Sample records for sequestration ccs technologies

  1. The Effect of Emissions Trading And Carbon Sequestration on The Cost Of CO2 Emissions Mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahasenan, Natesan; Scott, Michael J.; Smith, Steven J.

    2002-08-05

    The deployment of carbon capture and sequestration (CC&S) technologies is greatly affected by the marginal cost of controlling carbon emissions (also the value of carbon, when emissions permits are traded). Emissions limits that are more stringent in the near term imply higher near-term carbon values and therefore encourage the local development and deployment of CC&S technologies. In addition, trade in emissions obligations lowers the cost of meeting any regional or global emissions limit and so affects the rate of penetration of CC&S technologies. We examine the effects of the availability of sequestration opportunities and emissions trading (either within select regionsmore » or globally) on the cost of emissions mitigation and compliance with different emissions reduction targets for the IPCC SRES scenarios. For each base scenario and emissions target, we examine the issues outlined above and present quantitative estimates for the impacts of trade and the availability of sequestration opportunities in meeting emissions limitation obligations.« less

  2. Development and Implementation of the Midwest Geological Sequestration Consortium CO 2-Technology Transfer Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenberg, Sallie E.

    2015-06-30

    In 2009, the Illinois State Geological Survey (ISGS), in collaboration with the Midwest Geological Sequestration Consortium (MGSC), created a regional technology training center to disseminate carbon capture and sequestration (CCS) technology gained through leadership and participation in regional carbon sequestration projects. This technology training center was titled and branded as the Sequestration Training and Education Program (STEP). Over the last six years STEP has provided local, regional, national, and international education and training opportunities for engineers, geologists, service providers, regulators, executives, K-12 students, K-12 educators, undergraduate students, graduate students, university and community college faculty members, and participants of community programsmore » and functions, community organizations, and others. The goal for STEP educational programs has been on knowledge sharing and capacity building to stimulate economic recovery and development by training personnel for commercial CCS projects. STEP has worked with local, national and international professional organizations and regional experts to leverage existing training opportunities and provide stand-alone training. This report gives detailed information on STEP activities during the grant period (2009-2015).« less

  3. Carbon Capture and Sequestration- A Review

    NASA Astrophysics Data System (ADS)

    Sood, Akash; Vyas, Savita

    2017-08-01

    The Drastic increase of CO2 emission in the last 30 years is due to the combustion of fossil fuels and it causes a major change in the environment such as global warming. In India, the emission of fossil fuels is developed in the recent years. The alternate energy sources are not sufficient to meet the values of this emission reduction and the framework of climate change demands the emission reduction, the CCS technology can be used as a mitigation tool which evaluates the feasibility for implementation of this technology in India. CCS is a process to capture the carbon dioxide from large sources like fossil fuel station to avoid the entrance of CO2 in the atmosphere. IPCC accredited this technology and its path for mitigation for the developing countries. In this paper, we present the technologies of CCS with its development and external factors. The main goal of this process is to avoid the release the CO2 into the atmosphere and also investigates the sequestration and mitigation technologies of carbon.

  4. Regulatory Promotion of Emergent CCS Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, Lincoln; Uchitel, Kirsten; Johnson, David

    2014-01-01

    Despite the growing inevitability of climate change and the attendant need for mitigation strategies, carbon capture and sequestration (CCS) has yet to gain much traction in the United States. Recent regulatory proposals by the U.S. Environmental Protection Agency (EPA), limited in scope to new-build power plants, represent the only significant policy initiative intended to mandate diffusion of CCS technology. Phase I of this Project assessed barriers to CCS deployment as prioritized by the CCS community. That research concluded that there were four primary barriers: (1) cost, (2) lack of a carbon price, (3) liability, and (4) lack of a comprehensivemore » regulatory regime. Phase II of this Project, as presented in this Report, assesses potential regulatory models for CCS and examines where those models address the hurdles to diffusing CCS technology identified in Phase I. It concludes (1) that a CCS-specific but flexible standard, such as a technology performance standard or a very particular type of market-based regulation, likely will promote CCS diffusion, and (2) that these policies cannot work alone, but rather, should be combined with other measures, such as liability limits and a comprehensive CCS regulatory regime.« less

  5. Computational Modeling of the Geologic Sequestration of Carbon Dioxide

    EPA Science Inventory

    Geologic sequestration of CO2 is a component of C capture and storage (CCS), an emerging technology for reducing CO2 emissions to the atmosphere, and involves injection of captured CO2 into deep subsurface formations. Similar to the injection of hazardous wastes, before injection...

  6. Geological Sequestration of CO2 A Brief Overview and Potential for Application for Oklahoma

    EPA Science Inventory

    Geologic sequestration of CO2 is a component of C capture and storage (CCS), an emerging technology for reducing CO2 emissions to the atmosphere, and involves injection of captured CO2 into deep subsurface formations. Similar to the injection of hazardous wastes, before injection...

  7. Sustainability Assessment of Coal-Fired Power Plants with Carbon Capture and Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widder, Sarah H.; Butner, R. Scott; Elliott, Michael L.

    2011-11-30

    Carbon capture and sequestration (CCS) has the ability to dramatically reduce carbon dioxide (CO2) emissions from power production. Most studies find the potential for 70 to 80 percent reductions in CO2 emissions on a life-cycle basis, depending on the technology. Because of this potential, utilities and policymakers are considering the wide-spread implementation of CCS technology on new and existing coal plants to dramatically curb greenhouse gas (GHG) emissions from the power generation sector. However, the implementation of CCS systems will have many other social, economic, and environmental impacts beyond curbing GHG emissions that must be considered to achieve sustainable energymore » generation. For example, emissions of nitrogen oxides (NOx), sulfur oxides (SOx), and particulate matter (PM) are also important environmental concerns for coal-fired power plants. For example, several studies have shown that eutrophication is expected to double and acidification would increase due to increases in NOx emissions for a coal plant with CCS provided by monoethanolamine (MEA) scrubbing. Potential for human health risks is also expected to increase due to increased heavy metals in water from increased coal mining and MEA hazardous waste, although there is currently not enough information to relate this potential to actual realized health impacts. In addition to environmental and human health impacts, supply chain impacts and other social, economic, or strategic impacts will be important to consider. A thorough review of the literature for life-cycle analyses of power generation processes using CCS technology via the MEA absorption process, and other energy generation technologies as applicable, yielded large variability in methods and core metrics. Nonetheless, a few key areas of impact for CCS were developed from the studies that we reviewed. These are: the impact of MEA generation on increased eutrophication and acidification from ammonia emissions and increased toxicity from MEA production and the impact of increased coal use including the increased generation of NOx from combustion and transportation, impacts of increased mining of coal and limestone, and the disposal of toxic fly ash and boiler ash waste streams. Overall, the implementing CCS technology could contribute to a dramatic decrease in global GHG emissions, while most other environmental and human health impact categories increase only slightly on a global scale. However, the impacts on human toxicity and ecotoxicity have not been studied as extensively and could have more severe impacts on a regional or local scale. More research is needed to draw strong conclusions with respect to the specific relative impact of different CCS technologies. Specifically, a more robust data set that disaggregates data in terms of component processes and treats a more comprehensive set of environmental impacts categories from a life-cycle perspective is needed. In addition, the current LCA framework lacks the required temporal and spatial scales to determine the risk of environmental impact from carbon sequestration. Appropriate factors to use when assessing the risk of water acidification (groundwater/oceans/aquifers depending on sequestration site), risk of increased human toxicity impact from large accidental releases from pipeline or wells, and the legal and public policy risk associated with licensing CO2 sequestration sites are also not currently addressed. In addition to identifying potential environmental, social, or risk-related issues that could impede the large-scale deployment of CCS, performing LCA-based studies on energy generation technologies can suggest places to focus our efforts to achieve technically feasible, economically viable, and environmentally conscious energy generation technologies for maximum impact.« less

  8. CCS Activities Being Performed by the U.S. DOE

    PubMed Central

    Dressel, Brian; Deel, Dawn; Rodosta, Traci; Plasynski, Sean; Litynski, John; Myer, Larry

    2011-01-01

    The United States Department of Energy (DOE) is the lead federal agency for the development and deployment of carbon sequestration technologies. Its mission includes promoting scientific and technological innovations and transfer of knowledge for safe and permanent storage of CO2 in the subsurface. To accomplish its mission, DOE is characterizing and classifying potential geologic storage reservoirs in basins throughout the U.S. and Canada, and developing best practices for project developers, to help ensure the safety of future geologic storage projects. DOE’s Carbon Sequestration Program, Regional Carbon Sequestration Partnership (RCSP) Initiative, administered by the National Energy Technology Laboratory (NETL), is identifying, characterizing, and testing potential injection formations. The RCSP Initiative consists of collaborations among government, industry, universities, and international organizations. Through this collaborative effort, a series of integrated knowledge-based tools have been developed to help potential sequestration project developers. They are the Carbon Sequestration Atlas of the United States and Canada, National Carbon Sequestration Database and Geographic System (NATCARB), and best practice manuals for CCS including Depositional Reservoir Classification for CO2; Public Outreach and Education for Carbon Storage Projects; Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formation; Site Screening, Site Selection, and Initial Characterization of CO2 Storage in Deep Geologic Formations. DOE’s future research will help with refinement of these tools and additional best practice manuals (BPM) which focus on other technical aspects of project development. PMID:21556188

  9. The role of initial affective impressions in responses to educational communications: the case of carbon capture and sequestration (CCS).

    PubMed

    Bruine de Bruin, Wändi; Wong-Parodi, Gabrielle

    2014-06-01

    Emerging technologies promise potential benefits at a potential cost. Developers of educational communications aim to improve people's understanding and to facilitate public debate. However, even relatively uninformed recipients may have initial feelings that are difficult to change. We report that people's initial affective impressions about carbon capture and sequestration (CCS), a low-carbon coal-based electricity-generation technology with which most people are unfamiliar, influences how they interpret previously validated education materials. As a result, even individuals who had originally self-identified as uninformed persisted in their initial feelings after reading the educational communication-though perseverance of feelings about CCS was stronger among recipients who had originally self-identified as relatively informed (Study 1). Moreover, uninformed recipients whose initial feelings were experimentally manipulated by relatively uninformative pro-CCS or anti-CCS arguments persisted in their manipulated feelings after reading the educational communication, due to evaluating the educational communication in line with their manipulated impressions (Study 2). Hence, our results suggest that educational communications will have more impact if they are disseminated before people form strong feelings about the topic under consideration, especially if these are based on little to no factual understanding. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  10. Influencing attitudes toward carbon capture and sequestration: a social marketing approach.

    PubMed

    Wong-Parodi, Gabrielle; Dowlatabadi, Hadi; McDaniels, Tim; Ray, Isha

    2011-08-15

    Carbon capture and sequestration (CCS), while controversial, is seen as promising because it will allow the United States to continue using its vast fossil fuel resources in a carbon-constrained world. The public is an important stakeholder in the national debate about whether or not the U.S. should include CCS as a significant part of its climate change strategy. Understanding how to effectively engage with the public about CCS has become important in recent years, as interest in the technology has intensified. We argue that engagement efforts should be focused on places where CCS will first be deployed, i.e., places with many "energy veteran" (EV) citizens. We also argue that, in addition to information on CCS, messages with emotional appeal may be necessary in order to engage the public. In this paper we take a citizen-guided social marketing approach toward understanding how to (positively or negatively) influence EV citizens' attitudes toward CCS. We develop open-ended interview protocols, and a "CCS campaign activity", for Wyoming residents from Gillette and Rock Springs. We conclude that our participants believed expert-informed CCS messages, embedded within an emotionally self-referent (ESR) framework that was relevant to Wyoming, to be more persuasive than the expert messages alone. The appeal to core values of Wyomingites played a significant role in the citizen-guided CCS messages.

  11. Biorefineries of carbon dioxide: From carbon capture and storage (CCS) to bioenergies production.

    PubMed

    Cheah, Wai Yan; Ling, Tau Chuan; Juan, Joon Ching; Lee, Duu-Jong; Chang, Jo-Shu; Show, Pau Loke

    2016-09-01

    Greenhouse gas emissions have several adverse environmental effects, like pollution and climate change. Currently applied carbon capture and storage (CCS) methods are not cost effective and have not been proven safe for long term sequestration. Another attractive approach is CO2 valorization, whereby CO2 can be captured in the form of biomass via photosynthesis and is subsequently converted into various form of bioenergy. This article summarizes the current carbon sequestration and utilization technologies, while emphasizing the value of bioconversion of CO2. In particular, CO2 sequestration by terrestrial plants, microalgae and other microorganisms are discussed. Prospects and challenges for CO2 conversion are addressed. The aim of this review is to provide comprehensive knowledge and updated information on the current advances in biological CO2 sequestration and valorization, which are essential if this approach is to achieve environmental sustainability and economic feasibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Carbon Capture and Storage, 2008

    ScienceCinema

    None

    2017-12-09

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  13. Carbon Capture and Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedmann, S

    2007-10-03

    Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climatemore » Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several key documents written in the last three years that provide information on the status, economics, technology, and impact of CCS. These are cited throughout this text and identified as key references at the end of this manuscript. When coupled with improvements in energy efficiency, renewable energy supplies, and nuclear power, CCS help dramatically reduce current and future emissions (US CCTP 2005, MIT 2007). If CCS is not available as a carbon management option, it will be much more difficult and much more expensive to stabilize atmospheric CO{sub 2} emissions. Recent estimates put the cost of carbon abatement without CCS to be 30-80% higher that if CCS were to be available (Edmonds et al. 2004).« less

  14. U.S. Department of Energy's regional carbon sequestration partnership initiative: Update on validation and development phases

    USGS Publications Warehouse

    Rodosta, T.; Litynski, J.; Plasynski, S.; Spangler, L.; Finley, R.; Steadman, E.; Ball, D.; Gerald, H.; McPherson, B.; Burton, E.; Vikara, D.

    2011-01-01

    The U.S. Department of Energy (DOE) is the lead federal agency for the development and deployment of carbon sequestration technologies. The Regional Carbon Sequestration Partnerships (RCSPs) are the mechanism DOE utilizes to prove the technology and to develop human capital, stakeholder networks, information for regulatory policy, best practices documents and training to work toward the commercialization of carbon capture and storage (CCS). The RCSPs are tasked with determining the most suitable technologies, regulations, and infrastructure for carbon capture, transport, and storage in their respective geographic areas of responsibility. The seven partnerships include more than 400 state agencies, universities, national laboratories, private companies, and environmental organizations, spanning 43 states and four Canadian provinces. The Regional Partnerships Initiative is being implemented in three phases: Characterization, Validation, and Development. The initial Characterization Phase began in 2003 and was completed in 2005 and focused on characterization of CO2 storage potential within each region. It was followed by the Validation Phase, which began in 2005 and is nearing completion in 2011. The focus of the Validation Phase has been on small-scale field tests throughout the seven partnerships in various formation types such as saline, oil-bearing, and coal seams. The Validation Phase has characterized suitable CO2 storage reservoirs and identified the need for comprehensive legal and regulatory frameworks to enable commercial-scale CCS deployment. Finally, the Development Phase will consist of a series of large-scale, one-million-ton, injection tests throughout the United States and Canada. The objective of these large-scale tests is to identify the regulatory path or challenges in permitting CCS projects, to demonstrate the technology can inject CO2 safely, and to verify its permanence in geologic formations in preparation for the commercialization of geologic sequestration. ?? 2010 Elsevier Ltd. All rights reserved. ?? 2011 Published by Elsevier Ltd.

  15. Biogeochemical potential of biomass pyrolysis systems for limiting global warming to 1.5 °C

    NASA Astrophysics Data System (ADS)

    Werner, C.; Schmidt, H.-P.; Gerten, D.; Lucht, W.; Kammann, C.

    2018-04-01

    Negative emission (NE) technologies are recognized to play an increasingly relevant role in strategies limiting mean global warming to 1.5 °C as specified in the Paris Agreement. The potentially significant contribution of pyrogenic carbon capture and storage (PyCCS) is, however, highly underrepresented in the discussion. In this study, we conduct the first quantitative assessment of the global potential of PyCCS as a NE technology based on biomass plantations. Using a process-based biosphere model, we calculate the land use change required to reach specific climate mitigation goals while observing biodiversity protection guardrails. We consider NE targets of 100–300 GtC following socioeconomic pathways consistent with a mean global warming of 1.5 °C as well as the option of additional carbon balancing required in case of failure or delay of decarbonization measures. The technological opportunities of PyCCS are represented by three tracks accounting for the sequestration of different pyrolysis products: biochar (as soil amendment), bio-oil (pumped into geological storages) and permanent-pyrogas (capture and storage of CO2 from gas combustion). In addition, we analyse how the gain in land induced by biochar-mediated yield increases on tropical cropland may reduce the pressure on land. Our results show that meeting the 1.5 °C goal through mitigation strategies including large-scale NE with plantation-based PyCCS may require conversion of natural vegetation to biomass plantations in the order of 133–3280 Mha globally, depending on the applied technology and the NE demand. Advancing towards additional bio-oil sequestration reduces land demand considerably by potentially up to 60%, while the benefits from yield increases account for another 3%–38% reduction (equalling 82–362 Mha). However, when mitigation commitments are increased by high balancing claims, even the most advanced PyCCS technologies and biochar-mediated co-benefits cannot compensate for delayed action towards phasing-out fossil fuels.

  16. Lake Charles CCS Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leib, Thomas; Cole, Dan

    In late September 2014 development of the Lake Charles Clean Energy (LCCE) Plant was abandoned resulting in termination of Lake Charles Carbon Capture and Sequestration (CCS) Project which was a subset the LCCE Plant. As a result, the project was only funded through Phase 2A (Design) and did not enter Phase 2B (Construction) or Phase 2C (Operations). This report was prepared relying on information prepared and provided by engineering companies which were engaged by Leucadia Energy, LLC to prepare or review Front End Engineering and Design (FEED) for the Lake Charles Clean Energy Project, which includes the Carbon Capture andmore » Sequestration (CCS) Project in Lake Charles, Louisiana. The Lake Charles Carbon Capture and Sequestration (CCS) Project was to be a large-scale industrial CCS project intended to demonstrate advanced technologies that capture and sequester carbon dioxide (CO 2) emissions from industrial sources into underground formations. The Scope of work was divided into two discrete sections; 1) Capture and Compression prepared by the Recipient Leucadia Energy, LLC, and 2) Transport and Sequestration prepared by sub-Recipient Denbury Onshore, LLC. Capture and Compression-The Lake Charles CCS Project Final Technical Report describes the systems and equipment that would be necessary to capture CO 2 generated in a large industrial gasification process and sequester the CO 2 into underground formations. The purpose of each system is defined along with a description of its equipment and operation. Criteria for selection of major equipment are provided and ancillary utilities necessary for safe and reliable operation in compliance with environmental regulations are described. Construction considerations are described including a general arrangement of the CCS process units within the overall gasification project. A cost estimate is provided, delineated by system area with cost breakdown showing equipment, piping and materials, construction labor, engineering, and other costs. The CCS Project Final Technical Report is based on a Front End Engineering and Design (FEED) study prepared by SK E&C, completed in [June] 2014. Subsequently, Fluor Enterprises completed a FEED validation study in mid-September 2014. The design analyses indicated that the FEED package was sufficient and as expected. However, Fluor considered the construction risk based on a stick-build approach to be unacceptable, but construction risk would be substantially mitigated through utilization of modular construction where site labor and schedule uncertainty is minimized. Fluor’s estimate of the overall EPC project cost utilizing the revised construction plan was comparable to SKE&C’s value after reflecting Fluor’s assessment of project scope and risk characteristic. Development was halted upon conclusion of Phase 2A FEED and the project was not constructed.Transport and Sequestration – The overall objective of the pipeline project was to construct a pipeline to transport captured CO 2 from the Lake Charles Clean Energy project to the existing Denbury Green Line and then to the Hastings Field in Southeast Texas to demonstrate effective geologic sequestration of captured CO 2 through commercial EOR operations. The overall objective of the MVA portion of the project was to demonstrate effective geologic sequestration of captured CO 2 through commercial Enhanced Oil Recovery (EOR) operations in order to evaluate costs, operational processes and technical performance. The DOE target for the project was to capture and implement a research MVA program to demonstrate the sequestration through EOR of approximately one million tons of CO 2 per year as an integral component of commercial operations.« less

  17. Electricity from fossil fuels without CO2 emissions: assessing the costs of carbon dioxide capture and sequestration in U.S. electricity markets.

    PubMed

    Johnson, T L; Keith, D W

    2001-10-01

    The decoupling of fossil-fueled electricity production from atmospheric CO2 emissions via CO2 capture and sequestration (CCS) is increasingly regarded as an important means of mitigating climate change at a reasonable cost. Engineering analyses of CO2 mitigation typically compare the cost of electricity for a base generation technology to that for a similar plant with CO2 capture and then compute the carbon emissions mitigated per unit of cost. It can be hard to interpret mitigation cost estimates from this plant-level approach when a consistent base technology cannot be identified. In addition, neither engineering analyses nor general equilibrium models can capture the economics of plant dispatch. A realistic assessment of the costs of carbon sequestration as an emissions abatement strategy in the electric sector therefore requires a systems-level analysis. We discuss various frameworks for computing mitigation costs and introduce a simplified model of electric sector planning. Results from a "bottom-up" engineering-economic analysis for a representative U.S. North American Electric Reliability Council (NERC) region illustrate how the penetration of CCS technologies and the dispatch of generating units vary with the price of carbon emissions and thereby determine the relationship between mitigation cost and emissions reduction.

  18. Electricity from Fossil Fuels without CO2 Emissions: Assessing the Costs of Carbon Dioxide Capture and Sequestration in U.S. Electricity Markets.

    PubMed

    Johnson, Timothy L; Keith, David W

    2001-10-01

    The decoupling of fossil-fueled electricity production from atmospheric CO 2 emissions via CO 2 capture and sequestration (CCS) is increasingly regarded as an important means of mitigating climate change at a reasonable cost. Engineering analyses of CO 2 mitigation typically compare the cost of electricity for a base generation technology to that for a similar plant with CO 2 capture and then compute the carbon emissions mitigated per unit of cost. It can be hard to interpret mitigation cost estimates from this plant-level approach when a consistent base technology cannot be identified. In addition, neither engineering analyses nor general equilibrium models can capture the economics of plant dispatch. A realistic assessment of the costs of carbon sequestration as an emissions abatement strategy in the electric sector therefore requires a systems-level analysis. We discuss various frameworks for computing mitigation costs and introduce a simplified model of electric sector planning. Results from a "bottom-up" engineering-economic analysis for a representative U.S. North American Electric Reliability Council (NERC) region illustrate how the penetration of CCS technologies and the dispatch of generating units vary with the price of carbon emissions and thereby determine the relationship between mitigation cost and emissions reduction.

  19. A Multi-Level Approach to Outreach for Geologic Sequestration Projects

    USGS Publications Warehouse

    Greenberg, S.E.; Leetaru, H.E.; Krapac, I.G.; Hnottavange-Telleen, K.; Finley, R.J.

    2009-01-01

    Public perception of carbon capture and sequestration (CCS) projects represents a potential barrier to commercialization. Outreach to stakeholders at the local, regional, and national level is needed to create familiarity with and potential acceptance of CCS projects. This paper highlights the Midwest Geological Sequestration Consortium (MGSC) multi-level outreach approach which interacts with multiple stakeholders. The MGSC approach focuses on external and internal communication. External communication has resulted in building regional public understanding of CCS. Internal communication, through a project Risk Assessment process, has resulted in enhanced team communication and preparation of team members for outreach roles. ?? 2009 Elsevier Ltd. All rights reserved.

  20. Informed public preferences for electricity portfolios with CCS and other low-carbon technologies.

    PubMed

    Fleishman, Lauren A; De Bruin, Wändi Bruine; Morgan, M Granger

    2010-09-01

    Public perceptions of carbon capture and sequestration (CCS) and other low-carbon electricity-generating technologies may affect the feasibility of their widespread deployment. We asked a diverse sample of 60 participants recruited from community groups in Pittsburgh, Pennsylvania to rank 10 technologies (e.g., coal with CCS, natural gas, nuclear, various renewables, and energy efficiency), and seven realistic low-carbon portfolios composed of these technologies, after receiving comprehensive and carefully balanced materials that explained the costs and benefits of each technology. Rankings were obtained in small group settings as well as individually before and after the group discussions. The ranking exercise asked participants to assume that the U.S. Congress had mandated a reduction in carbon dioxide emissions from power plants to be built in the future. Overall, rankings suggest that participants favored energy efficiency, followed by nuclear power, integrated gasification combined-cycle coal with CCS and wind. The most preferred portfolio also included these technologies. We find that these informed members of the general public preferred diverse portfolios that contained CCS and nuclear over alternatives once they fully understood the benefits, cost, and limitations of each. The materials and approach developed for this study may also have value in educating members of the general public about the challenges of achieving a low-carbon energy future. © 2010 Society for Risk Analysis.

  1. Mesoscale carbon sequestration site screening and CCS infrastructure analysis.

    PubMed

    Keating, Gordon N; Middleton, Richard S; Stauffer, Philip H; Viswanathan, Hari S; Letellier, Bruce C; Pasqualini, Donatella; Pawar, Rajesh J; Wolfsberg, Andrew V

    2011-01-01

    We explore carbon capture and sequestration (CCS) at the meso-scale, a level of study between regional carbon accounting and highly detailed reservoir models for individual sites. We develop an approach to CO(2) sequestration site screening for industries or energy development policies that involves identification of appropriate sequestration basin, analysis of geologic formations, definition of surface sites, design of infrastructure, and analysis of CO(2) transport and storage costs. Our case study involves carbon management for potential oil shale development in the Piceance-Uinta Basin, CO and UT. This study uses new capabilities of the CO(2)-PENS model for site screening, including reservoir capacity, injectivity, and cost calculations for simple reservoirs at multiple sites. We couple this with a model of optimized source-sink-network infrastructure (SimCCS) to design pipeline networks and minimize CCS cost for a given industry or region. The CLEAR(uff) dynamical assessment model calculates the CO(2) source term for various oil production levels. Nine sites in a 13,300 km(2) area have the capacity to store 6.5 GtCO(2), corresponding to shale-oil production of 1.3 Mbbl/day for 50 years (about 1/4 of U.S. crude oil production). Our results highlight the complex, nonlinear relationship between the spatial deployment of CCS infrastructure and the oil-shale production rate.

  2. Congress examines administration's coal research priorities

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-10-01

    While the Obama administration has proposed a shift in coal research funding to further emphasize carbon capture and sequestration (CCS) programs in its fiscal year (FY) 2012 budget request, Republicans and several witnesses at a 13 October hearing of a subcommittee of the House of Representatives' Committee on Science, Space, and Technology questioned those priorities, called for additional federal funding for coal research, and defended the use of coal as a major part of the U.S. energy sector. The administration's FY 2012 budget requests 291.4 million to fund the Department of Energy's (DOE) CCS and power systems program while zeroing out funding for DOE's fuels and power systems program (which includes funding for coal research) and shifting some of its line items to the CCS program. The FY 2011 continuing resolution has funded the fuels and power systems program at 400.2 million, including 142 million for carbon sequestration, 64.8 million for innovations for existing plants, and funding for other subprograms such as advanced integrated gasification combined cycle (52.9 million), fuel cells (49.8 million), and advanced research ($47.6 million).

  3. Analysis and Comparison of Carbon Capture & Sequestration Policies

    NASA Astrophysics Data System (ADS)

    Burton, E.; Ezzedine, S. M.; Reed, J.; Beyer, J. H.; Wagoner, J. L.

    2010-12-01

    Several states and countries have adopted or are in the process of crafting policies to enable geologic carbon sequestration projects. These efforts reflect the recognition that existing statutory and regulatory frameworks leave ambiguities or gaps that elevate project risk for private companies considering carbon sequestration projects, and/or are insufficient to address a government’s mandate to protect the public interest. We have compared the various approaches that United States’ state and federal governments have taken to provide regulatory frameworks to address carbon sequestration. A major purpose of our work is to inform the development of any future legislation in California, should it be deemed necessary to meet the goals of Assembly Bill 1925 (2006) to accelerate the adoption of cost-effective geologic sequestration strategies for the long-term management of industrial carbon dioxide in the state. Our analysis shows a diverse issues are covered by adopted and proposed carbon capture and sequestration (CCS) legislation and that many of the new laws focus on defining regulatory frameworks for underground injection of CO2, ambiguities in property issues, or assigning legal liability. While these approaches may enable the progress of early projects, future legislation requires a longer term and broader view that includes a quantified integration of CCS into a government’s overall climate change mitigation strategy while considering potentially counterproductive impacts on CCS of other climate change mitigation strategies. Furthermore, legislation should be crafted in the context of a vision for CCS as an economically viable and widespread industry. While an important function of new CCS legislation is enabling early projects, it must be kept in mind that applying the same laws or protocols in the future to a widespread CCS industry may result in business disincentives and compromise of the public interest in mitigating GHG emissions. Protection of the public interest requires that monitoring and verification track the long term fate of pipelined CO2 regardless of its end use in order to establish that climate change goals are being met.

  4. Near-term deployment of carbon capture and sequestration from biorefineries in the United States.

    PubMed

    Sanchez, Daniel L; Johnson, Nils; McCoy, Sean T; Turner, Peter A; Mach, Katharine J

    2018-05-08

    Capture and permanent geologic sequestration of biogenic CO 2 emissions may provide critical flexibility in ambitious climate change mitigation. However, most bioenergy with carbon capture and sequestration (BECCS) technologies are technically immature or commercially unavailable. Here, we evaluate low-cost, commercially ready CO 2 capture opportunities for existing ethanol biorefineries in the United States. The analysis combines process engineering, spatial optimization, and lifecycle assessment to consider the technical, economic, and institutional feasibility of near-term carbon capture and sequestration (CCS). Our modeling framework evaluates least cost source-sink relationships and aggregation opportunities for pipeline transport, which can cost-effectively transport small CO 2 volumes to suitable sequestration sites; 216 existing US biorefineries emit 45 Mt CO 2 annually from fermentation, of which 60% could be captured and compressed for pipeline transport for under $25/tCO 2 A sequestration credit, analogous to existing CCS tax credits, of $60/tCO 2 could incent 30 Mt of sequestration and 6,900 km of pipeline infrastructure across the United States. Similarly, a carbon abatement credit, analogous to existing tradeable CO 2 credits, of $90/tCO 2 can incent 38 Mt of abatement. Aggregation of CO 2 sources enables cost-effective long-distance pipeline transport to distant sequestration sites. Financial incentives under the low-carbon fuel standard in California and recent revisions to existing federal tax credits suggest a substantial near-term opportunity to permanently sequester biogenic CO 2 This financial opportunity could catalyze the growth of carbon capture, transport, and sequestration; improve the lifecycle impacts of conventional biofuels; support development of carbon-negative fuels; and help fulfill the mandates of low-carbon fuel policies across the United States. Copyright © 2018 the Author(s). Published by PNAS.

  5. Near-term deployment of carbon capture and sequestration from biorefineries in the United States

    PubMed Central

    Johnson, Nils; McCoy, Sean T.; Turner, Peter A.; Mach, Katharine J.

    2018-01-01

    Capture and permanent geologic sequestration of biogenic CO2 emissions may provide critical flexibility in ambitious climate change mitigation. However, most bioenergy with carbon capture and sequestration (BECCS) technologies are technically immature or commercially unavailable. Here, we evaluate low-cost, commercially ready CO2 capture opportunities for existing ethanol biorefineries in the United States. The analysis combines process engineering, spatial optimization, and lifecycle assessment to consider the technical, economic, and institutional feasibility of near-term carbon capture and sequestration (CCS). Our modeling framework evaluates least cost source–sink relationships and aggregation opportunities for pipeline transport, which can cost-effectively transport small CO2 volumes to suitable sequestration sites; 216 existing US biorefineries emit 45 Mt CO2 annually from fermentation, of which 60% could be captured and compressed for pipeline transport for under $25/tCO2. A sequestration credit, analogous to existing CCS tax credits, of $60/tCO2 could incent 30 Mt of sequestration and 6,900 km of pipeline infrastructure across the United States. Similarly, a carbon abatement credit, analogous to existing tradeable CO2 credits, of $90/tCO2 can incent 38 Mt of abatement. Aggregation of CO2 sources enables cost-effective long-distance pipeline transport to distant sequestration sites. Financial incentives under the low-carbon fuel standard in California and recent revisions to existing federal tax credits suggest a substantial near-term opportunity to permanently sequester biogenic CO2. This financial opportunity could catalyze the growth of carbon capture, transport, and sequestration; improve the lifecycle impacts of conventional biofuels; support development of carbon-negative fuels; and help fulfill the mandates of low-carbon fuel policies across the United States. PMID:29686063

  6. Coal without carbon: an investment plan for federal action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pettus, A.; Tatsutani, M.

    2009-09-15

    This study examines several technologies for CCS that are not currently receiving adequate development support but that could - in the right policy environment - provide the kind of significant cost reductions (and significant improvements in efficiency) that could greatly accelerate broad, economically attractive CCS deployment. Clean Air Task Force selected these technology areas (though not the technologies themselves) and solicited reports from experts in each field to explore how these technologies might fit into a broader CCS deployment strategy. Each expert was asked to develop a research, development, and demonstration (RD&D) 'road map' that could efficiently move each technologymore » from the laboratory into the commercial mainstream. Because the chapter authors are either technical experts or commercial players and are not, for the most part, energy policy experts, subsequent work will translate their RD&D recommendations into actionable policy proposals. The heart of this report consists of four chapters on advanced coal and CCS technologies: underground coal gasification (UCG), written by Julio Friedmann at Lawrence Livermore National Laboratory; Next generation coal gasification (surface-based gasification) led by Eric Redman at Summit Power Group; Advanced technologies for post-combustion capture (PCC) of CO{sub 2}, led by Howard Herzog at Massachusetts Institute of Technology; and RD&D to speed commercialization of geological CO{sub 2} sequestration (GCS), led by Julio Friedmann. 12 refs., 5 figs., 2 tabs.« less

  7. Coupled Climate-Economy-Biosphere (CoCEB) model - Part 2: Deforestation control and investment in carbon capture and storage technologies

    NASA Astrophysics Data System (ADS)

    Ogutu, K. B. Z.; D'Andrea, F.; Ghil, M.; Nyandwi, C.; Manene, M. M.; Muthama, J. N.

    2015-04-01

    This study uses the global climate-economy-biosphere (CoCEB) model developed in Part 1 to investigate economic aspects of deforestation control and carbon sequestration in forests, as well as the efficiency of carbon capture and storage (CCS) technologies as policy measures for climate change mitigation. We assume - as in Part 1 - that replacement of one technology with another occurs in terms of a logistic law, so that the same law also governs the dynamics of reduction in carbon dioxide emission using CCS technologies. In order to take into account the effect of deforestation control, a slightly more complex description of the carbon cycle than in Part 1 is needed. Consequently, we add a biomass equation into the CoCEB model and analyze the ensuing feedbacks and their effects on per capita gross domestic product (GDP) growth. Integrating biomass into the CoCEB and applying deforestation control as well as CCS technologies has the following results: (i) low investment in CCS contributes to reducing industrial carbon emissions and to increasing GDP, but further investment leads to a smaller reduction in emissions, as well as in the incremental GDP growth; and (ii) enhanced deforestation control contributes to a reduction in both deforestation emissions and in atmospheric carbon dioxide concentration, thus reducing the impacts of climate change and contributing to a slight appreciation of GDP growth. This effect is however very small compared to that of low-carbon technologies or CCS. We also find that the result in (i) is very sensitive to the formulation of CCS costs, while to the contrary, the results for deforestation control are less sensitive.

  8. Assessment of policy impacts on carbon capture and sequestration and bioenergy for U.S.' coal and natural gas power plants

    NASA Astrophysics Data System (ADS)

    Spokas, K.; Patrizio, P.; Leduc, S.; Mesfun, S.; Kraxner, F.

    2017-12-01

    Reducing electricity-sector emissions relies heavily on countries' abilities to either transition away from carbon-intensive energy generation or to sequester its resultant emissions with carbon capture and storage (CCS) technologies. The use of biomass energy technologies in conjunction with carbon capture and sequestration (BECCS) presents the opportunity for net reductions in atmospheric carbon dioxide. In this study, we investigate the limitations of several common policy mechanisms to incentivize the deployment of BECCS using the techno-economic spatial optimization model BeWhere (www.iiasa.ac.at/bewhere). We consider a set of coal and natural gas power plants in the United States (U.S.) selected using a screening process that considers capacity, boiler age, and capacity factor for electricity-generation units from the EPA 2014 eGRID database. The set makes up 470 GW of generation, and produces 8,400 PJ and 2.07 GtCO2 annually. Co-firing up to 15% for coal power plants is considered, using woody-biomass residues sourced from certified and managed U.S. forests obtained from the G4M (www.iiasa.ac.at/g4m) and GeoWiki (www.geo-wiki.org) database. Geologic storage is considered with injectivity and geomechanical limitations to ensure safe storage. Costs are minimized under two policy mechanisms: a carbon tax and geologic carbon sequestration credits, such as the Q45 credits. Results show that the carbon tax scenario incentivizes co-firing at low to medium carbon taxes, but is replaced by CCS at higher tax values. Carbon taxes do not strongly incentivize BECCS, as negative emissions associated with sequestering carbon content are not accounted as revenue. On the other hand, carbon credit scenarios result in significant CCS deployment, but lack any incentive for co-firing.

  9. Carbon Capture and Sequestration: A Regulatory Gap Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln Davies; Kirsten Uchitel; John Ruple

    2012-04-30

    Though a potentially significant climate change mitigation strategy, carbon capture and sequestration (CCS) remains mired in demonstration and development rather than proceeding to full-scale commercialization. Prior studies have suggested numerous reasons for this stagnation. This Report seeks to empirically assess those claims. Using an anonymous opinion survey completed by over 200 individuals involved in CCS, it concludes that there are four primary barriers to CCS commercialization: (1) cost, (2) lack of a carbon price, (3) liability risks, and (4) lack of a comprehensive regulatory regime. These results largely confirm previous work. They also, however, expose a key barrier that priormore » studies have overlooked: the need for comprehensive, rather than piecemeal, CCS regulation. The survey data clearly show that the CCS community sees this as one of the most needed incentives for CCS deployment. The community also has a relatively clear idea of what that regulation should entail: a cooperative federalism approach that directly addresses liability concerns and that generally does not upset traditional lines of federal-state authority.« less

  10. A review of mineral carbonation technologies to sequester CO2.

    PubMed

    Sanna, A; Uibu, M; Caramanna, G; Kuusik, R; Maroto-Valer, M M

    2014-12-07

    Carbon dioxide (CO2) capture and sequestration includes a portfolio of technologies that can potentially sequester billions of tonnes of CO2 per year. Mineral carbonation (MC) is emerging as a potential CCS technology solution to sequester CO2 from smaller/medium emitters, where geological sequestration is not a viable option. In MC processes, CO2 is chemically reacted with calcium- and/or magnesium-containing materials to form stable carbonates. This work investigates the current advancement in the proposed MC technologies and the role they can play in decreasing the overall cost of this CO2 sequestration route. In situ mineral carbonation is a very promising option in terms of resources available and enhanced security, but the technology is still in its infancy and transport and storage costs are still higher than geological storage in sedimentary basins ($17 instead of $8 per tCO2). Ex situ mineral carbonation has been demonstrated on pilot and demonstration scales. However, its application is currently limited by its high costs, which range from $50 to $300 per tCO2 sequestered. Energy use, the reaction rate and material handling are the key factors hindering the success of this technology. The value of the products seems central to render MC economically viable in the same way as conventional CCS seems profitable only when combined with EOR. Large scale projects such as the Skyonic process can help in reducing the knowledge gaps on MC fundamentals and provide accurate costing and data on processes integration and comparison. The literature to date indicates that in the coming decades MC can play an important role in decarbonising the power and industrial sector.

  11. Advanced CO 2 Leakage Mitigation using Engineered Biomineralization Sealing Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spangler, Lee; Cunningham, Alfred; Phillips, Adrienne

    2015-03-31

    This research project addresses one of the goals of the DOE Carbon Sequestration Program (CSP). The CSP core R&D effort is driven by technology and is accomplished through laboratory and pilot scale research aimed at new technologies for greenhouse gas mitigation. Accordingly, this project was directed at developing novel technologies for mitigating unwanted upward leakage of carbon dioxide (CO 2) injected into the subsurface as part of carbon capture and storage (CCS) activities. The technology developed by way of this research project is referred to as microbially induced calcite precipitation (MICP).

  12. Electricity without carbon dioxide: Assessing the role of carbon capture and sequestration in United States electric markets

    NASA Astrophysics Data System (ADS)

    Johnson, Timothy Lawrence

    2002-09-01

    Stabilization of atmospheric greenhouse gas concentrations will likely require significant cuts in electric sector carbon dioxide (CO2) emissions. The ability to capture and sequester CO2 in a manner compatible with today's fossil-fuel based power generating infrastructure offers a potentially low-cost contribution to a larger climate change mitigation strategy. This thesis fills a niche between economy-wide studies of CO 2 abatement and plant-level control technology assessments by examining the contribution that carbon capture and sequestration (CCS) might make toward reducing US electric sector CO2 emissions. The assessment's thirty year perspective ensures that costs sunk in current infrastructure remain relevant and allows time for technological diffusion, but remains free of assumptions about the emergence of unidentified radical innovations. The extent to which CCS might lower CO2 mitigation costs will vary directly with the dispatch of carbon capture plants in actual power-generating systems, and will depend on both the retirement of vintage capacity and competition from abatement alternatives such as coal-to-gas fuel switching and renewable energy sources. This thesis therefore adopts a capacity planning and dispatch model to examine how the current distribution of generating units, natural gas prices, and other industry trends affect the cost of CO2 control via CCS in an actual US electric market. The analysis finds that plants with CO2 capture consistently provide significant reductions in base-load emissions at carbon prices near 100 $/tC, but do not offer an economical means of meeting peak demand unless CO2 reductions in excess of 80 percent are required. Various scenarios estimate the amount by which turn-over of the existing generating infrastructure and the severity of criteria pollutant constraints reduce mitigation costs. A look at CO2 sequestration in the seabed beneath the US Outer Continental Shelf (OCS) complements this model-driven assessment by considering issues of risk, geological storage capacity, and regulation. Extensive experience with offshore oil and gas operations suggests that the technical uncertainties associated with OCS sequestration are not large. The legality of seabed CO 2 disposal under US law and international environmental agreements, however, is ambiguous, and the OCS may be the first region where these regulatory regimes clash over CO2 sequestration.

  13. Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nils Johnson; Joan Ogden

    2010-12-31

    In this final report, we describe research results from Phase 2 of a technical/economic study of fossil hydrogen energy systems with carbon dioxide (CO{sub 2}) capture and storage (CCS). CO{sub 2} capture and storage, or alternatively, CO{sub 2} capture and sequestration, involves capturing CO{sub 2} from large point sources and then injecting it into deep underground reservoirs for long-term storage. By preventing CO{sub 2} emissions into the atmosphere, this technology has significant potential to reduce greenhouse gas (GHG) emissions from fossil-based facilities in the power and industrial sectors. Furthermore, the application of CCS to power plants and hydrogen production facilitiesmore » can reduce CO{sub 2} emissions associated with electric vehicles (EVs) and hydrogen fuel cell vehicles (HFCVs) and, thus, can also improve GHG emissions in the transportation sector. This research specifically examines strategies for transitioning to large-scale coal-derived energy systems with CCS for both hydrogen fuel production and electricity generation. A particular emphasis is on the development of spatially-explicit modeling tools for examining how these energy systems might develop in real geographic regions. We employ an integrated modeling approach that addresses all infrastructure components involved in the transition to these energy systems. The overall objective is to better understand the system design issues and economics associated with the widespread deployment of hydrogen and CCS infrastructure in real regions. Specific objectives of this research are to: Develop improved techno-economic models for all components required for the deployment of both hydrogen and CCS infrastructure, Develop novel modeling methods that combine detailed spatial data with optimization tools to explore spatially-explicit transition strategies, Conduct regional case studies to explore how these energy systems might develop in different regions of the United States, and Examine how the design and cost of coal-based H{sub 2} and CCS infrastructure depend on geography and location.« less

  14. Viability of Carbon Capture and Sequestration Retrofits for Existing Coal-Fired Power Plants under an Emission Trading Scheme.

    PubMed

    Talati, Shuchi; Zhai, Haibo; Morgan, M Granger

    2016-12-06

    Using data on the coal-fired electric generating units (EGUs) in Texas we assess the economic feasibility of retrofitting existing units with carbon capture and sequestration (CCS) in order to comply with the Clean Power Plan's rate-based emission standards under an emission trading scheme. CCS with 90% capture is shown to be more economically attractive for a range of existing units than purchasing emission rate credits (ERCs) from a trading market at an average credit price above $28 per MWh under the final state standard and $35 per MWh under the final national standard. The breakeven ERC trading prices would decrease significantly if the captured CO 2 were sold for use in enhanced oil recovery, making CCS retrofits viable at lower trading prices. The combination of ERC trading and CO 2 use can greatly reinforce economic incentives and market demands for CCS and hence accelerate large-scale deployment, even under scenarios with high retrofit costs. Comparing the levelized costs of electricity generation between CCS retrofits and new renewable plants under the ERC trading scheme, retrofitting coal-fired EGUs with CCS may be significantly cheaper than new solar plants under some market conditions.

  15. 76 FR 24007 - Notice of Intent To Prepare an Environmental Impact Statement for the Lake Charles Carbon Capture...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ... Charles Carbon Capture and Sequestration Project, Lake Charles, LA AGENCY: Department of Energy. ACTION... competitive process under the Industrial Carbon Capture and Sequestration (ICCS) Program. The Lake Charles Carbon Capture and Sequestration Project (Lake Charles CCS Project) would demonstrate: (1) advanced...

  16. Defining an end state for CO2 sequestration and EOR in North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedmann, S J

    2006-04-20

    CO{sub 2} capture and storage (CCS) presents a challenge to long-range planners, economic interests, regulators, law-makers, and other stakeholders and decision makers. To improve and optimize the use of limited resources and finances, it is important to define an end state for CCS. This ends state should be defined around desired goals and reasonable timelines for execution. While this definition may have substantial technology, policy or economic implications, it need not be prescriptive in terms of technology pathway, policy mechanism, or economic targets. To illustrate these concerns, this paper will present a credible vision of what an end state formore » North American might look like. From that, examples of key investment and planning decisions are provided to illustrate the value of end-state characterization.« less

  17. [Review of lime carbon sink.

    PubMed

    Liu, Li Li; Ling, Jiang Hua; Tie, Li; Wang, Jiao Yue; Bing, Long Fei; Xi, Feng Ming

    2018-01-01

    Under the background of "missing carbon sink" mystery and carbon capture and storage (CCS) technology development, this paper summarized the lime material flow process carbon sink from the lime carbonation principles, impact factors, and lime utilization categories in chemical industry, metallurgy industry, construction industry, and lime kiln ash treatment. The results showed that the lime carbonation rate coefficients were mainly impacted by materials and ambient conditions; the lime carbon sink was mainly in chemical, metallurgy, and construction industries; and current researches focused on the mechanisms and impact factors for carbonation, but their carbon sequestration calculation methods had not been proposed. Therefore, future research should focus on following aspects: to establish a complete system of lime carbon sequestration accounting method in view of material flow; to calculate lime carbon sequestration in both China and the world and explain their offset proportion of CO 2 emission from lime industrial process; to analyze the contribution of lime carbon sequestration to missing carbon sink for clarifying part of missing carbon sinks; to promote the development of carbon capture and storage technology and provide some scientific bases for China's international negotiations on climate change.

  18. Carbon capture and sequestration (CCS)

    DOT National Transportation Integrated Search

    2009-06-19

    Carbon capture and sequestration (or storage)known as CCShas attracted interest as a : measure for mitigating global climate change because large amounts of carbon dioxide (CO2) : emitted from fossil fuel use in the United States are potentiall...

  19. Perspectives on Carbon Capture and Sequestration in the United States

    NASA Astrophysics Data System (ADS)

    Wong-Parodi, Gabrielle Mei-Ling

    Overall, this dissertation examines a sequence of important interconnected issues: the perspectives of potential and actual CCS host communities, the perspectives of the environmental community on the rationality of CCS as viable mitigation solution for the United States, and strategies for engaging with the public on CCS. Much of the research in this dissertation is original work addressing major interdisciplinary gaps in existing literature as well as in industry and government public engagement practice. Each of the chapters is a stand-alone paper that provides a unique contribution to a series of different types of carbon management technologies and academic disciplines. They are assembled together to provide a unique integrated evaluation of these related problems. Collectively, these chapters capture some of the major challenges facing mitigation technology engagement from the potentially time consuming need for careful social site characterization to the opportunities for using citizen-guided marketing methods to identify factors that may enhance effective public engagement. Chapters 2 and 3 are essays on the perspectives of potential and actual CCS host communities. Chapter 2 finds that host communities in California's Central Valley are more concerned with the social risks of hosting a CCS project (e.g. fear of neglect should something go wrong) rather than with the technical risks of the technology. Chapter 3 finds that host communities across the US are more concerned with social risks, and want a say in how those risks should be mitigated. This Chapter concludes with a discussion of how a 'social site characterization' conducted along side a traditional site characterization when evaluating the potential for a CCS project may be a good way to both encourage positive relationships with community members and mitigate potential concerns. Chapter 4 is an essay on the perspectives of the environmental community towards the potential of CCS as a viable mitigation solution in the US. This Chapter shows that environmental non-governmental organizations' position on CCS falls into one of four camps who believe: CCS should be developed and deployed in the near-term (Enthusiasts), CCS should be studied (Prudents), CCS will likely need to be deployed but only as a last resort (Reluctants), and CCS should not be deployed (Opponents). This Chapter finds that only Enthusiasts plan on educating the public about the technology in the near-term, however their ability to influence the public may be limited because they are more adept at targeting policymakers (not as experienced with the public) and receive much of their funding from industry (not seen as particularly trustworthy). In this dissertation, Chapter 5 is an essay on using citizen-guided emotional messages about CCS as a way to effectively communicate with the energy veteran public. This Chapter finds that Wyoming citizens believe information about CCS presented within an emotionally self-referent framework is likely to be a more persuasive way to garner support for or rejection of the technology amongst the Wyoming public than just the presentation of the same information alone.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doug Cathro

    The Lake Charles CCS Project is a large-scale industrial carbon capture and sequestration (CCS) project which will demonstrate advanced technologies that capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically the Lake Charles CCS Project will accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petroleum coke to chemicals plant (the LCC Gasification Project) and the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Lake Charles CCS Project will promote the expansion of EOR in Texas andmore » Louisiana and supply greater energy security by expanding domestic energy supplies. The capture, compression, pipeline, injection, and monitoring infrastructure will continue to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project are expected to be fulfilled by working through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 includes the studies attached hereto that will establish: the engineering design basis for the capture, compression and transportation of CO{sub 2} from the LCC Gasification Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Hastings oil field in Texas. The overall objective of Phase 2, provided a successful competitive down-selection, is to execute design, construction and operations of three capital projects: (1) the CO{sub 2} capture and compression equipment, (2) a Connector Pipeline from the LLC Gasification Project to the Green Pipeline owned by Denbury and an affiliate of Denbury, and (3) a comprehensive MVA system at the Hastings oil field.« less

  1. An Analysis of the Distribution and Economics of Oil Fields for Enhanced Oil Recovery-Carbon Capture and Storage

    NASA Astrophysics Data System (ADS)

    Hall, Kristyn Ann

    The rising carbon dioxide emissions contributing to climate change has lead to the examination of potential ways to mitigate the environmental impact. One such method is through the geological sequestration of carbon (CCS). Although there are several different forms of geological sequestration (i.e. Saline Aquifers, Oil and Gas Reservoirs, Unminable Coal Seams) the current projects are just initiating the large scale-testing phase. The lead entry point into CCS projects is to combine the sequestration with enhanced oil recovery (EOR) due to the improved economic model as a result of the oil recovery and the pre-existing knowledge of the geological structures. The potential scope of CCS-EOR projects throughout the continental United States in terms of a systematic examination of individual reservoir storage potential has not been examined. Instead the majority of the research completed has centered on either estimating the total United States storage potential or the potential of a single specific reservoir. The purpose of this paper is to examine the relationship between oil recovery, carbon dioxide storage and cost during CCS-EOR. The characteristics of the oil and gas reservoirs examined in this study from the Nehring Oil and Gas Database were used in the CCS-EOR model developed by Sean McCoy to estimate the lifting and storage costs of the different reservoirs throughout the continental United States. This allows for an examination of both technical and financial viability of CCS-EOR as an intermediate step for future CCS projects in other geological formations. One option for mitigating climate change is to store industrial CO2 emissions in geologic reservoirs as part of a process known as carbon capture and storage (CCS). There is general consensus that large-scale deployment of CCS would best be initiated by combining geologic sequestration with enhanced oil recovery (EOR), which can use CO2 to improve production from declining oil fields. Revenues from the produced oil could help offset the current high costs of CCS. The cumulative potential of CCS-EOR in the continental U.S. has been evaluated in terms of both CO2 storage capacity and additional oil production. This thesis examines the same potential, but on a reservoir-by-reservoir basis. Reservoir properties from the Nehring Oil and Gas Database are used as inputs to a CCS-EOR model developed by McCoy (YR) to estimate the storage capacity, oil production and CCS-EOR costs for over 10,000 oil reservoirs located throughout the continental United States. We find that 86% of the reservoirs could store ≤1 y or CO2 emissions from a single 500 MW coal-fired power plant (i.e., 3 Mtons CO2). Less than 1% of the reservoirs, on the other hand, appear capable of storing ≥30 y of CO2 emissions from a 500 MW plan. But these larger reservoirs are also estimated to contain 48% of the predicted additional oil that could be produced through CCS-EOR. The McCoy model also predicts that the reservoirs will on average produce 4.5 bbl of oil for each ton of sequestered CO2, a ratio known as the utilization factor. This utilization factor is 1.5 times higher that arrived at by the U.S. Department of Energy, and leads to a cumulative production of oil for all the reservoirs examined of ˜183 billion barrels along with a cumulative storage capacity of 41 Mtons CO2. This is equivalent to 26.5 y of current oil consumption by the nation, and 8.5 y of current coal plant emissions.

  2. The Effect of Government Actions on Environmental Technology Innovation: Applications to the Integrated Assessment of Carbon Sequestration Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, E. S.; Hounshell, D. A.; Yeh, S.

    2004-01-15

    This project seeks to improve the ability of integrated assessment models (IA) to incorporate changes in technology, especially environmental technologies, cost and performance over time. In this report, we present results of research that examines past experience in controlling other major power plant emissions that might serve as a reasonable guide to future rates of technological progress in carbon capture and sequestration (CCS) systems. In particular, we focus on U.S. and worldwide experience with sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) control technologies over the past 30 years, and derive empirical learning rates for these technologies. The patternsmore » of technology innovation are captured by our analysis of patent activities and trends of cost reduction over time. Overall, we found learning rates of 11% for the capital costs of flue gas desulfurization (FGD) system for SO{sub 2} control, and 13% for selective catalytic reduction (SCR) systems for NO{sub x} control. We explore the key factors responsible for the observed trends, especially the development of regulatory policies for SO{sub 2} and NO{sub x} control, and their implications for environmental control technology innovation.« less

  3. CBTLE Data

    EPA Pesticide Factsheets

    Data used in the manuscript's tables and figures. Most data represent the modeled optimal capacity of the coal-and-biomass-to-liquid fuels-and-electricity (CBTLE) with integrated carbon capture and sequestration (CCS) over a wide range of scenarios.This dataset is associated with the following publication:Aitken, M., D. Loughlin , R. Dodder , and W. Yelverton. Economic and environmental evaluation of coal-and-biomass-to-liquids-and-electricity plants equipped with carbon capture and storage. CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY. Springer-Verlag, New York, NY, USA, 18(2): 573-581, (2015).

  4. Development of environmental impact monitoring protocol for offshore carbon capture and storage (CCS): A biological perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyewon, E-mail: hyewon@ldeo.columbia.edu; Kim, Yong Hoon, E-mail: Yong.Kim@rpsgroup.com; Kang, Seong-Gil, E-mail: kangsg@kriso.re.kr

    Offshore geologic storage of carbon dioxide (CO{sub 2}), known as offshore carbon capture and sequestration (CCS), has been under active investigation as a safe, effective mitigation option for reducing CO{sub 2} levels from anthropogenic fossil fuel burning and climate change. Along with increasing trends in implementation plans and related logistics on offshore CCS, thorough risk assessment (i.e. environmental impact monitoring) needs to be conducted to evaluate potential risks, such as CO{sub 2} gas leakage at injection sites. Gas leaks from offshore CCS may affect the physiology of marine organisms and disrupt certain ecosystem functions, thereby posing an environmental risk. Here,more » we synthesize current knowledge on environmental impact monitoring of offshore CCS with an emphasis on biological aspects and provide suggestions for better practice. Based on our critical review of preexisting literatures, this paper: 1) discusses key variables sensitive to or indicative of gas leakage by summarizing physico-chemical and ecological variables measured from previous monitoring cruises on offshore CCS; 2) lists ecosystem and organism responses to a similar environmental condition to CO{sub 2} leakage and associated impacts, such as ocean acidification and hypercapnia, to predict how they serve as responsive indicators of short- and long-term gas exposure, and 3) discusses the designs of the artificial gas release experiments in fields and the best model simulation to produce realistic leakage scenarios in marine ecosystems. Based on our analysis, we suggest that proper incorporation of biological aspects will provide successful and robust long-term monitoring strategies with earlier detection of gas leakage, thus reducing the risks associated with offshore CCS. - Highlights: • This paper synthesizes the current knowledge on environmental impact monitoring of offshore Carbon Capture and Sequestration (CCS). • Impacts of CO{sub 2} leakage (ocean acidification, hypercapnia) on marine organisms and ecosystems are discussed. • Insights and recommendations on EIA monitoring for CCS operations are proposed specifically in marine ecosystem perspective.« less

  5. The Role of Technology for Achieving Climate Policy Objectives: Overview of the EMF 27 Study on Technology Strategies and Climate Policy Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriegler, Elmar; Weyant, John; Blanford, Geoffrey J.

    2014-04-01

    This article presents the synthesis of results from the Stanford Energy Modeling Forum Study 27, an inter-comparison of 19 energy-economy and integrated assessment models. The study investigated the value of individual mitigation technologies such as energy intensity improvements, carbon capture and sequestration (CCS), nuclear power, solar and wind power and bioenergy for climate mitigation. Achieving atmospheric greenhouse gas concentration targets at 450 and 550 ppm CO2 equivalent requires massive greenhouse gas emissions reductions. A fragmented policy approach at the level of current ambition is inconsistent with these targets. The availability of a negative emissions technology, in most models biofuels withmore » CCS, proved to be a key element for achieving the climate targets. Robust characteristics of the transformation of the energy system are increased energy intensity improvements and the electrification of energy end use coupled with a fast decarbonization of the electricity sector. Non-electric energy end use is hardest to decarbonize, particularly in the transport sector. Technology is a key element of climate mitigation. Versatile technologies such as CCS and bioenergy have largest value, due in part to their combined ability to produce negative emissions. The individual value of low-carbon power technologies is more limited due to the many alternatives in the sector. The scale of the energy transformation is larger for the 450 ppm than for the 550 ppm CO2e target. As a result, the achievability and the costs of the 450 ppm target are more sensitive to variations in technology variability. Mitigation costs roughly double when moving from 550 ppm to 450 ppm CO2e, but remain below 3% of GDP for most models.« less

  6. Time scale dependent negative emission potential of forests and biomass plantations via wood burial, torrefied biomass, biochar and pyrogas condensate sequestration in soil

    NASA Astrophysics Data System (ADS)

    Schmidt, Hans-Peter; Kammann, Claudia; Lucht, Wolfgang; Gerten, Dieter; Foidl, Nikolaus

    2017-04-01

    The efficiency of Negative Emission Technologies (NET) is dependent on (1) the transformation of the biomass carbon into a form that can be sequestered, (2) the mean residence time of the sequestered carbon, (3) the regrowth and thus carbon re-accumulation of the harvested biomass, and (4) the positive or negative priming of soil carbon. These four parameters define the time scale dependent C-balance of various NET-Systems and permit a global economic and environmental evaluation. As far as geologic CO2 storage is considered to be feasible with close to zero losses and if the energy for transport, transformation and disposal is taken from the process bioenergy, conventional BE-CCS has a C sequestration potential of 50 - 70 % depending on the type of biomass and the technology used. Beside unknown risks of deep stored CO2 and high costs, regrowth of C-accumulating biomass is hampered in the long-term as not only carbon but also essential soil nutrients are mined. Under this scenario, biomass regrowth is expected to slow down and soil carbon content to decrease. These factors enlarge the time horizon until a BE-CCS system becomes carbon neutral and eventual carbon negative (when biomass regrowth exceeds the difference between the harvested biomass carbon and BE-CCS stored carbon). Thermal treatment of biomass under a low oxygen regime (torrefaction, pyrolysis, gasification) can transform up to 85% of biomass carbon into various solid and liquid forms of recalcitrant carbon that can be sequestered. Depending on the process parameters and temperature, the mean residence time of the torrefied or pyrolysed biomass can last from several decennials to centennials when applied to the soil of the biomass production site. The carbon can thus be stored at comparatively low costs within the ecosystem itself. As the thermal treatment preserves most of the biomass-accumulated nutrients (except N), natural nutrient cycles are maintained within the biomass system. Depending on the quality of the charred biomass (biochar), post thermal treatment and plant nutrient enhancement, regrowth is expected to accelerate and soil carbon content to increase. Overall, the time until such a biochar based CSS systems generates negative carbon emissions (biomass regrowth exceeds the C-loss from CSS transformation) can thus be reduced compared to BE-CCS while increasing the sustainability of the global biomass production system and fostering ecosystem services. In our presentation we will provide first assessments of various biochar-based CCS systems and compare them to conventional BE-CCS, an evaluation of their global time scale dependent C-sequestration potential and their economic frame. E.g. (1) a biochar system with pyrolysis temperatures of 750°C and without liquefying the pyrolysis gases delivers a very recalcitrant biochar but the C-efficiency is low (40%) and fostering of regrowth is only about 10-15%. A (2) biochar system with trunk burial, pyrolysis of needles, bark, twigs, and branches with organic N-enhancement, and pyrolysis gas condensation and chemical oxidation could achieve a C-efficiency of 85% to 90% and foster regrowth over a time scale of 60% by up to 50%. Future challenges of biochar classification, certification, ecotoxicology, C-leaching, carbon credits and integration into agro-forestry practices will be discussed.

  7. Active CO2 Reservoir Management for Carbon Capture, Utilization, and Sequestration: Impact on Permitting, Monitoring, and Public Acceptance

    NASA Astrophysics Data System (ADS)

    Buscheck, T. A.; Chen, M.; Sun, Y.; Hao, Y.; Court, B.; Celia, M. A.; Wolery, T.; Aines, R. D.

    2011-12-01

    CO2 capture and sequestration (CCS) integrated with geothermal energy production in deep geological formations can play an important role in reducing CO2 emissions to the atmosphere and thereby mitigate global climate change. For industrial-scale CO2 injection in saline formations, pressure buildup can limit storage capacity and security. Active CO2 Reservoir Management (ACRM) combines brine production with CO2 injection to relieve pressure buildup, increase injectivity, manipulate CO2 migration, constrain brine leakage, and enable beneficial utilization of produced brine. Therefore, ACRM can be an enabler of carbon capture, utilization, and sequestration (CCUS). Useful products may include freshwater, cooling water, make-up water for pressure support in oil, gas, and geothermal reservoir operations, and geothermal energy production. Implementation barriers to industrial-scale CCS include concerns about (1) CO2 sequestration security and assurance, (2) pore-space competition with neighboring subsurface activities, (3) CO2 capture costs, and (4) water-use demands imposed by CCS operations, which is particularly important where water resources are already scarce. CCUS, enabled by ACRM, has the potential of addressing these barriers. Pressure relief from brine production can substantially reduce the driving force for potential CO2 and brine migration, as well as minimize interference with neighboring subsurface activities. Electricity generated from geothermal energy can offset a portion of the parasitic energy and financial costs of CCS. Produced brine can be used to generate freshwater by desalination technologies, such as RO, provide a source for saltwater cooling systems or be used as make-up water for oil, gas, or geothermal reservoir operations, reducing the consumption of valuable freshwater resources. We examine the impact of brine production on reducing CO2 and brine leakage. A volumetric balance between injected and produced fluids minimizes the spatial extent of the pressure perturbation, substantially reducing both the Area of Review (AoR) and interactions with neighboring subsurface activities. This will reduce pore-space competition between neighboring subsurface activities, allowing for independent planning, assessment, and permitting. Because post-injection pressure buildup is virtually eliminated, this could have a major impact on post-injection monitoring requirements. Reducing the volume of rock over which brine can migrate may significantly affect site characterization requirements, as well as the impact of parametric and conceptual model uncertainties, such as those related to abandoned wells. ACRM-CCUS has the potential of playing a beneficial role in site-characterization, permitting, and monitoring activities, and in gaining public acceptance. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Sequestration Options for the West Coast States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myer, Larry

    The West Coast Regional Carbon Sequestration Partnership (WESTCARB) is one of seven partnerships that have been established by the U.S. Department of Energy (DOE) to evaluate carbon capture and sequestration (CCS) technologies best suited for different regions of the country. The West Coast Region comprises Arizona, California, Nevada, Oregon, Washington, Alaska, and British Columbia. Led by the California Energy Commission, WESTCARB is a consortium of about 70 organizations, including state natural resource and environmental protection agencies; national laboratories and universities; private companies working on carbon dioxide (CO{sub 2}) capture, transportation, and storage technologies; utilities; oil and gas companies; nonprofit organizations; and policy/governance coordinating organizations. Both terrestrial and geologic sequestration options were evaluated in the Region during the 18-month Phase I project. A centralized Geographic Information System (GIS) database of stationary source, geologic and terrestrial sink data was developed. The GIS layer of source locations was attributed with CO{sub 2} emissions and other data and a spreadsheet was developed to estimate capture costs for the sources in the region. Phase I characterization of regional geological sinks shows that geologic storage opportunities exist in the WESTCARB region in each of the major technology areas: saline formations, oil and gas reservoirs, and coal beds. California offers outstanding sequestration opportunities because of its large capacity and the potential of value-added benefits from enhanced oil recovery (EOR) and enhanced gas recovery. The estimate for storage capacity of saline formations in the ten largest basins in California ranges from about 150 to about 500 Gt of CO{sub 2}, the potential CO{sub 2}-EOR storage was estimated to be 3.4 Gt, and the cumulative production from gas reservoirs suggests a CO{sub 2} storage capacity of 1.7 Gt. A GIS-based method for source-sink matching was implemented and preliminary marginal cost curves developed, which showed that 20, 40, or 80 Mega tonnes (Mt) of CO{sub 2} per year could be sequestered in California at a cost ofmore » $31/tonne (t), $35/t, or $$50/t, respectively. Phase I also addressed key issues affecting deployment of CCS technologies, including storage-site monitoring, injection regulations, and health and environmental risks. A framework for screening and ranking candidate sites for geologic CO{sub 2} storage on the basis of HSE risk was developed. A webbased, state-by-state compilation of current regulations for injection wells, and permits/contracts for land use changes, was developed, and modeling studies were carried out to assess the application of a number of different geophysical techniques for monitoring geologic sequestration. Public outreach activities resulted in heightened awareness of sequestration among state, community and industry leaders in the Region. Assessment of the changes in carbon stocks in agricultural lands showed that Washington, Oregon and Arizona were CO{sub 2} sources for the period from 1987 to 1997. Over the same period, forest carbon stocks decreased in Washington, but increased in Oregon and Arizona. Results of the terrestrial supply curve analyses showed that afforestation of rangelands and crop lands offer major sequestration opportunities; at a price of $$20 per t CO{sub 2}, more than 1,233 MMT could be sequestered over 40-years in Washington and more than 1,813 MMT could be sequestered in Oregon.« less

  9. Geological Sequestration Training and Research Program in Capture and Transport: Development of the Most Economical Separation Method for CO2 Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vahdat, Nader

    2013-09-30

    The project provided hands-on training and networking opportunities to undergraduate students in the area of carbon dioxide (CO2) capture and transport, through fundamental research study focused on advanced separation methods that can be applied to the capture of CO2 resulting from the combustion of fossil-fuels for power generation . The project team’s approach to achieve its objectives was to leverage existing Carbon Capture and Storage (CCS) course materials and teaching methods to create and implement an annual CCS short course for the Tuskegee University community; conduct a survey of CO2 separation and capture methods; utilize data to verify and developmore » computer models for CO2 capture and build CCS networks and hands-on training experiences. The objectives accomplished as a result of this project were: (1) A comprehensive survey of CO2 capture methods was conducted and mathematical models were developed to compare the potential economics of the different methods based on the total cost per year per unit of CO2 avoidance; and (2) Training was provided to introduce the latest CO2 capture technologies and deployment issues to the university community.« less

  10. Molecular modeling studies of interfacial reactions in wet supercritical CO2.

    NASA Astrophysics Data System (ADS)

    Glezakou, V.; McGrail, B. P.; Windisch, C. F.; Schaef, H. T.; Martin, P.

    2011-12-01

    In the recent years, Carbon Capture and Sequestration (CCS) technologies have gained considerable momentum in a globally organized effort to mitigate greenhouse emissions and adverse climate change. Co-sequestration refers to the capture and geologic sequestration of carbon dioxide and minor contaminants (sulfur compounds, NOx, Hg, etc.) in subsurface formations. Cosequestration offers the potential to make carbon management more economically acceptable to industry relative to sequestration of pure CO2. This may be achieved through significant savings in plant (and retrofit) capital cost, operating cost, and energy savings as well by eliminating the need for one or more individual pollutant capture systems (such as SO2 scrubbers). The latter point is important because co-sequestration may result in a net positive impact to the environment through avoided loss of power generation capacity from parasitic loads and reduced fuel needs. This paper will discuss our research on modeling, imaging and characterization of cosequestration processes and reactivity at a fundamental level. Our work examines the interactions of CO2-rich fluids with metal and mineral surfaces, and how these are affected by the presence of other gas components (e.g. SO2, H2O or NOx) commonly present in the CO2 streams. We have found that reactivity is also affected by the composition of the surface or, less obviously, by the surface exposed, for example, (104) vs (100 )of carbonate minerals. We combine experimental techniques such as XRD and Raman spectroscopy, which can detect and follow reactive processes, with ab initio modeling methods based on density functional theory, to establish a reliable correspondence between theory and experiment with predictive capability. Analysis of our molecular dynamics simulations, reveals structural information and vibrational density of states that can directly compare with XRD measurements and vibrational spectroscopy. While reactivity in CO2-containing aqueous environments has been widely studied, the reverse, i.e. reactivity in water-bearing condensed media, is not true. Our simulations show that mechanistic details in these environments can be drastically different, and they are very important in elucidating molecular transformations relevant to CCS or carbon conversion.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alonso, Jesus

    Intelligent Optical Systems, Inc. has developed distributed intrinsic fiber optic sensors to directly quantify the concentration of dissolved or gas-phase CO 2 for leak detection or plume migration in carbon capture and sequestration (CCS). The capability of the sensor for highly sensitive detection of CO 2 in the pressure and temperature range of 15 to 2,000 psi and 25°C to 175°C was demonstrated, as was the capability of operating in highly corrosive and contaminated environments such as those often found in CO 2 injection sites. The novel sensor system was for the first time demonstrated deployed in a deep well,more » detecting multiple CO 2 releases, in real time, at varying depths. Early CO 2 release detection, by means of a sensor cable integrating multiple sensor segments, was demonstrated, as was the capability of quantifying the leak. The novel fiber optic sensor system exhibits capabilities not achieved by any other monitoring technology. This project represents a breakthrough in monitoring capabilities for CCS applications.« less

  12. Sourcing of Steam and Electricity for Carbon Capture Retrofits.

    PubMed

    Supekar, Sarang D; Skerlos, Steven J

    2017-11-07

    This paper compares different steam and electricity sources for carbon capture and sequestration (CCS) retrofits of pulverized coal (PC) and natural gas combined cycle (NGCC) power plants. Analytical expressions for the thermal efficiency of these power plants are derived under 16 different CCS retrofit scenarios for the purpose of illustrating their environmental and economic characteristics. The scenarios emerge from combinations of steam and electricity sources, fuel used in each source, steam generation equipment and process details, and the extent of CO 2 capture. Comparing these scenarios reveals distinct trade-offs between thermal efficiency, net power output, levelized cost, profit, and net CO 2 reduction. Despite causing the highest loss in useful power output, bleeding steam and extracting electric power from the main power plant to meet the CCS plant's electricity and steam demand maximizes plant efficiency and profit while minimizing emissions and levelized cost when wholesale electricity prices are below 4.5 and 5.2 US¢/kWh for PC-CCS and NGCC-CCS plants, respectively. At prices higher than these higher profits for operating CCS retrofits can be obtained by meeting 100% of the CCS plant's electric power demand using an auxiliary natural gas turbine-based combined heat and power plant.

  13. Brine production strategy modeling for active and integrated management of water resources in CCS

    NASA Astrophysics Data System (ADS)

    Court, B.; Celia, M. A.; Nordbotten, J. M.; Buscheck, T. A.; Elliot, T. J.; Bandilla, K.; Dobossy, M.

    2010-12-01

    Our society is at present highly dependent on coal, which will continue to play a major role in baseload electricity production in the coming decades. Most projected climate change mitigation strategies require CO2 Capture and Sequestration (CCS) as a vital element to stabilize CO2 atmospheric emissions. In these strategies, CCS will have to expand in the next two decades by several orders of magnitude compared to current worldwide implementation. At present the interactions among freshwater extraction, CO2 injection, and brine management are being considered too narrowly across CCS operations, and in the case of freshwater almost completely overlooked. Following the authors’ recently published overview of these challenges, an active and integrated management of water resources throughout CCS operations was proposed to avoid overlooking critical challenges that may become major obstacles to CCS implementation. Water resources management is vital for several reasons including that a coal-fired power plant retrofitted for CCS requires twice as much cooling water as the original plant. However this increased demand may be accommodated by brine extraction and treatment, which would concurrently function as large-scale pressure management and a potential source of freshwater. Synergistic advantages of such proactive integration that were identified led the authors to concluded that: Active management of CCS operations through an integrated approach -including brine production, treatment, use for cooling, and partial reinjection- can address challenges simultaneously with several synergistic advantages; and, that freshwater and brine must be linked to CO2 and pressure as key decision making parameters throughout CCS operations while recognizing scalability and potential pore space competition challenges. This work presents a detailed modeling investigation of a potential integration opportunity resulting from brine production. Technical results will focus solely on the conjunctive use of saline aquifers for CO2 sequestration and water supply for power plants. The impact of CO2 injection-brine withdrawal coupling on (i) the CO2 injection plume, (ii) the pressure field, and (iii) CO2 and brine leakage risk will be quantified using a range of simulation codes from Schlumberger’s full numerical ECLIPSE model to a simplified analytical model, in an effort to complement useful work initiated at Lawrence Livermore National Laboratory. In particular the impact of different relative permeability and capillary pressure curves on these three components will be presented and put in context of current modeling risk analysis approach in the CCS scientific community.

  14. Greening the Mixture: An Evaluation of the Department of Defense’s Alternative Aviation Fuel Strategy

    DTIC Science & Technology

    2012-06-08

    process begins with gasification of feedstocks such as coal, natural gas, or biomass towards the production of alternative fuels. With adequate carbon...Barrels per day CBTL Coal and Biomass to Liquid CCS Carbon Dioxide Capture and Sequestration CTL Coal to Liquid DARPA Defense Advanced Research...sequestration. Captured carbon dioxide from coal-to-liquid (CTL) or coal and biomass -to-liquid (CBTL) production could be readily injected into the

  15. Potential restrictions for CO2 sequestration sites due to shale and tight gas production.

    PubMed

    Elliot, T R; Celia, M A

    2012-04-03

    Carbon capture and geological sequestration is the only available technology that both allows continued use of fossil fuels in the power sector and reduces significantly the associated CO(2) emissions. Geological sequestration requires a deep permeable geological formation into which captured CO(2)can be injected, and an overlying impermeable formation, called a caprock, that keeps the buoyant CO(2) within the injection formation. Shale formations typically have very low permeability and are considered to be good caprock formations. Production of natural gas from shale and other tight formations involves fracturing the shale with the explicit objective to greatly increase the permeability of the shale. As such, shale gas production is in direct conflict with the use of shale formations as a caprock barrier to CO(2) migration. We have examined the locations in the United States where deep saline aquifers, suitable for CO(2) sequestration, exist, as well as the locations of gas production from shale and other tight formations. While estimated sequestration capacity for CO(2) sequestration in deep saline aquifers is large, up to 80% of that capacity has areal overlap with potential shale-gas production regions and, therefore, could be adversely affected by shale and tight gas production. Analysis of stationary sources of CO(2) shows a similar effect: about two-thirds of the total emissions from these sources are located within 20 miles of a deep saline aquifer, but shale and tight gas production could affect up to 85% of these sources. These analyses indicate that colocation of deep saline aquifers with shale and tight gas production could significantly affect the sequestration capacity for CCS operations. This suggests that a more comprehensive management strategy for subsurface resource utilization should be developed.

  16. The environmental and economic sustainability of carbon capture and storage.

    PubMed

    Hardisty, Paul E; Sivapalan, Mayuran; Brooks, Peter

    2011-05-01

    For carbon capture and storage (CCS) to be a truly effective option in our efforts to mitigate climate change, it must be sustainable. That means that CCS must deliver consistent environmental and social benefits which exceed its costs of capital, energy and operation; it must be protective of the environment and human health over the long term; and it must be suitable for deployment on a significant scale. CCS is one of the more expensive and technically challenging carbon emissions abatement options available, and CCS must first and foremost be considered in the context of the other things that can be done to reduce emissions, as a part of an overall optimally efficient, sustainable and economic mitigation plan. This elevates the analysis beyond a simple comparison of the cost per tonne of CO(2) abated--there are inherent tradeoffs with a range of other factors (such as water, NOx, SOx, biodiversity, energy, and human health and safety, among others) which must also be considered if we are to achieve truly sustainable mitigation. The full life-cycle cost of CCS must be considered in the context of the overall social, environmental and economic benefits which it creates, and the costs associated with environmental and social risks it presents. Such analysis reveals that all CCS is not created equal. There is a wide range of technological options available which can be used in a variety of industries and applications-indeed CCS is not applicable to every industry. Stationary fossil-fuel powered energy and large scale petroleum industry operations are two examples of industries which could benefit from CCS. Capturing and geo-sequestering CO(2) entrained in natural gas can be economic and sustainable at relatively low carbon prices, and in many jurisdictions makes financial sense for operators to deploy now, if suitable secure disposal reservoirs are available close by. Retrofitting existing coal-fired power plants, however, is more expensive and technically challenging, and the economic sustainability of post-combustion capture retrofit needs to be compared on a portfolio basis to the relative overall net benefit of CCS on new-build plants, where energy efficiency can be optimised as a first step, and locations can be selected with sequestration sites in mind. Examples from the natural gas processing, liquefied natural gas (LNG), and coal-fired power generation sectors, illustrate that there is currently a wide range of financial costs for CCS, depending on how and where it is applied, but equally, environmental and social benefits of emissions reduction can be considerable. Some CCS applications are far more economic and sustainable than others. CCS must be considered in the context of the other things that a business can do to eliminate emissions, such as far-reaching efforts to improve energy efficiency.

  17. The Environmental and Economic Sustainability of Carbon Capture and Storage

    PubMed Central

    Hardisty, Paul E.; Sivapalan, Mayuran; Brooks, Peter

    2011-01-01

    For carbon capture and storage (CCS) to be a truly effective option in our efforts to mitigate climate change, it must be sustainable. That means that CCS must deliver consistent environmental and social benefits which exceed its costs of capital, energy and operation; it must be protective of the environment and human health over the long term; and it must be suitable for deployment on a significant scale. CCS is one of the more expensive and technically challenging carbon emissions abatement options available, and CCS must first and foremost be considered in the context of the other things that can be done to reduce emissions, as a part of an overall optimally efficient, sustainable and economic mitigation plan. This elevates the analysis beyond a simple comparison of the cost per tonne of CO2 abated—there are inherent tradeoffs with a range of other factors (such as water, NOx, SOx, biodiversity, energy, and human health and safety, among others) which must also be considered if we are to achieve truly sustainable mitigation. The full life-cycle cost of CCS must be considered in the context of the overall social, environmental and economic benefits which it creates, and the costs associated with environmental and social risks it presents. Such analysis reveals that all CCS is not created equal. There is a wide range of technological options available which can be used in a variety of industries and applications—indeed CCS is not applicable to every industry. Stationary fossil-fuel powered energy and large scale petroleum industry operations are two examples of industries which could benefit from CCS. Capturing and geo-sequestering CO2 entrained in natural gas can be economic and sustainable at relatively low carbon prices, and in many jurisdictions makes financial sense for operators to deploy now, if suitable secure disposal reservoirs are available close by. Retrofitting existing coal-fired power plants, however, is more expensive and technically challenging, and the economic sustainability of post-combustion capture retrofit needs to be compared on a portfolio basis to the relative overall net benefit of CCS on new-build plants, where energy efficiency can be optimised as a first step, and locations can be selected with sequestration sites in mind. Examples from the natural gas processing, liquefied natural gas (LNG), and coal-fired power generation sectors, illustrate that there is currently a wide range of financial costs for CCS, depending on how and where it is applied, but equally, environmental and social benefits of emissions reduction can be considerable. Some CCS applications are far more economic and sustainable than others. CCS must be considered in the context of the other things that a business can do to eliminate emissions, such as far-reaching efforts to improve energy efficiency. PMID:21655130

  18. Alliance for Sequestration Training, Outreach, Research & Education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Hilary

    The Sequestration Training, Outreach, Research and Education (STORE) Alliance at The University of Texas at Austin completed its activity under Department of Energy Funding (DE-FE0002254) on September 1, 2013. The program began as a partnership between the Institute for Geophysics, the Bureau of Economic Geology and the Petroleum and Geosystems Engineering Department at UT. The initial vision of the program was to promote better understanding of CO 2 utilization and storage science and engineering technology through programs and opportunities centered on training, outreach, research and technology transfer, and education. With over 8,000 hrs of formal training and education (and almostmore » 4,500 of those hours awarded as continuing education credits) to almost 1,100 people, STORE programs and activities have provided benefits to the Carbon Storage Program of the Department of Energy by helping to build a skilled workforce for the future CCS and larger energy industry, and fostering scientific public literacy needed to continue the U.S. leadership position in climate change mitigation and energy technologies and application. Now in sustaining mode, the program is housed at the Center for Petroleum and Geosystems Engineering, and benefits from partnerships with the Gulf Coast Carbon Center, TOPCORP and other programs at the university receiving industry funding.« less

  19. Afraid to Start Because the Outcome is Uncertain?: Social Site Characterization as a Tool for Informing Public Engagement Efforts

    USGS Publications Warehouse

    Wade, S.; Greenberg, S.

    2009-01-01

    This paper introduces the concept of social site characterization as a parallel effort to technical site characterization to be used in evaluating and planning carbon dioxides capture and storage (CCS) projects. Social site characterization, much like technical site characterization, relies on a series of iterative investigations into public attitudes towards a CCS project and the factors that will shape those views. This paper also suggests ways it can be used to design approaches for actively engaging stakeholders and communities in the deployment of CCS projects. This work is informed by observing the site selection process for FutureGen and the implementation of research projects under the Regional Carbon Sequestration Partnership Program. ?? 2009 Elsevier Ltd. All rights reserved.

  20. Carbon dioxide sequestration monitoring and verification via laser based detection system in the 2 mum band

    NASA Astrophysics Data System (ADS)

    Humphries, Seth David

    Carbon Dioxide (CO2) is a known contributor to the green house gas effect. Emissions of CO2 are rising as the global demand for inexpensive energy is placated through the consumption and combustion of fossil fuels. Carbon capture and sequestration (CCS) may provide a method to prevent CO2 from being exhausted to the atmosphere. The carbon may be captured after fossil fuel combustion in a power plant and then stored in a long term facility such as a deep geologic feature. The ability to verify the integrity of carbon storage at a location is key to the success of all CCS projects. A laser-based instrument has been built and tested at Montana State University (MSU) to measure CO2 concentrations above a carbon storage location. The CO2 Detection by Differential Absorption (CODDA) Instrument uses a temperature-tunable distributed feedback (DFB) laser diode that is capable of accessing a spectral region, 2.0027 to 2.0042 mum, that contains three CO2 absorption lines and a water vapor absorption line. This instrument laser is aimed over an open-air, two-way path of about 100 m, allowing measurements of CO2 concentrations to be made directly above a carbon dioxide release test site. The performance of the instrument for carbon sequestration site monitoring is studied using a newly developed CO2 controlled release facility. The field and CO2 releases are managed by the Zero Emissions Research Technology (ZERT) group at MSU. Two test injections were carried out through vertical wells simulating seepage up well paths. Three test injections were done as CO2 escaped up through a slotted horizontal pipe simulating seepage up through geologic fault zones. The results from these 5 separate controlled release experiments over the course of three summers show that the CODDA Instrument is clearly capable of verifying the integrity of full-scale CO2 storage operations.

  1. Representing Carbon Capture and Storage in MARKAL EPAUS9r16a

    EPA Science Inventory

    Energy system models are used to evaluate the energy and environmental implications of alternative pathways for producing and using energy. Many such models include representations of the costs and capacities of carbon capture and sequestration (CCS). In this presentation, Dan Lo...

  2. An overview of CAFE credits and incorporation of the benefits of on-board carbon capture.

    DOT National Transportation Integrated Search

    2014-05-01

    This report discusses the application of Corporate Average Fuel Economy (CAFE) : credits that are currently available to vehicle manufacturers in the U.S., and the implications of : on-board carbon capture and sequestration (on-board CCS) on fu...

  3. CO{sub 2} Sequestration Capacity and Associated Aspects of the Most Promising Geologic Formations in the Rocky Mountain Region: Local-Scale Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laes, Denise; Eisinger, Chris; Morgan, Craig

    2013-07-30

    The purpose of this report is to provide a summary of individual local-­scale CCS site characterization studies conducted in Colorado, New Mexico and Utah. These site-­ specific characterization analyses were performed as part of the “Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region” (RMCCS) project. The primary objective of these local-­scale analyses is to provide a basis for regional-­scale characterization efforts within each state. Specifically, limits on time and funding will typically inhibit CCS projects from conducting high-­ resolution characterization of a state-­sized region, but smaller (< 10,000 km{sup 2}) site analyses are usually possible, and suchmore » can provide insight regarding limiting factors for the regional-­scale geology. For the RMCCS project, the outcomes of these local-­scale studies provide a starting point for future local-­scale site characterization efforts in the Rocky Mountain region.« less

  4. Recovery Act: Understanding the Impact of CO 2 Injection on the Subsurface Microbial Community in an Illinois Basin CCS Reservoir: Integrated Student Training in Geoscience and Geomicrobiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fouke, Bruce

    An integrated research and teaching program was developed to provide cross--disciplinary training opportunities in the emerging field of carbon capture and storage (CCS) for geobiology students attending the University of Illinois Urbana-­Champaign (UIUC). Students from across the UIUC campus participated, including those from the departments of Geology, Microbiology, Biochemistry, Civil and Environmental Engineering, Animal Sciences and the Institute for Genomic Biology. The project took advantage of the unique opportunity provided by the drilling and sampling of the large-­scale Phase III CCS demonstration Illinois Basin - Decatur Project (IBDP) in the central Illinois Basin at nearby Decatur, Illinois. The IBPD ismore » under the direction of the Illinois State Geological Survey (ISGS, located on the UIUC campus) and the Midwest Geological Sequestration Consortium (MGSC). The research component of this project focused on the subsurface sampling and identification of microbes inhabiting the subsurface Cambrian-­age Mt. Simon Sandstone. In addition to formation water collected from the injection and monitoring wells, sidewall rock cores were collected and analyzed to characterize the cements and diagenetic features of the host Mt. Simon Sandstone. This established a dynamic geobiological framework, as well as a comparative baseline, for future studies of how CO 2 injection might affect the deep microbial biosphere at other CCS sites. Three manuscripts have been prepared as a result of these activities, which are now being finalized for submission to top-­tier international peer-­reviewed research journals. The training component of this project was structured to ensure that a broad group of UIUC students, faculty and staff gained insight into CCS issues. An essential part of this training was that the UIUC faculty mentored and involved undergraduate and graduate students, as well as postdocs and research scientists, at all stages of the project in order to develop CCS-­focused classroom and field courses, as well as seminars. This program provided an excellent opportunity for participants to develop the background necessary to establish longer-­term research in CCS-­related geology and microbial ecology. Further, the program provided an ongoing dynamic platform to foster long-term collaboration with the regional ISGS and MGSC sequestration partnership, while offering hands-­on, applied learning experiences.« less

  5. The role of CO2 capture and utilization in mitigating climate change

    NASA Astrophysics Data System (ADS)

    Mac Dowell, Niall; Fennell, Paul S.; Shah, Nilay; Maitland, Geoffrey C.

    2017-04-01

    To offset the cost associated with CO2 capture and storage (CCS), there is growing interest in finding commercially viable end-use opportunities for the captured CO2. In this Perspective, we discuss the potential contribution of carbon capture and utilization (CCU). Owing to the scale and rate of CO2 production compared to that of utilization allowing long-term sequestration, it is highly improbable the chemical conversion of CO2 will account for more than 1% of the mitigation challenge, and even a scaled-up enhanced oil recovery (EOR)-CCS industry will likely only account for 4-8%. Therefore, whilst CO2-EOR may be an important economic incentive for some early CCS projects, CCU may prove to be a costly distraction, financially and politically, from the real task of mitigation.

