small area (200 mm2 on the right and 50 mm2 on the left) centered on the peak of face selectivity. Experience with a category may be sufficient to explain the spatially clustered face selectivity observed in this region. PMID:23027970
Bruffaerts, Rose; De Weer, An-Sofie; De Grauwe, Sophie; Thys, Miek; Dries, Eva; Thijs, Vincent; Sunaert, Stefan; Vandenbulcke, Mathieu; De Deyne, Simon; Storms, Gerrit; Vandenberghe, Rik
2014-09-01
We investigated the critical contribution of right ventral occipitotemporal cortex to knowledge of visual and functional-associative attributes of biological and non-biological entities and how this relates to category-specificity during confrontation naming. In a consecutive series of 7 patients with lesions confined to right ventral occipitotemporal cortex, we conducted an extensive assessment of oral generation of visual-sensory and functional-associative features in response to the names of biological and nonbiological entities. Subjects also performed a confrontation naming task for these categories. Our main novel finding related to a unique case with a small lesion confined to right medial fusiform gyrus who showed disproportionate naming impairment for nonbiological versus biological entities, specifically for tools. Generation of visual and functional-associative features was preserved for biological and non-biological entities. In two other cases, who had a relatively small posterior lesion restricted to primary visual and posterior fusiform cortex, retrieval of visual attributes was disproportionately impaired compared to functional-associative attributes, in particular for biological entities. However, these cases did not show a category-specific naming deficit. Two final cases with the largest lesions showed a classical dissociation between biological versus nonbiological entities during naming, with normal feature generation performance. This is the first lesion-based evidence of a critical contribution of the right medial fusiform cortex to tool naming. Second, dissociations along the dimension of attribute type during feature generation do not co-occur with category-specificity during naming in the current patient sample. Copyright © 2014 Elsevier Ltd. All rights reserved.
Giraud, Anne Lise; Truy, Eric
2002-01-01
Early visual cortex can be recruited by meaningful sounds in the absence of visual information. This occurs in particular in cochlear implant (CI) patients whose dependency on visual cues in speech comprehension is increased. Such cross-modal interaction mirrors the response of early auditory cortex to mouth movements (speech reading) and may reflect the natural expectancy of the visual counterpart of sounds, lip movements. Here we pursue the hypothesis that visual activations occur specifically in response to meaningful sounds. We performed PET in both CI patients and controls, while subjects listened either to their native language or to a completely unknown language. A recruitment of early visual cortex, the left posterior inferior temporal gyrus (ITG) and the left superior parietal cortex was observed in both groups. While no further activation occurred in the group of normal-hearing subjects, CI patients additionally recruited the right perirhinal/fusiform and mid-fusiform, the right temporo-occipito-parietal (TOP) junction and the left inferior prefrontal cortex (LIPF, Broca's area). This study confirms a participation of visual cortical areas in semantic processing of speech sounds. Observation of early visual activation in normal-hearing subjects shows that auditory-to-visual cross-modal effects can also be recruited under natural hearing conditions. In cochlear implant patients, speech activates the mid-fusiform gyrus in the vicinity of the so-called face area. This suggests that specific cross-modal interaction involving advanced stages in the visual processing hierarchy develops after cochlear implantation and may be the correlate of increased usage of lip-reading.
Liang, Minglong; Xie, Bing; Yang, Hong; Yin, Xuntao; Wang, Hao; Yu, Longhua; He, Sheng; Wang, Jian
2017-05-01
Altered brain functional connectivity has been reported in patients with amblyopia by recent neuroimaging studies. However, relatively little is known about the alterations in interhemispheric functional connectivity in amblyopia. The present study aimed to investigate the functional connectivity patterns between homotopic regions across hemispheres in patients with anisometropic and strabismic amblyopia under resting state. Nineteen monocular anisometropic amblyopia (AA), 18 strabismic amblyopia (SA), and 20 normal-sight controls (NC) were enrolled in this study. After a comprehensive ophthalmologic examination, resting-state fMRI scanning was performed in all participants. The pattern of the interhemispheric functional connectivity was measured with the voxel-mirrored homotopic connectivity (VMHC) approach. VMHC values differences within and between three groups were compared, and correlations between VMHC values and each the clinical variable were also analyzed. Altered VMHC was observed in AA and SA patients in lingual gyrus and fusiform gyrus compared with NC subjects. The altered VMHC of lingual gyrus showed a pattern of AA > SA > NC, while the altered VMHC of fusiform gyrus showed a pattern of AA > NC > SA. Moreover, the VMHC values of lingual gyrus were positively correlated with the stereoacuity both in AA and SA patients, and the VMHC values of fusiform gyrus were positively correlated with the amount of anisometropia just in AA patients. These findings suggest that interhemispheric functional coordination between several homotopic visual-related brain regions is impaired both in AA and SA patients under resting state and revealed the similarities and differences in interhemispheric functional connectivity between the anisometropic and strabismic amblyopia.
Neural correlates of text-based emoticons: a preliminary fMRI study.
Kim, Ko Woon; Lee, Sang Won; Choi, Jeewook; Kim, Tae Min; Jeong, Bumseok
2016-08-01
Like nonverbal cues in oral interactions, text-based emoticons, which are textual portrayals of a writer's facial expressions, are commonly used in electronic device-mediated communication. Little is known, however, about how text-based emoticons are processed in the human brain. With this study, we investigated whether the text-based emoticons are processed as face expressions using fMRI. During fMRI scan, subjects were asked to respond by pressing a button, indicating whether text-based emoticons represented positive or negative emotions. Voxel-wise analyses were performed to compare the responses and contrasted with emotional versus scrambled emoticons and among emoticons with different emotions. To explore processing strategies for text-based emoticons, brain activity in the bilateral occipital and fusiform face areas were compared. In the voxel-wise analysis, both emotional and scrambled emoticons were processed mainly in the bilateral fusiform gyri, inferior division of lateral occipital cortex, inferior frontal gyri, dorsolateral prefrontal cortex (DLPFC), dorsal anterior cingulate cortex (dACC), and parietal cortex. In a percent signal change analysis, the right occipital and fusiform face areas showed significantly higher activation than left ones. In comparisons among emoticons, sad one showed significant BOLD signal decrease in the dACC, the left AIC, the bilateral thalamus, and the precuneus as compared with other conditions. The results of this study imply that people recognize text-based emoticons as pictures representing face expressions. Even though text-based emoticons contain emotional meaning, they are not associated with the amygdala while previous studies using emotional stimuli documented amygdala activation.
Chen, Zhen; Liu, Jiao; Fu, Zhifei; Ye, Cheng; Zhang, Renshuai; Song, Yiyun; Zhang, Ying; Li, Haihua; Ying, Hao; Liu, Hongbing
2014-07-02
Dietary phytosterols have been successfully used for lowering cholesterol levels, which correlates with the fact that some phytosterols are able to act as liver X receptor (LXR) agonists. Sargassum fusiforme is an edible marine seaweed well-known for its antiatherosclerotic function in traditional Chinese medicine. In this study, seven phytosterols including fucosterol (1), saringosterol (2), 24-hydroperoxy-24-vinyl-cholesterol (3), 29-hydroperoxy-stigmasta-5,24(28)-dien-3β-ol (4), 24-methylene-cholesterol (5), 24-keto-cholesterol (6), and 5α,8α-epidioxyergosta-6,22-dien-3β-ol (7) were purified and evaluated for their actions on LXR-mediated transcription using a reporter assay. Among these phytosterols, 2 was the most potent compound in stimulating the transcriptional activities of LXRα by (3.81±0.15)-fold and LXRβ by (14.40±1.10)-fold, respectively. Two epimers of 2, 24(S)-saringosterol (2a) and 24(R)-saringosterol (2b), were subsequently separated by semipreparative high-performance liquid chromatography. Interestingly, 2a was more potent than 2b in LXRβ-mediated transactivation ((3.50±0.17)-fold vs (1.63±0.12)-fold) compared with control. Consistently, 2a induced higher expression levels of LXR target genes including key players in reverse cholesterol transport in six cell lines. These data along with molecular modeling suggested that 2a acts as a selective LXRβ agonist and is a potent natural cholesterol-lowering agent. This study also demonstrated that phytosterols in S. fusiforme contributed to the well-known antiatherosclerotic function.
McGugin, Rankin Williams; Gatenby, J Christopher; Gore, John C; Gauthier, Isabel
2012-10-16
The fusiform face area (FFA) is a region of human cortex that responds selectively to faces, but whether it supports a more general function relevant for perceptual expertise is debated. Although both faces and objects of expertise engage many brain areas, the FFA remains the focus of the strongest modular claims and the clearest predictions about expertise. Functional MRI studies at standard-resolution (SR-fMRI) have found responses in the FFA for nonface objects of expertise, but high-resolution fMRI (HR-fMRI) in the FFA [Grill-Spector K, et al. (2006) Nat Neurosci 9:1177-1185] and neurophysiology in face patches in the monkey brain [Tsao DY, et al. (2006) Science 311:670-674] reveal no reliable selectivity for objects. It is thus possible that FFA responses to objects with SR-fMRI are a result of spatial blurring of responses from nonface-selective areas, potentially driven by attention to objects of expertise. Using HR-fMRI in two experiments, we provide evidence of reliable responses to cars in the FFA that correlate with behavioral car expertise. Effects of expertise in the FFA for nonface objects cannot be attributed to spatial blurring beyond the scale at which modular claims have been made, and within the lateral fusiform gyrus, they are restricted to a small area (200 mm(2) on the right and 50 mm(2) on the left) centered on the peak of face selectivity. Experience with a category may be sufficient to explain the spatially clustered face selectivity observed in this region.
Subependymal giant cell astrocytoma: clinical and neuroimaging features of four cases.
Nishio, S; Morioka, T; Suzuki, S; Kira, R; Mihara, F; Fukui, M
2001-01-01
The clinical history, neuroimaging features, treatments, and outcome of 4 patients with histologically verified subependymal giant cell astrocytomas (SEGA) were retrospectively reviewed. The average age at the time of surgery was 13.3 years. Headache related to raised intracranial pressure was the first and only sign in 2 patients, with the remaining 2 being admitted because of sequential neuroimaging studies over several years revealing the growth of 'subependymal nodules' into intraventricular tumours. In each case the tumour was in the region of Monro's foramen and was associated with ventricular dilatation. On computed tomography (CT), multiple subependymal nodules were found in 3 patients, and these well circumscribed isodense SEGAs were markedly enhanced by contrast medium. On magnetic resonance imaging (MRI), which was obtained in 3 patients, 2 SEGAs were isointense with the cerebral cortex and one with the white matter on T1-weighted images, and on T2-weighted images, 2 were isointense with the cortex and one with the white matter. At surgery the tumours appeared to originate from the inferolateral wall of the lateral ventricle in the region of the head of the caudate nuclei. Total macroscopic removal was achieved in 3 patients, and subtotal removal in one patient. Follow up ranged from 4.6 to 13.2 years, and all patients have exhibited similar physical and mental conditions to preoperative. So far there has been no evidence of any recurrences. The diagnosis and the surgical indications for SEGA are discussed, with periodic monitoring with neuroimaging studies being recommended even for asymptomatic patients with 'subependymal nodules'.
Vk, Varsha; Hallikeri, Kaveri; Girish, H C; Murgod, Sanjay
2014-01-01
Central and Peripheral giant cell granulomas of jaws are uncommon, benign, reactive disorders that are characterized by the presence of numerous multinucleated giant cells and mononuclear cells within a stroma. The origin of the multinucleated giant cells is controversial; probably originating from fusion of histiocytes, endothelial cells and fibroblasts. To assess the expression of CD34 and CD68 in central and peripheral giant cell granulomas to understand the origin of these multinucleated giant cells. Twenty cases of Central and Peripheral giant cell granulomas were evaluated immunohistochemically for CD34 and CD68 proteins expression. Immunopositivity for CD34 was seen only in cytoplasm of endothelial cells of blood vessels; whereas, consistent cytoplasmic immunopositivity for CD68 was seen in few stromal cells. Statistical significance was seen in mean number of multinucleated giant cells, mean number of nuclei in multinucleated giant cells, CD68 expression and ratio of macrophages to multinucleated giant cells among two lesions. Although the central giant cell granulomas share some clinical and histopathological similarities with peripheral giant cell granulomas, differences in mean number of nuclei in multinucleated giant cells and CD68 immunoreactivity may underlie the distinct clinical behavior.
A Guide to Southern Pine Seed Sources
Clark W. Lantz; John F. Kraus
1987-01-01
The selection of an appropriate seed source is critical for successful southern pine plantations. Guides for selection of seed sources are presented for loblolly, slash, longleaf, Virginia, shortleaf, and sand pines. Separate recommendations are given for areas where fusiform-rust hazard is high.
Oya, Hiroyuki; Howard, Matthew A.; Adolphs, Ralph
2008-01-01
Faces are processed by a neural system with distributed anatomical components, but the roles of these components remain unclear. A dominant theory of face perception postulates independent representations of invariant aspects of faces (e.g., identity) in ventral temporal cortex including the fusiform gyrus, and changeable aspects of faces (e.g., emotion) in lateral temporal cortex including the superior temporal sulcus. Here we recorded neuronal activity directly from the cortical surface in 9 neurosurgical subjects undergoing epilepsy monitoring while they viewed static and dynamic facial expressions. Applying novel decoding analyses to the power spectrogram of electrocorticograms (ECoG) from over 100 contacts in ventral and lateral temporal cortex, we found better representation of both invariant and changeable aspects of faces in ventral than lateral temporal cortex. Critical information for discriminating faces from geometric patterns was carried by power modulations between 50 to 150 Hz. For both static and dynamic face stimuli, we obtained a higher decoding performance in ventral than lateral temporal cortex. For discriminating fearful from happy expressions, critical information was carried by power modulation between 60–150 Hz and below 30 Hz, and again better decoded in ventral than lateral temporal cortex. Task-relevant attention improved decoding accuracy more than10% across a wide frequency range in ventral but not at all in lateral temporal cortex. Spatial searchlight decoding showed that decoding performance was highest around the middle fusiform gyrus. Finally, we found that the right hemisphere, in general, showed superior decoding to the left hemisphere. Taken together, our results challenge the dominant model for independent face representation of invariant and changeable aspects: information about both face attributes was better decoded from a single region in the middle fusiform gyrus. PMID:19065268
Pyke, Aryn; Betts, Shawn; Fincham, Jon M; Anderson, John R
2015-03-01
Different external representations for learning and solving mathematical operations may affect learning and transfer. To explore the effects of learning representations, learners were each introduced to two new operations (b↑n and b↓n) via either formulas or graphical representations. Both groups became adept at solving regular (trained) problems. During transfer, no external formulas or graphs were present; however, graph learners' knowledge could allow them to mentally associate problem expressions with visuospatial referents. The angular gyrus (AG) has recently been hypothesized to map problems to mental referents (e.g., symbolic answers; Grabner, Ansari, Koschutnig, Reishofer, & Ebner Human Brain Mapping, 34, 1013-1024, 2013), and we sought to test this hypothesis for visuospatial referents. To determine whether the AG and other math (horizontal intraparietal sulcus) and visuospatial (fusiform and posterior superior parietal lobule [PSPL]) regions were implicated in processing visuospatial mental referents, we included two types of transfer problems, computational and relational, which differed in referential load (one graph vs. two). During solving, the activations in AG, PSPL, and fusiform reflected the referential load manipulation among graph but not formula learners. Furthermore, the AG was more active among graph learners overall, which is consistent with its hypothesized referential role. Behavioral performance was comparable across the groups on computational transfer problems, which could be solved in a way that incorporated learners' respective procedures for regular problems. However, graph learners were more successful on relational transfer problems, which assessed their understanding of the relations between pairs of similar problems within and across operations. On such problems, their behavioral performance correlated with activation in the AG, fusiform, and a relational processing region (BA 10).
Kruschwitz, Johann D; Meyer-Lindenberg, Andreas; Veer, Ilya M; Wackerhagen, Carolin; Erk, Susanne; Mohnke, Sebastian; Pöhland, Lydia; Haddad, Leila; Grimm, Oliver; Tost, Heike; Romanczuk-Seiferth, Nina; Heinz, Andreas; Walter, Martin; Walter, Henrik
2015-10-01
The application of global signal regression (GSR) to resting-state functional magnetic resonance imaging data and its usefulness is a widely discussed topic. In this article, we report an observation of segregated distribution of amygdala resting-state functional connectivity (rs-FC) within the fusiform gyrus (FFG) as an effect of GSR in a multi-center-sample of 276 healthy subjects. Specifically, we observed that amygdala rs-FC was distributed within the FFG as distinct anterior versus posterior clusters delineated by positive versus negative rs-FC polarity when GSR was performed. To characterize this effect in more detail, post hoc analyses revealed the following: first, direct overlays of task-functional magnetic resonance imaging derived face sensitive areas and clusters of positive versus negative amygdala rs-FC showed that the positive amygdala rs-FC cluster corresponded best with the fusiform face area, whereas the occipital face area corresponded to the negative amygdala rs-FC cluster. Second, as expected from a hierarchical face perception model, these amygdala rs-FC defined clusters showed differential rs-FC with other regions of the visual stream. Third, dynamic connectivity analyses revealed that these amygdala rs-FC defined clusters also differed in their rs-FC variance across time to the amygdala. Furthermore, subsample analyses of three independent research sites confirmed reliability of the effect of GSR, as revealed by similar patterns of distinct amygdala rs-FC polarity within the FFG. In this article, we discuss the potential of GSR to segregate face sensitive areas within the FFG and furthermore discuss how our results may relate to the functional organization of the face-perception circuit. © 2015 Wiley Periodicals, Inc.
Miki, Kensaku; Takeshima, Yasuyuki; Watanabe, Shoko; Honda, Yukiko; Kakigi, Ryusuke
2011-04-06
We investigated the effects of inverting facial contour (hair and chin) and features (eyes, nose and mouth) on processing for static and dynamic face perception using magnetoencephalography (MEG). We used apparent motion, in which the first stimulus (S1) was replaced by a second stimulus (S2) with no interstimulus interval and subjects perceived visual motion, and presented three conditions as follows: (1) U&U: Upright contour and Upright features, (2) U&I: Upright contour and Inverted features, and (3) I&I: Inverted contour and Inverted features. In static face perception (S1 onset), the peak latency of the fusiform area's activity, which was related to static face perception, was significantly longer for U&I and I&I than for U&U in the right hemisphere and for U&I than for U&U and I&I in the left. In dynamic face perception (S2 onset), the strength (moment) of the occipitotemporal area's activity, which was related to dynamic face perception, was significantly larger for I&I than for U&U and U&I in the right hemisphere, but not the left. These results can be summarized as follows: (1) in static face perception, the activity of the right fusiform area was more affected by the inversion of features while that of the left fusiform area was more affected by the disruption of the spatial relation between the contour and features, and (2) in dynamic face perception, the activity of the right occipitotemporal area was affected by the inversion of the facial contour. Copyright © 2011 Elsevier B.V. All rights reserved.
The effect of encoding strategy on the neural correlates of memory for faces.
Bernstein, Lori J; Beig, Sania; Siegenthaler, Amy L; Grady, Cheryl L
2002-01-01
Encoding and recognition of unfamiliar faces in young adults were examined using positron emission tomography to determine whether different encoding strategies would lead to encoding/retrieval differences in brain activity. Three types of encoding were compared: a 'deep' task (judging pleasantness/unpleasantness), a 'shallow' task (judging right/left orientation), and an intentional learning task in which subjects were instructed to learn the faces for a subsequent memory test but were not provided with a specific strategy. Memory for all faces was tested with an old/new recognition test. A modest behavioral effect was obtained, with deeply-encoded faces being recognized more accurately than shallowly-encoded or intentionally-learned faces. Regardless of encoding strategy, encoding activated a primarily ventral system including bilateral temporal and fusiform regions and left prefrontal cortices, whereas recognition activated a primarily dorsal set of regions including right prefrontal and parietal areas. Within encoding, the type of strategy produced different brain activity patterns, with deep encoding being characterized by left amygdala and left anterior cingulate activation. There was no effect of encoding strategy on brain activity during the recognition conditions. Posterior fusiform gyrus activation was related to better recognition accuracy in those conditions encouraging perceptual strategies, whereas activity in left frontal and temporal areas correlated with better performance during the 'deep' condition. Results highlight three important aspects of face memory: (1) the effect of encoding strategy was seen only at encoding and not at recognition; (2) left inferior prefrontal cortex was engaged during encoding of faces regardless of strategy; and (3) differential activity in fusiform gyrus was found, suggesting that activity in this area is not only a result of automatic face processing but is modulated by controlled processes.
Zhang, Bo; Gu, Zemao; Liu, Yang
2018-05-01
Three Myxobolus species were obtained from silver carp Hypophthalmichthys molitrix Valenciennes and bighead carp Hypophthalmichthys nobilis Richardson in China. In the present study, we supplemented their taxonomic characteristics by the morphological, histological and molecular methods. Myxobolus kiuchowensis Chen in Chen et Ma, 1998 formed small ellipsoidal plasmodia in the intestinal wall of bighead carp. Its spores appeared asymmetrical obovate in frontal view and fusiform in lateral view. Tiny mamillary protrusion in the anterior of some spores was observed. Two pyriform polar capsules were unequal. Histologically, M. kiuchowensis infected the tunica muscularis of host intestine. Myxobolus abitus Li et Nie, 1973 formed sausage-like plasmodia in the gills of silver carp. Its spores appeared oblate in frontal view and fusiform in lateral view. Two pyriform polar capsules were unequal and an obvious inter-capsule appendix was observed. Histological examination revealed that M. abitus developed in the interlamellar-epithelium of host gills. Myxobolus pavlovskii (Akhmerov, 1954) Landsberg et Lom, 1991 formed sausage-like plasmodia both in the gills of silver carp and bighead carp. Spores of M. pavlovskii were proximate oval in frontal view and fusiform in lateral view. Two pyriform polar capsules were unequal. The BLAST search indicated the SSU rDNA sequences of M. kiuchowensis and M. abitus were not identical to any sequence, however, the SSU rDNA sequences of M. pavlovskii were identical to that of M. pavlovskii recorded previously. Phylogenetic analysis showed that the present three species robustly clustered together in Cyprinid group and Asia group. Copyright © 2018. Published by Elsevier B.V.
Shang, Eric K; Nathan, Derek P; Sprinkle, Shanna R; Fairman, Ronald M; Bavaria, Joseph E; Gorman, Robert C; Gorman, Joseph H; Jackson, Benjamin M
2013-09-10
Wall stress calculated using finite element analysis has been used to predict rupture risk of aortic aneurysms. Prior models often assume uniform aortic wall thickness and fusiform geometry. We examined the effects of including local wall thickness, intraluminal thrombus, calcifications, and saccular geometry on peak wall stress (PWS) in finite element analysis of descending thoracic aortic aneurysms. Computed tomographic angiography of descending thoracic aortic aneurysms (n=10 total, 5 fusiform and 5 saccular) underwent 3-dimensional reconstruction with custom algorithms. For each aneurysm, an initial model was constructed with uniform wall thickness. Experimental models explored the addition of variable wall thickness, calcifications, and intraluminal thrombus. Each model was loaded with 120 mm Hg pressure, and von Mises PWS was computed. The mean PWS of uniform wall thickness models was 410 ± 111 kPa. The imposition of variable wall thickness increased PWS (481 ± 126 kPa, P<0.001). Although the addition of calcifications was not statistically significant (506 ± 126 kPa, P=0.07), the addition of intraluminal thrombus to variable wall thickness (359 ± 86 kPa, P ≤ 0.001) reduced PWS. A final model incorporating all features also reduced PWS (368 ± 88 kPa, P<0.001). Saccular geometry did not increase diameter-normalized stress in the final model (77 ± 7 versus 67 ± 12 kPa/cm, P=0.22). Incorporation of local wall thickness can significantly increase PWS in finite element analysis models of thoracic aortic aneurysms. Incorporating variable wall thickness, intraluminal thrombus, and calcifications significantly impacts computed PWS of thoracic aneurysms; sophisticated models may, therefore, be more accurate in assessing rupture risk. Saccular aneurysms did not demonstrate a significantly higher normalized PWS than fusiform aneurysms.
Characterizing saccular aortic arch aneurysms from the geometry-flow dynamics relationship.
Natsume, Kayoko; Shiiya, Norihiko; Takehara, Yasuo; Sugiyama, Masataka; Satoh, Hiroshi; Yamashita, Katsushi; Washiyama, Naoki
2017-06-01
Low wall shear stress (WSS) has been reported to be associated with accelerated atherosclerosis, aneurysm growth, or rupture. We evaluated the geometry of aortic arch aneurysms and their relationship with WSS by using the 4-dimensional flow magnetic resonance imaging to better characterize the saccular aneurysms. We analyzed the geometry in 100 patients using multiplanar reconstruction of computed tomography. We evaluated WSS and vortex flow using 4-dimensional flow magnetic resonance imaging in 16 of them, which were compared with 8 age-matched control subjects and eight healthy young volunteers. Eighty-two patients had a saccular aneurysm, and 18 had a fusiform aneurysm. External diameter/aneurysm length ratio and sac depth/neck width ratio of the fusiform aneurysms were constant at 0.76 ± 0.18 and 0.23 ± 0.09, whereas those of saccular aneurysms, especially those involving the outer curvature, were higher and more variable. Vortex flow was always present in the aneurysms, resulting in low WSS. When the sac depth/neck width ratio was less than 0.8, peak WSS correlated inversely with luminal diameter even in the saccular aneurysms. When this ratio exceeded 0.8, which was the case only with the saccular aneurysms, such correlation no longer existed and WSS was invariably low. Fusiform aneurysms elongate as they dilate, and WSS is lower as the diameter is larger. Saccular aneurysms dilate without proportionate elongation, and they, especially those occupying the inner curvature, have higher and variable sac depth/neck width ratio. When this ratio exceeds 0.8, WSS is low regardless of diameter, which may explain their malignant clinical behavior. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
VK, Varsha; Hallikeri, Kaveri; Girish, HC; Murgod, Sanjay
2014-01-01
Background: Central and Peripheral giant cell granulomas of jaws are uncommon, benign, reactive disorders that are characterized by the presence of numerous multinucleated giant cells and mononuclear cells within a stroma. The origin of the multinucleated giant cells is controversial; probably originating from fusion of histiocytes, endothelial cells and fibroblasts. Objective: To assess the expression of CD34 and CD68 in central and peripheral giant cell granulomas to understand the origin of these multinucleated giant cells. Materials and Methods: Twenty cases of Central and Peripheral giant cell granulomas were evaluated immunohistochemically for CD34 and CD68 proteins expression. Results: Immunopositivity for CD34 was seen only in cytoplasm of endothelial cells of blood vessels; whereas, consistent cytoplasmic immunopositivity for CD68 was seen in few stromal cells. Statistical significance was seen in mean number of multinucleated giant cells, mean number of nuclei in multinucleated giant cells, CD68 expression and ratio of macrophages to multinucleated giant cells among two lesions. Conclusion: Although the central giant cell granulomas share some clinical and histopathological similarities with peripheral giant cell granulomas, differences in mean number of nuclei in multinucleated giant cells and CD68 immunoreactivity may underlie the distinct clinical behavior. PMID:25948986
Using functional magnetic resonance imaging to explore the flashed face distortion effect.
Wen, Tanya; Kung, Chun-Chia
2014-10-27
The flashed face distortion (FFD) effect was coined by Tangen, Murphy, and Thompson (2011) in their second-place winner of the 2012 Best Illusion of the Year Contest. The FFD arises when people view various eye-aligned faces that are sequentially flashed in the visual periphery, and gradually the faces appear to be deformed and grotesque. In this functional magnetic resonance imaging (fMRI) study, participants were presented with four conditions: (a) one face pair changing only its illumination; (b) two and (c) three alternating face pairs; and (d) nonrepeated face pairs. Participants rated the magnitude of each illusion immediately after each block. Results showed that the receptive region of the early visual cortex (V1-V4), and category-selective areas such as the fusiform face area (FFA) and occipital face area (OFA), responded proportionally to the participants' rated FFD strength. A random-effects voxelwise analysis further revealed positively correlated areas (including the medial and superolateral frontal areas) and negatively correlated areas (including the precuneus, postcentral gyrus, right insula, and bilateral middle frontal gyri) with respect to participants' ratings. Time series correlations among these nine ROIs (four positive and five negative) indicated that most participants showed a clustering of the two separate ROI types. Exploratory factor analysis (EFA) also demonstrated the segregation of the positive and negative ROIs; additionally, two subsystems were identified within the negative ROIs. These results suggest that the FFD is mediated by at least two networks: one that is likely responsible for perception and another that is likely responsible for subjective feelings and engagement. © 2014 ARVO.
Cao, Fan; Khalid, Kainat; Zaveri, Rishi; Bolger, Donald J.; Bitan, Tali; Booth, James R.
2009-01-01
Priming effects were examined in 40 children (9 - 15 years old) using functional magnetic resonance imaging (fMRI). An orthographic judgment task required participants to determine if two sequentially presented spoken words had the same spelling for the rime. Four lexical conditions were designed: similar orthography and phonology (O+P+), similar orthography but different phonology (O+P−), similar phonology but different orthography (O−P+), and different orthography and phonology (O−P−). In left superior temporal gyrus, there was lower activation for targets in O+P+ than for those in O−P− and higher accuracy was correlated with stronger activation across all lexical conditions. These results provide evidence for phonological priming in children and greater elaboration of phonological representations in higher skill children, respectively. In left fusiform gyrus, there was lower activation for targets in O+P+ and O+P− than for those in O−P−, suggesting that visual similarity resulted in orthographic priming even with only auditory input. In left middle temporal gyrus, there was lower activation for targets in O+P+ than all other lexical conditions, suggesting that converging orthographic and phonological information resulted in a weaker influence on semantic representations. In addition, higher reading skill was correlated with weaker activation in left middle temporal gyrus across all lexical conditions, suggesting that higher skill children rely to a lesser degree on semantics as a compensatory mechanism. Finally, conflict effects but not priming effects were observed in left inferior frontal gyrus, suggesting that this region is involved in resolving conflicting orthographic and phonological information but not in perceptual priming. PMID:19665784
Wang, Long; Shi, Xiang'en; Liu, Fangjun; Qian, Hai
2016-12-01
Fusiform dilation of the internal carotid artery (FDICA) is an infrequent vascular complication following resection of suprasellar lesions in the pediatric population, and its course appears to be benign without apparent clinical symptoms. However, data correlating symptomatic FDICA with bypass surgery are scarce. The authors here report 2 symptomatic cases that were treated using internal maxillary artery bypass more than 5 years after total removal of a craniopharyngioma at an outside institution. Both cases of FDICA were resected to relieve the mass effect and to expose the craniopharyngioma. The postoperative course was uneventful, and radiological imaging revealed graft conduit patency. To the authors' knowledge, this is the first reported use of extracranial to intracranial bypass to treat FDICA following removal of a suprasellar lesion. Their findings suggest that bypass surgery is a useful therapeutic approach for symptomatic cases of FDICA and total removal of recurrent craniopharyngioma. Moreover, the indications for surgical intervention and treatment modalities are discussed in the context of previous relevant cases.
Bidirectional communication between amygdala and fusiform gyrus during facial recognition.
Herrington, John D; Taylor, James M; Grupe, Daniel W; Curby, Kim M; Schultz, Robert T
2011-06-15
Decades of research have documented the specialization of fusiform gyrus (FG) for facial information processes. Recent theories indicate that FG activity is shaped by input from amygdala, but effective connectivity from amygdala to FG remains undocumented. In this fMRI study, 39 participants completed a face recognition task. 11 participants underwent the same experiment approximately four months later. Robust face-selective activation of FG, amygdala, and lateral occipital cortex were observed. Dynamic causal modeling and Bayesian Model Selection (BMS) were used to test the intrinsic connections between these structures, and their modulation by face perception. BMS results strongly favored a dynamic causal model with bidirectional, face-modulated amygdala-FG connections. However, the right hemisphere connections diminished at time 2, with the face modulation parameter no longer surviving Bonferroni correction. These findings suggest that amygdala strongly influences FG function during face perception, and that this influence is shaped by experience and stimulus salience. Copyright © 2011 Elsevier Inc. All rights reserved.
Role of fusiform and anterior temporal cortical areas in facial recognition.
Nasr, Shahin; Tootell, Roger B H
2012-11-15
Recent fMRI studies suggest that cortical face processing extends well beyond the fusiform face area (FFA), including unspecified portions of the anterior temporal lobe. However, the exact location of such anterior temporal region(s), and their role during active face recognition, remain unclear. Here we demonstrate that (in addition to FFA) a small bilateral site in the anterior tip of the collateral sulcus ('AT'; the anterior temporal face patch) is selectively activated during recognition of faces but not houses (a non-face object). In contrast to the psychophysical prediction that inverted and contrast reversed faces are processed like other non-face objects, both FFA and AT (but not other visual areas) were also activated during recognition of inverted and contrast reversed faces. However, response accuracy was better correlated to recognition-driven activity in AT, compared to FFA. These data support a segregated, hierarchical model of face recognition processing, extending to the anterior temporal cortex. Copyright © 2012 Elsevier Inc. All rights reserved.
A generalized vortex lattice method for subsonic and supersonic flow applications
NASA Technical Reports Server (NTRS)
Miranda, L. R.; Elliot, R. D.; Baker, W. M.
1977-01-01
If the discrete vortex lattice is considered as an approximation to the surface-distributed vorticity, then the concept of the generalized principal part of an integral yields a residual term to the vorticity-induced velocity field. The proper incorporation of this term to the velocity field generated by the discrete vortex lines renders the present vortex lattice method valid for supersonic flow. Special techniques for simulating nonzero thickness lifting surfaces and fusiform bodies with vortex lattice elements are included. Thickness effects of wing-like components are simulated by a double (biplanar) vortex lattice layer, and fusiform bodies are represented by a vortex grid arranged on a series of concentrical cylindrical surfaces. The analysis of sideslip effects by the subject method is described. Numerical considerations peculiar to the application of these techniques are also discussed. The method has been implemented in a digital computer code. A users manual is included along with a complete FORTRAN compilation, an executed case, and conversion programs for transforming input for the NASA wave drag program.
Skill dependent audiovisual integration in the fusiform induces repetition suppression.
McNorgan, Chris; Booth, James R
2015-02-01
Learning to read entails mapping existing phonological representations to novel orthographic representations and is thus an ideal context for investigating experience driven audiovisual integration. Because two dominant brain-based theories of reading development hinge on the sensitivity of the visual-object processing stream to phonological information, we were interested in how reading skill relates to audiovisual integration in this area. Thirty-two children between 8 and 13 years of age spanning a range of reading skill participated in a functional magnetic resonance imaging experiment. Participants completed a rhyme judgment task to word pairs presented unimodally (auditory- or visual-only) and cross-modally (auditory followed by visual). Skill-dependent sub-additive audiovisual modulation was found in left fusiform gyrus, extending into the putative visual word form area, and was correlated with behavioral orthographic priming. These results suggest learning to read promotes facilitatory audiovisual integration in the ventral visual-object processing stream and may optimize this region for orthographic processing. Copyright © 2014 Elsevier Inc. All rights reserved.
Soft Rot of Eggplant (Solanum melongena) Caused by Choanephora cucurbitarum in Korea
Jee, Hyeong-Jin
2005-01-01
In April 2002 and 2003, soft rot on fruit of eggplant (Solanum melongena) caused by Choanephora cucurbitarum was observed in the experimental fields at Gyeongnam Agricultural Research and Extension Services in Korea. The disease began with water-soaking and dark-green lesions, and then the infected tissues were rapidly rotten. Sporangium was subglobose in shape and sized 40~130 µm. Monosporous sporangiola were elliptic, fusiform or ovoid, brown in color, and measured as 12~20 × 6~14 µm. Sporangiospores having three or more appendages were elliptic, fusiform or ovoid in shape, dark brown or brown in color, and sized 14~20 × 7~16 µm. The fungus grew well on potato dextrose agar between 15 and 40℃ and its optimum growth temperature was 30℃. Based on morphological characteristics, the causal fungus of the fruit soft rot of eggplant was identified as C. cucurbitarum. This is the first report on the soft rot of S. melongena caused by C. cucurbitarum in Korea. PMID:24049494
Blunted neural response to implicit negative facial affect in anorexia nervosa.
Leppanen, Jenni; Cardi, Valentina; Paloyelis, Yannis; Simmons, Andy; Tchanturia, Kate; Treasure, Janet
2017-09-01
People with anorexia nervosa (AN) have difficulties in a wide range of social-emotional processes. Previous work suggests atypical involvement of the prefrontal cortex (PFC), amygdala, insula, and fusiform gyri during social-emotional processing in AN. Twenty women with AN and twenty healthy comparison (HC) women were presented with happy, fearful, and neutral faces during a functional magnetic resonance imaging study. Group differences were investigated in the following regions of interest: lateral PFC, amygdala, insula, and fusiform gyri. The HC participants showed significantly increased recruitment of the ventrolateral PFC and amygdala in the fearful > neutral contrast relative to the AN participants. The AN participants showed a significantly increased recruitment of a small cluster in the right posterior insula in the happy > neutral contrast. These findings are in line with the hypothesis that people with AN have a blunted response to negative and atypical exaggerated response to positive emotionally provoking stimuli. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Dynamic Encoding of Face Information in the Human Fusiform Gyrus
Ghuman, Avniel Singh; Brunet, Nicolas M.; Li, Yuanning; Konecky, Roma O.; Pyles, John A.; Walls, Shawn A.; Destefino, Vincent; Wang, Wei; Richardson, R. Mark
2014-01-01
Humans’ ability to rapidly and accurately detect, identify, and classify faces under variable conditions derives from a network of brain regions highly tuned to face information. The fusiform face area (FFA) is thought to be a computational hub for face processing, however temporal dynamics of face information processing in FFA remains unclear. Here we use multivariate pattern classification to decode the temporal dynamics of expression-invariant face information processing using electrodes placed directly upon FFA in humans. Early FFA activity (50-75 ms) contained information regarding whether participants were viewing a face. Activity between 200-500 ms contained expression-invariant information about which of 70 faces participants were viewing along with the individual differences in facial features and their configurations. Long-lasting (500+ ms) broadband gamma frequency activity predicted task performance. These results elucidate the dynamic computational role FFA plays in multiple face processing stages and indicate what information is used in performing these visual analyses. PMID:25482825
Rangarajan, Vinitha; Parvizi, Josef
2016-03-01
The ventral temporal cortex (VTC) contains several areas with selective responses to words, numbers, faces, and objects as demonstrated by numerous human and primate imaging and electrophysiological studies. Our recent work using electrocorticography (ECoG) confirmed the presence of face-selective neuronal populations in the human fusiform gyrus (FG) in patients implanted with intracranial electrodes in either the left or right hemisphere. Electrical brain stimulation (EBS) disrupted the conscious perception of faces only when it was delivered in the right, but not left, FG. In contrast to our previous findings, here we report both negative and positive EBS effects in right and left FG, respectively. The presence of right hemisphere language dominance in the first, and strong left-handedness and poor language processing performance in the second case, provide indirect clues about the functional architecture of the human VTC in relation to hemispheric asymmetries in language processing and handedness. Copyright © 2015 Elsevier Ltd. All rights reserved.
Skill Dependent Audiovisual Integration in the Fusiform Induces Repetition Suppression
McNorgan, Chris; Booth, James R.
2015-01-01
Learning to read entails mapping existing phonological representations to novel orthographic representations and is thus an ideal context for investigating experience driven audiovisual integration. Because two dominant brain-based theories of reading development hinge on the sensitivity of the visual-object processing stream to phonological information, we were interested in how reading skill relates to audiovisual integration in this area. Thirty-two children between 8 and 13 years of age spanning a range of reading skill participated in a functional magnetic resonance imaging experiment. Participants completed a rhyme judgment task to word pairs presented unimodally (auditory- or visual-only) and cross-modally (auditory followed by visual). Skill-dependent sub-additive audiovisual modulation was found in left fusiform gyrus, extending into the putative visual word form area, and was correlated with behavioral orthographic priming. These results suggest learning to read promotes facilitatory audiovisual integration in the ventral visual-object processing stream and may optimize this region for orthographic processing. PMID:25585276
The functional neuroanatomy of object agnosia: a case study.
Konen, Christina S; Behrmann, Marlene; Nishimura, Mayu; Kastner, Sabine
2011-07-14
Cortical reorganization of visual and object representations following neural injury was examined using fMRI and behavioral investigations. We probed the visual responsivity of the ventral visual cortex of an agnosic patient who was impaired at object recognition following a lesion to the right lateral fusiform gyrus. In both hemispheres, retinotopic mapping revealed typical topographic organization and visual activation of early visual cortex. However, visual responses, object-related, and -selective responses were reduced in regions immediately surrounding the lesion in the right hemisphere, and also, surprisingly, in corresponding locations in the structurally intact left hemisphere. In contrast, hV4 of the right hemisphere showed expanded response properties. These findings indicate that the right lateral fusiform gyrus is critically involved in object recognition and that an impairment to this region has widespread consequences for remote parts of cortex. Finally, functional neural plasticity is possible even when a cortical lesion is sustained in adulthood. Copyright © 2011 Elsevier Inc. All rights reserved.
Li, Jun; Liu, Jiangang; Liang, Jimin; Zhang, Hongchuan; Zhao, Jizheng; Rieth, Cory A.; Huber, David E.; Li, Wu; Shi, Guangming; Ai, Lin; Tian, Jie; Lee, Kang
2013-01-01
To study top-down face processing, the present study used an experimental paradigm in which participants detected non-existent faces in pure noise images. Conventional BOLD signal analysis identified three regions involved in this illusory face detection. These regions included the left orbitofrontal cortex (OFC) in addition to the right fusiform face area (FFA) and right occipital face area (OFA), both of which were previously known to be involved in both top-down and bottom-up processing of faces. We used Dynamic Causal Modeling (DCM) and Bayesian model selection to further analyze the data, revealing both intrinsic and modulatory effective connectivities among these three cortical regions. Specifically, our results support the claim that the orbitofrontal cortex plays a crucial role in the top-down processing of faces by regulating the activities of the occipital face area, and the occipital face area in turn detects the illusory face features in the visual stimuli and then provides this information to the fusiform face area for further analysis. PMID:20423709
Perceived quality of maternal care in childhood and structure and function of mothers’ brain
Kim, Pilyoung; Leckman, James F.; Mayes, Linda C.; Newman, Michal-Ann; Feldman, Ruth; Swain, James E.
2014-01-01
Animal studies indicate that early maternal care has long-term effects on brain areas related to social attachment and parenting, whereas neglectful mothering is linked with heightened stress reactivity in the hippocampus across the lifespan. The present study explores the possibility, using magnetic resonance imaging, that perceived quality of maternal care in childhood is associated with brain structure and functional responses to salient infant stimuli among human mothers in the first postpartum month. Mothers who reported higher maternal care in childhood showed larger grey matter volumes in the superior and middle frontal gyri, orbital gyrus, superior temporal gyrus and fusiform gyrus. In response to infant cries, these mothers exhibited higher activations in the middle frontal gyrus, superior temporal gyrus and fusiform gyrus, whereas mothers reporting lower maternal care showed increased hippocampal activations. These findings suggest that maternal care in childhood may be associated with anatomy and functions in brain regions implicated in appropriate responsivity to infant stimuli in human mothers. PMID:20590729
Axelrod, Vadim; Yovel, Galit
2010-08-15
Most studies of face identity have excluded external facial features by either removing them or covering them with a hat. However, external facial features may modify the representation of internal facial features. Here we assessed whether the representation of face identity in the fusiform face area (FFA), which has been primarily studied for internal facial features, is modified by differences in external facial features. We presented faces in which external and internal facial features were manipulated independently. Our findings show that the FFA was sensitive to differences in external facial features, but this effect was significantly larger when the external and internal features were aligned than misaligned. We conclude that the FFA generates a holistic representation in which the internal and the external facial features are integrated. These results indicate that to better understand real-life face recognition both external and internal features should be included. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Epicenters of dynamic connectivity in the adaptation of the ventral visual system.
