NASA Astrophysics Data System (ADS)
Bae, Jungmok; Druzhin, Vladislav V.; Anikanov, Alexey G.; Afanasyev, Sergey V.; Shchekin, Alexey; Medvedev, Anton S.; Morozov, Alexander V.; Kim, Dongho; Kim, Sang Kyu; Moon, Hyunseok; Jang, Hyeongseok; Shim, Jaewook; Park, Jongae
2017-02-01
A novel miniaturized near-infrared spectrometer readily mountable to wearable devices for continuous monitoring of individual's key bio-markers was proposed. Spectrum is measured by sequential illuminations with LED's, having independent spectrum profiles and a continuous detection of light radiations from the skin tissue with a single cell PD. Based on Tikhonov regularization with singular value decomposition, a spectrum resolution less than 10nm was reconstructed based on experimentally measured LED profiles. A prototype covering first overtone band (1500-1800nm) where bio-markers have pronounced absorption peaks was fabricated and verified of its performance. Reconstructed spectrum shows that the novel concept of miniaturized spectrometer is valid.
Sequential time interleaved random equivalent sampling for repetitive signal.
Zhao, Yijiu; Liu, Jingjing
2016-12-01
Compressed sensing (CS) based sampling techniques exhibit many advantages over other existing approaches for sparse signal spectrum sensing; they are also incorporated into non-uniform sampling signal reconstruction to improve the efficiency, such as random equivalent sampling (RES). However, in CS based RES, only one sample of each acquisition is considered in the signal reconstruction stage, and it will result in more acquisition runs and longer sampling time. In this paper, a sampling sequence is taken in each RES acquisition run, and the corresponding block measurement matrix is constructed using a Whittaker-Shannon interpolation formula. All the block matrices are combined into an equivalent measurement matrix with respect to all sampling sequences. We implemented the proposed approach with a multi-cores analog-to-digital converter (ADC), whose ADC cores are time interleaved. A prototype realization of this proposed CS based sequential random equivalent sampling method has been developed. It is able to capture an analog waveform at an equivalent sampling rate of 40 GHz while sampled at 1 GHz physically. Experiments indicate that, for a sparse signal, the proposed CS based sequential random equivalent sampling exhibits high efficiency.
Gupta, Vinod Kumar; Mergu, Naveen; Kumawat, Lokesh Kumar; Singh, Ashok Kumar
2015-11-01
A new rhodamine functionalized fluorogenic Schiff base CS was synthesized and its colorimetric and fluorescence responses toward various metal ions were explored. The sensor exhibited highly selective and sensitive colorimetric and "off-on" fluorescence response towards Al(3+) in the presence of other competing metal ions. These spectral changes are large enough in the visible region of the spectrum and thus enable naked-eye detection. Studies proved that the formation of CS-Al(3+) complex is fully reversible and can sense to AcO(-)/F(-) via dissociation. The results revealed that the sensor provides fluorescence "off-on-off" strategy for the sequential detection of Al(3+) and AcO(-)/F(-). Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Furukawa, Hideaki; Makino, Takeshi; Asghari, Mohammad H.; Trinh, Paul; Jalali, Bahram; Wang, Xiaomin; Kobayashi, Tetsuya; Man, Wai S.; Tsang, Kwong Shing; Wada, Naoya
2017-02-01
Single-shot and long record length spectrum measurements of high-repetition-rate optical pulses are essential for research on nonlinear dynamics as well as for applications in sensing and communication. To achieve a continuous measurements we employ the Time Stretch Dispersive Fourier Transform. We show single-shot measurements of millions of sequential pulses at high repetition rate of 1 Giga spectra per second. Results were obtained using -100 ps/nm dispersive Fourier transform module and a 50 Gsample/s real-time digitizer of 16 GHz bandwidth. Single-shot spectroscopy of 1 GHz optical pulse train was achieved with the wavelength resolution of approximately 150 pm. This instrument is ideal for observation of complex nonlinear dynamics such as switching, mode locking and soliton dynamics in high repetition rate lasers.
Li, Feilong; Li, Zhiqiang; Li, Guangxia; Dong, Feihong; Zhang, Wei
2017-01-01
The usable satellite spectrum is becoming scarce due to static spectrum allocation policies. Cognitive radio approaches have already demonstrated their potential towards spectral efficiency for providing more spectrum access opportunities to secondary user (SU) with sufficient protection to licensed primary user (PU). Hence, recent scientific literature has been focused on the tradeoff between spectrum reuse and PU protection within narrowband spectrum sensing (SS) in terrestrial wireless sensing networks. However, those narrowband SS techniques investigated in the context of terrestrial CR may not be applicable for detecting wideband satellite signals. In this paper, we mainly investigate the problem of joint designing sensing time and hard fusion scheme to maximize SU spectral efficiency in the scenario of low earth orbit (LEO) mobile satellite services based on wideband spectrum sensing. Compressed detection model is established to prove that there indeed exists one optimal sensing time achieving maximal spectral efficiency. Moreover, we propose novel wideband cooperative spectrum sensing (CSS) framework where each SU reporting duration can be utilized for its following SU sensing. The sensing performance benefits from the novel CSS framework because the equivalent sensing time is extended by making full use of reporting slot. Furthermore, in respect of time-varying channel, the spatiotemporal CSS (ST-CSS) is presented to attain space and time diversity gain simultaneously under hard decision fusion rule. Computer simulations show that the optimal sensing settings algorithm of joint optimization of sensing time, hard fusion rule and scheduling strategy achieves significant improvement in spectral efficiency. Additionally, the novel ST-CSS scheme performs much higher spectral efficiency than that of general CSS framework. PMID:28117712
VLSI Technology for Cognitive Radio
NASA Astrophysics Data System (ADS)
VIJAYALAKSHMI, B.; SIDDAIAH, P.
2017-08-01
One of the most challenging tasks of cognitive radio is the efficiency in the spectrum sensing scheme to overcome the spectrum scarcity problem. The popular and widely used spectrum sensing technique is the energy detection scheme as it is very simple and doesn’t require any previous information related to the signal. We propose one such approach which is an optimised spectrum sensing scheme with reduced filter structure. The optimisation is done in terms of area and power performance of the spectrum. The simulations of the VLSI structure of the optimised flexible spectrum is done using verilog coding by using the XILINX ISE software. Our method produces performance with 13% reduction in area and 66% reduction in power consumption in comparison to the flexible spectrum sensing scheme. All the results are tabulated and comparisons are made. A new scheme for optimised and effective spectrum sensing opens up with our model.
Narayanan, Ram M; Pooler, Richard K; Martone, Anthony F; Gallagher, Kyle A; Sherbondy, Kelly D
2018-02-22
This paper describes a multichannel super-heterodyne signal analyzer, called the Spectrum Analysis Solution (SAS), which performs multi-purpose spectrum sensing to support spectrally adaptive and cognitive radar applications. The SAS operates from ultrahigh frequency (UHF) to the S-band and features a wideband channel with eight narrowband channels. The wideband channel acts as a monitoring channel that can be used to tune the instantaneous band of the narrowband channels to areas of interest in the spectrum. The data collected from the SAS has been utilized to develop spectrum sensing algorithms for the budding field of spectrum sharing (SS) radar. Bandwidth (BW), average total power, percent occupancy (PO), signal-to-interference-plus-noise ratio (SINR), and power spectral entropy (PSE) have been examined as metrics for the characterization of the spectrum. These metrics are utilized to determine a contiguous optimal sub-band (OSB) for a SS radar transmission in a given spectrum for different modalities. Three OSB algorithms are presented and evaluated: the spectrum sensing multi objective (SS-MO), the spectrum sensing with brute force PSE (SS-BFE), and the spectrum sensing multi-objective with brute force PSE (SS-MO-BFE).
Pooler, Richard K.; Martone, Anthony F.; Gallagher, Kyle A.; Sherbondy, Kelly D.
2018-01-01
This paper describes a multichannel super-heterodyne signal analyzer, called the Spectrum Analysis Solution (SAS), which performs multi-purpose spectrum sensing to support spectrally adaptive and cognitive radar applications. The SAS operates from ultrahigh frequency (UHF) to the S-band and features a wideband channel with eight narrowband channels. The wideband channel acts as a monitoring channel that can be used to tune the instantaneous band of the narrowband channels to areas of interest in the spectrum. The data collected from the SAS has been utilized to develop spectrum sensing algorithms for the budding field of spectrum sharing (SS) radar. Bandwidth (BW), average total power, percent occupancy (PO), signal-to-interference-plus-noise ratio (SINR), and power spectral entropy (PSE) have been examined as metrics for the characterization of the spectrum. These metrics are utilized to determine a contiguous optimal sub-band (OSB) for a SS radar transmission in a given spectrum for different modalities. Three OSB algorithms are presented and evaluated: the spectrum sensing multi objective (SS-MO), the spectrum sensing with brute force PSE (SS-BFE), and the spectrum sensing multi-objective with brute force PSE (SS-MO-BFE). PMID:29470448
Hard Fusion Based Spectrum Sensing over Mobile Fading Channels in Cognitive Vehicular Networks
Hao, Li; Ni, Dadong; Tran, Quang Thanh
2018-01-01
An explosive growth in vehicular wireless applications gives rise to spectrum resource starvation. Cognitive radio has been used in vehicular networks to mitigate the impending spectrum starvation problem by allowing vehicles to fully exploit spectrum opportunities unoccupied by licensed users. Efficient and effective detection of licensed user is a critical issue to realize cognitive radio applications. However, spectrum sensing in vehicular environments is a very challenging task due to vehicle mobility. For instance, vehicle mobility has a large effect on the wireless channel, thereby impacting the detection performance of spectrum sensing. Thus, gargantuan efforts have been made in order to analyze the fading properties of mobile radio channel in vehicular environments. Indeed, numerous studies have demonstrated that the wireless channel in vehicular environments can be characterized by a temporally correlated Rayleigh fading. In this paper, we focus on energy detection for spectrum sensing and a counting rule for cooperative sensing based on Neyman-Pearson criteria. Further, we go into the effect of the sensing and reporting channel conditions on the sensing performance under the temporally correlated Rayleigh channel. For local and cooperative sensing, we derive some alternative expressions for the average probability of misdetection. The pertinent numerical and simulating results are provided to further validate our theoretical analyses under a variety of scenarios. PMID:29415452
A two-stage spectrum sensing scheme based on energy detection and a novel multitaper method
NASA Astrophysics Data System (ADS)
Qi, Pei-Han; Li, Zan; Si, Jiang-Bo; Xiong, Tian-Yi
2015-04-01
Wideband spectrum sensing has drawn much attention in recent years since it provides more opportunities to the secondary users. However, wideband spectrum sensing requires a long time and a complex mechanism at the sensing terminal. A two-stage wideband spectrum sensing scheme is considered to proceed spectrum sensing with low time consumption and high performance to tackle this predicament. In this scheme, a novel multitaper spectrum sensing (MSS) method is proposed to mitigate the poor performance of energy detection (ED) in the low signal-to-noise ratio (SNR) region. The closed-form expression of the decision threshold is derived based on the Neyman-Pearson criterion and the probability of detection in the Rayleigh fading channel is analyzed. An optimization problem is formulated to maximize the probability of detection of the proposed two-stage scheme and the average sensing time of the two-stage scheme is analyzed. Numerical results validate the efficiency of MSS and show that the two-stage spectrum sensing scheme enjoys higher performance in the low SNR region and lower time cost in the high SNR region than the single-stage scheme. Project supported by the National Natural Science Foundation of China (Grant No. 61301179), the China Postdoctoral Science Foundation (Grant No. 2014M550479), and the Doctorial Programs Foundation of the Ministry of Education, China (Grant No. 20110203110011).
Optimal Periodic Cooperative Spectrum Sensing Based on Weight Fusion in Cognitive Radio Networks
Liu, Xin; Jia, Min; Gu, Xuemai; Tan, Xuezhi
2013-01-01
The performance of cooperative spectrum sensing in cognitive radio (CR) networks depends on the sensing mode, the sensing time and the number of cooperative users. In order to improve the sensing performance and reduce the interference to the primary user (PU), a periodic cooperative spectrum sensing model based on weight fusion is proposed in this paper. Moreover, the sensing period, the sensing time and the searching time are optimized, respectively. Firstly the sensing period is optimized to improve the spectrum utilization and reduce the interference, then the joint optimization algorithm of the local sensing time and the number of cooperative users, is proposed to obtain the optimal sensing time for improving the throughput of the cognitive radio user (CRU) during each period, and finally the water-filling principle is applied to optimize the searching time in order to make the CRU find an idle channel within the shortest time. The simulation results show that compared with the previous algorithms, the optimal sensing period can improve the spectrum utilization of the CRU and decrease the interference to the PU significantly, the optimal sensing time can make the CRU achieve the largest throughput, and the optimal searching time can make the CRU find an idle channel with the least time. PMID:23604027
NASA Astrophysics Data System (ADS)
Gao, J.; Lythe, M. B.
1996-06-01
This paper presents the principle of the Maximum Cross-Correlation (MCC) approach in detecting translational motions within dynamic fields from time-sequential remotely sensed images. A C program implementing the approach is presented and illustrated in a flowchart. The program is tested with a pair of sea-surface temperature images derived from Advanced Very High Resolution Radiometer (AVHRR) images near East Cape, New Zealand. Results show that the mean currents in the region have been detected satisfactorily with the approach.
Multiuser signal detection using sequential decoding
NASA Astrophysics Data System (ADS)
Xie, Zhenhua; Rushforth, Craig K.; Short, Robert T.
1990-05-01
The application of sequential decoding to the detection of data transmitted over the additive white Gaussian noise channel by K asynchronous transmitters using direct-sequence spread-spectrum multiple access is considered. A modification of Fano's (1963) sequential-decoding metric, allowing the messages from a given user to be safely decoded if its Eb/N0 exceeds -1.6 dB, is presented. Computer simulation is used to evaluate the performance of a sequential decoder that uses this metric in conjunction with the stack algorithm. In many circumstances, the sequential decoder achieves results comparable to those obtained using the much more complicated optimal receiver.
Liu, Xin
2015-10-30
In a cognitive sensor network (CSN), the wastage of sensing time and energy is a challenge to cooperative spectrum sensing, when the number of cooperative cognitive nodes (CNs) becomes very large. In this paper, a novel wireless power transfer (WPT)-based weighed clustering cooperative spectrum sensing model is proposed, which divides all the CNs into several clusters, and then selects the most favorable CNs as the cluster heads and allows the common CNs to transfer the received radio frequency (RF) energy of the primary node (PN) to the cluster heads, in order to supply the electrical energy needed for sensing and cooperation. A joint resource optimization is formulated to maximize the spectrum access probability of the CSN, through jointly allocating sensing time and clustering number. According to the resource optimization results, a clustering algorithm is proposed. The simulation results have shown that compared to the traditional model, the cluster heads of the proposed model can achieve more transmission power and there exists optimal sensing time and clustering number to maximize the spectrum access probability.
Li, Ke; Ping, Xueliang; Wang, Huaqing; Chen, Peng; Cao, Yi
2013-06-21
A novel intelligent fault diagnosis method for motor roller bearings which operate under unsteady rotating speed and load is proposed in this paper. The pseudo Wigner-Ville distribution (PWVD) and the relative crossing information (RCI) methods are used for extracting the feature spectra from the non-stationary vibration signal measured for condition diagnosis. The RCI is used to automatically extract the feature spectrum from the time-frequency distribution of the vibration signal. The extracted feature spectrum is instantaneous, and not correlated with the rotation speed and load. By using the ant colony optimization (ACO) clustering algorithm, the synthesizing symptom parameters (SSP) for condition diagnosis are obtained. The experimental results shows that the diagnostic sensitivity of the SSP is higher than original symptom parameter (SP), and the SSP can sensitively reflect the characteristics of the feature spectrum for precise condition diagnosis. Finally, a fuzzy diagnosis method based on sequential inference and possibility theory is also proposed, by which the conditions of the machine can be identified sequentially as well.
Li, Ke; Ping, Xueliang; Wang, Huaqing; Chen, Peng; Cao, Yi
2013-01-01
A novel intelligent fault diagnosis method for motor roller bearings which operate under unsteady rotating speed and load is proposed in this paper. The pseudo Wigner-Ville distribution (PWVD) and the relative crossing information (RCI) methods are used for extracting the feature spectra from the non-stationary vibration signal measured for condition diagnosis. The RCI is used to automatically extract the feature spectrum from the time-frequency distribution of the vibration signal. The extracted feature spectrum is instantaneous, and not correlated with the rotation speed and load. By using the ant colony optimization (ACO) clustering algorithm, the synthesizing symptom parameters (SSP) for condition diagnosis are obtained. The experimental results shows that the diagnostic sensitivity of the SSP is higher than original symptom parameter (SP), and the SSP can sensitively reflect the characteristics of the feature spectrum for precise condition diagnosis. Finally, a fuzzy diagnosis method based on sequential inference and possibility theory is also proposed, by which the conditions of the machine can be identified sequentially as well. PMID:23793021
Liu, Weisong; Huang, Zhitao; Wang, Xiang; Sun, Weichao
2017-01-01
In a cognitive radio sensor network (CRSN), wideband spectrum sensing devices which aims to effectively exploit temporarily vacant spectrum intervals as soon as possible are of great importance. However, the challenge of increasingly high signal frequency and wide bandwidth requires an extremely high sampling rate which may exceed today’s best analog-to-digital converters (ADCs) front-end bandwidth. Recently, the newly proposed architecture called modulated wideband converter (MWC), is an attractive analog compressed sensing technique that can highly reduce the sampling rate. However, the MWC has high hardware complexity owing to its parallel channel structure especially when the number of signals increases. In this paper, we propose a single channel modulated wideband converter (SCMWC) scheme for spectrum sensing of band-limited wide-sense stationary (WSS) signals. With one antenna or sensor, this scheme can save not only sampling rate but also hardware complexity. We then present a new, SCMWC based, single node CR prototype System, on which the spectrum sensing algorithm was tested. Experiments on our hardware prototype show that the proposed architecture leads to successful spectrum sensing. And the total sampling rate as well as hardware size is only one channel’s consumption of MWC. PMID:28471410
He, Longwei; Yang, Xueling; Xu, Kaixin; Kong, Xiuqi
2017-01-01
Biothiols, which have a close network of generation and metabolic pathways among them, are essential reactive sulfur species (RSS) in the cells and play vital roles in human physiology. However, biothiols possess highly similar chemical structures and properties, resulting in it being an enormous challenge to simultaneously discriminate them from each other. Herein, we develop a unique fluorescent probe (HMN) for not only simultaneously distinguishing Cys/Hcy, GSH, and H2S from each other, but also sequentially sensing Cys/Hcy/GSH and H2S using a multi-channel fluorescence mode for the first time. When responding to the respective biothiols, the robust probe exhibits multiple sets of fluorescence signals at three distinct emission bands (blue-green-red). The new probe can also sense H2S at different concentration levels with changes of fluorescence at the blue and red emission bands. In addition, the novel probe HMN is able to discriminate and sequentially sense biothiols in biological environments via three-color fluorescence imaging. We expect that the development of the robust probe HMN will provide a powerful strategy to design fluorescent probes for the discrimination and sequential detection of biothiols, and offer a promising tool for exploring the interrelated roles of biothiols in various physiological and pathological conditions. PMID:28989659
A Novel Ship-Tracking Method for GF-4 Satellite Sequential Images.
Yao, Libo; Liu, Yong; He, You
2018-06-22
The geostationary remote sensing satellite has the capability of wide scanning, persistent observation and operational response, and has tremendous potential for maritime target surveillance. The GF-4 satellite is the first geostationary orbit (GEO) optical remote sensing satellite with medium resolution in China. In this paper, a novel ship-tracking method in GF-4 satellite sequential imagery is proposed. The algorithm has three stages. First, a local visual saliency map based on local peak signal-to-noise ratio (PSNR) is used to detect ships in a single frame of GF-4 satellite sequential images. Second, the accuracy positioning of each potential target is realized by a dynamic correction using the rational polynomial coefficients (RPCs) and automatic identification system (AIS) data of ships. Finally, an improved multiple hypotheses tracking (MHT) algorithm with amplitude information is used to track ships by further removing the false targets, and to estimate ships’ motion parameters. The algorithm has been tested using GF-4 sequential images and AIS data. The results of the experiment demonstrate that the algorithm achieves good tracking performance in GF-4 satellite sequential images and estimates the motion information of ships accurately.
NASA Astrophysics Data System (ADS)
Hu, Hang; Yu, Hong; Zhang, Yongzhi
2013-03-01
Cooperative spectrum sensing, which can greatly improve the ability of discovering the spectrum opportunities, is regarded as an enabling mechanism for cognitive radio (CR) networks. In this paper, we employ a double threshold detection method in energy detector to perform spectrum sensing, only the CR users with reliable sensing information are allowed to transmit one bit local decision to the fusion center. Simulation results will show that our proposed double threshold detection method could not only improve the sensing performance but also save the bandwidth of the reporting channel compared with the conventional detection method with one threshold. By weighting the sensing performance and the consumption of system resources in a utility function that is maximized with respect to the number of CR users, it has been shown that the optimal number of CR users is related to the price of these Quality-of-Service (QoS) requirements.
NASA Astrophysics Data System (ADS)
Dikmese, Sener; Srinivasan, Sudharsan; Shaat, Musbah; Bader, Faouzi; Renfors, Markku
2014-12-01
Multicarrier waveforms have been commonly recognized as strong candidates for cognitive radio. In this paper, we study the dynamics of spectrum sensing and spectrum allocation functions in cognitive radio context using very practical signal models for the primary users (PUs), including the effects of power amplifier nonlinearities. We start by sensing the spectrum with energy detection-based wideband multichannel spectrum sensing algorithm and continue by investigating optimal resource allocation methods. Along the way, we examine the effects of spectral regrowth due to the inevitable power amplifier nonlinearities of the PU transmitters. The signal model includes frequency selective block-fading channel models for both secondary and primary transmissions. Filter bank-based wideband spectrum sensing techniques are applied for detecting spectral holes and filter bank-based multicarrier (FBMC) modulation is selected for transmission as an alternative multicarrier waveform to avoid the disadvantage of limited spectral containment of orthogonal frequency-division multiplexing (OFDM)-based multicarrier systems. The optimization technique used for the resource allocation approach considered in this study utilizes the information obtained through spectrum sensing and knowledge of spectrum leakage effects of the underlying waveforms, including a practical power amplifier model for the PU transmitter. This study utilizes a computationally efficient algorithm to maximize the SU link capacity with power and interference constraints. It is seen that the SU transmission capacity depends critically on the spectral containment of the PU waveform, and these effects are quantified in a case study using an 802.11-g WLAN scenario.
A Test Methodology for Evaluating Cognitive Radio Systems
2014-03-27
assumes that there are base stations which facilitate spectrum coordination by acting as spectrum brokers. Individual sensing nodes may feed local...spectrum information to the base stations [17]. The base station spectrum broker has a geolocation database of known licensed transmitters, but supplements...Sensing nodes are required to feed spectrum knowledge back to the central base station , though this act 8 does not require cognition. Instead, all
Wang, Dawei; Ren, Pinyi; Du, Qinghe; Sun, Li; Wang, Yichen
2016-01-01
The rapid proliferation of independently-designed and -deployed wireless sensor networks extremely crowds the wireless spectrum and promotes the emergence of cognitive radio sensor networks (CRSN). In CRSN, the sensor node (SN) can make full use of the unutilized licensed spectrum, and the spectrum efficiency is greatly improved. However, inevitable spectrum sensing errors will adversely interfere with the primary transmission, which may result in primary transmission outage. To compensate the adverse effect of spectrum sensing errors, we propose a reciprocally-benefited secure transmission strategy, in which SN’s interference to the eavesdropper is employed to protect the primary confidential messages while the CRSN is also rewarded with a loose spectrum sensing error probability constraint. Specifically, according to the spectrum sensing results and primary users’ activities, there are four system states in this strategy. For each state, we analyze the primary secrecy rate and the SN’s transmission rate by taking into account the spectrum sensing errors. Then, the SN’s transmit power is optimally allocated for each state so that the average transmission rate of CRSN is maximized under the constraint of the primary maximum permitted secrecy outage probability. In addition, the performance tradeoff between the transmission rate of CRSN and the primary secrecy outage probability is investigated. Moreover, we analyze the primary secrecy rate for the asymptotic scenarios and derive the closed-form expression of the SN’s transmission outage probability. Simulation results show that: (1) the performance of the SN’s average throughput in the proposed strategy outperforms the conventional overlay strategy; (2) both the primary network and CRSN benefit from the proposed strategy. PMID:27897988
Introduction to the physics and techniques of remote sensing
NASA Technical Reports Server (NTRS)
Elachi, Charles
1987-01-01
This book presents a comprehensive overview of the basics behind remote-sensing physics, techniques, and technology. The physics of wave/matter interactions, techniques of remote sensing across the electromagnetic spectrum, and the concepts behind remote sensing techniques now established and future ones under development are discussed. Applications of remote sensing are described for a wide variety of earth and planetary atmosphere and surface sciences. Solid surface sensing across the electromagnetic spectrum, ocean surface sensing, basic principles of atmospheric sensing and radiative transfer, and atmospheric remote sensing in the microwave, millimeter, submillimeter, and infrared regions are examined.
Spectrum sensing algorithm based on autocorrelation energy in cognitive radio networks
NASA Astrophysics Data System (ADS)
Ren, Shengwei; Zhang, Li; Zhang, Shibing
2016-10-01
Cognitive radio networks have wide applications in the smart home, personal communications and other wireless communication. Spectrum sensing is the main challenge in cognitive radios. This paper proposes a new spectrum sensing algorithm which is based on the autocorrelation energy of signal received. By taking the autocorrelation energy of the received signal as the statistics of spectrum sensing, the effect of the channel noise on the detection performance is reduced. Simulation results show that the algorithm is effective and performs well in low signal-to-noise ratio. Compared with the maximum generalized eigenvalue detection (MGED) algorithm, function of covariance matrix based detection (FMD) algorithm and autocorrelation-based detection (AD) algorithm, the proposed algorithm has 2 11 dB advantage.
A robust power spectrum split cancellation-based spectrum sensing method for cognitive radio systems
NASA Astrophysics Data System (ADS)
Qi, Pei-Han; Li, Zan; Si, Jiang-Bo; Gao, Rui
2014-12-01
Spectrum sensing is an essential component to realize the cognitive radio, and the requirement for real-time spectrum sensing in the case of lacking prior information, fading channel, and noise uncertainty, indeed poses a major challenge to the classical spectrum sensing algorithms. Based on the stochastic properties of scalar transformation of power spectral density (PSD), a novel spectrum sensing algorithm, referred to as the power spectral density split cancellation method (PSC), is proposed in this paper. The PSC makes use of a scalar value as a test statistic, which is the ratio of each subband power to the full band power. Besides, by exploiting the asymptotic normality and independence of Fourier transform, the distribution of the ratio and the mathematical expressions for the probabilities of false alarm and detection in different channel models are derived. Further, the exact closed-form expression of decision threshold is calculated in accordance with Neyman—Pearson criterion. Analytical and simulation results show that the PSC is invulnerable to noise uncertainty, and can achive excellent detection performance without prior knowledge in additive white Gaussian noise and flat slow fading channels. In addition, the PSC benefits from a low computational cost, which can be completed in microseconds.
Hyperspectral remote sensing for terrestrial applications
Thenkabail, Prasad S.; Teluguntla, Pardhasaradhi G.; Murali Krishna Gumma,; Venkateswarlu Dheeravath,
2015-01-01
Remote sensing data are considered hyperspectral when the data are gathered from numerous wavebands, contiguously over an entire range of the spectrum (e.g., 400–2500 nm). Goetz (1992) defines hyperspectral remote sensing as “The acquisition of images in hundreds of registered, contiguous spectral bands such that for each picture element of an image it is possible to derive a complete reflectance spectrum.” However, Jensen (2004) defines hyperspectral remote sensing as “The simultaneous acquisition of images in many relatively narrow, contiguous and/or non contiguous spectral bands throughout the ultraviolet, visible, and infrared portions of the electromagnetic spectrum.
NASA Technical Reports Server (NTRS)
Yueh, Simon H.
2004-01-01
Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.
Removing non-stationary noise in spectrum sensing using matrix factorization
NASA Astrophysics Data System (ADS)
van Bloem, Jan-Willem; Schiphorst, Roel; Slump, Cornelis H.
2013-12-01
Spectrum sensing is key to many applications like dynamic spectrum access (DSA) systems or telecom regulators who need to measure utilization of frequency bands. The International Telecommunication Union (ITU) recommends a 10 dB threshold above the noise to decide whether a channel is occupied or not. However, radio frequency (RF) receiver front-ends are non-ideal. This means that the obtained data is distorted with noise and imperfections from the analog front-end. As part of the front-end the automatic gain control (AGC) circuitry mainly affects the sensing performance as strong adjacent signals lift the noise level. To enhance the performance of spectrum sensing significantly we focus in this article on techniques to remove the noise caused by the AGC from the sensing data. In order to do this we have applied matrix factorization techniques, i.e., SVD (singular value decomposition) and NMF (non-negative matrix factorization), which enables signal space analysis. In addition, we use live measurement results to verify the performance and to remove the effects of the AGC from the sensing data using above mentioned techniques, i.e., applied on block-wise available spectrum data. In this article it is shown that the occupancy in the industrial, scientific and medical (ISM) band, obtained by using energy detection (ITU recommended threshold), can be an overestimation of spectrum usage by 60%.
Allosteric substrate switching in a voltage-sensing lipid phosphatase.
Grimm, Sasha S; Isacoff, Ehud Y
2016-04-01
Allostery provides a critical control over enzyme activity, biasing the catalytic site between inactive and active states. We found that the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP), which modifies phosphoinositide signaling lipids (PIPs), has not one but two sequential active states with distinct substrate specificities, whose occupancy is allosterically controlled by sequential conformations of the voltage-sensing domain (VSD). Using fast fluorescence resonance energy transfer (FRET) reporters of PIPs to monitor enzyme activity and voltage-clamp fluorometry to monitor conformational changes in the VSD, we found that Ci-VSP switches from inactive to a PIP3-preferring active state when the VSD undergoes an initial voltage-sensing motion and then into a second PIP2-preferring active state when the VSD activates fully. This two-step allosteric control over a dual-specificity enzyme enables voltage to shape PIP concentrations in time, and provides a mechanism for the complex modulation of PIP-regulated ion channels, transporters, cell motility, endocytosis and exocytosis.
Allosteric substrate switching in a voltage sensing lipid phosphatase
Grimm, Sasha S.; Isacoff, Ehud Y.
2016-01-01
Allostery provides a critical control over enzyme activity, biasing the catalytic site between inactive and active states. We find the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP), which modifies phosphoinositide signaling lipids (PIPs), to have not one but two sequential active states with distinct substrate specificities, whose occupancy is allosterically controlled by sequential conformations of the voltage sensing domain (VSD). Using fast FRET reporters of PIPs to monitor enzyme activity and voltage clamp fluorometry to monitor conformational changes in the VSD, we find that Ci-VSP switches from inactive to a PIP3-preferring active state when the VSD undergoes an initial voltage sensing motion and then into a second PIP2-preferring active state when the VSD activates fully. This novel 2-step allosteric control over a dual specificity enzyme enables voltage to shape PIP concentrations in time, and provides a mechanism for the complex modulation of PIP-regulated ion channels, transporters, cell motility and endo/exocytosis. PMID:26878552
NASA Astrophysics Data System (ADS)
Waldhoff, Guido; Lussem, Ulrike; Bareth, Georg
2017-09-01
Spatial land use information is one of the key input parameters for regional agro-ecosystem modeling. Furthermore, to assess the crop-specific management in a spatio-temporal context accurately, parcel-related crop rotation information is additionally needed. Such data is scarcely available for a regional scale, so that only modeled crop rotations can be incorporated instead. However, the spectrum of the occurring multiannual land use patterns on arable land remains unknown. Thus, this contribution focuses on the mapping of the actually practiced crop rotations in the Rur catchment, located in the western part of Germany. We addressed this by combining multitemporal multispectral remote sensing data, ancillary information and expert-knowledge on crop phenology in a GIS-based Multi-Data Approach (MDA). At first, a methodology for the enhanced differentiation of the major crop types on an annual basis was developed. Key aspects are (i) the usage of physical block data to separate arable land from other land use types, (ii) the classification of remote sensing scenes of specific time periods, which are most favorable for the differentiation of certain crop types, and (iii) the combination of the multitemporal classification results in a sequential analysis strategy. Annual crop maps of eight consecutive years (2008-2015) were combined to a crop sequence dataset to have a profound data basis for the mapping of crop rotations. In most years, the remote sensing data basis was highly fragmented. Nevertheless, our method enabled satisfying crop mapping results. As an example for the annual crop mapping workflow, the procedure and the result of 2015 are illustrated. For the generation of the crop sequence dataset, the eight annual crop maps were geometrically smoothened and integrated into a single vector data layer. The resulting dataset informs about the occurring crop sequence for individual areas on arable land, so that crop rotation schemes can be derived. The resulting dataset reveals that the spectrum of the practiced crop rotations is extremely heterogeneous and contains a large amount of crop sequences, which strongly diverge from model crop rotations. Consequently, the integration of remote sensing-based crop rotation data can considerably reduce uncertainties regarding the management in regional agro-ecosystem modeling. Finally, the developed methods and the results are discussed in detail.
Hernández-Torrano, Daniel; Ali, Syed; Chan, Chee-Kai
2017-08-08
Students commencing their medical training arrive with different educational backgrounds and a diverse range of learning experiences. Consequently, students would have developed preferred approaches to acquiring and processing information or learning style preferences. Understanding first-year students' learning style preferences is important to success in learning. However, little is understood about how learning styles impact learning and performance across different subjects within the medical curriculum. Greater understanding of the relationship between students' learning style preferences and academic performance in specific medical subjects would be valuable. This cross-sectional study examined the learning style preferences of first-year medical students and how they differ across gender. This research also analyzed the effect of learning styles on academic performance across different subjects within a medical education program in a Central Asian university. A total of 52 students (57.7% females) from two batches of first-year medical school completed the Index of Learning Styles Questionnaire, which measures four dimensions of learning styles: sensing-intuitive; visual-verbal; active-reflective; sequential-global. First-year medical students reported preferences for visual (80.8%) and sequential (60.5%) learning styles, suggesting that these students preferred to learn through demonstrations and diagrams and in a linear and sequential way. Our results indicate that male medical students have higher preference for visual learning style over verbal, while females seemed to have a higher preference for sequential learning style over global. Significant associations were found between sensing-intuitive learning styles and performance in Genetics [β = -0.46, B = -0.44, p < 0.01] and Anatomy [β = -0.41, B = -0.61, p < 0.05] and between sequential-global styles and performance in Genetics [β = 0.36, B = 0.43, p < 0.05]. More specifically, sensing learners were more likely to perform better than intuitive learners in the two subjects and global learners were more likely to perform better than sequential learners in Genetics. This knowledge will be helpful to individual students to improve their performance in these subjects by adopting new sensing learning techniques. Instructors can also benefit by modifying and adapting more appropriate teaching approaches in these subjects. Future studies to validate this observation will be valuable.
Remote sensing-a geophysical perspective.
Watson, K.
1985-01-01
In this review of developments in the field of remote sensing from a geophysical perspective, the subject is limited to the electromagnetic spectrum from 0.4 mu m to 25cm. Three broad energy categories are covered: solar reflected, thermal infrared, and microwave.-from Authorremote sensing electromagnetic spectrum solar reflected thermal infrared microwave geophysics
Achieving Efficient Spectrum Usage in Passive and Active Sensing
NASA Astrophysics Data System (ADS)
Wang, Huaiyi
Increasing demand for supporting more wireless services with higher performance and reliability within the frequency bands that are most conducive to operating cost-effective cellular and mobile broadband is aggravating current electromagnetic spectrum congestion. This situation motivates technology and management innovation to increase the efficiency of spectral use. If primary-secondary spectrum sharing can be shown possible without compromising (or while even improving) performance in an existing application, opportunities for efficiency may be realizable by making the freed spectrum available for commercial use. While both active and passive sensing systems are vitally important for many public good applications, opportunities for increasing the efficiency of spectrum use can be shown to exist for both systems. This dissertation explores methods and technologies for remote sensing systems that enhance spectral efficiency and enable dynamic spectrum access both within and outside traditionally allocated bands.
Properties of centralized cooperative sensing in cognitive radio networks
NASA Astrophysics Data System (ADS)
Skokowski, Paweł; Malon, Krzysztof; Łopatka, Jerzy
2017-04-01
Spectrum sensing is a functionality that enables network creation in the cognitive radio technology. Spectrum sensing is use for building the situation awareness knowledge for better use of radio resources and to adjust network parameters in case of jamming, interferences from legacy systems, decreasing link quality caused e.g. by nodes positions changes. This paper presents results from performed tests to compare cooperative centralized sensing versus local sensing. All tests were performed in created simulator developed in Matlab/Simulink environment.
NASA Technical Reports Server (NTRS)
Braun, W. R.
1981-01-01
Pseudo noise (PN) spread spectrum systems require a very accurate alignment between the PN code epochs at the transmitter and receiver. This synchronism is typically established through a two-step algorithm, including a coarse synchronization procedure and a fine synchronization procedure. A standard approach for the coarse synchronization is a sequential search over all code phases. The measurement of the power in the filtered signal is used to either accept or reject the code phase under test as the phase of the received PN code. This acquisition strategy, called a single dwell-time system, has been analyzed by Holmes and Chen (1977). A synopsis of the field of sequential analysis as it applies to the PN acquisition problem is provided. From this, the implementation of the variable dwell time algorithm as a sequential probability ratio test is developed. The performance of this algorithm is compared to the optimum detection algorithm and to the fixed dwell-time system.
Segmentation of remotely sensed data using parallel region growing
NASA Technical Reports Server (NTRS)
Tilton, J. C.; Cox, S. C.
1983-01-01
The improved spatial resolution of the new earth resources satellites will increase the need for effective utilization of spatial information in machine processing of remotely sensed data. One promising technique is scene segmentation by region growing. Region growing can use spatial information in two ways: only spatially adjacent regions merge together, and merging criteria can be based on region-wide spatial features. A simple region growing approach is described in which the similarity criterion is based on region mean and variance (a simple spatial feature). An effective way to implement region growing for remote sensing is as an iterative parallel process on a large parallel processor. A straightforward parallel pixel-based implementation of the algorithm is explored and its efficiency is compared with sequential pixel-based, sequential region-based, and parallel region-based implementations. Experimental results from on aircraft scanner data set are presented, as is a discussioon of proposed improvements to the segmentation algorithm.
NASA Astrophysics Data System (ADS)
Wang, Wenkai; Li, Husheng; Sun, Yan(Lindsay); Han, Zhu
2009-12-01
Cognitive radio is a revolutionary paradigm to migrate the spectrum scarcity problem in wireless networks. In cognitive radio networks, collaborative spectrum sensing is considered as an effective method to improve the performance of primary user detection. For current collaborative spectrum sensing schemes, secondary users are usually assumed to report their sensing information honestly. However, compromised nodes can send false sensing information to mislead the system. In this paper, we study the detection of untrustworthy secondary users in cognitive radio networks. We first analyze the case when there is only one compromised node in collaborative spectrum sensing schemes. Then we investigate the scenario that there are multiple compromised nodes. Defense schemes are proposed to detect malicious nodes according to their reporting histories. We calculate the suspicious level of all nodes based on their reports. The reports from nodes with high suspicious levels will be excluded in decision-making. Compared with existing defense methods, the proposed scheme can effectively differentiate malicious nodes and honest nodes. As a result, it can significantly improve the performance of collaborative sensing. For example, when there are 10 secondary users, with the primary user detection rate being equal to 0.99, one malicious user can make the false alarm rate [InlineEquation not available: see fulltext.] increase to 72%. The proposed scheme can reduce it to 5%. Two malicious users can make [InlineEquation not available: see fulltext.] increase to 85% and the proposed scheme reduces it to 8%.
A class of temporal boundaries derived by quantifying the sense of separation.
Paine, Llewyn Elise; Gilden, David L
2013-12-01
The perception of moment-to-moment environmental flux as being composed of meaningful events requires that memory processes coordinate with cues that signify beginnings and endings. We have constructed a technique that allows this coordination to be monitored indirectly. This technique works by embedding a sequential priming task into the event under study. Memory and perception must be coordinated to resolve temporal flux into scenes. The implicit memory processes inherent in sequential priming are able to effectively shadow then mirror scene-forming processes. Certain temporal boundaries are found to weaken the strength of irrelevant feature priming, a signal which can then be used in more ambiguous cases to infer how people segment time. Over the course of 13 independent studies, we were able to calibrate the technique and then use it to measure the strength of event segmentation in several instructive contexts that involved both visual and auditory modalities. The signal generated by sequential priming may permit the sense of separation between events to be measured as an extensive psychophysical quantity.
Sense of Belonging and Life Transitions for Two Females with Autism Spectrum Disorder in Finland
ERIC Educational Resources Information Center
Pesonen, Henri V.; Kontu, Elina K.; Pirttimaa, Raija A.
2015-01-01
Sense of belonging refers to the degree to which individuals feel included, accepted, and supported by others in a variety of social settings. This study, based on the narratives of two females (ages 26 and 29) with Autism Spectrum Disorder (ASD), examines sense of belonging and various life transition issues that may appear throughout childhood,…
The Solar Spectrum: An Atmospheric Remote Sensing Perspective
NASA Technical Reports Server (NTRS)
Toon, Geoff
2013-01-01
The solar spectrum not only contains information about the composition and structure of the sun, it also provides a bright and stable continuum source for earth remote sensing (atmosphere and surface). Many types of remote sensors use solar radiation. While high-resolution spaceborne sensors (e.g. ACE) can largely remove the effects of the solar spectrum by exo-atmospheric calibration, this isn't an option for sub-orbital sensors, such as the FTIR spectrometers used in the NDACC and TCCON networks. In this case the solar contribution must be explicitly included in the spectral analysis. In this talk the methods used to derive the solar spectrum are presented, and the underlying solar physics are discussed. Implication for remote sensing are described.
Unsupervised classification of remote multispectral sensing data
NASA Technical Reports Server (NTRS)
Su, M. Y.
1972-01-01
The new unsupervised classification technique for classifying multispectral remote sensing data which can be either from the multispectral scanner or digitized color-separation aerial photographs consists of two parts: (a) a sequential statistical clustering which is a one-pass sequential variance analysis and (b) a generalized K-means clustering. In this composite clustering technique, the output of (a) is a set of initial clusters which are input to (b) for further improvement by an iterative scheme. Applications of the technique using an IBM-7094 computer on multispectral data sets over Purdue's Flight Line C-1 and the Yellowstone National Park test site have been accomplished. Comparisons between the classification maps by the unsupervised technique and the supervised maximum liklihood technique indicate that the classification accuracies are in agreement.
Sequential deconvolution from wave-front sensing using bivariate simplex splines
NASA Astrophysics Data System (ADS)
Guo, Shiping; Zhang, Rongzhi; Li, Jisheng; Zou, Jianhua; Xu, Rong; Liu, Changhai
2015-05-01
Deconvolution from wave-front sensing (DWFS) is an imaging compensation technique for turbulence degraded images based on simultaneous recording of short exposure images and wave-front sensor data. This paper employs the multivariate splines method for the sequential DWFS: a bivariate simplex splines based average slopes measurement model is built firstly for Shack-Hartmann wave-front sensor; next, a well-conditioned least squares estimator for the spline coefficients is constructed using multiple Shack-Hartmann measurements; then, the distorted wave-front is uniquely determined by the estimated spline coefficients; the object image is finally obtained by non-blind deconvolution processing. Simulated experiments in different turbulence strength show that our method performs superior image restoration results and noise rejection capability especially when extracting the multidirectional phase derivatives.
Remote sensing of the Fram Strait marginal ice zone
Shuchman, R.A.; Burns, B.A.; Johannessen, O.M.; Josberger, E.G.; Campbell, W.J.; Manley, T.O.; Lannelongue, N.
1987-01-01
Sequential remote sensing images of the Fram Strait marginal ice zone played a key role in elucidating the complex interactions of the atmosphere, ocean, and sea ice. Analysis of a subset of these images covering a 1-week period provided quantitative data on the mesoscale ice morphology, including ice edge positions, ice concentrations, floe size distribution, and ice kinematics. The analysis showed that, under light to moderate wind conditions, the morphology of the marginal ice zone reflects the underlying ocean circulation. High-resolution radar observations showed the location and size of ocean eddies near the ice edge. Ice kinematics from sequential radar images revealed an ocean eddy beneath the interior pack ice that was verified by in situ oceanographic measurements.
Near-common-path interferometer for imaging Fourier-transform spectroscopy in wide-field microscopy
Wadduwage, Dushan N.; Singh, Vijay Raj; Choi, Heejin; Yaqoob, Zahid; Heemskerk, Hans; Matsudaira, Paul; So, Peter T. C.
2017-01-01
Imaging Fourier-transform spectroscopy (IFTS) is a powerful method for biological hyperspectral analysis based on various imaging modalities, such as fluorescence or Raman. Since the measurements are taken in the Fourier space of the spectrum, it can also take advantage of compressed sensing strategies. IFTS has been readily implemented in high-throughput, high-content microscope systems based on wide-field imaging modalities. However, there are limitations in existing wide-field IFTS designs. Non-common-path approaches are less phase-stable. Alternatively, designs based on the common-path Sagnac interferometer are stable, but incompatible with high-throughput imaging. They require exhaustive sequential scanning over large interferometric path delays, making compressive strategic data acquisition impossible. In this paper, we present a novel phase-stable, near-common-path interferometer enabling high-throughput hyperspectral imaging based on strategic data acquisition. Our results suggest that this approach can improve throughput over those of many other wide-field spectral techniques by more than an order of magnitude without compromising phase stability. PMID:29392168
On Transform Domain Communication Systems under Spectrum Sensing Mismatch: A Deterministic Analysis.
Jin, Chuanxue; Hu, Su; Huang, Yixuan; Luo, Qu; Huang, Dan; Li, Yi; Gao, Yuan; Cheng, Shaochi
2017-07-08
Towards the era of mobile Internet and the Internet of Things (IoT), numerous sensors and devices are being introduced and interconnected. To support such an amount of data traffic, traditional wireless communication technologies are facing challenges both in terms of the increasing shortage of spectrum resources and massive multiple access. The transform-domain communication system (TDCS) is considered as an alternative multiple access system, where 5G and mobile IoT are mainly focused. However, previous studies about TDCS are under the assumption that the transceiver has the global spectrum information, without the consideration of spectrum sensing mismatch (SSM). In this paper, we present the deterministic analysis of TDCS systems under arbitrary given spectrum sensing scenarios, especially the influence of the SSM pattern to the signal to noise ratio (SNR) performance. Simulation results show that arbitrary SSM pattern can lead to inferior bit error rate (BER) performance.
On Transform Domain Communication Systems under Spectrum Sensing Mismatch: A Deterministic Analysis
Jin, Chuanxue; Hu, Su; Huang, Yixuan; Luo, Qu; Huang, Dan; Li, Yi; Cheng, Shaochi
2017-01-01
Towards the era of mobile Internet and the Internet of Things (IoT), numerous sensors and devices are being introduced and interconnected. To support such an amount of data traffic, traditional wireless communication technologies are facing challenges both in terms of the increasing shortage of spectrum resources and massive multiple access. The transform-domain communication system (TDCS) is considered as an alternative multiple access system, where 5G and mobile IoT are mainly focused. However, previous studies about TDCS are under the assumption that the transceiver has the global spectrum information, without the consideration of spectrum sensing mismatch (SSM). In this paper, we present the deterministic analysis of TDCS systems under arbitrary given spectrum sensing scenarios, especially the influence of the SSM pattern to the signal to noise ratio (SNR) performance. Simulation results show that arbitrary SSM pattern can lead to inferior bit error rate (BER) performance. PMID:28698477
Ishida, Naoki; Nečas, David; Masuda, Yusuke; Murakami, Masahiro
2015-06-15
3-Hydroxypiperidine scaffolds were enantioselectively constructed in an atom-economical way by sequential action of light and rhodium upon N-allylglyoxylamides. In a formal sense, the allylic C-H bond was selectively cleaved and enantioselectively added across the ketonic carbonyl group with migration of the double bond (carbonyl-ene-type reaction). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Morshed, M. N.; Khatun, S.; Kamarudin, L. M.; Aljunid, S. A.; Ahmad, R. B.; Zakaria, A.; Fakir, M. M.
2017-03-01
Spectrum saturation problem is a major issue in wireless communication systems all over the world. Huge number of users is joining each day to the existing fixed band frequency but the bandwidth is not increasing. These requirements demand for efficient and intelligent use of spectrum. To solve this issue, the Cognitive Radio (CR) is the best choice. Spectrum sensing of a wireless heterogeneous network is a fundamental issue to detect the presence of primary users' signals in CR networks. In order to protect primary users (PUs) from harmful interference, the spectrum sensing scheme is required to perform well even in low signal-to-noise ratio (SNR) environments. Meanwhile, the sensing period is usually required to be short enough so that secondary (unlicensed) users (SUs) can fully utilize the available spectrum. CR networks can be designed to manage the radio spectrum more efficiently by utilizing the spectrum holes in primary user's licensed frequency bands. In this paper, we have proposed an adaptive threshold detection method to detect presence of PU signal using free space path loss (FSPL) model in 2.4 GHz WLAN network. The model is designed for mobile sensors embedded in smartphones. The mobile sensors acts as SU while the existing WLAN network (channels) works as PU. The theoretical results show that the desired threshold range detection of mobile sensors mainly depends on the noise floor level of the location in consideration.
Spectral data analysis of rock and mineral in Hatu Western Junggar Region, Xinjiang
NASA Astrophysics Data System (ADS)
Wang, Shanshan; Zhou, Kefa; Zhang, Nannan; Wang, Jinlin
2014-11-01
Mineral resources are important material basis for the survival and development of human society. The development of hyperspectral remote sensing technology, which has made direct identification of minerals or mineral aggregates become possible, paves a new way for the application of remote sensing geology. The West Junggar region is located Xinjiang west verge of Junggar, with ore-forming geological conditions be richly endowed by nature and huge prospecting potentiality. The area has very good outcrop exposure with almost no vegetation cover, which is a natural test new method of remote sensing geological exploration. The characteristic of rock and mineral spectrum is not only the physical base of geological remote sensing technical application but also the base of the quantificational analysis of geological remote sensing, and the study of reflectance spectrum is the main content in the basic research of remote sensing. In this study, we collected the outdoor and indoor reflectance spectrum of rocks and minerals by using a spectroradiometer (ASD FieldSpec FR, ASD, USA), which band extent varied from 350 to 2,500 nm. Basin on a great deal of spectral data for different kinds of rocks and minerals, we have analyzed the spectrum characteristics and change of seven typical mineral rocks. According to the actual conditions, we analyzed the data noise characteristic of the spectrum and got rid of the noise. Meanwhile, continuum removed technology was used to remove the environmental background influence. Finally, in order to take full advantage of multi-spectrum data, ground information is absolutely necessary, and it is important to build a representative spectral library. We build the spectral library of rocks and minerals in Hatu, which can be used for features investigation, mineral classification, mineral mapping and geological prospecting in Hatu Western Junggar region by remote sensing. The result of this research will be significant to the research of accelerating Western Junggar mineral exploration.
Sequential Classifier Training for Rice Mapping with Multitemporal Remote Sensing Imagery
NASA Astrophysics Data System (ADS)
Guo, Y.; Jia, X.; Paull, D.
2017-10-01
Most traditional methods for rice mapping with remote sensing data are effective when they are applied to the initial growing stage of rice, as the practice of flooding during this period makes the spectral characteristics of rice fields more distinguishable. In this study, we propose a sequential classifier training approach for rice mapping that can be used over the whole growing period of rice for monitoring various growth stages. Rice fields are firstly identified during the initial flooding period. The identified rice fields are used as training data to train a classifier that separates rice and non-rice pixels. The classifier is then used as a priori knowledge to assist the training of classifiers for later rice growing stages. This approach can be applied progressively to sequential image data, with only a small amount of training samples being required from each image. In order to demonstrate the effectiveness of the proposed approach, experiments were conducted at one of the major rice-growing areas in Australia. The proposed approach was applied to a set of multitemporal remote sensing images acquired by the Sentinel-2A satellite. Experimental results show that, compared with traditional spectral-indexbased algorithms, the proposed method is able to achieve more stable and consistent rice mapping accuracies and it reaches higher than 80% during the whole rice growing period.
ERIC Educational Resources Information Center
Kim, Su Yeong; Chen, Qi; Wang, Yijie; Shen, Yishan; Orozco-Lapray, Diana
2013-01-01
Parent-child acculturation discrepancy is a risk factor in the development of children in immigrant families. Using a longitudinal sample of Chinese immigrant families, the authors of the current study examined how unsupportive parenting and parent-child sense of alienation sequentially mediate the relationship between parent-child acculturation…
High-speed optical 3D sensing and its applications
NASA Astrophysics Data System (ADS)
Watanabe, Yoshihiro
2016-12-01
This paper reviews high-speed optical 3D sensing technologies for obtaining the 3D shape of a target using a camera. The focusing speed is from 100 to 1000 fps, exceeding normal camera frame rates, which are typically 30 fps. In particular, contactless, active, and real-time systems are introduced. Also, three example applications of this type of sensing technology are introduced, including surface reconstruction from time-sequential depth images, high-speed 3D user interaction, and high-speed digital archiving.
REMOTE SENSING FOR ENVIRONMENTAL COMPLIANCE MONITORING
I. Remote Sensing Basics
A. The electromagnetic spectrum demonstrates what we can see both in the visible and beyond the visible part of the spectrum through the use of various types of sensors.
B. Resolution refers to what a remote sensor can see and how often.
1. Sp...
Goodman, Geoff; Chung, Hyewon; Fischel, Leah; Athey-Lloyd, Laura
2017-07-01
This study examined the sequential relations among three pertinent variables in child psychotherapy: therapeutic alliance (TA) (including ruptures and repairs), autism symptoms, and adherence to child-centered play therapy (CCPT) process. A 2-year CCPT of a 6-year-old Caucasian boy diagnosed with autism spectrum disorder was conducted weekly with two doctoral-student therapists, working consecutively for 1 year each, in a university-based community mental-health clinic. Sessions were video-recorded and coded using the Child Psychotherapy Process Q-Set (CPQ), a measure of the TA, and an autism symptom measure. Sequential relations among these variables were examined using simulation modeling analysis (SMA). In Therapist 1's treatment, unexpectedly, autism symptoms decreased three sessions after a rupture occurred in the therapeutic dyad. In Therapist 2's treatment, adherence to CCPT process increased 2 weeks after a repair occurred in the therapeutic dyad. The TA decreased 1 week after autism symptoms increased. Finally, adherence to CCPT process decreased 1 week after autism symptoms increased. The authors concluded that (1) sequential relations differ by therapist even though the child remains constant, (2) therapeutic ruptures can have an unexpected effect on autism symptoms, and (3) changes in autism symptoms can precede as well as follow changes in process variables.
NASA Astrophysics Data System (ADS)
Mauluidy Soehartono, Alana; Mueller, Aaron David; Tobing, Landobasa Yosef Mario; Chan, Kok Ken; Zhang, Dao Hua; Yong, Ken-Tye
2017-10-01
Strong light localization within metal nanostructures occurs by collective oscillations of plasmons in the form of electric and magnetic resonances. This so-called localized surface plasmon resonance (LSPR) has gained much interest in the development of low-cost sensing platforms in the visible spectrum. However, demonstrations of LSPR-based sensing are mostly limited to electric resonances due to the technological limitations for achieving magnetic resonances in the visible spectrum. In this work, we report the first demonstration of LSPR sensing based on fundamental magnetic resonance in the visible spectrum using ultrasmall gold v-shaped split ring resonators. Specifically, we show the ability for detecting adsorption of bovine serum albumin and cytochrome c biomolecules at monolayer levels, and the selective binding of protein A/G to immunoglobulin G.
Cui, Cao; Tou, Meijie; Li, Mohua; Luo, Zhenguo; Xiao, Lingbo; Bai, Song; Li, Zhengquan
2017-02-20
Combination of upconversion nanocrystals (UCNs) with CeO 2 is a decent choice to construct NIR-activated photocatalysts for utilizing the NIR light in the solar spectrum. Herein we present a facile approach to deposit a CeO 2 layer with controllable thickness on the plate-shaped NaYF 4 :Yb,Tm UCNs. The developed core-shell nanocomposites display obvious photocatalytic activity under the NIR light and exhibit enhanced activity under the full solar spectrum. For enhancing the separation of photogenerated electrons and holes on the CeO 2 surface, we sequentially coat a ZnO shell on the nanocomposites so as to form a heterojunction structure for achieving a better activity. The developed hybrid photocatalysts have been characterized with TEM, SEM, PL, etc., and the working mechanism of such UCN-semiconductor heterojunction photocatalysts has been proposed.
NASA Technical Reports Server (NTRS)
Piepmeier, Jeffrey R.; Vega, Manuel; Fritts, Matthew; Du Toit, Cornelis; Knuble, Joseph; Lin, Yao-Cheng; Nold, Benjamin; Garrison, James
2017-01-01
Low frequency observations are desired for soil moisture and biomass remote sensing. Long wavelengths are needed to penetrate vegetation and Earths land surface. In addition to the technical challenges of developing Earth observing spaceflight instruments operating at low frequencies, the radio frequency spectrum allocated to remote sensing is limited. Signal-of-opportunity remote sensing offers the chance to use existing signals exploiting their allocated spectrum to make Earth science measurements. We have made observations of the radio frequency environment around 240-270 MHz and discuss properties of desired and undesired signals.
Silicon-nanomembrane-based photonic crystal nanostructures for chip-integrated open sensor systems
NASA Astrophysics Data System (ADS)
Chakravarty, Swapnajit; Lai, Wei-Cheng; Zou, Yi; Lin, Cheyun; Wang, Xiaolong; Chen, Ray T.
2011-11-01
We experimentally demonstrate two devices on the photonic crystal platform for chip-integrated optical absorption spectroscopy and chip-integrated biomolecular microarray assays. Infrared optical absorption spectroscopy and biomolecular assays based on conjugate-specific binding principles represent two dominant sensing mechanisms for a wide spectrum of applications in environmental pollution sensing in air and water, chem-bio agents and explosives detection for national security, microbial contamination sensing in food and beverages to name a few. The easy scalability of photonic crystal devices to any wavelength ensures that the sensing principles hold across a wide electromagnetic spectrum. Silicon, the workhorse of the electronics industry, is an ideal platform for the above optical sensing applications.
Carpenter, Michael A [Scotia, NY; Sirinakis, George [Bronx, NY
2011-01-04
A method for detecting a gas phase constituent such as carbon monoxide, nitrogen dioxide, hydrogen, or hydrocarbons in a gas comprising oxygen such as air, includes providing a sensing material or film having a metal embedded in a catalytically active matrix such as gold embedded in a yttria stabilized zirconia (YSZ) matrix. The method may include annealing the sensing material at about 900.degree. C., exposing the sensing material and gas to a temperature above 400.degree. C., projecting light onto the sensing material, and detecting a change in the absorption spectrum of the sensing material due to the exposure of the sensing material to the gas in air at the temperature which causes a chemical reaction in the sensing material compared to the absorption spectrum of the sensing material in the absence of the gas. Systems employing such a method are also disclosed.
Cognitive radio based optimal channel sensing and resources allocation
NASA Astrophysics Data System (ADS)
Vijayasarveswari, V.; Khatun, S.; Fakir, M. M.; Nayeem, M. N.; Kamarudin, L. M.; Jakaria, A.
2017-03-01
Cognitive radio (CR) is the latest type of wireless technoloy that is proposed to mitigate spectrum saturation problem. İn cognitve radio, secondary user will use primary user's spectrum during primary user's absence without interupting primary user's transmission. This paper focuses on practical cognitive radio network development process using Android based smart phone for the data transmission. Energy detector based sensing method was proposed and used here because it doesnot require primary user's information. Bluetooth and Wi-fi are the two available types of spectrum that was sensed for CR detection. Simulation showed cognitive radio network can be developed using Android based smart phones. So, a complete application was developed using Java based Android Eclipse program. Finally, the application was uploaded and run on Android based smart phone to form and verify CR network for channel sensing and resource allocation. The observed efficiency of the application was around 81%.