  6. Integrated Mid-Continent Carbon Capture, Sequestration & Enhanced Oil Recovery Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brian McPherson

    2010-08-31

    A consortium of research partners led by the Southwest Regional Partnership on Carbon Sequestration and industry partners, including CAP CO2 LLC, Blue Source LLC, Coffeyville Resources, Nitrogen Fertilizers LLC, Ash Grove Cement Company, Kansas Ethanol LLC, Headwaters Clean Carbon Services, Black & Veatch, and Schlumberger Carbon Services, conducted a feasibility study of a large-scale CCS commercialization project that included large-scale CO{sub 2} sources. The overall objective of this project, entitled the 'Integrated Mid-Continent Carbon Capture, Sequestration and Enhanced Oil Recovery Project' was to design an integrated system of US mid-continent industrial CO{sub 2} sources with CO{sub 2} capture, and geologicmore » sequestration in deep saline formations and in oil field reservoirs with concomitant EOR. Findings of this project suggest that deep saline sequestration in the mid-continent region is not feasible without major financial incentives, such as tax credits or otherwise, that do not exist at this time. However, results of the analysis suggest that enhanced oil recovery with carbon sequestration is indeed feasible and practical for specific types of geologic settings in the Midwestern U.S.« less

  7. 76 FR 56982 - Announcement of Federal Underground Injection Control (UIC) Class VI Program for Carbon Dioxide (CO2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-15

    ... and Administration priorities for developing and deploying CCS projects in the next few years as... VI rule finalized on December 10, 2010. Direct Federal implementation of the final Class VI... on the final Class VI rule, visit the Underground Injection Control Geologic Sequestration Web site...

  8. Efficiency enhancement for natural gas liquefaction with CO2 capture and sequestration through cycles innovation and process optimization

    NASA Astrophysics Data System (ADS)

    Alabdulkarem, Abdullah

    Liquefied natural gas (LNG) plants are energy intensive. As a result, the power plants operating these LNG plants emit high amounts of CO2 . To mitigate global warming that is caused by the increase in atmospheric CO2, CO2 capture and sequestration (CCS) using amine absorption is proposed. However, the major challenge of implementing this CCS system is the associated power requirement, increasing power consumption by about 15--25%. Therefore, the main scope of this work is to tackle this challenge by minimizing CCS power consumption as well as that of the entire LNG plant though system integration and rigorous optimization. The power consumption of the LNG plant was reduced through improving the process of liquefaction itself. In this work, a genetic algorithm (GA) was used to optimize a propane pre-cooled mixed-refrigerant (C3-MR) LNG plant modeled using HYSYS software. An optimization platform coupling Matlab with HYSYS was developed. New refrigerant mixtures were found, with savings in power consumption as high as 13%. LNG plants optimization with variable natural gas feed compositions was addressed and the solution was proposed through applying robust optimization techniques, resulting in a robust refrigerant which can liquefy a range of natural gas feeds. The second approach for reducing the power consumption is through process integration and waste heat utilization in the integrated CCS system. Four waste heat sources and six potential uses were uncovered and evaluated using HYSYS software. The developed models were verified against experimental data from the literature with good agreement. Net available power enhancement in one of the proposed CCS configuration is 16% more than the conventional CCS configuration. To reduce the CO2 pressurization power into a well for enhanced oil recovery (EOR) applications, five CO2 pressurization methods were explored. New CO2 liquefaction cycles were developed and modeled using HYSYS software. One of the developed liquefaction cycles using NH3 as a refrigerant resulted in 5% less power consumption than the conventional multi-stage compression cycle. Finally, a new concept of providing the CO2 regeneration heat is proposed. The proposed concept is using a heat pump to provide the regeneration heat as well as process heat and CO2 liquefaction heat. Seven configurations of heat pumps integrated with CCS were developed. One of the heat pumps consumes 24% less power than the conventional system or 59% less total equivalent power demand than the conventional system with steam extraction and CO2 compression.

  9. Two-Stage, Integrated, Geothermal-CO2 Storage Reservoirs: An Approach for Sustainable Energy Production, CO2-Sequestration Security, and Reduced Environmental Risk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buscheck, T A; Chen, M; Sun, Y

    2012-02-02

    We introduce a hybrid two-stage energy-recovery approach to sequester CO{sub 2} and produce geothermal energy at low environmental risk and low cost by integrating geothermal production with CO{sub 2} capture and sequestration (CCS) in saline, sedimentary formations. Our approach combines the benefits of the approach proposed by Buscheck et al. (2011b), which uses brine as the working fluid, with those of the approach first suggested by Brown (2000) and analyzed by Pruess (2006), using CO{sub 2} as the working fluid, and then extended to saline-formation CCS by Randolph and Saar (2011a). During stage one of our hybrid approach, formation brine,more » which is extracted to provide pressure relief for CO{sub 2} injection, is the working fluid for energy recovery. Produced brine is applied to a consumptive beneficial use: feedstock for fresh water production through desalination, saline cooling water, or make-up water to be injected into a neighboring reservoir operation, such as in Enhanced Geothermal Systems (EGS), where there is often a shortage of a working fluid. For stage one, it is important to find economically feasible disposition options to reduce the volume of brine requiring reinjection in the integrated geothermal-CCS reservoir (Buscheck et al. 2012a). During stage two, which begins as CO{sub 2} reaches the production wells; coproduced brine and CO{sub 2} are the working fluids. We present preliminary reservoir engineering analyses of this approach, using a simple conceptual model of a homogeneous, permeable CO{sub 2} storage formation/geothermal reservoir, bounded by relatively impermeable sealing units. We assess both the CO{sub 2} sequestration capacity and geothermal energy production potential as a function of well spacing between CO{sub 2} injectors and brine/CO{sub 2} producers for various well patterns and for a range of subsurface conditions.« less

  10. [Carbon capture and storage (CCS) and its potential role to mitigate carbon emission in China].

    PubMed

    Chen, Wen-Ying; Wu, Zong-Xin; Wang, Wei-Zhong

    2007-06-01

    Carbon capture and storage (CCS) has been widely recognized as one of the options to mitigate carbon emission to eventually stabilize carbon dioxide concentration in the atmosphere. Three parts of CCS, which are carbon capture, transport, and storage are assessed in this paper, covering comparisons of techno-economic parameters for different carbon capture technologies, comparisons of storage mechanism, capacity and cost for various storage formations, and etc. In addition, the role of CCS to mitigate global carbon emission is introduced. Finally, China MARKAL model is updated to include various CCS technologies, especially indirect coal liquefaction and poly-generation technologies with CCS, in order to consider carbon emission reduction as well as energy security issue. The model is used to generate different scenarios to study potential role of CCS to mitigate carbon emissions by 2050 in China. It is concluded that application of CCS can decrease marginal abatement cost and the decrease rate can reach 45% for the emission reduction rate of 50%, and it can lessen the dependence on nuclear power development for stringent carbon constrains. Moreover, coal resources can be cleanly used for longer time with CCS, e.g., for the scenario C70, coal share in the primary energy consumption by 2050 will increase from 10% when without CCS to 30% when with CCS. Therefore, China should pay attention to CCS R&D activities and to developing demonstration projects.

  11. Carbon Sequestration and Carbon Capture and Storage (CCS) in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Hisyamudin Muhd Nor, Nik; Norhana Selamat, Siti; Hanif Abd Rashid, Muhammad; Fauzi Ahmad, Mohd; Jamian, Saifulnizan; Chee Kiong, Sia; Fahrul Hassan, Mohd; Mohamad, Fariza; Yokoyama, Seiji

    2016-06-01

    Southeast Asia is a standout amongst the most presented districts to unnatural weather change dangers even they are not principle worldwide carbon dioxide (CO2) maker, its discharge will get to be significant if there is no move made. CO2 wellsprings of Southeast Asia are mainly by fossil fuel through era of power and warmth generation, and also transportation part. The endeavors taken by these nations can be ordered into administrative and local level. This paper review the potential for carbon catch and capacity (CCS) as a part of the environmental change moderation system for the Malaysian power area utilizing an innovation appraisal structure. The country's recorded pattern of high dependence on fossil fuel for its power segment makes it a prime possibility for CCS reception. This issue leads to gradual increment of CO2 emission. It is evident from this evaluation that CCS can possibly assume a vital part in Malaysia's environmental change moderation methodology gave that key criteria are fulfilled. With the reason to pick up considerations from all gatherings into the earnestness of an Earth-wide temperature boost issue in Southeast Asia, assume that more efficient measures can be taken to effectively accomplish CO2 diminishment target.

  12. Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vipperla, Ravikumar; Yee, Michael; Steele, Ray

    This report presents system and economic analysis for a carbon capture unit which uses an amino-silicone solvent for CO{sub 2} capture and sequestration (CCS) in a pulverized coal (PC) boiler. The amino-silicone solvent is based on GAP-1 with tri-ethylene glycol (TEG) as a co-solvent. For comparison purposes, the report also shows results for a CCS unit based on a conventional approach using mono-ethanol amine (MEA). At a steam temperature of 395 °C (743 °F), the CCS energy penalty for amino-silicone solvent is only 30.4% which compares to a 35.9% energy penalty for MEA. The increase in COE for the amino-siliconemore » solvent relative to the non-capture case is between 98% and 103% (depending on the solvent cost) which compares to an ~109% COE cost increase for MEA. In summary, the amino-silicone solvent has significant advantages over conventional systems using MEA.« less

  13. Public engagement with CCS: barriers, key issues and ways forward

    NASA Astrophysics Data System (ADS)

    Xenias, Dimitrios

    2017-04-01

    Although Carbon Capture and Storage (CCS) is recognised as a crucial transition technology to a low-carbon world, it has not been popular with the public or some governments (e.g. the UK). Also, despite its use in industrial processes for decades, CCS remains and unfamiliar technology for most publics. It is therefore important to foster top-down and bottom-up acceptance of large scale CCS. In an exploratory round of interviews we canvassed the views of British, Dutch, German and Norwegian experts (N=13) with previous experience in public engagement with CCS. They identified barriers and drivers for CCS deployment and public engagement with CCS. Thematic analysis revealed a small number of recurrent issues, including: (a) lack of political leadership on CCS; (b) lack of public knowledge on relevant technologies and (c) difficulty communicating why CCS is necessary. Emphasis on these barriers varied with the level of experts' engagement with the public. More interestingly, although most experts agreed on the importance of public engagement, their views divided between 'why' engage and 'how' best to do this. In a subsequent expert survey (N=99) interview findings were reinforced: public support was seen as important for CCS roll-out (72%), though lower than political support and funding. The survey also showed that local public was expected to experience most risks, while global public will experience most benefits; whereas local business is seen to benefit more than global. Experts were overwhelmingly positive about CCS - risks outweigh benefits, and are confident that CCS will play a major role in climate change mitigation (along with reduced energy demand and renewables). These findings will be expanded on and triangulated in a follow-up public survey which will benefit those involved with public engagement with CCS.

  14. Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vipperla, Ravikumar; Yee, Michael; Steele, Ray

    This report presents system and economic analysis for a carbon capture unit which uses an amino-silicone solvent for CO{sub 2} capture and sequestration (CCS) in a pulverized coal (PC) boiler. The amino-silicone solvent is based on GAP-1 with Tri-Ethylene Glycol (TEG) as a co-solvent. The report also shows results for a CCS unit based on a conventional approach using mono-ethanol amine (MEA). Models were developed for both processes and used to calculate mass and energy balances. Capital costs and energy penalty were calculated for both systems, as well as the increase in cost of electricity. The amino-silicone solvent based systemmore » demonstrates significant advantages compared to the MEA system.« less

  15. Climate Change and Future U.S. Electricity Infrastructure: the Nexus between Water Availability, Land Suitability, and Low-Carbon Technologies

    NASA Astrophysics Data System (ADS)

    Rice, J.; Halter, T.; Hejazi, M. I.; Jensen, E.; Liu, L.; Olson, J.; Patel, P.; Vernon, C. R.; Voisin, N.; Zuljevic, N.

    2014-12-01

    Integrated assessment models project the future electricity generation mix under different policy, technology, and socioeconomic scenarios, but they do not directly address site-specific factors such as interconnection costs, population density, land use restrictions, air quality, NIMBY concerns, or water availability that might affect the feasibility of achieving the technology mix. Moreover, since these factors can change over time due to climate, policy, socioeconomics, and so on, it is important to examine the dynamic feasibility of integrated assessment scenarios "on the ground." This paper explores insights from coupling an integrated assessment model (GCAM-USA) with a geospatial power plant siting model (the Capacity Expansion Regional Feasibility model, CERF) within a larger multi-model framework that includes regional climate, hydrologic, and water management modeling. GCAM-USA is a dynamic-recursive market equilibrium model simulating the impact of carbon policies on global and national markets for energy commodities and other goods; one of its outputs is the electricity generation mix and expansion at the state-level. It also simulates water demands from all sectors that are downscaled as input to the water management modeling. CERF simulates siting decisions by dynamically representing suitable areas for different generation technologies with geospatial analyses (informed by technology-specific siting criteria, such as required mean streamflow per the Clean Water Act), and then choosing siting locations to minimize interconnection costs (to electric transmission and gas pipelines). CERF results are compared across three scenarios simulated by GCAM-USA: 1) a non-mitigation scenario (RCP8.5) in which conventional fossil-fueled technologies prevail, 2) a mitigation scenario (RCP4.5) in which the carbon price causes a shift toward nuclear, carbon capture and sequestration (CCS), and renewables, and 3) a repeat of scenario (2) in which CCS technologies are made unavailable—resulting in a large increase in the nuclear fraction of the mix.

  16. Is Carbon Capture and Storage Really Needed?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsouris, Costas; Williams, Kent Alan; Aaron, D

    2010-01-01

    Two of the greatest contemporary global challenges are anthropogenic greenhouse gas emissions and energy sustainability. A popular proposed solution to the former problem is carbon capture and storage (CCS). Unfortunately, CCS has little benefit for energy sustainability and introduces significant long-term costs and risks. Thus, we propose the adoption of 'virtual CCS' by directing the resources that would have been spent on CCS to alternative energy technologies. (The term 'virtual' is used here because the concept described in this work satisfies the Merriam-Webster Dictionary definition of virtual: 'being such in essence or effect though not formally recognized or admitted.') Inmore » this example, we consider wind and nuclear power and use the funds that would have been required by CCS to invest in installation and operation of these technologies. Many other options exist in addition to wind and nuclear power including solar, biomass, geothermal, and others. These additional energy technologies can be considered in future studies. While CCS involves spending resources to concentrate CO{sub 2} in sinks, such as underground reservoirs, low-carbon alternative energy produces power, which will displace fossil fuel use while simultaneously generating revenues. Thus, these alternative energy technologies achieve the same objective as that of CCS, namely, the avoidance of atmospheric CO{sub 2} emissions.« less

  17. U-tube based near-surface environmental monitoring in the Shenhua carbon dioxide capture and storage (CCS) project.

    PubMed

    Li, Qi; Song, Ranran; Shi, Hui; Ma, Jianli; Liu, Xuehao; Li, Xiaochun

    2018-04-01

    The CO 2 injected into deep formations during implementation of carbon dioxide (CO 2 ) capture and storage (CCS) technology may leak and migrate into shallow aquifers or ground surfaces through a variety of pathways over a long period. The leaked CO 2 can threaten shallow environments as well as human health. Therefore, almost all monitoring programs for CCS projects around the world contain near-surface monitoring. This paper presents a U-tube based near-surface monitoring technology focusing on its first application in the Shenhua CCS demonstration project, located in the Ordos Basin, Inner Mongolia, China. First, background information on the site monitoring program of the Shenhua CCS demonstration project was provided. Then, the principle of fluid sampling and the monitoring methods were summarized for the U-tube sampler system, and the monitoring data were analyzed in detail. The U-tube based monitoring results showed that the U-tube sampler system is accurate, flexible, and representative of the subsurface fluid sampling process. The monitoring indicators for the subsurface water and soil gas at the Shenhua CCS site indicate good stratification characteristics. The concentration level of each monitoring indicator decreases with increasing depth. Finally, the significance of this near-surface environmental monitoring technology for CO 2 leakage assessments was preliminarily confirmed at the Shenhua CCS site. The application potential of the U-tube based monitoring technology was also demonstrated during the subsurface environmental monitoring of other CCS projects.

  18. Analysis of state and federal regulatory regimes potentially governing the extraction of water from carbon storage reservoirs in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, Jenna N.; Harto, Christopher B.; Clark, Corrie E.

    Extracted water—water brought to the surface of the ground during carbon capture and sequestration (CCS) projects to create additional room for carbon dioxide injection—exists in a murky legal environment. As part of a broader attempt to identify the complex interactions between water resource policies and CCS, an analysis was undertaken at both the state and the federal level to scope the policy environments surrounding extracted water policies and laws. Six states (California, Illinois, Mississippi, Montana, North Dakota, and Texas) were chosen for this analysis because either active CCS work is currently underway, or the potential exists for future work. Although regulationmore » of extracted waters could potentially occur at many points along the CCS life cycle, this paper focuses on regulation that may apply when the water is withdrawn—that is, accessed and removed from the saline aquifer—and when it is re-injected in a close but unconnected aquifer. It was found that no regulations exist for this source specifically. In addition, greater input is needed from regulators and policy makers in terms of defining this resource. In particular, regulation of extracted waters (and CCS activities broadly) often overlaps with the management of fluids produced during oil and gas development. Many regulations would apply to extracted waters if they were classified as such. Therefore, correct categorization is key as the industry in this space continues to grow.« less

  19. Design and package of a {sup 14}CO{sub 2} field analyzer The Global Monitor Platform (GMP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bright, Michelle; Marino, Bruno D.V.; Gronniger, Glen

    2011-08-01

    Carbon Capture and Sequestration (CCS) is widely accepted as a means to reduce and eliminate the fossil fuel CO{sub 2} (ff- CO{sub 2}) emissions from coal fired power plants. Success of CCS depends on near zero leakage rates over decadal time scales. Currently no commercial methods to determine leakage of ff-CO{sub 2} are available. The Global Monitor Platform (GMP) field analyzer provides high precision analysis of CO{sub 2} isotopes [12C (99%), 13C (<1%), 14C (1.2x10-10 %)] that can differentiate between fossil and biogenic CO{sub 2} emissions. Fossil fuels contain no {sup 14}C; their combustion should lower atmospheric amounts on localmore » to global scales. There is a clear mandate for monitoring, verification and accounting (MVA) of CCS systems nationally and globally to verify CCS integrity, treaty verification (Kyoto Protocol) and to characterize the nuclear fuel cycle. Planetary Emissions Management (PEM), working with the National Secure Manufacturing Center (NSMC), has the goal of designing, ruggedizing and packaging the GMP for field deployment. The system will conduct atmosphere monitoring then adapt the system to monitor water and soil evaluations. Measuring {sup 14}CO{sub 2} in real time will provide quantitative concentration data for ff-CO{sub 2} in the atmosphere and CCS leakage detection. Initial results will be discussed along with design changes for improved detection sensitivity and manufacturability.« less

  20. Vertically-integrated Approaches for Carbon Sequestration Modeling

    NASA Astrophysics Data System (ADS)

    Bandilla, K.; Celia, M. A.; Guo, B.

    2015-12-01

    Carbon capture and sequestration (CCS) is being considered as an approach to mitigate anthropogenic CO2 emissions from large stationary sources such as coal fired power plants and natural gas processing plants. Computer modeling is an essential tool for site design and operational planning as it allows prediction of the pressure response as well as the migration of both CO2 and brine in the subsurface. Many processes, such as buoyancy, hysteresis, geomechanics and geochemistry, can have important impacts on the system. While all of the processes can be taken into account simultaneously, the resulting models are computationally very expensive and require large numbers of parameters which are often uncertain or unknown. In many cases of practical interest, the computational and data requirements can be reduced by choosing a smaller domain and/or by neglecting or simplifying certain processes. This leads to a series of models with different complexity, ranging from coupled multi-physics, multi-phase three-dimensional models to semi-analytical single-phase models. Under certain conditions the three-dimensional equations can be integrated in the vertical direction, leading to a suite of two-dimensional multi-phase models, termed vertically-integrated models. These models are either solved numerically or simplified further (e.g., assumption of vertical equilibrium) to allow analytical or semi-analytical solutions. This presentation focuses on how different vertically-integrated models have been applied to the simulation of CO2 and brine migration during CCS projects. Several example sites, such as the Illinois Basin and the Wabamun Lake region of the Alberta Basin, are discussed to show how vertically-integrated models can be used to gain understanding of CCS operations.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leetaru, Hannes

    This report describes a process and provides seed information for identifying and evaluating risks pertinent to a hypothetical carbon dioxide (CO{sub 2}) capture and sequestration (CCS) project. In the envisioned project, the target sequestration reservoir rock is the Potosi Formation of the Knox Supergroup. The Potosi is identified as a potential target formation because (1) at least locally, it contains vuggy to cavernous layers that have very high porosity, and (2) it is present in areas where the deeper Mt. Simon Sandstone (a known potential reservoir unit) is absent or nonporous. The key report content is discussed in Section 3.3,more » which describes two lists of Features, Events, and Processes (FEPs) that should be considered during the design stage of such a project. These lists primarily highlight risk elements particular to the establishment of the Potosi as the target formation in general. The lists are consciously incomplete with respect to risk elements that would be relevant for essentially all CCS projects regardless of location or geology. In addition, other risk elements specific to a particular future project site would have to be identified. Sources for the FEPs and scenarios listed here include the iconic Quintessa FEPs list developed for the International Energy Agency Greenhouse Gas (IEAGHG) Programme; previous risk evaluation projects executed by Schlumberger Carbon Services; and new input solicited from experts currently working on aspects of CCS in the Knox geology. The projects used as sources of risk information are primarily those that have targeted carbonate reservoir rocks similar in age, stratigraphy, and mineralogy to the Knox-Potosi. Risks of using the Potosi Formation as the target sequestration reservoir for a CCS project include uncertainties about the levels of porosity and permeability of that rock unit; the lateral consistency and continuity of those properties; and the ability of the project team to identify suitable (i.e., persistently porous and permeable) injection depths within the overall formation. Less direct implications include the vertical position of the Potosi within the rock column and the absence of a laterally extensive shale caprock immediately overlying the Potosi. Based on modeling work done partly in association with this risk report, risks that should also be evaluated include the ability of available methods to predict and track the development of a CO{sub 2} plume as it migrates away from the injection point(s). The geologic and hydrodynamic uncertainties present risks that are compounded at the stage of acquiring necessary drilling and injection permits. It is anticipated that, in the future, a regional geologic study or CO{sub 2}-emitter request may identify a small specific area as a prospective CCS project site. At that point, the FEPs lists provided in this report should be evaluated by experts for their relative levels of risk. A procedure for this evaluation is provided. The higher-risk FEPs should then be used to write project-specific scenarios that may themselves be evaluated for risk. Then, actions to reduce and to manage risk can be described and undertaken. The FEPs lists provided as Appendix 2 should not be considered complete, as potentially the most important risks are ones that have not yet been thought of. But these lists are intended to include the most important risk elements pertinent to a Potosi-target CCS project, and they provide a good starting point for diligent risk identification, evaluation, and management.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hnottavange-Telleen, Ken; Leetaru, Hannes

    This report describes a process and provides seed information for identifying and evaluating risks pertinent to a hypothetical carbon dioxide (CO2) capture and sequestration (CCS) project. In the envisioned project, the target sequestration reservoir rock is the Potosi Formation of the Knox Supergroup. The Potosi is identified as a potential target formation because (1) at least locally, it contains vuggy to cavernous layers that have very high porosity, and (2) it is present in areas where the deeper Mt. Simon Sandstone (a known potential reservoir unit) is absent or nonporous. The key report content is discussed in Section 3.3, whichmore » describes two lists of Features, Events, and Processes (FEPs) that should be considered during the design stage of such a project. These lists primarily highlight risk elements particular to the establishment of the Potosi as the target formation in general. The lists are consciously incomplete with respect to risk elements that would be relevant for essentially all CCS projects regardless of location or geology. In addition, other risk elements specific to a particular future project site would have to be identified. Sources for the FEPs and scenarios listed here include the iconic Quintessa FEPs list developed for the International Energy Agency Greenhouse Gas (IEAGHG) Programme; previous risk evaluation projects executed by Schlumberger Carbon Services; and new input solicited from experts currently working on aspects of CCS in the Knox geology. The projects used as sources of risk information are primarily those that have targeted carbonate reservoir rocks similar in age, stratigraphy, and mineralogy to the Knox-Potosi. Risks of using the Potosi Formation as the target sequestration reservoir for a CCS project include uncertainties about the levels of porosity and permeability of that rock unit; the lateral consistency and continuity of those properties; and the ability of the project team to identify suitable (i.e., persistently porous and permeable) injection depths within the overall formation. Less direct implications include the vertical position of the Potosi within the rock column and the absence of a laterally extensive shale caprock immediately overlying the Potosi. Based on modeling work done partly in association with this risk report, risks that should also be evaluated include the ability of available methods to predict and track the development of a CO2 plume as it migrates away from the injection point(s). The geologic and hydrodynamic uncertainties present risks that are compounded at the stage of acquiring necessary drilling and injection permits. It is anticipated that, in the future, a regional geologic study or CO2-emitter request may identify a small specific area as a prospective CCS project site. At that point, the FEPs lists provided in this report should be evaluated by experts for their relative levels of risk. A procedure for this evaluation is provided. The higher-risk FEPs should then be used to write project-specific scenarios that may themselves be evaluated for risk. Then, actions to reduce and to manage risk can be described and undertaken. The FEPs lists provided as Appendix 2 should not be considered complete, as potentially the most important risks are ones that have not yet been thought of. But these lists are intended to include the most important risk elements pertinent to a Potosi-target CCS project, and they provide a good starting point for diligent risk identification, evaluation, and management.« less

  3. Constraining the effects of permeability uncertainty for geologic CO2 sequestration in a basalt reservoir

    NASA Astrophysics Data System (ADS)

    Jayne, R., Jr.; Pollyea, R.

    2016-12-01

    Carbon capture and sequestration (CCS) in geologic reservoirs is one strategy for reducing anthropogenic CO2 emissions from large-scale point-source emitters. Recent developments at the CarbFix CCS pilot in Iceland have shown that basalt reservoirs are highly effective for permanent mineral trapping on the basis of CO2-water-rock interactions, which result in the formation of carbonates minerals. In order to advance our understanding of basalt sequestration in large igneous provinces, this research uses numerical simulation to evaluate the feasibility of industrial-scale CO2 injections in the Columbia River Basalt Group (CRBG). Although bulk reservoir properties are well constrained on the basis of field and laboratory testing from the Wallula Basalt Sequestration Pilot Project, there remains significant uncertainty in the spatial distribution of permeability at the scale of individual basalt flows. Geostatistical analysis of hydrologic data from 540 wells illustrates that CRBG reservoirs are reasonably modeled as layered heterogeneous systems on the basis of basalt flow morphology; however, the regional dataset is insufficient to constrain permeability variability at the scale of an individual basalt flow. As a result, permeability distribution for this modeling study is established by centering the lognormal permeability distribution in the regional dataset over the bulk permeability measured at Wallula site, which results in a spatially random permeability distribution within the target reservoir. In order to quantify the effects of this permeability uncertainty, CO2 injections are simulated within 50 equally probable synthetic reservoir domains. Each model domain comprises three-dimensional geometry with 530,000 grid blocks, and fracture-matrix interaction is simulated as interacting continua for the two low permeability layers (flow interiors) bounding the injection zone. Results from this research illustrate that permeability uncertainty at the scale of individual basalt flows may significantly impact both injection pressure accumulation and CO2 distribution.

  4. An evaluation of the carbon sequestration potential of the Cambro-Ordovician Strata of the Illinois and Michigan basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leetaru, Hannes

    2014-12-01

    The studies summarized herein were conducted during 2009–2014 to investigate the utility of the Knox Group and St. Peter Sandstone deeply buried geologic strata for underground storage of carbon dioxide (CO 2), a practice called CO 2 sequestration (CCS). In the subsurface of the midwestern United States, the Knox and associated strata extend continuously over an area approaching 500,000 sq. km, about three times as large as the State of Illinois. Although parts of this region are underlain by the deeper Mt. Simon Sandstone, which has been proven by other Department of Energy-funded research as a resource for CCS, themore » Knox strata may be an additional CCS resource for some parts of the Midwest and may be the sole geologic storage (GS) resource for other parts. One group of studies assembles, analyzes, and presents regional-scale and point-scale geologic information that bears on the suitability of the geologic formations of the Knox for a CCS project. New geologic and geo-engineering information was developed through a small-scale test of CO 2 injection into a part of the Knox, conducted in western Kentucky. These studies and tests establish the expectation that, at least in some locations, geologic formations within the Knox will (a) accept a commercial-scale flow rate of CO 2 injected through a drilled well; (b) hold a commercial-scale mass of CO 2 (at least 30 million tons) that is injected over decades; and (c) seal the injected CO 2 within the injection formations for hundreds to thousands of years. In CCS literature, these three key CCS-related attributes are called injectivity, capacity, and containment. The regional-scale studies show that reservoir and seal properties adequate for commercial-scale CCS in a Knox reservoir are likely to extend generally throughout the Illinois and Michigan Basins. Information distinguishing less prospective subregions from more prospective fairways is included in this report. Another group of studies report the results of reservoir flow simulations that estimate the progress and outcomes of hypothetical CCS projects carried out within the Knox (particularly within the Potosi Dolomite subunit, which, in places, is highly permeable) and within the overlying St. Peter Sandstone. In these studies, the regional-scale information and a limited amount of detailed data from specific boreholes is used as the basis for modeling the CO 2 injection process (dynamic modeling). The simulation studies were conducted progressively, with each successive study designed to refine the conclusions of the preceding one or to answer additional questions. The simulation studies conclude that at Decatur, Illinois or a geologically similar site, the Potosi Dolomite reservoir may provide adequate injectivity and capacity for commercial-scale injection through a single injection well. This conclusion depends on inferences from seismic-data attributes that certain highly permeable horizons observed in the wells represent laterally persistent, porous vuggy zones that are vertically more common than initially evident from wellbore data. Lateral persistence of vuggy zones is supported by isotopic evidence that the conditions that caused vug development (near-surface processes) were of regional rather than local scale. Other studies address aspects of executing and managing a CCS project that targets a Knox reservoir. These studies cover well drilling, public interactions, representation of datasets and conclusions using geographic information system (GIS) platforms, and risk management.« less

  5. Brucite-driven CO2 uptake in serpentinized dunites (Ligurian Ophiolites, Montecastelli, Tuscany)

    NASA Astrophysics Data System (ADS)

    Boschi, Chiara; Dini, Andrea; Baneschi, Ilaria; Bedini, Federica; Perchiazzi, Natale; Cavallo, Andrea

    2017-09-01

    Understanding the mechanism of serpentinite weathering at low temperature - that involves carbonate formation - has become increasingly important because it represents an analog study for a cost-efficient carbon disposal strategy (i.e. carbon mineralization technology or mineral Carbon dioxide Capture and Storage, CCS). At Montecastelli (Tuscany, Italy), on-going spontaneous mineral CO2 sequestration is enhanced by brucite-rich serpentinized dunites. The dunites are embedded in brucite-free serpentinized harzburgites that belong to the ophiolitic Ligurian Units (Northern Apennine thrust-fold belt). Two main serpentinization events produced two distinct mineral assemblages in the reactive dunite bodies. The first assemblage consists of low-T pseudomorphic, mesh-textured serpentine, Fe-rich brucite (up to 20 mol.% Fe(OH)2) and minor magnetite. This was overprinted by a non-pseudomorphic, relatively high-T assemblage consisting of serpentine, Fe-poor brucite (ca. 4 mol% Fe(OH)2) and abundant magnetite. The harzburgite host rock developed a brucite-free paragenesis made of serpentine and magnetite. Present-day interaction of serpentinized dunites with slightly acidic and oxidizing meteoric water, enhances brucite dissolution and leads to precipitation of both Mg-Fe layered double hydroxides (coalingite-pyroaurite, LDHs) and hydrous Mg carbonates (hydromagnesite and nesquehonite). In contrast, the brucite-free serpentinized harzburgites are not affected by the carbonation process. In the serpentinized dunites, different carbonate minerals form depending on brucite composition (Fe-rich vs Fe-poor). Reactions in serpentinized dunites containing Fe-rich brucite produce a carbonate assemblage dominated by LDHs and minor amount of hydromagnesite. Serpentinites with a Fe-poor brucite assemblage contain large amounts of hydromagnesite and minor LDHs. Efficiency of CO2 mineral sequestration is different in the two cases owing to the distinct carbon content of LDHs (ca. 1.5 wt.%) and hydromagnesite (ca. 10 wt.%). Here, for the first time, we link the mineral composition of serpentinized ultramafic rocks to carbonate formation, concluding that Fe-poor brucite maximizes the mineral CCS efficiency.

  6. Report of the Interagency Task Force on Carbon Capture and Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-08-01

    Carbon capture and storage (CCS) refers to a set of technologies that can greatly reduce carbon dioxide (CO{sub 2}) emissions from new and existing coal- and gas-fired power plants, industrial processes, and other stationary sources of CO{sub 2}. In its application to electricity generation, CCS could play an important role in achieving national and global greenhouse gas (GHG) reduction goals. However, widespread cost-effective deployment of CCS will occur only if the technology is commercially available and a supportive national policy framework is in place. In keeping with that objective, on February 3, 2010, President Obama established an Interagency Task Forcemore » on Carbon Capture and Storage composed of 14 Executive Departments and Federal Agencies. The Task Force, co-chaired by the Department of Energy (DOE) and the Environmental Protection Agency (EPA), was charged with proposing a plan to overcome the barriers to the widespread, cost-effective deployment of CCS within ten years, with a goal of bringing five to ten commercial demonstration projects online by 2016. Composed of more than 100 Federal employees, the Task Force examined challenges facing early CCS projects as well as factors that could inhibit widespread commercial deployment of CCS. In developing the findings and recommendations outlined in this report, the Task Force relied on published literature and individual input from more than 100 experts and stakeholders, as well as public comments submitted to the Task Force. The Task Force also held a large public meeting and several targeted stakeholder briefings. While CCS can be applied to a variety of stationary sources of CO{sub 2}, its application to coal-fired power plant emissions offers the greatest potential for GHG reductions. Coal has served as an important domestic source of reliable, affordable energy for decades, and the coal industry has provided stable and quality high-paying jobs for American workers. At the same time, coal-fired power plants are the largest contributor to U.S. greenhouse gas (GHG) emissions, and coal combustion accounts for 40 percent of global carbon dioxide (CO{sub 2}) emissions from the consumption of energy. EPA and Energy Information Administration (EIA) assessments of recent climate and energy legislative proposals show that, if available on a cost-effective basis, CCS can over time play a large role in reducing the overall cost of meeting domestic emissions reduction targets. By playing a leadership role in efforts to develop and deploy CCS technologies to reduce GHG emissions, the United States can preserve the option of using an affordable, abundant, and domestic energy resource, help improve national security, help to maximize production from existing oil fields through enhanced oil recovery (EOR), and assist in the creation of new technologies for export. While there are no insurmountable technological, legal, institutional, regulatory or other barriers that prevent CCS from playing a role in reducing GHG emissions, early CCS projects face economic challenges related to climate policy uncertainty, first-of-a-kind technology risks, and the current high cost of CCS relative to other technologies. Administration analyses of proposed climate change legislation suggest that CCS technologies will not be widely deployed in the next two decades absent financial incentives that supplement projected carbon prices. In addition to the challenges associated with cost, these projects will need to meet regulatory requirements that are currently under development. Long-standing regulatory programs are being adapted to meet the circumstances of CCS, but limited experience and institutional capacity at the Federal and State level may hinder implementation of CCS-specific requirements. Key legal issues, such as long-term liability and property rights, also need resolution. A climate policy designed to reduce our Nation's GHG emissions is the most important step for commercial deployment of low-carbon technologies such as CCS, because it will create a stable, long-term framework for private investments. A concerted effort to properly address financial, economic, technological, legal, institutional, and social barriers will enable CCS to be a viable climate change mitigation option that can over time play an important role in reducing the overall cost of meeting domestic and global emissions reduction targets. Federal and State agencies can use existing authorities and programs to begin addressing these barriers while ensuring appropriate safeguards are in place to protect the environment and public health and safety.« less

  7. Learning from experts on public engagement with CCS

    NASA Astrophysics Data System (ADS)

    Xenias, Dimitrios; Whitmarsh, Lorraine

    2016-04-01

    Carbon Capture and Storage is a key technology for the transition to a low carbon economy. There are thus strong normative, substantive and instrumental rationales for public acceptance of large scale CCS. In this study, we interviewed 12 experts in CCS from the UK, the Netherlands, and Germany. The experts had previous experience on public engagement on CCS, and were asked to identify barriers and drivers for CCS deployment and public engagement with CCS. Interviews lasted between 40 and 70 minutes. Thematic analysis revealed a small number of recurrent issues, including: (a) lack of political leadership on the matter; (b) lack of public knowledge on relevant technologies, which may not however always be necessary; and (c) difficulty communicating why CCS is not a direct substitute for renewable energy generation. Despite the recent government disengagement from CCS funding in the UK, another surprise finding was that lack of funding and political leadership was a perceived barrier internationally. These emergent views inform a follow-up online survey with the UK public, currently in preparation, which will expand on and triangulate the present findings and lead to development of a toolkit for the benefit of those involved with public engagement with CCS.

  8. Feasibility of CO2 Sequestration as a Closure Option for Underground Coal Mine

    NASA Astrophysics Data System (ADS)

    Ray, Sutapa; Dey, Kaushik

    2018-04-01

    The Kyoto Protocol, 1998, was signed by member countries to reduce greenhouse gas (GHG) emissions to a minimum acceptable level. India agreed to Kyoto Protocol since 2002 and started its research on GHG mitigation. Few researchers have carried out research work on CO2 sequestration in different rock formations. However, CO2 sequestration in abandoned mines has yet not drawn its attention largely. In the past few years or decades, a significant amount of research and development has been done on Carbon Capture and Storage (CCS) technologies, since it is a possible solution for assuring less emission of CO2 to the atmosphere from power plants and some other major industrial plants. CCS mainly involves three steps: (a) capture and compression of CO2 from source (power plants and industrial areas), (b) transportation of captured CO2 to the storage mine and (c) injecting CO2 into underground mine. CO2 is stored at an underground mine mainly in three forms: (1) adsorbed in the coals left as pillars of the mine, (2) absorbed in water through a chemical process and (3) filled in void with compressed CO2. Adsorption isotherm is a graph developed between the amounts of adsorbate adsorbed on the surface of adsorbent and the pressure at constant temperature. Various types of adsorption isotherms are available, namely, Freundlich, Langmuir and BET theory. Indian coal is different in origin from most of the international coal deposits and thus demands isotherm experiments of the same to arrive at the right adsorption isotherm. To carry out these experiments, adsorption isotherm set up is fabricated in the laboratory with a capacity to measure the adsorbed volume up to a pressure level of 100 bar. The coal samples are collected from the pillars and walls of the underground coal seam using a portable drill machine. The adsorption isotherm experiments have been carried out for the samples taken from a mine. From the adsorption isotherm experiments, Langmuir Equation is found to be more acceptable as compared to Freundlich's and BET adsorption isotherm models. CO2 is soluble in water and is reversibly formed carbonic acid. It is a weak acid since its ionization in water is incomplete. The CO2 solubility in water is estimated from the experimental results published by Wiebe and Gaddy. In most of the cases of abandoned mines, the chances of available air filled void space is limited as the level of operation is below the water table. So it is expected that the void would be completely filled with water. During this research investigation, the practical experimentation for CO2 sequestration was not within the scope. Thus, one operating mine was considered for the feasibility study. The sequestrated quantities of CO2 in terms of adsorbed volume and soluble volume were quantified. The cost of the CO2 was taken from the standard international literature. The sealing cost of the shaft was also considered. Costs of CO2 sequestration for different pressure were estimated for the mine.

  9. Earthquakes induced by fluid injection: Implications for secure CO2 storage

    NASA Astrophysics Data System (ADS)

    Verdon, J.; Kendall, J. M.

    2013-12-01

    It is well understood that the injection of fluids into the subsurface can trigger seismic activity. Recently, the US unconventional gas boom has lead to an increase in the volumes of produced water being disposed in geological formations and a concomitant increase in triggered seismic events. This issue is especially pertinent for geologic carbon sequestration, where the injection volumes necessary to store the CO2 emissions from a typical coal-fired power station far exceed the volumes known to have triggered seismic activity. Moreover, unlike water disposal operations, where there is no strong buoyancy drive to return injected fluids to the surface, CO2 sequestration requires a sealing caprock to prevent upward CO2 migration. Induced seismic events may create or reactivate faults and fracture networks, compromising the hydraulic integrity of the caprock. Therefore, induced seismic activity at future CCS sites is of doubly significant, given both the direct seismic hazard and the risk to secure CO2 storage. With this in mind, we re-examine case histories of seismic activity induced by waste water disposal into sedimentary formations with the intention of learning lessons that can be applied to future CCS sites. In particular, we examine the spatial and temporal distributions of events to determine whether there are any rules-of-thumb that might be usefully applied when appraising and monitoring operations. We find that in all cases, at least some seismicity occurs at the depth of the injection interval, but the majority (~80% of events) occur at least 500m below the injection depth. Less than 2% of events occur more than 500m above the shallowest injection interval. This observation must be considered encouraging from a CCS perspective, where seismicity in sealing caprocks will be of greatest concern. However, without a phenomenological explanation for the relative lack of seismicity above injection depths, it cannot be guaranteed that such observations would be repeated at CCS sites. We also examine the lateral distance between induced events and injection wells. The maximum distance between wells and events will define a minimum radius of influence, a distance over which geomechanical appraisal and fault characterization studies must be carried out at future CCS sites. We find that 62% of events occur within 5km, and that 99% of events occur within 19km of injection wells. These case examples highlight the importance of seismic monitoring at future CCS sites. Of the two large-scale CCS sites to deploy microseismic arrays, both have detected induced seismic events. During 6 years of monitoring at Weyburn, ~100 events with magnitudes between -3.0 and -1.0 have been detected, while at In Salah more than 1000 events, with magnitudes as large as 1.0, have been detected during 6 months of monitoring. Combined the case examples from water disposal operations, these operations demonstrate the need for dedicated local seismic monitoring networks to be installed at future CO2 injection sites.

  10. U.S. Department of Energy's Regional Carbon Sequestration Partnership Program: Overview

    USGS Publications Warehouse

    Litynski, J.; Plasynski, S.; Spangler, L.; Finley, R.; Steadman, E.; Ball, D.; Nemeth, K.J.; McPherson, B.; Myer, L.

    2009-01-01

    The U.S. Department of Energy (DOE) has formed a nationwide network of seven regional partnerships to help determine the best approaches for capturing and permanently storing gases that can contribute to global climate change. The Regional Carbon Sequestration Partnerships (RCSPs) are tasked with determining the most suitable technologies, regulations, and infrastructure for carbon capture, transport, and storage in their areas of the country and parts of Canada. The seven partnerships include more than 350 state agencies, universities, national laboratories, private companies, and environmental organizations, spanning 42 states, two Indian nations, and four Canadian provinces. The Regional Partnerships initiative is being implemented in three phases: ???Characterization Phase (2003-2005): The objective was to collect data on CO2 sources and sinks and develop the human capital to support and enable future carbon sequestration field tests and deployments. The completion of this Phase was marked by release of the Carbon Sequestration Atlas of the United States and Canada-Version 1 which included a common methodology for capacity assessment and reported over 3,000GT of storage capacity in saline formations, depleted oil and gas fields, and coal seams.???Validation Phase (2005-2009): The objective is to plan and implement small-scale (<1??million tons CO2) field testing of storage technologies in areas determined to be favorable for carbon storage. The partnerships are currently conducting over 20 small-scale geologic field tests and 11 terrestrial field tests.???Development Phase (2008-2018): The primary objective is the development of large-scale (>1??million tons of CO2) Carbon Capture and Storage (CCS) projects, which will demonstrate that large volumes of CO2 can be injected safely, permanently, and economically into geologic formations representative of large storage capacity. Even though the RCSP Program is being implemented in three phases, it should be viewed as an integrated whole, with many of the goals and objectives transitioning from one phase to the next. Accomplishments and results from the Characterization Phase have helped to refine goals and activities in the Validation and Deployment Phases. The RCSP Program encourages and requires open information sharing among its members by sponsoring both general workshops and meetings to facilitate information exchange. Although each RCSP has its own objectives and field tests, mutual cooperation has been an important part of the Program thus far. The primary goal of the RCSP initiative is to promote the development of a regional framework and the infrastructure necessary to validate and deploy carbon sequestration technologies within each Partnership's region. ?? 2009 Elsevier Ltd. All rights reserved.

  11. Competence-based and integrity-based trust as predictors of acceptance of carbon dioxide capture and storage (CCS).

    PubMed

    Terwel, Bart W; Harinck, Fieke; Ellemers, Naomi; Daamen, Dancker D L

    2009-08-01

    Public trust in organizations that are involved in the management and use of new technologies affects lay judgments about the risks and benefits associated with these technologies. In turn, judgments about risks and benefits influence lay attitudes toward these technologies. The validity of this (indirect) effect of trust on lay attitudes toward new technologies, which is referred to as the causal chain account of trust, has up till now only been examined in correlational research. The two studies reported in this article used an experimental approach to more specifically test the causal chain account of trust in the context of carbon dioxide capture and storage technology (CCS). Complementing existing literature, the current studies explicitly distinguished between two different types of trust in organizations: competence-based trust (Study 1) and integrity-based trust (Study 2). In line with predictions, results showed that the organizational position regarding CCS implementation (pro versus con) more strongly affected people's risk and benefit perceptions and their subsequent acceptance of CCS when competence-based trust was high rather than low. In contrast, the organizational position had a greater impact on people's level of CCS acceptance when integrity-based trust was low rather than high.

  12. 3 CFR - A Comprehensive Federal Strategy on Carbon Capture and Storage

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... scientific basis that now exists for the viability of CCS technology. To further this work and develop a... commercial CCS adoption and address any financial, economic, technological, legal, institutional, social, or...

  13. SunShot solar power reduces costs and uncertainty in future low-carbon electricity systems.

    PubMed

    Mileva, Ana; Nelson, James H; Johnston, Josiah; Kammen, Daniel M

    2013-08-20

    The United States Department of Energy's SunShot Initiative has set cost-reduction targets of $1/watt for central-station solar technologies. We use SWITCH, a high-resolution electricity system planning model, to study the implications of achieving these targets for technology deployment and electricity costs in western North America, focusing on scenarios limiting carbon emissions to 80% below 1990 levels by 2050. We find that achieving the SunShot target for solar photovoltaics would allow this technology to provide more than a third of electric power in the region, displacing natural gas in the medium term and reducing the need for nuclear and carbon capture and sequestration (CCS) technologies, which face technological and cost uncertainties, by 2050. We demonstrate that a diverse portfolio of technological options can help integrate high levels of solar generation successfully and cost-effectively. The deployment of GW-scale storage plays a central role in facilitating solar deployment and the availability of flexible loads could increase the solar penetration level further. In the scenarios investigated, achieving the SunShot target can substantially mitigate the cost of implementing a carbon cap, decreasing power costs by up to 14% and saving up to $20 billion ($2010) annually by 2050 relative to scenarios with Reference solar costs.

  14. The cost of getting CCS wrong: Uncertainty, infrastructure design, and stranded CO 2

    DOE PAGES

    Middleton, Richard Stephen; Yaw, Sean Patrick

    2018-01-11

    Carbon capture, and storage (CCS) infrastructure will require industry—such as fossil-fuel power, ethanol production, and oil and gas extraction—to make massive investment in infrastructure. The cost of getting these investments wrong will be substantial and will impact the success of CCS technology. Multiple factors can and will impact the success of commercial-scale CCS, including significant uncertainties regarding capture, transport, and injection-storage decisions. Uncertainties throughout the CCS supply chain include policy, technology, engineering performance, economics, and market forces. In particular, large uncertainties exist for the injection and storage of CO 2. Even taking into account upfront investment in site characterization, themore » final performance of the storage phase is largely unknown until commercial-scale injection has started. We explore and quantify the impact of getting CCS infrastructure decisions wrong based on uncertain injection rates and uncertain CO 2 storage capacities using a case study managing CO 2 emissions from the Canadian oil sands industry in Alberta. We use SimCCS, a widely used CCS infrastructure design framework, to develop multiple CCS infrastructure scenarios. Each scenario consists of a CCS infrastructure network that connects CO 2 sources (oil sands extraction and processing) with CO 2 storage reservoirs (acid gas storage reservoirs) using a dedicated CO 2 pipeline network. Each scenario is analyzed under a range of uncertain storage estimates and infrastructure performance is assessed and quantified in terms of cost to build additional infrastructure to store all CO 2. We also include the role of stranded CO 2, CO 2 that a source was expecting to but cannot capture due substandard performance in the transport and storage infrastructure. Results show that the cost of getting the original infrastructure design wrong are significant and that comprehensive planning will be required to ensure that CCS becomes a successful climate mitigation technology. Here, we show that the concept of stranded CO 2 can transform a seemingly high-performing infrastructure design into the worst case scenario.« less

  15. The cost of getting CCS wrong: Uncertainty, infrastructure design, and stranded CO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleton, Richard Stephen; Yaw, Sean Patrick

    Carbon capture, and storage (CCS) infrastructure will require industry—such as fossil-fuel power, ethanol production, and oil and gas extraction—to make massive investment in infrastructure. The cost of getting these investments wrong will be substantial and will impact the success of CCS technology. Multiple factors can and will impact the success of commercial-scale CCS, including significant uncertainties regarding capture, transport, and injection-storage decisions. Uncertainties throughout the CCS supply chain include policy, technology, engineering performance, economics, and market forces. In particular, large uncertainties exist for the injection and storage of CO 2. Even taking into account upfront investment in site characterization, themore » final performance of the storage phase is largely unknown until commercial-scale injection has started. We explore and quantify the impact of getting CCS infrastructure decisions wrong based on uncertain injection rates and uncertain CO 2 storage capacities using a case study managing CO 2 emissions from the Canadian oil sands industry in Alberta. We use SimCCS, a widely used CCS infrastructure design framework, to develop multiple CCS infrastructure scenarios. Each scenario consists of a CCS infrastructure network that connects CO 2 sources (oil sands extraction and processing) with CO 2 storage reservoirs (acid gas storage reservoirs) using a dedicated CO 2 pipeline network. Each scenario is analyzed under a range of uncertain storage estimates and infrastructure performance is assessed and quantified in terms of cost to build additional infrastructure to store all CO 2. We also include the role of stranded CO 2, CO 2 that a source was expecting to but cannot capture due substandard performance in the transport and storage infrastructure. Results show that the cost of getting the original infrastructure design wrong are significant and that comprehensive planning will be required to ensure that CCS becomes a successful climate mitigation technology. Here, we show that the concept of stranded CO 2 can transform a seemingly high-performing infrastructure design into the worst case scenario.« less

  16. Synthetic seismic monitoring using reverse-time migration and Kirchhoff migration for CO2 sequestration in Korea

    NASA Astrophysics Data System (ADS)

    Kim, W.; Kim, Y.; Min, D.; Oh, J.; Huh, C.; Kang, S.

    2012-12-01

    During last two decades, CO2 sequestration in the subsurface has been extensively studied and progressed as a direct tool to reduce CO2 emission. Commercial projects such as Sleipner, In Salah and Weyburn that inject more than one million tons of CO2 per year are operated actively as well as test projects such as Ketzin to study the behavior of CO2 and the monitoring techniques. Korea also began the CCS (CO2 capture and storage) project. One of the prospects for CO2 sequestration in Korea is the southwestern continental margin of Ulleung basin. To monitor the behavior of CO2 underground for the evaluation of stability and safety, several geophysical monitoring techniques should be applied. Among various geophysical monitoring techniques, seismic survey is considered as the most effective tool. To verify CO2 migration in the subsurface more effectively, seismic numerical simulation is an essential process. Furthermore, the efficiency of the seismic migration techniques should be investigated for various cases because numerical seismic simulation and migration test help us accurately interpret CO2 migration. In this study, we apply the reverse-time migration and Kirchhoff migration to synthetic seismic monitoring data generated for the simplified model based on the geological structures of Ulleung basin in Korea. Synthetic seismic monitoring data are generated for various cases of CO2 migration in the subsurface. From the seismic migration images, we can investigate CO2 diffusion patterns indirectly. From seismic monitoring simulation, it is noted that while the reverse-time migration generates clear subsurface images when subsurface structures are steeply dipping, Kirchhoff migration has an advantage in imaging horizontal-layered structures such as depositional sediments appearing in the continental shelf. The reverse-time migration and Kirchhoff migration present reliable subsurface images for the potential site characterized by stratigraphical traps. In case of vertical CO2 migration at injection point, the reverse time migration yields better images than Kirchhoff migration does. On the other hand, Kirchhoff migration images horizontal CO2 migration clearer than the reverse time migration does. From these results, we can conclude that the reverse-time migration and Kirchhoff migration can complement with each other to describe the behavior of CO2 in the subsurface. Acknowledgement This work was financially supported by the Brain Korea 21 project of Energy Systems Engineering, the "Development of Technology for CO2 Marine Geological Storage" program funded by the Ministry of Land, Transport and Maritime Affairs (MLTM) of Korea and the Korea CCS R&D Center (KCRC) grant funded by the Korea government (Ministry of Education, Science and Technology) (No. 2012-0008926).

  17. Front page or "buried" beneath the fold? Media coverage of carbon capture and storage.

    PubMed

    Boyd, Amanda D; Paveglio, Travis B

    2014-05-01

    Media can affect public views and opinions on science, policy and risk issues. This is especially true of a controversial emerging technology that is relatively unknown. The study presented here employs a media content analysis of carbon capture and storage (CCS), one potential strategy to reduce greenhouse gas emissions. The authors analyzed all mentions of CCS in two leading Canadian national newspapers and two major western regional newspapers from the first article that discussed CCS in 2004 to the end of 2009 (825 articles). An in-depth content analysis was conducted to examine factors relating to risk from CCS, how the technology was portrayed and if coverage was negatively or positively biased. We conclude by discussing the possible impact of media coverage on support or opposition to CCS adoption.

  18. Risk assessing study for Bio-CCS technology

    NASA Astrophysics Data System (ADS)

    Tanaka, A.; Sakamoto, Y.; Kano, Y.; Higashino, H.; Suzumura, M.; Tosha, T.; Nakao, S.; Komai, T.

    2013-12-01

    We have started a new R&D project titled 'Energy resources creation by geo-microbes and CCS'. It is new concept of a technology which cultivate methanogenic geo-microbes in reservoirs of geological CCS conditions to produce methane gas effectively and safely. As one of feasibility studies, we are evaluating risks around its new Bio-CCS technology. Our consideration involves risk scenarios about Bio-CCS in geological strata, marine environment, surface facilities, ambient air and injection sites. To cover risk scenarios in these areas, we are carrying out a sub-project with five sub-themes. Four sub-themes out of five are researches for identifying risk scenarios: A) Underground strata and injection well, B) Ambient air, C) Surface facilities and D) Seabed. We are developing risk assessment tool,named GERAS-CO2GS (Geo-environmental Risk Assessment System,CO2 Geological Storage Risk Assessment System. We are going to combine identified risk scenarios into GERAS-CO2GS accordingly. It is expected that new GERAS-CO2GS will contribute to risk assessment and management for not only Bio-CCS but also individual injection sites, and facilitate under standing of risks among legislators and concerned peoples around injection site.

  19. Not in My Backyard: CCS Sites and Public Perception of CCS.

    PubMed

    Braun, Carola

    2017-12-01

    Carbon capture and storage (CCS) is a technology that counteracts climate change by capturing atmospheric emissions of CO 2 from human activities, storing them in geological formations underground. However, CCS also involves major risks and side effects, and faces strong public opposition. The whereabouts of 408 potential CCS sites in Germany were released in 2011. Using detailed survey data on the public perception of CCS, this study quantifies how living close to a potential storage site affects the acceptance of CCS. It also analyzes the influence of other regional characteristics on the acceptance of CCS. The study finds that respondents who live close to a potential CCS site have significantly lower acceptance rates than those who do not. Living in a coal-mining region also markedly decreases acceptance. © 2017 Society for Risk Analysis.

  20. In silico screening of carbon-capture materials

    NASA Astrophysics Data System (ADS)

    Lin, Li-Chiang; Berger, Adam H.; Martin, Richard L.; Kim, Jihan; Swisher, Joseph A.; Jariwala, Kuldeep; Rycroft, Chris H.; Bhown, Abhoyjit S.; Deem, Michael W.; Haranczyk, Maciej; Smit, Berend

    2012-07-01

    One of the main bottlenecks to deploying large-scale carbon dioxide capture and storage (CCS) in power plants is the energy required to separate the CO2 from flue gas. For example, near-term CCS technology applied to coal-fired power plants is projected to reduce the net output of the plant by some 30% and to increase the cost of electricity by 60-80%. Developing capture materials and processes that reduce the parasitic energy imposed by CCS is therefore an important area of research. We have developed a computational approach to rank adsorbents for their performance in CCS. Using this analysis, we have screened hundreds of thousands of zeolite and zeolitic imidazolate framework structures and identified many different structures that have the potential to reduce the parasitic energy of CCS by 30-40% compared with near-term technologies.

  1. Northern California CO 2 Reduction Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hymes, Edward

    2010-06-16

    C6 Resources LLC, a wholly owned subsidiary of Shell Oil Company, worked with the US Department of Energy (DOE) under a Cooperative Agreement to develop the Northern California CO 2 Reduction Project. The objective of the Project is to demonstrate the viability of using Carbon Capture and Sequestration (CCS) to reduce existing greenhouse gas emissions from industrial sources on a large-scale. The Project will capture more than 700,000 metric tonnes of CO 2 per year, which is currently being vented to the atmosphere from the Shell Martinez Refinery in Contra Costa County. The CO 2 will be compressed and dehydratedmore » at the refinery and then transported via pipeline to a sequestration site in a rural area in neighboring Solano County. The CO 2 will be sequestered into a deep saline formation (more than two miles underground) and will be monitored to assure secure, long-term containment. The pipeline will be designed to carry as much as 1,400,000 metric tonnes of CO 2 per year, so additional capacity will be available to accommodate CO 2 captured from other industrial sources. The Project is expected to begin operation in 2015. The Project has two distinct phases. The overall objective of Phase 1 was to develop a fully definitive design basis for the Project. The Cooperative Agreement with the DOE provided cost sharing for Phase 1 and the opportunity to apply for additional DOE cost sharing for Phase 2, comprising the design, construction and operation of the Project. Phase 1 has been completed. DOE co-funding is provided by the American Recovery and Reinvestment Act (ARRA) of 2009. As prescribed by ARRA, the Project will stimulate the local economy by creating manufacturing, transportation, construction, operations, and management jobs while addressing the need to reduce greenhouse gas emissions at an accelerated pace. The Project, which will also assist in meeting the CO 2 reduction requirements set forth in California's Climate Change law, presents a major opportunity for both the environment as well as the region. C6 Resources is conducting the Project in collaboration with federally-funded research centers, such as Lawrence Berkeley National Lab and Lawrence Livermore National Lab. C6 Resources and Shell have identified CCS as one of the critical pathways toward a worldwide goal of providing cleaner energy. C6 Resources, in conjunction with the West Coast Regional Carbon Sequestration Partnership (WESTCARB), has conducted an extensive and ongoing public outreach and CCS education program for local, regional and state-wide stakeholders. As part of a long term relationship, C6 Resources will continue to engage directly with community leaders and residents to ensure public input and transparency. This topical report summarizes the technical work from Phase 1 of the Project in the following areas; Surface Facility Preliminary Engineering: summarizes the preliminary engineering work performed for CO 2 capture, CO 2 compression and dehydration at the refinery, and surface facilities at the sequestration site; Pipeline Preliminary Engineering: summarizes the pipeline routing study and preliminary engineering design; Geologic Sequestration: summarizes the work to characterize, model and evaluate the sequestration site; and Monitoring, Verification and Accounting (MVA): summarizes the MVA plan to assure long-term containment of the sequestered CO 2.« less

  2. U.S. Department of Energy's site screening, site selection, and initial characterization for storage of CO2 in deep geological formations

    USGS Publications Warehouse

    Rodosta, T.D.; Litynski, J.T.; Plasynski, S.I.; Hickman, S.; Frailey, S.; Myer, L.

    2011-01-01

    The U.S. Department of Energy (DOE) is the lead Federal agency for the development and deployment of carbon sequestration technologies. As part of its mission to facilitate technology transfer and develop guidelines from lessons learned, DOE is developing a series of best practice manuals (BPMs) for carbon capture and storage (CCS). The "Site Screening, Site Selection, and Initial Characterization for Storage of CO2 in Deep Geological Formations" BPM is a compilation of best practices and includes flowchart diagrams illustrating the general decision making process for Site Screening, Site Selection, and Initial Characterization. The BPM integrates the knowledge gained from various programmatic efforts, with particular emphasis on the Characterization Phase through pilot-scale CO2 injection testing of the Validation Phase of the Regional Carbon Sequestration Partnership (RCSP) Initiative. Key geologic and surface elements that suitable candidate storage sites should possess are identified, along with example Site Screening, Site Selection, and Initial Characterization protocols for large-scale geologic storage projects located across diverse geologic and regional settings. This manual has been written as a working document, establishing a framework and methodology for proper site selection for CO2 geologic storage. This will be useful for future CO2 emitters, transporters, and storage providers. It will also be of use in informing local, regional, state, and national governmental agencies of best practices in proper sequestration site selection. Furthermore, it will educate the inquisitive general public on options and processes for geologic CO2 storage. In addition to providing best practices, the manual presents a geologic storage resource and capacity classification system. The system provides a "standard" to communicate storage and capacity estimates, uncertainty and project development risk, data guidelines and analyses for adequate site characterization, and guidelines for reporting estimates within the classification based on each project's status. 

  3. Carbon Capture and Sequestration (CCS)

    DTIC Science & Technology

    2009-06-19

    tons of CO2 underground each year to help recover oil and gas resources (enhanced oil recovery , or EOR).1 Also, potentially large amounts of CO2 ... CO2 will be used for enhanced gas recovery at a nearby natural gas field. See http://www.vattenfall.com/www/co2_en/ co2_en/Gemeinsame_Inhalte...for enhanced oil recovery (EOR).18 Transporting CO2 in pipelines is similar to transporting petroleum products like natural gas and oil; it requires

  4. Carbon Sequestration at United States Marine Corps Installations West

    DTIC Science & Technology

    2014-05-20

    22202-4302. Respondents should be aware that notwithstanding any other provision of law , no person shall be subject to any oenalty for failing to...Falge et al., 2002a, b; Law et al., 2002). This, in turn, is perhaps due to the perception that sparse vegetation cover and seemingly bare soil...feasibility of carbon capture and storage (CCS) is divided into three components or steps: 1) CO2 capture and compression, 2) transportation of CO2with

  5. The Energy Future.

    PubMed

    Newman, John; Bonino, Christopher A; Trainham, James A

    2018-06-07

    The foreseeable energy future will be driven by economics of known technologies and the desire to reduce CO 2 emissions to the atmosphere. Renewable energy options are compared with each other and with the use of fossil fuels with carbon capture and sequestration (CCS). Economic analysis is used to determine the best of several alternatives. One can disagree on the detailed costs, including externalities such as climate change and air and water pollution. But the differences in capital and operating costs between known technologies are so significant that one can draw clear conclusions. Results show that renewable energy cannot compete with fossil fuels on a cost basis alone because energy is intrinsic to the molecule, except for hydroelectricity. However, fossil fuels are implicated in climate change. Using renewable energy exclusively, including transportation and electricity needs, could reduce the standard of living in the United States by 43% to 62%, which would correspond to the level in about 1970. If capture and sequester of CO 2 are implemented, the cost of using fossil fuels will increase, but they beat renewable energy handily as an economic way to produce clean energy.

  6. Coal + Biomass → Liquids + Electricity (with CCS)

    EPA Science Inventory

    In this presentation, Matt Aitken applies the MARKet ALlocation energy system model to evaluate the market potential for a class of technologies that convert coal and biomass to liquid fuels and electricity (CBtLE), paired with carbon capture and storage (CCS). The technology is ...

  7. Managing and understanding risk perception of surface leaks from CCS sites: risk assessment for emerging technologies and low-probability, high-consequence events

    NASA Astrophysics Data System (ADS)

    Anagnostou, E. N.; Seyyedi, H.; Beighley, E., II; McCollum, J.

    2014-12-01

    Carbon capture and storage (CCS) has been suggested by the Intergovernmental Panel on Climate Change as a partial solution to the greenhouse gas emissions problem. As CCS has become mainstream, researchers have raised multiple risk assessment issues typical of emerging technologies. In our research, we examine issues occuring when stored carbon dioxide (CO2) migrates to the near-surface or surface. We believe that both the public misperception and the physical reality of potential environmental, health, and commercial impacts of leak events from such subsurface sites have prevented widespread adoption of CCS. This paper is presented in three parts; the first is an evaluation of the systemic risk of a CCS site CO2 leak and models indicating potential likelihood of a leakage event. As the likelihood of a CCS site leak is stochastic and nonlinear, we present several Bayesian simulations for leak events based on research done with other low-probability, high-consequence gaseous pollutant releases. Though we found a large, acute leak to be exceptionally rare, we demonstrate potential for a localized, chronic leak at a CCS site. To that end, we present the second piece of this paper. Using a combination of spatio-temporal models and reaction-path models, we demonstrate the interplay between leak migrations, material interactions, and atmospheric dispersion for leaks of various duration and volume. These leak-event scenarios have implications for human, environmental, and economic health; they also have a significant impact on implementation support. Public acceptance of CCS is essential for a national low-carbon future, and this is what we address in the final part of this paper. We demonstrate that CCS remains unknown to the general public in the United States. Despite its unknown state, we provide survey findings -analyzed in Slovic and Weber's 2002 framework - that show a high unknown, high dread risk perception of leaks from a CCS site. Secondary findings are a conflation of CCS with the more advanced, widespread technology hydraulic fracturing and corresponding strong risk associations. We conclude with suggestions on how to integrate modeling results into public conversations to improve risk awareness and we provide preliminary policy recommendations to increase public support for CCS.

  8. Managing and understanding risk perception of surface leaks from CCS sites: risk assessment for emerging technologies and low-probability, high-consequence events

    NASA Astrophysics Data System (ADS)

    Augustin, C. M.

    2015-12-01

    Carbon capture and storage (CCS) has been suggested by the Intergovernmental Panel on Climate Change as a partial solution to the greenhouse gas emissions problem. As CCS has become mainstream, researchers have raised multiple risk assessment issues typical of emerging technologies. In our research, we examine issues occuring when stored carbon dioxide (CO2) migrates to the near-surface or surface. We believe that both the public misperception and the physical reality of potential environmental, health, and commercial impacts of leak events from such subsurface sites have prevented widespread adoption of CCS. This paper is presented in three parts; the first is an evaluation of the systemic risk of a CCS site CO2 leak and models indicating potential likelihood of a leakage event. As the likelihood of a CCS site leak is stochastic and nonlinear, we present several Bayesian simulations for leak events based on research done with other low-probability, high-consequence gaseous pollutant releases. Though we found a large, acute leak to be exceptionally rare, we demonstrate potential for a localized, chronic leak at a CCS site. To that end, we present the second piece of this paper. Using a combination of spatio-temporal models and reaction-path models, we demonstrate the interplay between leak migrations, material interactions, and atmospheric dispersion for leaks of various duration and volume. These leak-event scenarios have implications for human, environmental, and economic health; they also have a significant impact on implementation support. Public acceptance of CCS is essential for a national low-carbon future, and this is what we address in the final part of this paper. We demonstrate that CCS remains unknown to the general public in the United States. Despite its unknown state, we provide survey findings -analyzed in Slovic and Weber's 2002 framework - that show a high unknown, high dread risk perception of leaks from a CCS site. Secondary findings are a conflation of CCS with the more advanced, widespread technology hydraulic fracturing and corresponding strong risk associations. We conclude with suggestions on how to integrate modeling results into public conversations to improve risk awareness and we provide preliminary policy recommendations to increase public support for CCS.

  9. Spatiotemporal distribution and national measurement of the global carbonate carbon sink.

    PubMed

    Li, Huiwen; Wang, Shijie; Bai, Xiaoyong; Luo, Weijun; Tang, Hong; Cao, Yue; Wu, Luhua; Chen, Fei; Li, Qin; Zeng, Cheng; Wang, Mingming

    2018-06-21

    The magnitudes, spatial distributions and contributions to global carbon budget of the global carbonate carbon sink (CCS) still remain uncertain, allowing the problem of national measurement of CCS remain unresolved which will directly influence the fairness of global carbon markets and emission trading. Here, based on high spatiotemporal resolution ecological, meteorological raster data and chemical field monitoring data, combining highly reliable machine learning algorithm with the thermodynamic dissolution equilibrium model, we estimated the new CCS of 0.89 ± 0.23 petagrams of carbon per year (Pg C yr -1 ), amounting to 74.50% of global net forest sink and accounting for 28.75% of terrestrial sinks or 46.81% of the missing sink. Our measurement for 142 nations of CCS showed that Russia, Canada, China and the USA contribute over half of the global CCS. We also presented the first global fluxes maps of the CCS with spatial resolution of 0.05°, exhibiting two peaks in equatorial regions (10°S to 10°N) and low latitudes (10°N to 35°N) in Northern Hemisphere. By contrast, there are no peaks in Southern Hemisphere. The greatest average carbon sink flux (CCSF), i.e., 2.12 tC ha -1  yr -1 , for 2000 to 2014 was contributed by tropical rainforest climate near the equator, and the smallest average CCSF was presented in tropical arid zones, showing a magnitude of 0.26 tC ha -1  yr -1 . This research estimated the magnitudes, spatial distributions, variations and contributions to the global carbon budget of the CCS in a higher spatiotemporal representativeness and expandability way, which, via multiple mechanisms, introduced an important sink in the terrestrial carbon sink system and the global missing sink and that can help us further reveal and support our understanding of global rock weathering carbon sequestration, terrestrial carbon sink system and global carbon cycle dynamics which make our understanding of global change more comprehensive. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Coal-fuelled systems for peaking power with 100% CO2 capture through integration of solid oxide fuel cells with compressed air energy storage

    NASA Astrophysics Data System (ADS)

    Nease, Jake; Adams, Thomas A.

    2014-04-01

    In this study, a coal-fuelled integrated solid oxide fuel cell (SOFC) and compressed air energy storage (CAES) system in a load-following power production scenario is discussed. Sixteen SOFC-based plants with optional carbon capture and sequestration (CCS) and syngas shifting steps are simulated and compared to a state-of-the-art supercritical pulverised coal (SCPC) plant. Simulations are performed using a combination of MATLAB and Aspen Plus v7.3. It was found that adding CAES to a SOFC-based plant can provide load-following capabilities with relatively small effects on efficiencies (1-2% HHV depending on the system configuration) and levelized costs of electricity (∼0.35 ¢ kW-1 h-1). The load-following capabilities, as measured by least-squares metrics, show that this system may utilize coal and achieve excellent load-tracking that is not adversely affected by the inclusion of CCS. Adding CCS to the SOFC/CAES system reduces measurable direct CO2 emission to zero. A seasonal partial plant shutdown schedule is found to reduce fuel consumption by 9.5% while allowing for cleaning and maintenance windows for the SOFC stacks without significantly affecting the performance of the system (∼1% HHV reduction in efficiency). The SOFC-based systems with CCS are found to become economically attractive relative to SCPC above carbon taxes of 22 ton-1.

  11. Fuel and vehicle technology choices for passenger vehicles in achieving stringent CO2 targets: connections between transportation and other energy sectors.

    PubMed

    Grahn, M; Azar, C; Williander, M I; Anderson, J E; Mueller, S A; Wallington, T J

    2009-05-01

    The regionalized Global Energy Transition (GET-R 6.0) model has been modified to include a detailed description of light-duty vehicle options and used to investigate the potential impact of carbon capture and storage (CCS) and concentrating solar power (CSP) on cost-effective fuel/vehicle technologies in a carbon-constrained world. Total CO2 emissions were constrained to achieve stabilization at 400-550 ppm, by 2100, at lowesttotal system cost The dominantfuel/vehicle technologies varied significantly depending on CO2 constraint future cost of vehicle technologies, and availability of CCS and CSP. For many cases, no one technology dominated on a global scale. CCS provides relatively inexpensive low-CO2 electricity and heatwhich prolongs the use of traditional ICEVs. CSP displaces fossil fuel derived electricity, prolongs the use of traditional ICEVs, and promotes electrification of passenger vehicles. In all cases considered, CCS and CSP availability had a major impact on the lowest cost fuel/vehicle technologies, and alternative fuels are needed in response to expected dwindling oil and natural gas supply potential by the end of the century.

  12. Power Systems Life Cycle Analysis Tool (Power L-CAT).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andruski, Joel; Drennen, Thomas E.

    2011-01-01

    The Power Systems L-CAT is a high-level dynamic model that calculates levelized production costs and tracks environmental performance for a range of electricity generation technologies: natural gas combined cycle (using either imported (LNGCC) or domestic natural gas (NGCC)), integrated gasification combined cycle (IGCC), supercritical pulverized coal (SCPC), existing pulverized coal (EXPC), nuclear, and wind. All of the fossil fuel technologies also include an option for including carbon capture and sequestration technologies (CCS). The model allows for quick sensitivity analysis on key technical and financial assumptions, such as: capital, O&M, and fuel costs; interest rates; construction time; heat rates; taxes; depreciation;more » and capacity factors. The fossil fuel options are based on detailed life cycle analysis reports conducted by the National Energy Technology Laboratory (NETL). For each of these technologies, NETL's detailed LCAs include consideration of five stages associated with energy production: raw material acquisition (RMA), raw material transport (RMT), energy conversion facility (ECF), product transportation and distribution (PT&D), and end user electricity consumption. The goal of the NETL studies is to compare existing and future fossil fuel technology options using a cradle-to-grave analysis. The NETL reports consider constant dollar levelized cost of delivered electricity, total plant costs, greenhouse gas emissions, criteria air pollutants, mercury (Hg) and ammonia (NH3) emissions, water withdrawal and consumption, and land use (acreage).« less

  13. BECCS Market Launch Strategy Aiming to Help Ensure Reliable Grid Power at High Penetrations of IRE (Intermittent Renewable Electricity)

    NASA Astrophysics Data System (ADS)

    WIlliams, R. H.

    2017-12-01

    Despite its recognized importance for carbon (C)-mitigation, progress in advancing biomass energy with CO2 capture and sequestration (BECCS) has been slow. A BECCS market launch strategy based on technologies ready for commercial-scale demonstration is discussed—based on co-gasification of coal and biomass to make H2 with CCS. H2 so produced would be a key element of a H2 balancing capacity (H2-BC) strategy for ensuring reliable grid power at high IRE penetrations. High grid penetrations of IRE must be complemented by fast-ramping balancing (backup and/or storage) capacity (BC) to ensure reliable grid power. BC provided now by natural gas-fired gas turbine combined cycle and combustion turbine units would eventually have to be decarbonized to realize C-mitigation goals, via CCS or other means. Capital-intensive CCS energy systems require baseload operation to realize favourable economics, but at high IRE penetrations, BC plants must be operated at low capacity factors. A H2-BC strategy is a promising way to address this challenge. The elements of a H2-BC system are: (a) H2 production from carbonaceous feedstocks in baseload plants with CCS; (b) H2 consumption in fast-ramping BC units that operate at low capacity factors; (c) Buffer underground H2 storage to enable decoupling baseload H2 production from highly variable H2 consumption by BC units. The concept is likely to "work" because underground H2 storage is expected to be inexpensive. A H2 production analysis is presented for a negative GHG-emitting H2-BC system based on cogasification of corn stover and coal, with captured CO2 used for enhanced oil recovery. The technical readiness of each system component is discussed, and preliminary insights are offered as to the conditions under which the corresponding H2-BC system might compete with natural gas in providing backup for IRE on US electric grids. Public policy to help advance this strategy might be forthcoming, because 2 US Senate bills with broad bipartisan support might become law soon: (a) S.1535, which extends and expands 45Q tax credits for CO2 EOR; and (b) S.1460. Inter alia, S.1460 authorizes DOE to spend $22 million/year during 2018-2022 to support of Front End Engineering and Design studies for net-negative CO2 emissions projects based on thermochemical coal/biomass coprocessing with CCS.

  14. The Collyhurst Sandstone as a secondary storage unit for CCS in the East Irish Sea Basin (UK)

    NASA Astrophysics Data System (ADS)

    Gamboa, D.; Williams, J. D. O.; Kirk, K.; Gent, C. M. A.; Bentham, M.; Schofield, D. I.

    2016-12-01

    Carbon Capture and Storage (CCS) is key technology for low-carbon energy and industry. The UK hosts a large CO2 storage potential offshore with an estimated capacity of 78 Gt. The East Irish Sea Basin (EISB) is the key area for CCS in the western UK, with a CO2 storage potential of 1.7 Gt in hydrocarbon fields and in saline aquifers within the Triassic Sherwood Sandstone Formation. However, this theoretical storage capacity does not consider the secondary storage potential in the lower Permian Collyhurst Sandstone Formation. 3D seismic data were used to characterise the Collyhurst Sandstone Formation in the EISB. On the southern basin domain, numerous fault-bound blocks limit the lateral continuity of the sandstone strata, while on the northern domain the sandstones are intersected by less faults. The caprock for the Collyhurst sandstones is variable. The Manchester Marls predominate in the south, transitioning to the St. Bees evaporites towards the north. The evaporites in the EISB cause overburden faults to terminate or detach along Upper Permian strata, limiting the deformation of the underlying reservoir units. Five main storage closures have been identified in the Permian strata. In the southern and central area these are predominantly fault bounded, occurring at depths over 1000m. Despite the higher Collyhurst sandstone thickness in the southern IESB, the dolomitic nature of the caprock constitutes a storage risk in this area. Closures in the northern area are deeper (around 2000-2500m) and wider, reaching areas of 34Km2, and are overlain by evaporitic caprocks. The larger Collyhurst closures to the north underlie large Triassic fields with high storage potential. The spatial overlap favours storage plans including secondary storage units in the EISB. The results of this work also expand the understanding of prospective areas for CO2 sequestration in the East Irish Sea Basin in locations where the primary Sherwood Sandstone Formation is either too shallow, discontinuous or eroded.

  15. The role of stakeholders in developing an international regulatory framework for carbon capture and storage

    NASA Astrophysics Data System (ADS)

    Augustin, C. M.; Broad, K.; Swart, P. K.

    2011-12-01

    It is estimated that carbon capture and storage (CCS) could be used to achieve between 15% and 55% of the carbon emission reductions necessary to avoid dangerous levels of climate change. It is also believed that achieving emission reduction goals will be less costly with CCS than without it. The expansion of active CCS sites over the past decade, from three to 53 demonstrates the value that industry sees in CCS as a transition technology for governments seeking to reduce their CO2 emissions. However, to continue developing CCS for industry scale implementation, it is essential to provide the regulatory certainty needed to foster energy industry wide adoption of CCS. Existing CCS regulatory regimes are inadequate, fragmented and contradictory. There is a need for comprehensive, unifying regulations for CCS that are flexible enough to adapt as the technology develops. Governments are limited by the fact that carbon capture and storage is a multidisciplinary issue that touches on the fields of oil drilling, groundwater quality, greenhouse gas management, air quality, and risk management. Though it is in part a technological, environmental and management issue there is also a complex political element to tackling the CCS problem. Due to its cross-cutting nature, CCS regulations should be based off the best practices and standards developed by industry stakeholders. Industry standards are stakeholder developed and consensus based, created through a democratic and collaborative process by bodies such as the International Standards Organization, the National Institutes of Standards and Testing (USA), ASTM International, and the Canadian Standards Organization. Standards can typically be broken down into six general categories: test methods, specifications, classifications, practices, guides, and terminology. These standards are created by stakeholders across the industry and across geographic boundaries to create an trade-wide, rather than nationwide, consensus and ensuring that the standards are international in scope. This paper examines regulatory issues post-capture, particularly the transport and geological storage of carbon dioxide and seeks to identify areas where relevant stakeholders should collaborate to develop a comprehensive list of industry standards and provides several case study examples.

  16. Coal-fired Power Plants with Flexible Amine-based CCS and Co-located Wind Power: Environmental, Economic and Reliability Outcomes

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Rubenka

    Carbon Capture and Storage (CCS) technologies provide a means to significantly reduce carbon emissions from the existing fleet of fossil-fired plants, and hence can facilitate a gradual transition from conventional to more sustainable sources of electric power. This is especially relevant for coal plants that have a CO2 emission rate that is roughly two times higher than that of natural gas plants. Of the different kinds of CCS technology available, post-combustion amine based CCS is the best developed and hence more suitable for retrofitting an existing coal plant. The high costs from operating CCS could be reduced by enabling flexible operation through amine storage or allowing partial capture of CO2 during high electricity prices. This flexibility is also found to improve the power plant's ramp capability, enabling it to offset the intermittency of renewable power sources. This thesis proposes a solution to problems associated with two promising technologies for decarbonizing the electric power system: the high costs of the energy penalty of CCS, and the intermittency and non-dispatchability of wind power. It explores the economic and technical feasibility of a hybrid system consisting of a coal plant retrofitted with a post-combustion-amine based CCS system equipped with the option to perform partial capture or amine storage, and a co-located wind farm. A techno-economic assessment of the performance of the hybrid system is carried out both from the perspective of the stakeholders (utility owners, investors, etc.) as well as that of the power system operator. (Abstract shortened by ProQuest.).

  17. Water Challenges for Geologic Carbon Capture and Sequestration

    PubMed Central

    Friedmann, Samuel J.; Carroll, Susan A.

    2010-01-01

    Carbon capture and sequestration (CCS) has been proposed as a means to dramatically reduce greenhouse gas emissions with the continued use of fossil fuels. For geologic sequestration, the carbon dioxide is captured from large point sources (e.g., power plants or other industrial sources), transported to the injection site and injected into deep geological formations for storage. This will produce new water challenges, such as the amount of water used in energy resource development and utilization and the “capture penalty” for water use. At depth, brine displacement within formations, storage reservoir pressure increases resulting from injection, and leakage are potential concerns. Potential impacts range from increasing water demand for capture to contamination of groundwater through leakage or brine displacement. Understanding these potential impacts and the conditions under which they arise informs the design and implementation of appropriate monitoring and controls, important both for assurance of environmental safety and for accounting purposes. Potential benefits also exist, such as co-production and treatment of water to both offset reservoir pressure increase and to provide local water for beneficial use. PMID:20127328

  18. Learning through a portfolio of carbon capture and storage demonstration projects

    NASA Astrophysics Data System (ADS)

    Reiner, David M.

    2016-01-01

    Carbon dioxide capture and storage (CCS) technology is considered by many to be an essential route to meet climate mitigation targets in the power and industrial sectors. Deploying CCS technologies globally will first require a portfolio of large-scale demonstration projects. These first projects should assist learning by diversity, learning by replication, de-risking the technologies and developing viable business models. From 2005 to 2009, optimism about the pace of CCS rollout led to mutually independent efforts in the European Union, North America and Australia to assemble portfolios of projects. Since 2009, only a few of these many project proposals remain viable, but the initial rationales for demonstration have not been revisited in the face of changing circumstances. Here I argue that learning is now both more difficult and more important given the slow pace of deployment. Developing a more coordinated global portfolio will facilitate learning across projects and may determine whether CCS ever emerges from the demonstration phase.

  19. Influence of methane in CO2 transport and storage for CCS technology.

    PubMed

    Blanco, Sofía T; Rivas, Clara; Fernández, Javier; Artal, Manuela; Velasco, Inmaculada

    2012-12-04

    CO(2) Capture and Storage (CCS) is a good strategy to mitigate levels of atmospheric greenhouse gases. The type and quantity of impurities influence the properties and behavior of the anthropogenic CO(2), and so must be considered in the design and operation of CCS technology facilities. Their study is necessary for CO(2) transport and storage, and to develop theoretical models for specific engineering applications to CCS technology. In this work we determined the influence of CH(4), an important impurity of anthropogenic CO(2), within different steps of CCS technology: transport, injection, and geological storage. For this, we obtained new pressure-density-temperature (PρT) and vapor-liquid equilibrium (VLE) experimental data for six CO(2) + CH(4) mixtures at compositions which represent emissions from the main sources in the European Union and United States. The P and T ranges studied are within those estimated for CO(2) pipelines and geological storage sites. From these data we evaluated the minimal pressures for transport, regarding the density and pipeline's capacity requirements, and values for the solubility parameter of the mixtures, a factor which governs the solubility of substances present in the reservoir before injection. We concluded that the presence of CH(4) reduces the storage capacity and increases the buoyancy of the CO(2) plume, which diminishes the efficiency of solubility and residual trapping of CO(2), and reduces the injectivity into geological formations.

  20. Active CO2 Reservoir Management: A Strategy for Controlling Pressure, CO2 and Brine Migration in Saline-Formation CCS

    NASA Astrophysics Data System (ADS)

    Buscheck, T. A.; Sun, Y.; Hao, Y.; Court, B.; Celia, M. A.; Wolery, T.; Tompson, A. F.; Aines, R. D.; Friedmann, J.

    2010-12-01

    CO2 capture and sequestration (CCS) in deep geological formations is regarded as a promising means of lowering the amount of CO2 emitted to the atmosphere and thereby mitigate global warming. The most promising systems for CCS are depleted oil reservoirs, particularly those suited to CO2-based Enhanced Oil Recovery (CCS-EOR), and deep saline formations, both of which are well separated from the atmosphere. For conventional, industrial-scale, saline-formation CCS, pressure buildup can have a limiting effect on CO2 storage capacity. To address this concern, we analyze Active CO2 Reservoir Management (ACRM), which combines brine extraction and residual-brine reinjection with CO2 injection, comparing it with conventional saline-formation CCS. We investigate the influence of brine extraction on pressure response and CO2 and brine migration using the NUFT code. By extracting brine from the lower portion of the storage formation, from locations progressively further from the center of injection, we can counteract buoyancy that drives CO2 to the top of the formation, which is useful in dipping formations. Using “push-pull” manipulation of the CO2 plume, we expose less of the caprock seal to CO2 and more of the storage formation to CO2, with more of the formation utilized for trapping mechanisms. Plume manipulation can also counteract the influence of heterogeneity. We consider the impact of extraction ratio, defined as net extracted brine volume (extraction minus reinjection) divided by injected CO2 volume. Pressure buildup is reduced with increasing extraction ratio, which reduces CO2 and brine migration, increases CO2 storage capacity, and reduces other risks, such as leakage up abandoned wells, caprock fracturing, fault activation, and induced seismicity. For a 100-yr injection period, a 10-yr delay in brine extraction does not diminish the magnitude of pressure reduction. Moreover, it is possible to achieve pressure management with just a few brine-extraction wells, located far from the injection zone. For an extraction ratio of 1, pressure buildup is minimized, greatly reducing the Area of Review, as well as the area required for securing mineral rights. For an extraction ratio of 1, CO2 and brine migration are unaffected by neighboring CO2 operations, which allows planning, assessing, and conducting of each operation to be carried out independently; thus, permits could be granted on a single-site basis. Brine-extraction wells will be useful during monitoring, providing information for system calibration and history matching. One of several key aspects that ACRM has in common with CCS-EOR is the possibility of generating revenue from the extracted fluids; namely, fresh water produced via brine desalination, using technologies such as Reverse Osmosis. These benefits can offset brine extraction and treatment costs, streamline permitting, and help gain public acceptance. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Surface monitoring of microseismicity at the Decatur, Illinois, CO2 sequestration demonstration site

    USGS Publications Warehouse

    Kaven, Joern; Hickman, Stephen H.; McGarr, Arthur F.; Ellsworth, William L.