Prčkovska, Vesna; Huijbers, Willem; Schultz, Aaron; Ortiz-Teran, Laura; Peña-Gomez, Cleofe; Villoslada, Pablo; Johnson, Keith; Sperling, Reisa; Sepulcre, Jorge
2017-04-01
Neuronal responses adapt to familiar and repeated sensory stimuli. Enhanced synchrony across wide brain systems has been postulated as a potential mechanism for this adaptation phenomenon. Here, we used recently developed graph theory methods to investigate hidden connectivity features of dynamic synchrony changes during a visual repetition paradigm. Particularly, we focused on strength connectivity changes occurring at local and distant brain neighborhoods. We found that connectivity reorganization in visual modal cortex-such as local suppressed connectivity in primary visual areas and distant suppressed connectivity in fusiform areas-is accompanied by enhanced local and distant connectivity in higher cognitive processing areas in multimodal and association cortex. Moreover, we found a shift of the dynamic functional connections from primary-visual-fusiform to primary-multimodal/association cortex. These findings suggest that repetition-suppression is made possible by reorganization of functional connectivity that enables communication between low- and high-order areas. Hum Brain Mapp 38:1965-1976, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Neural Pattern Similarity in the Left IFG and Fusiform Is Associated with Novel Word Learning
Qu, Jing; Qian, Liu; Chen, Chuansheng; Xue, Gui; Li, Huiling; Xie, Peng; Mei, Leilei
2017-01-01
Previous studies have revealed that greater neural pattern similarity across repetitions is associated with better subsequent memory. In this study, we used an artificial language training paradigm and representational similarity analysis to examine whether neural pattern similarity across repetitions before training was associated with post-training behavioral performance. Twenty-four native Chinese speakers were trained to learn a logographic artificial language for 12 days and behavioral performance was recorded using the word naming and picture naming tasks. Participants were scanned while performing a passive viewing task before training, after 4-day training and after 12-day training. Results showed that pattern similarity in the left pars opercularis (PO) and fusiform gyrus (FG) before training was negatively associated with reaction time (RT) in both word naming and picture naming tasks after training. These results suggest that neural pattern similarity is an effective neurofunctional predictor of novel word learning in addition to word memory. PMID:28878640
Role of Fusiform and Anterior Temporal Cortical Areas in Facial Recognition
Nasr, Shahin; Tootell, Roger BH
2012-01-01
Recent FMRI studies suggest that cortical face processing extends well beyond the fusiform face area (FFA), including unspecified portions of the anterior temporal lobe. However, the exact location of such anterior temporal region(s), and their role during active face recognition, remain unclear. Here we demonstrate that (in addition to FFA) a small bilateral site in the anterior tip of the collateral sulcus (‘AT’; the anterior temporal face patch) is selectively activated during recognition of faces but not houses (a non-face object). In contrast to the psychophysical prediction that inverted and contrast reversed faces are processed like other non-face objects, both FFA and AT (but not other visual areas) were also activated during recognition of inverted and contrast reversed faces. However, response accuracy was better correlated to recognition-driven activity in AT, compared to FFA. These data support a segregated, hierarchical model of face recognition processing, extending to the anterior temporal cortex. PMID:23034518
Voice Recognition in Face-Blind Patients
Liu, Ran R.; Pancaroglu, Raika; Hills, Charlotte S.; Duchaine, Brad; Barton, Jason J. S.
2016-01-01
Right or bilateral anterior temporal damage can impair face recognition, but whether this is an associative variant of prosopagnosia or part of a multimodal disorder of person recognition is an unsettled question, with implications for cognitive and neuroanatomic models of person recognition. We assessed voice perception and short-term recognition of recently heard voices in 10 subjects with impaired face recognition acquired after cerebral lesions. All 4 subjects with apperceptive prosopagnosia due to lesions limited to fusiform cortex had intact voice discrimination and recognition. One subject with bilateral fusiform and anterior temporal lesions had a combined apperceptive prosopagnosia and apperceptive phonagnosia, the first such described case. Deficits indicating a multimodal syndrome of person recognition were found only in 2 subjects with bilateral anterior temporal lesions. All 3 subjects with right anterior temporal lesions had normal voice perception and recognition, 2 of whom performed normally on perceptual discrimination of faces. This confirms that such lesions can cause a modality-specific associative prosopagnosia. PMID:25349193
The Neural Development of ‘Us and Them’
Guassi Moreira, João F.; Van Bavel, Jay J.
2017-01-01
Abstract Social groups aid human beings in several ways, ranging from the fulfillment of complex social and personal needs to the promotion of survival. Despite the importance of group affiliation to humans, there remains considerable variation in group preferences across development. In the current study, children and adolescents completed an explicit evaluation task of in-group and out-group members during functional neuroimaging. We found that participants displayed age-related increases in bilateral amygdala, fusiform gyrus and orbitofrontal cortex (OFC) activation when viewing in-group relative to out-group faces. Moreover, we found an indirect effect of age on in-group favoritism via brain activation in the amygdala, fusiform and OFC. Finally, with age, youth showed greater functional coupling between the amygdala and several neural regions when viewing in-group relative to out-group peers, suggesting a role of the amygdala in directing attention to motivationally relevant cues. Our findings suggest that the motivational significance and processing of group membership undergoes important changes across development. PMID:27633395
Wang, Shuang; Xia, Zhen; Hu, Yamin; He, Zhixia; Uzoejinwa, Benjamin Bernard; Wang, Qian; Cao, Bin; Xu, Shanna
2017-03-01
Co-pyrolysis conversion of seaweed (Enteromorpha clathrat and Sargassum fusiforme) polysaccharides and cellulose has been investigated. From the Py-GC/MS results, Enteromorpha clathrata (EN) polysaccharides pyrolysis mainly forms furans; while the products of Sargassum fusiforme (SA) polysaccharides pyrolysis are mainly acid esters. The formation mechanisms of H 2 O, CO 2 , and SO 2 during the pyrolysis of seaweed polysaccharides were analyzed using the thermogravimetric-mass spectrometry. Meanwhile the pyrolysis of seaweed polysaccharide based on the Amber and the ReaxFF force fields, has also been proposed and simulated respectively. The simulation results coincided with the experimental results. During the fast pyrolysis, strong synergistic effects among cellulose and seaweed polysaccharide molecules have been simulated. By comparing the experimental and simulation value, it has been found that co-pyrolysis could increase the number of molecular fragments, increase the pyrolysis conversion rate, and increase gas production rate at the middle temperature range. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dynamic encoding of face information in the human fusiform gyrus.
Ghuman, Avniel Singh; Brunet, Nicolas M; Li, Yuanning; Konecky, Roma O; Pyles, John A; Walls, Shawn A; Destefino, Vincent; Wang, Wei; Richardson, R Mark
2014-12-08
Humans' ability to rapidly and accurately detect, identify and classify faces under variable conditions derives from a network of brain regions highly tuned to face information. The fusiform face area (FFA) is thought to be a computational hub for face processing; however, temporal dynamics of face information processing in FFA remains unclear. Here we use multivariate pattern classification to decode the temporal dynamics of expression-invariant face information processing using electrodes placed directly on FFA in humans. Early FFA activity (50-75 ms) contained information regarding whether participants were viewing a face. Activity between 200 and 500 ms contained expression-invariant information about which of 70 faces participants were viewing along with the individual differences in facial features and their configurations. Long-lasting (500+ms) broadband gamma frequency activity predicted task performance. These results elucidate the dynamic computational role FFA plays in multiple face processing stages and indicate what information is used in performing these visual analyses.
Toxicity of so-called edible hijiki seaweed (Sargassum fusiforme) containing inorganic arsenic.
Yokoi, Katsuhiko; Konomi, Aki
2012-07-01
The UK Food Standards Agency and its counterparts in other countries have warned consumers not to eat hijiki (Sargassum fusiforme; synonym Hizikia fusiformis), a Sargasso seaweed, because it contains large amounts of inorganic arsenic. We investigated dietary exposure of hijiki in weaning male F344/N rats fed an AIN-93G diet supplemented with 3% (w/w) hijiki powder for 7 weeks, compared with those fed only an AIN-93G diet. Body weight, body temperature, blood and tissue arsenic concentrations, plasma biochemistry and hematological parameters were measured. We found that feeding rats a 3% hijiki diet led to a marked accumulation of arsenic in blood and tissues, and evoked a high body temperature and abnormal blood biochemistry including elevated plasma alkaline phosphatase activity and inorganic phosphorus, consistent with arsenic poisoning. These findings should prompt further investigations to identify the health hazards related to consumption of hijiki and related Sargassum species in humans. Copyright © 2012 Elsevier Inc. All rights reserved.
Woodhead, Zoe Victoria Joan; Wise, Richard James Surtees; Sereno, Marty; Leech, Robert
2011-10-01
Different cortical regions within the ventral occipitotemporal junction have been reported to show preferential responses to particular objects. Thus, it is argued that there is evidence for a left-lateralized visual word form area and a right-lateralized fusiform face area, but the unique specialization of these areas remains controversial. Words are characterized by greater power in the high spatial frequency (SF) range, whereas faces comprise a broader range of high and low frequencies. We investigated how these high-order visual association areas respond to simple sine-wave gratings that varied in SF. Using functional magnetic resonance imaging, we demonstrated lateralization of activity that was concordant with the low-level visual property of words and faces; left occipitotemporal cortex is more strongly activated by high than by low SF gratings, whereas the right occipitotemporal cortex responded more to low than high spatial frequencies. Therefore, the SF of a visual stimulus may bias the lateralization of processing irrespective of its higher order properties.
A lexical semantic hub for heteromodal naming in middle fusiform gyrus.
Forseth, Kiefer James; Kadipasaoglu, Cihan Mehmet; Conner, Christopher Richard; Hickok, Gregory; Knight, Robert Thomas; Tandon, Nitin
2018-07-01
Semantic memory underpins our understanding of objects, people, places, and ideas. Anomia, a disruption of semantic memory access, is the most common residual language disturbance and is seen in dementia and following injury to temporal cortex. While such anomia has been well characterized by lesion symptom mapping studies, its pathophysiology is not well understood. We hypothesize that inputs to the semantic memory system engage a specific heteromodal network hub that integrates lexical retrieval with the appropriate semantic content. Such a network hub has been proposed by others, but has thus far eluded precise spatiotemporal delineation. This limitation in our understanding of semantic memory has impeded progress in the treatment of anomia. We evaluated the cortical structure and dynamics of the lexical semantic network in driving speech production in a large cohort of patients with epilepsy using electrocorticography (n = 64), functional MRI (n = 36), and direct cortical stimulation (n = 30) during two generative language processes that rely on semantic knowledge: visual picture naming and auditory naming to definition. Each task also featured a non-semantic control condition: scrambled pictures and reversed speech, respectively. These large-scale data of the left, language-dominant hemisphere uniquely enable convergent, high-resolution analyses of neural mechanisms characterized by rapid, transient dynamics with strong interactions between distributed cortical substrates. We observed three stages of activity during both visual picture naming and auditory naming to definition that were serially organized: sensory processing, lexical semantic processing, and articulation. Critically, the second stage was absent in both the visual and auditory control conditions. Group activity maps from both electrocorticography and functional MRI identified heteromodal responses in middle fusiform gyrus, intraparietal sulcus, and inferior frontal gyrus; furthermore, the spectrotemporal profiles of these three regions revealed coincident activity preceding articulation. Only in the middle fusiform gyrus did direct cortical stimulation disrupt both naming tasks while still preserving the ability to repeat sentences. These convergent data strongly support a model in which a distinct neuroanatomical substrate in middle fusiform gyrus provides access to object semantic information. This under-appreciated locus of semantic processing is at risk in resections for temporal lobe epilepsy as well as in trauma and strokes that affect the inferior temporal cortex-it may explain the range of anomic states seen in these conditions. Further characterization of brain network behaviour engaging this region in both healthy and diseased states will expand our understanding of semantic memory and further development of therapies directed at anomia.
Choi, Y. J.; Lee, S. R.; Oh, J-W.
2014-01-01
This study was conducted to investigate the effects of brown seaweed (Undaria pinnatifida) by-product and seaweed fusiforme (Hizikia fusiformis) by-product supplementation on growth performance and blood profiles including serum immunoglobulin (Ig) in broilers. Fermentation of seaweeds was conducted by Bacillus subtilis and Aspergillus oryzae. In a 5-wk feeding trial, 750 one-d-old broiler chicks were divided into 5 groups, and were assigned to the control diet or experimental diets including control+0.5% brown seaweed (BS) by-product, control+0.5% seaweed fusiforme (SF) by-product, control+0.5% fermented brown seaweed (FBS) by-product, and control+0.5% fermented seaweed fusiforme (FSF) by-product. As a consequence, body weight gain (BWG) and gain:feed of seaweed by-product groups were clearly higher, when compared to those of control diet group from d 18 to 35 and the entire experimental period (p<0.05). In mortality rate, seaweed by-product groups were significantly lower when compared to control diet group during entire experimental period (p<0.05). However, Feed Intake of experimental diets group was not different from that of the control group during the entire experimental period. Whereas, Feed Intake of fermented seaweed by-product groups was lower than that of non-fermented seaweed groups (p<0.05). Total organ weights, lipids, and glutamic oxalacetic transaminase (GOT) of all treatment groups were not different from those of control group. However, glutamic pyruvate transaminase (GPT) of all treatment groups was higher than that of control group at d 17 (p<0.05). In case of serum Igs concentration, the concentration of IgA antibody in BS, SF, FSF treatment groups was significantly higher than in control group at d 35 (p<0.01). IgA concentration in FBS supplementation groups was negligibly decreased when compared to the control group. IgM concentration in the serums of all treatment groups was significantly higher than in control group (p<0.05) and in fermented seaweed by-product groups were much higher than in non-fermented seaweed groups (p<0.05). On the other hand, IgG concentrations in all treatment groups were lower than in control group (p<0.05). Taken together, our results suggest that by-product dietary supplementation of BS, SF, FBS, and FSF in poultry may provide positive effects of growth performance and immune response. PMID:25050025
NASA Astrophysics Data System (ADS)
Pustilnik, S. A.; Makarova, L. N.; Perepelitsyna, Y. A.; Moiseev, A. V.; Makarov, D. I.
2017-03-01
This paper presents new results from the ongoing study of the unusual Lynx-Cancer void galaxy DDO 68, which has star-forming regions of record low metallicity [12+log (O/H) ˜7.14]. The results include the following. (I) A new spectrum and photometry have been obtained with the 6-m SAO RAS telescope (BTA) for the luminous blue variable (LBV = DDO68-V1). Photometric data sets were complemented with others based on the Sloan Digital Sky Survey (SDSS) and the Hubble Space Telescope (HST) archive images. (II) We performed an analysis of the DDO 68 supergiant shell (SGS) and the prominent smaller Hα arcs/shells visible in the HST image coupled with kinematic maps in Hα obtained with the Fabry-Perot interferometer (FPI) at the BTA. (III) We compiled a list of about 50 of the most luminous stars (-9.1 mag < MV < -6.0 mag) identified from the HST images associated with the star-forming regions with known extremely low O/H. This is intended to pave the path for the current science to be investigated with the next generation of giant telescopes. We have confirmed earlier hints of significant variation of the LBV optical light, deriving its amplitude as ΔV ≳ 3.7 mag for the first time. New data suggest that in 2008-2010 the LBV reached MV = -10.5 mag and probably underwent a giant eruption. We argue that the structure of star-forming complexes along the SGS ('Northern Ring') perimeter provides evidence for sequential induced star-formation episodes caused by the shell gas instabilities and gravitational collapse. The variability of some luminous extremely metal-poor stars in DDO 68 can currently be monitored with medium-size telescopes at sites with superb seeing.
Massive Stars in the W33 Giant Molecular Complex
NASA Astrophysics Data System (ADS)
Messineo, Maria; Clark, J. Simon; Figer, Donald F.; Kudritzki, Rolf-Peter; Najarro, Francisco; Rich, R. Michael; Menten, Karl M.; Ivanov, Valentin D.; Valenti, Elena; Trombley, Christine; Chen, C.-H. Rosie; Davies, Ben
2015-06-01
Rich in H ii regions, giant molecular clouds are natural laboratories to study massive stars and sequential star formation. The Galactic star-forming complex W33 is located at l=˜ 12\\buildrel{\\circ}\\over{.} 8 and at a distance of 2.4 kpc and has a size of ≈ 10 pc and a total mass of ≈ (0.8-8.0) × {{10}5} M ⊙ . The integrated radio and IR luminosity of W33—when combined with the direct detection of methanol masers, the protostellar object W33A, and the protocluster embedded within the radio source W33 main—mark the region as a site of vigorous ongoing star formation. In order to assess the long-term star formation history, we performed an infrared spectroscopic search for massive stars, detecting for the first time 14 early-type stars, including one WN6 star and four O4-7 stars. The distribution of spectral types suggests that this population formed during the past ˜2-4 Myr, while the absence of red supergiants precludes extensive star formation at ages 6-30 Myr. This activity appears distributed throughout the region and does not appear to have yielded the dense stellar clusters that characterize other star-forming complexes such as Carina and G305. Instead, we anticipate that W33 will eventually evolve into a loose stellar aggregate, with Cyg OB2 serving as a useful, albeit richer and more massive, comparator. Given recent distance estimates, and despite a remarkably similar stellar population, the rich cluster Cl 1813-178 located on the northwest edge of W33 does not appear to be physically associated with W33.
The Neural Regions Sustaining Episodic Encoding and Recognition of Objects
ERIC Educational Resources Information Center
Hofer, Alex; Siedentopf, Christian M.; Ischebeck, Anja; Rettenbacher, Maria A.; Widschwendter, Christian G.; Verius, Michael; Golaszewski, Stefan M.; Koppelstaetter, Florian; Felber, Stephan; Wolfgang Fleischhacker, W.
2007-01-01
In this functional MRI experiment, encoding of objects was associated with activation in left ventrolateral prefrontal/insular and right dorsolateral prefrontal and fusiform regions as well as in the left putamen. By contrast, correct recognition of previously learned objects (R judgments) produced activation in left superior frontal, bilateral…
ERIC Educational Resources Information Center
Mei, Leilei; Xue, Gui; Lu, Zhong-Lin; He, Qinghua; Zhang, Mingxia; Xue, Feng; Chen, Chuansheng; Dong, Qi
2013-01-01
The laterality difference in the occipitotemporal region between Chinese (bilaterality) and alphabetic languages (left laterality) has been attributed to their difference in visual appearance. However, these languages also differ in orthographic transparency. To disentangle the effect of orthographic transparency from visual appearance, we trained…
Bodies Capture Attention When Nothing Is Expected
ERIC Educational Resources Information Center
Downing, Paul E.; Bray, David; Rogers, Jack; Childs, Claire
2004-01-01
Functional neuroimaging research has shown that certain classes of visual stimulus selectively activate focal regions of visual cortex. Specifically, cortical areas that generally and selectively respond to faces (Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: a module in human extrastriate cortex specialized for face…
Information-Processing Modules and Their Relative Modality Specificity
ERIC Educational Resources Information Center
Anderson, John R.; Qin, Yulin; Jung, Kwan-Jin; Carter, Cameron S.
2007-01-01
This research uses fMRI to understand the role of eight cortical regions in a relatively complex information-processing task. Modality of input (visual versus auditory) and modality of output (manual versus vocal) are manipulated. Two perceptual regions (auditory cortex and fusiform gyrus) only reflected perceptual encoding. Two motor regions were…
Einstein Observatory magnitude-limited X-ray survey of late-type giant and supergiant stars
NASA Technical Reports Server (NTRS)
Maggio, A.; Vaiana, G. S.; Haisch, B. M.; Stern, R. A.; Bookbinder, J.
1990-01-01
Results are presented of an extensive X-ray survey of 380 giant and supergiant stars of spectral types from F to M, carried out with the Einstein Observatory. It was found that the observed F giants or subgiants (slightly evolved stars with a mass M less than about 2 solar masses) are X-ray emitters at the same level of main-sequence stars of similar spectral type. The G giants show a range of emissions more than 3 orders of magnitude wide; some single G giants exist with X-ray luminosities comparable to RS CVn systems, while some nearby large G giants have upper limits on the X-ray emission below typical solar values. The K giants have an observed X-ray emission level significantly lower than F and F giants. None of the 29 M giants were detected, except for one spectroscopic binary.
Lithium in giant stars in NGC 752 and M67
NASA Astrophysics Data System (ADS)
Pilachowski, Catherine; Saha, A.; Hobbs, L. M.
1988-04-01
Spectra of giant stars in the intermediate-age galactic cluster NGC 752 and in the old cluster M67 have been examined for the presence of Li I λ6707. The lithium feature is not present in any of the M67 giants observed, leading to upper-limit abundances of log ɛ(Li) ≤ -1.0 to 0.3. While lithium is not present in most NGC 752 giants, the feature is strong in two giants, Heinemann 77 and 208, log ɛ(Li) = +1.1 and +1.4, respectively. In the remaining giants in NGC 752, log ɛ(Li) < 0.5. The absence of lithium in M67 giants may be because these giants evolve from progenitors in the region of the main-sequence lithium dip.
78 FR 50346 - Atlantic Highly Migratory Species; Atlantic Bluefin Tuna Fisheries
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-19
... large medium or giant BFT to three large medium or giant BFT for the September, October through November... retention limit of one large medium or giant BFT (measuring 73 inches (185 cm) curved fork length (CFL) or... one large medium or giant BFT as follows: Two large medium or giant BFT for January (76 FR 76900...
NASA Astrophysics Data System (ADS)
Soszynski, I.; Udalski, A.; Kubiak, M.; Szymanski, M.; Pietrzynski, G.; Zebrun, K.; Szewczyk, O.; Wyrzykowski, L.
2004-06-01
We present analysis of the large sample of variable red giants from the Large and Small Magellanic Clouds detected during the second phase of the Optical Gravitational Lensing Experiment (OGLE-II) and supplemented with OGLE-III photometry. Comparing pulsation properties of detected objects we find that they constitute two groups with clearly distinct features. In this paper we analyze in detail small amplitude variable red giants (about 15400 and 3000 objects in the LMC and SMC, respectively). The vast majority of these objects are multi-periodic. At least 30% of them exhibit two modes closely spaced in the power spectrum, what likely indicates non-radial oscillations. About 50% exhibit additional so called Long Secondary Period. To distinguish between AGB and RGB red giants we compare PL diagrams of multi-periodic red giants located above and below the tip of the Red Giant Branch (TRGB). The giants above the TRGB form four parallel ridges in the PL diagram. Among much more numerous sample of giants below the TRGB we find objects located on the low luminosity extensions of these ridges, but most of the stars are located on the ridges slightly shifted in log P. We interpret the former as the second ascent AGB red giants and the latter as the first ascent RGB objects. Thus, we empirically show that the pulsating red giants fainter than the TRGB are a mixture of RGB and AGB giants. Finally, we compare the Petersen diagrams of the LMC, SMC and Galactic bulge variable red giants and find that they are basically identical indicating that the variable red giants in all these different stellar environments share similar pulsation properties.
Typical and Atypical Neurodevelopment for Face Specialization: An fMRI Study
ERIC Educational Resources Information Center
Joseph, Jane E.; Zhu, Xun; Gundran, Andrew; Davies, Faraday; Clark, Jonathan D.; Ruble, Lisa; Glaser, Paul; Bhatt, Ramesh S.
2015-01-01
Individuals with autism spectrum disorder (ASD) and their relatives process faces differently from typically developed (TD) individuals. In an fMRI face-viewing task, TD and undiagnosed sibling (SIB) children (5-18 years) showed face specialization in the right amygdala and ventromedial prefrontal cortex, with left fusiform and right amygdala face…
Genetic recombinational and physical linkage analyses on slash pine
Rob Doudrick
1996-01-01
Slash pine is native to the southeastern USA, but is commercially valuable world-wide as a timber-,fiber- and resin-producing species. Breeding objectives emphasize selection for fusiform rust disease resistance. Identification of markers linked to genetic factors conditioning specificity should expand our knowledge of disease development. Towards this end, random...
Animal, but Not Human, Faces Engage the Distributed Face Network in Adolescents with Autism
ERIC Educational Resources Information Center
Whyte, Elisabeth M.; Behrmann, Marlene; Minshew, Nancy J.; Garcia, Natalie V.; Scherf, K. Suzanne
2016-01-01
Multiple hypotheses have been offered to explain the impaired face-processing behavior and the accompanying underlying disruptions in neural circuitry among individuals with autism. We explored the specificity of atypical face-processing activation and potential alterations to fusiform gyrus (FG) morphology as potential underlying mechanisms.…
Narukawa, Tomohiro; Inagaki, Kazumi; Zhu, Yanbei; Kuroiwa, Takayoshi; Narushima, Izumi; Chiba, Koichi; Hioki, Akiharu
2012-02-01
A certified reference material, NMIJ CRM 7405-a, for the determination of trace elements and As(V) in algae was developed from the edible marine hijiki (Hizikia fusiforme) and certified by the National Metrology Institute of Japan (NMIJ), the National Institute of Advanced Industrial Science and Technology (AIST). Hijiki was collected from the Pacific coast in the Kanto area of Japan, and was washed, dried, powdered, and homogenized. The hijiki powder was placed in 400 bottles (ca. 20 g each). The concentrations of 18 trace elements and As(V) were determined by two to four independent analytical techniques, including (ID)ICP-(HR)MS, ICP-OES, GFAAS, and HPLC-ICP-MS using calibration solutions prepared from the elemental standard solution of Japan calibration service system (JCSS) and the NMIJ CRM As(V) solution, and whose concentrations are certified and SI traceable. The uncertainties of all the measurements and preparation procedures were evaluated. The values of 18 trace elements and As(V) in the CRM were certified with uncertainty (k = 2).
Li, Shuang; Kalappa, Bopanna I; Tzounopoulos, Thanos
2015-01-01
Vulnerability to noise-induced tinnitus is associated with increased spontaneous firing rate in dorsal cochlear nucleus principal neurons, fusiform cells. This hyperactivity is caused, at least in part, by decreased Kv7.2/3 (KCNQ2/3) potassium currents. However, the biophysical mechanisms underlying resilience to tinnitus, which is observed in noise-exposed mice that do not develop tinnitus (non-tinnitus mice), remain unknown. Our results show that noise exposure induces, on average, a reduction in KCNQ2/3 channel activity in fusiform cells in noise-exposed mice by 4 days after exposure. Tinnitus is developed in mice that do not compensate for this reduction within the next 3 days. Resilience to tinnitus is developed in mice that show a re-emergence of KCNQ2/3 channel activity and a reduction in HCN channel activity. Our results highlight KCNQ2/3 and HCN channels as potential targets for designing novel therapeutics that may promote resilience to tinnitus. DOI: http://dx.doi.org/10.7554/eLife.07242.001 PMID:26312501
15q11.2 CNV affects cognitive, structural and functional correlates of dyslexia and dyscalculia.
Ulfarsson, M O; Walters, G B; Gustafsson, O; Steinberg, S; Silva, A; Doyle, O M; Brammer, M; Gudbjartsson, D F; Arnarsdottir, S; Jonsdottir, G A; Gisladottir, R S; Bjornsdottir, G; Helgason, H; Ellingsen, L M; Halldorsson, J G; Saemundsen, E; Stefansdottir, B; Jonsson, L; Eiriksdottir, V K; Eiriksdottir, G R; Johannesdottir, G H; Unnsteinsdottir, U; Jonsdottir, B; Magnusdottir, B B; Sulem, P; Thorsteinsdottir, U; Sigurdsson, E; Brandeis, D; Meyer-Lindenberg, A; Stefansson, H; Stefansson, K
2017-04-25
Several copy number variants have been associated with neuropsychiatric disorders and these variants have been shown to also influence cognitive abilities in carriers unaffected by psychiatric disorders. Previously, we associated the 15q11.2(BP1-BP2) deletion with specific learning disabilities and a larger corpus callosum. Here we investigate, in a much larger sample, the effect of the 15q11.2(BP1-BP2) deletion on cognitive, structural and functional correlates of dyslexia and dyscalculia. We report that the deletion confers greatest risk of the combined phenotype of dyslexia and dyscalculia. We also show that the deletion associates with a smaller left fusiform gyrus. Moreover, tailored functional magnetic resonance imaging experiments using phonological lexical decision and multiplication verification tasks demonstrate altered activation in the left fusiform and the left angular gyri in carriers. Thus, by using convergent evidence from neuropsychological testing, and structural and functional neuroimaging, we show that the 15q11.2(BP1-BP2) deletion affects cognitive, structural and functional correlates of both dyslexia and dyscalculia.
15q11.2 CNV affects cognitive, structural and functional correlates of dyslexia and dyscalculia
Ulfarsson, M O; Walters, G B; Gustafsson, O; Steinberg, S; Silva, A; Doyle, O M; Brammer, M; Gudbjartsson, D F; Arnarsdottir, S; Jonsdottir, G A; Gisladottir, R S; Bjornsdottir, G; Helgason, H; Ellingsen, L M; Halldorsson, J G; Saemundsen, E; Stefansdottir, B; Jonsson, L; Eiriksdottir, V K; Eiriksdottir, G R; Johannesdottir, G H; Unnsteinsdottir, U; Jonsdottir, B; Magnusdottir, B B; Sulem, P; Thorsteinsdottir, U; Sigurdsson, E; Brandeis, D; Meyer-Lindenberg, A; Stefansson, H; Stefansson, K
2017-01-01
Several copy number variants have been associated with neuropsychiatric disorders and these variants have been shown to also influence cognitive abilities in carriers unaffected by psychiatric disorders. Previously, we associated the 15q11.2(BP1–BP2) deletion with specific learning disabilities and a larger corpus callosum. Here we investigate, in a much larger sample, the effect of the 15q11.2(BP1–BP2) deletion on cognitive, structural and functional correlates of dyslexia and dyscalculia. We report that the deletion confers greatest risk of the combined phenotype of dyslexia and dyscalculia. We also show that the deletion associates with a smaller left fusiform gyrus. Moreover, tailored functional magnetic resonance imaging experiments using phonological lexical decision and multiplication verification tasks demonstrate altered activation in the left fusiform and the left angular gyri in carriers. Thus, by using convergent evidence from neuropsychological testing, and structural and functional neuroimaging, we show that the 15q11.2(BP1–BP2) deletion affects cognitive, structural and functional correlates of both dyslexia and dyscalculia. PMID:28440815
Grandin, Cécile B.; Dricot, Laurence; Plaza, Paula; Lerens, Elodie; Rombaux, Philippe; De Volder, Anne G.
2013-01-01
Using functional magnetic resonance imaging (fMRI) in ten early blind humans, we found robust occipital activation during two odor-processing tasks (discrimination or categorization of fruit and flower odors), as well as during control auditory-verbal conditions (discrimination or categorization of fruit and flower names). We also found evidence for reorganization and specialization of the ventral part of the occipital cortex, with dissociation according to stimulus modality: the right fusiform gyrus was most activated during olfactory conditions while part of the left ventral lateral occipital complex showed a preference for auditory-verbal processing. Only little occipital activation was found in sighted subjects, but the same right-olfactory/left-auditory-verbal hemispheric lateralization was found overall in their brain. This difference between the groups was mirrored by superior performance of the blind in various odor-processing tasks. Moreover, the level of right fusiform gyrus activation during the olfactory conditions was highly correlated with individual scores in a variety of odor recognition tests, indicating that the additional occipital activation may play a functional role in odor processing. PMID:23967263
Capitani, Erminio; Chieppa, Francesca; Laiacona, Marcella
2010-05-01
Case A.C.A. presented an associated impairment of visual recognition and semantic knowledge for celebrities and biological objects. This case was relevant for (a) the neuroanatomical correlations, and (b) the relationship between visual recognition and semantics within the biological domain and the conspecifics domain. A.C.A. was not affected by anterior temporal damage. Her bilateral vascular lesions were localized on the medial and inferior temporal gyrus on the right and on the intermediate fusiform gyrus on the left, without concomitant lesions of the parahippocampal gyrus or posterior fusiform. Data analysis was based on a novel methodology developed to estimate the rate of stored items in the visual structural description system (SDS) or in the face recognition unit. For each biological object, no particular correlation was found between the visual information accessed through the semantic system and that tapped by the picture reality judgement. Findings are discussed with reference to whether a putative resource commonality is likely between biological objects and conspecifics, and whether or not either category may depend on an exclusive neural substrate.
[Improving Primary Culture of Pulmonary Microvascular Endothelial Cells of Rats].
Jiang, Ling; Hu, Yuan-Dong; Xu, Fei-Fei; Wang, Ting-Hua
2016-09-01
To improve the culturing method of pulmonary microvascular endothelial cells (PMEVCs) of SD rats. The culturing processes in regard to obtaining peripheral lung tissue, attaching tissue block,preparing medium and subculturing were modified.These included an injection of heparin sodium before anesthesia, abdominal bleeding, opening of chest when breathing stopped, improvement of operational details, reduction of pollution by adding penicillin and streptomycin, discard of tissues after 48 h of primary culturing, remove of fibroblasts by a second digestion, and identification of cells using a fluorescence microscope for binding with lectin from BSI (FITC-BSI).An inverted microscope was used to observe the morphological characteristics of PMEVCs. Purified PMEVCs were obtained,which displayed a polygon or short fusiform, exhibiting a typical cobblestone-like morphology. The morphology of PMVECs turned into swirling or long fusiform following subculture or changes in culture conditions. The results of FITC-BSI assay showed that more than 90% cells were stained with green fluorescence. Purified PMEVCs with a good growth state and subculture stability can be obtained using the modified method.
Hu, Zhishan; Zhang, Juan; Couto, Tania Alexandra; Xu, Shiyang; Luan, Ping; Yuan, Zhen
2018-06-22
In this study, functional near-infrared spectroscopy (fNIRS) was used to examine the brain activation and connectivity in occipitotemporal cortex during Chinese character recognition (CCR). Eighteen healthy participants were recruited to perform a well-designed task with three categories of stimuli (real characters, pseudo characters, and checkerboards). By inspecting the brain activation difference and its relationship with behavioral data, the left laterality during CCR was clearly identified in the Brodmann area (BA) 18 and 19. In addition, our novel findings also demonstrated that the bilateral superior temporal gyrus (STG), bilateral BA 19, and left fusiform gyrus were also involved in high-level lexical information processing such as semantic and phonological ones. Meanwhile, by examining functional brain networks, we discovered that the right BA 19 exhibited enhanced brain connectivity. In particular, the connectivity in the right fusiform gyrus, right BA 19, and left STG showed significant correlation with the performance of CCR. Consequently, the combination of fNIRS technique with functional network analysis paves a new avenue for improved understanding of the cognitive mechanism underlying CCR.
Pulmonary endothelial pavement patterns.
Kibria, G; Heath, D; Smith, P; Biggar, R
1980-01-01
The appearance of the endothelial pavement pattern was studied in the pulmonary trunk, pulmonary veins, aorta, and inferior vena cava of the rat by means of silver staining of the cell borders. The endothelial cell in each of the four blood vessels was found to have its own distinctive shape, fusiform and pointed in the direction of blood flow in the case of the aorta and larger and more rectangular in the pulmonary trunk and pulmonary veins. Detailed quantitation of the dimensions and surface area of the endothelial cells in each blood vessel was carried out by a photographic technique. Pulmonary hypertension was induced in one group of rats by feeding them on Crotalaria spectabilis seeds. The endothelial pavement pattern in their pulmonary trunks became disrupted with many of the cells assuming a fusiform shape reminiscent of aortic endothelium. Many small, new endothelial cells formed in the pulmonary trunk suggesting division of cells to line the enlarging blood vessels. In contrast the endothelial cells of the inferior vena cava merely increased in size to cope with the dilatation of this vein. Images PMID:7385090
Zhang, Xiu-Li; Wang, Cong; Chen, Zhen; Zhang, Pei-Yu; Liu, Hong-Bing
2016-08-10
Knowledge of phytosterol (PS) contents in marine algae is currently lacking compared to those in terrestrial plants. The present studies developed a quantitative (1)H NMR method for the determination of the total PSs in Sargassum. The characteristic proton signal H-3α in PSs was used for quantification, and 2,3,4,5-tetrachloro-nitrobenzene was used as an internal standard. Seaweed samples could be recorded directly after total lipid extraction and saponification. The results showed that the PS contents in Sargassum fusiforme (788.89-2878.67 mg/kg) were significantly higher than those in Sargassum pallidum (585.33-1596.00 mg/kg). The variable contents in both species suggested that fixed raw materials are very important for future research and development. Orthogonal projection to latent structures discriminant analysis was carried out in the spectral region of δ 3.00-6.50 in the (1)H NMR spectrum. S. fusiforme and S. pallidum could be separated well, and the key sterol marker was fucosterol.
Moore, Michelle W; Durisko, Corrine; Perfetti, Charles A; Fiez, Julie A
2014-04-01
Numerous functional neuroimaging studies have shown that most orthographic stimuli, such as printed English words, produce a left-lateralized response within the fusiform gyrus (FG) at a characteristic location termed the visual word form area (VWFA). We developed an experimental alphabet (FaceFont) comprising 35 face-phoneme pairs to disentangle phonological and perceptual influences on the lateralization of orthographic processing within the FG. Using functional imaging, we found that a region in the vicinity of the VWFA responded to FaceFont words more strongly in trained versus untrained participants, whereas no differences were observed in the right FG. The trained response magnitudes in the left FG region correlated with behavioral reading performance, providing strong evidence that the neural tissue recruited by training supported the newly acquired reading skill. These results indicate that the left lateralization of the orthographic processing is not restricted to stimuli with particular visual-perceptual features. Instead, lateralization may occur because the anatomical projections in the vicinity of the VWFA provide a unique interconnection between the visual system and left-lateralized language areas involved in the representation of speech.
Multifocal tenosynovial giant cell tumors in a child with Noonan syndrome.
Meyers, Arthur B; Awomolo, Agboola O; Szabo, Sara
2017-03-01
Noonan syndrome is a genetic disorder with variable expression of distinctive facial features, webbed neck, chest deformity, short stature, cryptorchidism and congenital heart disease. The association of Noonan syndrome and giant cell granulomas of the mandible is widely reported. However, Noonan syndrome may also be associated with single or multifocal tenosynovial giant cell tumors, also referred to as pigmented villonodular synovitis. We report a child with Noonan syndrome, giant cell granulomas of the mandible and synovial and tenosynovial giant cell tumors involving multiple joints and tendon sheaths who was initially misdiagnosed with juvenile idiopathic arthritis. It is important for radiologists to be aware of the association of Noonan syndrome and multifocal giant cell lesions, which can range from the more commonly described giant cell granulomas of the mandible to isolated or multifocal intra- or extra-articular tenosynovial giant cell tumors or a combination of all of these lesions.
Development of brain networks involved in spoken word processing of Mandarin Chinese.
Cao, Fan; Khalid, Kainat; Lee, Rebecca; Brennan, Christine; Yang, Yanhui; Li, Kuncheng; Bolger, Donald J; Booth, James R
2011-08-01
Developmental differences in phonological and orthographic processing of Chinese spoken words were examined in 9-year-olds, 11-year-olds and adults using functional magnetic resonance imaging (fMRI). Rhyming and spelling judgments were made to two-character words presented sequentially in the auditory modality. Developmental comparisons between adults and both groups of children combined showed that age-related changes in activation in visuo-orthographic regions depended on a task. There were developmental increases in the left inferior temporal gyrus and the right inferior occipital gyrus in the spelling task, suggesting more extensive visuo-orthographic processing in a task that required access to these representations. Conversely, there were developmental decreases in activation in the left fusiform gyrus and left middle occipital gyrus in the rhyming task, suggesting that the development of reading is marked by reduced involvement of orthography in a spoken language task that does not require access to these orthographic representations. Developmental decreases may arise from the existence of extensive homophony (auditory words that have multiple spellings) in Chinese. In addition, we found that 11-year-olds and adults showed similar activation in the left superior temporal gyrus across tasks, with both groups showing greater activation than 9-year-olds. This pattern suggests early development of perceptual representations of phonology. In contrast, 11-year-olds and 9-year-olds showed similar activation in the left inferior frontal gyrus across tasks, with both groups showing weaker activation than adults. This pattern suggests late development of controlled retrieval and selection of lexical representations. Altogether, this study suggests differential effects of character acquisition on development of components of the language network in Chinese as compared to previous reports on alphabetic languages. Published by Elsevier Inc.
Reyes, Gabriel A.; Halstead, Brian J.; Rose, Jonathan P.; Ersan, Julia S. M.; Jordan, Anna C.; Essert, Allison M.; Fouts, Kristen J.; Fulton, Alexandria M.; Gustafson, K. Benjamin; Wack, Raymond F.; Wylie, Glenn D.; Casazza, Michael L.
2017-11-16
Most extant giant gartersnake (Thamnophis gigas) populations persist in an agro-ecosystem dominated by rice, which serves as a surrogate to the expansive marshes lost to flood control projects and development of the Great Central Valley of California. Knowledge of how giant gartersnakes use the rice agricultural landscape, including how they respond to fallowing, idling, or crop rotations, would greatly benefit conservation of giant gartersnakes by informing more snake-friendly land and water management practices. We studied adult giant gartersnakes at 11 sites in the rice-growing regions of the Sacramento Valley during an extended drought in California to evaluate their response to differences in water availability at the site and individual levels. Although our study indicated that giant gartersnakes make little use of rice fields themselves, and avoid cultivated rice relative to its availability on the landscape, rice is a crucial component of the modern landscape for giant gartersnakes. Giant gartersnakes are strongly associated with the canals that supply water to and drain water from rice fields; these canals provide much more stable habitat than rice fields because they maintain water longer and support marsh-like conditions for most of the giant gartersnake active season. Nonetheless, our results suggest that maintaining canals without neighboring rice fields would be detrimental to giant gartersnake populations, with decreases in giant gartersnake survival rates associated with less rice production in the surrounding landscape. Increased productivity of prey populations, dispersion of potential predators across a larger landscape, and a more secure water supply are just some of the mechanisms by which rice fields might benefit giant gartersnakes in adjacent canals. Results indicate that identifying how rice benefits giant gartersnakes in canals and the extent to which the rice agro-ecosystem could provide these benefits when rice is fallowed would inform the use of water for other purposes without harm to giant gartersnakes. Our study also suggests that without such understanding, maintaining rice and associated canals in the Sacramento Valley is critical for the sustainability of giant gartersnake populations.
NASA Astrophysics Data System (ADS)
Jeffery, David J.; Mazzali, Paolo A.