Sequential estimation and satellite data assimilation in meteorology and oceanography
NASA Technical Reports Server (NTRS)
Ghil, M.
1986-01-01
The role of dynamics in estimating the state of the atmosphere and ocean from incomplete and noisy data is discussed and the classical applications of four-dimensional data assimilation to large-scale atmospheric dynamics are presented. It is concluded that sequential updating of a forecast model with continuously incoming conventional and remote-sensing data is the most natural way of extracting the maximum amount of information from the imperfectly known dynamics, on the one hand, and the inaccurate and incomplete observations, on the other.
Scanner. [photography from a spin stabilized synchronous satellite
NASA Technical Reports Server (NTRS)
Hummer, R. F.; Upton, D. T. (Inventor)
1981-01-01
An aerial vehicle rotating in gyroscopic fashion about one of its axes has an optical system which scans an area below the vehicle in determined relation to vehicle rotation. A sensing device is provided to sense the physical condition of the area of scan and optical means are associated to direct the physical intelligence received from the scan area to the sensing means. Means are provided to incrementally move the optical means through a series of steps to effect sequential line scan of the area being viewed keyed to the rotational rate of the vehicle.
Remote sensing with laser spectrum radar
NASA Astrophysics Data System (ADS)
Wang, Tianhe; Zhou, Tao; Jia, Xiaodong
2016-10-01
The unmanned airborne (UAV) laser spectrum radar has played a leading role in remote sensing because the transmitter and the receiver are together at laser spectrum radar. The advantages of the integrated transceiver laser spectrum radar is that it can be used in the oil and gas pipeline leak detection patrol line which needs the non-contact reflective detection. The UAV laser spectrum radar can patrol the line and specially detect the swept the area are now in no man's land because most of the oil and gas pipelines are in no man's land. It can save labor costs compared to the manned aircraft and ensure the safety of the pilots. The UAV laser spectrum radar can be also applied in the post disaster relief which detects the gas composition before the firefighters entering the scene of the rescue.
Świtaj, Piotr; Grygiel, Paweł; Chrostek, Anna; Nowak, Izabela; Wciórka, Jacek; Anczewska, Marta
2017-09-01
To elucidate the mechanism through which internalized stigma reduces the quality of life (QoL) of people with mental illness by exploring the mediating roles of self-esteem and sense of coherence (SOC). A cross-sectional analysis of 229 patients diagnosed with schizophrenia or affective disorders was undertaken to test a sequential mediation model assuming that more severe internalized stigma is related to lower self-esteem, which is associated with weaker SOC, which in turn relates to worse QoL. The proposed model was supported by the data. A sequential indirect effect from internalized stigma to QoL via self-esteem and SOC turned out to be significant [beta = -0.06, SE = 0.02; 95% CI (-0.11, -0.03)]. Support was also found for simple mediation models with either self-esteem or SOC as single mediators between internalized stigma and QoL. Self-esteem and SOC are personal resources that should be considered as potential targets of interventions aiming to prevent the harmful consequences of internalized stigma for the QoL of people receiving psychiatric treatment.
Agriculture and forestry: Identification, vigor, and disease
NASA Technical Reports Server (NTRS)
Jenkins, D. W.
1972-01-01
The agricultural and forestry areas which comprise the watershed of the Chesapeake Bay are described. Major problems of watershed creation and management with emphasis on the erosion problem are discussed. Remote sensing as it relates to the identification of plant species and vigor, pollution, disease, and insect infestation are examined. The application of infrared photography, multispectral sensing, and sequential survey is recommended to identify ecological changes and improve resources management.
Microwave remote sensing of snowpack properties
NASA Technical Reports Server (NTRS)
Rango, A. (Editor)
1980-01-01
Topic concerning remote sensing capabilities for providing reliable snow cover data and measurement of snow water equivalents are discussed. Specific remote sensing technqiues discussed include those in the microwave region of the electromagnetic spectrum.
Hypothesis on human eye perceiving optical spectrum rather than an image
NASA Astrophysics Data System (ADS)
Zheng, Yufeng; Szu, Harold
2015-05-01
It is a common knowledge that we see the world because our eyes can perceive an optical image. A digital camera seems a good example of simulating the eye imaging system. However, the signal sensing and imaging on human retina is very complicated. There are at least five layers (of neurons) along the signal pathway: photoreceptors (cones and rods), bipolar, horizontal, amacrine and ganglion cells. To sense an optical image, it seems that photoreceptors (as sensors) plus ganglion cells (converting to electrical signals for transmission) are good enough. Image sensing does not require ununiformed distribution of photoreceptors like fovea. There are some challenging questions, for example, why don't we feel the "blind spots" (never fibers exiting the eyes)? Similar situation happens to glaucoma patients who do not feel their vision loss until 50% or more nerves died. Now our hypothesis is that human retina initially senses optical (i.e., Fourier) spectrum rather than optical image. Due to the symmetric property of Fourier spectrum the signal loss from a blind spot or the dead nerves (for glaucoma patients) can be recovered. Eye logarithmic response to input light intensity much likes displaying Fourier magnitude. The optics and structures of human eyes satisfy the needs of optical Fourier spectrum sampling. It is unsure that where and how inverse Fourier transform is performed in human vision system to obtain an optical image. Phase retrieval technique in compressive sensing domain enables image reconstruction even without phase inputs. The spectrum-based imaging system can potentially tolerate up to 50% of bad sensors (pixels), adapt to large dynamic range (with logarithmic response), etc.
RF Spectrum Sensing Based on an Overdamped Nonlinear Oscillator Ring for Cognitive Radios.
Tang, Zhi-Ling; Li, Si-Min; Yu, Li-Juan
2016-06-09
Existing spectrum-sensing techniques for cognitive radios require an analog-to-digital converter (ADC) to work at high dynamic range and a high sampling rate, resulting in high cost. Therefore, in this paper, a spectrum-sensing method based on a unidirectionally coupled, overdamped nonlinear oscillator ring is proposed. First, the numerical model of such a system is established based on the circuit of the nonlinear oscillator. Through numerical analysis of the model, the critical condition of the system's starting oscillation is determined, and the simulation results of the system's response to Gaussian white noise and periodic signal are presented. The results show that once the radio signal is input into the system, it starts oscillating when in the critical region, and the oscillating frequency of each element is fo/N, where fo is the frequency of the radio signal and N is the number of elements in the ring. The oscillation indicates that the spectrum resources at fo are occupied. At the same time, the sampling rate required for an ADC is reduced to the original value, 1/N. A prototypical circuit to verify the functionality of the system is designed, and the sensing bandwidth of the system is measured.
Feng, Jingyu; Zhang, Man; Xiao, Yun; Yue, Hongzhou
2018-01-01
Cooperative spectrum sensing (CSS) is considered as a powerful approach to improve the utilization of scarce spectrum resources. However, if CSS assumes that all secondary users (SU) are honest, it may offer opportunities for attackers to conduct a spectrum sensing data falsification (SSDF) attack. To suppress such a threat, recent efforts have been made to develop trust mechanisms. Currently, some attackers can collude with each other to form a collusive clique, and thus not only increase the power of SSDF attack but also avoid the detection of a trust mechanism. Noting the duality of sensing data, we propose a defense scheme called XDA from the perspective of XOR distance analysis to suppress a collusive SSDF attack. In the XDA scheme, the XOR distance calculation in line with the type of “0” and “1” historical sensing data is used to measure the similarity between any two SUs. Noting that collusive SSDF attackers hold high trust value and the minimum XOR distance, the algorithm to detect collusive SSDF attackers is designed. Meanwhile, the XDA scheme can perfect the trust mechanism to correct collusive SSDF attackers’ trust value. Simulation results show that the XDA scheme can enhance the accuracy of trust evaluation, and thus successfully reduce the power of collusive SSDF attack against CSS. PMID:29382061
NASA Astrophysics Data System (ADS)
Tegtmeier Pedersen, A.; Abari, C. F.; Mann, J.; Mikkelsen, T.
2014-06-01
A new direction sensing continuous-wave Doppler lidar based on an image-reject homodyne receiver has recently been demonstrated at DTU Wind Energy, Technical University of Denmark. In this contribution we analyse the signal-to-noise ratio resulting from two different data processing methods both leading to the direction sensing capability. It is found that using the auto spectrum of the complex signal to determine the wind speed leads to a signal-to-noise ratio equivalent to that of a standard self-heterodyne receiver. Using the imaginary part of the cross spectrum to estimate the Doppler shift has the benefit of a zero-mean background spectrum, but comes at the expense of a decrease in the signal-to noise ratio by a factor of √2.
Magnetic Field Sensing Based on Bi-Tapered Optical Fibers Using Spectral Phase Analysis.
Herrera-Piad, Luis A; Haus, Joseph W; Jauregui-Vazquez, Daniel; Sierra-Hernandez, Juan M; Estudillo-Ayala, Julian M; Lopez-Dieguez, Yanelis; Rojas-Laguna, Roberto
2017-10-20
A compact, magnetic field sensor system based on a short, bi-tapered optical fiber (BTOF) span lying on a magnetic tape was designed, fabricated, and characterized. We monitored the transmission spectrum from a broadband light source, which displayed a strong interference signal. After data collection, we applied a phase analysis of the interference optical spectrum. We here report the results on two fabricated, BTOFs with different interference spectrum characteristics; we analyzed the signal based on the interference between a high-order modal component and the core fiber mode. The sensor exhibited a linear response for magnetic field increments, and we achieved a phase sensitivity of around 0.28 rad/mT. The sensing setup presented remote sensing operation and low-cost transducer magnetic material.
Magnetic Field Sensing Based on Bi-Tapered Optical Fibers Using Spectral Phase Analysis
Herrera-Piad, Luis A.; Jauregui-Vazquez, Daniel; Sierra-Hernandez, Juan M.; Lopez-Dieguez, Yanelis
2017-01-01
A compact, magnetic field sensor system based on a short, bi-tapered optical fiber (BTOF) span lying on a magnetic tape was designed, fabricated, and characterized. We monitored the transmission spectrum from a broadband light source, which displayed a strong interference signal. After data collection, we applied a phase analysis of the interference optical spectrum. We here report the results on two fabricated, BTOFs with different interference spectrum characteristics; we analyzed the signal based on the interference between a high-order modal component and the core fiber mode. The sensor exhibited a linear response for magnetic field increments, and we achieved a phase sensitivity of around 0.28 rad/mT. The sensing setup presented remote sensing operation and low-cost transducer magnetic material. PMID:29053570
Extreme temperature robust optical sensor designs and fault-tolerant signal processing
Riza, Nabeel Agha [Oviedo, FL; Perez, Frank [Tujunga, CA
2012-01-17
Silicon Carbide (SiC) probe designs for extreme temperature and pressure sensing uses a single crystal SiC optical chip encased in a sintered SiC material probe. The SiC chip may be protected for high temperature only use or exposed for both temperature and pressure sensing. Hybrid signal processing techniques allow fault-tolerant extreme temperature sensing. Wavelength peak-to-peak (or null-to-null) collective spectrum spread measurement to detect wavelength peak/null shift measurement forms a coarse-fine temperature measurement using broadband spectrum monitoring. The SiC probe frontend acts as a stable emissivity Black-body radiator and monitoring the shift in radiation spectrum enables a pyrometer. This application combines all-SiC pyrometry with thick SiC etalon laser interferometry within a free-spectral range to form a coarse-fine temperature measurement sensor. RF notch filtering techniques improve the sensitivity of the temperature measurement where fine spectral shift or spectrum measurements are needed to deduce temperature.
NASA Astrophysics Data System (ADS)
Wang, Lixia; Pei, Jihong; Xie, Weixin; Liu, Jinyuan
2018-03-01
Large-scale oceansat remote sensing images cover a big area sea surface, which fluctuation can be considered as a non-stationary process. Short-Time Fourier Transform (STFT) is a suitable analysis tool for the time varying nonstationary signal. In this paper, a novel ship detection method using 2-D STFT sea background statistical modeling for large-scale oceansat remote sensing images is proposed. First, the paper divides the large-scale oceansat remote sensing image into small sub-blocks, and 2-D STFT is applied to each sub-block individually. Second, the 2-D STFT spectrum of sub-blocks is studied and the obvious different characteristic between sea background and non-sea background is found. Finally, the statistical model for all valid frequency points in the STFT spectrum of sea background is given, and the ship detection method based on the 2-D STFT spectrum modeling is proposed. The experimental result shows that the proposed algorithm can detect ship targets with high recall rate and low missing rate.
Dai, Qian; Pan, De-lu; He, Xian-qiang; Zhu, Qian-kun; Gong, Fang; Huang, Hai-qing
2015-11-01
In situ measurement of water spectrum is the basis of the validation of the ocean color remote sensing. The traditional method to obtain the water spectrum is based on the shipboard measurement at limited stations, which is difficult to meet the requirement of validation of ocean color remote sensing in the highly dynamic coastal waters. To overcome this shortage, continuously observing systems of water spectrum have been developed in the world. However, so far, there are still few high-frequency observation systems of the water spectrum in coastal waters, especially in the highly turbid and high-dynamic waters. Here, we established a high-frequency water-spectrum observing system based on tower in the Hangzhou Bay. The system measures the water spectrum at a step of 3 minutes, which can fully match the satellite observation. In this paper, we primarily developed a data processing method for the tower-based high-frequency water spectrum data, to realize automatic judgment of clear sky, sun glint, platform shadow, and weak illumination, etc. , and verified the processing results. The results show that the normalized water-leaving radiance spectra obtained through tower observation have relatively high consistency with the shipboard measurement results, with correlation coefficient of more than 0. 99, and average relative error of 9.96%. In addition, the long-term observation capability of the tower-based high-frequency water-spectrum observing system was evaluated, and the results show that although the system has run for one year, the normalized water-leaving radiance obtained by this system have good consistency with the synchronously measurement by Portable spectrometer ASD in respect of spectral shape and value, with correlation coefficient of more than 0.90 and average relative error of 6.48%. Moreover, the water spectra from high-frequency observation by the system can be used to effectively monitor the rapid dynamic variation in concentration of suspended materials with tide. The tower-based high-frequency water-spectrum observing system provided rich in situ spectral data for the validation of ocean color remote sensing in turbid waters, especially for validation of the high temporal-resolution geostationary satellite ocean color remote sensing.
Accurate estimation of motion blur parameters in noisy remote sensing image
NASA Astrophysics Data System (ADS)
Shi, Xueyan; Wang, Lin; Shao, Xiaopeng; Wang, Huilin; Tao, Zhong
2015-05-01
The relative motion between remote sensing satellite sensor and objects is one of the most common reasons for remote sensing image degradation. It seriously weakens image data interpretation and information extraction. In practice, point spread function (PSF) should be estimated firstly for image restoration. Identifying motion blur direction and length accurately is very crucial for PSF and restoring image with precision. In general, the regular light-and-dark stripes in the spectrum can be employed to obtain the parameters by using Radon transform. However, serious noise existing in actual remote sensing images often causes the stripes unobvious. The parameters would be difficult to calculate and the error of the result relatively big. In this paper, an improved motion blur parameter identification method to noisy remote sensing image is proposed to solve this problem. The spectrum characteristic of noisy remote sensing image is analyzed firstly. An interactive image segmentation method based on graph theory called GrabCut is adopted to effectively extract the edge of the light center in the spectrum. Motion blur direction is estimated by applying Radon transform on the segmentation result. In order to reduce random error, a method based on whole column statistics is used during calculating blur length. Finally, Lucy-Richardson algorithm is applied to restore the remote sensing images of the moon after estimating blur parameters. The experimental results verify the effectiveness and robustness of our algorithm.
ERIC Educational Resources Information Center
Benson, Paul R.
2018-01-01
Employing a cohort sequential design and multilevel modeling, the effects of child and family stressors and maternal depressed mood on the self-rated health of 110 mothers of children with autism spectrum disorder were assessed over a 12-year period when children in the study were 7-19 years old. Findings indicate a significant decline in…
NASA Astrophysics Data System (ADS)
Guo, Yiqing; Jia, Xiuping; Paull, David
2018-06-01
The explosive availability of remote sensing images has challenged supervised classification algorithms such as Support Vector Machines (SVM), as training samples tend to be highly limited due to the expensive and laborious task of ground truthing. The temporal correlation and spectral similarity between multitemporal images have opened up an opportunity to alleviate this problem. In this study, a SVM-based Sequential Classifier Training (SCT-SVM) approach is proposed for multitemporal remote sensing image classification. The approach leverages the classifiers of previous images to reduce the required number of training samples for the classifier training of an incoming image. For each incoming image, a rough classifier is firstly predicted based on the temporal trend of a set of previous classifiers. The predicted classifier is then fine-tuned into a more accurate position with current training samples. This approach can be applied progressively to sequential image data, with only a small number of training samples being required from each image. Experiments were conducted with Sentinel-2A multitemporal data over an agricultural area in Australia. Results showed that the proposed SCT-SVM achieved better classification accuracies compared with two state-of-the-art model transfer algorithms. When training data are insufficient, the overall classification accuracy of the incoming image was improved from 76.18% to 94.02% with the proposed SCT-SVM, compared with those obtained without the assistance from previous images. These results demonstrate that the leverage of a priori information from previous images can provide advantageous assistance for later images in multitemporal image classification.
An unsupervised classification technique for multispectral remote sensing data.
NASA Technical Reports Server (NTRS)
Su, M. Y.; Cummings, R. E.
1973-01-01
Description of a two-part clustering technique consisting of (a) a sequential statistical clustering, which is essentially a sequential variance analysis, and (b) a generalized K-means clustering. In this composite clustering technique, the output of (a) is a set of initial clusters which are input to (b) for further improvement by an iterative scheme. This unsupervised composite technique was employed for automatic classification of two sets of remote multispectral earth resource observations. The classification accuracy by the unsupervised technique is found to be comparable to that by traditional supervised maximum-likelihood classification techniques.
Three-body effects in the Hoyle-state decay
NASA Astrophysics Data System (ADS)
Refsgaard, J.; Fynbo, H. O. U.; Kirsebom, O. S.; Riisager, K.
2018-04-01
We use a sequential R-matrix model to describe the breakup of the Hoyle state into three α particles via the ground state of 8Be. It is shown that even in a sequential picture, features resembling a direct breakup branch appear in the phase-space distribution of the α particles. We construct a toy model to describe the Coulomb interaction in the three-body final state and its effects on the decay spectrum are investigated. The framework is also used to predict the phase-space distribution of the α particles emitted in a direct breakup of the Hoyle state and the possibility of interference between a direct and sequential branch is discussed. Our numerical results are compared to the current upper limit on the direct decay branch determined in recent experiments.
Prospects and limitations for use of frequency spectrum from 40 to 300 GHz
NASA Technical Reports Server (NTRS)
Catoe, C. E.
1979-01-01
The existing and future use of the electromagnetic spectrum from 40 to 300 gigahertz is discussed. The activities envisioned for this segment of the electromagnetic spectrum fall generically into two basic categories: communications and remote sensing. The communications services considered for this region are focused on the existing and future frequency allocations that are required for terrestrial radio services, space to ground radio services, space to space radio services, and space to deep space radio services. The remote sensing services considered for this region are divided into two groups of activities: earth viewing and space viewing.
A Spectrum Sensing Network for Cognitive PMSE Systems
NASA Astrophysics Data System (ADS)
Brendel, Johannes; Riess, Steffen; Stoeckle, Andreas; Rummel, Rafael; Fischer, Georg
2012-09-01
This article is about a Spectrum Sensing Network (SSN) which generates an accurate radio environment map (e.g. power over frequency, time, and location) from a given application area. It is intended to be used in combination with cognitive Program Making and Special Events (PMSE) devices (e.g. wireless microphones) to improve their operation reliability. The SSN consists of a distributed network of multiple scanning radio receivers and a central data management and storage unit. The parts of the SSN are presented in detail and the advantages and use cases of such a sensing network structure will be outlined.
RF Spectrum Sensing Based on an Overdamped Nonlinear Oscillator Ring for Cognitive Radios
Tang, Zhi-Ling; Li, Si-Min; Yu, Li-Juan
2016-01-01
Existing spectrum-sensing techniques for cognitive radios require an analog-to-digital converter (ADC) to work at high dynamic range and a high sampling rate, resulting in high cost. Therefore, in this paper, a spectrum-sensing method based on a unidirectionally coupled, overdamped nonlinear oscillator ring is proposed. First, the numerical model of such a system is established based on the circuit of the nonlinear oscillator. Through numerical analysis of the model, the critical condition of the system’s starting oscillation is determined, and the simulation results of the system’s response to Gaussian white noise and periodic signal are presented. The results show that once the radio signal is input into the system, it starts oscillating when in the critical region, and the oscillating frequency of each element is fo/N, where fo is the frequency of the radio signal and N is the number of elements in the ring. The oscillation indicates that the spectrum resources at fo are occupied. At the same time, the sampling rate required for an ADC is reduced to the original value, 1/N. A prototypical circuit to verify the functionality of the system is designed, and the sensing bandwidth of the system is measured. PMID:27294928
Index of learning styles in a u.s. School of pharmacy.
Teevan, Colleen J; Li, Michael; Schlesselman, Lauren S
2011-04-01
The goal of this study was to assess for a predominance of learning styles among pharmacy students at an accredited U.S. school of pharmacy. Following approval by the Institutional Review Board, the Index of Learning Styles© was administered to 210 pharmacy students. The survey provides results within 4 domains: perception, input, processing, and understanding. Analyses were conducted to determine trends in student learning styles. Within the four domains, 84% of students showed a preference toward sensory perception, 66% toward visual input, and 74% toward sequential understanding. Students showed no significant preference for active or reflective processing. Preferences were of moderate strength for the sensing, visual, and sequential learning styles. Students showed preferences for sensing, visual, and sequential learning styles with gender playing a role in learning style preferences. Faculty should be aware, despite some preferences, a mix of learning styles exists. To focus on the preferences found, instructors should focus teaching in a logical progression while adding visual aids. To account for other types of learning styles found, the instructors can offer other approaches and provide supplemental activities for those who would benefit from them. Further research is necessary to compare these learning styles to the teaching styles of pharmacy preceptors and faculty at schools of pharmacy.
NASA Astrophysics Data System (ADS)
Manning, Robert Michael
This work concerns itself with the analysis of two optical remote sensing methods to be used to obtain parameters of the turbulent atmosphere pertinent to stochastic electromagnetic wave propagation studies, and the well -posed solution to a class of integral equations that are central to the development of these remote sensing methods. A remote sensing technique is theoretically developed whereby the temporal frequency spectrum of the scintillations of a stellar source or a point source within the atmosphere, observed through a variable radius aperture, is related to the space-time spectrum of atmospheric scintillation. The key to this spectral remote sensing method is the spatial filtering performed by a finite aperture. The entire method is developed without resorting to a priori information such as results from stochastic wave propagation theory. Once the space-time spectrum of the scintillations is obtained, an application of known results of atmospheric wave propagation theory and simple geometric considerations are shown to yield such important information such as the spectrum of atmospheric turbulence, the cross-wind velocity, and the path profile of the atmospheric refractive index structure parameter. A method is also developed to independently verify the Taylor frozen flow hypothesis. The success of the spectral remote sensing method relies on the solution to a Fredholm integral equation of the first kind. An entire class of such equations, that are peculiar to inverse diffraction problems, is studied and a well-posed solution (in the sense of Hadamard) is obtained and probed. Conditions of applicability are derived and shown not to limit the useful operating range of the spectral remote sensing method. The general integral equation solution obtained is then applied to another remote sensing problem having to do with the characterization of the particle size distribution to atmospheric aerosols and hydrometeors. By measuring the diffraction pattern in the focal plane of a lens created by the passage of a laser beam through a distribution of particles, it is shown that the particle-size distribution of the particles can be obtained. An intermediate result of the analysis also gives the total volume concentration of the particles.
A review of ultra-short pulse lasers for military remote sensing and rangefinding
NASA Astrophysics Data System (ADS)
Lamb, Robert A.
2009-09-01
Advances in ultra-short pulse laser technology have resulted in commercially available laser systems capable of generating high peak powers >1GW in tabletop systems. This opens the prospect of generating very wide spectral emissions with a combination of non-linear optical effects in photonic crystal fibres to produce supercontinuua in systems that are readily accessible to military applications. However, military remote sensing rarely requires bandwidths spanning two octaves and it is clear that efficient systems require controlled spectral emission in relevant bands. Furthermore, the limited spectral responsivity of focal plane arrays may impose further restriction on the usable spectrum. A recent innovation which temporally encodes a spectrum using group velocity dispersion allows detection with a photodiode, opening the prospect for high speed hyperspectral sensing and imaging. At the opposite end of the power spectrum, ultra-low power remote sensing using time-correlated single photon counting (SPC) has reduced the laser power requirement and demonstrated remote sensing over 5km during daylight with repetition rates of ~10MHz with ps pulses. Recent research has addressed uncorrelated SPC and waveform transmission to increase data rates for absolute rangefinding whilst avoiding range aliasing. This achievement opens the prospect of combining SPC with high repetition rate temporal encoding of supercontinuua to realise practical hyperspectral remote sensing lidar. The talk will present an overview of these technologies and present a concept which combines them into a single system for high-speed hyperspectral imaging and remote sensing.
Nuclear interference in the Coulomb explosion of H2+ in short vuv laser fields.
Førre, Morten; Barmaki, Samira; Bachau, Henri
2009-03-27
We report ab initio calculations of H2+ three-photon ionization by vuv/fs 10(12) W/cm(2) laser pulses including electronic and vibrational degrees of freedom in the Born-Oppenheimer approximation. The initial nuclear wave packet of H2+(1ssigma(g)) is assumed to be equal to the H2 vibrational ground state. For pulse durations longer than 10 fs, we find an unexpected modulation in the kinetic energy spectra of the correlated fragments (H++H+). It is shown that the structures in the spectra originate from the interference between a direct and a sequential dissociation channel. While the first channel is open even for relatively short pulses, the sequential one only opens for pulse durations longer than 10 fs. In the latter case we show that interference between the two components results in a modulated kinetic energy release spectrum in the dissociation channel 3dsigma(g), which is reflected in the ionization spectrum.
Consensus-Based Cooperative Spectrum Sensing with Improved Robustness Against SSDF Attacks
NASA Astrophysics Data System (ADS)
Liu, Quan; Gao, Jun; Guo, Yunwei; Liu, Siyang
2011-05-01
Based on the consensus algorithm, an attack-proof cooperative spectrum sensing (CSS) scheme is presented for decentralized cognitive radio networks (CRNs), where a common fusion center is not available and some malicious users may launch attacks with spectrum sensing data falsification (SSDF). Local energy detection is firstly performed by each secondary user (SU), and then, utilizing the consensus notions, each SU can make its own decision individually only by local information exchange with its neighbors rather than any centralized fusion used in most existing schemes. With the help of some anti-attack tricks, each authentic SU can generally identify and exclude those malicious reports during the interactions within the neighborhood. Compared with the existing solutions, the proposed scheme is proved to have much better robustness against three categories of SSDF attack, without requiring any a priori knowledge of the whole network.
Digital FMCW for ultrawideband spectrum sensing
NASA Astrophysics Data System (ADS)
Cheema, A. A.; Salous, S.
2016-08-01
An ultrawideband digital frequency-modulated continuous wave sensing engine is proposed as an alternative technique for cognitive radio applications. A dual-band demonstrator capable of sensing 750 MHz bandwidth in 204.8 µs is presented. Its performance is illustrated from both bench tests and from real-time measurements of the GSM 900 band and the 2.4 GHz wireless local area network (WLAN) band. The measured sensitivity and noise figure values are -90 dBm for a signal-to-noise ratio margin of at least 10 dB and ~13-14 dB, respectively. Data were collected over 24 h and were analyzed by using the energy detection method. The obtained results show the time variability of occupancy, and considerable sections of the spectrum are unoccupied. In addition, unlike the cyclic temporal variations of spectrum occupancy in the GSM 900 band, the detected variations in the 2.4 GHz WLAN band have an impulsive nature.
Middle infrared remote sensing for geology
NASA Technical Reports Server (NTRS)
Kahle, A. B.
1982-01-01
The middle infrared portion of the spectrum available for geologic remote sensing extends from approximately 3 to 25 micrometers. The source of energy is thermal radiation from surface materials and ambient terrestrial temperatures. The spectral range of usefulness is limited by both the amount of energy available and by transmission of energy through the atmosphere. The best atmospheric window lies between about 8 and 14 micrometers. Remote sensing of the Earth in the infrared is just on the threshold of becoming a valuable geologic tool. Topics which need study include: (1) the used and limitations of the 8 to 14 micrometer region for distinguishing between silicates and nonsilicates; (2) theoretical and experimental understanding of laboratory spectra of rocks and minerals and their relationship to remotely sensed emission spectra; and (3) the possible use of the 3 to 5 and 17 to 25 micrometer portions of the spectrum for remote sensing.
Reactivation, Replay, and Preplay: How It Might All Fit Together
Buhry, Laure; Azizi, Amir H.; Cheng, Sen
2011-01-01
Sequential activation of neurons that occurs during “offline” states, such as sleep or awake rest, is correlated with neural sequences recorded during preceding exploration phases. This so-called reactivation, or replay, has been observed in a number of different brain regions such as the striatum, prefrontal cortex, primary visual cortex and, most prominently, the hippocampus. Reactivation largely co-occurs together with hippocampal sharp-waves/ripples, brief high-frequency bursts in the local field potential. Here, we first review the mounting evidence for the hypothesis that reactivation is the neural mechanism for memory consolidation during sleep. We then discuss recent results that suggest that offline sequential activity in the waking state might not be simple repetitions of previously experienced sequences. Some offline sequential activity occurs before animals are exposed to a novel environment for the first time, and some sequences activated offline correspond to trajectories never experienced by the animal. We propose a conceptual framework for the dynamics of offline sequential activity that can parsimoniously describe a broad spectrum of experimental results. These results point to a potentially broader role of offline sequential activity in cognitive functions such as maintenance of spatial representation, learning, or planning. PMID:21918724
ERIC Educational Resources Information Center
Denman, Katie; Smart, Cordet; Dallos, Rudi; Levett, Paula
2016-01-01
Families waiting for an Autism Spectrum Condition assessment often experience difficulties explaining, or making sense of, the referred young person's behaviour. Little is known about this sense making, or how clinicians might support this ambiguity. This paper explored finite details of how five families do "sense-making" in…
Global geomorphology: Report of Working Group Number 1
NASA Technical Reports Server (NTRS)
Douglas, I.
1985-01-01
Remote sensing was considered invaluable for seeing landforms in their regional context and in relationship to each other. Sequential images, such as those available from LANDSAT orbits provide a means of detecting landform change and the operation of large scale processes, such as major floods in semiarid regions. The use of remote sensing falls into two broad stages: (1) the characterization or accurate description of the features of the Earth's surface; and (2) the study of landform evolution. Recommendations for future research are made.
Facile Determination of Sodium Ion and Osmolarity in Artificial Tears by Sequential DNAzymes.
Kim, Eun Hye; Lee, Eun-Song; Lee, Dong Yun; Kim, Young-Pil
2017-12-07
Despite high relevance of tear osmolarity and eye abnormality, numerous methods for detecting tear osmolarity rely upon expensive osmometers. We report a reliable method for simply determining sodium ion-based osmolarity in artificial tears using sequential DNAzymes. When sodium ion-specific DNAzyme and peroxidase-like DNAzyme were used as a sensing and detecting probe, respectively, the concentration of Na⁺ in artificial tears could be measured by absorbance or fluorescence intensity, which was highly correlated with osmolarity over the diagnostic range ( R ² > 0.98). Our approach is useful for studying eye diseases in relation to osmolarity.
Adaptive compressive learning for prediction of protein-protein interactions from primary sequence.
Zhang, Ya-Nan; Pan, Xiao-Yong; Huang, Yan; Shen, Hong-Bin
2011-08-21
Protein-protein interactions (PPIs) play an important role in biological processes. Although much effort has been devoted to the identification of novel PPIs by integrating experimental biological knowledge, there are still many difficulties because of lacking enough protein structural and functional information. It is highly desired to develop methods based only on amino acid sequences for predicting PPIs. However, sequence-based predictors are often struggling with the high-dimensionality causing over-fitting and high computational complexity problems, as well as the redundancy of sequential feature vectors. In this paper, a novel computational approach based on compressed sensing theory is proposed to predict yeast Saccharomyces cerevisiae PPIs from primary sequence and has achieved promising results. The key advantage of the proposed compressed sensing algorithm is that it can compress the original high-dimensional protein sequential feature vector into a much lower but more condensed space taking the sparsity property of the original signal into account. What makes compressed sensing much more attractive in protein sequence analysis is its compressed signal can be reconstructed from far fewer measurements than what is usually considered necessary in traditional Nyquist sampling theory. Experimental results demonstrate that proposed compressed sensing method is powerful for analyzing noisy biological data and reducing redundancy in feature vectors. The proposed method represents a new strategy of dealing with high-dimensional protein discrete model and has great potentiality to be extended to deal with many other complicated biological systems. Copyright © 2011 Elsevier Ltd. All rights reserved.
Real-time sensing of lint quality
USDA-ARS?s Scientific Manuscript database
Modem cotton gins have the purpose of extracting lint (the cotton) from trash and seeds- usually the sticks, leaves and burrs that are entrained with the cotton. These modem gins include many individual machine components that are operated sequentially to form the gin processing line. Recent on-line...
Gestalt Imagery: A Critical Factor in Language Comprehension.
ERIC Educational Resources Information Center
Bell, Nanci
1991-01-01
Lack of gestalt imagery (the ability to create imaged wholes) can contribute to language comprehension disorder characterized by weak reading comprehension, weak oral language comprehension, weak oral language expression, weak written language expression, difficulty following directions, and a weak sense of humor. Sequential stimulation using an…
Microwave assisted reconstruction of optical interferograms for distributed fiber optic sensing.
Huang, Jie; Hua, Lei; Lan, Xinwei; Wei, Tao; Xiao, Hai
2013-07-29
This paper reports a distributed fiber optic sensing technique through microwave assisted separation and reconstruction of optical interferograms in spectrum domain. The approach involves sending a microwave-modulated optical signal through cascaded fiber optic interferometers. The microwave signal was used to resolve the position and reflectivity of each sensor along the optical fiber. By sweeping the optical wavelength and detecting the modulation signal, the optical spectrum of each sensor can be reconstructed. Three cascaded fiber optic extrinsic Fabry-Perot interferometric sensors were used to prove the concept. Their microwave-reconstructed interferogram matched well with those recorded individually using an optical spectrum analyzer. The application in distributed strain measurement has also been demonstrated.
NASA Technical Reports Server (NTRS)
Reda, Daniel C.; Muratore, Joseph J., Jr.; Heineck, James T.
1993-01-01
Time and flow-direction responses of shearstress-sensitive liquid crystal coatings were explored experimentally. For the time-response experiments, coatings were exposed to transient, compressible flows created during the startup and off-design operation of an injector-driven supersonic wind tunnel. Flow transients were visualized with a focusing Schlieren system and recorded with a 1000 frame/sec color video camera. Liquid crystal responses to these changing-shear environments were then recorded with the same video system, documenting color-play response times equal to, or faster than, the time interval between sequential frames (i.e., 1 millisecond). For the flow-direction experiments, a planar test surface was exposed to equal-magnitude and known-direction surface shear stresses generated by both normal and tangential subsonic jet-impingement flows. Under shear, the sense of the angular displacement of the liquid crystal dispersed (reflected) spectrum was found to be a function of the instantaneous direction of the applied shear. This technique thus renders dynamic flow reversals or flow divergences visible over entire test surfaces at image recording rates up to 1 KHz. Extensions of the technique to visualize relatively small changes in surface shear stress direction appear feasible.
Rapid code acquisition algorithms employing PN matched filters
NASA Technical Reports Server (NTRS)
Su, Yu T.
1988-01-01
The performance of four algorithms using pseudonoise matched filters (PNMFs), for direct-sequence spread-spectrum systems, is analyzed. They are: parallel search with fix dwell detector (PL-FDD), parallel search with sequential detector (PL-SD), parallel-serial search with fix dwell detector (PS-FDD), and parallel-serial search with sequential detector (PS-SD). The operation characteristic for each detector and the mean acquisition time for each algorithm are derived. All the algorithms are studied in conjunction with the noncoherent integration technique, which enables the system to operate in the presence of data modulation. Several previous proposals using PNMF are seen as special cases of the present algorithms.
Making sense of quantum operators, eigenstates and quantum measurements
NASA Astrophysics Data System (ADS)
Gire, Elizabeth; Manogue, Corinne
2012-02-01
Operators play a central role in the formalism of quantum mechanics. In particular, operators corresponding to observables encode important information about the results of quantum measurements. We interviewed upper-level undergraduate physics majors about their understanding of the role of operators in quantum measurements. Previous studies have shown that many students think of measurements on quantum systems as being deterministic and that measurements mathematically correspond to operators acting on the initial quantum state. This study is consistent with and expands on those results. We report on how two students make sense of a quantum measurement problem involving sequential measurements and the role that the eigenvalue equation plays in this sense-making.
Ponsford, Anthony; McKerracher, Rick; Ding, Zhen; Moo, Peter; Yee, Derek
2017-07-07
Canada's third-generation HFSWR forms the foundation of a maritime domain awareness system that provides enforcement agencies with real-time persistent surveillance out to and beyond the 200 nautical mile exclusive economic zone (EEZ). Cognitive sense-and-adapt technology and dynamic spectrum management ensures robust and resilient operation in the highly congested High Frequency (HF) band. Dynamic spectrum access enables the system to simultaneously operate on two frequencies on a non-interference and non-protected basis, without impacting other spectrum users. Sense-and-adapt technologies ensure that the system instantaneously switches to a new vacant channel on the detection of another user or unwanted jamming signal. Adaptive signal processing techniques mitigate against electrical noise, interference and clutter. Sense-and-adapt techniques applied at the detector and tracker stages maximize the probability of track initiation whilst minimizing the probability of false or otherwise erroneous track data.
Optimisation of sensing time and transmission time in cognitive radio-based smart grid networks
NASA Astrophysics Data System (ADS)
Yang, Chao; Fu, Yuli; Yang, Junjie
2016-07-01
Cognitive radio (CR)-based smart grid (SG) networks have been widely recognised as emerging communication paradigms in power grids. However, a sufficient spectrum resource and reliability are two major challenges for real-time applications in CR-based SG networks. In this article, we study the traffic data collection problem. Based on the two-stage power pricing model, the power price is associated with the efficient received traffic data in a metre data management system (MDMS). In order to minimise the system power price, a wideband hybrid access strategy is proposed and analysed, to share the spectrum between the SG nodes and CR networks. The sensing time and transmission time are jointly optimised, while both the interference to primary users and the spectrum opportunity loss of secondary users are considered. Two algorithms are proposed to solve the joint optimisation problem. Simulation results show that the proposed joint optimisation algorithms outperform the fixed parameters (sensing time and transmission time) algorithms, and the power cost is reduced efficiently.
Ponsford, Anthony; McKerracher, Rick; Ding, Zhen; Moo, Peter; Yee, Derek
2017-01-01
Canada’s third-generation HFSWR forms the foundation of a maritime domain awareness system that provides enforcement agencies with real-time persistent surveillance out to and beyond the 200 nautical mile exclusive economic zone (EEZ). Cognitive sense-and-adapt technology and dynamic spectrum management ensures robust and resilient operation in the highly congested High Frequency (HF) band. Dynamic spectrum access enables the system to simultaneously operate on two frequencies on a non-interference and non-protected basis, without impacting other spectrum users. Sense-and-adapt technologies ensure that the system instantaneously switches to a new vacant channel on the detection of another user or unwanted jamming signal. Adaptive signal processing techniques mitigate against electrical noise, interference and clutter. Sense-and-adapt techniques applied at the detector and tracker stages maximize the probability of track initiation whilst minimizing the probability of false or otherwise erroneous track data. PMID:28686198
Transparent, polycrystalline cubic aluminum oxide
NASA Astrophysics Data System (ADS)
McCauley, J. W.; Corbin, N. D.
1980-06-01
The means used to observe or sense the enemy have progressed from actual eye-to-eye observation to extensive use of radar and sonar, and now include using infrared (IR) signals. At the same time, various forms of armor, from face shields to sophisticated electromagnetic (EM) windows and domes (radomes, IR domes), have been developed to transmit signals and also to protect the sensing mechanisms - either the human eye or intricate electronic devices. Countermeasures such as smoke and radar-jamming systems have concurrently evolved to defeat the various sensing devices. In order to minimize the effectiveness of dedicated (single-mode) or even broadband countermeasure tactics, sensing devices of the future, therefore, must be able to simultaneously function over a large region of the EM spectrum, including visible light, IR, microwave and millimeter wave radars. It is imperative, then, that new materials must be developed to transmit a wide range of the EM spectrum, while at the same time protecting the fragile sensing equipment in wide-ranging types of severe battlefield environments.
Wang, A; Wang, G Z; Murphy, K A; Claus, R O
1995-05-01
A concept for optical temperature sensing based on the differential spectral reflectivity/transmittance from a multilayer dielectric edge filter is described and demonstrated. Two wavelengths, λ(1) and λ(2), from the spectrum of a broadband light source are selected so that they are located on the sloped and flat regions of the reflection or transmission spectrum of the filter, respectively. As temperature variations shift the reflection or transmission spectrum of the filter, they change the output power of the light at λ(1), but the output power of the light at λ(2) is insensitive to the shift and therefore to the temperature variation. The temperature information can be extracted from the ratio of the light powers at λ(1) to the light at λ(2). This ratio is immune to changes in the output power of the light source, fiber losses induced by microbending, and hence modal-power distribution fluctuations. The best resolution of 0.2 °C has been obtained over a range of 30-120 °C. Based on such a basic temperature-sensing concept, a wavelength-division-multiplexed, temperature-sensing system is constructed by cascading three sensing-edge filters that have different cutoff wavelengths along a multimode fiber. The signals from the three sensors are resolved by detecting the correspondent outputs at different wavelengths.
What is a picture worth? A history of remote sensing
Moore, Gerald K.
1979-01-01
Remote sensing is the use of electromagnetic energy to measure the physical properties of distant objects. It includes photography and geophysical surveying as well as newer techniques that use other parts of the electromagnetic spectrum. The history of remote sensing begins with photography. The origin of other types of remote sensing can be traced to World War II, with the development of radar, sonar, and thermal infrared detection systems. Since the 1960s, sensors have been designed to operate in virtually all of the electromagnetic spectrum. Today a wide variety of remote sensing instruments are available for use in hydrological studies; satellite data, such as Skylab photographs and Landsat images are particularly suitable for regional problems and studies. Planned future satellites will provide a ground resolution of 10–80 m. Remote sensing is currently used for hydrological applications in most countries of the world. The range of applications includes groundwater exploration determination of physical water quality, snowfield mapping, flood-inundation delineation, and making inventories of irrigated land. The use of remote sensing commonly results in considerable hydrological information at minimal cost. This information can be used to speed-up the development of water resources, to improve management practices, and to monitor environmental problems.
Applications of remote sensing to estuarine management
NASA Technical Reports Server (NTRS)
Munday, J. C., Jr.; Gordon, H. H.; Hennigar, H. F.
1977-01-01
Remote sensing was used in the resolution of estuarine problems facing federal and Virginia governmental agencies. A prototype Elizabeth River Surface Circulation Atlas was produced from photogrammetry to aid in oil spill cleanup and source identification. Aerial photo analysis twice led to selection of alternative plans for dredging and spoil disposal which minimized marsh damage. Marsh loss due to a mud wave from a highway dyke was measured on sequential aerial photographs. An historical aerial photographic sequence gave basis to a potential Commonwealth of Virginia legal claim to accreting and migrating coastal islands.
Cohn, Neil
2014-01-01
How do people make sense of the sequential images in visual narratives like comics? A growing literature of recent research has suggested that this comprehension involves the interaction of multiple systems: The creation of meaning across sequential images relies on a "narrative grammar" that packages conceptual information into categorical roles organized in hierarchic constituents. These images are encapsulated into panels arranged in the layout of a physical page. Finally, how panels frame information can impact both the narrative structure and page layout. Altogether, these systems operate in parallel to construct the Gestalt whole of comprehension of this visual language found in comics.
Photography and imagery: a clarification of terms
Robinove, Charles J.
1963-01-01
The increased use of pictorial displays of data in the fields of photogrammetry and photo interpretation has led to some confusion of terms, not so much b photogrammetrists as bu users and interpreters of pictorial data. The terms "remote sensing" and "remote sensing of environment" are being used as general terms to describe "the measurement of some property of an object without having the measuring device physically in contact with the object" (Parker, 1962).Measurements of size and shape by photogrammetric and optical means are common examples of remote sensing and therefore require no elaboration. Other techniques of remote sensing of electromagnetic radiation in and beyond the limits of the visible spectrum require some explanation and differentiation from the techniques used in the visible spectrum.The following definitions of "photography" and "imagery" are proposed to clarify these two terms in hope that this will lead to more precise understanding and explanation of the processes.
Predicted sequence of cortical tau and amyloid-β deposition in Alzheimer disease spectrum.
Cho, Hanna; Lee, Hye Sun; Choi, Jae Yong; Lee, Jae Hoon; Ryu, Young Hoon; Lee, Myung Sik; Lyoo, Chul Hyoung
2018-04-17
We investigated sequential order between tau and amyloid-β (Aβ) deposition in Alzheimer disease spectrum using a conditional probability method. Two hundred twenty participants underwent 18 F-flortaucipir and 18 F-florbetaben positron emission tomography scans and neuropsychological tests. The presence of tau and Aβ in each region and impairment in each cognitive domain were determined by Z-score cutoffs. By comparing pairs of conditional probabilities, the sequential order of tau and Aβ deposition were determined. Probability for the presence of tau in the entorhinal cortex was higher than that of Aβ in all cortical regions, and in the medial temporal cortices, probability for the presence of tau was higher than that of Aβ. Conversely, in the remaining neocortex above the inferior temporal cortex, probability for the presence of Aβ was always higher than that of tau. Tau pathology in the entorhinal cortex may appear earlier than neocortical Aβ and may spread in the absence of Aβ within the neighboring medial temporal regions. However, Aβ may be required for massive tau deposition in the distant cortical areas. Copyright © 2018 Elsevier Inc. All rights reserved.
A new strategy for efficient solar energy conversion: Parallel-processing with surface plasmons
NASA Technical Reports Server (NTRS)
Anderson, L. M.
1982-01-01
This paper introduces an advanced concept for direct conversion of sunlight to electricity, which aims at high efficiency by tailoring the conversion process to separate energy bands within the broad solar spectrum. The objective is to obtain a high level of spectrum-splitting without sequential losses or unique materials for each frequency band. In this concept, sunlight excites a spectrum of surface plasma waves which are processed in parallel on the same metal film. The surface plasmons transport energy to an array of metal-barrier-semiconductor diodes, where energy is extracted by inelastic tunneling. Diodes are tuned to different frequency bands by selecting the operating voltage and geometry, but all diodes share the same materials.
NASA Astrophysics Data System (ADS)
Zhao, Yong; Chen, Mao-qing; Xia, Feng; Hu, Hai-feng
2017-11-01
A novel refractive index (RI) sensor based on an asymmetrical Mach-Zehnder interferometer (MZI) with two different step-like tapers is proposed. The step-like taper is fabricated by fusion splicing two half tapers with an appropriate offset. By further applying offset and discharging to the last fabricated step-like taper of MZI, influence of taper parameters on interference spectrum is investigated using only one device. This simple technique provides an on-line method to sweep parameters of step-like tapers and speeds up the optimization process of interference spectrum, meanwhile. In RI sensing experiment, the sensor has a high sensitivity of -185.79 nm/RIU (refractive index unit) in the RI range of 1.3333-1.3673.
NASA Astrophysics Data System (ADS)
Deshpande, R. S.; Bulović, V.; Forrest, S. R.
1999-08-01
We demonstrate efficient, molecular organic white-light-emitting devices using vacuum-deposited thin films of red luminescent [2-methyl-6-[2-(2,3,6,7-tetrahydro-1H, 5H-benzo [ij] quinolizin-9-yl) ethenyl]-4H-pyran-4-ylidene] propane-dinitrile (DCM2), doped into blue-emitting 4, 4' bis [N-1-napthyl-N-phenyl-amino]biphenyl (α-NPD), and green-emitting tris-(8-hydroxyquinolinato) aluminum(III) (AlQ3). The luminescent layers are separated by a hole-blocking layer of 2,9-dimethyl, 4,7-diphenyl, 1,10-phenanthroline (BCP), whose thickness is on the order of a typical Förster transfer radius of 30-40 Å. Excitons formed on α-NPD sequentially transfer their energy via a Förster mechanism to AlQ3 across the BCP layer, and from AlQ3 to DCM2. This interlayer sequential energy transfer results in partial excitation of all three molecular species, thereby producing white light emission. The thickness of the blocking layer and the concentration of DCM2 in α-NPD permit the tuning of the device spectrum to achieve a balanced white emission with Commission Internationale d'Eclairage chromaticity coordinates of (0.33, 0.33). The spectrum is largely insensitive to the drive current, and the devices have a maximum luminance of 13 500 cd/m2. At a luminance of 100 cd/m2, the quantum and power efficiencies are 0.5% and 0.35 lm/W, respectively.
Cheuk, Samantha; Lashewicz, Bonnie
2016-04-01
The growing prevalence of autism spectrum disorder is accompanied by ongoing efforts to understand and support parents in the face of challenges related to their child's autism spectrum disorder. Although fathers are increasingly hands-on in raising children, research focus on parenting children with autism spectrum disorder continues to be skewed toward experiences of mothers. Our purpose in this article is to contribute understandings of how fathers of children with autism spectrum disorder perceive themselves to be managing, and we undertake this by examining comparisons fathers of children with autism spectrum disorder make between their parenting experiences and experiences of fathers of typically developing children. A purposive sample of 28 fathers of children (aged 2-13 years) with autism spectrum disorder living in an urban center in Western Canada participated in in-depth interviews about their parenting successes and challenges. We found fathers speak of universal fathering experiences yet articulate their own sense of loss and efforts to come to terms with unanticipated demands associated with autism spectrum disorder. Fathers of children with autism spectrum disorder feel "pangs of jealousy" toward fathers of typically developing children, yet they are keenly attentive to their own child's development and convey a sense of gratitude for their child's capabilities and personality amidst an appreciation for trials and triumphs of fathering in general and fathering a child with autism spectrum disorder in particular. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Berezin, K. V.; Shagautdinova, I. T.; Chernavina, M. L.; Novoselova, A. V.; Dvoretskii, K. N.; Likhter, A. M.
2017-09-01
The experimental vibrational IR spectra of the outer part of lemon peel are recorded in the range of 3800-650 cm-1. The effect of artificial and natural dehydration of the peel on its vibrational spectrum is studied. It is shown that the colored outer layer of lemon peel does not have a noticeable effect on the vibrational spectrum. Upon 28-day storage of a lemon under natural laboratory conditions, only sequential dehydration processes are reflected in the vibrational spectrum of the peel. Within the framework of the theoretical DFT/B3LYP/6-31G(d) method, a model of a plant cell wall is developed consisting of a number of polymeric molecules of dietary fibers like cellulose, hemicellulose, pectin, lignin, some polyphenolic compounds (hesperetin glycoside-flavonoid), and a free water cluster. Using a supermolecular approach, the spectral properties of the wall of a lemon peel cell was simulated, and a detailed theoretical interpretation of the recorded vibrational spectrum is given.
1990-01-01
reflection is simulated by a one- level ray trace with selective filtering of the RGB color ’spectrum’ Fractal and sequential Markov-chain synthesis tech...above water level [cm/sec], and vfric = the wind friction velocity at the water surface (i.e. z = 0 cm). vfric and the wind velocity v [cm/sec] at height...12 cm/sec 1000 0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -. 5 0 .5 1.0 LOGI0(k (k: 1/cm) ------------------------------------------------------ FIGUE
R. L. Czaplewski
2009-01-01
The minimum variance multivariate composite estimator is a relatively simple sequential estimator for complex sampling designs (Czaplewski 2009). Such designs combine a probability sample of expensive field data with multiple censuses and/or samples of relatively inexpensive multi-sensor, multi-resolution remotely sensed data. Unfortunately, the multivariate composite...
Kunugi, Yoshihito; Mann, Kent R.; Miller, Larry L.; Exstrom, Christopher L.
2003-06-17
A sandwich device was prepared by electrodeposition of an insoluble layer of oligomerized tris(4-(2-thienyl)phenyl)amine onto conducting indium-tin oxide coated glass, spin coating the stacked platinum compound, tetrakis(p-decylphenylisocyano)platinum tetranitroplatinate, from toluene onto the oligomer layer, and then coating the platinum complex with aluminum by vapor deposition. This device showed rectification of current and gave electroluminescence. The electroluminescence spectrum (.lambda..sub.max =545 nm) corresponded to the photoluminescence spectrum of the platinum complex. Exposure of the device to acetone vapor caused the electroemission to shift to 575 nm. Exposure to toluene vapor caused a return to the original spectrum. These results demonstrate a new type of sensor that reports the arrival of organic vapors with an electroluminescent signal. The sensor comprises (a) a first electrode; (b) a hole transport layer formed on the first electrode; (c) a sensing/emitting layer formed on the hole transport layer, the sensing/emitting layer comprising a material that changes color upon exposure to the analyte vapors; (d) an electron conductor layer formed on the sensing layer; and (e) a second electrode formed on the electron conductor layer. The hole transport layer emits light at a shorter wavelength than the sensing/emitting layer and at least the first electrode comprises an optically transparent material.
Kunugi, Yoshihito; Mann, Kent R.; Miller, Larry L.; Exstrom, Christopher L.
2002-01-15
A sandwich device was prepared by electrodeposition of an insoluble layer of oligomerized tris(4-(2-thienyl)phenyl)amine onto conducting indium-tin oxide coated glass, spin coating the stacked platinum compound, tetrakis(p-decylphenylisocyano)platinum tetranitroplatinate, from toluene onto the oligomer layer, and then coating the platinum complex with aluminum by vapor deposition. This device showed rectification of current and gave electroluminescence. The electroluminescence spectrum (.mu..sub.max =545 nm) corresponded to the photoluminescence spectrum of the platinum complex. Exposure of the device to acetone vapor caused the electroemission to shift to 575 nm. Exposure to toluene vapor caused a return to the original spectrum. These results demonstrate a new type of sensor that reports the arrival of organic vapors with an electroluminescent signal. The sensor comprises (a) a first electrode; (b) a hole transport layer formed on the first electrode; (c) a sensing/emitting layer formed on the hole transport layer, the sensing/emitting layer comprising a material that changes color upon exposure to the analyte vapors; (d) an electron conductor layer formed on the sensing layer; and (e) a second electrode formed on the electron conductor layer. The hole transport layer emits light at a shorter wavelength than the sensing/emitting layer and at least the first electrode comprises an optically transparent material.
Apparatus for installing condition-sensing means in subterranean earth formations
Shuck, Lowell Z.
1981-01-01
The present invention is directed to an apparatus for installing strain gages or other sensors-transducers in wellbores penetrating subterranean earth formations. The subject apparatus comprises an assembly which is lowered into the wellbore, secured in place, and then actuated to sequentially clean the wellbore or casing surface at a selected location with suitable solvents, etchants and neutralizers, grind the surface to a relatively smooth finish, apply an adhesive to the surface, and attach the strain gages or the like to the adhesive-bearing surface. After installing the condition-sensing gages to the casing or earth formation the assembly is withdrawn from the wellbore leaving the sensing gages securely attached to the casing or the subterranean earth formation.
NASA Astrophysics Data System (ADS)
Chakraborty, Tamal; Saha Misra, Iti
2016-03-01
Secondary Users (SUs) in a Cognitive Radio Network (CRN) face unpredictable interruptions in transmission due to the random arrival of Primary Users (PUs), leading to spectrum handoff or dropping instances. An efficient spectrum handoff algorithm, thus, becomes one of the indispensable components in CRN, especially for real-time communication like Voice over IP (VoIP). In this regard, this paper investigates the effects of spectrum handoff on the Quality of Service (QoS) for VoIP traffic in CRN, and proposes a real-time spectrum handoff algorithm in two phases. The first phase (VAST-VoIP based Adaptive Sensing and Transmission) adaptively varies the channel sensing and transmission durations to perform intelligent dropping decisions. The second phase (ProReact-Proactive and Reactive Handoff) deploys efficient channel selection mechanisms during spectrum handoff for resuming communication. Extensive performance analysis in analytical and simulation models confirms a decrease in spectrum handoff delay for VoIP SUs by more than 40% and 60%, compared to existing proactive and reactive algorithms, respectively and ensures a minimum 10% reduction in call-dropping probability with respect to the previous works in this domain. The effective SU transmission duration is also maximized under the proposed algorithm, thereby making it suitable for successful VoIP communication.
Lin, Yu-Pin; Chu, Hone-Jay; Wang, Cheng-Long; Yu, Hsiao-Hsuan; Wang, Yung-Chieh
2009-01-01
This study applies variogram analyses of normalized difference vegetation index (NDVI) images derived from SPOT HRV images obtained before and after the ChiChi earthquake in the Chenyulan watershed, Taiwan, as well as images after four large typhoons, to delineate the spatial patterns, spatial structures and spatial variability of landscapes caused by these large disturbances. The conditional Latin hypercube sampling approach was applied to select samples from multiple NDVI images. Kriging and sequential Gaussian simulation with sufficient samples were then used to generate maps of NDVI images. The variography of NDVI image results demonstrate that spatial patterns of disturbed landscapes were successfully delineated by variogram analysis in study areas. The high-magnitude Chi-Chi earthquake created spatial landscape variations in the study area. After the earthquake, the cumulative impacts of typhoons on landscape patterns depended on the magnitudes and paths of typhoons, but were not always evident in the spatiotemporal variability of landscapes in the study area. The statistics and spatial structures of multiple NDVI images were captured by 3,000 samples from 62,500 grids in the NDVI images. Kriging and sequential Gaussian simulation with the 3,000 samples effectively reproduced spatial patterns of NDVI images. However, the proposed approach, which integrates the conditional Latin hypercube sampling approach, variogram, kriging and sequential Gaussian simulation in remotely sensed images, efficiently monitors, samples and maps the effects of large chronological disturbances on spatial characteristics of landscape changes including spatial variability and heterogeneity.
Absorption Spectrum of Phytoplankton Pigments Derived from Hyperspectral Remote-Sensing Reflectance
2004-01-01
For a data set collected around Baja California with chlorophyll-a concentration ((chl-a)) ranging from 0.16 to 11.3 mg/cubic meter, hyperspectral absorption spectra of phytoplankton pigments were independently inverted from hyperspectral remote - sensing reflectance using a newly...potential of using hyperspectral remote sensing to retrieve both chlorophyll-a and other accessory pigments. (7 figures, 47 refs.)
Hoan, Tran-Nhut-Khai; Hiep, Vu-Van; Koo, In-Soo
2016-03-31
This paper considers cognitive radio networks (CRNs) utilizing multiple time-slotted primary channels in which cognitive users (CUs) are powered by energy harvesters. The CUs are under the consideration that hardware constraints on radio devices only allow them to sense and transmit on one channel at a time. For a scenario where the arrival of harvested energy packets and the battery capacity are finite, we propose a scheme to optimize (i) the channel-sensing schedule (consisting of finding the optimal action (silent or active) and sensing order of channels) and (ii) the optimal transmission energy set corresponding to the channels in the sensing order for the operation of the CU in order to maximize the expected throughput of the CRN over multiple time slots. Frequency-switching delay, energy-switching cost, correlation in spectrum occupancy across time and frequency and errors in spectrum sensing are also considered in this work. The performance of the proposed scheme is evaluated via simulation. The simulation results show that the throughput of the proposed scheme is greatly improved, in comparison to related schemes in the literature. The collision ratio on the primary channels is also investigated.
State of the Art and Challenges of Radio Spectrum Monitoring in China
NASA Astrophysics Data System (ADS)
Lu, Q. N.; Yang, J. J.; Jin, Z. Y.; Chen, D. Z.; Huang, M.