    2015-01-01

    Sequestration of CO2 into subsurface reservoirs can play an important role in limiting future emission of CO2 into the atmosphere (e.g., Benson and Cole, 2008). For geologic sequestration to become a viable option to reduce greenhouse gas emissions, large-volume injection of supercritical CO2 into deep sedimentary formations is required. These formations offer large pore volumes and good pore connectivity and are abundant (Bachu, 2003; U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team, 2013). However, hazards associated with injection of CO2 into deep formations require evaluation before widespread sequestration can be adopted safely (Zoback and Gorelick, 2012). One of these hazards is the potential to induce seismicity on pre-existing faults or fractures. If these faults or fractures are large and critically stressed, seismic events can occur with magnitudes large enough to pose a hazard to surface installations and, possibly more critical, the seal integrity of the cap rock. The Decatur, Illinois, carbon capture and storage (CCS) demonstration site is the first, and to date, only CCS project in the United States that injects a large volume of supercritical CO2 into a regionally extensive, undisturbed saline formation. The first phase of the Decatur CCS project was completed in November 2014 after injecting a million metric tons of supercritical CO2 over three years. This phase was led by the Illinois State Geological Survey (ISGS) and included seismic monitoring using deep borehole sensors, with a few sensors installed within the injection horizon. Although the deep borehole network provides a more comprehensive seismic catalog than is presented in this paper, these deep data are not publically available. We contend that for monitoring induced microseismicity as a possible seismic hazard and to elucidate the general patterns of microseismicity, the U.S. Geological Survey (USGS) surface and shallow borehole network described below provides an adequate event detection threshold. The formation targeted for injection is the Mount Simon Sandstone, which is laterally extensive, has high porosity and permeability and has the potential to host future CCS projects due to its favorable hydrologic characteristics and proximity to industrial sources of CO2 (Birkholzer and Zhou, 2009). At Decatur, CO2, a byproduct of ethanol production at the Archer Daniels Midland (ADM) facility, is compressed to supercritical state and injected at 2.1 km depth into the 460 m thick Mount Simon Sandstone. This sandstone has varying properties, ranging from the lower, fine- to coarse-grained sandstone with high permeability and porosity, to the middle and upper Mount Simon, which consist of planar, cross-bedded layers of varied permeability and porosity (Leetaru and Freiburg, 2014). The changes in permeability and porosity within the Mount Simon Sandstone, due to depositional and diagenetic differences, create horizontal baffles, which inhibit vertical flow and restrict the injected CO2 to remain near the injection horizon (Bowen et al., 2011). The lowest portion of the Mount Simon Sandstone overlying the Precambrian rhyolite basement is the Pre-Mount Simon interval, generally  < 15 m in thickness and composed of fine- to medium-grain size sandstone that is highly deformed (Leetaru and Freiburg, 2014). The basement rhyolite has a clayrich matrix and is fractured, with significant alterations within the fractures. The primary sealing cap rock is the Eau Claire Formation, a 100–150 m thick unit at a depth of roughly 1.69 km (Leetaru and Freiburg, 2014). The Maquoketa Shale Group and the New Albany Shale serve as secondary and tertiary seals at shallower depths of ∼820 and ∼650 m, respectively. The ISGS managed the Illinois Basin–Decatur Project (IBDP), a three-year project beginning in November 2011, during which carbon dioxide was injected at a rate of ∼1000 metric tons per day until November 2014 (Finley et al., 2011, 2013). ADM manages the Illinois Industrial CCS (ICCS) project, which will inject ∼3000 metric tons/day into a second injection well starting in the summer of 2015. The USGS began monitoring microseismicity with a 13- station seismic network at Decatur in July 2013 (Fig. 1). This network provides good detection capabilities and azimuthal (focal sphere) coverage for microseismicity with moment magnitudes (Mw) above about −0:5. Here, we report on 19 months of microseismicity monitoring at the Decatur CO2 sequestration site, which permits a detailed look at the evolution and character of injection-induced seismicity.

  2. A natural site for CO2 storage in the Little Hungarian Plain (western Hungary)

    NASA Astrophysics Data System (ADS)

    Király, C.; Berta, M.; Szamosfalvi, Á.; Falus, G.; Szabó, C.

    2012-04-01

    Reducing anthropogenic CO2 emissions is one of the greatest goals of the present and future environmental scientists. A measureable decrease in the atmospheric CO2 level can be achieved only by applying different solutions at the same time. Carbon capture and sequestration is considered to be an efficient technology in eliminating carbon-dioxide at large, stationary carbon-emitting industrial sources. To ensure the long term stability of the geologically trapped CO2, behavior of the CO2-reservoir-porewater system should be predictable on geological timescales. One of the suitable methods to describe a potential future CCS system is to approach it from an accessible system similar in extensions, geophysical and geochemical properties, and characteristic interactions. These are called natural sites; one of them is located in the western part of Hungary: this is the Répcelak-Mihályi Field. However the carbon dioxide is produced since the early 20th century for industrial purposes, the studied system is composed by 38 fields (26 CO2, 10 hydrocarbon, and 2 mixed gas). The CO2 is situated in a depth of about 1400 m in the Pannonian sedimentary sequence. These formations are formed by mainly sandstone, siltstone and clay; and were deposited in the late Miocene. In this ongoing research we are summarizing all the available databases from this area, provided by hydrocarbon exploration well logs, and core samples from the studied layers. We are collecting information to have the input data for further modeling projects. These data are about basic petrophysical properties (porosity and permeability), surface and deep zone gas analysis, and pore fluid contents. Concerning this group of information, we will be able to identify which major processes were taking place in the past in this natural CO2-H2O-rock system. These are expected to be mainly fluid-rock interactions. As a result, we have a close view on what reactions and at what rates are expected at a future CCS storage site in the long-term. Our poster will show the main properties of a CO2-rock-porewater system which is natural and stable on geological time scale. These achievements can be used in understanding how complex CCS systems (reservoirs, cap rocks, wells, etc.) work, and will provide precious support at designing CCS projects.

  3. A Policy Option To Provide Sufficient Funding For Massive-Scale Sequestration of CO2

    NASA Astrophysics Data System (ADS)

    Kithil, P. W.

    2007-12-01

    Global emissions of CO2 now are nearly 30 billion tons per year, and are growing rapidly due to strong economic growth. Atmospheric levels of CO2 have reached 380 ppm and recent reports suggest the rate of increase has gone from 1% per year in the 1990's to 3% per year now - with potential to cross 550ppm in the 2020 decade. Without stabilization of atmospheric CO2 below 550ppm, climate models predict unacceptably higher average temperatures with significant risk of runaway global warming this century. While there is much talk about reducing CO2 emissions by switching to non-fossil energy sources, imposing energy efficiency, and a host of other changes, there are no new large-scale energy sources on the horizon. The options are to impose draconian cuts in fossil energy consumption that will keep us below 550ppm (devastating the global economy) - or to adopt massive-scale sequestration of CO2. Three approaches are feasible: biological ocean sequestration, geologic sequestration, and biological terrestrial sequestration. Biological sequestration is applicable to all CO2 sources, whereas geologic sequestration is limited to fossil-fuel power plants and some large point-source emitters such as cement plants and large industrial facilities. Sequestration provides a direct mechanism for reducing atmospheric levels of CO2, whereas offsetting technologies such as wind power or improved efficiency, reduce the need for more fossil fuels but do not physically remove CO2 from the environment. The primary geologic technique, carbon capture & sequestration (CCS), prevents CO2 from entering the atmosphere but likewise does not reduce existing levels of atmospheric CO2. Biological sequestration (ocean or terrestrial) physically removes CO2 from the atmosphere. Since we cannot shut down our global economy, urgent action is needed to counteract CO2 emissions, and avoid catastrophic climate change. Given the long lead time and/or small impact of offsetting energy sources, sequestration is the only way to achieve near and medium-term reductions in atmospheric CO2 levels. To finance massive-scale sequestration of CO2, we propose the World Trade Organization (WTO) become an active player in the sequestration market. Given the WTO's role as overseer of international trade agreements annually representing 30 trillion in imports and exports of goods and services, it is by far the largest global economic force and therefore offers the broadest economic base. Absent a real solution to CO2 emissions, the global economy - and world trade - will shrink dramatically. The WTO can jumpstart the market for CO2 sequestration by issuing long term contracts to purchase bona fide sequestration-derived CO2 credits. Under this proposal, an initial price of 100 per ton which steps-down by 5% per year could bring forth the sequestration investment needed to achieve upwards of 10 billion tons sequestered CO2 per year by 2025 (seven billion tons from biological ocean sequestration and at least three billion tons from geologic and terrestrial sequestration). Assuming a contract term of 40 years, and a parallel commodity market continues to develop for CO2 credits, at some time in the future the WTO's contractual price will be less than the commodity market price - and the WTO begins to recover its investment. Under one set of assumptions, the net WTO annual subsidy would peak at $86 billion by 2022, equal to an across-the-board WTO tariff on imports and exports of about 1.01%, then become positive a few years later as the market price climbed above WTO's contracted price. Under this proposal, the WTO effectively subsidizes CO2 sequestration in the near to medium term and then recoups its investment and reaps large profits over the long term.

  4. Seismic monitoring at the Decatur, Ill., CO2 sequestration demonstration site

    USGS Publications Warehouse

    Kaven, Joern; Hickman, Stephen H.; McGarr, Arthur F.; Walter, Steve R.; Ellsworth, William L.

    2014-01-01

    The viability of carbon capture and storage (CCS) to reduce emissions of greenhouse gases depends on the ability to safely sequester large quantities of CO2 over geologic time scales. One concern with CCS is the potential of induced seismicity. We report on ongoing seismic monitoring by the U.S. Geological Survey (USGS) at a CCS demonstration site in Decatur, IL, in an effort to understand the potential hazards posed by injection-induced seismicity associated with geologic CO2 sequestration. At Decatur, super-critical CO2 is injected at 2.1 km depth into the 550-m-thick Mt. Simon Sandstone, which directly overlies granitic basement. The primary sealing cap rock is the Eau Claire Shale, a 100- to 150-m-thick unit at a depth of roughly 1.5 km. The USGS seismic network consists of 12 stations, three of which have surface accelerometers and three-component borehole geophones. We derived a one-dimensional velocity models from a vertical seismic profile acquired by Archer-Daniels-Midland (ADM) and the Illinois State Geological Survey (ISGS) to a depth of 2.2 km, tied into shallow acoustic logs from our borehole stations and assuming a 6 km/sec P-wave velocity for granite below 2.2 km. We further assume a constant ratio of P- to S-wave velocities of 1.83, as derived from velocity model inversions. We use this velocity model to locate seismic events, all of which are within the footprint of our network. So far magnitudes of locatable events range from Mw = -1.52 to 1.07. We further improved the hypocentral precision of microseismic events when travel times and waveforms are sufficiently similar by employing double-difference relocation techniques, with relative location errors less than 80 m horizontally and 100 m vertically. We observe tend to group in three distinct clusters: ∼0.4 to 1.0 km NE, 1.6 to 2.4 km N, and ∼1.8 to 2.6 km WNW from the injection well. The first cluster of microseismicity forms a roughly linear trend, which may represent a pre-existing geologic structure. Most of these microearthquakes occur in the granitic basement at depths greater than 2.2 km, well below the caprock, and likely do not compromise the integrity of the seal. We conclude that because the observed microseismicity is occurring in the granitic basement, the integrity of the caprock seal has not been compromised by CCS activities.

  5. Voice in Political Decision-Making: The Effect of Group Voice on Perceived Trustworthiness of Decision Makers and Subsequent Acceptance of Decisions

    ERIC Educational Resources Information Center

    Terwel, Bart W.; Harinck, Fieke; Ellemers, Naomi; Daamen, Dancker D. L.

    2010-01-01

    The implementation of carbon dioxide capture and storage technology (CCS) is considered an important climate change mitigation strategy, but the viability of this technology will depend on public acceptance of CCS policy decisions. The results of three experiments with students as participants show that whether or not interest groups receive an…

  6. Metamodeling-based approach for risk assessment and cost estimation: Application to geological carbon sequestration planning

    NASA Astrophysics Data System (ADS)

    Sun, Alexander Y.; Jeong, Hoonyoung; González-Nicolás, Ana; Templeton, Thomas C.

    2018-04-01

    Carbon capture and storage (CCS) is being evaluated globally as a geoengineering measure for significantly reducing greenhouse emission. However, long-term liability associated with potential leakage from these geologic repositories is perceived as a main barrier of entry to site operators. Risk quantification and impact assessment help CCS operators to screen candidate sites for suitability of CO2 storage. Leakage risks are highly site dependent, and a quantitative understanding and categorization of these risks can only be made possible through broad participation and deliberation of stakeholders, with the use of site-specific, process-based models as the decision basis. Online decision making, however, requires that scenarios be run in real time. In this work, a Python based, Leakage Assessment and Cost Estimation (PyLACE) web application was developed for quantifying financial risks associated with potential leakage from geologic carbon sequestration sites. PyLACE aims to assist a collaborative, analytic-deliberative decision making processes by automating metamodel creation, knowledge sharing, and online collaboration. In PyLACE, metamodeling, which is a process of developing faster-to-run surrogates of process-level models, is enabled using a special stochastic response surface method and the Gaussian process regression. Both methods allow consideration of model parameter uncertainties and the use of that information to generate confidence intervals on model outputs. Training of the metamodels is delegated to a high performance computing cluster and is orchestrated by a set of asynchronous job scheduling tools for job submission and result retrieval. As a case study, workflow and main features of PyLACE are demonstrated using a multilayer, carbon storage model.

  7. Hazard assessment of nitrosamine and nitramine by-products of amine-based CCS: alternative approaches.

    PubMed

    Buist, H E; Devito, S; Goldbohm, R A; Stierum, R H; Venhorst, J; Kroese, E D

    2015-04-01

    Carbon capture and storage (CCS) technologies are considered vital and economic elements for achieving global CO2 reduction targets, and is currently introduced worldwide (for more information on CCS, consult for example the websites of the International Energy Agency (http://www.iea.org/topics/ccs/) and the Global CCS Institute (http://www.globalccsinstitute.com/)). One prominent CCS technology, the amine-based post-combustion process, may generate nitrosamines and their related nitramines as by-products, the former well known for their potential mutagenic and carcinogenic properties. In order to efficiently assess the carcinogenic potency of any of these by-products this paper reviews and discusses novel prediction approaches consuming less time, money and animals than the traditionally applied 2-year rodent assay. For this, available animal carcinogenicity studies with N-nitroso compounds and nitramines have been used to derive carcinogenic potency values, that were subsequently used to assess the predictive performance of alternative prediction approaches for these chemicals. Promising cancer prediction models are the QSARs developed by the Helguera group, in vitro transformation assays, and the in vivo initiation-promotion, and transgenic animal assays. All these models, however, have not been adequately explored for this purpose, as the number of N-nitroso compounds investigated is yet too limited, and therefore further testing with relevant N-nitroso compounds is needed. Copyright © 2015. Published by Elsevier Inc.

  8. Greenhouse gas mitigation in a carbon constrained world - the role of CCS in Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumacher, Katja; Sands, Ronald D.

    2009-01-05

    In a carbon constrained world, at least four classes of greenhouse gas mitigation options are available: energy efficiency, switching to low or carbon-free energy sources, introduction of carbon dioxide capture and storage along with electric generating technologies, and reductions in emissions of non-CO2 greenhouse gases. The contribution of each option to overall greenhouse gas mitigation varies by cost, scale, and timing. In particular, carbon dioxide capture and storage (CCS) promises to allow for low-emissions fossil-fuel based power generation. This is particularly relevant for Germany, where electricity generation is largely coal-based and, at the same time, ambitious climate targets are inmore » place. Our objective is to provide a balanced analysis of the various classes of greenhouse gas mitigation options with a particular focus on CCS for Germany. We simulate the potential role of advanced fossil fuel based electricity generating technologies with CCS (IGCC, NGCC) as well the potential for retrofit with CCS for existing and currently built fossil plants from the present through 2050. We employ a computable general equilibrium (CGE) economic model as a core model and integrating tool.« less

  9. On the feasibility of borehole-to-surface electromagnetics for monitoring CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Wilson, G. A.; Zhdanov, M. S.; Hibbs, A. D.; Black, N.; Gribenko, A. V.; Cuma, M.; Agundes, A.; Eiskamp, G.

    2012-12-01

    Carbon capture and storage (CCS) projects rely on storing supercritical CO2 in deep saline reservoirs where buoyancy forces drive the injected CO2 upward into the aquifer until a seal is reached. The permanence of the sequestration depends entirely on the long-term geological integrity of the seal. Active geophysical monitoring of the sequestration is critical for informing CO2 monitoring, accounting and verification (MVA) decisions. During injection, there exists a correlation between the changes in CO2 and water saturations in a saline reservoir. Dissolved salts react with the CO2 to precipitate out as carbonates, thereby generally decreasing the electrical resistivity. As a result, there is a correlation between the change in fluid saturation and measured electromagnetic (EM) fields. The challenge is to design an EM survey appropriate for monitoring large, deep reservoirs. Borehole-to-surface electromagnetic (BSEM) surveys consist of borehole-deployed galvanic transmitters and a surface-based array of electric and magnetic field sensors. During a recent field trial, it was demonstrated that BSEM could successfully identify the oil-water contact in the water-injection zone of a carbonate reservoir. We review the BSEM methodology, and perform full-field BSEM modeling. The 3D resistivity models used in this study are based on dynamic reservoir simulations of CO2 injection into a saline reservoir. Although the electric field response at the earth's surface is low, we demonstrate that it can be accurately measured and processed with novel methods of noise cancellation and sufficient stacking over the period of monitoring to increase the signal-to-noise ratio for subsequent seismic- and well-constrained 3D inversion. For long-term or permanent monitoring, we discuss the deployment of novel electric field sensors with chemically inert electrodes that couple to earth in a capacitive manner. This capacitive coupling is a purely EM phenomenon, which, to first order, has no temperature, ionic concentration or corrosion effects and has unprecedented fidelity. This makes the capacitive E-field sensor ideal for CCS applications which require very stable operation over a wide range of ground temperature and moisture level variation, for extended periods of time.

  10. Evaluating CO2 mineralization capacity of sedimentary rock Using BCR sequential extraction procedures

    NASA Astrophysics Data System (ADS)

    Yang, Gang-Ting; Yu, Chi-Wen; Yang, Hsiao-Ming; Chiao, Chung-Hui; Yang, Ming-Wei

    2015-04-01

    To relief the high concentration of carbon dioxide in the atmosphere, carbon capture and storage (CCS) is gradually becoming an important concept to reduce greenhouse gas emissions. In IPCC Special Report on CCS, the storage mechanisms for geological formations are categorized into structural/stratigraphic, hydrodynamic and geochemical trappings. Geochemical trapping is considered as a storage mechanism, which can further increase storage capacity, effectiveness and security in terms of permanent CO2 sequestration. The injected CO2 can have geochemical interactions with pore fluid and reservoir rocks and transform into minerals. It is important to evaluate the capacity of reservoir rock for sequestrating CO2. In this study, sedimentary rock samples were collected from a 2-km-deep well in Midwestern Taiwan; and, the BCR sequential extraction experiments developed by European Union Measurement and Testing Programme were conducted. BCR was designed for extracting three major phases from soil, including exchangeable phase and carbonates (the first stage), reducible phase (the second stage) and oxidizable phase (the third stage). The chemistry of extracted solutions and rock residues were measured with ICP-MS and XRF, respectively. According to the results of XRF, considerable amounts of calcium and iron can be extracted by BCR procedures but other cations are negligible. In general, shale has a higher capacity of CO2 sequestration than sandstone. The first stage of extraction can release about 6 (sandstone) to 18.5 (shale) g of calcium from 1 kg rock, which are equivalent to 6.6 and 20.4 g CO2/kg rock, respectively. In the second stage extraction, 0.71 (sandstone) to 1.38 (shale) g/kg rock of iron can be released and can mineralized 0.56 to 1.08 g CO2/kg rock. However, there are no considerable cations extracted in the third stage of BCR as shown by the XRF analysis. In addition, the results of ICP-MS show that Mg can be released in the order of 10-3 g from 1 kg rock while cations of Zn, Co, Ni, Cd, Pb, Cu and Ba are in the order of 10-4 g.

  11. Negative emissions technologies and carbon capture and storage to achieve the Paris Agreement commitments.

    PubMed

    Haszeldine, R Stuart; Flude, Stephanie; Johnson, Gareth; Scott, Vivian

    2018-05-13

    How will the global atmosphere and climate be protected? Achieving net-zero CO 2 emissions will require carbon capture and storage (CCS) to reduce current GHG emission rates, and negative emissions technology (NET) to recapture previously emitted greenhouse gases. Delivering NET requires radical cost and regulatory innovation to impact on climate mitigation. Present NET exemplars are few, are at small-scale and not deployable within a decade, with the exception of rock weathering, or direct injection of CO 2 into selected ocean water masses. To keep warming less than 2°C, bioenergy with CCS (BECCS) has been modelled but does not yet exist at industrial scale. CCS already exists in many forms and at low cost. However, CCS has no political drivers to enforce its deployment. We make a new analysis of all global CCS projects and model the build rate out to 2050, deducing this is 100 times too slow. Our projection to 2050 captures just 700 Mt CO 2  yr -1 , not the minimum 6000 Mt CO 2  yr -1 required to meet the 2°C target. Hence new policies are needed to incentivize commercial CCS. A first urgent action for all countries is to commercially assess their CO 2 storage. A second simple action is to assign a Certificate of CO 2 Storage onto producers of fossil carbon, mandating a progressively increasing proportion of CO 2 to be stored. No CCS means no 2°C.This article is part of the theme issue 'The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. © 2018 The Author(s).

  12. Negative emissions technologies and carbon capture and storage to achieve the Paris Agreement commitments

    NASA Astrophysics Data System (ADS)

    Haszeldine, R. Stuart; Flude, Stephanie; Johnson, Gareth; Scott, Vivian

    2018-05-01

    How will the global atmosphere and climate be protected? Achieving net-zero CO2 emissions will require carbon capture and storage (CCS) to reduce current GHG emission rates, and negative emissions technology (NET) to recapture previously emitted greenhouse gases. Delivering NET requires radical cost and regulatory innovation to impact on climate mitigation. Present NET exemplars are few, are at small-scale and not deployable within a decade, with the exception of rock weathering, or direct injection of CO2 into selected ocean water masses. To keep warming less than 2°C, bioenergy with CCS (BECCS) has been modelled but does not yet exist at industrial scale. CCS already exists in many forms and at low cost. However, CCS has no political drivers to enforce its deployment. We make a new analysis of all global CCS projects and model the build rate out to 2050, deducing this is 100 times too slow. Our projection to 2050 captures just 700 Mt CO2 yr-1, not the minimum 6000 Mt CO2 yr-1 required to meet the 2°C target. Hence new policies are needed to incentivize commercial CCS. A first urgent action for all countries is to commercially assess their CO2 storage. A second simple action is to assign a Certificate of CO2 Storage onto producers of fossil carbon, mandating a progressively increasing proportion of CO2 to be stored. No CCS means no 2°C. This article is part of the theme issue `The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.

  13. A HIERARCHICAL MODELING FRAMEWORK FOR GEOLOGICAL STORAGE OF CARBON DIOXIDE

    EPA Science Inventory

    Carbon Capture and Storage, or CCS, is likely to be an important technology in a carbonconstrained world. CCS will involve subsurface injection of massive amounts of captured CO2, on a scale that has not previously been approached. The unprecedented scale of t...

  14. The Value of CCS under Current Policy Scenarios: NDCs and Beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Casie L.; Dahowski, Robert T.; McJeon, Haewon C.

    This paper describes preliminary results of analysis using the Global Change Assessment Model (GCAM) to evaluate the potential role of CCS in addressing emissions reduction targets. Scenarios are modelled using the Paris-Increased Ambition (PIA) case developed by Fawcett et al. (2015), and a more aggressive Paris Two-Degree Ambition (P2A) case. Both cases are based upon nationally determined contributions (NDCs) agreed to at the UNFCCC Conference of Parties (COP-21) in December 2015, coupled with additional mitigation effort beyond the 2030 Paris timeframe, through the end of the century. Analysis of CCS deployment and abatement costs under both policy scenarios suggests that,more » as modelled, having CCS in the technological portfolio could reduce the global cost of addressing emissions reduction targets specified under the policy scenario by trillions of dollars, primarily by enabling a smoother and lower-cost transition to next-generation technologies. Through the end of the century, total global abatement costs associated with the PIA case – with five percent annual reduction in emission intensity and reaching 2.2 degrees by 2100 – are reduced by $15 trillion USD in the scenario where CCS is available to deploy by 2025 and remains available through 2100, reflecting a 47 percent savings in the cost of climate change abatement. Under the more ambitious P2A case, with 8 percent annual reduction in emission intensity and reaching 1.9 degrees by 2100, the availability of CCS reduces global abatement costs by $22 trillion USD through the end of the century, again nearly halving the costs of addressing the policy, relative to achieving the same target using an energy portfolio that does not include CCS. PIA and P2A scenarios with CCS result in 1,250 and 1,580 GtCO2 of global geologic storage by the end of the century, respectively.« less

  15. Human Choice and CCS Deployment: What have we learned from the social sciences about CCS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dooley, James J.

    2013-08-20

    It is my pleasure to present this Virtual Special Issue of key social science papers that have been published in the International Journal of Greenhouse Gas Control (IJGCC). These papers show that the social science research community has significantly advanced the state-of-the-art from vague discussions about the “acceptance of CCS” to a body of deeply insightful and actionable knowledge about how CCS is likely to be framed and how framing will impact the ultimate deployment of CCS as a means of mitigating anthropogenic climate change. The papers assembled here shed light on core issues such as how do humans makemore » decisions about a new technology like CCS that they have no direct personal experience with and what is it is about “new” technologies that we find unsettling. These papers also speak to what are the best, and for that matter the worst, ways of presenting inherently highly technical information to lay audiences, including insights about the substance of the information, the form in which the information is delivered, and who delivers it. An extended editorial about this virtual special issue is freely available on ScienceDirect. I hope you find the papers contained in this Virtual Issue to be as informative and insightful as I do.« less

  16. Estimating environmental co-benefits of U.S. low-carbon pathways using an integrated assessment model with state-level resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ou, Yang; Shi, Wenjing; Smith, Steven J.

    There are many technological pathways that can lead to reduced carbon dioxide (CO 2) emissions. However, these pathways can have substantially different impacts on other environmental endpoints, such as air quality and energy-related water demand. This study uses an integrated assessment model with state-level resolution of the U.S. energy system to compare environmental impacts of alternative low-carbon pathways. One set of pathways emphasizes nuclear energy and carbon capture and storage (NUC/CCS), while another set emphasizes renewable energy (RE). These are compared with pathways in which all technologies are available. Air pollutant emissions, mortality costs attributable to particulate matter less thanmore » 2.5 microns in diameter (PM2.5), and energy-related water demands are evaluated for 50% and 80% CO 2 reduction targets in the U.S. in 2050. The RE low-carbon pathways require less water withdrawal and consumption than the NUC/CCS pathways because of the large cooling demands of nuclear power and CCS. However, the NUC/CCS low-carbon pathways produce greater health benefits, mainly because the NUC/CCS assumptions result in less primary PM2.5 emissions from residential wood combustion. Environmental co-benefits differ among states because of factors such as existing technology stock, resource availability, and environmental and energy policies. An important finding is that biomass in the building sector can offset some of the health co-benefits of the low-carbon pathways even though it plays only a minor role in reducing CO 2 emissions.« less

  17. The Role of Natural Gas Power Plants with Carbon Capture and Storage in a Low-Carbon Future

    EPA Science Inventory

    Natural gas combined-cycle (NGCC) turbines with carbon capture and storage (CCS) are a promising technology for reducing carbon dioxide (CO2) emissions in the electric sector. However, the high cost and efficiency penalties associated with CCS, as well as methane leakage from nat...

  18. Impact of knowledge and misconceptions on benefit and risk perception of CCS.

    PubMed

    Wallquist, Lasse; Visschers, Vivianne H M; Siegrist, Michael

    2010-09-01

    Carbon Dioxide Capture and Storage (CCS) is assumed to be one of the key technologies in the mitigation of climate change. Public acceptance may have a strong impact on the progress of this technology. Benefit perception and risk perception are known to be important determinants of public acceptance of CCS. In this study, the prevalence and effect of cognitive concepts underlying laypeople's risk perception and benefit perception of CCS were examined in a representative survey (N=654) in Switzerland. Results confirm findings from previous qualitative studies and show a quantification of a variety of widespread intuitive concepts that laypeople hold about storage mechanisms as well as about leakage and socioeconomic issues, which all appeared to influence risk perception and benefit perception. The perception of an overpressurized reservoir and concerns about diffuse impacts furthermore amplified risk perception. Appropriate images about storage mechanisms and climate change awareness were increasing the perception of benefits. Knowledge about CO2 seemed to lower both perceived benefits and perceived risks. Implications for risk communication and management are discussed.

  19. Lifetime of carbon capture and storage as a climate-change mitigation technology

    PubMed Central

    Szulczewski, Michael L.; MacMinn, Christopher W.; Herzog, Howard J.; Juanes, Ruben

    2012-01-01

    In carbon capture and storage (CCS), CO2 is captured at power plants and then injected underground into reservoirs like deep saline aquifers for long-term storage. While CCS may be critical for the continued use of fossil fuels in a carbon-constrained world, the deployment of CCS has been hindered by uncertainty in geologic storage capacities and sustainable injection rates, which has contributed to the absence of concerted government policy. Here, we clarify the potential of CCS to mitigate emissions in the United States by developing a storage-capacity supply curve that, unlike current large-scale capacity estimates, is derived from the fluid mechanics of CO2 injection and trapping and incorporates injection-rate constraints. We show that storage supply is a dynamic quantity that grows with the duration of CCS, and we interpret the lifetime of CCS as the time for which the storage supply curve exceeds the storage demand curve from CO2 production. We show that in the United States, if CO2 production from power generation continues to rise at recent rates, then CCS can store enough CO2 to stabilize emissions at current levels for at least 100 y. This result suggests that the large-scale implementation of CCS is a geologically viable climate-change mitigation option in the United States over the next century. PMID:22431639

  20. Cap-and-trade policy: The influence on investments in carbon dioxide reducing technologies in Indiana

    NASA Astrophysics Data System (ADS)

    Fahie, Monique

    With most of the energy produced in the state of Indiana coming from coal, the implementation of policy instruments such as cap-and-trade, which is included in the most recent climate bill, will have significant effects. This thesis provides an analysis of the effects that a cap-and-trade policy might have on the investment decisions for alternative technologies in the power plant sector in Indiana. Two economic models of representative coal-fired power plants, Gallagher (600MW) and Rockport (2600MW), are selected and used to evaluate the repowering decision of a plant for several technologies: integrated gasification combined cycle (IGCC), wind farm combined with natural gas combined cycle (NGCC) and supercritical pulverized coal (SCPC). The firm will make its decisions based on the net present value (NPV) of cost estimates for these CO2 reducing technologies, the cost of purchasing offsets and CO 2 allowances. This model is applied to a base case and three American Clean Energy and Security Act of 2009 cases derived from the Energy Information Administration (EIA, 2009b). A sensitivity analysis is done on the discount rate and capital costs. The results of the study indicate that a SCPC plant without carbon capture and storage (CCS) is the least costly compliance option for both plants under all of the cases while retrofitting the existing plant with CCS is the most expensive. Gallagher's three least expensive options across most scenarios were SCPC without CCS, the operation of the existing plant as is and investment in wind plus NGCC. Rockport's three least expensive compliance options across most scenarios were SCPC without CCS, the operation of the existing plant as is and IGCC without CCS. For both plants, when a 12% discount rate is utilized, NPV of costs are generally lower and the operation of the existing plant technology with the aid of allowances and offsets to be in compliance is the cheapest option. If capital costs were to decrease by 30%, a SCPC without CCS would remain the least costly option to invest in for both plants, but if costs were to increase by 30% operating the existing plant as is becomes the least pricey option.

  1. Discussion of the influence of CO and CH4 in CO2 transport, injection, and storage for CCS technology.

    PubMed

    Blanco, Sofía T; Rivas, Clara; Bravo, Ramón; Fernández, Javier; Artal, Manuela; Velasco, Inmaculada

    2014-09-16

    This paper discusses the influence of the noncondensable impurities CO and CH4 on Carbon Capture and Storage (CCS) technology. We calculated and drew conclusions about the impact of both impurities in the CO2 on selected transport, injection, and storage parameters (pipeline pressure drop, storage capacity, etc.), whose analysis is necessary for the safe construction and operation of CO2 pipelines and for the secure long-term geological storage of anthropogenic CO2. To calculate these parameters, it is necessary to acquire data on the volumetric properties and the vapor-liquid equilibrium of the fluid being subjected to CCS. In addition to literature data, we used new experimental data, which are presented here and were obtained for five mixtures of CO2+CO with compositions characteristic of the typical emissions of the E.U. and the U.S.A. Temperatures and pressures are based on relevant CO2 pipeline and geological storage site values. From our experimental results, Peng-Robinson, PC-SAFT, and GERG Equations of State for were validated CO2+CO under the conditions of CCS. We conclude that the concentration of both impurities strongly affects the studied parameters, with CO being the most influential and problematic. The overall result of these negative effects is an increase in the difficulties, risks, and overall costs of CCS.

  2. The Potential Role of Natural Gas Power Plants with Carbon Capture and Storage as a Bridge to a Low-Carbon Future

    EPA Science Inventory

    Natural gas combined-cycle (NGCC) turbines with carbon capture and storage (CCS) are a promising technology for reducing carbon dioxide (CO2) emissions in the electric sector. However, the high cost and efficiency penalties associated with CCS, as well as methane leakage from nat...

  3. Potential occupational risk of amines in carbon capture for power generation.

    PubMed

    Gentry, P Robinan; House-Knight, Tamara; Harris, Angela; Greene, Tracy; Campleman, Sharan

    2014-08-01

    While CO2 capture and storage (CCS) technology has been well studied in terms of its efficacy and cost of implementation, there is limited available data concerning the potential for occupational exposure to amines, mixtures of amines, or degradation of by-products from the CCS process. This paper is a critical review of the available data concerning the potential effects of amines and CCS-degradation by-products. A comprehensive review of the occupational health and safety issues associated with exposure to amines and amine by-products at CCS facilities was performed, along with a review of the regulatory status and guidelines of amines, by-products, and CCS process vapor mixtures. There are no specific guidelines or regulations regarding permissible levels of exposure via air for amines and degradation products that could form atmospheric oxidation of amines released from post-combustion CO2 capture plants. While there has been a worldwide effort to develop legal and regulatory frameworks for CCS, none are directly related to occupational exposures. By-products of alkanolamine degradation may pose the most significant health hazard to workers in CCS facilities, with several aldehydes, amides, nitramines, and nitrosamines classified as either known or potential/possible human carcinogens. The absence of large-scale CCS facilities; absence and unreliability of reported data in the literature from pilot facilities; and proprietary amine blends make it difficult to estimate potential amine exposures and predict formation and exposure to degradation products.

  4. Derate Mitigation Options for Pulverized Coal Power Plant Carbon Capture Retrofits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, Jeffrey W.; Hackett, Gregory A.; Lewis, Eric G.

    Carbon capture and storage (CCS) technologies available in the near-term for pulverized coal-fueled power plants (i.e., post combustion solvent technologies) require substantial capital investment and result in marked decrease in electricity available for sale to the grid. The impact to overall plant economics can be mitigated for new plant designs (where the entire plant can be optimized around the CCS system). However, existing coal-fueled power plants were designed without the knowledge or intent to retrofit a CCS process, and it is simply not possible to re-engineer an existing plant in a manner that it could achieve the same performance asmore » if it was originally designed and optimized for CCS technology. Pairing an auxiliary steam supply to the capture system is a technically feasible option to mitigate the derate resulting from diverting steam away from an existing steam turbine and continuing to run that turbine at steam flow rates and properties outside of the original design specifications. The results of this analysis strongly support the merits of meeting the steam and power requirements for a retrofitted post-combustion solvent based carbon dioxide (CO2) capture system with an auxiliary combined heat and power (CHP) plant rather than robbing the base plant (i.e., diverting steam from the existing steam cycle and electricity from sale to the grid).« less

  5. A Benchmark Study on Error Assessment and Quality Control of CCS Reads Derived from the PacBio RS

    PubMed Central

    Jiao, Xiaoli; Zheng, Xin; Ma, Liang; Kutty, Geetha; Gogineni, Emile; Sun, Qiang; Sherman, Brad T.; Hu, Xiaojun; Jones, Kristine; Raley, Castle; Tran, Bao; Munroe, David J.; Stephens, Robert; Liang, Dun; Imamichi, Tomozumi; Kovacs, Joseph A.; Lempicki, Richard A.; Huang, Da Wei

    2013-01-01

    PacBio RS, a newly emerging third-generation DNA sequencing platform, is based on a real-time, single-molecule, nano-nitch sequencing technology that can generate very long reads (up to 20-kb) in contrast to the shorter reads produced by the first and second generation sequencing technologies. As a new platform, it is important to assess the sequencing error rate, as well as the quality control (QC) parameters associated with the PacBio sequence data. In this study, a mixture of 10 prior known, closely related DNA amplicons were sequenced using the PacBio RS sequencing platform. After aligning Circular Consensus Sequence (CCS) reads derived from the above sequencing experiment to the known reference sequences, we found that the median error rate was 2.5% without read QC, and improved to 1.3% with an SVM based multi-parameter QC method. In addition, a De Novo assembly was used as a downstream application to evaluate the effects of different QC approaches. This benchmark study indicates that even though CCS reads are post error-corrected it is still necessary to perform appropriate QC on CCS reads in order to produce successful downstream bioinformatics analytical results. PMID:24179701

  6. A Benchmark Study on Error Assessment and Quality Control of CCS Reads Derived from the PacBio RS.

    PubMed

    Jiao, Xiaoli; Zheng, Xin; Ma, Liang; Kutty, Geetha; Gogineni, Emile; Sun, Qiang; Sherman, Brad T; Hu, Xiaojun; Jones, Kristine; Raley, Castle; Tran, Bao; Munroe, David J; Stephens, Robert; Liang, Dun; Imamichi, Tomozumi; Kovacs, Joseph A; Lempicki, Richard A; Huang, Da Wei

    2013-07-31

    PacBio RS, a newly emerging third-generation DNA sequencing platform, is based on a real-time, single-molecule, nano-nitch sequencing technology that can generate very long reads (up to 20-kb) in contrast to the shorter reads produced by the first and second generation sequencing technologies. As a new platform, it is important to assess the sequencing error rate, as well as the quality control (QC) parameters associated with the PacBio sequence data. In this study, a mixture of 10 prior known, closely related DNA amplicons were sequenced using the PacBio RS sequencing platform. After aligning Circular Consensus Sequence (CCS) reads derived from the above sequencing experiment to the known reference sequences, we found that the median error rate was 2.5% without read QC, and improved to 1.3% with an SVM based multi-parameter QC method. In addition, a De Novo assembly was used as a downstream application to evaluate the effects of different QC approaches. This benchmark study indicates that even though CCS reads are post error-corrected it is still necessary to perform appropriate QC on CCS reads in order to produce successful downstream bioinformatics analytical results.

  7. Influence of follicular fluid and cumulus cells on oocyte quality: clinical implications.

    PubMed

    Da Broi, M G; Giorgi, V S I; Wang, F; Keefe, D L; Albertini, D; Navarro, P A

    2018-03-02

    An equilibrium needs to be established by the cellular and acellular components of the ovarian follicle if developmental competence is to be acquired by the oocyte. Both cumulus cells (CCs) and follicular fluid (FF) are critical determinants for oocyte quality. Understanding how CCs and FF influence oocyte quality in the presence of deleterious systemic or pelvic conditions may impact clinical decisions in the course of managing infertility. Given that the functional integrities of FF and CCs are susceptible to concurrent pathological conditions, it is important to understand how pathophysiological factors influence natural fertility and the outcomes of pregnancy arising from the use of assisted reproduction technologies (ARTs). Accordingly, this review discusses the roles of CCs and FF in ensuring oocyte competence and present new insights on pathological conditions that may interfere with oocyte quality by altering the intrafollicular environment.

  8. Intro to Carbon Sequestration

    ScienceCinema

    None

    2017-12-09

    NETL's Carbon Sequestration Program is helping to develop technologies to capture, purify, and store carbon dioxide (CO2) in order to reduce greenhouse gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO2 that would otherwise reside in the atmosphere for long periods of time.

  9. Are renewables portfolio standards cost-effective emission abatement policy?

    PubMed

    Dobesova, Katerina; Apt, Jay; Lave, Lester B

    2005-11-15

    Renewables portfolio standards (RPS) could be an important policy instrument for 3P and 4P control. We examine the costs of renewable power, accounting for the federal production tax credit, the market value of a renewable credit, and the value of producing electricity without emissions of SO2, NOx, mercury, and CO2. We focus on Texas, which has a large RPS and is the largest U.S. electricity producer and one of the largest emitters of pollutants and CO2. We estimate the private and social costs of wind generation in an RPS compared with the current cost of fossil generation, accounting for the pollution and CO2 emissions. We find that society paid about 5.7 cent/kWh more for wind power, counting the additional generation, transmission, intermittency, and other costs. The higher cost includes credits amounting to 1.1 cent/kWh in reduced SO2, NOx, and Hg emissions. These pollution reductions and lower CO2 emissions could be attained at about the same cost using pulverized coal (PC) or natural gas combined cycle (NGCC) plants with carbon capture and sequestration (CCS); the reductions could be obtained more cheaply with an integrated coal gasification combined cycle (IGCC) plant with CCS.

  10. Monitoring Conformance and Containment for Geological Carbon Storage: Can Technology Meet Policy and Public Requirements?

    NASA Astrophysics Data System (ADS)

    Lawton, D. C.; Osadetz, K.

    2014-12-01

    The Province of Alberta, Canada identified carbon capture and storage (CCS) as a key element of its 2008 Climate Change strategy. The target is a reduction in CO2 emissions of 139 Mt/year by 2050. To encourage uptake of CCS by industry, the province has provided partial funding to two demonstration scale projects, namely the Quest Project by Shell and partners (CCS), and the Alberta Carbon Trunk Line Project (pipeline and CO2-EOR). Important to commercial scale implementation of CCS will be the requirement to prove conformance and containment of the CO2 plume injected during the lifetime of the CCS project. This will be a challenge for monitoring programs. The Containment and Monitoring Institute (CaMI) is developing a Field Research Station (FRS) to calibrate various monitoring technologies for CO2 detection thresholds at relatively shallow depths. The objective being assessed with the FRS is sensitivity for early detection of loss of containment from a deeper CO2 storage project. In this project, two injection wells will be drilled to sandstone reservoir targets at depths of 300 m and 700 m. Up to four observation wells will be drilled with monitoring instruments installed. Time-lapse surface and borehole monitoring surveys will be undertaken to evaluate the movement and fate of the CO2 plume. These will include seismic, microseismic, cross well, electrical resistivity, electromagnetic, gravity, geodetic and geomechanical surveys. Initial baseline seismic data from the FRS will presented.

  11. Fighting global warming by greenhouse gas removal: destroying atmospheric nitrous oxide thanks to synergies between two breakthrough technologies.

    PubMed

    Ming, Tingzhen; de Richter, Renaud; Shen, Sheng; Caillol, Sylvain

    2016-04-01

    Even if humans stop discharging CO2 into the atmosphere, the average global temperature will still increase during this century. A lot of research has been devoted to prevent and reduce the amount of carbon dioxide (CO2) emissions in the atmosphere, in order to mitigate the effects of climate change. Carbon capture and sequestration (CCS) is one of the technologies that might help to limit emissions. In complement, direct CO2 removal from the atmosphere has been proposed after the emissions have occurred. But, the removal of all the excess anthropogenic atmospheric CO2 will not be enough, due to the fact that CO2 outgases from the ocean as its solubility is dependent of its atmospheric partial pressure. Bringing back the Earth average surface temperature to pre-industrial levels would require the removal of all previously emitted CO2. Thus, the atmospheric removal of other greenhouse gases is necessary. This article proposes a combination of disrupting techniques to transform nitrous oxide (N2O), the third most important greenhouse gas (GHG) in terms of current radiative forcing, which is harmful for the ozone layer and possesses quite high global warming potential. Although several scientific publications cite "greenhouse gas removal," to our knowledge, it is the first time innovative solutions are proposed to effectively remove N2O or other GHGs from the atmosphere other than CO2.

  12. Impacts of potential CO2-reduction policies on air quality in the United States.

    PubMed

    Trail, Marcus A; Tsimpidi, Alexandra P; Liu, Peng; Tsigaridis, Kostas; Hu, Yongtao; Rudokas, Jason R; Miller, Paul J; Nenes, Athanasios; Russell, Armistead G

    2015-04-21

    Impacts of emissions changes from four potential U.S. CO2 emission reduction policies on 2050 air quality are analyzed using the community multiscale air quality model (CMAQ). Future meteorology was downscaled from the Goddard Institute for Space Studies (GISS) ModelE General Circulation Model (GCM) to the regional scale using the Weather Research Forecasting (WRF) model. We use emissions growth factors from the EPAUS9r MARKAL model to project emissions inventories for two climate tax scenarios, a combined transportation and energy scenario, a biomass energy scenario and a reference case. Implementation of a relatively aggressive carbon tax leads to improved PM2.5 air quality compared to the reference case as incentives increase for facilities to install flue-gas desulfurization (FGD) and carbon capture and sequestration (CCS) technologies. However, less capital is available to install NOX reduction technologies, resulting in an O3 increase. A policy aimed at reducing CO2 from the transportation sector and electricity production sectors leads to reduced emissions of mobile source NOX, thus reducing O3. Over most of the U.S., this scenario leads to reduced PM2.5 concentrations. However, increased primary PM2.5 emissions associated with fuel switching in the residential and industrial sectors leads to increased organic matter (OM) and PM2.5 in some cities.

  13. Innovative energy technologies and climate policy in Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumacher, Katja; Sands, Ronald D.

    2006-12-01

    Due to the size and structure of its economy, Germany is one of the largest carbon emitters in the European Union. However, Germany is facing a major renewal and restructuring process in electricity generation. Within the next two decades, up to 50% of current electricity generation capacity may retire because of end-of-plant lifetime and the nuclear phase-out pact of 1998. Substantial opportunities therefore exist for deployment of advanced electricity generating technologies in both a projected baseline and in alternative carbon policy scenarios. We simulate the potential role of coal integrated gasification combined cycle (IGCC), natural gas combined cycle (NGCC), carbonmore » dioxide capture and storage (CCS), and wind power within a computable general equilibrium of Germany from the present through 2050. These advanced technologies and their role within a future German electricity system are the focus of this paper. We model the response of greenhouse gas emissions in Germany to various technology and carbon policy assumptions over the next few decades. In our baseline scenario, all of the advanced technologies except CCS provide substantial contributions to electricity generation. We also calculate the carbon price where each fossil technology, combined with CCS, becomes competitive. Constant carbon price experiments are used to characterize the model response to a carbon policy. This provides an estimate of the cost of meeting an emissions target, and the share of emissions reductions available from the electricity generation sector.« less

  14. Response of Integrated CO 2 Capture and Storage Systems in Saline Aquifers and Fractured Shale Formations to Changes in CO 2 Capture Costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langenfeld, Julie K.; Bielicki, Jeffrey M.; Tao, Zhiyuan

    Fractured shale formations are new potential target reservoirs for CO 2 capture and storage (CCS) and provide several potential advantages over storage in saline aquifers in terms of storage capacity, leakage risk, and cost savings from brownfield development. Here, we used a geospatial-optimization, engineering-economic model to investigate the sensitivity of integrated CCS networks in Ohio, Pennsylvania, and West Virginia to reductions in CO 2 capture costs. The resulting reductions in CO 2 capture costs were based on hypothetical cases where technological innovation reduced CO 2 capture costs. There were also small differences in the spatial organization of the CCS deploymentmore » when the capture costs were reduced. We also found that the percent reduction in average cost of CCS systems became smaller as the CO 2 capture costs were decreased.« less

  15. Response of Integrated CO 2 Capture and Storage Systems in Saline Aquifers and Fractured Shale Formations to Changes in CO 2 Capture Costs

    DOE PAGES

    Langenfeld, Julie K.; Bielicki, Jeffrey M.; Tao, Zhiyuan; ...

    2017-08-18

    Fractured shale formations are new potential target reservoirs for CO 2 capture and storage (CCS) and provide several potential advantages over storage in saline aquifers in terms of storage capacity, leakage risk, and cost savings from brownfield development. Here, we used a geospatial-optimization, engineering-economic model to investigate the sensitivity of integrated CCS networks in Ohio, Pennsylvania, and West Virginia to reductions in CO 2 capture costs. The resulting reductions in CO 2 capture costs were based on hypothetical cases where technological innovation reduced CO 2 capture costs. There were also small differences in the spatial organization of the CCS deploymentmore » when the capture costs were reduced. We also found that the percent reduction in average cost of CCS systems became smaller as the CO 2 capture costs were decreased.« less

  16. Early atmospheric detection of carbon dioxide from carbon capture and storage sites.

    PubMed

    Pak, Nasrin Mostafavi; Rempillo, Ofelia; Norman, Ann-Lise; Layzell, David B

    2016-08-01

    The early atmospheric detection of carbon dioxide (CO2) leaks from carbon capture and storage (CCS) sites is important both to inform remediation efforts and to build and maintain public support for CCS in mitigating greenhouse gas emissions. A gas analysis system was developed to assess the origin of plumes of air enriched in CO2, as to whether CO2 is from a CCS site or from the oxidation of carbon compounds. The system measured CO2 and O2 concentrations for different plume samples relative to background air and calculated the gas differential concentration ratio (GDCR = -ΔO2/ΔCO2). The experimental results were in good agreement with theoretical calculations that placed GDCR values for a CO2 leak at 0.21, compared with GDCR values of 1-1.8 for the combustion of carbon compounds. Although some combustion plume samples deviated in GDCR from theoretical, the very low GDCR values associated with plumes from CO2 leaks provided confidence that this technology holds promise in providing a tool for the early detection of CO2 leaks from CCS sites. This work contributes to the development of a cost-effective technology for the early detection of leaks from sites where CO2 has been injected into the subsurface to enhance oil recovery or to permanently store the gas as a strategy for mitigating climate change. Such technology will be important in building public confidence regarding the safety and security of carbon capture and storage sites.

  17. Economic and Time-Sensitive Issues Surrounding CCS: A Policy Analysis.

    PubMed

    Maddali, Vijay; Tularam, Gurudeo Anand; Glynn, Patrick

    2015-08-04

    Are the existing global policies on combating global warming via the carbon capture and storage (CCS) method significant enough to curtail the temperature rise on time? We argue that it is already too late to have any reliance on CCS. The current status of CCS is that it is plagued by technical uncertainties, infrastructure, financial, and regulatory issues. The technology is far from maturity and, hence, commercialization. Simulations conducted in this work suggest that the relevance of CCS is completely defied if the annual emission growth rate is in excess of 2% between the years of 2015 and 2040. At such a growth rate, the annual emissions reduction between 2040 and 2100 will need to be in the vicinity of 5.5% by the year 2100. Considering an average annual emissions growth rate of 2.5% over the past decade, it seems unlikely that the emissions could be contained to a 2% growth level. CCS in its current shape and form is at odds with the economics of its implementation and the time in hand with which to play a significant role in a carbon mitigation strategy. There is an urgent need to rethink policies and strategies to combat global warming to at least some degree.

  18. A Survey of Measurement, Mitigation, and Verification Field Technologies for Carbon Sequestration Geologic Storage

    NASA Astrophysics Data System (ADS)

    Cohen, K. K.; Klara, S. M.; Srivastava, R. D.

    2004-12-01

    The U.S. Department of Energy's (U.S. DOE's) Carbon Sequestration Program is developing state-of-the-science technologies for measurement, mitigation, and verification (MM&V) in field operations of geologic sequestration. MM&V of geologic carbon sequestration operations will play an integral role in the pre-injection, injection, and post-injection phases of carbon capture and storage projects to reduce anthropogenic greenhouse gas emissions. Effective MM&V is critical to the success of CO2 storage projects and will be used by operators, regulators, and stakeholders to ensure safe and permanent storage of CO2. In the U.S. DOE's Program, Carbon sequestration MM&V has numerous instrumental roles: Measurement of a site's characteristics and capability for sequestration; Monitoring of the site to ensure the storage integrity; Verification that the CO2 is safely stored; and Protection of ecosystems. Other drivers for MM&V technology development include cost-effectiveness, measurement precision, and frequency of measurements required. As sequestration operations are implemented in the future, it is anticipated that measurements over long time periods and at different scales will be required; this will present a significant challenge. MM&V sequestration technologies generally utilize one of the following approaches: below ground measurements; surface/near-surface measurements; aerial and satellite imagery; and modeling/simulations. Advanced subsurface geophysical technologies will play a primary role for MM&V. It is likely that successful MM&V programs will incorporate multiple technologies including but not limited to: reservoir modeling and simulations; geophysical techniques (a wide variety of seismic methods, microgravity, electrical, and electromagnetic techniques); subsurface fluid movement monitoring methods such as injection of tracers, borehole and wellhead pressure sensors, and tiltmeters; surface/near surface methods such as soil gas monitoring and infrared sensors and; aerial and satellite imagery. This abstract will describe results, similarities, and contrasts for funded studies from the U.S. DOE's Carbon Sequestration Program including examples from the Sleipner North Sea Project, the Canadian Weyburn Field/Dakota Gasification Plant Project, the Frio Formation Texas Project, and Yolo County Bioreactor Landfill Project. The abstract will also address the following: How are the terms ``measurement,'' ``mitigation''and ``verification'' defined in the Program? What is the U.S. DOE's Carbon Sequestration Program Roadmap and what are the Roadmap goals for MM&V? What is the current status of MM&V technologies?

  19. Monetizing Leakage Risk of Geologic CO2 Storage using Wellbore Permeability Frequency Distributions

    NASA Astrophysics Data System (ADS)

    Bielicki, Jeffrey; Fitts, Jeffrey; Peters, Catherine; Wilson, Elizabeth

    2013-04-01

    Carbon dioxide (CO2) may be captured from large point sources (e.g., coal-fired power plants, oil refineries, cement manufacturers) and injected into deep sedimentary basins for storage, or sequestration, from the atmosphere. This technology—CO2 Capture and Storage (CCS)—may be a significant component of the portfolio of technologies deployed to mitigate climate change. But injected CO2, or the brine it displaces, may leak from the storage reservoir through a variety of natural and manmade pathways, including existing wells and wellbores. Such leakage will incur costs to a variety of stakeholders, which may affect the desirability of potential CO2 injection locations as well as the feasibility of the CCS approach writ large. Consequently, analyzing and monetizing leakage risk is necessary to develop CCS as a viable technological option to mitigate climate change. Risk is the product of the probability of an outcome and the impact of that outcome. Assessment of leakage risk from geologic CO2 storage reservoirs requires an analysis of the probabilities and magnitudes of leakage, identification of the outcomes that may result from leakage, and an assessment of the expected economic costs of those outcomes. One critical uncertainty regarding the rate and magnitude of leakage is determined by the leakiness of the well leakage pathway. This leakiness is characterized by a leakage permeability for the pathway, and recent work has sought to determine frequency distributions for the leakage permeabilities of wells and wellbores. We conduct a probabilistic analysis of leakage and monetized leakage risk for CO2 injection locations in the Michigan Sedimentary Basin (USA) using empirically derived frequency distributions for wellbore leakage permeabilities. To conduct this probabilistic risk analysis, we apply the RISCS (Risk Interference of Subsurface CO2 Storage) model (Bielicki et al, 2013a, 2012b) to injection into the Mt. Simon Sandstone. RISCS monetizes leakage risk by combining 3D geospatial data with fluid-flow simulations from the ELSA (Estimating Leakage Semi-Analytically) model (e.g., Celia and Nordbotten, 2006) and the Leakage Impact Valuation (LIV) method (Pollak et al, 2013; Bielicki et al, 2013). We extend RISCS to iterate ELSA semi-analytic modeling simulations by drawing values from the frequency distribution of leakage permeabilities. The iterations assign these values to existing wells in the basin, and the probabilistic risk analysis thus incorporates the uncertainty of the extent of leakage. We show that monetized leakage risk can vary significantly over tens of kilometers, and we identify "hot spots" favorable to CO2 injection based on the monetized leakage risk for each potential location in the basin.

  20. An Overview of the Computational Physics and Methods Group at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Randal Scott

    CCS Division was formed to strengthen the visibility and impact of computer science and computational physics research on strategic directions for the Laboratory. Both computer science and computational science are now central to scientific discovery and innovation. They have become indispensable tools for all other scientific missions at the Laboratory. CCS Division forms a bridge between external partners and Laboratory programs, bringing new ideas and technologies to bear on today’s important problems and attracting high-quality technical staff members to the Laboratory. The Computational Physics and Methods Group CCS-2 conducts methods research and develops scientific software aimed at the latest andmore » emerging HPC systems.« less

  1. Implementing PGD/PGD-A in IVF clinics: considerations for the best laboratory approach and management.

    PubMed

    Capalbo, Antonio; Romanelli, Valeria; Cimadomo, Danilo; Girardi, Laura; Stoppa, Marta; Dovere, Lisa; Dell'Edera, Domenico; Ubaldi, Filippo Maria; Rienzi, Laura

    2016-10-01

    For an IVF clinic that wishes to implement preimplantation genetic diagnosis for monogenic diseases (PGD) and for aneuploidy testing (PGD-A), a global improvement is required through all the steps of an IVF treatment and patient care. At present, CCS (Comprehensive Chromosome Screening)-based trophectoderm (TE) biopsy has been demonstrated as a safe, accurate and reproducible approach to conduct PGD-A and possibly also PGD from the same biopsy. Key challenges in PGD/PGD-A implementation cover genetic and reproductive counselling, selection of the most efficient approach for blastocyst biopsy as well as of the best performing molecular technique to conduct CCS and monogenic disease analysis. Three different approaches for TE biopsy can be compared. However, among them, the application of TE biopsy approaches, entailing the zona opening when the expanded blastocyst stage is reached, represent the only biopsy methods suited with a totally undisturbed embryo culture strategy (time lapse-based incubation in a single media). Moreover, contemporary CCS technologies show a different spectrum of capabilities and limits that potentially impact the clinical outcomes, the management and the applicability of the PGD-A itself. In general, CCS approaches that avoid the use of whole genome amplification (WGA) can provide higher reliability of results with lower costs and turnaround time of analysis. The future perspectives are focused on the scrupulous and rigorous clinical validations of novel CCS methods based on targeted approaches that avoid the use of WGA, such as targeted next-generation sequencing technology, to further improve the throughput of analysis and the overall cost-effectiveness of PGD/PGD-A.

  2. Reviews on current carbon emission reduction technologies and projects and their feasibilities on ships

    NASA Astrophysics Data System (ADS)

    Wang, Haibin; Zhou, Peilin; Wang, Zhongcheng

    2017-06-01

    Concern about global climate change is growing, and many projects and researchers are committed to reducing greenhouse gases from all possible sources. International Maritime (IMO) has set a target of 20% CO2 reduction from shipping by 2020 and also presented a series of carbon emission reduction methods, which are known as Energy Efficiency Design Index (EEDI) and Energy Efficiency Operation Indicator (EEOI). Reviews on carbon emission reduction from all industries indicate that, Carbon Capture and Storage (CCS) is an excellent solution to global warming. In this paper, a comprehensive literature review of EEDI and EEOI and CCS is conducted and involves reviewing current policies, introducing common technologies, and considering their feasibilities for marine activities, mainly shipping. Current projects are also presented in this paper, thereby illustrating that carbon emission reduction has been the subject of attention from all over the world. Two case ship studies indicate the economic feasibility of carbon emission reduction and provide a guide for CCS system application and practical installation on ships.

  3. The U. S. DOE Carbon Storage Program: Status and Future Directions

    NASA Astrophysics Data System (ADS)

    Damiani, D.

    2016-12-01

    The U.S. Department of Energy (DOE) is taking steps to reduce carbon dioxide (CO2) emissions through clean energy innovation, including carbon capture and storage (CCS) research. The Office of Fossil Energy Carbon Storage Program is focused on ensuring the safe and permanent storage and/or utilization of CO2 captured from stationary sources. The Program is developing and advancing geologic storage technologies both onshore and offshore that will significantly improve the effectiveness of CCS, reduce the cost of implementation, and be ready for widespread commercial deployment in the 2025-2035 timeframe. The technology development and field testing conducted through this Program will be used to benefit the existing and future fleet of fossil fuel power generating and industrial facilities by creating tools to increase our understanding of geologic reservoirs appropriate for CO2 storage and the behavior of CO2 in the subsurface. The Program is evaluating the potential for storage in depleted oil and gas reservoirs, saline formations, unmineable coal, organic-rich shale formations, and basalt formations. Since 1997, DOE's Carbon Storage Program has significantly advanced the CCS knowledge base through a diverse portfolio of applied research projects. The Core Storage R&D research component focuses on analytic studies, laboratory, and pilot- scale research to develop technologies that can improve wellbore integrity, increase reservoir storage efficiency, improve management of reservoir pressure, ensure storage permanence, quantitatively assess risks, and identify and mitigate potential release of CO2 in all types of storage formations. The Storage Field Management component focuses on scale-up of CCS and involves field validation of technology options, including large-volume injection field projects at pre-commercial scale to confirm system performance and economics. Future research involves commercial-scale characterization for regionally significant storage locations capable of storing from 50 to 100 million metric tons of CO2 in a saline formation. These projects will lay the foundation for fully integrated carbon capture and storage demonstrations of future first of a kind (FOAK) coal power projects. Future research will also bring added focus on offshore CCS.

  4. Overview of superconductivity in Japan Strategy road map and R&D status

    NASA Astrophysics Data System (ADS)

    Tsukamoto, O.

    2008-09-01

    Superconducting technology benefits society in broad fields; environment/energy, life science, manufacturing industry and information and communication. Superconducting equipments and devices used in various fields are divided into two categories, electric and electronic applications. Technologies in those applications are progressing remarkably owing to firm and consistent supports by various national projects. The final target of the NEDO R&D project of fundamental technology for superconductivity applications to develop 500 m long coated conductors (CCs) of the critical current 300 A/cm (at 77 K, 0 T) will be fulfilled by the end of JFY 2007 and manufacturing process to produce extremely low-cost CCs is to be developed to make the applications realistic. Preliminary works to develop power apparatuses using CCs have started in the frame of the R&D project for the fundamental technology and have produced significant results. Performance of BSCCO/Ag-sheathed wires has been improved greatly and various applications using those wires are being developed. R&D projects for SMES, power cable, flywheel energy storage and rotating machines are going to introduce those equipments to the real world. Technologies of SQUID and SFQ, basic devices of the electronic applications, are progressing dramatically also owing to various national projects. In this back ground the technology strategy map in the field of superconducting technology was formulated to prioritize investments in R&D by clearly defining the objectives and inspire autonomous R&D actives in various fields of industries. R&D activities in the superconducting technologies are to be scheduled following this strategy map.

  5. Long-term energy and climate implications of carbon capture and storage deployment strategies in the US coal-fired electricity fleet.

    PubMed

    Sathre, Roger; Masanet, Eric

    2012-09-04

    To understand the long-term energy and climate implications of different implementation strategies for carbon capture and storage (CCS) in the US coal-fired electricity fleet, we integrate three analytical elements: scenario projection of energy supply systems, temporally explicit life cycle modeling, and time-dependent calculation of radiative forcing. Assuming continued large-scale use of coal for electricity generation, we find that aggressive implementation of CCS could reduce cumulative greenhouse gas emissions (CO(2), CH(4), and N(2)O) from the US coal-fired power fleet through 2100 by 37-58%. Cumulative radiative forcing through 2100 would be reduced by only 24-46%, due to the front-loaded time profile of the emissions and the long atmospheric residence time of CO(2). The efficiency of energy conversion and carbon capture technologies strongly affects the amount of primary energy used but has little effect on greenhouse gas emissions or radiative forcing. Delaying implementation of CCS deployment significantly increases long-term radiative forcing. This study highlights the time-dynamic nature of potential climate benefits and energy costs of different CCS deployment pathways and identifies opportunities and constraints of successful CCS implementation.

  6. Assessment of Brine Management for Geologic Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breunig, Hanna M.; Birkholzer, Jens T.; Borgia, Andrea

    2013-06-13

    Geologic carbon sequestration (GCS) is the injection of carbon dioxide (CO 2), typically captured from stationary emission sources, into deep geologic formations to prevent its entry into the atmosphere. Active pilot facilities run by regional United States (US) carbon sequestration partnerships inject on the order of one million metric tonnes (mt) CO 2 annually while the US electric power sector emits over 2000 million mt-CO 2 annually. GCS is likely to play an increasing role in US carbon mitigation initiatives, but scaling up GCS poses several challenges. Injecting CO 2 into sedimentary basins raises fluid pressure in the pore space,more » which is typically already occupied by naturally occurring, or native, brine. The resulting elevated pore pressures increase the likelihood of induced seismicity, of brine or CO 2 escaping into potable groundwater resources, and of CO 2 escaping into the atmosphere. Brine extraction is one method for pressure management, in which brine in the injection formation is brought to the surface through extraction wells. Removal of the brine makes room for the CO 2 and decreases pressurization. Although the technology required for brine extraction is mature, this form of pressure management will only be applicable if there are cost-­effective and sustainable methods of disposing of the extracted brine. Brine extraction, treatment, and disposal may increase the already substantial capital, energy, and water demands of Carbon dioxide Capture and Sequestration (CCS). But, regionally specific brine management strategies may be able to treat the extracted water as a source of revenue, energy, and water to subsidize CCS costs, while minimizing environmental impacts. By this approach, value from the extracted water would be recovered before disposing of any resulting byproducts. Until a price is placed on carbon, we expect that utilities and other CO 2 sources will be reluctant to invest in capital intensive, high risk GCS projects; early technical, economic, and environmental assessments of brine management are extremely valuable for determining the potential role of GCS in the US. We performed a first order feasibility and economic assessment, at three different locations in the US, of twelve GCS extracted-­water management options, including: geothermal energy extraction, desalination, salt and mineral harvesting, rare-­earth element harvesting, aquaculture, algae biodiesel production, road de-­icing, enhanced geothermal system (EGS) recharge, underground reinjection, landfill disposal, ocean disposal, and evaporation pond disposal. Three saline aquifers from different regions of the US were selected as hypothetical GCS project sites to encompass variation in parameters that are relevant to the feasibility and economics of brine disposal. The three aquifers are the southern Mt. Simon Sandstone Formation in the Illinois Basin, IL; the Vedder Formation in the southern San Joaquin Basin, CA; and the Jasper Interval in the eastern Texas Gulf Basin, TX. These aquifers are candidates for GCS due to their physical characteristics and their close proximity to large CO 2 emission sources. Feasibility and impacts were calculated using one mt-­CO 2 injected as the functional unit of brine management. Scenarios were performed for typical 1000MW coal-­fired power plants (CFPP) that incurred an assumed 24 percent carbon capture energy penalty (EP), injected 90 percent of CO 2 emissions (~9 million mt-­ CO 2 injected annually), and treated extracted water onsite. Net present value (NPV), land requirements, laws and regulations, and technological limits were determined for each stage of disposal, and used to estimate feasibility. The boundary of the assessment began once extracted water was brought to the surface, and ended once the water evaporated, was injected underground, or was discharged into surface water bodies. Results of the assessment were generated, stored, and analyzed using Microsoft Excel spreadsheets and ESRI Geographical Information System (GIS) maps. Conclusions about the relative benefits and impacts of alternative brine-­management strategies were highly sensitive to local climate and weather, and aquifer water chemistry. The NPV of certain scenarios ranged from -­$50/mt-­CO 2 (a cost) to +$10/mt-­CO 2 (revenue). The land footprint of the scenarios in this study ranged from <1 km 2 to 100 km 2. Brine extraction as a pressure management tool for GCS has potential for improving the economics and for minimizing the environmental impacts of CCS. In order to maximize this potential, careful analysis of each saline aquifer and region must be conducted to determine a regionally appropriate brine use sequence (BUS) at the time of site selection. Models that use GIS will be essential tools in determining such sequences for individual CFPP. Future studies that perform risk and life cycle assessments (LCA) of BUS scenarios, incorporate additional impact metrics into the BUS model, and enhance the temporal sensitivity of the model would improve the robustness of this regional assessment method.« less

  7. Early atmospheric detection of carbon dioxide from carbon capture and storage sites

    PubMed Central

    Pak, Nasrin Mostafavi; Rempillo, Ofelia; Norman, Ann-Lise; Layzell, David B.

    2016-01-01

    ABSTRACT The early atmospheric detection of carbon dioxide (CO2) leaks from carbon capture and storage (CCS) sites is important both to inform remediation efforts and to build and maintain public support for CCS in mitigating greenhouse gas emissions. A gas analysis system was developed to assess the origin of plumes of air enriched in CO2, as to whether CO2 is from a CCS site or from the oxidation of carbon compounds. The system measured CO2 and O2 concentrations for different plume samples relative to background air and calculated the gas differential concentration ratio (GDCR = −ΔO2/ΔCO2). The experimental results were in good agreement with theoretical calculations that placed GDCR values for a CO2 leak at 0.21, compared with GDCR values of 1–1.8 for the combustion of carbon compounds. Although some combustion plume samples deviated in GDCR from theoretical, the very low GDCR values associated with plumes from CO2 leaks provided confidence that this technology holds promise in providing a tool for the early detection of CO2 leaks from CCS sites.  Implications: This work contributes to the development of a cost-effective technology for the early detection of leaks from sites where CO2 has been injected into the subsurface to enhance oil recovery or to permanently store the gas as a strategy for mitigating climate change. Such technology will be important in building public confidence regarding the safety and security of carbon capture and storage sites. PMID:27111469

  8. Study on the methodology of road carbon sink forest

    NASA Astrophysics Data System (ADS)

    Wan, Lijuan; Zhang, Yi; Cheng, Dongxiang; Huang, Yanan

    2017-01-01

    Advanced concepts of forest carbon sink and forestry carbon sequestration are introduced in road carbon sink forest project and the measurement and carbon monitoring of road carbon sink forest are explored. Experience and technology are accumulated and a set of the carbon sequestration forestation and carbon measurement and monitoring technology systems on both sides of road are formed. To update the green concept, improve the forestation quality along road and to enhanced sequestration and ecological efficiency, it is important to realize the traffic low carbon and energy saving and emission reduction. To use scientific planting and monitoring methods, soil properties, carbon sequestration of soil organic carbon pool, and carbon sequestration capacity of different species of trees were studied and monitored. High carbon sequestration species selection, silvicultural management, measurement of carbon sink and carbon monitoring are explored.

  9. Mineralization of Carbon Dioxide: Literature Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, V; Soong, Y; Carney, C

    2015-01-01

    CCS research has been focused on CO2 storage in geologic formations, with many potential risks. An alternative to conventional geologic storage is carbon mineralization, where CO2 is reacted with metal cations to form carbonate minerals. Mineralization methods can be broadly divided into two categories: in situ and ex situ. In situ mineralization, or mineral trapping, is a component of underground geologic sequestration, in which a portion of the injected CO2 reacts with alkaline rock present in the target formation to form solid carbonate species. In ex situ mineralization, the carbonation reaction occurs above ground, within a separate reactor or industrialmore » process. This literature review is meant to provide an update on the current status of research on CO2 mineralization. 2« less

  10. Impact of naturally leaking carbon dioxide on soil properties and ecosystems in the Qinghai-Tibet plateau.

    PubMed

    Zhao, Xiaohong; Deng, Hongzhang; Wang, Wenke; Han, Feng; Li, Chunrong; Zhang, Hui; Dai, Zhenxue

    2017-06-07

    One of the major concerns for CO 2 capture and storage (CCS) is the potential risk of CO 2 leakage from storage reservoirs on the shallow soil property and vegetation. This study utilizes a naturally occurring CO 2 leaking site in the Qinghai-Tibet Plateau to analog a "leaking CCS site". Our observations from this site indicates that long-term CO 2 invasion in the vadose zone results in variations of soil properties, such as pH fluctuation, slight drop of total organic carbon, reduction of nitrogen and phosphorus, and concentration changes of soluble ions. Simultaneously, XRD patterns of the soil suggest that crystallization of soil is enhanced and mineral contents of calcite and anorthite in soil are increased substantially. Parts of the whole ecosystem such as natural wild plants, soil dwelling animals and microorganisms in shallow soil are affected as well. Under a moderate CO 2 concentration (less than 110000 ppm), wild plant growth and development are improved, while an intensive CO 2 flux over 112000 ppm causes adverse effects on the plant growth, physiological and biochemical system of plants, and crop quality of wheat. Results of this study provide valuable insight for understanding the possible environmental impacts associated with potential CO 2 leakage into shallow sediments at carbon sequestration sites.

  11. Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Benjamin; Genovese, Sarah; Perry, Robert

    2013-12-31

    A bench-scale system was designed and built to test an aminosilicone-based solvent. A model was built of the bench-scale system and this model was scaled up to model the performance of a carbon capture unit, using aminosilicones, for CO{sub 2} capture and sequestration (CCS) for a pulverized coal (PC) boiler at 550 MW. System and economic analysis for the carbon capture unit demonstrates that the aminosilicone solvent has significant advantages relative to a monoethanol amine (MEA)-based system. The CCS energy penalty for MEA is 35.9% and the energy penalty for aminosilicone solvent is 30.4% using a steam temperature of 395more » °C (743 °F). If the steam temperature is lowered to 204 °C (400 °F), the energy penalty for the aminosilicone solvent is reduced to 29%. The increase in cost of electricity (COE) over the non-capture case for MEA is ~109% and increase in COE for aminosilicone solvent is ~98 to 103% depending on the solvent cost at a steam temperature of 395 °C (743 °F). If the steam temperature is lowered to 204 °C (400 °F), the increase in COE for the aminosilicone solvent is reduced to ~95-100%.« less

  12. Biorefineries based on coffee cut-stems and sugarcane bagasse: furan-based compounds and alkanes as interesting products.

    PubMed

    Aristizábal M, Valentina; Gómez P, Álvaro; Cardona A, Carlos A

    2015-11-01

    This work presents a techno-economic and environmental assessment for a biorefinery based on sugarcane bagasse (SCB), and coffee cut-stems (CCS). Five scenarios were evaluated at different levels, conversion pathways, feedstock distribution, and technologies to produce ethanol, octane, nonane, furfural, and hydroxymethylfurfural (HMF). These scenarios were compared between each other according to raw material, economic, and environmental characteristics. A single objective function combining the Net Present Value and the Potential Environmental Impact was used through the Analytic Hierarchy Process approach to understand and select the best configurations for SCB and CCS cases. The results showed that the configuration with the best economic and environmental performance for SCB and CCS is the one that considers ethanol, furfural, and octane production (scenario 1). The global economic margin was 62.3% and 61.6% for SCB and CCS respectively. The results have shown the potential of these types of biomass to produce fuels and platform products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Seismic Monitoring at the Decatur, IL, Geologic Carbon Dioxide Sequestration Site

    NASA Astrophysics Data System (ADS)

    Hickman, S. H.; Kaven, J. O.; McGarr, A.; Walter, S. R.; Ellsworth, W. L.; Svitek, J. F.; Burke, L. A.

    2014-12-01

    The viability of carbon capture and storage (CCS) depends on safely sequestering large quantities of carbon dioxide over geologic time scales. One concern is the potential for induced seismicity. We report on seismic monitoring by the U.S. Geological Survey (USGS) at a CCS demonstration site in Decatur, IL. This is the first (and to date only) CCS project in the U.S. to inject large volumes of CO2 into an extensive undisturbed saline reservoir, and thus serves as an important test for future industrial-scale CCS projects. At Decatur, supercritical CO2 is injected at 2.1 km depth into the Mt. Simon Sandstone, which directly overlies granitic basement. The primary sealing cap is the Eau Claire Shale at a depth of about 1.5 km. The Illinois State Geological Survey (ISGS) manages the ongoing Illinois Basin - Decatur Project, a three-year project beginning in November 2011 during which CO2 is injected at an average rate of 1000 metric tons/day. Archer Daniels Midland (ADM) manages the nearby Illinois Industrial Carbon Capture and Storage project, which, pending permit approval, plans to inject 3000 metric tons/day for five years. The USGS seismic network was installed starting in July 2013 and consists of 12 stations, three of which include borehole sensors at depths of 150 m. The aperture of this network is roughly 8 km, centered on the injection well. A one-dimensional velocity model was derived from a vertical seismic profile survey acquired by ADM and the ISGS to a depth of 2.2 km, tied into acoustic logs from a deep observation well and the USGS borehole stations. This model was used together with absolute and double-difference techniques to locate seismic events. These events group into two clusters: 0.4 to 1.0 km NE and 1.8 to 2.6 km WNW from the injection well, with moment magnitudes ranging from -0.8 to 1.1. Most of these events are in the granitic basement, well below the cap rock, and are unlikely to have compromised the integrity of the seal.

  14. Carbon Dioxide Separation from Flue Gases: A Technological Review Emphasizing Reduction in Greenhouse Gas Emissions

    PubMed Central

    Songolzadeh, Mohammad; Soleimani, Mansooreh; Takht Ravanchi, Maryam; Songolzadeh, Reza

    2014-01-01

    Increasing concentrations of greenhouse gases (GHGs) such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS) is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion capture is the most important one because it offers flexibility and it can be easily added to the operational units. Various technologies are used for CO2 capture, some of them include: absorption, adsorption, cryogenic distillation, and membrane separation. In this paper, various technologies for post-combustion are compared and the best condition for using each technology is identified. PMID:24696663

  15. Carbon dioxide separation from flue gases: a technological review emphasizing reduction in greenhouse gas emissions.

    PubMed

    Songolzadeh, Mohammad; Soleimani, Mansooreh; Takht Ravanchi, Maryam; Songolzadeh, Reza

    2014-01-01

    Increasing concentrations of greenhouse gases (GHGs) such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS) is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion capture is the most important one because it offers flexibility and it can be easily added to the operational units. Various technologies are used for CO2 capture, some of them include: absorption, adsorption, cryogenic distillation, and membrane separation. In this paper, various technologies for post-combustion are compared and the best condition for using each technology is identified.

  16. 75 FR 6087 - A Comprehensive Federal Strategy on Carbon Capture and Storage

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... the Office of Science and Technology Policy[, and] the Chair of the Council on Environmental Quality... pollution. Rapid commercial development and deployment of clean coal technologies, particularly carbon... development of safe, affordable, and broadly deployable CCS technologies. We have made the largest Government...

  17. Illustrative national scale scenarios of environmental and human health impacts of Carbon Capture and Storage.

    PubMed

    Tzanidakis, Konstantinos; Oxley, Tim; Cockerill, Tim; ApSimon, Helen

    2013-06-01

    Integrated Assessment, and the development of strategies to reduce the impacts of air pollution, has tended to focus only upon the direct emissions from different sources, with the indirect emissions associated with the full life-cycle of a technology often overlooked. Carbon Capture and Storage (CCS) reflects a number of new technologies designed to reduce CO2 emissions, but which may have much broader environmental implications than greenhouse gas emissions. This paper considers a wider range of pollutants from a full life-cycle perspective, illustrating a methodology for assessing environmental impacts using source-apportioned effects based impact factors calculated by the national scale UK Integrated Assessment Model (UKIAM). Contrasting illustrative scenarios for the deployment of CCS towards 2050 are presented which compare the life-cycle effects of air pollutant emissions upon human health and ecosystems of business-as-usual, deployment of CCS and widespread uptake of IGCC for power generation. Together with estimation of the transboundary impacts we discuss the benefits of an effects based approach to such assessments in relation to emissions based techniques. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Can Comprehensive Chromosome Screening Technology Improve IVF/ICSI Outcomes? A Meta-Analysis

    PubMed Central

    Quan, Song

    2015-01-01

    Objective To examine whether comprehensive chromosome screening (CCS) for preimplantation genetic screening (PGS) has an effect on improving in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) outcomes compared to traditional morphological methods. Methods A literature search was conducted in PubMed, EMBASE, CNKI and ClinicalTrials.gov up to May 2015. Two reviewers independently evaluated titles and abstracts, extracted data and assessed quality. We included studies that compared the IVF/ICSI outcomes of CCS-based embryo selection with those of the traditional morphological method. Relative risk (RR) values with corresponding 95% confidence intervals (CIs) were calculated in RevMan 5.3, and subgroup analysis and Begg’s test were used to assess heterogeneity and potential publication bias, respectively. Results Four RCTs and seven cohort studies were included. A meta-analysis of the outcomes showed that compared to morphological criteria, euploid embryos identified by CCS were more likely to be successfully implanted (RCT RR 1.32, 95% CI 1.18–1.47; cohort study RR 1.74, 95% CI 1.35–2.24). CCS-based PGS was also related to an increased clinical pregnancy rate (RCT RR 1.26, 95% CI 0.83–1.93; cohort study RR 1.48, 95% CI 1.20–1.83), an increased ongoing pregnancy rate (RCT RR 1.31, 95% CI 0.64–2.66; cohort study RR 1.61, 95% CI 1.30–2.00), and an increased live birth rate (RCT RR 1.26, 95% CI 1.05–1.50; cohort study RR 1.35, 95% CI 0.85–2.13) as well as a decreased miscarriage rate (RCT RR 0.53, 95% CI 0.24–1.15; cohort study RR 0.31, 95% CI 0.21–0.46) and a decreased multiple pregnancy rate (RCT RR 0.02, 95% CI 0.00–0.26; cohort study RR 0.19, 95% CI 0.07–0.51). The results of the subgroup analysis also showed a significantly increased implantation rate in the CCS group. Conclusions The effectiveness of CCS-based PGS is comparable to that of traditional morphological methods, with better outcomes for women receiving IVF/ICSI technology. The transfer of both trophectoderm-biopsied and blastomere-biopsied CCS-euploid embryos can improve the implantation rate. PMID:26470028

  19. Carbon farming in hot, dry coastal areas: an option for climate change mitigation

    NASA Astrophysics Data System (ADS)

    Becker, K.; Wulfmeyer, V.; Berger, T.; Gebel, J.; Münch, W.

    2012-10-01

    We present a comprehensive, interdisciplinary project which demonstrates that large-scale plantations of Jatropha curcas - if established in hot, dry coastal areas around the world - could capture 17-25 tonnes of carbon dioxide per hectare per year from the atmosphere (averaged over 20 yr). Based on recent farming results it is confirmed that the Jatropha curcas plant is well adapted to harsh environments and is capable of growing alone or in combination with other tree and shrub species with minimal irrigation in hot deserts where rain occurs only sporadically. Our investigations indicate that there is sufficient unused and marginal land for the widespread cultivation of Jatropha curcas to reduce significantly the current upward trend in atmospheric CO2 levels. In a system in which desalinated seawater is used for irrigation and for delivery of mineral nutrients, the sequestration costs were estimated to range from 42-63 € per tonne CO2. This result makes carbon farming a technology that is competitive with carbon capture and storage (CCS). In addition, high-resolution simulations using an advanced land-surface-atmosphere model indicate that a 10 000 km2 plantation could produce a reduction in mean surface temperature and an onset or increase in rain and dew fall at a regional level.

  20. Experimental Quantification of Pore-Scale Flow Phenomena in 2D Heterogeneous Porous Micromodels: Multiphase Flow Towards Coupled Solid-Liquid Interactions

    NASA Astrophysics Data System (ADS)

    Li, Y.; Kazemifar, F.; Blois, G.; Christensen, K. T.

    2017-12-01

    Geological sequestration of CO2 within saline aquifers is a viable technology for reducing CO2 emissions. Central to this goal is accurately predicting both the fidelity of candidate sites pre-injection of CO2 and its post-injection migration. Moreover, local fluid pressure buildup may cause activation of small pre-existing unidentified faults, leading to micro-seismic events, which could prove disastrous for societal acceptance of CCS, and possibly compromise seal integrity. Recent evidence shows that large-scale events are coupled with pore-scale phenomena, which necessitates the representation of pore-scale stress, strain, and multiphase flow processes in large-scale modeling. To this end, the pore-scale flow of water and liquid/supercritical CO2 is investigated under reservoir-relevant conditions, over a range of wettability conditions in 2D heterogeneous micromodels that reflect the complexity of a real sandstone. High-speed fluorescent microscopy, complemented by a fast differential pressure transmitter, allows for simultaneous measurement of the flow field within and the instantaneous pressure drop across the micromodels. A flexible micromodel is also designed and fabricated, to be used in conjunction with the micro-PIV technique, enabling the quantification of coupled solid-liquid interactions.

  1. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation.

    PubMed

    Jaramillo, Paulina; Griffin, W Michael; Matthews, H Scott

    2007-09-01

    The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/ LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meckel, Timothy; Trevino, Ramon

    This project characterized the Miocene-age sub-seafloor stratigraphy in the near-offshore portion of the Gulf of Mexico adjacent to the Texas coast. The large number of industrial sources of carbon dioxide (CO₂) in coastal counties and the high density of onshore urbanization and environmentally sensitive areas make this offshore region extremely attractive for long-term storage of carbon dioxide emissions from industrial sources (CCS). The study leverages dense existing geologic data from decades of hydrocarbon exploration in and around the study area to characterize the regional geology for suitability and storage capacity. Primary products of the study include: regional static storage capacitymore » estimates, sequestration “leads” and prospects with associated dynamic capacity estimates, experimental studies of CO₂-brine-rock interaction, best practices for site characterization, a large-format ‘Atlas’ of sequestration for the study area, and characterization of potential fluid migration pathways for reducing storage risks utilizing novel high-resolution 3D (HR3D) seismic surveys. In addition, three subcontracted studies address source-to-sink matching optimization, offshore well bore management and environmental aspects. The various geologic data and interpretations are integrated and summarized in a series of cross-sections and maps, which represent a primary resource for any near-term commercial deployment of CCS in the area. The regional study characterized and mapped important geologic features (e.g., Clemente-Tomas fault zone, the regionally extensive Marginulina A and Amphistegina B confining systems, etc.) that provided an important context for regional static capacity estimates and specific sequestration prospects of the study. A static capacity estimate of the majority of the Study area (14,467 mi 2) was estimated at 86 metric Gigatonnes. While local capacity estimates are likely to be lower due to reservoir-scale characteristics, the offshore Miocene interval is a storage resource of National interest for providing CO₂ storage as an atmospheric emissions abatement strategy. The natural petroleum system was used as an analog to infer seal quality and predict possible migration pathways of fluids in an engineered system of anthropogenic CO₂ injection and storage. The regional structural features (e.g., Clemente-Tomas fault zone) that exert primary control on the trapping and distribution of Miocene hydrocarbons are expected to perform similarly for CCS. Industrial-scale CCS will require storage capacity utilizing well-documented Miocene hydrocarbon (dominantly depleted gas) fields and their larger structural closures, as well as barren (unproductive, brine-filled) closures. No assessment was made of potential for CO₂ utilization for enhanced oil and gas recovery. The use of 3D numerical fluid flow simulations have been used in the study to greatly assist in characterizing the potential storage capacity of a specific reservoir. Due to the complexity of geologic systems (stratigraphic heterogeneity) and inherent limitations on producing a 3D geologic model, these simulations are typically simplified scenarios that explore the influence of model property variability (sensitivity study). A specific site offshore San Luis Pass (southern Galveston Island) was undertaken successfully, indicating stacked storage potential. Downscaling regional capacity estimates to the local scale (and the inverse) has proven challenging, and remains an outstanding gap in capacity assessments. In order to characterize regional seal performance and identify potential brine and CO₂ leakage pathways, results from three high-resolution 3D (HR3D) seismic datasets acquired by the study using novel HR3D (P-Cable) acquisition system showed steady and significant improvements in data quality because of improved acquisition and processing technique. Finely detailed faults and stratigraphy in the shallowest 1000 milliseconds (~800 m) of data allowed for the identification and mapping of unconformable surfaces including what is probably a surface associated with the last Pleistocene glacial lowstand. The identification of a previously unrecognized (in commercial seismic data) gas chimney that was clearly defined in the 2013 HR3D survey, indicates that HR3D surveys may be useful as both a characterization tool for the overburden of a potential carbon sequestration site and as an additional monitoring tool for future engineered injection sites. Geochemical modeling indicated that injection of CO₂ would result in minor dissolution of calcite, K-feldspar and albite. In addition, modeling of typical brines in Miocene age rocks indicate that approximately 5% of injection capacity would result from CO₂ dissolution into the brine. After extensive searches, no rock samples of the Marginulina A and Amphistegina B seals (“caprocks”) were obtained, but analyses of available core samples of other Miocene age mudrocks (seals or caprocks) indicate that they have sealing ability sufficient for potential CO 2 storage in underlying sandstone units.« less

  3. Review of Quantitative Monitoring Methodologies for Emissions Verification and Accounting for Carbon Dioxide Capture and Storage for California’s Greenhouse Gas Cap-and-Trade and Low-Carbon Fuel Standard Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldenburg, Curtis M.; Birkholzer, Jens T.

    The Cap-and-Trade and Low Carbon Fuel Standard (LCFS) programs being administered by the California Air Resources Board (CARB) include Carbon Dioxide Capture and Storage (CCS) as a potential means to reduce greenhouse gas (GHG) emissions. However, there is currently no universal standard approach that quantifies GHG emissions reductions for CCS and that is suitable for the quantitative needs of the Cap-and-Trade and LCFS programs. CCS involves emissions related to the capture (e.g., arising from increased energy needed to separate carbon dioxide (CO 2) from a flue gas and compress it for transport), transport (e.g., by pipeline), and storage of COmore » 2 (e.g., due to leakage to the atmosphere from geologic CO 2 storage sites). In this project, we reviewed and compared monitoring, verification, and accounting (MVA) protocols for CCS from around the world by focusing on protocols specific to the geologic storage part of CCS. In addition to presenting the review of these protocols, we highlight in this report those storage-related MVA protocols that we believe are particularly appropriate for CCS in California. We find that none of the existing protocols is completely appropriate for California, but various elements of all of them could be adopted and/or augmented to develop a rigorous, defensible, and practical surface leakage MVA protocol for California. The key features of a suitable surface leakage MVA plan for California are that it: (1) informs and validates the leakage risk assessment, (2) specifies use of the most effective monitoring strategies while still being flexible enough to accommodate special or site-specific conditions, (3) quantifies stored CO 2, and (4) offers defensible estimates of uncertainty in monitored properties. California’s surface leakage MVA protocol needs to be applicable to the main CO 2 storage opportunities (in California and in other states with entities participating in California’s Cap-and-Trade or LCFS programs), specifically CO 2-enhanced oil recovery (CO 2-EOR), CO 2 injection into depleted gas reservoirs (with or without CO 2-enhanced gas recovery (CO 2-EGR)), as well as deep saline storage. Regarding the elements of an effective surface leakage MVA protocol, our recommendations for California are that: (1) both CO 2 and methane (CH 4) surface leakage should be monitored, especially for enhanced recovery scenarios, (2) emissions from all sources not directly related to injection and geologic storage (e.g., from capture, or pipeline transport) should be monitored and reported under a plan separate from the surface leakage MVA plan that is included as another component of the quantification methodology (QM), (3) the primary objective of the surface leakage MVA plan should be to quantify surface leakage of CO 2 and CH 4 and its uncertainty, with consideration of best-practices and state-of-the-art approaches to monitoring including attribution assessment, (4) effort should be made to monitor CO 2 storage and migration in the subsurface to anticipate future surface leakage monitoring needs, (5) detailed descriptions of specific monitoring technologies and approaches should be provided in the MVA plan, (6) the main purpose of the CO 2 injection project (CO 2-EOR, CO 2-EGR, or pure geologic carbon sequestration (GCS)) needs to be stated up front, (7) approaches to dealing with missing data and quantifying uncertainty need to be described, and (8) post-injection monitoring should go on for a period consistent with or longer than that prescribed by the U.S. EPA.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigg, Reid; McPherson, Brian; Lee, Rober

    The Southwest Regional Partnership on Carbon Sequestration (SWP) one of seven regional partnerships sponsored by the U.S. Department of Energy (USDOE) carried out five field pilot tests in its Phase II Carbon Sequestration Demonstration effort, to validate the most promising sequestration technologies and infrastructure concepts, including three geologic pilot tests and two terrestrial pilot programs. This field testing demonstrated the efficacy of proposed sequestration technologies to reduce or offset greenhouse gas emissions in the region. Risk mitigation, optimization of monitoring, verification, and accounting (MVA) protocols, and effective outreach and communication were additional critical goals of these field validation tests. Themore » program included geologic pilot tests located in Utah, New Mexico, Texas, and a region-wide terrestrial analysis. Each geologic sequestration test site was intended to include injection of a minimum of ~75,000 tons/year CO{sub 2}, with minimum injection duration of one year. These pilots represent medium- scale validation tests in sinks that host capacity for possible larger-scale sequestration operations in the future. These validation tests also demonstrated a broad variety of carbon sink targets and multiple value-added benefits, including testing of enhanced oil recovery and sequestration, enhanced coalbed methane production and a geologic sequestration test combined with a local terrestrial sequestration pilot. A regional terrestrial sequestration demonstration was also carried out, with a focus on improved terrestrial MVA methods and reporting approaches specific for the Southwest region.« less

  5. Policy Needs for Carbon Capture & Storage

    NASA Astrophysics Data System (ADS)

    Peridas, G.