2007-08-01
Giant steps is a technique to accelerate Monte Carlo radiative transfer in optically-thick cells (which are isotropic and homogeneous in matter properties and into which astrophysical atmospheres are divided) by greatly reducing the number of Monte Carlo steps needed to propagate photon packets through such cells. In an optically-thick cell, packets starting from any point (which can be regarded a point source) well away from the cell wall act essentially as packets diffusing from the point source in an infinite, isotropic, homogeneous atmosphere. One can replace many ordinary Monte Carlo steps that a packet diffusing from the point source takes by a randomly directed giant step whose length is slightly less than the distance to the nearest cell wall point from the point source. The giant step is assigned a time duration equal to the time for the RMS radius for a burst of packets diffusing from the point source to have reached the giant step length. We call assigning giant-step time durations this way RMS-radius (RMSR) synchronization. Propagating packets by series of giant steps in giant-steps random walks in the interiors of optically-thick cells constitutes the technique of giant steps. Giant steps effectively replaces the exact diffusion treatment of ordinary Monte Carlo radiative transfer in optically-thick cells by an approximate diffusion treatment. In this paper, we describe the basic idea of giant steps and report demonstration giant-steps flux calculations for the grey atmosphere. Speed-up factors of order 100 are obtained relative to ordinary Monte Carlo radiative transfer. In practical applications, speed-up factors of order ten and perhaps more are possible. The speed-up factor is likely to be significantly application-dependent and there is a trade-off between speed-up and accuracy. This paper and past work suggest that giant-steps error can probably be kept to a few percent by using sufficiently large boundary-layer optical depths while still maintaining large speed-up factors. Thus, giant steps can be characterized as a moderate accuracy radiative transfer technique. For many applications, the loss of some accuracy may be a tolerable price to pay for the speed-ups gained by using giant steps.
The Lithium Abundances of a Large Sample of Red Giants
NASA Astrophysics Data System (ADS)
Liu, Y. J.; Tan, K. F.; Wang, L.; Zhao, G.; Sato, Bun'ei; Takeda, Y.; Li, H. N.
2014-04-01
The lithium abundances for 378 G/K giants are derived with non-local thermodynamic equilibrium correction considered. Among these are 23 stars that host planetary systems. The lithium abundance is investigated, as a function of metallicity, effective temperature, and rotational velocity, as well as the impact of a giant planet on G/K giants. The results show that the lithium abundance is a function of metallicity and effective temperature. The lithium abundance has no correlation with rotational velocity at v sin i < 10 km s-1. Giants with planets present lower lithium abundance and slow rotational velocity (v sin i < 4 km s-1). Our sample includes three Li-rich G/K giants, 36 Li-normal stars, and 339 Li-depleted stars. The fraction of Li-rich stars in this sample agrees with the general rate of less than 1% in the literature, and the stars that show normal amounts of Li are supposed to possess the same abundance at the current interstellar medium. For the Li-depleted giants, Li-deficiency may have already taken place at the main sequence stage for many intermediate mass (1.5-5 M ⊙) G/K giants. Finally, we present the lithium abundance and kinematic parameters for an enlarged sample of 565 giants using a compilation of the literature, and confirm that the lithium abundance is a function of metallicity and effective temperature. With the enlarged sample, we investigate the differences between the lithium abundance in thin-/thick-disk giants, which indicate that the lithium abundance in thick-disk giants is more depleted than that in thin-disk giants.
CNO isotopes in red giant stars
NASA Technical Reports Server (NTRS)
Wannier, P. G.
1985-01-01
Observational data on CNO abundance ratios in red giants and the interstellar medium (ISM) are analyzed for the implications for the production and distribution of CNO nuclides. The data included isotope abundance measurements for the atmospheres and recent ejecta of cool giants, e.g., carbon stars, S-type stars, red supergiants and oxygen-rich giants beginning an ascent of the giant branch. The contribution of intermediate-mass stars to galactic nuclear evolution is discussed after comparing red giant abundances with ISM abundances, particularly the isotopes O-16, -17 and -18. The O-12/O-18 ratios of red giants are distinctly different from those in interstellar molecular clouds. The CNO values also vary widely from the values found in the solar system.
Functional mapping of language networks in the normal brain using a word-association task.
Ghosh, Shantanu; Basu, Amrita; Kumaran, Senthil S; Khushu, Subash
2010-08-01
Language functions are known to be affected in diverse neurological conditions, including ischemic stroke, traumatic brain injury, and brain tumors. Because language networks are extensive, interpretation of functional data depends on the task completed during evaluation. The aim was to map the hemodynamic consequences of word association using functional magnetic resonance imaging (fMRI) in normal human subjects. Ten healthy subjects underwent fMRI scanning with a postlexical access semantic association task vs lexical processing task. The fMRI protocol involved a T2*-weighted gradient-echo echo-planar imaging (GE-EPI) sequence (TR 4523 ms, TE 64 ms, flip angle 90°) with alternate baseline and activation blocks. A total of 78 scans were taken (interscan interval = 3 s) with a total imaging time of 587 s. Functional data were processed in Statistical Parametric Mapping software (SPM2) with 8-mm Gaussian kernel by convolving the blood oxygenation level-dependent (BOLD) signal with an hemodynamic response function estimated by general linear method to generate SPM{t} and SPM{F} maps. Single subject analysis of the functional data (FWE-corrected, P≤0.001) revealed extensive activation in the frontal lobes, with overlaps among middle frontal gyrus (MFG), superior, and inferior frontal gyri. BOLD activity was also found in the medial frontal gyrus, middle occipital gyrus (MOG), anterior fusiform gyrus, superior and inferior parietal lobules, and to a smaller extent, the thalamus and right anterior cerebellum. Group analysis (FWE-corrected, P≤0.001) revealed neural recruitment of bilateral lingual gyri, left MFG, bilateral MOG, left superior occipital gyrus, left fusiform gyrus, bilateral thalami, and right cerebellar areas. Group data analysis revealed a cerebellar-occipital-fusiform-thalamic network centered around bilateral lingual gyri for word association, thereby indicating how these areas facilitate language comprehension by activating a semantic association network of words processed postlexical access. This finding is important when assessing the extent of cognitive damage and/or recovery and can be used for presurgical planning after optimization.
Speech comprehension aided by multiple modalities: behavioural and neural interactions
McGettigan, Carolyn; Faulkner, Andrew; Altarelli, Irene; Obleser, Jonas; Baverstock, Harriet; Scott, Sophie K.
2014-01-01
Speech comprehension is a complex human skill, the performance of which requires the perceiver to combine information from several sources – e.g. voice, face, gesture, linguistic context – to achieve an intelligible and interpretable percept. We describe a functional imaging investigation of how auditory, visual and linguistic information interact to facilitate comprehension. Our specific aims were to investigate the neural responses to these different information sources, alone and in interaction, and further to use behavioural speech comprehension scores to address sites of intelligibility-related activation in multifactorial speech comprehension. In fMRI, participants passively watched videos of spoken sentences, in which we varied Auditory Clarity (with noise-vocoding), Visual Clarity (with Gaussian blurring) and Linguistic Predictability. Main effects of enhanced signal with increased auditory and visual clarity were observed in overlapping regions of posterior STS. Two-way interactions of the factors (auditory × visual, auditory × predictability) in the neural data were observed outside temporal cortex, where positive signal change in response to clearer facial information and greater semantic predictability was greatest at intermediate levels of auditory clarity. Overall changes in stimulus intelligibility by condition (as determined using an independent behavioural experiment) were reflected in the neural data by increased activation predominantly in bilateral dorsolateral temporal cortex, as well as inferior frontal cortex and left fusiform gyrus. Specific investigation of intelligibility changes at intermediate auditory clarity revealed a set of regions, including posterior STS and fusiform gyrus, showing enhanced responses to both visual and linguistic information. Finally, an individual differences analysis showed that greater comprehension performance in the scanning participants (measured in a post-scan behavioural test) were associated with increased activation in left inferior frontal gyrus and left posterior STS. The current multimodal speech comprehension paradigm demonstrates recruitment of a wide comprehension network in the brain, in which posterior STS and fusiform gyrus form sites for convergence of auditory, visual and linguistic information, while left-dominant sites in temporal and frontal cortex support successful comprehension. PMID:22266262
Speech comprehension aided by multiple modalities: behavioural and neural interactions.
McGettigan, Carolyn; Faulkner, Andrew; Altarelli, Irene; Obleser, Jonas; Baverstock, Harriet; Scott, Sophie K
2012-04-01
Speech comprehension is a complex human skill, the performance of which requires the perceiver to combine information from several sources - e.g. voice, face, gesture, linguistic context - to achieve an intelligible and interpretable percept. We describe a functional imaging investigation of how auditory, visual and linguistic information interact to facilitate comprehension. Our specific aims were to investigate the neural responses to these different information sources, alone and in interaction, and further to use behavioural speech comprehension scores to address sites of intelligibility-related activation in multifactorial speech comprehension. In fMRI, participants passively watched videos of spoken sentences, in which we varied Auditory Clarity (with noise-vocoding), Visual Clarity (with Gaussian blurring) and Linguistic Predictability. Main effects of enhanced signal with increased auditory and visual clarity were observed in overlapping regions of posterior STS. Two-way interactions of the factors (auditory × visual, auditory × predictability) in the neural data were observed outside temporal cortex, where positive signal change in response to clearer facial information and greater semantic predictability was greatest at intermediate levels of auditory clarity. Overall changes in stimulus intelligibility by condition (as determined using an independent behavioural experiment) were reflected in the neural data by increased activation predominantly in bilateral dorsolateral temporal cortex, as well as inferior frontal cortex and left fusiform gyrus. Specific investigation of intelligibility changes at intermediate auditory clarity revealed a set of regions, including posterior STS and fusiform gyrus, showing enhanced responses to both visual and linguistic information. Finally, an individual differences analysis showed that greater comprehension performance in the scanning participants (measured in a post-scan behavioural test) were associated with increased activation in left inferior frontal gyrus and left posterior STS. The current multimodal speech comprehension paradigm demonstrates recruitment of a wide comprehension network in the brain, in which posterior STS and fusiform gyrus form sites for convergence of auditory, visual and linguistic information, while left-dominant sites in temporal and frontal cortex support successful comprehension. Copyright © 2012 Elsevier Ltd. All rights reserved.
Guo, Wen-bin; Liu, Feng; Chen, Jin-dong; Gao, Keming; Xue, Zhi-min; Xu, Xi-jia; Wu, Ren-rong; Tan, Chang-lian; Sun, Xue-li; Liu, Zhe-ning; Chen, Hua-fu; Zhao, Jing-ping
2012-10-01
Patients with treatment-resistant depression (TRD) and those with treatment-sensitive depression (TSD) responded to antidepressants differently. Previous studies have commonly shown that patients with TRD or TSD had abnormal neural activity in different brain regions. In the present study, we used a coherence-based ReHo (Cohe-ReHo) approach to test the hypothesis that patients with TRD or TSD had abnormal neural activity in different brain regions. Twenty-three patients with TRD, 22 with TSD, and 19 healthy subjects (HS) matched with gender, age, and education level participated in the study. ANOVA analysis revealed widespread differences in Cohe-ReHo values among the three groups in different brain regions which included bilateral superior frontal gyrus, bilateral cerebellum, left inferior temporal gyrus, left occipital cortex, and both sides of fusiform gyrus. Compared to HS, lower Cohe-ReHo values were observed in TRD group in bilateral superior frontal gyrus and left cerebellum; in contrast, in TSD group, lower Cohe-ReHo values were mainly found in bilateral superior frontal gyrus. Compared to TSD group, TRD group had lower Cohe-ReHo in bilateral cerebellum and higher Cohe-ReHo in left fusiform gyrus. There was a negative correlation between Cohe-ReHo values of the left fusiform gyrus and illness duration in the pooled patients (r = 0.480, p = 0.001). The sensitivity and specificity of cerebellar Cohe-ReHo values differentiating TRD from TSD were 83% and 86%, respectively. Compared to healthy controls, both TRD and TSD patients shared the majority of brain regions with abnormal neural activity. However, the lower Cohe-ReHo values in the cerebellum might be as a marker to differentiate TRD from TSD with high sensitivity and specificity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Prieto, Esther Alonso; Caharel, Stéphanie; Henson, Richard; Rossion, Bruno
2011-01-01
Compared to objects, pictures of faces elicit a larger early electromagnetic response at occipito-temporal sites on the human scalp, with an onset of 130 ms and a peak at about 170 ms. This N170 face effect is larger in the right than the left hemisphere and has been associated with the early categorization of the stimulus as a face. Here we tested whether this effect can be observed in the absence of some of the visual areas showing a preferential response to faces as typically identified in neuroimaging. Event-related potentials were recorded in response to faces, cars, and their phase-scrambled versions in a well-known brain-damaged case of prosopagnosia (PS). Despite the patient’s right inferior occipital gyrus lesion encompassing the most posterior cortical area showing preferential response to faces (“occipital face area”), we identified an early face-sensitive component over the right occipito-temporal hemisphere of the patient that was identified as the N170. A second experiment supported this conclusion, showing the typical N170 increase of latency and amplitude in response to inverted faces. In contrast, there was no N170 in the left hemisphere, where PS has a lesion to the middle fusiform gyrus and shows no evidence of face-preferential response in neuroimaging (no left “fusiform face area”). These results were replicated by a magnetoencephalographic investigation of the patient, disclosing a M170 component only in the right hemisphere. These observations indicate that face-preferential activation in the inferior occipital cortex is not necessary to elicit early visual responses associated with face perception (N170/M170) on the human scalp. These results further suggest that when the right inferior occipital cortex is damaged, the integrity of the middle fusiform gyrus and/or the superior temporal sulcus – two areas showing face-preferential responses in the patient’s right hemisphere – might be necessary to generate the N170 effect. PMID:22275889
CNO isotopes in red giant stars
NASA Technical Reports Server (NTRS)
Wannier, P. G.
1985-01-01
The production and distribution of the CNO nuclides is discussed in light of observed abundance ratios in red giants and in the interstellar medium. Isotope abundances have been measured in the atmospheres and in the recent ejecta of cool giants, including carbon stars, S-type stars and red supergiants as well as in oxygen-rich giants making their first ascent of the giant branch. Several of the observations suggest revision of currently accepted nuclear cross-sections and of the mixing processes operating in giant envelopes. By comparing red giant abundances with high-quality observations of the interstellar medium, conclusions are reached about the contribution of intermediate-mass stars to galactic nuclear evolution. The three oxygen isotopes, O-16, -17 and -18, are particularly valuable for such comparison because they reflect three different stages of stellar nucleosynthesis. One remarkable result comes from observations of O-17/O-18 in several classes of red giant stars. The observed range of values for red giants excludes the entire range of values seen in interstellar molecular clouds. Furthermore, both the observations of stars and interstellar clouds exclude the isotopic ratio found in the solar system.
Sidhu, Meneka K.; Stretton, Jason; Winston, Gavin P.; Bonelli, Silvia; Centeno, Maria; Vollmar, Christian; Symms, Mark; Thompson, Pamela J.; Koepp, Matthias J.
2013-01-01
Functional magnetic resonance imaging has demonstrated reorganization of memory encoding networks within the temporal lobe in temporal lobe epilepsy, but little is known of the extra-temporal networks in these patients. We investigated the temporal and extra-temporal reorganization of memory encoding networks in refractory temporal lobe epilepsy and the neural correlates of successful subsequent memory formation. We studied 44 patients with unilateral temporal lobe epilepsy and hippocampal sclerosis (24 left) and 26 healthy control subjects. All participants performed a functional magnetic resonance imaging memory encoding paradigm of faces and words with subsequent out-of-scanner recognition assessments. A blocked analysis was used to investigate activations during encoding and neural correlates of subsequent memory were investigated using an event-related analysis. Event-related activations were then correlated with out-of-scanner verbal and visual memory scores. During word encoding, control subjects activated the left prefrontal cortex and left hippocampus whereas patients with left hippocampal sclerosis showed significant additional right temporal and extra-temporal activations. Control subjects displayed subsequent verbal memory effects within left parahippocampal gyrus, left orbitofrontal cortex and fusiform gyrus whereas patients with left hippocampal sclerosis activated only right posterior hippocampus, parahippocampus and fusiform gyrus. Correlational analysis showed that patients with left hippocampal sclerosis with better verbal memory additionally activated left orbitofrontal cortex, anterior cingulate cortex and left posterior hippocampus. During face encoding, control subjects showed right lateralized prefrontal cortex and bilateral hippocampal activations. Patients with right hippocampal sclerosis showed increased temporal activations within the superior temporal gyri bilaterally and no increased extra-temporal areas of activation compared with control subjects. Control subjects showed subsequent visual memory effects within right amygdala, hippocampus, fusiform gyrus and orbitofrontal cortex. Patients with right hippocampal sclerosis showed subsequent visual memory effects within right posterior hippocampus, parahippocampal and fusiform gyri, and predominantly left hemisphere extra-temporal activations within the insula and orbitofrontal cortex. Correlational analysis showed that patients with right hippocampal sclerosis with better visual memory activated the amygdala bilaterally, right anterior parahippocampal gyrus and left insula. Right sided extra-temporal areas of reorganization observed in patients with left hippocampal sclerosis during word encoding and bilateral lateral temporal reorganization in patients with right hippocampal sclerosis during face encoding were not associated with subsequent memory formation. Reorganization within the medial temporal lobe, however, is an efficient process. The orbitofrontal cortex is critical to subsequent memory formation in control subjects and patients. Activations within anterior cingulum and insula correlated with better verbal and visual subsequent memory in patients with left and right hippocampal sclerosis, respectively, representing effective extra-temporal recruitment. PMID:23674488
Vibration analysis and experiment of giant magnetostrictive force sensor
NASA Astrophysics Data System (ADS)
Zhu, Zhiwen; Liu, Fang; Zhu, Xingqiao; Wang, Haibo; Xu, Jia
2017-12-01
In this paper, a kind of giant magnetostrictive force sensor is proposed, ans its magneto-mechanical coupled model is developed. The relationship between output voltage of giant magnetostrictive force sensor and input excitation force is obtained. The phenomena of accuracy aggravation in high frequency and delay of giant magnetostrictive sensor are explained. The experimental results show that the model can describe the actual response of giant magnetostrictive force sensor. The new model of giant magnetostrictive sensor has simple form and is easy to be analyzed in theory, which is helpful to be applied in measuring and control fields.
History of Hubble Space Telescope (HST)
2002-12-01
This series of photos, captured by the NASA Hubble Space Telescope's (HST) Advanced Camera for Surveys from May to December 2002, dramatically demonstrates the reverberation of light through space caused by an unusual stellar outburst in January 2002. A burst of light from the bizarre star is spreading into space and reflecting off of surrounding circumstellar dust. As different parts are sequentially illuminated, the appearance of the dust changes. This effect is referred to as a "light echo". The red star at the center of the eyeball like feature is the unusual erupting super giant called V838 Monocerotis, or V Mon, located about 20,000 light-years away in the winter constellation Monoceros (the Unicorn). During its outburst, the star brightened to more than 600,000 times our Sun's luminosity. The circular feature has now expanded to slightly larger than the angular size of Jupiter on the sky, and will continue to expand for several more years until the light from the back side of the nebula begins to arrive. The light echo will then give the illusion of contracting, until it finally disappears by the end of the decade.
Light Echo From Star V838 Monocerotis
NASA Technical Reports Server (NTRS)
2002-01-01
This series of photos, captured by the NASA Hubble Space Telescope's (HST) Advanced Camera for Surveys from May to December 2002, dramatically demonstrates the reverberation of light through space caused by an unusual stellar outburst in January 2002. A burst of light from the bizarre star is spreading into space and reflecting off of surrounding circumstellar dust. As different parts are sequentially illuminated, the appearance of the dust changes. This effect is referred to as a 'light echo'. The red star at the center of the eyeball like feature is the unusual erupting super giant called V838 Monocerotis, or V Mon, located about 20,000 light-years away in the winter constellation Monoceros (the Unicorn). During its outburst, the star brightened to more than 600,000 times our Sun's luminosity. The circular feature has now expanded to slightly larger than the angular size of Jupiter on the sky, and will continue to expand for several more years until the light from the back side of the nebula begins to arrive. The light echo will then give the illusion of contracting, until it finally disappears by the end of the decade.
Ma, Ben; Lei, Shuo; Qing, Qin; Wen, Yali
2018-05-03
The International Union for Conservation of Nature (IUCN) reduced the threat status of the giant panda from “endangered” to “vulnerable” in September 2016. In this study, we analyzed current practices for giant panda conservation at regional and local environmental scales, based on recent reports of giant panda protection efforts in Sichuan Province, China, combined with the survey results from 927 households within and adjacent to the giant panda reserves in this area. The results showed that household attitudes were very positive regarding giant panda protection efforts. Over the last 10 years, farmers’ dependence on the natural resources provided by giant panda reserves significantly decreased. However, socio-economic development increased resource consumption, and led to climate change, habitat fragmentation, environmental pollution, and other issues that placed increased pressure on giant panda populations. This difference between local and regional scales must be considered when evaluating the IUCN status of giant pandas. While the status of this species has improved in the short-term due to positive local attitudes, large-scale socio-economic development pressure could have long-term negative impacts. Consequently, the IUCN assessment leading to the classification of giant panda as “vulnerable” instead of “endangered”, should not affect its conservation intensity and effort, as such actions could negatively impact population recovery efforts, leading to the extinction of this charismatic species.
Kinematics and abundances of K giants in the nuclear bulge of the Galaxy
NASA Astrophysics Data System (ADS)
Rich, R. Michael
1990-10-01
Radial velocities have been determined for 53 K giants in Baade's window, which belong to the nuclear bulge population and have abundances derived from low resolution spectra. Additional radial velocities for an overlapping sample of 71 bulge K giants show the same dependence of velocity dispersion on abundance; in both samples, the lower velocity dispersion of the metal-rich giants is found to be significant at a level above 90 percent. Extant data support the hypothesis that both M giants and IRAS bulge sources follow steep density laws similar to that which has been predicted for the metal-rick K giants. The abundance distribution of 88 K giants in Baade's window is noted to be notably well fitted by the simple, 'closed box' model of chemical evolution.
Understanding Li enhancement in K giants and role of accurate parallaxes
NASA Astrophysics Data System (ADS)
Singh, Raghubar; Reddy, B. E.
2018-04-01
Our recent studies based on a large sample of K giants with Hipparcos parallaxes and spectroscopic analysis resulted more than a dozen new Li-rich K giants including few super Li-rich ones. Most of the Li-rich K giants including the new ones appear to occur at the luminosity bump in the HR diagram. However, one can't rule out the possibility of overlap with the clump region where core He-burning K giants reside post He-flash at the tip of RGB. It is important to distinguish field K giants of clump from the bump region in the HR diagram to understand clues for Li production in K giants. In this poster, we explore whether GAIA parallaxes improve to disentangle clump from bump region, more precisely.
Giant aneurysms: A gender-specific complication of Kawasaki disease?
Dietz, Sanne M; Kuipers, Irene M; Tacke, Carline E A; Koole, Jeffrey C D; Hutten, Barbara A; Kuijpers, Taco W
2017-10-01
Kawasaki disease (KD) is a pediatric vasculitis of unknown origin. Its main complication is the development of coronary artery aneurysms (CAA) with giant CAA at the end of the spectrum. In this cohort study, we evaluated the association between patient characteristics and the development of giant CAA based on z-scores. Multivariable, multinomial logistic regression analysis was used to identify variables associated with giant CAA. A total of 301 KD patients, comprising 216 patients without enlargement, 45 with small-sized, 19 with medium-sized, and 21 with giant CAA with all echocardiographies at our center were retrospectively included. Remarkably, 95% of patients with giant CAA were boys. In addition to 'no/late intravenous immunoglobulin (IVIG) treatment', 'male gender' (OR 16.23, 95% CI 1.88-140.13), 'age<1 year' (OR 7.49, 95% CI 2.29-24.46), and 'IVIG re-treatment (9.79, 95% CI 2.79-34.37)' were significantly associated with an increased risk of giant CAA, with patients without enlargement as reference. Compared to patients with medium-sized CAA, 'IVIG re-treatment' was significantly associated with giant CAA. The majority of giant CAA continued to increase in size during the first 40 days. We identified risk factors associated with an increased risk of giant CAA. The difference in variables between the giant CAA group and the other CAA subgroups suggests a separation between patients with the treatment-resistant giant CAA and the other IVIG-responsive patients, in which gender may be factored as a most relevant genetic trait. The increase in size during the first 2 months indicates the need for repeated echocardiography. Copyright © 2017 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
Construction and analysis of a giant gartersnake (Thamnophis gigas) population projection model
Rose, Jonathan P.; Ersan, Julia S. M.; Wylie, Glenn D.; Casazza, Michael L.; Halstead, Brian J.
2018-03-19
The giant gartersnake (Thamnophis gigas) is a state and federally threatened species precinctive to California. The range of the giant gartersnake has contracted in the last century because its wetland habitat has been drained for agriculture and development. As a result of this habitat alteration, giant gartersnakes now largely persist in and near rice agriculture in the Sacramento Valley, because the system of canals that conveys water for rice growing approximates historical wetland habitat. Many aspects of the demography of giant gartersnakes are unknown, including how individuals grow throughout their life, how size influences reproduction, and how survival varies over time and among populations. We studied giant gartersnakes throughout the Sacramento Valley of California from 1995 to 2016 using capture-mark-recapture to study the growth, reproduction, and survival of this threatened species. We then use these data to construct an Integral Projection Model, and analyze this demographic model to understand which vital rates contribute most to the growth rate of giant gartersnake populations. We find that giant gartersnakes exhibit indeterminate growth; growth slows as individuals’ age. Fecundity, probability of reproduction, and survival all increase with size, although survival may decline for the largest female giant gartersnakes. The population growth rate of giant gartersnakes is most influenced by the survival and growth of large adult females, and the size at which 1 year old recruits enter the population. Our results indicate that management actions benefitting these influential demographic parameters will have the greatest positive effect on giant gartersnake population growth rates, and therefore population persistence. This study informs the conservation and management of giant gartersnakes and their habitat, and illustrates the effectiveness of hierarchical Bayesian models for the study of rare and elusive species.
Late-type giants with infrared excess. I. Lithium abundances
NASA Astrophysics Data System (ADS)
Jasniewicz, G.; Parthasarathy, M.; de Laverny, P.; Thévenin, F.
1999-02-01
de la Reza et al. (1997) suggested that all K giants become Li-rich for a short time. During this period the giants are associated with an expanding thin circumstellar shell supposedly triggered by an abrupt internal mixing mechanism resulting in the surface Li enrichment. In order to test this hypothesis twenty nine late-type giants with far-infrared excess from the list of Zuckerman et al. (1995) were observed in the Li-region to study the connection between the circumstellar shells and Li abundance. Eight giants have been found to have log epsilon (Li) > 1.0. In the remaining giants the Li abundance is found to be much lower. HD 219025 is found to be a rapidly rotating (projected rotational velocity of 23 +/-3 km s(-1) ), dusty and Li-rich (log epsilon (Li) = 3.0+/-0.2) K giant. Absolute magnitude derived from the Hipparcos parallax reveals that it is a giant and not a pre-main-sequence star. The evolutionary status of HD 219025 seems to be similar to that of HDE 233517 which is also a rapidly rotating, dusty and Li-rich K giant. The Hipparcos parallaxes of all the well studied Li-rich K giants show that most of them are brighter than the ``clump" giants. Their position in the H-R diagram indicates that they have gone through mixing and the initial abundance of Li is not preserved. There seems to be no correlations between Li abundances, rotational velocities and carbon isotope ratios. The only satisfactory explanation for the overabundance of lithium in these giants is the creation of Li by the extra deep mixing and the associated ``cool bottom processing". Based on observations obtained at the European Southern Observatory, La Silla, Chile, and at the Observatoire de Haute Provence, France.
The lithium abundances of a large sample of red giants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y. J.; Tan, K. F.; Wang, L.
2014-04-20
The lithium abundances for 378 G/K giants are derived with non-local thermodynamic equilibrium correction considered. Among these are 23 stars that host planetary systems. The lithium abundance is investigated, as a function of metallicity, effective temperature, and rotational velocity, as well as the impact of a giant planet on G/K giants. The results show that the lithium abundance is a function of metallicity and effective temperature. The lithium abundance has no correlation with rotational velocity at v sin i < 10 km s{sup –1}. Giants with planets present lower lithium abundance and slow rotational velocity (v sin i < 4more » km s{sup –1}). Our sample includes three Li-rich G/K giants, 36 Li-normal stars, and 339 Li-depleted stars. The fraction of Li-rich stars in this sample agrees with the general rate of less than 1% in the literature, and the stars that show normal amounts of Li are supposed to possess the same abundance at the current interstellar medium. For the Li-depleted giants, Li-deficiency may have already taken place at the main sequence stage for many intermediate mass (1.5-5 M {sub ☉}) G/K giants. Finally, we present the lithium abundance and kinematic parameters for an enlarged sample of 565 giants using a compilation of the literature, and confirm that the lithium abundance is a function of metallicity and effective temperature. With the enlarged sample, we investigate the differences between the lithium abundance in thin-/thick-disk giants, which indicate that the lithium abundance in thick-disk giants is more depleted than that in thin-disk giants.« less
Guo, Wei; Mishra, Sudhanshu; Zhao, Jiangchao; Tang, Jingsi; Zeng, Bo; Kong, Fanli; Ning, Ruihong; Li, Miao; Zhang, Hengzhi; Zeng, Yutian; Tian, Yuanliangzi; Zhong, Yihang; Luo, Hongdi; Liu, Yunhan; Yang, Jiandong; Yang, Mingyao; Zhang, Mingwang; Li, Yan; Ni, Qingyong; Li, Caiwu; Wang, Chengdong; Li, Desheng; Zhang, Hemin; Zuo, Zhili; Li, Ying
2018-01-01
Bamboo-eating giant panda (Ailuropoda melanoleuca) is an enigmatic species, which possesses a carnivore-like short and simple gastrointestinal tract (GIT). Despite the remarkable studies on giant panda, its diet adaptability status continues to be a matter of debate. To resolve this puzzle, we investigated the functional potential of the giant panda gut microbiome using shotgun metagenomic sequencing of fecal samples. We also compared our data with similar data from other animal species representing herbivores, carnivores, and omnivores from current and earlier studies. We found that the giant panda hosts a bear-like gut microbiota distinct from those of herbivores indicated by the metabolic potential of the microbiome in the gut of giant pandas and other mammals. Furthermore, the relative abundance of genes involved in cellulose- and hemicellulose-digestion, and enrichment of enzymes associated with pathways of amino acid degradation and biosynthetic reactions in giant pandas echoed a carnivore-like microbiome. Most significantly, the enzyme assay of the giant panda's feces indicated the lowest cellulase and xylanase activity among major herbivores, shown by an in-vitro experimental assay of enzyme activity for cellulose and hemicellulose-degradation. All of our results consistently indicate that the giant panda is not specialized to digest cellulose and hemicellulose from its bamboo diet, making the giant panda a good mammalian model to study the unusual link between the gut microbiome and diet. The increased food intake of the giant pandas might be a strategy to compensate for the gut microbiome functions, highlighting a strong need of conservation of the native bamboo forest both in high- and low-altitude ranges to meet the great demand of bamboo diet of giant pandas. PMID:29503636
Guo, Wei; Mishra, Sudhanshu; Zhao, Jiangchao; Tang, Jingsi; Zeng, Bo; Kong, Fanli; Ning, Ruihong; Li, Miao; Zhang, Hengzhi; Zeng, Yutian; Tian, Yuanliangzi; Zhong, Yihang; Luo, Hongdi; Liu, Yunhan; Yang, Jiandong; Yang, Mingyao; Zhang, Mingwang; Li, Yan; Ni, Qingyong; Li, Caiwu; Wang, Chengdong; Li, Desheng; Zhang, Hemin; Zuo, Zhili; Li, Ying
2018-01-01
Bamboo-eating giant panda ( Ailuropoda melanoleuca ) is an enigmatic species, which possesses a carnivore-like short and simple gastrointestinal tract (GIT). Despite the remarkable studies on giant panda, its diet adaptability status continues to be a matter of debate. To resolve this puzzle, we investigated the functional potential of the giant panda gut microbiome using shotgun metagenomic sequencing of fecal samples. We also compared our data with similar data from other animal species representing herbivores, carnivores, and omnivores from current and earlier studies. We found that the giant panda hosts a bear-like gut microbiota distinct from those of herbivores indicated by the metabolic potential of the microbiome in the gut of giant pandas and other mammals. Furthermore, the relative abundance of genes involved in cellulose- and hemicellulose-digestion, and enrichment of enzymes associated with pathways of amino acid degradation and biosynthetic reactions in giant pandas echoed a carnivore-like microbiome. Most significantly, the enzyme assay of the giant panda's feces indicated the lowest cellulase and xylanase activity among major herbivores, shown by an in-vitro experimental assay of enzyme activity for cellulose and hemicellulose-degradation. All of our results consistently indicate that the giant panda is not specialized to digest cellulose and hemicellulose from its bamboo diet, making the giant panda a good mammalian model to study the unusual link between the gut microbiome and diet. The increased food intake of the giant pandas might be a strategy to compensate for the gut microbiome functions, highlighting a strong need of conservation of the native bamboo forest both in high- and low-altitude ranges to meet the great demand of bamboo diet of giant pandas.
Chromospheres of two red giants in NGC 6752
NASA Technical Reports Server (NTRS)
Dupree, A. K.; Hartmann, L.; Harper, G. M.; Jordan, Carole; Rodgers, A. W.
1990-01-01
Two red giant stars, A31 and A59, in the globular cluster NGC 6752 exhibit Mg II (2800 A) emission with surface fluxes comparable to those observed among metal-deficient halo field giants, and among low-activity Population I giants. Optical echelle spectra of these cluster giants reveal emission in the core of the Ca II K (3933.7 A) line, and in the wing of the H-alpha (6562.8 A) profile. Asymmetries exist both in the emission profiles and the line cores. These observations demonstrate unequivocally the existence of chromospheres among old halo population giants, and the presence of mass outflow in their atmospheres. Maintenance of a relatively constant level of chromospheric activity on the red giant branch contrasts with the decay of magnetic dynamo activity exhibited by dwarf stars and younger giants. A purely hydrodynamic phenomenon may be responsible for heating the outer atmospheres of these stars, enhancing chromospheric emission, thus extending the atmospheres and facilitating mass loss.
Fatal canine distemper virus infection of giant pandas in China
Feng, Na; Yu, Yicong; Wang, Tiecheng; Wilker, Peter; Wang, Jianzhong; Li, Yuanguo; Sun, Zhe; Gao, Yuwei; Xia, Xianzhu
2016-01-01
We report an outbreak of canine distemper virus (CDV) infection among endangered giant pandas (Ailuropoda melanoleuca). Five of six CDV infected giant pandas died. The surviving giant panda was previously vaccinated against CDV. Genomic sequencing of CDV isolated from one of the infected pandas (giant panda/SX/2014) suggests it belongs to the Asia-1 cluster. The hemagglutinin protein of the isolated virus and virus sequenced from lung samples originating from deceased giant pandas all possessed the substitutions V26M, T213A, K281R, S300N, P340Q, and Y549H. The presence of the Y549H substitution is notable as it is found at the signaling lymphocytic activation molecule (SLAM) receptor-binding site and has been implicated in the emergence of highly pathogenic CDV and host switching. These findings demonstrate that giant pandas are susceptible to CDV and suggest that surveillance and vaccination among all captive giant pandas are warranted to support conservation efforts for this endangered species. PMID:27310722
Fatal canine distemper virus infection of giant pandas in China.
Feng, Na; Yu, Yicong; Wang, Tiecheng; Wilker, Peter; Wang, Jianzhong; Li, Yuanguo; Sun, Zhe; Gao, Yuwei; Xia, Xianzhu
2016-06-16
We report an outbreak of canine distemper virus (CDV) infection among endangered giant pandas (Ailuropoda melanoleuca). Five of six CDV infected giant pandas died. The surviving giant panda was previously vaccinated against CDV. Genomic sequencing of CDV isolated from one of the infected pandas (giant panda/SX/2014) suggests it belongs to the Asia-1 cluster. The hemagglutinin protein of the isolated virus and virus sequenced from lung samples originating from deceased giant pandas all possessed the substitutions V26M, T213A, K281R, S300N, P340Q, and Y549H. The presence of the Y549H substitution is notable as it is found at the signaling lymphocytic activation molecule (SLAM) receptor-binding site and has been implicated in the emergence of highly pathogenic CDV and host switching. These findings demonstrate that giant pandas are susceptible to CDV and suggest that surveillance and vaccination among all captive giant pandas are warranted to support conservation efforts for this endangered species.
Mismatch between the eye and the optic lobe in the giant squid.
Liu, Yung-Chieh; Liu, Tsung-Han; Yu, Chun-Chieh; Su, Chia-Hao; Chiao, Chuan-Chin
2017-07-01
Giant squids ( Architeuthis ) are a legendary species among the cephalopods. They live in the deep sea and are well known for their enormous body and giant eyes. It has been suggested that their giant eyes are not adapted for the detection of either mates or prey at distance, but rather are best suited for monitoring very large predators, such as sperm whales, at distances exceeding 120 m and at a depth below 600 m (Nilsson et al. 2012 Curr. Biol. 22 , 683-688. (doi:10.1016/j.cub.2012.02.031)). However, it is not clear how the brain of giant squids processes visual information. In this study, the optic lobe of a giant squid ( Architeuthis dux , male, mantle length 89 cm), which was caught by local fishermen off the northeastern coast of Taiwan, was scanned using high-resolution magnetic resonance imaging in order to examine its internal structure. It was evident that the volume ratio of the optic lobe to the eye in the giant squid is much smaller than that in the oval squid ( Sepioteuthis lessoniana ) and the cuttlefish ( Sepia pharaonis ). Furthermore, the cell density in the cortex of the optic lobe is significantly higher in the giant squid than in oval squids and cuttlefish, with the relative thickness of the cortex being much larger in Architeuthis optic lobe than in cuttlefish. This indicates that the relative size of the medulla of the optic lobe in the giant squid is disproportionally smaller compared with these two cephalopod species. This morphological study of the giant squid brain, though limited only to the optic lobe, provides the first evidence to support that the optic lobe cortex, the visual information processing area in cephalopods, is well developed in the giant squid. In comparison, the optic lobe medulla, the visuomotor integration centre in cephalopods, is much less developed in the giant squid than other species. This finding suggests that, despite the giant eye and a full-fledged cortex within the optic lobe, the brain of giant squids has not evolved proportionally in terms of performing complex tasks compared with shallow-water cephalopod species.
Deep learning classification in asteroseismology
NASA Astrophysics Data System (ADS)
Hon, Marc; Stello, Dennis; Yu, Jie
2017-08-01
In the power spectra of oscillating red giants, there are visually distinct features defining stars ascending the red giant branch from those that have commenced helium core burning. We train a 1D convolutional neural network by supervised learning to automatically learn these visual features from images of folded oscillation spectra. By training and testing on Kepler red giants, we achieve an accuracy of up to 99 per cent in separating helium-burning red giants from those ascending the red giant branch. The convolutional neural network additionally shows capability in accurately predicting the evolutionary states of 5379 previously unclassified Kepler red giants, by which we now have greatly increased the number of classified stars.
NASA Technical Reports Server (NTRS)
Drake, Jeremy J.; Lambert, David L.
1994-01-01
Sodium abundances have been determined for eight weak G-band giants whose atmospheres are greatly enriched with products of the CN-cycling H-burning reactions. Systematic errors are minimized by comparing the weak G-band giants to a sample of similar but normal giants. If, further, Ca is selected as a reference element, model atmosphere-related errors should largely be removed. For the weak-G-band stars (Na/Ca) = 0.16 +/- 0.01, which is just possibly greater than the result (Na/Ca) = 0.10 /- 0.03 from the normal giants. This result demonstrates that the atmospheres of the weak G-band giants are not seriously contaminated with products of ON cycling.
Evolutionary dynamics of giant viruses and their virophages.
Wodarz, Dominik
2013-07-01
Giant viruses contain large genomes, encode many proteins atypical for viruses, replicate in large viral factories, and tend to infect protists. The giant virus replication factories can in turn be infected by so called virophages, which are smaller viruses that negatively impact giant virus replication. An example is Mimiviruses that infect the protist Acanthamoeba and that are themselves infected by the virophage Sputnik. This study examines the evolutionary dynamics of this system, using mathematical models. While the models suggest that the virophage population will evolve to increasing degrees of giant virus inhibition, it further suggests that this renders the virophage population prone to extinction due to dynamic instabilities over wide parameter ranges. Implications and conditions required to avoid extinction are discussed. Another interesting result is that virophage presence can fundamentally alter the evolutionary course of the giant virus. While the giant virus is predicted to evolve toward increasing its basic reproductive ratio in the absence of the virophage, the opposite is true in its presence. Therefore, virophages can not only benefit the host population directly by inhibiting the giant viruses but also indirectly by causing giant viruses to evolve toward weaker phenotypes. Experimental tests for this model are suggested.
Evolutionary dynamics of giant viruses and their virophages
Wodarz, Dominik
2013-01-01
Giant viruses contain large genomes, encode many proteins atypical for viruses, replicate in large viral factories, and tend to infect protists. The giant virus replication factories can in turn be infected by so called virophages, which are smaller viruses that negatively impact giant virus replication. An example is Mimiviruses that infect the protist Acanthamoeba and that are themselves infected by the virophage Sputnik. This study examines the evolutionary dynamics of this system, using mathematical models. While the models suggest that the virophage population will evolve to increasing degrees of giant virus inhibition, it further suggests that this renders the virophage population prone to extinction due to dynamic instabilities over wide parameter ranges. Implications and conditions required to avoid extinction are discussed. Another interesting result is that virophage presence can fundamentally alter the evolutionary course of the giant virus. While the giant virus is predicted to evolve toward increasing its basic reproductive ratio in the absence of the virophage, the opposite is true in its presence. Therefore, virophages can not only benefit the host population directly by inhibiting the giant viruses but also indirectly by causing giant viruses to evolve toward weaker phenotypes. Experimental tests for this model are suggested. PMID:23919155
Effective Brain Connectivity in Children with Reading Difficulties during Phonological Processing
ERIC Educational Resources Information Center
Cao, Fan; Bitan, Tali; Booth, James R.
2008-01-01
Using Dynamic Causal Modeling (DCM) and functional magnetic resonance imaging (fMRI), we examined effective connectivity between three left hemisphere brain regions (inferior frontal gyrus, inferior parietal lobule, fusiform gyrus) and bilateral medial frontal gyrus in 12 children with reading difficulties (M age = 12.4, range: 8.11-14.10) and 12…
The Role of Face Familiarity in Eye Tracking of Faces by Individuals with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Sterling, Lindsey; Dawson, Geraldine; Webb, Sara; Murias, Michael; Munson, Jeffrey; Panagiotides, Heracles; Aylward, Elizabeth
2008-01-01
It has been shown that individuals with autism spectrum disorders (ASD) demonstrate normal activation in the fusiform gyrus when viewing familiar, but not unfamiliar faces. The current study utilized eye tracking to investigate patterns of attention underlying familiar versus unfamiliar face processing in ASD. Eye movements of 18 typically…
Spacing and family affect fusiform rust incidence in loblolly pine at age 17
Joshua P. Adams; Samuel B. Land; Howard W. Duzan
2010-01-01
The effects of fuel reduction treatments, fire and mechanical understory removal (alone and in combination), were examined to determine changes in abundance and composition of woody regeneration in the Southern Appalachian Mountains. While mechanical treatment alone (M) had little effect on seedling density, burning (B) and mechanical treatment + burning (MB) produced...