2017-10-01
This paper provides an overview of radio spectrum monitoring in China. First, research background, the motivation is described and then train of thought, the prototype system, and the accomplishments are presented. Current radio spectrum monitoring systems are man-machine communication systems, which are unable to detect and process the radio interference automatically. In order to realize intelligent radio monitoring and spectrum management, we proposed an Internet of Things-based spectrum sensing approach using information system architecture and implemented a pilot program; then some very interesting results were obtained.
ERIC Educational Resources Information Center
Benson, Paul R.
2014-01-01
Utilizing a cohort sequential design and multilevel modeling on a sample of 113 mothers, the effects of four coping strategies (engagement, disengagement, distraction, and cognitive reframing) on multiple measures of maternal adjustment were assessed over a 7 years period when children with autism spectrum disorders in the study were approximately…
ERIC Educational Resources Information Center
Lyons, Gregory
2011-01-01
Linda Miller describes a model for the practical implementation of behaviour supports. This model, the "5P approach", attempts to delineate a comprehensive and sequentially-stepped model of the assessment and treatment of challenging behaviour with consistent colour-coded themes. The 5Ps include profiling the child, prioritising the challenging…
ERIC Educational Resources Information Center
Reed, Derek D.; Luiselli, James K.; Morizio, Lindsey C.; Child, Stephanie N.
2010-01-01
The present study describes a case of a 9-year-old girl diagnosed on the autism spectrum who averaged nearly 1200 hand-to-head self-injuries (+attempts) per school day. Given the resources of the school and the significance of the self-injurious behavior (SIB), analog functional analysis is not possible. Moreover, functional assessment results…
Studies on Five Senses Treatment
NASA Astrophysics Data System (ADS)
Sato, Sadaka; Miao, Tiejun; Oyama-Higa, Mayumi
2011-06-01
This study proposed a therapy from complementary and alternative medicine to treat mental disorder by through interactions of five senses between therapist and patient. In this method sounding a certain six voices play an important role in healing and recovery. First, we studied effects of speaking using scalp- EEG measurement. Chaos analysis of EEG showed a largely enhanced largest Lyapunov exponent (LLE) during the speaking. In addition, EEG power spectrum showed an increase over most frequencies. Second, we performed case studies on mental disorder using the therapy. Running power spectrum of EEG of patients indicated decreasing power at end of treatment, implying five senses therapy induced relaxed and lowered energy in central neural system. The results agreed with patient's reports that there were considerable decline in anxiety and improvements in mood.
Cohn, Neil
2014-01-01
How do people make sense of the sequential images in visual narratives like comics? A growing literature of recent research has suggested that this comprehension involves the interaction of multiple systems: The creation of meaning across sequential images relies on a “narrative grammar” that packages conceptual information into categorical roles organized in hierarchic constituents. These images are encapsulated into panels arranged in the layout of a physical page. Finally, how panels frame information can impact both the narrative structure and page layout. Altogether, these systems operate in parallel to construct the Gestalt whole of comprehension of this visual language found in comics. PMID:25071651
NASA Astrophysics Data System (ADS)
Li, Jia; Wang, Qiang; Yan, Wenjie; Shen, Yi
2015-12-01
Cooperative spectrum sensing exploits the spatial diversity to improve the detection of occupied channels in cognitive radio networks (CRNs). Cooperative compressive spectrum sensing (CCSS) utilizing the sparsity of channel occupancy further improves the efficiency by reducing the number of reports without degrading detection performance. In this paper, we firstly and mainly propose the referred multi-candidate orthogonal matrix matching pursuit (MOMMP) algorithms to efficiently and effectively detect occupied channels at fusion center (FC), where multi-candidate identification and orthogonal projection are utilized to respectively reduce the number of required iterations and improve the probability of exact identification. Secondly, two common but different approaches based on threshold and Gaussian distribution are introduced to realize the multi-candidate identification. Moreover, to improve the detection accuracy and energy efficiency, we propose the matrix construction based on shrinkage and gradient descent (MCSGD) algorithm to provide a deterministic filter coefficient matrix of low t-average coherence. Finally, several numerical simulations validate that our proposals provide satisfactory performance with higher probability of detection, lower probability of false alarm and less detection time.
Some fundamental concepts in remote sensing
NASA Technical Reports Server (NTRS)
1982-01-01
The term remote sensing is defined as well as ideas such as class, pattern, feature, pattern recognition, feature extraction, and theme. The electromagnetic spectrum is examined especially those wavelength regions available to remote sensing. Relevant energy and wave propagation laws are discussed and the characteristics of emitted and reflected radiation and their detection are investigated. The identification of classes by their spectral signatures, the multispectral approach, and the principal types of sensors and platforms used in remote sensing are also considered.
2013-01-01
intelligently selecting waveform parameters using adaptive algorithms. The adaptive algorithms optimize the waveform parameters based on (1) the EM...the environment. 15. SUBJECT TERMS cognitive radar, adaptive sensing, spectrum sensing, multi-objective optimization, genetic algorithms, machine...detection and classification block diagram. .........................................................6 Figure 5. Genetic algorithm block diagram
Millimeter-Wave Propagation and Remote Sensing of the Atmosphere,
1983-12-01
tool to probe lower atmospheric structure. The principal applications of millimeter waves have been in the areas of communications, radar, and remote ... sensing . The availability of large bandwidths makes this region of the spectrum particularly attractive for high data rate communications. Because
Sequential segmental classification of feline congenital heart disease.
Scansen, Brian A; Schneider, Matthias; Bonagura, John D
2015-12-01
Feline congenital heart disease is less commonly encountered in veterinary medicine than acquired feline heart diseases such as cardiomyopathy. Understanding the wide spectrum of congenital cardiovascular disease demands a familiarity with a variety of lesions, occurring both in isolation and in combination, along with an appreciation of complex nomenclature and variable classification schemes. This review begins with an overview of congenital heart disease in the cat, including proposed etiologies and prevalence, examination approaches, and principles of therapy. Specific congenital defects are presented and organized by a sequential segmental classification with respect to their morphologic lesions. Highlights of diagnosis, treatment options, and prognosis are offered. It is hoped that this review will provide a framework for approaching congenital heart disease in the cat, and more broadly in other animal species based on the sequential segmental approach, which represents an adaptation of the common methodology used in children and adults with congenital heart disease. Copyright © 2015 Elsevier B.V. All rights reserved.
Most genetic risk for autism resides with common variation
Gaugler, Trent; Klei, Lambertus; Sanders, Stephan J.; Bodea, Corneliu A.; Goldberg, Arthur P.; Lee, Ann B.; Mahajan, Milind; Manaa, Dina; Pawitan, Yudi; Reichert, Jennifer; Ripke, Stephan; Sandin, Sven; Sklar, Pamela; Svantesson, Oscar; Reichenberg, Abraham; Hultman, Christina M.; Devlin, Bernie
2014-01-01
A key component of genetic architecture is the allelic spectrum influencing trait variability. For autism spectrum disorder (henceforth autism) the nature of its allelic spectrum is uncertain. Individual risk genes have been identified from rare variation, especially de novo mutations1–8. From this evidence one might conclude that rare variation dominates its allelic spectrum, yet recent studies show that common variation, individually of small effect, has substantial impact en masse9,10. At issue is how much of an impact relative to rare variation. Using a unique epidemiological sample from Sweden, novel methods that distinguish total narrow-sense heritability from that due to common variation, and by synthesizing results from other studies, we reach several conclusions about autism’s genetic architecture: its narrow-sense heritability is ≈54% and most traces to common variation; rare de novo mutations contribute substantially to individuals’ liability; still their contribution to variance in liability, 2.6%, is modest compared to heritable variation. PMID:25038753
NASA Astrophysics Data System (ADS)
Xing, Rui; Dong, Changbin; Wang, Zixiao; Wu, Yue; Yang, Yuguang; Jian, Shuisheng
2018-06-01
A novel, simultaneous strain and temperature sensor utilizing polarization maintaining fiber (PMF) and multimode fiber (MMF) is proposed and experimentally demonstrated in this paper. The sensing head of this sensor can be obtained by splicing PMF and MMF in the structure of PMF-MMF-PMF. The extinction ratio of the transmission spectrum can be over 30 dB. The strain sensitivities of sensor by two spectrum dips can be 1.01 pm/με and 1.27 pm/με in the range from 0 to 2000 με. Meanwhile, the temperature sensitivities of 49 pm/°C and 41 pm/°C can be achieved by two spectrum dips in the range from 30 °C to 70 °C. The sensitivity difference between the two spectrum dips can be used to realize dual parameters fiber sensing. This sensor exhibits the advantages of simple fabrication, compact structure and multi-purpose measuring. It may have the great potential in fields of robot arms and artificial limbs.
Most genetic risk for autism resides with common variation.
Gaugler, Trent; Klei, Lambertus; Sanders, Stephan J; Bodea, Corneliu A; Goldberg, Arthur P; Lee, Ann B; Mahajan, Milind; Manaa, Dina; Pawitan, Yudi; Reichert, Jennifer; Ripke, Stephan; Sandin, Sven; Sklar, Pamela; Svantesson, Oscar; Reichenberg, Abraham; Hultman, Christina M; Devlin, Bernie; Roeder, Kathryn; Buxbaum, Joseph D
2014-08-01
A key component of genetic architecture is the allelic spectrum influencing trait variability. For autism spectrum disorder (herein termed autism), the nature of the allelic spectrum is uncertain. Individual risk-associated genes have been identified from rare variation, especially de novo mutations. From this evidence, one might conclude that rare variation dominates the allelic spectrum in autism, yet recent studies show that common variation, individually of small effect, has substantial impact en masse. At issue is how much of an impact relative to rare variation this common variation has. Using a unique epidemiological sample from Sweden, new methods that distinguish total narrow-sense heritability from that due to common variation and synthesis of results from other studies, we reach several conclusions about autism's genetic architecture: its narrow-sense heritability is ∼52.4%, with most due to common variation, and rare de novo mutations contribute substantially to individual liability, yet their contribution to variance in liability, 2.6%, is modest compared to that for heritable variation.
Millroth, Philip; Guath, Mona; Juslin, Peter
2018-06-07
The rationality of decision making under risk is of central concern in psychology and other behavioral sciences. In real-life, the information relevant to a decision often arrives sequentially or changes over time, implying nontrivial demands on memory. Yet, little is known about how this affects the ability to make rational decisions and a default assumption is rather that information about outcomes and probabilities are simultaneously available at the time of the decision. In 4 experiments, we show that participants receiving probability- and outcome information sequentially report substantially (29 to 83%) higher certainty equivalents than participants with simultaneous presentation. This holds also for monetary-incentivized participants with perfect recall of the information. Participants in the sequential conditions often violate stochastic dominance in the sense that they pay more for a lottery with low probability of an outcome than participants in the simultaneous condition pay for a high probability of the same outcome. Computational modeling demonstrates that Cumulative Prospect Theory (Tversky & Kahneman, 1992) fails to account for the effects of sequential presentation, but a model assuming anchoring-and adjustment constrained by memory can account for the data. By implication, established assumptions of rationality may need to be reconsidered to account for the effects of memory in many real-life tasks. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
ERIC Educational Resources Information Center
David, Nicole; Gawronski, Astrid; Santos, Natacha S.; Huff, Wolfgang; Lehnhardt, Fritz-Georg; Newen, Albert; Vogeley, Kai
2008-01-01
Deficits in social cognition and interaction, such as in mentalizing and imitation behavior, are hallmark features of autism spectrum disorders. Both imitation and mentalizing are at the core of the sense of agency, the awareness that we are the initiators of our own behavior. Little evidence exists regarding the sense of agency in autism. Thus,…
Making Sense of Phenomena from Sequential Images versus Illustrated Text
ERIC Educational Resources Information Center
Scalco, Karina C.; Talanquer, Vicente; Kiill, Keila B.; Cordeiro, Marcia R.
2018-01-01
We present the results of a qualitative research study designed to explore differences in the types of reasoning triggered by information presented to chemistry students in two different formats. One group of students was asked to analyze a sequence of images designed to represent critical elements in the explanation of a target phenomenon.…
The Geoscience Laser Altimeter System (GLAS) Laser Transmitter
NASA Technical Reports Server (NTRS)
Afzal, Robert S.; Yu, Anthony W.; Dallas, Joseph L.; Melak, Anthony; Lukemir, Alan; Ramos-Izqueirdo, L.; Mamakos, William
2007-01-01
The Geoscience Laser Altimeter System (GLAS), launched in January 2003, is a laser altimeter and lidar for the Earth Observing System's (EOS) ICESat mission. GLAS accommodates three, sequentially operated, diode-pumped, solid-state, Nd:YAG laser transmitters. The laser transmitter requirements, design and qualification test results for this space-based remote sensing instrument is summarized and presented
ERIC Educational Resources Information Center
Azano, Amy; Missett, Tracy C.; Callahan, Carolyn M.; Oh, Sarah; Brunner, Marguerite; Foster, Lisa H.; Moon, Tonya R.
2011-01-01
This study used sequential mixed-methods analyses to investigate the effectiveness of a research-based language arts curriculum for gifted third graders. Using analytic induction, researchers found that teachers' beliefs and expectations (time, sense of autonomy, expectations for students, professional expertise) influenced the degree to which…
Concept for a hyperspectral remote sensing algorithm for floating marine macro plastics.
Goddijn-Murphy, Lonneke; Peters, Steef; van Sebille, Erik; James, Neil A; Gibb, Stuart
2018-01-01
There is growing global concern over the chemical, biological and ecological impact of plastics in the ocean. Remote sensing has the potential to provide long-term, global monitoring but for marine plastics it is still in its early stages. Some progress has been made in hyperspectral remote sensing of marine macroplastics in the visible (VIS) to short wave infrared (SWIR) spectrum. We present a reflectance model of sunlight interacting with a sea surface littered with macro plastics, based on geometrical optics and the spectral signatures of plastic and seawater. This is a first step towards the development of a remote sensing algorithm for marine plastic using light reflectance measurements in air. Our model takes the colour, transparency, reflectivity and shape of plastic litter into account. This concept model can aid the design of laboratory, field and Earth observation measurements in the VIS-SWIR spectrum and explain the results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Principles of thermal remote sensing
NASA Technical Reports Server (NTRS)
1982-01-01
The remote sensing of temperature is performed by sensing radiation emitted from solids, liquids, and gases in the thermal infrared region of the spectrum, in which thermal emission is dominant over reflected solar energy. For Earth resources applications, thermal sensing of solids and liquids is performed in two ""windows'' of the atmosphere where atmospheric absorption and emission are at a minimum. Temperature measurement, intrinsic thermal properties, factors in interpreting thermal data, the use of thermal inertia, and the measurements obtained by the heat capacity mapping radiometer are discussed.
NASA Technical Reports Server (NTRS)
Polhemus, J. T.
1980-01-01
Five troublesome insect pest groups were chosen for study. These represent a broad spectrum of life cycles, ecological indicators, pest management strategies, and remote sensing requirements. Background data, and field study results for each of these subjects is discussed for each insect group. Specific groups studied include tsetse flies, locusts, western rangeland grasshoppers, range caterpillars, and mosquitoes. It is concluded that remote sensing methods are aplicable to the pest management of the insect groups studied.
Efficient Controls for Finitely Convergent Sequential Algorithms
Chen, Wei; Herman, Gabor T.
2010-01-01
Finding a feasible point that satisfies a set of constraints is a common task in scientific computing: examples are the linear feasibility problem and the convex feasibility problem. Finitely convergent sequential algorithms can be used for solving such problems; an example of such an algorithm is ART3, which is defined in such a way that its control is cyclic in the sense that during its execution it repeatedly cycles through the given constraints. Previously we found a variant of ART3 whose control is no longer cyclic, but which is still finitely convergent and in practice it usually converges faster than ART3 does. In this paper we propose a general methodology for automatic transformation of finitely convergent sequential algorithms in such a way that (i) finite convergence is retained and (ii) the speed of convergence is improved. The first of these two properties is proven by mathematical theorems, the second is illustrated by applying the algorithms to a practical problem. PMID:20953327
Maiti, Nandita; Chadha, Ridhima; Das, Abhishek; Kapoor, Sudhir
2015-01-01
Raman and surface-enhanced Raman scattering (SERS) studies of thioflavin T (ThT) in solid, solution, gold nanoparticles (GNPs), silver nanoparticles (SNPs) and silver-coated films (SCFs) were investigated. Concentration-dependent SERS spectrum of ThT in GNPs and SNPs indicated the existence of two possible structures, one with the torsional angle (φ) between benzothiazole and dimethylaminobenzene rings being 37° and the other with φ=90°. The SERS spectrum of ThT in SCFs were similar to the Raman spectrum of solid and solution that suggests φ=37°. In this paper, the high sensitivity of the SERS technique was employed for sub-nanomolar (picomolar) sensing of ThT. Copyright © 2015 Elsevier B.V. All rights reserved.
A Truthful Incentive Mechanism for Online Recruitment in Mobile Crowd Sensing System.
Chen, Xiao; Liu, Min; Zhou, Yaqin; Li, Zhongcheng; Chen, Shuang; He, Xiangnan
2017-01-01
We investigate emerging mobile crowd sensing (MCS) systems, in which new cloud-based platforms sequentially allocate homogenous sensing jobs to dynamically-arriving users with uncertain service qualities. Given that human beings are selfish in nature, it is crucial yet challenging to design an efficient and truthful incentive mechanism to encourage users to participate. To address the challenge, we propose a novel truthful online auction mechanism that can efficiently learn to make irreversible online decisions on winner selections for new MCS systems without requiring previous knowledge of users. Moreover, we theoretically prove that our incentive possesses truthfulness, individual rationality and computational efficiency. Extensive simulation results under both real and synthetic traces demonstrate that our incentive mechanism can reduce the payment of the platform, increase the utility of the platform and social welfare.
NASA Astrophysics Data System (ADS)
Wu, Juan; Melo, Lis G. A.; Zhu, Xiaohui; West, Marcia M.; Berejnov, Viatcheslav; Susac, Darija; Stumper, Juergen; Hitchcock, Adam P.
2018-03-01
4D imaging - the three-dimensional distributions of chemical species determined using multi-energy X-ray tomography - of cathode catalyst layers of polymer electrolyte membrane fuel cells (PEM-FC) has been measured by scanning transmission x-ray microscopy (STXM) spectro-tomography at the C 1s and F 1s edges. In order to monitor the effects of radiation damage on the composition and 3D structure of the perfluorosulfonic acid (PFSA) ionomer, the same volume was measured 3 times sequentially, with spectral characterization of that same volume at several time points during the measurements. The changes in the average F 1s spectrum of the ionomer in the cathode as the measurements progressed gave insights into the degree of chemical modification, fluorine mass loss, and changes in the 3D distributions of ionomer that accompanied the spectro-tomographic measurement. The PFSA ionomer-in-cathode is modified both chemically and physically by radiation damage. The 3D volume decreases anisotropically. By reducing the incident flux, partial defocusing (50 nm spot size), limiting the number of tilt angles to 14, and using compressed sensing reconstruction, we show it is possible to reproducibly measure the 3D structure of ionomer in PEM-FC cathodes at ambient temperature while causing minimal radiation damage.
NASA Astrophysics Data System (ADS)
Paramonov, P. V.; Vorontsov, A. M.; Kunitsyn, V. E.
2015-10-01
Numerical modeling of optical wave propagation in atmospheric turbulence is traditionally performed with using the so-called "split"-operator method, when the influence of the propagation medium's refractive index inhomogeneities is accounted for only within a system of infinitely narrow layers (phase screens) where phase is distorted. Commonly, under certain assumptions, such phase screens are considered as mutually statistically uncorrelated. However, in several important applications including laser target tracking, remote sensing, and atmospheric imaging, accurate optical field propagation modeling assumes upper limitations on interscreen spacing. The latter situation can be observed, for instance, in the presence of large-scale turbulent inhomogeneities or in deep turbulence conditions, where interscreen distances become comparable with turbulence outer scale and, hence, corresponding phase screens cannot be statistically uncorrelated. In this paper, we discuss correlated phase screens. The statistical characteristics of screens are calculated based on a representation of turbulent fluctuations of three-dimensional (3D) refractive index random field as a set of sequentially correlated 3D layers displaced in the wave propagation direction. The statistical characteristics of refractive index fluctuations are described in terms of the von Karman power spectrum density. In the representation of these 3D layers by corresponding phase screens, the geometrical optics approximation is used.
ERIC Educational Resources Information Center
Baltruschat, Lisa; Hasselhorn, Marcus; Tarbox, Jonathan; Dixon, Dennis R.; Najdowski, Adel; Mullins, Ryan David; Gould, Evelyn
2012-01-01
This study is part of a programmatic line of research into the use of basic positive reinforcement procedures for improving working memory in children with autism spectrum disorders. The authors evaluated the effects of multiple exemplar training, utilizing positive reinforcement, on performance of a "digit span backwards" task--a test of working…
Coalition Formation and Spectrum Sharing of Cooperative Spectrum Sensing Participants.
Zhensheng Jiang; Wei Yuan; Leung, Henry; Xinge You; Qi Zheng
2017-05-01
In cognitive radio networks, self-interested secondary users (SUs) desire to maximize their own throughput. They compete with each other for transmit time once the absence of primary users (PUs) is detected. To satisfy the requirement of PU protection, on the other hand, they have to form some coalitions and cooperate to conduct spectrum sensing. Such dilemma of SUs between competition and cooperation motivates us to study two interesting issues: 1) how to appropriately form some coalitions for cooperative spectrum sensing (CSS) and 2) how to share transmit time among SUs. We jointly consider these two issues, and propose a noncooperative game model with 2-D strategies. The first dimension determines coalition formation, and the second indicates transmit time allocation. Considering the complexity of solving this game, we decompose the game into two more tractable ones: one deals with the formation of CSS coalitions, and the other focuses on the allocation of transmit time. We characterize the Nash equilibria (NEs) of both games, and show that the combination of these two NEs corresponds to the NE of the original game. We also develop a distributed algorithm to achieve a desirable NE of the original game. When this NE is achieved, the SUs obtain a Dhp-stable coalition structure and a fair transmit time allocation. Numerical results verify our analyses, and demonstrate the effectiveness of our algorithm.
Pozo, Pilar; Sarriá, Encarnación
2015-10-01
The transition to adulthood and adulthood itself have been identified as times of stress for parents of individuals with autism spectrum disorder. Longitudinal studies, however, show improvements in the well-being of mothers of adolescents and young adults with autism spectrum disorder. This article presents a cross-sectional study of 102 Spanish parents (51 mothers and 51 fathers) of 102 individuals with autism spectrum disorder. The aim was to examine parental well-being (evaluated based on stress, anxiety, depression and psychological well-being) in three groups of parents of adults, adolescents and young children with autism spectrum disorder. In addition, the relationships between parental well-being and the characteristics of their children, social support, parental age and sense of coherence were analysed. The results showed that although parental stress and psychological well-being levels were similar across the groups, depression and anxiety were lower in parents of adolescents or adults compared with parents of young children. Different factors predicted different measures of parental well-being, but sense of coherence emerged as the main predictive factor for all parental well-being measures. These findings are discussed in relation to parental adaptation over the lifespan and the implications for interventions in autism spectrum disorder families. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Kumar, Naveen; Kumar, Ashish
2018-07-01
A novel single-mode single-fiber (SMSF) MZI formed by cascading of two non-adiabatic fiber tapers, with stable and repeatable spectrum, has been found to be useful in sensing applications in recent times. A multimode interference based novel simulation approach is proposed to predict the sensing characteristics of SMSF-MZI and is validated with experimental observation. The proposed method includes solving of simultaneous non-homogenous equations for determining the amplitudes of the interfering modes excited in the tapered section of the interferometer. The simulated fringe pattern and the experimental spectral response converge to some important comprehension reported for the first time. A linear shift in output spectral response, of SMSF-MZI, due to change in optical path length induced by temperature/strain etc., is likely to be characterized by three modes interference occurring in the interference region of the interferometer. Whereas if the spectral shift starts saturating at moderately higher temperature/strain, then the formation of interference fringes are possibly governed by two modes interference. Further, it was also explained that a SMSF-MZI with variable fringe widths in its spectral pattern exhibits higher sensitivity than that of the SMSF-MZI having wavelength spectrum with uniform free spectral range. These findings are useful in selecting and predicting the sensitivity of a given SMSF-MZI, based on its spectrum, for sensing applications.
[Crop geometry identification based on inversion of semiempirical BRDF models].
Zhao, Chun-jiang; Huang, Wen-jiang; Mu, Xu-han; Wang, Jin-diz; Wang, Ji-hua
2009-09-01
With the rapid development of remote sensing technology, the application of remote sensing has extended from single view angle to multi-view angles. It was studied for the qualitative and quantitative effect of average leaf angle (ALA) on crop canopy reflected spectrum. Effect of ALA on canopy reflected spectrum can not be ignored with inversion of leaf area index (LAI) and monitoring of crop growth condition by remote sensing technology. Investigations of the effect of erective and horizontal varieties were conducted by bidirectional canopy reflected spectrum and semiempirical bidirectional reflectance distribution function (BRDF) models. The sensitive analysis was done based on the weight for the volumetric kernel (fvol), the weight for the geometric kernel (fgeo), and the weight for constant corresponding to isotropic reflectance (fiso) at red band (680 nm) and near infrared band (800 nm). By combining the weights of the red and near-infrared bands, the semiempirical models can obtain structural information by retrieving biophysical parameters from the physical BRDF model and a number of bidirectional observations. So, it will allow an on-site and non-sampling mode of crop ALA identification, which is useful for using remote sensing for crop growth monitoring and for improving the LAI inversion accuracy, and it will help the farmers in guiding the fertilizer and irrigation management in the farmland without a priori knowledge.
Integrating sensing across a broader spectrum to support homeland security
NASA Astrophysics Data System (ADS)
O'Brien, Thomas W.; Finkelstein, Marc
2003-08-01
All objects and activities give off energy in some part of the spectrum, may leave tell-tail signs from their previous activities (e.g., earth scaring or vapor trails), or leave information about relationships that they may have with other entities and activities (e.g., networks). Many of these phenomenologies are either not picked up by current stovepiped sensors, or the data supplied by those sensors are not fully exploited to properly observe them. In either case, new sensor data as well as the better exploitation of existing data could be used to provide, or at least cross cue or correlate with other sensor data to detect, identify, geolocate or track different kind of problems. Current sensors are often designed for specific purposes and are capable of sensing only limited parts of the spectrum. Significantly broadening the sensing spectrum will be an essential element of solving the emerging class of new "hard problems". There are many other observables available that could be exploited to assist in that process. Thus one could broaden the sensing to observe those phenomenologies associated with combustion effluents; thermal radiation; magnetic anomalies; seismic movement; acoustics; unintended electromagnetic emissions, changing weather conditions, logistics support indicators, debris trails; impressed observables (such as tagging); and others. What's needed is a disciplined, analytical process that can map observables to sensors, and ultimately to mission utility. The process, described in this SPIE presentation will address a specific example on the flow from the establishment of requirements to prosecutable observables, to objectives, to identification of sensors and assets, to the allocation of sensors and assets to observables, all based on optimizing mission utility.
ERIC Educational Resources Information Center
Sperduti, Marco; Pieron, Marie; Leboyer, Marion; Zalla, Tiziana
2014-01-01
Autism spectrum disorders (ASDs) are neurodevelopmental conditions that severely affect social interaction, communication and several behavioural and cognitive functions, such as planning and monitoring motor actions. A renewed interest in intrapersonal cognition has recently emerged suggesting a putative dissociation between impaired declarative…
Brief Report: Theatre as Therapy for Children with Autism Spectrum Disorder
ERIC Educational Resources Information Center
Corbett, Blythe A.; Gunther, Joan R.; Comins, Dan; Price, Jenifer; Ryan, Niles; Simon, David; Schupp, Clayton W.; Rios, Taylor
2011-01-01
The pilot investigation evaluated a theatrical intervention program, Social Emotional NeuroScience Endocrinology (SENSE) Theatre, designed to improve socioemotional functioning and reduce stress in children with autism spectrum disorder (ASD). Eight children with ASD were paired with typically developing peers that served as expert models.…
NASA Astrophysics Data System (ADS)
Sun, Jia; Shi, Shuo; Yang, Jian; Du, Lin; Gong, Wei; Chen, Biwu; Song, Shalei
2018-01-01
Leaf biochemical constituents provide useful information about major ecological processes. As a fast and nondestructive method, remote sensing techniques are critical to reflect leaf biochemistry via models. PROSPECT model has been widely applied in retrieving leaf traits by providing hemispherical reflectance and transmittance. However, the process of measuring both reflectance and transmittance can be time-consuming and laborious. Contrary to use reflectance spectrum alone in PROSPECT model inversion, which has been adopted by many researchers, this study proposes to use transmission spectrum alone, with the increasing availability of the latter through various remote sensing techniques. Then we analyzed the performance of PROSPECT model inversion with (1) only transmission spectrum, (2) only reflectance and (3) both reflectance and transmittance, using synthetic datasets (with varying levels of random noise and systematic noise) and two experimental datasets (LOPEX and ANGERS). The results show that (1) PROSPECT-5 model inversion based solely on transmission spectrum is viable with results generally better than that based solely on reflectance spectrum; (2) leaf dry matter can be better estimated using only transmittance or reflectance than with both reflectance and transmittance spectra.
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory
1988-01-01
A novel technique to analyze analog data in fiber optic sensing systems with temporal separation of channels is proposed. A theoretical explanation of the process is presented and an experimental setup that was used to obtain data is described.
Performance evaluation of an asynchronous multisensor track fusion filter
NASA Astrophysics Data System (ADS)
Alouani, Ali T.; Gray, John E.; McCabe, D. H.
2003-08-01
Recently the authors developed a new filter that uses data generated by asynchronous sensors to produce a state estimate that is optimal in the minimum mean square sense. The solution accounts for communications delay between sensors platform and fusion center. It also deals with out of sequence data as well as latent data by processing the information in a batch-like manner. This paper compares, using simulated targets and Monte Carlo simulations, the performance of the filter to the optimal sequential processing approach. It was found that the new asynchronous Multisensor track fusion filter (AMSTFF) performance is identical to that of the extended sequential Kalman filter (SEKF), while the new filter updates its track at a much lower rate than the SEKF.
Dual-modal cancer detection based on optical pH sensing and Raman spectroscopy
NASA Astrophysics Data System (ADS)
Kim, Soogeun; Lee, Seung Ho; Min, Sun Young; Byun, Kyung Min; Lee, Soo Yeol
2017-10-01
A dual-modal approach using Raman spectroscopy and optical pH sensing was investigated to discriminate between normal and cancerous tissues. Raman spectroscopy has demonstrated the potential for in vivo cancer detection. However, Raman spectroscopy has suffered from strong fluorescence background of biological samples and subtle spectral differences between normal and disease tissues. To overcome those issues, pH sensing is adopted to Raman spectroscopy as a dual-modal approach. Based on the fact that the pH level in cancerous tissues is lower than that in normal tissues due to insufficient vasculature formation, the dual-modal approach combining the chemical information of Raman spectrum and the metabolic information of pH level can improve the specificity of cancer diagnosis. From human breast tissue samples, Raman spectra and pH levels are measured using fiber-optic-based Raman and pH probes, respectively. The pH sensing is based on the dependence of pH level on optical transmission spectrum. Multivariate statistical analysis is performed to evaluate the classification capability of the dual-modal method. The analytical results show that the dual-modal method based on Raman spectroscopy and optical pH sensing can improve the performance of cancer classification.
Relative radiometric calibration for multispectral remote sensing imagery
NASA Astrophysics Data System (ADS)
Ren, Hsuan
2006-10-01
Our environment has been changed continuously by nature causes or human activities. In order to identify what has been changed during certain time period, we need to spend enormous resources to collect all kinds of data and analyze them. With remote sensing images, change detection has become one efficient and inexpensive technique. It has wide applications including disaster management, agriculture analysis, environmental monitoring and military reconnaissance. To detect the changes between two remote sensing images collected at different time, radiometric calibration is one of the most important processes. Under the different weather and atmosphere conditions, even the same material might be resulting distinct radiance spectrum in two images. In this case, they will be misclassified as changes and false alarm rate will also increase. To achieve absolute calibration, i.e., to convert the radiance to reflectance spectrum, the information about the atmosphere condition or ground reference materials with known reflectance spectrum is needed but rarely available. In this paper, we present relative radiometric calibration methods which transform image pair into similar atmospheric effect instead of remove it in absolutely calibration, so that the information of atmosphere condition is not required. A SPOT image pair will be used for experiment to demonstrate the performance.
Radiative and precipitation controls on root zone soil moisture spectra
Nakai, Taro; Katul, Gabriel G.; Kotani, Ayumi; ...
2014-10-20
Here, we present that temporal variability in root zone soil moisture content (w) exhibits a Lorentzian spectrum with memory dictated by a damping term when forced with white-noise precipitation. In the context of regional dimming, radiation and precipitation variability are needed to reproduce w trends prompting interest in how the w memory is altered by radiative forcing. A hierarchy of models that sequentially introduce the spectrum of precipitation, net radiation, and the effect of w on evaporative and drainage losses was used to analyze the spectrum of w at subtropical and temperate forested sites. Reproducing the w spectra at longmore » time scales necessitated simultaneous precipitation and net radiation measurements depending on site conditions. The w memory inferred from observed w spectra was 25–38 days, larger than that determined from maximum wet evapotranspiration and field capacity. Finally, the w memory can be reasonably inferred from the Lorentzian spectrum when precipitation and evapotranspiration are in phase.« less
Introductory comments on the USGS geographic applications program
NASA Technical Reports Server (NTRS)
Gerlach, A. C.
1970-01-01
The third phase of remote sensing technologies and potentials applied to the operations of the U.S. Geological Survey is introduced. Remote sensing data with multidisciplinary spatial data from traditional sources is combined with geographic theory and techniques of environmental modeling. These combined imputs are subject to four sequential activities that involve: (1) thermatic mapping of land use and environmental factors; (2) the dynamics of change detection; (3) environmental surveillance to identify sudden changes and general trends; and (4) preparation of statistical model and analytical reports. Geography program functions, products, clients, and goals are presented in graphical form, along with aircraft photo missions, geography test sites, and FY-70.
Wu, Xue; Sengupta, Kaushik
2018-03-19
This paper demonstrates a methodology to miniaturize THz spectroscopes into a single silicon chip by eliminating traditional solid-state architectural components such as complex tunable THz and optical sources, nonlinear mixing and amplifiers. The proposed method achieves this by extracting incident THz spectral signatures from the surface of an on-chip antenna itself. The information is sensed through the spectrally-sensitive 2D distribution of the impressed current surface under the THz incident field. By converting the antenna from a single-port to a massively multi-port architecture with integrated electronics and deep subwavelength sensing, THz spectral estimation is converted into a linear estimation problem. We employ rigorous regression techniques and analysis to demonstrate a single silicon chip system operating at room temperature across 0.04-0.99 THz with 10 MHz accuracy in spectrum estimation of THz tones across the entire spectrum.
Estimation After a Group Sequential Trial.
Milanzi, Elasma; Molenberghs, Geert; Alonso, Ariel; Kenward, Michael G; Tsiatis, Anastasios A; Davidian, Marie; Verbeke, Geert
2015-10-01
Group sequential trials are one important instance of studies for which the sample size is not fixed a priori but rather takes one of a finite set of pre-specified values, dependent on the observed data. Much work has been devoted to the inferential consequences of this design feature. Molenberghs et al (2012) and Milanzi et al (2012) reviewed and extended the existing literature, focusing on a collection of seemingly disparate, but related, settings, namely completely random sample sizes, group sequential studies with deterministic and random stopping rules, incomplete data, and random cluster sizes. They showed that the ordinary sample average is a viable option for estimation following a group sequential trial, for a wide class of stopping rules and for random outcomes with a distribution in the exponential family. Their results are somewhat surprising in the sense that the sample average is not optimal, and further, there does not exist an optimal, or even, unbiased linear estimator. However, the sample average is asymptotically unbiased, both conditionally upon the observed sample size as well as marginalized over it. By exploiting ignorability they showed that the sample average is the conventional maximum likelihood estimator. They also showed that a conditional maximum likelihood estimator is finite sample unbiased, but is less efficient than the sample average and has the larger mean squared error. Asymptotically, the sample average and the conditional maximum likelihood estimator are equivalent. This previous work is restricted, however, to the situation in which the the random sample size can take only two values, N = n or N = 2 n . In this paper, we consider the more practically useful setting of sample sizes in a the finite set { n 1 , n 2 , …, n L }. It is shown that the sample average is then a justifiable estimator , in the sense that it follows from joint likelihood estimation, and it is consistent and asymptotically unbiased. We also show why simulations can give the false impression of bias in the sample average when considered conditional upon the sample size. The consequence is that no corrections need to be made to estimators following sequential trials. When small-sample bias is of concern, the conditional likelihood estimator provides a relatively straightforward modification to the sample average. Finally, it is shown that classical likelihood-based standard errors and confidence intervals can be applied, obviating the need for technical corrections.
Taste Identification in Adults with Autism Spectrum Conditions
ERIC Educational Resources Information Center
Tavassoli, T.; Baron-Cohen, S.
2012-01-01
Sensory issues are widely reported in Autism Spectrum Conditions (ASC). Since taste perception is one of the least studied senses in ASC we explored taste identification in adults with ASC (12 males, 11 females) compared to control participants (14 males, 12 females). "Taste strips" were used to measure taste identification overall, as well as…
Teaching Students with Autism Spectrum Disorders: Technology, Curriculum, and Common Sense
ERIC Educational Resources Information Center
Ennis-Cole, Demetria
2012-01-01
Autism is a spectrum of disorders which comprises Asperger's Syndrome, Pervasive Developmental Delay-Not Otherwise Specified (PDD-NOS), Rett's Syndrome, Childhood Disintegrative Disorder, and Autistic Disorder. It affects 1 in 110 children (Center for Disease Control and Prevention, [CDC], 2011), and it is a complex neurological disorder that is…
Robust Sensing of Approaching Vehicles Relying on Acoustic Cues
Mizumachi, Mitsunori; Kaminuma, Atsunobu; Ono, Nobutaka; Ando, Shigeru
2014-01-01
The latest developments in automobile design have allowed them to be equipped with various sensing devices. Multiple sensors such as cameras and radar systems can be simultaneously used for active safety systems in order to overcome blind spots of individual sensors. This paper proposes a novel sensing technique for catching up and tracking an approaching vehicle relying on an acoustic cue. First, it is necessary to extract a robust spatial feature from noisy acoustical observations. In this paper, the spatio-temporal gradient method is employed for the feature extraction. Then, the spatial feature is filtered out through sequential state estimation. A particle filter is employed to cope with a highly non-linear problem. Feasibility of the proposed method has been confirmed with real acoustical observations, which are obtained by microphones outside a cruising vehicle. PMID:24887038
A Truthful Incentive Mechanism for Online Recruitment in Mobile Crowd Sensing System
Chen, Xiao; Liu, Min; Zhou, Yaqin; Li, Zhongcheng; Chen, Shuang; He, Xiangnan
2017-01-01
We investigate emerging mobile crowd sensing (MCS) systems, in which new cloud-based platforms sequentially allocate homogenous sensing jobs to dynamically-arriving users with uncertain service qualities. Given that human beings are selfish in nature, it is crucial yet challenging to design an efficient and truthful incentive mechanism to encourage users to participate. To address the challenge, we propose a novel truthful online auction mechanism that can efficiently learn to make irreversible online decisions on winner selections for new MCS systems without requiring previous knowledge of users. Moreover, we theoretically prove that our incentive possesses truthfulness, individual rationality and computational efficiency. Extensive simulation results under both real and synthetic traces demonstrate that our incentive mechanism can reduce the payment of the platform, increase the utility of the platform and social welfare. PMID:28045441
NASA Technical Reports Server (NTRS)
Munday, J. C., Jr.; Gordon, H. H.; Welch, C. S.; Williams, G.
1976-01-01
Projects for sewage outfall siting for pollution control in the lower Chesapeake Bay wetlands are reported. A dye-buoy/photogrammetry and remote sensing technique was employed to gather circulation data used in outfall siting. This technique is greatly favored over alternate methods because it is inexpensive, produces results quickly, and reveals Lagrangian current paths which are preferred in making siting decisions. Wetlands data were obtained by interpretation of color and color infrared photographic imagery from several altitudes. Historical sequences of photographs are shown that were used to document wetlands changes. Sequential infrared photography of inlet basins was employed to determine tidal prisms, which were input to mathematical models to be used by state agencies in pollution control. A direct and crucial link between remote sensing and management decisions was demonstrated in the various projects.
Zhuo, Fan; Duan, Hucai
2017-01-01
The data sequence of spectrum sensing results injected from dedicated spectrum sensor nodes (SSNs) and the data traffic from upstream secondary users (SUs) lead to unpredictable data loads in a sensor network-aided cognitive radio ad hoc network (SN-CRN). As a result, network congestion may occur at a SU acting as fusion center when the offered data load exceeds its available capacity, which degrades network performance. In this paper, we present an effective approach to mitigate congestion of bottlenecked SUs via a proposed distributed power control framework for SSNs over a rectangular grid based SN-CRN, aiming to balance resource load and avoid excessive congestion. To achieve this goal, a distributed power control framework for SSNs from interior tier (IT) and middle tier (MT) is proposed to achieve the tradeoff between channel capacity and energy consumption. In particular, we firstly devise two pricing factors by considering stability of local spectrum sensing and spectrum sensing quality for SSNs. By the aid of pricing factors, the utility function of this power control problem is formulated by jointly taking into account the revenue of power reduction and the cost of energy consumption for IT or MT SSN. By bearing in mind the utility function maximization and linear differential equation constraint of energy consumption, we further formulate the power control problem as a differential game model under a cooperation or noncooperation scenario, and rigorously obtain the optimal solutions to this game model by employing dynamic programming. Then the congestion mitigation for bottlenecked SUs is derived by alleviating the buffer load over their internal buffers. Simulation results are presented to show the effectiveness of the proposed approach under the rectangular grid based SN-CRN scenario. PMID:28914803
Passivated diamond film temperature sensing probe and measuring system employing same
Young, Jack P.; Mamantov, Gleb
1998-01-01
A high temperature sensing probe includes an optical fiber or rod having a distal end and a proximal end. The optical fiber or rod has a coating secured to the distal end thereof, wherein the coating is capable of producing a Raman spectrum when exposed to an exciting radiation source.
Yan, Qiang; Yuan, Jinying; Kang, Yan; Cai, Zhinan; Zhou, Lilin; Yin, Yingwu
2010-04-28
A porphyrin-containing copolymer has dual-sensing in response to metal ions and temperature as a novel nanosensor. Triggered by ions, the sensor exhibits full-color tunable behavior as a cationic detector and colorimeter. Responding to temperature, the sensor displays an "isothermal" thermochromic point as an ultra-sensitive thermometer.
Museum Education for Children with Disabilities: Development of the Nature Senses Traveling Trunk
ERIC Educational Resources Information Center
Cho, Hyojung; Jolley, Anna
2016-01-01
Since museums are cultural, educational, and social institutions, providing access to people with disabilities has increased in recent decades. This research examines the need and development process of the educational program, the Nature Senses Traveling Trunk, to serve children with Autism Spectrum disorders and visual impairments at the Lubbock…
Oscillations and chaos in neural networks: an exactly solvable model.
Wang, L P; Pichler, E E; Ross, J
1990-01-01
We consider a randomly diluted higher-order network with noise, consisting of McCulloch-Pitts neurons that interact by Hebbian-type connections. For this model, exact dynamical equations are derived and solved for both parallel and random sequential updating algorithms. For parallel dynamics, we find a rich spectrum of different behaviors including static retrieving and oscillatory and chaotic phenomena in different parts of the parameter space. The bifurcation parameters include first- and second-order neuronal interaction coefficients and a rescaled noise level, which represents the combined effects of the random synaptic dilution, interference between stored patterns, and additional background noise. We show that a marked difference in terms of the occurrence of oscillations or chaos exists between neural networks with parallel and random sequential dynamics. Images PMID:2251287
Analysis and application of Fourier transform spectroscopy in atmospheric remote sensing
NASA Technical Reports Server (NTRS)
Park, J. H.
1984-01-01
An analysis method for Fourier transform spectroscopy is summarized with applications to various types of distortion in atmospheric absorption spectra. This analysis method includes the fast Fourier transform method for simulating the interferometric spectrum and the nonlinear least-squares method for retrieving the information from a measured spectrum. It is shown that spectral distortions can be simulated quite well and that the correct information can be retrieved from a distorted spectrum by this analysis technique.
Behavioural and neural basis of anomalous motor learning in children with autism.
Marko, Mollie K; Crocetti, Deana; Hulst, Thomas; Donchin, Opher; Shadmehr, Reza; Mostofsky, Stewart H
2015-03-01
Autism spectrum disorder is a developmental disorder characterized by deficits in social and communication skills and repetitive and stereotyped interests and behaviours. Although not part of the diagnostic criteria, individuals with autism experience a host of motor impairments, potentially due to abnormalities in how they learn motor control throughout development. Here, we used behavioural techniques to quantify motor learning in autism spectrum disorder, and structural brain imaging to investigate the neural basis of that learning in the cerebellum. Twenty children with autism spectrum disorder and 20 typically developing control subjects, aged 8-12, made reaching movements while holding the handle of a robotic manipulandum. In random trials the reach was perturbed, resulting in errors that were sensed through vision and proprioception. The brain learned from these errors and altered the motor commands on the subsequent reach. We measured learning from error as a function of the sensory modality of that error, and found that children with autism spectrum disorder outperformed typically developing children when learning from errors that were sensed through proprioception, but underperformed typically developing children when learning from errors that were sensed through vision. Previous work had shown that this learning depends on the integrity of a region in the anterior cerebellum. Here we found that the anterior cerebellum, extending into lobule VI, and parts of lobule VIII were smaller than normal in children with autism spectrum disorder, with a volume that was predicted by the pattern of learning from visual and proprioceptive errors. We suggest that the abnormal patterns of motor learning in children with autism spectrum disorder, showing an increased sensitivity to proprioceptive error and a decreased sensitivity to visual error, may be associated with abnormalities in the cerebellum. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Di Fulvio, A.; Ciolini, R.; Mirzajani, N.; Romei, C.; d'Errico, F.; Bedogni, R.; Esposito, J.; Zafiropoulos, D.; Colautti, P.
2013-07-01
In the framework of TRASCO-BNCT project, a Bubble Interactive Neutron Spectrometer (BINS) device was applied to the characterization of the angle-and energy-differential neutron spectra generated by the 9Be(p,xn)reaction. The BINS spectrometer uses two superheated emulsion detectors, sequentially operated at different temperatures and thus provides a series of six sharp threshold responses, covering the 0.1-10 MeV neutron energy range. Spectrum unfolding of the data was performed by means of MAXED code. The obtained angle, energy-differential spectra were compared with those measured with a Bonner sphere spectrometer, a silicon telescope spectrometer and literature data.
Mercedes Berterretche; Andrew T. Hudak; Warren B. Cohen; Thomas K. Maiersperger; Stith T. Gower; Jennifer Dungan
2005-01-01
This study compared aspatial and spatial methods of using remote sensing and field data to predict maximum growing season leaf area index (LAI) maps in a boreal forest in Manitoba, Canada. The methods tested were orthogonal regression analysis (reduced major axis, RMA) and two geostatistical techniques: kriging with an external drift (KED) and sequential Gaussian...
Kim, Byoungjip; Kang, Seungwoo; Ha, Jin-Young; Song, Junehwa
2015-07-16
In this paper, we introduce a novel smartphone framework called VisitSense that automatically detects and predicts a smartphone user's place visits from ambient radio to enable behavioral targeting for mobile ads in large shopping malls. VisitSense enables mobile app developers to adopt visit-pattern-aware mobile advertising for shopping mall visitors in their apps. It also benefits mobile users by allowing them to receive highly relevant mobile ads that are aware of their place visit patterns in shopping malls. To achieve the goal, VisitSense employs accurate visit detection and prediction methods. For accurate visit detection, we develop a change-based detection method to take into consideration the stability change of ambient radio and the mobility change of users. It performs well in large shopping malls where ambient radio is quite noisy and causes existing algorithms to easily fail. In addition, we proposed a causality-based visit prediction model to capture the causality in the sequential visit patterns for effective prediction. We have developed a VisitSense prototype system, and a visit-pattern-aware mobile advertising application that is based on it. Furthermore, we deploy the system in the COEX Mall, one of the largest shopping malls in Korea, and conduct diverse experiments to show the effectiveness of VisitSense.
Mass spectrometry based on a coupled Cooper-pair box and nanomechanical resonator system
NASA Astrophysics Data System (ADS)
Jiang, Cheng; Chen, Bin; Li, Jin-Jin; Zhu, Ka-Di
2011-10-01
Nanomechanical resonators (NRs) with very high frequency have a great potential for mass sensing with unprecedented sensitivity. In this study, we propose a scheme for mass sensing based on the NR capacitively coupled to a Cooper-pair box (CPB) driven by two microwave currents. The accreted mass landing on the resonator can be measured conveniently by tracking the resonance frequency shifts because of mass changes in the signal absorption spectrum. We demonstrate that frequency shifts induced by adsorption of ten 1587 bp DNA molecules can be well resolved in the absorption spectrum. Integration with the CPB enables capacitive readout of the mechanical resonance directly on the chip.
Larocque, Hugo; Lu, Ping; Bao, Xiaoyi
2016-04-01
Phase-shift detection in a fast-Fourier-transform (FFT)-based spectrum analysis technique for temperature sensing using a tapered fiber microknot resonator is proposed and demonstrated. Multiple transmission peaks in the FFT spectrum of the device were identified as optical modes having completed different amounts of round trips within the ring structure. Temperature variation induced phase shifts for each set of peaks were characterized, and experimental results show that different peaks have distinct temperature sensitivities reaching values up to -0.542 rad/°C, which is about 10 times greater than that of a regular adiabatic taper Mach-Zehnder interferometer when using similar phase-tracking schemes.
Sequential Modular Position and Momentum Measurements of a Trapped Ion Mechanical Oscillator
NASA Astrophysics Data System (ADS)
Flühmann, C.; Negnevitsky, V.; Marinelli, M.; Home, J. P.
2018-04-01
The noncommutativity of position and momentum observables is a hallmark feature of quantum physics. However, this incompatibility does not extend to observables that are periodic in these base variables. Such modular-variable observables have been suggested as tools for fault-tolerant quantum computing and enhanced quantum sensing. Here, we implement sequential measurements of modular variables in the oscillatory motion of a single trapped ion, using state-dependent displacements and a heralded nondestructive readout. We investigate the commutative nature of modular variable observables by demonstrating no-signaling in time between successive measurements, using a variety of input states. Employing a different periodicity, we observe signaling in time. This also requires wave-packet overlap, resulting in quantum interference that we enhance using squeezed input states. The sequential measurements allow us to extract two-time correlators for modular variables, which we use to violate a Leggett-Garg inequality. Signaling in time and Leggett-Garg inequalities serve as efficient quantum witnesses, which we probe here with a mechanical oscillator, a system that has a natural crossover from the quantum to the classical regime.
A sequential multi-target Mps1 phosphorylation cascade promotes spindle checkpoint signaling.
Ji, Zhejian; Gao, Haishan; Jia, Luying; Li, Bing; Yu, Hongtao
2017-01-10
The master spindle checkpoint kinase Mps1 senses kinetochore-microtubule attachment and promotes checkpoint signaling to ensure accurate chromosome segregation. The kinetochore scaffold Knl1, when phosphorylated by Mps1, recruits checkpoint complexes Bub1-Bub3 and BubR1-Bub3 to unattached kinetochores. Active checkpoint signaling ultimately enhances the assembly of the mitotic checkpoint complex (MCC) consisting of BubR1-Bub3, Mad2, and Cdc20, which inhibits the anaphase-promoting complex or cyclosome bound to Cdc20 (APC/C Cdc20 ) to delay anaphase onset. Using in vitro reconstitution, we show that Mps1 promotes APC/C inhibition by MCC components through phosphorylating Bub1 and Mad1. Phosphorylated Bub1 binds to Mad1-Mad2. Phosphorylated Mad1 directly interacts with Cdc20. Mutations of Mps1 phosphorylation sites in Bub1 or Mad1 abrogate the spindle checkpoint in human cells. Therefore, Mps1 promotes checkpoint activation through sequentially phosphorylating Knl1, Bub1, and Mad1. This sequential multi-target phosphorylation cascade makes the checkpoint highly responsive to Mps1 and to kinetochore-microtubule attachment.
ERIC Educational Resources Information Center
Iadarola, Suzannah; Levato, Lynne; Harrison, Bryan; Smith, Tristram; Lecavalier, Luc; Johnson, Cynthia; Swiezy, Naomi; Bearss, Karen; Scahill, Lawrence
2018-01-01
We report on parent outcomes from a randomized clinical trial of parent training (PT) versus psychoeducation (PEP) in 180 children with autism spectrum disorder (ASD) and disruptive behavior. We compare the impact of PT and PEP on parent outcomes: Parenting Stress Index (PSI), Parent Sense of Competence (PSOC), and Caregiver Strain Questionnaire…
Travel Advice for Higher Functioning Individuals on the Autism Spectrum
ERIC Educational Resources Information Center
VanBergeijk, Ernst
2009-01-01
While travel training on local mass transit makes intuitive sense, the thought of larger scale travel training does not occur to most people. Possible benefits that could be gained from long distance or more involved traveling with individuals on the autism spectrum are vast. In this article, the author presents 11 essential skills that are a…
Olfactory Detection Thresholds and Adaptation in Adults with Autism Spectrum Condition
ERIC Educational Resources Information Center
Tavassoli, T.; Baron-Cohen, S.
2012-01-01
Sensory issues have been widely reported in Autism Spectrum Conditions (ASC). Since olfaction is one of the least investigated senses in ASC, the current studies explore olfactory detection thresholds and adaptation to olfactory stimuli in adults with ASC. 80 participants took part, 38 (18 females, 20 males) with ASC and 42 control participants…
Li, Bo; Li, Hao; Dong, Li; Huang, Guofu
2017-11-01
In this study, we sought to investigate the feasibility of fast carotid artery MR angiography (MRA) by combining three-dimensional time-of-flight (3D TOF) with compressed sensing method (CS-3D TOF). A pseudo-sequential phase encoding order was developed for CS-3D TOF to generate hyper-intense vessel and suppress background tissues in under-sampled 3D k-space. Seven healthy volunteers and one patient with carotid artery stenosis were recruited for this study. Five sequential CS-3D TOF scans were implemented at 1, 2, 3, 4 and 5-fold acceleration factors for carotid artery MRA. Blood signal-to-tissue ratio (BTR) values for fully-sampled and under-sampled acquisitions were calculated and compared in seven subjects. Blood area (BA) was measured and compared between fully sampled acquisition and each under-sampled one. There were no significant differences between the fully-sampled dataset and each under-sampled in BTR comparisons (P>0.05 for all comparisons). The carotid vessel BAs measured from the images of CS-3D TOF sequences with 2, 3, 4 and 5-fold acceleration scans were all highly correlated with that of the fully-sampled acquisition. The contrast between blood vessels and background tissues of the images at 2 to 5-fold acceleration is comparable to that of fully sampled images. The images at 2× to 5× exhibit the comparable lumen definition to the corresponding images at 1×. By combining the pseudo-sequential phase encoding order, CS reconstruction, and 3D TOF sequence, this technique provides excellent visualizations for carotid vessel and calcifications in a short scan time. It has the potential to be integrated into current multiple blood contrast imaging protocol. Copyright © 2017. Published by Elsevier Inc.
From planets to crops and back: Remote sensing makes sense
NASA Astrophysics Data System (ADS)
Mustard, John F.
2017-04-01
Remotely sensed data and the instruments that acquire them are core parts of Earth and planetary observation systems. They are used to quantify the Earth's interconnected systems, and remote sensing is the only way to get a daily, or more frequent, snapshot of the status of the Earth. It really is the Earth's stethoscope. In a similar manner remote sensing is the rock hammer of the planetary scientist and the only way comprehensive data sets can be acquired. To risk offending many remotely sensed data acquired across the electromagnetic spectrum, it is the tricorder to explore known and unknown planets. Arriving where we are today in the use of remotely sensed data in the solar system has been a continually evolving synergy between Earth observation, planetary exploration, and fundamental laboratory work.
Dual-modal cancer detection based on optical pH sensing and Raman spectroscopy.
Kim, Soogeun; Lee, Seung Ho; Min, Sun Young; Byun, Kyung Min; Lee, Soo Yeol
2017-10-01
A dual-modal approach using Raman spectroscopy and optical pH sensing was investigated to discriminate between normal and cancerous tissues. Raman spectroscopy has demonstrated the potential for in vivo cancer detection. However, Raman spectroscopy has suffered from strong fluorescence background of biological samples and subtle spectral differences between normal and disease tissues. To overcome those issues, pH sensing is adopted to Raman spectroscopy as a dual-modal approach. Based on the fact that the pH level in cancerous tissues is lower than that in normal tissues due to insufficient vasculature formation, the dual-modal approach combining the chemical information of Raman spectrum and the metabolic information of pH level can improve the specificity of cancer diagnosis. From human breast tissue samples, Raman spectra and pH levels are measured using fiber-optic-based Raman and pH probes, respectively. The pH sensing is based on the dependence of pH level on optical transmission spectrum. Multivariate statistical analysis is performed to evaluate the classification capability of the dual-modal method. The analytical results show that the dual-modal method based on Raman spectroscopy and optical pH sensing can improve the performance of cancer classification. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Strunecka, Anna; Blaylock, Russell L.; Patocka, Jiri; Strunecky, Otakar
2018-01-01
Our review suggests that most autism spectrum disorder (ASD) risk factors are connected, either directly or indirectly, to immunoexcitotoxicity. Chronic brain inflammation is known to enhance the sensitivity of glutamate receptors and interfere with glutamate removal from the extraneuronal space, where it can trigger excitotoxicity over a prolonged period. Neuroscience studies have clearly shown that sequential systemic immune stimulation can activate the brain's immune system, microglia, and astrocytes, and that with initial immune stimulation, there occurs CNS microglial priming. Children are exposed to such sequential immune stimulation via a growing number of environmental excitotoxins, vaccines, and persistent viral infections. We demonstrate that fluoride and aluminum (Al3+) can exacerbate the pathological problems by worsening excitotoxicity and inflammation. While Al3+ appears among the key suspicious factors of ASD, fluoride is rarely recognized as a causative culprit. A long-term burden of these ubiquitous toxins has several health effects with a striking resemblance to the symptoms of ASD. In addition, their synergistic action in molecules of aluminofluoride complexes can affect cell signaling, neurodevelopment, and CNS functions at several times lower concentrations than either Al3+ or fluoride acting alone. Our review opens the door to a number of new treatment modes that naturally reduce excitotoxicity and microglial priming. PMID:29721353
NASA Astrophysics Data System (ADS)
Shandarov, S. M.; Dyu, V. G.; Kisteneva, M. G.; Khudyakova, E. S.; Smirnov, S. V.; Akrestina, A. S.; Kargin, Yu F.
2017-02-01
Modifications of the spectral dependences of the optical absorption induced in the Bi12TiO20:Al crystal as a result of sequential exposition to cw laser radiation first with the wavelength λ g = 532 nm and then with the longer wavelength λ l,n = 588, 633, 655, 658, 663, 700, 780, 871, or 1064 nm are investigated. We revealed that after the short-wavelength exposition to radiation with λg = 532 nm, the optical absorption in the crystal increases, and in the range 470-1000 nm, yields the spectrum whose form is independent of a prehistory. The subsequent exposition to longer-wavelength radiation leads to bleaching of the crystal in the examined spectral range. A maximum diminishing of the optical absorption in the crystal is observed upon exposure to radiation with the wavelength λ l,5 = 663 nm. To describe the experimentally observed reversible changes in the optical absorption spectrum in the Bi12TiO20:Al we use the impurity absorption model that takes into account the photoinduced transitions between two metastable states of a deep defect center leading to the change of its position in the crystal lattice under conditions of strong lattice relaxation.