    2007-12-01

    Climate change is one of the most pressing environmental problems of our time. The widespread consensus that exists on climate science requires deep cuts in greenhouse gas emissions, on the order of 50-80% globally from current levels. Reducing energy demand, increasing energy efficiency and sourcing our energy from renewable sources will, and should, play a key role in achieving these cuts. Fossil fuels however are abundant, relatively inexpensive, and still make up the backbone of our energy system. Phasing out fossil fuel use will be a gradual process, and is likely to take far longer than the timeframe dictated by climate science for reducing emissions. A reliable way of decarbonizing the use of fossil fuels is needed. Carbon capture and storage (CCS) has already proven to be a technology that can safely and effectively accomplish this task. The technological know-how and the underground capacity exist to store billions of tons of carbon dioxide in mature oil and gas fields, and deep saline formations. Three large international commercial projects and several other applications have proved this, but substantial barriers remain to be overcome before CCS becomes the technology of choice in all major emitting sectors. Government has a significant role to play in surmounting these barriers. Without mandatory limits on greenhouse gas emissions and a price on carbon, CCS is likely to linger in the background. The expected initial carbon price levels and their potential volatility under such a scheme dictates that further policies be used in the early years in order for CCS to be implemented. Such policies could include a new source performance standard for power plants, and a low carbon generation obligation that would relieve first movers by spreading the additional cost of the technology over entire sectors. A tax credit for capturing and permanently sequestering anthropogenic CO2 would aid project economics. Assistance in the form of loan guarantees for components of the technology that make financing problematic due to insufficient performance guarantees would help first movers. The development of a pipeline network for transporting CO2 will require centralized planning in order to materialize and make use of economies of scale. The federal government should significantly accelerate its research, development and demonstration program, with particular emphasis on multi-megaton injections in representative geological settings. Finally, a comprehensive regulatory framework for large-scale injections is a high priority item that can and should be developed now, with scope for revision after our experience with CCS projects grows.

  6. Integrating technology, curriculum, and online resources: A multilevel model study of impacts on science teachers and students

    NASA Astrophysics Data System (ADS)

    Ye, Lei

    This scale-up study investigated the impact of a teacher technology tool (Curriculum Customization Service, CCS), curriculum, and online resources on earth science teachers' attitudes, beliefs, and practices and on students' achievement and engagement with science learning. Participants included 73 teachers and over 2,000 ninth-grade students within five public school districts in the western U.S. To assess the impact on teachers, changes between pre- and postsurveys were examined. Results suggest that the CCS tool appeared to significantly increase both teachers' awareness of other earth science teachers' practices and teachers' frequency of using interactive resources in their lesson planning and classroom teaching. A standard multiple regression model was developed. In addition to "District," "Training condition" (whether or not teachers received CCS training) appeared to predict teachers' attitudes, beliefs, and practices. Teachers who received CCS training tended to have lower postsurvey scores than their peers who had no CCS training. Overall, usage of the CCS tool tended to be low, and there were differences among school districts. To assess the impact on students, changes were examined between pre- and postsurveys of (1) knowledge assessment and (2) students' engagement with science learning. Students showed pre- to postsurvey improvements in knowledge assessment, with small to medium effect sizes. A nesting effect (students clustered within teachers) in the Earth's Dynamic Geosphere (EDG) knowledge assessment was identified and addressed by fitting a two-level hierarchical linear model (HLM). In addition, significant school district differences existed for student post-knowledge assessment scores. On the student engagement questionnaire, students tended to be neutral or to slightly disagree that science learning was important in terms of using science in daily life, stimulating their thinking, discovering science concepts, and satisfying their own curiosity. Students did not appear to change their self-reported engagement level after the intervention. Additionally, three multiple regression models were developed. Factors from the district, teacher, and student levels were identified to predict student post-knowledge assessments and their engagement with science learning. The results provide information to both the research community and practitioners.

  7. Community perceptions of carbon sequestration: insights from California

    NASA Astrophysics Data System (ADS)

    Wong-Parodi, Gabrielle; Ray, Isha

    2009-07-01

    Over the last decade, many energy experts have supported carbon sequestration as a viable technological response to climate change. Given the potential importance of sequestration in US energy policy, what might explain the views of communities that may be directly impacted by the siting of this technology? To answer this question, we conducted focus groups in two communities who were potentially pilot project sites for California's DOE-funded West Coast Regional Partnership (WESTCARB). We find that communities want a voice in defining the risks to be mitigated as well as the justice of the procedures by which the technology is implemented. We argue that a community's sense of empowerment is key to understanding its range of carbon sequestration opinions, where 'empowerment' includes the ability to mitigate community-defined risks of the technology. This sense of empowerment protects the community against the downside risk of government or corporate neglect, a risk that is rarely identified in risk assessments but that should be factored into assessment and communication strategies.

  8. Fresh Water Generation from Aquifer-Pressured Carbon Storage: Interim Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aines, R D; Wolery, T J; Hao, Y

    2009-07-22

    This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including nanofiltration (NF) and reverse osmosis (RO). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine would be reinjected into the formation at net volume reduction. This process provides additional storage space (capacity) in the aquifer, reduces operational risks by relieving overpressure in the aquifer, and provides a source of low-cost fresh watermore » to offset costs or operational water needs. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations for brines typical of CCS sites. Computer modeling is being used to evaluate processes in the aquifer, including the evolution of the pressure field. This progress report deals mainly with our geochemical modeling of high-salinity brines and covers the first six months of project execution (September, 2008 to March, 2009). Costs and implementation results will be presented in the annual report. The brines typical of sequestration sites can be several times more concentrated than seawater, requiring specialized modeling codes typical of those developed for nuclear waste disposal calculations. The osmotic pressure developed as the brines are concentrated is of particular concern, as are precipitates that can cause fouling of reverse osmosis membranes and other types of membranes (e.g., NF). We have now completed the development associated with tasks (1) and (2) of the work plan. We now have a contract with Perlorica, Inc., to provide support to the cost analysis and nanofiltration evaluation. We have also conducted several preliminary analyses of the pressure effect in the reservoir in order to confirm that reservoir pressure can indeed be used to drive the reverse osmosis process. Our initial conclusions from the work to date are encouraging: (1) The concept of aquifer-pressured RO to provide fresh water associated with carbon dioxide storage appears feasible. (2) Concentrated brines such as those found in Wyoming are amenable to RO treatment. We have looked at sodium chloride brines from the Nugget Formation in Sublette County. 20-25% removal with conventional methods is realistic; higher removal appears achievable with NF. The less concentrated sulfate-rich brines from the Tensleep Formation in Sublette County would support >80% removal with conventional RO. (3) Brines from other proposed sequestration sites can now be analyzed readily. An osmotic pressure curve appropriate to these brines can be used to evaluate cost and equipment specifications. (4) We have examined a range of subsurface brine compositions that is potentially pertinent to carbon sequestration and noted the principal compositional trends pertinent to evaluating the feasibility of freshwater extraction. We have proposed a general categorization for the feasibility of the process based on total dissolved solids (TDS). (5) Withdrawing pressurized brine can have a very beneficial effect on reservoir pressure and total available storage capacity. Brine must be extracted from a deeper location in the aquifer than the point of CO{sub 2} injection to prevent CO{sub 2} from migrating to the brine extraction well.« less

  9. FutureGen 2.0 Monitoring Program: An Overview of the Monitoring Approach and Technologies Selected for Implementation

    DOE PAGES

    Vermeul, Vince R.; Strickland, Chris E.; Thorne, Paul D.; ...

    2014-12-31

    The FutureGen 2.0 Project will design and build a first-of-its-kind, near-zero emissions coal-fueled power plant with carbon capture and storage (CCS). To assess storage site performance and meet the regulatory requirements of the Class VI Underground Injection Control (UIC) Program for CO2 Geologic Sequestration, the FutureGen 2.0 project will implement a suite of monitoring technologies designed to 1) evaluate CO2 mass balance and 2) detect any unforeseen loss in CO2 containment. The monitoring program will include direct monitoring of the injection stream and reservoir, and early-leak-detection monitoring directly above the primary confining zone. It will also implement an adaptive monitoringmore » strategy whereby monitoring results are continually evaluated and the monitoring network is modified as required, including the option to drill additional wells in out-years. Wells will be monitored for changes in CO2 concentration and formation pressure, and other geochemical/isotopic signatures that provide indication of CO2 or brine leakage. Indirect geophysical monitoring technologies that were selected for implementation include passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture logging. Near-surface monitoring approaches that have been initiated include surficial aquifer and surface- water monitoring, soil-gas monitoring, atmospheric monitoring, and hyperspectral data acquisition for assessment of vegetation conditions. Initially, only the collection of baseline data sets is planned; the need for additional near- surface monitoring will be continually evaluated throughout the design and operational phases of the project, and selected approaches may be reinstituted if conditions warrant. Given the current conceptual understanding of the subsurface environment, early and appreciable impacts to near-surface environments are not expected.« less

  10. UC Irvine CHRS Real-time Global Satellite Precipitation Monitoring System (G-WADI PERSIANN-CCS GeoServer) for Hydrometeorological Applications

    NASA Astrophysics Data System (ADS)

    Sorooshian, S.; Hsu, K. L.; Gao, X.; Imam, B.; Nguyen, P.; Braithwaite, D.; Logan, W. S.; Mishra, A.

    2015-12-01

    The G-WADI Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) GeoServer has been successfully developed by the Center for Hydrometeorology and Remote Sensing (CHRS) at the University of California Irvine in collaboration with the UNESCO's International Hydrological Programme (IHP) and a number of its international centers. The system employs state-of-the-art technologies in remote sensing and artificial intelligence to estimate precipitation globally from satellite imagery in real-time and high spatiotemporal resolution (4km, hourly). It offers graphical tools and data service to help the user in emergency planning and management for natural disasters related to hydrological processes. The G-WADI PERSIANN-CCS GeoServer has been upgraded with new user-friendly functionalities. The precipitation data generated by the GeoServer is disseminated to the user community through support provided by ICIWaRM (The International Center for Integrated Water Resources Management), UNESCO and UC Irvine. Recently a number of new applications for mobile devices have been developed by our students. The RainMapper has been available on App Store and Google Play for the real-time PERSIANN-CCS observations. A global crowd sourced rainfall reporting system named iRain has also been developed to engage the public globally to provide qualitative information about real-time precipitation in their location which will be useful in improving the quality of the PERSIANN-CCS data. A number of recent examples of the application and use of the G-WADI PERSIANN-CCS GeoServer information will also be presented.

  11. A feasibility study of geological CO2 sequestration in the Ordos Basin, China

    USGS Publications Warehouse

    Jiao, Z.; Surdam, R.C.; Zhou, L.; Stauffer, P.H.; Luo, T.

    2011-01-01

    The Shaanxi Province/Wyoming CCS Partnership (supported by DOE NETL) aims to store commercial quantities of CO2 safely and permanently in the Ordovician Majiagou Formation in the northern Ordos Basin, Shaanxi Province, China. This objective is imperative because at present, six coal-to-liquid facilities in Shaanxi Province are capturing and venting significant quantities of CO2. The Wyoming State Geological Survey and the Shaanxi Provincial Institute of Energy Resource and Chemical Engineering conducted a feasibility study to determine the potential for geological CO2 sequestration in the northern Ordos Basin near Yulin. The Shaanbei Slope of the Ordos Basin is a huge monoclinal structure with a high-priority sequestration reservoir (Majiagou Formation) that lies beneath a 2,000+ meter-thick sequence of Mesozoic rocks containing a multitude of lowpermeability lithologies. The targeted Ordovician Majiagou Formation in the location of interest is more than 700 meters thick. The carbonate reservoir is located at depths where pressures and temperatures are well above the supercritical point of CO2. The targeted reservoir contains high-salinity brines (20,000-50,000 ppm) that have little or no economic value. The targeted reservoir is continuous as inferred from well logs, and cores show that porosity ranges from 1 to 15% with average measured porosity of 8%, and that permeability ranges from 1-35 md. This paper focuses on calculations that will help evaluate the capacity estimates through the use of high-resolution multiphase numerical simulation models, as well as a more simple volumetric approach. The preliminary simulation results show that the Ordovician Majiagou Formation in the Ordos Basin has excellent potential for geological CO2 sequestration and could store the CO2 currently emitted by coal-to-liquid facilities in Shaanxi Province for hundreds of years (i.e., 9 Mt/year CO2; 450 Mt over a 50-year period at one injection site). ?? 2011 Published by Elsevier Ltd.

  12. Impact of naturally leaking carbon dioxide on soil properties and ecosystems in the Qinghai-Tibet plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xiaohong; Deng, Hongzhang; Wang, Wenke

    One of the major concerns for CO 2 capture and storage (CCS) is the potential risk of CO 2 leakage from storage reservoirs on the shallow soil property and vegetation. This study utilizes a naturally occurring CO 2 leaking site in the Qinghai-Tibet Plateau to analog a “leaking CCS site”. Our observations from this site indicates that long-term CO 2 invasion in the vadose zone results in variations of soil properties, such as pH fluctuation, slight drop of total organic carbon, reduction of nitrogen and phosphorus, and concentration changes of soluble ions. Simultaneously, XRD patterns of the soil suggest thatmore » crystallization of soil is enhanced and mineral contents of calcite and anorthite in soil are increased substantially. Parts of the whole ecosystem such as natural wild plants, soil dwelling animals and microorganisms in shallow soil are affected as well. Under a moderate CO 2 concentration (less than 110000 ppm), wild plant growth and development are improved, while an intensive CO2 flux over 112000 ppm causes adverse effects on the plant growth, physiological and biochemical system of plants, and crop quality of wheat. Results of this study provide valuable insight for understanding the possible environmental impacts associated with potential CO 2 leakage into shallow sediments at carbon sequestration sites.« less

  13. Impact of naturally leaking carbon dioxide on soil properties and ecosystems in the Qinghai-Tibet plateau

    DOE PAGES

    Zhao, Xiaohong; Deng, Hongzhang; Wang, Wenke; ...

    2017-06-07

    One of the major concerns for CO 2 capture and storage (CCS) is the potential risk of CO 2 leakage from storage reservoirs on the shallow soil property and vegetation. This study utilizes a naturally occurring CO 2 leaking site in the Qinghai-Tibet Plateau to analog a “leaking CCS site”. Our observations from this site indicates that long-term CO 2 invasion in the vadose zone results in variations of soil properties, such as pH fluctuation, slight drop of total organic carbon, reduction of nitrogen and phosphorus, and concentration changes of soluble ions. Simultaneously, XRD patterns of the soil suggest thatmore » crystallization of soil is enhanced and mineral contents of calcite and anorthite in soil are increased substantially. Parts of the whole ecosystem such as natural wild plants, soil dwelling animals and microorganisms in shallow soil are affected as well. Under a moderate CO 2 concentration (less than 110000 ppm), wild plant growth and development are improved, while an intensive CO2 flux over 112000 ppm causes adverse effects on the plant growth, physiological and biochemical system of plants, and crop quality of wheat. Results of this study provide valuable insight for understanding the possible environmental impacts associated with potential CO 2 leakage into shallow sediments at carbon sequestration sites.« less

  14. Assessment of Well Safety from Pressure and Temperature-Induced Damage during CO2 Injection in Deep Saline Aquifers

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Delfs, J.; Goerke, U.; Kolditz, O.

    2013-12-01

    Carbon dioxide Capture and Storage (CCS) technology is known for disposing a specific amount of CO2 from industrial release of flue gases into a suitable storage where it stays for a defined period of time in a safe way. Types of storage sites for CO2 are depleted hydrocarbon reservoirs, unmineable coal seams and saline aquifers. In this poster, we address the problem of CO2 sequestration into deep saline aquifers. The main advantage of this kind of site for the CO2 sequestration is its widespread geographic distribution. However, saline aquifers are very poorly characterized and typically located at one kilometer depth below the earth's surface. To demonstrate that supercritical CO2 injection into deep saline aquifers is technically and environmentally safe, it is required to perform thermo-hydro-mechanical analysis of failure moods with numerical models. In the poster, we present simple process-catching benchmark for testing the scenario of compressed CO2 injection into a multi- layered saline aquifer.The pores of the deformable matrix are initially filled with saline water at hydrostatic pressure and geothermal temperature conditions. This benchmark investigates (i) how the mechanical and thermal stresses enhance the permeability for CO2 migration; and (ii) subsequent failures mode, i.e., tensile, and shear failures. The tensile failure occurs when pore fluid pressure exceeds the principle stress whereas the Mohr-Coulomb failure criterion defines the shear failure mode. The thermo-hydro-mechanical (THM) model is based on a ';multi-componential flow' module . The coupled system of balance equations is solvedin the monolithic way. The Galerkin finite element approach is used for spatial discretization, whereas temporal discretization is performed with a generalized single step scheme. This numerical module has been implemented in the open-source scientific software OpenGeoSys.

  15. Hubble Space Telescope: cost reduction by re-engineering telemetry processing and archiving

    NASA Astrophysics Data System (ADS)

    Miebach, Manfred P.

    1998-05-01

    The Hubble Space Telescope (HST), the first of NASA's Great Observatories, was launched on April 24, 1990. The HST was designed for a minimum fifteen-year mission with on-orbit servicing by the Space Shuttle System planned at approximately three-year intervals. Major changes to the HST ground system are planned to be in place for the third servicing mission in December 1999. The primary objectives of the ground system reengineering effort, a project called 'vision December 1999. The primary objectives of the ground system re-engineering effort, a project called 'vision 2000 control center systems (CCS)', are to reduce both development and operating costs significantly for the remaining years of HST's lifetime. Development costs will be reduced by providing a modern hardware and software architecture and utilizing commercial of f the shelf (COTS) products wherever possible. Operating costs will be reduced by eliminating redundant legacy systems and processes and by providing an integrated ground system geared toward autonomous operation. Part of CCS is a Space Telescope Engineering Data Store, the design of which is based on current Data Warehouse technology. The purpose of this data store is to provide a common data source of telemetry data for all HST subsystems. This data store will become the engineering data archive and will include a queryable database for the user to analyze HST telemetry. The access to the engineering data in the Data Warehouse is platform- independent from an office environment using commercial standards. Latest internet technology is used to reach the HST engineering community. A WEB-based user interface allows easy access to the data archives. This paper will provide a high level overview of the CCS system and will illustrate some of the CCS telemetry capabilities. Samples of CCS user interface pages will be given. Vision 2000 is an ambitious project, but one that is well under way. It will allow the HST program to realize reduced operations costs for the Third Servicing Mission and beyond.

  16. Hubble Space Telescope: the new telemetry archiving system

    NASA Astrophysics Data System (ADS)

    Miebach, Manfred P.

    2000-07-01

    The Hubble Space Telescope (HST), the first of NASA's Great Observatories, was launched on April 24, 1990. The HST was designed for a minimum fifteen-year mission with on-orbit servicing by the Space Shuttle System planned at approximately three-year intervals. Major changes to the HST ground system have been implemented for the third servicing mission in December 1999. The primary objectives of the ground system re- engineering effort, a project called 'Vision 2000 Control Center System (CCS),' are to reduce both development and operating costs significantly for the remaining years of HST's lifetime. Development costs are reduced by providing a more modern hardware and software architecture and utilizing commercial off the shelf (COTS) products wherever possible. Part of CCS is a Space Telescope Engineering Data Store, the design of which is based on current Data Warehouse technology. The Data Warehouse (Red Brick), as implemented in the CCS Ground System that operates and monitors the Hubble Space Telescope, represents the first use of a commercial Data Warehouse to manage engineering data. The purpose of this data store is to provide a common data source of telemetry data for all HST subsystems. This data store will become the engineering data archive and will provide a queryable database for the user to analyze HST telemetry. The access to the engineering data in the Data Warehouse is platform-independent from an office environment using commercial standards (Unix, Windows98/NT). The latest Internet technology is used to reach the HST engineering community. A WEB-based user interface allows easy access to the data archives. This paper will provide a CCS system overview and will illustrate some of the CCS telemetry capabilities: in particular the use of the new Telemetry Archiving System. Vision 20001 is an ambitious project, but one that is well under way. It will allow the HST program to realize reduced operations costs for the Third Servicing Mission and beyond.

  17. Coupling Power Generation, Geologic CO2 Storage and Saline Groundwater Desalination to Address Growing Energy Needs in Water Constrained Regions

    NASA Astrophysics Data System (ADS)

    Davidson, C. L.; Wurstner, S. K.; Fortson, L. A.

    2010-12-01

    As humanity works to both minimize climate change and adapt to its early impacts, co-management of energy and water resources will become increasingly important. In some parts of the US, power plants have been denied permits, in part because of the significant burden placed on local water supplies by assigning new water rights for the facility’s entire design life. Water resources may be allocated 30 to 50 years into a future where water availability and quality are uncertain due to supply impacts associated with climate change and increased demand from growing populations, agriculture and industry. In many areas, particularly those with access to seawater, desalination is being employed with increasing frequency to augment conventional sources of fresh water. At the same time, many of the world’s developed nations are moving to reduce greenhouse gas emissions. One key technological option for addressing emissions from the power generation sector is CO2 capture and geologic storage (CCS). This process is both water and energy intensive for many power and industrial facilities, compounding the impact of declining water availability for plants faced with deploying CCS in a CO2-constrained future. However, a unique opportunity may exist to couple power generation and CCS by extracting and desalinating brine from the CO2 storage formation to produce fresh water. While this coupled approach is unlikely to be attractive for most CCS projects, it may represent a viable option in areas where there is demand for additional electricity but conventional water supplies are unable to meet the needs of the power generation and CO2 capture systems, or in areas where brine produced from CCS projects can be desalinated to supplement strained municipal supplies. This paper presents a preliminary analysis of the factors impacting the feasibility of coupled CCS-desalination projects. Several injection / extraction scenarios have been examined via the STOMP geochemical flow model resulting in key outputs including extraction wellhead conditions, in situ CO2 plume behavior and reservoir pressure. Economic modeling for the water extraction and desalination portion of these coupled CCS / desalination scenarios suggests that -- while some scenarios yield costs far in excess of most existing desalination projects -- depending on the specific storage formation characteristics and desalination technology employed, fresh water could be produced at costs competitive with seawater desalination facilities, bolstering local water supplies and enabling deployment of industrial projects that might otherwise have been infeasible.

  18. Geochemical Impacts to Groundwater from Geologic Carbon Sequestration: Controls on pH and Inorganic Carbon Concentrations from Reaction Path and Kinetic Modeling

    EPA Science Inventory

    Geologic carbon sequestration has the potential to cause long-term reductions in global emissions of carbon dioxide to the atmosphere. Safe and effective application of carbon sequestration technology requires an understanding of the potential risks to the quality of underground...

  19. Pilot Studies of Geologic and Terrestrial Carbon Sequestration in the Big Sky Region, USA, and Opportunities for Commercial Scale Deployment of New Technologies

    NASA Astrophysics Data System (ADS)

    Waggoner, L. A.; Capalbo, S. M.; Talbott, J.

    2007-05-01

    Within the Big Sky region, including Montana, Idaho, South Dakota, Wyoming and the Pacific Northwest, industry is developing new coal-fired power plants using the abundant coal and other fossil-based resources. Of crucial importance to future development programs are robust carbon mitigation plans that include a technical and economic assessment of regional carbon sequestration opportunities. The objective of the Big Sky Carbon Sequestration Partnership (BSCSP) is to promote the development of a regional framework and infrastructure required to validate and deploy carbon sequestration technologies. Initial work compiled sources and potential sinks for carbon dioxide (CO2) in the Big Sky Region and developed the online Carbon Atlas. Current efforts couple geologic and terrestrial field validation tests with market assessments, economic analysis and regulatory and public outreach. The primary geological efforts are in the demonstration of carbon storage in mafic/basalt formations, a geology not yet well characterized but with significant long-term storage potential in the region and other parts of the world; and in the Madison Formation, a large carbonate aquifer in Wyoming and Montana. Terrestrial sequestration relies on management practices and technologies to remove atmospheric CO2 to storage in trees, plants, and soil. This indirect sequestration method can be implemented today and is on the front-line of voluntary, market-based approaches to reduce CO2 emissions. Details of pilot projects are presented including: new technologies, challenges and successes of projects and potential for commercial-scale deployment.

  20. Age-related expression of TGF beta family receptors in human cumulus oophorus cells.

    PubMed

    Ribeiro, A; Freitas, C; Matos, L; Gouveia, A; Gomes, F; Silva Carvalho, J L; Almeida, H

    2017-09-01

    During ovarian follicle growth, local cellular interactions are essential for oocyte quality acquisition and successful fertilization. While cumulus cells (CCs) nurture oocytes, they also deliver oocyte-secreted factors (OSFs) that activate receptors on CCs. We hypothesized that disturbance of those interactions contributes to age-related lower reproductive success in women submitted to assisted reproductive technology treatments. Women aged 27-48, without recognized personal reproductive disorder, were enrolled in the study and divided in <35- and ≥35-year-old groups. CCs collected upon follicle aspiration were processed for immunocytochemistry and RNA extraction. The expression patterns of OSF receptors BMPR2, ALK 4, ALK5, and activin receptor-like kinase (ALK6) were studied. Independently of age, receptors were found mostly in the cell periphery. The quantitative assay revealed that in older women, BMPR2, ALK 4, and ALK6 were all significantly decreased, whereas ALK5 was slightly increased. Female age imparts an effect on the expression of OSF receptors in CCs. The findings indicate that reproductive aging affects the local regulation of signaling pathways mediated by BMPR2, ALK6, and ALK4 receptor activation, suggesting their joint involvement.

  1. The differential impact of low-carbon technologies on climate change mitigation cost under a range of socioeconomic and climate policy scenarios.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barron, Robert W.; McJeon, Haewon C.

    2015-05-01

    This paper considers the effect of several key parameters of low carbon energy technologies on the cost of abatement. A methodology for determining the minimum level of performance required for a parameter to have a statistically significant impact on CO2 abatement cost is developed and used to evaluate the impact of eight key parameters of low carbon energy supply technologies on the cost of CO2 abatement. The capital cost of nuclear technology is found to have the greatest impact of the parameters studied. The cost of biomass and CCS technologies also have impacts, while their efficiencies have little, if any.more » Sensitivity analysis of the results with respect to population, GDP, and CO2 emission constraint show that the minimum performance level and impact of nuclear technologies is consistent across the socioeconomic scenarios studied, while the other technology parameters show different performance under higher population, lower GDP scenarios. Solar technology was found to have a small impact, and then only at very low costs. These results indicate that the cost of nuclear is the single most important driver of abatement cost, and that trading efficiency for cost may make biomass and CCS technologies more competitive.« less

  2. What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Fridley, David; Zheng, Nina; T. Aden, Nathaniel

    After rapid growth in economic development and energy demand over the last three decades, China has undertaken energy efficiency improvement efforts to reduce its energy intensity under the 11th Five Year Plan (FYP). Since becoming the world's largest annual CO{sub 2} emitter in 2007, China has set reduction targets for energy and carbon intensities and committed to meeting 15% of its total 2020 energy demand with non-fossil fuel. Despite having achieved important savings in 11th FYP efficiency programs, rising per capita income and the continued economic importance of trade will drive demand for transport activity and fuel use. At themore » same time, an increasingly 'electrified' economy will drive rapid power demand growth. Greater analysis is therefore needed to understand the underlying drivers, possible trajectories and mitigation potential in the growing industrial, transport and power sectors. This study uses scenario analysis to understand the likely trajectory of China's energy and carbon emissions to 2030 in light of the current and planned portfolio of programs, policies and technology development and ongoing urbanization and demographic trends. It evaluates the potential impacts of alternative transportation and power sector development using two key scenarios, Continued Improvement Scenario (CIS) and Accelerated Improvement Scenario (AIS). CIS represents the most likely path of growth based on continuation of current policies and meeting announced targets and goals, including meeting planned appliance efficiency standard revisions, fuel economy standards, and industrial targets and moderate phase-out of subcritical coal-fired generation with additional non-fossil generation. AIS represents a more aggressive trajectory of accelerated improvement in energy intensity and decarbonized power and transport sectors. A range of sensitivity analysis and power technology scenarios are tested to evaluate the impact of additional actions such as carbon capture and sequestration (CCS) and integrated mine-mouth generation. The CIS and AIS results are also contextualized and compared to model scenarios in other published studies. The results of this study show that China's energy and CO{sub 2} emissions will not likely peak before 2030, although growth is expected to slow after 2020. Moreover, China will be able to meet its 2020 carbon intensity reduction target of 40 to 45% under both CIS and AIS, but only meet its 15% non-fossil fuel target by 2020 under AIS. Under both scenarios, efficiency remains a key resource and has the same, if not greater, mitigation potential as new technologies in transport and power sectors. In the transport sector, electrification will be closely linked the degree of decarbonization in the power sector and EV deployment has little or no impact on China's crude oil import demand. Rather, power generation improvements have the largest sector potential for overall emission mitigation while mine-mouth power generation and CCS have limited mitigation potential compared to fuel switching and efficiency improvements. Comparisons of this study's results with other published studies reveal that CIS and AIS are within the range of other national energy projections but alternative studies rely much more heavily on CCS for carbon reduction. The McKinsey study, in particular, has more optimistic assumptions for reductions in crude oil imports and coal demand in its abatement scenario and has much higher gasoline reduction potential for the same level of EV deployment. Despite these differences, this study's scenario analysis of both transport and power sectors illustrate the necessity for continued efficiency improvements and aggressive power sector decarbonization in flattening China's CO{sub 2} emissions.« less

  3. Competition and Synergy of Different Technologies in the Subsurface: A Case Study for CCS vs. Geothermal Energy Production

    NASA Astrophysics Data System (ADS)

    Kissinger, Alexander; Juan-Lien Ramírez, Alina; Class, Holger

    2013-04-01

    Global climate change, shortage of resources and the resulting turn towards renewable sources of energy lead to a growing demand for the utilization of subsurface systems. Among these competing uses are Carbon Capture and Storage (CCS), geothermal energy, nuclear waste disposal, "renewable" methane or hydrogen storage as well as the ongoing production of fossil resources like oil, gas, and coal. The different uses of the subsurface can result in competition for the limited subsurface space, but in some cases there may also be synergetic effects, if the technologies are combined in a clever way. The idea behind this case study is to investigate the effects of a CCS site on a geothermal power plant operated in its vicinity and present both positive and negative impacts. During CCS operations large quantities of carbon dioxide (CO2) are injected into a storage formation. This causes a pressure increase as the brine in the formation is displaced by CO2. These elevations in pressure can have an extent of several tens of kilometers from the injection well in contrast to the much smaller extent of the CO2 plume. If geothermal power plants operate in the range influenced by pressure evaluation, this may have an impact on their performance. For example: Increased discharge of "warm" brine could be favorable for geothermal power plants as the time until thermal depletion of the reservoir may also increase Early breakthrough of the cold water front between an injection and an extraction well due to a brine discharge "pushing" the cold water front towards the extraction well may lead to a decrease in performance of the power plant Of course, there is a huge number of possible hydrogeological settings and technical configurations for geothermal power production that may be combined to an even larger number of possible scenarios. In this work however we use a simple model setup in which we incorporate and vary the parameters that we think are crucial. Only porous (not fractured) aquifer systems are considered here with a geothermal doublet system (cold water injection and warm water withdrawal). The CCS operation is assumed to take place in the same layer as the geothermal power/heat generation. The CO2 injection itself is not simulated, instead the brine discharge is implemented by an increase of pressure at one side of the domain with respect to the initial conditions. The discharge is varied by changing the pressure at the boundary within a range plausible for CCS operations. Different configurations of the extraction and injection wells of the doublet system with respect to a CCS operation are tested and compared to a reference system without the effect of increased brine discharge. With this work we want to explore the relevance of possible positive or negative impacts of a CCS operation on the performance of a geothermal power plant.

  4. Barriers and Prospects of Carbon Sequestration in India.

    PubMed

    Gupta, Anjali; Nema, Arvind K

    2014-04-01

    Carbon sequestration is considered a leading technology for reducing carbon dioxide (CO2) emissions from fossil-fuel based electricity generating power plants and could permit the continued use of coal and gas whilst meeting greenhouse gas targets. India will become the world's third largest emitter of CO2 by 2015. Considering the dependence of health of the Indian global economy, there is an imperative need to develop a global approach which could address the capturing and securely storing carbon dioxide emitted from an array of energy. Therefore technology such as carbon sequestration will deliver significant CO2 reductions in a timely fashion. Considerable energy is required for the capture, compression, transport and storage steps. With the availability of potential technical storage methods for carbon sequestration like forest, mineral and geological storage options with India, it would facilitate achieving stabilization goal in the near future. This paper examines the potential carbon sequestration options available in India and evaluates them with respect to their strengths, weakness, threats and future prospects.

  5. CO2 Dissociation using the Versatile Atmospheric Dielectric Barrier Discharge Experiment (VADER)

    NASA Astrophysics Data System (ADS)

    Lindon, Michael Allen

    As of 2013, the Carbon Dioxide Information Analysis Center (CDIAC) estimates that the world emits approximately 36 trillion metric tons of Carbon Dioxide (CO2) into the atmosphere every year. These large emissions have been correlated to global warming trends that have many consequences across the globe, including glacial retraction, ocean acidification and increased severity of weather events. With green technologies still in the infancy stage, it can be expected that CO2 emissions will stay this way for along time to come. Approximately 41% of the emissions are due to electricity production, which pump out condensed forms of CO2. This danger to our world is why research towards new and innovative ways of controlling CO2 emissions from these large sources is necessary. As of now, research is focused on two primary methods of CO2 reduction from condensed CO2 emission sources (like fossil fuel power plants): Carbon Capture and Sequestration (CCS) and Carbon Capture and Utilization (CCU). CCS is the process of collecting CO2 using absorbers or chemicals, extracting the gas from those absorbers and finally pumping the gas into reservoirs. CCU on the other hand, is the process of reacting CO2 to form value added chemicals, which can then be recycled or stored chemically. A Dielectric Barrier discharge (DBD) is a pulsed, low temperature, non-thermal, atmospheric pressure plasma which creates high energy electrons suitable for dissociating CO2 into its components (CO and O) as one step in the CCU process. Here I discuss the viability of using a DBD for CO2 dissociation on an industrial scale as well as the fundamental physics and chemistry of a DBD for CO2 dissociation. This work involved modeling the DBD discharge and chemistry, which showed that there are specific chemical pathways and plasma parameters that can be adjusted to improve the CO2 reaction efficiencies and rates. Experimental studies using the Versatile Atmospheric dielectric barrier Discharge ExpeRiment (VADER) demonstrated how different factors, like voltage, frequency and the addition of a photocatalyst, change the efficiency of CO2 dissociation in VADER and the plasma chemistry involved.

  6. Early opportunities of CO₂ geological storage deployment in coal chemical industry in China

    DOE PAGES

    Wei, Ning; Li, Xiaochun; Liu, Shengnan; ...

    2014-12-31

    Carbon dioxide capture and geological storage (CCS) is regarded as a promising option for climate change mitigation; however, the high capture cost is the major barrier to large-scale deployment of CCS technologies. High-purity CO₂ emission sources can reduce or even avoid the capture requirements and costs. Among these high-purity CO₂ sources, certain coal chemical industry processes are very important, especially in China. In this paper, the basic characteristics of coal chemical industries in China is investigated and analyzed. As of 2013 there were more than 100 coal chemical plants in operation. These emission sources together emit 430 million tons CO₂more » per year, of which about 30% are emit high-purity and pure CO₂ (CO₂ concentration >80% and >98.5% respectively). Four typical source-sink pairs are chosen for techno-economic evaluation, including site screening and selection, source-sink matching, concept design, and economic evaluation. The technical-economic evaluation shows that the levelized cost of a CO₂ capture and aquifer storage project in the coal chemistry industry ranges from 14 USD/t to 17 USD/t CO₂. When a 15USD/t CO₂ tax and 20USD/t for CO₂ sold to EOR are considered, the levelized cost of CCS project are negative, which suggests a benefit from some of these CCS projects. This might provide China early opportunities to deploy and scale-up CCS projects in the near future.« less

  7. Energetic and environmental assessment of thermochemical and biochemical ways for producing energy from agricultural solid residues: Coffee Cut-Stems case.

    PubMed

    García, Carlos A; Peña, Álvaro; Betancourt, Ramiro; Cardona, Carlos A

    2018-06-15

    Forest residues are an important source of biomass. Among these, Coffee Cut-Stems (CCS) are an abundant wood waste in Colombia obtained from coffee crops renovation. However, only low quantities of these residues are used directly in combustion processes for heating and cooking in coffee farms where their energy efficiency is very low. In the present work, an energy and environmental assessment of two bioenergy production processes (ethanol fermentation and gasification) using CCS as raw material was performed. Biomass gasification seems to be the most promising thermochemical method for bioenergy production whereas, ethanol fermentation is a widely studied biochemical method to produce biofuels. Experimental runs of the CCS gasification were carried out and the synthesis gas composition was monitored. Prior to the fermentation process, a treatment of the CCS is required from which sugar content was determined and then, in the fermentation process, the ethanol yield was calculated. Both processes were simulated in order to obtain the mass and energy balance that are used to assess the energy efficiency and the potential environmental impact (PEI). Moderate high energy efficiency and low environmental impacts were obtained from the CCS gasification. In contrast, high environmental impacts in different categories and low energy efficiencies were calculated from the ethanolic fermentation. Biomass gasification seems to be the most promising technology for the use of Coffee Cut-Stems with high energy yields and low environmental issues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. CCS Site Optimization by Applying a Multi-objective Evolutionary Algorithm to Semi-Analytical Leakage Models

    NASA Astrophysics Data System (ADS)

    Cody, B. M.; Gonzalez-Nicolas, A.; Bau, D. A.

    2011-12-01

    Carbon capture and storage (CCS) has been proposed as a method of reducing global carbon dioxide (CO2) emissions. Although CCS has the potential to greatly retard greenhouse gas loading to the atmosphere while cleaner, more sustainable energy solutions are developed, there is a possibility that sequestered CO2 may leak and intrude into and adversely affect groundwater resources. It has been reported [1] that, while CO2 intrusion typically does not directly threaten underground drinking water resources, it may cause secondary effects, such as the mobilization of hazardous inorganic constituents present in aquifer minerals and changes in pH values. These risks must be fully understood and minimized before CCS project implementation. Combined management of project resources and leakage risk is crucial for the implementation of CCS. In this work, we present a method of: (a) minimizing the total CCS cost, the summation of major project costs with the cost associated with CO2 leakage; and (b) maximizing the mass of injected CO2, for a given proposed sequestration site. Optimization decision variables include the number of CO2 injection wells, injection rates, and injection well locations. The capital and operational costs of injection wells are directly related to injection well depth, location, injection flow rate, and injection duration. The cost of leakage is directly related to the mass of CO2 leaked through weak areas, such as abandoned oil wells, in the cap rock layers overlying the injected formation. Additional constraints on fluid overpressure caused by CO2 injection are imposed to maintain predefined effective stress levels that prevent cap rock fracturing. Here, both mass leakage and fluid overpressure are estimated using two semi-analytical models based upon work by [2,3]. A multi-objective evolutionary algorithm coupled with these semi-analytical leakage flow models is used to determine Pareto-optimal trade-off sets giving minimum total cost vs. maximum mass of CO2 sequestered. This heuristic optimization method is chosen because of its robustness in optimizing large-scale, highly non-linear problems. Trade-off curves are developed for multiple fictional sites with the intent of clarifying how variations in domain characteristics (aquifer thickness, aquifer and weak cap rock permeability, the number of weak cap rock areas, and the number of aquifer-cap rock layers) affect Pareto-optimal fronts. Computational benefits of using semi-analytical leakage models are explored and discussed. [1] Birkholzer, J. (2008) "Research Project on CO2 Geological Storage and Groundwater Resources: Water Quality Effects Caused by CO2 Intrusion into Shallow Groundwater" Berkeley (CA): Lawrence Berkeley National Laboratory (US); 2008 Oct. 473 p. Report No.: 510-486-7134. [2] Celia, M.A. and Nordbotten, J.M. (2011) "Field-scale application of a semi-analytical model for estimation of CO2 and brine leakage along old wells" International Journal of Greenhouse Gas Control, 5 (2011), 257-269. [3] Nordbotten, J.M. and Celia, M.A. (2009) "Model for CO2 leakage including multiple geological layers and multiple leaky wells" Environ. Sci. Technol., 43, 743-749.

  9. Development and Test of a 1,000 Level 3C Fiber Optic Borehole Seismic Receiver Array Applied to Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulsson, Bjorn N.P.

    2015-02-28

    To address the critical site characterization and monitoring needs for CCS programs, US Department of Energy (DOE) awarded Paulsson, Inc. in 2010 a contract to design, build and test a fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying up to one thousand 3C sensor pods suitable for deployment into high temperature and high pressure boreholes. Paulsson, Inc. has completed a design or a unique borehole seismic system consisting of a novel drill pipe based deployment system that includes a hydraulic clamping mechanism for the sensor pods, a new sensor pod design and most important –more » a unique fiber optic seismic vector sensor with technical specifications and capabilities that far exceed the state of the art seismic sensor technologies. These novel technologies were all applied to the new borehole seismic system. In combination these technologies will allow for the deployment of up to 1,000 3C sensor pods in vertical, deviated or horizontal wells. Laboratory tests of the fiber optic seismic vector sensors developed during this project have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown that the system can record events at magnitudes much smaller than M-2.3 at frequencies up to 2,000 Hz. The sensors have also proved to be about 100 times more sensitive than the regular coil geophones that are used in borehole seismic systems today. The fiber optic seismic sensors have furthermore been qualified to operate at temperatures over 300°C (572°F). The fibers used for the seismic sensors in the system are used to record Distributed Temperature Sensor (DTS) data allowing additional value added data to be recorded simultaneously with the seismic vector sensor data.« less

  10. Physical and Economic Integration of Carbon Capture Methods with Sequestration Sinks

    NASA Astrophysics Data System (ADS)

    Murrell, G. R.; Thyne, G. D.

    2007-12-01

    Currently there are several different carbon capture technologies either available or in active development for coal- fired power plants. Each approach has different advantages, limitations and costs that must be integrated with the method of sequestration and the physiochemical properties of carbon dioxide to evaluate which approach is most cost effective. For large volume point sources such as coal-fired power stations, the only viable sequestration sinks are either oceanic or geological in nature. However, the carbon processes and systems under consideration produce carbon dioxide at a variety of pressure and temperature conditions that must be made compatible with the sinks. Integration of all these factors provides a basis for meaningful economic comparisons between the alternatives. The high degree of compatibility between carbon dioxide produced by integrated gasification combined cycle technology and geological sequestration conditions makes it apparent that this coupling currently holds the advantage. Using a basis that includes complete source-to-sink sequestration costs, the relative cost benefit of pre-combustion IGCC compared to other post-combustion methods is on the order of 30%. Additional economic benefits arising from enhanced oil recovery revenues and potential sequestration credits further improve this coupling.

  11. Illinois SB 1987: the Clean Coal Portfolio Standard Law

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    On January 12, 2009, Governor Rod Blagojevich signed SB 1987, the Clean Coal Portfolio Standard Law. The legislation establishes emission standards for new coal-fueled power plants power plants that use coal as their primary feedstock. From 2009-2015, new coal-fueled power plants must capture and store 50 percent of the carbon emissions that the facility would otherwise emit; from 2016-2017, 70 percent must be captured and stored; and after 2017, 90 percent must be captured and stored. SB 1987 also establishes a goal of having 25 percent of electricity used in the state to come from cost-effective coal-fueled power plants thatmore » capture and store carbon emissions by 2025. Illinois is the first state to establish a goal for producing electricity from coal-fueled power plants with carbon capture and storage (CCS). To support the commercial development of CCS technology, the legislation guarantees purchase agreements for the first Illinois coal facility with CCS technology, the Taylorville Energy Center (TEC); Illinois utilities are required to purchase at least 5 percent of their electricity supply from the TEC, provided that customer rates experience only modest increases. The TEC is expected to be completed in 2014 with the ability to capture and store at least 50 percent of its carbon emissions.« less

  12. Algae-Based Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Haoyang, Cai

    2018-03-01

    Our civilization is facing a series of environmental problems, including global warming and climate change, which are caused by the accumulation of green house gases in the atmosphere. This article will briefly analyze the current global warming problem and propose a method that we apply algae cultivation to absorb carbon and use shellfish to sequestrate it. Despite the importance of decreasing CO2 emissions or developing carbon-free energy sources, carbon sequestration should be a key issue, since the amount of carbon dioxide that already exists in the atmosphere is great enough to cause global warming. Algae cultivation would be a good choice because they have high metabolism rates and provides shellfish with abundant food that contains carbon. Shellfish’s shells, which are difficult to be decomposed, are reliable storage of carbon, compared to dead organisms like trees and algae. The amount of carbon that can be sequestrated by shellfish is considerable. However, the sequestrating rate of algae and shellfish is not high enough to affect the global climate. Research on algae and shellfish cultivation, including gene technology that aims to create “super plants” and “super shellfish”, is decisive to the solution. Perhaps the baton of history will shift to gene technology, from nuclear physics that has lost appropriate international environment after the end of the Cold War. Gene technology is vital to human survival.

  13. Development of a Portfolio Management Approach with Case Study of the NASA Airspace Systems Program

    NASA Technical Reports Server (NTRS)

    Neitzke, Kurt W.; Hartman, Christopher L.

    2012-01-01

    A portfolio management approach was developed for the National Aeronautics and Space Administration s (NASA s) Airspace Systems Program (ASP). The purpose was to help inform ASP leadership regarding future investment decisions related to its existing portfolio of advanced technology concepts and capabilities (C/Cs) currently under development and to potentially identify new opportunities. The portfolio management approach is general in form and is extensible to other advanced technology development programs. It focuses on individual C/Cs and consists of three parts: 1) concept of operations (con-ops) development, 2) safety impact assessment, and 3) benefit-cost-risk (B-C-R) assessment. The first two parts are recommendations to ASP leaders and will be discussed only briefly, while the B-C-R part relates to the development of an assessment capability and will be discussed in greater detail. The B-C-R assessment capability enables estimation of the relative value of each C/C as compared with all other C/Cs in the ASP portfolio. Value is expressed in terms of a composite weighted utility function (WUF) rating, based on estimated benefits, costs, and risks. Benefit utility is estimated relative to achieving key NAS performance objectives, which are outlined in the ASP Strategic Plan.1 Risk utility focuses on C/C development and implementation risk, while cost utility focuses on the development and implementation portions of overall C/C life-cycle costs. Initial composite ratings of the ASP C/Cs were successfully generated; however, the limited availability of B-C-R information, which is used as inputs to the WUF model, reduced the meaningfulness of these initial investment ratings. Development of this approach, however, defined specific information-generation requirements for ASP C/C developers that will increase the meaningfulness of future B-C-R ratings.

  14. CO2 Capture and Storage in Coal Gasification Projects

    NASA Astrophysics Data System (ADS)

    Rao, Anand B.; Phadke, Pranav C.

    2017-07-01

    In response to the global climate change problem, the world community today is in search for an effective means of carbon mitigation. India is a major developing economy and the economic growth is driven by ever-increasing consumption of energy. Coal is the only fossil fuel that is available in abundance in India and contributes to the major share of the total primary energy supply (TPES) in the country. Owing to the large unmet demand for affordable energy, primarily driven by the need for infrastructure development and increasing incomes and aspirations of people, as well as the energy security concerns, India is expected to have continued dependence on coal. Coal is not only the backbone of the electric power generation, but many major industries like cement, iron and steel, bricks, fertilizers also consume large quantities of coal. India has very low carbon emissions (˜ 1.5 tCO2 per capita) as compared to the world average (4.7 tCO2 per capita) and the developed world (11.2 tCO2 per capita). Although the aggregate emissions of the country are increasing with the rising population and fossil energy use, India has a very little contribution to the historical GHG accumulation in the atmosphere linked to the climate change problem. However, a large fraction of the Indian society is vulnerable to the impacts of climate change - due to its geographical location, large dependence on monsoon-based agriculture and limited technical, financial and institutional capacity. Today, India holds a large potential to offer cost-effective carbon mitigation to tackle the climate change problem. Carbon Capture and Storage (CCS) is the process of extraction of Carbon Dioxide (CO2) from industrial and energy related sources, transport to storage locations and long-term isolation from the atmosphere. It is a technology that has been developed in recent times and is considered as a bridging technology as we move towards carbon-neutral energy sources in response to the growing concerns about climate change problem. Carbon Capture and Storage (CCS) is being considered as a promising carbon mitigation technology, especially for large point sources such as coal power plants. Gasification of coal helps in better utilization of this resource offering multiple advantages such as pollution prevention, product flexibility (syngas and hydrogen) and higher efficiency (combined cycle). It also enables the capture of CO2 prior to the combustion, from the fuel gas mixture, at relatively lesser cost as compared to the post-combustion CO2 capture. CCS in gasification projects is considered as a promising technology for cost-effective carbon mitigation. Although many projects (power and non-power) have been announced internationally, very few large-scale projects have actually come up. This paper looks at the various aspects of CCS applications in gasification projects, including the technical feasibility and economic viability and discusses an Indian perspective. Impacts of including CCS in gasification projects (e.g. IGCC plants) have been assessed using a simulation tool. Integrated Environmental Control Model (IECM) - a modelling framework to simulate power plants - has been used to estimate the implications of adding CCS units in IGCC plants, on their performance and costs.

  15. DEVELOPMENT OF A NOVEL GAS PRESSURIZED STRIPPING (GPS)-BASED TECHNOLOGY FOR CO 2 CAPTURE FROM POST-COMBUSTION FLUE GASES Topical Report: Techno-Economic Analysis of GPS-based Technology for CO 2 Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shiaoguo

    This topical report presents the techno-economic analysis, conducted by Carbon Capture Scientific, LLC (CCS) and Nexant, for a nominal 550 MWe supercritical pulverized coal (PC) power plant utilizing CCS patented Gas Pressurized Stripping (GPS) technology for post-combustion carbon capture (PCC). Illinois No. 6 coal is used as fuel. Because of the difference in performance between the GPS-based PCC and the MEA-based CO2 absorption technology, the net power output of this plant is not exactly 550 MWe. DOE/NETL Case 11 supercritical PC plant without CO2 capture and Case 12 supercritical PC plant with benchmark MEA-based CO2 capture are chosen as references.more » In order to include CO2 compression process for the baseline case, CCS independently evaluated the generic 30 wt% MEA-based PCC process together with the CO2 compression section. The net power produced in the supercritical PC plant with GPS-based PCC is 647 MW, greater than the MEA-based design. The levelized cost of electricity (LCOE) over a 20-year period is adopted to assess techno-economic performance. The LCOE for the supercritical PC plant with GPS-based PCC, not considering CO2 transport, storage and monitoring (TS&M), is 97.4 mills/kWh, or 152% of the Case 11 supercritical PC plant without CO2 capture, equivalent to $39.6/tonne for the cost of CO2 capture. GPS-based PCC is also significantly superior to the generic MEA-based PCC with CO2 compression section, whose LCOE is as high as 109.6 mills/kWh.« less

  16. Assessment of the US EPA's determination of the role for CO2 capture and storage in new fossil fuel-fired power plants.

    PubMed

    Clark, Victoria R; Herzog, Howard J

    2014-07-15

    On September 20, 2013, the US Environmental and Protection Agency (EPA) proposed a revised rule for "Standards of Performance for Greenhouse Gas Emissions from New Stationary Sources: Electric Utility Generating Units". These performance standards set limits on the amount of carbon dioxide (CO2) that can be emitted per megawatt-hour (MWh) of electricity generation from new coal-fired and natural gas-fired power plants built in the US. These limits were based on determinations of "best system of emission reduction (BSER) adequately demonstrated". Central in this determination was evaluating whether Carbon Dioxide Capture and Storage (CCS) qualified as BSER. The proposed rule states that CCS qualifies as BSER for coal-fired generation but not for natural gas-fired generation. In this paper, we assess the EPA's analysis that resulted in this determination. We are not trying to judge what the absolute criteria are for CCS as the BSER but only the relative differences as related to coal- vs natural gas-fired technologies. We conclude that there are not enough differences between "base load" coal-fired and natural gas-fired power plants to justify the EPA's determination that CCS is the BSER for coal-fired power plants but not for natural gas-fired power plants.

  17. Cooperative effect of random and time-periodic coupling strength on synchronization transitions in one-way coupled neural system: mean field approach.

    PubMed

    Jiancheng, Shi; Min, Luo; Chusheng, Huang

    2017-08-01

    The cooperative effect of random coupling strength and time-periodic coupling strengh on synchronization transitions in one-way coupled neural system has been investigated by mean field approach. Results show that cooperative coupling strength (CCS) plays an active role for the enhancement of synchronization transitions. There exist an optimal frequency of CCS which makes the system display the best CCS-induced synchronization transitions, a critical frequency of CCS which can not further affect the CCS-induced synchronization transitions, and a critical amplitude of CCS which can not occur the CCS-induced synchronization transitions. Meanwhile, noise intensity plays a negative role for the CCS-induced synchronization transitions. Furthermore, it is found that the novel CCS amplitude-induced synchronization transitions and CCS frequency-induced synchronization transitions are found.

  18. The United States Department of Energy's Regional Carbon Sequestration Partnerships program: a collaborative approach to carbon management.

    PubMed

    Litynski, John T; Klara, Scott M; McIlvried, Howard G; Srivastava, Rameshwar D

    2006-01-01

    This paper reviews the Regional Carbon Sequestration Partnerships (RCSP) concept, which is a first attempt to bring the U.S. Department of Energy's (DOE) carbon sequestration program activities into the "real world" by using a geographically-disposed-system type approach for the U.S. Each regional partnership is unique and covers a unique section of the U.S. and is tasked with determining how the research and development activities of DOE's carbon sequestration program can best be implemented in their region of the country. Although there is no universal agreement on the cause, it is generally understood that global warming is occurring, and many climate scientists believe that this is due, in part, to the buildup of carbon dioxide (CO(2)) in the atmosphere. This is evident from the finding presented in the National Academy of Science Report to the President on Climate Change which stated "Greenhouse gases are accumulating in Earth's atmosphere as a result of human activities, causing surface air temperatures and subsurface ocean temperatures to rise. Temperatures are, in fact, rising. The changes observed over the last several decades are likely mostly due to human activities, ...". In the United States, emissions of CO(2) originate mainly from the combustion of fossil fuels for energy production, transportation, and other industrial processes. Roughly one third of U.S. anthropogenic CO(2) emissions come from power plants. Reduction of CO(2) emissions through sequestration of carbon either in geologic formations or in terrestrial ecosystems can be part of the solution to the problem of global warming. However, a number of steps must be accomplished before sequestration can become a reality. Cost effective capture and separation technology must be developed, tested, and demonstrated; a database of potential sequestration sites must be established; and techniques must be developed to measure, monitor, and verify the sequestered CO(2). Geographical differences in fossil fuel use, the industries present, and potential sequestration sinks across the United States dictate the use of a regional approach to address the sequestration of CO(2). To accommodate these differences, the DOE has created a nationwide network of seven Regional Carbon Sequestration Partnerships (RCSP) to help determine and implement the carbon sequestration technologies, infrastructure, and regulations most appropriate to promote CO(2) sequestration in different regions of the nation. These partnerships currently represent 40 states, three Indian Nations, four Canadian Provinces, and over 200 organizations, including academic institutions, research institutions, coal companies, utilities, equipment manufacturers, forestry and agricultural representatives, state and local governments, non-governmental organizations, and national laboratories. These partnerships are dedicated to developing the necessary infrastructure and validating the carbon sequestration technologies that have emerged from DOE's core R&D and other programs to mitigate emissions of CO(2), a potent greenhouse gas. The partnerships provide a critical link to DOE's plans for FutureGen, a highly efficient and technologically sophisticated coal-fired power plant that will produce both hydrogen and electricity with near-zero emissions. Though limited to the situation in the U.S., the paper describes for the international scientific community the approach being taken by the U.S. to prepare for carbon sequestration, should that become necessary.

  19. A rapid microwave-assisted synthesis of a sodium-cadmium metal-organic framework having improved performance as a CO2 adsorbent for CCS.

    PubMed

    Palomino Cabello, Carlos; Arean, Carlos Otero; Parra, José B; Ania, Conchi O; Rumori, P; Turnes Palomino, G

    2015-06-07

    We report on a facile and rapid microwave-assisted method for preparing a sodium-cadmium metal-organic framework (having coordinatively unsaturated sodium ions) that considerably shortens the conventional synthesis time from 5 days to 1 hour. The obtained (Na,Cd)-MOF showed an excellent volumetric CO2 adsorption capacity (5.2 mmol cm(-3) at 298 K and 1 bar) and better CO2 adsorption properties than those shown by the same metal-organic framework when synthesized following a more conventional procedure. Moreover, the newly prepared material was found to display high selectivity for adsorption of carbon dioxide over nitrogen, and good regenerability and stability during repeated CO2 adsorption-desorption cycles, which are the required properties for any adsorbent intended for carbon dioxide capture and sequestration (CSS) from the post-combustion flue gas of fossil fuelled power stations.

  20. Implementation Targets for the Paris Climate Agreement

    NASA Astrophysics Data System (ADS)

    Bennett, B.; Hope, A. P.; Tribett, W. R.; Salawitch, R. J.; Canty, T. P.

    2016-12-01

    We provide an overview of reductions in the emission of greenhouse gases (GHGs) needed to achieve either the target (1.5 °C warming) or upper limit (2.0 °C warming) of the Paris Climate Agreement. We will show how much energy must be produced, either by renewables that do not emit significant levels of atmospheric GHGs or via carbon capture and sequestration (CCS) coupled to fossil fuel power plants, to meet forecast global energy demand out to 2060. These projections will be based on two modeling frameworks: our empirical model of global climate (EM-GC) and the CMIP 5 GCMs used throughout IPCC (2013). For each framework, we will show estimates of transient climate response to cumulative emission of carbon to place limits on future emission of CO2 via the combustion of fossil fuel. We will also quantify the impact of future atmospheric CH4 on achieving the goals of the Paris Climate Agreement.

  1. Characterization and design of the FutureGen 2.0 carbon storage site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilmore, Tyler; Bonneville, Alain; Sullivan, Charlotte

    2016-10-01

    The objective of the FutureGen 2.0 Project was to demonstrate, at the commercial scale, the technical feasibility of implementing carbon capture and storage (CCS) in a deep saline formation in Illinois, USA. Over approximately 5 years, the FutureGen Alliance conducted a detailed site-selection process and identified a site for carbon sequestration storage in Morgan County, Illinois. The storage site was fully characterized, including the collection of seismic data and the drilling and characterization of a stratigraphic borehole. The characterization data provided critical input for developing a site-specific conceptual model and subsequent numerical modeling simulations. The modeling simulations, coupled with themore » upstream designs of the pipeline and power plant supported the development of a detailed 90 percent design that included the injection wells and associated control and monitoring infrastructure. Collectively, all these data were used by the FutureGen Alliance to develop the required documentation to support the applications for four underground injection control (UIC) permits (one for each proposed well). In August 2014, the U.S. Environmental Protection Agency issued four, first-of-their-kind, Class VI UIC permits for carbon sequestration in the United States to the FutureGen Alliance. The information and data generated under this project have been made publically available through reports and publications, including this journal and others.« less

  2. Potential acidification impacts on zooplankton in CCS leakage scenarios.

    PubMed

    Halsband, Claudia; Kurihara, Haruko

    2013-08-30

    Carbon capture and storage (CCS) technologies involve localized acidification of significant volumes of seawater, inhabited mainly by planktonic species. Knowledge on potential impacts of these techniques on the survival and physiology of zooplankton, and subsequent consequences for ecosystem health in targeted areas, is scarce. The recent literature has a focus on anthropogenic greenhouse gas emissions into the atmosphere, leading to enhanced absorption of CO2 by the oceans and a lowered seawater pH, termed ocean acidification. These studies explore the effects of changes in seawater chemistry, as predicted by climate models for the end of this century, on marine biota. Early studies have used unrealistically severe CO2/pH values in this context, but are relevant for CCS leakage scenarios. Little studied meso- and bathypelagic species of the deep sea may be especially vulnerable, as well as vertically migrating zooplankton, which require significant residence times at great depths as part of their life cycle. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Early opportunities of CO2 geological storage deployment in coal chemical industry in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Ning; Li, Xiaochun; Liu, Shengnan

    2014-11-12

    Abstract: Carbon dioxide capture and geological storage (CCS) is regarded as a promising option for climate change mitigation; however, the high capture cost is the major barrier to large-scale deployment of CCS technologies. High-purity CO2 emission sources can reduce or even avoid the capture requirements and costs. Among these high-purity CO2 sources, certain coal chemical industry processes are very important, especially in China. In this paper, the basic characteristics of coal chemical industries in China is investigated and analyzed. As of 2013 there were more than 100 coal chemical plants in operation or in late planning stages. These emission sourcesmore » together emit 430 million tons CO2 per year, of which about 30% are emit high-purity and pure CO2 (CO2 concentration >80% and >99% respectively).Four typical source-sink pairs are studied by a techno-economic evaluation, including site screening and selection, source-sink matching, concept design, and experienced economic evaluation. The technical-economic evaluation shows that the levelized cost of a CO2 capture and aquifer storage project in the coal chemistry industry ranges from 14 USD/t to 17 USD/t CO2. When a 15USD/t CO2 tax and 15USD/t for CO2 sold to EOR are considered, the levelized cost of CCS project are negative, which suggests a net economic benefit from some of these CCS projects. This might provide China early opportunities to deploy and scale-up CCS projects in the near future.« less

  4. Integrating Technology, Curriculum, and Online Resources: A Multilevel Model Study of Impacts on Science Teachers and Students

    ERIC Educational Resources Information Center

    Ye, Lei

    2013-01-01

    This scale-up study investigated the impact of a teacher technology tool (Curriculum Customization Service, CCS), curriculum, and online resources on earth science teachers' attitudes, beliefs, and practices and on students' achievement and engagement with science learning. Participants included 73 teachers and over 2,000 ninth-grade students…

  5. Enlargement Project: Insight into ICT Professional Skills and Jobs in the Candidate Countries. Enlargement Futures Series.

    ERIC Educational Resources Information Center

    Gourova, Elissaveta

    A study examined information and communication technologies (ICT) job trends and the prospects for preservation and supply of high skilled professionals in the medium and longer term in candidate countries (CCs), for admission into the European Union, focusing on Bulgaria, Estonia, Hungary, and Poland. Rapidly changing technology and growth of…

  6. New Capabilities for Cyber Charter School Leadership: An Emerging Imperative for Integrating Educational Technology and Educational Leadership Knowledge

    ERIC Educational Resources Information Center

    Kowch, Eugene

    2009-01-01

    Cyber charter schools (CCS) and cyber schools may soon become the most "disruptive innovation" in the education system (Christensen, Horn & Johnson, 2008) so the author urges educational technologists to take up the imperative to develop new administration knowledge among the students along with educational technology skills to support future…

  7. Adsorption of hexavalent chromium on cationic cross-linked starches of different botanic origins.

    PubMed

    Klimaviciute, Rima; Bendoraitiene, Joana; Rutkaite, Ramune; Zemaitaitis, Algirdas

    2010-09-15

    The influence of origin of native starch used to obtain cationic cross-linked starch (CCS) on the adsorption of Cr(VI) onto CCS has been investigated. CCS granule size is influenced by the botanic source of native starch. The equilibrium adsorption of Cr(VI) onto CCS was described by the Langmuir, Freundlich, Dubinin-Radushkevich and Temkin models. The more equal the adsorption energy of the quaternary ammonium groups in CCS granule as indicated by low value of change of Temkin adsorption energy DeltaE(T) the greater amount of Cr(VI) was adsorbed onto CCS. The value of DeltaE(T) decreased and sorption capacity of CCS increased with the decrease of CCS granule size and with the increase of number of amorphous regions in CCS granules. The affinity of dichromate anions increases and adsorption proceeds more spontaneously when Cr(VI) is adsorbed onto more amorphous CCS. Adsorption process of Cr(VI) onto such CCS is more exothermic and order of system undergoes major changes during adsorption. After the adsorption on CCS Cr(VI) could be regenerated by incineration at temperature of 800 degrees C. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Utilizing rare earth elements as tracers in high TDS reservoir brines in CCS applications

    DOE PAGES

    McLing, Travis; Smith, William; Smith, Robert

    2014-12-31

    In this paper we report the result of research associated with the testing of a procedures necessary for utilizing natural occurring trace elements, specifically the Rare Earth Elements (REE) as geochemical tracers in Carbon Capture and Storage (CCS) applications. Trace elements, particularly REE may be well suited to serve as in situ tracers for monitoring geochemical conditions and the migration of CO₂-charged waters within CCS storage systems. We have been conducting studies to determine the efficacy of using REE as a tracer and characterization tool in the laboratory, at a CCS analogue site in Soda Springs, Idaho, and at amore » proposed CCS reservoir at the Rock Springs Uplift, Wyoming. Results from field and laboratory studies have been encouraging and show that REE may be an effective tracer in CCS systems and overlying aquifers. In recent years, a series of studies using REE as a natural groundwater tracer have been conducted successfully at various locations around the globe. Additionally, REE and other trace elements have been successfully used as in situ tracers to describe the evolution of deep sedimentary Basins. Our goal has been to establish naturally occurring REE as a useful monitoring measuring and verification (MMV) tool in CCS research because formation brine chemistry will be particularly sensitive to changes in local equilibrium caused by the addition of large volumes of CO₂. Because brine within CCS target formations will have been in chemical equilibrium with the host rocks for millions of years, the addition of large volumes of CO₂ will cause reactions in the formation that will drive changes to the brine chemistry due to the pH change caused by the formation of carbonic acid. This CO₂ driven change in formation fluid chemistry will have a major impact on water rock reaction equilibrium in the formation, which will impart a change in the REE fingerprint of the brine that can measured and be used to monitor in situ reservoir conditions. Our research has shown that the REE signature imparted to the formation fluid by the introduction of CO₂ to the formation, can be measured and tracked as part of an MMV program. Additionally, this REE fingerprint may serve as an ideal tracer for fluid migration, both within the CCS target formation, and should formation fluids migrate into overlying aquifers. However application of REE and other trace elements to CCS system is complicated by the high salt content of the brines contained within the target formations. In the United States by regulation, in order for a geologic reservoir to be considered suitable for carbon storage, it must contain formation brine with total dissolved solids (TDS) > 10,000 ppm, and in most cases formation brines have TDS well in excess of that threshold. The high salinity of these brines creates analytical problems for elemental analysis, including element interference with trace metals in Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) (i.e. element mass overlap due to oxide or plasma phenomenon). Additionally, instruments like the ICP-MS that are sensitive enough to measure trace elements down to the parts per trillion level are quickly oversaturated when water TDS exceeds much more than 1,000 ppm. Normally this problem is dealt with through dilution of the sample, bringing the water chemistry into the instruments working range. However, dilution is not an option when analyzing these formation brines for trace metals, because trace elements, specifically the REE, which occur in aqueous solutions at the parts per trillion levels. Any dilution of the sample would make REE detection impossible. Therefore, the ability to use trace metals as in situ natural tracers in high TDS brines environments requires the development of methods for pre-concentrating trace elements, while reducing the salinity and associated elemental interference such that the brines can be routinely analyzed by standard ICP-MS methods. As part of the Big Sky Carbon Sequestration Project the INL-CAES has developed a rapid, easy to use process that pre-concentrates trace metals, including REE, up to 100x while eliminating interfering ions (e.g. Ba, Cl). The process is straightforward, inexpensive, and requires little infrastructure, using only a single chromatography column with inexpensive, reusable, commercially available resins and wash chemicals. The procedure has been tested with synthetic brines (215,000 ppm or less TDS) and field water samples (up to 5,000 ppm TDS). Testing has produced data of high quality with REE capture efficiency exceeding 95%, while reducing interfering elements by > 99%.« less

  9. Collaborative simulations and experiments for a novel yield model of coal devolatilization in oxy-coal combustion conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iavarone, Salvatore; Smith, Sean T.; Smith, Philip J.

    Oxy-coal combustion is an emerging low-cost “clean coal” technology for emissions reduction and Carbon Capture and Sequestration (CCS). The use of Computational Fluid Dynamics (CFD) tools is crucial for the development of cost-effective oxy-fuel technologies and the minimization of environmental concerns at industrial scale. The coupling of detailed chemistry models and CFD simulations is still challenging, especially for large-scale plants, because of the high computational efforts required. The development of scale-bridging models is therefore necessary, to find a good compromise between computational efforts and the physical-chemical modeling precision. This paper presents a procedure for scale-bridging modeling of coal devolatilization, inmore » the presence of experimental error, that puts emphasis on the thermodynamic aspect of devolatilization, namely the final volatile yield of coal, rather than kinetics. The procedure consists of an engineering approach based on dataset consistency and Bayesian methodology including Gaussian-Process Regression (GPR). Experimental data from devolatilization tests carried out in an oxy-coal entrained flow reactor were considered and CFD simulations of the reactor were performed. Jointly evaluating experiments and simulations, a novel yield model was validated against the data via consistency analysis. In parallel, a Gaussian-Process Regression was performed, to improve the understanding of the uncertainty associated to the devolatilization, based on the experimental measurements. Potential model forms that could predict yield during devolatilization were obtained. The set of model forms obtained via GPR includes the yield model that was proven to be consistent with the data. Finally, the overall procedure has resulted in a novel yield model for coal devolatilization and in a valuable evaluation of uncertainty in the data, in the model form, and in the model parameters.« less

  10. Integrating Algae with Bioenergy Carbon Capture and Storage (ABECCS) Increases Sustainability

    NASA Astrophysics Data System (ADS)

    Beal, Colin M.; Archibald, Ian; Huntley, Mark E.; Greene, Charles H.; Johnson, Zackary I.

    2018-03-01

    Bioenergy carbon capture and storage (BECCS) has been proposed to reduce atmospheric CO2 concentrations, but concerns remain about competition for arable land and freshwater. The synergistic integration of algae production, which does not require arable land or freshwater, with BECCS (called "ABECCS") can reduce CO2 emissions without competing with agriculture. This study presents a technoeconomic and life-cycle assessment for colocating a 121-ha algae facility with a 2,680-ha eucalyptus forest for BECCS. The eucalyptus biomass fuels combined heat and power (CHP) generation with subsequent amine-based carbon capture and storage (CCS). A portion of the captured CO2 is used for growing algae and the remainder is sequestered. Biomass combustion supplies CO2, heat, and electricity, thus increasing the range of sites suitable for algae cultivation. Economic, energetic, and environmental impacts are considered. The system yields as much protein as soybeans while generating 61.5 TJ of electricity and sequestering 29,600 t of CO2 per year. More energy is generated than consumed and the freshwater footprint is roughly equal to that for soybeans. Financial break-even is achieved for product value combinations that include 1) algal biomass sold for 1,400/t (fishmeal replacement) with a 68/t carbon credit and 2) algal biomass sold for 600/t (soymeal replacement) with a 278/t carbon credit. Sensitivity analysis shows significant reductions to the cost of carbon sequestration are possible. The ABECCS system represents a unique technology for negative emissions without reducing protein production or increasing water demand, and should therefore be included in the suite of technologies being considered to address global sustainability.

  11. Collaborative simulations and experiments for a novel yield model of coal devolatilization in oxy-coal combustion conditions

    DOE PAGES

    Iavarone, Salvatore; Smith, Sean T.; Smith, Philip J.; ...

    2017-06-03

    Oxy-coal combustion is an emerging low-cost “clean coal” technology for emissions reduction and Carbon Capture and Sequestration (CCS). The use of Computational Fluid Dynamics (CFD) tools is crucial for the development of cost-effective oxy-fuel technologies and the minimization of environmental concerns at industrial scale. The coupling of detailed chemistry models and CFD simulations is still challenging, especially for large-scale plants, because of the high computational efforts required. The development of scale-bridging models is therefore necessary, to find a good compromise between computational efforts and the physical-chemical modeling precision. This paper presents a procedure for scale-bridging modeling of coal devolatilization, inmore » the presence of experimental error, that puts emphasis on the thermodynamic aspect of devolatilization, namely the final volatile yield of coal, rather than kinetics. The procedure consists of an engineering approach based on dataset consistency and Bayesian methodology including Gaussian-Process Regression (GPR). Experimental data from devolatilization tests carried out in an oxy-coal entrained flow reactor were considered and CFD simulations of the reactor were performed. Jointly evaluating experiments and simulations, a novel yield model was validated against the data via consistency analysis. In parallel, a Gaussian-Process Regression was performed, to improve the understanding of the uncertainty associated to the devolatilization, based on the experimental measurements. Potential model forms that could predict yield during devolatilization were obtained. The set of model forms obtained via GPR includes the yield model that was proven to be consistent with the data. Finally, the overall procedure has resulted in a novel yield model for coal devolatilization and in a valuable evaluation of uncertainty in the data, in the model form, and in the model parameters.« less

  12. Comprehensive chromosome screening improves embryo selection: a meta-analysis.

    PubMed

    Dahdouh, Elias M; Balayla, Jacques; García-Velasco, Juan Antonio

    2015-12-01

    To study whether preimplantation genetic screening with comprehensive chromosome screening (PGS-CCS) improves clinical implantation rates (IR) and sustained IR (beyond 20 weeks) compared with routine care for embryo selection in IVF cycles. Meta-analysis of randomized controlled trials (RCTs) and observational studies (OSs). University-affiliated teaching hospital. Infertile couples undergoing IVF. PGS-CCS with the use of different genetic platforms performed on polar body (PB), cleavage embryo, or blastocyst following embryo biopsy. Clinical IR and sustained IR in RCTs as well as OSs comparing PGS-CCS and routine care were determined after a complete review of the literature. Pooled estimates of risk ratios (RRs) with their 95% confidence intervals (CIs) according to a fixed-effects model with the use of the Mantel-Haenszel method were calculated after the meta-analysis. Forest plots are provided for comparative purposes. Out of 763 citations identified, 29 articles met initial eligibility criteria and were further analyzed. Of these, only three RCTs and eight OSs met full inclusion criteria, allowing direct comparison of PGS-CCS and routine IVF care based on embryo morphology selection. In the RCTs, all embryo biopsies were performed on day 5-6 of embryo development. In the OSs, biopsies were performed on different stages of embryo development, including PB, day 3, or day 5-6. Meta-analysis of the RCTs (3 studies; n = 659) showed that PGS-CCS was associated with a significantly higher clinical IR, with a pooled RR of 1.29 (95% CI 1.15-1.45), as well as a significantly higher sustained IR, with a pooled RR of 1.39 (95% CI 1.21-1.60). Similar findings were shown in the OSs, where the pooled RR for clinical IR was 1.78 (95% CI 1.60-1.99; 7 studies; n = 2,993) and for sustained IR was 1.75 (95% CI 1.48-2.07; 4 studies; n = 1,124). Statistical heterogeneity (I(2)) was minimal for RCTs and substantial among OSs. PGS with the use of CCS technology increases clinical and sustained IRs, thus improving embryo selection, particularly in patients with normal ovarian reserve. Results from ongoing RCTs conducted on different patient populations (e.g., decreased ovarian reserve) and different embryo stage biopsy (e.g., PB, day 3) may further clarify the role of this technology. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  13. Geophysical monitoring technology for CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Ma, Jin-Feng; Li, Lin; Wang, Hao-Fan; Tan, Ming-You; Cui, Shi-Ling; Zhang, Yun-Yin; Qu, Zhi-Peng; Jia, Ling-Yun; Zhang, Shu-Hai

    2016-06-01

    Geophysical techniques play key roles in the measuring, monitoring, and verifying the safety of CO2 sequestration and in identifying the efficiency of CO2-enhanced oil recovery. Although geophysical monitoring techniques for CO2 sequestration have grown out of conventional oil and gas geophysical exploration techniques, it takes a long time to conduct geophysical monitoring, and there are many barriers and challenges. In this paper, with the initial objective of performing CO2 sequestration, we studied the geophysical tasks associated with evaluating geological storage sites and monitoring CO2 sequestration. Based on our review of the scope of geophysical monitoring techniques and our experience in domestic and international carbon capture and sequestration projects, we analyzed the inherent difficulties and our experiences in geophysical monitoring techniques, especially, with respect to 4D seismic acquisition, processing, and interpretation.

  14. Adsorptive removal of Congo red from aqueous solutions using crosslinked chitosan and crosslinked chitosan immobilized bentonite.

    PubMed

    Huang, Ruihua; Zhang, Lujie; Hu, Pan; Wang, Jing

    2016-05-01

    Batch experiments were executed to investigate the removal of Congo red (CR) from aqueous solutions using the crosslinked chitosan (CCS) and crosslinked chitosan immobilized bentonite (CCS/BT composite). The CCS and CCS/BT composite were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) techniques. The removal of CR was examined as a function of pH value of CR solution, contact time, and inorganic sodium salt and ionic strength. The equilibrium data of CCS and CCS/BT composite agreed well with the Langmuir model. The adsorption capacities of CCS and CCS/BT composite at 298K and natural pH value were 405 and 500 mg/g, respectively. The kinetic data correlated well with the pseudo-second-order model. The adsorption of CR onto the CCS was mainly controlled by chemisorption while the adsorption of CR onto the CCS/BT composite was controlled by chemisorption and the electrostatic attraction. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Facilitating CCS Business Planning by Extending the Functionality of the SimCCS Integrated System Model

    DOE PAGES

    Ellett, Kevin M.; Middleton, Richard S.; Stauffer, Philip H.; ...

    2017-08-18

    The application of integrated system models for evaluating carbon capture and storage technology has expanded steadily over the past few years. To date, such models have focused largely on hypothetical scenarios of complex source-sink matching involving numerous large-scale CO 2 emitters, and high-volume, continuous reservoirs such as deep saline formations to function as geologic sinks for carbon storage. Though these models have provided unique insight on the potential costs and feasibility of deploying complex networks of integrated infrastructure, there remains a pressing need to translate such insight to the business community if this technology is to ever achieve a trulymore » meaningful impact in greenhouse gas mitigation. Here, we present a new integrated system modelling tool termed SimCCUS aimed at providing crucial decision support for businesses by extending the functionality of a previously developed model called SimCCS. The primary innovation of the SimCCUS tool development is the incorporation of stacked geological reservoir systems with explicit consideration of processes and costs associated with the operation of multiple CO 2 utilization and storage targets from a single geographic location. In such locations provide significant efficiencies through economies of scale, effectively minimizing CO 2 storage costs while simultaneously maximizing revenue streams via the utilization of CO 2 as a commodity for enhanced hydrocarbon recovery.« less

  16. Facilitating CCS Business Planning by Extending the Functionality of the SimCCS Integrated System Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellett, Kevin M.; Middleton, Richard S.; Stauffer, Philip H.

    The application of integrated system models for evaluating carbon capture and storage technology has expanded steadily over the past few years. To date, such models have focused largely on hypothetical scenarios of complex source-sink matching involving numerous large-scale CO 2 emitters, and high-volume, continuous reservoirs such as deep saline formations to function as geologic sinks for carbon storage. Though these models have provided unique insight on the potential costs and feasibility of deploying complex networks of integrated infrastructure, there remains a pressing need to translate such insight to the business community if this technology is to ever achieve a trulymore » meaningful impact in greenhouse gas mitigation. Here, we present a new integrated system modelling tool termed SimCCUS aimed at providing crucial decision support for businesses by extending the functionality of a previously developed model called SimCCS. The primary innovation of the SimCCUS tool development is the incorporation of stacked geological reservoir systems with explicit consideration of processes and costs associated with the operation of multiple CO 2 utilization and storage targets from a single geographic location. In such locations provide significant efficiencies through economies of scale, effectively minimizing CO 2 storage costs while simultaneously maximizing revenue streams via the utilization of CO 2 as a commodity for enhanced hydrocarbon recovery.« less

  17. The Quest CCS Project - MMV Technology Deployment Through Two Years of Operation

    NASA Astrophysics Data System (ADS)

    O'Brien, S.

    2017-12-01

    In September 2012, Shell, on behalf of the Athabasca Oil Sands Project venture (Shell Canada Energy, Chevron Canada Limited, Marathon Oil Canada Corporation), announced that it was proceeding to construct the Quest Carbon Capture and Storage (CCS) project near Fort Saskatchewan. Quest is the world's first large-scale commercial application of CCS at an oil sands operation, and it is now capturing more than one million tonnes of CO2 per year from the Scotford Upgrader. It is a fully integrated project, involving CO2 capture at the bitumen upgrader, transportation along a 65 km pipeline, and CO2 storage in a deep saline aquifer (the Basal Cambrian Sands). Construction was completed in August 2015, and the Quest project was certified for commercial operation in September 2015. The Measurement, Monitoring and Verification (MMV) program for Quest is comprehensive, with a variety of technologies being used to monitor the atmosphere, hydrosphere, biosphere and geosphere. These include a Lightsource system for atmospheric monitoring, extensive groundwater sampling, DAS VSPs to assess the development of the CO2 plume, a microseismic array to measure any induced seismic activity, and temperature and pressure gauges for reservoir monitoring. Over two years of operations, this program has been optimized to address key risks while improving operational efficiency. Quest has now successfully captured and stored more than 2 million tonnes of CO2 with no MMV indications of any storage issues.

  18. Using GTO-Velo to Facilitate Communication and Sharing of Simulation Results in Support of the Geothermal Technologies Office Code Comparison Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Signe K.; Purohit, Sumit; Boyd, Lauren W.

    The Geothermal Technologies Office Code Comparison Study (GTO-CCS) aims to support the DOE Geothermal Technologies Office in organizing and executing a model comparison activity. This project is directed at testing, diagnosing differences, and demonstrating modeling capabilities of a worldwide collection of numerical simulators for evaluating geothermal technologies. Teams of researchers are collaborating in this code comparison effort, and it is important to be able to share results in a forum where technical discussions can easily take place without requiring teams to travel to a common location. Pacific Northwest National Laboratory has developed an open-source, flexible framework called Velo that providesmore » a knowledge management infrastructure and tools to support modeling and simulation for a variety of types of projects in a number of scientific domains. GTO-Velo is a customized version of the Velo Framework that is being used as the collaborative tool in support of the GTO-CCS project. Velo is designed around a novel integration of a collaborative Web-based environment and a scalable enterprise Content Management System (CMS). The underlying framework provides a flexible and unstructured data storage system that allows for easy upload of files that can be in any format. Data files are organized in hierarchical folders and each folder and each file has a corresponding wiki page for metadata. The user interacts with Velo through a web browser based wiki technology, providing the benefit of familiarity and ease of use. High-level folders have been defined in GTO-Velo for the benchmark problem descriptions, descriptions of simulator/code capabilities, a project notebook, and folders for participating teams. Each team has a subfolder with write access limited only to the team members, where they can upload their simulation results. The GTO-CCS participants are charged with defining the benchmark problems for the study, and as each GTO-CCS Benchmark problem is defined, the problem creator can provide a description using a template on the metadata page corresponding to the benchmark problem folder. Project documents, references and videos of the weekly online meetings are shared via GTO-Velo. A results comparison tool allows users to plot their uploaded simulation results on the fly, along with those of other teams, to facilitate weekly discussions of the benchmark problem results being generated by the teams. GTO-Velo is an invaluable tool providing the project coordinators and team members with a framework for collaboration among geographically dispersed organizations.« less

  19. Negative Emissions Technology

    NASA Astrophysics Data System (ADS)

    Day, Danny

    2006-04-01

    Although `negative emissions' of carbon dioxide need not, in principle, involve use of biological processes to draw carbon out of the atmosphere, such `agricultural' sequestration' is the only known way to remove carbon from the atmosphere on time scales comparable to the time scale for anthropogenic increases in carbon emissions. In order to maintain the `negative emissions' the biomass must be used in such a way that the resulting carbon dioxide is separated and permanently sequestered. Two options for sequestration are in the topsoil and via geologic carbon sequestration. The former has multiple benefits, but the latter also is needed. Thus, although geologic carbon sequestration is viewed skeptically by some environmentalists as simply a way to keep using fossil fuels---it may be a key part of reversing accelerating climate forcing if rapid climate change is beginning to occur. I will first review the general approach of agricultural sequestration combined with use of resulting biofuels in a way that permits carbon separation and then geologic sequestration as a negative emissions technology. Then I discuss the process that is the focus of my company---the EPRIDA cycle. If deployed at a sufficiently large scale, it could reverse the increase in CO2 concentrations. I also estimate of benefits --carbon and other---of large scale deployment of negative emissions technologies. For example, using the EPRIDA cycle by planting and soil sequestering carbon in an area abut In 3X the size of Texas would remove the amount of carbon that is being accumulated worldwide each year. In addition to the atmospheric carbon removal, the EPRIDA approach also counters the depletion of carbon in the soil---increasing topsoil and its fertility; reduces the excess nitrogen in the water by eliminating the need for ammonium nitrate fertilizer and reduces fossil fuel reliance by providing biofuel and avoiding natural gas based fertilizer production.

  20. Considering the Role of Natural Gas in the Deep Decarbonization of the U.S. Electricity Sector. Natural Gas and the Evolving U.S. Power Sector Monograph Series: Number 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Wesley; Beppler, Ross; Zinaman, Owen

    Natural gas generation in the U.S. electricity sector has grown substantially in recent years, while the sector's carbon dioxide (CO2) emissions have generally declined. This relationship highlights the concept of natural gas as a potential enabler of a transition to a lower-carbon future. This work considers that concept by using the National Renewable Energy Laboratory (NREL) Renewable Energy Deployment System (ReEDS) model. ReEDS is a long-term capacity expansion model of the U.S. electricity sector. We examine the role of natural gas within the ReEDS modeling framework as increasingly strict carbon emission targets are imposed on the electricity sector. In additionmore » to various natural gas price futures, we also consider scenarios that emphasize a low-carbon technology in order to better understand the role of natural gas if that low-carbon technology shows particular promise. Specifically, we consider scenarios with high amounts of energy efficiency (EE), low nuclear power costs, low renewable energy (RE) costs, and low carbon capture and storage (CCS) costs. Within these scenarios we find that requiring the electricity sector to lower CO2 emissions over time increases near-to-mid-term (through 2030) natural gas generation (see Figure 1 - left). The long-term (2050) role of natural gas generation in the electricity sector is dependent on the level of CO2 emission reduction required. Moderate reductions in long-term CO2 emissions have relatively little impact on long-term natural gas generation, while more stringent CO2 emission limits lower long-term natural gas generation (see Figure 1 - right). More stringent carbon targets also impact other generating technologies, with the scenarios considered here seeing significant decreases in coal generation, and new capacity of nuclear and renewable energy technologies over time. Figure 1 also demonstrates the role of natural gas in the context of scenarios where a specific low-carbon technology is advantaged. In 2030, natural gas generation in the technology scenarios is quite similar to that in the reference scenarios, indicating relatively little change in the role of natural gas in the near-to-mid-term due to advancements in those technology areas. The 2050 natural gas generation shows more significant differences, suggesting that technology advancements will likely have substantial impacts on the role of natural gas in the longer-term timeframe. Natural gas generation differences are most strongly driven by alternative natural gas price trajectories--changes in natural gas generation in the Low NG Price and High NG Price scenarios are much larger than in any other scenario in both the 2030 and 2050 timeframes. The only low-carbon technology scenarios that showed any increase in long-term natural gas generation relative to the reference case were the Low CCS cost scenarios. Carbon capture and storage technology costs are currently high, but have the potential to allow fossil fuels to play a larger role in low-carbon grid. This work considers three CCS cost trajectories for natural gas and coal generators: a baseline trajectory and two lower cost trajectories where CO2 capture costs reach $40/metric ton and $10/metric ton, respectively. We find that in the context of the ReEDS model and with these assumed cost trajectories, CCS can increase the long-term natural gas generation under a low carbon target (see Figure 2). Under less stringent carbon targets we do not see ReEDS electing to use CCS as part of its electricity generating portfolio for the scenarios considered in this work.« less

  1. Stakeholder views on financing carbon capture and storage demonstration projects in China.

    PubMed

    Reiner, David; Liang, Xi

    2012-01-17

    Chinese stakeholders (131) from 68 key institutions in 27 provinces were consulted in spring 2009 in an online survey of their perceptions of the barriers and opportunities in financing large-scale carbon dioxide capture and storage (CCS) demonstration projects in China. The online survey was supplemented by 31 follow-up face-to-face interviews. The National Development and Reform Commission (NDRC) was widely perceived as the most important institution in authorizing the first commercial-scale CCS demonstration project and authorization was viewed as more similar to that for a power project than a chemicals project. There were disagreements, however, on the appropriate size for a demonstration plant, the type of capture, and the type of storage. Most stakeholders believed that the international image of the Chinese Government could benefit from demonstrating commercial CCS and that such a project could also create advantages for Chinese companies investing in CCS technologies. In more detailed interviews with 16 financial officials, we found striking disagreements over the perceived risks of demonstrating CCS. The rate of return seen as appropriate for financing demonstration projects was split between stakeholders from development banks (who supported a rate of 5-8%) and those from commercial banks (12-20%). The divergence on rate alone could result in as much as a 40% difference in the cost of CO(2) abatement and 56% higher levelized cost of electricity based on a hypothetical case study of a typical 600-MW new build ultrasupercritical pulverized coal-fired (USCPC) power plant. To finance the extra operational costs, there were sharp divisions over which institutions should bear the brunt of financing although, overall, more than half of the support was expected to come from foreign and Chinese governments.