Genetic dissection of fusiform rust and pitch canker disease traits in loblolly pine
Gogce C. Kayihan; Dudley A. Huber; Alison M. Morse; Timothy L. White; John M. Davis
2005-01-01
Loblolly pine (Pinus taeda L.) exhibits genetic resistance to fusiforrn rust disease (incited by the biotrophic fungus, Cronartiurn quercuum f. sp. fusifom) and pitch canker disease (incited by the necrotrophic fungus, Fusarium circinatum). In this study, a total of 14,015 loblolly pine cuttings from 1,065 clones were screened in...
Controlling Infectious Diseases in Nurseries
T. H. Filer
1968-01-01
At least 300 publications have been written about non-infectious and infectious diseases of tree seedlings. I will outline some of the progress that is being made in finding ways to control infectious diseases, those caused by pathogens. I will touch upon pre- and post-emergence damping-off, root rots, leaf spots, and fusiform rust, which are the most serious diseases...
ERIC Educational Resources Information Center
Vuontela, Virve; Jiang, Ping; Tokariev, Maksym; Savolainen, Petri; Ma, YuanYe; Aronen, Eeva T.; Fontell, Tuija; Liiri, Tiina; Ahlstrom, Matti; Salonen, Oili; Carlson, Synnove
2013-01-01
Developmental studies have demonstrated that cognitive processes such as attention, suppression of interference and memory develop throughout childhood and adolescence. However, little is currently known about the development of top-down control mechanisms and their influence on cognitive performance. In the present study, we used functional…
ORIGIN OF LITHIUM ENRICHMENT IN K GIANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Yerra Bharat; Reddy, Bacham E.; Lambert, David L.
In this Letter, we report on a low-resolution spectroscopic survey for Li-rich K giants among 2000 low-mass (M {<=} 3 M{sub sun}) giants spanning the luminosity range from below to above the luminosity of the clump. Fifteen new Li-rich giants including four super Li-rich K giants (log {epsilon}(Li) {>=}3.2) were discovered. A significant finding is that there is a concentration of Li-rich K giants at the luminosity of the clump or red horizontal branch. This new finding is partly a consequence of the fact that our low-resolution survey is the first large survey to include giants well below and abovemore » the red giant branch (RGB) bump and clump locations in the H-R diagram. Origin of the lithium enrichment may be plausibly attributed to the conversion of {sup 3}He via {sup 7}Be to {sup 7}Li by the Cameron-Fowler mechanism but the location for the onset of the conversion is uncertain. Two possible opportunities to effect this conversion are discussed: the bump in the first ascent of the RGB and the He-core flash at the tip of the RGB. The finite luminosity spread of the Li-rich giants serves to reject the idea that Li enhancement is, in general, a consequence of a giant swallowing a large planet.« less
Revealing the microstructure of the giant component in random graph ensembles
NASA Astrophysics Data System (ADS)
Tishby, Ido; Biham, Ofer; Katzav, Eytan; Kühn, Reimer
2018-04-01
The microstructure of the giant component of the Erdős-Rényi network and other configuration model networks is analyzed using generating function methods. While configuration model networks are uncorrelated, the giant component exhibits a degree distribution which is different from the overall degree distribution of the network and includes degree-degree correlations of all orders. We present exact analytical results for the degree distributions as well as higher-order degree-degree correlations on the giant components of configuration model networks. We show that the degree-degree correlations are essential for the integrity of the giant component, in the sense that the degree distribution alone cannot guarantee that it will consist of a single connected component. To demonstrate the importance and broad applicability of these results, we apply them to the study of the distribution of shortest path lengths on the giant component, percolation on the giant component, and spectra of sparse matrices defined on the giant component. We show that by using the degree distribution on the giant component one obtains high quality results for these properties, which can be further improved by taking the degree-degree correlations into account. This suggests that many existing methods, currently used for the analysis of the whole network, can be adapted in a straightforward fashion to yield results conditioned on the giant component.
Literature review of giant gartersnake (Thamnophis gigas) biology and conservation
Halstead, Brian J.; Wylie, Glenn D.; Casazza, Michael L.
2015-08-03
This report reviews the available literature on giant gartersnakes (Thamnophis gigas) to compile existing information on this species and identify knowledge gaps that, if addressed, would help to inform conservation efforts for giant gartersnakes. Giant gartersnakes comprise a species of semi-aquatic snake precinctive to wetlands in the Central Valley of California. The diversion of surface water and conversion of wetlands to agricultural and other land uses resulted in the loss of more than 90 percent of natural giant gartersnake habitats. Because of this habitat loss, giant gartersnakes are now listed by the United States and California Endangered Species Acts as Threatened. Most extant populations occur in the rice-growing regions of the Sacramento Valley, which comprises the northern portion of the giant gartersnake’s former range. The huge demand for water in California for agriculture, industry, recreation, and other human consumption, combined with periodic severe drought, places remaining giant gartersnake habitats at increased risk of degradation and loss. This literature review summarizes the available information on giant gartersnake distribution, habitat relations, behavior, demography, and other aspects of its biology relevant to conservation. This information is then compiled into a graphical conceptual model that indicates the importance of different aspects of giant gartersnake biology for maintaining positive population growth, and identifies those areas for which important information relevant for conservation is lacking. Directing research efforts toward these aspects of giant gartersnake ecology will likely result in improvements to conserving this unique species while meeting the high demands for water in California.
NASA Astrophysics Data System (ADS)
Swann, Zerathe; Laurence, Audin; Carlos, Benavente; Régis, Braucher; Pierre-Henri, Blard; Didier, Bourlès; Julien, Carcaillet; Fabrizio, Delgado; Pascal, Lacroix; Valderrama Patricio, Murillo; Aster Team
2015-04-01
Giant landslides are recognized to be remarkably abundant on the Western Andean front of southern Peru and northern Chile, especially in the Arica Bend region (e.g. Crosta et al., 2014a). This area is characterized by strong topographic gradients and subsequent incision of deep canyons, due to the evolution of the Andean range that provide suitable conditions for the development of such instabilities. The climate is hyper-arid (Atacama Desert), although rare but highly impulsive wet events have been evidenced since the Pleistocene. In parallel, this region is submitted to strong (Mw 8-9) and recurrent (~100 yrs) subduction earthquakes. Previous studies suggest that large landslides represent the main agent of erosion of the Western Cordillera, providing soft material for subsequent fluvial remobilization. However the lack of time constrains on the numerous fossil landslides identified away from major canyons still hamper to assess a real mass balance of sliding material versus the known fluvial erosion and tectonic uplift rates. Finally the role of landslides in the long-term erosion rates of the Andean range on its arid flank remains quantitatively unknown. Recently, two studies gave divergent opinions about the main factor supposed to control the slope failures in that region. Based on cosmogenic nuclides derived erosion rates, McPhillips et al. (2014) argue that the last Holocene climate variation did not have had any effect on the rate of landsliding, suggesting that here landslides are mainly triggered by earthquake. On the other hand, Margirier et al. (2014) have showed a temporal correlation between a failure episode of the giant Chuquibamba landslide and the Ouki wet climatic event identified on the Altiplano ~100 ka ago. In this study we focus on dating the Cerro Caquilluco rock avalanche complex described by Crosta et al. (2014). With a total volume of about 15 km3, a length of 43 km and an internal structure characterized by various depositional lobes suggesting sequential failures, this object appeared as a good target to bring additional knowledge on the previously exposed issues. Our goal was to use TCN and to sample a maximum of individual lobes to be able to discuss: (i) the time of recurrence of successive extreme events, (ii) the respective roles of past climate variations versus earthquake forcing on the landslide trigger, and (iii) the impact of these mass remobilizations on local erosion rates compared to fluvial erosion rates and tectonic uplift rates (both known in this region). On average, three samples were extracted from individual meter-scale boulders sampled on seven different lobes of debris (~20 samples). Due to the lack of quartz in that volcanic lithology, 10Be was extracted from feldspaths for all samples. Half were additionally processed for 3He measurements on pyroxene, allowing to reduce the uncertainty on the derived exposure ages and to solve the production equation for both time and erosion variables. The obtained ages show a perfect consistency with the pattern of erosion, geomorphic surfaces and relative position of each lobes (i.e. younger from the toe to the top). These results highlight sequential failures staggered at the Pleistocene timescale, with some surprising time of recurrence ranging from 30 to 100 ka that may correspond to the main last climate variations in that region. Crosta, G.B., Hermanns, R.L., Frattini, P., Valbuzzi, E., Valagussa, A., 2014a. Large slope instabilities in Northern Chile: Inventory, Characterisation and Possible Triggers. In: Proceedings of the 3rd world landslide Forum, 2-6 June 2014, Bejing, p 6. DOI: 10.1007/978/-3-319-04996-0_28. Crosta, G.B., Paolo, F., Elena, V., Hermanns, R.L., 2014b. The Cerro Caquilluco-Cerrillos Negros Giant Rock Avalanches (Tacna, Peru). IAEG - Torino 2014, N°159. McPhillips, D., Bierman, P.R., Rood, D.H., 2014. Millennial-scale record of landslides in the Andes consistent with earthquake trigger. Nature Geoscience, DOI: 10.1038/NGEO2278. Margirier, A. Audin, L., Carcaillet, J., Schwartz, S., 2014. Tectonic and climatic controls on the Chuquibamba landslide (western Andes, southern Peru). Earth Surf. Dynam. Discuss. 2, 1129-1153.
Modeling and simulation of flow field in giant magnetostrictive pump
NASA Astrophysics Data System (ADS)
Zhao, Yapeng; Ren, Shiyong; Lu, Quanguo
2017-09-01
Recent years, there has been significant research in the design and analysis of giant magnetostrictive pump. In this paper, the flow field model of giant magnetostrictive pump was established and the relationship between pressure loss and working frequency of piston was studied by numerical simulation method. Then, the influence of different pump chamber height on pressure loss in giant magnetostrictive pump was studied by means of flow field simulation. Finally, the fluid pressure and velocity vector distribution in giant magnetostrictive pump chamber were simulated.
Giant Planets: Good Neighbors for Habitable Worlds?
NASA Astrophysics Data System (ADS)
Georgakarakos, Nikolaos; Eggl, Siegfried; Dobbs-Dixon, Ian
2018-04-01
The presence of giant planets influences potentially habitable worlds in numerous ways. Massive celestial neighbors can facilitate the formation of planetary cores and modify the influx of asteroids and comets toward Earth analogs later on. Furthermore, giant planets can indirectly change the climate of terrestrial worlds by gravitationally altering their orbits. Investigating 147 well-characterized exoplanetary systems known to date that host a main-sequence star and a giant planet, we show that the presence of “giant neighbors” can reduce a terrestrial planet’s chances to remain habitable, even if both planets have stable orbits. In a small fraction of systems, however, giant planets slightly increase the extent of habitable zones provided that the terrestrial world has a high climate inertia. In providing constraints on where giant planets cease to affect the habitable zone size in a detrimental fashion, we identify prime targets in the search for habitable worlds.
Hadi, Usamah; Rameh, Charbel
2007-01-01
A giant midesophageal diverticulum is a medical rarity that is usually asymptomatic, and discovered incidentally. We report a case of a giant midesophageal diverticulum that revealed itself secondary to food impaction. A literature review on epidemiology, etiology, clinical presentation, investigations, and management of giant midesophageal diverticula will be highlighted.
USDA-ARS?s Scientific Manuscript database
The U.S. Department of Energy has initiated efforts to decrease the nation’s dependence on imported oil by developing domestic renewable sources of cellulosic-derived bioenergy. In this study, giant miscanthus (Miscanthus x giganteus), sugarcane (complex hybrid of Saccharum spp.), and giant reed (Ar...
The minimum area requirements (MAR) for giant panda: an empirical study
Qing, Jing; Yang, Zhisong; He, Ke; Zhang, Zejun; Gu, Xiaodong; Yang, Xuyu; Zhang, Wen; Yang, Biao; Qi, Dunwu; Dai, Qiang
2016-01-01
Habitat fragmentation can reduce population viability, especially for area-sensitive species. The Minimum Area Requirements (MAR) of a population is the area required for the population’s long-term persistence. In this study, the response of occupancy probability of giant pandas against habitat patch size was studied in five of the six mountain ranges inhabited by giant panda, which cover over 78% of the global distribution of giant panda habitat. The probability of giant panda occurrence was positively associated with habitat patch area, and the observed increase in occupancy probability with patch size was higher than that due to passive sampling alone. These results suggest that the giant panda is an area-sensitive species. The MAR for giant panda was estimated to be 114.7 km2 based on analysis of its occupancy probability. Giant panda habitats appear more fragmented in the three southern mountain ranges, while they are large and more continuous in the other two. Establishing corridors among habitat patches can mitigate habitat fragmentation, but expanding habitat patch sizes is necessary in mountain ranges where fragmentation is most intensive. PMID:27929520
The minimum area requirements (MAR) for giant panda: an empirical study.
Qing, Jing; Yang, Zhisong; He, Ke; Zhang, Zejun; Gu, Xiaodong; Yang, Xuyu; Zhang, Wen; Yang, Biao; Qi, Dunwu; Dai, Qiang
2016-12-08
Habitat fragmentation can reduce population viability, especially for area-sensitive species. The Minimum Area Requirements (MAR) of a population is the area required for the population's long-term persistence. In this study, the response of occupancy probability of giant pandas against habitat patch size was studied in five of the six mountain ranges inhabited by giant panda, which cover over 78% of the global distribution of giant panda habitat. The probability of giant panda occurrence was positively associated with habitat patch area, and the observed increase in occupancy probability with patch size was higher than that due to passive sampling alone. These results suggest that the giant panda is an area-sensitive species. The MAR for giant panda was estimated to be 114.7 km 2 based on analysis of its occupancy probability. Giant panda habitats appear more fragmented in the three southern mountain ranges, while they are large and more continuous in the other two. Establishing corridors among habitat patches can mitigate habitat fragmentation, but expanding habitat patch sizes is necessary in mountain ranges where fragmentation is most intensive.
Role of nature reserves in giant panda protection.
Kang, Dongwei; Li, Junqing
2018-02-01
Giant panda (Ailuropoda melanoleuca) is a flagship species in nature conservation of the world; to protect this species, 67 nature reserves have been established in China. To evaluate the protection effect of giant panda nature reserves, we analyzed the variation of giant panda number and habitat area of 23 giant panda nature reserves of Sichuan province based on the national survey data released by State Forestry Administration and Sichuan Forestry Department. Results showed that from the third national survey to the fourth, giant panda number and habitat area of 23 giant panda nature reserves of Sichuan province failed to realize the significant increase. Furthermore, we found that the total population growth rate of 23 nature reserves in the last 12 years was lower than those of the province total of Sichuan and the national total of China, and the total habitat area of the 23 nature reserves was decreasing in the last 12 years, but the province total and national total were all increasing. We propose that giant panda protection should pay more attention to how to improve the protective effects of nature reserves.
Che, T D; Wang, C D; Jin, L; Wei, M; Wu, K; Zhang, Y H; Zhang, H M; Li, D S
2015-03-27
Giant panda cubs have a low survival rate during the newborn and early growth stages. However, the growth and developmental parameters of giant panda cubs during the early lactation stage (from birth to 6 months) are not well known. We examined the growth and development of giant panda cubs by the Chapman growth curve model and estimated the heritability of the maximum growth rate at the early lactation stage. We found that 83 giant panda cubs reached their maximum growth rate at approximately 75-120 days after birth. The body weight of cubs at 75 days was 4285.99 g. Furthermore, we estimated that the heritability of the maximum growth rate was moderate (h(2) = 0.38). Our study describes the growth and development of giant panda cubs at the early lactation stage and provides valuable growth benchmarks. We anticipate that our results will be a starting point for more detailed research on increasing the survival rate of giant panda cubs. Feeding programs for giant panda cubs need further improvement.
Zhu, Hui; Wang, Wen-Xiu; Wang, Bao-Qin; Zhu, Xiao-Fu; Wu, Xu-Jin; Ma, Qing-Yi; Chen, De-Kun
2012-06-29
The giant panda (Ailuropoda melanoleuca) is an endangered species and indigenous to China. Interferon-gamma (IFN-γ) is the only member of type □ IFN and is vital for the regulation of host adapted immunity and inflammatory response. Little is known aboutthe FN-γ gene and its roles in giant panda.In this study, IFN-γ gene of Qinling giant panda was amplified from total blood RNA by RT-CPR, cloned, sequenced and analysed. The open reading frame (ORF) of Qinling giant panda IFN-γ encodes 152 amino acidsand is highly similar to Sichuan giant panda with an identity of 99.3% in cDNA sequence. The IFN-γ cDNA sequence was ligated to the pET32a vector and transformed into E. coli BL21 competent cells. Expression of recombinant IFN-γ protein of Qinling giant panda in E. coli was confirmed by SDS-PAGE and Western blot analysis. Biological activity assay indicated that the recombinant IFN-γ protein at the concentration of 4-10 µg/ml activated the giant panda peripheral blood lymphocytes,while at 12 µg/mlinhibited. the activation of the lymphocytes.These findings provide insights into the evolution of giant panda IFN-γ and information regarding amino acid residues essential for their biological activity.
[Prevalence and clinicopathological characteristics of giant cell tumors].
Estrada-Villaseñor, E G; Linares-González, L M; Delgado-Cedillo, E A; González-Guzmán, R; Rico-Martínez, G
2015-01-01
The frequency of giant cell tumors reported in the literature is very variable. Considering that our population has its own features, which distinguish it from the Anglo-Saxon and Asian populations, we think that both the frequency and the clinical characteristics of giant cell tumors in our population are different. The major aim of this paper was to determine the frequency and clinicopathological characteristics of giant cell tumors of the bone. A cross-sectional descriptive study was conducted of the cases diagnosed at our service as giant cell tumors of the bone from January to December 2013. The electronic clinical records, radiologic records and histologic slides from each case were reviewed. Giant cell tumors represented 17% of total bone tumors and 28% of benign tumors. Patients included 13 females and 18 males. The most frequent locations of giant cell tumors were: the proximal tibia, 9 cases (29%), and the distal femur, 6 cases (19%). Forty-five percent of giant cell tumors were associated with aneurysmal bone cyst (ABC) (14 cases) and one case (3%) was malignant. The frequency of giant cell tumors in this case series was intermediate, that is, higher than the one reported in Anglo-Saxon countries (usually low), but without reaching the frequency rates reported in Asian countries (high).
Miller, Robert J.; Lafferty, Kevin D.; Lamy, Thomas; Kui, Li; Rassweiler, Andrew; Reed, Daniel C.
2018-01-01
Foundation species define the ecosystems they live in, but ecologists have often characterized dominant plants as foundational without supporting evidence. Giant kelp has long been considered a marine foundation species due to its complex structure and high productivity; however, there is little quantitative evidence to evaluate this. Here, we apply structural equation modelling to a 15-year time series of reef community data to evaluate how giant kelp affects the reef community. Although species richness was positively associated with giant kelp biomass, most direct paths did not involve giant kelp. Instead, the foundational qualities of giant kelp were driven mostly by indirect effects attributed to its dominant physical structure and associated engineering influence on the ecosystem, rather than by its use as food by invertebrates and fishes. Giant kelp structure has indirect effects because it shades out understorey algae that compete with sessile invertebrates. When released from competition, sessile species in turn increase the diversity of mobile predators. Sea urchin grazing effects could have been misinterpreted as kelp effects, because sea urchins can overgraze giant kelp, understorey algae and sessile invertebrates alike. Our results confirm the high diversity and biomass associated with kelp forests, but highlight how species interactions and habitat attributes can be misconstrued as direct consequences of a foundation species like giant kelp.
Huang, He; Yie, Shangmian; Liu, Yuliang; Wang, Chengdong; Cai, Zhigang; Zhang, Wenping; Lan, Jingchao; Huang, Xiangming; Luo, Li; Cai, Kailai; Hou, Rong; Zhang, Zhihe
2016-01-01
The functional adaptive changes in cyanide detoxification in giant panda appear to be response to dietary transition from typical carnivore to herbivorous bear. We tested the absorption of cyanide contained in bamboo/bamboo shoots with a feeding trial in 20 adult giant pandas. We determined total cyanide content in bamboo shoots and giant panda’s feces, levels of urinary thiocyanate and tissue rhodanese activity using color reactions with a spectrophotometer. Rhodanese expression in liver and kidney at transcription and translation levels were measured using real-time RT-PCR and immunohistochemistry, respectively. We compared differences of rhodanese activity and gene expressions among giant panda, rabbit (herbivore) and cat (carnivore), and between newborn and adult giant pandas. Bamboo shoots contained 3.2 mg/kg of cyanide and giant pandas absorbed more than 65% of cyanide. However, approximately 80% of absorbed cyanide was metabolized to less toxic thiocyanate that was discharged in urine. Rhodanese expression and activity in liver and kidney of giant panda were significantly higher than in cat, but lower than in rabbit (all P < 0.05). Levels in adult pandas were higher than that in newborn cub. Phylogenetic analysis of both nucleotide and amino acid sequences of the rhodanese gene supported a closer relationship of giant panda with carnivores than with herbivores. PMID:27703267
Huang, He; Yie, Shangmian; Liu, Yuliang; Wang, Chengdong; Cai, Zhigang; Zhang, Wenping; Lan, Jingchao; Huang, Xiangming; Luo, Li; Cai, Kailai; Hou, Rong; Zhang, Zhihe
2016-10-05
The functional adaptive changes in cyanide detoxification in giant panda appear to be response to dietary transition from typical carnivore to herbivorous bear. We tested the absorption of cyanide contained in bamboo/bamboo shoots with a feeding trial in 20 adult giant pandas. We determined total cyanide content in bamboo shoots and giant panda's feces, levels of urinary thiocyanate and tissue rhodanese activity using color reactions with a spectrophotometer. Rhodanese expression in liver and kidney at transcription and translation levels were measured using real-time RT-PCR and immunohistochemistry, respectively. We compared differences of rhodanese activity and gene expressions among giant panda, rabbit (herbivore) and cat (carnivore), and between newborn and adult giant pandas. Bamboo shoots contained 3.2 mg/kg of cyanide and giant pandas absorbed more than 65% of cyanide. However, approximately 80% of absorbed cyanide was metabolized to less toxic thiocyanate that was discharged in urine. Rhodanese expression and activity in liver and kidney of giant panda were significantly higher than in cat, but lower than in rabbit (all P < 0.05). Levels in adult pandas were higher than that in newborn cub. Phylogenetic analysis of both nucleotide and amino acid sequences of the rhodanese gene supported a closer relationship of giant panda with carnivores than with herbivores.
Changes of foraging patch selection and utilization by a giant panda after bamboo flowering.
Li, Guochun; Song, Huadong; Altigani, Latifa A A; Zheng, Xueli; Bu, Shuhai
2017-07-01
The bamboo flowering leads to the habitat fragmentation and food quality decline of a giant panda. Few empirical research has been conducted about the giant panda's response to the bamboo flowering. Here, we investigated the characteristics of bamboo stands, giant panda's activity, and selection and utilization of bamboo stands by giant panda in Taibaishan National Nature Reserve, China, over a 3-year period (September 2013-May 2016) during the Fargesia qinlingensis flowering period. Our results indicated that the proportion of whole bamboo stands flowering has gradually expanded from 26.7% in 2013 and 33.9% in 2014 to 52.3% in 2015. Although the flowering bamboo has lower crude protein and higher crude fiber than a non-flowering bamboo, the giant panda still fed on flowering bamboo from the evidence of droppings. The giant panda left its feeding sites and moved to the high elevation along river when the proportion of flowering reached 69.2% at elevation of 2350-2450 m in the third year. With the decline of the quality of bamboo stand of Fargesia qinlingensis, the giant panda abandoned its feeding sites when the threshold value of bamboo flowering reached 56.9-69.2%. Flexibility in foraging strategy and spatial behavior can help the giant panda to better adapt to the environment.
Halstead, Brian J.; Skalos, Shannon M.; Casazza, Michael L.; Wylie, Glenn D.
2015-09-30
Giant gartersnakes (Thamnophis gigas) comprise a species of rare, semi-aquatic snake precinctive to the Central Valley of California. Because of the loss of more than 90% of their natural habitat, giant gartersnakes are listed as Threatened by the United States and California endangered species acts. Little is known, however, about the distribution of giant gartersnakes in the Sacramento Valley, which is where most extant populations occur. We conducted detection-nondetection surveys for giant gartersnakes throughout the rice-growing regions of the Sacramento Valley, and used occupancy models to examine evidence for the effects of landscape-scale GIS-derived variables, local habitat and vegetation composition, and prey communities on patterns of giant gartersnake occurrence. Although our results are based on a relatively small sample of sites, we found that distance to historic marsh, relative fish count, and an interaction of distance to historic marsh with proportion of habitat composed of submerged vegetation were important variables for explaining occupancy of giant gartersnakes. In particular, giant gartersnakes were more likely to occur closer to historic marsh and where relatively fewer fish were captured in traps. At locations in or near historic marsh, giant gartersnakes were more likely to occur in areas with less submerged vegetation, but this relationship was reversed (and more uncertain) at sites distant from historic marsh. Additional research with a larger sample of sites would further elucidate the distribution of giant gartersnakes in the Sacramento Valley.
What made discy galaxies giant?
NASA Astrophysics Data System (ADS)
Saburova, A. S.
2018-01-01
I studied giant discy galaxies with optical radii more than 30 kpc. The comparison of these systems with discy galaxies of moderate sizes revealed that they tend to have higher rotation velocities, B-band luminosities, H I masses and dark-to-luminous mass ratios. The giant discs follow the trend log (M_{H I})(R_{25}) found for normal sized galaxies. It indicates the absence of the peculiarities of evolution of star formation in these galaxies. The H I mass-to-luminosity ratio of giant galaxies appears not to differ from that of normal-sized galaxies, giving evidence in favour of similar star formation efficiency. I also found that the bars and rings occur more frequently among giant discs. I performed mass modelling of the subsample of 18 giant galaxies with available rotation curves and surface photometry data and constructed χ2 maps for the parameters of their dark matter haloes. These estimates indicate that giant discs tend to be formed in larger more massive and rarified dark haloes in comparison to moderate-sized galaxies. However, giant galaxies do not deviate significantly from the relations between the optical sizes and dark halo parameters for moderate-sized galaxies. These findings can rule out the catastrophic scenario of the formation of at least most of giant discs, since they follow the same relations as normal discy galaxies. The giant sizes of the discs can be due to the high radial scale of the dark matter haloes in which they were formed.
Peng, Rui; Liu, Yuliang; Cai, Zhigang; Shen, Fujun; Chen, Jiasong; Hou, Rong; Zou, Fangdong
2018-01-01
Giant pandas, an endangered species, are a powerful symbol of species conservation. Giant pandas may suffer from a variety of diseases. Owing to their highly specialized diet of bamboo, giant pandas are thought to have a relatively weak ability to resist diseases. The spleen is the largest organ in the lymphatic system. However, there is little known about giant panda spleen at a molecular level. Thus, clarifying the regulatory mechanisms of spleen could help us further understand the immune system of the giant panda as well as its conservation. The two giant panda spleens were from two male individuals, one newborn and one an adult, in a non-pathological condition. The whole transcriptomes of mRNA, lncRNA, miRNA, and circRNA in the two spleens were sequenced using the Illumina HiSeq platform. EBseq and IDEG6 were used to observe the differentially expressed genes (DEGs) between these two spleens. Gene Ontology and KEGG analyses were used to annotate the function of DEGs. Furthermore, networks between non-coding RNAs and protein-coding genes were constructed to investigate the relationship between non-coding RNAs and immune-associated genes. By comparative analysis of the whole transcriptomes of these two spleens, we found that one of the major roles of lncRNAs could be involved in the regulation of immune responses of giant panda spleens. In addition, our results also revealed that microRNAs and circRNAs may have evolved to regulate a large set of biological processes of giant panda spleens, and circRNAs may function as miRNA sponges. To our knowledge, this is the first report of lncRNAs and circRNAs in giant panda, which could be a useful resource for further giant panda research. Our study reveals the potential functional roles of miRNAs, lncRNAs, and circRNAs in giant panda spleen. © 2018 The Author(s). Published by S. Karger AG, Basel.
Witton, Mark P.; Habib, Michael B.
2010-01-01
The size and flight mechanics of giant pterosaurs have received considerable research interest for the last century but are confused by conflicting interpretations of pterosaur biology and flight capabilities. Avian biomechanical parameters have often been applied to pterosaurs in such research but, due to considerable differences in avian and pterosaur anatomy, have lead to systematic errors interpreting pterosaur flight mechanics. Such assumptions have lead to assertions that giant pterosaurs were extremely lightweight to facilitate flight or, if more realistic masses are assumed, were flightless. Reappraisal of the proportions, scaling and morphology of giant pterosaur fossils suggests that bird and pterosaur wing structure, gross anatomy and launch kinematics are too different to be considered mechanically interchangeable. Conclusions assuming such interchangeability—including those indicating that giant pterosaurs were flightless—are found to be based on inaccurate and poorly supported assumptions of structural scaling and launch kinematics. Pterosaur bone strength and flap-gliding performance demonstrate that giant pterosaur anatomy was capable of generating sufficient lift and thrust for powered flight as well as resisting flight loading stresses. The retention of flight characteristics across giant pterosaur skeletons and their considerable robustness compared to similarly-massed terrestrial animals suggest that giant pterosaurs were not flightless. Moreover, the term ‘giant pterosaur’ includes at least two radically different forms with very distinct palaeoecological signatures and, accordingly, all but the most basic sweeping conclusions about giant pterosaur flight should be treated with caution. Reappraisal of giant pterosaur material also reveals that the size of the largest pterosaurs, previously suggested to have wingspans up to 13 m and masses up to 544 kg, have been overestimated. Scaling of fragmentary giant pterosaur remains have been misled by distorted fossils or used inappropriate scaling techniques, indicating that 10–11 m wingspans and masses of 200–250 kg are the most reliable upper estimates of known pterosaur size. PMID:21085624
Central circuitry in the jellyfish Aglantha. II: The ring giant and carrier systems
Mackie; Meech
1995-01-01
1. The ring giant axon in the outer nerve ring of the jellyfish Aglantha digitale is a multinucleate syncytium 85 % of which is occupied by an electron-dense fluid-filled vacuole apparently in a GibbsDonnan equilibrium with the surrounding band of cytoplasmic cortex. Micropipette recordings show small (-15 to -25 mV) and large (-62 to -66 mV) resting potentials. Low values, obtained with a high proportion of the micropipette penetrations, are assumed to be from the central vacuole; high values from the cytoplasmic cortex. Background electrical activity includes rhythmic oscillations and synaptic potentials representing hair cell input caused by vibration. 2. After the ring giant axon has been cut, propagating action potentials evoked by stimulation are conducted past the cut and re-enter the axon on the far side. The system responsible (the carrier system) through-conducts at a velocity approximately 25 % of that of the ring giant axon and is probably composed of small neurones running in parallel with it. Numerous small neurones are seen by electron microscopy, some making one-way and some two-way synapses with the ring giant. 3. Despite their different conduction velocities, the two systems normally appear to fire in synchrony and at the velocity of the ring giant axon. We suggest that, once initiated, ring giant spikes propagate rapidly around the margin, firing the carrier neurones through serial synapses and giving them, in effect, the same high conduction velocity. Initiation of ring giant spikes can, however, require input from the carrier system. The spikes are frequently seen to be mounted on slow positive potentials representing summed carrier postsynaptic potentials. 4. The carrier system fires one-for-one with the giant axons of the tentacles and may mediate impulse traffic between the latter and the ring giant axon. We suggest that the carrier system may also provide the pathways from the ring giant to the motor giant axons used in escape swimming. 5. The findings show that the ring giant axon functions in close collaboration with the carrier system, increasing the latter's effective conduction velocity, and that interactions with other neuronal sub-systems are probably mediated exclusively by the carrier system.
Infrared colours and inferred masses of metal-poor giant stars in the Keplerfield
NASA Astrophysics Data System (ADS)
Casey, A. R.; Kennedy, G. M.; Hartle, T. R.; Schlaufman, Kevin C.
2018-05-01
Intrinsically luminous giant stars in the Milky Way are the only potential volume-complete tracers of the distant disk, bulge, and halo. The chemical abundances of metal-poor giants also reflect the compositions of the earliest star-forming regions, providing the initial conditions for the chemical evolution of the Galaxy. However, the intrinsic rarity of metal-poor giants combined with the difficulty of efficiently identifying them with broad-band optical photometry has made it difficult to exploit them for studies of the Milky Way. One long-standing problem is that photometric selections for giant and/or metal-poor stars frequently include a large fraction of metal-rich dwarf contaminants. We re-derive a giant star photometric selection using existing public g-band and narrow-band DDO51photometry obtained in the Keplerfield. Our selection is simple and yields a contamination rate of main-sequence stars of ≲1% and a completeness of about 80 % for giant stars with Teff ≲ 5250 K - subject to the selection function of the spectroscopic surveys used to estimate these rates, and the magnitude range considered (11 ≲ g ≲ 15). While the DDO51filter is known to be sensitive to stellar surface gravity, we further show that the mid-infrared colours of DDO51-selected giants are strongly correlated with spectroscopic metallicity. This extends the infrared metal-poor selection developed by Schlaufman & Casey, demonstrating that the principal contaminants in their selection can be efficiently removed by the photometric separation of dwarfs and giants. This implies that any similarly efficient dwarf/giant discriminant (e.g., Gaiaparallaxes) can be used in conjunction with WISEcolours to select samples of giant stars with high completeness and low contamination. We employ our photometric selection to identify three metal-poor giant candidates in the Keplerfield with global asteroseismic parameters and find that masses inferred for these three stars using standard asteroseismic scaling relations are systematically over-estimated by 20-175%. Taken at face value, this small sample size implies that standard asteroseismic scaling relations over-predict stellar masses for metal-poor giant stars.
77 FR 28496 - Atlantic Highly Migratory Species; Atlantic Bluefin Tuna Fisheries
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-15
... daily retention limit would be the default retention limit of one large medium or giant BFT (measuring... default level of one large medium or giant BFT as follows: Two large medium or giant BFT for the January subquota period (75 FR 79309, December 20, 2010); three large medium or giant BFT for June through November...
Habitat use by giant panda in relation to man-made forest in Wanglang Nature Reserve of China.
Kang, Dongwei; Wang, Xiaorong; Yang, Hongwei; Duan, Lijuan; Li, Junqing
2014-12-01
To evaluate the effectiveness of human restoration in species conservation, in this study, we undertook a field survey of giant panda (Ailuropoda melanoleuca) habitat and man-made forest habitat in Wanglang Nature Reserve of China. Our results revealed that giant panda did not use the man-made forest in this area so far, and that there were significant differences between the giant panda habitat and the man-made forest habitat. Compared with giant panda habitat, the man-made forest habitat was characterized by lower shrub coverage, thinner trees and lower bamboo density. To improve the effectiveness of human restoration, the habitat requirement of giant panda should be fully consider in the whole process of habitat restoration.
Promising Resistance to Fusiform Rust from Southeastern Slash Pines
Charles H. Walkinshaw
1999-01-01
Two hundred twenty-four disease-free slash pines with good growth and form were tested for rust resistance. Trees in Alabama, Florida, Louisiana, and Mississippi were selected. After artificial inoculations, a low percentage of open-pollinated progeny of 32 selected trees had galls. In progeny from six of those, the number of gall-resistant trees increased from 50 to...
Propagation of Southern Red Oak and Water Oak by Rooted Cuttings
Horace J. Duncan; Fred R. Matthews
1969-01-01
Southern red oak and water oak, needed in studies of fusiform rust of southern pines, were propagated from cuttings of rooted stump sprouts and mature tree branches placed in outdoor propagation beds in June. Root strike and root development were increased when cuttings with basal wounds were treated with both the hormone IBA and the fungicide folpet. Cuttings from...
Identification of a new retrotransposable element in loblolly pine
M.N. Islam-Faridi; A.M. Morse; K.E. Smith; J.M. Davis; S. Garcia; H.V. Amerson; M.A. Majid; T.L. Kubisiak; C.D. Nelson
2005-01-01
We initiated a project to locate the genomic position of fusiform rust resistance gene 1 (Fr1) in loblolly pine using fluorescent in situ hybridization (FISH). Four random amplified polymorphic DNA (RAPD) markers previously found to be tightly linked to Fr1 were cloned and sequenced, providing a total coverage of about 2 Kb. In order to obtain discernible signal of...
ERIC Educational Resources Information Center
Makita, Kai; Yamazaki, Mika; Tanabe, Hiroki C.; Koike, Takahiko; Kochiyama, Takanori; Yokokawa, Hirokazu; Yoshida, Haruyo; Sadato, Norihiro
2013-01-01
Psychological research suggests that foreign-language vocabulary acquisition recruits the phonological loop for verbal working memory. To depict the neural underpinnings and shed light on the process of foreign language learning, we conducted functional magnetic resonance imaging of Japanese participants without previous exposure to the Uzbek…
Integrated pest management and the pear thrips
James C. Space
1991-01-01
Although it is a pleasure to be here, our primary reason for being here is far from pleasant. During the last ten years, we have had serious problems with the gypsy moth, western spruce budworm, southern pine beetle, mountain pine beetle, fusiform rust and root diseases and the worst spruce budworm epidemic ever recorded. Just when these outbreaks have largely subsided...
Control of Tip Moth by Carbofuran Reduces Fusiform Rust Infection on Loblolly Pine
H.R. Powers; D.M. Stone
1988-01-01
Carbofuran, a systemic insecticide, was applied to the soil under planted loblolly pines near Aiken. SC. at ages 2 through 5. The insecticide sharply reduced tip-moth damage and increased the height of 5-year-old saplings, compared with untreated controls. Treatment also reduced incidence of fusiforn rust, but carbofuran did not have a fungicidal effect.
Many faces of expertise: fusiform face area in chess experts and novices.
Bilalić, Merim; Langner, Robert; Ulrich, Rolf; Grodd, Wolfgang
2011-07-13
The fusiform face area (FFA) is involved in face perception to such an extent that some claim it is a brain module for faces exclusively. The other possibility is that FFA is modulated by experience in individuation in any visual domain, not only faces. Here we test this latter FFA expertise hypothesis using the game of chess as a domain of investigation. We exploited the characteristic of chess, which features multiple objects forming meaningful spatial relations. In three experiments, we show that FFA activity is related to stimulus properties and not to chess skill directly. In all chess and non-chess tasks, experts' FFA was more activated than that of novices' only when they dealt with naturalistic full-board chess positions. When common spatial relationships formed by chess objects in chess positions were randomly disturbed, FFA was again differentially active only in experts, regardless of the actual task. Our experiments show that FFA contributes to the holistic processing of domain-specific multipart stimuli in chess experts. This suggests that FFA may not only mediate human expertise in face recognition but, supporting the expertise hypothesis, may mediate the automatic holistic processing of any highly familiar multipart visual input.
Cortical Thickness in Fusiform Face Area Predicts Face and Object Recognition Performance
McGugin, Rankin W.; Van Gulick, Ana E.; Gauthier, Isabel
2016-01-01
The fusiform face area (FFA) is defined by its selectivity for faces. Several studies have shown that the response of FFA to non-face objects can predict behavioral performance for these objects. However, one possible account is that experts pay more attention to objects in their domain of expertise, driving signals up. Here we show an effect of expertise with non-face objects in FFA that cannot be explained by differential attention to objects of expertise. We explore the relationship between cortical thickness of FFA and face and object recognition using the Cambridge Face Memory Test and Vanderbilt Expertise Test, respectively. We measured cortical thickness in functionally-defined regions in a group of men who evidenced functional expertise effects for cars in FFA. Performance with faces and objects together accounted for approximately 40% of the variance in cortical thickness of several FFA patches. While subjects with a thicker FFA cortex performed better with vehicles, those with a thinner FFA cortex performed better with faces and living objects. The results point to a domain-general role of FFA in object perception and reveal an interesting double dissociation that does not contrast faces and objects, but rather living and non-living objects. PMID:26439272
Roberts, Daniel J; Woollams, Anna M; Kim, Esther; Beeson, Pelagie M; Rapcsak, Steven Z; Lambon Ralph, Matthew A
2013-11-01
Recent visual neuroscience investigations suggest that ventral occipito-temporal cortex is retinotopically organized, with high acuity foveal input projecting primarily to the posterior fusiform gyrus (pFG), making this region crucial for coding high spatial frequency information. Because high spatial frequencies are critical for fine-grained visual discrimination, we hypothesized that damage to the left pFG should have an adverse effect not only on efficient reading, as observed in pure alexia, but also on the processing of complex non-orthographic visual stimuli. Consistent with this hypothesis, we obtained evidence that a large case series (n = 20) of patients with lesions centered on left pFG: 1) Exhibited reduced sensitivity to high spatial frequencies; 2) demonstrated prolonged response latencies both in reading (pure alexia) and object naming; and 3) were especially sensitive to visual complexity and similarity when discriminating between novel visual patterns. These results suggest that the patients' dual reading and non-orthographic recognition impairments have a common underlying mechanism and reflect the loss of high spatial frequency visual information normally coded in the left pFG.
[Symptoms and lesion localization in visual agnosia].
Suzuki, Kyoko
2004-11-01
There are two cortical visual processing streams, the ventral and dorsal stream. The ventral visual stream plays the major role in constructing our perceptual representation of the visual world and the objects within it. Disturbance of visual processing at any stage of the ventral stream could result in impairment of visual recognition. Thus we need systematic investigations to diagnose visual agnosia and its type. Two types of category-selective visual agnosia, prosopagnosia and landmark agnosia, are different from others in that patients could recognize a face as a face and buildings as buildings, but could not identify an individual person or building. Neuronal bases of prosopagnosia and landmark agnosia are distinct. Importance of the right fusiform gyrus for face recognition was confirmed by both clinical and neuroimaging studies. Landmark agnosia is related to lesions in the right parahippocampal gyrus. Enlarged lesions including both the right fusiform and parahippocampal gyri can result in prosopagnosia and landmark agnosia at the same time. Category non-selective visual agnosia is related to bilateral occipito-temporal lesions, which is in agreement with the results of neuroimaging studies that revealed activation of the bilateral occipito-temporal during object recognition tasks.
The Role of Cell Morphotype in Protist Grazing on the Model Diatom Phaeodactylum tricornutum
NASA Astrophysics Data System (ADS)
Beaudoin, D.; Johnson, M. D.; Tirichine, L.; Rastogi, A.; Bowler, C.
2016-02-01
Microzooplankton grazing is the single greatest loss to daily primary production in the oceans. Factors such as prey quality, chemical defense, and morphology are known to play important roles in mediating interactions with protist grazers. However, for most phytoplankton species we lack a mechanistic understanding of variables that modulate grazing and their relative importance. Here we test the hypothesis that morphological complexity acts to decrease grazing rates of microzooplankton predators, using strains of Phaeodactylum tricornutum with distinct morphotypes (oval, fusiform, and triradiate). Specifically we expected to find lower grazing on the triradiate morphotype. In experiments with predominantly uniform morphotypes, our results demonstrate that grazing by the heterotrophic dinoflagellate Oxyrrhis marina was surprisingly greatest on triradiate P. tricornutum, while oval and fusiform morphotypes revealed lower rates. Furthermore, the triradiate morphotype also supported higher growth rates of O. marina. We are currently investigating the role of grazing on morphotype frequency in P. tricornutum strains with mixed phenotypes. Chemical factors, such as prey nutritional content, and oxylipin profiles are also being investigated. Collectively, these experiments will help to determine the role of intraspecific phenotypes in predator-prey interactions, and how grazing helps to shape morphotype frequency in prey populations.
Oxytocin attenuates neural reactivity to masked threat cues from the eyes.