Yoda, Satoshi; Lin, Jessica J; Lawrence, Michael S; Burke, Benjamin J; Friboulet, Luc; Langenbucher, Adam; Dardaei, Leila; Prutisto-Chang, Kylie; Dagogo-Jack, Ibiayi; Timofeevski, Sergei; Hubbeling, Harper; Gainor, Justin F; Ferris, Lorin A; Riley, Amanda K; Kattermann, Krystina E; Timonina, Daria; Heist, Rebecca S; Iafrate, A John; Benes, Cyril H; Lennerz, Jochen K; Mino-Kenudson, Mari; Engelman, Jeffrey A; Johnson, Ted W; Hata, Aaron N; Shaw, Alice T
2018-06-01
The cornerstone of treatment for advanced ALK-positive lung cancer is sequential therapy with increasingly potent and selective ALK inhibitors. The third-generation ALK inhibitor lorlatinib has demonstrated clinical activity in patients who failed previous ALK inhibitors. To define the spectrum of ALK mutations that confer lorlatinib resistance, we performed accelerated mutagenesis screening of Ba/F3 cells expressing EML4-ALK. Under comparable conditions, N -ethyl- N -nitrosourea (ENU) mutagenesis generated numerous crizotinib-resistant but no lorlatinib-resistant clones harboring single ALK mutations. In similar screens with EML4-ALK containing single ALK resistance mutations, numerous lorlatinib-resistant clones emerged harboring compound ALK mutations. To determine the clinical relevance of these mutations, we analyzed repeat biopsies from lorlatinib-resistant patients. Seven of 20 samples (35%) harbored compound ALK mutations, including two identified in the ENU screen. Whole-exome sequencing in three cases confirmed the stepwise accumulation of ALK mutations during sequential treatment. These results suggest that sequential ALK inhibitors can foster the emergence of compound ALK mutations, identification of which is critical to informing drug design and developing effective therapeutic strategies. Significance: Treatment with sequential first-, second-, and third-generation ALK inhibitors can select for compound ALK mutations that confer high-level resistance to ALK-targeted therapies. A more efficacious long-term strategy may be up-front treatment with a third-generation ALK inhibitor to prevent the emergence of on-target resistance. Cancer Discov; 8(6); 714-29. ©2018 AACR. This article is highlighted in the In This Issue feature, p. 663 . ©2018 American Association for Cancer Research.
Linear array optical edge sensor
NASA Technical Reports Server (NTRS)
Bejczy, Antal K. (Inventor); Primus, Howard C. (Inventor)
1987-01-01
A series of independent parallel pairs of light emitting and detecting diodes for a linear pixel array, which is laterally positioned over an edge-like discontinuity in a workpiece to be scanned, is disclosed. These independent pairs of light emitters and detectors sense along intersecting pairs of separate optical axes. A discontinuity, such as an edge in the sensed workpiece, reflects a detectable difference in the amount of light from that discontinuity in comparison to the amount of light that is reflected on either side of the discontinuity. A sequentially sychronized clamping and sampling circuit detects that difference as an electrical signal which is recovered by circuitry that exhibits an improved signal-to-noise capability for the system.
Photonic bandgap narrowing in conical hollow core Bragg fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozturk, Fahri Emre; Yildirim, Adem; Kanik, Mehmet
2014-08-18
We report the photonic bandgap engineering of Bragg fibers by controlling the thickness profile of the fiber during the thermal drawing. Conical hollow core Bragg fibers were produced by thermal drawing under a rapidly alternating load, which was applied by introducing steep changes to the fiber drawing speed. In conventional cylindrical Bragg fibers, light is guided by omnidirectional reflections from interior dielectric mirrors with a single quarter wave stack period. In conical fibers, the diameter reduction introduced a gradient of the quarter wave stack period along the length of the fiber. Therefore, the light guided within the fiber encountered slightlymore » smaller dielectric layer thicknesses at each reflection, resulting in a progressive blueshift of the reflectance spectrum. As the reflectance spectrum shifts, longer wavelengths of the initial bandgap cease to be omnidirectionally reflected and exit through the cladding, which narrows the photonic bandgap. A narrow transmission bandwidth is particularly desirable in hollow waveguide mid-infrared sensing schemes, where broadband light is coupled to the fiber and the analyte vapor is introduced into the hollow core to measure infrared absorption. We carried out sensing simulations using the absorption spectrum of isopropyl alcohol vapor to demonstrate the importance of narrow bandgap fibers in chemical sensing applications.« less
Thigmo Responses: The Fungal Sense of Touch.
Almeida, Mariana Cruz; Brand, Alexandra C
2017-04-01
The growth and development of most fungi take place on a two-dimensional surface or within a three-dimensional matrix. The fungal sense of touch is therefore critical for fungi in the interpretation of their environment and often signals the switch to a new developmental state. Contact sensing, or thigmo-based responses, include thigmo differentiation, such as the induction of invasion structures by plant pathogens in response to topography; thigmonasty, where contact with a motile prey rapidly triggers its capture; and thigmotropism, where the direction of hyphal growth is guided by physical features in the environment. Like plants and some bacteria, fungi grow as walled cells. Despite the well-demonstrated importance of thigmo responses in numerous stages of fungal growth and development, it is not known how fungal cells sense contact through the relatively rigid structure of the cell wall. However, while sensing mechanisms at the molecular level are not entirely understood, the downstream signaling pathways that are activated by contact sensing are being elucidated. In the majority of cases, the response to contact is complemented by chemical cues and both are required, either sequentially or simultaneously, to elicit normal developmental responses. The importance of a sense of touch in the lifestyles and development of diverse fungi is highlighted in this review, and the candidate molecular mechanisms that may be involved in fungal contact sensing are discussed.
Selective and reusable iron(II)-based molecular sensor for the vapor-phase detection of alcohols.
Naik, Anil D; Robeyns, Koen; Meunier, Christophe F; Léonard, Alexandre F; Rotaru, Aurelian; Tinant, Bernard; Filinchuk, Yaroslav; Su, Bao Lian; Garcia, Yann
2014-02-03
A mononuclear iron(II) neutral complex (1) is screened for sensing abilities for a wide spectrum of chemicals and to evaluate the response function toward physical perturbation like temperature and mechanical stress. Interestingly, 1 precisely detects methanol among an alcohol series. The sensing process is visually detectable, fatigue-resistant, highly selective, and reusable. The sensing ability is attributed to molecular sieving and subsequent spin-state change of iron centers, after a crystal-to-crystal transformation.
NASA Astrophysics Data System (ADS)
Vorndran, Shelby D.; Wu, Yuechen; Ayala, Silvana; Kostuk, Raymond K.
2015-09-01
Concentrating and spectrum splitting photovoltaic (PV) modules have a limited acceptance angle and thus suffer from optical loss under off-axis illumination. This loss manifests itself as a substantial reduction in energy yield in locations where a significant portion of insulation is diffuse. In this work, a spectrum splitting PV system is designed to efficiently collect and convert light in a range of illumination conditions. The system uses a holographic lens to concentrate shortwavelength light onto a smaller, more expensive indium gallium phosphide (InGaP) PV cell. The high efficiency PV cell near the axis is surrounded with silicon (Si), a less expensive material that collects a broader portion of the solar spectrum. Under direct illumination, the device achieves increased conversion efficiency from spectrum splitting. Under diffuse illumination, the device collects light with efficiency comparable to a flat-panel Si module. Design of the holographic lens is discussed. Optical efficiency and power output of the module under a range of illumination conditions from direct to diffuse are simulated with non-sequential raytracing software. Using direct and diffuse Typical Metrological Year (TMY3) irradiance measurements, annual energy yield of the module is calculated for several installation sites. Energy yield of the spectrum splitting module is compared to that of a full flat-panel Si reference module.
Normal-inverse bimodule operation Hadamard transform ion mobility spectrometry.
Hong, Yan; Huang, Chaoqun; Liu, Sheng; Xia, Lei; Shen, Chengyin; Chu, Yannan
2018-10-31
In order to suppress or eliminate the spurious peaks and improve signal-to-noise ratio (SNR) of Hadamard transform ion mobility spectrometry (HT-IMS), a normal-inverse bimodule operation Hadamard transform - ion mobility spectrometry (NIBOHT-IMS) technique was developed. In this novel technique, a normal and inverse pseudo random binary sequence (PRBS) was produced in sequential order by an ion gate controller and utilized to control the ion gate of IMS, and then the normal HT-IMS mobility spectrum and the inverse HT-IMS mobility spectrum were obtained. A NIBOHT-IMS mobility spectrum was gained by subtracting the inverse HT-IMS mobility spectrum from normal HT-IMS mobility spectrum. Experimental results demonstrate that the NIBOHT-IMS technique can significantly suppress or eliminate the spurious peaks, and enhance the SNR by measuring the reactant ions. Furthermore, the gas CHCl 3 and CH 2 Br 2 were measured for evaluating the capability of detecting real sample. The results show that the NIBOHT-IMS technique is able to eliminate the spurious peaks and improve the SNR notably not only for the detection of larger ion signals but also for the detection of small ion signals. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nettesheim, D.G.; Klevit, R.E.; Drobny, G.
1989-02-21
The authors report the sequential assignment of resonances to specific residues in the proton nuclear magnetic resonance spectrum of the variant-3 neurotoxin from the scorpion Centruroides sculpturatus Ewing (range southwestern U.S.A.). A combination of two-dimensional NMR experiments such as 2D-COSY, 2D-NOESY, and single- and double-RELAY coherence transfer spectroscopy has been employed on samples of the protein dissolved in D{sub 2}O and in H{sub 2}O for assignment purposes. These studies provide a basis for the determination of the solution-phase conformation of this protein and for undertaking detailed structure-function studies of these neurotoxins that modulate the flow of sodium current by bindingmore » to the sodium channels of excitable membranes.« less
High Information Capacity Quantum Imaging
2014-09-19
single-pixel camera [41, 75]. An object is imaged onto a Digital Micromirror device ( DMD ), a 2D binary array of individually-addressable mirrors that...reflect light either to a single detector or a dump. Rows of the sensing matrix A consist of random, binary patterns placed sequentially on the DMD ...The single-pixel camera concept naturally adapts to imaging correlations by adding a second detector. Consider placing separate DMDs in the near-field
River velocities from sequential multispectral remote sensing images
NASA Astrophysics Data System (ADS)
Chen, Wei; Mied, Richard P.
2013-06-01
We address the problem of extracting surface velocities from a pair of multispectral remote sensing images over rivers using a new nonlinear multiple-tracer form of the global optimal solution (GOS). The derived velocity field is a valid solution across the image domain to the nonlinear system of equations obtained by minimizing a cost function inferred from the conservation constraint equations for multiple tracers. This is done by deriving an iteration equation for the velocity, based on the multiple-tracer displaced frame difference equations, and a local approximation to the velocity field. The number of velocity equations is greater than the number of velocity components, and thus overly constrain the solution. The iterative technique uses Gauss-Newton and Levenberg-Marquardt methods and our own algorithm of the progressive relaxation of the over-constraint. We demonstrate the nonlinear multiple-tracer GOS technique with sequential multispectral Landsat and ASTER images over a portion of the Potomac River in MD/VA, and derive a dense field of accurate velocity vectors. We compare the GOS river velocities with those from over 12 years of data at four NOAA reference stations, and find good agreement. We discuss how to find the appropriate spatial and temporal resolutions to allow optimization of the technique for specific rivers.
Lee, Zhongping; Shang, Shaoling; Lin, Gong; Chen, Jun; Doxaran, David
2016-03-01
We evaluated three key components in modeling hyperspectral remote-sensing reflectance in the visible to shortwave-infrared (Vis-SWIR) domain of high-sediment-load (HSL) waters, which are the relationship between remote-sensing reflectance (R(rs)) and inherent optical properties (IOPs), the absorption coefficient spectrum of pure water (a(w)) in the IR-SWIR region, and the spectral variation of sediment absorption coefficient (a(sed)). Results from this study indicate that it is necessary to use a more generalized R(rs)-IOP model to describe the spectral variation of R(rs) of HSL waters from Vis to SWIR; otherwise it may result in a spectrally distorted R(rs) spectrum if a constant model parameter is used. For hyperspectral a(w) in the IR-SWIR domain, the values reported in Kou et al. (1993) provided a much better match with the spectral variation of R(rs) in this spectral range compared to that of Segelstein (1981). For a(sed) spectrum, an empirical a(sed) spectral shape derived from sample measurements is found working much better than the traditional exponential-decay function of wavelength in modeling the spectral variation of R(rs) in the visible domain. These results would improve our understanding of the spectral signatures of R(rs) of HSL waters in the Vis-SWIR domain and subsequently improve the retrieval of IOPs from ocean color remote sensing, which could further help the estimation of sediment loading of such waters. Limitations in estimating chlorophyll concentration in such waters are also discussed.
ERIC Educational Resources Information Center
Robinson, Sally; Howlin, Patricia; Russell, Ailsa
2017-01-01
The relationship between dissociable components of autobiographical memory (e.g. semantic personality traits and episodic memory retrieval) and other cognitive skills that are proposed to enable one to develop a sense of self (e.g. introspection) have not previously been explored for children with autism spectrum disorder. This study compared…
ERIC Educational Resources Information Center
Santos, Maria Isabel; Breda, Ana; Almeida, Ana Margarida
2015-01-01
There is clear evidence that in typically developing children reasoning and sense-making are essential in all mathematical learning and understanding processes. In children with autism spectrum disorders (ASD), however, these become much more significant, considering their importance to successful independent living. This paper presents a…
On Searching Available Channels with Asynchronous MAC-Layer Spectrum Sensing
NASA Astrophysics Data System (ADS)
Jiang, Chunxiao; Ma, Xin; Chen, Canfeng; Ma, Jian; Ren, Yong
Dynamic spectrum access has become a focal issue recently, in which identifying the available spectrum plays a rather important role. Lots of work has been done concerning secondary user (SU) synchronously accessing primary user's (PU's) network. However, on one hand, SU may have no idea about PU's communication protocols; on the other, it is possible that communications among PU are not based on synchronous scheme at all. In order to address such problems, this paper advances a strategy for SU to search available spectrums with asynchronous MAC-layer sensing. With this method, SUs need not know the communication mechanisms in PU's network when dynamically accessing. We will focus on four aspects: 1) strategy for searching available channels; 2) vacating strategy when PUs come back; 3) estimation of channel parameters; 4) impact of SUs' interference on PU's data rate. The simulations show that our search strategy not only can achieve nearly 50% less interference probability than equal allocation of total search time, but also well adapts to time-varying channels. Moreover, access by our strategies can attain 150% more access time than random access. The moment matching estimator shows good performance in estimating and tracing time-varying channels.
Photoluminescent properties of complex metal oxide nanopowders for gas sensing
NASA Astrophysics Data System (ADS)
Bovhyra, R. V.; Mudry, S. I.; Popovych, D. I.; Savka, S. S.; Serednytski, A. S.; Venhryn, Yu. I.
2018-03-01
This work carried out research on the features of photoluminescence of the mixed and complex metal oxide nanopowders (ZnO/TiO2, ZnO/SnO2, Zn2SiO4) in vacuum and gaseous ambient. The nanopowders were obtained using pulsed laser reactive technology. The synthesized nanoparticles were characterized by X-ray diffractometry, energy-dispersive X-ray analysis, and scanning and transmission electron microscopy analysis for their sizes, shapes and collocation. The influence of gas environment on the photoluminescence intensity was investigated. A change of ambient gas composition leads to a rather significant change in the intensity of the photoluminescence spectrum and its deformation. The most significant changes in the photoluminescent spectrum were observed for mixed ZnO/TiO2 nanopowders. This obviously is the result of a redistribution of existing centers of luminescence and the appearance of new adsorption centers of luminescence on the surface of nanopowders. The investigated nanopowders can be effectively used as sensing materials for the construction of the multi-component photoluminescent sensing matrix.
CSP - Hyperspectral Imaging and Sounding of the Environment Meeting Scholarship Fund
2017-05-09
performance via adaptation to the environment. The meeting has also contributed to the focus area of Electromagnetic Maneuver Warfare through disseminating the...latest information about advanced sensing techniques and understanding the electromagnetic environment through sensing. Additional sessions on...across the electromagnetic spectrum. The attendees at this event from the Naval Research Enterprise were Dr. Michael Yetzbacher, as a Program Co
Using hyperspectral remote sensing for land cover classification
NASA Astrophysics Data System (ADS)
Zhang, Wendy W.; Sriharan, Shobha
2005-01-01
This project used hyperspectral data set to classify land cover using remote sensing techniques. Many different earth-sensing satellites, with diverse sensors mounted on sophisticated platforms, are currently in earth orbit. These sensors are designed to cover a wide range of the electromagnetic spectrum and are generating enormous amounts of data that must be processed, stored, and made available to the user community. The Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) collects data in 224 bands that are approximately 9.6 nm wide in contiguous bands between 0.40 and 2.45 mm. Hyperspectral sensors acquire images in many, very narrow, contiguous spectral bands throughout the visible, near-IR, and thermal IR portions of the spectrum. The unsupervised image classification procedure automatically categorizes the pixels in an image into land cover classes or themes. Experiments on using hyperspectral remote sensing for land cover classification were conducted during the 2003 and 2004 NASA Summer Faculty Fellowship Program at Stennis Space Center. Research Systems Inc.'s (RSI) ENVI software package was used in this application framework. In this application, emphasis was placed on: (1) Spectrally oriented classification procedures for land cover mapping, particularly, the supervised surface classification using AVIRIS data; and (2) Identifying data endmembers.
Synergistic advances in diagnostic and therapeutic medical ultrasound
NASA Astrophysics Data System (ADS)
Lizzi, Frederic L.
2003-04-01
Significant advances are more fully exploiting ultrasound's potential for noninvasive diagnosis and treatment. Therapeutic systems employ intense focused beams to thermally kill cancer cells in, e.g., prostate; to stop bleeding; and to treat specific diseases (e.g., glaucoma). Diagnostic ultrasound techniques can quantitatively image an increasingly broad spectrum of physical tissue attributes. An exciting aspect of this progress is the emerging synergy between these modalities. Advanced diagnostic techniques may contribute at several stages in therapy. For example, treatment planning for small ocular tumors uses 50-MHz, 3-D ultrasonic images with 0.05-mm resolution. Thermal simulations employ these images to evaluate desired and undesired effects using exposure stategies with specially designed treatment beams. Therapy beam positioning can use diagnostic elastography to sense tissue motion induced by radiation pressure from high-intensity treatment beams. Therapy monitoring can sense lesion formation using elastography motion sensing (to detect the increased stiffness in lesions); harmonic imaging (to sense altered nonlinear properties); and spectrum analysis images (depicting changes in the sizes, concentration, and configuration of sub-resolution structures.) Experience from these applications will greatly expand the knowledge of acoustic phenomena in living tissues and should lead to further advances in medical ultrasound.
A soft-hard combination-based cooperative spectrum sensing scheme for cognitive radio networks.
Do, Nhu Tri; An, Beongku
2015-02-13
In this paper we propose a soft-hard combination scheme, called SHC scheme, for cooperative spectrum sensing in cognitive radio networks. The SHC scheme deploys a cluster based network in which Likelihood Ratio Test (LRT)-based soft combination is applied at each cluster, and weighted decision fusion rule-based hard combination is utilized at the fusion center. The novelties of the SHC scheme are as follows: the structure of the SHC scheme reduces the complexity of cooperative detection which is an inherent limitation of soft combination schemes. By using the LRT, we can detect primary signals in a low signal-to-noise ratio regime (around an average of -15 dB). In addition, the computational complexity of the LRT is reduced since we derive the closed-form expression of the probability density function of LRT value. The SHC scheme also takes into account the different effects of large scale fading on different users in the wide area network. The simulation results show that the SHC scheme not only provides the better sensing performance compared to the conventional hard combination schemes, but also reduces sensing overhead in terms of reporting time compared to the conventional soft combination scheme using the LRT.
Novel Broad Spectrum Inhibitors Targeting the Flavivirus Methyltransferase
Liu, Binbin; Banavali, Nilesh K.; Jones, Susan A.; Zhang, Jing; Li, Zhong; Kramer, Laura D.; Li, Hongmin
2015-01-01
The flavivirus methyltransferase (MTase) is an essential enzyme that sequentially methylates the N7 and 2’-O positions of the viral RNA cap, using S-adenosyl-L-methionine (SAM) as a methyl donor. We report here that small molecule compounds, which putatively bind to the SAM-binding site of flavivirus MTase and inhibit its function, were identified by using virtual screening. In vitro methylation experiments demonstrated significant MTase inhibition by 13 of these compounds, with the most potent compound displaying sub-micromolar inhibitory activity. The most active compounds showed broad spectrum activity against the MTase proteins of multiple flaviviruses. Two of these compounds also exhibited low cytotoxicity and effectively inhibited viral replication in cell-based assays, providing further structural insight into flavivirus MTase inhibition. PMID:26098995
Two Interrogated FBG Spectral Linewidth for Strain Sensing through Correlation.
Hsu, Shih-Hsiang; Chuang, Kuo-Wei; Chen, Ci-Syu; Lin, Ching-Yu; Chang, Che-Chang
2017-12-07
The spectral linewidth from two cross-correlated fiber Bragg gratings (FBGs) are interrogated and characterized using a delayed self-homodyne method for fiber strain sensing. This approach employs a common higher frequency resolution instead of wavelength. A sensitivity and resolution of 166 MHz/με and 50 nε were demonstrated from 4 GHz spectral linewidth characterization on the electric spectrum analyzer. A 10 nε higher resolution can be expected through random noise analyses when the spectral linewidth from two FBG correlations is reduced to 1 GHz. Moreover, the FBG spectrum is broadened during strain and experimentally shows a 0.44 pm/με sensitivity, which is mainly caused by the photo elastic effect from the fiber grating period stretch.
Mass sensing based on a circuit cavity electromechanical system
NASA Astrophysics Data System (ADS)
Jiang, Cheng; Chen, Bin; Li, Jin-Jin; Zhu, Ka-Di
2011-10-01
We present a scheme for mass sensing based on a circuit cavity electromechanical system where a free-standing, flexible aluminium membrane is capacitively coupled to a superconducting microwave cavity. Integration with the microwave cavity enables capacitive readout of the mechanical resonance directly on the chip. A microwave pump field and a second probe field are simultaneously applied to the cavity. The accreted mass landing on the membrane can be measured conveniently by tracking the mechanical resonance frequency shifts due to mass changes in the probe transmission spectrum. The mass responsivity for the membrane is 0.72 Hz/ag and we demonstrate that frequency shifts induced by adsorption of one hundred 1587 bp DNA molecules can be well resolved in the probe transmission spectrum.
Spectrum sensing based on cumulative power spectral density
NASA Astrophysics Data System (ADS)
Nasser, A.; Mansour, A.; Yao, K. C.; Abdallah, H.; Charara, H.
2017-12-01
This paper presents new spectrum sensing algorithms based on the cumulative power spectral density (CPSD). The proposed detectors examine the CPSD of the received signal to make a decision on the absence/presence of the primary user (PU) signal. Those detectors require the whiteness of the noise in the band of interest. The false alarm and detection probabilities are derived analytically and simulated under Gaussian and Rayleigh fading channels. Our proposed detectors present better performance than the energy (ED) or the cyclostationary detectors (CSD). Moreover, in the presence of noise uncertainty (NU), they are shown to provide more robustness than ED, with less performance loss. In order to neglect the NU, we modified our algorithms to be independent from the noise variance.
Phase-based Bragg intragrating distributed strain sensor
NASA Astrophysics Data System (ADS)
Huang, S.; Ohn, M. M.; Measures, R. M.
1996-03-01
A strain-distribution sensing technique based on the measurement of the phase spectrum of the reflected light from a fiber-optic Bragg grating is described. When a grating is subject to a strain gradient, the grating will experience a chirp and therefore the resonant wavelength will vary along the grating, causing wavelength-dependent penetration depth. Because the group delay for each wavelength component is related to its penetration depth and the resonant wavelength is determined by strain, a measured phase spectrum can then indicate the local strain as a function of location within the grating. This phase-based Bragg grating sensing technique offers a powerful new means for studying some important effects over a few millimeters or centimeters in smart structures.
Single-pixel imaging based on compressive sensing with spectral-domain optical mixing
NASA Astrophysics Data System (ADS)
Zhu, Zhijing; Chi, Hao; Jin, Tao; Zheng, Shilie; Jin, Xiaofeng; Zhang, Xianmin
2017-11-01
In this letter a single-pixel imaging structure is proposed based on compressive sensing using a spatial light modulator (SLM)-based spectrum shaper. In the approach, an SLM-based spectrum shaper, the pattern of which is a predetermined pseudorandom bit sequence (PRBS), spectrally codes the optical pulse carrying image information. The energy of the spectrally mixed pulse is detected by a single-pixel photodiode and the measurement results are used to reconstruct the image via a sparse recovery algorithm. As the mixing of the image signal and the PRBS is performed in the spectral domain, optical pulse stretching, modulation, compression and synchronization in the time domain are avoided. Experiments are implemented to verify the feasibility of the approach.
Monte Carlo simulation of wave sensing with a short pulse radar
NASA Technical Reports Server (NTRS)
Levine, D. M.; Davisson, L. D.; Kutz, R. L.
1977-01-01
A Monte Carlo simulation is used to study the ocean wave sensing potential of a radar which scatters short pulses at small off-nadir angles. In the simulation, realizations of a random surface are created commensurate with an assigned probability density and power spectrum. Then the signal scattered back to the radar is computed for each realization using a physical optics analysis which takes wavefront curvature and finite radar-to-surface distance into account. In the case of a Pierson-Moskowitz spectrum and a normally distributed surface, reasonable assumptions for a fully developed sea, it has been found that the cumulative distribution of time intervals between peaks in the scattered power provides a measure of surface roughness. This observation is supported by experiments.
Sense of Belonging and Hope in the Lives of Persons with Schizophrenia
Barut, Jennifer K.; Dietrich, Mary S.; Zanoni, Paul A.; Ridner, Sheila H.
2015-01-01
This qualitative study used semi-structured interviews to explore the meaning of sense of belonging and hope in the lived experiences of 20 persons with chronic schizophrenia-spectrum disorders receiving acute inpatient treatment. Experience of treatment was also explored. Sense of belonging and hope were both identified as valuable or even vital, yet the experiences of not belonging and/or feeling hopeless was more prevalent. Participants frequently felt like an outsider and experienced loneliness and isolation, suggesting a need for further exploration of the impact of sense of belonging and hope on recovery and even treatment adherence in persons with schizophrenia. PMID:26992868
Kim, Byoungjip; Kang, Seungwoo; Ha, Jin-Young; Song, Junehwa
2015-01-01
In this paper, we introduce a novel smartphone framework called VisitSense that automatically detects and predicts a smartphone user’s place visits from ambient radio to enable behavioral targeting for mobile ads in large shopping malls. VisitSense enables mobile app developers to adopt visit-pattern-aware mobile advertising for shopping mall visitors in their apps. It also benefits mobile users by allowing them to receive highly relevant mobile ads that are aware of their place visit patterns in shopping malls. To achieve the goal, VisitSense employs accurate visit detection and prediction methods. For accurate visit detection, we develop a change-based detection method to take into consideration the stability change of ambient radio and the mobility change of users. It performs well in large shopping malls where ambient radio is quite noisy and causes existing algorithms to easily fail. In addition, we proposed a causality-based visit prediction model to capture the causality in the sequential visit patterns for effective prediction. We have developed a VisitSense prototype system, and a visit-pattern-aware mobile advertising application that is based on it. Furthermore, we deploy the system in the COEX Mall, one of the largest shopping malls in Korea, and conduct diverse experiments to show the effectiveness of VisitSense. PMID:26193275
Research in space commercialization, technology transfer, and communications, volume 2
NASA Technical Reports Server (NTRS)
Dunn, D. A.; Agnew, C. E.
1983-01-01
Spectrum management, models for evaluating communication systems, the communications regulatory environment, expert prediction and consensus, remote sensing, and manned space operations research are discussed.
Bhoomiboonchoo, Piraya; Nisalak, Ananda; Chansatiporn, Natkamol; Yoon, In-Kyu; Kalayanarooj, Siripen; Thipayamongkolgul, Mathuros; Endy, Timothy; Rothman, Alan L; Green, Sharone; Srikiatkhachorn, Anon; Buddhari, Darunee; Mammen, Mammen P; Gibbons, Robert V
2015-03-14
The effect of prior dengue virus (DENV) exposure on subsequent heterologous infection can be beneficial or detrimental depending on many factors including timing of infection. We sought to evaluate this effect by examining a large database of DENV infections captured by both active and passive surveillance encompassing a wide clinical spectrum of disease. We evaluated datasets from 17 years of hospital-based passive surveillance and nine years of cohort studies, including clinical and subclinical DENV infections, to assess the outcomes of sequential heterologous infections. Chi square or Fisher's exact test was used to compare proportions of infection outcomes such as disease severity; ANOVA was used for continuous variables. Multivariate logistic regression was used to assess risk factors for infection outcomes. Of 38,740 DENV infections, two or more infections were detected in 502 individuals; 14 had three infections. The mean ages at the time of the first and second detected infections were 7.6 ± 3.0 and 11.2 ± 3.0 years. The shortest time between sequential infections was 66 days. A longer time interval between sequential infections was associated with dengue hemorrhagic fever (DHF) in the second detected infection (OR 1.3, 95% CI 1.2-1.4). All possible sequential serotype pairs were observed among 201 subjects with DHF at the second detected infection, except DENV-4 followed by DENV-3. Among DENV infections detected in cohort subjects by active study surveillance and subsequent non-study hospital-based passive surveillance, hospitalization at the first detected infection increased the likelihood of hospitalization at the second detected infection. Increasing time between sequential DENV infections was associated with greater severity of the second detected infection, supporting the role of heterotypic immunity in both protection and enhancement. Hospitalization was positively associated between the first and second detected infections, suggesting a possible predisposition in some individuals to more severe dengue disease.
Chelsea Lancelle
2013-09-11
In September 2013, an experiment using Distributed Acoustic Sensing (DAS) was conducted at Garner Valley, a test site of the University of California Santa Barbara (Lancelle et al., 2014). This submission includes all DAS data recorded during the experiment. The sampling rate for all files is 1000 samples per second. Any files with the same filename but ending in _01, _02, etc. represent sequential files from the same test. Locations of the sources are plotted on the basemap in GDR submission 481, titled: "PoroTomo Subtask 3.2 Sample data from a Distributed Acoustic Sensing experiment at Garner Valley, California (PoroTomo Subtask 3.2)." Lancelle, C., N. Lord, H. Wang, D. Fratta, R. Nigbor, A. Chalari, R. Karaulanov, J. Baldwin, and E. Castongia (2014), Directivity and Sensitivity of Fiber-Optic Cable Measuring Ground Motion using a Distributed Acoustic Sensing Array (abstract # NS31C-3935), AGU Fall Meeting. https://agu.confex.com/agu/fm1/meetingapp.cgi#Paper/19828 The e-poster is available at: https://agu.confex.com/data/handout/agu/fm14/Paper_19828_handout_696_0.pdf
ERIC Educational Resources Information Center
Rhode, Maria
2004-01-01
Two contrasting cases are discussed of boys with autistic spectrum disorder who had suffered cumulative trauma. Although their material was similar in many respects, the 9-year-old made excellent progress during therapy, while the 4-year-old developed much less in spite of being in intensive treatment. This contrast is discussed with regard to…
Xie, Shangran; Pang, Meng; Bao, Xiaoyi; Chen, Liang
2012-03-12
The dependence of Brillouin linewidth and peak frequency on lightwave state of polarization (SOP) due to fiber inhomogeneity in single mode fiber (SMF) is investigated by using Brillouin optical time domain analysis (BOTDA) system. Theoretical analysis shows fiber inhomogeneity leads to fiber birefringence and sound velocity variation, both of which can cause the broadening and asymmetry of the Brillouin gain spectrum (BGS) and thus contribute to the variation of Brillouin linewidth and peak frequency with lightwave SOP. Due to fiber inhomogeneity both in lateral profile and longitudinal direction, the measured BGS is the superposition of several spectrum components with different peak frequencies within the interaction length. When pump or probe SOP changes, both the peak Brillouin gain and the overlapping area of the optical and acoustic mode profile that determine the peak efficiency of each spectrum component vary within the interaction length, which further changes the linewidth and peak frequency of the superimposed BGS. The SOP dependence of Brillouin linewidth and peak frequency was experimentally demonstrated and quantified by measuring the spectrum asymmetric factor and fitting obtained effective peak frequency respectively via BOTDA system on standard step-index SMF-28 fiber. Experimental results show that on this fiber the Brillouin spectrum asymmetric factor and effective peak frequency vary in the range of 2% and 0.06MHz respectively over distance with orthogonal probe input SOPs. Experimental results also show that in distributed fiber Brillouin sensing, polarization scrambler (PS) can be used to reduce the SOP dependence of Brillouin linewidth and peak frequency caused by fiber inhomogeneity in lateral profile, however it maintains the effects caused by fiber inhomogeneity in longitudinal direction. In the case of non-ideal polarization scrambling using practical PS, the fluctuation of effective Brillouin peak frequency caused by fiber inhomogeneity provides another limit of sensing frequency resolution of distributed fiber Brillouin sensor.
NASA Technical Reports Server (NTRS)
Swift, C. T.
1993-01-01
The product of a working group assembled to help define the science objectives and measurement requirements of a spaceborne L-band microwave radiometer devoted to remote sensing of surface soil moisture and sea surface salinity is presented. Remote sensing in this long-wavelength portion of the microwave spectrum requires large antennas in low-Earth orbit to achieve acceptable spatial resolution. The proposed radiometer, ESTAR, is unique in that it employs aperture synthesis to reduce the antenna area requirements for a space system.
The remote sensing needs of Arctic geophysics
NASA Technical Reports Server (NTRS)
Campbell, W. J.
1970-01-01
The application of remote sensors for obtaining geophysical information of the Arctic regions is discussed. Two significant requirements are to acquire sequential, synoptic imagery of the Arctic Ocean during all weather and seasons and to measure the strains in the sea ice canopy and the heterogeneous character of the air and water stresses acting on the canopy. The acquisition of geophysical data by side looking radar and microwave sensors in military aircraft is described.
NASA Technical Reports Server (NTRS)
Schwarz, D. E.; Ellefsen, R. E.
1981-01-01
Several general guidelines should be kept in mind when considering the selection of field sites for teaching remote sensing fundamentals. Proximity and vantage point are two very practical considerations. Only through viewing a broad enough area to place the site in context can one make efficient use of a site. The effects of inclement weather when selecting sites should be considered. If field work is to be an effective tool to illustrate remote sensing principles, the following criteria are critical: (1) the site must represent the range of class interest; (2) the site must have a theme or add something no other site offers; (3) there should be intrasite variation within the theme; (4) ground resolution and spectral signature distinction should be illustrated; and (5) the sites should not be ordered sequentially.
Mechery, Shelly John [Mississippi State, MS; Singh, Jagdish P [Starkville, MS
2007-07-03
A sensing element, a method of making a sensing element, and a fiber optic sensor incorporating the sensing element are described. The sensor can be used for the quantitative detection of NO.sub.2 in a mixture of gases. The sensing element can be made by incorporating a diazotizing reagent which reacts with nitrous ions to produce a diazo compound and a coupling reagent which couples with the diazo compound to produce an azo dye into a sol and allowing the sol to form an optically transparent gel. The sensing element changes color in the presence of NO.sub.2 gas. The temporal response of the absorption spectrum at various NO.sub.2 concentrations has also been recorded and analyzed. Sensors having different design configurations are described. The sensing element can detect NO.sub.2 gas at levels of parts per billion.
Mustapha, Ibrahim; Ali, Borhanuddin Mohd; Rasid, Mohd Fadlee A.; Sali, Aduwati; Mohamad, Hafizal
2015-01-01
It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach. PMID:26287191
Mustapha, Ibrahim; Mohd Ali, Borhanuddin; Rasid, Mohd Fadlee A; Sali, Aduwati; Mohamad, Hafizal
2015-08-13
It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach.
Gonzales, Lucia K; Glaser, Dale; Howland, Lois; Clark, Mary Jo; Hutchins, Susie; Macauley, Karen; Close, Jacqueline F; Leveque, Noelle Lipkin; Failla, Kim Reina; Brooks, Raelene; Ward, Jillian
2017-01-01
A number of studies across different disciplines have investigated students' learning styles. Differences are known to exist between graduate and baccalaureate nursing students. However, few studies have investigated the learning styles of students in graduate entry nursing programs. . Study objective was to describe graduate entry nursing students' learning styles. A descriptive design was used for this study. The Index of Learning Styles (ILS) was administered to 202 graduate entry nursing student volunteers at a southwestern university. Descriptive statistics, tests of association, reliability, and validity were performed. Graduate nursing students and faculty participated in data collection, analysis, and dissemination of the results. Predominant learning styles were: sensing - 82.7%, visual - 78.7%, sequential - 65.8%, and active - 59.9%. Inter-item reliabilities for the postulated subscales were: sensing/intuitive (α=0.70), visual/verbal (α=0.694), sequential/global (α=0.599), and active/reflective (α=0.572). Confirmatory factor analysis for results of validity were: χ 2 (896)=1110.25, p<0.001, CFI=0.779, TLI=0.766, WRMR=1.14, and RMSEA =0.034. Predominant learning styles described students as being concrete thinkers oriented toward facts (sensing); preferring pictures, diagrams, flow charts, demonstrations (visual); being linear thinkers (sequencing); and enjoying working in groups and trying things out (active),. The predominant learning styles suggest educators teach concepts through simulation, discussion, and application of knowledge. Multiple studies, including this one, provided similar psychometric results. Similar reliability and validity results for the ILS have been noted in previous studies and therefore provide sufficient evidence to use the ILS with graduate entry nursing students. This study provided faculty with numerous opportunities for actively engaging students in data collection, analysis, and dissemination of results. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dyu, V. G.; Kisteneva, M. G.; Shandarov, S. M.; Khudyakova, E. S.; Smirnov, S. V.; Kargin, Yu. F.
Changes in the spectral dependences of the optical absorption induced in the bismuth titanium oxide crystal doped by aluminum as a result of sequential exposition to cw laser radiation first with the wavelength λi = 532 nm and then with the longer wavelength λn = 633, 655, 663, 780, 871, or 1064 nm are investigated. Our experiments show that after the short-wavelength exposition to radiation with λi = 532 nm, the optical absorption in the crystal increases, and in the range 470-1000 nm, yields the spectrum whose form is independent of the initial crystal state. The subsequent exposition to longer-wavelength radiation leads to enhanced transmittance of the crystal in the examined spectral range. A maximum decrease of the optical absorption in the crystal is observed upon exposure to radiation with the wavelength λn = 663 nm.
Sequential vs. simultaneous photokilling by mitochondrial and lysosomal photodamage
NASA Astrophysics Data System (ADS)
Kessel, David
2017-02-01
We previously reported that a low level of lysosomal photoda mage can markedly promote the subsequent efficacy of PDT directed at mitochondria. This involves release of Ca2+ from photo damaged lysosomes, cleavage of the autophagy-associated protein ATG5 after activation of calpain and an interaction between the ATG5 fragment and mitochondria resulting in enhanced apoptosis. Inhibition of calpain activity abolished th is effect. We examined permissible irradiation sequences. Lysosomal photodamage must occur first with the `enhancement' effect showing a short half-life ( 15 min), presumably reflecting the survival of the ATG5 fragment. Simultaneous photo damage to both loci was found to be as effective as the sequential protocol. Since Photofrin can target both lysosomes and mitochondria for photo damage, this broad spectrum of photo damage may explain the efficacy of this photo sensitizing agent in spite of a sub-optimal absorbance profile at a sub- optimal wavelength for tissue transparency.
Automatic exposure control for space sequential camera
NASA Technical Reports Server (NTRS)
Mcatee, G. E., Jr.; Stoap, L. J.; Solheim, C. D.; Sharpsteen, J. T.
1975-01-01
The final report for the automatic exposure control study for space sequential cameras, for the NASA Johnson Space Center is presented. The material is shown in the same sequence that the work was performed. The purpose of the automatic exposure control is to automatically control the lens iris as well as the camera shutter so that the subject is properly exposed on the film. A study of design approaches is presented. Analysis of the light range of the spectrum covered indicates that the practical range would be from approximately 20 to 6,000 foot-lamberts, or about nine f-stops. Observation of film available from space flights shows that optimum scene illumination is apparently not present in vehicle interior photography as well as in vehicle-to-vehicle situations. The evaluation test procedure for a breadboard, and the results, which provided information for the design of a brassboard are given.
A sequential multi-target Mps1 phosphorylation cascade promotes spindle checkpoint signaling
Ji, Zhejian; Gao, Haishan; Jia, Luying; Li, Bing; Yu, Hongtao
2017-01-01
The master spindle checkpoint kinase Mps1 senses kinetochore-microtubule attachment and promotes checkpoint signaling to ensure accurate chromosome segregation. The kinetochore scaffold Knl1, when phosphorylated by Mps1, recruits checkpoint complexes Bub1–Bub3 and BubR1–Bub3 to unattached kinetochores. Active checkpoint signaling ultimately enhances the assembly of the mitotic checkpoint complex (MCC) consisting of BubR1–Bub3, Mad2, and Cdc20, which inhibits the anaphase-promoting complex or cyclosome bound to Cdc20 (APC/CCdc20) to delay anaphase onset. Using in vitro reconstitution, we show that Mps1 promotes APC/C inhibition by MCC components through phosphorylating Bub1 and Mad1. Phosphorylated Bub1 binds to Mad1–Mad2. Phosphorylated Mad1 directly interacts with Cdc20. Mutations of Mps1 phosphorylation sites in Bub1 or Mad1 abrogate the spindle checkpoint in human cells. Therefore, Mps1 promotes checkpoint activation through sequentially phosphorylating Knl1, Bub1, and Mad1. This sequential multi-target phosphorylation cascade makes the checkpoint highly responsive to Mps1 and to kinetochore-microtubule attachment. DOI: http://dx.doi.org/10.7554/eLife.22513.001 PMID:28072388
NASA Astrophysics Data System (ADS)
Li, Qian; Tang, Yongjiao; Yan, Zhiwei; Zhang, Pudun
2017-06-01
Although multivariate curve resolution (MCR) has been applied to the analysis of Fourier transform infrared (FTIR) imaging, it is still problematic to determine the number of components. The reported methods at present tend to cause the components of low concentration missed. In this paper a new idea was proposed to resolve this problem. First, MCR calculation was repeated by increasing the number of components sequentially, then each retrieved pure spectrum of as-resulted MCR component was directly compared with a real-world pixel spectrum of the local high concentration in the corresponding MCR map. One component was affirmed only if the characteristic bands of the MCR component had been included in its pixel spectrum. This idea was applied to attenuated total reflection (ATR)/FTIR mapping for identifying the trace additives in blind polymer materials and satisfactory results were acquired. The successful demonstration of this novel approach opens up new possibilities for analyzing additives in polymer materials.
Yang, Xianchao; Xu, Degang; Rong, Feng; Zhao, Junfa; Yao, Jianquan
2017-01-01
Multimode interferometers based on the single-mode-no-core-single-mode fiber (SNCS) structure have been widely investigated as functional devices and sensors. However, the theoretical support for the sensing mechanism is still imperfect, especially for the cladding refractive index response. In this paper, a modified model of no-core fiber (NCF) based on far from cut-off approximation is proposed to investigate the spectrum characteristic and sensing mechanism of the SNCS structure. Guided-mode propagation analysis (MPA) is used to analyze the self-image effect and spectrum response to the cladding refractive index and temperature. Verified by experiments, the performance of the SNCS structure can be estimated specifically and easily by the proposed method. PMID:28961174
A New Digital Signal Processing Method for Spectrum Interference Monitoring
NASA Astrophysics Data System (ADS)
Angrisani, L.; Capriglione, D.; Ferrigno, L.; Miele, G.
2011-01-01
Frequency spectrum is a limited shared resource, nowadays interested by an ever growing number of different applications. Generally, the companies providing such services pay to the governments the right of using a limited portion of the spectrum, consequently they would be assured that the licensed radio spectrum resource is not interested by significant external interferences. At the same time, they have to guarantee that their devices make an efficient use of the spectrum and meet the electromagnetic compatibility regulations. Therefore the competent authorities are called to control the access to the spectrum adopting suitable management and monitoring policies, as well as the manufacturers have to periodically verify the correct working of their apparatuses. Several measurement solutions are present on the market. They generally refer to real-time spectrum analyzers and measurement receivers. Both of them are characterized by good metrological accuracies but show costs, dimensions and weights that make no possible a use "on the field". The paper presents a first step in realizing a digital signal processing based measurement instrument able to suitably accomplish for the above mentioned needs. In particular the attention has been given to the DSP based measurement section of the instrument. To these aims an innovative measurement method for spectrum monitoring and management is proposed in this paper. It performs an efficient sequential analysis based on a sample by sample digital processing. Three main issues are in particular pursued: (i) measurement performance comparable to that exhibited by other methods proposed in literature; (ii) fast measurement time, (iii) easy implementation on cost-effective measurement hardware.
ERIC Educational Resources Information Center
Dale, Emily; Jahoda, Andrew; Knott, Fiona
2006-01-01
Although the impact of autism spectrum disorders (ASDs) on the family is well recognized, the way mothers attempt to make sense of the diagnosis is largely unexplored. However, in other disabilities, attributions have been shown to predict a variety of outcomes including maternal wellbeing and engagement in treatment. Using Weiner's (1985)…
All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber
NASA Astrophysics Data System (ADS)
Choi, Hae Young; Kim, Myoung Jin; Lee, Byeong Ha
2007-04-01
We propose simple and compact methods for implementing all-fiber interferometers. The interference between the core and the cladding modes of a photonic crystal fiber (PCF) is utilized. To excite the cladding modes from the fundamental core mode of a PCF, a coupling point or region is formed by using two methods. One is fusion splicing two pieces of a PCF with a small lateral offset, and the other is partially collapsing the air-holes in a single piece of PCF. By making another coupling point at a different location along the fiber, the proposed all-PCF interferometer is implemented. The spectral response of the interferometer is investigated mainly in terms of its wavelength spectrum. The spatial frequency of the spectrum was proportional to the physical length of the interferometer and the difference between the modal group indices of involved waveguide modes. For the splicing type interferometer, only a single spatial frequency component was dominantly observed, while the collapsing type was associated with several components at a time. By analyzing the spatial frequency spectrum of the wavelength spectrum, the modal group index differences of the PCF were obtained from to . As potential applications of the all-PCF interferometer, strain sensing is experimentally demonstrated and ultra-high temperature sensing is proposed.
Aerial laser sensing of ocean upper layer
NASA Technical Reports Server (NTRS)
Vlasov, D. V.
1985-01-01
Applications of laser sensing of the ocean, such as deep bathymetry; determination of the luminescence spectrum of phytoplankton as a sensitive indicator of changes in the external physical parameters of the studied region; monitoring the state of underwater pipelines; conducting search and rescue missions; monitoring pollution; biological observations of the state of algae; searching for schools of fish, etc., are discussed. The Chayka apparatus for laser sensing is discussed. A block diagram is given which is used in describing functioning of this unit. Particular attention is given to the time structure of an echo signal appearing when sensing the upper ocean layer by a short laser pulse propagating through the wave-covered surface.
I Collect Therefore I am--Autonoetic Consciousness and Hoarding in Asperger Syndrome.
Skirrow, Paul; Jackson, Paul; Perry, Ewan; Hare, Dougal Julian
2015-01-01
A growing number of studies have highlighted impairments in the ability of individuals with autism spectrum disorders to recall specific, personally experienced material. These difficulties have been related to underlying problems with autonoetic consciousness, namely the subjective awareness of one's own existence in subjective time. The current paper describes the manifestation of these difficulties in three individuals diagnosed with Asperger syndrome. For the people described, lifelong collecting and hoarding behaviours appeared to serve the function of constituting and maintaining aspects of their sense of self, particularly the sense of continuity and agency over time. On the basis of this clinical information and previous research into self-related processes in people with autism spectrum disorders, an initial model of collecting and hoarding behaviours amongst individuals with Asperger syndrome was formulated. The implications of this formulation for both clinical practice and future research are discussed. People with Asperger syndrome can have problems in developing a functional sense of self. Collecting and hoarding behaviour by people with Asperger syndrome may reflect such underlying difficulties in their sense of self rather than being symptoms of comorbid mental illness. Interventions need to take account of the function of such behaviours rather than solely regarding them as discrete pathological signs. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Ma, Dan; Liu, Jun; Chen, Kai; Li, Huali; Liu, Ping; Chen, Huijuan; Qian, Jing
2016-04-01
In remote sensing fusion, the spatial details of a panchromatic (PAN) image and the spectrum information of multispectral (MS) images will be transferred into fused images according to the characteristics of the human visual system. Thus, a remote sensing image fusion quality assessment called feature-based fourth-order correlation coefficient (FFOCC) is proposed. FFOCC is based on the feature-based coefficient concept. Spatial features related to spatial details of the PAN image and spectral features related to the spectrum information of MS images are first extracted from the fused image. Then, the fourth-order correlation coefficient between the spatial and spectral features is calculated and treated as the assessment result. FFOCC was then compared with existing widely used indices, such as Erreur Relative Globale Adimensionnelle de Synthese, and quality assessed with no reference. Results of the fusion and distortion experiments indicate that the FFOCC is consistent with subjective evaluation. FFOCC significantly outperforms the other indices in evaluating fusion images that are produced by different fusion methods and that are distorted in spatial and spectral features by blurring, adding noise, and changing intensity. All the findings indicate that the proposed method is an objective and effective quality assessment for remote sensing image fusion.
Model-Based Systems Engineering in the Execution of Search and Rescue Operations
2015-09-01
OSC can fulfill the duties of an ACO but it may make sense to split the duties if there are no communication links between the OSC and participating...parallel mode. This mode is the most powerful option because it 35 creates sequence diagrams that generate parallel “ swim lanes” for each asset...greater flexibility is desired, sequence mode generates diagrams based purely on sequential action and activity diagrams without the parallel “ swim lanes
NASA Astrophysics Data System (ADS)
Sumin, M. I.
2015-06-01
A parametric nonlinear programming problem in a metric space with an operator equality constraint in a Hilbert space is studied assuming that its lower semicontinuous value function at a chosen individual parameter value has certain subdifferentiability properties in the sense of nonlinear (nonsmooth) analysis. Such subdifferentiability can be understood as the existence of a proximal subgradient or a Fréchet subdifferential. In other words, an individual problem has a corresponding generalized Kuhn-Tucker vector. Under this assumption, a stable sequential Kuhn-Tucker theorem in nondifferential iterative form is proved and discussed in terms of minimizing sequences on the basis of the dual regularization method. This theorem provides necessary and sufficient conditions for the stable construction of a minimizing approximate solution in the sense of Warga in the considered problem, whose initial data can be approximately specified. A substantial difference of the proved theorem from its classical same-named analogue is that the former takes into account the possible instability of the problem in the case of perturbed initial data and, as a consequence, allows for the inherited instability of classical optimality conditions. This theorem can be treated as a regularized generalization of the classical Uzawa algorithm to nonlinear programming problems. Finally, the theorem is applied to the "simplest" nonlinear optimal control problem, namely, to a time-optimal control problem.
Demonstration of a mid-infrared NO molecular Faraday optical filter.
Wu, Kuijun; Feng, Yutao; Li, Juan; Yu, Guangbao; Liu, Linmei; Xiong, Yuanhui; Li, Faquan
2017-12-11
A molecular Faraday optical filter (MFOF) working in the mid-infrared region is realized for the first time. NO molecule was used as the working material of the MFOF for potential applications in atmospheric remote sensing and combustion diagnosis. We develop a complete theory to describe the performance of MFOF by taking both Zeeman absorption and Faraday rotation into account. We also record the Faraday rotation transmission (FRT) signal using a quantum cascade laser over the range of 1,820 cm -1 to 1,922 cm -1 and calibrate it by using a 101.6 mm long solid germanium etalon with a free spectral range of 0.012 cm -1 . Good agreement between the simulation results and experimental data is achieved. The NO-MFOF's transmission characteristics as a function of magnetic field and pressure are studied in detail. Both Comb-like FRT spectrum and single branch transmission spectrum are obtained by changing the magnetic field. The diversity of FRT spectrum expands the range of potential applications in infrared optical remote sensing. This filtering method can also be extended to the lines of other paramagnetic molecules.
Rossi, Mari; El-Khechen, Dima; Black, Mary Helen; Farwell Hagman, Kelly D; Tang, Sha; Powis, Zöe
2017-05-01
Exome sequencing has recently been proved to be a successful diagnostic method for complex neurodevelopmental disorders. However, the diagnostic yield of exome sequencing for autism spectrum disorders has not been extensively evaluated in large cohorts to date. We performed diagnostic exome sequencing in a cohort of 163 individuals with autism spectrum disorder (66.3%) or autistic features (33.7%). The diagnostic yield observed in patients in our cohort was 25.8% (42 of 163) for positive or likely positive findings in characterized disease genes, while a candidate genetic etiology was reported for an additional 3.3% (4 of 120) of patients. Among the positive findings in the patients with autism spectrum disorder or autistic features, 61.9% were the result of de novo mutations. Patients presenting with psychiatric conditions or ataxia or paraplegia in addition to autism spectrum disorder or autistic features were significantly more likely to receive positive results compared with patients without these clinical features (95.6% vs 27.1%, P < 0.0001; 83.3% vs 21.2%, P < 0.0001, respectively). The majority of the positive findings were in recently identified autism spectrum disorder genes, supporting the importance of diagnostic exome sequencing for patients with autism spectrum disorder or autistic features as the causative genes might evade traditional sequential or panel testing. These results suggest that diagnostic exome sequencing would be an efficient primary diagnostic method for patients with autism spectrum disorders or autistic features. Moreover, our data may aid clinicians to better determine which subset of patients with autism spectrum disorder with additional clinical features would benefit the most from diagnostic exome sequencing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Noninvasive blood glucose sensing on human body with near-infrared reflection spectroscopy
NASA Astrophysics Data System (ADS)
Huang, Zhen-hao; Hao, Chang-ning; Zhang, Lin-lin; Huang, Yan-chao; Shi, Yi-qin; Jiang, Geng-ru; Duan, Jun-li
2011-08-01
The non-invasive blood glucose sensing method has shown its high impact on the clinic application. This can make the measurement on the clinically relevant concentrations of glucose be free from the pain of patient. The transmission spectrum study indicates that the dependence of glucose concentration on the absorbance is in linear manner for the glucose concentration in the region of 30mg/dL to 4.5×104mg/dL. By the near infrared reflection spectroscopy of fiber spectrometer, the reflection band between 1.2μm and 1.35μm can be used to correlated with the glucose concentration in the range of 30 to 300 mg/dL. This reflection band is finally used to measure the glucose concentration effect in non-invasive manner, which gives the statistical significance of P value 0.02. Our experiment result shows that it is possible to get the glucose concentration by the near infrared reflection spectrum measurement on the human forefinger. This non-invasive blood glucose sensing method may useful in clinic after more experiment for different people.
Supporting Dynamic Spectrum Access in Heterogeneous LTE+ Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luiz A. DaSilva; Ryan E. Irwin; Mike Benonis
As early as 2014, mobile network operators’ spectral capac- ity is expected to be overwhelmed by the demand brought on by new devices and applications. With Long Term Evo- lution Advanced (LTE+) networks likely as the future one world 4G standard, network operators may need to deploy a Dynamic Spectrum Access (DSA) overlay in Heterogeneous Networks (HetNets) to extend coverage, increase spectrum efficiency, and increase the capacity of these networks. In this paper, we propose three new management frameworks for DSA in an LTE+ HetNet: Spectrum Accountability Client, Cell Spectrum Management, and Domain Spectrum Man- agement. For these spectrum managementmore » frameworks, we define protocol interfaces and operational signaling scenar- ios to support cooperative sensing, spectrum lease manage- ment, and alarm scenarios for rule adjustment. We also quan- tify, through integer programs, the benefits of using DSA in an LTE+ HetNet, that can opportunistically reuse vacant TV and GSM spectrum. Using integer programs, we consider a topology using Geographic Information System data from the Blacksburg, VA metro area to assess the realistic benefits of DSA in an LTE+ HetNet.« less
Comparison of RF spectrum prediction methods for dynamic spectrum access
NASA Astrophysics Data System (ADS)
Kovarskiy, Jacob A.; Martone, Anthony F.; Gallagher, Kyle A.; Sherbondy, Kelly D.; Narayanan, Ram M.
2017-05-01
Dynamic spectrum access (DSA) refers to the adaptive utilization of today's busy electromagnetic spectrum. Cognitive radio/radar technologies require DSA to intelligently transmit and receive information in changing environments. Predicting radio frequency (RF) activity reduces sensing time and energy consumption for identifying usable spectrum. Typical spectrum prediction methods involve modeling spectral statistics with Hidden Markov Models (HMM) or various neural network structures. HMMs describe the time-varying state probabilities of Markov processes as a dynamic Bayesian network. Neural Networks model biological brain neuron connections to perform a wide range of complex and often non-linear computations. This work compares HMM, Multilayer Perceptron (MLP), and Recurrent Neural Network (RNN) algorithms and their ability to perform RF channel state prediction. Monte Carlo simulations on both measured and simulated spectrum data evaluate the performance of these algorithms. Generalizing spectrum occupancy as an alternating renewal process allows Poisson random variables to generate simulated data while energy detection determines the occupancy state of measured RF spectrum data for testing. The results suggest that neural networks achieve better prediction accuracy and prove more adaptable to changing spectral statistics than HMMs given sufficient training data.
Polyamine/salt-assembled microspheres coated with hyaluronic acid for targeting and pH sensing.
Zhang, Pan; Yang, Hui; Wang, Guojun; Tong, Weijun; Gao, Changyou
2016-06-01
The poly(allylamine hydrochloride)/trisodium citrate aggregates were fabricated and further covalently crosslinked via the coupling reaction of carboxylic sites on trisodium citrate with the amine groups on polyamine, onto which poly-L-lysine and hyaluronic acid were sequentially assembled, forming stable microspheres. The pH sensitive dye and pH insensitive dye were further labeled to enable the microspheres with pH sensing property. Moreover, these microspheres could be specifically targeted to HeLa tumor cells, since hyaluronic acid can specifically recognize and bind to CD44, a receptor overexpressed on many tumor cells. Quantitative pH measurement by confocal laser scanning microscopy demonstrated that the microspheres were internalized into HeLa cells, and accumulated in acidic compartments. By contrast, only a few microspheres were adhered on the NIH 3T3 cells surface. The microspheres with combined pH sensing property and targeting ability can enhance the insight understanding of the targeted drug vehicles trafficking after cellular internalization. Copyright © 2016 Elsevier B.V. All rights reserved.
Extracellular signals that define distinct and coexisting cell fates in Bacillus subtilis.
López, Daniel; Kolter, Roberto
2010-03-01
The soil-dwelling bacterium Bacillus subtilis differentiates into distinct subpopulations of specialized cells that coexist within highly structured communities. The coordination and interplay between these cell types requires extensive extracellular communication driven mostly by sensing self-generated secreted signals. These extracellular signals activate a set of sensor kinases, which respond by phosphorylating three major regulatory proteins, Spo0A, DegU and ComA. Each phosphorylated regulator triggers a specific differentiation program while at the same time repressing other differentiation programs. This allows a cell to differentiate in response to a specific cue, even in the presence of other, possibly conflicting, signals. The sensor kinases involved respond to an eclectic group of extracellular signals, such as quorum-sensing molecules, natural products, temperature, pH or scarcity of nutrients. This article reviews the cascades of cell differentiation pathways that are triggered by sensing extracellular signals. We also present a tentative developmental model in which the diverse cell types sequentially differentiate to achieve the proper development of the bacterial community.