  2. Hubble Space Telescope on-line telemetry archive for monitoring scientific instruments

    NASA Astrophysics Data System (ADS)

    Miebach, Manfred P.

    2002-12-01

    A major milestone in an effort to update the aging Hubble Space Telescope (HST) ground system was completed when HST operations were switched to a new ground system, a project called "Vision 2000 Control Center System CCS)", at the time of the third Servicing Mission in December 1999. A major CCS subsystem is the Space Telescope Engineering Data Store, the design of which is based on modern Data Warehousing technology. In fact, the Data Warehouse (DW) as implemented in the CCS Ground System that operates and monitors the Hubble Space Telescope represents, the first use of a commercial Data Warehouse to manage engineering data. By the end of February 2002, the process of populating the Data Warehouse with HST historical telemetry data had been completed, providing access to HST engineering data for a period of over 12 years with a current data volume of 2.8 Terabytes. This paper describes hands-on experience from an end user perspective, using the CCS system capabilities, including the Data Warehouse as an HST engineering telemetry archive. The Engineering Team at the Space Telescope Science Institute is using HST telemetry extensively for monitoring the Scientific Instruments, in particular for · Spacecraft anomaly resolutions · Scientific Instrument trending · Improvements of Instrument operational efficiency The overall idea is to maximize science output of the space observatory. Furthermore, the CCS provides a powerful feature to build, save, and recall real-time display pages customized to specific subsystems and operational scenarios. Engineering teams are using the real-time monitoring capabilities intensively during Servicing Missions and real time commanding to handle anomaly situations, while the Flight Operations Team (FOT) monitors the spacecraft around the clock.

  3. A multicriteria decision analysis model and risk assessment framework for carbon capture and storage.

    PubMed

    Humphries Choptiany, John Michael; Pelot, Ronald

    2014-09-01

    Multicriteria decision analysis (MCDA) has been applied to various energy problems to incorporate a variety of qualitative and quantitative criteria, usually spanning environmental, social, engineering, and economic fields. MCDA and associated methods such as life-cycle assessments and cost-benefit analysis can also include risk analysis to address uncertainties in criteria estimates. One technology now being assessed to help mitigate climate change is carbon capture and storage (CCS). CCS is a new process that captures CO2 emissions from fossil-fueled power plants and injects them into geological reservoirs for storage. It presents a unique challenge to decisionmakers (DMs) due to its technical complexity, range of environmental, social, and economic impacts, variety of stakeholders, and long time spans. The authors have developed a risk assessment model using a MCDA approach for CCS decisions such as selecting between CO2 storage locations and choosing among different mitigation actions for reducing risks. The model includes uncertainty measures for several factors, utility curve representations of all variables, Monte Carlo simulation, and sensitivity analysis. This article uses a CCS scenario example to demonstrate the development and application of the model based on data derived from published articles and publicly available sources. The model allows high-level DMs to better understand project risks and the tradeoffs inherent in modern, complex energy decisions. © 2014 Society for Risk Analysis.

  4. Establishment of a novel clear cell sarcoma cell line (Hewga-CCS), and investigation of the antitumor effects of pazopanib on Hewga-CCS

    PubMed Central

    2014-01-01

    Background Clear cell sarcoma (CCS) is a therapeutically unresolved, aggressive, soft tissue sarcoma (STS) that predominantly affects young adults. This sarcoma is defined by t(12;22)(q13;q12) translocation, which leads to the fusion of Ewing sarcoma gene (EWS) to activating transcription factor 1 (ATF1) gene, producing a chimeric EWS-ATF1 fusion gene. We established a novel CCS cell line called Hewga-CCS and developed an orthotopic tumor xenograft model to enable comprehensive bench-side investigation for intensive basic and preclinical research in CCS with a paucity of experimental cell lines. Methods Hewga-CCS was derived from skin metastatic lesions of a CCS developed in a 34-year-old female. The karyotype and chimeric transcript were analyzed. Xenografts were established and characterized by morphology and immunohistochemical reactivity. Subsequently, the antitumor effects of pazopanib, a recently approved, novel, multitargeted, tyrosine kinase inhibitor (TKI) used for the treatment of advanced soft tissue sarcoma, on Hewga-CCS were assessed in vitro and in vivo. Results Hewga-CCS harbored the type 2 EWS-ATF1 transcript. Xenografts morphologically mimicked the primary tumor and expressed S-100 protein and antigens associated with melanin synthesis (Melan-A, HMB45). Pazopanib suppressed the growth of Hewga-CCS both in vivo and in vitro. A phospho-receptor tyrosine kinase array revealed phosphorylation of c-MET, but not of VEGFR, in Hewga-CCS. Subsequent experiments showed that pazopanib exerted antitumor effects through the inhibition of HGF/c-MET signaling. Conclusions CCS is a rare, devastating disease, and our established CCS cell line and xenograft model may be a useful tool for further in-depth investigation and understanding of the drug-sensitivity mechanism. PMID:24946937

  5. Activation of Cu,Zn-superoxide dismutase in the absence of oxygen and the copper chaperone CCS.

    PubMed

    Leitch, Jeffry M; Jensen, Laran T; Bouldin, Samantha D; Outten, Caryn E; Hart, P John; Culotta, Valeria C

    2009-08-14

    Eukaryotic Cu,Zn-superoxide dismutases (SOD1s) are generally thought to acquire the essential copper cofactor and intramolecular disulfide bond through the action of the CCS copper chaperone. However, several metazoan SOD1s have been shown to acquire activity in vivo in the absence of CCS, and the Cu,Zn-SOD from Caenorhabditis elegans has evolved complete independence from CCS. To investigate SOD1 activation in the absence of CCS, we compared and contrasted the CCS-independent activation of C. elegans and human SOD1 to the strict CCS-dependent activation of Saccharomyces cerevisiae SOD1. Using a yeast expression system, both pathways were seen to acquire copper derived from cell surface transporters and compete for the same intracellular pool of copper. Like CCS, CCS-independent activation occurs rapidly with a preexisting pool of apo-SOD1 without the need for new protein synthesis. The two pathways, however, strongly diverge when assayed for the SOD1 disulfide. SOD1 molecules that are activated without CCS exhibit disulfide oxidation in vivo without oxygen and under copper-depleted conditions. The strict requirement for copper, oxygen, and CCS in disulfide bond oxidation appears exclusive to yeast SOD1, and we find that a unique proline at position 144 in yeast SOD1 is responsible for this disulfide effect. CCS-dependent and -independent pathways also exhibit differential requirements for molecular oxygen. CCS activation of SOD1 requires oxygen, whereas the CCS-independent pathway is able to activate SOD1s even under anaerobic conditions. In this manner, Cu,Zn-SOD from metazoans may retain activity over a wide range of physiological oxygen tensions.

  6. Establishment of a novel clear cell sarcoma cell line (Hewga-CCS), and investigation of the antitumor effects of pazopanib on Hewga-CCS.

    PubMed

    Outani, Hidetatsu; Tanaka, Takaaki; Wakamatsu, Toru; Imura, Yoshinori; Hamada, Kenichiro; Araki, Nobuhito; Itoh, Kazuyuki; Yoshikawa, Hideki; Naka, Norifumi

    2014-06-19

    Clear cell sarcoma (CCS) is a therapeutically unresolved, aggressive, soft tissue sarcoma (STS) that predominantly affects young adults. This sarcoma is defined by t(12;22)(q13;q12) translocation, which leads to the fusion of Ewing sarcoma gene (EWS) to activating transcription factor 1 (ATF1) gene, producing a chimeric EWS-ATF1 fusion gene. We established a novel CCS cell line called Hewga-CCS and developed an orthotopic tumor xenograft model to enable comprehensive bench-side investigation for intensive basic and preclinical research in CCS with a paucity of experimental cell lines. Hewga-CCS was derived from skin metastatic lesions of a CCS developed in a 34-year-old female. The karyotype and chimeric transcript were analyzed. Xenografts were established and characterized by morphology and immunohistochemical reactivity. Subsequently, the antitumor effects of pazopanib, a recently approved, novel, multitargeted, tyrosine kinase inhibitor (TKI) used for the treatment of advanced soft tissue sarcoma, on Hewga-CCS were assessed in vitro and in vivo. Hewga-CCS harbored the type 2 EWS-ATF1 transcript. Xenografts morphologically mimicked the primary tumor and expressed S-100 protein and antigens associated with melanin synthesis (Melan-A, HMB45). Pazopanib suppressed the growth of Hewga-CCS both in vivo and in vitro. A phospho-receptor tyrosine kinase array revealed phosphorylation of c-MET, but not of VEGFR, in Hewga-CCS. Subsequent experiments showed that pazopanib exerted antitumor effects through the inhibition of HGF/c-MET signaling. CCS is a rare, devastating disease, and our established CCS cell line and xenograft model may be a useful tool for further in-depth investigation and understanding of the drug-sensitivity mechanism.

  7. Basin-Scale Leakage Risks from Geologic Carbon Sequestration: Impact on Carbon Capture and Storage Energy Market Competitiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Catherine; Fitts, Jeffrey; Wilson, Elizabeth

    This three-year project, performed by Princeton University in partnership with the University of Minnesota and Brookhaven National Laboratory, examined geologic carbon sequestration in regard to CO{sub 2} leakage and potential subsurface liabilities. The research resulted in basin-scale analyses of CO{sub 2} and brine leakage in light of uncertainties in the characteristics of leakage processes, and generated frameworks to monetize the risks of leakage interference with competing subsurface resources. The geographic focus was the Michigan sedimentary basin, for which a 3D topographical model was constructed to represent the hydrostratigraphy. Specifically for Ottawa County, a statistical analysis of the hydraulic properties ofmore » underlying sedimentary formations was conducted. For plausible scenarios of injection into the Mt. Simon sandstone, leakage rates were estimated and fluxes into shallow drinking-water aquifers were found to be less than natural analogs of CO{sub 2} fluxes. We developed the Leakage Impact Valuation (LIV) model in which we identified stakeholders and estimated costs associated with leakage events. It was found that costs could be incurred even in the absence of legal action or other subsurface interference because there are substantial costs of finding and fixing the leak and from injection interruption. We developed a model framework called RISCS, which can be used to predict monetized risk of interference with subsurface resources by combining basin-scale leakage predictions with the LIV method. The project has also developed a cost calculator called the Economic and Policy Drivers Module (EPDM), which comprehensively calculates the costs of carbon sequestration and leakage, and can be used to examine major drivers for subsurface leakage liabilities in relation to specific injection scenarios and leakage events. Finally, we examined the competiveness of CCS in the energy market. This analysis, though qualitative, shows that financial incentives, such as a carbon tax, are needed for coal combustion with CCS to gain market share. In another part of the project we studied the role of geochemical reactions in affecting the probability of CO{sub 2} leakage. A basin-scale simulation tool was modified to account for changes in leakage rates due to permeability alterations, based on simplified mathematical rules for the important geochemical reactions between acidified brines and caprock minerals. In studies of reactive flows in fractured caprocks, we examined the potential for permeability increases, and the extent to which existing reactive transport models would or would not be able to predict it. Using caprock specimens from the Eau Claire and Amherstburg, we found that substantial increases in permeability are possible for caprocks that have significant carbonate content, but minimal alteration is expected otherwise. We also found that while the permeability increase may be substantial, it is much less than what would be predicted from hydrodynamic models based on mechanical aperture alone because the roughness that is generated tends to inhibit flow.« less

  8. Benefits and Costs of Brine Extraction for Increasing Injection Efficiency In geologic CO2 Sequestration

    DOE PAGES

    Davidson, Casie L.; Watson, David J.; Dooley, James J.; ...

    2014-12-31

    Pressure increases attendant with CO2 injection into the subsurface drive many of the risk factors associated with commercial-scale CCS projects, impacting project costs and liabilities in a number of ways. The area of elevated pressure defines the area that must be characterized and monitored; pressure drives fluid flow out of the storage reservoir along higher-permeability pathways that might exist through the caprock into overlying aquifers or hydrocarbon reservoirs; and pressure drives geomechanical changes that could potentially impact subsurface infrastructure or the integrity of the storage system itself. Pressure also limits injectivity, which can increase capital costs associated with installing additionalmore » wells to meet a given target injection rate. The ability to mitigate pressure increases in storage reservoirs could have significant value to a CCS project, but these benefits are offset by the costs of the pressure mitigation technique itself. Of particular interest for CO2 storage operators is the lifetime cost of implementing brine extraction at a CCS project site, and the relative value of benefits derived from the extraction process. This is expected to vary from site to site and from one implementation scenario to the next. Indeed, quantifying benefits against costs could allow operators to optimize their return on project investment by calculating the most effective scenario for pressure mitigation. This work builds on research recently submitted for publication by the authors examining the costs and benefits of brine extraction across operational scenarios to evaluate the effects of fluid extraction on injection rate to assess the cost effectiveness of several options for reducing the number of injection wells required. Modeling suggests that extracting at 90% of the volumetric equivalent of injection rate resulted in a 1.8% improvement in rate over a non-extraction base case; a four-fold increase in extraction rate results in a 7.6% increase in injection rate over the no-extraction base case. However, the practical impacts on capital costs suggest that this strategy is fiscally ineffective when evaluated solely on this metric, with extraction reducing injection well needs by only one per 56 (1x case) or one per 13 (4x case).« less

  9. Benefits and Costs of Brine Extraction for Increasing Injection Efficiency In geologic CO2 Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Casie L.; Watson, David J.; Dooley, James J.

    Pressure increases attendant with CO2 injection into the subsurface drive many of the risk factors associated with commercial-scale CCS projects, impacting project costs and liabilities in a number of ways. The area of elevated pressure defines the area that must be characterized and monitored; pressure drives fluid flow out of the storage reservoir along higher-permeability pathways that might exist through the caprock into overlying aquifers or hydrocarbon reservoirs; and pressure drives geomechanical changes that could potentially impact subsurface infrastructure or the integrity of the storage system itself. Pressure also limits injectivity, which can increase capital costs associated with installing additionalmore » wells to meet a given target injection rate. The ability to mitigate pressure increases in storage reservoirs could have significant value to a CCS project, but these benefits are offset by the costs of the pressure mitigation technique itself. Of particular interest for CO2 storage operators is the lifetime cost of implementing brine extraction at a CCS project site, and the relative value of benefits derived from the extraction process. This is expected to vary from site to site and from one implementation scenario to the next. Indeed, quantifying benefits against costs could allow operators to optimize their return on project investment by calculating the most effective scenario for pressure mitigation. This work builds on research recently submitted for publication by the authors examining the costs and benefits of brine extraction across operational scenarios to evaluate the effects of fluid extraction on injection rate to assess the cost effectiveness of several options for reducing the number of injection wells required. Modeling suggests that extracting at 90% of the volumetric equivalent of injection rate resulted in a 1.8% improvement in rate over a non-extraction base case; a four-fold increase in extraction rate results in a 7.6% increase in injection rate over the no-extraction base case. However, the practical impacts on capital costs suggest that this strategy is fiscally ineffective when evaluated solely on this metric, with extraction reducing injection well needs by only one per 56 (1x case) or one per 13 (4x case).« less

  10. MR imaging and MR cholangiopancreatography of cholangiocarcinoma developing in printing company workers.

    PubMed

    Koyama, Koichi; Kubo, Shoji; Ueki, Ai; Shimono, Taro; Takemura, Shigekazu; Tanaka, Shogo; Kinoshita, Masahiko; Hamano, Genya; Miki, Yukio

    2017-05-01

    To retrospectively investigate magnetic resonance (MR) imaging findings of occupational cholangiocarcinoma (oCC) occurring among workers in printing companies in Japan, compared to those of non-occupational cholangiocarcinoma (nCC), primary sclerosing cholangitis (PSC), and age-matched normal controls (NORs). Participants comprised 27 consecutive patients (oCC, n = 5; nCC, n = 8; PSC, n = 6; NOR, n = 8) who underwent MR imaging between May 2009 and October 2012. MR imaging was evaluated with respect to tumor characteristics, abnormal MR cholangiographic findings (PSC-like findings), bile duct stricture, and signal changes of the hepatic parenchyma. Tumors were detected in all nCCs and four oCCs. Tumors displayed a mass-forming type in all nCCs and two oCCs, and an intraductal growth type in two oCCs. Abnormal cholangiographic findings were detected in all oCCs and PSCs, but not in any nCCs or NORs. All oCCs and seven nCCs showed biliary strictures longer than 1 cm; five PSCs showed biliary strictures shorter than 1 cm. Both intra- and extrahepatic biliary strictures were detected in three PSCs and two oCCs. Peripheral hepatic hyperintensity on T2-weighted imaging was detected in two nCCs, two PSCs, and two oCCs. These results indicated that MR imaging of oCC showed findings of both PSC and nCC.

  11. Development of Flexi-Burn™ CFB Power Plant to Meet the Challenge of Climate Change

    NASA Astrophysics Data System (ADS)

    Hackt, Horst; Fant, Zhen; Seltzert, Andrew; Hotta, Arto; Erikssoni, Timo; Sippu, Ossi

    Carbon-dioxide capture and storage (CCS) offers the potential for major reductions in carbon- dioxide emissions of fossil fuel-based power generation in the fairly short term, and oxyfuel combustion is one of the identified CCS technology options. Foster Wheeler (FW) is working on reduction of carbon-dioxide with its integrated Flexi-Burn™ CFB technology. The proven high efficiency circulating fluidized-bed (CFB) technology, when coupled with air separation units and carbon purification units, offers a solution for carbon dioxide reduction both in re-powering and in greenfield power plants. CFB technology has the advantages over pulverized coal technology of a more uniform furnace heat flux, increased fuel flexibility and offers the opportunity to further reduce carbon dioxide emissions by co-firing coal with bio-fuels. Development and design of an integrated Flexi-Bum™ CFB steam generator and balance of plant system was conducted for both air mode and oxyfuel mode. Through proper configuration and design, the same steam generator can be switched from air mode to oxyfuel mode without the need for unit shutdown for modifications. The Flexi-Burn™ CFB system incorporates features to maximize plant efficiency and power output when operating in the oxy-firing mode through firing more fuel in the same boiler.

  12. Evaluation of BPA uptake in clear cell sarcoma (CCS) in vitro and development of an in vivo model of CCS for BNCT studies.

    PubMed

    Fujimoto, T; Andoh, T; Sudo, T; Fujita, I; Imabori, M; Moritake, H; Sugimoto, T; Sakuma, Y; Takeuchi, T; Sonobe, H; Epstein, Alan L; Akisue, T; Kirihata, M; Kurosaka, M; Fukumori, Y; Ichikawa, H

    2011-12-01

    Clear cell sarcoma (CCS), a rare malignant tumor with a predilection for young adults, is of poor prognosis. Recently however, boron neutron capture therapy (BNCT) with the use of p-borono-L-phenylalanine (BPA) for malignant melanoma has provided good results. CCS also produces melanin; therefore, the uptake of BPA is the key to the application of BNCT to CCS. We describe, for the first time, the high accumulation of boron in CCS and the CCS tumor-bearing animal model generated for BNCT studies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Meeting CCS communication challenges head-on: Integrating communications, planning, risk assessment, and project management

    USGS Publications Warehouse

    Greenberg, S.; Gauvreau, L.; Hnottavange-Telleen, K.; Finley, R.; Marsteller, S.

    2011-01-01

    The Midwest Geological Sequestration Consortium, Schlumberger Carbon Services, and Archer Daniels Midland has implemented a comprehensive communications plan at the Illinois Basin - Decatur Project (IBDP), a one million metric tonne Carbon Capture and Storage project in Decatur, IL, USA funded by the U.S. Department of Energy's National Energy Technology Laboratory. The IBDP Communication Plan includes consortium information, funding and disclaimer citations, description of target audiences, media communications guidelines, paper and presentations guidelines, site visit information, crisis communication, on-site photography regulations, and other components. The creation, development, and implementation processes for the IBDP Communication Plan (the Plan) are shared in this paper. New communications challenges, such as how to address add-on research requests, data sharing and management, scope increase, and contract agreements have arisen since the Plan was completed in January 2009, resulting in development of new policies and procedures by project management. Integrating communications planning, risk assessment, and project management ensured that consistent, factual information was developed and incorporated into project planning, and constitutes the basis of public communications. Successful integration has allowed the IBDP to benefit from early identification and mitigation of the potential project risks, which allows more time to effectively deal with unknown and unidentified risks that may arise. Project risks and risks associated with public perception can be managed through careful planning and integration of communication strategies into project management and risk mitigation. ?? 2011 Published by Elsevier Ltd.

  14. Transcriptome dynamics and molecular cross-talk between bovine oocyte and its companion cumulus cells

    PubMed Central

    2011-01-01

    Background The bi-directional communication between the oocyte and its companion cumulus cells (CCs) is crucial for development and functions of both cell types. Transcripts that are exclusively expressed either in oocytes or CCs and molecular mechanisms affected due to removal of the communication axis between the two cell types is not investigated at a larger scale. The main objectives of this study were: 1. To identify transcripts exclusively expressed either in oocyte or CCs and 2. To identify those which are differentially expressed when the oocyte is cultured with or without its companion CCs and vice versa. Results We analyzed transcriptome profile of different oocyte and CC samples using Affymetrix GeneChip Bovine Genome array containing 23000 transcripts. Out of 13162 genes detected in germinal vesicle (GV) oocytes and their companion CCs, 1516 and 2727 are exclusively expressed in oocytes and CCs, respectively, while 8919 are expressed in both. Similarly, of 13602 genes detected in metaphase II (MII) oocytes and CCs, 1423 and 3100 are exclusively expressed in oocytes and CCs, respectively, while 9079 are expressed in both. A total of 265 transcripts are differentially expressed between oocytes cultured with (OO + CCs) and without (OO - CCs) CCs, of which 217 and 48 are over expressed in the former and the later groups, respectively. Similarly, 566 transcripts are differentially expressed when CCs mature with (CCs + OO) or without (CCs - OO) their enclosed oocytes. Of these, 320 and 246 are over expressed in CCs + OO and CCs - OO, respectively. While oocyte specific transcripts include those involved in transcription (IRF6, POU5F1, MYF5, MED18), translation (EIF2AK1, EIF4ENIF1) and CCs specific ones include those involved in carbohydrate metabolism (HYAL1, PFKL, PYGL, MPI), protein metabolic processes (IHH, APOA1, PLOD1), steroid biosynthetic process (APOA1, CYP11A1, HSD3B1, HSD3B7). Similarly, while transcripts over expressed in OO + CCs are involved in carbohydrate metabolism (ACO1, 2), molecular transport (GAPDH, GFPT1) and nucleic acid metabolism (CBS, NOS2), those over expressed in CCs + OO are involved in cellular growth and proliferation (FOS, GADD45A), cell cycle (HAS2, VEGFA), cellular development (AMD1, AURKA, DPP4) and gene expression (FOSB, TGFB2). Conclusion In conclusion, this study has generated large scale gene expression data from different oocyte and CCs samples that would provide insights into gene functions and interactions within and across different pathways that are involved in the maturation of bovine oocytes. Moreover, the presence or absence of oocyte and CC factors during bovine oocyte maturation can have a profound effect on transcript abundance of each cell types, thereby showing the prevailing molecular cross-talk between oocytes and their corresponding CCs. PMID:21261964

  15. International Earth Science Constellation Mission Operations Working Group: Constellation Coordination System (CCS) Status. [Constellation Coordination System (CCS) Status

    NASA Technical Reports Server (NTRS)

    Skeberdis, Daniel

    2016-01-01

    This is a presentation at the MOWG fall meeting that will discuss CCS purpose, future status, security enhancements, arbitrary ephemeris mission features, overview of CCS 7.3, approach for the use of NORAD TLEs, account and data security, CCS System virtualization, control box visualization modification and other enhancements.

  16. Synthesis of kenaf cellulose carbamate using microwave irradiation for preparation of cellulose membrane.

    PubMed

    Gan, Sinyee; Zakaria, Sarani; Chia, Chin Hua; Kaco, Hatika; Padzil, Farah Nadia Mohammad

    2014-06-15

    Cellulose carbamate (CCs) was produced from kenaf core pulp (KCP) using microwave reactor-assisted method. The effects of urea concentration and reaction time on the formation of nitrogen content in CCs were investigated. The CCs' solubility in LiOH/urea system was determined and its membranes were characterized. As the urea content and reaction time increased, the nitrogen content form in CCs increased which enhanced the CCs' solubility. The formation of CCs was confirmed by Fourier transform infrared spectroscopy (FT-IR) and nitrogen content analysis. The CCs' morphology was examined using Scanning electron microscopy (SEM). The cellulose II and crystallinity index of the membranes were confirmed by X-ray diffraction (XRD). The pore size of the membrane displayed upward trend with respect to the urea content observed under Field emission scanning electron microscope (FESEM). This investigation provides a simple and efficient procedure of CCs determination which is useful in producing environmental friendly regenerated CCs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Interpretaion of synthetic seismic time-lapse monitoring data for Korea CCS project based on the acoustic-elastic coupled inversion

    NASA Astrophysics Data System (ADS)

    Oh, J.; Min, D.; Kim, W.; Huh, C.; Kang, S.

    2012-12-01

    Recently, the CCS (Carbon Capture and Storage) is one of the promising methods to reduce the CO2 emission. To evaluate the success of the CCS project, various geophysical monitoring techniques have been applied. Among them, the time-lapse seismic monitoring is one of the effective methods to investigate the migration of CO2 plume. To monitor the injected CO2 plume accurately, it is needed to interpret seismic monitoring data using not only the imaging technique but also the full waveform inversion, because subsurface material properties can be estimated through the inversion. However, previous works for interpreting seismic monitoring data are mainly based on the imaging technique. In this study, we perform the frequency-domain full waveform inversion for synthetic data obtained by the acoustic-elastic coupled modeling for the geological model made after Ulleung Basin, which is one of the CO2 storage prospects in Korea. We suppose the injection layer is located in fault-related anticlines in the Dolgorae Deformed Belt and, for more realistic situation, we contaminate the synthetic monitoring data with random noise and outliers. We perform the time-lapse full waveform inversion in two scenarios. One scenario is that the injected CO2 plume migrates within the injection layer and is stably captured. The other scenario is that the injected CO2 plume leaks through the weak part of the cap rock. Using the inverted P- and S-wave velocities and Poisson's ratio, we were able to detect the migration of the injected CO2 plume. Acknowledgment This work was financially supported by the Brain Korea 21 project of Energy Systems Engineering, the "Development of Technology for CO2 Marine Geological Storage" program funded by the Ministry of Land, Transport and Maritime Affairs (MLTM) of Korea and the Korea CCS R&D Center (KCRC) grant funded by the Korea government (Ministry of Education, Science and Technology) (No. 2012-0008926).

  18. Soil Carbon 4 per mille

    NASA Astrophysics Data System (ADS)

    Minasny, Budiman; van Wesemael, Bas

    2017-04-01

    The '4 per mille Soils for Food Security and Climate' was launched at the COP21 aiming to increase global soil organic matter stocks by 4 per mille (or 0.4 %) per year as a compensation for the global emissions of greenhouse gases by anthropogenic sources. This paper surveyed the soil organic carbon (SOC) stock estimates and sequestration potentials from 20 regions in the world (New Zealand, Chile, South Africa, Australia, Tanzania, Indonesia, Kenya, Nigeria, India, China Taiwan, South Korea, China Mainland, United States of America, France, Canada, Belgium, England & Wales, Ireland, Scotland, and Russia) and asked whether the 4 per mille initiative is feasible. This study highlights region specific efforts and scopes for soil carbon sequestration. Reported soil C sequestration rates generally show that under best management practices, 4 per mille or even higher sequestration rates can be accomplished. High C sequestration rates (up to 10 per mille) can be achieved for soils with low initial SOC stock (topsoil less than 30 t C ha-1), and at the first twenty years after implementation of best management practices. In addition, areas that have reached equilibrium but not at their saturation level will not be able to further increase their sequestration. We found that most studies on SOC sequestration globally only consider topsoil (up to 0.3 m depth), as it is considered to be most affected by management techniques. The 4 per mille initiative was based on a blanket calculation of the whole global soil profile C stock, however the potential to increase SOC is mostly on managed agricultural lands. If we consider 4 per mille on global topsoil of agricultural land, SOC sequestration is about 3.6 Gt C per year, which effectively offset 40% of global anthropogenic greenhouse gas emissions. As a strategy for climate change mitigation, soil carbon sequestration buys time over the next ten to twenty years while other effective sequestration and low carbon technologies become viable. The challenge for cropping farmers is to find disruptive technologies that will further improve soil condition and deliver increased soil carbon. Progress in 4 per mille requires collaboration and communication between scientists, farmers, policy makers, and marketeers.

  19. Cardiac Stem Cell Hybrids Enhance Myocardial Repair

    PubMed Central

    Quijada, Pearl; Salunga, Hazel T.; Hariharan, Nirmala; Cubillo, Jonathan D.; El-Sayed, Farid G.; Moshref, Maryam; Bala, Kristin M.; Emathinger, Jacqueline M.; La Torre, Andrea De; Ormachea, Lucia; Alvarez, Roberto; Gude, Natalie A.; Sussman, Mark A.

    2015-01-01

    Rationale Dual cell transplantation of cardiac progenitor cells (CPCs) and mesenchymal stem cells (MSCs) after infarction improves myocardial repair and performance in large animal models relative to delivery of either cell population. Objective To demonstrate that CardioChimeras (CCs) formed by fusion between CPCs and MSCs have enhanced reparative potential in a mouse model of myocardial infarction relative to individual stem cells or combined cell delivery. Methods and Results Two distinct and clonally derived CCs, CC1 and CC2 were utilized for this study. CCs improved left ventricular anterior wall thickness (AWT) at 4 weeks post injury, but only CC1 treatment preserved AWT at 18 weeks. Ejection fraction was enhanced at 6 weeks in CCs, and functional improvements were maintained in CCs and CPC + MSC groups at 18 weeks. Infarct size was decreased in CCs, whereas CPC + MSC and CPC parent groups remained unchanged at 12 weeks. CCs exhibited increased persistence, engraftment, and expression of early commitment markers within the border zone relative to combinatorial and individual cell population-injected groups. CCs increased capillary density and preserved cardiomyocyte size in the infarcted regions suggesting CCs role in protective paracrine secretion. Conclusions CCs merge the application of distinct cells into a single entity for cellular therapeutic intervention in the progression of heart failure. CCs are a novel cell therapy that improves upon combinatorial cell approaches to support myocardial regeneration. PMID:26228030

  20. TOUGH2Biot - A simulator for coupled thermal-hydrodynamic-mechanical processes in subsurface flow systems: Application to CO2 geological storage and geothermal development

    NASA Astrophysics Data System (ADS)

    Lei, Hongwu; Xu, Tianfu; Jin, Guangrong

    2015-04-01

    Coupled thermal-hydrodynamic-mechanical processes have become increasingly important in studying the issues affecting subsurface flow systems, such as CO2 sequestration in deep saline aquifers and geothermal development. In this study, a mechanical module based on the extended Biot consolidation model was developed and incorporated into the well-established thermal-hydrodynamic simulator TOUGH2, resulting in an integrated numerical THM simulation program TOUGH2Biot. A finite element method was employed to discretize space for rock mechanical calculation and the Mohr-Coulomb failure criterion was used to determine if the rock undergoes shear-slip failure. Mechanics is partly coupled with the thermal-hydrodynamic processes and gives feedback to flow through stress-dependent porosity and permeability. TOUGH2Biot was verified against analytical solutions for the 1D Terzaghi consolidation and cooling-induced subsidence. TOUGH2Biot was applied to evaluate the thermal, hydrodynamic, and mechanical responses of CO2 geological sequestration at the Ordos CCS Demonstration Project, China and geothermal exploitation at the Geysers geothermal field, California. The results demonstrate that TOUGH2Biot is capable of analyzing change in pressure and temperature, displacement, stress, and potential shear-slip failure caused by large scale underground man-made activity in subsurface flow systems. TOUGH2Biot can also be easily extended for complex coupled process problems in fractured media and be conveniently updated to parallel versions on different platforms to take advantage of high-performance computing.

  1. Effects of in situ stress measurement uncertainties on assessment of predicted seismic activity and risk associated with a hypothetical industrial-scale geologic CO 2 sequestration operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeanne, Pierre; Rutqvist, Jonny; Wainwright, Haruko M.

    Carbon capture and storage (CCS) in geologic formations has been recognized as a promising option for reducing carbon dioxide (CO 2) emissions from large stationary sources. However, the pressure buildup inside the storage formation can potentially induce slip along preexisting faults, which could lead to felt seismic ground motion and also provide pathways for brine/CO 2 leakage into shallow drinking water aquifers. To assess the geomechanical stability of faults, it is of crucial importance to know the in situ state of stress. In situ stress measurements can provide some information on the stresses acting on faults but with considerable uncertainties.more » In this paper, we investigate how such uncertainties, as defined by the variation of stress measurements obtained within the study area, could influence the assessment of the geomechanical stability of faults and the characteristics of potential injection-induced seismic events. Our modeling study is based on a hypothetical industrial-scale carbon sequestration project assumed to be located in the Southern San Joaquin Basin in California, USA. We assess the stability on the major (25 km long) fault that bounds the sequestration site and is subjected to significant reservoir pressure changes as a result of 50 years of CO 2 injection. We also present a series of geomechanical simulations in which the resolved stresses on the fault were varied over ranges of values corresponding to various stress measurements performed around the study area. The simulation results are analyzed by a statistical approach. Our main results are that the variations in resolved stresses as defined by the range of stress measurements had a negligible effect on the prediction of the seismic risk (maximum magnitude), but an important effect on the timing, the seismicity rate (number of seismic events) and the location of seismic activity.« less

  2. Effects of in situ stress measurement uncertainties on assessment of predicted seismic activity and risk associated with a hypothetical industrial-scale geologic CO 2 sequestration operation

    DOE PAGES

    Jeanne, Pierre; Rutqvist, Jonny; Wainwright, Haruko M.; ...

    2016-10-05

    Carbon capture and storage (CCS) in geologic formations has been recognized as a promising option for reducing carbon dioxide (CO 2) emissions from large stationary sources. However, the pressure buildup inside the storage formation can potentially induce slip along preexisting faults, which could lead to felt seismic ground motion and also provide pathways for brine/CO 2 leakage into shallow drinking water aquifers. To assess the geomechanical stability of faults, it is of crucial importance to know the in situ state of stress. In situ stress measurements can provide some information on the stresses acting on faults but with considerable uncertainties.more » In this paper, we investigate how such uncertainties, as defined by the variation of stress measurements obtained within the study area, could influence the assessment of the geomechanical stability of faults and the characteristics of potential injection-induced seismic events. Our modeling study is based on a hypothetical industrial-scale carbon sequestration project assumed to be located in the Southern San Joaquin Basin in California, USA. We assess the stability on the major (25 km long) fault that bounds the sequestration site and is subjected to significant reservoir pressure changes as a result of 50 years of CO 2 injection. We also present a series of geomechanical simulations in which the resolved stresses on the fault were varied over ranges of values corresponding to various stress measurements performed around the study area. The simulation results are analyzed by a statistical approach. Our main results are that the variations in resolved stresses as defined by the range of stress measurements had a negligible effect on the prediction of the seismic risk (maximum magnitude), but an important effect on the timing, the seismicity rate (number of seismic events) and the location of seismic activity.« less

  3. Report on all ARRA Funded Technical Work

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2013-10-05

    The main focus of this American Recovery and Reinvestment Act of 2009 (ARRA) funded project was to design an energy efficient carbon capture and storage (CCS) process using the Recipients membrane system for H{sub 2} separation and CO{sub 2} capture. In the ARRA-funded project, the Recipient accelerated development and scale-up of ongoing hydrogen membrane technology research and development (R&D). Specifically, this project focused on accelerating the current R&D work scope of the base program-funded project, involving lab scale tests, detail design of a 250 lb/day H{sub 2} process development unit (PDU), and scale-up of membrane tube and coating manufacturing. Thismore » project scope included the site selection and a Front End Engineering Design (FEED) study of a nominally 4 to 10 ton-per-day (TPD) Pre-Commercial Module (PCM) hydrogen separation membrane system. Process models and techno-economic analysis were updated to include studies on integration of this technology into an Integrated Gasification Combined Cycle (IGCC) power generation system with CCS.« less

  4. Four-hour quantitative real-time polymerase chain reaction-based comprehensive chromosome screening and accumulating evidence of accuracy, safety, predictive value, and clinical efficacy.

    PubMed

    Treff, Nathan R; Scott, Richard T

    2013-03-15

    Embryonic comprehensive chromosomal euploidy may represent a powerful biomarker to improve the success of IVF. However, there are a number of aneuploidy screening strategies to consider, including different technologic platforms with which to interrogate the embryonic DNA, and different embryonic developmental stages from which DNA can be analyzed. Although there are advantages and disadvantages associated with each strategy, a series of experiments producing evidence of accuracy, safety, clinical predictive value, and clinical efficacy indicate that trophectoderm biopsy and quantitative real-time polymerase chain reaction (qPCR)-based comprehensive chromosome screening (CCS) may represent a useful strategy to improve the success of IVF. This Biomarkers in Reproductive Medicine special issue review summarizes the accumulated experience with the development and clinical application of a 4-hour blastocyst qPCR-based CCS technology. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  5. Effect of CO2 partial pressure and different CO2 phases on carbon steel corrosion

    NASA Astrophysics Data System (ADS)

    Mahlobo, MGR; Premlall, K.; Olubambi, PA

    2017-12-01

    Carbon capture and storage (CCS) is the recent promising technology aimed at reducing greenhouse gas emission. Like many other developed technologies, CCS is faced with great challenges such as pipeline transportation failure due to corrosion. There are many factors contributing to steel corrosion during the pipeline transportation of carbon dioxide (CO2). This study focuses on CO2 partial pressure and different phases of CO2 as some of the factors contributing to steel corrosion. Carbon steel was used as a testing specimen. High pressure reactor was used in this study to compress CO2 from low to high pressures ultimately changing the CO2 from gaseous phase to gas/liquid phase (subcritical) and to dense phase (supercritical). Weight loss method was employed to determine the corrosion rate while scanning electron microscopy (SEM) and X-Ray diffraction (XRD) were used to study the carbon steel morphology and phase analysis. Using low magnification digital camera, the type of corrosion that took place on the carbon steel surface was identified.

  6. Cervical cancer screening and psychosocial barriers perceived by patients. A systematic review

    PubMed Central

    Bukowska-Durawa, Alicja

    2014-01-01

    Aim of the study This study aimed at integrating research discussing the role of perceived psychosocial barriers in cervical cancer screening (CCS) uptake. In particular, we analyzed the evidence for the associations between CCS uptake and perceived psychosocial barriers and frequency of psychosocial barriers identified by women. Material and methods A systematic search of peer-reviewed papers published until 2011 in 8 databases yielded 48 original studies, analyzing data obtained from 155 954 women. The majority of studies (k = 43) applied correlational design, while 5 had experimental design. Results Experimental research indicated a positive effect of 75% of psychosocial interventions targeting barriers. The interventions resulted in a significant increase of CCS uptake. Overall 100% of correlational studies indicated that perceiving lower levels of barriers significantly predicted higher CCS uptake. 53 psychosocial barriers were listed in at least 2 original correlational studies: 9.5% of barriers were related to CCS facilities/environment, 67.9% dealt with personal characteristics of the patient, and 22.6% addressed social factors. As many as 35.9% of perceived barriers referred to negative emotions related to CCS examination procedures and collecting CCS results, whereas 25.7% of barriers referred to prior contacts with health professionals. Conclusions Leaflets or discussion on psychosocial barriers between patients and health professionals involved in CCS might increase CCS uptake and thus reduce cervical cancer mortality rates. Communication skills training for health professionals conducting CCS might focus on the most frequently reported barriers, referring to emotions related to CCS examination and collecting CCS results. PMID:25520573

  7. Human cytoplasmic copper chaperones Atox1 and CCS exchange copper ions in vitro.

    PubMed

    Petzoldt, Svenja; Kahra, Dana; Kovermann, Michael; Dingeldein, Artur P G; Niemiec, Moritz S; Ådén, Jörgen; Wittung-Stafshede, Pernilla

    2015-06-01

    After Ctr1-mediated copper ion (Cu) entry into the human cytoplasm, chaperones Atox1 and CCS deliver Cu to P1B-type ATPases and to superoxide dismutase, respectively, via direct protein-protein interactions. Although the two Cu chaperones are presumed to work along independent pathways, we here assessed cross-reactivity between Atox1 and the first domain of CCS (CCS1) using biochemical and biophysical methods in vitro. By NMR we show that CCS1 is monomeric although it elutes differently from Atox1 in size exclusion chromatography (SEC). This property allows separation of Atox1 and CCS1 by SEC and, combined with the 254/280 nm ratio as an indicator of Cu loading, we demonstrate that Cu can be transferred from one protein to the other. Cu exchange also occurs with full-length CCS and, as expected, the interaction involves the metal binding sites since mutation of Cu-binding cysteine in Atox1 eliminates Cu transfer from CCS1. Cross-reactivity between CCS and Atox1 may aid in regulation of Cu distribution in the cytoplasm.

  8. Featured Article: Effect of copper on nuclear translocation of copper chaperone for superoxide dismutase-1

    PubMed Central

    Wang, Lin; Ge, Yan

    2016-01-01

    Copper chaperone for superoxide dismutase-1 (CCS-1), facilitating copper insertion into superoxide dismutase 1 (SOD-1), is present in the nucleus. However, it is unknown how CCS-1 is translocated to the nucleus. The present study was undertaken to determine the effect of copper on nuclear translocation of CCS-1. Human umbilical vein endothelial cells (HUVECs) were subjected to hypoxia, causing an increase in both copper and CCS-1 in the nucleus. Treatment with tetraethylenepentamine (TEPA) not only decreased the total cellular concentration and the nuclear translocation of copper, but also completely suppressed the entry of CCS-1 to the nucleus. On the other hand, siRNA targeting CCS-1 neither inhibited the increase in total concentrations nor blocked the nuclear translocation of copper. This study thus demonstrates that under hypoxia condition, both copper and CCS-1 are transported to the nucleus. The nuclear translocation of CCS-1 is copper dependent, but the nuclear translocation of copper could take place alternatively in a CCS-1-independent pathway. PMID:27190267

  9. Polymers for Traveling Wave Ion Mobility Spectrometry Calibration

    NASA Astrophysics Data System (ADS)

    Duez, Quentin; Chirot, Fabien; Liénard, Romain; Josse, Thomas; Choi, ChangMin; Coulembier, Olivier; Dugourd, Philippe; Cornil, Jérôme; Gerbaux, Pascal; De Winter, Julien

    2017-07-01

    One of the main issues when using traveling wave ion mobility spectrometry (TWIMS) for the determination of collisional cross-section (CCS) concerns the need for a robust calibration procedure built from referent ions of known CCS. Here, we implement synthetic polymer ions as CCS calibrants in positive ion mode. Based on their intrinsic polydispersities, polymers offer in a single sample the opportunity to generate, upon electrospray ionization, numerous ions covering a broad mass range and a large CCS window for different charge states at a time. In addition, the key advantage of polymer ions as CCS calibrants lies in the robustness of their gas-phase structure with respect to the instrumental conditions, making them less prone to collisional-induced unfolding (CIU) than protein ions. In this paper, we present a CCS calibration procedure using sodium cationized polylactide and polyethylene glycol, PLA and PEG, as calibrants with reference CCS determined on a home-made drift tube. Our calibration procedure is further validated by testing the polymer calibration to determine CCS of numerous different ions for which CCS are reported in the literature. [Figure not available: see fulltext.

  10. Carbon materials derived from chitosan/cellulose cryogel-supported zeolite imidazole frameworks for potential supercapacitor application.

    PubMed

    Li, Zehui; Yang, Lan; Cao, Hongbin; Chang, Yu; Tang, Kexin; Cao, Zhiqin; Chang, Junjun; Cao, Youpeng; Wang, Wenbo; Gao, Meng; Liu, Chenming; Liu, Dagang; Zhao, He; Zhang, Yi; Li, Mingjie

    2017-11-01

    In order to promote sustainable development, green and renewable clean energy technologies continue to be developed to meet the growing demand for energy, such as supercapacitor, fuel cells and lithium-ion battery. It is urgent to develop appropriate nanomaterials for these energy technologies to reduce the volume of the device, improve the efficiency of energy conversion and enlarge the energy storage capacity. Here, chitosan/cellulose carbon cryogel (CCS/CCL) were designed and synthesized. Through the introduction of zeolite imidazole frameworks (ZIFs) into the chitosan/cellulose cryogels, the obtained materials showed a microstructure of ZIF-7 (a kind of ZIFs) coated chitosan/cellulose fibers (CS/CL). After carbonizing, the as-prepared carbonized ZIF-7@cellulose cryogel (NC@CCL, NC is carbonized ZIF-7) and carbonized ZIF-7@chitosan cryogel (NC@CCS) exhibited suitable microspore contents of 34.37% and 30%, respectively, and they both showed an internal resistance lower than 2Ω. Thereby, NC@CCL and NC@CCS exhibited a high specific capacitance of 150.4Fg -1 and 173.1Fg -1 , respectively, which were much higher than those of the original materials. This approach offers a facile method for improving the strength and electronic conductivity of carbon cryogel derived from nature polymers, and also efficiently inhibits the agglomeration of cryogel during carbonization in high temperature, which opens a novel avenue for the development of carbon cryogel materials for application in energy conversion systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Ocean sequestration of crop residue carbon: recycling fossil fuel carbon back to deep sediments.

    PubMed

    Strand, Stuart E; Benford, Gregory

    2009-02-15

    For significant impact any method to remove CO2 from the atmosphere must process large amounts of carbon efficiently, be repeatable, sequester carbon for thousands of years, be practical, economical and be implemented soon. The only method that meets these criteria is removal of crop residues and burial in the deep ocean. We show here that this method is 92% efficient in sequestration of crop residue carbon while cellulosic ethanol production is only 32% and soil sequestration is about 14% efficient. Deep ocean sequestration can potentially capture 15% of the current global CO2 annual increase, returning that carbon backto deep sediments, confining the carbon for millennia, while using existing capital infrastructure and technology. Because of these clear advantages, we recommend enhanced research into permanent sequestration of crop residues in the deep ocean.

  12. Long-term monitoring of marine gas leakage

    NASA Astrophysics Data System (ADS)

    Spickenbom, Kai; Faber, Eckhard; Poggenburg, Jürgen; Seeger, Christian; Furche, Markus

    2010-05-01

    The sequestration of CO2 in sub-seabed geological formations is one of the Carbon Capture and Storage (CCS) strategies currently under study. Although offshore operations are significantly more expensive than comparable onshore operations, the growing public resistance against onshore CCS projects makes sub-seabed storage a promising option. Even after a thorough review of the geological setting, there is always the possibility of leakage from the reservoir. As part of the EU-financed project CO2ReMoVe (Research, Monitoring, Verification), which aims to develop innovative research and technologies for monitoring and verification of carbon dioxide geological storage, we are working on the development of submarine long-term gas flow monitoring systems. The basic design of the monitoring system builds on our experience in volcano monitoring. Early prototypes were composed of a raft floating on the surface of a mud volcano, carrying sensors for CO2 flux and concentration, data storage and transmission, and power supply by battery-buffered solar panels. The system was modified for installation in open sea by using a buoy instead of a raft and a funnel on the seafloor to collect the gas, connected by a flexible tube. This setup provides a cost-effective solution for shallow waters. However, a buoy interferes with ship traffic, and it is also difficult to adapt this design to greater water depths. These requirements can best be complied by a completely submersed system. A system for unattended long-term monitoring in a marine environment has to be extremely durable. Therefore, we focussed on developing a mechanically and electrically as simple setup as possible, which has the additional advantage of low cost. The system consists of a funnel-shaped gas collector, a sensor head and pressure housings for electronics and power supply. Since this setup is inexpensive, it can be deployed in numbers to cover larger areas. By addition of multi-channel data loggers, data transmission by acoustic modem or cable, relay stations on the seafloor or buoys etc. the infrastructure can be adapted to the environmental setting and financial budget. Prototype tests under laboratory conditions as well as field tests on natural submarine gas vents as an analogue to leaking storage sites have demonstrated the capabilities and robustness of the systems.

  13. Metallochaperone for Cu,Zn-superoxide dismutase (CCS) protein but not mRNA is higher in organs from copper-deficient mice and rats.

    PubMed

    Prohaska, Joseph R; Broderius, Margaret; Brokate, Bruce

    2003-09-15

    Cu,Zn-superoxide dismutase (SOD1) is an abundant metalloenzyme important in scavenging superoxide ions. Cu-deficient rats and mice have lower SOD1 activity and protein, possibly because apo-SOD1 is degraded faster than holo-SOD1. SOD1 interacts with and requires its metallochaperone CCS for donating copper. We produced dietary Cu deficiency in rodents to determine if the reduction in SOD1 was related to the level of its specific metallochaperone CCS. CCS levels determined by immunoblot were 2- to 3-fold higher in liver, heart, kidney, and brain from male Cu-deficient rats and mice under a variety of conditions. CCS was also higher in livers of Cu-deficient dams. Interestingly, CCS levels in brain of Cu-deficient mice were also higher even though SOD1 activity and protein were not altered, suggesting that the rise in CCS is correlated with altered Cu status rather than a direct result of lower SOD1. A DNA probe specific for rat CCS detected a single transcript by Northern blot hybridization with liver RNA. CCS mRNA levels in mouse and rat liver were not altered by dietary treatment. These results suggest a posttranscriptional mechanism for higher CCS protein when Cu is limiting in the cell, perhaps due to slower protein turnover. Elevation in CCS level is one of the most dramatic alterations in Cu binding proteins accompanying Cu deficiency and may be useful to assess Cu status.

  14. The potential of geological storage of CO2 in Austria: a techno-economic assessment

    NASA Astrophysics Data System (ADS)

    Brüstle, Anna Katharina; Welkenhuysen, Kris; Bottig, Magdalena; Piessens, Kris; Ramirez, Andrea; Swenner, Rudy

    2014-05-01

    An impressive two-third or about 40GWh/y of electricity in Austria is produced from renewable energy sources, in particular hydro energy. For the remaining part the country depends on fossil fuels, which together with iron & steel production form the most CO2 intensive industries in Austria with a combined emission of just over 20Mt/y. According to the IEA, CO2 capture and geological storage (CCS) can reduce the global CO2 emission until 2050 by 17%. A correct assessment of CCS needs to start with the storage potential. Prior to this study, only general estimates of the theoretical capacity of Austrian reservoirs were available, thus, up until now, the realistic potential for CCS technology has not been assessed. Both for policy and industry, an assessment of the matched capacity is required, which is the capacity that actually will be used in CCS projects. This hurdle can be taken by applying a recently developed methodology (Welkenhuysen et al., 2013). This policy support system (PSS) consists of two parts, PSS Explorer and PSS III simulator. In brief, the methodology is based on expert judgements of potential reservoirs. These assessments can provide the best available data, including the expert's experience and possibly confidential data, without disclosing specific data. The geo-techno-economic calculation scheme PSS Explorer uses the expert input to calculate for each individual reservoir an assessment of the practical capacity (as probability density functions), in function of an acceptable price for storage. This practical capacity can then be used by the techno-economic PSS III simulator to perform advanced source-sink matching until 2050 and thus provide the matched reservoir capacity. The analysed reservoirs are 7 active or abandoned oil and gas reservoirs in Austria. The simulation of the electricity and iron & steel sector of Austria resulted in the estimation of the geological storage potential, taking into account geological, technological and economic uncertainties. Results indicate a significant potential for CCS in Austria and a very high probability for any CO2 storage activity. The assessment of the average practical capacity of the whole country is 120Mt at 15€/tCO2 of storage budget, while the average matched national capacity is 40Mt. Concerning the individual reservoirs, reservoir development probabilities generally lie between 20 and 30%. These numbers served as basis for a reservoir exploration ranking. Compared to current emissions, total storage capacity is at the low end, which is likely the main technical limiting factor for CCS deployment in Austria. Also, current policy seems not in favour of CCS. Storage capacity is however high enough to provide a significant contribution to the reduction of CO2 emissions in the country, in the order of a few million tonnes per year. Opportunities to combine CO2 geological storage and geothermal energy seem promising, but require additional evaluation. Welkenhuysen, K., Ramirez, A., Swennen, R. & Piessens, K., 2013. Ranking potential CO2 storage reservoirs: an exploration priority list for Belgium. International Journal of Greenhouse Gas Control, 17, p. 431-449

  15. Impact of clinical presentation and pretest likelihood on the relation between calcium score and computed tomographic coronary angiography.

    PubMed

    van Werkhoven, Jacob M; de Boer, Stephanie M; Schuijf, Joanne D; Cademartiri, Filippo; Maffei, Erica; Jukema, J Wouter; Boogers, Mark J; Kroft, Lucia J; de Roos, Albert; Bax, Jeroen J

    2010-12-15

    The purpose of the present study was to assess the impact of clinical presentation and pretest likelihood on the relation between coronary calcium score (CCS) and computed tomographic coronary angiography (CTA) to determine the role of CCS as a gatekeeper to CTA in patients presenting with chest pain. In 576 patients with suspected coronary artery disease (CAD), CCS and CTA were performed. CCS was categorized as 0, 1 to 400, and >400. On CT angiogram the presence of significant CAD (≥50% luminal narrowing) was determined. Significant CAD was observed in 14 of 242 patients (5.8%) with CCS 0, in 94 of 260 patients (36.2%) with CCS 1 to 400, and in 60 of 74 patients (81.1%) with CCS >400. In patients with CCS 0, prevalence of significant CAD increased from 3.9% to 4.1% and 14.3% in nonanginal, atypical, and typical chest pain, respectively, and from 3.4% to 3.9% and 27.3% with a low, intermediate, and high pretest likelihood, respectively. In patients with CCS 1 to 400, prevalence of significant CAD increased from 27.4% to 34.7% and 51.7% in nonanginal, atypical, and typical chest pain, respectively, and from 15.4% to 35.6% and 50% in low, intermediate, and high pretest likelihood, respectively. In patients with CCS >400, prevalence of significant CAD on CT angiogram remained high (>72%) regardless of clinical presentation and pretest likelihood. In conclusion, the relation between CCS and CTA is influenced by clinical presentation and pretest likelihood. These factors should be taken into account when using CCS as a gatekeeper for CTA. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. An Assessment of the Cocooning Strategy for Preventing Infant Pertussis—United States, 2011

    PubMed Central

    Blain, Amy E.; Lewis, Melissa; Banerjee, Emily; Kudish, Kathy; Liko, Juventila; McGuire, Suzanne; Selvage, David; Watt, James; Martin, Stacey W.; Skoff, Tami H.

    2017-01-01

    Background Infants are at greatest risk for severe pertussis. In 2006, the Advisory Committee on Immunization Practices recommended that adolescents and adults, especially those with infant contact, receive a single dose of Tdap (tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis vaccine). To assess the effectiveness of cocooning, we conducted a case-control evaluation of infant close contacts. Methods Pertussis cases aged <2 months with onset between 1 January 2011 and 31 December 2011 were identified in Emerging Infections Program Network sites. For each case, we recruited 3 controls from birth certificates and interviewed identified adult close contacts (CCs) or parents of CCs aged <18 years. Pertussis vaccination was verified through medical providers and/or immunization registries. Results Forty-two cases were enrolled, with 154 matched controls. Around enrolled infants, 859 CCs were identified (600 adult and 259 nonadult). An average of 5.4 CCs was identified per case and 4.1 CCs per control. Five hundred fifty-four (64.5%) CCs were enrolled (371 adult and 183 non-adult CCs); 119 (32.1% of enrolled) adult CCs had received Tdap. The proportion of Tdap-vaccinated adult CCs was similar between cases and controls (P = .89). The 600 identified adult CCs comprised 172 potential cocoons; 71 (41.3%) potential cocoons had all identified adult CCs enrolled. Of these, 9 were fully vaccinated and 43.7% contained no Tdap-vaccinated adults. The proportion of fully vaccinated case (4.8%) and control (10.0%) cocoons was similar (P = .43). Conclusions Low Tdap coverage among adult CCs reinforces the difficulty of implementing the cocooning strategy and the importance of vaccination during pregnancy to prevent infant pertussis. PMID:27838676

  17. The Construction of Knowledge through Social Interaction via Computer-Mediated Communication

    ERIC Educational Resources Information Center

    Saritas, Tuncay

    2008-01-01

    With the advance in information and communication technologies, computer-mediated communication--more specifically computer conferencing systems (CCS)--has captured the interest of educators as an ideal tool to create a learning environment featuring active, participative, and reflective learning. Educators are increasingly adapting the features…

  18. High Hospitalization Rates in Survivors of Childhood Cancer: A Longitudinal Follow-Up Study Using Medical Record Linkage

    PubMed Central

    Sieswerda, Elske; Font-Gonzalez, Anna; Reitsma, Johannes B.; Dijkgraaf, Marcel G. W.; Heinen, Richard C.; Jaspers, Monique W.; van der Pal, Helena J.; van Leeuwen, Flora E.; Caron, Huib N.

    2016-01-01

    Hospitalization rates over time of childhood cancer survivors (CCS) provide insight into the burden of unfavorable health conditions on CCS and health care resources. The objective of our study was to examine trends in hospitalizations of CCS and risk factors in comparison with the general population. We performed a medical record linkage study of a cohort of 1564 ≥five-year CCS with national registers. We obtained a random sample of the general population matched on year of birth, gender and calendar year per CCS retrieved. We quantified and compared hospitalization rates of CCS and reference persons from 1995 until 2005, and we analyzed risk factors for hospitalization within the CCS cohort with multivariable Poisson models. We retrieved hospitalization information from 1382 CCS and 25583 reference persons. The overall relative hospitalization rate (RHR) was 2.2 (95%CI:1.9–2.5) for CCS compared to reference persons. CCS with central nervous system and solid tumors had highest RHRs. Hospitalization rates in CCS were increased compared to reference persons up to at least 30 years after primary diagnosis, with highest rates 5–10 and 20–30 years after primary cancer. RHRs were highest for hospitalizations due to neoplasms (10.7; 95%CI:7.1–16.3) and endocrine/nutritional/metabolic disorders (7.3; 95%CI:4.6–11.7). Female gender (P<0.001), radiotherapy to head and/or neck (P<0.001) or thorax and/or abdomen (P = 0.03) and surgery (P = 0.01) were associated with higher hospitalization rates in CCS. In conclusion, CCS have increased hospitalization rates compared to the general population, up to at least 30 years after primary cancer treatment. These findings imply a high and long-term burden of unfavorable health conditions after childhood cancer on survivors and health care resources. PMID:27433937

  19. High Hospitalization Rates in Survivors of Childhood Cancer: A Longitudinal Follow-Up Study Using Medical Record Linkage.

    PubMed

    Sieswerda, Elske; Font-Gonzalez, Anna; Reitsma, Johannes B; Dijkgraaf, Marcel G W; Heinen, Richard C; Jaspers, Monique W; van der Pal, Helena J; van Leeuwen, Flora E; Caron, Huib N; Geskus, Ronald B; Kremer, Leontien C

    2016-01-01

    Hospitalization rates over time of childhood cancer survivors (CCS) provide insight into the burden of unfavorable health conditions on CCS and health care resources. The objective of our study was to examine trends in hospitalizations of CCS and risk factors in comparison with the general population. We performed a medical record linkage study of a cohort of 1564 ≥five-year CCS with national registers. We obtained a random sample of the general population matched on year of birth, gender and calendar year per CCS retrieved. We quantified and compared hospitalization rates of CCS and reference persons from 1995 until 2005, and we analyzed risk factors for hospitalization within the CCS cohort with multivariable Poisson models. We retrieved hospitalization information from 1382 CCS and 25583 reference persons. The overall relative hospitalization rate (RHR) was 2.2 (95%CI:1.9-2.5) for CCS compared to reference persons. CCS with central nervous system and solid tumors had highest RHRs. Hospitalization rates in CCS were increased compared to reference persons up to at least 30 years after primary diagnosis, with highest rates 5-10 and 20-30 years after primary cancer. RHRs were highest for hospitalizations due to neoplasms (10.7; 95%CI:7.1-16.3) and endocrine/nutritional/metabolic disorders (7.3; 95%CI:4.6-11.7). Female gender (P<0.001), radiotherapy to head and/or neck (P<0.001) or thorax and/or abdomen (P = 0.03) and surgery (P = 0.01) were associated with higher hospitalization rates in CCS. In conclusion, CCS have increased hospitalization rates compared to the general population, up to at least 30 years after primary cancer treatment. These findings imply a high and long-term burden of unfavorable health conditions after childhood cancer on survivors and health care resources.

  20. Integrated Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Rogers

    The US DOE/NETL CCS MVA program funded a project with Fusion Petroleum Technologies Inc. (now SIGMA) to model the proof of concept of using sparse seismic data in the monitoring of CO{sub 2} injected into saline aquifers. The goal of the project was to develop and demonstrate an active source reflection seismic imaging strategy based on deployment of spatially sparse surface seismic arrays. The primary objective was to test the feasibility of sparse seismic array systems to monitor the CO{sub 2} plume migration injected into deep saline aquifers. The USDOE/RMOTC Teapot Dome (Wyoming) 3D seismic and reservoir data targeting themore » Crow Mountain formation was used as a realistic proxy to evaluate the feasibility of the proposed methodology. Though the RMOTC field has been well studied, the Crow Mountain as a saline aquifer has not been studied previously as a CO{sub 2} sequestration (storage) candidate reservoir. A full reprocessing of the seismic data from field tapes that included prestack time migration (PSTM) followed by prestack depth migration (PSDM) was performed. A baseline reservoir model was generated from the new imaging results that characterized the faults and horizon surfaces of the Crow Mountain reservoir. The 3D interpretation was integrated with the petrophysical data from available wells and incorporated into a geocellular model. The reservoir structure used in the geocellular model was developed using advanced inversion technologies including Fusion's ThinMAN{trademark} broadband spectral inversion. Seal failure risk was assessed using Fusion's proprietary GEOPRESS{trademark} pore pressure and fracture pressure prediction technology. CO{sub 2} injection was simulated into the Crow Mountain with a commercial reservoir simulator. Approximately 1.2MM tons of CO{sub 2} was simulated to be injected into the Crow Mountain reservoir over 30 years and subsequently let 'soak' in the reservoir for 970 years. The relatively small plume developed from this injection was observed migrating due to gravity to the apexes of the double anticline in the Crow Mountain reservoir of the Teapot dome. Four models were generated from the reservoir simulation task of the project which included three saturation models representing snapshots at different times during and after simulated CO{sub 2} injection and a fully saturated CO{sub 2} fluid substitution model. The saturation models were used along with a Gassmann fluid substitution model for CO{sub 2} to perform fluid volumetric substitution in the Crow Mountain formation. The fluid substitution resulted in a velocity and density model for the 3D volume at each saturation condition that was used to generate a synthetic seismic survey. FPTI's (Fusion Petroleum Technologies Inc.) proprietary SeisModelPRO{trademark} full acoustic wave equation software was used to simulate acquisition of a 3D seismic survey on the four models over a subset of the field area. The simulated acquisition area included the injection wells and the majority of the simulated plume area.« less

  1. MetCCS predictor: a web server for predicting collision cross-section values of metabolites in ion mobility-mass spectrometry based metabolomics.

    PubMed

    Zhou, Zhiwei; Xiong, Xin; Zhu, Zheng-Jiang

    2017-07-15

    In metabolomics, rigorous structural identification of metabolites presents a challenge for bioinformatics. The use of collision cross-section (CCS) values of metabolites derived from ion mobility-mass spectrometry effectively increases the confidence of metabolite identification, but this technique suffers from the limit number of available CCS values. Currently, there is no software available for rapidly generating the metabolites' CCS values. Here, we developed the first web server, namely, MetCCS Predictor, for predicting CCS values. It can predict the CCS values of metabolites using molecular descriptors within a few seconds. Common users with limited background on bioinformatics can benefit from this software and effectively improve the metabolite identification in metabolomics. The web server is freely available at: http://www.metabolomics-shanghai.org/MetCCS/ . jiangzhu@sioc.ac.cn. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  2. The Impact of CCS Readiness on the Evolution of China's Electric Power Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahowski, Robert T.; Davidson, Casie L.; Yu, Sha

    In this study, GCAM-China is exercised to examine the impact of CCS availability on the projected evolution of China’s electric power sector under the Paris Increased Ambition policy scenario developed by Fawcett et al. based on the Intended Nationally Determined Contributions (INDCs) submitted under the COP-21 Paris Agreement. This policy scenario provides a backdrop for understanding China’s electric generation mix over the coming century under several CCS availability scenarios: CCS is fully available for commercial-scale deployment by 2025; by 2050; by 2075; and CCS is unavailable for use in meeting the modelled mitigation targets through 2100. Without having CCS available,more » the Chinese electric power sector turns to significant use of nuclear, wind, and solar to meet growing demands and emissions targets, at a cost. Should large-scale CCS deployment be delayed in China by 25 years, the modeled per-ton cost of climate change mitigation is projected to be roughly $420/tC (2010 US dollars) by 2050, relative to $360/tC in the case in which CCS is available to deploy by 2025, a 16% increase. Once CCS is available for commercial use, mitigation costs for the two cases converge, equilibrating by 2085. However, should CCS be entirely unavailable to deploy in China, the mitigation cost spread, compared to the 2025 case, doubles by 2075 ($580/tC and $1130/tC respectively), and triples by 2100 ($1050/tC vs. $3200/tC). However, while delays in CCS availability may have short-term impacts on China’s overall per-ton cost of meeting the emissions reduction target evaluated here, as well as total mitigation costs, the carbon price is likely to approach the price path associated with the full CCS availability case within a decade of CCS deployment. Having CCS available before the end of the century, even under the delays examined here, could reduce the total amount of nuclear and renewable energy that must deploy, reducing the overall cost of meeting the emissions mitigation targets.« less

  3. Eddy Covariance Method for CO2 Emission Measurements: CCS Applications, Principles, Instrumentation and Software

    NASA Astrophysics Data System (ADS)

    Burba, George; Madsen, Rod; Feese, Kristin

    2013-04-01

    The Eddy Covariance method is a micrometeorological technique for direct high-speed measurements of the transport of gases, heat, and momentum between the earth's surface and the atmosphere. Gas fluxes, emission and exchange rates are carefully characterized from single-point in-situ measurements using permanent or mobile towers, or moving platforms such as automobiles, helicopters, airplanes, etc. Since the early 1990s, this technique has been widely used by micrometeorologists across the globe for quantifying CO2 emission rates from various natural, urban and agricultural ecosystems [1,2], including areas of agricultural carbon sequestration. Presently, over 600 eddy covariance stations are in operation in over 120 countries. In the last 3-5 years, advancements in instrumentation and software have reached the point when they can be effectively used outside the area of micrometeorology, and can prove valuable for geological carbon capture and sequestration, landfill emission measurements, high-precision agriculture and other non-micrometeorological industrial and regulatory applications. In the field of geological carbon capture and sequestration, the magnitude of CO2 seepage fluxes depends on a variety of factors. Emerging projects utilize eddy covariance measurement to monitor large areas where CO2 may escape from the subsurface, to detect and quantify CO2 leakage, and to assure the efficiency of CO2 geological storage [3,4,5,6,7,8]. Although Eddy Covariance is one of the most direct and defensible ways to measure and calculate turbulent fluxes, the method is mathematically complex, and requires careful setup, execution and data processing tailor-fit to a specific site and a project. With this in mind, step-by-step instructions were created to introduce a novice to the conventional Eddy Covariance technique [9], and to assist in further understanding the method through more advanced references such as graduate-level textbooks, flux networks guidelines, journals and technical papers. A free open-source software package with a user-friendly interface was developed accordingly for computing final fully corrected CO2 emission numbers [10]. The presentation covers highlights of the eddy covariance method, its application to geological carbon sequestration, key requirements, instrumentation and software, and reviews educational resources particularly useful for carbon sequestration research. References: [1] Aubinet, M., T. Vesala, and D. Papale (Eds.), 2012. Eddy Covariance: A Practical Guide to Measurement and Data Analysis. Springer-Verlag, 442 pp. [2] Foken T., 2008. Micrometeorology. Springer-Verlag, 308 pp. [4] Finley, R., 2009. An Assessment of Geological Carbon Sequestration in the Illinois Basin Overview of the Decatur-Illinois Basin Site. MGSC, http://www.istc.illinois.edu/info/govs_awards_docs/2009-GSA-1100-Finley.pdf [5] Liu, G. (Ed.), 2012. Greenhouse Gases: Capturing, Utilization and Reduction. Intech, 338 pp. [6] LI-COR Biosciences, 2011. Surface Monitoring for Geologic Carbon Sequestration Monitoring: Methods, Instrumentation, and Case Studies. LI-COR Biosciences, Pub. 980-11916, 15 pp. [7] Benson, S., 2006. Monitoring carbon dioxide sequestration in deep geological formations for inventory verification and carbon credits, SPE-102833, Presentation [8] Lewicki, J., G. Hilley, M. Fischer, L. Pan, C. Olden-burg, C. Dobeck, and L. Spangler, 2009.Eddy covariance observations of leakage during shallow subsurface CO2 releases. Journal of Geophys Res, 114: D12302 [9] Burba, G., 2013. Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications. LI-COR Biosciences, 328 pp. [10] LI-COR Biosciences, 2012. EddyPro 4.0: Help and User's Guide. Lincoln, NE, 208 pp.

  4. Boron neutron capture therapy for clear cell sarcoma (CCS): biodistribution study of p-borono-L-phenylalanine in CCS-bearing animal models.

    PubMed

    Andoh, T; Fujimoto, T; Sudo, T; Fujita, I; Imabori, M; Moritake, H; Sugimoto, T; Sakuma, Y; Takeuchi, T; Kawabata, S; Kirihata, M; Akisue, T; Yayama, K; Kurosaka, M; Miyatake, S; Fukumori, Y; Ichikawa, H

    2011-12-01

    Clear cell sarcoma (CCS) is a rare melanocytic malignant tumor with a poor prognosis. Our previous study demonstrated that in vitro cultured CCS cells have the ability to highly uptake l-BPA and thus boron neutron capture therapy could be a new option for CCS treatment. This paper proved that a remarkably high accumulation of (10)B (45-74 ppm) in tumor was obtained even in a CCS-bearing animal with a well-controlled biodistribution followed by intravenous administration of L-BPA-fructose complex (500 mg BPA/kg). Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Overexpression of CCS in G93A-SOD1 mice leads to accelerated neurological deficits with severe mitochondrial pathology.

    PubMed

    Son, Marjatta; Puttaparthi, Krishna; Kawamata, Hibiki; Rajendran, Bhagya; Boyer, Philip J; Manfredi, Giovanni; Elliott, Jeffrey L

    2007-04-03

    Cu, Zn superoxide dismutase (SOD1) has been detected within spinal cord mitochondria of mutant SOD1 transgenic mice, a model of familial ALS. The copper chaperone for SOD1 (CCS) provides SOD1 with copper, facilitates the conversion of immature apo-SOD1 to a mature holoform, and influences in yeast the cytosolic/mitochondrial partitioning of SOD1. To determine how CCS affects G93A-SOD1-induced disease, we generated transgenic mice overexpressing CCS and crossed them to G93A-SOD1 or wild-type SOD1 transgenic mice. Both CCS transgenic mice and CCS/wild-type-SOD1 dual transgenic mice are neurologically normal. In contrast, CCS/G93A-SOD1 dual transgenic mice develop accelerated neurological deficits, with a mean survival of 36 days, compared with 242 days for G93A-SOD1 mice. Immuno-EM and subcellular fractionation studies on the spinal cord show that G93A-SOD1 is enriched within mitochondria in the presence of CCS overexpression. Our results indicate that CCS overexpression in G93A-SOD1 mice produces severe mitochondrial pathology and accelerates disease course.

  6. Redox susceptibility of SOD1 mutants is associated with the differential response to CCS over-expression in vivo.

    PubMed

    Son, Marjatta; Fu, Qiao; Puttaparthi, Krishna; Matthews, Christina M; Elliott, Jeffrey L

    2009-04-01

    Over-expression of CCS in G93A SOD1 mice accelerates neurological disease and enhances mitochondrial pathology. We studied the effect of CCS over-expression in transgenic mice expressing G37R, G86R or L126Z SOD1 mutations in order to understand factors which influence mitochondrial dysfunction. Over-expression of CCS markedly decreased survival and produced mitochondrial vacuolation in G37R SOD1 mice but not in G86R or L126Z SOD1 mice. Moreover, CCS/G37R SOD1 spinal cord showed specific reductions in mitochondrial complex IV subunits consistent with an isolated COX deficiency, while no such reductions were detected in CCS/G86R or CCS/L126Z SOD1 mice. CCS over-expression increased the ratio of reduced to oxidized SOD1 monomers in the spinal cords of G37R SOD1 as well as G93A SOD1 mice, but did not influence the redox state of G86R or L126Z SOD1 monomers. The effects of CCS on disease are SOD1 mutation dependent and correlate with SOD1 redox susceptibility.

  7. Optimizing Monitoring Designs under Alternative Objectives

    DOE PAGES

    Gastelum, Jason A.; USA, Richland Washington; Porter, Ellen A.; ...

    2014-12-31

    This paper describes an approach to identify monitoring designs that optimize detection of CO2 leakage from a carbon capture and sequestration (CCS) reservoir and compares the results generated under two alternative objective functions. The first objective function minimizes the expected time to first detection of CO2 leakage, the second more conservative objective function minimizes the maximum time to leakage detection across the set of realizations. The approach applies a simulated annealing algorithm that searches the solution space by iteratively mutating the incumbent monitoring design. The approach takes into account uncertainty by evaluating the performance of potential monitoring designs across amore » set of simulated leakage realizations. The approach relies on a flexible two-tiered signature to infer that CO2 leakage has occurred. This research is part of the National Risk Assessment Partnership, a U.S. Department of Energy (DOE) project tasked with conducting risk and uncertainty analysis in the areas of reservoir performance, natural leakage pathways, wellbore integrity, groundwater protection, monitoring, and systems level modeling.« less

  8. Evaluation of Collision Cross Section Calibrants for Structural Analysis of Lipids by Traveling Wave Ion Mobility-Mass Spectrometry

    PubMed Central

    2016-01-01

    Collision cross section (CCS) measurement of lipids using traveling wave ion mobility-mass spectrometry (TWIM-MS) is of high interest to the lipidomics field. However, currently available calibrants for CCS measurement using TWIM are predominantly peptides that display quite different physical properties and gas-phase conformations from lipids, which could lead to large CCS calibration errors for lipids. Here we report the direct CCS measurement of a series of phosphatidylcholines (PCs) and phosphatidylethanolamines (PEs) in nitrogen using a drift tube ion mobility (DTIM) instrument and an evaluation of the accuracy and reproducibility of PCs and PEs as CCS calibrants for phospholipids against different classes of calibrants, including polyalanine (PolyAla), tetraalkylammonium salts (TAA), and hexakis(fluoroalkoxy)phosphazines (HFAP), in both positive and negative modes in TWIM-MS analysis. We demonstrate that structurally mismatched calibrants lead to larger errors in calibrated CCS values while the structurally matched calibrants, PCs and PEs, gave highly accurate and reproducible CCS values at different traveling wave parameters. Using the lipid calibrants, the majority of the CCS values of several classes of phospholipids measured by TWIM are within 2% error of the CCS values measured by DTIM. The development of phospholipid CCS calibrants will enable high-accuracy structural studies of lipids and add an additional level of validation in the assignment of identifications in untargeted lipidomics experiments. PMID:27321977

  9. The triply troubled teenager--chronic conditions associated with fewer protective factors and clustered risk behaviours.

    PubMed

    Nylander, Charlotte; Seidel, Carina; Tindberg, Ylva

    2014-02-01

    This study aimed to measure protective factors and risk behaviour among adolescents with chronic conditions (CCs) and to evaluate the impact of protective factors on risk-taking. A population-based study of 7262 students aged 15 and 17 years old was performed in Sörmland, Sweden 2008 (response rate 82%). The questionnaire explored background factors, CCs, risk behaviours and protective factors. CCs were reported by 8%, while 58% had no health problems. Girls with CCs encompassed less individual protective factors, while boys with CCs tended to over-report all individual risk behaviours compared with healthy peers. Both boys and girls with CCs were more likely to report few protective factors and co-occurrence of risk behaviours. The adjOR for clustered health risk behaviours was 1.6 (1.0-2.5) in youths with CCs and ≥4 protective factors and 6.3 (3.6-10.9) in youths with CCs and 0-3 protective factors, as compared to healthy peers with ≥4 protective factors. Adolescents with CCs reported fewer protective factors and more risk behaviours than their healthy peers. The vulnerability of adolescents with CCs and few protective factors is important to acknowledge. Professionals should provide stronger protection for these adolescents, to prevent risky behaviour. ©2013 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  10. Tissue-Specific Control of the Endocycle by the Anaphase Promoting Complex/Cyclosome Inhibitors UVI4 and DEL1.

    PubMed

    Heyman, Jefri; Polyn, Stefanie; Eekhout, Thomas; De Veylder, Lieven

    2017-09-01

    The endocycle represents a modified mitotic cell cycle that in plants is often coupled to cell enlargement and differentiation. Endocycle onset is controlled by activity of the Anaphase Promoting Complex/Cyclosome (APC/C), a multisubunit E3 ubiquitin ligase targeting cell-cycle factors for destruction. CELL CYCLE SWITCH52 (CCS52) proteins represent rate-limiting activator subunits of the APC/C. In Arabidopsis ( Arabidopsis thaliana ), mutations in either CCS52A1 or CCS52A2 activators result in a delayed endocycle onset, whereas their overexpression triggers increased DNA ploidy levels. Here, the relative contribution of the APC/C CCS52A1 and APC/C CCS52A2 complexes to different developmental processes was studied through analysis of their negative regulators, being the ULTRAVIOLET-B-INSENSITIVE4 protein and the DP-E2F-Like1 transcriptional repressor, respectively. Our data illustrate cooperative activity of the APC/C CCS52A1 and APC/C CCS52A2 complexes during root and trichome development, but functional interdependency during leaf development. Furthermore, we found APC/C CCS52A1 activity to control CCS52A2 expression. We conclude that interdependency of CCS52A-controlled APC/C activity is controlled in a tissue-specific manner. © 2017 American Society of Plant Biologists. All Rights Reserved.

  11. CCS mRNA transcripts and serum CCS protein as copper marker in adults suffering inflammatory processes.

    PubMed

    Araya, Magdalena; Gutiérrez, Ricardo; Arredondo, Miguel

    2014-08-01

    The chaperone to Zn-Cu superoxide dismutase (CCS) has been postulated as a candidate copper indicator, changing in a consistent manner in induced and recovered copper deficiency, in experimental cell and animal models. In real life people have various conditions that may modify molecules acting as acute phase proteins, such as serum ceruloplasmin and copper concentration and could alter CCS responses. With the hypothesis that CCS mRNA transcripts and protein would be different in individuals suffering inflammatory processes in comparison to healthy individuals, we assessed adult individuals who, although not ill had conditions known to induce variable degrees of inflammation. Screening of 600 adults resulted in two study groups, formed on the basis of their clinical history and levels of serum C reactive protein (CRP): Group 1 (n = 61, mean (range) CRP = 0.9 (0.3-2.0 mg/dL) and Group 2 (n = 150, mean (range) CRP = 6.1 (4.3-8.7 mg/dL). Results showed that mRNA transcripts relative abundance was not different for CCS, MTIIA, TNF-alpha and Cu-Zn-SOD by group (p > 0.05, one way Anova), nor between sexes (p > 0.05, one way Anova). Distribution of CCS mRNA transcripts and CCS protein in serum did not show any differences or trends. Results disproved our hypothesis that CCS abundance of transcripts and CCS protein would be different in individuals suffering inflammatory processes, adding further support to the idea that CCS may be a copper marker.

  12. Collision Cross Section (CCS) Database: An Additional Measure to Characterize Steroids.

    PubMed

    Hernández-Mesa, Maykel; Le Bizec, Bruno; Monteau, Fabrice; García-Campaña, Ana M; Dervilly-Pinel, Gaud

    2018-04-03

    Ion mobility spectrometry enhances the performance characteristics of liquid chromatography-mass spectrometry workflows intended to steroid profiling by providing a new separation dimension and a novel characterization parameter, the so-called collision cross section (CCS). This work proposes the first CCS database for 300 steroids (i.e., endogenous, including phase I and phase II metabolites, and exogenous synthetic compounds), which involves 1080 ions and covers the CCS of 127 androgens, 84 estrogens, 50 corticosteroids, and 39 progestagens. This large database provides information related to all the ionized species identified for each steroid in positive electrospray ionization mode as well as for estrogens in negative ionization mode. CCS values have been measured using nitrogen as drift gas in the ion mobility cell. Generally, direct correlation exists between mass-to-charge ratio ( m/ z) and CCS because both are related parameters. However, several steroids mainly steroid glucuronides and steroid esters have been characterized as more compact or elongated molecules than expected. In such cases, CCS results in additional relevant information to retention time and mass spectral data for the identification of steroids. Moreover, several isomeric steroid pairs (e.g., 5β-androstane-3,17-dione and 5α-androstane-3,17-dione) have been separated based on their CCS differences. These results indicate that adding the CCS to databases in analytical workflows increases selectivity, thus improving the confidence in steroids analysis. Consequences in terms of identification and quantification are discussed. Quality criteria and a construction of an interlaboratory reproducibility approach are also reported for the obtained CCS values. The CCS database described here is made publicly available.

  13. Collision and displacement vulnerability among marine birds of the California Current System associated with offshore wind energy infrastructure

    USGS Publications Warehouse

    Adams, Josh; Kelsey, Emily C.; Felis, Jonathan J.; Pereksta, David M.

    2016-10-27

    With growing climate change concerns and energy constraints, there is an increasing need for renewable energy sources within the United States and globally. Looking forward, offshore wind-energy infrastructure (OWEI) has the potential to produce a significant proportion of the power needed to reach our Nation’s renewable energy goal. Offshore wind-energy sites can capitalize open areas within Federal waters that have persistent, high winds with large energy production potential. Although there are few locations in the California Current System (CCS) where it would be acceptable to build pile-mounted wind turbines in waters less than 50 m deep, the development of technology able to support deep-water OWEI (>200 m depth) could enable wind-energy production in the CCS. As with all human-use of the marine environment, understanding the potential impacts of wind-energy infrastructure on the marine ecosystem is an integral part of offshore wind-energy research and planning. Herein, we present a comprehensive database to quantify marine bird vulnerability to potential OWEI in the CCS (see https://doi.org/10.5066/F79C6VJ0). These data were used to quantify marine bird vulnerabilities at the population level. For 81 marine bird species present in the CCS, we created three vulnerability indices: Population Vulnerability, Collision Vulnerability, and Displacement Vulnerability. Population Vulnerability was used as a scaling factor to generate two comprehensive indicies: Population Collision Vulnerability (PCV) and Population Displacement Vulnerability (PDV). Within the CCS, pelicans, terns (Forster’s [Sterna forsteri], Caspian [Hydroprogne caspia], Elegant [Thalasseus elegans], and Least Tern [Sternula antillarum]), gulls (Western [Larus occidentalis] and Bonaparte’s Gull [Chroicocephalus philadelphia]), South Polar Skua (Stercorarius maccormicki), and Brandt’s Cormorant (Phalacrocorax penicillatus) had the greatest PCV scores. Brown Pelican (Pelicanus occidentalis) had the greatest overall PCV score. Some alcids (Scripps’s Murrelet [Synthliboramphus scrippsi], Marbled Murrelet [Brachyramphus marmoratus], and Tufted Puffin [Fratercula cirrhata]), terns (Elegant and Least Lern), and loons (Yellow-billed [Gavia adamsii] and Common Loon [G. immer]) had the greatest PDV scores. Ashy Storm-Petrel (Oceanodroma homochroa) had the greatest overall PDV score. To help inform decisions that will impact seabird conservation, vulnerability assessment results can now be combined with recent marine bird at-sea distribution and abundance data for the CCS to evaluate vulnerability areas where OWEI development is being considered. Lastly, it is important to note that as new information about seabird behavior and populations in the CCS becomes available, this database can be easily updated and modified.

  14. Complex genomic rearrangement in CCS-LacZ transgenic mice.

    PubMed

    Stroud, Dina Myers; Darrow, Bruce J; Kim, Sang Do; Zhang, Jie; Jongbloed, Monique R M; Rentschler, Stacey; Moskowitz, Ivan P G; Seidman, Jonathan; Fishman, Glenn I

    2007-02-01

    The cardiac conduction system (CCS)-lacZ insertional mouse mutant strain genetically labels the developing and mature CCS. This pattern of expression is presumed to reflect the site of transgene integration rather than regulatory elements within the transgene proper. We sought to characterize the genomic structure of the integration locus and identify nearby gene(s) that might potentially confer the observed CCS-specific transcription. We found rearrangement of chromosome 7 between regions D1 and E1 with altered transcription of multiple genes in the D1 region. Several lines of evidence suggested that regulatory elements from at least one gene, Slco3A1, influenced CCS-restricted reporter gene expression. In embryonic hearts, Slco3A1 was expressed in a spatial pattern similar to the CCS-lacZ transgene and was similarly neuregulin-responsive. At later stages, however, expression patterns of the transgene and Slco3A1 diverged, suggesting that the Slco3A1 locus may be necessary, but not sufficient to confer CCS-specific transgene expression in the CCS-lacZ line. (c) 2007 Wiley-Liss, Inc.

  15. A molecular chaperone activity of CCS restores the maturation of SOD1 fALS mutants.

    PubMed

    Luchinat, Enrico; Barbieri, Letizia; Banci, Lucia

    2017-12-12

    Superoxide dismutase 1 (SOD1) is an important metalloprotein for cellular oxidative stress defence, that is mutated in familiar variants of Amyotrophic Lateral Sclerosis (fALS). Some mutations destabilize the apo protein, leading to the formation of misfolded, toxic species. The Copper Chaperone for SOD1 (CCS) transiently interacts with SOD1 and promotes its correct maturation by transferring copper and catalyzing disulfide bond formation. By in vitro and in-cell NMR, we investigated the role of the SOD-like domain of CCS (CCS-D2). We showed that CCS-D2 forms a stable complex with zinc-bound SOD1 in human cells, that has a twofold stabilizing effect: it both prevents the accumulation of unstructured mutant SOD1 and promotes zinc binding. We further showed that CCS-D2 interacts with apo-SOD1 in vitro, suggesting that in cells CCS stabilizes mutant apo-SOD1 prior to zinc binding. Such molecular chaperone function of CCS-D2 is novel and its implications in SOD-linked fALS deserve further investigation.

  16. Healthy cooking classes at a children’s cancer hospital and patient/survivor summer camp: initial reactions and feasibility

    PubMed Central

    Raber, Margaret; Crawford, Karla; Chandra, Joya

    2018-01-01

    Objective Childhood cancer survivors (CCS) have been shown to practice sub-optimal dietary intake and may benefit from nutrition interventions during and after treatment. Cooking classes have become popular for encouraging healthy eating behaviors in community-based programming and academic research, however, literature on teaching cooking classes in CCS is limited. The purpose of this study is to address the development and implementation of classes for CCS based on a recently developed framework of healthy cooking behavior. Design A conceptual framework was developed from a systematic literature review and used to guide healthy cooking classes for CCS in different settings. Setting One pediatric cancer hospital inpatient unit, one pediatric cancer in-hospital camp program and two off-site pediatric cancer summer camp programs. Subjects One hundred and eighty nine CCS of varying ages and thirteen parents of CCS. Results Seventeen classes were taught at camps and seven classes in the hospital inpatient unit. Healthy cooking classes based on the conceptual framework are feasible and were well received by CCS. Conclusions Cooking classes for CCS, both at the hospital and at camp, reinforced the principles of the conceptual framework. Future trials should assess the dietary and anthropometric impact of evidence-based healthy cooking classes in CCS. PMID:28463101

  17. Healthy cooking classes at a children's cancer hospital and patient/survivor summer camps: initial reactions and feasibility.