Kanat, Manuela; Heinrichs, Markus; Schwarzwald, Ralf; Domes, Gregor
2015-01-01
The neuropeptide oxytocin has recently been shown to modulate covert attention shifts to emotional face cues and to improve discrimination of masked facial emotions. These results suggest that oxytocin modulates facial emotion processing at early perceptual stages prior to full evaluation of the emotional expression. Here, we used functional magnetic resonance imaging to examine whether oxytocin alters neural responses to backwardly masked angry and happy faces while controlling for attention to the eye vs the mouth region. Intranasal oxytocin administration reduced amygdala reactivity to masked emotions when attending to salient facial features, ie, the eyes of angry faces and the mouth of happy faces. In addition, oxytocin decreased neural responses within the fusiform gyrus and brain stem areas, as well as functional coupling between the amygdala and the fusiform gyrus specifically for threat cues from the eyes. Effects of oxytocin on brain activity were not attributable to differences in behavioral performance, as oxytocin had no impact on mere emotion detection. Our results suggest that oxytocin attenuates neural correlates of early arousal by threat signals from the eye region. As reduced threat sensitivity may increase the likelihood of engaging in social interactions, our findings may have important implications for clinical states of social anxiety.
Too little, too late: reduced visual span and speed characterize pure alexia.
Starrfelt, Randi; Habekost, Thomas; Leff, Alexander P
2009-12-01
Whether normal word reading includes a stage of visual processing selectively dedicated to word or letter recognition is highly debated. Characterizing pure alexia, a seemingly selective disorder of reading, has been central to this debate. Two main theories claim either that 1) Pure alexia is caused by damage to a reading specific brain region in the left fusiform gyrus or 2) Pure alexia results from a general visual impairment that may particularly affect simultaneous processing of multiple items. We tested these competing theories in 4 patients with pure alexia using sensitive psychophysical measures and mathematical modeling. Recognition of single letters and digits in the central visual field was impaired in all patients. Visual apprehension span was also reduced for both letters and digits in all patients. The only cortical region lesioned across all 4 patients was the left fusiform gyrus, indicating that this region subserves a function broader than letter or word identification. We suggest that a seemingly pure disorder of reading can arise due to a general reduction of visual speed and span, and explain why this has a disproportionate impact on word reading while recognition of other visual stimuli are less obviously affected.
Too Little, Too Late: Reduced Visual Span and Speed Characterize Pure Alexia
Habekost, Thomas; Leff, Alexander P.
2009-01-01
Whether normal word reading includes a stage of visual processing selectively dedicated to word or letter recognition is highly debated. Characterizing pure alexia, a seemingly selective disorder of reading, has been central to this debate. Two main theories claim either that 1) Pure alexia is caused by damage to a reading specific brain region in the left fusiform gyrus or 2) Pure alexia results from a general visual impairment that may particularly affect simultaneous processing of multiple items. We tested these competing theories in 4 patients with pure alexia using sensitive psychophysical measures and mathematical modeling. Recognition of single letters and digits in the central visual field was impaired in all patients. Visual apprehension span was also reduced for both letters and digits in all patients. The only cortical region lesioned across all 4 patients was the left fusiform gyrus, indicating that this region subserves a function broader than letter or word identification. We suggest that a seemingly pure disorder of reading can arise due to a general reduction of visual speed and span, and explain why this has a disproportionate impact on word reading while recognition of other visual stimuli are less obviously affected. PMID:19366870
The orthographic sensitivity to written Chinese in the occipital-temporal cortex.
Liu, Haicheng; Jiang, Yi; Zhang, Bo; Ma, Lifei; He, Sheng; Weng, Xuchu
2013-06-01
Previous studies have identified an area in the left lateral fusiform cortex that is highly responsive to written words and has been named the visual word form area (VWFA). However, there is disagreement on the specific functional role of this area in word recognition. Chinese characters, which are dramatically different from Roman alphabets in the visual form and in the form to phonological mapping, provide a unique opportunity to investigate the properties of the VWFA. Specifically, to clarify the orthographic sensitivity in the mid-fusiform cortex, we compared fMRI response amplitudes (Exp. 1) as well as the spatial patterns of response across multiple voxels (Exp. 2) between Chinese characters and stimuli derived from Chinese characters with different orthographic properties. The fMRI response amplitude results suggest the existence of orthographic sensitivity in the VWFA. The results from multi-voxel pattern analysis indicate that spatial distribution of the responses across voxels in the occipitotemporal cortex contained discriminative information between the different types of character-related stimuli. These results together suggest that the orthographic rules are likely represented in a distributed neural network with the VWFA containing the most specific information regarding a stimulus' orthographic regularity.
Moore, Michelle W.; Durisko, Corrine; Perfetti, Charles A.; Fiez, Julie A.
2014-01-01
Numerous functional neuroimaging studies have shown that most orthographic stimuli, such as printed English words, produce a left-lateralized response within the fusiform gyrus (FG) at a characteristic location termed the visual word form area (VWFA). We developed an experimental alphabet (FaceFont) comprising 35 face–phoneme pairs to disentangle phonological and perceptual influences on the lateralization of orthographic processing within the FG. Using functional imaging, we found that a region in the vicinity of the VWFA responded to FaceFont words more strongly in trained versus untrained participants, whereas no differences were observed in the right FG. The trained response magnitudes in the left FG region correlated with behavioral reading performance, providing strong evidence that the neural tissue recruited by training supported the newly acquired reading skill. These results indicate that the left lateralization of the orthographic processing is not restricted to stimuli with particular visual-perceptual features. Instead, lateralization may occur because the anatomical projections in the vicinity of the VWFA provide a unique interconnection between the visual system and left-lateralized language areas involved in the representation of speech. PMID:24168219
Cholinergic enhancement modulates neural correlates of selective attention and emotional processing.
Bentley, Paul; Vuilleumier, Patrik; Thiel, Christiane M; Driver, Jon; Dolan, Raymond J
2003-09-01
Neocortical cholinergic afferents are proposed to influence both selective attention and emotional processing. In a study of healthy adults we used event-related fMRI while orthogonally manipulating attention and emotionality to examine regions showing effects of cholinergic modulation by the anticholinesterase physostigmine. Either face or house pictures appeared at task-relevant locations, with the alternative picture type at irrelevant locations. Faces had either neutral or fearful expressions. Physostigmine increased relative activity within the anterior fusiform gyrus for faces at attended, versus unattended, locations, but decreased relative activity within the posterolateral occipital cortex for houses in attended, versus unattended, locations. A similar pattern of regional differences in the effect of physostigmine on cue-evoked responses was also present in the absence of stimuli. Cholinergic enhancement augmented the relative neuronal response within the middle fusiform gyrus to fearful faces, whether at attended or unattended locations. By contrast, physostigmine influenced responses in the orbitofrontal, intraparietal and cingulate cortices to fearful faces when faces occupied task-irrelevant locations. These findings suggest that acetylcholine may modulate both selective attention and emotional processes through independent, region-specific effects within the extrastriate cortex. Furthermore, cholinergic inputs to the frontoparietal cortex may influence the allocation of attention to emotional information.
Cross-Cultural Differences in the Neural Correlates of Specific and General Recognition
Paige, Laura E.; Ksander, John C.; Johndro, Hunter A.; Gutchess, Angela H.
2017-01-01
Research suggests that culture influences how people perceive the world, which extends to memory specificity, or how much perceptual detail is remembered. The present study investigated cross-cultural differences (Americans vs. East Asians) at the time of encoding in the neural correlates of specific vs. general memory formation. Participants encoded photos of everyday items in the scanner and 48 hours later completed a surprise recognition test. The recognition test consisted of same (i.e., previously seen in scanner), similar (i.e., same name, different features), or new photos (i.e., items not previously seen in scanner). For Americans compared to East Asians, we predicted greater activation in the hippocampus and right fusiform for specific memory at recognition, as these regions were implicated previously in encoding perceptual details. Results revealed that East Asians activated the left fusiform and left hippocampus more than Americans for specific vs. general memory. Follow-up analyses ruled out alternative explanations of retrieval difficulty and familiarity for this pattern of cross-cultural differences at encoding. Results overall suggest that culture should be considered as another individual difference that affects memory specificity and modulates neural regions underlying these processes. PMID:28256199
Cross-cultural differences in the neural correlates of specific and general recognition.
Paige, Laura E; Ksander, John C; Johndro, Hunter A; Gutchess, Angela H
2017-06-01
Research suggests that culture influences how people perceive the world, which extends to memory specificity, or how much perceptual detail is remembered. The present study investigated cross-cultural differences (Americans vs East Asians) at the time of encoding in the neural correlates of specific versus general memory formation. Participants encoded photos of everyday items in the scanner and 48 h later completed a surprise recognition test. The recognition test consisted of same (i.e., previously seen in scanner), similar (i.e., same name, different features), or new photos (i.e., items not previously seen in scanner). For Americans compared to East Asians, we predicted greater activation in the hippocampus and right fusiform for specific memory at recognition, as these regions were implicated previously in encoding perceptual details. Results revealed that East Asians activated the left fusiform and left hippocampus more than Americans for specific versus general memory. Follow-up analyses ruled out alternative explanations of retrieval difficulty and familiarity for this pattern of cross-cultural differences at encoding. Results overall suggest that culture should be considered as another individual difference that affects memory specificity and modulates neural regions underlying these processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Iidaka, Tetsuya; Matsumoto, Atsushi; Haneda, Kaoruko; Okada, Tomohisa; Sadato, Norihiro
2006-03-01
Functional magnetic resonance imaging (fMRI) and event-related potential (ERP) experiments were conducted in the same group of subjects and with an identical task paradigm to investigate a possible relationship between hemodynamic and electrophysiological responses within the brain. The subjects were instructed to judge whether visually presented stimuli were faces or houses and then press the corresponding button. Functional MRI identified face- and house-related regions in the lateral and medial part of the fusiform gyrus, respectively, while ERP showed significantly greater N170 negativity for face than for house stimuli in the temporo-occipital electrodes. Correlation analysis between the BOLD signal in the fusiform gyrus and ERP parameters demonstrated a close relationship between the signal and both latency and amplitude of N170 across the subjects. These correlations may indicate that the variation in cognitive demand and hemodynamic responses during the face/house discrimination task is coupled with the variation of N170 peak latency/amplitude across the subjects. Thus, integrative analysis of spatial and temporal information obtained from the two experimental modalities may help in studying neural correlates involved in a particular cognitive task.
International Registry for Patients With Castleman Disease
2017-07-12
Castleman Disease; Castleman's Disease; Giant Lymph Node Hyperplasia; Angiofollicular Lymph Hyperplasia; Angiofollicular Lymph Node Hyperplasia; Angiofollicular Lymphoid Hyperplasia; GLNH; Hyperplasia, Giant Lymph Node; Lymph Node Hyperplasia, Giant
Squid Giant Axon Contains Neurofilament Protein mRNA but does not Synthesize Neurofilament Proteins.
Gainer, Harold; House, Shirley; Kim, Dong Sun; Chin, Hemin; Pant, Harish C
2017-04-01
When isolated squid giant axons are incubated in radioactive amino acids, abundant newly synthesized proteins are found in the axoplasm. These proteins are translated in the adaxonal Schwann cells and subsequently transferred into the giant axon. The question as to whether any de novo protein synthesis occurs in the giant axon itself is difficult to resolve because the small contribution of the proteins possibly synthesized intra-axonally is not easily distinguished from the large amounts of the proteins being supplied from the Schwann cells. In this paper, we reexamine this issue by studying the synthesis of endogenous neurofilament (NF) proteins in the axon. Our laboratory previously showed that NF mRNA and protein are present in the squid giant axon, but not in the surrounding adaxonal glia. Therefore, if the isolated squid axon could be shown to contain newly synthesized NF protein de novo, it could not arise from the adaxonal glia. The results of experiments in this paper show that abundant 3H-labeled NF protein is synthesized in the squid giant fiber lobe containing the giant axon's neuronal cell bodies, but despite the presence of NF mRNA in the giant axon no labeled NF protein is detected in the giant axon. This lends support to the glia-axon protein transfer hypothesis which posits that the squid giant axon obtains newly synthesized protein by Schwann cell transfer and not through intra-axonal protein synthesis, and further suggests that the NF mRNA in the axon is in a translationally repressed state.
On Lithium-rich Red Giants. I. Engulfment of Substellar Companions
NASA Astrophysics Data System (ADS)
Aguilera-Gómez, Claudia; Chanamé, Julio; Pinsonneault, Marc H.; Carlberg, Joleen K.
2016-10-01
A small fraction of red giants are known to be lithium (Li) rich, in contradiction with expectations from stellar evolutionary theory. A possible explanation for these atypical giants is the engulfment of an Li-rich planet or brown dwarf by the star. In this work, we model the evolution of Li abundance in canonical red giants including the accretion of a substellar mass companion. We consider a wide range of stellar and companion masses, Li abundances, stellar metallicities, and planetary orbital periods. Based on our calculations, companions with masses lower than 15 {M}J dissolve in the convective envelope and can induce Li enrichment in regimes where extra mixing does not operate. Our models indicate that the accretion of a substellar companion can explain abundances up to A(Li) ≈ 2.2, setting an upper limit for Li-rich giants formed by this mechanism. Giants with higher abundances need another mechanism to be explained. For reasonable planetary distributions, we predict the Li abundance distribution of low-mass giants undergoing planet engulfment, finding that between 1% and 3% of them should have {{A}}({Li})≥slant 1.5. We show that depending on the stellar mass range, this traditional definition of Li-rich giants is misleading, as isolated massive stars would be considered anomalous while giants engulfing a companion would be set aside, flagged as normal. We explore the detectability of companion engulfment, finding that planets with masses higher than ∼ 7 {M}J produce a distinct signature, and that descendants of stars originating in the Li dip and low-luminosity red giants are ideal tests of this channel.
THE REDSHIFT DISTRIBUTION OF GIANT ARCS IN THE SLOAN GIANT ARCS SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.
2011-01-20
We measure the redshift distribution of a sample of 28 giant arcs discovered as a part of the Sloan Giant Arcs Survey. Gemini/GMOS-North spectroscopy provides precise redshifts for 24 arcs, and 'redshift desert' constrains for the remaining 4 arcs. This is a direct measurement of the redshift distribution of a uniformly selected sample of bright giant arcs, which is an observable that can be used to inform efforts to predict giant arc statistics. Our primary giant arc sample has a median redshift z = 1.821 and nearly two-thirds of the arcs, 64%, are sources at z {approx}> 1.4, indicating thatmore » the population of background sources that are strongly lensed into bright giant arcs resides primarily at high redshift. We also analyze the distribution of redshifts for 19 secondary strongly lensed background sources that are not visually apparent in Sloan Digital Sky Survey imaging, but were identified in deeper follow-up imaging of the lensing cluster fields. Our redshift sample for the secondary sources is not spectroscopically complete, but combining it with our primary giant arc sample suggests that a large fraction of all background galaxies that are strongly lensed by foreground clusters reside at z {approx}> 1.4. Kolmogorov-Smirnov tests indicate that our well-selected, spectroscopically complete primary giant arc redshift sample can be reproduced with a model distribution that is constructed from a combination of results from studies of strong-lensing clusters in numerical simulations and observational constraints on the galaxy luminosity function.« less
EFFECTS OF DYNAMICAL EVOLUTION OF GIANT PLANETS ON SURVIVAL OF TERRESTRIAL PLANETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumura, Soko; Ida, Shigeru; Nagasawa, Makiko
2013-04-20
The orbital distributions of currently observed extrasolar giant planets allow marginally stable orbits for hypothetical, terrestrial planets. In this paper, we propose that many of these systems may not have additional planets on these ''stable'' orbits, since past dynamical instability among giant planets could have removed them. We numerically investigate the effects of early evolution of multiple giant planets on the orbital stability of the inner, sub-Neptune-like planets which are modeled as test particles, and determine their dynamically unstable region. Previous studies have shown that the majority of such test particles are ejected out of the system as a resultmore » of close encounters with giant planets. Here, we show that secular perturbations from giant planets can remove test particles at least down to 10 times smaller than their minimum pericenter distance. Our results indicate that, unless the dynamical instability among giant planets is either absent or quiet like planet-planet collisions, most test particles down to {approx}0.1 AU within the orbits of giant planets at a few AU may be gone. In fact, out of {approx}30% of survived test particles, about three quarters belong to the planet-planet collision cases. We find a good agreement between our numerical results and the secular theory, and present a semi-analytical formula which estimates the dynamically unstable region of the test particles just from the evolution of giant planets. Finally, our numerical results agree well with the observations, and also predict the existence of hot rocky planets in eccentric giant planet systems.« less
Assessing vulnerability of giant pandas to climate change in the Qinling Mountains of China.
Li, Jia; Liu, Fang; Xue, Yadong; Zhang, Yu; Li, Diqiang
2017-06-01
Climate change might pose an additional threat to the already vulnerable giant panda ( Ailuropoda melanoleuca ). Effective conservation efforts require projections of vulnerability of the giant panda in facing climate change and proactive strategies to reduce emerging climate-related threats. We used the maximum entropy model to assess the vulnerability of giant panda to climate change in the Qinling Mountains of China. The results of modeling included the following findings: (1) the area of suitable habitat for giant pandas was projected to decrease by 281 km 2 from climate change by the 2050s; (2) the mean elevation of suitable habitat of giant panda was predicted to shift 30 m higher due to climate change over this period; (3) the network of nature reserves protect 61.73% of current suitable habitat for the species, and 59.23% of future suitable habitat; (4) current suitable habitat mainly located in Chenggu, Taibai, and Yangxian counties (with a total area of 987 km 2 ) was predicted to be vulnerable. Assessing the vulnerability of giant panda provided adaptive strategies for conservation programs and national park construction. We proposed adaptation strategies to ameliorate the predicted impacts of climate change on giant panda, including establishing and adjusting reserves, establishing habitat corridors, improving adaptive capacity to climate change, and strengthening monitoring of giant panda.
Allometry indicates giant eyes of giant squid are not exceptional.
Schmitz, Lars; Motani, Ryosuke; Oufiero, Christopher E; Martin, Christopher H; McGee, Matthew D; Gamarra, Ashlee R; Lee, Johanna J; Wainwright, Peter C
2013-02-18
The eyes of giant and colossal squid are among the largest eyes in the history of life. It was recently proposed that sperm whale predation is the main driver of eye size evolution in giant squid, on the basis of an optical model that suggested optimal performance in detecting large luminous visual targets such as whales in the deep sea. However, it is poorly understood how the eye size of giant and colossal squid compares to that of other aquatic organisms when scaling effects are considered. We performed a large-scale comparative study that included 87 squid species and 237 species of acanthomorph fish. While squid have larger eyes than most acanthomorphs, a comparison of relative eye size among squid suggests that giant and colossal squid do not have unusually large eyes. After revising constants used in a previous model we found that large eyes perform equally well in detecting point targets and large luminous targets in the deep sea. The eyes of giant and colossal squid do not appear exceptionally large when allometric effects are considered. It is probable that the giant eyes of giant squid result from a phylogenetically conserved developmental pattern manifested in very large animals. Whatever the cause of large eyes, they appear to have several advantages for vision in the reduced light of the deep mesopelagic zone.
Multiple Giant Coronary Artery Aneurysms
Marla, Rammohan; Ebel, Rachel; Crosby, Marcus; Almassi, G. Hossein
2009-01-01
Coronary artery aneurysms are rare, and giant coronary artery aneurysms are even rarer. We describe a patient who had giant coronary aneurysms of the right, left circumflex, and left anterior descending coronary arteries. The aneurysms were successfully treated with surgical intervention. To the best of our knowledge, ours is the 1st report of giant aneurysms involving all 3 major coronary arteries. PMID:19568397
78 FR 77362 - Atlantic Highly Migratory Species; Atlantic Bluefin Tuna Fisheries
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-23
... large medium or giant BFT to two large medium or giant BFT for the January 2014 subquota period ((i.e... starting on January 1 would be the default retention limit of one large medium or giant BFT (measuring 73... adjusted the General category limit from the default level of one large medium or giant BFT to two large...
76 FR 76900 - Atlantic Highly Migratory Species; Atlantic Bluefin Tuna Fisheries
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-09
... retention limit of one large medium or giant BFT (measuring 73 inches (185 cm) CFL) or greater per vessel... level of one large medium or giant BFT as follows: Two large medium or giant BFT for January (75 FR 79309, December 20, 2010); three large medium or giant BFT for June through August (76 FR 32086, June 3...
75 FR 79309 - Atlantic Highly Migratory Species; Atlantic Bluefin Tuna Fisheries
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-20
... limit of one large medium or giant BFT (measuring 73 inches (185 cm) CFL) or greater per vessel per day... adjusted the General category limit from the default level of one large medium or giant BFT as follows: Two large medium or giant BFT for January (74 FR 68709, December 29, 2009), and three large medium or giant...
NASA Astrophysics Data System (ADS)
Sneden, Christopher; Kraft, Robert P.; Prosser, Charles F.; Langer, G. E.
1991-12-01
Oxygen, iron, vanadium, and scandium abundances are derived for very metal-poor giants in the globular clusters M92 and M15, and giants of comparable metallicity in the local halo field. The forbidden O I line dublet (6300, 6363) and nearby metallic lines in spectra are analyzed using line analysis and spectral synthesis codes. The Fe/H abundance for M92 is estimated at -2.25 +/-0.02 based on nine giants with a range of 500 K in effective temperature. No evidence for star-to-star variations in the Fe/H abundance was found. O-rich and O-poor stars appear intermixed in the H-R diagram. O - N nuclear synthesis and mixing to the surface are proposed as the best explanation for the low-oxygen giants. The nitrogen abundances obtained earlier for nine of the ten halo field giants in this sample are incompatible with the very large nitrogen abundances expected of the O/Fe abundance of about + 1.2 in halo field subdwarfs, as found by Abia and Rebolo (1989), and not more than 0.6 in halo giants, as found in this and other studies.
Non-radial oscillation modes with long lifetimes in giant stars.
De Ridder, Joris; Barban, Caroline; Baudin, Frédéric; Carrier, Fabien; Hatzes, Artie P; Hekker, Saskia; Kallinger, Thomas; Weiss, Werner W; Baglin, Annie; Auvergne, Michel; Samadi, Réza; Barge, Pierre; Deleuil, Magali
2009-05-21
Towards the end of their lives, stars like the Sun greatly expand to become red giant stars. Such evolved stars could provide stringent tests of stellar theory, as many uncertainties of the internal stellar structure accumulate with age. Important examples are convective overshooting and rotational mixing during the central hydrogen-burning phase, which determine the mass of the helium core, but which are not well understood. In principle, analysis of radial and non-radial stellar oscillations can be used to constrain the mass of the helium core. Although all giants are expected to oscillate, it has hitherto been unclear whether non-radial modes are observable at all in red giants, or whether the oscillation modes have a short or a long mode lifetime, which determines the observational precision of the frequencies. Here we report the presence of radial and non-radial oscillations in more than 300 giant stars. For at least some of the giants, the mode lifetimes are of the order of a month. We observe giant stars with equally spaced frequency peaks in the Fourier spectrum of the time series, as well as giants for which the spectrum seems to be more complex. No satisfactory theoretical explanation currently exists for our observations.
Establishment and cryopreservation of a giant panda skeletal muscle-derived cell line.
Yu, Fang-Jian; Zeng, Chang-Jun; Zhang, Yan; Wang, Cheng-Dong; Xiong, Tie-Yi; Fang, Sheng-Guo; Zhang, He-Min
2015-06-01
The giant panda Ailuropoda melanoleuca is an endangered species and is a symbol for wildlife conservation. Although efforts have been made to protect this rare and endangered species through breeding and conservative biology, the long-term preservation of giant panda genome resources (gametes, tissues, organs, genomic libraries, etc.) is still a practical option. In this study, the giant panda skeletal muscle-derived cell line was successfully established via primary explants culture and cryopreservation techniques. The population doubling time of giant panda skeletal cells was approximately 33.8 h, and this population maintained a high cell viability before and after cryopreservation (95.6% and 90.7%, respectively). The two skeletal muscle-specific genes SMYD1 and MYF6 were expressed and detected by RT-PCR in the giant panda skeletal muscle-derived cell line. Karyotyping analysis revealed that the frequencies of giant panda skeletal muscle cells showing a chromosome number of 2n=42 ranged from 90.6∼94.2%. Thus, the giant panda skeletal muscle-derived cell line provides a vital resource and material platform for further studies and is likely to be useful for the protection of this rare and endangered species.
The association between giant hydrocele and depression in a rural clinic in Nigeria.
Dienye, Paul O; Gbeneol, Precious K; Akani, Alexander B
2011-09-01
One of the dreaded disfiguring disease conditions among the Andoni tribesmen in the Nigerian Niger delta region is hydrocele, especially when its size is large (giant hydrocele) and it cannot be concealed. This case-control study was designed to evaluate the prevalence of depression among patients with giant hydrocele presenting to Bethesda Clinic Ngo, Andoni, Nigeria. A total of 52 patients were recruited into this study: 26 in the giant hydrocele group and 26 in the control group. Their age range was 23 to 78 years, with a mean age of 53.4 ± 15.5 years for the giant hydrocele group and 53.6 ± 14.2 years for the control group. The difference between the prevalence of depression among patients that presented with giant hydrocele (61.54%) and the controls (15.38%) was statistically significant (p = .0015). The authors conclude that depression is common among patients with giant hydrocele when compared with patients with other disease conditions.
Cell-sized asymmetric lipid vesicles facilitate the investigation of asymmetric membranes
NASA Astrophysics Data System (ADS)
Kamiya, Koki; Kawano, Ryuji; Osaki, Toshihisa; Akiyoshi, Kazunari; Takeuchi, Shoji
2016-09-01
Asymmetric lipid giant vesicles have been used to model the biochemical reactions in cell membranes. However, methods for producing asymmetric giant vesicles lead to the inclusion of an organic solvent layer that affects the mechanical and physical characteristics of the membrane. Here we describe the formation of asymmetric giant vesicles that include little organic solvent, and use them to investigate the dynamic responses of lipid molecules in the vesicle membrane. We formed the giant vesicles via the inhomogeneous break-up of a lipid microtube generated by applying a jet flow to an asymmetric planar lipid bilayer. The asymmetric giant vesicles showed a lipid flip-flop behaviour in the membrane, superficially similar to the lipid flip-flop activity observed in apoptotic cells. In vitro synthesis of membrane proteins into the asymmetric giant vesicles revealed that the lipid asymmetry in bilayer membranes improves the reconstitution ratio of membrane proteins. Our asymmetric giant vesicles will be useful in elucidating lipid-lipid and lipid-membrane protein interactions involved in the regulation of cellular functions.
SOCS3: an essential regulator of LIF receptor signaling in trophoblast giant cell differentiation
Takahashi, Yutaka; Carpino, Nick; Cross, James C.; Torres, Miguel; Parganas, Evan; Ihle, James N.
2003-01-01
Suppressor of cytokine signaling 3 (SOCS3) binds cytokine receptors and thereby suppresses cytokine signaling. Deletion of SOCS3 causes an embryonic lethality that is rescued by a tetraploid rescue approach, demonstrating an essential role in placental development and a non-essential role in embryo development. Rescued SOCS3-deficient mice show a perinatal lethality with cardiac hypertrophy. SOCS3-deficient placentas have reduced spongiotrophoblasts and increased trophoblast secondary giant cells. Enforced expression of SOCS3 in a trophoblast stem cell line (Rcho-1) suppresses giant cell differentiation. Conversely, SOCS3-deficient trophoblast stem cells differentiate more readily to giant cells in culture, demonstrating that SOCS3 negatively regulates trophoblast giant cell differentiation. Leukemia inhibitory factor (LIF) promotes giant cell differentiation in vitro, and LIF receptor (LIFR) deficiency results in loss of giant cell differentiation in vivo. Finally, LIFR deficiency rescues the SOCS3-deficient placental defect and embryonic lethality. The results establish SOCS3 as an essential regulator of LIFR signaling in trophoblast differentiation. PMID:12554639
Halstead, Brian J.; Wood, Dustin A.; Bowen, Lizabeth; Waters, Shannon C.; Vandergast, Amy G.; Ersan, Julia S.; Skalos, Shannon M.; Casazza, Michael L.
2017-09-28
Detecting populations of rare or cryptic species is essential for their conservation. For species like giant gartersnakes (Thamnophis gigas), conventional survey methods can be expensive and inefficient. These sampling difficulties might be overcome by modern techniques that detect deoxyribonucleic acid (DNA) shed by organisms into the environment (eDNA). We evaluated the efficacy of detecting giant gartersnake eDNA in water samples from the laboratory and at locations with known giant gartersnake populations in the Sacramento Valley of California, and failed to detect giant gartersnake DNA in most laboratory and all field samples. Aspects of giant gartersnake biology—such as highly keratinized skin and spending extensive time in the terrestrial environment, as well as hot, sunny, and turbid conditions in wetlands and canals of the Sacramento Valley—likely contributed to low detection probabilities. Although detection of eDNA shows promise under many conditions, further development is needed before sampling for eDNA is a viable option for detecting giant gartersnake populations.
Reactor vibration reduction based on giant magnetostrictive materials
NASA Astrophysics Data System (ADS)
Rongge, Yan; Weiying, Liu; Yuechao, Wu; Menghua, Duan; Xiaohong, Zhang; Lihua, Zhu; Ling, Weng; Ying, Sun
2017-05-01
The vibration of reactors not only produces noise pollution, but also affects the safe operation of reactors. Giant magnetostrictive materials can generate huge expansion and shrinkage deformation in a magnetic field. With the principle of mutual offset between the giant magnetostrictive force produced by the giant magnetostrictive material and the original vibration force of the reactor, the vibration of the reactor can be reduced. In this paper, magnetization and magnetostriction characteristics in silicon steel and the giant magnetostrictive material are measured, respectively. According to the presented magneto-mechanical coupling model including the electromagnetic force and the magnetostrictive force, reactor vibration is calculated. By comparing the vibration of the reactor with different inserted materials in the air gaps between the reactor cores, the vibration reduction effectiveness of the giant magnetostrictive material is validated.
USDA-ARS?s Scientific Manuscript database
Giant reed (Arundo donax L.) also known as giant cane or carrizo cane, is an exotic perennial grass that has infested over 60,000 hectares along riparian corridors in the southwestern U.S. The most severe infestations are in the Lower Rio Grande Basin, where giant reed along the Rio Grande and Mexic...
Giant cell arteritis mimicking a testicular tumour.
Sundaram, S; Smith, D H
2001-07-01
Giant cell arteritis involving the testis was identified incidentally upon orchidectomy of a right testicular mass. The mass looked like a malignant process on ultrasound. The patient also had generalised disease and was treated appropriately. Giant cell arteritis involving the bladder, prostate, uterus, and adnexa have been described before. To our knowledge, this is the first described case of giant cell arteritis affecting the testis.
Unusual Giant Prostatic Urethral Calculus
Bello, A.; Maitama, H. Y.; Mbibu, N. H.; Kalayi, G. D.; Ahmed, A.
2010-01-01
Giant vesico-prostatic urethral calculus is uncommon. Urethral stones rarely form primarily in the urethra, and they are usually associated with urethral strictures, posterior urethral valve or diverticula. We report a case of a 32-year-old man with giant vesico-prostatic (collar-stud) urethral stone presenting with sepsis and bladder outlet obstruction. The clinical presentation, management, and outcome of the giant prostatic urethral calculus are reviewed. PMID:22091328
NASA Astrophysics Data System (ADS)
Frelikh, Renata; Murray-Clay, Ruth
2018-04-01
We report on our recent theoretical work, where we suggest that a protoplanetary disk dynamical instability may have played a crucial role in determining the atmospheric size of the solar system’s ice giants. In contrast to the gas giants, the intermediate-size ice giants never underwent runaway gas accretion in a full gas disk. However, as their substantial core masses are comparable to those of the gas giants, they would have gone runaway, given enough time. In the standard scenario, the ice giants stay at roughly their current size for most of the disk lifetime, undergoing period of slow gas accretion onto ~full-sized cores that formed early-on. The gas disk dissipates before the ice giants accumulate too much gas, but we believe this is fine tuned. A considerable amount of solids is observed in outer disks in mm-to-cm sized particles (pebbles). Assisted by gas drag, these pebbles rapidly accrete onto cores. This would cause the growing ice giants to exceed their current core masses, and quickly turn into gas giants. To resolve this problem, we propose that Uranus and Neptune stayed small for the bulk of the disk lifetime. They only finished their core and atmospheric growth in a short timeframe just as the disk gas dissipated, accreting most of their gas from a disk depleted to ~1% of its original mass. The ice giants have atmospheric mass fractions comparable to the disk gas-to-solid ratio of this depleted disk. This coincides with a disk dynamical upheaval onset by the depletion of gas. We propose that the cores started growing closer-in, where they were kept small by proximity to Jupiter and Saturn. As the gas cleared, the cores were kicked out by the gas giants. Then, they finished their core growth and accreted their atmospheres from the remaining, sparse gas at their current locations. We predict that the gas giants may play a key role in forming intermediate-size atmospheres in the outer disk.
Spectral discrimination of giant reed (Arundo donax L.): A seasonal study in riparian areas
NASA Astrophysics Data System (ADS)
Fernandes, Maria Rosário; Aguiar, Francisca C.; Silva, João M. N.; Ferreira, Maria Teresa; Pereira, José M. C.
2013-06-01
The giant reed (Arundo donax L.) is amongst the one hundred worst invasive alien species of the world, and it is responsible for biodiversity loss and failure of ecosystem functions in riparian habitats. In this work, field spectroradiometry was used to assess the spectral separability of the giant reed from the adjacent vegetation and from the common reed, a native similar species. The study was conducted at different phenological periods and also for the giant reed stands regenerated after mechanical cutting (giant reed_RAC). A hierarchical procedure using Kruskal-Wallis test followed by Classification and Regression Trees (CART) was used to select the minimum number of optimal bands that discriminate the giant reed from the adjacent vegetation. A new approach was used to identify sets of wavelengths - wavezones - that maximize the spectral separability beyond the minimum number of optimal bands. Jeffries Matusita and Bhattacharya distance were used to evaluate the spectral separability using the minimum optimal bands and in three simulated satellite images, namely Landsat, IKONOS and SPOT. Giant reed was spectrally separable from the adjacent vegetation, both at the vegetative and the senescent period, exception made to the common reed at the vegetative period. The red edge region was repeatedly selected, although the visible region was also important to separate the giant reed from the herbaceous vegetation and the mid infrared region to the discrimination from the woody vegetation. The highest separability was obtained for the giant reed_RAC stands, due to its highly homogeneous, dense and dark-green stands. Results are discussed by relating the phenological, morphological and structural features of the giant reed stands and the adjacent vegetation with their optical traits. Weaknesses and strengths of the giant reed spectral discrimination are highlighted and implications of imagery selection for mapping purposes are argued based on present results.
METAL-POOR LITHIUM-RICH GIANTS IN THE RADIAL VELOCITY EXPERIMENT SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruchti, Gregory R.; Fulbright, Jon P.; Wyse, Rosemary F. G.
We report the discovery of eight lithium-rich field giants found in a high-resolution spectroscopic sample of over 700 metal-poor stars ([Fe/H] < -0.5) selected from the Radial Velocity Experiment survey. The majority of the Li-rich giants in our sample are very metal-poor ([Fe/H] {approx}< -1.9), and have a Li abundance (in the form of {sup 7}Li), A(Li) = log (n(Li)/n(H)) + 12, between 2.30 and 3.63, well above the typical upper red giant branch (RGB) limit, A(Li) < 0.5, while two stars, with A(Li) {approx} 1.7-1.8, show similar lithium abundances to normal giants at the same gravity. We further includedmore » two metal-poor, Li-rich globular cluster giants in our sample, namely the previously discovered M3-IV101 and newly discovered (in this work) M68-A96. This comprises the largest sample of metal-poor Li-rich giants to date. We performed a detailed abundance analysis of all stars, finding that the majority of our sample stars have elemental abundances similar to that of Li-normal halo giants. Although the evolutionary phase of each Li-rich giant cannot be definitively determined, the Li-rich phase is likely connected to extra mixing at the RGB bump or early asymptotic giant branch that triggers cool bottom processing in which the bottom of the outer convective envelope is connected to the H-burning shell in the star. The surface of a star becomes Li-enhanced as {sup 7}Be (which burns to {sup 7}Li) is transported to the stellar surface via the Cameron-Fowler mechanism. We discuss and discriminate among several models for the extra mixing that can cause Li production, given the detailed abundances of the Li-rich giants in our sample.« less
Impacts of temperature on giant panda habitat in the north Minshan Mountains.
Liu, Gang; Guan, Tianpei; Dai, Qiang; Li, Huixin; Gong, Minghao
2016-02-01
Understanding the impacts of meteorological factors on giant pandas is necessary for future conservation measures in response to global climate change. We integrated temperature data with three main habitat parameters (elevation, vegetation type, and bamboo species) to evaluate the influence of climate change on giant panda habitat in the northern Minshan Mountains using a habitat assessment model. Our study shows that temperature (relative importance = 25.1%) was the second most important variable influencing giant panda habitat excepting the elevation. There was a significant negative correlation between temperature and panda presence (ρ = -0.133, P < 0.05), and the temperature range preferred by giant pandas within the study area was 18-21°C, followed by 15-17°C and 22-24°C. The overall suitability of giant panda habitats will increase by 2.7%, however, it showed a opposite variation patterns between the eastern and northwestern region of the study area. Suitable and subsuitable habitats in the northwestern region of the study area, which is characterized by higher elevation and latitude, will increase by 18007.8 hm(2) (9.8% habitat suitability), while the eastern region will suffer a decrease of 9543.5 hm(2) (7.1% habitat suitability). Our results suggest that increasing areas of suitable giant panda habitat will support future giant panda expansion, and food shortage and insufficient living space will not arise as problems in the northwest Minshan Mountains, which means that giant pandas can adapt to climate change, and therefore may be resilient to climate change. Thus, for the safety and survival of giant pandas in the Baishuijiang Reserve, we propose strengthening the giant panda monitoring program in the west and improving the integrity of habitats to promote population dispersal with adjacent populations in the east.
Formation of terrestrial planets in eccentric and inclined giant planet systems
NASA Astrophysics Data System (ADS)
Sotiriadis, Sotiris; Libert, Anne-Sophie; Raymond, Sean N.
2018-06-01
Aims: Evidence of mutually inclined planetary orbits has been reported for giant planets in recent years. Here we aim to study the impact of eccentric and inclined massive giant planets on the terrestrial planet formation process, and investigate whether it can possibly lead to the formation of inclined terrestrial planets. Methods: We performed 126 simulations of the late-stage planetary accretion in eccentric and inclined giant planet systems. The physical and orbital parameters of the giant planet systems result from n-body simulations of three giant planets in the late stage of the gas disc, under the combined action of Type II migration and planet-planet scattering. Fourteen two- and three-planet configurations were selected, with diversified masses, semi-major axes (resonant configurations or not), eccentricities, and inclinations (including coplanar systems) at the dispersal of the gas disc. We then followed the gravitational interactions of these systems with an inner disc of planetesimals and embryos (nine runs per system), studying in detail the final configurations of the formed terrestrial planets. Results: In addition to the well-known secular and resonant interactions between the giant planets and the outer part of the disc, giant planets on inclined orbits also strongly excite the planetesimals and embryos in the inner part of the disc through the combined action of nodal resonance and the Lidov-Kozai mechanism. This has deep consequences on the formation of terrestrial planets. While coplanar giant systems harbour several terrestrial planets, generally as massive as the Earth and mainly on low-eccentric and low-inclined orbits, terrestrial planets formed in systems with mutually inclined giant planets are usually fewer, less massive (<0.5 M⊕), and with higher eccentricities and inclinations. This work shows that terrestrial planets can form on stable inclined orbits through the classical accretion theory, even in coplanar giant planet systems emerging from the disc phase.
Huang, Jie; Li, Yu-Zhi; Du, Lian-Ming; Yang, Bo; Shen, Fu-Jun; Zhang, He-Min; Zhang, Zhi-He; Zhang, Xiu-Yue; Yue, Bi-Song
2015-02-07
The giant panda (Ailuropoda melanoleuca) is a critically endangered species endemic to China. Microsatellites have been preferred as the most popular molecular markers and proven effective in estimating population size, paternity test, genetic diversity for the critically endangered species. The availability of the giant panda complete genome sequences provided the opportunity to carry out genome-wide scans for all types of microsatellites markers, which now opens the way for the analysis and development of microsatellites in giant panda. By screening the whole genome sequence of giant panda in silico mining, we identified microsatellites in the genome of giant panda and analyzed their frequency and distribution in different genomic regions. Based on our search criteria, a repertoire of 855,058 SSRs was detected, with mono-nucleotides being the most abundant. SSRs were found in all genomic regions and were more abundant in non-coding regions than coding regions. A total of 160 primer pairs were designed to screen for polymorphic microsatellites using the selected tetranucleotide microsatellite sequences. The 51 novel polymorphic tetranucleotide microsatellite loci were discovered based on genotyping blood DNA from 22 captive giant pandas in this study. Finally, a total of 15 markers, which showed good polymorphism, stability, and repetition in faecal samples, were used to establish the novel microsatellite marker system for giant panda. Meanwhile, a genotyping database for Chengdu captive giant pandas (n = 57) were set up using this standardized system. What's more, a universal individual identification method was established and the genetic diversity were analysed in this study as the applications of this marker system. The microsatellite abundance and diversity were characterized in giant panda genomes. A total of 154,677 tetranucleotide microsatellites were identified and 15 of them were discovered as the polymorphic and stable loci. The individual identification method and the genetic diversity analysis method in this study provided adequate material for the future study of giant panda.
Giant cell arteritis is a disorder that causes inflammation of your arteries, usually in the scalp, neck, and arms. ... arteries, which keeps blood from flowing well. Giant cell arteritis often occurs with another disorder called polymyalgia ...
Kumar, Anoop; Sherlin, Herald J; Ramani, Pratibha; Natesan, Anuja; Premkumar, Priya
2015-01-01
Multinucleated giant cells (MNCs) form an integral part of numerous bone and soft tissue tumors, tumor-like lesions and are often associated with granulomas of immunological and nonimmunological origin. The presence of various types of giant cells depends on the lesions in which they are present which are difficult to be diagnosed under routine histological techniques. Immunohistochemistry can be used for a better diagnosis and understanding of the origin of various giant cells using various markers of immune response like human leukocyte antigen-DR (HLA-DR) and those expressed on monocytes and macrophages like CD 68 and leukocyte common antigen (LCA). The study group consisted of 10 cases of giant cell tumor (GCT) of long bones, tuberculous granuloma, and giant cell granuloma to evaluate and analyze the expression pattern of LCA, CD 68, and HLA-DR in various giant cell lesions. Strong expression of CD 68 was observed in 80% of the lesions, strong and moderate expression of CD 45 observed in 70% of the lesions among and within the groups. In contrast, HLA-DR demonstrated negative expression in 80% of cases except for tuberculous granuloma where all the 10 cases showed moderate to strong immunoreactivity. CD 68 and CD 45 expression was found in central giant cell granuloma, peripheral giant cell granuloma and GCT, suggesting the origin from mononuclear phagocyte system and considering their clinical behavior of osteoclast type. High expressivity of HLA-DR in tuberculous granulomas which is an essential factor for presentation of the microbial antigen to CD 4 helper cells thus reassuring the fact that they are up-regulated in response to infection.
Virome comparisons in wild-diseased and healthy captive giant pandas.