NASA Astrophysics Data System (ADS)
Chang, Chih-Chen; Poon, Chun-Wing
2004-07-01
Recently, the empirical mode decomposition (EMD) in combination with the Hilbert spectrum method has been proposed to identify the dynamic characteristics of linear structures. In this study, this EMD and Hilbert spectrum method is used to analyze the dynamic characteristics of a damaged reinforced concrete (RC) beam in the laboratory. The RC beam is 4m long with a cross section of 200mm X 250mm. The beam is sequentially subjected to a concentrated load of different magnitudes at the mid-span to produce different degrees of damage. An impact load is applied around the mid-span to excite the beam. Responses of the beam are recorded by four accelerometers. Results indicate that the EMD and Hilbert spectrum method can reveal the variation of the dynamic characteristics in the time domain. These results are also compared with those obtained using the Fourier analysis. In general, it is found that the two sets of results correlate quite well in terms of mode counts and frequency values. Some differences, however, can be seen in the damping values, which perhaps can be attributed to the linear assumption of the Fourier transform.
Resource analysis applications in Michigan. [NASA remote sensing
NASA Technical Reports Server (NTRS)
Schar, S. W.; Enslin, W. R.; Sattinger, I. J.; Robinson, J. G.; Hosford, K. R.; Fellows, R. S.; Raad, J. H.
1974-01-01
During the past two years, available NASA imagery has been applied to a broad spectrum of problems of concern to Michigan-based agencies. These demonstrations include the testing of remote sensing for the purposes of (1) highway corridor planning and impact assessments, (2) game management-area information bases, (3) multi-agency river basin planning, (4) timber resource management information systems, (5) agricultural land reservation policies, and (6) shoreline flooding damage assessment. In addition, cost accounting procedures have been developed for evaluating the relative costs of utilizing remote sensing in land cover and land use analysis data collection procedures.
Long-range monostatic remote sensing of geomaterial structure weak vibrations
NASA Astrophysics Data System (ADS)
Heifetz, Alexander; Bakhtiari, Sasan; Gopalsami, Nachappa; Elmer, Thomas W.; Mukherjee, Souvik
2018-04-01
We study analytically and numerically signal sensitivity in remote sensing measurements of weak mechanical vibration of structures made of typical construction geomaterials, such as concrete. The analysis includes considerations of electromagnetic beam atmospheric absorption, reflection, scattering, diffraction and losses. Comparison is made between electromagnetic frequencies of 35GHz (Ka-band), 94GHz (W-band) and 260GHz (WR-3 waveguide band), corresponding to atmospheric transparency windows of the electromagnetic spectrum. Numerical simulations indicate that 94GHz frequency is optimal in terms of signal sensitivity and specificity for long-distance (>1.5km) sensing of weak multi-mode vibrations.
2013-03-01
DSR Dynamic Source Routing DSSS Direct -sequence spread spectrum GUID Globally Unique ID MANET Mobile Ad-hoc Network NS3 Network Simulator 3 OLSR...networking schemes for safe maneuvering and data communication. Imagine needing to maintain an operational picture of an overall environment using a...as simple as O(n) where every node is sequentially queried to O log(n), or O(1). These schemes will be discussed with each individual DHT. Four of the
Method for rapid base sequencing in DNA and RNA with two base labeling
Jett, J.H.; Keller, R.A.; Martin, J.C.; Posner, R.G.; Marrone, B.L.; Hammond, M.L.; Simpson, D.J.
1995-04-11
A method is described for rapid-base sequencing in DNA and RNA with two-base labeling and employing fluorescent detection of single molecules at two wavelengths. Bases modified to accept fluorescent labels are used to replicate a single DNA or RNA strand to be sequenced. The bases are then sequentially cleaved from the replicated strand, excited with a chosen spectrum of electromagnetic radiation, and the fluorescence from individual, tagged bases detected in the order of cleavage from the strand. 4 figures.
Method for rapid base sequencing in DNA and RNA with two base labeling
Jett, James H.; Keller, Richard A.; Martin, John C.; Posner, Richard G.; Marrone, Babetta L.; Hammond, Mark L.; Simpson, Daniel J.
1995-01-01
Method for rapid-base sequencing in DNA and RNA with two-base labeling and employing fluorescent detection of single molecules at two wavelengths. Bases modified to accept fluorescent labels are used to replicate a single DNA or RNA strand to be sequenced. The bases are then sequentially cleaved from the replicated strand, excited with a chosen spectrum of electromagnetic radiation, and the fluorescence from individual, tagged bases detected in the order of cleavage from the strand.
Real-Time and Post-Processed Georeferencing for Hyperpspectral Drone Remote Sensing
NASA Astrophysics Data System (ADS)
Oliveira, R. A.; Khoramshahi, E.; Suomalainen, J.; Hakala, T.; Viljanen, N.; Honkavaara, E.
2018-05-01
The use of drones and photogrammetric technologies are increasing rapidly in different applications. Currently, drone processing workflow is in most cases based on sequential image acquisition and post-processing, but there are great interests towards real-time solutions. Fast and reliable real-time drone data processing can benefit, for instance, environmental monitoring tasks in precision agriculture and in forest. Recent developments in miniaturized and low-cost inertial measurement systems and GNSS sensors, and Real-time kinematic (RTK) position data are offering new perspectives for the comprehensive remote sensing applications. The combination of these sensors and light-weight and low-cost multi- or hyperspectral frame sensors in drones provides the opportunity of creating near real-time or real-time remote sensing data of target object. We have developed a system with direct georeferencing onboard drone to be used combined with hyperspectral frame cameras in real-time remote sensing applications. The objective of this study is to evaluate the real-time georeferencing comparing with post-processing solutions. Experimental data sets were captured in agricultural and forested test sites using the system. The accuracy of onboard georeferencing data were better than 0.5 m. The results showed that the real-time remote sensing is promising and feasible in both test sites.
NASA Astrophysics Data System (ADS)
Wang, Ke-Hsuan; Wu, Jau-Yann; Chen, Liang-Huei; Lee, Yuh-Lang
2016-03-01
The Langmuir-Blodgett (LB) deposition technique is employed to prepare nano-composite films consisting of glucose oxidase (GOx) and gold nanoparticles (AuNPs) for glucose sensing applications. The GOx and AuNPs are co-adsorbed from an aqueous solution onto an air/liquid interface in the presence of an octadecylamine (ODA) template monolayer, forming a mixed (GOx-AuNP) monolayer. Alternatively, a composite film with a cascade architecture (AuNP/GOx) is also prepared by sequentially depositing monolayers of AuNPs and GOx. The architecture effects of the composite LB films on the glucose sensing are studied. The results show that the presence of AuNPs in the co-adsorption system does not affect the adsorption amount and preferred conformation (α-helix) of GOx. Furthermore, the incorporation of AuNPs in both composite films can significantly improve the sensing performance. However, the enhancement effects of the AuNPs in the two architectures are distinct. The major effect of the AuNPs is on the facilitation of charge-transfer in the (GOx-AuNP) film, but on the increase of catalytic activity in the (AuNP/GOx) one. Therefore, the sensing performance can be greatly improved by utilizing a film combining both architectures (AuNP/GOx-AuNP).
Controlling conductivity of asphalt concrete with graphite.
DOT National Transportation Integrated Search
2014-08-01
Electrically conductive asphalt concrete has a huge potential for various multifunctional applications such as : self-healing, self-sensing, and deicing. In order to utilize the full spectrum of applications of electrically conductive : asphalt compo...
Luo, Yiyang; Xia, Li; Xu, Zhilin; Yu, Can; Sun, Qizhen; Li, Wei; Huang, Di; Liu, Deming
2015-02-09
An optical chaos and hybrid wavelength division multiplexing/time division multiplexing (WDM/TDM) based large capacity quasi-distributed sensing network with real-time fiber fault monitoring is proposed. Chirped fiber Bragg grating (CFBG) intensity demodulation is adopted to improve the dynamic range of the measurements. Compared with the traditional sensing interrogation methods in time, radio frequency and optical wavelength domains, the measurand sensing and the precise locating of the proposed sensing network can be simultaneously interrogated by the relative amplitude change (RAC) and the time delay of the correlation peak in the cross-correlation spectrum. Assisted with the WDM/TDM technology, hundreds of sensing units could be potentially multiplexed in the multiple sensing fiber lines. Based on the proof-of-concept experiment for axial strain measurement with three sensing fiber lines, the strain sensitivity up to 0.14% RAC/με and the precise locating of the sensors are achieved. Significantly, real-time fiber fault monitoring in the three sensing fiber lines is also implemented with a spatial resolution of 2.8 cm.
Cognitive LF-Ant: a novel protocol for healthcare wireless sensor networks.
Sousa, Marcelo; Lopes, Waslon; Madeiro, Francisco; Alencar, Marcelo
2012-01-01
In this paper, the authors present the Cognitive LF-Ant protocol for emergency reporting in healthcare wireless sensor networks. The protocol is inspired by the natural behaviour of ants and a cognitive component provides the capabilities to dynamically allocate resources, in accordance with the emergency degree of each patient. The intra-cluster emergency reporting is inspired by the different capabilities of leg-manipulated ants. The inter-cluster reporting is aided by the cooperative modulation diversity with spectrum sensing, which can detect new emergency reporting requests and forward them. Simulations results show the decrease of average delay time as the probability of opportunistic access increases, which privileges the emergency reporting related to the patients with higher priority of resources' usage. Furthermore, the packet loss rate is decreased by the use of cooperative modulation diversity with spectrum sensing.
Cognitive LF-Ant: A Novel Protocol for Healthcare Wireless Sensor Networks
Sousa, Marcelo; Lopes, Waslon; Madeiro, Francisco; Alencar, Marcelo
2012-01-01
In this paper, the authors present the Cognitive LF-Ant protocol for emergency reporting in healthcare wireless sensor networks. The protocol is inspired by the natural behaviour of ants and a cognitive component provides the capabilities to dynamically allocate resources, in accordance with the emergency degree of each patient. The intra-cluster emergency reporting is inspired by the different capabilities of leg-manipulated ants. The inter-cluster reporting is aided by the cooperative modulation diversity with spectrum sensing, which can detect new emergency reporting requests and forward them. Simulations results show the decrease of average delay time as the probability of opportunistic access increases, which privileges the emergency reporting related to the patients with higher priority of resources' usage. Furthermore, the packet loss rate is decreased by the use of cooperative modulation diversity with spectrum sensing. PMID:23112610
Performance analysis of higher mode spoof surface plasmon polariton for terahertz sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Haizi; Tu, Wanli; Zhong, Shuncong, E-mail: zhongshuncong@hotmail.com
2015-04-07
We investigated the spoof surface plasmon polaritons (SSPPs) on 1D grooved metal surface for terahertz sensing of refractive index of the filling analyte through a prism-coupling attenuated total reflection setup. From the dispersion relation analysis and the finite element method-based simulation, we revealed that the dispersion curve of SSPP got suppressed as the filling refractive index increased, which cause the coupling resonance frequency redshifting in the reflection spectrum. The simulated results for testing various refractive indexes demonstrated that the incident angle of terahertz radiation has a great effect on the performance of sensing. Smaller incident angle will result in amore » higher sensitive sensing with a narrower detection range. In the meanwhile, the higher order mode SSPP-based sensing has a higher sensitivity with a narrower detection range. The maximum sensitivity is 2.57 THz/RIU for the second-order mode sensing at 45° internal incident angle. The proposed SSPP-based method has great potential for high sensitive terahertz sensing.« less
Smith, L O; Elder, J H; Storch, E A; Rowe, M A
2015-01-01
Children with autism spectrum disorder (ASD) may be a stressor for family members yet there is little published research on the impact of having a child with ASD on their typically developing (TD) adolescent siblings. According to Antonovsky's salutogenic model, a strong sense of coherence leads to the view that the stressor is a manageable challenge rather than a burden and promotes healthier adaptation. This study examines the relationship between stress, TD sibling resources and the sense of coherence in TD siblings. This quantitative mail-based study uses a survey methodology, analysing the responses of TD adolescent siblings (n = 96) of individuals with autism, Asperger's syndrome, or pervasive developmental disorder - not otherwise specified to several rating scales. Adolescent siblings, ages 11 to 18 years, completed the Adolescent Coping Orientation for Problem Experience (ACOPE), Network of Relationship Inventory - Social Provision Version (NRI-SPV), Youth Self Report (YSR), and Sense of Coherence (SOC) instruments; parents completed the Child Autism Rating Scale - 2nd Edition (CARS-2). The salutogenesis model was used to guide and inform this research. Findings suggested the following: (a) the stress of ASD severity and resource of adjustment are related in TD adolescent siblings; (b) TD sibling adjustment has a strong relationship with sense of coherence levels; and (c) a greater number of positive coping strategies buffer TD sibling coherence levels when ASD severity scores are high. ASD severity and TD adolescent sibling resources influence sense of coherence in adolescent TD siblings of individuals with ASD. © 2014 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.
Architecture for one-shot compressive imaging using computer-generated holograms.
Macfaden, Alexander J; Kindness, Stephen J; Wilkinson, Timothy D
2016-09-10
We propose a synchronous implementation of compressive imaging. This method is mathematically equivalent to prevailing sequential methods, but uses a static holographic optical element to create a spatially distributed spot array from which the image can be reconstructed with an instantaneous measurement. We present the holographic design requirements and demonstrate experimentally that the linear algebra of compressed imaging can be implemented with this technique. We believe this technique can be integrated with optical metasurfaces, which will allow the development of new compressive sensing methods.
Comparison of holographic lens and filter systems for lateral spectrum splitting
NASA Astrophysics Data System (ADS)
Vorndran, Shelby; Chrysler, Benjamin; Kostuk, Raymond K.
2016-09-01
Spectrum splitting is an approach to increasing the conversion efficiency of a photovoltaic (PV) system. Several methods can be used to perform this function which requires efficient spatial separation of different spectral bands of the incident solar radiation. In this paper several of holographic methods for implementing spectrum splitting are reviewed along with the benefits and disadvantages associated with each approach. The review indicates that a volume holographic lens has many advantages for spectrum splitting in terms of both power conversion efficiency and energy yield. A specific design for a volume holographic spectrum splitting lens is discussed for use with high bandgap InGaP and low bandgap silicon PV cells. The holographic lenses are modeled using rigorous coupled wave analysis, and the optical efficiency is evaluated using non-sequential raytracing. A proof-of-concept off-axis holographic lens is also recorded in dichromated gelatin film and the spectral diffraction efficiency of the hologram is measured with multiple laser sources across the diffracted spectral band. The experimental volume holographic lens (VHL) characteristics are compared to an ideal spectrum splitting filter in terms of power conversion efficiency and energy yield in environments with high direct normal incidence (DNI) illumination and high levels of diffuse illumination. The results show that the experimental VHL can achieve 62.5% of the ideal filter power conversion efficiency, 64.8% of the ideal filter DNI environment energy yield, and 57.7% of the ideal diffuse environment energy yield performance.
NASA Astrophysics Data System (ADS)
Yan, Hao-Peng; Liu, Wen-Biao
2016-08-01
Using Parikh-Wilczek tunneling framework, we calculate the tunneling rate from a Schwarzschild black hole under the third order WKB approximation, and then obtain the expressions for emission spectrum and black hole entropy to the third order correction. The entropy contains four terms including the Bekenstein-Hawking entropy, the logarithmic term, the inverse area term, and the square of inverse area term. In addition, we analyse the correlation between sequential emissions under this approximation. It is shown that the entropy is conserved during the process of black hole evaporation, which consists with the request of quantum mechanics and implies the information is conserved during this process. We also compare the above result with that of pure thermal spectrum case, and find that the non-thermal correction played an important role.
3D Indoor Positioning of UAVs with Spread Spectrum Ultrasound and Time-of-Flight Cameras
Aguilera, Teodoro
2017-01-01
This work proposes the use of a hybrid acoustic and optical indoor positioning system for the accurate 3D positioning of Unmanned Aerial Vehicles (UAVs). The acoustic module of this system is based on a Time-Code Division Multiple Access (T-CDMA) scheme, where the sequential emission of five spread spectrum ultrasonic codes is performed to compute the horizontal vehicle position following a 2D multilateration procedure. The optical module is based on a Time-Of-Flight (TOF) camera that provides an initial estimation for the vehicle height. A recursive algorithm programmed on an external computer is then proposed to refine the estimated position. Experimental results show that the proposed system can increase the accuracy of a solely acoustic system by 70–80% in terms of positioning mean square error. PMID:29301211
Collaborative Wideband Compressed Signal Detection in Interplanetary Internet
NASA Astrophysics Data System (ADS)
Wang, Yulin; Zhang, Gengxin; Bian, Dongming; Gou, Liang; Zhang, Wei
2014-07-01
As the development of autonomous radio in deep space network, it is possible to actualize communication between explorers, aircrafts, rovers and satellites, e.g. from different countries, adopting different signal modes. The first mission to enforce the autonomous radio is to detect signals of the explorer autonomously without disturbing the original communication. This paper develops a collaborative wideband compressed signal detection approach for InterPlaNetary (IPN) Internet where there exist sparse active signals in the deep space environment. Compressed sensing (CS) can be utilized by exploiting the sparsity of IPN Internet communication signal, whose useful frequency support occupies only a small portion of an entirely wide spectrum. An estimate of the signal spectrum can be obtained by using reconstruction algorithms. Against deep space shadowing and channel fading, multiple satellites collaboratively sense and make a final decision according to certain fusion rule to gain spatial diversity. A couple of novel discrete cosine transform (DCT) and walsh-hadamard transform (WHT) based compressed spectrum detection methods are proposed which significantly improve the performance of spectrum recovery and signal detection. Finally, extensive simulation results are presented to show the effectiveness of our proposed collaborative scheme for signal detection in IPN Internet. Compared with the conventional discrete fourier transform (DFT) based method, our DCT and WHT based methods reduce computational complexity, decrease processing time, save energy and enhance probability of detection.
Helles, Adam; Gillberg, I Carina; Gillberg, Christopher; Billstedt, Eva
2017-05-01
This study examined objective quality of life (work, academic success, living situation, relationships, support system) and subjective quality of life (Sense of Coherence and Short-Form Health Survey-36) in an adult sample of males ( n = 50, mean age: 30 years) with Asperger syndrome diagnosed in childhood and followed prospectively over two decades. The association between long-term diagnostic stability of an autism spectrum disorder and/or comorbid psychiatric disorders with quality of life was also examined. The results showed great variability as regards quality of life. The subsample that no longer fulfilled an autism spectrum disorder had full-time jobs or studies (10/11), independent living (100%), and reported having two or more friends (100%). In the stable autism spectrum disorder group, 41% had full-time job or studies, 51% lived independently, and 33% reported two or more friends, and a significant minority had specialized employments, lived with support from the government, or had no friends. Academic success was positively correlated with IQ. A majority of the total group scored average Sense of Coherence scores, and the mean for Short-Form Health Survey-36 was above average regarding psychical health and below average regarding mental health. Stability of autism spectrum disorder diagnosis was associated with objective but not subjective quality of life, while psychiatric comorbidity was associated with subjective but not objective quality of life.
NASA Astrophysics Data System (ADS)
Chrysler, Benjamin D.; Wu, Yuechen; Yu, Zhengshan; Kostuk, Raymond K.
2017-08-01
In this paper a prototype spectrum-splitting photovoltaic system based on volume holographic lenses (VHL) is designed, fabricated and tested. In spectrum-splitting systems, incident sunlight is divided in spectral bands for optimal conversion by a set of single-junction PV cells that are laterally separated. The VHL spectrumsplitting system in this paper has a form factor similar to conventional silicon PV modules but with higher efficiencies (>30%). Unlike many other spectrum-splitting systems that have been proposed in the past, the system in this work converts both direct and diffuse sunlight while using inexpensive 1-axis tracking systems. The VHL system uses holographic lenses that focus light at a transition wavelength to the boundary between two PV cells. Longer wavelength light is dispersed to the narrow bandgap cell and shorter wavelength light to the wide bandgap cell. A prototype system is designed with silicon and GaAs PV cells. The holographic lenses are fabricated in Covestro Bayfol HX photopolymer by `stitching' together lens segments through sequential masked exposures. The PV cells and holographic lenses were characterized and the data was used in a raytrace simulation and predicts an improvement in total power output of 15.2% compared to a non-spectrum-splitting reference. A laboratory measurement yielded an improvement in power output of 8.5%.
The study of active tectonic based on hyperspectral remote sensing
NASA Astrophysics Data System (ADS)
Cui, J.; Zhang, S.; Zhang, J.; Shen, X.; Ding, R.; Xu, S.
2017-12-01
As of the latest technical methods, hyperspectral remote sensing technology has been widely used in each brach of the geosciences. However, it is still a blank for using the hyperspectral remote sensing to study the active structrure. Hyperspectral remote sensing, with high spectral resolution, continuous spectrum, continuous spatial data, low cost, etc, has great potentialities in the areas of stratum division and fault identification. Blind fault identification in plains and invisible fault discrimination in loess strata are the two hot problems in the current active fault research. Thus, the study of active fault based on the hyperspectral technology has great theoretical significance and practical value. Magnetic susceptibility (MS) records could reflect the rhythm alteration of the formation. Previous study shown that MS has correlation with spectral feature. In this study, the Emaokou section, located to the northwest of the town of Huairen, in Shanxi Province, has been chosen for invisible fault study. We collected data from the Emaokou section, including spectral data, hyperspectral image, MS data. MS models based on spectral features were established and applied to the UHD185 image for MS mapping. The results shown that MS map corresponded well to the loess sequences. It can recognize the stratum which can not identity by naked eyes. Invisible fault has been found in this section, which is useful for paleoearthquake analysis. The faults act as the conduit for migration of terrestrial gases, the fault zones, especially the structurally weak zones such as inrtersections or bends of fault, may has different material composition. We take Xiadian fault for study. Several samples cross-fault were collected and these samples were measured by ASD Field Spec 3 spectrometer. Spectral classification method has been used for spectral analysis, we found that the spectrum of the fault zone have four special spectral region(550-580nm, 600-700nm, 700-800nm and 800-900nm), which different with the spectrum of the none-fault zone. It could help us welly located the fault zone. The located result correspond well to the physical prospecting method result. The above study shown that Hypersepctral remote sensing technology provide a new method for active study.
Elaborate analysis and design of filter-bank-based sensing for wideband cognitive radios
NASA Astrophysics Data System (ADS)
Maliatsos, Konstantinos; Adamis, Athanasios; Kanatas, Athanasios G.
2014-12-01
The successful operation of a cognitive radio system strongly depends on its ability to sense the radio environment. With the use of spectrum sensing algorithms, the cognitive radio is required to detect co-existing licensed primary transmissions and to protect them from interference. This paper focuses on filter-bank-based sensing and provides a solid theoretical background for the design of these detectors. Optimum detectors based on the Neyman-Pearson theorem are developed for uniform discrete Fourier transform (DFT) and modified DFT filter banks with root-Nyquist filters. The proposed sensing framework does not require frequency alignment between the filter bank of the sensor and the primary signal. Each wideband primary channel is spanned and monitored by several sensor subchannels that analyse it in narrowband signals. Filter-bank-based sensing is proved to be robust and efficient under coloured noise. Moreover, the performance of the weighted energy detector as a sensing technique is evaluated. Finally, based on the Locally Most Powerful and the Generalized Likelihood Ratio test, real-world sensing algorithms that do not require a priori knowledge are proposed and tested.
Fiber Optic-Based Refractive Index Sensing at INESC Porto
Jorge, Pedro A. S.; Silva, Susana O.; Gouveia, Carlos; Tafulo, Paula; Coelho, Luis; Caldas, Paulo; Viegas, Diana; Rego, Gaspar; Baptista, José M.; Santos, José L.; Frazão, Orlando
2012-01-01
A review of refractive index measurement based on different types of optical fiber sensor configurations and techniques is presented. It addresses the main developments in the area, with particular focus on results obtained at INESC Porto, Portugal. The optical fiber sensing structures studied include those based on Bragg and long period gratings, on micro-interferometers, on plasmonic effects in fibers and on multimode interference in a large spectrum of standard and microstructured optical fibers. PMID:22969405
Nelson, Barnaby; Thompson, Andrew; Yung, Alison R
2012-11-01
Phenomenological research indicates that disturbance of the basic sense of self may be a core phenotypic marker of schizophrenia spectrum disorders. Basic self-disturbance refers to a disruption of the sense of ownership of experience and agency of action and is associated with a variety of anomalous subjective experiences. In this study, we investigated the presence of basic self-disturbance in an "ultra high risk" (UHR) for psychosis sample compared with a healthy control sample and whether it predicted transition to psychotic disorder. Forty-nine UHR patients and 52 matched healthy control participants were recruited to the study. Participants were assessed for basic self-disturbance using the Examination of Anomalous Self-Experience (EASE) instrument. UHR participants were followed for a mean of 569 days. Levels of self-disturbance were significantly higher in the UHR sample compared with the healthy control sample (P < .001). Cox regression indicated that total EASE score significantly predicted time to transition (P < .05) when other significant predictors were controlled for. Exploratory analyses indicated that basic self-disturbance scores were higher in schizophrenia spectrum cases, irrespective of transition to psychosis, than nonschizophrenia spectrum cases. The results indicate that identifying basic self-disturbance in the UHR population may provide a means of further "closing in" on individuals truly at high risk of psychotic disorder, particularly of schizophrenia spectrum disorders. This may be of practical value by reducing inclusion of "false positive" cases in UHR samples and of theoretical value by shedding light on core phenotypic features of schizophrenia spectrum pathology.
Yan, Shubin; Zhang, Meng; Zhao, Xuefeng; Zhang, Yanjun; Wang, Jicheng; Jin, Wen
2017-12-11
In this study, a new refractive index sensor based on a metal-insulator-metal waveguide coupled with a notched ring resonator and stub is designed. The finite element method is used to study the propagation characteristics of the sensor. According to the calculation results, the transmission spectrum exhibits a typical Fano resonance shape. The phenomenon of Fano resonance is caused by the coupling between the broadband spectrum and narrowband spectrum. In the design, the broadband spectrum signal is generated by the stub, while the narrowband spectrum signal is generated by the notched ring resonator. In addition, the structural parameters of the resonators and the structure filled with media of different refractive indices are varied to study the sensing properties. The maximum achieved sensitivity of the sensor reached 1071.4 nm/RIU. The results reveal potential applications of the coupled system in the field of sensors.
The perceptual processing capacity of summary statistics between and within feature dimensions
Attarha, Mouna; Moore, Cathleen M.
2015-01-01
The simultaneous–sequential method was used to test the processing capacity of statistical summary representations both within and between feature dimensions. Sixteen gratings varied with respect to their size and orientation. In Experiment 1, the gratings were equally divided into four separate smaller sets, one of which with a mean size that was larger or smaller than the other three sets, and one of which with a mean orientation that was tilted more leftward or rightward. The task was to report the mean size and orientation of the oddball sets. This therefore required four summary representations for size and another four for orientation. The sets were presented at the same time in the simultaneous condition or across two temporal frames in the sequential condition. Experiment 1 showed evidence of a sequential advantage, suggesting that the system may be limited with respect to establishing multiple within-feature summaries. Experiment 2 eliminates the possibility that some aspect of the task, other than averaging, was contributing to this observed limitation. In Experiment 3, the same 16 gratings appeared as one large superset, and therefore the task only required one summary representation for size and another one for orientation. Equal simultaneous–sequential performance indicated that between-feature summaries are capacity free. These findings challenge the view that within-feature summaries drive a global sense of visual continuity across areas of the peripheral visual field, and suggest a shift in focus to seeking an understanding of how between-feature summaries in one area of the environment control behavior. PMID:26360153
RFI and Remote Sensing of the Earth from Space
NASA Technical Reports Server (NTRS)
Le Vine, D. M.; Johnson, J. T.; Piepmeier, J.
2016-01-01
Passive microwave remote sensing of the Earth from space provides information essential for understanding the Earth's environment and its evolution. Parameters such as soil moisture, sea surface temperature and salinity, and profiles of atmospheric temperature and humidity are measured at frequencies determined by the physics (e.g. sensitivity to changes in desired parameters) and by the availability of suitable spectrum free from interference. Interference from manmade sources (radio frequency interference) is an impediment that in many cases limits the potential for accurate measurements from space. A review is presented here of the frequencies employed in passive microwave remote sensing of the Earth from space and the associated experience with RFI.
Supreme EnLIGHTenment: Damage Recognition and Signaling in the Mammalian UV Response
Herrlich, Peter; Karin, Michael; Weiss, Carsten
2009-01-01
Like their prokaryotic counterparts, mammalian cells can sense light, especially in the ultraviolet (UV) range of the spectrum. Following UV exposure cells mount an elaborate response – called the UV response, which mimics physiological signaling responses except that it targets multiple pathways thereby lacking the defined specificity of receptor-triggered signal transduction. Despite many years of research it is still not fully clear how UV radiation is sensed and converted into the „language of cells“ - signal reception and transduction. This review focuses on how photonic energy and its primary cellular products are sensed to elicit the UV response. PMID:18280234
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adriano Junior, L.; Fonseca, T. L.; Castro, M. A.
2016-06-21
Theoretical results for the absorption spectrum and electric properties of the enol and keto tautomeric forms of anil derivatives in the gas-phase and in solution are presented. The electronic properties in chloroform, acetonitrile, methanol, and water were determined by carrying out sequential Monte Carlo simulations and quantum mechanics calculations based on the time dependent density functional theory and on the second-order Møller–Plesset perturbation theory method. The results illustrate the role played by electrostatic interactions in the electronic properties of anil derivatives in a liquid environment. There is a significant increase of the dipole moment in solution (20%-100%) relative to themore » gas-phase value. Solvent effects are mild for the absorption spectrum and linear polarizability but they can be particularly important for first hyperpolarizability. A large first hyperpolarizability contrast between the enol and keto forms is observed when absorption spectra present intense lowest-energy absorption bands. Dynamic results for the first hyperpolarizability are in qualitative agreement with the available experimental results.« less
Lei, Zhouyue; Wu, Peiyi
2018-03-19
Biomimetic skin-like materials, capable of adapting shapes to variable environments and sensing external stimuli, are of great significance in a wide range of applications, including artificial intelligence, soft robotics, and smart wearable devices. However, such highly sophisticated intelligence has been mainly found in natural creatures while rarely realized in artificial materials. Herein, we fabricate a type of biomimetic iontronics to imitate natural skins using supramolecular polyelectrolyte hydrogels. The dynamic viscoelastic networks provide the biomimetic skin with a wide spectrum of mechanical properties, including flexible reconfiguration ability, robust elasticity, extremely large stretchability, autonomous self-healability, and recyclability. Meanwhile, polyelectrolytes' ionic conductivity allows multiple sensory capabilities toward temperature, strain, and stress. This work provides not only insights into dynamic interactions and sensing mechanism of supramolecular iontronics, but may also promote the development of biomimetic skins with sophisticated intelligence similar to natural skins.
A Decentralized Eigenvalue Computation Method for Spectrum Sensing Based on Average Consensus
NASA Astrophysics Data System (ADS)
Mohammadi, Jafar; Limmer, Steffen; Stańczak, Sławomir
2016-07-01
This paper considers eigenvalue estimation for the decentralized inference problem for spectrum sensing. We propose a decentralized eigenvalue computation algorithm based on the power method, which is referred to as generalized power method GPM; it is capable of estimating the eigenvalues of a given covariance matrix under certain conditions. Furthermore, we have developed a decentralized implementation of GPM by splitting the iterative operations into local and global computation tasks. The global tasks require data exchange to be performed among the nodes. For this task, we apply an average consensus algorithm to efficiently perform the global computations. As a special case, we consider a structured graph that is a tree with clusters of nodes at its leaves. For an accelerated distributed implementation, we propose to use computation over multiple access channel (CoMAC) as a building block of the algorithm. Numerical simulations are provided to illustrate the performance of the two algorithms.
Multi-Channel Capacitive Sensor Arrays
Wang, Bingnan; Long, Jiang; Teo, Koon Hoo
2016-01-01
In this paper, multi-channel capacitive sensor arrays based on microstrip band-stop filters are studied. The sensor arrays can be used to detect the proximity of objects at different positions and directions. Each capacitive sensing structure in the array is connected to an inductive element to form resonance at different frequencies. The resonances are designed to be isolated in the frequency spectrum, such that the change in one channel does not affect resonances at other channels. The inductive element associated with each capacitive sensor can be surface-mounted inductors, integrated microstrip inductors or metamaterial-inspired structures. We show that by using metamaterial split-ring structures coupled to a microstrip line, the quality factor of each resonance can be greatly improved compared to conventional surface-mounted or microstrip meander inductors. With such a microstrip-coupled split-ring design, more sensing elements can be integrated in the same frequency spectrum, and the sensitivity can be greatly improved. PMID:26821023
Two-frequency /Delta k/ microwave scatterometer measurements of ocean wave spectra from an aircraft
NASA Technical Reports Server (NTRS)
Johnson, J. W.; Jones, W. L.; Weissman, D. E.
1981-01-01
A technique for remotely sensing the large-scale gravity wave spectrum on the ocean surface using a two frequency (Delta k) microwave scatterometer has been demonstrated from stationary platforms and proposed from moving platforms. This measurement takes advantage of Bragg type resonance matching between the electromagnetic wavelength at the difference frequency and the length of the large-scale surface waves. A prominent resonance appears in the cross product power spectral density (PSD) of the two backscattered signals. Ku-Band aircraft scatterometer measurements were conducted by NASA in the North Sea during the 1979 Maritime Remote Sensing (MARSEN) experiment. Typical examples of cross product PSD's computed from the MARSEN data are presented. They demonstrate strong resonances whose frequency and bandwidth agree with the surface characteristics and the theory. Directional modulation spectra of the surface reflectivity are compared to the gravity wave spectrum derived from surface truth measurements.
Yu, Zhicong; Leng, Shuai; Li, Zhoubo; McCollough, Cynthia H.
2016-01-01
Photon-counting computed tomography (PCCT) is an emerging imaging technique that enables multi-energy imaging with only a single scan acquisition. To enable multi-energy imaging, the detected photons corresponding to the full x-ray spectrum are divided into several subgroups of bin data that correspond to narrower energy windows. Consequently, noise in each energy bin increases compared to the full-spectrum data. This work proposes an iterative reconstruction algorithm for noise suppression in the narrower energy bins used in PCCT imaging. The algorithm is based on the framework of prior image constrained compressed sensing (PICCS) and is called spectral PICCS; it uses the full-spectrum image reconstructed using conventional filtered back-projection as the prior image. The spectral PICCS algorithm is implemented using a constrained optimization scheme with adaptive iterative step sizes such that only two tuning parameters are required in most cases. The algorithm was first evaluated using computer simulations, and then validated by both physical phantoms and in-vivo swine studies using a research PCCT system. Results from both computer-simulation and experimental studies showed substantial image noise reduction in narrow energy bins (43~73%) without sacrificing CT number accuracy or spatial resolution. PMID:27551878
NASA Astrophysics Data System (ADS)
Yu, Zhicong; Leng, Shuai; Li, Zhoubo; McCollough, Cynthia H.
2016-09-01
Photon-counting computed tomography (PCCT) is an emerging imaging technique that enables multi-energy imaging with only a single scan acquisition. To enable multi-energy imaging, the detected photons corresponding to the full x-ray spectrum are divided into several subgroups of bin data that correspond to narrower energy windows. Consequently, noise in each energy bin increases compared to the full-spectrum data. This work proposes an iterative reconstruction algorithm for noise suppression in the narrower energy bins used in PCCT imaging. The algorithm is based on the framework of prior image constrained compressed sensing (PICCS) and is called spectral PICCS; it uses the full-spectrum image reconstructed using conventional filtered back-projection as the prior image. The spectral PICCS algorithm is implemented using a constrained optimization scheme with adaptive iterative step sizes such that only two tuning parameters are required in most cases. The algorithm was first evaluated using computer simulations, and then validated by both physical phantoms and in vivo swine studies using a research PCCT system. Results from both computer-simulation and experimental studies showed substantial image noise reduction in narrow energy bins (43-73%) without sacrificing CT number accuracy or spatial resolution.
[Detection of oil spills on water by differential polarization FTIR spectrometry].
Yuan, Yue-ming; Xiong, Wei; Fang, Yong-hua; Lan, Tian-ge; Li, Da-cheng
2010-08-01
Detection of oil spills on water, by traditional thermal remote sensing, is based on the radiance contrast between the large area of clean water and the polluted area of water. And the categories of oil spills can not be identified by analysing the thermal infrared image. In order to find out the extent of pollution and identify the oil contaminants, an approach to the passive detection of oil spills on water by differential polarization FTIR spectrometry is proposed. This approach can detect the contaminants by obtaining and analysing the subtracted spectrum of horizontal and vertical polarization intensity spectrum. In the present article, the radiance model of differential polarization FTIR spectrometry is analysed, and an experiment about detection of No. O diesel and SF96 film on water by this method is presented. The results of this experiment indicate that this method can detect the oil contaminants on water without radiance contrast with clean water, and it also can identify oil spills by analysing the spectral characteristic of differential polarization FTIR spectrum. So it well makes up for the shortage of traditional thermal remote sensing on detecting oil spills on water.
M-OTDR sensing system based on 3D encoded microstructures
Sun, Qizhen; Ai, Fan; Liu, Deming; Cheng, Jianwei; Luo, Hongbo; Peng, Kuan; Luo, Yiyang; Yan, Zhijun; Shum, Perry Ping
2017-01-01
In this work, a quasi-distributed sensing scheme named as microstructured OTDR (M-OTDR) by introducing ultra-weak microstructures along the fiber is proposed. Owing to its relative higher reflectivity compared with the backscattered coefficient in fiber and three dimensional (3D) i.e. wavelength/frequency/time encoded property, the M-OTDR system exhibits the superiorities of high signal to noise ratio (SNR), high spatial resolution of millimeter level and high multiplexing capacity up to several ten thousands theoretically. A proof-of-concept system consisting of 64 sensing units is constructed to demonstrate the feasibility and sensing performance. With the help of the demodulation method based on 3D analysis and spectrum reconstruction of the signal light, quasi-distributed temperature sensing with a spatial resolution of 20 cm as well as a measurement resolution of 0.1 °C is realized. PMID:28106132
All-metal meta-surfaces for narrowband light absorption and high performance sensing
NASA Astrophysics Data System (ADS)
Liu, Zhengqi; Liu, Guiqiang; Fu, Guolan; Liu, Xiaoshan; Huang, Zhenping; Gu, Gang
2016-11-01
We report an experimental scheme for high performance sensing by an all-metal meta-surface (AMMS) platform. A dual-band resonant absorption spectrum with a bandwidth down to a single-digit nanometer level and an absorbance up to 89% is achieved due to the surface lattice resonances supported by the resonators array and their hybridization coupling with the particle plasmon resonances. The sensing application in the analysis of the sodium chloride solution has been demonstrated, where remarkable changes from a spectral ‘dark state’ to ‘bright state’ and vice versa are observed. Sensing performance factors of the figure of merit exceeding 50 and the spectral intensity change related FoM* up to 1075 are simultaneously achieved. The corresponding detection limit is as low as 8.849 × 10-6 RIU. These features make such an AMMS-based sensor a promising route for efficient bio-chemical sensing, etc.
Hosford, Charles C; Siders, William A
2010-10-01
Strategies to facilitate learning include using knowledge of students' learning style preferences to inform students and their teachers. Aims of this study were to evaluate the factor structure, internal consistency, and temporal stability of medical student responses to the Index of Learning Styles (ILS) and determine its appropriateness as an instrument for medical education. The ILS assesses preferences on four dimensions: sensing/intuitive information perceiving, visual/verbal information receiving, active/reflective information processing, and sequential/global information understanding. Students entering the 2002-2007 classes completed the ILS; some completed the ILS again after 2 and 4 years. Analyses of responses supported the ILS's intended structure and moderate reliability. Students had moderate preferences for sensing and visual learning. This study provides evidence supporting the appropriateness of the ILS for assessing learning style preferences in medical students.
Satellite remote sensing over ice
NASA Technical Reports Server (NTRS)
Thomas, R. H.
1984-01-01
Satellite remote sensing provides unique opportunities for observing ice-covered terrain. Passive-microwave data give information on snow extent on land, sea-ice extent and type, and zones of summer melting on the polar ice sheets, with the potential for estimating snow-accumulation rates on these ice sheets. All weather, high-resolution imagery of sea ice is obtained using synthetic aperture radars, and ice-movement vectors can be deduced by comparing sequential images of the same region. Radar-altimetry data provide highly detailed information on ice-sheet topography, with the potential for deducing thickening/thinning rates from repeat surveys. The coastline of Antarctica can be mapped accurately using altimetry data, and the size and spatial distribution of icebergs can be monitored. Altimetry data also distinguish open ocean from pack ice and they give an indication of sea-ice characteristics.
Satellite remote sensing over ice
NASA Technical Reports Server (NTRS)
Thomas, R. H.
1986-01-01
Satellite remote sensing provides unique opportunities for observing ice-covered terrain. Passive-microwave data give information on snow extent on land, sea-ice extent and type, and zones of summer melting on the polar ice sheets, with the potential for estimating snow-accumulation rates on these ice sheets. All weather, high-resolution imagery of sea ice is obtained using synthetic aperture radars, and ice-movement vectors can be deduced by comparing sequential images of the same region. Radar-altimetry data provide highly detailed information on ice-sheet topography, with the potential for deducing thickening/thinning rates from repeat surveys. The coastline of Antarctica can be mapped accurately using altimetry data, and the size and spatial distribution of icebergs can be monitored. Altimetry data also distinguish open ocean from pack ice and they give an indication of sea-ice characteristics.
Wang, Zhuo; Xia, Xiaohong; Guo, Meilan; Shao, Guosheng
2016-12-28
Effective detection of hydrogen at lowered temperature is highly desirable in promoting safety in using this abundant gas as a clean energy source. Through first-principle calculations in the framework of density functional theory, we find that the high-energy (002) surface for rutile TiO 2 is significantly more effective in adsorbing hydrogen atoms through dissociating hydrogen molecules. The pathways for the dissociation of hydrogen molecules and sequential migration of hydrogen atoms are identified through searching along various transitional states. Pathways of low potential barriers indicate promise for hydrogen sensing, even close to room temperature. This has been proven through sensors made of thin films of well-aligned rutile nanorods, wherein the high-energy (002) surface dictates the top surface of the active layer of the sensors.
Effortless assignment with 4D covariance sequential correlation maps.
Harden, Bradley J; Mishra, Subrata H; Frueh, Dominique P
2015-11-01
Traditional Nuclear Magnetic Resonance (NMR) assignment procedures for proteins rely on preliminary peak-picking to identify and label NMR signals. However, such an approach has severe limitations when signals are erroneously labeled or completely neglected. The consequences are especially grave for proteins with substantial peak overlap, and mistakes can often thwart entire projects. To overcome these limitations, we previously introduced an assignment technique that bypasses traditional pick peaking altogether. Covariance Sequential Correlation Maps (COSCOMs) transform the indirect connectivity information provided by multiple 3D backbone spectra into direct (H, N) to (H, N) correlations. Here, we present an updated method that utilizes a single four-dimensional spectrum rather than a suite of three-dimensional spectra. We demonstrate the advantages of 4D-COSCOMs relative to their 3D counterparts. We introduce improvements accelerating their calculation. We discuss practical considerations affecting their quality. And finally we showcase their utility in the context of a 52 kDa cyclization domain from a non-ribosomal peptide synthetase. Copyright © 2015 Elsevier Inc. All rights reserved.
Effortless assignment with 4D covariance sequential correlation maps
NASA Astrophysics Data System (ADS)
Harden, Bradley J.; Mishra, Subrata H.; Frueh, Dominique P.
2015-11-01
Traditional Nuclear Magnetic Resonance (NMR) assignment procedures for proteins rely on preliminary peak-picking to identify and label NMR signals. However, such an approach has severe limitations when signals are erroneously labeled or completely neglected. The consequences are especially grave for proteins with substantial peak overlap, and mistakes can often thwart entire projects. To overcome these limitations, we previously introduced an assignment technique that bypasses traditional pick peaking altogether. Covariance Sequential Correlation Maps (COSCOMs) transform the indirect connectivity information provided by multiple 3D backbone spectra into direct (H, N) to (H, N) correlations. Here, we present an updated method that utilizes a single four-dimensional spectrum rather than a suite of three-dimensional spectra. We demonstrate the advantages of 4D-COSCOMs relative to their 3D counterparts. We introduce improvements accelerating their calculation. We discuss practical considerations affecting their quality. And finally we showcase their utility in the context of a 52 kDa cyclization domain from a non-ribosomal peptide synthetase.
NASA Astrophysics Data System (ADS)
Yu, Liang; Antoni, Jerome; Leclere, Quentin; Jiang, Weikang
2017-11-01
Acoustical source reconstruction is a typical inverse problem, whose minimum frequency of reconstruction hinges on the size of the array and maximum frequency depends on the spacing distance between the microphones. For the sake of enlarging the frequency of reconstruction and reducing the cost of an acquisition system, Cyclic Projection (CP), a method of sequential measurements without reference, was recently investigated (JSV,2016,372:31-49). In this paper, the Propagation based Fast Iterative Shrinkage Thresholding Algorithm (Propagation-FISTA) is introduced, which improves CP in two aspects: (1) the number of acoustic sources is no longer needed and the only making assumption is that of a "weakly sparse" eigenvalue spectrum; (2) the construction of the spatial basis is much easier and adaptive to practical scenarios of acoustical measurements benefiting from the introduction of propagation based spatial basis. The proposed Propagation-FISTA is first investigated with different simulations and experimental setups and is next illustrated with an industrial case.
NASA Astrophysics Data System (ADS)
Hylton, N. P.; Hinrichsen, T. F.; Vaquero-Stainer, A. R.; Yoshida, M.; Pusch, A.; Hopkinson, M.; Hess, O.; Phillips, C. C.; Ekins-Daukes, N. J.
2016-06-01
This paper reports on the results of an investigation into the nature of photoluminescence upconversion at GaAs /InGa P2 interfaces. Using a dual-beam excitation experiment, we demonstrate that the upconversion in our sample proceeds via a sequential two-photon optical absorption mechanism. Measurements of photoluminescence and upconversion photoluminescence revealed evidence of the spatial localization of carriers in the InGa P2 material, arising from partial ordering of the InGa P2 . We also observed the excitation of a two-dimensional electron gas at the GaAs /InGa P2 heterojunction that manifests as a high-energy shoulder in the GaAs photoluminescence spectrum. Furthermore, the results of upconversion photoluminescence excitation spectroscopy demonstrate that the photon energy onset of upconversion luminescence coincides with the energy of the two-dimensional electron gas at the GaAs /InGa P2 interface, suggesting that charge accumulation at the interface can play a crucial role in the upconversion process.
NASA Astrophysics Data System (ADS)
Li, Xiaokai; Wang, Chuncheng; Yuan, Zongqiang; Ye, Difa; Ma, Pan; Hu, Wenhui; Luo, Sizuo; Fu, Libin; Ding, Dajun
2017-09-01
By combining kinematically complete measurements and a semiclassical Monte Carlo simulation we study the correlated-electron dynamics in the strong-field double ionization of Kr. Interestingly, we find that, as we step into the sequential-ionization regime, there are still signatures of correlation in the two-electron joint momentum spectrum and, more intriguingly, the scaling law of the high-energy tail is completely different from early predictions on the low-Z atom (He). These experimental observations are well reproduced by our generalized semiclassical model adapting a Green-Sellin-Zachor potential. It is revealed that the competition between the screening effect of inner-shell electrons and the Coulomb focusing of nuclei leads to a non-inverse-square central force, which twists the returned electron trajectory at the vicinity of the parent core and thus significantly increases the probability of hard recollisions between two electrons. Our results might have promising applications ranging from accurately retrieving atomic structures to simulating celestial phenomena in the laboratory.
Dynamics of C2H 2 3 +→H++H++C 2 + investigated by 50-keV/u Ne8 + impact
NASA Astrophysics Data System (ADS)
Xu, S.; Zhu, X. L.; Feng, W. T.; Guo, D. L.; Zhao, Q.; Yan, S.; Zhang, P.; Zhao, D. M.; Gao, Y.; Zhang, S. F.; Yang, J.; Ma, X.
2018-06-01
Breakup dynamics of C2H 2 3 + → H++H++C 2 + induced by 50-keV/u Ne8 + ion impact is investigated employing a reaction microscope. All three ionic fragments in the final state are detected in coincidence, and their momentum vectors as well as the kinetic energies are determined. The kinetic-energy correlation spectrum of the two protons displays very rich structures. Utilizing the Newton diagrams and the Dalitz plots, different dissociation mechanisms corresponding to these structures are identified. It was found that, besides the concerted and sequential breakup, fragmentation mechanisms associated with different vibration modes including molecular bending and asymmetric stretching also make significant contributions. We analyzed the correlation between different fragmentation mechanisms and the kinetic-energy release (KER) and found that the sequential process occurs with higher KER while, in contrast, the concerted process mainly contributes to the lower KER. This behavior is entirely opposite to the breakup of the CO2 molecule.
Utilization of negative beat-frequencies for maximizing the update-rate of OFDR
NASA Astrophysics Data System (ADS)
Gabai, Haniel; Botsev, Yakov; Hahami, Meir; Eyal, Avishay
2015-07-01
In traditional OFDR systems, the backscattered profile of a sensing fiber is inefficiently duplicated to the negative band of spectrum. In this work, we present a new OFDR design and algorithm that remove this redundancy and make use of negative beat frequencies. In contrary to conventional OFDR designs, it facilitates efficient use of the available system bandwidth and enables distributed sensing with the maximum allowable interrogation update-rate for a given fiber length. To enable the reconstruction of negative beat frequencies an I/Q type receiver is used. In this receiver, both the in-phase (I) and quadrature (Q) components of the backscatter field are detected. Following detection, both components are digitally combined to produce a complex backscatter signal. Accordingly, due to its asymmetric nature, the produced spectrum will not be corrupted by the appearance of negative beat-frequencies. Here, via a comprehensive computer simulation, we show that in contrast to conventional OFDR systems, I/Q OFDR can be operated at maximum interrogation update-rate for a given fiber length. In addition, we experimentally demonstrate, for the first time, the ability of I/Q OFDR to utilize negative beat-frequencies for long-range distributed sensing.
Structural Investigations of Afghanistan Deduced from Remote Sensing and Potential Field Data
NASA Astrophysics Data System (ADS)
Saibi, Hakim; Azizi, Masood; Mogren, Saad
2016-08-01
This study integrates potential gravity and magnetic field data with remotely sensed images and geological data in an effort to understand the subsurface major geological structures in Afghanistan. Integrated analysis of Landsat SRTM data was applied for extraction of geological lineaments. The potential field data were analyzed using gradient interpretation techniques, such as analytic signal (AS), tilt derivative (TDR), horizontal gradient of the tilt derivative (HG-TDR), Euler Deconvolution (ED) and power spectrum methods, and results were correlated with known geological structures. The analysis of remote sensing data and potential field data reveals the regional geological structural characteristics of Afghanistan. The power spectrum analysis of magnetic and gravity data suggests shallow basement rocks at around 1 to 1.5 km depth. The results of TDR of potential field data are in agreement with the location of the major regional fault structures and also the location of the basins and swells, except in the Helmand region (SW Afghanistan) where many high potential field anomalies are observed and attributed to batholiths and near-surface volcanic rocks intrusions. A high-resolution airborne geophysical survey in the data sparse region of eastern Afghanistan is recommended in order to have a complete image of the potential field anomalies.
Shao, Yu; Wang, Ying; Cao, Shaoqing; Huang, Yijian; Zhang, Longfei; Zhang, Feng; Liao, Changrui; Wang, Yiping
2018-06-25
A surface plasmon resonance (SPR) sensor based on a side-polished single mode fiber coated with polyvinyl alcohol (PVA) is demonstrated for relative humidity (RH) sensing. The SPR sensor exhibits a resonant dip in the transmission spectrum in ambient air after PVA film coating, and the resonant wavelength shifts to longer wavelengths as the thickness of the PVA film increases. When RH changes, the resonant dip of the sensor with different film-thicknesses exhibits interesting characteristics for optical spectrum evolution. For sensors with initial wavelengths between 550 nm and 750 nm, the resonant dip shifts to longer wavelengths with increasing RH. The averaged sensitivity increases firstly and then drops, and shows a maximal sensitivity of 1.01 nm/RH%. Once the initial wavelength of the SPR sensor exceeds 850 nm, an inflection point of the resonant wavelength shift can be observed with RH increasing, and the resonant dip shifts to shorter wavelengths for RH values exceeding this point, and sensitivity as high as −4.97 nm/RH% can be obtained in the experiment. The sensor is expected to have potential applications in highly sensitive and cost effective humidity sensing.
Tasseled cap transformation for HJ multispectral remote sensing data
NASA Astrophysics Data System (ADS)
Han, Ling; Han, Xiaoyong
2015-12-01
The tasseled cap transformation of remote sensing data has been widely used in environment, agriculture, forest and ecology. Tasseled cap transformation coefficients matrix of HJ multi-spectrum data has been established through Givens rotation matrix to rotate principal component transform vector to whiteness, greenness and blueness direction of ground object basing on 24 scenes year-round HJ multispectral remote sensing data. The whiteness component enhances the brightness difference of ground object, and the greenness component preserves more detailed information of vegetation change while enhances the vegetation characteristic, and the blueness component significantly enhances factory with blue plastic house roof around the town and also can enhance brightness of water. Tasseled cap transformation coefficients matrix of HJ will enhance the application effect of HJ multispectral remote sensing data in their application fields.
Laboratory exercises, remote sensing of the environment
NASA Technical Reports Server (NTRS)
Mintzer, O.; Ray, J.
1981-01-01
The exercises are designed to convey principles and theory of remote sensing, and methodologies of its application to civil engineering and environmental concerns, including agronomy, geography, geology, wildlife, forestry, hydrology, and other related fields. During the exercises the student is introduced to several types of remote sensing represented by imagery from conventional format: panchromatic, black-and-white infrared, color, and infrared, 35mm aerial photography, thermal infrared, radar, multispectral scanner, and LANDSAT. Upon completion of the exercises the student is expected to know: (1) the electromagnetic spectrum, its various wavelength sub-sections and their uses as sensors, (2) the limitations of each sensor, (3) the interpretation techniques used for extracting data from the various types of imagery, and (4) the cost effectiveness of remote sensing procedures for acquiring and evaluating data of the natural environment.
Sensing Methods for Detecting Analog Television Signals
NASA Astrophysics Data System (ADS)
Rahman, Mohammad Azizur; Song, Chunyi; Harada, Hiroshi
This paper introduces a unified method of spectrum sensing for all existing analog television (TV) signals including NTSC, PAL and SECAM. We propose a correlation based method (CBM) with a single reference signal for sensing any analog TV signals. In addition we also propose an improved energy detection method. The CBM approach has been implemented in a hardware prototype specially designed for participating in Singapore TV white space (WS) test trial conducted by Infocomm Development Authority (IDA) of the Singapore government. Analytical and simulation results of the CBM method will be presented in the paper, as well as hardware testing results for sensing various analog TV signals. Both AWGN and fading channels will be considered. It is shown that the theoretical results closely match with those from simulations. Sensing performance of the hardware prototype will also be presented in fading environment by using a fading simulator. We present performance of the proposed techniques in terms of probability of false alarm, probability of detection, sensing time etc. We also present a comparative study of the various techniques.
Ontology-based classification of remote sensing images using spectral rules
NASA Astrophysics Data System (ADS)
Andrés, Samuel; Arvor, Damien; Mougenot, Isabelle; Libourel, Thérèse; Durieux, Laurent
2017-05-01
Earth Observation data is of great interest for a wide spectrum of scientific domain applications. An enhanced access to remote sensing images for "domain" experts thus represents a great advance since it allows users to interpret remote sensing images based on their domain expert knowledge. However, such an advantage can also turn into a major limitation if this knowledge is not formalized, and thus is difficult for it to be shared with and understood by other users. In this context, knowledge representation techniques such as ontologies should play a major role in the future of remote sensing applications. We implemented an ontology-based prototype to automatically classify Landsat images based on explicit spectral rules. The ontology is designed in a very modular way in order to achieve a generic and versatile representation of concepts we think of utmost importance in remote sensing. The prototype was tested on four subsets of Landsat images and the results confirmed the potential of ontologies to formalize expert knowledge and classify remote sensing images.
On the application of neural networks to the classification of phase modulated waveforms
NASA Astrophysics Data System (ADS)
Buchenroth, Anthony; Yim, Joong Gon; Nowak, Michael; Chakravarthy, Vasu
2017-04-01
Accurate classification of phase modulated radar waveforms is a well-known problem in spectrum sensing. Identification of such waveforms aids situational awareness enabling radar and communications spectrum sharing. While various feature extraction and engineering approaches have sought to address this problem, the use of a machine learning algorithm that best utilizes these features is becomes foremost. In this effort, a comparison of a standard shallow and a deep learning approach are explored. Experiments provide insights into classifier architecture, training procedure, and performance.
Zhang, Fei; Tiyip, Tashpolat; Ding, Jianli; Sawut, Mamat; Tashpolat, Nigara; Kung, Hsiangte; Han, Guihong; Gui, Dongwei
2012-08-01
Aiming at the remote sensing application has been increasingly relying on ground object spectral characteristics. In order to further research the spectral reflectance characteristics in arid area, this study was performed in the typical delta oasis of Weigan and Kuqa rivers located north of Tarim Basin. Data were collected from geo-targets at multiple sites in various field conditions. The spectra data were collected for different soil types including saline-alkaline soil, silt sandy soil, cotton field, and others; vegetations of Alhagi sparsifolia, Phragmites australis, Tamarix, Halostachys caspica, etc., and water bodies. Next, the data were processed to remove high-frequency noise, and the spectral curves were smoothed with the moving average method. The derivative spectrum was generated after eliminating environmental background noise so that to distinguish the original overlap spectra. After continuum removal of the undesirable absorbance, the spectrum curves were able to highlight features for both optical absorbance and reflectance. The spectrum information of each ground object is essential for fully utilizing the multispectrum data generated by remote sensing, which will need a representative spectral library. In this study using ENVI 4.5 software, a preliminary spectral library of surface features was constructed using the data surveyed in the study area. This library can support remote sensing activities such as feature investigation, vegetation classification, and environmental monitoring in the delta oasis region. Future plan will focus on sharing and standardizing the criteria of professional spectral library and to expand and promote the utilization of the spectral databases.
Cognitive software defined radar: waveform design for clutter and interference suppression
NASA Astrophysics Data System (ADS)
Kirk, Benjamin H.; Owen, Jonathan W.; Narayanan, Ram M.; Blunt, Shannon D.; Martone, Anthony F.; Sherbondy, Kelly D.
2017-05-01
Clutter and radio frequency interference (RFI) are prevalent issues in the field of radar and are specifically of interest to of cognitive radar. Here, methods for applying and testing the utility of cognitive radar for clutter and RFI mitigation are explored. Using the adaptable transmit capability, environmental database, and general "awareness" of a cognitive radar system (i.e. spectrum sensing, geographical location, etc.), a matched waveform is synthesized that improves the signal-to-clutter ratio (SCR), assuming at least an estimate of the target response and the environmental clutter response are known a prior i. RFI may also be mitigated by sensing the RF spectrum and adapting the transmit center frequency and bandwidth using methods that optimize bandwidth and signal-to-interference plus noise ratio (SINR) (i.e. the spectrum sensing, multi-objective (SS-MO) algorithm). The improvement is shown by a decrease in the noise floor. The above methods' effectiveness are examined via a test-bed developed around a software defined radio (SDR). Testing and the general use of commercial off the shelf (COTS) devices are desirable for their cost effectiveness, general ease of use, as well as technical and community support, but these devices provide design challenges in order to be effective. The universal software radio peripheral (USRP) X310 SDR is a relatively cheap and portable device that has all the system components of a basic cognitive radar. Design challenges of the SDR include phase coherency between channels, bandwidth limitations, dynamic range, and speed of computation and data communication / recording.
NASA Technical Reports Server (NTRS)
Poulton, C. E.; Faulkner, D. P.