    PubMed

    Raber, Margaret; Crawford, Karla; Chandra, Joya

    2017-06-01

    Childhood cancer survivors (CCS) have been shown to practise suboptimal dietary intake and may benefit from nutrition interventions during and after treatment. Cooking classes have become popular for encouraging healthy eating behaviours in community-based programming and academic research; however, literature on teaching cooking classes in CCS is limited. The purpose of the present study was to address the development and implementation of classes for CCS based on a recently developed framework of healthy cooking behaviour. A conceptual framework was developed from a systematic literature review and used to guide healthy cooking classes for CCS in different settings. One paediatric cancer hospital inpatient unit, one paediatric cancer in-hospital camp programme and two off-site paediatric cancer summer camp programmes. One hundred and eighty-nine CCS of varying ages and thirteen parents of CCS. Seventeen classes were taught at camps and seven classes in the hospital inpatient unit. Healthy cooking classes based on the conceptual framework are feasible and were well received by CCS. Cooking classes for CCS, both at the hospital and at camp, reinforced the principles of the conceptual framework. Future trials should assess the dietary and anthropometric impact of evidence-based healthy cooking classes in CCS.

  18. Monitoring Global Precipitation through UCI CHRS's RainMapper App on Mobile Devices

    NASA Astrophysics Data System (ADS)

    Nguyen, P.; Huynh, P.; Braithwaite, D.; Hsu, K. L.; Sorooshian, S.

    2014-12-01

    The Water and Development Information for Arid Lands-a Global Network (G-WADI) Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks—Cloud Classification System (PERSIANN-CCS) GeoServer has been developed through a collaboration between the Center for Hydrometeorology and Remote Sensing (CHRS) at the University of California, Irvine (UCI) and the UNESCO's International Hydrological Program (IHP). G-WADI PERSIANN-CCS GeoServer provides near real-time high resolution (0.04o, approx 4km) global (60oN - 60oS) satellite precipitation estimated by the PERSIANN-CCS algorithm developed by the scientists at CHRS. The G-WADI PERSIANN-CCS GeoServer utilizes the open-source MapServer software from the University of Minnesota to provide a user-friendly web-based mapping and visualization of satellite precipitation data. Recent efforts have been made by the scientists at CHRS to provide free on-the-go access to the PERSIANN-CCS precipitation data through an application named RainMapper for mobile devices. RainMapper provides visualization of global satellite precipitation of the most recent 3, 6, 12, 24, 48 and 72-hour periods overlaid with various basemaps. RainMapper uses the Google maps application programing interface (API) and embedded global positioning system (GPS) access to better monitor the global precipitation data on mobile devices. Functionalities include using geographical searching with voice recognition technologies make it easy for the user to explore near real-time precipitation in a certain location. RainMapper also allows for conveniently sharing the precipitation information and visualizations with the public through social networks such as Facebook and Twitter. RainMapper is available for iOS and Android devices and can be downloaded (free) from the App Store and Google Play. The usefulness of RainMapper was demonstrated through an application in tracking the evolution of the recent Rammasun Typhoon over the Philippines in mid July 2014.

  19. Ion mobility-mass spectrometry of complex carbohydrates: collision cross sections of sodiated N-linked glycans.

    PubMed

    Pagel, Kevin; Harvey, David J

    2013-05-21

    Currently, the vast majority of complex carbohydrates are characterized using mass spectrometry (MS)-based techniques. Measuring the molecular mass of a sugar, however, immediately poses a fundamental problem: entire classes of the constituting monosaccharide building blocks exhibit an identical atomic composition and, consequently, also an identical mass. Therefore, carbohydrate MS data can be highly ambiguous and often it is simply not possible to clearly assign a particular molecular structure. A promising approach to overcome the above-mentioned limitation is to implement an additional gas-phase separation dimension using ion mobility spectrometry (IMS), which is a method in which molecules of identical mass and structure but different structure can be separated according to their shape and collision cross section (CCS). With the emergence of commercially available hybrid ion mobility-mass spectrometry (IM-MS) instruments in 2006, IMS technology became readily available. Because of the nonhomogeneous, traveling wave (TW) field utilized in these instruments, however, CCS values currently cannot be determined directly from the drift times measured. Instead, an external calibration using compounds of known CCS and similar molecular identity is required. Here, we report a calibration protocol for TW IMS instruments using a series of sodiated N-glycans that were released from commercially available glycoproteins using an easy-to-follow protocol. The underlying CCS values were determined using a modified Synapt HDMS instrument with a linear drift tube, which was described in detail previously. Our data indicate that, under in-source fragmentation conditions, only a few glycans are required to obtain a TW IMS calibration of sufficient quality. In this context, however, the type of glycan was shown to be of tremendous importance. Furthermore, our data clearly demonstrate that carbohydrate isomers with identical mass but different conformation can be distinguished based on their CCS when all the associated errors are taken into account.

  20. Canadian Cardiovascular Society/Canadian Society of Cardiac Surgeons/Canadian Society for Vascular Surgery Joint Position Statement on Open and Endovascular Surgery for Thoracic Aortic Disease.

    PubMed

    Appoo, Jehangir J; Bozinovski, John; Chu, Michael W A; El-Hamamsy, Ismail; Forbes, Thomas L; Moon, Michael; Ouzounian, Maral; Peterson, Mark D; Tittley, Jacques; Boodhwani, Munir

    2016-06-01

    In 2014, the Canadian Cardiovascular Society (CCS) published a position statement on the management of thoracic aortic disease addressing size thresholds for surgery, imaging modalities, medical therapy, and genetics. It did not address issues related to surgical intervention. This joint Position Statement on behalf of the CCS, Canadian Society of Cardiac Surgeons, and the Canadian Society for Vascular Surgery provides recommendations about thoracic aortic disease interventions, including: aortic valve repair, perfusion strategies for arch repair, extended arch hybrid reconstruction for acute type A dissection, endovascular management of arch and descending aortic aneurysms, and type B dissection. The position statement is constructed using Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology, and has been approved by the primary panel, an international secondary panel, and the CCS Guidelines Committee. Advent of endovascular technology has improved aortic surgery safety and extended the indications of minimally invasive thoracic aortic surgery. The combination of safer open surgery with endovascular treatment has improved patient outcomes in this rapidly evolving subspecialty field of cardiovascular surgery. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  1. Influence of Capillary Force and Buoyancy on CO2 Migration During CO2 Injection in a Sandstone Reservoir

    NASA Astrophysics Data System (ADS)

    Wu, H.; Pollyea, R.

    2017-12-01

    Carbon capture and sequestration (CCS) is one component of a broad carbon management portfolio designed to mitigate adverse effects of anthropogenic CO2 emissions. During CCS, capillary trapping is an important mechanism for CO2 isolation in the disposal reservoir, and, as a result, the distribution of capillary force is an important factor affecting CO2 migration. Moreover, the movement of CO2 being injected to the reservoir is also affected by buoyancy, which results from the density difference between CO2 and brine. In order to understand interactions between capillary force and buoyancy, we implement a parametric modeling experiment of CO2 injections in a sandstone reservoir for combinations of the van Genuchten capillary pressure model that bound the range of capillary pressure-saturation curves measured in laboratory experiments. We simulate ten years supercritical CO2 (scCO2) injections within a 2-D radially symmetric sandstone reservoir for five combinations of the van Genuchten model parameters λ and entry pressure (P0). Results are analyzed on the basis of a modified dimensionless ratio, ω, which is similar to the Bond number and defines the relationship between buoyancy pressure and capillary pressure. We show how parametric variability affects the relationship between buoyancy and capillary force, and thus controls CO2 plume geometry. These results indicate that when ω >1, then buoyancy governs the system and CO2 plume geometry is governed by upward flow. In contrast, when ω <1, then buoyancy is smaller than capillary force and lateral flow governs CO2 plume geometry. As a result, we show that the ω ratio is an easily implemented screening tool for qualitative assessment of reservoir performance.

  2. Extraction of Seabed/Subsurface Features in a Potential CO2 Sequestration Site in the Southern Baltic Sea, Using Wavelet Transform of High-resolution Sub-Bottom Profiler Data

    NASA Astrophysics Data System (ADS)

    Tegowski, J.; Zajfert, G.

    2014-12-01

    Carbon Capture & Storage (CCS) efficiently prevents the release of anthropogenic CO2 into the atmosphere. We investigate a potential site in the Polish Sector of the Baltic Sea (B3 field site), consisting in a depleted oil and gas reservoir. An area ca. 30 x 8 km was surveyed along 138 acoustic transects, realised from R/V St. Barbara in 2012 and combining multibeam echosounder, sidescan sonar and sub-bottom profiler. Preparation of CCS sites requires accurate knowledge of the subsurface structure of the seafloor, in particular deposit compactness. Gas leaks in the water column were monitored, along with the structure of upper sediment layers. Our analyses show the shallow sub-seabed is layered, and quantified the spatial distribution of gas diffusion chimneys and seabed effusion craters. Remote detection of gas-containing surface sediments can be rather complex if bubbles are not emitted directly into the overlying water and thus detectable acoustically. The heterogeneity of gassy sediments makes conventional bottom sampling methods inefficient. Therefore, we propose a new approach to identification, mapping, and monitoring of potentially gassy surface sediments, based on wavelet analysis of echo signal envelopes of a chirp sub-bottom profiler (EdgeTech SB-0512). Each echo envelope was subjected to wavelet transformation, whose coefficients were used to calculate wavelet energies. The set of echo envelope parameters was input to fuzzy logic and c-means algorithms. The resulting classification highlights seafloor areas with different subsurface morphological features, which can indicate gassy sediments. This work has been conducted under EC FP7-CP-IP project No. 265847: Sub-seabed CO2 Storage: Impact on Marine Ecosystems (ECO2).

  3. S-acylation of SOD1, CCS, and a stable SOD1-CCS heterodimer in human spinal cords from ALS and non-ALS subjects.

    PubMed

    Antinone, Sarah E; Ghadge, Ghanashyam D; Ostrow, Lyle W; Roos, Raymond P; Green, William N

    2017-01-25

    Previously, we found that human Cu, Zn-superoxide dismutase (SOD1) is S-acylated (palmitoylated) in vitro and in amyotrophic lateral sclerosis (ALS) mouse models, and that S-acylation increased for ALS-causing SOD1 mutants relative to wild type. Here, we use the acyl resin-assisted capture (acyl-RAC) assay to demonstrate S-acylation of SOD1 in human post-mortem spinal cord homogenates from ALS and non-ALS subjects. Acyl-RAC further revealed that endogenous copper chaperone for SOD1 (CCS) is S-acylated in both human and mouse spinal cords, and in vitro in HEK293 cells. SOD1 and CCS formed a highly stable heterodimer in human spinal cord homogenates that was resistant to dissociation by boiling, denaturants, or reducing agents and was not observed in vitro unless both SOD1 and CCS were overexpressed. Cysteine mutations that attenuate SOD1 maturation prevented the SOD1-CCS heterodimer formation. The degree of S-acylation was highest for SOD1-CCS heterodimers, intermediate for CCS monomers, and lowest for SOD1 monomers. Given that S-acylation facilitates anchoring of soluble proteins to cell membranes, our findings suggest that S-acylation and membrane localization may play an important role in CCS-mediated SOD1 maturation. Furthermore, the highly stable S-acylated SOD1-CCS heterodimer may serve as a long-lived maturation intermediate in human spinal cord.

  4. S-acylation of SOD1, CCS, and a stable SOD1-CCS heterodimer in human spinal cords from ALS and non-ALS subjects

    PubMed Central

    Antinone, Sarah E.; Ghadge, Ghanashyam D.; Ostrow, Lyle W.; Roos, Raymond P.; Green, William N.

    2017-01-01

    Previously, we found that human Cu, Zn-superoxide dismutase (SOD1) is S-acylated (palmitoylated) in vitro and in amyotrophic lateral sclerosis (ALS) mouse models, and that S-acylation increased for ALS-causing SOD1 mutants relative to wild type. Here, we use the acyl resin-assisted capture (acyl-RAC) assay to demonstrate S-acylation of SOD1 in human post-mortem spinal cord homogenates from ALS and non-ALS subjects. Acyl-RAC further revealed that endogenous copper chaperone for SOD1 (CCS) is S-acylated in both human and mouse spinal cords, and in vitro in HEK293 cells. SOD1 and CCS formed a highly stable heterodimer in human spinal cord homogenates that was resistant to dissociation by boiling, denaturants, or reducing agents and was not observed in vitro unless both SOD1 and CCS were overexpressed. Cysteine mutations that attenuate SOD1 maturation prevented the SOD1-CCS heterodimer formation. The degree of S-acylation was highest for SOD1-CCS heterodimers, intermediate for CCS monomers, and lowest for SOD1 monomers. Given that S-acylation facilitates anchoring of soluble proteins to cell membranes, our findings suggest that S-acylation and membrane localization may play an important role in CCS-mediated SOD1 maturation. Furthermore, the highly stable S-acylated SOD1-CCS heterodimer may serve as a long-lived maturation intermediate in human spinal cord. PMID:28120938

  5. Isolated cytochrome c oxidase deficiency in G93A SOD1 mice overexpressing CCS protein.

    PubMed

    Son, Marjatta; Leary, Scot C; Romain, Nadine; Pierrel, Fabien; Winge, Dennis R; Haller, Ronald G; Elliott, Jeffrey L

    2008-05-02

    G93A SOD1 transgenic mice overexpressing CCS protein develop an accelerated disease course that is associated with enhanced mitochondrial pathology and increased mitochondrial localization of mutant SOD1. Because these results suggest an effect of mutant SOD1 on mitochondrial function, we assessed the enzymatic activities of mitochondrial respiratory chain complexes in the spinal cords of CCS/G93A SOD1 and control mice. CCS/G93A SOD1 mouse spinal cord demonstrates a 55% loss of complex IV (cytochrome c oxidase) activity compared with spinal cord from age-matched non-transgenic or G93A SOD1 mice. In contrast, CCS/G93A SOD1 spinal cord shows no reduction in the activities of complex I, II, or III. Blue native gel analysis further demonstrates a marked reduction in the levels of complex IV but not of complex I, II, III, or V in spinal cords of CCS/G93A SOD1 mice compared with non-transgenic, G93A SOD1, or CCS/WT SOD1 controls. With SDS-PAGE analysis, spinal cords from CCS/G93A SOD1 mice showed significant decreases in the levels of two structural subunits of cytochrome c oxidase, COX1 and COX5b, relative to controls. In contrast, CCS/G93A SOD1 mouse spinal cord showed no reduction in levels of selected subunits from complexes I, II, III, or V. Heme A analyses of spinal cord further support the existence of cytochrome c oxidase deficiency in CCS/G93A SOD1 mice. Collectively, these results establish that CCS/G93A SOD1 mice manifest an isolated complex IV deficiency which may underlie a substantial part of mutant SOD1-induced mitochondrial cytopathy.

  6. Biological effects of CCS in the absence of SOD1 enzyme activation: implications for disease in a mouse model for ALS.

    PubMed

    Proescher, Jody B; Son, Marjatta; Elliott, Jeffrey L; Culotta, Valeria C

    2008-06-15

    The CCS copper chaperone is critical for maturation of Cu, Zn-superoxide dismutase (SOD1) through insertion of the copper co-factor and oxidization of an intra-subunit disulfide. The disulfide helps stabilize the SOD1 polypeptide, which can be particularly important in cases of amyotrophic lateral sclerosis (ALS) linked to misfolding of mutant SOD1. Surprisingly, however, over-expressed CCS was recently shown to greatly accelerate disease in a G93A SOD1 mouse model for ALS. Herein we show that disease in these G93A/CCS mice correlates with incomplete oxidation of the SOD1 disulfide. In the brain and spinal cord, CCS over-expression failed to enhance oxidation of the G93A SOD1 disulfide and if anything, effected some accumulation of disulfide-reduced SOD1. This effect was mirrored in culture with a C244,246S mutant of CCS that has the capacity to interact with SOD1 but can neither insert copper nor oxidize the disulfide. In spite of disulfide effects, there was no evidence for increased SOD1 aggregation. If anything, CCS over-expression prevented SOD1 misfolding in culture as monitored by detergent insolubility. This protection against SOD1 misfolding does not require SOD1 enzyme activation as the same effect was obtained with the C244,246S allele of CCS. In the G93A SOD1 mouse, CCS over-expression was likewise associated with a lack of obvious SOD1 misfolding marked by detergent insolubility. CCS over-expression accelerates SOD1-linked disease without the hallmarks of misfolding and aggregation seen in other mutant SOD1 models. These studies are the first to indicate biological effects of CCS in the absence of SOD1 enzymatic activation.

  7. [Design and biological evaluation of poly-lactic-co-glycolic acid (PLGA) mesh/collagen-chitosan hybrid scaffold (CCS) as a dermal substitute].

    PubMed

    Wang, Xin-Gang; You, Chuan-Gang; Sun, Hua-Feng; Hu, Xin-Lei; Han, Chun-Mao; Zhang, Li-Ping; Zheng, Yu-Rong; Li, Qi-Yin

    2011-02-01

    To design and construct a kind of dermal regeneration template with mesh, and to preliminarily evaluate its biological characteristics. PLGA mesh was integrated into CCS with freeze-drying method for constructing PLGA mesh/CCS composite (PCCS). The micromorphologies and mechanical properties among PLGA mesh, CCS, and PCCS were compared. PCCS and CCS was respectively implanted into subcutaneous tissue of SD rats (PCCS and CCS groups, 9 rats in each group). The tissue samples were collected at post operation week (POW) 1, 2, and 4 for histopathological and immunohistochemical observation. Protein levels of CD68, MPO, IL-1beta, IL-10 were examined by Western blot, with expression of gray value. Data were processed with one-way analysis of variance and t test. Three-dimensional porous structure of PCCS was similar to that of CCS. Mechanical property of PLGA mesh and PCCS was respectively (3.07 +/- 0.10), (3.26 +/- 0.15) MPa, and they were higher than that of CCS [(0.42 +/- 0.21) MPa, F = 592.3, P < 0.0001)]. The scaffolds were filled with newly formed tissue in PCCS group at POW 2, while those in CCS group were observed at POW 4. A large accumulation of macrophages was observed in both groups, especially at POW 2, and more macrophage infiltration was observed in CCS group. The protein level of IL-10 in PCCS group at POW 2 was obviously higher than that in CCS group, while the protein levels of CD68, MPO, IL-1beta were significantly decreased as compared with those in CCS group (with t value from -4.06 to 2.89, P < 0.05 or P < 0.01). PCCS has excellent mechanical property with appropriate three-dimensional porous structure. Meanwhile, it can rapidly induce formation of new tissue and vascularization, and it has a prospect of serving as a dermal substitute.

  8. Influence of mixtures of calcium-chelating salts on the physicochemical properties of casein micelles.

    PubMed

    Kaliappan, S; Lucey, J A

    2011-09-01

    Calcium-chelating salts (CCS), such as phosphates and citrates, are often added to milk systems to modify physical properties like heat stability. The objective of this study was to investigate the effect of binary CCS mixtures on the properties of casein (CN) micelles including the distribution of Ca between the soluble and CN-bound states. Six binary CCS mixtures were prepared from 4 different types of CCS [i.e., trisodium citrate (TSC), disodium phosphate (DSP), tetrasodium pyrophosphate (TSPP), and sodium hexameta phosphate (SHMP)] by combining 2 CCS at a time in 5 different proportions (8.3:91.7, 29.2:70.8, 50:50, 70.8:29.2, and 91.7:8.3). Different concentrations of these mixtures (0, 0.1, 0.3, 0.5, and 0.7% wt/wt) were added to milk protein concentrate solutions (5% wt/wt) at pH 5.8. The ability of CCS to disperse CN particles and its interaction with Ca were assessed from turbidity measurements, acid-base titration behavior, and the quantity of CN-bound Ca and inorganic phosphate (Pi). Turbidity and the buffering peak at pH ∼5.0 during acid titration decreased with an increasing concentration of CCS. This was due to the chelation of Ca and the dispersion of CN micelles. The presence of TSC in mixtures decreased the amount of CN-bound Ca and Pi; however, the presence of TSPP in mixtures increased CN-bound Ca and Pi. When DSP was present at high proportions in mixtures of CCS, the CN-bound Ca and Pi slightly increased. When SHMP was used in mixtures of CCS, CN-bound Ca and Pi increased with the use of a low proportion of SHMP but decreased when SHMP was used at high proportions in the mixture. Combinations of DSP-TSPP used in the proportions 29.2:70.8, 50:50, and 70.8:29.2 resulted in the gelation of milk protein concentrates when the total CCS concentration was ≥0.3%. These results indicated that the type of CCS present in a mixture modified CN properties by various mechanisms, including chelation of Ca, dispersion of CN micelles, and formation of new types of Ca-CCS complexes. The type of interaction between the newly formed Ca-CCS complexes and the dispersed CN depended on the proportion, concentration, and type of CCS present in the mixtures. This information is useful in understanding how mixtures of CCS affect CN properties. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Mapping the Mineral Resource Base for Mineral Carbon-Dioxide Sequestration in the Conterminous United States

    USGS Publications Warehouse

    Krevor, S.C.; Graves, C.R.; Van Gosen, B. S.; McCafferty, A.E.

    2009-01-01

    This database provides information on the occurrence of ultramafic rocks in the conterminous United States that are suitable for sequestering captured carbon dioxide in mineral form, also known as mineral carbon-dioxide sequestration. Mineral carbon-dioxide sequestration is a proposed greenhouse gas mitigation technology whereby carbon dioxide (CO2) is disposed of by reacting it with calcium or magnesium silicate minerals to form a solid magnesium or calcium carbonate product. The technology offers a large capacity to permanently store CO2 in an environmentally benign form via a process that takes little effort to verify or monitor after disposal. These characteristics are unique among its peers in greenhouse gas disposal technologies. The 2005 Intergovernmental Panel on Climate Change report on Carbon Dioxide Capture and Storage suggested that a major gap in mineral CO2 sequestration is locating the magnesium-silicate bedrock available to sequester the carbon dioxide. It is generally known that silicate minerals with high concentrations of magnesium are suitable for mineral carbonation. However, no assessment has been made in the United States that details their geographical distribution and extent, nor has anyone evaluated their potential for use in mineral carbonation. Researchers at Columbia University and the U.S. Geological Survey have developed a digital geologic database of ultramafic rocks in the conterminous United States. Data were compiled from varied-scale geologic maps of magnesium-silicate ultramafic rocks. The focus of our national-scale map is entirely on ultramafic rock types, which typically consist primarily of olivine- and serpentine-rich rocks. These rock types are potentially suitable as source material for mineral CO2 sequestration.

  10. Carbon farming in hot, dry coastal areas: an option for climate change mitigation

    NASA Astrophysics Data System (ADS)

    Becker, K.; Wulfmeyer, V.; Berger, T.; Gebel, J.; Münch, W.

    2013-07-01

    We present a comprehensive, interdisciplinary project which demonstrates that large-scale plantations of Jatropha curcas - if established in hot, dry coastal areas around the world - could capture 17-25 t of carbon dioxide per hectare per year from the atmosphere (over a 20 yr period). Based on recent farming results it is confirmed that the Jatropha curcas plant is well adapted to harsh environments and is capable of growing alone or in combination with other tree and shrub species with minimal irrigation in hot deserts where rain occurs only sporadically. Our investigations indicate that there is sufficient unused and marginal land for the widespread cultivation of Jatropha curcas to have a significant impact on atmospheric CO2 levels at least for several decades. In a system in which desalinated seawater is used for irrigation and for delivery of mineral nutrients, the sequestration costs were estimated to range from 42-63 EUR per tonne CO2. This result makes carbon farming a technology that is competitive with carbon capture and storage (CCS). In addition, high-resolution simulations using an advanced land-surface-atmosphere model indicate that a 10 000 km2 plantation could produce a reduction in mean surface temperature and an onset or increase in rain and dew fall at a regional level. In such areas, plant growth and CO2 storage could continue until permanent woodland or forest had been established. In other areas, salinization of the soil may limit plant growth to 2-3 decades whereupon irrigation could be ceased and the captured carbon stored as woody biomass.

  11. Enhanced Adsorption Efficiency through Materials Design for Direct Air Capture over Supported Polyethylenimine.

    PubMed

    Sayari, Abdelhamid; Liu, Qing; Mishra, Prashant

    2016-10-06

    Until recently, carbon capture and sequestration (CCS) was regarded as the most promising technology to address the alarming increase in the concentration of anthropogenic CO 2 in the atmosphere. There is now an increasing interest in carbon capture and utilization (CCU). In this context, the capture of CO 2 from air is an ideal solution to supply pure CO 2 wherever it is needed. Here, we describe innovative materials for direct air capture (DAC) with unprecedented efficiency. Polyethylenimine (PEI) was supported on PME, which is an extra-large-pore silica (pore-expanded MCM-41) with its internal surfaces fully covered by a uniform layer of readily accessible C 16 chains from cetyltrimethylammonium (CTMA + ) cations. The CTMA + layer plays a key role in enhancing the amine efficiency toward dry or humid ultradilute CO 2 (400 ppm CO 2 /N 2 ) to unprecedented levels. At the same PEI content, the amine efficiency of PEI/PME was two to four times higher than that of the corresponding calcined mesoporous silica loaded with PEI or with different combinations of C 16 chains and PEI. Under humid conditions, the amine efficiency of 40 wt % PEI/PME reached 7.31 mmolCO2 /g PEI , the highest ever reported for any supported PEI in the presence of 400 ppm CO 2 . Thus, amine accessibility, which reflects both the state of PEI dispersion and the adsorption efficiency, is intimately associated with the molecular design of the adsorbent. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Development of a Crosslink Channel Simulator

    NASA Technical Reports Server (NTRS)

    Hunt, Chris; Smith, Carl; Burns, Rich

    2004-01-01

    Distributed Spacecraft missions are an integral part of current and future plans for NASA and other space agencies. Many of these multi-vehicle missions involve utilizing the array of spacecraft as a single, instrument requiring communication via crosslinks to achieve mission goals. NASA s Goddard Space Flight Center (GSFC) is developing the Formation Flying Test Bed (FFTB) to provide a hardware-in-the-loop simulation environment to support mission concept development and system trades with a primary focus on Guidance, Navigation, and Control (GN&C) challenges associated with spacecraft flying. The goal of the FFTB is to reduce mission risk by assisting in mission planning and analysis, provide a technology development platform that allows algorithms to be developed for mission functions such as precision formation navigation and control and time synchronization. The FFTB will provide a medium in which the various crosslink transponders being used in multi-vehicle missions can be integrated for development and test; an integral part of the FFTB is the Crosslink Channel Simulator (CCS). The CCS is placed into the communications channel between the crosslinks under test, and is used to simulate on-mission effects to the communications channel such as vehicle maneuvers, relative vehicle motion, or antenna misalignment. The CCS is based on the Starlight software programmable platform developed at General Dynamics Decision Systems and provides the CCS with the ability to be modified on the fly to adapt to new crosslink formats or mission parameters. This paper briefly describes the Formation Flying Test Bed and its potential uses. It then provides details on the current and future development of the Crosslink Channel Simulator and its capabilities.

  13. Impact of saline aquifer water on surface and shallow pit corrosion of martensitic stainless steels during exposure to CO2 environment (CCS)

    NASA Astrophysics Data System (ADS)

    Pfennig, Anja; Kranzmann, Axel

    2018-05-01

    Pipe steels suitable for carbon capture and storage technology (CCS) require resistance against the corrosive environment of a potential CCS-site, e.g. heat, pressure, salinity of the aquifer, CO2-partial pressure. Samples of different mild and high alloyed stainless injection-pipe steels partially heat treated: 42CrMo4, X20Cr13, X46Cr13, X35CrMo4 as well as X5CrNiCuNb16-4 were kept at T=60 °C and ambient pressure as well as p=100 bar for 700 h - 8000 h in a CO2-saturated synthetic aquifer environment similar to possible geological on-shore CCS-sites in the northern German Basin. Main corrosion products are FeCO3 and FeOOH. Corrosion rates obtained at 100 bar are generally much lower than those measured at ambient pressure. Highest surface corrosion rates are 0.8 mm/year for 42CrMo4 and lowest 0.01 mm/year for X5CrNiCuNb16-4 in the vapour phase at ambient pressure. At 100 bar the highest corrosion rates are 0.01 mm/year for 42CrMo4, X20Cr13 (liquid phase), X46Cr13 and less than 0.01 mm/year for X35CrMo4 and X5CrNiCuNb16-4 after 8000 h of exposure with no regard to atmosphere. Martensitic microstructure offers good corrosion resistance.

  14. Mechanisms for activating Cu- and Zn-containing superoxide dismutase in the absence of the CCS Cu chaperone.

    PubMed

    Carroll, Mark C; Girouard, Jody B; Ulloa, Janella L; Subramaniam, Jamuna R; Wong, Phillip C; Valentine, Joan Selverstone; Culotta, Valeria Cizewski

    2004-04-20

    The Cu- and Zn-containing superoxide dismutase 1 (SOD1) largely obtains Cu in vivo by means of the action of the Cu chaperone CCS. Yet, in the case of mammalian SOD1, a secondary pathway of activation is apparent. Specifically, when human SOD1 is expressed in either yeast or mammalian cells that are null for CCS, the SOD1 enzyme retains a certain degree of activity. This CCS-independent activity is evident with both wild-type and mutant variants of SOD1 that have been associated with familial amyotrophic lateral sclerosis. We demonstrate here that the CCS-independent activation of mammalian SOD1 involves glutathione, particularly the reduced form, or GSH. A role for glutathione in CCS-independent activation was seen with human SOD1 molecules that were expressed in either yeast cells or immortalized fibroblasts. Compared with mammalian SOD1, the Saccharomyces cerevisiae enzyme cannot obtain Cu without CCS in vivo, and this total dependence on CCS involves the presence of dual prolines near the C terminus of the SOD1 polypeptide. Indeed, the insertion of such prolines into human SOD1 rendered this molecule refractory to CCS-independent activation. The possible implications of multiple pathways for SOD1 activation are discussed in the context of SOD1 evolutionary biology and familial amyotrophic lateral sclerosis.

  15. Performance of the "CCS Algorithm" in real world patients.

    PubMed

    LaHaye, Stephen A; Olesen, Jonas B; Lacombe, Shawn P

    2015-06-01

    With the publication of the 2014 Focused Update of the Canadian Cardiovascular Society Guidelines for the Management of Atrial Fibrillation, the Canadian Cardiovascular Society Atrial Fibrillation Guidelines Committee has introduced a new triage and management algorithm; the so-called "CCS Algorithm". The CCS Algorithm is based upon expert opinion of the best available evidence; however, the CCS Algorithm has not yet been validated. Accordingly, the purpose of this study is to evaluate the performance of the CCS Algorithm in a cohort of real world patients. We compared the CCS Algorithm with the European Society of Cardiology (ESC) Algorithm in 172 hospital inpatients who are at risk of stroke due to non-valvular atrial fibrillation in whom anticoagulant therapy was being considered. The CCS Algorithm and the ESC Algorithm were concordant in 170/172 patients (99% of the time). There were two patients (1%) with vascular disease, but no other thromboembolic risk factors, which were classified as requiring oral anticoagulant therapy using the ESC Algorithm, but for whom ASA was recommended by the CCS Algorithm. The CCS Algorithm appears to be unnecessarily complicated in so far as it does not appear to provide any additional discriminatory value above and beyond the use of the ESC Algorithm, and its use could result in under treatment of patients, specifically female patients with vascular disease, whose real risk of stroke has been understated by the Guidelines.

  16. How are warm and cool years in the California Current related to ENSO?

    NASA Astrophysics Data System (ADS)

    Fiedler, Paul C.; Mantua, Nathan J.

    2017-07-01

    The tropical El Niño-Southern Oscillation (ENSO) is a dominant mode of interannual variability that impacts climate throughout the Pacific. The California Current System (CCS) in the northeast Pacific warms and cools from year to year, with or without a corresponding tropical El Niño or La Niña event. We update the record of warm and cool events in the CCS for 1950-2016 and use composite sea level pressure (SLP) and surface wind anomalies to explore the atmospheric forcing mechanisms associated with tropical and CCS warm and cold events. CCS warm events are associated with negative SLP anomalies in the NE Pacific—a strong and southeastward displacement of the wintertime Aleutian Low, a weak North Pacific High, and a regional pattern of cyclonic wind anomalies that are poleward over the CCS. We use a first-order autoregressive model to show that regional North Pacific forcing is predominant in SST variations throughout most of the CCS, while remote tropical forcing is more important in the far southern portion of the CCS. In our analysis, cool events in the CCS tend to be more closely associated with tropical La Niña than are warm events in the CCS with tropical El Niño; the forcing of co-occurring cool events is analogous, but nearly opposite, to that of warm events.

  17. Clinical Course Score (CCS): a new clinical score to evaluate efficacy of neurotrauma treatment in traumatic brain injury and subarachnoid hemorrhage.

    PubMed

    Brandner, Sebastian; Kellermann, Isabel; Hore, Nirjhar; Bozhkov, Yavor; Buchfelder, Michael

    2015-01-01

    Neurotrauma continues to represent a challenging public health issue requiring continual improvement in therapeutic approaches. As no such current system exists, we present in this study the Clinical Course Score (CCS) as a new clinical score to evaluate the efficacy of neurotrauma treatment. The CCS was calculated in neurotrauma patients to be the difference between the grade of the Glasgow Outcome Scale 6 months after discharge from our department and the grade of a 1 to 5 point reduced Glasgow Coma Scale on admission. We assessed the CCS in a total of 248 patients (196 traumatic brain injury [TBI] patients and 52 subarachnoid hemorrhage [SAH] patients) who were treated in our Department of Neurosurgery between January 2011 and December 2012. We found negative CCS grades both in mild TBI and in mild SAH patients. In patients with severe TBI or SAH, we found positive CCS grades. In SAH patients, we found higher CCS scores in younger patients compared with elderly subjects in both mild and severe cases. The CCS can be useful in evaluating different therapeutic approaches during neurotrauma therapy. This new score might improve assessment of beneficial effects of therapeutic procedures.

  18. The cost of carbon capture and storage for natural gas combined cycle power plants.

    PubMed

    Rubin, Edward S; Zhai, Haibo

    2012-03-20

    This paper examines the cost of CO(2) capture and storage (CCS) for natural gas combined cycle (NGCC) power plants. Existing studies employ a broad range of assumptions and lack a consistent costing method. This study takes a more systematic approach to analyze plants with an amine-based postcombustion CCS system with 90% CO(2) capture. We employ sensitivity analyses together with a probabilistic analysis to quantify costs for plants with and without CCS under uncertainty or variability in key parameters. Results for new baseload plants indicate a likely increase in levelized cost of electricity (LCOE) of $20-32/MWh (constant 2007$) or $22-40/MWh in current dollars. A risk premium for plants with CCS increases these ranges to $23-39/MWh and $25-46/MWh, respectively. Based on current cost estimates, our analysis further shows that a policy to encourage CCS at new NGCC plants via an emission tax or carbon price requires (at 95% confidence) a price of at least $125/t CO(2) to ensure NGCC-CCS is cheaper than a plant without CCS. Higher costs are found for nonbaseload plants and CCS retrofits.

  19. Economic and environmental evaluation of coal-and-biomass-to-liquids-and-electricity plants equipped with carbon capture and storage

    EPA Science Inventory

    Among various clean energy technologies, one innovative option for reducing greenhouse gas (GHG) emissions involves pairing carbon capture and storage (CCS) with the production of synthetic fuels and electricity from co-processed coal and biomass. With a relatively pure CO2 strea...

  20. Models for the mechanism for activating copper-zinc superoxide dismutase in the absence of the CCS Cu chaperone in Arabidopsis.

    PubMed

    Huang, Chien-Hsun; Kuo, Wen-Yu; Jinn, Tsung-Luo

    2012-03-01

    Copper-zinc superoxide dismutase (CuZnSOD; CSD) is an important antioxidant enzyme for oxidative stress protection. To date, two activation pathways have been identified in many species. One requiring the CCS, Cu chaperone for SOD, to insert Cu and activate CSD (referred to as CCS-dependent pathway), and the other works independently of CCS (referred to as CCS-independent pathway). In our previous study, we suggest an unidentified factor will work with glutathione (GSH) for CSD activation in the absence of the CCS. Here, two models of the CCS-independent mechanism are proposed. The role of the unidentified factor may work as a scaffold protein, which provides a platform for the CSD protein and Cu-GSH to interact, or as a Cu carrier, which itself can bind Cu and interact with CSD proteins. We also suggest that the CSD protein conformation at C-terminal is important in providing a docking site for unidentified factor to access.

  1. Transduced human copper chaperone for Cu,Zn-SOD (PEP-1-CCS) protects against neuronal cell death.

    PubMed

    Choi, Soo Hyun; Kim, Dae Won; Kim, So Young; An, Jae Jin; Lee, Sun Hwa; Choi, Hee Soon; Sohn, Eun Jung; Hwang, Seok-Il; Won, Moo Ho; Kang, Tae-Cheon; Kwon, Hyung Joo; Kang, Jung Hoon; Cho, Sung-Woo; Park, Jinseu; Eum, Won Sik; Choi, Soo Young

    2005-12-31

    Reactive oxygen species (ROS) contribute to the development of various human diseases. Cu,Zn-superoxide dismutase (SOD) is one of the major means by which cells counteract the deleterious effects of ROS. SOD activity is dependent upon bound copper ions supplied by its partner metallochaperone protein, copper chaperone for SOD (CCS). In the present study, we investigated the protective effects of PEP-1-CCS against neuronal cell death and ischemic insults. When PEP-1-CCS was added to the culture medium of neuronal cells, it rapidly entered the cells and protected them against paraquat-induced cell death. Moreover, transduced PEP-1-CCS markedly increased endogenous SOD activity in the cells. Immunohistochemical analysis revealed that it prevented neuronal cell death in the hippocampus in response to transient forebrain ischemia. These results suggest that CCS is essential to activate SOD, and that transduction of PEP-1-CCS provides a potential strategy for therapeutic delivery in various human diseases including stroke related to SOD or ROS.

  2. A case of the corpus callosum and alien hand syndrome from a discrete paracallosal lesion.

    PubMed

    Faber, Raymond; Azad, Alvi; Reinsvold, Richard

    2010-08-01

    Here we present a patient with an isolated paracallosal brain lesion who exhibited behavioral changes associated with the corpus callosum syndrome (CCS) including features of the alien hand syndrome (AHS). The CCS is also known as the split-brain syndrome, the syndrome of hemisphere disconnection, the syndrome of brain bisection and the syndrome of the cerebral commissures. Because most reported cases of CCS were caused by tumors which extended beyond the corpus callosum (CC) and did not always induce a complete disconnection, there was much controversy about the role of the CC and the existence of a specific CCS. Aside from surgically based cases, the full complement of the CCS is infrequently clinically encountered. The patient described has a classic CCS from natural causes. This case report is unique in exhibiting a complete CCS with AHS secondary to an ischemic event affecting the left pericallosal region. To our knowledge this is the first case report of such a combination.

  3. Bias adjustment of infrared-based rainfall estimation using Passive Microwave satellite rainfall data

    NASA Astrophysics Data System (ADS)

    Karbalaee, Negar; Hsu, Kuolin; Sorooshian, Soroosh; Braithwaite, Dan

    2017-04-01

    This study explores using Passive Microwave (PMW) rainfall estimation for spatial and temporal adjustment of Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS). The PERSIANN-CCS algorithm collects information from infrared images to estimate rainfall. PERSIANN-CCS is one of the algorithms used in the Integrated Multisatellite Retrievals for GPM (Global Precipitation Mission) estimation for the time period PMW rainfall estimations are limited or not available. Continued improvement of PERSIANN-CCS will support Integrated Multisatellite Retrievals for GPM for current as well as retrospective estimations of global precipitation. This study takes advantage of the high spatial and temporal resolution of GEO-based PERSIANN-CCS estimation and the more effective, but lower sample frequency, PMW estimation. The Probability Matching Method (PMM) was used to adjust the rainfall distribution of GEO-based PERSIANN-CCS toward that of PMW rainfall estimation. The results show that a significant improvement of global PERSIANN-CCS rainfall estimation is obtained.

  4. Increased N2O emission by inhibited plant growth in the CO2 leaked soil environment: Simulation of CO2 leakage from carbon capture and storage (CCS) site.

    PubMed

    Kim, You Jin; He, Wenmei; Ko, Daegeun; Chung, Haegeun; Yoo, Gayoung

    2017-12-31

    Atmospheric carbon dioxide (CO 2 ) concentrations is continuing to increase due to anthropogenic activity, and geological CO 2 storage via carbon capture and storage (CCS) technology can be an effective way to mitigate global warming due to CO 2 emission. However, the possibility of CO 2 leakage from reservoirs and pipelines exists, and such leakage could negatively affect organisms in the soil environment. Therefore, to determine the impacts of geological CO 2 leakage on plant and soil processes, we conducted a greenhouse study in which plants and soils were exposed to high levels of soil CO 2 . Cabbage, which has been reported to be vulnerable to high soil CO 2 , was grown under BI (no injection), NI (99.99% N 2 injection), and CI (99.99% CO 2 injection). Mean soil CO 2 concentration for CI was 66.8-76.9% and the mean O 2 concentrations in NI and CI were 6.6-12.7%, which could be observed in the CO 2 leaked soil from the pipelines connected to the CCS sites. The soil N 2 O emission was increased by 286% in the CI, where NO 3 - -N concentration was 160% higher compared to that in the control. This indicates that higher N 2 O emission from CO 2 leakage could be due to enhanced nitrification process. Higher NO 3 - -N content in soil was related to inhibited plant metabolism. In the CI treatment, chlorophyll content decreased and chlorosis appeared after 8th day of injection. Due to the inhibited root growth, leaf water and nitrogen contents were consistently lowered by 15% under CI treatment. Our results imply that N 2 O emission could be increased by the secondary effects of CO 2 leakage on plant metabolism. Hence, monitoring the environmental changes in rhizosphere would be very useful for impact assessment of CCS technology. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Technical Report on Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bill Stanley; Sandra Brown; Zoe Kant

    2009-01-07

    The Nature Conservancy participated in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project was 'Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration'. The objectives of the project were to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providingmore » new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Final Technical Report discusses the results of the six tasks that The Nature Conservancy undertook to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between July 1st 2001 and July 10th 2008. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool. The project occurred in two phases. The first was a focused exploration of specific carbon measurement and monitoring methodologies and pre-selected carbon sequestration opportunities. The second was a more systematic and comprehensive approach to compare various competing measurement and monitoring methodologies, and assessment of a variety of carbon sequestration opportunities in order to find those that are the lowest cost with the greatest combined carbon and other environmental benefits. In the first phase we worked in the U.S., Brazil, Belize, Bolivia, Peru, and Chile to develop and refine specific carbon inventory methods, pioneering a new remote-sensing method for cost-effectively measuring and monitoring terrestrial carbon sequestration and system for developing carbon baselines for both avoided deforestation and afforestation/reforestation projects. We evaluated the costs and carbon benefits of a number of specific terrestrial carbon sequestration activities throughout the U.S., including reforestation of abandoned mined lands in southwest Virginia, grassland restoration in Arizona and Indiana, and reforestation in the Mississippi Alluvial Delta. The most cost-effective U.S. terrestrial sequestration opportunity we found through these studies was reforestation in the Mississippi Alluvial Delta. In Phase II we conducted a more systematic assessment and comparison of several different measurement and monitoring approaches in the Northern Cascades of California, and a broad 11-state Northeast regional assessment, rather than pre-selected and targeted, analysis of terrestrial sequestration costs and benefits. Work was carried out in Brazil, Belize, Chile, Peru and the USA. Partners include the Winrock International Institute for Agricultural Development, The Sampson Group, Programme for Belize, Society for Wildlife Conservation (SPVS), Universidad Austral de Chile, Michael Lefsky, Colorado State University, UC Berkeley, the Carnegie Institution of Washington, ProNaturaleza, Ohio State University, Stephen F. Austin University, Geographical Modeling Services, Inc., WestWater, Los Alamos National Laboratory, Century Ecosystem Services, Mirant Corporation, General Motors, American Electric Power, Salt River Project, Applied Energy Systems, KeySpan, NiSource, and PSEG. This project, 'Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration', has resulted in over 50 presentations and reports, available publicly through the Department of Energy or by visiting the links listed in Appendix 1. More important than the reports, the project has helped to lead to the development of on-the-ground projects in Southwestern Virginia, Louisiana, and Chile while informing policy development in Virginia, the Regional Greenhouse Gas Initiative, the California Climate Action Registry and U.S. and international programs.« less

  6. 78 FR 72968 - Self-Regulatory Organizations; New York Stock Exchange LLC; Notice of Filing of Proposed Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-04

    ... Capital Commitment Schedule (``CCS'') interest; (3) NYSE Rule 70.25 to permit d-Quotes to be designated... that MPL Orders may interact with CCS interest; (3) NYSE Rule 70.25 to permit d- Quotes to be... the CCS pursuant to Rule 1000 would not be permitted to be designated as MPL Orders. The CCS is a...

  7. A study on macroeconomic cost of CCS in Korea

    NASA Astrophysics Data System (ADS)

    Kim, Ji-Whan; Kim, Yoon Kyung

    2015-04-01

    CCS is an important measure for mitigating the problem of World Climate Change and already several projects are entered the step of commercialization. The benefits of CCS implementation ultimately depends on the alleviation level of CO2 on earth because it is caused by the mitigation of the World Climate Change problem. Thus it is possible not to coincide at same time between starting the CCS and getting the benefits. Considering the high costs of CCS, the time mismatch between imposing the costs and getting the benefits is apt to impose some heavy burden on the individual national economy. For this reason, at the political decision-making, the policy makers should consider the macroeconomic effects. Meanwhile, Korean electricity market's supply side is comprised of competitive production and a sole distributor(public enterprise) and then electricity is supplied by a single price structure(administered pricing). Under this condition, if CCS is introduced to power setor, electric charges must be increased and production costs will go high. High production costs will have unfavourable effects on disposable income, price level, purchasing power and so on. In order to minimize these effects, policy makers have to consider the economic effects of introducing CCS. This study estimates the microscopic cost of CCS using ICCSEM 2.0 methodology made by CO2CRC and after that, the macroeconomic effects of introducing CCS is estimated on the basis of microscopic cost estimating results. The macroeconomic effects of CCS applied to Power Generation sector are estimated using macroeconometrics model and Input-Output analysis. A macroeconometrics model is an analytical tool designed to describe the operation of the national economy. This model is usually applied to examine the dynamics of aggregate quantities such as the total amount of goods and services produced, total income earned, the level of employment of productive resources, the level of prices and so forth. Introducing the input-output relationship of Korean industries, the macroeconometrics model can show what response is caused by the CCS cost as supply and demand shock. This study is intended to provide a basic information for making reasonable policies which is to minimize the economic costs of introducing CCS.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brian McPherson

    The Southwest Partnership on Carbon Sequestration completed its Phase I program in December 2005. The main objective of the Southwest Partnership Phase I project was to evaluate and demonstrate the means for achieving an 18% reduction in carbon intensity by 2012. Many other goals were accomplished on the way to this objective, including (1) analysis of CO{sub 2} storage options in the region, including characterization of storage capacities and transportation options, (2) analysis and summary of CO{sub 2} sources, (3) analysis and summary of CO{sub 2} separation and capture technologies employed in the region, (4) evaluation and ranking of themore » most appropriate sequestration technologies for capture and storage of CO{sub 2} in the Southwest Region, (5) dissemination of existing regulatory/permitting requirements, and (6) assessing and initiating public knowledge and acceptance of possible sequestration approaches. Results of the Southwest Partnership's Phase I evaluation suggested that the most convenient and practical ''first opportunities'' for sequestration would lie along existing CO{sub 2} pipelines in the region. Action plans for six Phase II validation tests in the region were developed, with a portfolio that includes four geologic pilot tests distributed among Utah, New Mexico, and Texas. The Partnership will also conduct a regional terrestrial sequestration pilot program focusing on improved terrestrial MMV methods and reporting approaches specific for the Southwest region. The sixth and final validation test consists of a local-scale terrestrial pilot involving restoration of riparian lands for sequestration purposes. The validation test will use desalinated waters produced from one of the geologic pilot tests. The Southwest Regional Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. These partners include 21 state government agencies and universities, five major electric utility companies, seven oil, gas and coal companies, three federal agencies, the Navajo Nation, several NGOs, and the Western Governors Association. This group is continuing its work in the Phase II Validation Program, slated to conclude in 2009.« less

  9. From sink to source: Regional variation in U.S. forest carbon futures

    PubMed Central

    Wear, David N.; Coulston, John W.

    2015-01-01

    The sequestration of atmospheric carbon (C) in forests has partially offset C emissions in the United States (US) and might reduce overall costs of achieving emission targets, especially while transportation and energy sectors are transitioning to lower-carbon technologies. Using detailed forest inventory data for the conterminous US, we estimate forests’ current net sequestration of atmospheric C to be 173 Tg yr−1, offsetting 9.7% of C emissions from transportation and energy sources. Accounting for multiple driving variables, we project a gradual decline in the forest C emission sink over the next 25 years (to 112 Tg yr−1) with regional differences. Sequestration in eastern regions declines gradually while sequestration in the Rocky Mountain region declines rapidly and could become a source of atmospheric C due to disturbances such as fire and insect epidemics. C sequestration in the Pacific Coast region stabilizes as forests harvested in previous decades regrow. Scenarios simulating climate-induced productivity enhancement and afforestation policies increase sequestration rates, but would not fully offset declines from aging and forest disturbances. Separating C transfers associated with land use changes from sequestration clarifies forests’ role in reducing net emissions and demonstrates that retention of forest land is crucial for protecting or enhancing sink strength. PMID:26558439

  10. From sink to source: Regional variation in U.S. forest carbon futures.

    PubMed

    Wear, David N; Coulston, John W

    2015-11-12

    The sequestration of atmospheric carbon (C) in forests has partially offset C emissions in the United States (US) and might reduce overall costs of achieving emission targets, especially while transportation and energy sectors are transitioning to lower-carbon technologies. Using detailed forest inventory data for the conterminous US, we estimate forests' current net sequestration of atmospheric C to be 173 Tg yr(-1), offsetting 9.7% of C emissions from transportation and energy sources. Accounting for multiple driving variables, we project a gradual decline in the forest C emission sink over the next 25 years (to 112 Tg yr(-1)) with regional differences. Sequestration in eastern regions declines gradually while sequestration in the Rocky Mountain region declines rapidly and could become a source of atmospheric C due to disturbances such as fire and insect epidemics. C sequestration in the Pacific Coast region stabilizes as forests harvested in previous decades regrow. Scenarios simulating climate-induced productivity enhancement and afforestation policies increase sequestration rates, but would not fully offset declines from aging and forest disturbances. Separating C transfers associated with land use changes from sequestration clarifies forests' role in reducing net emissions and demonstrates that retention of forest land is crucial for protecting or enhancing sink strength.

  11. Evaluating the use of biomass energy with carbon capture and storage in low emission scenarios

    NASA Astrophysics Data System (ADS)

    Vaughan, Naomi E.; Gough, Clair; Mander, Sarah; Littleton, Emma W.; Welfle, Andrew; Gernaat, David E. H. J.; van Vuuren, Detlef P.

    2018-04-01

    Biomass Energy with Carbon Capture and Storage (BECCS) is heavily relied upon in scenarios of future emissions that are consistent with limiting global mean temperature increase to 1.5 °C or 2 °C above pre-industrial. These temperature limits are defined in the Paris Agreement in order to reduce the risks and impacts of climate change. Here, we explore the use of BECCS technologies in a reference scenario and three low emission scenarios generated by an integrated assessment model (IMAGE). Using these scenarios we investigate the feasibility of key implicit and explicit assumptions about these BECCS technologies, including biomass resource, land use, CO2 storage capacity and carbon capture and storage (CCS) deployment rate. In these scenarios, we find that half of all global CO2 storage required by 2100 occurs in USA, Western Europe, China and India, which is compatible with current estimates of regional CO2 storage capacity. CCS deployment rates in the scenarios are very challenging compared to historical rates of fossil, renewable or nuclear technologies and are entirely dependent on stringent policy action to incentivise CCS. In the scenarios, half of the biomass resource is derived from agricultural and forestry residues and half from dedicated bioenergy crops grown on abandoned agricultural land and expansion into grasslands (i.e. land for forests and food production is protected). Poor governance of the sustainability of bioenergy crop production can significantly limit the amount of CO2 removed by BECCS, through soil carbon loss from direct and indirect land use change. Only one-third of the bioenergy crops are grown in regions associated with more developed governance frameworks. Overall, the scenarios in IMAGE are ambitious but consistent with current relevant literature with respect to assumed biomass resource, land use and CO2 storage capacity.

  12. An Evaluation of Subsurface Microbial Activity Conditional to Subsurface Temperature, Porosity, and Permeability at North American Carbon Sequestration Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, B.; Mordensky, S.; Verba, Circe

    Several nations, including the United States, recognize global climate change as a force transforming the global ecosphere. Carbon dioxide (CO 2) is a greenhouse gas that contributes to the evolving climate. Reduction of atmospheric CO 2 levels is a goal for many nations and carbon sequestration which traps CO 2 in the Earth’s subsurface is one method to reduce atmospheric CO 2 levels. Among the variables that must be considered in developing this technology to a national scale is microbial activity. Microbial activity or biomass can change rock permeability, alter artificial seals around boreholes, and play a key role inmore » biogeochemistry and accordingly may determine how CO 2 is sequestered underground. Certain physical parameters of a reservoir found in literature (e.g., temperature, porosity, and permeability) may indicate whether a reservoir can host microbial communities. In order to estimate which subsurface formations may host microbes, this report examines the subsurface temperature, porosity, and permeability of underground rock formations that have high potential to be targeted for CO 2 sequestration. Of the 268 North American wellbore locations from the National Carbon Sequestration Database (NATCARB; National Energy and Technology Laboratory, 2015) and 35 sites from Nelson and Kibler (2003), 96 sequestration sites contain temperature data. Of these 96 sites, 36 sites have temperatures that would be favorable for microbial survival, 48 sites have mixed conditions for supporting microbial populations, and 11 sites would appear to be unfavorable to support microbial populations. Future studies of microbe viability would benefit from a larger database with more formation parameters (e.g. mineralogy, structure, and groundwater chemistry), which would help to increase understanding of where CO 2 sequestration could be most efficiently implemented.« less

  13. Species-specific activation of Cu/Zn SOD by its CCS copper chaperone in the pathogenic yeast Candida albicans.

    PubMed

    Gleason, Julie E; Li, Cissy X; Odeh, Hana M; Culotta, Valeria C

    2014-06-01

    Candida albicans is a pathogenic yeast of important public health relevance. Virulence of C. albicans requires a copper and zinc containing superoxide dismutase (SOD1), but the biology of C. albicans SOD1 is poorly understood. To this end, C. albicans SOD1 activation was examined in baker's yeast (Saccharomyces cerevisiae), a eukaryotic expression system that has proven fruitful for the study of SOD1 enzymes from invertebrates, plants, and mammals. In spite of the 80% similarity between S. cerevisiae and C. albicans SOD1 molecules, C. albicans SOD1 is not active in S. cerevisiae. The SOD1 appears incapable of productive interactions with the copper chaperone for SOD1 (CCS1) of S. cerevisiae. C. albicans SOD1 contains a proline at position 144 predicted to dictate dependence on CCS1. By mutation of this proline, C. albicans SOD1 gained activity in S. cerevisiae, and this activity was independent of CCS1. We identified a putative CCS1 gene in C. albicans and created heterozygous and homozygous gene deletions at this locus. Loss of CCS1 resulted in loss of SOD1 activity, consistent with its role as a copper chaperone. C. albicans CCS1 also restored activity to C. albicans SOD1 expressed in S. cerevisiae. C. albicans CCS1 is well adapted for activating its partner SOD1 from C. albicans, but not SOD1 from S. cerevisiae. In spite of the high degree of homology between the SOD1 and CCS1 molecules in these two fungal species, there exists a species-specific barrier in CCS-SOD interactions which may reflect the vastly different lifestyles of the pathogenic versus the noninfectious yeast.

  14. Determination of ion mobility collision cross sections for unresolved isomeric mixtures using tandem mass spectrometry and chemometric deconvolution.

    PubMed

    Harper, Brett; Neumann, Elizabeth K; Stow, Sarah M; May, Jody C; McLean, John A; Solouki, Touradj

    2016-10-05

    Ion mobility (IM) is an important analytical technique for determining ion collision cross section (CCS) values in the gas-phase and gaining insight into molecular structures and conformations. However, limited instrument resolving powers for IM may restrict adequate characterization of conformationally similar ions, such as structural isomers, and reduce the accuracy of IM-based CCS calculations. Recently, we introduced an automated technique for extracting "pure" IM and collision-induced dissociation (CID) mass spectra of IM overlapping species using chemometric deconvolution of post-IM/CID mass spectrometry (MS) data [J. Am. Soc. Mass Spectrom., 2014, 25, 1810-1819]. Here we extend those capabilities to demonstrate how extracted IM profiles can be used to calculate accurate CCS values of peptide isomer ions which are not fully resolved by IM. We show that CCS values obtained from deconvoluted IM spectra match with CCS values measured from the individually analyzed corresponding peptides on uniform field IM instrumentation. We introduce an approach that utilizes experimentally determined IM arrival time (AT) "shift factors" to compensate for ion acceleration variations during post-IM/CID and significantly improve the accuracy of the calculated CCS values. Also, we discuss details of this IM deconvolution approach and compare empirical CCS values from traveling wave (TW)IM-MS and drift tube (DT)IM-MS with theoretically calculated CCS values using the projected superposition approximation (PSA). For example, experimentally measured deconvoluted TWIM-MS mean CCS values for doubly-protonated RYGGFM, RMFGYG, MFRYGG, and FRMYGG peptide isomers were 288.8 Å(2), 295.1 Å(2), 296.8 Å(2), and 300.1 Å(2); all four of these CCS values were within 1.5% of independently measured DTIM-MS values. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Active Transportation in Adult Survivors of Childhood Cancer and Neighborhood Controls

    PubMed Central

    Slater, Megan E.; Kelly, Aaron S.; Sadak, Karim T.; Ross, Julie A.

    2015-01-01

    Purpose Childhood cancer survivors (CCS) are at high risk of treatment-related late effects, including cardiovascular disease and diabetes, which can be exacerbated by inadequate physical activity (PA). Previous PA interventions targeting CCS have focused on the domain of leisure-time/recreational PA. Active transportation, another domain of PA, has not been described in CCS. Therefore, this study aimed to identify active transportation behaviors, barriers, and correlates in adult CCS. Methods We recruited 158 adult CCS and 153 controls matched on age, sex, and neighborhood for a survey regarding active transportation behaviors and perceptions. Linear and logistic regression models accounting for correlation among matched participants were used. Results Adult CCS engaged in similar levels of active transportation as controls (2.72 vs. 2.32 hours/week, P=0.40) despite perceiving greater health-related barriers (1.88 vs. 1.65 (measured on four-point Likert scale), P=0.01). Marital/relationship status (odds ratio (OR)=0.30, 95% confidence interval (CI)=0.11–0.81), planning/psychosocial barriers (OR=0.15, 95% CI=0.04–0.53), and perceived neighborhood walkability (OR=2.55, 95% CI=1.14–5.66) were correlates of active transportation among adult CCS, while objective neighborhood walkability (OR=1.03, 95% CI=1.01–1.05) was a correlate among controls. Conclusions Results suggest adult CCS and controls utilize active transportation at approximately equal levels. Factors other than health, including perceived neighborhood walkability, appear to influence active transportation behaviors to a greater degree in adult CCS. Implications for Cancer Survivors Interventions might consider promoting active transportation as a way to incorporate more PA into the daily lives of adult CCS. Such interventions will not be widely successful, however, without existing or improved neighborhood walkability/bikeability. PMID:25809159

  16. Active transportation in adult survivors of childhood cancer and neighborhood controls.

    PubMed

    Slater, Megan E; Kelly, Aaron S; Sadak, Karim T; Ross, Julie A

    2016-02-01

    Childhood cancer survivors (CCS) are at high risk of treatment-related late effects, including cardiovascular disease and diabetes, which can be exacerbated by inadequate physical activity (PA). Previous PA interventions targeting CCS have focused on the domain of leisure-time/recreational PA. Active transportation, another domain of PA, has not been described in CCS. Therefore, this study aimed to identify active transportation behaviors, barriers, and correlates in adult CCS. We recruited 158 adult CCS and 153 controls matched on age, sex, and neighborhood for a survey regarding active transportation behaviors and perceptions. Linear and logistic regression models accounting for correlation among matched participants were used. Adult CCS engaged in similar levels of active transportation as controls (2.72 vs. 2.32 h/week, P = 0.40) despite perceiving greater health-related barriers (1.88 vs. 1.65 (measured on four-point Likert scale), P = 0.01). Marital/relationship status (odds ratio (OR) = 0.30, 95 % confidence interval (CI) = 0.11-0.81), planning/psychosocial barriers (OR = 0.15, 95 % CI = 0.04-0.53), and perceived neighborhood walkability (OR = 2.55, 95 % CI = 1.14-5.66) were correlates of active transportation among adult CCS, while objective neighborhood walkability (OR = 1.03, 95 % CI = 1.01-1.05) was a correlate among controls. Results suggest adult CCS and controls utilize active transportation at approximately equal levels. Factors other than health, including perceived neighborhood walkability, are related to active transportation behaviors to a greater degree in adult CCS. Interventions might consider promoting active transportation as a way to incorporate more PA into the daily lives of adult CCS. Such interventions will not be likely successful, however, without existing or improved neighborhood walkability/bikeability.

  17. Large Root Cortical Cell Size Improves Drought Tolerance in Maize1[C][W][OPEN

    PubMed Central

    Chimungu, Joseph G.; Brown, Kathleen M.

    2014-01-01

    The objective of this study was to test the hypothesis that large cortical cell size (CCS) would improve drought tolerance by reducing root metabolic costs. Maize (Zea mays) lines contrasting in root CCS measured as cross-sectional area were grown under well-watered and water-stressed conditions in greenhouse mesocosms and in the field in the United States and Malawi. CCS varied among genotypes, ranging from 101 to 533 µm2. In mesocosms, large CCS reduced respiration per unit of root length by 59%. Under water stress in mesocosms, lines with large CCS had between 21% and 27% deeper rooting (depth above which 95% of total root length is located in the soil profile), 50% greater stomatal conductance, 59% greater leaf CO2 assimilation, and between 34% and 44% greater shoot biomass than lines with small CCS. Under water stress in the field, lines with large CCS had between 32% and 41% deeper rooting (depth above which 95% of total root length is located in the soil profile), 32% lighter stem water isotopic ratio of 18O to 16O signature, signifying deeper water capture, between 22% and 30% greater leaf relative water content, between 51% and 100% greater shoot biomass at flowering, and between 99% and 145% greater yield than lines with small cells. Our results are consistent with the hypothesis that large CCS improves drought tolerance by reducing the metabolic cost of soil exploration, enabling deeper soil exploration, greater water acquisition, and improved growth and yield under water stress. These results, coupled with the substantial genetic variation for CCS in diverse maize germplasm, suggest that CCS merits attention as a potential breeding target to improve the drought tolerance of maize and possibly other cereal crops. PMID:25293960

  18. Reliability, Validity, and Predictive Utility of the 25-Item Criminogenic Cognitions Scale (CCS).

    PubMed

    Tangney, June Price; Stuewig, Jeffrey; Furukawa, Emi; Kopelovich, Sarah; Meyer, Patrick; Cosby, Brandon

    2012-10-01

    Theory, research, and clinical reports suggest that moral cognitions play a role in initiating and sustaining criminal behavior. The 25 item Criminogenic Cognitions Scale (CCS) was designed to tap 5 dimensions: Notions of entitlement; Failure to Accept Responsibility; Short-Term Orientation; Insensitivity to Impact of Crime; and Negative Attitudes Toward Authority. Results from 552 jail inmates support the reliability, validity, and predictive utility of the measure. The CCS was linked to criminal justice system involvement, self-report measures of aggression, impulsivity, and lack of empathy. Additionally, the CCS was associated with violent criminal history, antisocial personality, and clinicians' ratings of risk for future violence and psychopathy (PCL:SV). Furthermore, criminogenic thinking upon incarceration predicted subsequent official reports of inmate misconduct during incarceration. CCS scores varied somewhat by gender and race. Research and applied uses of CCS are discussed.

  19. Combination of c-reactive protein and squamous cell carcinoma antigen in predicting postoperative prognosis for patients with squamous cell carcinoma of the esophagus.

    PubMed

    Feng, Ji-Feng; Chen, Sheng; Yang, Xun

    2017-09-08

    We initially proposed a useful and novel prognostic model, named CCS [Combination of c-reactive protein (CRP) and squamous cell carcinoma antigen (SCC)], for predicting the postoperative survival in patients with esophageal squamous cell carcinoma (ESCC). Two hundred and fifty-two patients with resectable ESCC were included in this retrospective study. A logistic regression was performed and yielded a logistic equation. The CCS was calculated by the combined CRP and SCC. The optimal cut-off value for CCS was evaluated by X-tile program. Univariate and multivariate analyses were used to evaluate the predictive factors. In addition, a novel nomogram model was also performed to predict the prognosis for patients with ESCC. In the current study, CCS was calculated as CRP+6.33 SCC according to the logistic equation. The optimal cut-off value was 15.8 for CCS according to the X-tile program. Kaplan-Meier analyses demonstrated that high CCS group had a significantly poor 5-year cancer-specific survival (CSS) than low CCS group (10.3% vs. 47.3%, P <0.001). According to multivariate analyses, CCS ( P =0.004), but not CRP ( P =0.466) or SCC ( P =0.926), was an independent prognostic factor. A nomogram could be more accuracy for CSS (Harrell's c-index: 0.70). The CCS is a usefull and independent predictive factor in patients with ESCC.

  20. Larger corpus callosum and reduced orbitofrontal cortex homotopic connectivity in codeine cough syrup-dependent male adolescents and young adults.

    PubMed

    Qiu, Ying-Wei; Lv, Xiao-Fei; Jiang, Gui-Hua; Su, Huan-Huan; Ma, Xiao-Fen; Tian, Jun-Zhang; Zhuo, Fu-Zhen

    2017-03-01

    To characterize interhemispheric functional and anatomical connectivity and their relationships with impulsive behaviour in codeine-containing cough syrup (CCS)-dependent male adolescents and young adults. We compared volumes of corpus callosum (CC) and its five subregion and voxel-mirrored homotopic functional connectivity (VMHC) in 33 CCS-dependent male adolescents and young adults and 38 healthy controls, group-matched for age, education and smoking status. Barratt impulsiveness scale (BIS.11) was used to assess participant impulsive behaviour. Abnormal CC subregions and VMHC revealed by group comparison were extracted and correlated with impulsive behaviour and duration of CCS use. We found selective increased mid-posterior CC volume in CCS-dependent male adolescents and young adults and detected decreased homotopic interhemispheric functional connectivity of medial orbitofrontal cortex (OFC). Moreover, impairment of VMHC was associated with the impulsive behaviour and correlated with the duration of CCS abuse in CCS-dependent male adolescents and young adults. These findings reveal CC abnormalities and disruption of interhemispheric homotopic connectivity in CCS-dependent male adolescents and young adults, which provide a novel insight into the impact of interhemispheric disconnectivity on impulsive behaviour in substance addiction pathophysiology. • CCS-dependent individuals (patients) had selective increased volumes of mid-posterior corpus callosum • Patients had attenuated interhemispheric homotopic FC (VMHC) of bilateral orbitofrontal cortex • Impairment of VMHC correlated with impulsive behaviour in patients • Impairment of VMHC correlated with the CCS duration in patients.

  1. Cronkhite-Canada Syndrome (CCS)-A Rare Case Report.

    PubMed

    Chakrabarti, Subrata

    2015-03-01

    Cronkhite-Canada syndrome (CCS) is an extremely rare non-inherited condition characterized by gastrointestinal hamartomatous polyposis, alopecia, onychodystrophy, hyperpigmentation, weight loss and diarrhoea. The aetiology is probably autoimmune and diagnosis is based on history, physical examination, endoscopic findings of gastrointestinal polyposis, and histology. The disease is very rare; approximately 450 cases of CCS have been reported worldwide. The author reports a case of CCS in an elderly Indian male.

  2. A novel cervical cancer suppressor 3 (CCS-3) interacts with the BTB domain of PLZF and inhibits the cell growth by inducing apoptosis.

    PubMed

    Rho, Seung Bae; Park, Young Gyo; Park, Kyoungsook; Lee, Seung-Hoon; Lee, Je-Ho

    2006-07-24

    Promyelocytic leukemia zinc finger protein (PLZF) is a sequence-specific, DNA binding, transcriptional repressor differentially expressed during embryogenesis and in adult tissues. PLZF is known to be a negative regulator of cell cycle progression. We used PLZF as bait in a yeast two-hybrid screen with a cDNA library from the human ovary tissue. A novel cervical cancer suppressor 3 (CCS-3) was identified as a PLZF interacting partner. Further characterization revealed the BTB domain as an interacting domain of PLZF. Interaction of CCS-3 with PLZF in mammalian cells was also confirmed by co-immunoprecipitation and in vitro binding assays. It was found that, although CCS-3 shares similar homology with eEF1A, the study determined CCS-3 to be an isoform. CCS-3 was observed to be downregulated in human cervical cell lines as well as in cervical tumors when compared to those from normal tissues. Overexpression of CCS-3 in human cervical cell lines inhibits cell growth by inducing apoptosis and suppressing human cyclin A2 promoter activity. These combined results suggest that the potential tumor suppressor activity of CCS-3 may be mediated by its interaction with PLZF.

  3. Molecular and biochemical characterization of a unique mutation in CCS, the human copper chaperone to superoxide dismutase.

    PubMed

    Huppke, Peter; Brendel, Cornelia; Korenke, Georg Christoph; Marquardt, Iris; Donsante, Anthony; Yi, Ling; Hicks, Julia D; Steinbach, Peter J; Wilson, Callum; Elpeleg, Orly; Møller, Lisbeth Birk; Christodoulou, John; Kaler, Stephen G; Gärtner, Jutta

    2012-08-01

    Copper (Cu) is a trace metal that readily gains and donates electrons, a property that renders it desirable as an enzyme cofactor but dangerous as a source of free radicals. To regulate cellular Cu metabolism, an elaborate system of chaperones and transporters has evolved, although no human Cu chaperone mutations have been described to date. We describe a child from a consanguineous family who inherited homozygous mutations in the SLC33A1, encoding an acetyl CoA transporter, and in CCS, encoding the Cu chaperone for superoxide dismutase. The CCS mutation, p.Arg163Trp, predicts substitution of a highly conserved arginine residue at position 163, with tryptophan in domain II of CCS, which interacts directly with superoxide dismutase 1 (SOD1). Biochemical analyses of the patient's fibroblasts, mammalian cell transfections, immunoprecipitation assays, and Lys7Δ (CCS homolog) yeast complementation support the pathogenicity of the mutation. Expression of CCS was reduced and binding of CCS to SOD1 impaired. As a result, this mutation causes reduced SOD1 activity and may impair other mechanisms important for normal Cu homeostasis. CCS-Arg163Trp represents the primary example of a human mutation in a gene coding for a Cu chaperone. © 2012 Wiley Periodicals, Inc.

  4. Molecular and biochemical characterization of a unique mutation in CCS, the human copper chaperone to superoxide dismutase

    PubMed Central

    Huppke, Peter; Brendel, Cornelia; Korenke, Georg Christoph; Marquardt, Iris; Donsante, Anthony; Yi, Ling; Hicks, Julia D.; Steinbach, Peter J.; Wilson, Callum; Elpeleg, Orly; Møller, Lisbeth Birk; Christodoulou, John; Kaler, Stephen G.; Gärtner, Jutta

    2012-01-01

    Copper is a trace metal that readily gains and donates electrons, a property that renders it desirable as an enzyme cofactor but dangerous as a source of free radicals. To regulate cellular copper metabolism, an elaborate system of chaperones and transporters has evolved, although no human copper chaperone mutations have been described to date. We describe a child from a consanguineous family who inherited a homozygous mutations in the SLC33A1, encoding an acetyl CoA transporter, and in CCS, encoding the copper chaperone for superoxide dismutase. The CCS mutation, p.Arg163Trp, predicts substitution of a highly conserved arginine residue at position 163 with tryptophan in domain II of CCS, which interacts directly with SOD1. Biochemical analyses of the patient’s fibroblasts, mammalian cell transfections, immunoprecipitation assays, and Lys7Δ (CCS homolog) yeast complementation support the pathogenicity of the mutation. Expression of CCS was reduced and binding of CCS to SOD1 impaired. As a result this mutation causes reduced SOD1 activity and may impair other mechanisms important for normal copper homeostasis. CCS-Arg163Trp represents the primary example of a human mutation in a gene coding for a copper chaperone. PMID:22508683

  5. Boron neutron capture therapy (BNCT) as a new approach for clear cell sarcoma (CCS) treatment: Trial using a lung metastasis model of CCS.

    PubMed

    Andoh, Tooru; Fujimoto, Takuya; Suzuki, Minoru; Sudo, Tamotsu; Sakurai, Yoshinori; Tanaka, Hiroki; Fujita, Ikuo; Fukase, Naomasa; Moritake, Hiroshi; Sugimoto, Tohru; Sakuma, Toshiko; Sasai, Hiroshi; Kawamoto, Teruya; Kirihata, Mitsunori; Fukumori, Yoshinobu; Akisue, Toshihiro; Ono, Koji; Ichikawa, Hideki

    2015-12-01

    Clear cell sarcoma (CCS) is a rare malignant tumor with a poor prognosis. In the present study, we established a lung metastasis animal model of CCS and investigated the therapeutic effect of boron neutron capture therapy (BNCT) using p-borono-L-phenylalanine (L-BPA). Biodistribution data revealed tumor-selective accumulation of (10)B. Unlike conventional gamma-ray irradiation, BNCT significantly suppressed tumor growth without damaging normal tissues, suggesting that it may be a potential new therapeutic option to treat CCS lung metastases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Skin Cancer Surveillance Behaviors Among Childhood Cancer Survivors.

    PubMed

    Stapleton, Jerod L; Tatum, Kristina L; Devine, Katie A; Stephens, Sue; Masterson, Margaret; Baig, Amna; Hudson, Shawna V; Coups, Elliot J

    2016-03-01

    The risk of developing skin cancer is elevated among childhood cancer survivors (CCS), particularly among those treated with radiation. This survey study examined the skin cancer surveillance behaviors of 94 CCS. Approximately 48% of CCS had ever conducted skin self-examination (SSE) and 31% had ever received a physician skin examination. Rates of physician skin examination were 2.5 times higher among CCS treated with radiation compared to those without radiation. However, rates of SSEs did not differ based on treatment history. These findings highlight the need to promote skin cancer surveillance as an important aspect of CCS survivorship care. © 2015 Wiley Periodicals, Inc.

  7. Essays on carbon policy and enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Cook, Benjamin R.

    The growing concerns about climate change have led policy makers to consider various regulatory schemes designed to reduce the stock and growth of atmospheric CO2 concentrations while at the same time improving energy security. The most prominent proposals are the so called "cap-and-trade" frameworks which set aggregate emission levels for a jurisdiction and then issue or sell a corresponding number of allowances to emitters. Typically, these policy measures will also encourage the deployment of carbon capture and storage (CCS) in geological formations and mature oil fields through subsidies or other incentives. The ability to store CO 2 in mature oil fields through the deployment of CO2 enhanced oil recovery (CO2--EOR) is particularly attractive as it can simultaneously improve oil recovery at those fields, and serve as a possible financial bridge to the development of CO2 transportation infrastructure. The purpose of this research is to explore the impact that a tandem subsidy-tax policy regime may have on bargaining between emitters and sequestration providers, and also to identify oil units in Wyoming that can profitably undertake CO 2--EOR as a starting point for the build-out of CO2 pipelines. In the first essay an economics lab experiment is designed to simulate private bargaining between carbon emitters (such as power plants) and carbon sequestration sites when the emitter faces carbon taxes, sequestration subsidies or both. In a tax-subsidy policy regime the carbon tax (or purchased allowances) can be avoided by sequestering the carbon, and in some cases the emitter can also earn a subsidy to help pay for the sequestration. The main policy implications of the experiment results are that the sequestration market might be inefficient, and sequestration providers seem to have bargaining power sufficient to command high prices. This may lead to the integration of CO2 sources and sequestration sites, and reduced prices for the injectable CO2 purchased by oil operators for enhanced oil recovery. The second essay extends the CO2--EOR economic model described in a recent Energy Journal article by Klaas van 't Veld and Owen R. Phillips (2010). This essay takes a Monte Carlo approach to the economic scoping model which focuses more directly on the probabilistic outcomes for each individual oil field-reservoir combination (FRC). Using data on Wyoming oil fields the essay analyzes 197 FRCs in order to identify oil units with robust CO2--EOR profit potential over a wide range of uncertainty regarding future oil prices and reservoir characteristics. Of the 197 FRCs considered, 93 of them are found to meet an industry threshold IRR of 20 percent in at least half of scenarios with limited chance of actually taking losses. The third essay continues to employ the CO2--EOR economic scoping model, but focuses on Wyoming's aggregate EOR potential and attendant CO2 requirements. A similar Monte Carlo analysis is used to construct incremental oil "supply" and cumulative CO2 purchase "demand" curve estimates. Finally, the study uses a resampling technique similar to bootstrapping in order to create probabilistic distributions of Wyoming's aggregate EOR potential by assigning probabilities to individual oil prices. Although the data only covers oil fields with at least 5 MMbo of production, the analysis suggests around 768 MMbo of additional oil is likely to be recovered with CO2--EOR utilizing roughly 5.5 Tcf of injectable CO2.

  8. First principles view on chemical compound space: Gaining rigorous atomistic control of molecular properties

    DOE PAGES

    von Lilienfeld, O. Anatole

    2013-02-26

    A well-defined notion of chemical compound space (CCS) is essential for gaining rigorous control of properties through variation of elemental composition and atomic configurations. Here, we give an introduction to an atomistic first principles perspective on CCS. First, CCS is discussed in terms of variational nuclear charges in the context of conceptual density functional and molecular grand-canonical ensemble theory. Thereafter, we revisit the notion of compound pairs, related to each other via “alchemical” interpolations involving fractional nuclear charges in the electronic Hamiltonian. We address Taylor expansions in CCS, property nonlinearity, improved predictions using reference compound pairs, and the ounce-of-gold prizemore » challenge to linearize CCS. Finally, we turn to machine learning of analytical structure property relationships in CCS. Here, these relationships correspond to inferred, rather than derived through variational principle, solutions of the electronic Schrödinger equation.« less

  9. Reliability, Validity, and Predictive Utility of the 25-Item Criminogenic Cognitions Scale (CCS)

    PubMed Central

    Tangney, June Price; Stuewig, Jeffrey; Furukawa, Emi; Kopelovich, Sarah; Meyer, Patrick; Cosby, Brandon

    2013-01-01

    Theory, research, and clinical reports suggest that moral cognitions play a role in initiating and sustaining criminal behavior. The 25 item Criminogenic Cognitions Scale (CCS) was designed to tap 5 dimensions: Notions of entitlement; Failure to Accept Responsibility; Short-Term Orientation; Insensitivity to Impact of Crime; and Negative Attitudes Toward Authority. Results from 552 jail inmates support the reliability, validity, and predictive utility of the measure. The CCS was linked to criminal justice system involvement, self-report measures of aggression, impulsivity, and lack of empathy. Additionally, the CCS was associated with violent criminal history, antisocial personality, and clinicians’ ratings of risk for future violence and psychopathy (PCL:SV). Furthermore, criminogenic thinking upon incarceration predicted subsequent official reports of inmate misconduct during incarceration. CCS scores varied somewhat by gender and race. Research and applied uses of CCS are discussed. PMID:24072946

  10. Genetic Regulation of Guanylate-Binding Proteins 2b and 5 during Leishmaniasis in Mice

    PubMed Central

    Sohrabi, Yahya; Volkova, Valeryia; Kobets, Tatyana; Havelková, Helena; Krayem, Imtissal; Slapničková, Martina; Demant, Peter; Lipoldová, Marie

    2018-01-01

    Interferon-induced GTPases [guanylate-binding proteins (GBPs)] play an important role in inflammasome activation and mediate innate resistance to many intracellular pathogens, but little is known about their role in leishmaniasis. We therefore studied expression of Gbp2b/Gbp1 and Gbp5 mRNA in skin, inguinal lymph nodes, spleen, and liver after Leishmania major infection and in uninfected controls. We used two different groups of related mouse strains: BALB/c, STS, and CcS-5, CcS-16, and CcS-20 that carry different combinations of BALB/c and STS genomes, and strains O20, C57BL/10 (B10) and B10.O20, OcB-9, and OcB-43 carrying different combinations of O20 and B10 genomes. The strains were classified on the basis of size and number of infection-induced skin lesions as highly susceptible (BALB/c, CcS-16), susceptible (B10.O20), intermediate (CcS-20), and resistant (STS, O20, B10, OcB-9, OcB-43). Some uninfected strains differed in expression of Gbp2b/Gbp1 and Gbp5, especially of Gbp2b/Gbp1 in skin. Uninfected BALB/c and STS did not differ in their expression, but in CcS-5, CcS-16, and CcS-20, which all carry BALB/c-derived Gbp gene-cluster, expression of Gbp2b/Gbp1 exceeds that of both parents. These data indicate trans-regulation of Gbps. Infection resulted in approximately 10× upregulation of Gbp2b/Gbp1 and Gbp5 mRNAs in organs of both susceptible and resistant strains, which was most pronounced in skin. CcS-20 expressed higher level of Gbp2b/Gbp1 than both parental strains in skin, whereas CcS-16 expressed higher level of Gbp2b/Gbp1 than both parental strains in skin and liver. This indicates a trans-regulation present in infected mice CcS-16 and CcS-20. Immunostaining of skin of five strains revealed in resistant and intermediate strains STS, CcS-5, O20, and CcS-20 tight co-localization of Gbp2b/Gbp1 protein with most L. major parasites, whereas in the highly susceptible strain, BALB/c most parasites did not associate with Gbp2b/Gbp1. In conclusion, expression of Gbp2b/Gbp1 and Gbp5 was increased even in organs of clinically asymptomatic resistant mice. It suggests a hidden inflammation, which might contribute to control of persisting parasites. This is supported by the co-localization of Gbpb2/Gbp1 protein and L. major parasites in skin of resistant and intermediate but not highly susceptible mice. PMID:29467757

  11. Expanding Approaches for Understanding Impact: Integrating Technology, Curriculum, and Open Educational Resources in Science Education

    ERIC Educational Resources Information Center

    Ye, Lei; Recker, Mimi; Walker, Andrew; Leary, Heather; Yuan, Min

    2015-01-01

    This article reports results from a scale-up study of the impact of a software tool designed to support teachers in the digital learning era. This tool, the Curriculum Customization Service (CCS), enables teachers to access open educational resources from multiple providers, customize them for classroom instruction, and share them with other…

  12. 75 FR 53075 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ... Demonstration Project, Department of the Air Force, Air Force Research Laboratory (AFRL); Notice #0;#0;Federal... Project, Department of the Air Force, Air Force Research Laboratory (AFRL) AGENCY: Office of the Deputy... amendment changed the amount of time required to be assessed under CCS from 180 to 90 calendar days and was...

  13. Alignment: A Local High School/College Model to Eliminate Remediation

    ERIC Educational Resources Information Center

    Rochford, Joseph A.

    2006-01-01

    A team of faculty from both Stark State College of Technology (SSCT) and the Canton City Schools (CCS) reviewed their respective curricula opposite the Ohio Academic Content Standards, assisted by a crosswalk indicating which of those standards were measured by COMPASS/ESL a widely used college placement test. This study found that the skills…

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picard, Richard Roy

    Through years of technological improvements, cultural change, advances in statistical theory, revisions of federal government structure and policies, Laboratory re-organizations, offce re-locations, and so on, the practice of statistics at Los Alamos has evolved from its origins in the early 1950s, with a handful of statisticians working in LASL group T-1, to present-day group CCS-6. This report chronicles that history.

  15. Exploring the role of natural gas power plants with carbon capture and storage as a bridge to a low-carbon future

    EPA Science Inventory

    Natural gas combined-cycle (NGCC) turbines with carbon capture and storage (CCS) can be a promising technology to reduce CO2 emissions in the electric sector. However, the high cost and energy penalties of current carbon capture devices, as well as methane leakage from natural ga...

  16. Investigation of droplet nucleation in CCS relevant systems - design and testing of the expansion chamber

    NASA Astrophysics Data System (ADS)

    Čenský, Miroslav; Hrubý, Jan; Vinš, Václav; Hykl, Jiří; Šmíd, Bohuslav

    2018-06-01

    A unique in-house designed experimental apparatus for investigation of nucleation of droplets in CCS relevant systems is being developed by the present team. The apparatus allows simulating various processes relevant to CCS technologies. Gaseous mixtures with CO2 are prepared in a Mixture Preparation Device (MPD) based on accurate adjustment of flow rates of individual components [EPJ Web of Conferences 143, 02140 (2017)]. The mixture then flows into an expansion chamber, where it undergoes a rapid adiabatic expansion. As a consequence of adiabatic cooling, the mixture becomes supersaturated and nucleation and simultaneous growth of droplets occurs. In this study, we describe the design and testing of the expansion part of the experimental setup. The rapid expansion was realized using two valve systems, one for low pressures (up to 0.7 MPa) and the other for high pressures (up to 10 MPa). A challenge for a proper design of the expansion system is avoiding acoustic oscillations. These can occur either in the mode of Helmholtz resonator, where the compressible gas in the chamber acts as a spring and the rapidly moving gas in the valve system as a mass, or in the "flute" mode, where acoustic waves are generated in a long outlet tubing.

  17. Evolutionary status of the pre-protostellar core L1498

    NASA Technical Reports Server (NTRS)

    Kuiper, T. B.; Langer, W. D.; Velusamy, T.; Levin, S. M. (Principal Investigator)

    1996-01-01

    L1498 is a classic example of a dense cold pre-protostellar core. To study the evolutionary status, the structure, dynamics, and chemical properties of this core we have obtained high spatial and high spectral resolution observations of molecules tracing densities of 10(3)-10(5) cm-3. We observed CCS, NH3, C3H2, and HC7N with NASA's DSN 70 m antennas. We also present large-scale maps of C18O and 13CO observed with the AT&T 7 m antenna. For the high spatial resolution maps of selected regions within the core we used the VLA for CCS at 22 GHz, and the Owens Valley Radio Observatory (OVRO) MMA for CCS at 94 GHz and CS (2-1). The 22 GHz CCS emission marks a high-density [n(H2) > 10(4) cm -3] core, which is elongated with a major axis along the SE-NW direction. NH3 and C3H2 emissions are located inside the boundary of the CCS emission. C18O emission traces a lower density gas extending beyond the CCS boundary. Along the major axis of the dense core, CCS, NH3 and C3H2 emission show evidence of limb brightening. The observations are consistent with a chemically differentiated onion-shell structure for the L1498 core, with NH3 in the inner and CCS in the outer parts of the core. The high angular resolution (9"-12") spectral line maps obtained by combining NASA Goldstone 70 m and VLA data resolve the CCS 22 GHz emission in the southeast and northwest boundaries into arclike enhancements, supporting the picture that CCS emission originates in a shell outside the NH3 emitting region. Interferometric maps of CCS at 94 GHz and CS at 98 GHz show that their emitting regions contain several small-scale dense condensations. We suggest that the differences between the CCS, CS, C3H2, and NH3 emission are caused by a time-dependent effect as the core evolves slowly. We interpret the chemical and physical properties of L1498 in terms of a quasi-static (or slowly contracting) dense core in which the outer envelope is still growing. The growth rate of the core is determined by the density increase in the CCS shell resulting from the accretion of the outer low-density gas traced by C18O. We conclude that L1498 could become unstable to rapid collapse to form a protostar in less than 5 x 10(6) yr.

  18. Effect of CCS on the Accumulation of FALS SOD1 Mutant-containing Aggregates and on Mitochondrial Translocation of SOD1 Mutants: Implication of a Free Radical Hypothesis

    PubMed Central

    Kim, Ha Kun; Chung, Youn Wook; Chock, P. Boon; Yim, Moon B.

    2011-01-01

    Missense mutations of SOD1 are linked to familial amyotrophic lateral sclerosis (FALS) through a yet-to-be identified toxic-gain-of-function. One of the proposed mechanisms involves enhanced aggregate formation. However, a recent study showed that dual transgenic mice overexpressing both G93A and CCS copper chaperone (G93A/CCS) exhibit no SOD1-positive aggregates yet show accelerated FALS symptoms with enhanced mitochondrial pathology compared to G93A mice. Using a dicistronic mRNA to simultaneously generate hSOD1 mutants, G93A, A4V and G85R, and hCCS in AAV293 cells, we revealed: (i) CCS is degraded primarily via a macroautophagy pathway. It forms a stable heterodimer with inactive G85R, and via its novel copper chaperone-independent molecular chaperone activity facilitates G85R degradation via a macroautophagy-mediated pathway. For active G93A and A4V, CCS catalyzes their maturation to form active and soluble homodimers. (ii) CCS reduces, under non-oxidative conditions, yet facilitates in the presence of H2O2, mitochondrial translocation of inactive SOD1 mutants. These results, together with previous reports showing FALS SOD1 mutants enhanced free radical-generating activity, provide a mechanistic explanation for the observations with G93A/CCS dual transgenic mice and suggest that free radical generation by FALS SOD1, enhanced by CCS, may, in part, be responsible for the FALS SOD1 mutant-linked aggregation, mitochondrial translocation, and degradation. PMID:21354101

  19. Using standardized patients to assess communication skills in medical and nursing students.

    PubMed

    Ryan, C Anthony; Walshe, Nuala; Gaffney, Robert; Shanks, Andrew; Burgoyne, Louise; Wiskin, Connie M

    2010-03-17

    A number of recent developments in medical and nursing education have highlighted the importance of communication and consultation skills (CCS). Although such skills are taught in all medical and nursing undergraduate curriculums, there is no comprehensive screening or assessment programme of CCS using professionally trained Standardized Patients Educators (SPE's) in Ireland. This study was designed to test the content, process and acceptability of a screening programme in CCS with Irish medical and nursing students using trained SPE's and a previously validated global rating scale for CCS. Eight tutors from the Schools of Nursing and Medicine at University College Cork were trained in the use of a validated communication skills and attitudes holistic assessment tool. A total of forty six medical students (Year 2 of 5) and sixty four nursing students (Year 2/3 of 4) were selected to under go individual CCS assessment by the tutors via an SPE led scenario. Immediate formative feedback was provided by the SPE's for the students. Students who did not pass the assessment were referred for remediation CCS learning. Almost three quarters of medical students (33/46; 72%) and 81% of nursing students (56/64) passed the CCS assessment in both communication and attitudes categories. All nursing students had English as their first language. Nine of thirteen medical students referred for enhanced learning in CCS did not have English as their first language. A significant proportion of both medical and nursing students required referral for enhanced training in CCS. Medical students requiring enhanced training were more likely not to have English as a first language.