Zhang, Wen; Yang, Shixing; Shan, Tongling; Hou, Rong; Liu, Zhijian; Li, Wang; Guo, Lianghua; Wang, Yan; Chen, Peng; Wang, Xiaochun; Feng, Feifei; Wang, Hua; Chen, Chao; Shen, Quan; Zhou, Chenglin; Hua, Xiuguo; Cui, Li; Deng, Xutao; Zhang, Zhihe; Qi, Dunwu; Delwart, Eric
2017-08-07
The giant panda (Ailuropoda melanoleuca) is a vulnerable mammal herbivore living wild in central China. Viral infections have become a potential threat to the health of these endangered animals, but limited information related to these infections is available. Using a viral metagenomic approach, we surveyed viruses in the feces, nasopharyngeal secretions, blood, and different tissues from a wild giant panda that died from an unknown disease, a healthy wild giant panda, and 46 healthy captive animals. The previously uncharacterized complete or near complete genomes of four viruses from three genera in Papillomaviridae family, six viruses in a proposed new Picornaviridae genus (Aimelvirus), two unclassified viruses related to posaviruses in Picornavirales order, 19 anelloviruses in four different clades of Anelloviridae family, four putative circoviruses, and 15 viruses belonging to the recently described Genomoviridae family were sequenced. Reflecting the diet of giant pandas, numerous insect virus sequences related to the families Iflaviridae, Dicistroviridae, Iridoviridae, Baculoviridae, Polydnaviridae, and subfamily Densovirinae and plant viruses sequences related to the families Tombusviridae, Partitiviridae, Secoviridae, Geminiviridae, Luteoviridae, Virgaviridae, and Rhabdoviridae; genus Umbravirus, Alphaflexiviridae, and Phycodnaviridae were also detected in fecal samples. A small number of insect virus sequences were also detected in the nasopharyngeal secretions of healthy giant pandas and lung tissues from the dead wild giant panda. Although the viral families present in the sick giant panda were also detected in the healthy ones, a higher proportion of papillomaviruses, picornaviruses, and anelloviruses reads were detected in the diseased panda. This viral survey increases our understanding of eukaryotic viruses in giant pandas and provides a baseline for comparison to viruses detected in future infectious disease outbreaks. The similar viral families detected in sick and healthy giant pandas indicate that these viruses result in commensal infections in most immuno-competent animals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Verne V.; Cunha, Katia; Shetrone, Matthew D.
2013-03-01
High-resolution H-band spectra of five bright field K, M, and MS giants, obtained from the archives of the Kitt Peak National Observatory Fourier transform spectrometer, are analyzed to determine chemical abundances of 16 elements. The abundances were derived via spectrum synthesis using the detailed linelist prepared for the Sloan Digital Sky Survey III Apache Point Galactic Evolution Experiment (APOGEE), which is a high-resolution near-infrared spectroscopic survey to derive detailed chemical abundance distributions and precise radial velocities for 100,000 red giants sampling all Galactic stellar populations. The red giant sample studied here was chosen to probe which chemical elements can bemore » derived reliably from the H-band APOGEE spectral region. These red giants consist of two K-giants ({alpha} Boo and {mu} Leo), two M-giants ({beta} And and {delta} Oph), and one thermally pulsing asymptotic giant branch (TP-AGB) star of spectral type MS (HD 199799). Measured chemical abundances include the cosmochemically important isotopes {sup 12}C, {sup 13}C, {sup 14}N, and {sup 16}O, along with Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. The K and M giants exhibit the abundance signature of the first dredge-up of CN-cycle material, while the TP-AGB star shows clear evidence of the addition of {sup 12}C synthesized during {sup 4}He-burning thermal pulses and subsequent third dredge-up. A comparison of the abundances derived here with published values for these stars reveals consistent results to {approx}0.1 dex. The APOGEE spectral region and linelist is thus well suited for probing both Galactic chemical evolution, as well as internal nucleosynthesis and mixing in populations of red giants via high-resolution spectroscopy.« less
Zhao, Huabin; Yang, Jian-Rong; Xu, Huailiang; Zhang, Jianzhi
2010-12-01
Although it belongs to the order Carnivora, the giant panda is a vegetarian with 99% of its diet being bamboo. The draft genome sequence of the giant panda shows that its umami taste receptor gene Tas1r1 is a pseudogene, prompting the proposal that the loss of the umami perception explains why the giant panda is herbivorous. To test this hypothesis, we sequenced all six exons of Tas1r1 in another individual of the giant panda and five other carnivores. We found that the open reading frame (ORF) of Tas1r1 is intact in all these carnivores except the giant panda. The rate ratio (ω) of nonsynonymous to synonymous substitutions in Tas1r1 is significantly higher for the giant panda lineage than for other carnivore lineages. Based on the ω change and the observed number of ORF-disrupting substitutions, we estimated that the functional constraint on the giant panda Tas1r1 was relaxed ∼ 4.2 Ma, with its 95% confidence interval between 1.3 and 10 Ma. Our estimate matches the approximate date of the giant panda's dietary switch inferred from fossil records. It is probable that the giant panda's decreased reliance on meat resulted in the dispensability of the umami taste, leading to Tas1r1 pseudogenization, which in turn reinforced its herbivorous life style because of the diminished attraction of returning to meat eating in the absence of Tas1r1. Nonetheless, additional factors are likely involved because herbivores such as cow and horse still retain an intact Tas1r1.
Zhao, Huabin; Yang, Jian-Rong; Xu, Huailiang; Zhang, Jianzhi
2010-01-01
Although it belongs to the order Carnivora, the giant panda is a vegetarian with 99% of its diet being bamboo. The draft genome sequence of the giant panda shows that its umami taste receptor gene Tas1r1 is a pseudogene, prompting the proposal that the loss of the umami perception explains why the giant panda is herbivorous. To test this hypothesis, we sequenced all six exons of Tas1r1 in another individual of the giant panda and five other carnivores. We found that the open reading frame (ORF) of Tas1r1 is intact in all these carnivores except the giant panda. The rate ratio (ω) of nonsynonymous to synonymous substitutions in Tas1r1 is significantly higher for the giant panda lineage than for other carnivore lineages. Based on the ω change and the observed number of ORF-disrupting substitutions, we estimated that the functional constraint on the giant panda Tas1r1 was relaxed ∼4.2 Ma, with its 95% confidence interval between 1.3 and 10 Ma. Our estimate matches the approximate date of the giant panda's dietary switch inferred from fossil records. It is probable that the giant panda's decreased reliance on meat resulted in the dispensability of the umami taste, leading to Tas1r1 pseudogenization, which in turn reinforced its herbivorous life style because of the diminished attraction of returning to meat eating in the absence of Tas1r1. Nonetheless, additional factors are likely involved because herbivores such as cow and horse still retain an intact Tas1r1. PMID:20573776
Fungal cell gigantism during mammalian infection.
Zaragoza, Oscar; García-Rodas, Rocío; Nosanchuk, Joshua D; Cuenca-Estrella, Manuel; Rodríguez-Tudela, Juan Luis; Casadevall, Arturo
2010-06-17
The interaction between fungal pathogens with the host frequently results in morphological changes, such as hyphae formation. The encapsulated pathogenic fungus Cryptococcus neoformans is not considered a dimorphic fungus, and is predominantly found in host tissues as round yeast cells. However, there is a specific morphological change associated with cryptococcal infection that involves an increase in capsule volume. We now report another morphological change whereby gigantic cells are formed in tissue. The paper reports the phenotypic characterization of giant cells isolated from infected mice and the cellular changes associated with giant cell formation. C. neoformans infection in mice resulted in the appearance of giant cells with cell bodies up to 30 microm in diameter and capsules resistant to stripping with gamma-radiation and organic solvents. The proportion of giant cells ranged from 10 to 80% of the total lung fungal burden, depending on infection time, individual mice, and correlated with the type of immune response. When placed on agar, giant cells budded to produce small daughter cells that traversed the capsule of the mother cell at the speed of 20-50 m/h. Giant cells with dimensions that approximated those in vivo were observed in vitro after prolonged culture in minimal media, and were the oldest in the culture, suggesting that giant cell formation is an aging-dependent phenomenon. Giant cells recovered from mice displayed polyploidy, suggesting a mechanism by which gigantism results from cell cycle progression without cell fission. Giant cell formation was dependent on cAMP, but not on Ras1. Real-time imaging showed that giant cells were engaged, but not engulfed by phagocytic cells. We describe a remarkable new strategy for C. neoformans to evade the immune response by enlarging cell size, and suggest that gigantism results from replication without fission, a phenomenon that may also occur with other fungal pathogens.
[Pathological and immunohistochemical analysis of giant cells of pancreas].
Miyake, T; Suda, K; Yamamura, A; Tada, Y
1997-10-01
Multinucleated giant cells in the pancreas (five giant cell carcinomas, a mucinous cystadenocarcinoma attended with many osteoclast-like giant cells, 42 invasive ductal carcinomas and 29 chronic pancreatitises) were examined. Three types of multinucleated giant cell were identified: epithelial type, coexpressive type, mesenchymal type. Epithelial type expressed epithelial markers, such as keratin and EMA in 23 ductal carcinomas. Coexpressive type expressed both epithelial markers and mesenchymal marker vimentin was in four ductal carcinomas. Mesenchymal type expressed mesenchymal markers, vimentin and CD68 in four osteoclastoid type giant cell carcinomas, the mucinous cystadenocarcinoma, six ductal carcinomas and ten chronic pancreatitises. Epithelial and coexpressive type were considered to be epithelial neoplastic origin, those had bizarre appearance and transitional area from definite adenocarcinoma area. Vimentin expression is associated with sarcomatous proliferation. Mesenchymal type was considered to be nonneoplastic and a certain type of macrophage polykaryons.
Giant Pulse Phenomena in a High Gain Erbium Doped Fiber Amplifier
NASA Technical Reports Server (NTRS)
Li, Stephen X.; Merritt, Scott; Krainak, Michael A.; Yu, Anthony
2018-01-01
High gain Erbium Doped Fiber Amplifiers (EDFAs), while revolutionizing optical communications, remain vulnerable to optical damage when unseeded, e.g. due to nonlinear effects that produce random pulses with high peak power, i.e. giant pulses. Giant pulses can damage the components in a high gain EDFA or external components and systems coupled to the EDFA. We explore the conditions under which a reflective, polarization-maintaining (PM), core-pumped high gain EDFA generates giant pulses, provide details on conditions under which normal pulses evolve into giant pulses, and provide results on the transient effects of giant pulses on amplifier's fused-fiber couplers, an effect which we call Fiber Overload Induced Leakage (FOIL). While FOIL's effect on fused-fiber couplers is temporary, its damage to forward pump lasers in a high gain EDFA can be permanent.
Giant Pulse Phenomena in a High Gain Erbium Doped Fiber Amplifier
NASA Technical Reports Server (NTRS)
Li, Stephen X.; Merritt, Scott; Krainak, Michael A.; Yu, Anthony
2018-01-01
High gain Erbium Doped Fiber Amplifiers (EDFAs) are vulnerable to optical damage when unseeded, e.g. due to nonlinear effects that produce random, spontaneous Q-switched (SQS) pulses with high peak power, i.e. giant pulses. Giant pulses can damage either the components within a high gain EDFA or external components and systems coupled to the EDFA. We explore the conditions under which a reflective, polarization-maintaining (PM), core-pumped high gain EDFA generates giant pulses, provide details on the evolution of normal pulses into giant pulses, and provide results on the transient effects of giant pulses on an amplifier's fused-fiber couplers, an effect which we call Fiber Overload Induced Leakage (FOIL). While FOIL's effect on fused-fiber couplers is temporary, its damage to forward pump lasers in a high gain EDFA can be permanent.
Loeffler, I Kati; Howard, JoGayle; Montali, Richard J; Hayek, Lee-Ann; Dubovi, Edward; Zhang, Zhihe; Yan, Qigui; Guo, Wanzhu; Wildt, David E
2007-12-01
Conservation strategies for the giant panda (Ailuropoda melanoleuca) include the development of a self-sustaining ex situ population. This study examined the potential significance of infectious pathogens in giant pandas ex situ. Serologic antibody titers against canine distemper virus (CDV), canine parvovirus (CPV), canine adenovirus (CAV), canine coronavirus (CCV), canine herpesvirus, canine parainfluenza virus (CPIV), Toxoplasma gondii, Neospora caninum, and Leptospira interrogans were measured in 44 samples taken from 19 giant pandas between 1998 and 2003 at the Chengdu Research Base of Giant Panda Breeding in Sichuan, China. Seroassays also included samples obtained in 2003 from eight red pandas (Ailurus fulgens) housed at the same institution. All individuals had been vaccinated with a Chinese canine vaccine that included modified live CDV, CPV, CAV, CCV, and CPIV. Positive antibody titers were found only against CDV, CPV, and T. gondii. Sera were negative for antibodies against the other six pathogens. Results indicate that the quality of the vaccine may not be reliable and that it should not be considered protective or safe in giant pandas and red pandas. Positive antibody titers against T. gondii were found in seven of the 19 giant pandas. The clinical, subclinical, or epidemiologic significance of infection with these pathogens via natural exposure or from modified live vaccines in giant pandas is unknown. Research in this area is imperative to sustaining a viable population of giant pandas and other endangered species.
Electrophysiological Recordings from the Giant Fiber System
Allen, Marcus J
2010-01-01
The giant fiber system (GFS) of Drosophila is a well-characterized neuronal circuit that mediates the escape response in the fly. It is one of the few adult neural circuits from which electrophysiological recordings can be made routinely. This article describes a simple procedure for stimulating the giant fiber neurons directly in the brain of the adult fly and obtaining recordings from the output muscles of the giant fiber system. PMID:20647357
Three cases giant panda attack on human at Beijing Zoo.
Zhang, Peixun; Wang, Tianbing; Xiong, Jian; Xue, Feng; Xu, Hailin; Chen, Jianhai; Zhang, Dianying; Fu, Zhongguo; Jiang, Baoguo
2014-01-01
Panda is regarded as Chinese national treasure. Most people always thought they were cute and just ate bamboo and had never imagined a panda could be vicious. Giant panda attacks on human are rare. There, we present three cases of giant panda attacks on humans at the Panda House at Beijing Zoo from September 2006 to June 2009 to warn people of the giant panda's potentially dangerous behavior.
Non-Small Cell Carcinoma of the Lung With Osteoclast-Like Giant Cells.
Dahm, Hans Helmut
2017-05-01
Carcinomas of the lung with benign osteoclast-like giant cells are rare. A literature search showed only 8 previously reported examples. These tumors resemble a giant cell tumor of bone. Many of these tumors, which occur in most epithelium-containing organs, are composed of an undifferentiated, sarcomatoid component that contains benign osteoclast-like giant cells and a conventional carcinoma. In some tumors the epithelial origin may be revealed by immunohistochemistry only; others lack any evidence of an epithelial component. A 59-year-old man had an inoperable tumor in the upper lobe of the left lung. The tumor did not respond to radiation therapy, and chemotherapy resulted in minimal relief of symptoms. Light microscopy of biopsy samples showed benign osteoclast-like giant cells distributed irregularly between proliferations of undifferentiated medium-sized tumor cells. Approximately one third of the undifferentiated tumor cells were cytokeratin AE1/AE3-positive, and a minor alveolar clear cell component of the tumor was cytokeratin 7-positive. The osteoclast-like giant cells were strongly CD68-positive. The clinical and histologic findings supported the diagnosis of a non-small cell carcinoma of the lung with benign osteoclast-like giant cells. The differential diagnosis is composed of giant cell carcinoma, carcinosarcoma, and mesenchymal tumors of the lung.
Kang, Dongwei; Wang, Xiaorong; Li, Shuang; Li, Junqing
2017-06-15
Artificial restoration is an important way to restore forests, but little is known about its effect on the habitat restoration of the giant panda. In the present study, we investigated the characteristics of artificial forest in the Wanglang Nature Reserve to determine whether through succession it has formed a suitable habitat for the giant panda. We compared artificial forest characteristics with those of natural habitat used by the giant panda. We found that the dominant tree species in artificial forest differed from those in the natural habitat. The artificial forest had lower plant species richness and diversity in the tree and shrub layers than did the latter, and its community structure was characterized by smaller tree and bamboo sizes, and fewer and lower bamboo clumps, but more trees and larger shrub sizes. The typical community collocation of artificial forest was a "Picea asperata + no-bamboo" model, which differs starkly from the giant panda's natural habitat. After several years of restoration, the artificial forest has failed to become a suitable habitat for the giant panda. Therefore, a simple way of planting individual trees cannot restore giant panda habitat; instead, habitat restoration should be based on the habitat requirements of the giant panda.
Subcellular preservation in giant ostracod sperm from an early Miocene cave deposit in Australia
Matzke-Karasz, Renate; Neil, John V.; Smith, Robin J.; Symonová, Radka; Mořkovský, Libor; Archer, Michael; Hand, Suzanne J.; Cloetens, Peter; Tafforeau, Paul
2014-01-01
Cypridoidean ostracods are one of a number of animal taxa that reproduce with giant sperm, up to 10 000 µm in length, but they are the only group to have aflagellate, filamentous giant sperm. The evolution and function of this highly unusual feature of reproduction with giant sperm are currently unknown. The hypothesis of long-term evolutionary persistence of this kind of reproduction has never been tested. We here report giant sperm discovered by propagation phase contrast X-ray synchrotron micro- and nanotomography, preserved in five Miocene ostracod specimens from Queensland, Australia. The specimens belong to the species Heterocypris collaris Matzke-Karasz et al. 2013 (one male and three females) and Newnhamia mckenziana Matzke-Karasz et al. 2013 (one female). The sperm are not only the oldest petrified gametes on record, but include three-dimensional subcellular preservation. We provide direct evidence that giant sperm have been a feature of this taxon for at least 16 Myr and provide an additional criterion (i.e. longevity) to test hypotheses relating to origin and function of giant sperm in the animal kingdom. We further argue that the highly resistant, most probably chitinous coats of giant ostracod sperm may play a role in delaying decay processes, favouring early mineralization of soft tissue. PMID:24827442
DISCOVERY OF SUPER-Li-RICH RED GIANTS IN DWARF SPHEROIDAL GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirby, Evan N.; Fu, Xiaoting; Deng, Licai
2012-06-10
Stars destroy lithium (Li) in their normal evolution. The convective envelopes of evolved red giants reach temperatures of millions of kelvin, hot enough for the {sup 7}Li(p, {alpha}){sup 4}He reaction to burn Li efficiently. Only about 1% of first-ascent red giants more luminous than the luminosity function bump in the red giant branch exhibit A(Li) > 1.5. Nonetheless, Li-rich red giants do exist. We present 15 Li-rich red giants-14 of which are new discoveries-among a sample of 2054 red giants in Milky Way dwarf satellite galaxies. Our sample more than doubles the number of low-mass, metal-poor ([Fe/H] {approx}< -0.7) Li-richmore » red giants, and it includes the most-metal-poor Li-enhanced star known ([Fe/H] = -2.82, A(Li){sub NLTE} = 3.15). Because most of the stars have Li abundances larger than the universe's primordial value, the Li in these stars must have been created rather than saved from destruction. These Li-rich stars appear like other stars in the same galaxies in every measurable regard other than Li abundance. We consider the possibility that Li enrichment is a universal phase of evolution that affects all stars, and it seems rare only because it is brief.« less
Wang, Tao; Chen, Zuqin; Xie, Yue; Hou, Rong; Wu, Qidun; Gu, Xiaobing; Lai, Weiming; Peng, Xuerong; Yang, Guangyou
2015-06-25
Cryptosporidium spp. have been extensively reported to cause significant diarrheal disease in humans and domestic animals. On the contrary, little information is available on the prevalence and characterization of Cryptosporidium in wild animals in China, especially in giant pandas. The aim of the present study was to detect Cryptosporidium infections and identify Cryptosporidium species at the molecular level in both captive and wild giant pandas in Sichuan province, China. Using a PCR approach, we amplified and sequenced the 18S rRNA gene from 322 giant pandas fecal samples (122 from 122 captive individuals and 200 collected from four habitats) in Sichuan province, China. The Cryptosporidium species/genotypes were identified via a BLAST comparison against published Cryptosporidium sequences available in GenBank followed by phylogenetic analysis. The results revealed that both captive and wild giant pandas were infected with a single Cryptosporidium species, C. andersoni, at a prevalence of 15.6% (19/122) and 0.5% (1/200) in captive and wild giant pandas, respectively. The present study revealed the existence of C. andersoni in both captive and wild giant panda fecal samples for the first time, and also provided useful fundamental data for further research on the molecular epidemiology and control of Cryptosporidium infection in giant pandas.
Sabine M. Huhndorf; Fernando A. Fernandez; Andrew N. Miller; D. Jean. Lodge
2003-01-01
A terrestrial wood-inhabiting pyrenomycete was collected numerous times in the Neotropics. It possesses superficial, clustered ascomata, large, distinctive ascus rings and strongly guttulate, fusiform ascospores. A second similar pyrenomycete was collected once in Costa Rica. They could not be placed into any known genus, so a new genus, Mirannulata, is described....
Ellis Cowling; KaDonna Randolph
2013-01-01
The purpose of this article is to encourage development of an enduring mutually beneficial collaboration between data and information analysts in the US Forest Serviceâs "Enhanced Forest Inventory and Analysis (FIA) Program" and forest pathologists and geneticists in the information exchange group (IEG) titled "Genetics and Breeding of Southern Forest...
A Study of the Growth, Yield, and Pest Resistance of Shortleaf X Slash Pine Hybrids
O.O. Wells; Ronald C. Schmidtling
1983-01-01
At age 10, shortleaf x slash pine hybrids performed relatively poorly when compared with loblolly pine in 10 plantings throughout the southern pine region. The hybrids excelled only in resistance to fusiform rust. Over all plantings, loblolly averaged about 5 feet taller than the hybrids and had almost twice as much volume. The hybrids' rust resistance may make...
Loblolly Pruning and Growth Characteristics at Different Planting Spacings
J.C. Adams; T.R. Clason
2002-01-01
In 1990, an abandoned farm pasture located on the Calhoun Research Station, Calhoun, Louisiana was planted in loblolly pine (Pinus taeda L.) at five different spacings. The spacings were 12X6, 12X8, 10X6, 16X6 and 24X6. Variables measured were DBH, height, branch diameter, height to first branch and first branch whorl, fusiform occurrence, and...
W. Henry McNab
1990-01-01
Cutover pine-hardwood sites in the Piedmont of central Georgia were prepared by prescribed burning or drum chopping and regenerated to loblolly pine (Pinus taeda L.) by planting or direct-seeding. Site preparation had little effect on soil physical properties. After an average of 12 years, trees were larger in dbh and total height, the merchantable...
KaDonna C. Randolph
2016-01-01
Southern pine tree improvement programs have been in operation in the southeastern United States since the 1950s. Their goal has been to improve volume growth, tree form, disease resistance, and wood quality in southern pines, particularly slash pine (Pinus elliottii) and loblolly pine (P. taeda). The disease of focus has been...
Word and picture matching: a PET study of semantic category effects.
Perani, D; Schnur, T; Tettamanti, M; Gorno-Tempini, M; Cappa, S F; Fazio, F
1999-03-01
We report two positron emission tomography (PET) studies of cerebral activation during picture and word matching tasks, in which we compared directly the processing of stimuli belonging to different semantic categories (animate and inanimate) in the visual (pictures) and verbal (words) modality. In the first experiment, brain activation was measured in eleven healthy adults during a same/different matching task for textures, meaningless shapes and pictures of animals and artefacts (tools). Activations for meaningless shapes when compared to visual texture discrimination were localized in the left occipital and inferior temporal cortex. Animal picture identification, either in the comparison with meaningless shapes and in the direct comparison with non-living pictures, involved primarily activation of occipital regions, namely the lingual gyrus bilaterally and the left fusiform gyrus. For artefact picture identification, in the same comparison with meaningless shape-baseline and in the direct comparison with living pictures, all activations were left hemispheric, through the dorsolateral frontal (Ba 44/6 and 45) and temporal (Ba 21, 20) cortex. In the second experiment, brain activation was measured in eight healthy adults during a same/different matching task for visually presented words referring to animals and manipulable objects (tools); the baseline was a pseudoword discrimination task. When compared with the tool condition, the animal condition activated posterior left hemispheric areas, namely the fusiform (Ba 37) and the inferior occipital gyrus (Ba 18). The right superior parietal lobule (Ba 7) and the left thalamus were also activated. The reverse comparison (tools vs animals) showed left hemispheric activations in the middle temporal gyrus (Ba 21) and precuneus (Ba 7), as well as bilateral activation in the occipital regions. These results are compatible with different brain networks subserving the identification of living and non-living entities; in particular, they indicate a crucial role of the left fusiform gyrus in the processing of animate entities and of the left middle temporal gyrus for tools, both from words and pictures. The activation of other areas, such as the dorsolateral frontal cortex, appears to be specific for the semantic access of tools only from pictures.
Exotic Earths: forming habitable worlds with giant planet migration.
Raymond, Sean N; Mandell, Avi M; Sigurdsson, Steinn
2006-09-08
Close-in giant planets (e.g., "hot Jupiters") are thought to form far from their host stars and migrate inward, through the terrestrial planet zone, via torques with a massive gaseous disk. Here we simulate terrestrial planet growth during and after giant planet migration. Several-Earth-mass planets also form interior to the migrating jovian planet, analogous to recently discovered "hot Earths." Very-water-rich, Earth-mass planets form from surviving material outside the giant planet's orbit, often in the habitable zone and with low orbital eccentricities. More than a third of the known systems of giant planets may harbor Earth-like planets.
Identifying Li-rich giants from low-resolution spectroscopic survey
NASA Astrophysics Data System (ADS)
Kumar, Yerra Bharat; Reddy, Bacham Eswar; Zhao, Gang
2018-04-01
In this paper we discuss our choice of a large unbiased sample used for the survey of red giant branch stars for finding Li-rich K giants, and the method used for identifying Li-rich candidates using low-resolution spectra. The sample has 2000 giants within a mass range of 0.8 to 3.0it{M}_{⊙}. Sample stars were selected from the Hipparcos catalogue with colour (B-V) and luminosity (it{L}/it{L}_{⊙}) in such way that the sample covers RGB evolution from its base towards RGB tip passing through first dredge-up and luminosity bump. Low-resolution (R ≈ 2000, 3500, 5000) spectra were obtained for all sample stars. Using core strength ratios of lines at Li I 6707 Å and its adjacent line Ca I 6717 Å we successfully identified 15 K giants with A(Li) > 1.5 dex, which are defined as Li-rich K giants. The results demonstrate the usefulness of low-resolution spectra to measure Li abundance and identify Li-rich giants from a large sample of stars in relatively shorter time periods.
[Clinicopathologic characteristics of hemangiopericytoma/solitary fibrous tumor with giant cells].
Wang, Hai-yan; Fan, Qin-he; Gong, Qi-xing; Wang, Zheng
2009-03-01
To study the pathological characteristics, diagnosis and differential diagnoses of hemangiopericytoma-solitary fibrous tumor with giant cells. Pathological characteristics of seven cases of orbital and extraorbital hemangiopericytoma-solitary fibrous tumors with giant cells were evaluated by HE and immunohistochemistry (EnVision method). Two cases were located in the orbit, one of which had recurred. Five cases were located in the extraorbital regions. Histologically, the tumors were well-circumscribed and composed of non-atypical, round to spindle cells with collagen deposition in the stroma. The tumors had prominent vasculatures and in areas, pseudovascular spaces lined by multinucleated giant cells lining which were also present in the stroma. Immunohistochemically, both neoplastic cells and multinucleate giant cells expressed CD34. Seven patients underwent tumor excision and were well and without tumor recurrence upon the clinical follow-up. Hemangiopericytoma-solitary fibrous tumor with giant cells is an intermediate soft tissue tumor. It typically involves the orbital or extraorbital regions. Histologically, the tumor should be distinguished from giant cell fibroblastoma, pleomorphic hyalinzing angiectatic tumor of soft part and angiomatoid fibrous histiocytoma.
Burrell, Caitlin; Zhang, Hemin; Li, Desheng; Wang, Chengdong; Li, Caiwu; Aitken-Palmer, Copper
2017-12-01
The giant panda ( Ailuropoda melanoleuca) is a high-profile threatened species with individuals in captivity worldwide. As a result of advances in captive animal management and veterinary medicine, the ex situ giant panda population is aging, and improved understanding of age-related changes is necessary. Urine and blood samples were collected in April and July 2015 and analyzed for complete blood count, serum biochemistry, and biochemical and microscopic urine analysis for all individuals sampled ( n = 7, 7-16 yr of age) from giant panda housed at the China Research and Conservation Centre for the Giant Panda in Bifengxia, Sichuan Province, China. Hematology and serum biochemistry values were similar to those previously reported for giant panda aged 2-20 yr and to Species360 (formerly International Species Information System) values. Urine was overall dilute (urine specific gravity range: 1.001-1.021), acellular, and acidic (pH range: 6-7). This is the first report of hematologic and serum biochemistry, with associated urinalysis values, in the giant panda aged 7-16 yr.
NASA Technical Reports Server (NTRS)
Buss, Richard H., Jr.; Tielens, A. G. G. M.; Snow, Theodore P.
1991-01-01
The mid-infrared spectra of carbon giant stars with hot companions are investigated in order to search for infrared emission bands from polycyclic aromatic hydrocarbons (PAH) in the envelopes of the C giants. A strong 8-micron emission band found in TU Tau = HD 38218 is attributed to the binary A star companion. It is argued that if the 8-micron feature in HD 38218 arises from PAHs, they seem to be important constituents of the C-giant shell, and they might be large compared with some interstellar PAHs. It is suggested that because no other IR spectra of C giants show clear PAH features, the greater flux of hard radiation in the binary HD 38218 seems likely to be responsible for the 8-micron feature and for its absence in many other C giants. Thus, PAHs could be present in the same amounts relative to SiC grains in the shells of similar single C giants, and the formation of carbonaceous grains could proceed through the formation of PAHs in C giant shells.
Kuiper Prize: Giant Planet Atmospheres
NASA Astrophysics Data System (ADS)
Ingersoll, Andrew P.
2007-10-01
The study of giant planet atmospheres is near and dear to me, for several reasons. First, the giant planets are photogenic; the colored clouds are great tracers, and one can make fantastic movies of the atmosphere in motion. Second, the giant planets challenge us with storms that last for hundreds of years and winds that blow faster the farther you go from the sun. Third, they remind us of Earth with their hurricanes, auroras, and lightning, but they also are the link to the 200 giant planets that have been discovered around other stars. This talk will cover the past, present, and future (one hopes) of giant planet research. I will review the surprises of the Voyager and Galileo eras, and will discuss what we are learning now from the Cassini orbiter. I will review the prospects for answering the outstanding questions like: Where's the water? What is providing the colors of the clouds? How deep do the features extend? Where do the winds get their energy? What is the role of the magnetic field? Finally, I will briefly discuss how extrasolar giant planets compare with objects in our own solar system.
GIANT 2.0: genome-scale integrated analysis of gene networks in tissues.
Wong, Aaron K; Krishnan, Arjun; Troyanskaya, Olga G
2018-05-25
GIANT2 (Genome-wide Integrated Analysis of gene Networks in Tissues) is an interactive web server that enables biomedical researchers to analyze their proteins and pathways of interest and generate hypotheses in the context of genome-scale functional maps of human tissues. The precise actions of genes are frequently dependent on their tissue context, yet direct assay of tissue-specific protein function and interactions remains infeasible in many normal human tissues and cell-types. With GIANT2, researchers can explore predicted tissue-specific functional roles of genes and reveal changes in those roles across tissues, all through interactive multi-network visualizations and analyses. Additionally, the NetWAS approach available through the server uses tissue-specific/cell-type networks predicted by GIANT2 to re-prioritize statistical associations from GWAS studies and identify disease-associated genes. GIANT2 predicts tissue-specific interactions by integrating diverse functional genomics data from now over 61 400 experiments for 283 diverse tissues and cell-types. GIANT2 does not require any registration or installation and is freely available for use at http://giant-v2.princeton.edu.
Carbon and nitrogen abundances in red giant stars in the globular cluster 47 Tucanae
NASA Technical Reports Server (NTRS)
Dickens, R. J.; Bell, R. A.; Gustafsson, B.
1979-01-01
The effects of changes in temperature, gravity, overall metal abundance, and carbon and nitrogen abundances have been investigated for model stellar spectra and colors representing globular-cluster giants of moderate metal deficiency. The results are presented in the form of spectral atlases and theoretical color-color diagrams. Using these results, approximate abundances of carbon and nitrogen have been derived for some red giant stars in 47 Tuc, from intermediate- and low-dispersion spectra and from intermediate- and narrow-band photometry. In all the normal giants studied, nitrogen is overabundant by up to about a factor of 5 (the precise value depends on the adopted carbon abundance), with different enhancements for different giants. The observational material is not sufficient to distinguish between a normal carbon abundance and a slight carbon depletion for the giant-branch stars, but carbon appears to be somewhat depleted in stars on the asymptotic giant branch. A most probable value of M/H = -0.8 for the overall cluster metal abundance is suggested from analysis of Stromgren photometry of red horizontal-branch stars.
The expression of ADAM12 (meltrin alpha) in human giant cell tumours of bone.
Tian, B L; Wen, J M; Zhang, M; Xie, D; Xu, R B; Luo, C J
2002-12-01
To examine the expression of ADAM12 (meltrin alpha), a member of the disintegrin and metalloprotease (ADAM) family, in human giant cell tumours of the bone, skeletal muscle tissue from human embryos, and human adult skeletal muscle tissue. ADAM12 mRNA was detected by reverse transcription polymerase chain reaction and in situ hybridisation. ADAM12 mRNA was detected in 14 of the 20 giant cell tumours of bone and in three of the six tumour cell cultures. The expression of ADAM12 in cells cultured from the tumour was linked to the presence of multinucleated giant cells. ADAM12 mRNA could not be detected in the five adult skeletal muscle tissue samples, although it was found in the two embryonic skeletal muscle tissue samples. ADAM12 mRNA was localised to the cytoplasm of multinucleated giant cells and some mononuclear stromal cells. These results indicate that multinucleated giant cells are formed by the cell fusion of mononuclear stromal cells in giant cell tumours of bone and that ADAM12 is involved in the cell fusion process.
Mimivirus: leading the way in the discovery of giant viruses of amoebae.
Colson, Philippe; La Scola, Bernard; Levasseur, Anthony; Caetano-Anollés, Gustavo; Raoult, Didier
2017-04-01
The accidental discovery of the giant virus of amoeba - Acanthamoeba polyphaga mimivirus (APMV; more commonly known as mimivirus) - in 2003 changed the field of virology. Viruses were previously defined by their submicroscopic size, which probably prevented the search for giant viruses, which are visible by light microscopy. Extended studies of giant viruses of amoebae revealed that they have genetic, proteomic and structural complexities that were not thought to exist among viruses and that are comparable to those of bacteria, archaea and small eukaryotes. The giant virus particles contain mRNA and more than 100 proteins, they have gene repertoires that are broader than those of other viruses and, notably, some encode translation components. The infection cycles of giant viruses of amoebae involve virus entry by amoebal phagocytosis and replication in viral factories. In addition, mimiviruses are infected by virophages, defend against them through the mimivirus virophage resistance element (MIMIVIRE) system and have a unique mobilome. Overall, giant viruses of amoebae, including mimiviruses, marseilleviruses, pandoraviruses, pithoviruses, faustoviruses and molliviruses, challenge the definition and classification of viruses, and have increasingly been detected in humans.
Three cases giant panda attack on human at Beijing Zoo
Zhang, Peixun; Wang, Tianbing; Xiong, Jian; Xue, Feng; Xu, Hailin; Chen, Jianhai; Zhang, Dianying; Fu, Zhongguo; Jiang, Baoguo
2014-01-01
Panda is regarded as Chinese national treasure. Most people always thought they were cute and just ate bamboo and had never imagined a panda could be vicious. Giant panda attacks on human are rare. There, we present three cases of giant panda attacks on humans at the Panda House at Beijing Zoo from September 2006 to June 2009 to warn people of the giant panda’s potentially dangerous behavior. PMID:25550978
NASA Astrophysics Data System (ADS)
Rawls, Meredith L.; Gaulme, Patrick; McKeever, Jean; Jackiewicz, Jason
2016-01-01
Thanks to advances in asteroseismology, red giants have become astrophysical laboratories for studying stellar evolution and probing the Milky Way. However, not all red giants show solar-like oscillations. It has been proposed that stronger tidal interactions from short-period binaries and increased magnetic activity on spotty giants are linked to absent or damped solar-like oscillations, yet each star tells a nuanced story. In this work, we characterize a subset of red giants in eclipsing binaries observed by Kepler. The binaries exhibit a range of orbital periods, solar-like oscillation behavior, and stellar activity. We use orbital solutions together with a suite of modeling tools to combine photometry and spectroscopy in a detailed analysis of tidal synchronization timescales, star spot activity, and stellar evolution histories. These red giants offer an unprecedented opportunity to test stellar physics and are important benchmarks for ensemble asteroseismology.
Giant pandas can discriminate the emotions of human facial pictures.
Li, Youxu; Dai, Qiang; Hou, Rong; Zhang, Zhihe; Chen, Peng; Xue, Rui; Feng, Feifei; Chen, Chao; Liu, Jiabin; Gu, Xiaodong; Zhang, Zejun; Qi, Dunwu
2017-08-16
Previous studies have shown that giant pandas (Ailuropoda melanoleuca) can discriminate face-like shapes, but little is known about their cognitive ability with respect to the emotional expressions of humans. We tested whether adult giant pandas can discriminate expressions from pictures of half of a face and found that pandas can learn to discriminate between angry and happy expressions based on global information from the whole face. Young adult pandas (5-7 years old) learned to discriminate expressions more quickly than older individuals (8-16 years old), but no significant differences were found between females and males. These results suggest that young adult giant pandas are better at discriminating emotional expressions of humans. We showed for the first time that the giant panda, can discriminate the facial expressions of humans. Our results can also be valuable for the daily care and management of captive giant pandas.
Mechanical model of giant photoexpansion in a chalcogenide glass and the role of photofluidity
NASA Astrophysics Data System (ADS)
Buisson, Manuel; Gueguen, Yann; Laniel, Romain; Cantoni, Christopher; Houizot, Patrick; Bureau, Bruno; Sangleboeuf, Jean-Christophe; Lucas, Pierre
2017-07-01
An analytical model is developed to describe the phenomenon of giant photoexpansion in chalcogenide glasses. The proposed micro-mechanical model is based on the description of photoexpansion as a new type of eigenstrain, i.e. a deformation analogous to thermal expansion induced without external forces. In this framework, it is the viscoelastic flow induced by photofluidity which enable the conversion of the self-equilibrated stress into giant photoexpansion. This simple approach yields good fits to experimental data and demonstrates, for the first time, that the photoinduced viscous flow actually enhances the giant photoexpansion or the giant photocontraction as it has been suggested in the literature. Moreover, it highlights that the shear relaxation time due to photofluidity controls the expansion kinetic. This model is the first step towards describing giant photoexpansion from the point of view of mechanics and it provides the framework for investigating this phenomenon via numerical simulations.
Metastatic giant basal cell carcinoma: a case report.
Bellahammou, Khadija; Lakhdissi, Asmaa; Akkar, Othman; Rais, Fadoua; Naoual, Benhmidou; Elghissassi, Ibrahim; M'rabti, Hind; Errihani, Hassan
2016-01-01
Basal cell carcinoma is the most common skin cancer, characterised by a slow growing behavior, metastasis are extremely rare, and it occurs in less than 0, 1% of all cases. Giant basal cell carcinoma is a rare form of basal cell carcinoma, more aggressive and defined as a tumor measuring more than 5 cm at its largest diameter. Only 1% of all basal cell carcinoma develops to a giant basal cell carcinoma, resulting of patient's negligence. Giant basal cell carcinoma is associated with higher potential of metastasis and even death, compared to ordinary basal cell carcinoma. We report a case of giant basal cell carcinoma metastaticin lung occurring in a 79 years old male patient, with a fatal evolution after one course of systemic chemotherapy. Giant basal cell carcinoma is a very rare entity, early detection of these tumors could prevent metastasis occurrence and improve the prognosis of this malignancy.
Imaging Active Giants and Comparisons to Doppler Imaging
NASA Astrophysics Data System (ADS)
Roettenbacher, Rachael
2018-04-01
In the outer layers of cool, giant stars, stellar magnetism stifles convection creating localized starspots, analogous to sunspots. Because they frequently cover much larger regions of the stellar surface than sunspots, starspots of giant stars have been imaged using a variety of techniques to understand, for example, stellar magnetism, differential rotation, and spot evolution. Active giants have been imaged using photometric, spectroscopic, and, only recently, interferometric observations. Interferometry has provided a way to unambiguously see stellar surfaces without the degeneracies experienced by other methods. The only facility presently capable of obtaining the sub-milliarcsecond resolution necessary to not only resolve some giant stars, but also features on their surfaces is the Center for High-Angular Resolution Astronomy (CHARA) Array. Here, an overview will be given of the results of imaging active giants and details on the recent comparisons of simultaneous interferometric and Doppler images.
Acromegalic gigantism, physicians and body snatching. Past or present?
de Herder, Wouter W
2012-09-01
The skeletons of 2 famous acromegalic giants: Charles Byrne (1761-1783) and Henri Cot = Joseph Dusorc (1883-1912) and the embalmed body of the famous acromegalic giant Édouard Beaupré (1881-1904) all ended up in the medical collections of museums despite the fact that these patients had never donated or even refused to donate their corpses, nor had their relatives given permission. The corpse of the acromegalic giant John Aasen (1890-1938) was voluntarily donated to a physician annex collector of trivia from acromegalic giants. The autopsy on the acromegalic giant John Turner (1874-1911) was performed during his funeral ceremony without the relatives being informed. Only recently, the acromegalic giant Alexander Sizonenko (1959-2012) was made a financial offer during his life in exchange for his body after his death. The case-histories of these 6 patients and also the circumstances that led to the (in-) voluntary donation of their bodies are reviewed.
Timing of the formation and migration of giant planets as constrained by CB chondrites
Johnson, Brandon C.; Walsh, Kevin J.; Minton, David A.; Krot, Alexander N.; Levison, Harold F.
2016-01-01
The presence, formation, and migration of giant planets fundamentally shape planetary systems. However, the timing of the formation and migration of giant planets in our solar system remains largely unconstrained. Simulating planetary accretion, we find that giant planet migration produces a relatively short-lived spike in impact velocities lasting ~0.5 My. These high-impact velocities are required to vaporize a significant fraction of Fe,Ni metal and silicates and produce the CB (Bencubbin-like) metal-rich carbonaceous chondrites, a unique class of meteorites that were created in an impact vapor-melt plume ~5 My after the first solar system solids. This indicates that the region where the CB chondrites formed was dynamically excited at this early time by the direct interference of the giant planets. Furthermore, this suggests that the formation of the giant planet cores was protracted and the solar nebula persisted until ~5 My. PMID:27957541
Timing of the formation and migration of giant planets as constrained by CB chondrites.