1973-01-01
Activities, pilot projects, and research that will effectively close the gap between state-of-the-art remote sensing technology and the potential users and beneficiaries of this technological and scientific progress are discussed in light of the first year of activity. A broad spectrum of resource and man-environment problems are described in terms of the central thrust of the first-year program to support land use planning decisions with information derived from the interpretation of NASA highlight and satellite imagery.
specsim: A Fortran-77 program for conditional spectral simulation in 3D
NASA Astrophysics Data System (ADS)
Yao, Tingting
1998-12-01
A Fortran 77 program, specsim, is presented for conditional spectral simulation in 3D domains. The traditional Fourier integral method allows generating random fields with a given covariance spectrum. Conditioning to local data is achieved by an iterative identification of the conditional phase information. A flowchart of the program is given to illustrate the implementation procedures of the program. A 3D case study is presented to demonstrate application of the program. A comparison with the traditional sequential Gaussian simulation algorithm emphasizes the advantages and drawbacks of the proposed algorithm.
Modeling non-homologous end joining.
Li, Yongfeng; Cucinotta, Francis A
2011-08-21
Non-homologous end joining (NHEJ) is an important DNA repair pathway for DNA double-strand breaks. Several proteins, including Ku, DNA-PKcs, Artemis, XRCC4/Ligase IV and XLF, are involved in the NHEJ for the DNA damage detection, DNA free end processing and ligation. The classical model of NHEJ is a sequential model in which DNA-PKcs is first recruited by the Ku bound DNA prior to any other repair proteins. Recent experimental study (McElhinny et al., 2000; Costantini et al., 2007; Mari et al., 2006; Yano and Chen, 2008) suggested that the recruitment ordering is not crucial. In this work, by proposing a mathematical model in terms of biochemical reaction network and performing stability and related analysis, we demonstrate theoretically that if DSB repair pathway independent of DNA-PKcs exists, then the classical sequential model and new two-phase model are essentially indistinguishable in the sense that DSB can be repaired thoroughly in both models when the repair proteins are sufficient. Published by Elsevier Ltd.
Concurrent planning and execution for a walking robot
NASA Astrophysics Data System (ADS)
Simmons, Reid
1990-07-01
The Planetary Rover project is developing the Ambler, a novel legged robot, and an autonomous software system for walking the Ambler over rough terrain. As part of the project, we have developed a system that integrates perception, planning, and real-time control to navigate a single leg of the robot through complex obstacle courses. The system is integrated using the Task Control Architecture (TCA), a general-purpose set of utilities for building and controlling distributed mobile robot systems. The walking system, as originally implemented, utilized a sequential sense-plan-act control cycle. This report describes efforts to improve the performance of the system by concurrently planning and executing steps. Concurrency was achieved by modifying the existing sequential system to utilize TCA features such as resource management, monitors, temporal constraints, and hierarchical task trees. Performance was increased in excess of 30 percent with only a relatively modest effort to convert and test the system. The results lend support to the utility of using TCA to develop complex mobile robot systems.
NASA Astrophysics Data System (ADS)
Liu, Wei; Yao, Kainan; Chen, Lu; Huang, Danian; Cao, Jingtai; Gu, Haijun
2018-03-01
Based-on the previous study on the theory of the sequential pyramid wavefront sensor (SPWFS), in this paper, the SPWFS is first applied to the coherent free space optical communications (FSOC) with more flexible spatial resolution and higher sensitivity than the Shack-Hartmann wavefront sensor, and with higher uniformity of intensity distribution and much simpler than the pyramid wavefront sensor. Then, the mixing efficiency (ME) and the bit error rate (BER) of the coherent FSOC are analyzed during the aberrations correction through numerical simulation with binary phase shift keying (BPSK) modulation. Finally, an experimental AO system based-on SPWFS is setup, and the experimental data is used to analyze the ME and BER of homodyne detection with BPSK modulation. The results show that the AO system based-on SPWFS can increase ME and decrease BER effectively. The conclusions of this paper provide a new method of wavefront sensing for designing the AO system for a coherent FSOC system.
On-line diagnosis of sequential systems, 2
NASA Technical Reports Server (NTRS)
Sundstrom, R. J.
1974-01-01
The theory and techniques applicable to the on-line diagnosis of sequential systems, were investigated. A complete model for the study of on-line diagnosis is developed. First an appropriate class of system models is formulated which can serve as a basis for a theoretical study of on-line diagnosis. Then notions of realization, fault, fault-tolerance and diagnosability are formalized which have meaningful interpretations in the the context of on-line diagnosis. The diagnosis of systems which are structurally decomposed and are represented as a network of smaller systems is studied. The fault set considered is the set of faults which only affect one component system is the network. A characterization of those networks which can be diagnosed using a purely combinational detector is achieved. A technique is given which can be used to realize any network by a network which is diagnosable in the above sense. Limits are found on the amount of redundancy involved in any such technique.
Spectrum Access In Cognitive Radio Using a Two-Stage Reinforcement Learning Approach
NASA Astrophysics Data System (ADS)
Raj, Vishnu; Dias, Irene; Tholeti, Thulasi; Kalyani, Sheetal
2018-02-01
With the advent of the 5th generation of wireless standards and an increasing demand for higher throughput, methods to improve the spectral efficiency of wireless systems have become very important. In the context of cognitive radio, a substantial increase in throughput is possible if the secondary user can make smart decisions regarding which channel to sense and when or how often to sense. Here, we propose an algorithm to not only select a channel for data transmission but also to predict how long the channel will remain unoccupied so that the time spent on channel sensing can be minimized. Our algorithm learns in two stages - a reinforcement learning approach for channel selection and a Bayesian approach to determine the optimal duration for which sensing can be skipped. Comparisons with other learning methods are provided through extensive simulations. We show that the number of sensing is minimized with negligible increase in primary interference; this implies that lesser energy is spent by the secondary user in sensing and also higher throughput is achieved by saving on sensing.
NASA Astrophysics Data System (ADS)
Chen, Jingbo; Wang, Chengyi; Yue, Anzhi; Chen, Jiansheng; He, Dongxu; Zhang, Xiuyan
2017-10-01
The tremendous success of deep learning models such as convolutional neural networks (CNNs) in computer vision provides a method for similar problems in the field of remote sensing. Although research on repurposing pretrained CNN to remote sensing tasks is emerging, the scarcity of labeled samples and the complexity of remote sensing imagery still pose challenges. We developed a knowledge-guided golf course detection approach using a CNN fine-tuned on temporally augmented data. The proposed approach is a combination of knowledge-driven region proposal, data-driven detection based on CNN, and knowledge-driven postprocessing. To confront data complexity, knowledge-derived cooccurrence, composition, and area-based rules are applied sequentially to propose candidate golf regions. To confront sample scarcity, we employed data augmentation in the temporal domain, which extracts samples from multitemporal images. The augmented samples were then used to fine-tune a pretrained CNN for golf detection. Finally, commission error was further suppressed by postprocessing. Experiments conducted on GF-1 imagery prove the effectiveness of the proposed approach.
Kim, Jeonghyo; Lee, Kil-Soo; Kim, Eun Bee; Paik, Seungwha; Chang, Chulhun L; Park, Tae Jung; Kim, Hwa-Jung; Lee, Jaebeom
2017-10-15
Tuberculosis (TB) is an often neglected, epidemic disease that remains to be controlled by contemporary techniques of medicine and biotechnology. In this study, a nanoscale sensing system, referred to as magnetophoretic immunoassay (MPI) was designed to capture culture filtrate protein (CFP)-10 antigens effectively using two different types of nanoparticles (NPs). Two specific monoclonal antibodies against CFP-10 antigen were used, including gold NPs for signaling and magnetic particles for separation. These results were carefully compared with those obtained using the commercial mycobacteria growth indicator tube (MGIT) test via 2 sequential clinical tests (with ca. 260 clinical samples). The sensing linearity of MPI was shown in the range of pico- to micromoles and the detection limit was 0.3pM. MPI using clinical samples shows robust and reliable sensing while monitoring Mycobacterium tuberculosis (MTB) growth with monitoring time 3-10 days) comparable to that with the MGIT test. Furthermore, MPI distinguished false-positive samples from MGIT-positive samples, probably containing non-tuberculous mycobacteria. Thus, MPI shows promise in early TB diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Roberge, S.; Chokmani, K.; De Sève, D.
2012-04-01
The snow cover plays an important role in the hydrological cycle of Quebec (Eastern Canada). Consequently, evaluating its spatial extent interests the authorities responsible for the management of water resources, especially hydropower companies. The main objective of this study is the development of a snow-cover mapping strategy using remote sensing data and ensemble based systems techniques. Planned to be tested in a near real-time operational mode, this snow-cover mapping strategy has the advantage to provide the probability of a pixel to be snow covered and its uncertainty. Ensemble systems are made of two key components. First, a method is needed to build an ensemble of classifiers that is diverse as much as possible. Second, an approach is required to combine the outputs of individual classifiers that make up the ensemble in such a way that correct decisions are amplified, and incorrect ones are cancelled out. In this study, we demonstrate the potential of ensemble systems to snow-cover mapping using remote sensing data. The chosen classifier is a sequential thresholds algorithm using NOAA-AVHRR data adapted to conditions over Eastern Canada. Its special feature is the use of a combination of six sequential thresholds varying according to the day in the winter season. Two versions of the snow-cover mapping algorithm have been developed: one is specific for autumn (from October 1st to December 31st) and the other for spring (from March 16th to May 31st). In order to build the ensemble based system, different versions of the algorithm are created by varying randomly its parameters. One hundred of the versions are included in the ensemble. The probability of a pixel to be snow, no-snow or cloud covered corresponds to the amount of votes the pixel has been classified as such by all classifiers. The overall performance of ensemble based mapping is compared to the overall performance of the chosen classifier, and also with ground observations at meteorological stations.
Wei, Yu-Chun; Wang, Guo-Xiang; Cheng, Chun-Mei; Zhang, Jing; Sun, Xiao-Peng
2012-09-01
Suspended particle material is the main factor affecting remote sensing inversion of chlorophyll-a concentration (Chla) in turbidity water. According to the optical property of suspended material in water, the present paper proposed a linear baseline correction method to weaken the suspended particle contribution in the spectrum above turbidity water surface. The linear baseline was defined as the connecting line of reflectance from 450 to 750 nm, and baseline correction is that spectrum reflectance subtracts the baseline. Analysis result of field data in situ of Meiliangwan, Taihu Lake in April, 2011 and March, 2010 shows that spectrum linear baseline correction can improve the inversion precision of Chl a and produce the better model diagnoses. As the data in March, 2010, RMSE of band ratio model built by original spectrum is 4.11 mg x m(-3), and that built by spectrum baseline correction is 3.58 mg x m(-3). Meanwhile, residual distribution and homoscedasticity in the model built by baseline correction spectrum is improved obviously. The model RMSE of April, 2011 shows the similar result. The authors suggest that using linear baseline correction as the spectrum processing method to improve Chla inversion accuracy in turbidity water without algae bloom.
Nonverbal Short-Term Serial Order Memory in Autism Spectrum Disorder
2016-01-01
To clarify the role of item and order memory in the serial recall of adults with autism spectrum disorder (ASD), we carried out 2 experiments in which adults with ASD and comparison participants matched on chronological age and verbal IQ saw sequences of 7 dots appear sequentially in a 3 × 4 grid. In Experiment 1 (serial recall), they had to recall the locations and the presentation order of the dots by tapping locations on an empty grid. In Experiment 2, (order reconstruction) the studied dots were provided at test and participants had to touch them in their order of appearance at study. Experiment 1 revealed diminished item and order recall in the ASD group; Experiment 2 revealed diminished order recall only when verbal IQ was controlled. The results support the view that people with ASD have particular difficulty with serial order recall but may use their language ability to achieve better serial recall performance. PMID:27732024
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar
2010-07-28
We measured the polarization- and angle-resolved optical scattering and reflection spectra of the quasiordered nanostructures in the bird feather barbs. In addition to the primary peak that originates from single scattering, we observed a secondary peak which exhibits depolarization and distinct angular dispersion. We explained the secondary peak in terms of double scattering, i.e., light is scattered successively twice by the structure. The two sequential single-scattering events are considered uncorrelated. Using the Fourier power spectra of the nanostructures obtained from the small-angle x-ray scattering experiment, we calculated the double scattering of light in various directions. The double-scattering spectrum is broadermore » than the single-scattering spectrum, and it splits into two subpeaks at larger scattering angle. The good agreement between the simulation results and the experimental data confirms that double scattering of light makes a significant contribution to the structural color.« less
NASA Astrophysics Data System (ADS)
Jiang, Kaili; Zhu, Jun; Tang, Bin
2017-12-01
Periodic nonuniform sampling occurs in many applications, and the Nyquist folding receiver (NYFR) is an efficient, low complexity, and broadband spectrum sensing architecture. In this paper, we first derive that the radio frequency (RF) sample clock function of NYFR is periodic nonuniform. Then, the classical results of periodic nonuniform sampling are applied to NYFR. We extend the spectral reconstruction algorithm of time series decomposed model to the subsampling case by using the spectrum characteristics of NYFR. The subsampling case is common for broadband spectrum surveillance. Finally, we take example for a LFM signal under large bandwidth to verify the proposed algorithm and compare the spectral reconstruction algorithm with orthogonal matching pursuit (OMP) algorithm.
High accuracy demodulation for twin-grating based sensor network with hybrid TDM/FDM
NASA Astrophysics Data System (ADS)
Ai, Fan; Sun, Qizhen; Cheng, Jianwei; Luo, Yiyang; Yan, Zhijun; Liu, Deming
2017-04-01
We demonstrate a high accuracy demodulation platform with a tunable Fabry-Perot filter (TFF) for twin-grating based fiber optic sensing network with hybrid TDM/FDM. The hybrid TDM/FDM scheme can improve the spatial resolution to centimeter but increases the requirement of high spectrum resolution. To realize the demodulation of the complex twin-grating spectrum, we adopt the TFF demodulation method and compensate the environmental temperature change and nonlinear effect through calibration FBGs. The performance of the demodulation module is tested by a temperature experiment. Spectrum resolution of 1pm is realized with precision of 2.5pm while the environmental temperature of TFF changes 9.3°C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Changhong; Cheung, Yeuk-Kwan E., E-mail: chellifegood@gmail.com, E-mail: cheung@nju.edu.cn
2014-07-01
We investigate the spectrum of cosmological perturbations in a bounce cosmos modeled by a scalar field coupled to the string tachyon field (CSTB cosmos). By explicit computation of its primordial spectral index we show the power spectrum of curvature perturbations, generated during the tachyon matter dominated contraction phase, to be nearly scale invariant. We propose a unified parameter space for a systematic study of inflationary and bounce cosmologies. The CSTB cosmos is dual-in Wands's sense-to slow-roll inflation as can be visualized with the aid of this parameter space. Guaranteed by the dynamical attractor behavior of the CSTB Cosmos, the scalemore » invariance of its power spectrum is free of the fine-tuning problem, in contrast to the slow-roll inflation model.« less
Le-Thi-Thu, Huong; Casanola-Martín, Gerardo M; Marrero-Ponce, Yovani; Rescigno, Antonio; Abad, Concepcion; Khan, Mahmud Tareq Hassan
2014-01-01
The tyrosinase is a bifunctional, copper-containing enzyme widely distributed in the phylogenetic tree. This enzyme is involved in the production of melanin and some other pigments in humans, animals and plants, including skin pigmentations in mammals, and browning process in plants and vegetables. Therefore, enzyme inhibitors has been under the attention of the scientist community, due to its broad applications in food, cosmetic, agricultural and medicinal fields, to avoid the undesirable effects of abnormal melanin overproduction. However, the research of novel chemical with antityrosinase activity demands the use of more efficient tools to speed up the tyrosinase inhibitors discovery process. This chapter is focused in the different components of a predictive modeling workflow for the identification and prioritization of potential new compounds with activity against the tyrosinase enzyme. In this case, two structure chemical libraries Spectrum Collection and Drugbank are used in this attempt to combine different virtual screening data mining techniques, in a sequential manner helping to avoid the usually expensive and time consuming traditional methods. Some of the sequential steps summarize here comprise the use of drug-likeness filters, similarity searching, classification and potency QSAR multiclassifier systems, modeling molecular interactions systems, and similarity/diversity analysis. Finally, the methodologies showed here provide a rational workflow for virtual screening hit analysis and selection as a promissory drug discovery strategy for use in target identification phase.
[Effect of different snow depth and area on the snow cover retrieval using remote sensing data].
Jiang, Hong-bo; Qin, Qi-ming; Zhang, Ning; Dong, Heng; Chen, Chao
2011-12-01
For the needs of snow cover monitoring using multi-source remote sensing data, in the present article, based on the spectrum analysis of different depth and area of snow, the effect of snow depth on the results of snow cover retrieval using normalized difference snow index (NDSI) is discussed. Meanwhile, taking the HJ-1B and MODIS remote sensing data as an example, the snow area effect on the snow cover monitoring is also studied. The results show that: the difference of snow depth does not contribute to the retrieval results, while the snow area affects the results of retrieval to some extents because of the constraints of spatial resolution.
Measurement Sets and Sites Commonly Used for High Spatial Resolution Image Product Characterization
NASA Technical Reports Server (NTRS)
Pagnutti, Mary
2006-01-01
Scientists within NASA's Applied Sciences Directorate have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site has enabled the in-flight characterization of satellite high spatial resolution remote sensing system products form Space Imaging IKONOS, Digital Globe QuickBird, and ORBIMAGE OrbView, as well as advanced multispectral airborne digital camera products. SSC utilizes engineered geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment and their Instrument Validation Laboratory to characterize high spatial resolution remote sensing data products. This presentation describes the SSC characterization capabilities and techniques in the visible through near infrared spectrum and examples of calibration results.
Distributed fiber optical sensing of oxygen with optical time domain reflectometry.
Eich, Susanne; Schmälzlin, Elmar; Löhmannsröben, Hans-Gerd
2013-05-31
In many biological and environmental applications spatially resolved sensing of molecular oxygen is desirable. A powerful tool for distributed measurements is optical time domain reflectometry (OTDR) which is often used in the field of telecommunications. We combine this technique with a novel optical oxygen sensor dye, triangular-[4] phenylene (TP), immobilized in a polymer matrix. The TP luminescence decay time is 86 ns. The short decay time of the sensor dye is suitable to achieve a spatial resolution of some meters. In this paper we present the development and characterization of a reflectometer in the UV range of the electromagnetic spectrum as well as optical oxygen sensing with different fiber arrangements.
Distributed Fiber Optical Sensing of Oxygen with Optical Time Domain Reflectometry
Eich, Susanne; Schmälzlin, Elmar; Löhmannsröben, Hans-Gerd
2013-01-01
In many biological and environmental applications spatially resolved sensing of molecular oxygen is desirable. A powerful tool for distributed measurements is optical time domain reflectometry (OTDR) which is often used in the field of telecommunications. We combine this technique with a novel optical oxygen sensor dye, triangular-[4] phenylene (TP), immobilized in a polymer matrix. The TP luminescence decay time is 86 ns. The short decay time of the sensor dye is suitable to achieve a spatial resolution of some meters. In this paper we present the development and characterization of a reflectometer in the UV range of the electromagnetic spectrum as well as optical oxygen sensing with different fiber arrangements. PMID:23727953
Remote sensing frequency sharing studies, tasks 1, 2, 5, and 6
NASA Technical Reports Server (NTRS)
Boyd, Douglas; Tillotson, Tom
1986-01-01
The following tasks are discussed: adjacent and harmonic band analysis; analysis of impact of sensor resolution on interference; development of performance criteria, interference criteria, sharing criteria, and coordination criteria; and spectrum engineering for NASA microwave sensor projects.
A system to measure the data quality of spectral remote-sensing reflectance of aquatic environments
NASA Astrophysics Data System (ADS)
Wei, Jianwei; Lee, Zhongping; Shang, Shaoling
2016-11-01
Spectral remote-sensing reflectance (Rrs, sr-1) is the key for ocean color retrieval of water bio-optical properties. Since Rrs from in situ and satellite systems are subject to errors or artifacts, assessment of the quality of Rrs data is critical. From a large collection of high quality in situ hyperspectral Rrs data sets, we developed a novel quality assurance (QA) system that can be used to objectively evaluate the quality of an individual Rrs spectrum. This QA scheme consists of a unique Rrs spectral reference and a score metric. The reference system includes Rrs spectra of 23 optical water types ranging from purple blue to yellow waters, with an upper and a lower bound defined for each water type. The scoring system is to compare any target Rrs spectrum with the reference and a score between 0 and 1 will be assigned to the target spectrum, with 1 for perfect Rrs spectrum and 0 for unusable Rrs spectrum. The effectiveness of this QA system is evaluated with both synthetic and in situ Rrs spectra and it is found to be robust. Further testing is performed with the NOMAD data set as well as with satellite Rrs over coastal and oceanic waters, where questionable or likely erroneous Rrs spectra are shown to be well identifiable with this QA system. Our results suggest that applications of this QA system to in situ data sets can improve the development and validation of bio-optical algorithms and its application to ocean color satellite data can improve the short-term and long-term products by objectively excluding questionable Rrs data.
Inertial navigation sensor integrated obstacle detection system
NASA Technical Reports Server (NTRS)
Bhanu, Bir (Inventor); Roberts, Barry A. (Inventor)
1992-01-01
A system that incorporates inertial sensor information into optical flow computations to detect obstacles and to provide alternative navigational paths free from obstacles. The system is a maximally passive obstacle detection system that makes selective use of an active sensor. The active detection typically utilizes a laser. Passive sensor suite includes binocular stereo, motion stereo and variable fields-of-view. Optical flow computations involve extraction, derotation and matching of interest points from sequential frames of imagery, for range interpolation of the sensed scene, which in turn provides obstacle information for purposes of safe navigation.
Dual-wavelength quantum cascade laser for trace gas spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jágerská, J.; Tuzson, B.; Mangold, M.
2014-10-20
We demonstrate a sequentially operating dual-wavelength quantum cascade laser with electrically separated laser sections, emitting single-mode at 5.25 and 6.25 μm. Based on a single waveguide ridge, this laser represents a considerable asset to optical sensing and trace gas spectroscopy, as it allows probing multiple gas species with spectrally distant absorption features using conventional optical setups without any beam combining optics. The laser capability was demonstrated in simultaneous NO and NO{sub 2} detection, reaching sub-ppb detection limits and selectivity comparable to conventional high-end spectroscopic systems.
Applications of geostatistics and Markov models for logo recognition
NASA Astrophysics Data System (ADS)
Pham, Tuan
2003-01-01
Spatial covariances based on geostatistics are extracted as representative features of logo or trademark images. These spatial covariances are different from other statistical features for image analysis in that the structural information of an image is independent of the pixel locations and represented in terms of spatial series. We then design a classifier in the sense of hidden Markov models to make use of these geostatistical sequential data to recognize the logos. High recognition rates are obtained from testing the method against a public-domain logo database.
He, Chenlong; Feng, Zuren; Ren, Zhigang
2018-02-03
For Wireless Sensor Networks (WSNs), the Voronoi partition of a region is a challenging problem owing to the limited sensing ability of each sensor and the distributed organization of the network. In this paper, an algorithm is proposed for each sensor having a limited sensing range to compute its limited Voronoi cell autonomously, so that the limited Voronoi partition of the entire WSN is generated in a distributed manner. Inspired by Graham's Scan (GS) algorithm used to compute the convex hull of a point set, the limited Voronoi cell of each sensor is obtained by sequentially scanning two consecutive bisectors between the sensor and its neighbors. The proposed algorithm called the Boundary Scan (BS) algorithm has a lower computational complexity than the existing Range-Constrained Voronoi Cell (RCVC) algorithm and reaches the lower bound of the computational complexity of the algorithms used to solve the problem of this kind. Moreover, it also improves the time efficiency of a key step in the Adjust-Sensing-Radius (ASR) algorithm used to compute the exact Voronoi cell. Extensive numerical simulations are performed to demonstrate the correctness and effectiveness of the BS algorithm. The distributed realization of the BS combined with a localization algorithm in WSNs is used to justify the WSN nature of the proposed algorithm.
Distributed Algorithm for Voronoi Partition of Wireless Sensor Networks with a Limited Sensing Range
Feng, Zuren; Ren, Zhigang
2018-01-01
For Wireless Sensor Networks (WSNs), the Voronoi partition of a region is a challenging problem owing to the limited sensing ability of each sensor and the distributed organization of the network. In this paper, an algorithm is proposed for each sensor having a limited sensing range to compute its limited Voronoi cell autonomously, so that the limited Voronoi partition of the entire WSN is generated in a distributed manner. Inspired by Graham’s Scan (GS) algorithm used to compute the convex hull of a point set, the limited Voronoi cell of each sensor is obtained by sequentially scanning two consecutive bisectors between the sensor and its neighbors. The proposed algorithm called the Boundary Scan (BS) algorithm has a lower computational complexity than the existing Range-Constrained Voronoi Cell (RCVC) algorithm and reaches the lower bound of the computational complexity of the algorithms used to solve the problem of this kind. Moreover, it also improves the time efficiency of a key step in the Adjust-Sensing-Radius (ASR) algorithm used to compute the exact Voronoi cell. Extensive numerical simulations are performed to demonstrate the correctness and effectiveness of the BS algorithm. The distributed realization of the BS combined with a localization algorithm in WSNs is used to justify the WSN nature of the proposed algorithm. PMID:29401649
Optical fiber endface biosensor based on resonances in dielectric waveguide gratings
NASA Astrophysics Data System (ADS)
Wawro, Debra D.; Tibuleac, Sorin; Magnusson, Robert; Liu, Hanli
2000-05-01
A new fiber optic sensor integrating dielectric diffraction gratings and thin films on optical fiber endfaces is prosed for biomedical sensing applications. This device utilizes a resonant dielectric waveguide grating structure fabricated on an optical fiber endface to probe reactions occurring in a sensing layer deposited on its surface. The operation of this sensor is based upon a fundamental resonance effect that occurs in waveguide gratings. An incident broad- spectrum signal is guided within an optical fiber and is filtered to reflect or transmit a desired spectral band by the diffractive thin film structure on its endface. Slight changes in one or more parameters of the waveguide grating, such as refractive index or thickness, can result in a responsive shift of the reflected or transmitted spectral peak that can be detected with spectroscopic instruments. This new sensor concept combines improved sensitivity and accuracy with attractive features found separately in currently available fiber optic sensors, such as large dynamic range, small sensing proximity, real time operation, and remote sensing. Diffractive elements of this type consisting of a photoresist grating on a Si3N4 waveguide have been fabricated on multimode optical fiber endfaces with 100 micrometers cores. Preliminary experimental tests using a tunable Ti:sapphire laser indicate notches of 18 percent in the transmission spectrum of the fiber endface guided-mode resonance devices. A theoretical analysis of the device performance capabilities is presented and applied to evaluate the feasibility and potential advantages of this bioprobe.
High-Speed Interrogation for Large-Scale Fiber Bragg Grating Sensing
Hu, Chenyuan; Bai, Wei
2018-01-01
A high-speed interrogation scheme for large-scale fiber Bragg grating (FBG) sensing arrays is presented. This technique employs parallel computing and pipeline control to modulate incident light and demodulate the reflected sensing signal. One Electro-optic modulator (EOM) and one semiconductor optical amplifier (SOA) were used to generate a phase delay to filter reflected spectrum form multiple candidate FBGs with the same optical path difference (OPD). Experimental results showed that the fastest interrogation delay time for the proposed method was only about 27.2 us for a single FBG interrogation, and the system scanning period was only limited by the optical transmission delay in the sensing fiber owing to the multiple simultaneous central wavelength calculations. Furthermore, the proposed FPGA-based technique had a verified FBG wavelength demodulation stability of ±1 pm without average processing. PMID:29495263
High-Speed Interrogation for Large-Scale Fiber Bragg Grating Sensing.
Hu, Chenyuan; Bai, Wei
2018-02-24
A high-speed interrogation scheme for large-scale fiber Bragg grating (FBG) sensing arrays is presented. This technique employs parallel computing and pipeline control to modulate incident light and demodulate the reflected sensing signal. One Electro-optic modulator (EOM) and one semiconductor optical amplifier (SOA) were used to generate a phase delay to filter reflected spectrum form multiple candidate FBGs with the same optical path difference (OPD). Experimental results showed that the fastest interrogation delay time for the proposed method was only about 27.2 us for a single FBG interrogation, and the system scanning period was only limited by the optical transmission delay in the sensing fiber owing to the multiple simultaneous central wavelength calculations. Furthermore, the proposed FPGA-based technique had a verified FBG wavelength demodulation stability of ±1 pm without average processing.
Spectrometer system for optical reflectance measurements
NASA Technical Reports Server (NTRS)
Phillipps, Patrick G. (Inventor); Soller, Babs R. (Inventor); Parker, Michael S. (Inventor)
2007-01-01
A spectrometer system includes a thermal light source for illuminating a sample, where the thermal light source includes a filament that emits light when heated. The system additionally includes a spectrograph for measuring a light spectrum from the sample and an electrical circuit for supplying electrical current to the filament to heat the filament and for controlling a resistance of the filament. The electrical circuit includes a power supply that supplies current to the filament, first electrical components that sense a current through the filament, second electrical components that sense a voltage drop across the filament, third electrical components that compare a ratio of the sensed voltage drop and the sensed current with a predetermined value, and fourth electrical components that control the current through the filament or the voltage drop across the filament to cause the ratio to equal substantially the predetermined value.
Comparison of Sequential and Variational Data Assimilation
NASA Astrophysics Data System (ADS)
Alvarado Montero, Rodolfo; Schwanenberg, Dirk; Weerts, Albrecht
2017-04-01
Data assimilation is a valuable tool to improve model state estimates by combining measured observations with model simulations. It has recently gained significant attention due to its potential in using remote sensing products to improve operational hydrological forecasts and for reanalysis purposes. This has been supported by the application of sequential techniques such as the Ensemble Kalman Filter which require no additional features within the modeling process, i.e. it can use arbitrary black-box models. Alternatively, variational techniques rely on optimization algorithms to minimize a pre-defined objective function. This function describes the trade-off between the amount of noise introduced into the system and the mismatch between simulated and observed variables. While sequential techniques have been commonly applied to hydrological processes, variational techniques are seldom used. In our believe, this is mainly attributed to the required computation of first order sensitivities by algorithmic differentiation techniques and related model enhancements, but also to lack of comparison between both techniques. We contribute to filling this gap and present the results from the assimilation of streamflow data in two basins located in Germany and Canada. The assimilation introduces noise to precipitation and temperature to produce better initial estimates of an HBV model. The results are computed for a hindcast period and assessed using lead time performance metrics. The study concludes with a discussion of the main features of each technique and their advantages/disadvantages in hydrological applications.
Remote sensing of snow and ice
NASA Technical Reports Server (NTRS)
Rango, A.
1979-01-01
This paper reviews remote sensing of snow and ice, techniques for improved monitoring, and incorporation of the new data into forecasting and management systems. The snowcover interpretation of visible and infrared data from satellites, automated digital methods, radiative transfer modeling to calculate the solar reflectance of snow, and models using snowcover input data and elevation zones for calculating snowmelt are discussed. The use of visible and near infrared techniques for inferring snow properties, microwave monitoring of snowpack characteristics, use of Landsat images for collecting glacier data, monitoring of river ice with visible imagery from NOAA satellites, use of sequential imagery for tracking ice flow movement, and microwave studies of sea ice are described. Applications of snow and ice research to commercial use are examined, and it is concluded that a major problem to be solved is characterization of snow and ice in nature, since assigning of the correct properties to a real system to be modeled has been difficult.
Teutsch, T; Mesch, M; Giessen, H; Tarin, C
2015-01-01
In this contribution, a method to select discrete wavelengths that allow an accurate estimation of the glucose concentration in a biosensing system based on metamaterials is presented. The sensing concept is adapted to the particular application of ophthalmic glucose sensing by covering the metamaterial with a glucose-sensitive hydrogel and the sensor readout is performed optically. Due to the fact that in a mobile context a spectrometer is not suitable, few discrete wavelengths must be selected to estimate the glucose concentration. The developed selection methods are based on nonlinear support vector regression (SVR) models. Two selection methods are compared and it is shown that wavelengths selected by a sequential forward feature selection algorithm achieves an estimation improvement. The presented method can be easily applied to different metamaterial layouts and hydrogel configurations.
Remote sensing analysis of Lake Livingston aquatic plants
NASA Technical Reports Server (NTRS)
Benton, A. R., Jr.; Newman, R. M.
1976-01-01
Results obtained during 1975 to monitor the growth of aquatic plants in the Lake Livingston area, using remote sensing photographic imagery, were described. Sequential total coverage was provided of the Jungle and White Rock Creek, plus coverage of smaller areas of localized infestation downlake, including Brushy Creek, KOA Kampground Marina, Penwaugh Slough, Memorial Point Marina, the Beacon Bay marinas and Pine Island. The imagery was generally good, photographic exposure being increased as the season progressed in order to obtain better pictures of the submerged vegetation. Some very significant differences in growth patterns, species interaction, and species dominance were observed when compared to 1974. Observation of the following plants was discussed: water hyacinth, hydrilla, coontail, potamageton. In general, the level of infestation was lower in 1975 than in 1974, due to the combined effect of more systematic application of herbicides and harsher intervening winter weather conditions.
NASA Astrophysics Data System (ADS)
Nakamura, T. K. M.; Nakamura, R.; Varsani, A.; Genestreti, K. J.; Baumjohann, W.; Liu, Y.-H.
2018-05-01
A remote sensing technique to infer the local reconnection electric field based on in situ multipoint spacecraft observation at the reconnection separatrix is proposed. In this technique, the increment of the reconnected magnetic flux is estimated by integrating the in-plane magnetic field during the sequential observation of the separatrix boundary by multipoint measurements. We tested this technique by applying it to virtual observations in a two-dimensional fully kinetic particle-in-cell simulation of magnetic reconnection without a guide field and confirmed that the estimated reconnection electric field indeed agrees well with the exact value computed at the X-line. We then applied this technique to an event observed by the Magnetospheric Multiscale mission when crossing an energetic plasma sheet boundary layer during an intense substorm. The estimated reconnection electric field for this event is nearly 1 order of magnitude higher than a typical value of magnetotail reconnection.
Outfall siting with dye-buoy remote sensing of coastal circulation
NASA Technical Reports Server (NTRS)
Munday, J. C., Jr.; Welch, C. S.; Gordon, H. H.
1978-01-01
A dye-buoy remote sensing technique has been applied to estuarine siting problems that involve fine-scale circulation. Small hard cakes of sodium fluorescein and polyvinyl alcohol, in anchored buoys and low-windage current followers, dissolve to produce dye marks resolvable in 1:60,000 scale color and color infrared imagery. Lagrangian current vectors are determined from sequential photo coverage. Careful buoy placement reveals surface currents and submergence near fronts and convergence zones. The technique has been used in siting two sewage outfalls in Hampton Roads, Virginia: In case one, the outfall region during flood tide gathered floating materials in a convergence zone, which then acted as a secondary source during ebb; for better dispersion during ebb, the proposed outfall site was moved further offshore. In case two, flow during late flood was found to divide, with one half passing over shellfish beds; the proposed outfall site was consequently moved to keep effluent in the other half.
Remote sensing of soil moisture using airborne hyperspectral data
USDA-ARS?s Scientific Manuscript database
The Institute for Technology Development (ITD) has developed an airborne hyperspectral sensor system that collects electromagnetic reflectance data of the terrain. The system consists of sensors for three different sections of the electromagnetic spectrum; the Ultra-Violet (UV), Visible/Near Infrare...
A Study on Spectral Signature Analysis of Wetland Vegetation Based on Ground Imaging Spectrum Data
NASA Astrophysics Data System (ADS)
Ling, Chengxing; Liu, Hua; Ju, Hongbo; Zhang, Huaiqing; You, Jia; Li, Weina
2017-10-01
The objective of this study was to verify the application of imaging spectrometer in wetland vegetation remote sensing monitoring, based on analysis of wetland vegetation spectral features. Spectral information of Carex vegetation spectral data under different water environment was collected bySOC710VP and ASD FieldSpec 3; Meanwhile, the chlorophyll contents of wheat leaves were tested in the lab. A total 9 typical vegetation indices were calculated by using two instruments’ data which were spectral values from 400nm to 1000 nm. Then features between the same vegetation indices and soil water contents for two applications were analyzed and compared. The results showed that there were same spectrum curve trends of Carex vegetation (soil moisture content of 51%, 32%, 14% and three regional comparative analysis)reflectance between SOC710VP and ASD FieldSpec 3, including the two reflectance peak of 550nm and 730 nm, two reflectance valley of 690 nm and 970nm, and continuous near infrared reflectance platform. However, The two also have a very clear distinction: (1) The reflection spectra of SOC710VP leaves of Carex Carex leaf spectra in the three soil moisture environment values are greater than ASD FieldSpec 3 collected value; (2) The SOC710VP reflectivity curve does not have the smooth curve of the original spectrum measured by the ASD FieldSpec 3, the amplitude of fluctuation is bigger, and it is more obvious in the near infrared band. It is concluded that SOC710VP spectral data are reliable, with the image features, spectral curve features reliable. It has great potential in the research of hyperspectral remote sensing technology in the development of wetland near earth, remote sensing monitoring of wetland resources.
Atmospheric Correction of Satellite Imagery Using Modtran 3.5 Code
NASA Technical Reports Server (NTRS)
Gonzales, Fabian O.; Velez-Reyes, Miguel
1997-01-01
When performing satellite remote sensing of the earth in the solar spectrum, atmospheric scattering and absorption effects provide the sensors corrupted information about the target's radiance characteristics. We are faced with the problem of reconstructing the signal that was reflected from the target, from the data sensed by the remote sensing instrument. This article presents a method for simulating radiance characteristic curves of satellite images using a MODTRAN 3.5 band model (BM) code to solve the radiative transfer equation (RTE), and proposes a method for the implementation of an adaptive system for automated atmospheric corrections. The simulation procedure is carried out as follows: (1) for each satellite digital image a radiance characteristic curve is obtained by performing a digital number (DN) to radiance conversion, (2) using MODTRAN 3.5 a simulation of the images characteristic curves is generated, (3) the output of the code is processed to generate radiance characteristic curves for the simulated cases. The simulation algorithm was used to simulate Landsat Thematic Mapper (TM) images for two types of locations: the ocean surface, and a forest surface. The simulation procedure was validated by computing the error between the empirical and simulated radiance curves. While results in the visible region of the spectrum where not very accurate, those for the infrared region of the spectrum were encouraging. This information can be used for correction of the atmospheric effects. For the simulation over ocean, the lowest error produced in this region was of the order of 105 and up to 14 times smaller than errors in the visible region. For the same spectral region on the forest case, the lowest error produced was of the order of 10-4, and up to 41 times smaller than errors in the visible region,
Berkowitz, David B.; Smith, Marianne K.
2018-01-01
Hindered esters derived from N-benzoylalanine and the following chiral alcohols have been synthesized: (1) (−)-isopinocampheol; (2) (−)-trans-2-phenylcyclohexanol and (3) (−)-8-phenylmenthol. Sequential treatment of these esters with LDA (1.2 equiv.) and n-butyllithium (2.4 equiv.) at −78°C in THF generates the corresponding chiral dianions. Alkylation of each of these with benzyl bromide reveals that only the (−)-8-phenylmenthyl auxiliary confers a high diastereofacial bias upon its derivative dianion. In fact, that dianion (6) consistently displays diastereomeric ratios in the range of 89:11 to 94:6 for alkylations with a spectrum of nine alkyl halides. If one recrystallization step is included, a single diastereomeric product may be obtained, as is demonstrated for the benzylation of 6. Of particular note, the alkylation with 3,4-bis(tert-butyldimethylsilyloxy)benzyl bromide (18) (94:6 diast. ratio, 72% yield) constitutes a formal synthesis of the clinically important antihypertensive (S)-α-methyl-DOPA (Aldomet), in enantiomerically enriched from. In all cases studied, yields are markedly improved, yet diastereoselectivities unchanged, by the addition of 10% HMPA to the reaction milieu. The (−)-8-phenylmenthol chiral auxiliary is conveniently recovered via ester cleavage with KO2/18-crown-6, following alkylation. Complete deprotection affords enantiomerically enriched (S)-α-methyl amino acids, in all cases examined, indicating that dianion 6 displays a substantial bias in favor of si face alkylation. This sense of diastereoselection is consistent with a chain-extended, internal chelate model for the reactive conformation of the dianion.
Er:YAG laser technology for remote sensing applications
NASA Astrophysics Data System (ADS)
Chen, Moran; Burns, Patrick M.; Litvinovitch, Viatcheslav; Storm, Mark; Sawruk, Nicholas W.
2016-10-01
Fibertek has developed an injection locked, resonantly pumped Er:YAG solid-state laser operating at 1.6 μm capable of pulse repetition rates of 1 kHz to 10 kHz for airborne methane and water differential absorption lidars. The laser is resonantly pumped with a fiber-coupled 1532 nm diode laser minimizing the quantum defect and thermal loading generating tunable single-frequency output of 1645-1646 nm with a linewidth of < 100 MHz. The frequency-doubled 1.6 μm Er:YAG laser emits wavelengths in the 822-823 nm spectrum, coincident with water vapor lines. Various cavity designs were studied and optimized for compactness and performance, with the optimal design being an injection seeded and locked five-mirror ring cavity. The laser generated 4 W of average power at pulse repetition frequencies (PRFs) of 1 kHz and 10 kHz, corresponding to 4 mJ and 400 μJ pulse energies, respectively. The 1645 nm was subsequently frequency doubled to 822.5 nm with a 600 pm tuning range covering multiple water absorption lines, with a pulse energy of 1 mJ and a pulse repetition frequency of 1 kHz. The resonator cavity was locked to the seed wavelength via a Pound Drever Hall (PDH) technique and an analog Proportional Integral Derivative (PID) Controller driving a high-bandwidth piezoelectric (PZT)-mounted cavity mirror. Two seed sources lasing on and off the methane absorption line were optically switched to tune the resonator wavelength on and off the methane absorption line between each sequential output pulse. The cavity locking servo maintained the cavity resonance for each pulse.
Bhattarai, Jay K.; Sharma, Abeera; Fujikawa, Kohki; Demchenko, Alexei V.; Stine, Keith J.
2014-01-01
Localized surface plasmon resonance (LSPR) spectroscopy is a label-free chemical and biological molecular sensing technique whose sensitivity depends upon development of nanostructured transducers. Herein, we report an electrodeposition method for fabricating nanostructured gold films (NGFs) that can be used as transducers in LSPR spectroscopy. The NGF was prepared by electrodepositing gold from potassium dicyanoaurate solution onto a flat gold surface using two sequential controlled potential steps. Imaging by scanning electron microscopy reveals a morphology consisting of randomly configured block-like nanostructures. The bulk refractive index sensitivity of the prepared NGF is 100 ± 2 nm RIU−1 and the initial peak in the reflectance spectrum is at 518 ± 1 nm under N2(g). The figure of merit is 1.7. In addition, we have studied the interaction between carbohydrate (mannose) and lectin (Concanavalin A) on the NGF surface using LSPR spectroscopy by measuring the interaction of 8-mercaptooctyl-α-D-mannopyranoside (αMan-C8-SH) with Concanavalin A by first immobilizing αMan-C8-SH in mixed SAMs with 3,6-dioxa-8-mercaptooctanol (TEG-SH) on the NGF surface. The interaction of Con A with the mixed SAMs is confirmed using electrochemical impedance spectroscopy. Finally, the NGF surface was regenerated to its original sensitivity by removing the SAM and the bound biomolecules. The results from these experiments contribute toward the development of inexpensive LSPR based sensors that could be useful for studying glycan–protein interactions and other bioanalytical purposes. PMID:25442712
[Spectrum Variance Analysis of Tree Leaves Under the Condition of Different Leaf water Content].
Wu, Jian; Chen, Tai-sheng; Pan, Li-xin
2015-07-01
Leaf water content is an important factor affecting tree spectral characteristics. So Exploring the leaf spectral characteristics change rule of the same tree under the condition of different leaf water content and the spectral differences of different tree leaves under the condition of the same leaf water content are not only the keys of hyperspectral vegetation remote sensing information identification but also the theoretical support of research on vegetation spectrum change as the differences in leaf water content. The spectrometer was used to observe six species of tree leaves, and the reflectivity and first order differential spectrum of different leaf water content were obtained. Then, the spectral characteristics of each tree species leaves under the condition of different leaf water content were analyzed, and the spectral differences of different tree species leaves under the condition of the same leaf water content were compared to explore possible bands of the leaf water content identification by hyperspectral remote sensing. Results show that the spectra of each tree leaf have changed a lot with the change of the leaf water content, but the change laws are different. Leaf spectral of different tree species has lager differences in some wavelength range under the condition of same leaf water content, and it provides some possibility for high precision identification of tree species.
Visible-Infrared Hyperspectral Image Projector
NASA Technical Reports Server (NTRS)
Bolcar, Matthew
2013-01-01
The VisIR HIP generates spatially-spectrally complex scenes. The generated scenes simulate real-world targets viewed by various remote sensing instruments. The VisIR HIP consists of two subsystems: a spectral engine and a spatial engine. The spectral engine generates spectrally complex uniform illumination that spans the wavelength range between 380 nm and 1,600 nm. The spatial engine generates two-dimensional gray-scale scenes. When combined, the two engines are capable of producing two-dimensional scenes with a unique spectrum at each pixel. The VisIR HIP can be used to calibrate any spectrally sensitive remote-sensing instrument. Tests were conducted on the Wide-field Imaging Interferometer Testbed at NASA s Goddard Space Flight Center. The device is a variation of the calibrated hyperspectral image projector developed by the National Institute of Standards and Technology in Gaithersburg, MD. It uses Gooch & Housego Visible and Infrared OL490 Agile Light Sources to generate arbitrary spectra. The two light sources are coupled to a digital light processing (DLP(TradeMark)) digital mirror device (DMD) that serves as the spatial engine. Scenes are displayed on the DMD synchronously with desired spectrum. Scene/spectrum combinations are displayed in rapid succession, over time intervals that are short compared to the integration time of the system under test.
Progression In The Concepts Of Cognitive Sense Wireless Networks - An Analysis Report
NASA Astrophysics Data System (ADS)
Ajay, V. P.; Nesasudha, M.
2017-10-01
This paper illustrates the conception of networks, their primary goals (from day one to the present), the changes it had to endure to get to its present form and the developments which are in progress and in store for further standardization. The analysis gives more importance to the specifics of the Cognitive Radio Networks, which makes use of the dynamic spectrum access procedures, framed for better utilization of our available spectrum resources. The main conceptual difficulties and current research trends are also discussed in terms of real time implementation.
Zapata, Fabiola; Caballero, Antonio; Molina, Pedro; Tarraga, Alberto
2010-01-01
A new chemosensor molecule 3 based on a ferrocene-quinoxaline dyad recognizes mercury (II) cations in acetonitrile solution. Upon recognition, an anodic shift of the ferrocene/ferrocenium oxidation peaks and a progressive red-shift (Δλ = 140 nm) of the low-energy band, are observed in its absorption spectrum. This change in the absorption spectrum is accompanied by a colour change from orange to deep green, which can be used for a “naked-eye” detection of this metal cation. PMID:22163528
Sensing Technologies for Autism Spectrum Disorder Screening and Intervention
Cabibihan, John-John; Javed, Hifza; Aldosari, Mohammed; Frazier, Thomas W.; Elbashir, Haitham
2016-01-01
This paper reviews the state-of-the-art in sensing technologies that are relevant for Autism Spectrum Disorder (ASD) screening and therapy. This disorder is characterized by difficulties in social communication, social interactions, and repetitive behaviors. It is diagnosed during the first three years of life. Early and intensive interventions have been shown to improve the developmental trajectory of the affected children. The earlier the diagnosis, the sooner the intervention therapy can begin, thus, making early diagnosis an important research goal. Technological innovations have tremendous potential to assist with early diagnosis and improve intervention programs. The need for careful and methodological evaluation of such emerging technologies becomes important in order to assist not only the therapists and clinicians in their selection of suitable tools, but to also guide the developers of the technologies in improving hardware and software. In this paper, we survey the literatures on sensing technologies for ASD and we categorize them into eye trackers, movement trackers, electrodermal activity monitors, tactile sensors, vocal prosody and speech detectors, and sleep quality assessment devices. We assess their effectiveness and study their limitations. We also examine the challenges faced by this growing field that need to be addressed before these technologies can perform up to their theoretical potential. PMID:28036004
A new CMOS SiGeC avalanche photo-diode pixel for IR sensing
NASA Astrophysics Data System (ADS)
Augusto, Carlos; Forester, Lynn; Diniz, Pedro C.
2009-05-01
Near-infra-red sensing with silicon is limited by the bandgap of silicon, corresponding to a maximum wavelength of absorption of 1.1 μm. A new type of CMOS sensor is presented, which uses a SiGeC epitaxial film in conjunction with novel device architecture to extend absorption into the infra-red. The SiGeC film composition and thickness determine the spectrum of absorption; in particular for SiGeC superlattices, the layer ordering to create pseudo direct bandgaps is the critical parameter. In this new device architecture, the p-type SiGeC film is grown on an active region surrounded by STI, linked to the S/D region of an adjacent NMOS, under the STI by a floating N-Well. On a n-type active, a P-I-N device is formed, and on a p-type active, a P-I-P device is formed, each sensing different regions of the spectrum. The SiGeC films can be biased for avalanche operation, as the required vertical electric field is confined to the region near the heterojunction interface, thereby not affecting the gate oxide of the adjacent NMOS. With suitable heterojunction and doping profiles, the avalanche region can also be bandgap engineered, allowing for avalanche breakdown voltages that are compatible with CMOS devices.
Applications of Remote Sensing to Alien Invasive Plant Studies
Huang, Cho-ying; Asner, Gregory P.
2009-01-01
Biological invasions can affect ecosystems across a wide spectrum of bioclimatic conditions. Therefore, it is often important to systematically monitor the spread of species over a broad region. Remote sensing has been an important tool for large-scale ecological studies in the past three decades, but it was not commonly used to study alien invasive plants until the mid 1990s. We synthesize previous research efforts on remote sensing of invasive plants from spatial, temporal and spectral perspectives. We also highlight a recently developed state-of-the-art image fusion technique that integrates passive and active energies concurrently collected by an imaging spectrometer and a scanning-waveform light detection and ranging (LiDAR) system, respectively. This approach provides a means to detect the structure and functional properties of invasive plants of different canopy levels. Finally, we summarize regional studies of biological invasions using remote sensing, discuss the limitations of remote sensing approaches, and highlight current research needs and future directions. PMID:22408558
Liu, Tianqi; Wang, Jing; Liao, Yipeng; Wang, Xin; Wang, Shanshan
2018-04-30
An all-fiber Mach-Zehnder interferometer (MZI) for two quasi-continuous points' temperature sensing in seawater is proposed. Based on the beam propagation theory, transmission spectrum is designed to present two sets of clear and independent interferences. Following this design, MZI is fabricated and two points' temperature sensing in seawater are demonstrated with sensitivities of 42.69pm/°C and 39.17pm/°C, respectively. By further optimization, sensitivity of 80.91pm/°C can be obtained, which is 3-10 times higher than fiber Bragg gratings and microfiber resonator, and higher than almost all similar MZI based temperature sensors. In addition, factors affecting sensitivities are also discussed and verified in experiment. The two points' temperature sensing demonstrated here show advantages of simple and compact construction, robust structure, easy fabrication, high sensitivity, immunity to salinity and tunable distance of 1-20 centimeters between two points, which may provide references for macroscopic oceanic research and other sensing applications based on MZIs.
A tension insensitive PbS fiber temperature sensor based on Sagnac interferometer
NASA Astrophysics Data System (ADS)
Fu, Xing-hu; Zhang, Jiang-peng; Yang, Kai-li; Dong, Yan-hua; Wen, Jian-xiang; Fu, Guang-wei; Bi, Wei-hong
2017-03-01
In this paper, a tension insensitive PbS fiber temperature sensor based on Sagnac interferometer is proposed and demonstrated. The sensing mechanism of tension and temperature is analyzed. The relationships between the interference spectrum, temperature and tension are analyzed, respectively. The experimental temperature range is 36—70 °C. The experimental results show that the interference spectrum is red shifted, and its sensitivity is 53.89 pm/°C. In tension experiment, the tension range is 0—1 400 μɛ. The experimental results show that there is no wavelength shift in the interference spectrum. The sensor is immune to tension cross-sensitivity compared with other sensors. It can be used for temperature testing in aerospace, chemistry and pharmacy.
Memory and other properties of multiple test procedures generated by entangled graphs.
Maurer, Willi; Bretz, Frank
2013-05-10
Methods for addressing multiplicity in clinical trials have attracted much attention during the past 20 years. They include the investigation of new classes of multiple test procedures, such as fixed sequence, fallback and gatekeeping procedures. More recently, sequentially rejective graphical test procedures have been introduced to construct and visualize complex multiple test strategies. These methods propagate the local significance level of a rejected null hypothesis to not-yet rejected hypotheses. In the graph defining the test procedure, hypotheses together with their local significance levels are represented by weighted vertices and the propagation rule by weighted directed edges. An algorithm provides the rules for updating the local significance levels and the transition weights after rejecting an individual hypothesis. These graphical procedures have no memory in the sense that the origin of the propagated significance level is ignored in subsequent iterations. However, in some clinical trial applications, memory is desirable to reflect the underlying dependence structure of the study objectives. In such cases, it would allow the further propagation of significance levels to be dependent on their origin and thus reflect the grouped parent-descendant structures of the hypotheses. We will give examples of such situations and show how to induce memory and other properties by convex combination of several individual graphs. The resulting entangled graphs provide an intuitive way to represent the underlying relative importance relationships between the hypotheses, are as easy to perform as the original individual graphs, remain sequentially rejective and control the familywise error rate in the strong sense. Copyright © 2012 John Wiley & Sons, Ltd.
[Estimation of Hunan forest carbon density based on spectral mixture analysis of MODIS data].
Yan, En-ping; Lin, Hui; Wang, Guang-xing; Chen, Zhen-xiong
2015-11-01
With the fast development of remote sensing technology, combining forest inventory sample plot data and remotely sensed images has become a widely used method to map forest carbon density. However, the existence of mixed pixels often impedes the improvement of forest carbon density mapping, especially when low spatial resolution images such as MODIS are used. In this study, MODIS images and national forest inventory sample plot data were used to conduct the study of estimation for forest carbon density. Linear spectral mixture analysis with and without constraint, and nonlinear spectral mixture analysis were compared to derive the fractions of different land use and land cover (LULC) types. Then sequential Gaussian co-simulation algorithm with and without the fraction images from spectral mixture analyses were employed to estimate forest carbon density of Hunan Province. Results showed that 1) Linear spectral mixture analysis with constraint, leading to a mean RMSE of 0.002, more accurately estimated the fractions of LULC types than linear spectral and nonlinear spectral mixture analyses; 2) Integrating spectral mixture analysis model and sequential Gaussian co-simulation algorithm increased the estimation accuracy of forest carbon density to 81.5% from 74.1%, and decreased the RMSE to 5.18 from 7.26; and 3) The mean value of forest carbon density for the province was 30.06 t · hm(-2), ranging from 0.00 to 67.35 t · hm(-2). This implied that the spectral mixture analysis provided a great potential to increase the estimation accuracy of forest carbon density on regional and global level.
The tongue of the ocean as a remote sensing ocean color calibration range
NASA Technical Reports Server (NTRS)
Strees, L. V.
1972-01-01
In general, terrestrial scenes remain stable in content from both temporal and spacial considerations. Ocean scenes, on the other hand, are constantly changing in content and position. The solar energy that enters the ocean waters undergoes a process of scattering and selective spectral absorption. Ocean scenes are thus characterized as low level radiance with the major portion of the energy in the blue region of the spectrum. Terrestrial scenes are typically of high level radiance with their spectral energies concentrated in the green-red regions of the visible spectrum. It appears that for the evaluation and calibration of ocean color remote sensing instrumentation, an ocean area whose optical ocean and atmospheric properties are known and remain seasonably stable over extended time periods is needed. The Tongue of the Ocean, a major submarine channel in the Bahama Banks, is one ocean are for which a large data base of oceanographic information and a limited amount of ocean optical data are available.
Xia, Ji; Wang, Qi; Liu, Xu; Luo, Hong
2015-01-01
An optical fiber current sensor based on Fabry-Perot interferometer using a fiber Bragg grating demodulation is proposed. Magnetic fluid is used as a sensitive medium in fiber optical Fabry-Perot (F-P) cavity for the optical characteristic of magnetic-controlled refractive index. A Fiber Bragg grating (FBG) is connected after the F-P interferometer which is used to reflect the optical power at the Bragg wavelength of the interference transmission spectrum. The corresponding reflective power of the FBG will change with different external current intensity, due to the shift on the interference spectrum of the F-P interferometer. The sensing probe has the advantages of convenient measurement for its demodulation, low cost and high current measurement accuracy on account of its sensing structure. Experimental results show that an optimal sensitivity of 0.8522 nw/A and measurement resolution of 0.001 A is obtained with a FBG at 1550 nm with 99% reflectivity. PMID:26184201
Xia, Ji; Wang, Qi; Liu, Xu; Luo, Hong
2015-07-09
An optical fiber current sensor based on Fabry-Perot interferometer using a fiber Bragg grating demodulation is proposed. Magnetic fluid is used as a sensitive medium in fiber optical Fabry-Perot (F-P) cavity for the optical characteristic of magnetic-controlled refractive index. A Fiber Bragg grating (FBG) is connected after the F-P interferometer which is used to reflect the optical power at the Bragg wavelength of the interference transmission spectrum. The corresponding reflective power of the FBG will change with different external current intensity, due to the shift on the interference spectrum of the F-P interferometer. The sensing probe has the advantages of convenient measurement for its demodulation, low cost and high current measurement accuracy on account of its sensing structure. Experimental results show that an optimal sensitivity of 0.8522 nw/A and measurement resolution of 0.001 A is obtained with a FBG at 1550 nm with 99% reflectivity.
Transverse strain measurements using fiber optic grating based sensors
NASA Technical Reports Server (NTRS)
Udd, Eric (Inventor)
1998-01-01
A system and method to sense the application of transverse stress to an optical fiber which includes a light source that producing a relatively wide spectrum light beam. The light beam is reflected or transmitted off of an optical grating in the core of an optical fiber that is transversely stressed either directly or by the exposure to pressure when the fiber is bifringent so that the optical fiber responds to the pressure to transversely stress its core. When transversely stressed, the optical grating produces a reflection or transmission from the light beam that has two peaks or minimums in its frequency spectrum whose spacing and/or spread are indicative of the forces applied to the fiber. One or more detectors sense the reflection or transmissions from the optical grating to produce an output representative of the applied force. Multiple optical gratings and detectors may be employed to simultaneously measure temperature or the forces at different locations along the fiber.
Real-Time Spatio-Temporal Twice Whitening for MIMO Energy Detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humble, Travis S; Mitra, Pramita; Barhen, Jacob
2010-01-01
While many techniques exist for local spectrum sensing of a primary user, each represents a computationally demanding task to secondary user receivers. In software-defined radio, computational complexity lengthens the time for a cognitive radio to recognize changes in the transmission environment. This complexity is even more significant for spatially multiplexed receivers, e.g., in SIMO and MIMO, where the spatio-temporal data sets grow in size with the number of antennae. Limits on power and space for the processor hardware further constrain SDR performance. In this report, we discuss improvements in spatio-temporal twice whitening (STTW) for real-time local spectrum sensing by demonstratingmore » a form of STTW well suited for MIMO environments. We implement STTW on the Coherent Logix hx3100 processor, a multicore processor intended for low-power, high-throughput software-defined signal processing. These results demonstrate how coupling the novel capabilities of emerging multicore processors with algorithmic advances can enable real-time, software-defined processing of large spatio-temporal data sets.« less
NASA Technical Reports Server (NTRS)
Vandermeulen, Ryan A.; Mannino, Antonio; Neeley, Aimee; Werdell, Jeremy; Arnone, Robert
2017-01-01
Using a modified geostatistical technique, empirical variograms were constructed from the first derivative of several diverse remote sensing reflectance and phytoplankton absorbance spectra to describe how data points are correlated with distance across the spectra. The maximum rate of information gain is measured as a function of the kurtosis associated with the Gaussian structure of the output, and is determined for discrete segments of spectra obtained from a variety of water types (turbid river filaments, coastal waters, shelf waters, a dense Microcystis bloom, and oligotrophic waters), as well as individual and mixed phytoplankton functional types (PFTs; diatoms, chlorophytes, cyanobacteria, coccolithophores). Results show that a continuous spectrum of 5 to 7 nm spectral resolution is optimal to resolve the variability across mixed reflectance and absorbance spectra. In addition, the impact of uncertainty on subsequent derivative analysis is assessed, showing that a limit of 3 Gaussian noise (SNR 66) is tolerated without smoothing the spectrum, and 13 (SNR 15) noise is tolerated with smoothing.