  20. Effects of sub-seabed CO2 leakage: Short- and medium-term responses of benthic macrofaunal assemblages.

    PubMed

    Amaro, T; Bertocci, I; Queiros, A M; Rastelli, E; Borgersen, G; Brkljacic, M; Nunes, J; Sorensen, K; Danovaro, R; Widdicombe, S

    2018-03-01

    The continued rise in atmospheric carbon dioxide (CO 2 ) levels is driving climate change and temperature shifts at a global scale. CO 2 Capture and Storage (CCS) technologies have been suggested as a feasible option for reducing CO 2 emissions and mitigating their effects. However, before CCS can be employed at an industrial scale, any environmental risks associated with this activity should be identified and quantified. Significant leakage of CO 2 from CCS reservoirs and pipelines is considered to be unlikely, however direct and/or indirect effects of CO 2 leakage on marine life and ecosystem functioning must be assessed, with particular consideration given to spatial (e.g. distance from the source) and temporal (e.g. duration) scales at which leakage impacts could occur. In the current mesocosm experiment we tested the potential effects of CO 2 leakage on macrobenthic assemblages by exposing infaunal sediment communities to different levels of CO 2 concentration (400, 1000, 2000, 10,000 and 20,000 ppm CO 2 ), simulating a gradient of distance from a hypothetic leakage, over short-term (a few weeks) and medium-term (several months). A significant impact on community structure, abundance and species richness of macrofauna was observed in the short-term exposure. Individual taxa showed idiosyncratic responses to acidification. We conclude that the main impact of CO 2 leakage on macrofaunal assemblages occurs almost exclusively at the higher CO 2 concentration and over short time periods, tending to fade and disappear at increasing distance and exposure time. Although under the cautious perspective required by the possible context-dependency of the present findings, this study contributes to the cost-benefit analysis (environmental risk versus the achievement of the intended objectives) of CCS strategies. Copyright © 2018. Published by Elsevier Ltd.

  1. Three essays on energy efficiency and environmental policies in Canada

    NASA Astrophysics Data System (ADS)

    Gamtessa, Samuel Faye

    This thesis is organized into five Chapters. In Chapter 1, we provide an introduction. In Chapter 2, we present a study on residential energy-efficiency retrofits in Canada. We describe the EnerGuide for Houses data and model household decisions to invest in energy-efficiency retrofits. Our results show that government financial incentives have important positive effects. The decision to invest in energy-efficiency retrofits is positively related to potential energy cost savings and negatively related to the costs of the retrofits. We find that household characteristics such as the age composition of household members are important factors. All else remaining constant, low income households are more likely to undertake energy-efficiency retrofits. In the third Chapter, we present our study on price-induced energy efficiency improvements in Canadian manufacturing. Our study employs a new approach to the estimation of price-induced energy efficiency improvements and the results have important empirical and policy implications. In the fourth chapter, we present our study on the implications of the “shale gas revolution” on Alberta greenhouse gas emission abatement strategy. Given that the strategy is centered on deployment of CCS technologies, we analyze the effects of the declines in natural gas price on CCS deployment in the electricity sector. We use the CIMS simulation model to simulate various policy scenarios under high and low natural gas price assumptions. Comparison of the results shows that CCS market penetration in the electricity sector is very minimal in the low natural gas price scenario even when a 50% cost subsidy is applied. Accordingly, there is little gain from subsidizing CCS given the “shale gas revolution.” We provide a few concluding remarks in Chapter 5.

  2. Three Essays on Energy Efficiency and Environmental Policies in Canada

    NASA Astrophysics Data System (ADS)

    Gamtessa, Samuel

    2011-09-01

    This thesis is organized into five Chapters. In Chapter 1, we provide an introduction. In Chapter 2, we present a study on residential energy-efficiency retrofits in Canada. We describe the EnerGuide for Houses data and model household decisions to invest in energy-efficiency retrofits. Our results show that government financial incentives have important positive effects. The decision to invest in energy-efficiency retrofits is positively related to potential energy cost savings and negatively related to the costs of the retrofits. We find that household characteristics such as the age composition of household members are important factors. All else remaining constant, low income households are more likely to undertake energy-efficiency retrofits. In the third Chapter, we present our study on price-induced energy efficiency improvements in Canadian manufacturing. Our study employs a new approach to the estimation of price-induced energy efficiency improvements and the results have important empirical and policy implications. In the fourth chapter, we present our study on the implications of the "shale gas revolution" on Alberta greenhouse gas emission abatement strategy. Given that the strategy is centered on deployment of CCS technologies, we analyze the effects of the declines in natural gas price on CCS deployment in the electricity sector. We use the CIMS simulation model to simulate various policy scenarios under high and low natural gas price assumptions. Comparison of the results shows that CCS market penetration in the electricity sector is very minimal in the low natural gas price scenario even when a 50% cost subsidy is applied. Accordingly, there is little gain from subsidizing CCS given the "shale gas revolution." We provide a few concluding remarks in Chapter 5.

  3. Geothermal projects funded under the NER 300 programme - current state of development and knowledge gained

    NASA Astrophysics Data System (ADS)

    Shortall, Ruth; Uihlein, Andreas

    2017-04-01

    Introduction The NER 300 programme, managed by the European Commission is one of the largest funding programmes for innovative low-carbon energy demonstration projects. NER 300 is so called because it is funded from the sale of 300 million emission allowances from the new entrants' reserve (NER) set up for the third phase of the EU emissions trading system (ETS). The programme aims to successfully demonstrate environmentally safe carbon capture and storage (CCS) and innovative renewable energy (RES) technologies on a commercial scale with a view to scaling up production of low-carbon technologies in the EU. Consequently, it supports a wide range of CCS and RES technologies (bioenergy, concentrated solar power, photovoltaics, geothermal, wind, ocean, hydropower, and smart grids). Funded projects and the role of geothermal projects for the programme In total, about EUR 2.1 billion have been awarded through the programme's 2 calls for proposals (the first awarded in December 2012, the second in July 2014). The programme has awarded around EUR 70 million funding to 3 geothermal projects in Hungary, Croatia and France. The Croatian geothermal project will enter into operation during 2017 the Hungarian in 2018, and the French in 2020. Knowledge Sharing Knowledge sharing requirements are built into the legal basis of the programme as a critical tool to lower risks in bridging the transition to large-scale production of innovative renewable energy and CCS deployment. Projects have to submit annually to the European Commission relevant knowledge gained during that year in the implementation of their project. The relevant knowledge is aggregated and disseminated by the European Commission to industry, research, government, NGO and other interest groups and associations in order to provide a better understanding of the practical challenges that arise in the important step of scaling up technologies and operating them at commercial scale. The knowledge sharing of the NER 300 programme should lead to better planning and faster introduction of low carbon technologies in the future. Content of the presentation The presentation will introduce the geothermal projects that have been awarded funding (see Annex), including their state-of-play. Insights and knowledge gained from the projects that have entered into operation will be shown and discussed. Furthermore, the presentation will provide an overview of the NER 300 programme.

  4. 75 FR 14223 - Self-Regulatory Organizations; Notice of Filing and Immediate Effectiveness of Proposed Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... Exchange's system. This schedule is known as the DMM Capital Commitment Schedule (``CCS'').\\12\\ CCS... points outside, at and inside the Exchange BBO. CCS interest is separate and distinct from other DMM...

  5. Levels and determinants of breast and cervical cancer screening uptake in HIV-infected women compared with the general population in France.

    PubMed

    Tron, L; Lert, F; Spire, B; Dray-Spira, R

    2017-03-01

    Cancer is a growing concern for HIV-infected people, and screening plays a major role in alleviating the burden it causes. We sought to investigate the levels and determinants of breast cancer screening (BCS) and cervical cancer screening (CCS) in HIV-infected women as compared with the general population. The Agence Nationale de Recherche sur le Sida et les Hépatites Virales (ANRS)-Vespa2 study was conducted in 2011 in a national representative sample of 3022 HIV-infected hospital out-patients in France. The rates and correlates of BCS and CCS among HIV-infected women were compared with those in the general population using multivariate Poisson regression models. The BCS rate during the 2 years preceding the survey interview was 80.7% among HIV-infected women vs. 89.1% in the general population (P = 0.146). The CCS rate during the preceding 3 years was 88.1% among HIV-infected women vs. 83.1% in the general population (P = 0.021). During the preceding year, the CCS rate among HIV-infected women was 76.5%. The barriers to BCS and CCS were a low educational level [BCS: adjusted prevalence rate ratio 0.88; 95% confidence interval (CI) 0.80-0.97; CCS: adjusted prevalence rate ratio 0.91; 95% CI 0.83-0.99], not having supplementary health insurance (CCS: adjusted prevalence rate ratio 0.92; 95% CI 0.86-0.98), an irregular gynaecological follow-up (BCS: adjusted prevalence rate ratio 0.77; 95% CI 0.64-0.92; CCS: adjusted prevalence rate ratio 0.72; 95% CI 0.64-0.81) and a low CD4 count (BCS: adjusted prevalence rate ratio 0.83; 95% CI 0.71-0.97; CCS: adjusted prevalence rate ratio 0.78; 95% CI 0.63-0.98). The disparities in CCS uptake in terms of age, employment and gynaecological follow-up were less pronounced among HIV-infected women than in the general population. BCS and CCS uptake was not lower among HIV-infected women than in the general population, but CCS was suboptimal. Specificities in the profile of barriers to screening emerged. © 2016 British HIV Association.

  6. Collaborative Classroom Simulation (CCS): An Innovative Pedagogy Using Simulation in Nursing Education.

    PubMed

    Berndt, Jodi; Dinndorf-Hogenson, Georgia; Herheim, Rena; Hoover, Carrie; Lanc, Nicole; Neuwirth, Janet; Tollefson, Bethany

    2015-01-01

    Collaborative Classroom Simulation (CCS) is a pedagogy designed to provide a simulation learning experience for a classroom of students simultaneously through the use of unfolding case scenarios. The purpose of this descriptive study was to explore the effectiveness of CCS based on student perceptions. Baccalaureate nursing students (n = 98) participated in the study by completing a survey after participation in the CCS experience. Opportunities for collaboration, clinical judgment, and participation as both observer and active participant were seen as strengths of the experience. Developed as a method to overcome barriers to simulation, CCS was shown to be an effective active learning technique that may prove to be sustainable.

  7. ACM CCS 2013-2015 Student Travel Support

    DTIC Science & Technology

    2016-10-29

    ACM CCS 2013-2015 Student Travel Support Under the ARO funded effort titled “ACM CCS 2013-2015 Student Travel Support,” from 2013 to 2015, George...Mason University awarded 10 students travel awards every year. These grants enabled the students to offset the cost to attend the ACM Conference on...AGENCY NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 travel grant, acm ccs REPORT

  8. Interfacial Microstructure and Its Influence on Resistivity of Thin Layers Copper Cladding Steel Wires

    NASA Astrophysics Data System (ADS)

    Li, Hongjuan; Ding, Zhimin; Zhao, Ruirong

    2018-04-01

    The interfacial microstructure and resistivity of cold-drawn and annealed thin layers copper cladding steel (CCS) wires have been systematically investigated by the methods of scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and resistivity testing. The results showed that the Cu and Fe atoms near interface diffused into each other matrixes. The Fe atoms diffused into Cu matrixes and formed a solid solution. The mechanism of solid solution is of substitution type. When the quantity of Fe atoms exceeds the maximum solubility, the supersaturated solid solution would form Fe clusters and decompose into base Cu and α-Fe precipitated phases under certain conditions. A few of α-Fe precipitates was observed in the copper near Cu/Fe interfaces of cold-drawn CCS wires, with 1-5 nm in size. A number of α-Fe precipitates of 1-20 nm in size can be detected in copper near Cu/Fe interfaces of CCS wires annealed at 850°C. When annealing temperature was less than 750°C, the resistivity of CCS wires annealed was lower than that of cold-drawn CCS wires. However, when annealing temperature was above 750°C, the resistivity of CCS wires was greater than that of cold-drawn CCS wires and increased with rising the annealing temperature. The relationship between nanoscale α-Fe precipitation and resistivity of CCS wires has been well discussed.

  9. Ion Mobility-Derived Collision Cross Section As an Additional Measure for Lipid Fingerprinting and Identification

    PubMed Central

    2014-01-01

    Despite recent advances in analytical and computational chemistry, lipid identification remains a significant challenge in lipidomics. Ion-mobility spectrometry provides an accurate measure of the molecules’ rotationally averaged collision cross-section (CCS) in the gas phase and is thus related to ionic shape. Here, we investigate the use of CCS as a highly specific molecular descriptor for identifying lipids in biological samples. Using traveling wave ion mobility mass spectrometry (MS), we measured the CCS values of over 200 lipids within multiple chemical classes. CCS values derived from ion mobility were not affected by instrument settings or chromatographic conditions, and they were highly reproducible on instruments located in independent laboratories (interlaboratory RSD < 3% for 98% of molecules). CCS values were used as additional molecular descriptors to identify brain lipids using a variety of traditional lipidomic approaches. The addition of CCS improved the reproducibility of analysis in a liquid chromatography-MS workflow and maximized the separation of isobaric species and the signal-to-noise ratio in direct-MS analyses (e.g., “shotgun” lipidomics and MS imaging). These results indicate that adding CCS to databases and lipidomics workflows increases the specificity and selectivity of analysis, thus improving the confidence in lipid identification compared to traditional analytical approaches. The CCS/accurate-mass database described here is made publicly available. PMID:25495617

  10. THE APPLICATION AND DEVELOPMENT OF APPROPRIATE TOOLS AND TECHNOLOGIES FOR COST-EFFECTIVE CARBON SEQUESTRATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bill Stanley; Sandra Brown; Ellen Hawes

    2002-09-01

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research projects is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects,more » providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas impacts. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: advanced videography testing; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.« less

  11. 75 FR 54937 - Self-Regulatory Organizations; Notice of Filing and Immediate Effectiveness of Proposed Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    .... This schedule is known as the DMM Capital Commitment Schedule (``CCS'').\\10\\ CCS provides the Display... and inside the Exchange Best Bid or Best Offer (``BBO''). CCS interest is separate and distinct from...

  12. 78 FR 38766 - Self-Regulatory Organizations; NYSE MKT LLC; Notice of Filing and Immediate Effectiveness of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    .... This schedule is known as the DMM Capital Commitment Schedule (``CCS'').\\11\\ CCS provides the Display..., at and inside the Exchange Best Bid or Best Offer (``BBO''). CCS interest is separate and distinct...

  13. 76 FR 82340 - Self-Regulatory Organizations; New York Stock Exchange LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ... Exchange's system. This schedule is known as the DMM Capital Commitment Schedule (``CCS'').\\9\\ CCS provides... outside, at and inside the Exchange Best Bid or Best Offer (``BBO''). CCS interest is separate and...

  14. 76 FR 39147 - Self-Regulatory Organizations; New York Stock Exchange LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    .... This schedule is known as the DMM Capital Commitment Schedule (``CCS'').\\9\\ CCS provides the Display..., at and inside the Exchange Best Bid or Best Offer (``BBO''). CCS interest is separate and distinct...

  15. 78 FR 1288 - Self-Regulatory Organizations; New York Stock Exchange LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... system. This schedule is known as the DMM Capital Commitment Schedule (``CCS'').\\11\\ CCS provides the... outside, at and inside the Exchange Best Bid or Best Offer (``BBO''). CCS interest is separate and...

  16. 77 FR 45406 - Self-Regulatory Organizations; NYSE MKT LLC; Notice of Filing and Immediate Effectiveness of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    .... This schedule is known as the DMM Capital Commitment Schedule (``CCS'').\\11\\ CCS provides the Display..., at and inside the Exchange Best Bid or Best Offer (``BBO''). CCS interest is separate and distinct...

  17. Usefulness of coronary calcium scoring to myocardial perfusion SPECT in the diagnosis of coronary artery disease in a predominantly high risk population.

    PubMed

    Schaap, Jeroen; Kauling, Robert M; Boekholdt, S Matthijs; Post, Martijn C; Van der Heyden, Jan A; de Kroon, Thom L; van Es, H Wouter; Rensing, Benno J W M; Verzijlbergen, J Fred

    2013-03-01

    Coronary calcium scoring (CCS) adds to the diagnostic performance of myocardial perfusion single-photon emission computed tomography (SPECT) to assess the presence of significant coronary artery disease (CAD). Patients with a high pre-test likelihood are expected to have a high CCS which potentially could enhance the diagnostic performance of myocardial perfusion SPECT in this specific patient group. We evaluated the added value of CCS to SPECT in the diagnosis of significant CAD in patients with an intermediate to high pre-test likelihood. In total, 129 patients (mean age 62.7 ± 9.7 years, 65 % male) with stable anginal complaints and intermediate to high pre-test likelihood of CAD (median 87 %, range 22-95) were prospectively included in this study. All patients received SPECT and CCS imaging preceding invasive coronary angiography (CA). Fractional flow reserve (FFR) measurements were acquired from patients with angiographically estimated 50-95 % obstructive CAD. For SPECT a SSS > 3 was defined significant CAD. For CCS the optimal cut-off value for significant CAD was determined by ROC curve analysis. The reference standard for significant CAD was a FFR of <0.80 acquired by CA. Significant CAD was demonstrated in 64 patients (49.6 %). Optimal CCS cut-off value for significant CAD was >182.5. ROC curve analysis for prediction of the presence of significant CAD for SPECT, CCS and the combination of CCS and SPECT resulted in an area under the curve (AUC) of 0.88 (95 % CI 81-94), 0.75 (95 % CI 66-83 %) and 0.92 (95 % CI 87-97 %) respectively. The difference of the AUC between SPECT and the combination of CCS and SPECT was 0.05 (P = 0.12). The addition of CCS did not significantly improve the diagnostic performance of SPECT in the evaluation of patients with a predominantly high pre-test likelihood of CAD.

  18. 76 FR 82326 - Self-Regulatory Organizations; NYSE Amex LLC; Notice of Filing and Immediate Effectiveness of a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ... as the DMM Capital Commitment Schedule (``CCS'').\\10\\ CCS provides the Display Book[supreg] \\11\\ with... Exchange Best Bid or Best Offer (``BBO''). CCS interest is separate and distinct from other DMM interest in...

  19. 78 FR 38753 - Self-Regulatory Organizations; New York Stock Exchange LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... as the DMM Capital Commitment Schedule (``CCS'').\\10\\ CCS provides the Display Book[supreg] \\11\\ with... Exchange Best Bid or Best Offer (``BBO''). CCS interest is separate and distinct from other DMM interest in...

  20. 76 FR 39453 - Self-Regulatory Organizations; NYSE Amex LLC; Notice of Filing and Immediate Effectiveness of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ... Commitment Schedule (``CCS'').\\10\\ CCS provides the Display Book[supreg] \\11\\ with the amount of shares that... (``BBO''). CCS interest is separate and distinct from other DMM interest in that it serves as the...

  1. 76 FR 598 - Self-Regulatory Organizations; NYSE Amex LLC; Notice of Filing and Immediate Effectiveness of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ... as the DMM Capital Commitment Schedule (``CCS'').\\10\\ CCS provides the Display Book[reg] \\11\\ with... Exchange Best Bid or Best Offer (``BBO''). CCS interest is separate and distinct from other DMM interest in...

  2. 77 FR 45408 - Self-Regulatory Organizations; New York Stock Exchange LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ... as the DMM Capital Commitment Schedule (``CCS'').\\10\\ CCS provides the Display Book[supreg] \\11\\ with... Exchange Best Bid or Best Offer (``BBO''). CCS interest is separate and distinct from other DMM interest in...

  3. Improving Conference Skills Through the CCS.

    ERIC Educational Resources Information Center

    Wilen, William W.; Kindsvatter, Richard

    1982-01-01

    Presents a Conference Category System (CCS) which will help social studies supervisors develop the skills necessary to conduct a conference effectively. The CCS can be applied using either a shared-analysis or self-analysis approach in conjunction with a video or audio-tape recorder. (RM)

  4. Experimental study of the continuous casting slab solidification microstructure by the dendrite etching method

    NASA Astrophysics Data System (ADS)

    Yang, X. G.; Xu, Q. T.; Wu, C. L.; Chen, Y. S.

    2017-12-01

    The relationship between the microstructure of the continuous casting slab (CCS) and quality defects of the steel products, as well as evolution and characteristics of the fine equiaxed, columnar, equiaxed zones and crossed dendrites of CCS were systematically investigated in this study. Different microstructures of various CCS samples were revealed. The dendrite etching method was proved to be quite efficient for the analysis of solidified morphologies, which are essential to estimate the material characteristics, especially the CCS microstructure defects.

  5. Big Sky Carbon Sequestration Partnership

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susan Capalbo

    2005-12-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessmentmore » framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated has significant potential to sequester large amounts of CO{sub 2}. Simulations conducted to evaluate mineral trapping potential of mafic volcanic rock formations located in the Idaho province suggest that supercritical CO{sub 2} is converted to solid carbonate mineral within a few hundred years and permanently entombs the carbon. Although MMV for this rock type may be challenging, a carefully chosen combination of geophysical and geochemical techniques should allow assessment of the fate of CO{sub 2} in deep basalt hosted aquifers. Terrestrial carbon sequestration relies on land management practices and technologies to remove atmospheric CO{sub 2} where it is stored in trees, plants, and soil. This indirect sequestration can be implemented today and is on the front line of voluntary, market-based approaches to reduce CO{sub 2} emissions. Initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil Carbon (C) on rangelands, and forested, agricultural, and reclaimed lands. Rangelands can store up to an additional 0.05 mt C/ha/yr, while the croplands are on average four times that amount. Estimates of technical potential for soil sequestration within the region in cropland are in the range of 2.0 M mt C/yr over 20 year time horizon. This is equivalent to approximately 7.0 M mt CO{sub 2}e/yr. The forestry sinks are well documented, and the potential in the Big Sky region ranges from 9-15 M mt CO{sub 2} equivalent per year. Value-added benefits include enhanced yields, reduced erosion, and increased wildlife habitat. Thus the terrestrial sinks provide a viable, environmentally beneficial, and relatively low cost sink that is available to sequester C in the current time frame. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological and terrestrial sequestration reflect this concern. Research in Phase I has identified and validated best management practices for soil C in the Partnership region, and outlined a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. This is the basis for the integrative analysis that will be undertaken in Phase II to work with industry, state and local governments and with the pilot demonstration projects to quantify the economic costs and risks associated with all opportunities for carbon storage in the Big Sky region. Scientifically sound MMV is critical for public acceptance of these technologies.« less

  6. Effect of CCS on the accumulation of FALS SOD1 mutant-containing aggregates and on mitochondrial translocation of SOD1 mutants: implication of a free radical hypothesis.

    PubMed

    Kim, Ha Kun; Chung, Youn Wook; Chock, P Boon; Yim, Moon B

    2011-05-15

    Missense mutations of SOD1 are linked to familial amyotrophic lateral sclerosis (FALS) through a yet-to-be identified toxic-gain-of-function. One of the proposed mechanisms involves enhanced aggregate formation. However, a recent study showed that dual transgenic mice overexpressing both G93A and CCS copper chaperone (G93A/CCS) exhibit no SOD1-positive aggregates yet show accelerated FALS symptoms with enhanced mitochondrial pathology compared to G93A mice. Using a dicistronic mRNA to simultaneously generate hSOD1 mutants, G93A, A4V and G85R, and hCCS in AAV293 cells, we revealed: (i) CCS is degraded primarily via a macroautophagy pathway. It forms a stable heterodimer with inactive G85R, and via its novel copper chaperone-independent molecular chaperone activity facilitates G85R degradation via a macroautophagy-mediated pathway. For active G93A and A4V, CCS catalyzes their maturation to form active and soluble homodimers. (ii) CCS reduces, under non-oxidative conditions, yet facilitates in the presence of H(2)O(2), mitochondrial translocation of inactive SOD1 mutants. These results, together with previous reports showing FALS SOD1 mutants enhanced free radical-generating activity, provide a mechanistic explanation for the observations with G93A/CCS dual transgenic mice and suggest that free radical generation by FALS SOD1, enhanced by CCS, may, in part, be responsible for the FALS SOD1 mutant-linked aggregation, mitochondrial translocation, and degradation. Published by Elsevier Inc.

  7. Are survivors of childhood cancer with an unfavourable psychosocial developmental trajectory more likely to apply for disability benefits?

    PubMed

    Maurice-Stam, H; Verhoof, E J; Caron, H N; Grootenhuis, M A

    2013-03-01

    The aim of this study was to investigate whether an unfavourable psychosocial developmental trajectory while growing up with childhood cancer is related to a smaller likelihood of labour participation in adult life. A total of 53 childhood cancer survivors (CCS) with and 313 CCS without disability benefits, and 508 peers from the general Dutch population (reference group) completed the Course of Life Questionnaire (CoLQ) about the achievement of psychosocial developmental milestones. Differences between the three groups were tested by conducting analysis of variance with contrasts (scale scores CoLQ) and logistic regression analysis (individual milestones). Effect sizes and odds ratios were calculated. Compared with the reference group, both CCS with and CCS without benefits reported lower scale scores with respect to social and psychosexual development. CCS with disability benefits had lower social (d = - 0.6; p < 0.001) and psychosexual (d = -0.4; p < 0.01) scale scores than the CCS without disability benefits. CCS with disability benefits scored less favourably (p < 0.01) than peers from the general population on 14 out of 22 psychosocial milestones whereas the number was only six for those without disability benefits. CCS with an unfavourable developmental trajectory while growing up were more likely to apply for disability benefits in adulthood than CCS with a more favourable development. Early recognition and support are warranted. Further research is needed on risk factors of application for disability benefits. In addition, research should show whether stimulating the achievement of developmental milestones while growing up will create conditions for a better labour market position. Copyright © 2011 John Wiley & Sons, Ltd.

  8. Risk assessment of geo-microbial assosicated CO2 Geological Storage

    NASA Astrophysics Data System (ADS)

    Tanaka, A.; Sakamoto, Y.; Higashino, H.; Mayumi, D.; Sakata, S.; Kano, Y.; Nishi, Y.; Nakao, S.

    2014-12-01

    If we maintain preferable conditions for methanogenesis archaea during geological CCS, we will be able to abate greenhouse gas emission and produce natural gas as natural energy resource at the same time. Assuming Bio-CCS site, CO2 is injected from a well for to abate greenhouse gas emission and cultivate methanogenic geo-microbes, and CH4 is produced from another well. The procedure is similar to the Enhanced Oil/Gas Recovery (EOR/EGR) operation, but in Bio-CCS, the target is generation and production of methane out of depleted oil/gas reservoir during CO2 abatement. Our project aims to evaluate the basic practicability of Bio-CCS that cultivate methanogenic geo-microbes within depleted oil/gas reservoirs for geological CCS, and produce methane gas as fuel resources on the course of CO2 abatement for GHG control. To evaluate total feasibility of Bio-CCS concept, we have to estimate: CH4 generation volume, environmental impact along with life cycle of injection well, and risk-benefit balance of the Bio-CCS. We are modifying the model step by step to include interaction of oil/gas-CO2-geomicrobe within reservoir more practically and alternation of geo-microbes generation, so that we will be able to estimate methane generation rate more precisely. To evaluate impacts of accidental events around Bio-CCS reservoir, we estimated CO2 migration in relation with geological properties, condition of faults and pathways around well, using TOUGH2-CO2 simulator. All findings will be integrated in to it: cultivation condition of methanogenic geo-microbes, estimation method of methane generation quantities, environmental impacts of various risk scenarios, and benefit analysis of schematic site of Bio-CCS.

  9. Mouse cumulus-denuded oocytes restore developmental capacity completely when matured with optimal supplementation of cysteamine, cystine, and cumulus cells.

    PubMed

    Zhou, Ping; Wu, Yan-Guang; Wei, De-Li; Li, Qing; Wang, Gang; Zhang, Jie; Luo, Ming-Jiu; Tan, Jing-He

    2010-04-01

    Our objectives were to study how cysteamine, cystine, and cumulus cells (CCs), as well as oocytes interact to increase oocyte intracellular glutathione (GSH) and thereby to establish an efficient in vitro maturation system for cumulus-denuded oocytes (DOs). Using M16 that contained no thiol as maturation medium, we showed that when supplemented alone, neither cystine nor cysteamine promoted GSH synthesis of mouse DOs, but they did when used together. Although goat CCs required either cysteamine or cystine to promote GSH synthesis, mouse CCs required both. In the presence of cystine, goat CCs produced cysteine but mouse CCs did not. Cysteamine reduced cystine to cysteine in cell-free M16. When TCM-199 that contained 83 microM cystine was used as maturation medium, supplementation with cysteamine alone had no effect, but supplementation with 100 microM cysteamine and 200 microM cystine increased blastulation of DOs matured with CC coculture to a level as high as achieved in cumulus-surrounded oocytes (COCs). Similar numbers of young were produced after two-cell embryos from mouse COCs or CC-cocultured DOs matured with optimal thiol supplementation were transferred to pseudopregnant recipients. It is concluded that 1) mouse CCs can use neither cysteamine nor cystine to promote GSH synthesis, but goat CCs can use either one; 2) goat CCs promote mouse oocyte GSH synthesis by reducing cystine to cysteine, but how they use cysteamine requires further investigation; and 3) mouse DOs can use neither cystine nor cysteamine for GSH synthesis, but they restore developmental capacity completely when matured in the presence of optimum supplementation of cysteamine, cystine, and CCs.

  10. Economic analysis of the use of coronary calcium scoring as an alternative to stress ECG in the non-invasive diagnosis of coronary artery disease.

    PubMed

    Raman, Vivek; McWilliams, Eric T M; Holmberg, Stephen R M; Miles, Ken

    2012-03-01

    To conduct an economic analysis (EA) of coronary calcium scoring (CCS) using a 0 score, as alternative to stress electrocardiography (sECG) in diagnosing coronary artery disease (CAD). A decision tree was constructed to compare four strategies for investigation of suspected CAD previously assessed in the formulation of clinical guidelines for the United Kingdom (UK) to two new strategies incorporating CCS. Sensitivity (96%; 95% CI 95.4-96.4%) and specificity (40%; 95% CI 38.7-41.4%) values for CCS were derived from a meta-analysis of 10,760 patients. Other input variables were obtained from a previous EA and average prices for hospital procedures in the UK. A threshold of £30,000/Quality-adjusted Life Year (QALY) was considered cost-effective. Using net monetary benefit calculations, CCS-based strategies were found to be cost-effective compared to sECG equivalents at all assessed prevalence of CAD. Using CCS prior to myocardial perfusion scintigraphy (MPS) and catheter angiography (CA) was found to be cost-effective at pre-test probabilities (PTP) below 30%. Adoption of CCS as an alternative to sECG in investigating suspected stable angina in low PTP population (<30%) would be cost-effective. In patients with PTP of CAD >30%, proceeding to MPS or CA would be more cost-effective than performing either CCS or sECG. Coronary calcium scoring (CCS) is useful for assessing coronary artery atherosclerosis It can be performed with multi-detector CT, which is now widely available It plays a role in excluding disease in suspected stable angina Our study assesses its role in this setting as alternative to stress-ECG Adoption of CCS as an alternative to sECG could prove cost-effective.

  11. Psychotropic Polypharmacy Among Youths With Serious Emotional and Behavioral Disorders Receiving Coordinated Care Services.

    PubMed

    Wu, Benjamin; Bruns, Eric J; Tai, Ming-Hui; Lee, Bethany R; Raghavan, Ramesh; dosReis, Susan

    2018-06-01

    The study examined differences in psychotropic polypharmacy among youths with serious emotional and behavioral disorders who received coordinated care services (CCS) that used a wraparound model and a matched sample of youths who received traditional services. A quasi-experimental design compared psychotropic polypharmacy one year before and one year after discharge from CCS. The cohort was youths with serious emotional and behavioral disorders who were enrolled in CCS from December 2009 through May 2014. The comparison group was youths with serious emotional and behavioral disorders who received outpatient mental health services during the same time. Administrative data from Medicaid, child welfare, and juvenile justice services were used. A difference-in-difference analysis with propensity score matching evaluated the CCS intervention by time effect on psychotropic polypharmacy. In both groups, most youths were male, black, and 10-18 years old, with attention-deficit hyperactivity disorder (54%-55%), mood disorder (39%-42%), depression (26%-27%), and bipolar disorder (25%-26%). About half of each group was taking an antipsychotic. The percentage reduction in polypharmacy from one year before CCS enrollment to one year after discharge was 28% for the CCS group and 29% for the non-CCS group, a nonsignificant difference. CCS youths excluded from the analysis had more complex mental health needs and a greater change in polypharmacy than the CCS youths who were included in the analytic sample. Mental health care coordination had limited impact in reducing psychotropic polypharmacy for youths with less complex mental health needs. Further research is needed to evaluate the effect on psychotropic polypharmacy among youths with the greatest mental health needs.

  12. 78 FR 1286 - Self-Regulatory Organizations; NYSE MKT LLC; Notice of Filing and Immediate Effectiveness of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... (``CCS'').\\12\\ CCS provides the Display Book[supreg] \\13\\ with the amount of shares that the DMM is willing to trade at price points outside, at and inside the Exchange Best Bid or Best Offer (``BBO''). CCS...

  13. Carbon capture in vehicles : a review of general support, available mechanisms, and consumer-acceptance issues.

    DOT National Transportation Integrated Search

    2012-05-01

    This survey of the feasibility of introducing carbon capture and storage (CCS) into light vehicles : started by reviewing the level of international support for CCS in general. While there have been : encouraging signs that CCS is gaining acceptance ...

  14. Subband Approach to Bandlimited Crosstalk Cancellation System in Spatial Sound Reproduction

    NASA Astrophysics Data System (ADS)

    Bai, Mingsian R.; Lee, Chih-Chung

    2006-12-01

    Crosstalk cancellation system (CCS) plays a vital role in spatial sound reproduction using multichannel loudspeakers. However, this technique is still not of full-blown use in practical applications due to heavy computation loading. To reduce the computation loading, a bandlimited CCS is presented in this paper on the basis of subband filtering approach. A pseudoquadrature mirror filter (QMF) bank is employed in the implementation of CCS filters which are bandlimited to 6 kHz, where human's localization is the most sensitive. In addition, a frequency-dependent regularization scheme is adopted in designing the CCS inverse filters. To justify the proposed system, subjective listening experiments were undertaken in an anechoic room. The experiments include two parts: the source localization test and the sound quality test. Analysis of variance (ANOVA) is applied to process the data and assess statistical significance of subjective experiments. The results indicate that the bandlimited CCS performed comparably well as the fullband CCS, whereas the computation loading was reduced by approximately eighty percent.

  15. The VLSI design of an error-trellis syndrome decoder for certain convolutional codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Jensen, J. M.; Hsu, I.-S.; Truong, T. K.

    1986-01-01

    A recursive algorithm using the error-trellis decoding technique is developed to decode convolutional codes (CCs). An example, illustrating the very large scale integration (VLSI) architecture of such a decode, is given for a dual-K CC. It is demonstrated that such a decoder can be realized readily on a single chip with metal-nitride-oxide-semiconductor technology.

  16. The VLSI design of error-trellis syndrome decoding for convolutional codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Jensen, J. M.; Truong, T. K.; Hsu, I. S.

    1985-01-01

    A recursive algorithm using the error-trellis decoding technique is developed to decode convolutional codes (CCs). An example, illustrating the very large scale integration (VLSI) architecture of such a decode, is given for a dual-K CC. It is demonstrated that such a decoder can be realized readily on a single chip with metal-nitride-oxide-semiconductor technology.

  17. Production of xylanase and β-xylosidase from autohydrolysis liquor of corncob using two fungal strains.

    PubMed

    Michelin, Michele; Polizeli, Maria de Lourdes T M; Ruzene, Denise S; Silva, Daniel P; Ruiz, Héctor A; Vicente, António A; Jorge, João A; Terenzi, Héctor F; Teixeira, José A

    2012-09-01

    Agroindustrial residues are materials often rich in cellulose and hemicellulose. The use of these substrates for the microbial production of enzymes of industrial interest is mainly due to their high availability associated with their low cost. In this work, corncob (CCs) particles decomposed to soluble compounds (liquor) were incorporated in the microbial growth medium through autohydrolysis, as a strategy to increase and undervalue xylanase and β-xylosidase production by Aspergillus terricola and Aspergillus ochraceus. The CCs autohydrolysis liquor produced at 200 °C for 5, 15, 30 or 50 min was used as the sole carbon source or associated with untreated CC. The best condition for enzyme synthesis was observed with CCs submitted to 30 min of autohydrolysis. The enzymatic production with untreated CCs plus CC liquor was higher than with birchwood xylan for both microorganisms. A. terricola produced 750 total U of xylanase (144 h cultivation) and 30 total U of β-xylosidase (96-168 h) with 0.75% untreated CCs and 6% CCs liquor, against 650 total U of xylanase and 2 total U of β-xylosidase in xylan; A. ochraceus produced 605 total U of xylanase and 56 total U of β-xylosidase (168 h cultivation) with 1% untreated CCs and 10% CCs liquor against 400 total U of xylanase and 38 total U of β-xylosidase in xylan. These results indicate that the treatment of agroindustrial wastes through autohydrolysis can be a viable strategy in the production of high levels of xylanolytic enzymes.

  18. Health benefits, ecological threats of low-carbon electricity

    NASA Astrophysics Data System (ADS)

    Gibon, Thomas; Hertwich, Edgar G.; Arvesen, Anders; Singh, Bhawna; Verones, Francesca

    2017-03-01

    Stabilizing global temperature will require a shift to renewable or nuclear power from fossil power and the large-scale deployment of CO2 capture and storage (CCS) for remaining fossil fuel use. Non-climate co-benefits of low-carbon energy technologies, especially reduced mortalities from air pollution and decreased ecosystem damage, have been important arguments for policies to reduce CO2 emissions. Taking into account a wide range of environmental mechanisms and the complex interactions of the supply chains of different technologies, we conducted the first life cycle assessment of potential human health and ecological impacts of a global low-carbon electricity scenario. Our assessment indicates strong human health benefits of low-carbon electricity. For ecosystem quality, there is a significant trade-off between reduced pollution and climate impacts and potentially significant ecological impacts from land use associated with increased biopower utilization. Other renewables, nuclear power and CCS show clear ecological benefits, so that the climate mitigation scenario with a relatively low share of biopower has lower ecosystem impacts than the baseline scenario. Energy policy can maximize co-benefits by supporting other renewable and nuclear power and developing biomass supply from sources with low biodiversity impact.

  19. Cumulus cells surrounding oocytes with high developmental competence exhibit down-regulation of phosphoinositol 1,3 kinase/protein kinase B (PI3K/AKT) signalling genes involved in proliferation and survival

    PubMed Central

    Artini, P G; Tatone, C; Sperduti, S; D’Aurora, M; Franchi, S; Di Emidio, G; Ciriminna, R; Vento, M; Di Pietro, C; Stuppia, L; Gatta, V

    2017-01-01

    Abstract STUDY QUESTION Is the phosphoinositol 1,3-kinase/protein kinase B (PI3K/AKT) pathway expression profile in cumulus cells (CCs) a potential marker of oocyte competence and predictive of pregnancy outcome? SUMMARY ANSWER Eleven genes (AKT1, ARHGEF7, BCL2L1, CCND1, E2F1, HRAS, KCNH2, PIK3C2A, SHC1, SOS1 and SPP1) in the PI3K/AKT pathway were significantly down-regulated in CCs from oocytes that went on to produce a pregnancy compared to CCs associated with a negative outcome. WHAT IS KNOWN ALREADY The PI3K/AKT pathway plays a pivotal role in the interdependence and continuous feedback between the oocyte and CCs. STUDY DESIGN SIZE, DURATION The expression analysis of 92 transcripts in the PI3K/AKT pathway in CCs from patients with negative or positive pregnancy outcome, after single embryo transfer, was performed. Mouse CCs target gene expression was conducted to associate the expression profile of PI3K/AKT pathway to oocyte developmental profile. PARTICIPANTS/MATERIALS, SETTING, METHODS Fifty-five good prognosis IVF patients who had been referred to IVF or intracytoplasmic sperm injection treatment for male-factor infertility or tubal disease were enroled. CCs from single cumulus-oocyte complexes (COCs) from 16 patients who underwent a single embryo transfer were analyzed. Twenty-five CD-1 mice were used to assess gene expression in CCs associated with oocytes with different competence in relation to hCG priming. A total 220 human COCs were collected. The RNA extracted from CCs of 16 selected patients was used to analyze PI3K/AKT pathway gene expression employing a 96-well custom TaqMan Array. Expression data of CCs associated to positive IVF outcome were compared to data from negative outcome samples. Mice were sacrificed after 9, 12, 15, 21 and 24 h post-hCG administration to obtain CCs from MII oocytes with different developmental competence. Akt1, Bcl2l2 and Shc1 expression were tested in the collected mouse CCs. In addition, the expression of upstream regulator ESR1, the gene encoding for the oestrogen receptor ERβ, and the downstream effectors of the pathway FOXO1, FOXO3 and FOXO4 was evaluated in human and mouse samples. MAIN RESULTS AND THE ROLE OF CHANCE Transcripts involved in the PI3K Signaling Pathway were selectively modulated according to the IVF/ICSI outcome of the oocyte. Eleven transcripts in this pathway were significantly down-regulated in all samples of CCs from oocytes with positive when compared those with a negative outcome. These outcomes were confirmed in mouse CCs associated with oocytes at different maturation stages. Expression data revealed that the down-regulation of ESR1 could be related to oocyte competence and is likely to be the driver of expression changes highlighted in the PI3K/AKT pathway. LIMITATIONS REASONS FOR CAUTION Small sample size and retrospective design. WIDER IMPLICATIONS OF THE FINDINGS The CCs expression profile of PI3K/AKT signaling genes, disclosed a specific CCs gene signature related to oocyte competence. It could be speculated that CCs associated with competent oocytes have completed their role in sustaining oocyte development and are influencing their fate in response to metabolic and hormonal changes by de-activating anti-apoptotic signals. STUDY FUNDING/COMPETING INTEREST(S) Supported by Merck Serono an affiliate of Merck KGaA, Darmstadt, Germany (research grant for the laboratory session; Merck KGaA reviewed the manuscript for medical accuracy only before journal submission. The authors are fully responsible for the content of this manuscript, and the views and opinions described in the publication reflect solely those of the authors). The authors declare no conflict of interest. PMID:29087515

  20. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bill Stanley; Patrick Gonzalez; Sandra Brown

    2005-10-01

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects,more » providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st , 2005 and June 30th, 2005. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.« less

  1. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bill Stanley; Patrick Gonzalez; Sandra Brown

    2006-01-01

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects,more » providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st , 2005 and June 30th, 2005. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.« less

  2. Monitoring field scale CO2 injection from time-lapse seismic and well log, integrating with advanced rock physics model at Cranfield EOR site

    NASA Astrophysics Data System (ADS)

    Ghosh, Ranjana

    2017-12-01

    Causes and effects of global warming have been highly debated in recent years. Nonetheless, injection and storage of CO2 (CO2 sequestration) in the subsurface is becoming increasingly accepted as a viable tool to reduce the amount of CO2 from the atmosphere, which is a primary contributor to global warming. Monitoring of CO2 movement with time is essential to ascertain that sequestration is not hazardous. A method is proposed here to appraise CO2 saturation from seismic attributes using differential effective medium theory modified for pressure (PDEM). The PDEM theory accounts pressure-induced fluid flow between cavities, which is a very important investigation in the CO2-sequestered regime of heterogeneous microstructure. The study area is the lower Tuscaloosa formation at Cranfield in Mississippi, USA, which is one of the active enhanced oil recovery (EOR), and CO2 capture and storage (CCS) fields. Injection well (F1) and two observation wells (F2 and F3) are present close (within 112 m) to the detailed area of study for this region. Since the three wells are closely situated, two wells, namely injection well F1 and the furthest observation well F3, have been focused on to monitor CO2 movement. Time-lapse (pre- and post-injection) log, core and surface seismic data are used in the quantitative assessment of CO2 saturation from the PDEM theory. It has been found that after approximately 9 months of injection, average CO2 saturations in F1 and F3 are estimated as 50% in a zone of thickness 25 m at a depth of 3 km.

  3. Evaluating the Contribution of Soil Carbon to Global Climate Change Mitigation in an Integrated Assessment

    NASA Astrophysics Data System (ADS)

    Thomson, A. M.; Izaurralde, R. C.; Clarke, L. E.

    2006-12-01

    Assessing the contribution of terrestrial carbon sequestration to national and international climate change mitigation requires integration across scientific and disciplinary boundaries. In a study for the US Climate Change Technology Program, site based measurements and geographic data were used to develop a three- pool, first-order kinetic model of global agricultural soil carbon (C) stock changes over 14 continental scale regions. This model was then used together with land use scenarios from the MiniCAM integrated assessment model in a global analysis of climate change mitigation options. MiniCAM evaluated mitigation strategies within a set of policy environments aimed at achieving atmospheric CO2 stabilization by 2100 under a suite of technology and development scenarios. Adoption of terrestrial sequestration practices is based on competition for land and economic markets for carbon. In the reference case with no climate policy, conversion of agricultural land from conventional cultivation to no tillage over the next century in the United States results in C sequestration of 7.6 to 59.8 Tg C yr-1, which doubles to 19.0 to 143.4 Tg C yr-1 under the most aggressive climate policy. Globally, with no carbon policy, agricultural C sequestration rates range from 75.2 to 18.2 Tg C yr-1 over the century, with the highest rates occurring in the first fifty years. Under the most aggressive global climate change policy, sequestration in agricultural soils reaches up to 190 Tg C yr-1 in the first 15 years. The contribution of agricultural soil C sequestration is a small fraction of the total global carbon offsets necessary to reach the stabilization targets (9 to 20 Gt C yr-1) by the end of the century. This integrated assessment provides decision makers with science-based estimates of the potential magnitude of terrestrial C sequestration relative to other greenhouse gas mitigation strategies in all sectors of the global economy. It also provides insight into the behavior of terrestrial C mitigation options in the presence and absence of climate change mitigation policies.

  4. Limiting the financial risks of electricity generation capital investments under carbon constraints: Applications and opportunities for public policies and private investments

    NASA Astrophysics Data System (ADS)

    Newcomer, Adam

    Increasing demand for electricity and an aging fleet of generators are the principal drivers behind an increasing need for a large amount of capital investments in the US electric power sector in the near term. The decisions (or lack thereof) by firms, regulators and policy makers in response to this challenge have long lasting consequences, incur large economic and environmental risks, and must be made despite large uncertainties about the future operating and business environment. Capital investment decisions are complex: rates of return are not guaranteed; significant uncertainties about future environmental legislation and regulations exist at both the state and national levels---particularly about carbon dioxide emissions; there is an increasing number of shareholder mandates requiring public utilities to reduce their exposure to potentially large losses from stricter environmental regulations; and there are significant concerns about electricity and fuel price levels, supplies, and security. Large scale, low carbon electricity generation facilities using coal, such as integrated gasification combined cycle (IGCC) facilities coupled with carbon capture and sequestration (CCS) technologies, have been technically proven but are unprofitable in the current regulatory and business environment where there is no explicit or implicit price on carbon dioxide emissions. The paper examines two separate scenarios that are actively discussed by policy and decision makers at corporate, state and national levels: a future US electricity system where coal plays a role; and one where the role of coal is limited or nonexistent. The thesis intends to provide guidance for firms and policy makers and outline applications and opportunities for public policies and for private investment decisions to limit financial risks of electricity generation capital investments under carbon constraints.

  5. A Basic Study on Optimal Investment of Power Sources Considering Environmental Measures

    NASA Astrophysics Data System (ADS)

    Kato, Moritoshi; Zhou, Yicheng

    This paper focuses on economic evaluations of a coal-fired thermal power station with a carbon dioxide capture and storage unit (CCS) by which an existing coal-fired thermal power station (COAL) is replaced. Decision makers decide to construct CCS considering both of contrary elements; one is waiting more favorable conditions such as a higher value of carbon credits which CCS has, another is reducing opportunity costs due to delay of construction of CCS. New methods using a real option approach are proposed. Firstly we calculate an economic value of CCS as an American coal option with dividend considering carbon emission costs of COAL as opportunity costs. Secondly we evaluate construction time of CCS using binominal decision tree taking into account the options. Numerical examples show that a real option value of CCS is from 28% to 44% of sales revenue, which are higher than net present values due to a value on waiting for more favorable conditions. And they also show that an earlier construction is exercised and the value becomes lower, the more challenging the benchmark of carbon emissions is or the higher the change rate of maintenance cost of COAL becomes. An effect of a lifetime of power stations is also analyzed.

  6. EWS/ATF1 expression induces sarcomas from neural crest–derived cells in mice

    PubMed Central

    Yamada, Kazunari; Ohno, Takatoshi; Aoki, Hitomi; Semi, Katsunori; Watanabe, Akira; Moritake, Hiroshi; Shiozawa, Shunichi; Kunisada, Takahiro; Kobayashi, Yukiko; Toguchida, Junya; Shimizu, Katsuji; Hara, Akira; Yamada, Yasuhiro

    2013-01-01

    Clear cell sarcoma (CCS) is an aggressive soft tissue malignant tumor characterized by a unique t(12;22) translocation that leads to the expression of a chimeric EWS/ATF1 fusion gene. However, little is known about the mechanisms underlying the involvement of EWS/ATF1 in CCS development. In addition, the cellular origins of CCS have not been determined. Here, we generated EWS/ATF1-inducible mice and examined the effects of EWS/ATF1 expression in adult somatic cells. We found that forced expression of EWS/ATF1 resulted in the development of EWS/ATF1-dependent sarcomas in mice. The histology of EWS/ATF1-induced sarcomas resembled that of CCS, and EWS/ATF1-induced tumor cells expressed CCS markers, including S100, SOX10, and MITF. Lineage-tracing experiments indicated that neural crest–derived cells were subject to EWS/ATF1-driven transformation. EWS/ATF1 directly induced Fos in an ERK-independent manner. Treatment of human and EWS/ATF1-induced CCS tumor cells with FOS-targeted siRNA attenuated proliferation. These findings demonstrated that FOS mediates the growth of EWS/ATF1-associated sarcomas and suggest that FOS is a potential therapeutic target in human CCS. PMID:23281395

  7. Attitudes of South African oral hygienists towards compulsory community service.

    PubMed

    Bhayat, A; Yengopal, V; Rudolph, M J; Naidoo, U; Vayej, A

    2008-02-01

    Compulsory Community Service (CCS) was introduced into the health service by the government to address the shortage and maldistribution of health professionals within the public sector. The aim of this study was to assess the perceptions of oral hygiene (OH) students, registered in 2004 at the five dental universities regarding the introduction of a 1-year-long CCS. To determine: (a) the students' socio-demographic profile and (b) their attitudes towards CCS. A self-administered questionnaire was hand delivered to all OH students who were registered during 2004 at the respective dental universities. The study yielded a response rate of 70% (109) with the average age of participants being 21.4 years. Most students were female (94%) and more than half were White (52%). More than half (53%) did not want to perform CCS even though 75% acknowledged its' importance. The most common concern for not supporting CCS was security (89%). Ninety per cent (90%) indicated that their preferred tasks would be to engage in clinical work and oral health promotion. Although the majority of participants supported the principles of CCS, a significant number were against the introduction citing security as their main concern. Most of the students preferred to perform clinical work and preventive programmes during their CCS.

  8. Comparison of the Pharmacokinetics of Nicotine Following Single and Ad Libitum Use of a Tobacco Heating System or Combustible Cigarettes

    PubMed Central

    Picavet, Patrick; Haziza, Christelle; Lama, Nicola; Weitkunat, Rolf

    2016-01-01

    Introduction: We aimed to compare the pharmacokinetics of nicotine between the heat-not-burn Tobacco Heating System 2.1 (THS 2.1) and combustible cigarettes (CCs). We also examined whether the subjective urge to smoke was associated with the pharmacokinetics of nicotine. Methods: This open-label, randomized, two-period, two-sequence crossover study conducted in 28 healthy smokers assessed the pharmacokinetics of nicotine after single and ad libitum use of the THS 2.1 or CCs. During the 7-day confinement period, blood samples were drawn for pharmacokinetic analysis. Subjective effects related to THS 2.1 or CC use were assessed using the Questionnaire of Smoking Urges (QSU-Brief). Results: The nicotine delivery rate was similar with the THS 2.1 and CCs after single and ad libitum use. The time to the maximum nicotine concentration was 8 minutes after single use of the THS 2.1 and CCs. The time to the peak concentration following ad libitum use was similar between the THS 2.1 and CCs. The maximum plasma nicotine concentration after single use of the THS 2.1 was 8.4ng/mL, 70.3% of that obtained with CCs. A transient reduction from baseline in the urge to smoke of 40% was observed 15 minutes after the single use of both the THS 2.1 and CCs. The mean QSU-Brief total scores following single and ad libitum use were similar for the THS 2.1 and CCs. Conclusions: These results suggest that the THS 2.1 effectively delivers nicotine and achieves similar pharmacokinetic profiles to CCs. The THS 2.1 also reduced the urge to smoke similarly to CCs. Implications: Reducing exposure to toxicants and safer delivery of nicotine are among the strategies that may reduce the harm of smoking-related diseases. In the present study, we investigated the pharmacokinetics of nicotine and their effects on the urge to smoke using the THS 2.1. It was developed to replicate the ritual of smoking as closely as possible by providing nicotine in a way that mimics CC smoking, but limits pyrolysis and combustion by heating tobacco at a much lower temperature than CCs (heat-not-burn). PMID:26438645

  9. Comparison of the Pharmacokinetics of Nicotine Following Single and Ad Libitum Use of a Tobacco Heating System or Combustible Cigarettes.

    PubMed

    Picavet, Patrick; Haziza, Christelle; Lama, Nicola; Weitkunat, Rolf; Lüdicke, Frank

    2016-05-01

    We aimed to compare the pharmacokinetics of nicotine between the heat-not-burn Tobacco Heating System 2.1 (THS 2.1) and combustible cigarettes (CCs). We also examined whether the subjective urge to smoke was associated with the pharmacokinetics of nicotine. This open-label, randomized, two-period, two-sequence crossover study conducted in 28 healthy smokers assessed the pharmacokinetics of nicotine after single and ad libitum use of the THS 2.1 or CCs. During the 7-day confinement period, blood samples were drawn for pharmacokinetic analysis. Subjective effects related to THS 2.1 or CC use were assessed using the Questionnaire of Smoking Urges (QSU-Brief). The nicotine delivery rate was similar with the THS 2.1 and CCs after single and ad libitum use. The time to the maximum nicotine concentration was 8 minutes after single use of the THS 2.1 and CCs. The time to the peak concentration following ad libitum use was similar between the THS 2.1 and CCs. The maximum plasma nicotine concentration after single use of the THS 2.1 was 8.4 ng/mL, 70.3% of that obtained with CCs. A transient reduction from baseline in the urge to smoke of 40% was observed 15 minutes after the single use of both the THS 2.1 and CCs. The mean QSU-Brief total scores following single and ad libitum use were similar for the THS 2.1 and CCs. These results suggest that the THS 2.1 effectively delivers nicotine and achieves similar pharmacokinetic profiles to CCs. The THS 2.1 also reduced the urge to smoke similarly to CCs. Reducing exposure to toxicants and safer delivery of nicotine are among the strategies that may reduce the harm of smoking-related diseases. In the present study, we investigated the pharmacokinetics of nicotine and their effects on the urge to smoke using the THS 2.1. It was developed to replicate the ritual of smoking as closely as possible by providing nicotine in a way that mimics CC smoking, but limits pyrolysis and combustion by heating tobacco at a much lower temperature than CCs (heat-not-burn). © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco.

  10. Sequestration of flue gas CO₂ by direct gas-solid carbonation of air pollution control system residues.

    PubMed

    Tian, Sicong; Jiang, Jianguo

    2012-12-18

    Direct gas-solid carbonation reactions of residues from an air pollution control system (APCr) were conducted using different combinations of simulated flue gas to study the impact on CO₂ sequestration. X-ray diffraction analysis of APCr determined the existence of CaClOH, whose maximum theoretical CO₂ sequestration potential of 58.13 g CO₂/kg APCr was calculated by the reference intensity ratio method. The reaction mechanism obeyed a model of a fast kinetics-controlled process followed by a slow product layer diffusion-controlled process. Temperature is the key factor in direct gas-solid carbonation and had a notable influence on both the carbonation conversion and the CO₂ sequestration rate. The optimal CO₂ sequestrating temperature of 395 °C was easily obtained for APCr using a continuous heating experiment. CO₂ content in the flue gas had a definite influence on the CO₂ sequestration rate of the kinetics-controlled process, but almost no influence on the final carbonation conversion. Typical concentrations of SO₂ in the flue gas could not only accelerate the carbonation reaction rate of the product layer diffusion-controlled process, but also could improve the final carbonation conversion. Maximum carbonation conversions of between 68.6% and 77.1% were achieved in a typical flue gas. Features of rapid CO₂ sequestration rate, strong impurities resistance, and high capture conversion for direct gas-solid carbonation were proved in this study, which presents a theoretical foundation for the applied use of this encouraging technology on carbon capture and storage.

  11. Wyoming Carbon Capture and Storage Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nealon, Teresa

    This report outlines the accomplishments of the Wyoming Carbon Capture and Storage (CCS) Technology Institute (WCTI), including creating a website and online course catalog, sponsoring technology transfer workshops, reaching out to interested parties via news briefs and engaging in marketing activities, i.e., advertising and participating in tradeshows. We conclude that the success of WCTI was hampered by the lack of a market. Because there were no supporting financial incentives to store carbon, the private sector had no reason to incur the extra expense of training their staff to implement carbon storage. ii

  12. Fatty Acid Synthesis and Oxidation in Cumulus Cells Support Oocyte Maturation in Bovine

    PubMed Central

    Sanchez-Lazo, Laura; Brisard, Daphné; Elis, Sébastien; Maillard, Virginie; Uzbekov, Rustem; Labas, Valérie; Desmarchais, Alice; Papillier, Pascal; Monget, Philippe

    2014-01-01

    Oocyte meiotic maturation requires energy from various substrates including glucose, amino acids, and lipids. Mitochondrial fatty acid (FA) β-oxidation (FAO) in the oocyte is required for meiotic maturation, which is accompanied by differential expression of numerous genes involved in FAs metabolism in surrounding cumulus cells (CCs) in vivo. The objective was to elucidate components involved in FAs metabolism in CCs during oocyte maturation. Twenty-seven genes related to lipogenesis, lipolysis, FA transport, and FAO were chosen from comparative transcriptome analysis of bovine CCs before and after maturation in vivo. Using real-time PCR, 22 were significantly upregulated at different times of in vitro maturation (IVM) in relation to oocyte meiosis progression from germinal vesicle breakdown to metaphase-II. Proteins FA synthase, acetyl-coenzyme-A carboxylase, carnitine palmitoyltransferase, perilipin 2, and FA binding protein 3 were detected by Western blot and immunolocalized to CCs and oocyte cytoplasm, with FA binding protein 3 concentrated around oocyte chromatin. By mass spectrometry, CCs lipid profiling was shown to be different before and after IVM. FAO inhibitors etomoxir and mildronate dose-dependently decreased the oocyte maturation rate in vitro. In terms of viability, cumulus enclosed oocytes were more sensitive to etomoxir than denuded oocytes. In CCs, etomoxir (150μM) led to downregulation of lipogenesis genes and upregulated lipolysis and FAO genes. Moreover, the number of lipid droplets decreased, whereas several lipid species were more abundant compared with nontreated CCs after IVM. In conclusion, FAs metabolism in CCs is important to maintain metabolic homeostasis and may influence meiosis progression and survival of enclosed oocytes. PMID:25058602

  13. Eukaryotic translation initiator protein 1A isoform, CCS-3, enhances the transcriptional repression of p21CIP1 by proto-oncogene FBI-1 (Pokemon/ZBTB7A).

    PubMed

    Choi, Won-Il; Kim, Youngsoo; Kim, Yuri; Yu, Mi-young; Park, Jungeun; Lee, Choong-Eun; Jeon, Bu-Nam; Koh, Dong-In; Hur, Man-Wook

    2009-01-01

    FBI-1, a member of the POK (POZ and Kruppel) family of transcription factors, plays a role in differentiation, oncogenesis, and adipogenesis. eEF1A is a eukaryotic translation elongation factor involved in several cellular processes including embryogenesis, oncogenic transformation, cell proliferation, and cytoskeletal organization. CCS-3, a potential cervical cancer suppressor, is an isoform of eEF1A. We found that eEF1A forms a complex with FBI-1 by co-immunoprecipitation, SDS-PAGE, and MALDI-TOF Mass analysis of the immunoprecipitate. GST fusion protein pull-downs showed that FBI-1 directly interacts with eEF1A and CCS-3 via the zinc finger and POZ-domain of FBI-1. FBI-1 co-localizes with either eEF1A or CCS-3 at the nuclear periplasm. CCS-3 enhances transcriptional repression of the p21CIP1 gene (hereafter referred to as p21) by FBI-1. The POZ-domain of FBI-1 interacts with the co-repressors, SMRT and BCoR. We found that CCS-3 also interacts with the co-repressors independently. The molecular interaction between the co-repressors and CCS-3 at the POZ-domain of FBI-1 appears to enhance FBI-1 mediated transcriptional repression. Our data suggest that CCS-3 may be important in cell differentiation, tumorigenesis, and oncogenesis by interacting with the proto-oncogene FBI-1 and transcriptional co-repressors. Copyright 2009 S. Karger AG, Basel.

  14. Perceptions of newly-qualified nurses performing compulsory community service in KwaZulu-Natal.

    PubMed

    Govender, Selverani; Brysiewicz, Petra; Bhengu, Busisiwe

    2015-07-08

    Compulsory community service (CCS) for nurses commenced in South African January 2008 after it was legislated in the new Nursing Act (Act No. 33 of 2005). Nurses completing their registered nurse programme are registered as community nurse practitioners (CNPs) during the CCS period and make up the largest number of health professionals serving CCS. Whilst health institutions have welcomed CNPs as additional resources for the shortage of nursing staff, no structured guidelines have been provided at a regional level as to how these nurses should be utilised or managed during the CCS year. To date, no large-scale study has been conducted on nurses carrying out CCS in order to generalise the findings. To establish the perceptions of newly-qualified nurses carrying out CCS in KwaZulu-Natal, South Africa. A quantitative survey design was used to obtain data from a randomly selected sample of the 2012 cohort of nurses carrying out CCS in KwaZulu-Natal. CNPs have a positive attitude toward CCS and perceive themselves as being well prepared for the year of community service in terms of knowledge, skills and ability to administer nursing care. They identified positive benefits of the year of community service.The concerns raised were limited orientation and support; and a few CNPs experienced problems of acceptance by the nurses with whom they work. It is recommended that all health institutions who receive CNPs develop structured orientation and support for these nurses in order to promote their development, thereby enhancing their benefit to the communities they serve.

  15. Prevalence and correlates of health information-seeking among Hispanic and non-Hispanic childhood cancer survivors.

    PubMed

    Miller, Kimberly A; Ramirez, Cynthia N; Wojcik, Katherine Y; Ritt-Olson, Anamara; Baezconde-Garbanati, Lourdes; Thomas, Stefanie M; Freyer, David R; Hamilton, Ann S; Milam, Joel E

    2018-04-01

    Childhood cancer survivors (CCS) report high unmet information needs. This study examined the prevalence of cancer-related information-seeking among CCS and investigated associations between information-seeking behavior and positive health outcomes such as follow-up care. Participants (n = 193) were young adult CCS diagnosed with cancer in Los Angeles County, 54% of Hispanic ethnicity, with a mean age of 19.87, in remission, and at least 2 years from completion of treatment. CCS were asked where they accessed health information related to their cancer with response options categorized into four information domains: hospital resources, social media, other survivors, and family members. Multivariable logistic regression was used to assess variables associated with each information domain, including sociodemographics, post-traumatic growth (i.e., reporting positive changes since cancer diagnosis), health care engagement, level of education, and health insurance status. Hospital resources were the most commonly accessed information domain (65.3%), and CCS of Hispanic ethnicity (vs. non-Hispanic) were more likely to access this source. Seeking information from other cancer survivors was positively associated with follow-up care and post-traumatic growth. Hispanic CCS were marginally less likely to seek information from other survivors and family than non-Hispanics. While CCS obtain information from a variety of sources, hospital resources are an important site for access, particularly for individuals of Hispanic ethnicity. Information sharing between survivors may promote positive health care engagement; however, Hispanic CCS may be less likely to utilize this resource and may face barriers in information sharing with other cancer survivors.

  16. Health promotion and information provision during long-term follow-up for childhood cancer survivors: A service evaluation.

    PubMed

    Mayes, Jonathan; Brown, Morven C; Davies, Nicola; Skinner, Roderick

    2016-09-01

    Health promotion is an important component of long-term follow-up (LTFU) care for childhood cancer survivors (CCS). However, little information exists about how survivors perceive their own health promotion needs. As part of a service evaluation, 51 CCS who had previously attended the LTFU clinic took part in a single semistructured interview to seek their views on information they had received regarding late adverse effects (LAEs) of treatment, the purpose of LTFU, and the provision of health promotion information. Although most (93%) CCS were satisfied with the information received about LAEs, 37% desired further details. Over half (59%) believed that the purpose of LTFU was to screen for LAEs, whereas 31% felt that it was to check for relapse. No survivor reported health promotion to be an aim of LTFU; only 14% of CCS expected to receive healthy lifestyle advice, and fewer than 10% wanted dietary and physical activity advice. Most (88%) CCS felt that their hospital-based health care professional was best placed to give healthy lifestyle advice, but there was no consensus about the optimum timing for health promotion. CCS varied in their knowledge, needs, and wishes regarding LTFU care. The results of this evaluation strongly indicate that the profile of health promotion needs to be raised within our service and identifies issues that may be pertinent to similar services. Further research is needed to understand the views of CCS regarding health promotion and lifestyle behaviors, with the aim of tailoring and improving the delivery of effective health education to CCS.

  17. Development of a Crosslink Channel Simulator for Simulation of Formation Flying Satellite Systems

    NASA Technical Reports Server (NTRS)

    Hart, Roger; Hunt, Chris; Burns, Rich D.

    2003-01-01

    Multi-vehicle missions are an integral part of NASA s and other space agencies current and future business. These multi-vehicle missions generally involve collectively utilizing the array of instrumentation dispersed throughout the system of space vehicles, and communicating via crosslinks to achieve mission goals such as formation flying, autonomous operation, and collective data gathering. NASA s Goddard Space Flight Center (GSFC) is developing the Formation Flying Test Bed (FFTB) to provide hardware-in- the-loop simulation of these crosslink-based systems. The goal of the FFTB is to reduce mission risk, assist in mission planning and analysis, and provide a technology development platform that allows algorithms to be developed for mission hctions such as precision formation flying, synchronization, and inter-vehicle data synthesis. The FFTB will provide a medium in which the various crosslink transponders being used in multi-vehicle missions can be plugged in for development and test. An integral part of the FFTB is the Crosslink Channel Simulator (CCS),which is placed into the communications channel between the crosslinks under test, and is used to simulate on-orbit effects to the communications channel due to relative vehicle motion or antenna misalignment. The CCS is based on the Starlight software programmable platform developed at General Dynamics Decision Systems which provides the CCS with the ability to be modified on the fly to adapt to new crosslink formats or mission parameters.

  18. Using the adsorption chillers for waste heat utilisation from the CCS installation

    NASA Astrophysics Data System (ADS)

    Sztekler, Karol; Kalawa, Wojciech; Nowak, Wojciech; Stefański, Sebastian; Krzywański, Jarosław; Grabowska, Karolina

    2018-06-01

    Worldwide tendencies in the scope of environmental protection demonstrate the requirement for the limited carbon dioxide emission, that influences on the development of greenhouse effect. As a result of coal as a basic fuel used in the professional power industry, this industry sector is the greatest CO2 polluter and it means that works on the reduction of carbon dioxide in such industry are completely justified. In the IPSEpro programming environment, a reference block model for a conventional coal power station was elaborated, including the CO2 separation unit basing on the adsorption methods with the CO2 preparation installation to liquid state. Simulation researches were conducted with means of numeric techniques, that enabled the system analysis for the CO2 separation unit with the CO2 preparation system to the liquid state, as well as analysis was made for the use of chiller systems, basing on the adsorption technology for waste heat use originating from the compression of CO2 in a cascade system, as well as for potential opportunities for further exploitation of the produced chilled water in the CCS cycle. We analysed in these papers the opportunities for chiller systems application, based on the adsorption chillers in the CCS installation used for the reduction of CO2 emission in the coal power station and its influence on the operation of a power station cycle.

  19. 32 CFR 110.5 - Procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Military Department. (2) MCs, CCs, or MJCs may be paid the special rate of commutation only for those... accordance with Pub. L. 88-647. Certain MCs, CCs, and MJCs that maintain senior ROTC units may elect to... indicated amount on an annual basis not to exceed 2 years to CCs that offer Military Science (MS) I and II...

  20. Who Is Opposed to Common Core and Why?

    ERIC Educational Resources Information Center

    Polikoff, Morgan S.; Hardaway, Tenice; Marsh, Julie A.; Plank, David N.

    2016-01-01

    Rising opposition to the Common Core Standards (CCS) has undermined implementation throughout the country. Yet there has been no scholarly analysis of the predictors of CCS opposition in the populace. This analysis uses poll data from a statewide poll of California voters to explore the demographic and policy predictors of CCS opposition. We find…

  1. 76 FR 66125 - Petition for Waiver of Compliance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... Section 236.110(a) as it pertains to the signoff of the coded cab signal (CCS) departure test form (UP... their unique employee identification number on the CCS departure test form per 49 CFR 236.587. UP proposes that allowing an employee to sign the CCS departure test form with their employee identification...

  2. Analysis of tandem repeat units of the promoter of capsanthin/capsorubin synthase (Ccs) gene in pepper fruit.

    PubMed

    Tian, Shi-Lin; Li, Zheng; Li, Li; Shah, S N M; Gong, Zhen-Hui

    2017-07-01

    Capsanthin/capsorubin synthase ( Ccs ) gene is a key gene that regulates the synthesis of capsanthin and the development of red coloration in pepper fruits. There are three tandem repeat units in the promoter region of Ccs , but the potential effects of the number of repetitive units on the transcriptional regulation of Ccs has been unclear. In the present study, expression vectors carrying different numbers of repeat units of the Ccs promoter were constructed, and the transient expression of the β-glucuronidase ( GUS ) gene was used to detect differences in expression levels associated with the promoter fragments. These repeat fragments and the plant expression vector PBI121 containing the 35s CaMV promoter were ligated to form recombinant vectors that were transfected into Agrobacterium tumefaciens GV3101. A fluorescence spectrophotometer was used to analyze the expression associated with the various repeat units. It was concluded that the constructs containing at least one repeat were associated with GUS expression, though they did not differ from one another. This repeating unit likely plays a role in transcription and regulation of Ccs expression.

  3. Simulating cartilage conduction sound to estimate the sound pressure level in the external auditory canal

    NASA Astrophysics Data System (ADS)

    Shimokura, Ryota; Hosoi, Hiroshi; Nishimura, Tadashi; Iwakura, Takashi; Yamanaka, Toshiaki

    2015-01-01

    When the aural cartilage is made to vibrate it generates sound directly into the external auditory canal which can be clearly heard. Although the concept of cartilage conduction can be applied to various speech communication and music industrial devices (e.g. smartphones, music players and hearing aids), the conductive performance of such devices has not yet been defined because the calibration methods are different from those currently used for air and bone conduction. Thus, the aim of this study was to simulate the cartilage conduction sound (CCS) using a head and torso simulator (HATS) and a model of aural cartilage (polyurethane resin pipe) and compare the results with experimental ones. Using the HATS, we found the simulated CCS at frequencies above 2 kHz corresponded to the average measured CCS from seven subjects. Using a model of skull bone and aural cartilage, we found that the simulated CCS at frequencies lower than 1.5 kHz agreed with the measured CCS. Therefore, a combination of these two methods can be used to estimate the CCS with high accuracy.

  4. Facile assembly of 3D binary colloidal crystals from soft microgel spheres.

    PubMed

    Liu, Yang; Guan, Ying; Zhang, Yongjun

    2014-03-01

    It still remains a big challenge to fabricate binary colloidal crystals (binary CCs) from hard colloidal spheres, although a lot of efforts have been made. Here, for the first time, binary CCs are assembled from soft hydrogel spheres, PNIPAM microgels, instead of hard spheres. Different from hard spheres, microgel binary CCs can be facilely fabricated by simply heating binary microgel dispersions to 37 °C and then allowing them to cool back to room temperature. The formation of highly ordered structure is indicated by the appearance of an iridescent color and a sharp Bragg diffraction peak. Compared with hard sphere binary CCs, the assembly of PNIPAM microgel binary CCs is much simpler, faster and with a higher "atom" economy. The easy formation of PNIPAM microgel binary CC is attributed to the thermosensitivity and soft nature of the PNIPAM microgel spheres. In addition, PNIPAM microgel binary CCs can respond to temperature change, and their stop band can be tuned by changing the concentration of the dispersion. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Making carbon sequestration a paying proposition

    NASA Astrophysics Data System (ADS)

    Han, Fengxiang X.; Lindner, Jeff S.; Wang, Chuji

    2007-03-01

    Atmospheric carbon dioxide (CO2) has increased from a preindustrial concentration of about 280 ppm to about 367 ppm at present. The increase has closely followed the increase in CO2 emissions from the use of fossil fuels. Global warming caused by increasing amounts of greenhouse gases in the atmosphere is the major environmental challenge for the 21st century. Reducing worldwide emissions of CO2 requires multiple mitigation pathways, including reductions in energy consumption, more efficient use of available energy, the application of renewable energy sources, and sequestration. Sequestration is a major tool for managing carbon emissions. In a majority of cases CO2 is viewed as waste to be disposed; however, with advanced technology, carbon sequestration can become a value-added proposition. There are a number of potential opportunities that render sequestration economically viable. In this study, we review these most economically promising opportunities and pathways of carbon sequestration, including reforestation, best agricultural production, housing and furniture, enhanced oil recovery, coalbed methane (CBM), and CO2 hydrates. Many of these terrestrial and geological sequestration opportunities are expected to provide a direct economic benefit over that obtained by merely reducing the atmospheric CO2 loading. Sequestration opportunities in 11 states of the Southeast and South Central United States are discussed. Among the most promising methods for the region include reforestation and CBM. The annual forest carbon sink in this region is estimated to be 76 Tg C/year, which would amount to an expenditure of 11.1-13.9 billion/year. Best management practices could enhance carbon sequestration by 53.9 Tg C/year, accounting for 9.3% of current total annual regional greenhouse gas emission in the next 20 years. Annual carbon storage in housing, furniture, and other wood products in 1998 was estimated to be 13.9 Tg C in the region. Other sequestration options, including the direct injection of CO2 in deep saline aquifers, mineralization, and biomineralization, are not expected to lead to direct economic gain. More detailed studies are needed for assessing the ultimate changes to the environment and the associated indirect cost savings for carbon sequestration.

  6. Making carbon sequestration a paying proposition.

    PubMed

    Han, Fengxiang X; Lindner, Jeff S; Wang, Chuji

    2007-03-01

    Atmospheric carbon dioxide (CO(2)) has increased from a preindustrial concentration of about 280 ppm to about 367 ppm at present. The increase has closely followed the increase in CO(2) emissions from the use of fossil fuels. Global warming caused by increasing amounts of greenhouse gases in the atmosphere is the major environmental challenge for the 21st century. Reducing worldwide emissions of CO(2) requires multiple mitigation pathways, including reductions in energy consumption, more efficient use of available energy, the application of renewable energy sources, and sequestration. Sequestration is a major tool for managing carbon emissions. In a majority of cases CO(2) is viewed as waste to be disposed; however, with advanced technology, carbon sequestration can become a value-added proposition. There are a number of potential opportunities that render sequestration economically viable. In this study, we review these most economically promising opportunities and pathways of carbon sequestration, including reforestation, best agricultural production, housing and furniture, enhanced oil recovery, coalbed methane (CBM), and CO(2) hydrates. Many of these terrestrial and geological sequestration opportunities are expected to provide a direct economic benefit over that obtained by merely reducing the atmospheric CO(2) loading. Sequestration opportunities in 11 states of the Southeast and South Central United States are discussed. Among the most promising methods for the region include reforestation and CBM. The annual forest carbon sink in this region is estimated to be 76 Tg C/year, which would amount to an expenditure of $11.1-13.9 billion/year. Best management practices could enhance carbon sequestration by 53.9 Tg C/year, accounting for 9.3% of current total annual regional greenhouse gas emission in the next 20 years. Annual carbon storage in housing, furniture, and other wood products in 1998 was estimated to be 13.9 Tg C in the region. Other sequestration options, including the direct injection of CO(2) in deep saline aquifers, mineralization, and biomineralization, are not expected to lead to direct economic gain. More detailed studies are needed for assessing the ultimate changes to the environment and the associated indirect cost savings for carbon sequestration.

  7. SEMICONDUCTOR TECHNOLOGY: Wafer level hermetic packaging based on Cu-Sn isothermal solidification technology

    NASA Astrophysics Data System (ADS)

    Yuhan, Cao; Le, Luo

    2009-08-01

    A novel wafer level bonding method based on Cu-Sn isothermal solidification technology is established. A multi-layer sealing ring and the bonding processing are designed, and the amount of solder and the bonding parameters are optimized based on both theoretical and experimental results. Verification shows that oxidation of the solder layer, voids and the scalloped-edge appearance of the Cu6Sn5 phase are successfully avoided. An average shear strength of 19.5 MPa and an excellent leak rate of around 1.9 × 10-9 atm cc/s are possible, meeting the demands of MIL-STD-883E.

  8. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bill Stanley; Sandra Brown; Patrick Gonzalez

    2004-07-10

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects,more » providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas impacts. The research described in this report occurred between July 1, 2002 and June 30, 2003. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: remote sensing for carbon analysis; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.« less

  9. Slow photoelectron imaging spectroscopy of CCO- and CCS-.

    PubMed

    Garand, Etienne; Yacovitch, Tara I; Neumark, Daniel M

    2008-08-21

    High-resolution photodetachment spectra of CCO(-) and CCS(-) using slow photoelectron velocity-map imaging spectroscopy are reported. Well-resolved transitions to the neutral X (3)Sigma(-), a (1)Delta, b (1)Sigma(+), and A (3)Pi states are seen for both species. The electron affinities of CCO and CCS are determined to be 2.3107+/-0.0006 and 2.7475+/-0.0006 eV, respectively, and precise term energies for the a (1)Delta, b (1)Sigma(+), and A (3)Pi excited states are also determined. The two low-lying singlet states of CCS are observed for the first time, as are several vibronic transitions within the four bands. Analysis of hot bands finds the spin-orbit orbit splitting in the X (2)Pi ground state of CCO(-) and CCS(-) to be 61 and 195 cm(-1), respectively.

  10. When Do We Really Need Coronary Calcium Scoring Prior to Contrast-Enhanced Coronary Computed Tomography Angiography? Analysis by Age, Gender and Coronary Risk Factors

    PubMed Central

    Iwan, Johannes; Voss, Andreas; Atsiatorme, Edem; Hofmann, Nina P.; Buss, Sebastian J.; Siebert, Stefan; Kauczor, Hans-Ulrich; Giannitsis, Evangelos; Katus, Hugo A.; Korosoglou, Grigorios

    2014-01-01

    Aims To investigate the value of coronary calcium scoring (CCS) as a filter scan prior to coronary computed tomography angiography (CCTA). Methods and Results Between February 2008 and April 2011, 732 consecutive patients underwent clinically indicated CCTA. During this ‘control phase’, CCS was performed in all patients. In patients with CCS≥800, CCTA was not performed. During a subsequent ‘CCTA phase’ (May 2011–May 2012) another 200 consecutive patients underwent CCTA, and CCS was performed only in patients with increased probability for severe calcification according to age, gender and atherogenic risk factors. In patients where CCS was not performed, calcium scoring was performed in contrast-enhanced CCTA images. Significant associations were noted between CCS and age (r = 0.30, p<0.001) and coronary risk factors (χ2 = 37.9; HR = 2.2; 95%CI = 1.7–2.9, p<0.001). Based on these associations, a ≤3% pre-test probability for CCS≥800 was observed for males <61 yrs. and females <79 yrs. According to these criteria, CCS was not performed in 106 of 200 (53%) patients during the ‘CCTA phase’, including 47 (42%) males and 59 (67%) females. This resulted in absolute radiation saving of ∼1 mSv in 75% of patients younger than 60 yrs. Of 106 patients where CCS was not performed, estimated calcium scoring was indeed <800 in 101 (95%) cases. Non-diagnostic image quality due to calcification was similar between the ‘control phase’ and the ‘CCTA’ group (0.25% versus 0.40%, p = NS). Conclusion The value of CCS as a filter for identification of a high calcium score is limited in younger patients with intermediate risk profile. Omitting CCS in such patients can contribute to further dose reduction with cardiac CT studies. PMID:24714677

  11. Misclassification of Case-Control Studies in Neurosurgery and Proposed Solutions.

    PubMed

    Esene, Ignatius Ngene; Mbuagbaw, Lawrence; Dechambenoit, Gilbert; Reda, Wael; Kalangu, Kazadi K

    2018-04-01

    Case-control studies (CCS) and cohort studies (CS) are common research designs in neurosurgery. But the term case-control study is frequently misused in the neurosurgical literature, with many articles reported as CCS, even although their methodology does not respect the basic components of a CCS. We sought to estimate the extent of these discrepancies in neurosurgical literature, explore factors contributing to mislabeling, and shed some light on study design reporting. We identified 31 top-ranking pure neurosurgical journals and searched them for articles reported as CCS, either in the title or in the abstract. The articles were read to determine if they really were CCS according to STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) guidelines. Article assessment was conducted in duplicate (agreement [κ statistics] = 99.82%). Two hundred and twenty-four articles met our inclusion criteria, 133 of which (59.38%) correctly labeled the case-control design, whereas 91 (40.62%) misclassified this study design. Cohort studies (CS) were the most common design mislabeled as case-control studies in 76 articles (33.93%), 57 of which (25.45%) were retrospective CS. The mislabeling of CCS impairs the appropriate indexing, classification, and sorting of evidence. Mislabeling CS for CCS leads to a downgrading of evidence as CS represent the highest level of evidence for observational studies. Odds ratios instead of relative risk are reported for these studies, resulting in a distortion of the measurement of the effect size, compounded when these are summarized in systematic reviews and pooled in meta-analyses. Many studies reported as CCS are not true CCS. Reporting guidelines should include items that ensure that studies are labeled correctly. STROBE guidelines should be implemented in assessment of observational studies. Researchers in neurosurgery need better training in research methods and terminology. We also recommend accrued vigilance from reviewers and editors. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Associations of socioeconomic determinants with community clinic awareness and visitation among women: evidence from Bangladesh Demographic and Health Survey-2011.

    PubMed

    Sarker, Mohammad Abul Bashar; Harun-Or-Rashid, Md; Reyer, Joshua A; Hirosawa, Tomoya; Yoshida, Yoshitoku; Islam, Mohammod Monirul; Siddique, Md Ruhul Furkan; Hossain, Shaila; Sakamoto, Junichi; Hamajima, Nobuyuki

    2015-10-21

    Although Bangladesh has achieved tremendous success in health care over the last four decades, it still lagged behind in the areas of maternal and child malnutrition and primary health care (PHC). To increase access to PHC, the Bangladesh government established approximately 18,000 community clinics (CCs). The purpose of this study was to examine the associations of socioeconomic determinants of women aged 12-49 years with the CCs awareness and visitation. We analyzed secondary data provided by Bangladesh Demographic and Health Survey-2011. A two-stage cluster sampling was used to collect the data. A total of 18,222 ever married women aged 12-49 years were identified from selected households and 17,842 were interviewed. The main outcome measures of our study were awareness and visitation of CCs. Bivariate logistic regression was used to calculate odds ratio (OR) and 95% confidence interval (CI) to examine the associations between the awareness and visiting CCs with socioeconomic determinants. Low prevalence of awareness about CC (18 %) was observed among studied women and only 17 % of them visited CCs. Significant associations (P < 0.05) with CCs awareness and visitation were observed among aged 20-29 years (adjusted OR = 1.18; 95% CI = 1.03-1.35 and adjusted OR = 1.49; 95% CI = 1.05-2.11), primary education (adjusted OR = 1.20; 95% CI = 1.08-1.34 and adjusted OR = 1.37; 95% CI = 1.05-1.78), and poorest family (adjusted OR = 1.21; 95% CI = 1.03-1.42 and adjusted OR = 2.36; 95% CI = 1.56-3.55, respectively), after controlling potential confounders. Awareness and visitation of CCs were found to be positively associated with lower economic conditions, young age, and primary education. Awareness and access to CCs might be increased through community activities that involve health care workers. The government should also lower barriers to PHC access through CCs by providing adequate logistics, such as human resources and equipment.

  13. IPTS/ESTO Studies on Reforms of Agriculture, Education and Social Systems within the Context of Enlargement and Demographic Change in the EU. Final Report.

    ERIC Educational Resources Information Center

    2002

    This document summarizes a comparative analysis of the interconnections between technological and socioeconomic developments in agriculture and rural development, human capital formation, and social systems in the 13 candidate countries (CCs) for admission into the European Union (EU) and in the 15 countries of the EU. Specific topics considered…

  14. Boron neutron capture therapy as new treatment for clear cell sarcoma: trial on different animal model.

    PubMed

    Andoh, Tooru; Fujimoto, Takuya; Sudo, Tamotsu; Suzuki, Minoru; Sakurai, Yoshinori; Sakuma, Toshiko; Moritake, Hiroshi; Sugimoto, Tohru; Takeuchi, Tamotsu; Sonobe, Hiroshi; Epstein, Alan L; Fukumori, Yoshinobu; Ono, Koji; Ichikawa, Hideki

    2014-06-01

    Clear cell sarcoma (CCS) is a rare malignant tumor with a poor prognosis. In our previous study, the tumor disappeared under boron neutron capture therapy (BNCT) on subcutaneously-transplanted CCS-bearing animals. In the present study, the tumor disappeared under this therapy on model mice intramuscularly implanted with three different human CCS cells. BNCT led to the suppression of tumor-growth in each of the different model mice, suggesting its potentiality as an alternative to, or integrative option for, the treatment of CCS. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Chopart's amputation for resection of clear cell sarcoma of the foot: a case report and review of the literature.

    PubMed

    Berenji, Manijeh; Kwok-Oleksy, Christina; Dang, Binh Nguyen; Trepal, Michael J; Wallack, Marc K

    2009-01-01

    Clear cell sarcoma (CCS) is a subset of soft tissue sarcoma that occurs mainly in young Caucasians. Although on initial presentation these growths might not appear to be malignant, CCS has a tendency to disseminate to regional lymph nodes and ultimately develop distant metastasis. We report a case of CCS from our institution, discussing the radiological and pathological findings, surgical treatments, and survival prognoses. To our knowledge, this is the first reported case of using a Chopart's amputation technique in the resection of CCS of the foot. 4.

  16. Big Sky Carbon Sequestration Partnership

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susan M. Capalbo

    2005-11-01

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork ismore » in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound MMV is critical for public acceptance of these technologies. Deliverables for the 7th Quarter reporting period include (1) for the geological efforts: Reports on Technology Needs and Action Plan on the Evaluation of Geological Sinks and Pilot Project Deployment (Deliverables 2 and 3), and Report on the Feasibility of Mineralization Trapping in the Snake River Plain Basin (Deliverable 14); (2) for the terrestrial efforts: Report on the Evaluation of Terrestrial Sinks and a Report of the Best Production Practices for Soil C Sequestration (Deliverables 8 and 15). In addition, the 7th Quarter activities for the Partnership included further development of the proposed activities for the deployment and demonstration phase of the carbon sequestration pilots including geological and terrestrial pilots, expansion of the Partnership to encompass regions and institutions that are complimentary to the steps we have identified, building greater collaborations with industry and stakeholders in the region, contributed to outreach efforts that spanned all partnerships, co-authorship on the Carbon Capture and Separation report, and developed a regional basis to address future energy opportunities in the region. The deliverables and activities are discussed in the following sections and appended to this report. The education and outreach efforts have resulted in a comprehensive plan which serves as a guide for implementing the outreach activities under Phase I. The public website has been expanded and integrated with the GIS carbon atlas. We have made presentations to stakeholders and policy makers including two tribal sequestration workshops, and made connections to other federal and state agencies concerned with GHG emissions, climate change, and efficient and environmentally-friendly energy production. In addition, the Partnership has plans for integration of our outreach efforts with students, especially at the tribal colleges and at the universities involved in our Partnership. This includes collaboration with MSU and with the U.S.-Norway Summer School, extended outreach efforts at LANL and INEEL, and with the student section of the ASME. Finally, the Big Sky Partnership was involved in key meetings and symposium in the 7th quarter including the USDOE Wye Institute Conference on Carbon Sequestration and Capture (April, 2005); the DOE/NETL Fourth Annual Conference on Carbon Capture and Sequestration (May 2005); Coal Power Development Conference (Denver, June 2005) and meetings with our Phase II industry partners and Governor's staff.« less

  17. Soil carbon sequestration and biochar as negative emission technologies.

    PubMed

    Smith, Pete

    2016-03-01

    Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to <2 °C relative to the preindustrial era. Most recent scenarios from integrated assessment models require large-scale deployment of negative emissions technologies (NETs) to reach the 2 °C target. A recent analysis of NETs, including direct air capture, enhanced weathering, bioenergy with carbon capture and storage and afforestation/deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr(-1) ) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization. © 2016 John Wiley & Sons Ltd.