Johnson, Brandon C; Walsh, Kevin J; Minton, David A; Krot, Alexander N; Levison, Harold F
2016-12-01
The presence, formation, and migration of giant planets fundamentally shape planetary systems. However, the timing of the formation and migration of giant planets in our solar system remains largely unconstrained. Simulating planetary accretion, we find that giant planet migration produces a relatively short-lived spike in impact velocities lasting ~0.5 My. These high-impact velocities are required to vaporize a significant fraction of Fe,Ni metal and silicates and produce the CB (Bencubbin-like) metal-rich carbonaceous chondrites, a unique class of meteorites that were created in an impact vapor-melt plume ~5 My after the first solar system solids. This indicates that the region where the CB chondrites formed was dynamically excited at this early time by the direct interference of the giant planets. Furthermore, this suggests that the formation of the giant planet cores was protracted and the solar nebula persisted until ~5 My.
Graffigna, Guendalina; Bosio, Caterina; Cecchini, Isabella
2013-12-06
This study was aimed to explore parents' experience of assisting children affected by tuberous sclerosis complex (TSC) with subependymal giant-cell astrocytoma (SEGA) manifestation, in order to understand their caring needs and expectation of support. The study was designed according to the qualitative method of interpretative description and implied two sequential phases of data collection. The first phase was based on in-depth interviews with 18 Italian caregivers of children living with TSC. The second phase of the research was based on an online forum with 30 caregivers of children living with TSC. 48 Italian caregivers, assisting patients with TSC with SEGA manifestation have been involved in the study. When a TSC diagnosis is made, the whole family is affected psychologically. TSC has a great impact on families' quality of life and on their ability to cope with the disease and support the child's ability to recover and reach an acceptable level of well-being. Caregivers report the experience of losing control and the feeling of loneliness and abandon from the healthcare system. Families of children affected by TSC need targeted psychosocial assistance in order to support patients and caregivers and facilitate their social integration.
A combined optical, SEM and STM study of growth spirals on the polytypic cadmium iodide crystals
NASA Astrophysics Data System (ADS)
Singh, Rajendra; Samanta, S. B.; Narlikar, A. V.; Trigunayat, G. C.
2000-05-01
Some novel results of a combined sequential study of growth spirals on the basal surface of the richly polytypic CdI 2 crystals by optical microscopy, scanning electron microscopy (SEM) and scanning tunneling microscopy (STM) are presented and discussed. Under the high resolution and magnification achieved in the scanning electron microscope, the growth steps of large heights seen in the optical micrographs are found to have a large number of additional steps of smaller heights existing between any two adjacent large height growth steps. When further seen by a scanning tunneling microscope, which provides still higher resolution, sequences of unit substeps, each of height equal to the unit cell height of the underlying polytype, are revealed to exist on the surface. Several large steps also lie between the unit steps, with heights equal to an integral multiple of either the unit cell height of the underlying polytype or the thickness of a molecular sheet I-Cd-I. It is suggested that initially a giant screw dislocation may form by brittle fracture of the crystal platelet, which may gradually decompose into numerous unit dislocations during subsequent crystal growth.
The comparative effect of FUV, EUV and X-ray disc photoevaporation on gas giant separations
NASA Astrophysics Data System (ADS)
Jennings, Jeff; Ercolano, Barbara; Rosotti, Giovanni P.
2018-04-01
Gas giants' early (≲ 5 Myr) orbital evolution occurs in a disc losing mass in part to photoevaporation driven by high energy irradiance from the host star. This process may ultimately overcome viscous accretion to disperse the disc and halt migrating giants by starving their orbits of gas, imprinting on giant planet separations in evolved systems. Inversion of this distribution could then give insight into whether stellar FUV, EUV or X-ray flux dominates photoevaporation, constraining planet formation and disc evolution models. We use a 1D hydrodynamic code in population syntheses for gas giants undergoing Type II migration in a viscously evolving disc subject to either a primarily FUV, EUV or X-ray flux from a pre-solar T Tauri star. The photoevaporative mass loss profile's unique peak location and width in each energetic regime produces characteristic features in the distribution of giant separations: a severe dearth of ≲ 2 MJ planets interior to 5 AU in the FUV scenario, a sharp concentration of ≲ 3 MJ planets between ≈1.5 - 2 AU in the EUV case, and a relative abundance of ≈2 - 3.5 MJ giants interior to 0.5 AU in the X-ray model. These features do not resemble the observational sample of gas giants with mass constraints, though our results do show some weaker qualitative similarities. We thus assess how the differing photoevaporative profiles interact with migrating giants and address the effects of large model uncertainties as a step to better connect disc models with trends in the exoplanet population.
The comparative effect of FUV, EUV and X-ray disc photoevaporation on gas giant separations
NASA Astrophysics Data System (ADS)
Jennings, Jeff; Ercolano, Barbara; Rosotti, Giovanni P.
2018-07-01
Gas giants' early (≲5 Myr) orbital evolution occurs in a disc losing mass in part to photoevaporation driven by high energy irradiance from the host star. This process may ultimately overcome viscous accretion to disperse the disc and halt migrating giants by starving their orbits of gas, imprinting on giant planet separations in evolved systems. Inversion of this distribution could then give insight into whether the stellar FUV, EUV or X-ray flux dominates photoevaporation, constraining planet formation and disc evolution models. We use a 1D hydrodynamic code in population syntheses for gas giants undergoing Type II migration in a viscously evolving disc subject to either a primarily FUV, EUV or X-ray flux from a pre-solar T Tauri star. The photoevaporative mass loss profile's unique peak location and width in each energetic regime produces characteristic features in the distribution of giant separations: a severe dearth of ≲2 MJ planets interior to 5 au in the FUV scenario, a sharp concentration of ≲3 MJ planets between ≈1.5-2 au in the EUV case and a relative abundance of ≈2-3.5 MJ giants interior to 0.5 au in the X-ray model. These features do not resemble the observational sample of gas giants with mass constraints, although our results do show some weaker qualitative similarities. We thus assess how the differing photoevaporative profiles interact with migrating giants and address the effects of large model uncertainties as a step to better connect disc models with trends in the exoplanet population.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genda, H.; Kobayashi, H.; Kokubo, E., E-mail: genda@elsi.jp
In our solar system, Mars-sized protoplanets frequently collided with each other during the last stage of terrestrial planet formation, called the giant impact stage. Giant impacts eject a large amount of material from the colliding protoplanets into the terrestrial planet region, which may form debris disks with observable infrared excesses. Indeed, tens of warm debris disks around young solar-type stars have been observed. Here we quantitatively estimate the total mass of ejected materials during the giant impact stages. We found that ∼0.4 times the Earth’s mass is ejected in total throughout the giant impact stage. Ejected materials are ground down bymore » collisional cascade until micron-sized grains are blown out by radiation pressure. The depletion timescale of these ejected materials is determined primarily by the mass of the largest body among them. We conducted high-resolution simulations of giant impacts to accurately obtain the mass of the largest ejected body. We then calculated the evolution of the debris disks produced by a series of giant impacts and depleted by collisional cascades to obtain the infrared excess evolution of the debris disks. We found that the infrared excess is almost always higher than the stellar infrared flux throughout the giant impact stage (∼100 Myr) and is sometimes ∼10 times higher immediately after a giant impact. Therefore, giant impact stages would explain the infrared excess from most observed warm debris disks. The observed fraction of stars with warm debris disks indicates that the formation probability of our solar-system-like terrestrial planets is approximately 10%.« less
Spectral calibration in the mid-infrared: Challenges and solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sloan, G. C.; Herter, T. L.; Houck, J. R.
2015-01-01
We present spectra obtained with the Infrared Spectrograph on the Spitzer Space Telescope of 33 K giants and 20 A dwarfs to assess their suitability as spectrophotometric standard stars. The K giants confirm previous findings that the strength of the SiO absorption band at 8 μm increases for both later optical spectral classes and redder (B–V){sub 0} colors, but with considerable scatter. For K giants, the synthetic spectra underpredict the strengths of the molecular bands from SiO and OH. For these reasons, the assumed true spectra for K giants should be based on the assumption that molecular band strengths inmore » the infrared can be predicted accurately from neither optical spectral class or color nor synthetric spectra. The OH bands in K giants grow stronger with cooler stellar temperatures, and they are stronger than predicted by synthetic spectra. As a group, A dwarfs are better behaved and more predictable than the K giants, but they are more likely to show red excesses from debris disks. No suitable A dwarfs were located in parts of the sky continuously observable from Spitzer, and with previous means of estimating the true spectra of K giants ruled out, it was necessary to use models of A dwarfs to calibrate spectra of K giants from observed spectral ratios of the two groups and then use the calibrated K giants as standards for the full database of infrared spectra from Spitzer. We also describe a lingering artifact that affects the spectra of faint blue sources at 24 μm.« less
Comparative morphology of the muscles of mastication in the giant panda and the Asiatic black bear.
Endo, Hideki; Taru, Hajime; Yamamoto, Masako; Arishima, Kazuyoshi; Sasaki, Motoki
2003-06-01
The morphological differences in the muscles of mastication between the giant panda (Ailuropoda melanoleuca) and the Asiatic black bear (Ursus thibetanus) were sought to confirm the adaptational strategy of these muscles in the giant panda. We measured some skull characteristics and weighed the muscles of mastication, and macroscopically observed the muscles of mastication in the two species. The noticeable differences between the two species are classified as follows: (1) The size ratio of the zygomatic width was much larger in the giant panda than in the Asiatic black bear. (2) The weight ratio of the two pterygoid muscles was also much larger in the giant panda than in the Asiatic black bear. (3) The lateral slips of the temporal muscles are thicker and stronger in the Asiatic black bear than in the giant panda. (4) The deep layer of the masseter muscle was rostrocaudally divided, and a complicated running of tendons is observed in the giant panda. (5) The two pterygoid muscles were much larger and well-developed in the giant panda than in the Asiatic black bear. The points (1) and (4) may be related to the generation of the force necessary to chew the bamboo in the giant panda. We thought that the large mass of the masseter and temporal muscles are needed in this species. In the points of (2) and (5), the two pterygoid muscles were obviously different in form and weight ratio between the two species. We suggest that the two pterygoid muscles may act as an additional force generator to dorsoventrally press and crush bamboo stems.
Direct imaging search for the "missing link" in giant planet formation
NASA Astrophysics Data System (ADS)
Ngo, Henry; Mawet, Dimitri; Ruane, Garreth; Xuan, Wenhao; Bowler, Brendan; Cook, Therese; Zawol, Zoe
2018-01-01
While transit and radial velocity detection techniques have probed giant planet populations at close separations (within a few au), current direct imaging surveys are finding giant planets at separations of 10s-100s au. Furthermore, these directly imaged planets are very massive, including some with masses above the deuterium burning limit. It is not certain whether these objects represent the high mass end of planet formation scenarios or the low mass end of star formation. We present a direct imaging survey to search for the "missing link" population between the close-in RV and transiting giant planets and the extremely distant directly imaged giant planets (i.e. giant planets between 5-10 au). Finding and characterizing this population allows for comparisons with the formation models of closer-in planets and connects directly imaged planets with closer-in planets in semi-major axis phase space. In addition, microlensing surveys have suggested a large reservoir of giant planets exist in this region. To find these "missing link" giant planets, our survey searches for giant planets around M-stars. The ubiquity of M-stars provide a large number of nearby targets and their L-band contrast with planets allow for sensitivities to smaller planet masses than surveys conducted at shorter wavelengths. Along with careful target selection, we use Keck's L-band vector vortex coronagraph to enable sensitivities of a few Jupiter masses as close as 4 au to their host stars. We present our completed 2-year survey targeting 200 young (10-150 Myr), nearby M-stars and our ongoing work to follow-up over 40 candidate objects.
Ma, Ben; Lei, Shuo; Qing, Qin; Wen, Yali
2018-01-01
Simple Summary This study evaluates the effect of local, regional, and global factors on the recovery of giant panda populations and their habitat, questioning the recent downgrading in the conservation status of this iconic species. We highlight the actions taken over the last decade, which were primarily local scale changes and efforts for protecting pandas. Broader regional development and global climate change are expected to negatively affect current population trends in the long-term; this phenomenon has been documented in other wildlife populations also showing a recent recovery. Thus, we call for a revision of the assessments stipulated by the International Union for Conservation of Nature to incorporate broader potential impacts in predicting the future survival of threatened populations, thereby, ensuring that appropriate and objective protection measures are implemented well in advance. Abstract The International Union for Conservation of Nature (IUCN) reduced the threat status of the giant panda from “endangered” to “vulnerable” in September 2016. In this study, we analyzed current practices for giant panda conservation at regional and local environmental scales, based on recent reports of giant panda protection efforts in Sichuan Province, China, combined with the survey results from 927 households within and adjacent to the giant panda reserves in this area. The results showed that household attitudes were very positive regarding giant panda protection efforts. Over the last 10 years, farmers’ dependence on the natural resources provided by giant panda reserves significantly decreased. However, socio-economic development increased resource consumption, and led to climate change, habitat fragmentation, environmental pollution, and other issues that placed increased pressure on giant panda populations. This difference between local and regional scales must be considered when evaluating the IUCN status of giant pandas. While the status of this species has improved in the short-term due to positive local attitudes, large-scale socio-economic development pressure could have long-term negative impacts. Consequently, the IUCN assessment leading to the classification of giant panda as “vulnerable” instead of “endangered”, should not affect its conservation intensity and effort, as such actions could negatively impact population recovery efforts, leading to the extinction of this charismatic species. PMID:29751488
Giant aerosol observations with cloud radar: methodology and effects
NASA Astrophysics Data System (ADS)
Guma Claramunt, Pilar; Madonna, Fabio; Amodeo, Aldo; Bauer-Pfundstein, Matthias; Papagiannopoulos, Nikolaos; Pappalardo, Gelsomina
2017-04-01
Giant aerosol particles can act as Giant Cloud Condensation Nuclei (GCCN), and determine the droplet concentration at the cloud formation, the clouds albedo and lifetime, and the precipitation formation. In addition, depending on their composition, they can also act as IN. It is not yet clear if they can also expedite rain processes. The main techniques used nowadays in measuring aerosols, which are lidar and sun photometer, cannot retrieve aerosol microphysical properties for particles bigger than a few microns, which means that they do not account for giant aerosols. Therefore, the distribution and impact in the atmosphere and climate of these particles is not well known and the aerosol transport models largely underestimate them. Recent studies have demonstrated that cloud radars are able to detect ultragiant volcanic aerosols also at a large distance from the source. In this study, an innovative methodology for the observation of giant aerosols using the millimeter wavelength radar has been developed and applied to 6 years of measurements carried out at CNR-IMAA Atmospheric Observatory (CIAO), in Potenza, South Italy, finding more than 40 giant aerosol events per year and a good agreement with the aerosol climatologic data. Besides, the effects of giant aerosols in the local and regional meteorology have been studied by correlating several atmospheric variables in the time period following the observation of giant particles. The meteorological situation has been assessed through the data classification into cases characterized by different pressure vertical velocities at the upper atmosphere (400 hPa), Giant aerosols are correlated to lower values of the Cloud Optical Depth (COD) in presence of stable or unstable atmospheric conditions while higher values are found for an intermediate stability. The giant aerosols effects on the Liquid Water Path (LWP) are closely linked to those in the Aerosol Optical Thickness (AOD). The highest increases in the LWP occurs together with the increases of AOD. Finally, the effects of giant aerosols on precipitation at a regional scale have been studied. The observation of giant aerosols can be correlated to an enhancement of the accumulated precipitation, which is quite relevant in the first 12 hours after their observation, as well as of the maximum rain rate in presence of the unstable atmospheric conditions. The increase in the maximum rain rate is instead more remarkable in correlation with stable atmospheric conditions and mainly during the first 6 hours after their observations.
Entry Probe Missions to the Giant Planets
NASA Astrophysics Data System (ADS)
Spilker, T. R.; Atkinson, D. H.; Atreya, S. K.; Colaprete, A.; Cuzzi, J. N.; Spilker, L. J.; Coustenis, A.; Venkatapathy, E.; Reh, K.; Frampton, R.
2009-12-01
The primary motivation for in situ probe missions to the outer planets derives from the need to constrain models of solar system formation and the origin and evolution of atmospheres, to provide a basis for comparative studies of the gas and ice giants, and to provide a valuable link to extrasolar planetary systems. As time capsules of the solar system, the gas and ice giants offer a laboratory to better understand the atmospheric chemistries, dynamics, and interiors of all the planets, including Earth; and it is within the atmospheres and interiors of the giant planets that material diagnostic of the epoch of formation can be found, providing clues to the local chemical and physical conditions existing at the time and location at which each planet formed. Measurements of current conditions and processes in those atmospheres inform us about their evolution since formation and into the future, providing information about our solar system’s evolution, and potentially establishing a framework for recognizing extrasolar giant planets in different stages of their evolution. Detailed explorations and comparative studies of the gas and ice giant planets will provide a foundation for understanding the integrated dynamic, physical, and chemical origins, formation, and evolution of the solar system. To allow reliable conclusions from comparative studies of gas giants Jupiter and Saturn, an entry probe mission to Saturn is needed to complement the Galileo Probe measurements at Jupiter. These measurements provide the basis for a significantly better understanding of gas giant formation in the context of solar system formation. A probe mission to either Uranus or Neptune will be needed for comparative studies of the gas giants and the ice giants, adding knowledge of ice giant origins and thus making further inroads in our understanding of solar system formation. Recognizing Jupiter’s spatial variability and the need to understand its implications for global composition, returning to Jupiter with a follow-on probe mission, possibly with technological advances allowing a multiple-probe mission, would make use of data from the Juno mission to guide entry location and measurement suite selection. This poster summarizes a white paper prepared for the Space Studies Board’s 2013-2022 Planetary Science Decadal Survey. It discusses specific measurements to be made by planetary probes at the giant planets, rationales and priorities for those measurements, and locations within the destination atmospheres where the measurements are best made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohori, N.P.; Sciurba, F.C.; Owens, G.R.
We report four cases of giant-cell interstitial pneumonia that occurred in association with exposure to hard metals. All patients presented with chronic interstitial lung disease and had open-lung biopsies that revealed marked interstitial fibrosis, cellular interstitial infiltrates, and prominent intraalveolar macrophages as well as giant cells displaying cellular cannibalism. We also review the literature to determine the sensitivity and specificity of giant-cell interstitial pneumonia for hard-metal pneumoconiosis. Although hard-metal pneumoconiosis may take the form of usual interstitial pneumonia, desquamative interstitial pneumonia, and giant-cell interstitial pneumonia, the finding of giant-cell interstitial pneumonia is almost pathognomonic of hard-metal disease and should provokemore » an investigation of occupational exposure. 25 references.« less
Tests of the Giant Impact Hypothesis
NASA Technical Reports Server (NTRS)
Jones, J. H.
1998-01-01
The giant impact hypothesis has gained popularity as a means of explaining a volatile-depleted Moon that still has a chemical affinity to the Earth. As Taylor's Axiom decrees, the best models of lunar origin are testable, but this is difficult with the giant impact model. The energy associated with the impact would be sufficient to totally melt and partially vaporize the Earth. And this means that there should he no geological vestige of Barber times. Accordingly, it is important to devise tests that may be used to evaluate the giant impact hypothesis. Three such tests are discussed here. None of these is supportive of the giant impact model, but neither do they disprove it.
Sarmento, Dmitry José de Santana; Carvalho, Sérgio Henrique Gonçalves de; Araújo, José Cadmo Wanderley Peregrino de; Carvalho, Marianne de Vasconcelos; Silveira, Éricka Janine Dantas da
2017-01-01
We report a 35-year-old mulatto female patient with neurofibromatosis Type 1 who presented with facial asymmetry. The patient had two lesions: florid cemento-osseous dysplasia associated with peripheral giant cell granuloma. She was referred for surgical treatment of the peripheral giant cell granuloma and the florid cemento-osseous dysplasia was treated conservatively by a multidisciplinary team. So far, no changes have been observed in the patient's clinical status. We observed no recurrence of peripheral giant cell granuloma. To the best of our knowledge, the present case is the first report of a patient with neurofibromatosis Type 1 associated with a giant cell lesion and florid cemento-osseous dysplasia.
Sarmento, Dmitry José de Santana; de Carvalho, Sérgio Henrique Gonçalves; de Araújo Filho, José Cadmo Wanderley Peregrino; Carvalho, Marianne de Vasconcelos; da Silveira, Éricka Janine Dantas
2017-01-01
We report a 35-year-old mulatto female patient with neurofibromatosis Type 1 who presented with facial asymmetry. The patient had two lesions: florid cemento-osseous dysplasia associated with peripheral giant cell granuloma. She was referred for surgical treatment of the peripheral giant cell granuloma and the florid cemento-osseous dysplasia was treated conservatively by a multidisciplinary team. So far, no changes have been observed in the patient's clinical status. We observed no recurrence of peripheral giant cell granuloma. To the best of our knowledge, the present case is the first report of a patient with neurofibromatosis Type 1 associated with a giant cell lesion and florid cemento-osseous dysplasia. PMID:28538890
Giant cell phlebitis: a potentially lethal clinical entity.
Kunieda, Takeshige; Murayama, Masanori; Ikeda, Tsuneko; Yamakita, Noriyoshi
2012-08-01
An 83-year-old woman presented to us with a 4-week history of general malaise, subjective fever and lower abdominal pain. Despite the intravenous infusion of antibiotics, her blood results and physical condition worsened, resulting in her sudden death. Autopsy study revealed that the medium-sized veins of the mesentery were infiltrated by eosinophil granulocytes, lymphocytes, macrophages and multinucleated giant cells; however, the arteries were not involved. Microscopically, venous giant cell infiltration was observed in the gastrointestinal tract, bladder, retroperitoneal tissues and myocardium. The final diagnosis was giant cell phlebitis, a rare disease of unknown aetiology. This case demonstrates for the first time that giant cell phlebitis involving extra-abdominal organs, including hearts, can cause serious morbidity.
Carbon and nitrogen abundances in the giant stars of the globular clusters M3 and M13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suntzeff, N.B.
Carbon and nitrogen abundances, as well as the strengths of calcium II H and K and the ..delta..v = 0 cyanogen band, have been measured in red giant stars in the globular clusters M3 and M13. The data consist of spectrophotometric scans of low resolution (10 A) of 29 giants in M3 and 35 giants in M13 in the wavelength region 3000--5000 A.
Wylie, G.D.; Casazza, Michael L.; Gregory, C.J.; Halstead, B.J.
2010-01-01
The Giant Gartersnake (Thamnophis gigas) is restricted to wetlands of the Central Valley of California. Because of wetland loss in this region, the Giant Gartersnake is both federally and state listed as threatened. We conducted markrecapture studies of four populations of the Giant Gartersnake in the Sacramento Valley (northern Central Valley), California, to obtain baseline data on abundance and density to assist in recovery planning for this species. We sampled habitats that ranged from natural, unmanaged marsh to constructed managed marshes and habitats associated with rice agriculture. Giant Gartersnake density in a natural wetland (1.90 individuals/ha) was an order of magnitude greater than in a managed wetland subject to active season drying (0.17 individuals/ha). Sex ratios at all sites were not different from 1 1, and females were longer and heavier than males. Females had greater body condition than males, and individuals at the least disturbed sites had significantly greater body condition than individuals at the managed wetland. The few remaining natural wetlands in the Central Valley are important, productive habitat for the Giant Gartersnake, and should be conserved and protected. Wetlands constructed and restored for the Giant Gartersnake should be modeled after the permanent, shallow wetlands representative of historic Giant Gartersnake habitat. ?? 2010 Society for the Study of Amphibians and Reptiles.
Territoriality of Giant Otter Groups in an Area with Seasonal Flooding
Leuchtenberger, Caroline; Magnusson, William E.; Mourão, Guilherme
2015-01-01
Territoriality carries costs and benefits, which are commonly affected by the spatial and temporal abundance and predictability of food, and by intruder pressure. Giant otters (Pteronura brasiliensis) live in groups that defend territories along river channels during the dry season using chemical signals, loud vocalizations and agonistic encounters. However, little is known about the territoriality of giant otters during the rainy season, when groups leave their dry season territories and follow fish dispersing into flooded areas. The objective of this study was to analyze long-term territoriality of giant otter groups in a seasonal environment. The linear extensions of the territories of 10 giant otter groups were determined based on locations of active dens, latrines and scent marks in each season. Some groups overlapped the limits of neighboring territories. The total territory extent of giant otters was correlated with group size in both seasons. The extent of exclusive territories of giant otter groups was negatively related to the number of adults present in adjacent groups. Territory fidelity ranged from 0 to 100% between seasons. Some groups maintained their territory for long periods, which demanded constant effort in marking and re-establishing their territories during the wet season. These results indicate that the defense capacity of groups had an important role in the maintenance of giant otter territories across seasons, which may also affect the reproductive success of alpha pairs. PMID:25955248
Provirophages and transpovirons as the diverse mobilome of giant viruses.
Desnues, Christelle; La Scola, Bernard; Yutin, Natalya; Fournous, Ghislain; Robert, Catherine; Azza, Saïd; Jardot, Priscilla; Monteil, Sonia; Campocasso, Angélique; Koonin, Eugene V; Raoult, Didier
2012-10-30
A distinct class of infectious agents, the virophages that infect giant viruses of the Mimiviridae family, has been recently described. Here we report the simultaneous discovery of a giant virus of Acanthamoeba polyphaga (Lentille virus) that contains an integrated genome of a virophage (Sputnik 2), and a member of a previously unknown class of mobile genetic elements, the transpovirons. The transpovirons are linear DNA elements of ~7 kb that encompass six to eight protein-coding genes, two of which are homologous to virophage genes. Fluorescence in situ hybridization showed that the free form of the transpoviron replicates within the giant virus factory and accumulates in high copy numbers inside giant virus particles, Sputnik 2 particles, and amoeba cytoplasm. Analysis of deep-sequencing data showed that the virophage and the transpoviron can integrate in nearly any place in the chromosome of the giant virus host and that, although less frequently, the transpoviron can also be linked to the virophage chromosome. In addition, integrated fragments of transpoviron DNA were detected in several giant virus and Sputnik genomes. Analysis of 19 Mimivirus strains revealed three distinct transpovirons associated with three subgroups of Mimiviruses. The virophage, the transpoviron, and the previously identified self-splicing introns and inteins constitute the complex, interconnected mobilome of the giant viruses and are likely to substantially contribute to interviral gene transfer.
Provirophages and transpovirons as the diverse mobilome of giant viruses
Desnues, Christelle; La Scola, Bernard; Yutin, Natalya; Fournous, Ghislain; Robert, Catherine; Azza, Saïd; Jardot, Priscilla; Monteil, Sonia; Campocasso, Angélique; Koonin, Eugene V.; Raoult, Didier
2012-01-01
A distinct class of infectious agents, the virophages that infect giant viruses of the Mimiviridae family, has been recently described. Here we report the simultaneous discovery of a giant virus of Acanthamoeba polyphaga (Lentille virus) that contains an integrated genome of a virophage (Sputnik 2), and a member of a previously unknown class of mobile genetic elements, the transpovirons. The transpovirons are linear DNA elements of ∼7 kb that encompass six to eight protein-coding genes, two of which are homologous to virophage genes. Fluorescence in situ hybridization showed that the free form of the transpoviron replicates within the giant virus factory and accumulates in high copy numbers inside giant virus particles, Sputnik 2 particles, and amoeba cytoplasm. Analysis of deep-sequencing data showed that the virophage and the transpoviron can integrate in nearly any place in the chromosome of the giant virus host and that, although less frequently, the transpoviron can also be linked to the virophage chromosome. In addition, integrated fragments of transpoviron DNA were detected in several giant virus and Sputnik genomes. Analysis of 19 Mimivirus strains revealed three distinct transpovirons associated with three subgroups of Mimiviruses. The virophage, the transpoviron, and the previously identified self-splicing introns and inteins constitute the complex, interconnected mobilome of the giant viruses and are likely to substantially contribute to interviral gene transfer. PMID:23071316
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaulme, P.; McKeever, J.; Rawls, M. L.
2013-04-10
Red giant stars are proving to be an incredible source of information for testing models of stellar evolution, as asteroseismology has opened up a window into their interiors. Such insights are a direct result of the unprecedented data from space missions CoRoT and Kepler as well as recent theoretical advances. Eclipsing binaries are also fundamental astrophysical objects, and when coupled with asteroseismology, binaries provide two independent methods to obtain masses and radii and exciting opportunities to develop highly constrained stellar models. The possibility of discovering pulsating red giants in eclipsing binary systems is therefore an important goal that could potentiallymore » offer very robust characterization of these systems. Until recently, only one case has been discovered with Kepler. We cross-correlate the detected red giant and eclipsing-binary catalogs from Kepler data to find possible candidate systems. Light-curve modeling and mean properties measured from asteroseismology are combined to yield specific measurements of periods, masses, radii, temperatures, eclipse timing variations, core rotation rates, and red giant evolutionary state. After using three different techniques to eliminate false positives, out of the 70 systems common to the red giant and eclipsing-binary catalogs we find 13 strong candidates (12 previously unknown) to be eclipsing binaries, one to be a non-eclipsing binary with tidally induced oscillations, and 10 more to be hierarchical triple systems, all of which include a pulsating red giant. The systems span a range of orbital eccentricities, periods, and spectral types F, G, K, and M for the companion of the red giant. One case even suggests an eclipsing binary composed of two red giant stars and another of a red giant with a {delta}-Scuti star. The discovery of multiple pulsating red giants in eclipsing binaries provides an exciting test bed for precise astrophysical modeling, and follow-up spectroscopic observations of many of the candidate systems are encouraged. The resulting highly constrained stellar parameters will allow, for example, the exploration of how binary tidal interactions affect pulsations when compared to the single-star case.« less
CARBON ABUNDANCES FOR RED GIANTS IN THE DRACO DWARF SPHEROIDAL GALAXY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shetrone, Matthew D.; Stanford, Laura M.; Smith, Graeme H.
2013-05-15
Measurements of [C/Fe], [Ca/H], and [Fe/H] have been derived from Keck I LRISb spectra of 35 giants in the Draco dwarf spheroidal galaxy. The iron abundances are derived by a spectrum synthesis modeling of the wavelength region from 4850 to 5375 A, while calcium and carbon abundances are obtained by fitting the Ca II H and K lines and the CH G band, respectively. A range in metallicity of -2.9 {<=} [Fe/H] {<=} -1.6 is found within the giants sampled, with a good correlation between [Fe/H] and [Ca/H]. The great majority of stars in the sample would be classified asmore » having weak absorption in the {lambda}3883 CN band, with only a small scatter in band strengths at a given luminosity on the red giant branch. In this sense the behavior of CN among the Draco giants is consistent with the predominantly weak CN bands found among red giants in globular clusters of metallicity [Fe/H] < -1.8. Over half of the giants in the Draco sample have [Fe/H] > -2.25, and among these there is a trend for the [C/Fe] abundance to decrease with increasing luminosity on the red giant branch. This is a phenomenon that is also seen among both field and globular cluster giants of the Galactic halo, where it has been interpreted as a consequence of deep mixing of material between the base of the convective envelope and the outer limits of the hydrogen-burning shell. However, among the six Draco giants observed that turn out to have metallicities -2.65 < [Fe/H] < -2.25 there is no such trend seen in the carbon abundance. This may be due to small sample statistics or primordial inhomogeneities in carbon abundance among the most metal-poor Draco stars. We identify a potential carbon-rich extremely metal-poor star in our sample. This candidate will require follow-up observations for confirmation.« less
Fungal Cell Gigantism during Mammalian Infection
Zaragoza, Oscar; García-Rodas, Rocío; Nosanchuk, Joshua D.; Cuenca-Estrella, Manuel; Rodríguez-Tudela, Juan Luis; Casadevall, Arturo
2010-01-01
The interaction between fungal pathogens with the host frequently results in morphological changes, such as hyphae formation. The encapsulated pathogenic fungus Cryptococcus neoformans is not considered a dimorphic fungus, and is predominantly found in host tissues as round yeast cells. However, there is a specific morphological change associated with cryptococcal infection that involves an increase in capsule volume. We now report another morphological change whereby gigantic cells are formed in tissue. The paper reports the phenotypic characterization of giant cells isolated from infected mice and the cellular changes associated with giant cell formation. C. neoformans infection in mice resulted in the appearance of giant cells with cell bodies up to 30 µm in diameter and capsules resistant to stripping with γ-radiation and organic solvents. The proportion of giant cells ranged from 10 to 80% of the total lung fungal burden, depending on infection time, individual mice, and correlated with the type of immune response. When placed on agar, giant cells budded to produce small daughter cells that traversed the capsule of the mother cell at the speed of 20–50 m/h. Giant cells with dimensions that approximated those in vivo were observed in vitro after prolonged culture in minimal media, and were the oldest in the culture, suggesting that giant cell formation is an aging-dependent phenomenon. Giant cells recovered from mice displayed polyploidy, suggesting a mechanism by which gigantism results from cell cycle progression without cell fission. Giant cell formation was dependent on cAMP, but not on Ras1. Real-time imaging showed that giant cells were engaged, but not engulfed by phagocytic cells. We describe a remarkable new strategy for C. neoformans to evade the immune response by enlarging cell size, and suggest that gigantism results from replication without fission, a phenomenon that may also occur with other fungal pathogens. PMID:20585557
Resting site use of giant pandas in Wanglang Nature Reserve.
Kang, Dongwei; Wang, Xiaorong; Li, Junqing
2017-10-23
Little is known about the resting sites used by the giant panda (Ailuropoda melanoleuca), which restricts our understanding of their resting habits and limits conservation efforts. To enhance our understanding of resting site requirements and factors affecting the resting time of giant pandas, we investigated the characteristics of resting sites in the Wanglang Nature Reserve, Sichuan Province, China. The results indicated that the resting sites of giant pandas were characterised by a mean slope of 21°, mean nearest tree size of 53.75 cm, mean nearest shrub size of 2.82 cm, and mean nearest bamboo number of 56. We found that the resting sites were closer to bamboo than to trees and shrubs, suggesting that the resting site use of giant pandas is closely related to the presence of bamboo. Considering that giant pandas typically rest near a large-sized tree, protection of large trees in the forests is of considerable importance for the conservation of this species. Furthermore, slope was found to be an important factor affecting the resting time of giant pandas, as they tended to rest for a relatively longer time in sites with a smaller degree of slope.
Tun, Hein Min; Mauroo, Nathalie France; Yuen, Chan San; Ho, John Chi Wang; Wong, Mabel Ting; Leung, Frederick Chi-Ching
2014-01-01
Recent studies have described the bacterial community residing in the guts of giant pandas, together with the presence of lignocellulolytic enzymes. However, a more comprehensive understanding of the intestinal microbial composition and its functional capacity in giant pandas remains a major goal. Here, we conducted a comparison of bacterial, fungal and homoacetogenic microbial communities from fecal samples taken from two geriatric and two adult captive giant pandas. 16S rDNA amplicon pyrosequencing revealed that Firmicutes and Proteobacteria are the most abundant microbiota in both geriatric and adult giant pandas. However, members of phylum Actinobacteria found in adult giant pandas were absent in their geriatric counterparts. Similarly, ITS1 amplicon pyrosequencing identified developmental changes in the most abundant fungal classes from Sordariomycetes in adult pandas to Saccharomycetes in geriatric pandas. Geriatric pandas exhibited significantly higher abundance of a potential probiotic fungus (Candida tropicalis) as compared to adult pandas, indicating their importance in the normal digestive physiology of aged pandas. Our study also reported the presence of a lignocellulolytic white-rot fungus, Perenniporia medulla-panis, and the evidence of novel homoacetogens residing in the guts of giant pandas.
Tun, Hein Min; Mauroo, Nathalie France; Yuen, Chan San; Ho, John Chi Wang; Wong, Mabel Ting; Leung, Frederick Chi-Ching
2014-01-01
Recent studies have described the bacterial community residing in the guts of giant pandas, together with the presence of lignocellulolytic enzymes. However, a more comprehensive understanding of the intestinal microbial composition and its functional capacity in giant pandas remains a major goal. Here, we conducted a comparison of bacterial, fungal and homoacetogenic microbial communities from fecal samples taken from two geriatric and two adult captive giant pandas. 16S rDNA amplicon pyrosequencing revealed that Firmicutes and Proteobacteria are the most abundant microbiota in both geriatric and adult giant pandas. However, members of phylum Actinobacteria found in adult giant pandas were absent in their geriatric counterparts. Similarly, ITS1 amplicon pyrosequencing identified developmental changes in the most abundant fungal classes from Sordariomycetes in adult pandas to Saccharomycetes in geriatric pandas. Geriatric pandas exhibited significantly higher abundance of a potential probiotic fungus (Candida tropicalis) as compared to adult pandas, indicating their importance in the normal digestive physiology of aged pandas. Our study also reported the presence of a lignocellulolytic white-rot fungus, Perenniporia medulla-panis, and the evidence of novel homoacetogens residing in the guts of giant pandas. PMID:24475017
The magnetic fields at the surface of active single G-K giants
NASA Astrophysics Data System (ADS)
Aurière, M.; Konstantinova-Antova, R.; Charbonnel, C.; Wade, G. A.; Tsvetkova, S.; Petit, P.; Dintrans, B.; Drake, N. A.; Decressin, T.; Lagarde, N.; Donati, J.-F.; Roudier, T.; Lignières, F.; Schröder, K.-P.; Landstreet, J. D.; Lèbre, A.; Weiss, W. W.; Zahn, J.-P.
2015-02-01
Aims: We investigate the magnetic field at the surface of 48 red giants selected as promising for detection of Stokes V Zeeman signatures in their spectral lines. In our sample, 24 stars are identified from the literature as presenting moderate to strong signs of magnetic activity. An additional 7 stars are identified as those in which thermohaline mixing appears not to have occured, which could be due to hosting a strong magnetic field. Finally, we observed 17 additional very bright stars which enable a sensitive search to be performed with the spectropolarimetric technique. Methods: We use the spectropolarimeters Narval and ESPaDOnS to detect circular polarization within the photospheric absorption lines of our targets. We treat the spectropolarimetric data using the least-squares deconvolution method to create high signal-to-noise ratio mean Stokes V profiles. We also measure the classical S-index activity indicator for the Ca ii H&K lines, and the stellar radial velocity. To infer the evolutionary status of our giants and to interpret our results, we use state-of-the-art stellar evolutionary models with predictions of convective turnover times. Results: We unambiguously detect magnetic fields via Zeeman signatures in 29 of the 48 red giants in our sample. Zeeman signatures are found in all but one of the 24 red giants exhibiting signs of activity, as well as 6 out of 17 bright giant stars. However no detections were obtained in the 7 thermohaline deviant giants. The majority of the magnetically detected giants are either in the first dredge up phase or at the beginning of core He burning, i.e. phases when the convective turnover time is at a maximum: this corresponds to a "magnetic strip" for red giants in the Hertzsprung-Russell diagram. A close study of the 16 giants with known rotational periods shows that the measured magnetic field strength is tightly correlated with the rotational properties, namely to the rotational period and to the Rossby number Ro. Our results show that the magnetic fields of these giants are produced by a dynamo, possibly of α-ω origin since Ro is in general smaller than unity. Four stars for which the magnetic field is measured to be outstandingly strong with respect to that expected from the rotational period/magnetic field relation or their evolutionary status are interpreted as being probable descendants of magnetic Ap stars. In addition to the weak-field giant Pollux, 4 bright giants (Aldebaran, Alphard, Arcturus, η Psc) are detected with magnetic field strength at the sub-Gauss level. Besides Arcturus, these stars were not considered to be active giants before this study and are very similar in other respects to ordinary giants, with S-index indicating consistency with basal chromospheric flux. Tables 6-8 are available in electronic form at http://www.aanda.orgBased on observations obtained at the Télescope Bernard Lyot (TBL) at Observatoire du Pic du Midi, CNRS/INSU and Université de Toulouse, France, and at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, CNRS/INSU and the University of Hawaii.
NASA Astrophysics Data System (ADS)
Engel, Stephen A.; Harley, Erin M.; Pope, Whitney B.; Villablanca, J. Pablo; Mazziotta, John C.; Enzmann, Dieter
2009-02-01
Training in radiology dramatically changes observers' ability to process images, but the neural bases of this visual expertise remain unexplored. Prior imaging work has suggested that the fusiform face area (FFA), normally selectively responsive to faces, becomes responsive to images in observers' area of expertise. The FFA has been hypothesized to be important for "holistic" processing that integrates information across the entire image. Here, we report a cross-sectional study of radiologists that used functional magnetic resonance imaging to measure neural activity in first-year radiology residents, fourth-year radiology residents, and practicing radiologists as they detected abnormalities in chest radiographs. Across subjects, activity in the FFA correlated with visual expertise, measured as behavioral performance during scanning. To test whether processing in the FFA was holistic, we measured its responses both to intact radiographs and radiographs that had been divided into 25 square pieces whose locations were scrambled. Activity in the FFA was equal in magnitude for intact and scrambled images, and responses to both kinds of stimuli correlated reliably with expertise. These results suggest that the FFA is one of the cortical regions that provides the basis of expertise in radiology, but that its contribution is not holistic processing of images.
Processing of subliminal facial expressions of emotion: a behavioral and fMRI study.
Prochnow, D; Kossack, H; Brunheim, S; Müller, K; Wittsack, H-J; Markowitsch, H-J; Seitz, R J
2013-01-01
The recognition of emotional facial expressions is an important means to adjust behavior in social interactions. As facial expressions widely differ in their duration and degree of expressiveness, they often manifest with short and transient expressions below the level of awareness. In this combined behavioral and fMRI study, we aimed at examining whether or not consciously accessible (subliminal) emotional facial expressions influence empathic judgments and which brain activations are related to it. We hypothesized that subliminal facial expressions of emotions masked with neutral expressions of the same faces induce an empathic processing similar to consciously accessible (supraliminal) facial expressions. Our behavioral data in 23 healthy subjects showed that subliminal emotional facial expressions of 40 ms duration affect the judgments of the subsequent neutral facial expressions. In the fMRI study in 12 healthy subjects it was found that both, supra- and subliminal emotional facial expressions shared a widespread network of brain areas including the fusiform gyrus, the temporo-parietal junction, and the inferior, dorsolateral, and medial frontal cortex. Compared with subliminal facial expressions, supraliminal facial expressions led to a greater activation of left occipital and fusiform face areas. We conclude that masked subliminal emotional information is suited to trigger processing in brain areas which have been implicated in empathy and, thereby in social encounters.
[Neural mechanisms of facial recognition].
Nagai, Chiyoko
2007-01-01
We review recent researches in neural mechanisms of facial recognition in the light of three aspects: facial discrimination and identification, recognition of facial expressions, and face perception in itself. First, it has been demonstrated that the fusiform gyrus has a main role of facial discrimination and identification. However, whether the FFA (fusiform face area) is really a special area for facial processing or not is controversial; some researchers insist that the FFA is related to 'becoming an expert' for some kinds of visual objects, including faces. Neural mechanisms of prosopagnosia would be deeply concerned to this issue. Second, the amygdala seems to be very concerned to recognition of facial expressions, especially fear. The amygdala, connected with the superior temporal sulcus and the orbitofrontal cortex, appears to operate the cortical function. The amygdala and the superior temporal sulcus are related to gaze recognition, which explains why a patient with bilateral amygdala damage could not recognize only a fear expression; the information from eyes is necessary for fear recognition. Finally, even a newborn infant can recognize a face as a face, which is congruent with the innate hypothesis of facial recognition. Some researchers speculate that the neural basis of such face perception is the subcortical network, comprised of the amygdala, the superior colliculus, and the pulvinar. This network would relate to covert recognition that prosopagnosic patients have.