[An object-based information extraction technology for dominant tree species group types].
Tian, Tian; Fan, Wen-yi; Lu, Wei; Xiao, Xiang
2015-06-01
Information extraction for dominant tree group types is difficult in remote sensing image classification, howevers, the object-oriented classification method using high spatial resolution remote sensing data is a new method to realize the accurate type information extraction. In this paper, taking the Jiangle Forest Farm in Fujian Province as the research area, based on the Quickbird image data in 2013, the object-oriented method was adopted to identify the farmland, shrub-herbaceous plant, young afforested land, Pinus massoniana, Cunninghamia lanceolata and broad-leave tree types. Three types of classification factors including spectral, texture, and different vegetation indices were used to establish a class hierarchy. According to the different levels, membership functions and the decision tree classification rules were adopted. The results showed that the method based on the object-oriented method by using texture, spectrum and the vegetation indices achieved the classification accuracy of 91.3%, which was increased by 5.7% compared with that by only using the texture and spectrum.
On the performance of energy detection-based CR with SC diversity over IG channel
NASA Astrophysics Data System (ADS)
Verma, Pappu Kumar; Soni, Sanjay Kumar; Jain, Priyanka
2017-12-01
Cognitive radio (CR) is a viable 5G technology to address the scarcity of the spectrum. Energy detection-based sensing is known to be the simplest method as far as hardware complexity is concerned. In this paper, the performance of spectrum sensing-based energy detection technique in CR networks over inverse Gaussian channel for selection combining diversity technique is analysed. More specifically, accurate analytical expressions for the average detection probability under different detection scenarios such as single channel (no diversity) and with diversity reception are derived and evaluated. Further, the detection threshold parameter is optimised by minimising the probability of error over several diversity branches. The results clearly show the significant improvement in the probability of detection when optimised threshold parameter is applied. The impact of shadowing parameters on the performance of energy detector is studied in terms of complimentary receiver operating characteristic curve. To verify the correctness of our analysis, the derived analytical expressions are corroborated via exact result and Monte Carlo simulations.
Investigating interoception and body awareness in adults with and without autism spectrum disorder.
Fiene, Lisa; Brownlow, Charlotte
2015-12-01
This study aimed to investigate the current gap in the literature with regard to how adults with and without Autism Spectrum Disorder (ASD) interpret elements of the interoceptive sense, which includes thirst, hunger, temperature, satiety, and the prediction of onset of illness. Adults with a diagnosed ASD (n = 74; 36 males, 38 females) were compared to a control group (n = 228; 53 males, 174 females, 1 unspecified) in their self-reported perceptions of body awareness utilizing the Body Awareness Questionnaire (BAQ) and thirst awareness using the Thirst Awareness Scale (TAS). Those in the ASD group reported a clinically significant lower body and thirst awareness compared to the control group, and this was a large effect (BAQ; d = -1.26, P < 0.001; TAS; d = -1.02, P < 0.001). These findings are of clinical importance, as difficulty with sensing internal bodily states could theoretically impact on the physical and mental health, social interactions and self-awareness of adults with ASD. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.
Fluorescence spectroscopy for endogenous porphyrins in human facial skin
NASA Astrophysics Data System (ADS)
Seo, I.; Tseng, S. H.; Cula, G. O.; Bargo, P. R.; Kollias, N.
2009-02-01
The activity of certain bacteria in skin is known to correlate to the presence of porphyrins. In particular the presence of coproporphyrin produced by P.acnes inside plugged pores has been correlated to acne vulgaris. Another porphyrin encountered in skin is protoporphyrin IX, which is produced by the body in the pathway for production of heme. In the present work, a fluorescence spectroscopy system was developed to measure the characteristic spectrum and quantify the two types of porphyrins commonly present in human facial skin. The system is comprised of a Xe lamp both for fluorescence excitation and broadband light source for diffuse reflectance measurements. A computer-controlled filter wheel enables acquisition of sequential spectra, first excited by blue light at 405 nm then followed by the broadband light source, at the same location. The diffuse reflectance spectrum was used to correct the fluorescence spectrum due to the presence of skin chromophores, such as blood and melanin. The resulting fluorescence spectra were employed for the quantification of porphyrin concentration in a population of healthy subjects. The results show great variability on the concentration of these porphyrins and further studies are being conducted to correlate them with skin conditions such as inflammation and acne vulgaris.
Orestes, Ednilsom; Bistafa, Carlos; Rivelino, Roberto; Canuto, Sylvio
2015-05-28
The vibrational circular dichroism (VCD) spectrum of l-alanine amino acid in aqueous solution in ambient conditions has been studied. The emphasis has been placed on the inclusion of the thermal disorder of the solute-solvent hydrogen bonds that characterize the aqueous solution condition. A combined and sequential use of molecular mechanics and quantum mechanics was adopted. To calculate the average VCD spectrum, the DFT B3LYP/6-311++G(d,p) level of calculation was employed, over one-hundred configurations composed of the solute plus all water molecules making hydrogen bonds with the solute. Simplified considerations including only four explicit solvent molecules and the polarizable continuum model were also made for comparison. Considering the large number of vibration frequencies with only limited experimental results a direct comparison is presented, when possible, and in addition a statistical analysis of the calculated values was performed. The results are found to be in line with the experiment, leading to the conclusion that including thermal disorder may improve the agreement of the vibrational frequencies with experimental results, but the thermal effects may be of greater value in the calculations of the rotational strengths.
Observations in the solar spectrum interest for remote sensing purposes
NASA Technical Reports Server (NTRS)
Herman, M.; Vanderbilt, V.
1994-01-01
The polarization of the sunlight scattered by atmospheric aerosols or cloud droplets and reflected from ground surfaces or plant canopies may convey much information when used for remote sensing purposes. The typical polarization features of aerosols, cloud droplets, and plant canopies, as observed by ground based and airborne sensors, are investigated, looking especially for those invariant properties amenable to description by simple models when possible. The question of polarization measurements from space is addressed. The interest of such measurements for remote sensing purposes is investigated, and their feasibility is tested by using results obtained during field campaigns of the airborne POLDER instrument, a radiometer designed to measure the directionality and polarization of the sunlight scattered by the ground atmosphere system.
[Remote sensing of atmospheric trace gas by airborne passive FTIR].
Gao, Min-quang; Liu, Wen-qing; Zhang, Tian-shu; Liu, Jian-guo; Lu, Yi-huai; Wang, Ya-ping; Xu, Liang; Zhu, Jun; Chen, Jun
2006-12-01
The present article describes the details of aviatic measurement for remote sensing trace gases in atmosphere under various surface backgrounds with airborne passive FTIR. The passive down viewing and remote sensing technique used in the experiment is discussed. The method of acquiring atmospheric trace gases infrared characteristic spectra in complicated background and the algorithm of concentration retrieval are discussed. The concentrations of CO and N2O of boundary-layer atmosphere in experimental region below 1000 m are analyzed quantitatively. This measurement technique and the data analysis method, which does not require a previously measured background spectrum, allow fast and mobile remote detection and identification of atmosphere trace gas in large area, and also can be used for urgent monitoring of pollution accidental breakout.
NASA Technical Reports Server (NTRS)
1987-01-01
Remote sensing is the process of acquiring physical information from a distance, obtaining data on Earth features from a satellite or an airplane. Advanced remote sensing instruments detect radiations not visible to the ordinary camera or the human eye in several bands of the spectrum. These data are computer processed to produce multispectral images that can provide enormous amounts of information about Earth objects or phenomena. Since every object on Earth emits or reflects radiation in its own unique signature, remote sensing data can be interpreted to tell the difference between one type of vegetation and another, between densely populated urban areas and lightly populated farmland, between clear and polluted water or in the archeological application between rain forest and hidden man made structures.
HPT: A High Spatial Resolution Multispectral Sensor for Microsatellite Remote Sensing
Takahashi, Yukihiro; Sakamoto, Yuji; Kuwahara, Toshinori
2018-01-01
Although nano/microsatellites have great potential as remote sensing platforms, the spatial and spectral resolutions of an optical payload instrument are limited. In this study, a high spatial resolution multispectral sensor, the High-Precision Telescope (HPT), was developed for the RISING-2 microsatellite. The HPT has four image sensors: three in the visible region of the spectrum used for the composition of true color images, and a fourth in the near-infrared region, which employs liquid crystal tunable filter (LCTF) technology for wavelength scanning. Band-to-band image registration methods have also been developed for the HPT and implemented in the image processing procedure. The processed images were compared with other satellite images, and proven to be useful in various remote sensing applications. Thus, LCTF technology can be considered an innovative tool that is suitable for future multi/hyperspectral remote sensing by nano/microsatellites. PMID:29463022
Fiber-linked interferometric pressure sensor
NASA Technical Reports Server (NTRS)
Beheim, G.; Fritsch, K.; Poorman, R. N.
1987-01-01
A fiber-optic pressure sensor is described which uses a diaphragm to modulate the mirror separation of a Fabry-Perot cavity (the sensing cavity). A multimode optical fiber delivers broadband light to the sensing cavity and returns the spectrally modulated light which the cavity reflects. The sensor's output spectrum is analyzed using a tunable Fabry-Perot cavity (the reference cavity) to determine the mismatch in the mirror separations of the two cavities. An electronic servo control uses this result to cause the mirror separation of the reference cavity to equal that of the sensing cavity. The displacement of the pressure-sensing diaphragm is then obtained by measuring the capacitance of the reference cavity's metal-coated mirrors. Relative to other fiber-optic sensors, an important advantage of this instrument is its high immunity to the effects of variations in both the transmissivity of the fiber link and the wavelength of the optical source.
A Noise Spectroscopy-Based Selective Gas Sensing with MOX Gas Sensors
NASA Astrophysics Data System (ADS)
Gomri, S.; Seguin, J.; Contaret, T.; Fiorido, T.; Aguir, K.
We propose a new method for obtaining a fluctuation-enhanced sensing (FES) signature of a gas using a single metal oxide (MOX) gas micro sensor. Starting from our model of adsorption-desorption (A-D) noise previously developed, we show theoretically that the product of frequency by the power spectrum density (PSD) of the gas sensing layer resistance fluctuations often has a maximum which is characteristic of the gas. This property was experimentally confirmed in the case of the detection of NO2 and O3 using a WO3 sensing layer. This method could be useful for classifying gases. Furthermore, our noise measurements confirm our previous model showing that PSD of the A-Dnoise in MOX gas sensor is a combination of Lorentzians having a low frequency magnitude and a cut-off frequency which depends on the nature of the detected gas.
Naeem, Khurram; Kwon, Il-Bum; Chung, Youngjoo
2017-01-01
We present a fiber-optic multibeam Mach-Zehnder interferometer (m-MZI) for simultaneous multi-parameter measurement. The m-MZI is comprised of a section of photonic crystal fiber integrated with two independent cores of distinct construction and birefringence properties characterized for torsion, strain and temperature sensing. Due to the presence of small core geometry and use of a short fiber length, the sensing device demonstrates inter-modal interference in the small core alongside the dominant inter-core interference between the cores for each of the orthogonal polarizations. The output spectrum of the device is characterized by the three-beam interference model and is polarization-dependent. The two types of interferometers present in the fiber m-MZI exhibit distinct sensitivities to torsion, strain and temperature for different polarizations, and matrix coefficients allowing simultaneous measurement of the three sensing parameters are proposed in experiment. PMID:28085046
SeGRAm - A practical and versatile tool for spacecraft trajectory optimization
NASA Technical Reports Server (NTRS)
Rishikof, Brian H.; Mccormick, Bernell R.; Pritchard, Robert E.; Sponaugle, Steven J.
1991-01-01
An implementation of the Sequential Gradient/Restoration Algorithm, SeGRAm, is presented along with selected examples. This spacecraft trajectory optimization and simulation program uses variational calculus to solve problems of spacecraft flying under the influence of one or more gravitational bodies. It produces a series of feasible solutions to problems involving a wide range of vehicles, environments and optimization functions, until an optimal solution is found. The examples included highlight the various capabilities of the program and emphasize in particular its versatility over a wide spectrum of applications from ascent to interplanetary trajectories.
Remote measurement of ClO in the stratosphere
NASA Technical Reports Server (NTRS)
Menzies, R. T.
1979-01-01
ClO has been detected in the stratosphere from observations of the solar spectrum in the infrared, in a small spectral interval near 12 micrometers. The observations were made with a balloon-borne laser heterodyne radiometer, launched from Palestine, Texas on September 20. By comparing high sun spectra with a number of sequential spectra taken during sunset, an altitude profile has been calculated in the 29-38 km altitude range. The results show a peak mixing ratio in excess of one ppb above 34 km, and a rapid decrease in mixing ratio with decreasing altitude below 34 km.
Peterson, Kathryn M; Piazza, Cathleen C; Volkert, Valerie M
2016-09-01
Treatments of pediatric feeding disorders based on applied behavior analysis (ABA) have the most empirical support in the research literature (Volkert & Piazza, 2012); however, professionals often recommend, and caregivers often use, treatments that have limited empirical support. In the current investigation, we compared a modified sequential oral sensory approach (M-SOS; Benson, Parke, Gannon, & Muñoz, 2013) to an ABA approach for the treatment of the food selectivity of 6 children with autism. We randomly assigned 3 children to ABA and 3 children to M-SOS and compared the effects of treatment in a multiple baseline design across novel, healthy target foods. We used a multielement design to assess treatment generalization. Consumption of target foods increased for children who received ABA, but not for children who received M-SOS. We subsequently implemented ABA with the children for whom M-SOS was not effective and observed a potential treatment generalization effect during ABA when M-SOS preceded ABA. © 2016 Society for the Experimental Analysis of Behavior.
Transfer functions of double- and multiple-cavity Fabry-Perot filters driven by Lorentzian sources.
Marti, J; Capmany, J
1996-12-20
We derive expressions for the transfer functions of double- and multiple-cavity Fabry-Perot filters driven by laser sources with Lorentzian spectrum. These are of interest because of their applications in sensing and channel filtering in optical frequency-division multiplexing networks.
Transfer functions of double- and multiple-cavity Fabry Perot filters driven by Lorentzian sources
NASA Astrophysics Data System (ADS)
Marti, Javier; Capmany, Jose
1996-12-01
We derive expressions for the transfer functions of double- and multiple-cavity Fabry Perot filters driven by laser sources with Lorentzian spectrum. These are of interest because of their applications in sensing and channel filtering in optical frequency-division multiplexing networks.
USDA-ARS Hydrology Laboratory MISWG Hydrology Workshop
NASA Technical Reports Server (NTRS)
Jackson, T. J.
1982-01-01
Current research being conducted in remote sensing techniques for measuring hydrologic parameters and variables deals with runoff curve numbers (CN), evapotranspiration (ET), and soil moisture. The CN and ET research utilizes visible and infrared measurements. Soil moisture investigations focus on the microwave region of the electromagnetic spectrum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, J; Szczykutowicz, T; Bayouth, J
Purpose: To compare the ability of two dual-energy CT techniques, a novel split-filter single-source technique of superior temporal resolution against an established sequential-scan technique, to remove iodine contrast from images with minimal impact on CT number accuracy. Methods: A phantom containing 8 tissue substitute materials and vials of varying iodine concentrations (1.7–20.1 mg I /mL) was imaged using a Siemens Edge CT scanner. Dual-energy virtual non-contrast (VNC) images were generated using the novel split-filter technique, in which a 120kVp spectrum is filtered by tin and gold to create high- and low-energy spectra with < 1 second temporal separation between themore » acquisition of low- and high-energy data. Additionally, VNC images were generated with the sequential-scan technique (80 and 140kVp) for comparison. CT number accuracy was evaluated for all materials at 15, 25, and 35mGy CTDIvol. Results: The spectral separation was greater for the sequential-scan technique than the split-filter technique with dual-energy ratios of 2.18 and 1.26, respectively. Both techniques successfully removed iodine contrast, resulting in mean CT numbers within 60HU of 0HU (split-filter) and 40HU of 0HU (sequential-scan) for all iodine concentrations. Additionally, for iodine vials of varying diameter (2–20 mm) with the same concentration (9.9 mg I /mL), the system accurately detected iodine for all sizes investigated. Both dual-energy techniques resulted in reduced CT numbers for bone materials (by >400HU for the densest bone). Increasing the imaging dose did not improve the CT number accuracy for bone in VNC images. Conclusion: VNC images from the split-filter technique successfully removed iodine contrast. These results demonstrate a potential for improving dose calculation accuracy and reducing patient imaging dose, while achieving superior temporal resolution in comparison sequential scans. For both techniques, inaccuracies in CT numbers for bone materials necessitate consideration for radiation therapy treatment planning.« less
Synchronous atmospheric radiation correction of GF-2 satellite multispectral image
NASA Astrophysics Data System (ADS)
Bian, Fuqiang; Fan, Dongdong; Zhang, Yan; Wang, Dandan
2018-02-01
GF-2 remote sensing products have been widely used in many fields for its high-quality information, which provides technical support for the the macroeconomic decisions. Atmospheric correction is the necessary part in the data preprocessing of the quantitative high resolution remote sensing, which can eliminate the signal interference in the radiation path caused by atmospheric scattering and absorption, and reducting apparent reflectance into real reflectance of the surface targets. Aiming at the problem that current research lack of atmospheric date which are synchronization and region matching of the surface observation image, this research utilize the MODIS Level 1B synchronous data to simulate synchronized atmospheric condition, and write programs to implementation process of aerosol retrieval and atmospheric correction, then generate a lookup table of the remote sensing image based on the radioactive transfer model of 6S (second simulation of a satellite signal in the solar spectrum) to correct the atmospheric effect of multispectral image from GF-2 satellite PMS-1 payload. According to the correction results, this paper analyzes the pixel histogram of the reflectance spectrum of the 4 spectral bands of PMS-1, and evaluates the correction results of different spectral bands. Then conducted a comparison experiment on the same GF-2 image based on the QUAC. According to the different targets respectively statistics the average value of NDVI, implement a comparative study of NDVI from two different results. The degree of influence was discussed by whether to adopt synchronous atmospheric date. The study shows that the result of the synchronous atmospheric parameters have significantly improved the quantitative application of the GF-2 remote sensing data.
Use hyperspectral remote sensing technique to monitoring pine wood nomatode disease preliminary
NASA Astrophysics Data System (ADS)
Qin, Lin; Wang, Xianghong; Jiang, Jing; Yang, Xianchang; Ke, Daiyan; Li, Hongqun; Wang, Dingyi
2016-10-01
The pine wilt disease is a devastating disease of pine trees. In China, the first discoveries of the pine wilt disease on 1982 at Dr. Sun Yat-sen's Mausoleum in Nanjing. It occurred an area of 77000 hm2 in 2005, More than 1540000 pine trees deaths in the year. Many districts of Chongqing in Three Gorges Reservoir have different degrees of pine wilt disease occurrence. It is a serious threat to the ecological environment of the reservoir area. Use unmanned airship to carry high spectrum remote sensing monitoring technology to develop the study on pine wood nematode disease early diagnosis and early warning and forecasting in this study. The hyper spectral data and the digital orthophoto map data of Fuling District Yongsheng Forestry had been achieved In September 2015. Using digital image processing technology to deal with the digital orthophoto map, the number of disease tree and its distribution is automatic identified. Hyper spectral remote sensing data is processed by the spectrum comparison algorithm, and the number and distribution of disease pine trees are also obtained. Two results are compared, the distribution area of disease pine trees are basically the same, indicating that using low air remote sensing technology to monitor the pine wood nematode distribution is successful. From the results we can see that the hyper spectral data analysis results more accurate and less affected by environmental factors than digital orthophoto map analysis results, and more environment variable can be extracted, so the hyper spectral data study is future development direction.
Remote Sensing in Geography in the New Millennium: Prospects, Challenges, and Opportunities
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Jensen, John R.; Morain, Stanley A.; Walsh, Stephen J.; Ridd, Merrill K.
1999-01-01
Remote sensing science contributes greatly to our understanding of the Earth's ecosystems and cultural landscapes. Almost all the natural and social sciences, including geography, rely heavily on remote sensing to provide quantitative, and indispensable spatial information. Many geographers have made significant contributions to remote sensing science since the 1970s, including the specification of advanced remote sensing systems, improvements in analog and digital image analysis, biophysical modeling, and terrain analysis. In fact, the Remote Sensing Specialty Group (RSSG) is one of the largest specialty groups within the AAG with over 500 members. Remote sensing in concert with a geographic information systems, offers much value to geography as both an incisive spatial-analytical tool and as a scholarly pursuit that adds to the body of geographic knowledge on the whole. The "power" of remote sensing as a research endeavor in geography lies in its capabilities for obtaining synoptic, near-real time data at many spatial and temporal scales, and in many regions of the electromagnetic spectrum - from microwave, to RADAR, to visible, and reflective and thermal infrared. In turn, these data present a vast compendium of information for assessing Earth attributes and characte6stics that are at the very core of geography. Here we revisit how remote sensing has become a fundamental and important tool for geographical research, and how with the advent of new and improved sensing systems to be launched in the near future, remote sensing will further advance geographical analysis in the approaching New Millennium.
Upper-Tropospheric Winds Derived from Geostationary Satellite Water Vapor Observations
NASA Technical Reports Server (NTRS)
Velden, Christopher S.; Hayden, Christopher M.; Nieman, Steven J.; Menzel, W. Paul; Wanzong, Steven; Goerss, James S.
1997-01-01
The coverage and quality of remotely sensed upper-tropospheric moisture parameters have improved considerably with the deployment of a new generation of operational geostationary meteorological satellites: GOES-8/9 and GMS-5. The GOES-8/9 water vapor imaging capabilities have increased as a result of improved radiometric sensitivity and higher spatial resolution. The addition of a water vapor sensing channel on the latest GMS permits nearly global viewing of upper-tropospheric water vapor (when joined with GOES and Meteosat) and enhances the commonality of geostationary meteorological satellite observing capabilities. Upper-tropospheric motions derived from sequential water vapor imagery provided by these satellites can be objectively extracted by automated techniques. Wind fields can be deduced in both cloudy and cloud-free environments. In addition to the spatially coherent nature of these vector fields, the GOES-8/9 multispectral water vapor sensing capabilities allow for determination of wind fields over multiple tropospheric layers in cloud-free environments. This article provides an update on the latest efforts to extract water vapor motion displacements over meteorological scales ranging from subsynoptic to global. The potential applications of these data to impact operations, numerical assimilation and prediction, and research studies are discussed.
Mountain pine beetle detection and monitoring: evaluation of airborne imagery
NASA Astrophysics Data System (ADS)
Roberts, A.; Bone, C.; Dragicevic, S.; Ettya, A.; Northrup, J.; Reich, R.
2007-10-01
The processing and evaluation of digital airborne imagery for detection, monitoring and modeling of mountain pine beetle (MPB) infestations is evaluated. The most efficient and reliable remote sensing strategy for identification and mapping of infestation stages ("current" to "red" to "grey" attack) of MPB in lodgepole pine forests is determined for the most practical and cost effective procedures. This research was planned to specifically enhance knowledge by determining the remote sensing imaging systems and analytical procedures that optimize resource management for this critical forest health problem. Within the context of this study, airborne remote sensing of forest environments for forest health determinations (MPB) is most suitably undertaken using multispectral digitally converted imagery (aerial photography) at scales of 1:8000 for early detection of current MPB attack and 1:16000 for mapping and sequential monitoring of red and grey attack. Digital conversion should be undertaken at 10 to 16 microns for B&W multispectral imagery and 16 to 24 microns for colour and colour infrared imagery. From an "operational" perspective, the use of twin mapping-cameras with colour and B&W or colour infrared film will provide the best approximation of multispectral digital imagery with near comparable performance in a competitive private sector context (open bidding).
Rieken, Johannes; Garcia-Sanchez, Efraín; Trujillo, Mónica Pérez; Bear, Daniel
2015-06-01
We developed a teaching-led research project to empirically ground methodological reflection about digital ethnography. Drawing on Cordelois' collective ethnographic observation approach, fifteen emerging professionals (from a private general education university and a Police Academy in Bogota) collaborated in a method seminar on digital ethnography. They worked in cross-institutional research teams, each carrying SenseCams for 3 days. Students had a dual role as both participants and observers during self-confrontation interviews. The research design enabled emerging professionals to introspect about what it is to be a member of their institution. The SenseCam provided an additional opportunity for observation as it elicited different reactions in the two institutions. The fact that SenseCams produce sequential accounts of activity as well as its situated nature made apparent the autonomy to study and solve daily issues (e.g. transport, security, commitments) by students from the university, while students in the police academy are more focused on responding to unforeseen activities (e.g. police services, unexpected requests). Finally, our research highlights the relevance of the social dimension of introspection for digital ethnography. How digital data that captures an individual perspective is negotiated in a group becomes a key methodological question.
NASA Astrophysics Data System (ADS)
Raksincharoensak, Pongsathorn; Khaisongkram, Wathanyoo; Nagai, Masao; Shimosaka, Masamichi; Mori, Taketoshi; Sato, Tomomasa
2010-12-01
This paper describes the modelling of naturalistic driving behaviour in real-world traffic scenarios, based on driving data collected via an experimental automobile equipped with a continuous sensing drive recorder. This paper focuses on the longitudinal driving situations which are classified into five categories - car following, braking, free following, decelerating and stopping - and are referred to as driving states. Here, the model is assumed to be represented by a state flow diagram. Statistical machine learning of driver-vehicle-environment system model based on driving database is conducted by a discriminative modelling approach called boosting sequential labelling method.
NASA Technical Reports Server (NTRS)
Carsey, F. D.; Argus, S. D.
1988-01-01
Image data from synthetic aperture radar (SAR) are used to observe an ice compaction event off the East Coast of Newfoundland in spring, 1987. The information developed from sequential SAR observations is shown to do a remarkably effective job of describing the ice conditions; the difficult variable is the ice thickness which is found to be surprisingly large (2 to 4 times the thickness predictable from thermodynamic growth alone). It may be possible to model the ice thickness using SAR-derived ice motion.
Schindlbeck, Christopher; Pape, Christian; Reithmeier, Eduard
2018-04-16
Alignment of optical components is crucial for the assembly of optical systems to ensure their full functionality. In this paper we present a novel predictor-corrector framework for the sequential assembly of serial optical systems. Therein, we use a hybrid optical simulation model that comprises virtual and identified component positions. The hybrid model is constantly adapted throughout the assembly process with the help of nonlinear identification techniques and wavefront measurements. This enables prediction of the future wavefront at the detector plane and therefore allows for taking corrective measures accordingly during the assembly process if a user-defined tolerance on the wavefront error is violated. We present a novel notation for the so-called hybrid model and outline the work flow of the presented predictor-corrector framework. A beam expander is assembled as demonstrator for experimental verification of the framework. The optical setup consists of a laser, two bi-convex spherical lenses each mounted to a five degree-of-freedom stage to misalign and correct components, and a Shack-Hartmann sensor for wavefront measurements.
Investigating student communities with network analysis of interactions in a physics learning center
NASA Astrophysics Data System (ADS)
Brewe, Eric; Kramer, Laird; Sawtelle, Vashti
2012-06-01
Developing a sense of community among students is one of the three pillars of an overall reform effort to increase participation in physics, and the sciences more broadly, at Florida International University. The emergence of a research and learning community, embedded within a course reform effort, has contributed to increased recruitment and retention of physics majors. We utilize social network analysis to quantify interactions in Florida International University’s Physics Learning Center (PLC) that support the development of academic and social integration. The tools of social network analysis allow us to visualize and quantify student interactions and characterize the roles of students within a social network. After providing a brief introduction to social network analysis, we use sequential multiple regression modeling to evaluate factors that contribute to participation in the learning community. Results of the sequential multiple regression indicate that the PLC learning community is an equitable environment as we find that gender and ethnicity are not significant predictors of participation in the PLC. We find that providing students space for collaboration provides a vital element in the formation of a supportive learning community.
Physics Learning Styles in Higher Education
NASA Astrophysics Data System (ADS)
Loos, Rebecca; Ward, James
2012-03-01
Students in Physics learn in a variety ways depending on backgrounds and interests. This study proposes to evaluate how students in Physics learn using Howard Gardner's Theory of Multiple Intelligences. Physics utilizes numbers, conceptualization of models, observations and visualization skills, and the ability to understand and reflect on specific information. The main objective is to evaluate how Physics students learn specifically using spatial, visual and sequential approaches. This will be assessed by conducting a learning style survey provided by North Carolina State University (NCSU). The survey is completed online by the student after which the results are sent to NCSU. Students will print out the completed survey analysis for further evaluation. The NCSU results categorize students within five of ten learning styles. After the evaluation of Howard Gardner's Theory of Multiple Intelligences and the NCSU definitions of the ten learning styles, the NCSU sensing and visual learning styles will be defined as the Gardener's spatial, visual learning styles. NCSU's sequential learning style will be looked at separately. With the survey results, it can be determined if Physics students fall within the hypothesized learning styles.
Zhang, Wei; Yan, Zhiqiang; Li, Bingxue; Jan, Lily Yeh; Jan, Yuh Nung
2014-01-01
Defecation allows the body to eliminate waste, an essential step in food processing for animal survival. In contrast to the extensive studies of feeding, its obligate counterpart, defecation, has received much less attention until recently. In this study, we report our characterizations of the defecation behavior of Drosophila larvae and its neural basis. Drosophila larvae display defecation cycles of stereotypic frequency, involving sequential contraction of hindgut and anal sphincter. The defecation behavior requires two groups of motor neurons that innervate hindgut and anal sphincter, respectively, and can excite gut muscles directly. These two groups of motor neurons fire sequentially with the same periodicity as the defecation behavior, as revealed by in vivo Ca2+ imaging. Moreover, we identified a single mechanosensitive sensory neuron that innervates the anal slit and senses the opening of the intestine terminus. This anus sensory neuron relies on the TRP channel NOMPC but not on INACTIVE, NANCHUNG, or PIEZO for mechanotransduction. DOI: http://dx.doi.org/10.7554/eLife.03293.001 PMID:25358089
Local spectral properties of reflectionless Jacobi, CMV, and Schrödinger operators
NASA Astrophysics Data System (ADS)
Gesztesy, Fritz; Zinchenko, Maxim
We prove that Jacobi, CMV, and Schrödinger operators, which are reflectionless on a homogeneous set E (in the sense of Carleson), under the assumption of a Blaschke-type condition on their discrete spectra accumulating at E, have purely absolutely continuous spectrum on E.
ERIC Educational Resources Information Center
Drass, Jessica Masino
2015-01-01
Art therapy has shown benefits for people with borderline personality disorder and borderline personality traits by alleviating interpersonal difficulties such as affect regulation, an unstable sense of self, self-injurious behaviors, and suicidal ideation. Borderline personality disorder is currently viewed as a trauma spectrum disorder, because…
47 CFR 15.717 - TVBDs that rely on spectrum sensing.
Code of Federal Regulations, 2010 CFR
2010-10-01
... under this section must demonstrate with an extremely high degree of confidence that they will not cause... § 0.459 of this chapter. This public notice will include proposed test procedures and methodologies. (ii) The Commission will conduct laboratory and field tests of the pre-production device. This testing...
Machine Learning-Aided, Robust Wideband Spectrum Sensing for Cognitive Radios
2015-06-12
to even Approved for public release; distribution is unlimited. 2 on the order of a giga -Hertz (GHz). Due to wide bandwidth and noncontiguous...Frequency Band CS Compressive Sampling DFT Discrete Fourier Transform EMI Electro Magnetic Interference FFT Fast Fourier Transform GHz Giga Hertz Hz Hertz
The visible absorption spectrum of NO3 measured by high-resolution Fourier transform spectroscopy
NASA Astrophysics Data System (ADS)
Orphal, J.; Fellows, C. E.; Flaud, P.-M.
2003-02-01
The visible absorption spectrum of the nitrate radical NO3 has been measured using high-resolution Fourier transform spectroscopy. The spectrum was recorded at 294 K using a resolution of 0.6 cm-1 (corresponding to 0.026 nm at 662 nm) and covers the 12600-21500 cm-1 region (465-794 nm). Compared to absorption spectra of NO3 recorded previously, the new data show improvements concerning absolute wavelength calibration (uncertainty 0.02 cm-1), and spectral resolution. A new interpretation and model of the temperature dependence of the strong (0-0) band around 662 nm are proposed. The results are important for long-path tropospheric absorption measurements of NO3 and optical remote sensing of the Earth's atmosphere from space.
Non-parametric characterization of long-term rainfall time series
NASA Astrophysics Data System (ADS)
Tiwari, Harinarayan; Pandey, Brij Kishor
2018-03-01
The statistical study of rainfall time series is one of the approaches for efficient hydrological system design. Identifying, and characterizing long-term rainfall time series could aid in improving hydrological systems forecasting. In the present study, eventual statistics was applied for the long-term (1851-2006) rainfall time series under seven meteorological regions of India. Linear trend analysis was carried out using Mann-Kendall test for the observed rainfall series. The observed trend using the above-mentioned approach has been ascertained using the innovative trend analysis method. Innovative trend analysis has been found to be a strong tool to detect the general trend of rainfall time series. Sequential Mann-Kendall test has also been carried out to examine nonlinear trends of the series. The partial sum of cumulative deviation test is also found to be suitable to detect the nonlinear trend. Innovative trend analysis, sequential Mann-Kendall test and partial cumulative deviation test have potential to detect the general as well as nonlinear trend for the rainfall time series. Annual rainfall analysis suggests that the maximum changes in mean rainfall is 11.53% for West Peninsular India, whereas the maximum fall in mean rainfall is 7.8% for the North Mountainous Indian region. The innovative trend analysis method is also capable of finding the number of change point available in the time series. Additionally, we have performed von Neumann ratio test and cumulative deviation test to estimate the departure from homogeneity. Singular spectrum analysis has been applied in this study to evaluate the order of departure from homogeneity in the rainfall time series. Monsoon season (JS) of North Mountainous India and West Peninsular India zones has higher departure from homogeneity and singular spectrum analysis shows the results to be in coherence with the same.
Russo, N; Mottron, L; Burack, J A; Jemel, B
2012-07-01
Individuals with autism spectrum disorders (ASD) report difficulty integrating simultaneously presented visual and auditory stimuli (Iarocci & McDonald, 2006), albeit showing enhanced perceptual processing of unisensory stimuli, as well as an enhanced role of perception in higher-order cognitive tasks (Enhanced Perceptual Functioning (EPF) model; Mottron, Dawson, Soulières, Hubert, & Burack, 2006). Individuals with an ASD also integrate auditory-visual inputs over longer periods of time than matched typically developing (TD) peers (Kwakye, Foss-Feig, Cascio, Stone & Wallace, 2011). To tease apart the dichotomy of both extended multisensory processing and enhanced perceptual processing, we used behavioral and electrophysiological measurements of audio-visual integration among persons with ASD. 13 TD and 14 autistics matched on IQ completed a forced choice multisensory semantic congruence task requiring speeded responses regarding the congruence or incongruence of animal sounds and pictures. Stimuli were presented simultaneously or sequentially at various stimulus onset asynchronies in both auditory first and visual first presentations. No group differences were noted in reaction time (RT) or accuracy. The latency at which congruent and incongruent waveforms diverged was the component of interest. In simultaneous presentations, congruent and incongruent waveforms diverged earlier (circa 150 ms) among persons with ASD than among TD individuals (around 350 ms). In sequential presentations, asymmetries in the timing of neuronal processing were noted in ASD which depended on stimulus order, but these were consistent with the nature of specific perceptual strengths in this group. These findings extend the Enhanced Perceptual Functioning Model to the multisensory domain, and provide a more nuanced context for interpreting ERP findings of impaired semantic processing in ASD. Copyright © 2012 Elsevier Ltd. All rights reserved.
High temperature sensor properties of a specialty double cladding fiber
NASA Astrophysics Data System (ADS)
Zhou, Ting; Pang, Fufei; Wang, Tingyun
2011-12-01
A simple high temperature fiber sensor is proposed and demonstrated. The sensor head is made of a short section of specialty double cladding fiber (DCF). The DCF consists of a depressed inner cladding which is boron (B)-doped silica. Through an evanescent wave, the cladding mode can be excited, and thus the transmission presents a resonant spectral dip. The high temperature sensing properties was studied according to the shift of the transmission spectrum shifts. With increasing the temperature from 28 °C to 850 °C, the resonant spectrum shifts to longer wavelengths. The sensitivity is 0.112 nm / °C.
Tunable solid-state lasers - An emerging technology for remote sensing of planetary atmospheres
NASA Technical Reports Server (NTRS)
Barnes, Norman P.; Allario, Frank
1988-01-01
The present development status and prospective (1990s) performance-improvement evaluation of tunable solid-state laser technology notes recent trends toward spectrum coverage over the 0.20-14.0 microns range, in addition to dramatic increases in efficiency, service life, and reliability. It is judged that the Ti:Al2O3 laser and the AgGaSe2 optical parametric oscillator pumped by a Ho:YAG laser could cover the near-IR and mid-IR regions of the spectrum. Laser diodes operating at 0.78 microns should provide an excellent pump for a Ho:YAG laser.
Performance Evaluation of Cognitive Interference Channels Using a Spectrum Overlay Strategy
NASA Technical Reports Server (NTRS)
Knoblock, Eric J.
2018-01-01
The use of cognitive radios (CR) and cooperative communications techniques may assist in interference mitigation via sensing of the environment and dynamically altering communications parameters through the use of various mechanisms - one of which is the overlay technique. This report provides a performance analysis of an interference channel with a cognitive transceiver operating in an overlay configuration to evaluate the gains from using cognition. As shown in this report, a cognitive transceiver can simultaneously share spectrum while enhancing performance of non-cognitive nodes via knowledge of the communications channel as well as knowledge of neighboring users' modulation and coding schemes.
NASA Technical Reports Server (NTRS)
Orenberg, James; Handy, Jonathan
1992-01-01
The diffuse reflectance spectra of Hawaiian palagonite mixtures with an Fe-rich montmorillonite have prompted their present use as spectral analogs of the Martian surface. Like the Mars spectrum and unlike clays, the 2.2-micron reflectance spectrum absorption band is not present in the palagonite sample; neither is the 2.2-micron Al-OH clay lattice band seen in palagonite-montmorillonite mixtures, where the latter component remains below 15 wt pct. Fe-rich montmorillonite clay may therefore be present in Mars, in combination with palagonite, while remaining undetected in remotely sensed spectra.
Ultra high energy events in ECHOS series and primary energy spectrum
NASA Technical Reports Server (NTRS)
Capdevielle, J. N.; Iwai, J.; Ogata, T.
1985-01-01
The compilation of ultra high energy jets suggests at present the existence of a bump in primary energy spectrum (with the standard concept of high energy collisions). The pseudo-rapidity distribution exhibits some typical anomalies, more than the (P sub t) behavior, which are (may be) the fingerprints of quark gluon plasma transition. The next results of Emulsion Chamber on Supersonic (ECHOS) will be in both cases determinant to confirm those tendancies, as well as an important effort of the cosmic ray community to develop in that sense a flying emulsion chamber experiment.
Bao, Wei-Yi; Zhu, Yong; Chen, Jun; Chen, Jun-Qing; Liang, Bo
2011-04-01
In the present paper, the signal of a tunable diode laser absorption spectroscopy (TDLAS) trace gas sensing system, which has a wavelength modulation with a wide range of modulation amplitudes, is studied based on Fourier analysis method. Theory explanation of spectrum distortion induced by laser intensity amplitude modulation is given. In order to rectify the spectrum distortion, a method of synchronous amplitude modulation suppression by a variable optical attenuator is proposed. To validate the method, an experimental setup is designed. Absorption spectrum measurement experiments on CO2 gas were carried out. The results show that the residual laser intensity modulation amplitude of the experimental system is reduced to -0.1% of its original value and the spectrum distortion improvement is 92% with the synchronous amplitude modulation suppression. The modulation amplitude of laser intensity can be effectively reduced and the spectrum distortion can be well corrected by using the given correction method and system. By using a variable optical attenuator in the TDLAS (tunable diode laser absorption spectroscopy) system, the dynamic range requirements of photoelectric detector, digital to analog converter, filters and other aspects of the TDLAS system are reduced. This spectrum distortion correction method can be used for online trace gas analyzing in process industry.
Kuriakose, Saji; Joe, I Hubert
2013-11-01
Determination of the authenticity of essential oils has become more significant, in recent years, following some illegal adulteration and contamination scandals. The present investigative study focuses on the application of near infrared spectroscopy to detect sample authenticity and quantify economic adulteration of sandalwood oils. Several data pre-treatments are investigated for calibration and prediction using partial least square regression (PLSR). The quantitative data analysis is done using a new spectral approach - full spectrum or sequential spectrum. The optimum number of PLS components is obtained according to the lowest root mean square error of calibration (RMSEC=0.00009% v/v). The lowest root mean square error of prediction (RMSEP=0.00016% v/v) in the test set and the highest coefficient of determination (R(2)=0.99989) are used as the evaluation tools for the best model. A nonlinear method, locally weighted regression (LWR), is added to extract nonlinear information and to compare with the linear PLSR model. Copyright © 2013 Elsevier B.V. All rights reserved.
Nelson, Travis M; Sheller, Barbara; Friedman, Clive S; Bernier, Raphael
2015-01-01
Autism Spectrum Disorder (ASD) is a condition which most dentists will encounter in their practices. Contemporary educational and behavioral approaches may facilitate successful dental care. A literature review was conducted for relevant information on dental care for children with ASD. Educational principles used for children with ASD can be applied in the dental setting. Examples include: parent involvement in identifying strengths, sensitivities, and goal setting; using stories or video modeling in advance of the appointment; dividing dental treatment into sequential components; and modification of the environment to minimize sensory triggers. Patients with ASD are more capable of tolerating procedures that they are familiar with, and therefore should be exposed to new environments and stimuli in small incremental steps. By taking time to understand children with ASD as individuals and employing principles of learning, clinicians can provide high quality dental care for the majority of patients with ASD. © 2014 Special Care Dentistry Association and Wiley Periodicals, Inc.
Transitive inference in adults with autism spectrum disorders
Solomon, Marjorie; Frank, Michael J.; Smith, Anne C.; Ly, Stanford; Carter, Cameron S.
2012-01-01
Individuals with autism spectrum disorders (ASDs) exhibit intact rote learning with impaired generalization. A transitive inference paradigm, involving training on four sequentially presented stimulus pairs containing overlapping items, with subsequent testing on two novel pairs, was used to investigate this pattern of learning in 27 young adults with ASDs and 31 matched neurotypical individuals (TYPs). On the basis of findings about memory and neuropathology, we hypothesized that individuals with ASDs would use a relational flexibility/conjunctive strategy reliant on an intact hippocampus, versus an associative strength/value transfer strategy requiring intact interactions between the prefrontal cortex and the striatum. Hypotheses were largely confirmed. ASDs demonstrated reduced interference from intervening pairs in early training; only TYPs formed a serial position curve by test; and ASDs exhibited impairments on the novel test pair consisting of end items with intact performance on the inner test pair. However, comparable serial position curves formed for both groups by the end of the first block. PMID:21656344
Nonverbal short-term serial order memory in autism spectrum disorder.
Bowler, Dermot M; Poirier, Marie; Martin, Jonathan S; Gaigg, Sebastian B
2016-10-01
To clarify the role of item and order memory in the serial recall of adults with autism spectrum disorder (ASD), we carried out 2 experiments in which adults with ASD and comparison participants matched on chronological age and verbal IQ saw sequences of 7 dots appear sequentially in a 3 × 4 grid. In Experiment 1 (serial recall), they had to recall the locations and the presentation order of the dots by tapping locations on an empty grid. In Experiment 2, (order reconstruction) the studied dots were provided at test and participants had to touch them in their order of appearance at study. Experiment 1 revealed diminished item and order recall in the ASD group; Experiment 2 revealed diminished order recall only when verbal IQ was controlled. The results support the view that people with ASD have particular difficulty with serial order recall but may use their language ability to achieve better serial recall performance. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Kuriakose, Saji; Joe, I. Hubert
2013-11-01
Determination of the authenticity of essential oils has become more significant, in recent years, following some illegal adulteration and contamination scandals. The present investigative study focuses on the application of near infrared spectroscopy to detect sample authenticity and quantify economic adulteration of sandalwood oils. Several data pre-treatments are investigated for calibration and prediction using partial least square regression (PLSR). The quantitative data analysis is done using a new spectral approach - full spectrum or sequential spectrum. The optimum number of PLS components is obtained according to the lowest root mean square error of calibration (RMSEC = 0.00009% v/v). The lowest root mean square error of prediction (RMSEP = 0.00016% v/v) in the test set and the highest coefficient of determination (R2 = 0.99989) are used as the evaluation tools for the best model. A nonlinear method, locally weighted regression (LWR), is added to extract nonlinear information and to compare with the linear PLSR model.
NASA Technical Reports Server (NTRS)
Madigan, J. A.; Earhart, R. W.
1978-01-01
NASA's Office of Space and Terrestrial Applications (OSTA) is currently assessing approaches to transferring NASA technology to both the public and private sectors. As part of this assessment, NASA is evaluating the effectiveness of an ongoing program in remote sensing technology transfer conducted by 20 university contractors/grantees, each supported totally or partially by NASA funds. The University-Space Applications program has as its objective the demonstration of practical benefits from the use of remote sensing technology to a broad spectrum of new users, principally in state and local governments. To evaluate the University-Space Applications program, NASA has a near-term requirement for data on each university effort including total funding, funding sources, length of program, program description, and effectiveness measures.
Hiniker, Alexis
2016-01-01
Despite reports of mathematical talent in autism spectrum disorders (ASD), little is known about basic number processing abilities in affected children. We investigated number sense, the ability to rapidly assess quantity information, in 36 children with ASD and 61 typically developing controls. Numerical acuity was assessed using symbolic (Arabic numerals) as well as non-symbolic (dot array) formats. We found significant impairments in non-symbolic acuity in children with ASD, but symbolic acuity was intact. Symbolic acuity mediated the relationship between non-symbolic acuity and mathematical abilities only in children with ASD, indicating a distinctive role for symbolic number sense in the acquisition of mathematical proficiency in this group. Our findings suggest that symbolic systems may help children with ASD organize imprecise information. PMID:26659551
Stochastic frequency signature for chemical sensing using noninvasive neuronelectronic interface.
Yang, Mo; Zhang, Xuan; Zhang, Yu; Ozkan, Cengiz S
2005-05-01
The detection of chemical agents is important in many areas including environmental pollutants, toxins, biological and chemical pollutants. As "smart" cells, with strong information encoding ability, neurons can be treated as independent sensing elements. A hybrid circuit of a semiconductor chip with dissociated neurons formed both sensors and transducers. Stochastic frequency spectrum was used to differentiate a mixture of chemical agents with effect on the opening of different ion channels. The frequency of spike trains revealed the concentration of the chemical agent, where the characteristic tuning curve revealed the identity. "Fatigue" experiment was performed to explore the "refreshing" ability and "memory" effect of neurons by cyclic and cascaded sensing. "Neuronelectronic noses" such as this should have wide potential applications, most notably in environmental and medical monitoring.
Precision force sensing with optically-levitated nanospheres
NASA Astrophysics Data System (ADS)
Geraci, Andrew
2017-04-01
In high vacuum, optically-trapped dielectric nanospheres achieve excellent decoupling from their environment and experience minimal friction, making them ideal for precision force sensing. We have shown that 300 nm silica spheres can be used for calibrated zeptonewton force measurements in a standing-wave optical trap. In this optical potential, the known spacing of the standing wave anti-nodes can serve as an independent calibration tool for the displacement spectrum of the trapped particle. I will describe our progress towards using these sensors for tests of the Newtonian gravitational inverse square law at micron length scales. Optically levitated dielectric objects also show promise for a variety of other precision sensing applications, including searches for gravitational waves and other experiments in quantum optomechanics. National Science Foundation PHY-1205994, PHY-1506431, PHY-1509176.
Microwave remote sensing laboratory design
NASA Technical Reports Server (NTRS)
Friedman, E.
1979-01-01
Application of active and passive microwave remote sensing to the study of ocean pollution is discussed. Previous research efforts, both in the field and in the laboratory were surveyed to derive guidance for the design of a laboratory program of research. The essential issues include: choice of radar or radiometry as the observational technique; choice of laboratory or field as the research site; choice of operating frequency; tank sizes and material; techniques for wave generation and appropriate wavelength spectrum; methods for controlling and disposing of pollutants used in the research; and pollutants other than oil which could or should be studied.
NASA Astrophysics Data System (ADS)
Wang, Anbo; Wang, George Z.; Murphy, Kent A.; Claus, Richard O.
1995-05-01
Dielectric-multilayer-filter-based, optical-fiber temperature sensors based on differential spectral transmittance/reflectivity were shown experimentally. A resolution of 0.2 C was achieved over a measurement range of 30-120 C. The sensor was shown to possess low immunity to variations in light-source power and fiber-bending loss. A wavelength-division-multiplexed sensing system was also fabricated by cascading three such filters with distinct cutoff wavelengths along a single multimode fiber. A resolution of 0.5 C was achieved over a temperature spectrum of 50-100 C. Furthermore, cross talk between sensors was examined.
NASA Astrophysics Data System (ADS)
Arcidiacono, Carmelo; Ragazzoni, Roberto; Viotto, Valentina; Bergomi, Maria; Farinato, Jacopo; Magrin, Demetrio; Dima, Marco; Gullieuszik, Marco; Marafatto, Luca
2016-07-01
Dark wavefront sensing in its simplest and more crude form is a quad-cell with a round spot of dark ink acting as occulting disk at the center. This sensor exhibits fainter limiting magnitude than a conventional quad-cell, providing that the size of the occulting disk is slightly smaller than the size of the spot and smaller than the residual jitter movement in closed loop. We present simulations focusing a generic Adaptive Optics system using Natural Guide Stars to provide the tip-tilt signal. We consider a jitter spectrum of the residual correction including amplitudes exceeding the dark disk size.
The energy balance of wind waves and the remote sensing problem
NASA Technical Reports Server (NTRS)
Hasselmann, K.
1972-01-01
Measurements of wave growth indicate an energy balance of the wave spectrum governed primarily by input from the atmosphere, nonlinear transfer to shorter and longer waves, and advection. The pronounced spectral peak and sharp low frequency cut-off characteristic of fetch-limited spectra are explained as a self-stabilizing feature of the nonlinear wave-wave interactions. The momentum transferred from the atmosphere to the wind waves accounts for a large part of the wind drag. These findings are relevant for remote microwave sensing of the sea surface by backscatter and passive radiometry methods.
Radio Frequency Interference Detection for Passive Remote Sensing Using Eigenvalue Analysis
NASA Technical Reports Server (NTRS)
Schoenwald, Adam; Kim, Seung-Jun; Mohammed-Tano, Priscilla
2017-01-01
Radio frequency interference (RFI) can corrupt passive remote sensing measurements taken with microwave radiometers. With the increasingly utilized spectrum and the push for larger bandwidth radiometers, the likelihood of RFI contamination has grown significantly. In this work, an eigenvalue-based algorithm is developed to detect the presence of RFI and provide estimates of RFI-free radiation levels. Simulated tests show that the proposed detector outperforms conventional kurtosis-based RFI detectors in the low-to-medium interferece-to-noise-power-ratio (INR) regime under continuous wave (CW) and quadrature phase shift keying (QPSK) RFIs.
Radio Frequency Interference Detection for Passive Remote Sensing Using Eigenvalue Analysis
NASA Technical Reports Server (NTRS)
Schoenwald, Adam J.; Kim, Seung-Jun; Mohammed, Priscilla N.
2017-01-01
Radio frequency interference (RFI) can corrupt passive remote sensing measurements taken with microwave radiometers. With the increasingly utilized spectrum and the push for larger bandwidth radiometers, the likelihood of RFI contamination has grown significantly. In this work, an eigenvalue-based algorithm is developed to detect the presence of RFI and provide estimates of RFI-free radiation levels. Simulated tests show that the proposed detector outperforms conventional kurtosis-based RFI detectors in the low-to-medium interference-to-noise-power-ratio (INR) regime under continuous wave (CW) and quadrature phase shift keying (QPSK) RFIs.
Terahertz atmospheric attenuation and continuum effects
NASA Astrophysics Data System (ADS)
Slocum, David M.; Goyette, Thomas M.; Slingerland, Elizabeth J.; Giles, Robert H.; Nixon, William E.
2013-05-01
Remote sensing over long path lengths has become of greater interest in the terahertz frequency region. Applications such as pollution monitoring and detection of energetic chemicals are of particular interest. Although there has been much attention to atmospheric effects over narrow frequency windows, accurate measurements across a wide spectrum is lacking. The water vapor continuum absorption spectrum was investigated using Fourier Transform Spectroscopy. The continuum effect gives rise to an excess absorption that is unaccounted for in just a resonant line spectrum simulation. The transmission of broadband terahertz radiation from 0.300THz - 1.5THz through air with varying relative humidity levels was recorded for multiple path lengths. From these data, the absorption coefficient as a function of frequency was determined and compared with model calculations. The intensity and location of the strong absorption lines were in good agreement with spectral databases such as the 2008 HITRAN database and the JPL database. However, a noticeable continuum effect was observed particularly in the atmospheric transmission windows. A small discrepancy still remained even after accounting for continuum absorption using the best available data from the literature. This discrepancy, when projected over a one kilometer path length, typical of distances used in remote sensing, can cause a 30dB difference between calculated and observed attenuation. From the experimental and resonant line simulation spectra the air-broadening continuum parameter was calculated and compared with values available in the literature.
Al-Shabib, Nasser A.; Husain, Fohad Mabood; Ahmed, Faheem; Khan, Rais Ahmad; Ahmad, Iqbal; Alsharaeh, Edreese; Khan, Mohd Shahnawaz; Hussain, Afzal; Rehman, Md Tabish; Yusuf, Mohammad; Hassan, Iftekhar; Khan, Javed Masood; Ashraf, Ghulam Md; Alsalme, Ali Mohammed; Al-Ajmi, Mohamed F.; Tarasov, Vadim V.; Aliev, Gjumrakch
2016-01-01
Bacterial spoilage of food products is regulated by density dependent communication system called quorum sensing (QS). QS control biofilm formation in numerous food pathogens and Biofilms formed on food surfaces act as carriers of bacterial contamination leading to spoilage of food and health hazards. Agents inhibiting or interfering with bacterial QS and biofilm are gaining importance as a novel class of next-generation food preservatives/packaging material. In the present study, Zinc nanostructures were synthesised using Nigella sativa seed extract (NS-ZnNPs). Synthesized nanostructures were characterized hexagonal wurtzite structure of size ~24 nm by UV-visible, XRD, FTIR and TEM. NS-ZnNPs demonstrated broad-spectrum QS inhibition in C. violaceum and P. aeruginosa biosensor strains. Synthesized nanostructures inhibited QS regulated functions of C. violaceum CVO26 (violacein) and elastase, protease, pyocyanin and alginate production in PAO1 significantly. NS-ZnNPs at sub-inhibitory concentrations inhibited the biofilm formation of four-food pathogens viz. C. violaceum 12472, PAO1, L. monocytogenes, E. coli. Moreover, NS-ZnNPs was found effective in inhibiting pre-formed mature biofilms of the four pathogens. Therefore, the broad-spectrum inhibition of QS and biofilm by biogenic Zinc oxide nanoparticles and it is envisaged that these nontoxic bioactive nanostructures can be used as food packaging material and/or as food preservative. PMID:27917856
Al-Shabib, Nasser A; Husain, Fohad Mabood; Ahmed, Faheem; Khan, Rais Ahmad; Ahmad, Iqbal; Alsharaeh, Edreese; Khan, Mohd Shahnawaz; Hussain, Afzal; Rehman, Md Tabish; Yusuf, Mohammad; Hassan, Iftekhar; Khan, Javed Masood; Ashraf, Ghulam Md; Alsalme, Ali Mohammed; Al-Ajmi, Mohamed F; Tarasov, Vadim V; Aliev, Gjumrakch
2016-12-05
Bacterial spoilage of food products is regulated by density dependent communication system called quorum sensing (QS). QS control biofilm formation in numerous food pathogens and Biofilms formed on food surfaces act as carriers of bacterial contamination leading to spoilage of food and health hazards. Agents inhibiting or interfering with bacterial QS and biofilm are gaining importance as a novel class of next-generation food preservatives/packaging material. In the present study, Zinc nanostructures were synthesised using Nigella sativa seed extract (NS-ZnNPs). Synthesized nanostructures were characterized hexagonal wurtzite structure of size ~24 nm by UV-visible, XRD, FTIR and TEM. NS-ZnNPs demonstrated broad-spectrum QS inhibition in C. violaceum and P. aeruginosa biosensor strains. Synthesized nanostructures inhibited QS regulated functions of C. violaceum CVO26 (violacein) and elastase, protease, pyocyanin and alginate production in PAO1 significantly. NS-ZnNPs at sub-inhibitory concentrations inhibited the biofilm formation of four-food pathogens viz. C. violaceum 12472, PAO1, L. monocytogenes, E. coli. Moreover, NS-ZnNPs was found effective in inhibiting pre-formed mature biofilms of the four pathogens. Therefore, the broad-spectrum inhibition of QS and biofilm by biogenic Zinc oxide nanoparticles and it is envisaged that these nontoxic bioactive nanostructures can be used as food packaging material and/or as food preservative.
Liu, Tao; Hu, Rong; Lv, Yi-Fan; Wu, Yuan; Liang, Hao; Huan, Shuang-Yan; Zhang, Xiao-Bing; Tan, Weihong; Yu, Ru-Qin
2014-08-15
Fluorescent sensing systems based on the quenching of fluorophores have found wide applications in bioassays. An efficient quencher will endow the sensing system a high sensitivity. The frequently used quenchers are based on organic molecules or nanomaterials, which usually need tedious synthesizing and modifying steps, and exhibit different quenching efficiencies to different fluorophores. In this work, we for the first time report that aggregated perylene derivative can serve as a broad-spectrum and label-free quencher that is able to efficiently quench a variety of fluorophores, such as green, red and far red dyes labeled on DNA. By choosing nucleases as model biomolecules, such a broad-spectrum quencher was then employed to construct a multiplexed bioassay platform through a label-free manner. Due to the high quenching efficiency of the aggregated perylene, the proposed platform could detect nuclease with high sensitivity, with a detection limit of 0.03U/mL for EcoRV, and 0.05U/mL for EcoRI. The perylene quencher does not affect the activity of nuclease, which makes it possible to design post-addition type bioassay platform. Moreover, the proposed platform allows simultaneous and multicolor analysis of nucleases in homogeneous solution, demonstrating its value of potential application in rapid screening of multiple bio-targets. Copyright © 2014 Elsevier B.V. All rights reserved.
A novel nano-sensor based on optomechanical crystal cavity
NASA Astrophysics Data System (ADS)
Zhang, Yeping; Ai, Jie; Ma, Jingfang
2017-10-01
Optical devices based on new sensing principle are widely used in biochemical and medical area. Nowadays, mass sensing based on monitoring the frequency shifts induced by added mass in oscillators is a well-known and widely used technique. It is interesting to note that for nanoscience and nanotechnology applications there is a strong demand for very sensitive mass sensors, being the target a sensor for single molecule detection. The desired mass resolution for very few or even single molecule detection, has to be below the femtogram range. Considering the strong interaction between high co-localized optical mode and mechanical mode in optomechanical crystal (OMC) cavities, we investigate OMC splitnanobeam cavities in silicon operating near at the 1550nm to achieve high optomechanical coupling rate and ultra-small motion mass. Theoretical investigations of the optical and mechanical characteristic for the proposed cavity are carried out. By adjusting the structural parameters, the cavity's effective motion mass below 10fg and mechanical frequency exceed 10GHz. The transmission spectrum of the cavity is sensitive to the sample which located on the center of the cavity. We conducted the fabrication and the characterization of this cavity sensor on the silicon-on-insulator (SOI) chip. By using vertical coupling between the tapered fiber and the SOI chip, we measured the transmission spectrum of the cavity, and verify this cavity is promising for ultimate precision mass sensing and detection.