  18. Carotenoid accumulation in orange-pigmented Capsicum annuum fruit, regulated at multiple levels

    PubMed Central

    Rodriguez-Uribe, Laura; Guzman, Ivette; Rajapakse, Wathsala; Richins, Richard D.; O’Connell, Mary A.

    2012-01-01

    The pericarp of Capsicum fruit is a rich dietary source of carotenoids. Accumulation of these compounds may be controlled, in part, by gene transcription of biosynthetic enzymes. The carotenoid composition in a number of orange-coloured C. annuum cultivars was determined using HPLC and compared with transcript abundances for four carotenogenic enzymes, Psy, LcyB, CrtZ-2, and Ccs determined by qRT-PCR. There were unique carotenoid profiles as well as distinct patterns of transcription of carotenogenic enzymes within the seven orange-coloured cultivars. In one cultivar, ‘Fogo’, carrying the mutant ccs-3 allele, transcripts were detected for this gene, but no CCS protein accumulated. The premature stop termination in ccs-3 prevented expression of the biosynthetic activity to synthesize the capsanthin and capsorubin forms of carotenoids. In two other orange-coloured cultivars, ‘Orange Grande’ and ‘Oriole’, both with wild-type versions of all four carotenogenic enzymes, no transcripts for Ccs were detected and no red pigments accumulated. Finally, in a third case, the orange-coloured cultivar, Canary, transcripts for all four of the wild-type carotenogenic enzymes were readily detected yet no CCS protein appeared to accumulate and no red carotenoids were synthesized. In the past, mutations in Psy and Ccs have been identified as the loci controlling colour in the fruit. Now there is evidence that a non-structural gene may control colour development in Capsicum. PMID:21948863

  19. Carotenoid accumulation in orange-pigmented Capsicum annuum fruit, regulated at multiple levels.

    PubMed

    Rodriguez-Uribe, Laura; Guzman, Ivette; Rajapakse, Wathsala; Richins, Richard D; O'Connell, Mary A

    2012-01-01

    The pericarp of Capsicum fruit is a rich dietary source of carotenoids. Accumulation of these compounds may be controlled, in part, by gene transcription of biosynthetic enzymes. The carotenoid composition in a number of orange-coloured C. annuum cultivars was determined using HPLC and compared with transcript abundances for four carotenogenic enzymes, Psy, LcyB, CrtZ-2, and Ccs determined by qRT-PCR. There were unique carotenoid profiles as well as distinct patterns of transcription of carotenogenic enzymes within the seven orange-coloured cultivars. In one cultivar, 'Fogo', carrying the mutant ccs-3 allele, transcripts were detected for this gene, but no CCS protein accumulated. The premature stop termination in ccs-3 prevented expression of the biosynthetic activity to synthesize the capsanthin and capsorubin forms of carotenoids. In two other orange-coloured cultivars, 'Orange Grande' and 'Oriole', both with wild-type versions of all four carotenogenic enzymes, no transcripts for Ccs were detected and no red pigments accumulated. Finally, in a third case, the orange-coloured cultivar, Canary, transcripts for all four of the wild-type carotenogenic enzymes were readily detected yet no CCS protein appeared to accumulate and no red carotenoids were synthesized. In the past, mutations in Psy and Ccs have been identified as the loci controlling colour in the fruit. Now there is evidence that a non-structural gene may control colour development in Capsicum.

  20. Calcium silicates synthesised from industrial residues with the ability for CO2 sequestration.

    PubMed

    Morales-Flórez, Victor; Santos, Alberto; López, Antonio; Moriña, Isabel; Esquivias, Luis

    2014-12-01

    This work explored several synthesis routes to obtain calcium silicates from different calcium-rich and silica-rich industrial residues. Larnite, wollastonite and calcium silicate chloride were successfully synthesised with moderate heat treatments below standard temperatures. These procedures help to not only conserve natural resources, but also to reduce the energy requirements and CO2 emissions. In addition, these silicates have been successfully tested as carbon dioxide sequesters, to enhance the viability of CO2 mineral sequestration technologies using calcium-rich industrial by-products as sequestration agents. Two different carbon sequestration experiments were performed under ambient conditions. Static experiments revealed carbonation efficiencies close to 100% and real-time resolved experiments characterised the dynamic behaviour and ability of these samples to reduce the CO2 concentration within a mixture of gases. The CO2 concentration was reduced up to 70%, with a carbon fixation dynamic ratio of 3.2 mg CO2 per g of sequestration agent and minute. Our results confirm the suitability of the proposed synthesis routes to synthesise different calcium silicates recycling industrial residues, being therefore energetically more efficient and environmentally friendly procedures for the cement industry. © The Author(s) 2014.

  1. A new intranasal influenza vaccine based on a novel polycationic lipid-ceramide carbamoyl-spermine (CCS). II. Studies in mice and ferrets and mechanism of adjuvanticity.

    PubMed

    Even-Or, Orli; Joseph, Aviva; Itskovitz-Cooper, Noga; Samira, Sarit; Rochlin, Eli; Eliyahu, Hagit; Goldwaser, Itzik; Balasingam, Shobana; Mann, Alex J; Lambkin-Williams, Rob; Kedar, Eli; Barenholz, Yechezkel

    2011-03-16

    We recently showed that lipid assemblies comprised of a novel polycationic sphingolipid (ceramide carbamoyl-spermine, CCS) are an effective adjuvant/carrier when complexed with cholesterol (CCS/C) for influenza and other vaccines administered parenterally and intranasally (i.n.) in mice. Here we expand these studies to ferrets, an established model of influenza infection. We also address the question of why the CCS/C-based liposomal vaccine (also known as VaxiSome™) in mice is superior to vaccines based on liposomes of other lipid compositions (neutral, anionic or cationic). Ferrets immunized i.n. with CCS/C-influenza vaccine produced significantly higher hemagglutination inhibition (HI) antibody titers compared to ferrets immunized intramuscularly with the unadjuvanted influenza vaccine, indicating that the CCS/C-based vaccine is very immunogenic. Furthermore, the i.n. adjuvanted vaccine was shown to significantly reduce the severity of influenza virus infection in ferrets following homologous viral challenge as determined by weight loss, temperature rise and viral titer. No adverse reactions were observed. Pharmacokinetic and biodistribution studies following i.n. administration in mice of CCS/C-based vaccine showed that both the lipids and antigens are retained in the nose and lung for at least 24h, and it appears that this retention correlates with the superior immunogenicity elicited by the adjuvanted vaccine formulation. The CCS lipid also increases production of cytokines (mainly IFN gamma, IL-2 and IL-12) and co-stimulatory molecules' expression, which might further explain the robust adjuvantation of this liposome-based vaccine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Activation of CuZn superoxide dismutases from Caenorhabditis elegans does not require the copper chaperone CCS.

    PubMed

    Jensen, Laran T; Culotta, Valeria Cizewski

    2005-12-16

    Reactive oxygen species are produced as the direct result of aerobic metabolism and can cause damage to DNA, proteins, and lipids. A principal defense against reactive oxygen species involves the superoxide dismutases (SOD) that act to detoxify superoxide anions. Activation of CuZn-SODs in eukaryotic cells occurs post-translationally and is generally dependent on the copper chaperone for SOD1 (CCS), which inserts the catalytic copper cofactor and catalyzes the oxidation of a conserved disulfide bond that is essential for activity. In contrast to other eukaryotes, the nematode Caenorhabditis elegans does not contain an obvious CCS homologue, and we have found that the C. elegans intracellular CuZn-SODs (wSOD-1 and wSOD-5) are not dependent on CCS for activation when expressed in Saccharomyces cerevisiae. CCS-independent activation of CuZn-SODs is not unique to C. elegans; however, this is the first organism identified that appears to exclusively use this alternative pathway. As was found for mammalian SOD1, wSOD-1 exhibits a requirement for reduced glutathione in CCS-independent activation. Unexpectedly, wSOD-1 was inactive even in the presence of CCS when glutathione was depleted. Our investigation of the cysteine residues that form the disulfide bond in wSOD-1 suggests that the ability of wSODs to readily form this disulfide bond may be the key to obtaining high levels of activation through the CCS-independent pathway. Overall, these studies demonstrate that the CuZn-SODs of C. elegans have uniquely evolved to acquire copper without the copper chaperone and this may reflect the lifestyle of this organism.

  3. Evaluation of the brain anaesthesia response monitor during anaesthesia for cardiac surgery: a double-blind, randomised controlled trial using two doses of fentanyl.

    PubMed

    Shoushtarian, Mehrnaz; McGlade, Desmond P; Delacretaz, Louis J; Liley, David T J

    2016-12-01

    The brain anaesthesia response (BAR) monitor uses a method of EEG analysis, based on a model of brain electrical activity, to monitor the cerebral response to anaesthetic and sedative agents via two indices, composite cortical state (CCS) and cortical input (CI). It was hypothesised that CCS would respond to the hypnotic component of anaesthesia and CI would differentiate between two groups of patients receiving different doses of fentanyl. Twenty-five patients scheduled to undergo elective first-time coronary artery bypass graft surgery were randomised to receive a total fentanyl dose of either 12 μg/kg (fentanyl low dose, FLD) or 24 μg/kg (fentanyl moderate dose, FMD), both administered in two divided doses. Propofol was used for anaesthesia induction and pancuronium for intraoperative paralysis. Hemodynamic management was protocolised using vasoactive drugs. BIS, CCS and CI were simultaneously recorded. Response of the indices (CI, CCS and BIS) to propofol and their differences between the two groups at specific points from anaesthesia induction through to aortic cannulation were investigated. Following propofol induction, CCS and BIS but not CI showed a significant reduction. Following the first dose of fentanyl, CI, CCS and BIS decreased in both groups. Following the second dose of fentanyl, there was a significant reduction in CI in the FLD group but not the FMD group, with no significant change found for BIS or CCS in either group. The BAR monitor demonstrates the potential to monitor the level of hypnosis following anaesthesia induction with propofol via the CCS index and to facilitate the titration of fentanyl as a component of balanced anaesthesia via the CI index.

  4. Correlating Resolving Power, Resolution, and Collision Cross Section: Unifying Cross-Platform Assessment of Separation Efficiency in Ion Mobility Spectrometry.

    PubMed

    Dodds, James N; May, Jody C; McLean, John A

    2017-11-21

    Here we examine the relationship among resolving power (R p ), resolution (R pp ), and collision cross section (CCS) for compounds analyzed in previous ion mobility (IM) experiments representing a wide variety of instrument platforms and IM techniques. Our previous work indicated these three variables effectively describe and predict separation efficiency for drift tube ion mobility spectrometry experiments. In this work, we seek to determine if our previous findings are a general reflection of IM behavior that can be applied to various instrument platforms and mobility techniques. Results suggest IM distributions are well characterized by a Gaussian model and separation efficiency can be predicted on the basis of the empirical difference in the gas-phase CCS and a CCS-based resolving power definition (CCS/ΔCCS). Notably traveling wave (TWIMS) was found to operate at resolutions substantially higher than a single-peak resolving power suggested. When a CCS-based R p definition was utilized, TWIMS was found to operate at a resolving power between 40 and 50, confirming the previous observations by Giles and co-workers. After the separation axis (and corresponding resolving power) is converted to cross section space, it is possible to effectively predict separation behavior for all mobility techniques evaluated (i.e., uniform field, trapped ion mobility, traveling wave, cyclic, and overtone instruments) using the equations described in this work. Finally, we are able to establish for the first time that the current state-of-the-art ion mobility separations benchmark at a CCS-based resolving power of >300 that is sufficient to differentiate analyte ions with CCS differences as small as 0.5%.

  5. A Review of CO2 Sequestration Projects and Application in China

    PubMed Central

    Tang, Yong; Yang, Ruizhi; Bian, Xiaoqiang

    2014-01-01

    In 2008, the top CO2 emitters were China, United States, and European Union. The rapid growing economy and the heavy reliance on coal in China give rise to the continued growth of CO2 emission, deterioration of anthropogenic climate change, and urgent need of new technologies. Carbon Capture and sequestration is one of the effective ways to provide reduction of CO2 emission and mitigation of pollution. Coal-fired power plants are the focus of CO2 source supply due to their excessive emission and the energy structure in China. And over 80% of the large CO2 sources are located nearby storage reservoirs. In China, the CO2 storage potential capacity is of about 3.6 × 109 t for all onshore oilfields; 30.483 × 109 t for major gas fields between 900 m and 3500 m of depth; 143.505 × 109 t for saline aquifers; and 142.67 × 109 t for coal beds. On the other hand, planation, soil carbon sequestration, and CH4–CO2 reforming also contribute a lot to carbon sequestration. This paper illustrates some main situations about CO2 sequestration applications in China with the demonstration of several projects regarding different ways of storage. It is concluded that China possesses immense potential and promising future of CO2 sequestration. PMID:25302323

  6. Porous Polystyrene Monoliths and Microparticles Prepared from Core Cross-linked Star (CCS) Polymers-Stabilized Emulsions.

    PubMed

    Chen, Qijing; Shi, Ting; Han, Fei; Li, Zihan; Lin, Chao; Zhao, Peng

    2017-08-17

    A hydrophobic CCS polymer of poly(benzyl methacrylate) (PBzMA) was prepared in toluene by reversible addition-fragmentation chain transfer (RAFT)-mediated dispersion polymerization. The CCS polymer, with poly(benzyl methacrylate) as the arm and crosslinked N, N'-bis(acryloyl)cystamine (BAC) as the core, was confirmed by characterization with gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy. Three kinds of oils (toluene, anisole and styrene) were chosen to study the emulsification properties of PBzMA CCS polymer. The oils can be emulsified by CCS polymer to form water-in-oil (w/o) emulsions. Moreover, w/o high internal phase emulsions (HIPEs) can be obtained with the increase of toluene and styrene volume fractions from 75% to 80%. Porous polystyrene monolith and microparticles were prepared from the emulsion templates and characterized by the scanning electronic microscopy (SEM). With the internal phase volume fraction increased, open-pore porous monolith was obtained.

  7. Regulation of the copper chaperone CCS by XIAP-mediated ubiquitination.

    PubMed

    Brady, Graham F; Galbán, Stefanie; Liu, Xuwen; Basrur, Venkatesha; Gitlin, Jonathan D; Elenitoba-Johnson, Kojo S J; Wilson, Thomas E; Duckett, Colin S

    2010-04-01

    In order to balance the cellular requirements for copper with its toxic properties, an elegant set of mechanisms has evolved to regulate and buffer intracellular copper. The X-linked inhibitor of apoptosis (XIAP) protein was recently identified as a copper-binding protein and regulator of copper homeostasis, although the mechanism by which XIAP binds copper in the cytosol is unclear. Here we describe the identification of the copper chaperone for superoxide dismutase (CCS) as a mediator of copper delivery to XIAP in cells. We also find that CCS is a target of the E3 ubiquitin ligase activity of XIAP, although interestingly, ubiquitination of CCS by XIAP was found to lead to enhancement of its chaperone activity toward its physiologic target, superoxide dismutase 1, rather than proteasomal degradation. Collectively, our results reveal novel links among apoptosis, copper metabolism, and redox regulation through the XIAP-CCS complex.

  8. The application of quadratic optimal cooperative control synthesis to a CH-47 helicopter

    NASA Technical Reports Server (NTRS)

    Townsend, Barbara K.

    1987-01-01

    A control-system design method, quadratic optimal cooperative control synthesis (CCS), is applied to the design of a stability and control augmentation system (SCAS). The CCS design method is different from other design methods in that it does not require detailed a priori design criteria, but instead relies on an explicit optimal pilot-model to create desired performance. The design method, which was developed previously for fixed-wing aircraft, is simplified and modified for application to a Boeing CH-47 helicopter. Two SCAS designs are developed using the CCS design methodology. The resulting CCS designs are then compared with designs obtained using classical/frequency-domain methods and linear quadratic regulator (LQR) theory in a piloted fixed-base simulation. Results indicate that the CCS method, with slight modifications, can be used to produce controller designs which compare favorably with the frequency-domain approach.

  9. Advancing the large-scale CCS database for metabolomics and lipidomics at the machine-learning era.

    PubMed

    Zhou, Zhiwei; Tu, Jia; Zhu, Zheng-Jiang

    2018-02-01

    Metabolomics and lipidomics aim to comprehensively measure the dynamic changes of all metabolites and lipids that are present in biological systems. The use of ion mobility-mass spectrometry (IM-MS) for metabolomics and lipidomics has facilitated the separation and the identification of metabolites and lipids in complex biological samples. The collision cross-section (CCS) value derived from IM-MS is a valuable physiochemical property for the unambiguous identification of metabolites and lipids. However, CCS values obtained from experimental measurement and computational modeling are limited available, which significantly restricts the application of IM-MS. In this review, we will discuss the recently developed machine-learning based prediction approach, which could efficiently generate precise CCS databases in a large scale. We will also highlight the applications of CCS databases to support metabolomics and lipidomics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The application of quadratic optimal cooperative control synthesis to a CH-47 helicopter

    NASA Technical Reports Server (NTRS)

    Townsend, Barbara K.

    1986-01-01

    A control-system design method, Quadratic Optimal Cooperative Control Synthesis (CCS), is applied to the design of a Stability and Control Augmentation Systems (SCAS). The CCS design method is different from other design methods in that it does not require detailed a priori design criteria, but instead relies on an explicit optimal pilot-model to create desired performance. The design model, which was developed previously for fixed-wing aircraft, is simplified and modified for application to a Boeing Vertol CH-47 helicopter. Two SCAS designs are developed using the CCS design methodology. The resulting CCS designs are then compared with designs obtained using classical/frequency-domain methods and Linear Quadratic Regulator (LQR) theory in a piloted fixed-base simulation. Results indicate that the CCS method, with slight modifications, can be used to produce controller designs which compare favorably with the frequency-domain approach.

  11. Countercurrent Separation of Natural Products: An Update

    PubMed Central

    2015-01-01

    This work assesses the current instrumentation, method development, and applications in countercurrent chromatography (CCC) and centrifugal partition chromatography (CPC), collectively referred to as countercurrent separation (CCS). The article provides a critical review of the CCS literature from 2007 since our last review (J. Nat. Prod.2008, 71, 1489–1508), with a special emphasis on the applications of CCS in natural products research. The current state of CCS is reviewed in regard to three continuing topics (instrumentation, solvent system development, theory) and three new topics (optimization of parameters, workflow, bioactivity applications). The goals of this review are to deliver the necessary background with references for an up-to-date perspective of CCS, to point out its potential for the natural product scientist, and thereby to induce new applications in natural product chemistry, metabolome, and drug discovery research involving organisms from terrestrial and marine sources. PMID:26177360

  12. Geothermal projects funded under the NER 300 programme - current state of development and knowledge gained

    NASA Astrophysics Data System (ADS)

    Uihlein, Andreas; Salto Saura, Lourdes; Sigfusson, Bergur; Lichtenvort, Kerstin; Gagliardi, Filippo

    2015-04-01

    Introduction The NER 300 programme, managed by the European Commission is one of the largest funding programmes for innovative low-carbon energy demonstration projects. NER 300 is so called because it is funded from the sale of 300 million emission allowances from the new entrants' reserve (NER) set up for the third phase of the EU emissions trading system (ETS). The programme aims to successfully demonstrate environmentally safe carbon capture and storage (CCS) and innovative renewable energy (RES) technologies on a commercial scale with a view to scaling up production of low-carbon technologies in the EU. Consequently, it supports a wide range of CCS and RES technologies (bioenergy, concentrated solar power, photovoltaics, geothermal, wind, ocean, hydropower, and smart grids). Funded projects and the role of geothermal projects for the programme In total, about EUR 2.1 billion have been awarded to 39 projects through the programme's 2 calls for proposals (the first awarded in December 2012, the second in July 2014). The programme has awarded around 70 mEUR funding to 3 geothermal projects in Hungary, Croatia and France (see Annex). The Hungarian geothermal project awarded funding under the first call will enter into operation at the end of 2015 and the rest are expected to start in 2016 (HR) and in 2018 (FR), respectively. Knowledge Sharing Knowledge sharing requirements are built into the legal basis of the programme as a critical tool to lower risks in bridging the transition to large-scale production of innovative renewable energy and CCS deployment. Projects have to submit annually to the European Commission relevant knowledge gained during that year in the implementation of their project. The relevant knowledge is aggregated and disseminated by the European Commission to industry, research, government, NGO and other interest groups and associations in order to provide a better understanding of the practical challenges that arise in the important step of scaling up technologies and operating them at commercial scale. The knowledge sharing of the NER 300 programme should lead to better planning and faster introduction of low carbon technologies in the future. Content of the presentation The presentation will introduce the geothermal projects that have been awarded funding, including their state-of-play. Insights and knowledge gained from the projects that have entered into operation will be shown and discussed. Furthermore, the presentation will provide an overview of the NER 300 programme.

  13. Technical Progress Report on Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bill Stanley; Patrick Gonzalez; Sandra Brown

    2006-06-30

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects,more » providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st and July 30th 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool. Work is being carried out in Brazil, Belize, Chile, Peru and the USA.« less

  14. The Effect of the Agricultural Carbon Sequestration and Agrochemical Reduction on the Regional Water Environment Quality

    NASA Astrophysics Data System (ADS)

    Leyi, Wang; Baoli, Zhang; Xin, Li; Juan, Du

    2018-05-01

    This paper analysed the impact of the agricultural carbon reduction and emission reduction measures implementation on the environmental quality of surface water and groundwater in winter and summer in Henan and Anhui Province project areas by using entropy weight fuzzy matter element analysis method. The result showed that the reduction in the application of chemical fertilizers and pesticides had a certain impact on the improvement of the water environment by using agricultural carbon sequestration technologies.

  15. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)

    ScienceCinema

    Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division

    2018-05-07

    Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  16. 78 FR 72965 - Self-Regulatory Organizations; NYSE MKT LLC; Notice of Filing of Proposed Rule Change Amending...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-04

    ... that MPL Orders may interact with Capital Commitment Schedule (``CCS'') interest; (3) NYSE MKT Rule 70... may interact with CCS interest; (3) NYSE MKT Rule 70.25--Equities to permit d-Quotes to be designated... specifically noted otherwise. DMM interest entered via the CCS pursuant to Rule 1000 would not be permitted to...

  17. 76 FR 617 - Self-Regulatory Organizations; New York Stock Exchange LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ... orders in the Exchange's system. This schedule is known as the DMM Capital Commitment Schedule (``CCS'').\\9\\ CCS provides the Display Book [supreg] \\10\\ with the amount of shares that the DMM is willing to trade at price points outside, at and inside the Exchange Best Bid or Best Offer (``BBO''). CCS interest...

  18. 75 FR 14221 - Self-Regulatory Organizations; Notice of Filing and Immediate Effectiveness of Proposed Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... in the Exchange's system. This schedule is known as the DMM Capital Commitment Schedule (``CCS'').\\10\\ CCS provides the Display Book[reg] \\11\\ with the amount of shares that the DMM is willing to trade at price points outside, at and inside the Exchange BBO. CCS interest is separate and distinct from other...

  19. 75 FR 58456 - Self-Regulatory Organizations; Notice of Filing of Proposed Rule Change by New York Stock...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... Commitment Schedule (``CCS'') of the Designated Market Maker provided for in NYSE Rule 1000(d)(i). The text..., if any, in the CCS of the Designated Market Maker. As the execution of the order proceeds, the... to DBK due to the possibility of interaction with CCS interest. Note that no orders were routed to...

  20. 75 FR 35856 - Self-Regulatory Organizations; Notice of Filing of Proposed Rule Change by New York Stock...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-23

    ... CCS interest will be accessed to fill or partially fill \\20\\ incoming interest except, that Display Book will not access DMM CCS interest to provide an execution for an incoming odd-lot order. The Exchange proposes to amend NYSE Rule 1000 (d)(i) to clarify that DMM CCS interest will be accessed in...

  1. An integrated assessment of the potential of agricultural and forestry residues for energy production in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Ji; Zhang, Aiping; Lam, Shu Kee

    Biomass has been widely recognized as an important energy source with high potential to reduce greenhouse gas emissions while minimizing environmental pollution. In this study, we employ the Global Change Assessment Model to estimate the potential of agricultural and forestry residue biomass for energy production in China. Potential availability of residue biomass as an energy source was analyzed for the 21st century under different climate policy scenarios. Currently, the amount of total annual residue biomass, averaged over 2003-2007, is around 15519PJ in China, consisting of 10818PJ from agriculture residues (70%) and 4701PJ forestry residues (30%). We estimate that 12693PJ ofmore » the total biomass is available for energy production, with 66% derived from agricultural residue and 34% from forestry residue. Most of the available residue is from south central China (3347PJ), east China (2862PJ) and south-west China (2229PJ), which combined exceeds 66% of the total national biomass. Under the reference scenario without carbon tax, the potential availability of residue biomass for energy production is projected to be 3380PJ by 2050 and 4108PJ by 2095, respectively. When carbon tax is imposed, biomass availability increases substantially. For the CCS 450ppm scenario, availability of biomass increases to 9002PJ (2050) and 11524PJ (2095), respectively. For the 450ppm scenario without CCS, 9183 (2050) and 11150PJ (2095) residue biomass, respectively, is projected to be available. Moreover, the implementation of CCS will have a little impact on the supply of residue biomass after 2035. Our results suggest that residue biomass has the potential to be an important component in China's sustainable energy production portfolio. As a low carbon emission energy source, climate change policies that involve carbon tariff and CCS technology promote the use of residue biomass for energy production in a low carbon-constrained world.« less

  2. Decreased erythrocyte CCS content is a biomarker of copper overload in rats.

    PubMed

    Bertinato, Jesse; Sherrard, Lindsey; Plouffe, Louise J

    2010-07-02

    Copper (Cu) is an essential trace metal that is toxic in excess. It is therefore important to be able to accurately assess Cu deficiency or overload. Cu chaperone for Cu/Zn superoxide dismutase (CCS) protein expression is elevated in tissues of Cu-deficient animals. Increased CCS content in erythrocytes is particularly sensitive to decreased Cu status. Given the lack of a non-invasive, sensitive and specific biomarker for the assessment of Cu excess, we investigated whether CCS expression in erythrocytes reflects Cu overload. Rats were fed diets containing normal or high levels of Cu for 13 weeks. Diets contained 6.3 +/- 0.6 (Cu-N), 985 +/- 14 (Cu-1000) or 1944 +/- 19 (Cu-2000) mg Cu/kg diet. Rats showed a variable response to the high Cu diets. Some rats showed severe Cu toxicity, while other rats showed no visible signs of toxicity and grew normally. Also, some rats had high levels of Cu in liver, whereas others had liver Cu concentrations within the normal range. Erythrocyte CCS protein expression was 30% lower in Cu-2000 rats compared to Cu-N rats (P < 0.05). Notably, only rats that accumulated high levels of Cu in liver had lower erythrocyte CCS (47% reduction, P < 0.05) compared to rats fed normal levels of Cu. Together, these data indicate that decreased erythrocyte CCS content is associated with Cu overload in rats and should be evaluated further as a potential biomarker for assessing Cu excess in humans.

  3. Contaminant screening of wastewater with HPLC-IM-qTOF-MS and LC+LC-IM-qTOF-MS using a CCS database.

    PubMed

    Stephan, Susanne; Hippler, Joerg; Köhler, Timo; Deeb, Ahmad A; Schmidt, Torsten C; Schmitz, Oliver J

    2016-09-01

    Non-target analysis has become an important tool in the field of water analysis since a broad variety of pollutants from different sources are released to the water cycle. For identification of compounds in such complex samples, liquid chromatography coupled to high resolution mass spectrometry are often used. The introduction of ion mobility spectrometry provides an additional separation dimension and allows determining collision cross sections (CCS) of the analytes as a further physicochemical constant supporting the identification. A CCS database with more than 500 standard substances including drug-like compounds and pesticides was used for CCS data base search in this work. A non-target analysis of a wastewater sample was initially performed with high performance liquid chromatography (HPLC) coupled to an ion mobility-quadrupole-time of flight mass spectrometer (IM-qTOF-MS). A database search including exact mass (±5 ppm) and CCS (±1 %) delivered 22 different compounds. Furthermore, the same sample was analyzed with a two-dimensional LC method, called LC+LC, developed in our group for the coupling to IM-qTOF-MS. This four dimensional separation platform revealed 53 different compounds, identified over exact mass and CCS, in the examined wastewater sample. It is demonstrated that the CCS database can also help to distinguish between isobaric structures exemplified for cyclophosphamide and ifosfamide. Graphical Abstract Scheme of sample analysis and database screening.

  4. Rationale and design of a trial to personalize risk assessment in familial coronary artery disease.

    PubMed

    Marwick, Thomas H; Whitmore, Kristyn; Nicholls, Stephen J; Stanton, Tony; Mitchell, Geoffrey; Tonkin, Andrew; Blizzard, Christopher; Neil, Amanda; Jones, Catherine; Watts, Gerald F

    2018-05-01

    The lifetime risk of coronary artery disease (CAD) is doubled in people with a family history of premature disease, yet this risk is not captured in most 5- or 10-year risk assessment algorithms. Coronary artery calcium scoring (CCS) is a marker of subclinical CAD risk, which has been shown in observational studies to provide prognostic information that is incremental to clinical assessment; is relatively inexpensive; and is performed with a small radiation dose. However, the use of CCS in guiding prevention is not strongly supported by guidelines. Showing definitive evidence of the efficacy and cost-effectiveness of CCS is therefore of importance. The proposed randomized controlled trial of the use of CCS will be targeted to 40- to 70-year-old first-degree relatives of patients with CAD onset <60 years old or second-degree relatives of patients with onset <50 years old. Control patients will undergo standard risk scoring and be blinded to CCS results. In the intervention group, primary prevention in patients undergoing CCS will be informed by this score. At 3 years, effectiveness will be assessed on change in plaque volume at computed tomography coronary angiography, the extent of which has been strongly linked to outcome. The CAUGHT-CAD trial will provide evidence to inform the guidelines regarding the place of CCS in decision making regarding primary prevention of patients with a family history of premature disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Long-term pulmonary disease among Swiss childhood cancer survivors.

    PubMed

    Kasteler, Rahel; Weiss, Annette; Schindler, Matthias; Sommer, Grit; Latzin, Philipp; von der Weid, Nicolas X; Ammann, Roland A; Kuehni, Claudia E

    2018-01-01

    Pulmonary diseases are potentially severe late complications of childhood cancer treatment that increase mortality risk among survivors. This nationwide study assesses the prevalence and incidence of pulmonary diseases in long-term childhood cancer survivors (CCS) and their siblings, and quantifies treatment-related risks. As part of the Swiss Childhood Cancer Survivor Study, we studied CCS who were diagnosed between 1976 and 2005 and alive at least 5 years after diagnosis. We compared prevalence of self-reported pulmonary diseases (pneumonia, chest wall abnormalities, lung fibrosis, emphysema) between CCS and their siblings, calculated cumulative incidence of pulmonary diseases using the Kaplan-Meier method, and determined risk factors using multivariable logistic regression. CCS reported more pneumonias (10% vs. 7%, P = 0.020) and chest wall abnormalities (2% vs. 0.4%, P = 0.003) than siblings. Treatment with busulfan was associated with prevalence of pneumonia (odds ratio [OR] 4.0, 95% confidence interval [CI] 1.1-14.9), and thoracic surgery was associated with chest wall abnormalities and lung fibrosis (OR 4.1, 95% CI 1.6-10.7 and OR 6.3, 95% CI 1.7-26.6). Cumulative incidence of any pulmonary disease after 35 years of follow-up was 21%. For pneumonia, the highest cumulative incidence was seen in CCS treated with both pulmotoxic chemotherapy and radiotherapy to the thorax (23%). This nationwide study in CCS found an increased risk for pulmonary diseases, especially pneumonia, while still young, which indicates that CCS need long-term pulmonary follow-up. © 2017 Wiley Periodicals, Inc.

  6. Conformational ordering of biomolecules in the gas phase: nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility-mass spectrometer.

    PubMed

    May, Jody C; Goodwin, Cody R; Lareau, Nichole M; Leaptrot, Katrina L; Morris, Caleb B; Kurulugama, Ruwan T; Mordehai, Alex; Klein, Christian; Barry, William; Darland, Ed; Overney, Gregor; Imatani, Kenneth; Stafford, George C; Fjeldsted, John C; McLean, John A

    2014-02-18

    Ion mobility-mass spectrometry measurements which describe the gas-phase scaling of molecular size and mass are of both fundamental and pragmatic utility. Fundamentally, such measurements expand our understanding of intrinsic intramolecular folding forces in the absence of solvent. Practically, reproducible transport properties, such as gas-phase collision cross-section (CCS), are analytically useful metrics for identification and characterization purposes. Here, we report 594 CCS values obtained in nitrogen drift gas on an electrostatic drift tube ion mobility-mass spectrometry (IM-MS) instrument. The instrument platform is a newly developed prototype incorporating a uniform-field drift tube bracketed by electrodynamic ion funnels and coupled to a high resolution quadrupole time-of-flight mass spectrometer. The CCS values reported here are of high experimental precision (±0.5% or better) and represent four chemically distinct classes of molecules (quaternary ammonium salts, lipids, peptides, and carbohydrates), which enables structural comparisons to be made between molecules of different chemical compositions for the rapid "omni-omic" characterization of complex biological samples. Comparisons made between helium and nitrogen-derived CCS measurements demonstrate that nitrogen CCS values are systematically larger than helium values; however, general separation trends between chemical classes are retained regardless of the drift gas. These results underscore that, for the highest CCS accuracy, care must be exercised when utilizing helium-derived CCS values to calibrate measurements obtained in nitrogen, as is the common practice in the field.

  7. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer

    PubMed Central

    2014-01-01

    Ion mobility-mass spectrometry measurements which describe the gas-phase scaling of molecular size and mass are of both fundamental and pragmatic utility. Fundamentally, such measurements expand our understanding of intrinsic intramolecular folding forces in the absence of solvent. Practically, reproducible transport properties, such as gas-phase collision cross-section (CCS), are analytically useful metrics for identification and characterization purposes. Here, we report 594 CCS values obtained in nitrogen drift gas on an electrostatic drift tube ion mobility-mass spectrometry (IM-MS) instrument. The instrument platform is a newly developed prototype incorporating a uniform-field drift tube bracketed by electrodynamic ion funnels and coupled to a high resolution quadrupole time-of-flight mass spectrometer. The CCS values reported here are of high experimental precision (±0.5% or better) and represent four chemically distinct classes of molecules (quaternary ammonium salts, lipids, peptides, and carbohydrates), which enables structural comparisons to be made between molecules of different chemical compositions for the rapid “omni-omic” characterization of complex biological samples. Comparisons made between helium and nitrogen-derived CCS measurements demonstrate that nitrogen CCS values are systematically larger than helium values; however, general separation trends between chemical classes are retained regardless of the drift gas. These results underscore that, for the highest CCS accuracy, care must be exercised when utilizing helium-derived CCS values to calibrate measurements obtained in nitrogen, as is the common practice in the field. PMID:24446877

  8. Sustained risk of stent thrombosis and restenosis in first generation drug-eluting Stents after One Decade of Follow-up: A Report from the Swedish Coronary Angiography and Angioplasty Registry (SCAAR).

    PubMed

    Völz, Sebastian; Angerås, Oskar; Odenstedt, Jacob; Ioanes, Dan; Haraldsson, Inger; Dworeck, Christian; Redfors, Björn; Råmunddal, Truls; Albertsson, Per; Petursson, Petur; Omerovic, Elmir

    2018-05-10

    Long-term comparisons between Drug-eluting stent and bare metal stent are not well-studied. The aim of this study was to compare two stents that were previously frequently used in regard to long-term risk of restenosis and stent thrombosis (ST). We used data from the SCAAR registry. Consecutive procedures performed between 2004 and 2014 for stable angina, UA/NSTEMI and STEMI were included. We compared two different stents: Cordis Cypher Select (C-CS), and Boston Scientific Liberte (BS-L), modeling data with multilevel Cox proportional-hazards regression. The primary endpoint was time to first occurrence of either ST or restenosis. During the study period 2210 C-CS and 6941 B-SL were implanted in 5,314 patients. Mean follow-up time was 2,288 days for C-CS and 2,297 days for BS-L. Treatment with C-CS was associated with lower risk for restenosis or ST up to one year from index procedure (HR 0.41; 95% CI 0.32-0.52; P < .001). However, after one year of follow-up, risk was substantially higher in C-CS (HR 2.81; 95% CI 2.25-3.50; P < .001). Treatment with C-CS was not associated with better outcome than BS-L. Continuation of restenosis and ST long after the index procedure with C-CS present a major concern for patient safety. © 2018 Wiley Periodicals, Inc.

  9. EFFECTS OF TOPICAL CORTICOSTEROID ADMINISTRATION ON INTRAOCULAR PRESSURE IN NORMAL AND GLAUCOMATOUS CATS

    PubMed Central

    Gosling, Allyson A; Kiland, Julie A; Rutkowski, Lauren E; Hoefs, Adam; Ellinwood, N Matthew; McLellan, Gillian J

    2016-01-01

    Objective to determine the effect of topical corticosteroid (CCS) therapy on intraocular pressure (IOP) in normal cats and cats with primary feline congenital glaucoma (FCG). Animals studied 5 normal and 11 FCG cats were studied in 2 cohorts. Procedures IOP was measured by a single, masked observer, once daily 3–5 days/week throughout the course of CCS treatment and for up to 11 days after treatment discontinuation. One eye per cat was randomly assigned for treatment twice daily with CCS; Balanced salt solution (BSS) applied to the contralateral eye, served as a control. Differences between eyes and between weeks of the study period were calculated for each cat. A positive response to CCS was defined as a consistent >15% or >25% higher IOP in the treated relative to control eye in normal and FCG cats, respectively. Results 8/11 FCG cats responded to topical CCS after 1–5 weeks of treatment with an increase in IOP relative to the untreated eye (maximum IOP discrepancy of 56 mmHg). 2/5 normal cats responded to topical CCS with appreciable but clinically unimportant increase in IOP in the treated eye (maximum IOP discrepancy of 6.4 mmHg). Conclusions our data indicate that the incidence of steroid induced IOP elevation in cats is lower than previously published feline studies suggest. Cats with pre-existing compromise in aqueous humor outflow may show a greater, clinically relevant response to topical CCS than normal cats. PMID:26876736

  10. Immunogenicity, protective efficacy and mechanism of novel CCS adjuvanted influenza vaccine.

    PubMed

    Even-Or, Orli; Samira, Sarit; Rochlin, Eli; Balasingam, Shobana; Mann, Alex J; Lambkin-Williams, Rob; Spira, Jack; Goldwaser, Itzhak; Ellis, Ronald; Barenholz, Yechezkel

    2010-09-07

    We optimized the immunogenicity of adjuvanted seasonal influenza vaccine based on commercial split influenza virus as an antigen (hemagglutinin = HA) and on a novel polycationic liposome as a potent adjuvant and efficient antigen carrier (CCS/C-HA vaccine). The vaccine was characterized physicochemically, and the mechanism of action of CCS/C as antigen carrier and adjuvant was studied. The optimized CCS/C-HA split virus vaccine, when administered intramuscularly (i.m.), is significantly more immunogenic in mice, rats and ferrets than split virus HA vaccine alone, and it provides for protective immunity in ferrets and mice against live virus challenge that exceeds the degree of efficacy of the split virus vaccine. Similar adjuvant effects of optimized CCS/C are also observed in mice for H1N1 swine influenza antigen. The CCS/C-HA vaccine enhances immune responses via the Th1 and Th2 pathways, and it increases both the humoral responses and the production of IL-2 and IFN-γ but not of the pro-inflammatory factor TNFα. In mice, levels of CD4(+) and CD8(+) T-cells and of MHC II and CD40 co-stimulatory molecules are also elevated. Structure-function relationship studies of the CCS molecule as an adjuvant/carrier show that replacing the saturated palmitoyl acyl chain with the mono-unsaturated oleoyl (C18:1) chain affects neither size distribution and zeta potential nor immune responses in mice. However, replacing the polyalkylamine head group spermine (having two secondary amines) with spermidine (having only one secondary amine) reduces the enhancement of the immune response by ∼ 50%, while polyalkylamines by themselves are ineffective in improving the immunogenicity over the commercial HA vaccine. This highlights the importance of the particulate nature of the carrier and the polyalkylamine secondary amines in the enhancement of the immune responses against seasonal influenza. Altogether, our results suggest that the CCS/C polycationic liposomes combine the activities of a potent adjuvant and efficient carrier of seasonal and swine flu vaccines and support further development of the CCS/C-HA vaccine. Copyright © 2010. Published by Elsevier Ltd.

  11. The study between the dynamics and the X-ray anatomy and regularizing effect of gallbladder on bile duct sphincter of the dog.

    PubMed

    Wei, Jing-Guo; Wang, Yao-Cheng; Liang, Guo-Min; Wang, Wei; Chen, Bao-Ying; Xu, Jia-Kuan; Song, Li-Jun

    2003-05-01

    To study the relationship between the radiological anatomy and the dynamics on bile duct sphincter in bile draining and regularizing effect of gallbladder. Sixteen healthy dogs weighing 18 kg to 25 kg were divided randomly into control group and experimental group (cholecystectomy group). Cineradiography, manometry with perfusion, to effect of endogenous cholecystokinin and change of ultrastructure were employed. According to finding of the choledochography and manometry, in control group the intraluminal basal pressure of cephalic cyclic smooth muscle of choledochal sphincter cCS was 9.0+/-2.0 mmHg and that of middle oblique smooth muscle of choledochal sphincter (mOS) was 16.8+/-0.5 mmHg, the intraluminal basal pressure of cCS segment was obviously lower than that of mOS (P<0.01) in the interval period of bile draining, but significative difference of intraluminal basal pressure of the mOS segment was not found between the interval period of bile draining (16.8+/-0.5 mmHg) and the bile flowing period (15.9+/-0.9 mmHg) (P>0.05). The motility of cCS was mainly characterized by rhythmically concentric contraction, just as motility of cCS bile juice was pumped into the mOS segment in control group. And motility of mOS segment showed mainly diastolic and systolic activity of autonomically longitudinal peristalsis. There was spasmodic state in cCS and mOS segment and reaction to endogenous cholecystokinin was debased after cholecystectomy. The change of ultrastructure of cCS portion showed mainly that the myofilaments of cell line in derangement and mitochondria is swelling. During fasting, the cCS portion has a function as similar cardiac "pump" and it is main primary power source in bile draining, and mOS segment serves mainly as secondary power in bile draining. The existence of the intact gallbladder is one of the important factors in guaranteeing the functional coordination between the cCS and mOS of bile duct sphincter. There is dysfunction in the cCS and mOS with cholecystectomy.

  12. Development of a community commitment scale with cross-sectional survey validation for preventing social isolation in older Japanese people.

    PubMed

    Kono, Ayumi; Tadaka, Etsuko; Kanaya, Yukiko; Dai, Yuka; Itoi, Waka; Imamatsu, Yuki

    2012-10-24

    Elderly social isolation could be prevented by facilitating communication or mutual helping at the neighborhood level. The helping of elderly neighbors by local volunteers may relate to their community commitment (CC), but ways to measure CC have not been identified. The aim of the present study was to develop a Community Commitment Scale (CCS) to measure psychological sense of belonging and socializing in the community among local volunteers, for research in prevention of elderly social isolation. We also tested the CCS in a general population of the elderly. A pilot test of 266 Japanese urban residents was conducted to examine face validity for 24 identified items, of which 12 items were selected for the CCS, based on a 4-point Likert-type scale. The CCS was developed via self-report questionnaires to 859 local volunteers in two suburban cities and to 3484 randomly sampled general residents aged 55 years or older living in one of the cities. To assess concurrent validity, data were collected using the Brief Sense of Community Scale (Peterson; 2008) and two types of single questions on self-efficacy for helping elderly neighbors. Item analysis and factor analysis identified 8 items, which were classified between two datasets under the domains of "belonging" and "socializing" in the local volunteers and the general residents. Cronbach's alpha (which conveyed the internal consistency of the CCS) was 0.75 in local volunteers and 0.78 in general residents. The correlation coefficients between the scores of the CCS and BSCS were 0.54 for local volunteers and 0.62 for general residents. ANOVA comparing the CCS between the confidence levels of the two types of single question of self-efficacy on helping elderly neighbors showed a strong relationship in the volunteers and residents. These results demonstrate acceptable internal consistency and concurrent validity for the CCS, with the two dimensions "belonging" and "socializing", among the local volunteers and general residents in urban Japanese areas. Community commitment measured by the CCS was related to the degree of confidence for self-efficacy in helping elderly neighbors to prevent elderly social isolation.

  13. Multilocus Sequence Types of Campylobacter jejuni Isolates from Different Sources in Eastern China.

    PubMed

    Zhang, Gong; Zhang, Xiaoyan; Hu, Yuanqing; Jiao, Xin-An; Huang, Jinlin

    2015-09-01

    Campylobacter jejuni is a major food-borne pathogen that causes human gastroenteritis in many developed countries. In our study, we applied multilocus sequence typing (MLST) technology to 167 C. jejuni isolates from diverse sources in Eastern China to examine their genetic diversity. MLST defined 94 sequence types (STs) belonging to 18 clonal complexes (CCs). Forty-five STs from 60 isolates (36%) and 22 alleles have not been previously documented in an international database. One hundred and two isolates, accounting for 61.1% of all isolates, belonged to eight clonal complexes. The eight major CCs were also the most common complexes from different sources. The most common ST type of isolates from human and food was ST-353. The dominant ST type in chicken and foods was ST-354. Among 21 STs that contained two or more different sources isolates, 15 STs contained human isolates and isolates from other sources, suggesting that potentially pathogenic strains are not restricted to specific lineages.

  14. A Review of Major Non-Power-Related Carbon Dioxide Stream Compositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Last, George V.; Schmick, Mary T.

    A critical component in the assessment of long-term risk from geologic sequestration of carbon dioxide (CO2) is the ability to predict mineralogical and geochemical changes within storage reservoirs as a result of rock-brine-CO2 reactions. Impurities and/or other constituents in CO2 source streams selected for sequestration can affect both the chemical and physical (e.g., density, viscosity, interfacial tension) properties of CO2 in the deep subsurface. The nature and concentrations of these impurities are a function of both the industrial source(s) of CO2, as well as the carbon capture technology used to extract the CO2 and produce a concentrated stream for subsurfacemore » injection and geologic sequestration. This article reviews the relative concentrations of CO2 and other constituents in exhaust gases from major non-energy-related industrial sources of CO2. Assuming that carbon capture technology would remove most of the incondensable gases N2, O2, and Ar, leaving SO2 and NOx as the main impurities, the authors then summarize the relative proportions of the remaining impurities assumed to be present in CO2 source streams that could be targeted for geologic sequestration. The summary is presented relative to five potential sources of CO2: 1) Flue Gas with Flue Gas Desulfurization, 2) Combustion Stack from Coke Production, 3) Portland Cement Kilns, 4) Natural Gas Combustion, and 5) Lime Production.« less

  15. A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control.

    PubMed

    Rao, Anand B; Rubin, Edward S

    2002-10-15

    Capture and sequestration of CO2 from fossil fuel power plants is gaining widespread interest as a potential method of controlling greenhouse gas emissions. Performance and cost models of an amine (MEA)-based CO2 absorption system for postcombustion flue gas applications have been developed and integrated with an existing power plant modeling framework that includes multipollutant control technologies for other regulated emissions. The integrated model has been applied to study the feasibility and cost of carbon capture and sequestration at both new and existing coal-burning power plants. The cost of carbon avoidance was shown to depend strongly on assumptions about the reference plant design, details of the CO2 capture system design, interactions with other pollution control systems, and method of CO2 storage. The CO2 avoidance cost for retrofit systems was found to be generally higher than for new plants, mainly because of the higher energy penalty resulting from less efficient heat integration as well as site-specific difficulties typically encountered in retrofit applications. For all cases, a small reduction in CO2 capture cost was afforded by the SO2 emission trading credits generated by amine-based capture systems. Efforts are underway to model a broader suite of carbon capture and sequestration technologies for more comprehensive assessments in the context of multipollutant environmental management.

  16. Quantitative analysis of CPR quality during in-hospital resuscitation of older children and adolescents.

    PubMed

    Sutton, Robert M; Niles, Dana; Nysaether, Jon; Abella, Benjamin S; Arbogast, Kristy B; Nishisaki, Akira; Maltese, Matthew R; Donoghue, Aaron; Bishnoi, Ram; Helfaer, Mark A; Myklebust, Helge; Nadkarni, Vinay

    2009-08-01

    Few data exist on pediatric cardiopulmonary resuscitation (CPR) quality. This study is the first to evaluate actual in-hospital pediatric CPR. We hypothesized that with bedside CPR training and corrective feedback, CPR quality can approach American Heart Association (AHA) targets. Using CPR recording/feedback defibrillators, quality of CPR was assessed for patients >or=8 years of age who suffered a cardiac arrest in the PICU or emergency department (ED). Before and during the study, a bedside CPR training program was initiated. Between October 2006 and February 2008, twenty events in 18 patients met inclusion criteria and resulted in 36749 evaluable chest compressions (CCs) during 392.3 minutes of arrest. CCs were shallow (<38 mm or <1.5 in) in 27.2% (9998 of 36749), with excessive residual leaning force (>or=2500 g) in 23.4% (8611 of 36749). Segmental analysis of the first 5 minutes of the events demonstrated that shallow CCs and excessive residual leaning force were less prevalent during the first 5 minutes. AHA targets were not achieved for CC rate in 62 (43.1%) of 144 segments, CC depth in 52 (36.1%) of 144 segments, and residual leaning force in 53 (36.8%) of 144 segments. This prospective, observational study demonstrates feasibility of monitoring in-hospital pediatric CPR. Even with bedside CPR retraining and corrective audiovisual feedback, CPR quality frequently did not meet AHA targets. Importantly, no flow fraction target of 10% was achieved. Future studies should investigate novel educational methods and targeted feedback technologies.

  17. In-situ Optical Spectroscopy Investigation of Water and Its influence on Forsterite Transformation in Supercritical CO2

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Thompson, C. J.; Joly, A. G.; Sklarew, D. S.; Poindexter, L.; Rosso, K. M.

    2009-12-01

    Carbon capture and sequestration (CCS) from coal/gas-burning power plants is currently viewed as one of the most promising technologies for mitigating green house gas emissions. This strategy involves injection of supercritical CO2 (scCO2) into deep geological formations such as depleted oil and gas reservoirs and deep saline aquifers. The feasibility of this approach and the ultimate fate of the stored CO2 are determined by the interactions between scCO2, various minerals in the rock formations, and the host fluids. Currently, there is only limited knowledge about both the thermodynamic and kinetic aspects of the physical and chemical processes that occur between scCO2 and relevant minerals, such as metal silicates and metal aluminosilicates, and the role of water activity for catalyzing mineral transformation reactions. In this work, we have developed a modular in situ optical spectroscopic platform that integrates a scCO2 generation and manipulation system with an array of optical and laser spectroscopies including UV-visible, IR, Raman and laser fluorescence spectroscopy. We have used the system to study i) the dissolution and quantification of H2O/D2O in scCO2 and ii) interaction between scCO2 and a model metal silicate, forsterite (Mg2SiO4), and the effects of the presence of water under variable pressure, temperature and water content. Our results showed that H2O and D2O have unique IR spectral features over a broad spectral range from 700 cm-1 to ~ 2900 cm-1 in scCO2 and their concentrations are directly proportional to the characteristic IR bands that correspond to their stretching (D2O) and bending frequencies (both D2O and H2O). These bands offer a unique spectroscopic signature useful for qualitative and quantitative analysis of the properties and reactivity of small amounts of H2O in scCO2.

  18. Cu,Zn-superoxide dismutase is lower and copper chaperone CCS is higher in erythrocytes of copper-deficient rats and mice.

    PubMed

    West, Elizabeth C; Prohaska, Joseph R

    2004-09-01

    Discovery of a sensitive blood biochemical marker of copper status would be valuable for assessing marginal copper intakes. Rodent models were used to investigate whether erythrocyte concentrations of copper,zinc-superoxide dismutase (SOD), and the copper metallochaperone for SOD (CCS) were sensitive to dietary copper changes. Several models of copper deficiency were studied in postweanling male Holtzman rats, male Swiss Webster mice offspring, and both rat and mouse dams. Treatment resulted in variable but significantly altered copper status as evaluated by the presence of anemia, and lower liver copper and higher liver iron concentrations in copper-deficient compared with copper-adequate animals. Associated with this copper deficiency were consistent reductions in immunoreactive SOD and robust enhancements in CCS. In most cases, the ratio of CCS:SOD was several-fold higher in red blood cell extracts from copper-deficient compared with copper-adequate rodents. Determination of red cell CCS:SOD may be useful for assessing copper status of humans.

  19. Stroke-Related Knowledge, Beliefs, and Behaviours of Chinese and European Canadians: Implications for Physical Therapists

    PubMed Central

    Li, Zhenyi; Jongbloed, Lyn

    2014-01-01

    ABSTRACT Purpose: To improve cross-cultural health education on risk-reducing behaviour change by examining the stroke-related knowledge, beliefs, and behaviours of Chinese Canadians (CCs). Methods: Participants (103 first-generation CCs and 101 European Canadians [ECs] representing the dominant cultural group in Canada) completed a cross-sectional questionnaire about knowledge, health behaviours, and beliefs related to stroke. Results: Compared with ECs, CCs were less aware of risk factors, warning signs, and appropriate responses to stroke in others. Information sources about stroke included mass media, family, and friends. CCs were less likely to smoke and drink alcohol but were also less likely to be physically active or to participate in structured exercise, less likely to have a healthy diet, and more likely to report stress. Conclusions: Theoretical dimensions of culture may explain variations in stroke-related knowledge, behaviours, and beliefs between CCs and ECs. Awareness of cultural differences can help physical therapists evaluate clients and appropriately tailor lifestyle-related health education. PMID:24799757

  20. Molecular, biophysical, and pharmacological properties of calcium-activated chloride channels.

    PubMed

    Kamaleddin, Mohammad Amin

    2018-02-01

    Calcium-activated chloride channels (CaCCs) are a family of anionic transmembrane ion channels. They are mainly responsible for the movement of Cl - and other anions across the biological membranes, and they are widely expressed in different tissues. Since the Cl - flow into or out of the cell plays a crucial role in hyperpolarizing or depolarizing the cells, respectively, the impact of intracellular Ca 2+ concentration on these channels is attracting a lot of attentions. After summarizing the molecular, biophysical, and pharmacological properties of CaCCs, the role of CaCCs in normal cellular functions will be discussed, and I will emphasize how dysregulation of CaCCs in pathological conditions can account for different diseases. A better understanding of CaCCs and a pivotal regulatory role of Ca 2+ can shed more light on the therapeutic strategies for different neurological disorders that arise from chloride dysregulation, such as asthma, cystic fibrosis, and neuropathic pain. © 2017 Wiley Periodicals, Inc.

  1. Stroke-related knowledge, beliefs, and behaviours of chinese and European canadians: implications for physical therapists.

    PubMed

    Li, Zhenyi; Jongbloed, Lyn; Dean, Elizabeth

    2014-01-01

    To improve cross-cultural health education on risk-reducing behaviour change by examining the stroke-related knowledge, beliefs, and behaviours of Chinese Canadians (CCs). Participants (103 first-generation CCs and 101 European Canadians [ECs] representing the dominant cultural group in Canada) completed a cross-sectional questionnaire about knowledge, health behaviours, and beliefs related to stroke. Compared with ECs, CCs were less aware of risk factors, warning signs, and appropriate responses to stroke in others. Information sources about stroke included mass media, family, and friends. CCs were less likely to smoke and drink alcohol but were also less likely to be physically active or to participate in structured exercise, less likely to have a healthy diet, and more likely to report stress. Theoretical dimensions of culture may explain variations in stroke-related knowledge, behaviours, and beliefs between CCs and ECs. Awareness of cultural differences can help physical therapists evaluate clients and appropriately tailor lifestyle-related health education.

  2. Separation and capture of CO2 from large stationary sources and sequestration in geological formations--coalbeds and deep saline aquifers.

    PubMed

    White, Curt M; Strazisar, Brian R; Granite, Evan J; Hoffman, James S; Pennline, Henry W

    2003-06-01

    The topic of global warming as a result of increased atmospheric CO2 concentration is arguably the most important environmental issue that the world faces today. It is a global problem that will need to be solved on a global level. The link between anthropogenic emissions of CO2 with increased atmospheric CO2 levels and, in turn, with increased global temperatures has been well established and accepted by the world. International organizations such as the United Nations Framework Convention on Climate Change (UNFCCC) and the Intergovernmental Panel on Climate Change (IPCC) have been formed to address this issue. Three options are being explored to stabilize atmospheric levels of greenhouse gases (GHGs) and global temperatures without severely and negatively impacting standard of living: (1) increasing energy efficiency, (2) switching to less carbon-intensive sources of energy, and (3) carbon sequestration. To be successful, all three options must be used in concert. The third option is the subject of this review. Specifically, this review will cover the capture and geologic sequestration of CO2 generated from large point sources, namely fossil-fuel-fired power gasification plants. Sequestration of CO2 in geological formations is necessary to meet the President's Global Climate Change Initiative target of an 18% reduction in GHG intensity by 2012. Further, the best strategy to stabilize the atmospheric concentration of CO2 results from a multifaceted approach where sequestration of CO2 into geological formations is combined with increased efficiency in electric power generation and utilization, increased conservation, increased use of lower carbon-intensity fuels, and increased use of nuclear energy and renewables. This review covers the separation and capture of CO2 from both flue gas and fuel gas using wet scrubbing technologies, dry regenerable sorbents, membranes, cryogenics, pressure and temperature swing adsorption, and other advanced concepts. Existing commercial CO2 capture facilities at electric power-generating stations based on the use of monoethanolamine are described, as is the Rectisol process used by Dakota Gasification to separate and capture CO2 from a coal gasifier. Two technologies for storage of the captured CO2 are reviewed--sequestration in deep unmineable coalbeds with concomitant recovery of CH4 and sequestration in deep saline aquifers. Key issues for both of these techniques include estimating the potential storage capacity, the storage integrity, and the physical and chemical processes that are initiated by injecting CO2 underground. Recent studies using computer modeling as well as laboratory and field experimentation are presented here. In addition, several projects have been initiated in which CO2 is injected into a deep coal seam or saline aquifer. The current status of several such projects is discussed. Included is a commercial-scale project in which a million tons of CO2 are injected annually into an aquifer under the North Sea in Norway. The review makes the case that this can all be accomplished safely with off-the-shelf technologies. However, substantial research and development must be performed to reduce the cost, decrease the risks, and increase the safety of sequestration technologies. This review also includes discussion of possible problems related to deep injection of CO2. There are safety concerns that need to be addressed because of the possibilities of leakage to the surface and induced seismic activity. These issues are presented along with a case study of a similar incident in the past. It is clear that monitoring and verification of storage will be a crucial part of all geological sequestration practices so that such problems may be avoided. Available techniques include direct measurement of CO2 and CH4 surface soil fluxes, the use of chemical tracers, and underground 4-D seismic monitoring. Ten new hypotheses were formulated to describe what happens when CO2 is pumped into a coal seam. These hypotheses provide significant insight into the fundamental chemical, physical, and thermodynamic phenomena that occur during coal seam sequestration of CO2.

  3. 75 FR 45185 - Self-Regulatory Organizations; New York Stock Exchange LLC and NYSE Amex LLC; Order Approving...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... side interest. DMM CCS interest would not be accessed to fill or partially fill an incoming odd-lot... lot.\\14\\ As is the case today, DMM CCS interest would be required to be for a minimum of a round lot. However, a DMM would be allowed to provide CCS interest in PRL quantities.\\15\\ \\14\\ See proposed Rule 1000...

  4. Poly(methacrylic acid)-grafted chitosan microspheres via surface-initiated ATRP for enhanced removal of Cd(II) ions from aqueous solution.

    PubMed

    Huang, Liqiang; Yuan, Shaojun; Lv, Li; Tan, Guangqun; Liang, Bin; Pehkonen, S O

    2013-09-01

    Cross-linked chitosan (CCS) microspheres tethered with pH-sensitive poly(methacrylic acid) (PMAA) brushes were developed for the efficient removal of Cd(II) ions from aqueous solutions. Functional PMAA brushes containing dense and active carboxyl groups (COOH) were grafted onto the CCS microsphere surface via surface-initiated atom transfer radical polymerization (ATRP). Batch adsorption results showed that solution pH values had a major impact on cadmium adsorption by the PMAA-grafted CCS microspheres with the optimal removal observed above pH 5. The CCS-g-PMAA microsphere was found to achieve the adsorption equilibrium of Cd(II) within 1 h, much faster than about 7 h on the CCS microsphere. At pH 5 and with an initial concentration 0.089-2.49 mmol dm(-3), the maximum adsorption capacity of Cd(II), derived from the Langmuir fitting on the PMAA-grafted microspheres was around 1.3 mmol g(-1). Desorption and adsorption cycle experimental results revealed that the PMAA-grafted CCS microspheres loaded with Cd(II) can be effectively regenerated in a dilute HNO3 solution, and the adsorption capacity remained almost unchanged upon five cycle reuse. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. A novel, simple scale for assessing the symptom severity of atrial fibrillation at the bedside: the CCS-SAF scale.

    PubMed

    Dorian, Paul; Cvitkovic, Suzan S; Kerr, Charles R; Crystal, Eugene; Gillis, Anne M; Guerra, Peter G; Mitchell, L Brent; Roy, Denis; Skanes, Allan C; Wyse, D George

    2006-04-01

    The severity of symptoms caused by atrial fibrillation (AF) is extremely variable. Quantifying the effect of AF on patient well-being is important but there is no simple, commonly accepted measure of the effect of AF on quality of life (QoL). Current QoL measures are cumbersome and impractical for clinical use. To create a simple, concise and readily usable AF severity score to facilitate treatment decisions and physician communication. The Canadian Cardiovascular Society (CCS) Severity of Atrial Fibrillation (SAF) Scale is analogous to the CCS Angina Functional Class. The CCS-SAF score is determined using three steps: documentation of possible AF-related symptoms (palpitations, dyspnea, dizziness/syncope, chest pain, weakness/fatigue); determination of symptom-rhythm correlation; and assessment of the effect of these symptoms on patient daily function and QoL. CCS-SAF scores range from 0 (asymptomatic) to 4 (severe impact of symptoms on QoL and activities of daily living). Patients are also categorized by type of AF (paroxysmal versus persistent/permanent). The CCS-SAF Scale will be validated using accepted measures of patient-perceived severity of symptoms and impairment of QoL and will require 'field testing' to ensure its applicability and reproducibility in the clinical setting. This type of symptom severity scale, like the New York Heart Association Functional Class for heart failure symptoms and the CCS Functional Class for angina symptoms, trades precision and comprehensiveness for simplicity and ease of use at the bedside. A common language to quantify AF severity may help to improve patient care.

  6. Collision cross section (CCS) measurement by ion cyclotron resonance mass spectrometry with short-time Fourier transform.

    PubMed

    Hu, Miao; Zhang, Linzhou; He, Shan; Xu, Chunming; Shi, Quan

    2018-05-15

    The collision cross section (CCS) is an important shape parameter which is often used in molecular structure investigation. In Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), the CCS affects the ion signal damping shape due to the effect of ion-neutral collisions. It is potential to obtain ion CCS values from FTICR-MS with the help of a proper ion-collision model. We have developed a rapid method to obtain the ion damping profile and CCS for mixtures by only one FTICR-MS measurement. The method utilizes short-time Fourier transform (STFT) to process FTICR-MS time domain signals. The STFT-processed result is a three-dimensional (3D) spectrum which has an additional time axis in addition to the conventional mass-to-charge ratio and intensity domains. The damping profile of each ion can be recognized from the 3D spectrum. After extracting the decay profile of a specified ion, all the three ion-neutral collision models were tested in curve fitting. The hard-sphere model was proven to be suitable for our experimental setup. A linear relationship was observed between the CCS value and hard-sphere model parameters. Therefore, the CCS values of all the peaks were obtained through the addition of internal model compounds and linear calibration. The proposed method was successfully applied to determine the CCSs of fatty acids and polyalanines in a petroleum gas oil matrix. This technique can be used for simultaneous measurement of cross sections for many ions in congested spectra. Copyright © 2018 John Wiley & Sons, Ltd.

  7. [Assessment of Couples' Communication in Patients with Advanced Cancer: Validation of a German Version of the Couple Communication Scale (CCS)].

    PubMed

    Conrad, Martina; Engelmann, Dorit; Friedrich, Michael; Scheffold, Katharina; Philipp, Rebecca; Schulz-Kindermann, Frank; Härter, Martin; Mehnert, Anja; Koranyi, Susan

    2018-04-13

    There are only a few valid instruments measuring couples' communication in patients with cancer for German speaking countries. The Couple Communication Scale (CCS) represents an established instrument to assess couples' communication. However, there is no evidence regarding the psychometric properties of the German version of the CCS until now and the assumed one factor structure of the CCS was not verified for patients with advanced cancer yet. The CCS was validated as a part of the study "Managing cancer and living meaningfully" (CALM) on N=136 patients with advanced cancer (≥18 years, UICC-state III/IV). The psychometric properties of the scale were calculated (factor reliability, item reliability, average variance extracted [DEV]) and a confirmatory factor analysis was conducted (Maximum Likelihood Estimation). The concurrent validity was tested against symptoms of anxiety (GAD-7), depression (BDI-II) and attachment insecurity (ECR-M16). In the confirmatory factor analysis, the one factor structure showed a low, but acceptable model fit and explained on average 49% of every item's variance (DEV). The CCS has an excellent internal consistency (Cronbachs α=0,91) and was negatively associated with attachment insecurity (ECR-M16: anxiety: r=- 0,55, p<0,01; avoidance: r=- 0,42, p<0,01) as well as with anxiety (GAD-7: r=- 0,20, p<0,05) and depression (BDI-II: r=- 0,27, p<0,01). The CCS is a reliable and valid instrument measuring couples' communication in patients with advanced cancer. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Lateral Sinus Dural Arteriovenous Fistulas: Sinovenous Outflow Restriction Outweighs Cortical Venous Reflux as a Parameter Associated with Hemorrhage.

    PubMed

    Hu, Yong-Sin; Lin, Chung-Jung; Wu, Hsiu-Mei; Guo, Wan-Yuo; Luo, Chao-Bao; Wu, Chih-Chun; Chung, Wen-Yuh; Liu, Kang-Du; Yang, Huai-Che; Lee, Cheng-Chia

    2017-11-01

    Purpose To investigate whether sinovenous outflow restriction (SOR) is more strongly associated with hemorrhage than cortical venous reflux (CVR) in patients with lateral sinus dural arteriovenous fistulas (DAVFs). Materials and Methods An institutional review board approved this retrospective study and waiver of informed consent was obtained. From 1995 to 2016, 163 cases of lateral sinus DAVFs were included and divided into hemorrhagic and nonhemorrhagic groups based on initial presentation. Their angiograms and magnetic resonance images were evaluated, with two evaluators independently grading CVR and SOR. The SOR was scored as the combined conduit score (CCS), ranging from zero (total occlusion) to 8 (fully patent). The CVR and CCS of the hemorrhagic and nonhemorrhagic groups were compared. Logistic regression models were established for both the CVR and CCS to compare their performances in discriminating DAVF hemorrhage. Results Sinovenous outflow was significantly more restrictive (lower median CCS) in the hemorrhagic group than in the nonhemorrhagic group (1 vs 6.5; P < .001). A CCS of less than or equal to 2 best discriminated between the groups with a sensitivity of 90.0% and a specificity of 88.1%. The CCS model had a higher discriminative performance than did the CVR model (area under the curve, 0.933 vs 0.843; P = .018). Conclusion The CCS grading system semiquantifies SOR. SOR may represent a stronger risk factor associated with hemorrhage in patients with lateral sinus DAVFs than does CVR, and thus may offer guidance in therapeutic decision making. © RSNA, 2017.

  9. Effects of Plyometric Versus Concentric and Eccentric Conditioning Contractions on Upper-Body Postactivation Potentiation.

    PubMed

    Ulrich, Gert; Parstorfer, Mario

    2017-07-01

    There are limited data on postactivation potentiation's (PAP) effects after plyometric conditioning contractions (CCs), especially in the upper body. This study compared plyometric CCs with concentric-eccentric and eccentric CCs aiming to improve upper-body power performance due to a PAP effect. Sixteen resistance-trained males completed 3 experimental trials in a randomized order that comprised either a plyometric (PLY), a concentric-eccentric (CON), or an eccentric-only (ECC) CC. Maximal muscle performance, as determined by a ballistic bench-press throw, was measured before (baseline) and 1, 4, 8, 12, and 16 min after each CC. Compared with baseline, bench-press power was significantly enhanced only in CON (P = .046, ES = 0.21) after 8 min of recovery. However, the results obtained from the comparisons between baseline power performance and the individual best power performance for each subject after each CC stimulus showed significant increases in PLY (P < .001, ES = 0.31) and CON (P < .001, ES = 0.38). There was no significant improvement in ECC (P = .106, ES = 0.11). The results indicate that only CON CCs generated increases in bench-press power after 8 min of rest. However, considering an individual rest interval, PLY CCs led to an enhanced power performance in the bench-press exercise, and this increase was comparable to that induced by CON CCs. Due to the easy practical application before a competition, PLY CCs might be an interesting part of warm-up strategies aiming to improve upper-body power performance by reason of PAP.

  10. Comparison of Diagnostic Yield of a FISH Panel Against Conventional Cytogenetic Studies for Hematological Malignancies: A South Indian Referral Laboratory Analysis Of 201 Cases

    PubMed Central

    Ashok, Vishal; Ranganathan, Ramya; Chander, Smitha; Damodar, Sharat; Bhat, Sunil; KS, Nataraj; A, Satish Kumar; Jadav, Sachin Suresh; Rajashekaraiah, Mahesh; TS, Sundareshan

    2017-01-01

    Objectives: Genetic markers are crucial fort diagnostic and prognostic investigation of hematological malignancies (HM). The conventional cytogenetic study (CCS) has been the gold standard for more than five decades. However, FISH (Fluorescence in Situ Hybridization) testing has become a popular modality owing to its targeted approach and the ability to detect abnormalities in non-mitotic cells. We here aimed to compare the diagnostic yields of a FISH panel against CCS in HMs. Methods: Samples of bone marrow and peripheral blood for a total of 201 HMs were tested for specific gene rearrangements using multi-target FISH and the results were compared with those from CCS. Results: Exhibited a greater diagnostic yield with a positive result in 39.8% of the cases, as compared to 17.9% of cases detected by CCS. Cases of chronic lymphocytic leukaemia (CLL) benefited the most by FISH testing, which identified chromosomal aberrations beyond the capacity of CCS. FISH was least beneficial in myelodysplastic syndrome (MDS) where the highest concordance with CCS was exhibited. Acute lymphocytic leukaemia (ALL) demonstrated greater benefit with CCS. In addition, we found the following abnormalities to be most prevalent in HMs by FISH panel testing: RUNX1 (21q22) amplification in ALL, deletion of D13S319/LAMP1 (13q14) in CLL, CKS1B (1q21) amplification in multiple myeloma and deletion of EGR1/RPS14 (5q31/5q32) in MDS, consistent with the literature. Conclusions: In conclusion, FISH was found to be advantageous in only a subset of HMs and cannot completely replace CCS. Utilization of the two modalities in conjunction or independently should depend on the indicated HM for an optimal approach to detecting chromosomal aberrations. PMID:29286619

  11. A pilot study of dentists' assessment of caries detection and staging systems applied to early caries: PEARL Network findings.

    PubMed

    Thompson, Van P; Schenkel, Andrew B; Penugonda, Bapanaiah; Wolff, Mark S; Zeller, Gregory G; Wu, Hongyu; Vena, Don; Grill, Ashley C; Curro, Frederick A

    2016-01-01

    The International Caries Detection and Assessment System (ICDAS II) and the Caries Classification System (CCS) are caries stage description systems proposed for adoption into clinical practice. This pilot study investigated clinicians' training in and use of these systems for detection of early caries and recommendations for individual tooth treatment. Patient participants (N = 8) with a range of noncavitated lesions (CCS ranks 2 and 4 and ICDAS II ranks 2-4) identified by a team of calibrated examiners were recruited from the New York University College of Dentistry clinic. Eighteen dentists-8 from the Practitioners Engaged in Applied Research and Learning (PEARL) Network and 10 recruited from the Academy of General Dentistry-were randomly assigned to 1 of 3 groups: 5 dentists used only visual-tactile (VT) examination, 7 were trained in the ICDAS II, and 6 were trained in the CCS. Lesion stage for each tooth was determined by the ICDAS II and CCS groups, and recommended treatment was decided by all groups. Teeth were assessed both with and without radiographs. Caries was detected in 92.7% (95% CI, 88%-96%) of the teeth by dentists with CCS training, 88.8% (95% CI, 84%-92%) of the teeth by those with ICDAS II training, and 62.3% (95% CI, 55%-69%) of teeth by the VT group. Web-based training was acceptable to all dentists in the CCS group (6 of 6) but fewer of the dentists in the ICDAS II group (5 of 7). The modified CCS translated clinically to more accurate caries detection, particularly compared to detection by untrained dentists (VT group). Moreover, the CCS was more accepted than was the ICDAS II, but dentists in both groups were open to the application of these systems. Agreement on caries staging requires additional training prior to a larger validation study.

  12. Acute rejection characteristics from a prospective, randomized, double-blind, placebo-controlled multicenter trial of early corticosteroid withdrawal.

    PubMed

    Gaber, A Osama; Moore, Linda W; Alloway, Rita R; Woodle, E Steve; Pirsch, John; Shihab, Fuad; Henning, Alice; Fitzsimmons, William; Holman, John; Reisfield, Robin; First, M Roy

    2013-02-27

    This report characterizes acute rejection and rejection outcomes in subjects randomized to continuous corticosteroid therapy (CCS) or early corticosteroid withdrawal (CSWD; 7 days after transplantation) in the Astellas Blinded CSWD Trial. The Astellas Blinded CSWD Trial was a 5-year, prospective, multicenter, randomized, double-blind trial of early CCS withdrawal in 386 kidney transplant recipients (195 CCS and 191 CSWD). Tacrolimus and mycophenolate mofetil were required as well as either rabbit antithymocyte globulin or interleukin-2 receptor antibody induction. Biopsy-confirmed acute rejection (BCAR) was grade 1A or higher by Banff criteria. This report also provides borderline changes (BL) that did not meet Banff grade 1A included with BCAR (BCAR+BL). BCAR+BL was 25 (12.8%) in CCS group and 42 (22.0%) in CSWD group (P=0.022). Early BCAR+BL (first 90 days after transplantation) was less frequent in CCS (n=5 [2.6%]) than in CSWD (n=22 [11.5%]; P<0.001). Among non-African-American subjects, early BCAR+BL occurred more often in CSWD (n=20 [12.7%]) versus CCS (n=2 [1.3%]; P<0.001). Late acute rejection (>2 years) occurred more often in African-American subjects in CCS (n=5 [13.9%]) than in CSWD (n=0; P=0.056). Risk factors were CSWD (hazard ratio [HR], 4.72; P<0.002) and human leukocyte antigen mismatch (HR, 1.48; P<0.005) for early BCAR+BL and CSWD (HR, 1.9; P<0.02), human leukocyte antigen mismatch (HR, 1.2; P<0.01), and age (HR, 0.97; P<0.002) for 5-year rejection. The HR for graft loss associated with BCAR+BL was 8.8. BCAR+BL may occur more frequently during the early period after transplantation under an early CSWD regimen with tacrolimus plus induction compared with CCS, particularly among non-African-Americans.

  13. Clinicopathological characteristics of KIT and protein kinase C-δ expression in adenoid cystic carcinoma: comparison with chromophobe renal cell carcinoma and gastrointestinal stromal tumour.

    PubMed

    Park, Cheol Keun; Kim, Won Kyu; Kim, Hoguen

    2017-10-01

    KIT overexpression is frequently observed in adenoid cystic carcinomas (AdCCs), chromophobe renal cell carcinomas (ChRCCs), and gastrointestinal stromal tumours (GISTs). Persistent KIT activation has been reported to be mediated by protein kinase C (PKC)-δ in a subset of colon cancers with wild-type KIT overexpression, and by PKC-θ in GISTs with mutant KIT overexpression. To elucidate the clinical implications of PKC-δ and PKC-θ expression in KIT-expressing tumours, we investigated the expression of KIT, PKC-δ and PKC-θ in AdCCs and ChRCCs in comparison with GISTs. KIT expression, PKC-δ expression and PKC-θ expression were analysed in whole sections from 41 AdCCs, 40 ChRCCs and 56 GISTs by immunohistochemistry. Membranous expression of KIT was found in 34 AdCCs and all ChRCCs, whereas cytoplasmic expression of KIT was found in 46 GISTs. In AdCCs, PKC-δ expression was associated with histological grade (P = 0.049), lymphovascular invasion (P = 0.004), perineural invasion (P = 0.002), and KIT positivity (P = 0.002). PKC-δ positivity was associated with shorter relapse-free survival (RFS) (P = 0.017) and a tendency for there to be shorter overall survival (OS) (P = 0.090) in patients with AdCCs. No clinicopathological associations were observed between PKC-δ and KIT expression in ChRCCs. In GISTs, PKC-θ expression was associated with higher mitotic count (P = 0.011) and high grade according to the modified National Institutes of Health criteria (P < 0.001). PKC-θ positivity was associated with shorter RFS (P = 0.016) and a tendency for there to be shorter OS (P = 0.051) in patients with GISTs. PKC-δ expression is associated with KIT expression and the prognosis of patients with AdCCs, suggesting that PKC-δ may be a potential therapeutic target for AdCCs. © 2017 The Authors. Histopathology published by John Wiley & Sons Ltd.

  14. Socioeconomic inequalities to accessing vaccination against human papillomavirus in France: Results of the Health, Health Care and Insurance Survey, 2012.

    PubMed

    Guthmann, J-P; Pelat, C; Célant, N; Parent du Chatelet, I; Duport, N; Rochereau, T; Lévy-Bruhl, D

    2017-04-01

    In France, human papillomavirus (HPV) vaccination coverage among adolescents and young women is low and decreasing. We analysed data from the 2012 Health, Health Care and Insurance Survey with the aim of identifying factors associated with this vaccination. We also compared the socioeconomic profile of unvaccinated young women to that of women who do not undergo cervical cancer screening (CCS). Data were collected through interviews and self-administered questionnaires completed by a randomised sample of Health insurance beneficiaries. Two analyses were performed using Poisson regression: one to investigate the determinants of CCS uptake in women aged 25-65 years old (n=4508), the other to investigate the determinants of HPV vaccination in young women aged 16-24 years old (n=899). A sub-analysis was performed in 685 "daughter-mother" couples from the same household in order to analyse the association between participation to CCS in mothers and HPV vaccination in daughters. Factors significantly associated both to a lower CCS uptake and to an insufficient HPV vaccination were the lack of a complementary private health insurance (P=0.023 and P=0.037, respectively) and living in a family with a low household income (P<0.001 and P=0.005, respectively). A low education level was associated to a lower CCS uptake (P<0.001). The absence of CCS uptake in the last three years in mothers was associated to a lower level of HPV vaccination in their daughter (P=0.014). Women who do not undergo CCS and HPV unvaccinated young women tend to be of modest socioeconomic status. Unvaccinated young females tend to have mothers who do not undergo CCS and are therefore at risk of benefiting from none of the two cervical cancer preventive measures. The current implementation strategy concerning HPV vaccination in France may therefore increase inequalities regarding cervical cancer prevention. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Gas phase carbonyl compounds in ship emissions: Differences between diesel fuel and heavy fuel oil operation

    NASA Astrophysics Data System (ADS)

    Reda, Ahmed A.; Schnelle-Kreis, J.; Orasche, J.; Abbaszade, G.; Lintelmann, J.; Arteaga-Salas, J. M.; Stengel, B.; Rabe, R.; Harndorf, H.; Sippula, O.; Streibel, T.; Zimmermann, R.

    2014-09-01

    Gas phase emission samples of carbonyl compounds (CCs) were collected from a research ship diesel engine at Rostock University, Germany. The ship engine was operated using two different types of fuels, heavy fuel oil (HFO) and diesel fuel (DF). Sampling of CCs was performed from diluted exhaust using cartridges and impingers. Both sampling methods involved the derivatization of CCs with 2,4-Dinitrophenylhydrazine (DNPH). The CCs-hydrazone derivatives were analyzed by two analytical techniques: High Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD) and Gas Chromatography-Selective Ion Monitoring-Mass Spectrometry (GC-SIM-MS). Analysis of DNPH cartridges by GC-SIM-MS method has resulted in the identification of 19 CCs in both fuel operations. These CCs include ten aliphatic aldehydes (formaldehyde, acetaldehyde, propanal, isobutanal, butanal, isopentanal, pentanal, hexanal, octanal, nonanal), three unsaturated aldehydes (acrolein, methacrolein, crotonaldehyde), three aromatic aldehyde (benzaldehyde, p-tolualdehyde, m,o-molualdehyde), two ketones (acetone, butanone) and one heterocyclic aldehyde (furfural). In general, all CCs under investigation were detected with higher emission factors in HFO than DF. The total carbonyl emission factor was determined and found to be 6050 and 2300 μg MJ-1 for the operation with HFO and DF respectively. Formaldehyde and acetaldehyde were found to be the dominant carbonyls in the gas phase of ship engine emission. Formaldehyde emissions factor varied from 3500 μg MJ-1 in HFO operation to 1540 μg MJ-1 in DF operation, which is 4-30 times higher than those of other carbonyls. Emission profile contribution of CCs showed also a different pattern between HFO and DF operation. The contribution of formaldehyde was found to be 58% of the emission profile of HFO and about 67% of the emission profile of DF. Acetaldehyde showed opposite behavior with higher contribution of 16% in HFO compared to 11% for DF. Heavier carbonyls (more than two carbon atoms) showed also more contribution in the emission profile of the HFO fuel (26%) than in DF (22%).

  16. Greenhouse Gas Fluxes at the Tablelands, NL, Canada: A Site of Active Serpentinization

    NASA Astrophysics Data System (ADS)

    Morrill, P. L.; Morrissey, L. S.; Cumming, E.

    2016-12-01

    Active sites of serpentinization have been proposed as sites for carbon capture and storage (CCS) projects. However, in addition to their ability to convert carbon dioxide to carbonate rock, sites of serpentinization also have the potential release methane, which is a more power greenhouse gas than carbon dioxide. Very little is known about the natural flux of carbon dioxide sequestered and methane released into the atmosphere from active sites of serpentinization. In this study we measured carbon dioxide, methane, and nitrous oxide gas fluxes at a pool of ultra-basic water discharging from serpentinized rock in Winterhouse Canyon, Gros Morne, Newfoundland. We found that the flux of methane released was 4.6 x 10-7 mol/m2/min and the carbon dioxide sequestered was 1.9 x 10-5 mol/m2/min, while the concentrations of nitrous oxide showed little change. Based on these fluxes we calculated predictive climate change parameters such as net radiative forcing and global warming potential which predicted that despite the methane being released the site still had an overall long-term atmospheric cooling effect based on the natural rate of carbon dioxide sequestration.

  17. Imine-Linked Polymer Based Nitrogen-Doped Porous Activated Carbon for Efficient and Selective CO2 Capture.

    PubMed

    Alabadi, Akram; Abbood, Hayder A; Li, Qingyin; Jing, Ni; Tan, Bien

    2016-12-13

    The preparation of nitrogen-doped activated carbon (NACs) has received significant attention because of their applications in CO 2 capture and sequestration (CCS) owing to abundant nitrogen atoms on their surface and controllable pore structures by carefully controlled carbonization. We report high-surface-area porous N-doped activated carbons (NAC) by using soft-template-assisted self-assembly followed by thermal decomposition and KOH activation. The activation process was carried out under different temperature conditions (600-800 °C) using polyimine as precursor. The NAC-800 was found to have a high specific surface area (1900 m 2  g -1 ), a desirable micropore size below 1 nm and, more importantly, a large micropore volume (0.98 cm 3  g -1 ). NAC-800 also exhibits a significant capacity of CO 2 capture i.e., over 6. 25 and 4.87 mmol g -1 at 273 K and 298 K respectively at 1.13 bar, which is one of among the highest values reported for porous carbons so far. Moreover, NAC also shows an excellent separation selectivity for CO 2 over N 2 .

  18. Imine-Linked Polymer Based Nitrogen-Doped Porous Activated Carbon for Efficient and Selective CO2 Capture

    PubMed Central

    Alabadi, Akram; Abbood, Hayder A.; Li, Qingyin; Jing, Ni; Tan, Bien

    2016-01-01

    The preparation of nitrogen-doped activated carbon (NACs) has received significant attention because of their applications in CO2 capture and sequestration (CCS) owing to abundant nitrogen atoms on their surface and controllable pore structures by carefully controlled carbonization. We report high-surface-area porous N-doped activated carbons (NAC) by using soft-template-assisted self-assembly followed by thermal decomposition and KOH activation. The activation process was carried out under different temperature conditions (600–800 °C) using polyimine as precursor. The NAC-800 was found to have a high specific surface area (1900 m2 g−1), a desirable micropore size below 1 nm and, more importantly, a large micropore volume (0.98 cm3 g−1). NAC-800 also exhibits a significant capacity of CO2 capture i.e., over 6. 25 and 4.87 mmol g−1 at 273 K and 298 K respectively at 1.13 bar, which is one of among the highest values reported for porous carbons so far. Moreover, NAC also shows an excellent separation selectivity for CO2 over N2. PMID:27958305

  19. Time-Lapse Seismic Monitoring and Performance Assessment of CO 2 Sequestration in Hydrocarbon Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta-Gupta, Akhil

    Carbon dioxide sequestration remains an important and challenging research topic as a potentially viable approach for mitigating the effects of greenhouse gases on global warming (e.g., Chu and Majumdar, 2012; Bryant, 2007; Orr, 2004; Hepple and Benson, 2005; Bachu, 2003; Grimston et al., 2001). While CO 2 can be sequestered in oceanic or terrestrial biomass, the most mature and effective technology currently available is sequestration in geologic formations, especially in known hydrocarbon reservoirs (Barrufet et al., 2010; Hepple and Benson, 2005). However, challenges in the design and implementation of sequestration projects remain, especially over long time scales. One problem ismore » that the tendency for gravity override caused by the low density and viscosity of CO 2. In the presence of subsurface heterogeneity, fractures and faults, there is a significant risk of CO 2 leakage from the sequestration site into overlying rock compared to other liquid wastes (Hesse and Woods, 2010; Ennis-King and Patterson, 2002; Tsang et al., 2002). Furthermore, the CO 2 will likely interact chemically with the rock in which it is stored, so that understanding and predicting its transport behavior during sequestration can be complex and difficult (Mandalaparty et al., 2011; Pruess et al., 2003). Leakage of CO 2 can lead to such problems as acidification of ground water and killing of plant life, in addition to contamination of the atmosphere (Ha-Duong, 2003; Gasda et al., 2004). The development of adequate policies and regulatory systems to govern sequestration therefore requires improved characterization of the media in which CO 2 is stored and the development of advanced methods for detecting and monitoring its flow and transport in the subsurface (Bachu, 2003).« less

  20. Poly(ethylenimine)-Functionalized Monolithic Alumina Honeycomb Adsorbents for CO2 Capture from Air.

    PubMed

    Sakwa-Novak, Miles A; Yoo, Chun-Jae; Tan, Shuai; Rashidi, Fereshteh; Jones, Christopher W

    2016-07-21

    The development of practical and effective gas-solid contactors is an important area in the development of CO2 capture technologies. Target CO2 capture applications, such as postcombustion carbon capture and sequestration (CCS) from power plant flue gases or CO2 extraction directly from ambient air (DAC), require high flow rates of gas to be processed at low cost. Extruded monolithic honeycomb structures, such as those employed in the catalytic converters of automobiles, have excellent potential as structured contactors for CO2 adsorption applications because of the low pressure drop imposed on fluid moving through the straight channels of such structures. Here, we report the impregnation of poly(ethylenimine) (PEI), an effective aminopolymer reported commonly for CO2 separation, into extruded monolithic alumina to form structured CO2 sorbents. These structured sorbents are first prepared on a small scale, characterized thoroughly, and compared with powder sorbents with a similar composition. Despite consistent differences observed in the filling of mesopores with PEI between the monolithic and powder sorbents, their performance in CO2 adsorption is similar across a range of PEI contents. A larger monolithic cylinder (1 inch diameter, 4 inch length) is evaluated under conditions closer to those that might be used in large-scale applications and shows a similar performance to the smaller monoliths and powders tested initially. This larger structure is evaluated over five cycles of CO2 adsorption and steam desorption and demonstrates a volumetric capacity of 350 molCO2  m-3monolith and an equilibration time of 350 min under a 0.4 m s(-1) linear flow velocity through the monolith channels using 400 ppm CO2 in N2 as the adsorption gas at 30 °C. This volumetric capacity surpasses that of a similar technology considered previously, which suggested that CO2 could be removed from air at an operating cost as low as $100 per ton. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Top