Handedness is related to neural mechanisms underlying hemispheric lateralization of face processing
Frässle, Stefan; Krach, Sören; Paulus, Frieder Michel; Jansen, Andreas
2016-01-01
While the right-hemispheric lateralization of the face perception network is well established, recent evidence suggests that handedness affects the cerebral lateralization of face processing at the hierarchical level of the fusiform face area (FFA). However, the neural mechanisms underlying differential hemispheric lateralization of face perception in right- and left-handers are largely unknown. Using dynamic causal modeling (DCM) for fMRI, we aimed to unravel the putative processes that mediate handedness-related differences by investigating the effective connectivity in the bilateral core face perception network. Our results reveal an enhanced recruitment of the left FFA in left-handers compared to right-handers, as evidenced by more pronounced face-specific modulatory influences on both intra- and interhemispheric connections. As structural and physiological correlates of handedness-related differences in face processing, right- and left-handers varied with regard to their gray matter volume in the left fusiform gyrus and their pupil responses to face stimuli. Overall, these results describe how handedness is related to the lateralization of the core face perception network, and point to different neural mechanisms underlying face processing in right- and left-handers. In a wider context, this demonstrates the entanglement of structurally and functionally remote brain networks, suggesting a broader underlying process regulating brain lateralization. PMID:27250879
Ibanez, Agustin; Urquina, Hugo; Petroni, Agustín; Baez, Sandra; Lopez, Vladimir; do Nascimento, Micaela; Herrera, Eduar; Guex, Raphael; Hurtado, Esteban; Blenkmann, Alejandro; Beltrachini, Leandro; Gelormini, Carlos; Sigman, Mariano; Lischinsky, Alicia; Torralva, Teresa; Torrente, Fernando; Cetkovich, Marcelo; Manes, Facundo
2012-01-01
Adults with bipolar disorder (BD) have cognitive impairments that affect face processing and social cognition. However, it remains unknown whether these deficits in euthymic BD have impaired brain markers of emotional processing. We recruited twenty six participants, 13 controls subjects with an equal number of euthymic BD participants. We used an event-related potential (ERP) assessment of a dual valence task (DVT), in which faces (angry and happy), words (pleasant and unpleasant), and face-word simultaneous combinations are presented to test the effects of the stimulus type (face vs word) and valence (positive vs. negative). All participants received clinical, neuropsychological and social cognition evaluations. ERP analysis revealed that both groups showed N170 modulation of stimulus type effects (face > word). BD patients exhibited reduced and enhanced N170 to facial and semantic valence, respectively. The neural source estimation of N170 was a posterior section of the fusiform gyrus (FG), including the face fusiform area (FFA). Neural generators of N170 for faces (FG and FFA) were reduced in BD. In these patients, N170 modulation was associated with social cognition (theory of mind). This is the first report of euthymic BD exhibiting abnormal N170 emotional discrimination associated with theory of mind impairments.
Neurobiological underpinnings of shame and guilt: a pilot fMRI study
Michl, Petra; Meindl, Thomas; Meister, Franziska; Born, Christine; Engel, Rolf R.; Reiser, Maximilian
2014-01-01
In this study, a functional magnetic resonance imaging paradigm originally employed by Takahashi et al. was adapted to look for emotion-specific differences in functional brain activity within a healthy German sample (N = 14), using shame- and guilt-related stimuli and neutral stimuli. Activations were found for both of these emotions in the temporal lobe (shame condition: anterior cingulate cortex, parahippocampal gyrus; guilt condition: fusiform gyrus, middle temporal gyrus). Specific activations were found for shame in the frontal lobe (medial and inferior frontal gyrus), and for guilt in the amygdala and insula. This is consistent with Takahashi et al.’s results obtained for a Japanese sample (using Japanese stimuli), which showed activations in the fusiform gyrus, hippocampus, middle occipital gyrus and parahippocampal gyrus. During the imagination of shame, frontal and temporal areas (e.g. middle frontal gyrus and parahippocampal gyrus) were responsive regardless of gender. In the guilt condition, women only activate temporal regions, whereas men showed additional frontal and occipital activation as well as a responsive amygdala. The results suggest that shame and guilt share some neural networks, as well as having individual areas of activation. It can be concluded that frontal, temporal and limbic areas play a prominent role in the generation of moral feelings. PMID:23051901
Age-related increase of image-invariance in the fusiform face area.
Nordt, Marisa; Semmelmann, Kilian; Genç, Erhan; Weigelt, Sarah
2018-06-01
Face recognition undergoes prolonged development from childhood to adulthood, thereby raising the question which neural underpinnings are driving this development. Here, we address the development of the neural foundation of the ability to recognize a face across naturally varying images. Fourteen children (ages, 7-10) and 14 adults (ages, 20-23) watched images of either the same or different faces in a functional magnetic resonance imaging adaptation paradigm. The same face was either presented in exact image repetitions or in varying images. Additionally, a subset of participants completed a behavioral task, in which they decided if the face in consecutively presented images belonged to the same person. Results revealed age-related increases in neural sensitivity to face identity in the fusiform face area. Importantly, ventral temporal face-selective regions exhibited more image-invariance - as indicated by stronger adaptation for different images of the same person - in adults compared to children. Crucially, the amount of adaptation to face identity across varying images was correlated with the ability to recognize individual faces in different images. These results suggest that the increase of image-invariance in face-selective regions might be related to the development of face recognition skills. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Auditory Selective Attention to Speech Modulates Activity in the Visual Word Form Area
Yoncheva, Yuliya N.; Zevin, Jason D.; Maurer, Urs
2010-01-01
Selective attention to speech versus nonspeech signals in complex auditory input could produce top-down modulation of cortical regions previously linked to perception of spoken, and even visual, words. To isolate such top-down attentional effects, we contrasted 2 equally challenging active listening tasks, performed on the same complex auditory stimuli (words overlaid with a series of 3 tones). Instructions required selectively attending to either the speech signals (in service of rhyme judgment) or the melodic signals (tone-triplet matching). Selective attention to speech, relative to attention to melody, was associated with blood oxygenation level–dependent (BOLD) increases during functional magnetic resonance imaging (fMRI) in left inferior frontal gyrus, temporal regions, and the visual word form area (VWFA). Further investigation of the activity in visual regions revealed overall deactivation relative to baseline rest for both attention conditions. Topographic analysis demonstrated that while attending to melody drove deactivation equivalently across all fusiform regions of interest examined, attending to speech produced a regionally specific modulation: deactivation of all fusiform regions, except the VWFA. Results indicate that selective attention to speech can topographically tune extrastriate cortex, leading to increased activity in VWFA relative to surrounding regions, in line with the well-established connectivity between areas related to spoken and visual word perception in skilled readers. PMID:19571269
Cortical Representations of Symbols, Objects, and Faces Are Pruned Back during Early Childhood
Pinel, Philippe; Dehaene, Stanislas; Pelphrey, Kevin A.
2011-01-01
Regions of human ventral extrastriate visual cortex develop specializations for natural categories (e.g., faces) and cultural artifacts (e.g., words). In adults, category-based specializations manifest as greater neural responses in visual regions of the brain (e.g., fusiform gyrus) to some categories over others. However, few studies have examined how these specializations originate in the brains of children. Moreover, it is as yet unknown whether the development of visual specializations hinges on “increases” in the response to the preferred categories, “decreases” in the responses to nonpreferred categories, or “both.” This question is relevant to a long-standing debate concerning whether neural development is driven by building up or pruning back representations. To explore these questions, we measured patterns of visual activity in 4-year-old children for 4 categories (faces, letters, numbers, and shoes) using functional magnetic resonance imaging. We report 2 key findings regarding the development of visual categories in the brain: 1) the categories “faces” and “symbols” doubly dissociate in the fusiform gyrus before children can read and 2) the development of category-specific responses in young children depends on cortical responses to nonpreferred categories that decrease as preferred category knowledge is acquired. PMID:20457691
Kühn, Simone; Brick, Timothy R; Müller, Barbara C N; Gallinat, Jürgen
2014-01-01
Anthropomorphism encompasses the attribution of human characteristics to non-living objects. In particular the human tendency to see faces in cars has long been noticed, yet its neural correlates are unknown. We set out to investigate whether the fusiform face area (FFA) is associated with seeing human features in car fronts, or whether, the higher-level theory of mind network (ToM), namely temporoparietal junction (TPJ) and medial prefrontal cortex (MPFC) show a link to anthropomorphism. Twenty participants underwent fMRI scanning during a passive car-front viewing task. We extracted brain activity from FFA, TPJ and MPFC. After the fMRI session participants were asked to spontaneously list adjectives that characterize each car front. Five raters judged the degree to which each adjective can be applied as a characteristic of human beings. By means of linear mixed models we found that the implicit tendency to anthropomorphize individual car fronts predicts FFA, but not TPJ or MPFC activity. The results point to an important role of FFA in the phenomenon of ascribing human attributes to non-living objects. Interestingly, brain regions that have been associated with thinking about beliefs and mental states of others (TPJ, MPFC) do not seem to be related to anthropomorphism of car fronts.
van den Hurk, J; Gentile, F; Jansma, B M
2011-12-01
The identification of a face comprises processing of both visual features and conceptual knowledge. Studies showing that the fusiform face area (FFA) is sensitive to face identity generally neglect this dissociation. The present study is the first that isolates conceptual face processing by using words presented in a person context instead of faces. The design consisted of 2 different conditions. In one condition, participants were presented with blocks of words related to each other at the categorical level (e.g., brands of cars, European cities). The second condition consisted of blocks of words linked to the personality features of a specific face. Both conditions were created from the same 8 × 8 word matrix, thereby controlling for visual input across conditions. Univariate statistical contrasts did not yield any significant differences between the 2 conditions in FFA. However, a machine learning classification algorithm was able to successfully learn the functional relationship between the 2 contexts and their underlying response patterns in FFA, suggesting that these activation patterns can code for different semantic contexts. These results suggest that the level of processing in FFA goes beyond facial features. This has strong implications for the debate about the role of FFA in face identification.
NASA Astrophysics Data System (ADS)
Beltrachini, L.; Blenkmann, A.; von Ellenrieder, N.; Petroni, A.; Urquina, H.; Manes, F.; Ibáñez, A.; Muravchik, C. H.
2011-12-01
The major goal of evoked related potential studies arise in source localization techniques to identify the loci of neural activity that give rise to a particular voltage distribution measured on the surface of the scalp. In this paper we evaluate the effect of the head model adopted in order to estimate the N170 component source in attention deficit hyperactivity disorder (ADHD) patients and control subjects, considering faces and words stimuli. The standardized low resolution brain electromagnetic tomography algorithm (sLORETA) is used to compare between the three shell spherical head model and a fully realistic model based on the ICBM-152 atlas. We compare their variance on source estimation and analyze the impact on the N170 source localization. Results show that the often used three shell spherical model may lead to erroneous solutions, specially on ADHD patients, so its use is not recommended. Our results also suggest that N170 sources are mainly located in the right occipital fusiform gyrus for faces stimuli and in the left occipital fusiform gyrus for words stimuli, for both control subjects and ADHD patients. We also found a notable decrease on the N170 estimated source amplitude on ADHD patients, resulting in a plausible marker of the disease.
Handedness is related to neural mechanisms underlying hemispheric lateralization of face processing
NASA Astrophysics Data System (ADS)
Frässle, Stefan; Krach, Sören; Paulus, Frieder Michel; Jansen, Andreas
2016-06-01
While the right-hemispheric lateralization of the face perception network is well established, recent evidence suggests that handedness affects the cerebral lateralization of face processing at the hierarchical level of the fusiform face area (FFA). However, the neural mechanisms underlying differential hemispheric lateralization of face perception in right- and left-handers are largely unknown. Using dynamic causal modeling (DCM) for fMRI, we aimed to unravel the putative processes that mediate handedness-related differences by investigating the effective connectivity in the bilateral core face perception network. Our results reveal an enhanced recruitment of the left FFA in left-handers compared to right-handers, as evidenced by more pronounced face-specific modulatory influences on both intra- and interhemispheric connections. As structural and physiological correlates of handedness-related differences in face processing, right- and left-handers varied with regard to their gray matter volume in the left fusiform gyrus and their pupil responses to face stimuli. Overall, these results describe how handedness is related to the lateralization of the core face perception network, and point to different neural mechanisms underlying face processing in right- and left-handers. In a wider context, this demonstrates the entanglement of structurally and functionally remote brain networks, suggesting a broader underlying process regulating brain lateralization.
Gold, Brian T.; Jiang, Yang; Jicha, Greg A.; Smith, Charles D.
2010-01-01
The present study sought to identify altered brain activation patterns in amnestic mild cognitive impairment (MCI) that could precede frank task impairment and neocortical atrophy. A high accuracy lexical decision (LD) task was therefore employed. Both MCI and normal senior (NS) groups completed the LD task while functional magnetic resonance imaging (fMRI) was performed. Accuracy on the LD task was high (≥ 89% correct for both groups), and both groups activated a network of occipitotemporal regions and inferior frontal cortex. However, compared to the NS group, the MCI group showed reduced fMRI activation in these regions and increased activation in bilateral portions of anterior cingluate cortex. Results from a voxel-based morphometry analysis indicate that altered activations in the MCI group were not within regions of atrophy. Receiver operating characteristic curves demonstrate that reduced fMRI response in the left and right mid-fusiform gyri accurately discriminate MCI from NS. When activation magnitude in both fusiform gyri were included in a single logistic regression model, group classification accuracy was very high (area under the curve = 0.93). These results show that a disrupted functional response in the ventral temporal lobe accurately distinguishes individuals with MCI from normal seniors, a finding which may have implications for identifying seniors at risk for cognitive decline. PMID:20063353
Lech, Robert K; Güntürkün, Onur; Suchan, Boris
2016-09-15
The aim of the present study was to examine the contributions of different brain structures to prototype- and exemplar-based category learning using functional magnetic resonance imaging (fMRI). Twenty-eight subjects performed a categorization task in which they had to assign prototypes and exceptions to two different families. This test procedure usually produces different learning curves for prototype and exception stimuli. Our behavioral data replicated these previous findings by showing an initially superior performance for prototypes and typical stimuli and a switch from a prototype-based to an exemplar-based categorization for exceptions in the later learning phases. Since performance varied, we divided participants into learners and non-learners. Analysis of the functional imaging data revealed that the interaction of group (learners vs. non-learners) and block (Block 5 vs. Block 1) yielded an activation of the left fusiform gyrus for the processing of prototypes, and an activation of the right hippocampus for exceptions after learning the categories. Thus, successful prototype- and exemplar-based category learning is associated with activations of complementary neural substrates that constitute object-based processes of the ventral visual stream and their interaction with unique-cue representations, possibly based on sparse coding within the hippocampus. Copyright © 2016 Elsevier B.V. All rights reserved.
Chen, Zhen; Xu, Yibing; Liu, Tao; Zhang, Lining; Liu, Hongbing; Guan, Huashi
2016-03-29
Sargassum seaweeds produce abundant biomass in China and have long been used as herbal medicine and food. Their characteristic fatty acid (FA) profiles and related potential function in promoting cardiovascular health (CVH) have not been systematically investigated. In this study, FA profiles of four medicinal Sargassum were characterized using GC-MS. Principal component analysis was used to discriminate the four medicinal Sargassum, and orthogonal projection to latent structures discriminant analysis was carried out between the two official species HAI ZAO and between the two folk medicine species HAI QIAN. In all of the algae investigated, the major SFA and MUFA were palmitic and stearic acid, respectively, while the major PUFAs were linoleic, arachidonic, and eicosapentaenoic acid. S. fusiforme and S. horneri had higher concentrations of PUFAs. With respect to CVH, all of the studied species, particularly S. fusiforme, exhibited satisfactory levels such as PUFA/SFA ratio and n-6/n-3 ratio. Each species possesses a unique FA profile and is discriminated clearly. Potential key FA markers (between the two Chinese official species, and between the two folk species) are assessed. The study provides characteristic fatty acid profiles of four Chinese medicinal Sargassum and their related potential function in promoting CVH.
Chen, Zhen; Xu, Yibing; Liu, Tao; Zhang, Lining; Liu, Hongbing; Guan, Huashi
2016-01-01
Sargassum seaweeds produce abundant biomass in China and have long been used as herbal medicine and food. Their characteristic fatty acid (FA) profiles and related potential function in promoting cardiovascular health (CVH) have not been systematically investigated. In this study, FA profiles of four medicinal Sargassum were characterized using GC-MS. Principal component analysis was used to discriminate the four medicinal Sargassum, and orthogonal projection to latent structures discriminant analysis was carried out between the two official species HAI ZAO and between the two folk medicine species HAI QIAN. In all of the algae investigated, the major SFA and MUFA were palmitic and stearic acid, respectively, while the major PUFAs were linoleic, arachidonic, and eicosapentaenoic acid. S. fusiforme and S. horneri had higher concentrations of PUFAs. With respect to CVH, all of the studied species, particularly S. fusiforme, exhibited satisfactory levels such as PUFA/SFA ratio and n-6/n-3 ratio. Each species possesses a unique FA profile and is discriminated clearly. Potential key FA markers (between the two Chinese official species, and between the two folk species) are assessed. The study provides characteristic fatty acid profiles of four Chinese medicinal Sargassum and their related potential function in promoting CVH. PMID:27043581
Perceived Animacy Influences the Processing of Human-Like Surface Features in the Fusiform Gyrus
Shultz, Sarah; McCarthya, Gregory
2014-01-01
While decades of research have demonstrated that a region of the right fusiform gyrus (FG) responds selectively to faces, a second line of research suggests that the FG responds to a range of animacy cues, including biological motion and goal-directed actions, even in the absence of faces or other human-like surface features. These findings raise the question of whether the FG is indeed sensitive to faces or to the more abstract category of animate agents. The current study uses fMRI to examine whether the FG responds to all faces in a category-specific way or whether the FG is especially sensitive to the faces of animate agents. Animate agents are defined here as intentional agents with the capacity for rational goal-directed actions. Specifically, we examine how the FG responds to an entity that looks like an animate agent but that lacks the capacity for goal-directed, rational action. Region-of-interest analyses reveal that the FG activates more strongly to the animate compared with the inanimate entity, even though the surface features of both animate and inanimate entities were identical. These results suggest that the FG does not respond to all faces in a category-specific way, and is instead especially sensitive to whether an entity is animate. PMID:24905285
Forbes, Chad E; Leitner, Jordan B
2014-10-01
Stereotype threat, a situational pressure individuals experience when they fear confirming a negative group stereotype, engenders a cascade of physiological stress responses, negative appraisals, and performance monitoring processes that tax working memory resources necessary for optimal performance. Less is known, however, about how stereotype threat biases attentional processing in response to performance feedback, and how such attentional biases may undermine performance. Women received feedback on math problems in stereotype threatening compared to stereotype-neutral contexts while continuous EEG activity was recorded. Findings revealed that stereotype threatened women elicited larger midline P100 ERPs, increased phase locking between anterior cingulate cortex and dorsolateral prefrontal cortex (two regions integral for attentional processes), and increased power in left fusiform gyrus in response to negative feedback compared to positive feedback and women in stereotype-neutral contexts. Increased power in left fusiform gyrus in response to negative feedback predicted underperformance on the math task among stereotype threatened women only. Women in stereotype-neutral contexts exhibited the opposite trend. Findings suggest that in stereotype threatening contexts, neural networks integral for attention and working memory are biased toward negative, stereotype confirming feedback at very early speeds of information processing. This bias, in turn, plays a role in undermining performance. Copyright © 2014 Elsevier B.V. All rights reserved.
Neurobiological underpinnings of shame and guilt: a pilot fMRI study.
Michl, Petra; Meindl, Thomas; Meister, Franziska; Born, Christine; Engel, Rolf R; Reiser, Maximilian; Hennig-Fast, Kristina
2014-02-01
In this study, a functional magnetic resonance imaging paradigm originally employed by Takahashi et al. was adapted to look for emotion-specific differences in functional brain activity within a healthy German sample (N = 14), using shame- and guilt-related stimuli and neutral stimuli. Activations were found for both of these emotions in the temporal lobe (shame condition: anterior cingulate cortex, parahippocampal gyrus; guilt condition: fusiform gyrus, middle temporal gyrus). Specific activations were found for shame in the frontal lobe (medial and inferior frontal gyrus), and for guilt in the amygdala and insula. This is consistent with Takahashi et al.'s results obtained for a Japanese sample (using Japanese stimuli), which showed activations in the fusiform gyrus, hippocampus, middle occipital gyrus and parahippocampal gyrus. During the imagination of shame, frontal and temporal areas (e.g. middle frontal gyrus and parahippocampal gyrus) were responsive regardless of gender. In the guilt condition, women only activate temporal regions, whereas men showed additional frontal and occipital activation as well as a responsive amygdala. The results suggest that shame and guilt share some neural networks, as well as having individual areas of activation. It can be concluded that frontal, temporal and limbic areas play a prominent role in the generation of moral feelings.
Kaiser, Daniel; Strnad, Lukas; Seidl, Katharina N.; Kastner, Sabine
2013-01-01
Visual cues from the face and the body provide information about another's identity, emotional state, and intentions. Previous neuroimaging studies that investigated neural responses to (bodiless) faces and (headless) bodies have reported overlapping face- and body-selective brain regions in right fusiform gyrus (FG). In daily life, however, faces and bodies are typically perceived together and are effortlessly integrated into the percept of a whole person, raising the possibility that neural responses to whole persons are qualitatively different than responses to isolated faces and bodies. The present study used fMRI to examine how FG activity in response to a whole person relates to activity in response to the same face and body but presented in isolation. Using multivoxel pattern analysis, we modeled person-evoked response patterns in right FG through a linear combination of face- and body-evoked response patterns. We found that these synthetic patterns were able to accurately approximate the response patterns to whole persons, with face and body patterns each adding unique information to the response patterns evoked by whole person stimuli. These results suggest that whole person responses in FG primarily arise from the coactivation of independent face- and body-selective neural populations. PMID:24108794
Kühn, Simone; Brick, Timothy R.; Müller, Barbara C. N.; Gallinat, Jürgen
2014-01-01
Anthropomorphism encompasses the attribution of human characteristics to non-living objects. In particular the human tendency to see faces in cars has long been noticed, yet its neural correlates are unknown. We set out to investigate whether the fusiform face area (FFA) is associated with seeing human features in car fronts, or whether, the higher-level theory of mind network (ToM), namely temporoparietal junction (TPJ) and medial prefrontal cortex (MPFC) show a link to anthropomorphism. Twenty participants underwent fMRI scanning during a passive car-front viewing task. We extracted brain activity from FFA, TPJ and MPFC. After the fMRI session participants were asked to spontaneously list adjectives that characterize each car front. Five raters judged the degree to which each adjective can be applied as a characteristic of human beings. By means of linear mixed models we found that the implicit tendency to anthropomorphize individual car fronts predicts FFA, but not TPJ or MPFC activity. The results point to an important role of FFA in the phenomenon of ascribing human attributes to non-living objects. Interestingly, brain regions that have been associated with thinking about beliefs and mental states of others (TPJ, MPFC) do not seem to be related to anthropomorphism of car fronts. PMID:25517511
How music alters a kiss: superior temporal gyrus controls fusiform–amygdalar effective connectivity
Deserno, Lorenz; Bakels, Jan-Hendrik; Schlochtermeier, Lorna H.; Kappelhoff, Hermann; Jacobs, Arthur M.; Fritz, Thomas Hans; Koelsch, Stefan; Kuchinke, Lars
2014-01-01
While watching movies, the brain integrates the visual information and the musical soundtrack into a coherent percept. Multisensory integration can lead to emotion elicitation on which soundtrack valences may have a modulatory impact. Here, dynamic kissing scenes from romantic comedies were presented to 22 participants (13 females) during functional magnetic resonance imaging scanning. The kissing scenes were either accompanied by happy music, sad music or no music. Evidence from cross-modal studies motivated a predefined three-region network for multisensory integration of emotion, consisting of fusiform gyrus (FG), amygdala (AMY) and anterior superior temporal gyrus (aSTG). The interactions in this network were investigated using dynamic causal models of effective connectivity. This revealed bilinear modulations by happy and sad music with suppression effects on the connectivity from FG and AMY to aSTG. Non-linear dynamic causal modeling showed a suppressive gating effect of aSTG on fusiform–amygdalar connectivity. In conclusion, fusiform to amygdala coupling strength is modulated via feedback through aSTG as region for multisensory integration of emotional material. This mechanism was emotion-specific and more pronounced for sad music. Therefore, soundtrack valences may modulate emotion elicitation in movies by differentially changing preprocessed visual information to the amygdala. PMID:24298171
Neural Correlates of Covert Face Processing: fMRI Evidence from a Prosopagnosic Patient
Liu, Jiangang; Wang, Meiyun; Shi, Xiaohong; Feng, Lu; Li, Ling; Thacker, Justine Marie; Tian, Jie; Shi, Dapeng; Lee, Kang
2014-01-01
Brains can perceive or recognize a face even though we are subjectively unaware of the existence of that face. However, the exact neural correlates of such covert face processing remain unknown. Here, we compared the fMRI activities between a prosopagnosic patient and normal controls when they saw famous and unfamiliar faces. When compared with objects, the patient showed greater activation to famous faces in the fusiform face area (FFA) though he could not overtly recognize those faces. In contrast, the controls showed greater activation to both famous and unfamiliar faces in the FFA. Compared with unfamiliar faces, famous faces activated the controls', but not the patient's lateral prefrontal cortex (LPFC) known to be involved in familiar face recognition. In contrast, the patient showed greater activation in the bilateral medial frontal gyrus (MeFG). Functional connectivity analyses revealed that the patient's right middle fusiform gyrus (FG) showed enhanced connectivity to the MeFG, whereas the controls' middle FG showed enhanced connectivity to the LPFC. These findings suggest that the FFA may be involved in both covert and overt face recognition. The patient's impairment in overt face recognition may be due to the absence of the coupling between the right FG and the LPFC. PMID:23448870
Chen, Guangxiang; Lei, Du; Ren, Jiechuan; Zuo, Panli; Suo, Xueling; Wang, Danny J J; Wang, Meiyun; Zhou, Dong; Gong, Qiyong
2016-07-04
The cerebral haemodynamic status of idiopathic generalized epilepsy (IGE) is a very complicated process. Little attention has been paid to cerebral blood flow (CBF) alterations in IGE detected by arterial spin labelling (ASL) perfusion magnetic resonance imaging (MRI). However, the selection of an optimal delay time is difficult for single-delay ASL. Multi-delay multi-parametric ASL perfusion MRI overcomes the limitations of single-delay ASL. We applied multi-delay multi-parametric ASL perfusion MRI to investigate the patterns of postictal cerebral perfusion in IGE patients with absence seizures. A total of 21 IGE patients with absence seizures and 24 healthy control subjects were enrolled. IGE patients exhibited prolonged arterial transit time (ATT) in the left superior temporal gyrus. The mean CBF of IGE patients was significantly increased in the left middle temporal gyrus, left parahippocampal gyrus and left fusiform gyrus. Prolonged ATT in the left superior temporal gyrus was negatively correlated with the age at onset in IGE patients. This study demonstrated that cortical dysfunction in the temporal lobe and fusiform gyrus may be related to epileptic activity in IGE patients with absence seizures. This information can play an important role in elucidating the pathophysiological mechanism of IGE from a cerebral haemodynamic perspective.
Goué, Nadia; Lesage-Descauses, Marie-Claude; Mellerowicz, Ewa J; Magel, Elisabeth; Label, Philippe; Sundberg, Björn
2008-01-01
The vascular cambium is the meristem in trees that produce wood. This meristem consists of two types of neighbouring initials: fusiform cambial cells (FCCs), which give rise to the axial cell system (i.e. fibres and vessel elements), and ray cambial cells (RCCs), which give rise to rays. There is little molecular information on the mechanisms whereby the differing characteristics of these neighbouring cells are maintained. A microgenomic approach was adopted in which the transcriptomes of FCCs and RCCs dissected out from the cambial meristem of poplar (Populus trichocarpa x Populus deltoïdes var. Boelare) were analysed, and a transcriptional database for these two cell types established. Photosynthesis genes were overrepresented in RCCs, providing molecular support for the presence of photosynthetic systems in rays. Genes that putatively encode transporters (vesicle, lipid and metal ion transporters and aquaporins) in RCCs were also identified. In addition, many cell wall-related genes showed cell type-specific expression patterns. Notably, genes involved in pectin metabolism and xyloglucan metabolism were overrepresented in RCCs and FCCs, respectively. The results demonstrate the use of microgenomics to reveal differences in biological processes in neighbouring meristematic cells, and to identify key genes involved in these processes.
Relation between brain activation and lexical performance.
Booth, James R; Burman, Douglas D; Meyer, Joel R; Gitelman, Darren R; Parrish, Todd B; Mesulam, M Marsel
2003-07-01
Functional magnetic resonance imaging (fMRI) was used to determine whether performance on lexical tasks was correlated with cerebral activation patterns. We found that such relationships did exist and that their anatomical distribution reflected the neurocognitive processing routes required by the task. Better performance on intramodal tasks (determining if visual words were spelled the same or if auditory words rhymed) was correlated with more activation in unimodal regions corresponding to the modality of sensory input, namely the fusiform gyrus (BA 37) for written words and the superior temporal gyrus (BA 22) for spoken words. Better performance in tasks requiring cross-modal conversions (determining if auditory words were spelled the same or if visual words rhymed), on the other hand, was correlated with more activation in posterior heteromodal regions, including the supramarginal gyrus (BA 40) and the angular gyrus (BA 39). Better performance in these cross-modal tasks was also correlated with greater activation in unimodal regions corresponding to the target modality of the conversion process (i.e., fusiform gyrus for auditory spelling and superior temporal gyrus for visual rhyming). In contrast, performance on the auditory spelling task was inversely correlated with activation in the superior temporal gyrus possibly reflecting a greater emphasis on the properties of the perceptual input rather than on the relevant transmodal conversions. Copyright 2003 Wiley-Liss, Inc.
Kann, Sarah J; O'Rawe, Jonathan F; Huang, Anna S; Klein, Daniel N; Leung, Hoi-Chung
2017-09-01
Negative emotionality (NE) refers to individual differences in the propensity to experience and react with negative emotions and is associated with increased risk of psychological disorder. However, research on the neural bases of NE has focused almost exclusively on amygdala activity during emotional face processing. This study broadened this framework by examining the relationship between observed NE in early childhood and subsequent neural responses to emotional faces in both the amygdala and the fusiform face area (FFA) in a late childhood/early adolescent sample. Measures of NE were obtained from children at age 3 using laboratory observations, and functional magnetic resonance imaging (fMRI) data were collected when these children were between the ages of 9 and 12 while performing a visual stimulus identity matching task with houses and emotional faces as stimuli. Multiple regression analyses revealed that higher NE at age 3 is associated with significantly greater activation in the left amygdala and left FFA but lower functional connectivity between these two regions during the face conditions. These findings suggest that those with higher early NE have subsequent alterations in both activity and connectivity within an extended network during face processing. © The Author (2017). Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
D'Angelo, G.; Durisen, R. H.; Lissauer, J. J.
2010-12-01
Gas giant planets play a fundamental role in shaping the orbital architecture of planetary systems and in affecting the delivery of volatile materials to terrestrial planets in the habitable zones. Current theories of gas giant planet formation rely on either of two mechanisms: the core accretion model and the disk instability model. In this chapter, we describe the essential principles upon which these models are built and discuss the successes and limitations of each model in explaining observational data of giant planets orbiting the Sun and other stars.
Spectroscopy of Six Red Giants in the Draco Dwarf Spheroidal Galaxy
NASA Astrophysics Data System (ADS)
Smith, Graeme H.; Siegel, Michael H.; Shetrone, Matthew D.; Winnick, Rebeccah
2006-10-01
Keck Observatory LRIS-B (Low Resolution Imaging Spectrometer) spectra are reported for six red giant stars in the Draco dwarf spheroidal galaxy and several comparison giants in the globular cluster M13. Indexes that quantify the strengths of the Ca II H and K lines, the λ3883 and λ4215 CN bands, and the λ4300 G band have been measured. These data confirm evidence of metallicity inhomogeneity within Draco obtained by previous authors. The four brightest giants in the sample have absolute magnitudes in the range -2.6
Giant pandas are not an evolutionary cul-de-sac: evidence from multidisciplinary research.
Wei, Fuwen; Hu, Yibo; Yan, Li; Nie, Yonggang; Wu, Qi; Zhang, Zejun
2015-01-01
The giant panda (Ailuropoda melanoleuca) is one of the world's most endangered mammals and remains threatened by environmental and anthropogenic pressure. It is commonly argued that giant pandas are an evolutionary cul-de-sac because of their specialized bamboo diet, phylogenetic changes in body size, small population, low genetic diversity, and low reproductive rate. This notion is incorrect, arose from a poor understanding or appreciation of giant panda biology, and is in need of correction. In this review, we summarize research across morphology, ecology, and genetics to dispel the idea, once and for all, that giant pandas are evolutionary dead-end. The latest and most advanced research shows that giant pandas are successful animals highly adapted to a specialized bamboo diet via morphological, ecological, and genetic adaptations and coadaptation of gut microbiota. We also debunk misconceptions around population size, population growth rate, and genetic variation. During their evolutionary history spanning 8 My, giant pandas have survived diet specialization, massive bamboo flowering and die off, and rapid climate oscillations. Now, they are suffering from enormous human interference. Fortunately, continued conservation effort is greatly reducing impacts from anthropogenic interference and allowing giant panda populations and habitat to recover. Previous ideas of a giant panda evolutionary cul-de-sac resulted from an unsystematic and unsophisticated understanding of their biology and it is time to shed this baggage and focus on the survival and maintenance of this high-profile species. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Anthony-Twarog, Barbara J.; Lee-Brown, Donald B.; Deliyannis, Constantine P.; Twarog, Bruce A.
2018-03-01
HYDRA spectra of 287 stars in the field of NGC 2506 from the turnoff through the giant branch are analyzed. With previous data, 22 are identified as probable binaries; 90 more are classified as potential non-members. Spectroscopic analyses of ∼60 red giants and slowly rotating turnoff stars using line equivalent widths and a neural network approach lead to [Fe/H] = ‑0.27 ± 0.07 (s.d.) and [Fe/H] = ‑0.27 ± 0.06 (s.d.), respectively. Li abundances are derived for 145 probable single-star members, 44 being upper limits. Among turnoff stars outside the Li-dip, A(Li) = 3.04 ± 0.16 (s.d.), with no trend with color, luminosity, or rotation speed. Evolving from the turnoff across the subgiant branch, there is a well-delineated decline to A(Li) ∼1.25 at the giant branch base, coupled with the rotational spindown from between ∼20 and 70 km s‑1 to less than 20 km s‑1 for stars entering the subgiant branch and beyond. A(Li) remains effectively constant from the giant branch base to the red giant clump level. A new member above the clump redefines the path of the first-ascent red giant branch; its Li is 0.6 dex below the first-ascent red giants. With one exception, all post-He-flash stars have upper limits to A(Li), at or below the level of the brightest first-ascent red giant. The patterns are in excellent qualitative agreement with the model predictions for low/intermediate-mass stars which undergo rotation-induced mixing at the turnoff and subgiant branch, first dredge-up, and thermohaline mixing beyond the red giant bump.
Giant cell lesion of the jaw as a presenting feature of Noonan syndrome.
Sinnott, Bridget P; Patel, Maya
2018-05-30
This is a case of a 20-year-old woman who presented with a left jaw mass which was resected and found to be a giant cell granuloma of the mandible. Her history and physical examination were suggestive for Noonan syndrome which was confirmed with genetic testing and the finding of a PTPN11 gene mutation which has rarely been associated with giant cell lesions of the jaw. Given her particular genetic mutation and the presence of a giant cell lesion, we present a case of Noonan-like/multiple giant cell lesion syndrome. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Innate predator recognition in giant pandas.
Du, Yiping; Huang, Yan; Zhang, Hemin; Li, Desheng; Yang, Bo; Wei, Ming; Zhou, Yingmin; Liu, Yang
2012-02-01
Innate predator recognition confers a survival advantage to prey animals. We investigate whether giant pandas exhibit innate predator recognition. We analyzed behavioral responses of 56 naive adult captive giant pandas (Ailuropoda melanoleuca), to urine from predators and non-predators and water control. Giant pandas performed more chemosensory investigation and displayed flehmen behaviors more frequently in response to predator urine compared to both non-predator urine and water control. Subjects also displayed certain defensive behaviors, as indicated by vigilance, and in certain cases, fleeing behaviors. Our results suggest that there is an innate component to predator recognition in captive giant pandas, although such recognition was only slight to moderate. These results have implications that may be applicable to the conservation and reintroduction of this endangered species.
Generation of double giant pulses in actively Q-switched lasers
NASA Astrophysics Data System (ADS)
Korobeynikova, A. P.; Shaikin, I. A.; Shaykin, A. A.; Koryukin, I. V.; Khazanov, E. A.
2018-04-01
Generation of a second giant pulse in a longitudinal mode neighbouring to the longitudinal mode possessing minimal losses is theoretically and experimentally studied in actively Q-switched lasers. A mathematical model is suggested for explaining the giant pulse generation in a laser with multiple longitudinal modes. The model makes allowance for not only a standing, but also a running wave for each cavity mode. Results of numerical simulation and data of experiments with a Nd : YLF laser explain the effect of second giant pulse generation in a neighbouring longitudinal mode. After a giant pulse in the mode with minimal losses is generated, the threshold for the neighbouring longitudinal mode is still exceeded due to the effect of burning holes in the population inversion spatial distribution.
Giant planets: Clues on current and past organic chemistry in the outer solar system
NASA Technical Reports Server (NTRS)
Pollack, James B.; Atreya, Sushil K.
1992-01-01
The giant planets of the outer solar system - Jupiter, Saturn, Uranus, and Neptune - were formed in the same flattened disk of gas and dust, the solar nebula, as the terrestrial planets were. Yet, the giant planets differ in some very fundamental ways from the terrestrial planets. Despite enormous differences, the giant planets are relevant to exobiology in general and the origin of life on the Earth in particular. The giant planets are described as they are today. Their basic properties and the chemistry occurring in their atmospheres is discussed. Theories of their origin are explored and aspects of these theories that may have relevance to exobiology and the origin of life on Earth are stressed.
Giant cell phlebitis: a potentially lethal clinical entity
Kunieda, Takeshige; Murayama, Masanori; Ikeda, Tsuneko; Yamakita, Noriyoshi
2012-01-01
An 83-year-old woman presented to us with a 4-week history of general malaise, subjective fever and lower abdominal pain. Despite the intravenous infusion of antibiotics, her blood results and physical condition worsened, resulting in her sudden death. Autopsy study revealed that the medium-sized veins of the mesentery were infiltrated by eosinophil granulocytes, lymphocytes, macrophages and multinucleated giant cells; however, the arteries were not involved. Microscopically, venous giant cell infiltration was observed in the gastrointestinal tract, bladder, retroperitoneal tissues and myocardium. The final diagnosis was giant cell phlebitis, a rare disease of unknown aetiology. This case demonstrates for the first time that giant cell phlebitis involving extra-abdominal organs, including hearts, can cause serious morbidity. PMID:22859384
[Giant idiopathic hydronephrosis: toward a two-step therapeutic approach].
Boudhaye, Taher Ismail; Sidimalek, Mohamed; Jdoud, Cheikhani
2017-01-01
Giant hydronephrosis is rare. It is usually caused by ureteropelvic junction syndrome. We here report the unusual case of a patient hospitalized with giant hydronephrosis associated with impaired general condition. Diagnosis was based on CT scan. The patient underwent deferred nephrectomy after percutaneous drainage.
Contribution of giant fields; Disappearing search for elephants in the U. S
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riva, J.P. Jr.
Oil producing regions have their elephants. These are the giant fields, which, in the U.S., are those that originally contained at least 100 million bbl of recoverable oil. Like top herbivores or carnivores, these giants are relatively scarce, but they also are indicative of the health of a region, an oil producing region. This paper reports that it is difficult to overemphasize the importance of giant oil fields. According to the 1991 edition of the International Petroleum Encyclopedia, of the more than 38,880 domestic oil fields that have been discovered, only 231 are giants (0.6%). Yet, these few fields havemore » produced 53% of domestic oil and still contain 63% of domestic reserves. Taken as a group, the 231 known domestic giant oil fields underlay about 2,310 sq miles (0.06% of U.S. land) and contain the energy equivalent of over 10 billion trees used for firewood or 60 trillion many-days of work.« less
The Ba 4d-4f giant dipole resonance in complex Ba/Si compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahle, Ch. J.; Sternemann, C.; Sternemann, H.
2014-08-06
The shape of the Ba 4d–4f giant dipole resonance is studied for Ba atoms embedded inside complex Si networks covering structures consisting of Si nanocages and nanotubes, i.e. the clathrate Ba 8Si 46, the complex compound BaSi 6, and the semiconducting BaSi 2. Here, non-resonant x-ray Raman scattering is used to investigate confinement effects on the shape of the giant resonance in the vicinity of the Ba NIV, V-edge. The distinct momentum transfer dependence of the spectra is analyzed and discussed. The measurements are compared to calculations of the giant resonance within time-dependent local density approximation in the dipole limit.more » No modulation of the giant resonance's shape for Ba atoms confined in different local environments was observed, in contrast to the calculations. The absence of such shape modulation for complex Ba/Si compounds is discussed providing important implications for further studies of giant resonance phenomena utilizing both theory and experiment.« less
The Ba 4d-4f giant dipole resonance in complex Ba/Si compounds
NASA Astrophysics Data System (ADS)
Sahle, Ch J.; Sternemann, C.; Sternemann, H.; Tse, J. S.; Gordon, R. A.; Desgreniers, S.; Maekawa, S.; Yamanaka, S.; Lehmkühler, F.; Wieland, D. C. F.; Mende, K.; Huotari, S.; Tolan, M.
2014-02-01
The shape of the Ba 4d-4f giant dipole resonance is studied for Ba atoms embedded inside complex Si networks covering structures consisting of Si nanocages and nanotubes, i.e. the clathrate Ba8Si46, the complex compound BaSi6, and the semiconducting BaSi2. Here, non-resonant x-ray Raman scattering is used to investigate confinement effects on the shape of the giant resonance in the vicinity of the Ba NIV, V-edge. The distinct momentum transfer dependence of the spectra is analyzed and discussed. The measurements are compared to calculations of the giant resonance within time-dependent local density approximation in the dipole limit. No modulation of the giant resonance’s shape for Ba atoms confined in different local environments was observed, in contrast to the calculations. The absence of such shape modulation for complex Ba/Si compounds is discussed providing important implications for further studies of giant resonance phenomena utilizing both theory and experiment.
Tao, Yaqiong; Zeng, Bo; Xu, Liu; Yue, Bisong; Yang, Dong; Zou, Fangdong
2010-01-01
Interferon-gamma (IFN-gamma) is the only member of type II IFN and is vital in the regulation of immune and inflammatory responses. Herein we report the cloning, expression, and sequence analysis of IFN-gamma from the giant panda (Ailuropoda melanoleuca). The open reading frame of this gene is 501 base pair in length and encodes a polypeptide consisting of 166 amino acids. All conserved N-linked glycosylation sites and cysteine residues among carnivores were found in the predicted amino acid sequence of the giant panda. Recombinant giant panda IFN-gamma with a V5 epitope and polyhistidine tag was expressed in HEK293 host cells and confirmed by Western blotting. Phylogenetic analysis of mammalian IFN-gamma-coding sequences indicated that the giant panda IFN-gamma was closest to that of carnivores, then to ungulates and dolphin, and shared a distant relationship with mouse and human. These results represent a first step into the study of IFN-gamma in giant panda.