NASA Astrophysics Data System (ADS)
Liu, Q.
2011-09-01
At first, research advances on radiation transfer modeling on multi-scale remote sensing data are presented: after a general overview of remote sensing radiation transfer modeling, several recent research advances are presented, including leaf spectrum model (dPROS-PECT), vegetation canopy BRDF models, directional thermal infrared emission models(TRGM, SLEC), rugged mountains area radiation models, and kernel driven models etc. Then, new methodologies on land surface parameters inversion based on multi-source remote sensing data are proposed. The land surface Albedo, leaf area index, temperature/emissivity, and surface net radiation etc. are taken as examples. A new synthetic land surface parameter quantitative remote sensing product generation system is designed and the software system prototype will be demonstrated. At last, multi-scale field experiment campaigns, such as the field campaigns in Gansu and Beijing, China will be introduced briefly. The ground based, tower based, and airborne multi-angular measurement system have been built to measure the directional reflectance, emission and scattering characteristics from visible, near infrared, thermal infrared and microwave bands for model validation and calibration. The remote sensing pixel scale "true value" measurement strategy have been designed to gain the ground "true value" of LST, ALBEDO, LAI, soil moisture and ET etc. at 1-km2 for remote sensing product validation.
Accelerated high-resolution photoacoustic tomography via compressed sensing
NASA Astrophysics Data System (ADS)
Arridge, Simon; Beard, Paul; Betcke, Marta; Cox, Ben; Huynh, Nam; Lucka, Felix; Ogunlade, Olumide; Zhang, Edward
2016-12-01
Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue (4D PAT). A particular example is the planar Fabry-Pérot (FP) photoacoustic scanner, which yields high-resolution 3D images but takes several minutes to sequentially map the incident photoacoustic field on the 2D sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining model-based, variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: first, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP interferometer and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction techniques that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation (TV) regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of photoacoustic scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.
Fluctuation spectra and force generation in nonequilibrium systems.
Lee, Alpha A; Vella, Dominic; Wettlaufer, John S
2017-08-29
Many biological systems are appropriately viewed as passive inclusions immersed in an active bath: from proteins on active membranes to microscopic swimmers confined by boundaries. The nonequilibrium forces exerted by the active bath on the inclusions or boundaries often regulate function, and such forces may also be exploited in artificial active materials. Nonetheless, the general phenomenology of these active forces remains elusive. We show that the fluctuation spectrum of the active medium, the partitioning of energy as a function of wavenumber, controls the phenomenology of force generation. We find that, for a narrow, unimodal spectrum, the force exerted by a nonequilibrium system on two embedded walls depends on the width and the position of the peak in the fluctuation spectrum, and oscillates between repulsion and attraction as a function of wall separation. We examine two apparently disparate examples: the Maritime Casimir effect and recent simulations of active Brownian particles. A key implication of our work is that important nonequilibrium interactions are encoded within the fluctuation spectrum. In this sense, the noise becomes the signal.
NASA Astrophysics Data System (ADS)
Shimizu, Takayuki; Yari, Takashi; Nagai, Kanehiro; Takeda, Nobuo
2001-07-01
We conducted theoretical and experimental approaches for applying Brillouin optical time domain reflectometer (BOTDR) to aircraft and spacecraft structure health monitoring system. Firstly, distributed strain was measured by BOTDR under 3-point bending test and a spatial resolution was enhanced up to 0.5m using Brillouin spectrum analysis and processing though the device used in this experiment had a spatial resolution of 2m normally. Secondly, dynamic strain measurement was executed under cyclic loading conditions. Brillouin spectrum measured under dynamic conditions is equivalent to superposed spectrum using many spectra measured under static loading conditions. As the measured spectrum was decomposed into many spectra in static loading state, the strain amplitude and its ratio could be estimated. Thirdly, strain and temperature could be measured independently using combined system of BOTDR and fiber Bragg grating (FBG) with wavelength division multiplexing (WDM). Additionally, the application of BOTDR sensing system was shown for a prototype carbon fiber reinforced plastic (CFRP) liquid hydrogen (LH2) tank under cryogenic condition.
Wave Coupling in the Atmosphere-Ionosphere System
NASA Astrophysics Data System (ADS)
Forbes, J. M.
2016-12-01
Vertically-propagating solar and lunar tides, Kelvin waves, gravity waves (GW) and planetary waves (PW) constitute the primary mechanism for transmitting lower atmosphere variability to the upper atmosphere and ionosphere. Vertically propagating waves grow exponentially with height into the more rarified atmosphere where they dissipate, deposit net momentum and heat, and induce net constituent transport. Some waves penetrate to the base of the exosphere (ca. 500-600 km). Over the past decade, a mature knowledge of the tidal part of the spectrum has emerged, in an average or climatological sense, up to about 110 km. This knowledge has largely accrued as a result of remote sensing observations made from the TIMED satellite. These observations have also enabled limited studies on day-to-day variability of atmospheric tides, the PW and Kelvin wave spectra up to 110 km, and PW-tide coupling. Complementary ionospheric observations made by GPS receivers, COSMIC, CHAMP, and ROCSAT contain signatures of plasma redistributions induced by these waves, and ionosphere-thermosphere (IT) general circulation models have been developed that provide a corroborating theoretical foundation. Pioneering theoretical and modeling work also demonstrate the importance of the GW part of the spectrum on thermosphere circulation and thermal structure. While significant strides have been made, critical shortcomings in our understanding of atmosphere-IT coupling remain. In particular, we are practically absent any observations of the vertical evolution and dissipation of the wave spectrum between 100 and 200 km, which is also the region where electric fields and currents are generated by dynamo action. Moreover, the day-to-day variability of the wave spectrum and secondary wave generation remain to be quantified in this critical region. In this talk, the above progress and knowledge gaps will be examined in light of imminent and potential future missions.
Multiphysics Code Demonstrated for Propulsion Applications
NASA Technical Reports Server (NTRS)
Lawrence, Charles; Melis, Matthew E.
1998-01-01
The utility of multidisciplinary analysis tools for aeropropulsion applications is being investigated at the NASA Lewis Research Center. The goal of this project is to apply Spectrum, a multiphysics code developed by Centric Engineering Systems, Inc., to simulate multidisciplinary effects in turbomachinery components. Many engineering problems today involve detailed computer analyses to predict the thermal, aerodynamic, and structural response of a mechanical system as it undergoes service loading. Analysis of aerospace structures generally requires attention in all three disciplinary areas to adequately predict component service behavior, and in many cases, the results from one discipline substantially affect the outcome of the other two. There are numerous computer codes currently available in the engineering community to perform such analyses in each of these disciplines. Many of these codes are developed and used in-house by a given organization, and many are commercially available. However, few, if any, of these codes are designed specifically for multidisciplinary analyses. The Spectrum code has been developed for performing fully coupled fluid, thermal, and structural analyses on a mechanical system with a single simulation that accounts for all simultaneous interactions, thus eliminating the requirement for running a large number of sequential, separate, disciplinary analyses. The Spectrum code has a true multiphysics analysis capability, which improves analysis efficiency as well as accuracy. Centric Engineering, Inc., working with a team of Lewis and AlliedSignal Engines engineers, has been evaluating Spectrum for a variety of propulsion applications including disk quenching, drum cavity flow, aeromechanical simulations, and a centrifugal compressor flow simulation.
Architecture for distributed actuation and sensing using smart piezoelectric elements
NASA Astrophysics Data System (ADS)
Etienne-Cummings, Ralph; Pourboghrat, Farzad; Maruboyina, Hari K.; Abrate, Serge; Dhali, Shirshak K.
1998-07-01
We discuss vibration control of a cantilevered plate with multiple sensors and actuators. An architecture is chosen to minimize the number of control and sensing wires required. A custom VLSI chip, integrated with the sensor/actuator elements, controls the local behavior of the plate. All the actuators are addressed in parallel; local decode logic selects which actuator is stimulated. Downloaded binary data controls the applied voltage and modulation frequency for each actuator, and High Voltage MOSFETs are used to activate them. The sensors, which are independent adjacent piezoelectric ceramic elements, can be accessed in a random or sequential manner. An A/D card and GPIB interconnected test equipment allow a PC to read the sensors' outputs and dictate the actuation procedure. A visual programming environment is used to integrate the sensors, controller and actuators. Based on the constitutive relations for the piezoelectric material, simple models for the sensors and actuators are derived. A two level hierarchical robust controller is derived for motion control and for damping of vibrations.
Konstantinidis, Evdokimos I; Frantzidis, Christos A; Pappas, Costas; Bamidis, Panagiotis D
2012-07-01
In this paper the feasibility of adopting Graphic Processor Units towards real-time emotion aware computing is investigated for boosting the time consuming computations employed in such applications. The proposed methodology was employed in analysis of encephalographic and electrodermal data gathered when participants passively viewed emotional evocative stimuli. The GPU effectiveness when processing electroencephalographic and electrodermal recordings is demonstrated by comparing the execution time of chaos/complexity analysis through nonlinear dynamics (multi-channel correlation dimension/D2) and signal processing algorithms (computation of skin conductance level/SCL) into various popular programming environments. Apart from the beneficial role of parallel programming, the adoption of special design techniques regarding memory management may further enhance the time minimization which approximates a factor of 30 in comparison with ANSI C language (single-core sequential execution). Therefore, the use of GPU parallel capabilities offers a reliable and robust solution for real-time sensing the user's affective state. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Flavor-changing Z decays: A window to ultraheavy quarks?
NASA Astrophysics Data System (ADS)
Ganapathi, V.; Weiler, T.; Laermann, E.; Schmitt, I.; Zerwas, P. M.
1983-02-01
We study flavor-changing Z decays into quarks, Z-->Q+q¯, in the standard SU(2)×U(1) theory with sequential generations. Such decays occur in higher-order electroweak interactions, with a probability growing as the fourth power of the mass of the heaviest (virtual) quark mediating the transition. With the possible exception of Z-->bs¯, these decay modes are generally very rare in the three-generation scheme. However, with four generations Z-->b'b¯ is observable if the t' mass is a few hundred GeV. Such decay modes could thus provide a glimpse of the ultraheavy-quark spectrum.
Surface contamination detection by means of near-infrared stimulation of thermal luminescence
NASA Astrophysics Data System (ADS)
Carrieri, Arthur H.; Roese, Erik S.
2006-02-01
A method for remotely detecting liquid chemical contamination on terrestrial surfaces is presented. Concurrent to irradiation by an absorbing near-infrared beam, the subject soil medium liberates radiance called thermal luminescence (TL) comprising middle-infrared energies (numir) that is scanned interferometrically in beam duration tau. Cyclic states of absorption and emission by the contaminant surrogate are rendered from a sequential differential-spectrum measurement [deltaS(numir,tau)] of the scanned TL. Detection of chemical warfare agent simulant wetting soil is performed in this manner, for example, through pattern recognition of its unique, thermally dynamic, molecular vibration resonance bands on display in the deltaS(numir,tau) metric.
Radiation: Time, Space and Spirit--Keys to Scientific Literacy Series.
ERIC Educational Resources Information Center
Stonebarger, Bill
This discussion of radiation considers the spectrum of electromagnetic energy including light, x-rays, radioactivity, and other waves. Radiation is considered from three aspects; time, space, and spirit. Time refers to a sense of history; space refers to geography; and spirit refers to life and thought. Several chapters on the history and concepts…
ERIC Educational Resources Information Center
Ehrlich, Justin
2010-01-01
The application of virtual reality is becoming ever more important as technology reaches new heights allowing virtual environments (VE) complete with global illumination. One successful application of virtual environments is educational interventions meant to treat individuals with autism spectrum disorder (ASD). VEs are effective with these…
Captured by Details: Sense-Making, Language and Communication in Autism
ERIC Educational Resources Information Center
Noens, Ilse L. J.; van Berckelaer-Onnes, Ina A.
2005-01-01
The communication of people with autism spectrum disorder (ASD) is characterized by a qualitative impairment in verbal and non-verbal communication. In past decades a growing body of descriptive studies has appeared on language and communication problems in ASD. Reviews suggest that the development of formal and semantic aspects is relatively…
Code of Federal Regulations, 2010 CFR
2010-10-01
... database or spectrum sensing. (b) Client device. A TVBD operating in client mode. (c) Client mode. An... TVBD is able to select a channel itself based on a list provided by the database and initiate a network... does not require use of a geo-location capability or access to the TV bands database and requires...
Where Are We Going in Efforts to Improve Communities?
ERIC Educational Resources Information Center
Blakely, Robert J.
1974-01-01
The sense of unity, of community, is lost because we have gone far beyond the human scale in which the individual can contain the social will and the social will can be an instrument ofpersonal fulfilment. Decision-makers need to move toward multi-purpose planning embracing the full spectrum of human needs. (Author)
ERIC Educational Resources Information Center
Bonderoff, Mary H.
2017-01-01
This qualitative study examined the experiences students of color have at a historically white college campus in the Northeast. The participants studied a variety of academic disciplines and comprised a broad spectrum of ethnicities. An interpretative phenomenological analysis (IPA) methodology was employed to investigate the participants' lived…
Detecting and Characterizing Nighttime Lighting Using Multispectral and Hyperspectral Imaging
2012-12-01
OBJECTIVES...............................................................................2 II. BACKGROUND ...accomplish the same. 3 II. BACKGROUND The approach to extracting information from optical remote sensing at night is slightly different than...although it occupies a very small region within the EMS. Other familiar forms of energy that lie along the spectrum include, cosmic rays, gamma rays, x
NASA Astrophysics Data System (ADS)
Smith, Kyle Z.; Gadde, Akshitha; Kadiyala, Anand; Dawson, Jeremy M.
2016-03-01
In recent years, the global market for biosensors has continued to increase in combination with their expanding use in areas such as biodefense/detection, home diagnostics, biometric identification, etc. A constant necessity for inexpensive, portable bio-sensing methods, while still remaining simple to understand and operate, is the motivation behind novel concepts and designs. Labeled visible spectrum bio-sensing systems provide instant feedback that is both simple and easy to work with, but are limited by the light intensity thresholds required by the imaging systems. In comparison, label-free bio-sensing systems and other detection modalities like electrochemical, frequency resonance, thermal change, etc., can require additional technical processing steps to convey the final result, increasing the system's complexity and possibly the time required for analysis. Further decrease in the detection limit can be achieved through the addition of plasmonic structures into labeled bio-sensing systems. Nano-structures that operate in the visible spectrum have feature sizes typically in the order of the operating wavelength, calling for high aspect ratio nanoscale fabrication capabilities. In order to achieve these dimensions, electron beam lithography (EBL) is used due to its accurate feature production. Hydrogen silsesquioxane (HSQ) based electron beam resist is chosen for one of its benefits, which is after exposure to oxygen plasma, the patterned resist cures into silicon dioxide (SiO2). These cured features in conjunction with nanoscale gold particles help in producing a high electric field through dipole generation. In this work, a detailed process flow of the fabrication of square lattice of plasmonic structures comprising of gold coated silicon dioxide pillars designed to operate at 560 nm wavelength and produce an intensity increase of roughly 100 percent will be presented.
NASA Astrophysics Data System (ADS)
Papadavid, Georgios; Kountios, Georgios; Bournaris, T.; Michailidis, Anastasios; Hadjimitsis, Diofantos G.
2016-08-01
Nowadays, the remote sensing techniques have a significant role in all the fields of agricultural extensions as well as agricultural economics and education but they are used more specifically in hydrology. The aim of this paper is to demonstrate the use of field spectroscopy for validation of the satellite data and how combination of remote sensing techniques and field spectroscopy can have more accurate results for irrigation purposes. For this reason vegetation indices are used which are mostly empirical equations describing vegetation parameters during the lifecycle of the crops. These numbers are generated by some combination of remote sensing bands and may have some relationship to the amount of vegetation in a given image pixel. Due to the fact that most of the commonly used vegetation indices are only concerned with red-near-infrared spectrum and can be divided to perpendicular and ratio based indices the specific goal of the research is to illustrate the effect of the atmosphere to those indices, in both categories. In this frame field spectroscopy is employed in order to derive the spectral signatures of different crops in red and infrared spectrum after a campaign of ground measurements. The main indices have been calculated using satellite images taken at interval dates during the whole lifecycle of the crops by using a GER 1500 spectro-radiomete. These indices was compared to those extracted from satellite images after applying an atmospheric correction algorithm -darkest pixel- to the satellite images at a pre-processing level so as the indices would be in comparable form to those of the ground measurements. Furthermore, there has been a research made concerning the perspectives of the inclusion of the above mentioned remote satellite techniques to agricultural education pilot programs.
NASA Technical Reports Server (NTRS)
Alexander, J. K.; Carr, T. D.; Thieman, J. R.; Schauble, J. J.; Riddle, A. C.
1980-01-01
Observations of Jupiter's low frequency radio emissions collected over one month intervals before and after each Voyager encounter were analyzed. Compilations of occurrence probability, average power flux density and average sense of circular polarization are presented as a function of central meridian longitude, phase of Io, and frequency. The results are compared with ground based observations. The necessary geometrical conditions are preferred polarization sense for Io-related decametric emission observed by Voyager from above both the dayside and nightside hemispheres are found to be essentially the same as are observed in Earth based studies. On the other hand, there is a clear local time dependence in the Io-independent decametric emission. Io appears to have an influence on average flux density of the emission down to below 2 MHz. The average power flux density spectrum of Jupiter's emission has a broad peak near 9MHz. Integration of the average spectrum over all frequencies gives a total radiated power for an isotropic source of 4 x 10 to the 11th power W.
Hybrid spin-microcantilever sensor for environmental, chemical, and biological detection
NASA Astrophysics Data System (ADS)
Wu, Wen-Hao; Zhu, Ka-Di
2015-01-01
Nowadays hybrid spin-micro/nanomechanical systems are being actively explored for potential quantum sensing applications. In combination with the pump-probe technique or the spin resonance spectrum, we theoretically propose a realistic, feasible, and an exact way to measure the cantilever frequency in a hybrid spin-micromechanical cantilever system which has a strong coherent coupling of a single nitrogen vacancy center in the single-crystal diamond cantilever with the microcantilever. The probe absorption spectrum which exhibits new features such as mechanically induced three-photon resonance and ac Stark effect is obtained. Simultaneously, we further develop this hybrid spin-micromechanical system to be an ultrasensitive mass sensor, which can be operated at 300 K with a mass responsivity 0.137 Hz ag-1, for accurate sensing of gaseous or aqueous environments, chemical vapors, and biomolecules. And the best performance on the minimum detectable mass can be 28.7 zg in vacuum. Finally, we illustrate an in situ measurement to detect Angiopoietin-1, a marker of tumor angiogenesis, accurately with this hybrid microcantilever at room temperature.
Sherwood, Mark Brian
2006-01-01
Purpose The purpose of this study was to evaluate the concept of targeting mediators of the scarring process at multiple points across the course of bleb failure, in order to prolong bleb survival. Methods There were three linked parts to the experiment. In the first part, a cannula glaucoma filtration surgery (GFS) was performed on 32 New Zealand White (NZW) rabbits, and bleb survival was assessed for six different regimens plus controls by grading bleb height and width. For the second part of the study, the same GFS surgery was performed on an additional 10 NZW rabbits. Two additional filtering blebs were treated with balanced saline solution (BSS), two received mitomycin-C (MMC) (0.4 mg/mL), and for the remaining six, a sequential regimen was given consisting of 200 mmol/L mannose-6-phosphate (M-6-P) solution at the time of surgery, followed by subconjunctival injections of antibody to connective tissue growth factor at days 2 and 4, and Ilomastat, a broad-spectrum matrix metalloproteinase inhibitor, at days 7, 12, and 20 postoperatively. Bleb survival was again assessed. In the final part of the experiment, blebs treated with either BSS, MMC, or the above sequential multitreatment regimen were examined histologically at 14 days postoperatively in three additional NZW rabbits. Results All six individual therapies selected resulted in some improvement of bleb survival compared to BSS control. Blebs treated with the new sequential, multitreatment protocol survived an average of 29 days (regression slope, P < .0001 compared to control), those receiving BSS an average of 17 days, and those treated with MMC (0.4 mg/mL) an average of 36 days. The sequential, multitreatment regimen was significantly superior to any of the six monotherapies for time to zero analysis (flattening) of the bleb (P < .002). Histologic examination of the bleb tissues showed a markedly less epithelial thinning, subepithelial collagen thinning, and goblet cell loss in the multitreatment group, when compared with the MMC blebs. Conclusions In a rabbit model of GFS, a sequential, targeted, multitreatment approach prolonged bleb survival compared to BSS controls and decreased bleb tissue morphological changes when compared to those treated with MMC. It is not known whether these findings can be reproduced in humans, and further work is needed to determine an optimum regimen and timing of therapeutic delivery. PMID:17471357
Chen, Yan; Wu, Chong-Ming; Dai, Rong-Ji; Li, Liang; Yu, Yu-Hong; Li, Yan; Meng, Wei-Wei; Zhang, Liang; Zhang, Yongqian; Deng, Yu-Lin
2011-02-15
In previous study, we demonstrated the hypoglycemic effect of aqueous extract of Belamcanda chinensis leaves in rats. Here, we separated the aqueous extract of B. chinensis leaves and investigated the spectrum-effect relationships between HPLC chromatograms and hypoglycemic activities of different isolates from B. chinensis leaf extract. Sequential solvent extraction with petroleum ether, chloroform, acetic ester and n-butanol provided several isolates showing similar hypoglycemic activities, making it difficult to discriminate the active fractions. Stepwise elution through HP20 macroporous resin by water, 40% and 95% ethanol provided isolates with distinct hypoglycemic activities, representing a simple, rapid and efficient preparative separation method. Combination of HPLC chromatogram and pharmacological effect targeted a hypoglycemic activity-related region in HPLC chromatogram. Each peak in this region was analyzed by UV spectrum scan. Most of them were flavonoids in which tectoridin and swertisin were known flavonoids with anti-diabetic activities. In together, this work provides a general model of combination of HPLC chromatography and pharmacological effect to study the spectrum-effect relationships of aqueous extract from B. chinensis leaves, which can be used to find principle components of B. chinensis on pharmacological activity. Copyright © 2011 Elsevier B.V. All rights reserved.
Adaptive reconfigurable V-BLAST type equalizer for cognitive MIMO-OFDM radios
NASA Astrophysics Data System (ADS)
Ozden, Mehmet Tahir
2015-12-01
An adaptive channel shortening equalizer design for multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) radio receivers is considered in this presentation. The proposed receiver has desirable features for cognitive and software defined radio implementations. It consists of two sections: MIMO decision feedback equalizer (MIMO-DFE) and adaptive multiple Viterbi detection. In MIMO-DFE section, a complete modified Gram-Schmidt orthogonalization of multichannel input data is accomplished using sequential processing multichannel Givens lattice stages, so that a Vertical Bell Laboratories Layered Space Time (V-BLAST) type MIMO-DFE is realized at the front-end section of the channel shortening equalizer. Matrix operations, a major bottleneck for receiver operations, are accordingly avoided, and only scalar operations are used. A highly modular and regular radio receiver architecture that has a suitable structure for digital signal processing (DSP) chip and field programable gate array (FPGA) implementations, which are important for software defined radio realizations, is achieved. The MIMO-DFE section of the proposed receiver can also be reconfigured for spectrum sensing and positioning functions, which are important tasks for cognitive radio applications. In connection with adaptive multiple Viterbi detection section, a systolic array implementation for each channel is performed so that a receiver architecture with high computational concurrency is attained. The total computational complexity is given in terms of equalizer and desired response filter lengths, alphabet size, and number of antennas. The performance of the proposed receiver is presented for two-channel case by means of mean squared error (MSE) and probability of error evaluations, which are conducted for time-invariant and time-variant channel conditions, orthogonal and nonorthogonal transmissions, and two different modulation schemes.
Room temperature ammonia and VOC sensing properties of CuO nanorods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhuvaneshwari, S.; Gopalakrishnan, N., E-mail: ngk@nitt.edu
Here, we report a NH{sub 3} and Volatile Organic Compounds (VOCs) sensing prototype of CuO nanorods with peculiar sensing characteristics at room temperature. High quality polycrystalline nanorods were synthesized by a low temperature hydrothermal method. The rods are well oriented with an aspect ratio of 5.71. Luminescence spectrum of CuO nanorods exhibited a strong UV-emission around 415 nm (2.98 eV) which arises from the electron-hole recombination phenomenon. The absence of further deep level emissions establishes the lack of defects such as oxygen vacancies and Cu interstitials. At room temperature, the sensor response was recorded over a range of gas concentrations frommore » 100-600 ppm of ammonia, ethanol and methanol. The sensor response showed power law dependence with the gas concentration. This low temperature sensing can be validated by the lower value of calculated activation energy of 1.65 eV observed from the temperature dependent conductivity measurement.« less
NASA Technical Reports Server (NTRS)
Labovitz, M. L.; Masuoka, E. J.; Bell, R.; Nelson, R. F.; Larsen, C. A.; Hooker, L. K.; Troensegaard, K. W.
1985-01-01
It is pointed out that in many regions of the world, vegetation is the predominant factor influencing variation in reflected energy in the 0.4-2.5 micron region of the spectrum. Studies have, therefore, been conducted regarding the utility of remote sensing for detecting changes in vegetation which could be related to the presence of mineralization. The present paper provides primarily a report on the results of the second year of a multiyear study of geobotanical-remote-sensing relationships as developed over areas of sulfide mineralization. The field study has a strong experimental design basis. It is proceeded by first delineating the boundaries of a large geographic region which satisfied a set of previously enumerated field-site criteria. Within this region, carefully selected pairs of mineralized and nonmineralized test sites were examined over the growing season. The experiment is to provide information about the spectral and temporal resolutions required for remote-sensing-geobotanical exploration. The obtained results are evaluated.
Demonstration of versatile whispering-gallery micro-lasers for remote refractive index sensing.
Wan, Lei; Chandrahalim, Hengky; Zhou, Jian; Li, Zhaohui; Chen, Cong; Cho, Sangha; Zhang, Hui; Mei, Ting; Tian, Huiping; Oki, Yuji; Nishimura, Naoya; Fan, Xudong; Guo, L Jay
2018-03-05
We developed chip-scale remote refractive index sensors based on Rhodamine 6G (R6G)-doped polymer micro-ring lasers. The chemical, temperature, and mechanical sturdiness of the fused-silica host guaranteed a flexible deployment of dye-doped polymers for refractive index sensing. The introduction of the dye as gain medium demonstrated the feasibility of remote sensing based on the free-space optics measurement setup. Compared to the R6G-doped TZ-001, the lasing behavior of R6G-doped SU-8 polymer micro-ring laser under an aqueous environment had a narrower spectrum linewidth, producing the minimum detectable refractive index change of 4 × 10 -4 RIU. The maximum bulk refractive index sensitivity (BRIS) of 75 nm/RIU was obtained for SU-8 laser-based refractive index sensors. The economical, rapid, and simple realization of polymeric micro-scale whispering-gallery-mode (WGM) laser-based refractive index sensors will further expand pathways of static and dynamic remote environmental, chemical, biological, and bio-chemical sensing.
A stochastic atmospheric model for remote sensing applications
NASA Technical Reports Server (NTRS)
Turner, R. E.
1983-01-01
There are many factors which reduce the accuracy of classification of objects in the satellite remote sensing of Earth's surface. One important factor is the variability in the scattering and absorptive properties of the atmospheric components such as particulates and the variable gases. For multispectral remote sensing of the Earth's surface in the visible and infrared parts of the spectrum the atmospheric particulates are a major source of variability in the received signal. It is difficult to design a sensor which will determine the unknown atmospheric components by remote sensing methods, at least to the accuracy needed for multispectral classification. The problem of spatial and temporal variations in the atmospheric quantities which can affect the measured radiances are examined. A method based upon the stochastic nature of the atmospheric components was developed, and, using actual data the statistical parameters needed for inclusion into a radiometric model was generated. Methods are then described for an improved correction of radiances. These algorithms will then result in a more accurate and consistent classification procedure.
Linear MALDI-ToF simultaneous spectrum deconvolution and baseline removal.
Picaud, Vincent; Giovannelli, Jean-Francois; Truntzer, Caroline; Charrier, Jean-Philippe; Giremus, Audrey; Grangeat, Pierre; Mercier, Catherine
2018-04-05
Thanks to a reasonable cost and simple sample preparation procedure, linear MALDI-ToF spectrometry is a growing technology for clinical microbiology. With appropriate spectrum databases, this technology can be used for early identification of pathogens in body fluids. However, due to the low resolution of linear MALDI-ToF instruments, robust and accurate peak picking remains a challenging task. In this context we propose a new peak extraction algorithm from raw spectrum. With this method the spectrum baseline and spectrum peaks are processed jointly. The approach relies on an additive model constituted by a smooth baseline part plus a sparse peak list convolved with a known peak shape. The model is then fitted under a Gaussian noise model. The proposed method is well suited to process low resolution spectra with important baseline and unresolved peaks. We developed a new peak deconvolution procedure. The paper describes the method derivation and discusses some of its interpretations. The algorithm is then described in a pseudo-code form where the required optimization procedure is detailed. For synthetic data the method is compared to a more conventional approach. The new method reduces artifacts caused by the usual two-steps procedure, baseline removal then peak extraction. Finally some results on real linear MALDI-ToF spectra are provided. We introduced a new method for peak picking, where peak deconvolution and baseline computation are performed jointly. On simulated data we showed that this global approach performs better than a classical one where baseline and peaks are processed sequentially. A dedicated experiment has been conducted on real spectra. In this study a collection of spectra of spiked proteins were acquired and then analyzed. Better performances of the proposed method, in term of accuracy and reproductibility, have been observed and validated by an extended statistical analysis.
Development of a Brillouin scattering based distributed fibre optic strain sensor
NASA Astrophysics Data System (ADS)
Brown, Anthony Wayne
2001-07-01
The parameters of the Brillouin spectrum of an optical fibre depend upon the strain and temperature conditions of the fibre. As a result, fibre optic distributed sensors based on Brillouin scattering can measure strain and temperature in arbitrary regions of a sensing fibre. In the past, such sensors have often been demonstrated under laboratory conditions, demonstrating the principle of operation. Although some field tests of temperature sensing have been reported, the actual deployment of such sensors in the field for strain measurements has been limited by poor spatial resolution (typically 1 m or more) and poor strain accuracy (+/-100 muepsilon). Also, cross-sensitivity of the Brillouin spectrum to temperature further reduces the accuracy of strain measurement while long acquisition times hinders field use. The high level of user knowledge and lack of automation required to operate the equipment is another limiting factor of the only commercially available unit. The potential benefits of distributed measurements are great for instrumentation of civil structures provided that the above limitations are overcome. However, before this system is used with confidence by practitioners, it is essential that it can be effectively operated in field conditions. In light of this, the fibre optics group at the University of New Brunswick has been developing an automated system for field measurement of strain in civil structures, particularly in reinforced concrete. The development of the sensing system hardware and software was the main focus of this thesis. This has been made possible, in part, by observation of the Brillouin spectrum for the case of using very short light pulses (<10 ns). The end product of the development is a sensor with a spatial resolution that has been improved to 100 mm. Measurement techniques that improve system performance to measure strain to an accuracy of 10 muepsilon; and allow the simultaneous measurement of strain and temperature to an accuracy of 204 muepsilon and 3°C are presented. Finally, the results of field measurement of strain on a concrete structure are presented.
NASA Astrophysics Data System (ADS)
Perdikou, S.; Papadavid, G.; Hadjimitsis, M.; Hadjimitsis, D.; Neofytou, N.
2013-08-01
Field spectroscopy is a part of the remote sensing techniques and very important for studies in agriculture. A GER-1500 field spectro-radiometer was used in this study in order to retrieve the necessary spectrum data of the spring potatoes for estimating spectral vegetation indices (SVI's). A field campaign was undertaken from September to the end of November 2012 for the collection of spectro-radiometric measurements. The study area was in the Mandria Village in Paphos district in Cyprus. This paper demonstrates how crop canopy factors can be statistically related to remotely sensed data, namely vegetation indices. The paper is a part of an EU cofounded project regarding estimating crop water requirements using remote sensing techniques and informing the farmers through 3G smart telephony.
Radar research at the University of Kansas
NASA Astrophysics Data System (ADS)
Blunt, Shannon D.; Allen, Christopher; Arnold, Emily; Hale, Richard; Hui, Rongqing; Keshmiri, Shahriar; Leuschen, Carlton; Li, Jilu; Paden, John; Rodriguez-Morales, Fernando; Salandrino, Alessandro; Stiles, James
2017-05-01
Radar research has been synonymous with the University of Kansas (KU) for over half a century. As part of this special session organized to highlight significant radar programs in academia, this paper surveys recent and ongoing work at KU. This work encompasses a wide breadth of sensing applications including the remote sensing of ice sheets, autonomous navigation methods for unmanned aerial vehicles (UAVs), novel laser radar capabilities, detection of highenergy cosmic rays using bistatic radar, different forms of waveform diversity such as MIMO radar and pulse agility, and various radar-embedded communication methods. The results of these efforts impact our understanding of the changing nature of the environment, address the proliferation of unmanned systems in the US airspace, realize new sensing modalities enabled by the joint consideration of electromagnetics and signal processing, and greater facilitate radar operation in an increasingly congested and contested spectrum.
NASA Astrophysics Data System (ADS)
Saetchnikov, Anton; Skakun, Victor; Saetchnikov, Vladimir; Tcherniavskaia, Elina; Ostendorf, Andreas
2017-10-01
An approach for the automated whispering gallery mode (WGM) signal decomposition and its parameter estimation is discussed. The algorithm is based on the peak picking and can be applied for the preprocessing of the raw signal acquired from the multiplied WGM-based biosensing chips. Quantitative estimations representing physically meaningful parameters of the external disturbing factors on the WGM spectral shape are the output values. Derived parameters can be directly applied to the further deep qualitative and quantitative interpretations of the sensed disturbing factors. The algorithm is tested on both simulated and experimental data taken from the bovine serum albumin biosensing task. The proposed solution is expected to be a useful contribution to the preprocessing phase of the complete data analysis engine and is expected to push the WGM technology toward the real-live sensing nanobiophotonics.
Common sense reasoning about petroleum flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenberg, S.
1981-02-01
This paper describes an expert system for understanding and Reasoning in a petroleum resources domain. A basic model is implemented in FRL (Frame Representation Language). Expertise is encoded as rule frames. The model consists of a set of episodic contexts which are sequentially generated over time. Reasoning occurs in separate reasoning contexts consisting of a buffer frame and packets of rules. These function similar to small production systems. reasoning is linked to the model through an interface of Sentinels (instance driven demons) which notice anomalous conditions. Heuristics and metaknowledge are used through the creation of further reasoning contexts which overlaymore » the simpler ones.« less
Spatio-Temporal Mining of PolSAR Satellite Image Time Series
NASA Astrophysics Data System (ADS)
Julea, A.; Meger, N.; Trouve, E.; Bolon, Ph.; Rigotti, C.; Fallourd, R.; Nicolas, J.-M.; Vasile, G.; Gay, M.; Harant, O.; Ferro-Famil, L.
2010-12-01
This paper presents an original data mining approach for describing Satellite Image Time Series (SITS) spatially and temporally. It relies on pixel-based evolution and sub-evolution extraction. These evolutions, namely the frequent grouped sequential patterns, are required to cover a minimum surface and to affect pixels that are sufficiently connected. These spatial constraints are actively used to face large data volumes and to select evolutions making sense for end-users. In this paper, a specific application to fully polarimetric SAR image time series is presented. Preliminary experiments performed on a RADARSAT-2 SITS covering the Chamonix Mont-Blanc test-site are used to illustrate the proposed approach.
NASA Technical Reports Server (NTRS)
Bushnell, Dennis M.
2004-01-01
Any new concept must successfully transit two sequential filters between research initiation and application, a technical filter (does it work?) and a technological filter (does it make sense in the real world? ). In general, the research community is not sufficiently knowledgeable regarding the myriad metrics of the technological filter and therefore non (application) useful research is conducted in some cases and in others the research is not carried far enough to allow technological evaluation. It is becoming imperative that the research community be more knowledgeable concerning, and in many cases work with, the application community.
Neuro-evolutionary computing paradigm for Painlevé equation-II in nonlinear optics
NASA Astrophysics Data System (ADS)
Ahmad, Iftikhar; Ahmad, Sufyan; Awais, Muhammad; Ul Islam Ahmad, Siraj; Asif Zahoor Raja, Muhammad
2018-05-01
The aim of this study is to investigate the numerical treatment of the Painlevé equation-II arising in physical models of nonlinear optics through artificial intelligence procedures by incorporating a single layer structure of neural networks optimized with genetic algorithms, sequential quadratic programming and active set techniques. We constructed a mathematical model for the nonlinear Painlevé equation-II with the help of networks by defining an error-based cost function in mean square sense. The performance of the proposed technique is validated through statistical analyses by means of the one-way ANOVA test conducted on a dataset generated by a large number of independent runs.
NASA Astrophysics Data System (ADS)
Roffer, M. A.; Gawlikowski, G.; Muller-Karger, F.; Schaudt, K.; Upton, M.; Wall, C.; Westhaver, D.
2006-12-01
Thermal infrared (TIR) and ocean color remote sensing data (1.1 - 4.0 km) are being used as the primary data source in decision making systems for fisheries management, commercial and recreational fishing advisory services, fisheries research, environmental monitoring, oil and gas operations, and ship routing. Experience over the last 30 years suggests that while ocean color and other remote sensing data (e.g. altimetry) are important data sources, TIR presently yields the most useful data for studying ocean surface circulation synoptically on a daily basis. This is due primarily to the greater temporal resolution, but also due to one's better understanding of the dynamics of sea surface temperature compared with variations in ocean color and the spatial limitations of altimeter data. Information derived from commercial operations and research is being used to improve the operational efficiency of fishing vessels (e.g. reduce search time and increase catch rate) and to improve our understanding of the variations in catch distribution and rate needed to properly manage fisheries. This information is also being used by the oil and gas industry to minimize transit time and thus, save costs (e.g., tug charter, insurance), to increase production and revenue up to 500K dollars a day. The data are also be used to reduce the risk of equipment loss, loss of time and revenue to sudden and unexpected currents such as eddies. Sequential image analysis integrating TIR and ocean color provided near-real time, synoptic visualization of the rapid and wide dispersal of coastal waters from the northern Gulf of Mexico following Hurricanes Katrina and Rita in September 2005. The satellite data and analysis techniques have also been used to monitor the effects and movement of other potential environmentally damaging substances, such as dispersing nutrient enriched waste water offshore. A review of our experience in several commercial applications and research efforts will reinforce the importance and benefits of TIR compared to other remote sensing data. Examples of sequential image analysis and side by side image comparisons will demonstrate the utility of TIR for oceanographic applications. This will emphasize that TIR research and development be continued, as well as, implemented on all new research sensor packages. Sea surface temperature, derived from TIR, has the longest history and reliability for synoptic observations of ocean circulation. Thus, any new sensor packages should be fitted with TIR at the same temporal and spatial resolution to facilitate an objective comparison of the utility of the new sensors compared with the TIR.
[Determination of chromphoric dissolved organic matter in water from different sources].
Liu, Xian-ping; Li, Lei; Dai, Jin-feng; Wang, Xiao-ru; Lee, Frank S C
2007-10-01
Chromophoric dissolved organic matter (CDOM) represents the fraction of the dissolved organic pool which absorbs light in the visible as well as UV ranges. It could affect the color of the waters. It is necessary to study it during in research on ecosystem, remote sensing of the water color and the cycle of carbon in waters. CDOM can fluoresce when excited, so fluorescence spectrum has been used to study its origin, distribution, and change. In the present article the fluorescence spectrophotometer was used to study the relation between the fluorescence intensity, spectrum area and the concentration of CDOM. When the concentration of CDOM is low (less than 75 mg x L(-1)), there is a better linear relationship (r2 > 0.98) between the fluorescence intensity, the spectrum area and the concentration of CDOM. Meanwhile good linear relations were found between the fluorescence intensity and spectrum area, which showed the same changeable trend of the fluorescence intensity and spectrum area with the concentration change of CDOM. A method was established to quantify the concentration of CDOM in water from different source using the linear relationship between the spectrum area and the concentration. It suits the complicated constituent analysis of CDOM and could really and accurately show the concentration of CDOM in natural water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muckley, Eric S.; Jacobs, Christopher B.; Vidal, Keith
Aqueous solubility of copper phthalocyanine-3,4',4',4"'-tetrasulfonic acid tetrasodium salt (CuPcTs) enables fabrication of flexible electronic devices by low cost inkjet printing. We (1) investigate water adsorption kinetics on CuPcTs for better understanding the effects of relative humidity (RH) on hydrophilic phthalocyanines, and (2) assess CuPcTs as a humidity-sensing material. Reaction models show that H 2O undergoes 2-site adsorption which can be represented by a pair of sequentially-occurring pseudo-first order reactions. Using high frequency (300–700 THz) and low frequency (1–8 MHz) dielectric spectroscopy combined with gravimetric measurements and principal component analysis, we observe that significant opto-electrical changes in CuPcTs occur at RHmore » ≈ 60%. The results suggest that rapid H 2O adsorption takes place at hydrophilic sulfonyl/salt groups on domain surfaces at low RH, while slow adsorption and diffusion of H 2O into CuPcTs crystallites leads to a mixed CuPcTs-H 2O phase at RH > 60%, resulting in high frequency dielectric screening of the film by water and dissociation of Na+ from CuPc(SO 3-) 4 ions. Lastly, the CuPcTs-H 2O interaction can be tracked using a combination of gravimetric, optical, and electrical sensing modes, enabling accurate ( ± 2.5%) sensing in the ~0–95% RH range with a detection limit of less than 0.1% RH.« less
Muckley, Eric S.; Jacobs, Christopher B.; Vidal, Keith; ...
2017-08-30
Aqueous solubility of copper phthalocyanine-3,4',4',4"'-tetrasulfonic acid tetrasodium salt (CuPcTs) enables fabrication of flexible electronic devices by low cost inkjet printing. We (1) investigate water adsorption kinetics on CuPcTs for better understanding the effects of relative humidity (RH) on hydrophilic phthalocyanines, and (2) assess CuPcTs as a humidity-sensing material. Reaction models show that H 2O undergoes 2-site adsorption which can be represented by a pair of sequentially-occurring pseudo-first order reactions. Using high frequency (300–700 THz) and low frequency (1–8 MHz) dielectric spectroscopy combined with gravimetric measurements and principal component analysis, we observe that significant opto-electrical changes in CuPcTs occur at RHmore » ≈ 60%. The results suggest that rapid H 2O adsorption takes place at hydrophilic sulfonyl/salt groups on domain surfaces at low RH, while slow adsorption and diffusion of H 2O into CuPcTs crystallites leads to a mixed CuPcTs-H 2O phase at RH > 60%, resulting in high frequency dielectric screening of the film by water and dissociation of Na+ from CuPc(SO 3-) 4 ions. Lastly, the CuPcTs-H 2O interaction can be tracked using a combination of gravimetric, optical, and electrical sensing modes, enabling accurate ( ± 2.5%) sensing in the ~0–95% RH range with a detection limit of less than 0.1% RH.« less
Muckley, Eric S; Jacobs, Christopher B; Vidal, Keith; Lavrik, Nickolay V; Sumpter, Bobby G; Ivanov, Ilia N
2017-08-30
Aqueous solubility of copper phthalocyanine-3,4',4″,4″'-tetrasulfonic acid tetrasodium salt (CuPcTs) enables fabrication of flexible electronic devices by low cost inkjet printing. We (1) investigate water adsorption kinetics on CuPcTs for better understanding the effects of relative humidity (RH) on hydrophilic phthalocyanines, and (2) assess CuPcTs as a humidity-sensing material. Reaction models show that H 2 O undergoes 2-site adsorption which can be represented by a pair of sequentially-occurring pseudo-first order reactions. Using high frequency (300-700 THz) and low frequency (1-8 MHz) dielectric spectroscopy combined with gravimetric measurements and principal component analysis, we observe that significant opto-electrical changes in CuPcTs occur at RH ≈ 60%. The results suggest that rapid H 2 O adsorption takes place at hydrophilic sulfonyl/salt groups on domain surfaces at low RH, while slow adsorption and diffusion of H 2 O into CuPcTs crystallites leads to a mixed CuPcTs-H 2 O phase at RH > 60%, resulting in high frequency dielectric screening of the film by water and dissociation of Na + from CuPc(SO 3 - ) 4 ions. The CuPcTs-H 2 O interaction can be tracked using a combination of gravimetric, optical, and electrical sensing modes, enabling accurate ( ± 2.5%) sensing in the ~0-95% RH range with a detection limit of less than 0.1% RH.
Chlorophyll-a specific volume scattering function of phytoplankton.
Tan, Hiroyuki; Oishi, Tomohiko; Tanaka, Akihiko; Doerffer, Roland; Tan, Yasuhiro
2017-06-12
Chlorophyll-a specific light volume scattering functions (VSFs) by cultured phytoplankton in visible spectrum range is presented. Chlorophyll-a specific VSFs were determined based on the linear least squares method using a measured VSFs with different chlorophyll-a concentrations. We found obvious variability of it in terms of spectral and angular shapes of VSF between cultures. It was also presented that chlorophyll-a specific scattering significantly affected on spectral variation of the remote sensing reflectance, depending on spectral shape of b. This result is useful for developing an advance algorithm of ocean color remote sensing and for deep understanding of light in the sea.
FTIR Monitoring Of Curing Of Composites
NASA Technical Reports Server (NTRS)
Druy, Mark A.; Stevenson, William A.; Young, Philip R.
1990-01-01
Infrared-sensing optical fiber system developed to monitor principal infrared absorption bands resulting from vibrations of atoms and molecules as chemical bonds form when resin cured. System monitors resin chemistry more directly. Used to obtain Fourier transform infrared (FTIR) spectrum from graphite fiber/polyimide matrix resin prepreg. Embedded fiber optic FTIR sensor used to indicate state of cure of thermosetting composite material. Developed primarily to improve quality of advanced composites, many additional potential applications exist because principal of operation applicable to all organic materials and most inorganic gases. Includes monitoring integrities of composite materials in service, remote sensing of hazardous materials, and examination of processes in industrial reactors and furnaces.
Tobing, Landobasa Y. M.; Tjahjana, Liliana; Zhang, Dao Hua; Zhang, Qing; Xiong, Qihua
2013-01-01
Metamaterials provide a good platform for biochemical sensing due to its strong field localization at nanoscale. In this work, we show that electric and magnetic resonant modes in split-ring-resonator (SRR) can be efficiently excited under unpolarized light illumination when the SRRs are arranged in fourfold rotationally symmetric lattice configuration. The fabrication and characterization of deep subwavelength (~λ/15) gold-based SRR structures with resonator size as small as ~ 60 nm are reported with magnetic resonances in Vis-NIR spectrum range. The feasibility for sensing is demonstrated with refractive index sensitivity as high as ~ 636 nm/RIU. PMID:23942416
[94 km Brillouin distributed optical fiber sensors based on ultra-long fiber ring laser pumping].
Yuan, Cheng-Xu; Wang, Zi-Nan; Jia, Xin-Hong; Li, Jin; Yan, Xiao-Dong; Cui, An-Bin
2014-05-01
A novel optical amplification configuration based on ultra-long fiber laser with a ring cavity was proposed and applied to Brillouin optical time-domain analysis (BOTDA) sensing system, in order to extend the measurement distance significantly. The parameters used in the experiment were optimized, considering the main limitations of the setup, such as depletion, self-phase modulation (SPM) and pump-signal relative intensity noise (RIN) transfer. Through analyzing Brillouin gain spectrum, we demonstrated distributed sensing over 94 km of standard single-mode fiber with 3 meter spatial resolution and strain/temperature accuracy of 28 /1. 4 degree C.
Reflective ghost imaging through turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardy, Nicholas D.; Shapiro, Jeffrey H.
2011-12-15
Recent work has indicated that ghost imaging may have applications in standoff sensing. However, most theoretical work has addressed transmission-based ghost imaging. To be a viable remote-sensing system, the ghost imager needs to image rough-surfaced targets in reflection through long, turbulent optical paths. We develop, within a Gaussian-state framework, expressions for the spatial resolution, image contrast, and signal-to-noise ratio of such a system. We consider rough-surfaced targets that create fully developed speckle in their returns and Kolmogorov-spectrum turbulence that is uniformly distributed along all propagation paths. We address both classical and nonclassical optical sources, as well as a computational ghostmore » imager.« less
NASA Astrophysics Data System (ADS)
Hromadka, J.; Tokay, B.; James, S.; Korposh, S.
2017-04-01
An optical fibre long period grating (LPG) modified with a thin film of HKUST-1, a material from metal organic framework (MOF) family, was employed for the detection of carbon dioxide. The sensing mechanism is based on the measurement of the change of the refractive index (RI) of the coating that is induced by the penetration of CO2 molecules into the HKUST-1 pores. The responses of the resonance bands in the transmission spectrum of an LPG modified with 40 layers of HKUST-1 upon exposure to carbon dioxide in mixture with nitrogen were investigated.
NASA Technical Reports Server (NTRS)
Jones, E. B.
1983-01-01
As remote sensing increasingly becomes more of an operational tool in the field of snow management and snow hydrology, there is need for some degree of standardization of ""snowpack ground truth'' techniques. This manual provides a first step in standardizing these procedures and was prepared to meet the needs of remote sensing researchers in planning missions requiring ground truth as well as those providing the ground truth. Focus is on ground truth for remote sensors primarily operating in the microwave portion of the electromagnetic spectrum; nevertheless, the manual should be of value to other types of sensor programs. This first edition of ground truth procedures must be updated as new or modified techniques are developed.
Georghiou, George P.; Hawley, Marilyn K.
1971-01-01
Although cross-resistance in houseflies to the organophosphates has eliminated numerous potentially useful compounds from field use, the ”subgroup” specificity of this phenomenon has permitted housefly control to be carried out for nearly a quarter of a century by changing from one toxicant to another within this class of insecticides. A question of considerable importance in insect control is whether the development of resistance to one subgroup of organophosphates will be at the expense of resistance to a subgroup applied previously. The development over several years of resistance in a field population selected sequentially by a number of organophosphates was studied. It was observed that the resistance spectrum expanded progressively to include, finally, organophosphates originally thought to belong to more than one subgroup—namely, malathion (resistance greater than 100 times), fenchlorphos (114 times), diazinon (163 times), coumaphos (greater than 100 times), Ciodrin (greater than 100 times), fenthion (18 times) and naled (9.3 times). Resistance to each compound continued to rise to levels considerably higher than those achieved at the time when the field use of the compound ended. The possible coexistence of subgroup cross-resistance in a population is discussed in the light of these results. PMID:5316852
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pullum, Laura L; Ramanathan, Arvind; Hobson, Tanner C
We examine the use of electronic healthcare reimbursement claims (EHRC) for analyzing healthcare delivery and practice patterns across the United States (US). We show that EHRCs are correlated with disease incidence estimates published by the Centers for Disease Control. Further, by analyzing over 1 billion EHRCs, we track patterns of clinical procedures administered to patients with autism spectrum disorder (ASD), heart disease (HD) and breast cancer (BC) using sequential pattern mining algorithms. Our analyses reveal that in contrast to treating HD and BC, clinical procedures for ASD diagnoses are highly varied leading up to and after the ASD diagnoses. Themore » discovered clinical procedure sequences also reveal significant differences in the overall costs incurred across different parts of the US, indicating a lack of consensus amongst practitioners in treating ASD patients. We show that a data-driven approach to understand clinical trajectories using EHRC can provide quantitative insights into how to better manage and treat patients. Based on our experience, we also discuss emerging challenges in using EHRC datasets for gaining insights into the state of contemporary healthcare delivery and practice in the US.« less
Hogendoorn, Hinze; Carlson, Thomas A; VanRullen, Rufin; Verstraten, Frans A J
2010-11-01
Visual attention can be divided over multiple objects or locations. However, there is no single theoretical framework within which the effects of dividing attention can be interpreted. In order to develop such a model, here we manipulated the stage of visual processing at which attention was divided, while simultaneously probing the costs of dividing attention on two dimensions. We show that dividing attention incurs dissociable time and precision costs, which depend on whether attention is divided during monitoring or during access. Dividing attention during monitoring resulted in progressively delayed access to attended locations as additional locations were monitored, as well as a one-off precision cost. When dividing attention during access, time costs were systematically lower at one of the accessed locations than at the other, indicating that divided attention during access, in fact, involves rapid sequential allocation of undivided attention. We propose a model in which divided attention is understood as the simultaneous parallel preparation and subsequent sequential execution of multiple shifts of undivided attention. This interpretation has the potential to bring together diverse findings from both the divided-attention and saccade preparation literature and provides a framework within which to integrate the broad spectrum of divided-attention methodologies.
Demosaiced pixel super-resolution for multiplexed holographic color imaging
Wu, Yichen; Zhang, Yibo; Luo, Wei; Ozcan, Aydogan
2016-01-01
To synthesize a holographic color image, one can sequentially take three holograms at different wavelengths, e.g., at red (R), green (G) and blue (B) parts of the spectrum, and digitally merge them. To speed up the imaging process by a factor of three, a Bayer color sensor-chip can also be used to demultiplex three wavelengths that simultaneously illuminate the sample and digitally retrieve individual set of holograms using the known transmission spectra of the Bayer color filters. However, because the pixels of different channels (R, G, B) on a Bayer color sensor are not at the same physical location, conventional demosaicing techniques generate color artifacts in holographic imaging using simultaneous multi-wavelength illumination. Here we demonstrate that pixel super-resolution can be merged into the color de-multiplexing process to significantly suppress the artifacts in wavelength-multiplexed holographic color imaging. This new approach, termed Demosaiced Pixel Super-Resolution (D-PSR), generates color images that are similar in performance to sequential illumination at three wavelengths, and therefore improves the speed of holographic color imaging by 3-fold. D-PSR method is broadly applicable to holographic microscopy applications, where high-resolution imaging and multi-wavelength illumination are desired. PMID:27353242
Functional Amyloids Keep Quorum-sensing Molecules in Check*
Seviour, Thomas; Hansen, Susan Hove; Yang, Liang; Yau, Yin Hoe; Wang, Victor Bochuan; Stenvang, Marcel R.; Christiansen, Gunna; Marsili, Enrico; Givskov, Michael; Chen, Yicai; Otzen, Daniel E.; Nielsen, Per Halkjær; Geifman-Shochat, Susana; Kjelleberg, Staffan; Dueholm, Morten S.
2015-01-01
The mechanism by which extracellular metabolites, including redox mediators and quorum-sensing signaling molecules, traffic through the extracellular matrix of biofilms is poorly explored. We hypothesize that functional amyloids, abundant in natural biofilms and possessing hydrophobic domains, retain these metabolites. Using surface plasmon resonance, we demonstrate that the quorum-sensing (QS) molecules, 2-heptyl-3-hydroxy-4(1H)-quinolone and N-(3-oxododecanoyl)-l-homoserine lactone, and the redox mediator pyocyanin bind with transient affinity to functional amyloids from Pseudomonas (Fap). Their high hydrophobicity predisposes them to signal-amyloid interactions, but specific interactions also play a role. Transient interactions allow for rapid association and dissociation kinetics, which make the QS molecules bioavailable and at the same time secure within the extracellular matrix as a consequence of serial bindings. Retention of the QS molecules was confirmed using Pseudomonas aeruginosa PAO1-based 2-heptyl-3-hydroxy-4(1H)-quinolone and N-(3-oxododecanoyl)-l-homoserine lactone reporter assays, showing that Fap fibrils pretreated with the QS molecules activate the reporters even after sequential washes. Pyocyanin retention was validated by electrochemical analysis of pyocyanin-pretreated Fap fibrils subjected to the same washing process. Results suggest that QS molecule-amyloid interactions are probably important in the turbulent environments commonly encountered in natural habitats. PMID:25586180
Kim, Su Yeong; Chen, Qi; Wang, Yijie; Shen, Yishan; Orozco-Lapray, Diana
2012-01-01
Parent-child acculturation discrepancy is a risk factor in the development of children in immigrant families. Using a longitudinal sample of Chinese immigrant families, the current study examined how unsupportive parenting and parent-child sense of alienation sequentially mediate the relationship between parent-child acculturation discrepancy and child adjustment during early and middle adolescence. Acculturation discrepancy scores were created using multilevel modeling to take into account the interdependence among family members. Structural equation models showed that, during early adolescence, parent-child American orientation discrepancy is related to parents’ use of unsupportive parenting practices; parents’ use of unsupportive parenting is related to increased sense of alienation between parents and children, which in turn is related to more depressive symptoms and lower academic performance in Chinese American adolescents. These patterns of negative adjustment established in early adolescence persist into middle adolescence. This mediating effect is more apparent among father-adolescent dyads than among mother-adolescent dyads. In contrast, parent-child Chinese orientation discrepancy does not demonstrate a significant direct or indirect effect on adolescent adjustment, either concurrently or longitudinally. The current findings suggest that early adolescence is more susceptible to the negative effects of parent-child acculturation discrepancy; they also underscore the importance of fathering in Chinese immigrant families. PMID:22799587
Sensory flow shaped by active sensing: sensorimotor strategies in electric fish.
Hofmann, Volker; Sanguinetti-Scheck, Juan I; Künzel, Silke; Geurten, Bart; Gómez-Sena, Leonel; Engelmann, Jacob
2013-07-01
Goal-directed behavior in most cases is composed of a sequential order of elementary motor patterns shaped by sensorimotor contingencies. The sensory information acquired thus is structured in both space and time. Here we review the role of motion during the generation of sensory flow focusing on how animals actively shape information by behavioral strategies. We use the well-studied examples of vision in insects and echolocation in bats to describe commonalities of sensory-related behavioral strategies across sensory systems, and evaluate what is currently known about comparable active sensing strategies in electroreception of electric fish. In this sensory system the sensors are dispersed across the animal's body and the carrier source emitting energy used for sensing, the electric organ, is moved while the animal moves. Thus ego-motions strongly influence sensory dynamics. We present, for the first time, data of electric flow during natural probing behavior in Gnathonemus petersii (Mormyridae), which provide evidence for this influence. These data reveal a complex interdependency between the physical input to the receptors and the animal's movements, posture and objects in its environment. Although research on spatiotemporal dynamics in electrolocation is still in its infancy, the emerging field of dynamical sensory systems analysis in electric fish is a promising approach to the study of the link between movement and acquisition of sensory information.
NASA Astrophysics Data System (ADS)
Tsai, Meng-Yen; Creedon, Niamh; Brightbill, Eleanor; Pavlidis, Spyridon; Brown, Billyde; Gray, Darren W.; Shields, Niall; Sayers, Ríona; Mooney, Mark H.; O'Riordan, Alan; Vogel, Eric M.
2017-08-01
A fully integrated system that combines extended gate field-effect transistor (EGFET)-based potentiometric biosensors and electrochemical impedance spectroscopy (EIS)-based biosensors has been demonstrated. This integrated configuration enables the sequential measurement of the same immunological binding event on the same sensing surface and consequently sheds light on the fundamental origins of sensing signals produced by FET and EIS biosensors, as well as the correlation between the two. Detection of both the bovine serum albumin (BSA)/anti-BSA model system in buffer solution and bovine parainfluenza antibodies in complex blood plasma samples was demonstrated using the integrated biosensors. Comparison of the EGFET and EIS sensor responses reveals similar dynamic ranges, while equivalent circuit modeling of the EIS response shows that the commonly reported total impedance change (ΔZtotal) is dominated by the change in charge transfer resistance (Rct) rather than surface capacitance (Csurface). Using electrochemical kinetics and the Butler-Volmer equation, we unveil that the surface potential and charge transfer resistance, measured by potentiometric and impedance biosensors, respectively, are, in fact, intrinsically linked. This observation suggests that there is no significant gain in using the FET/EIS integrated system and leads to the demonstration that low-cost EGFET biosensors are sufficient as a detection tool to resolve the charge information of biomolecules for practical sensing applications.