Sample records for sequestration potential environmental

  1. 78 FR 28205 - Notice of Availability of the Draft Environmental Impact Statement for the Lake Charles Carbon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... Lake Charles Carbon Capture and Sequestration Project (DOE/EIS-0464D) AGENCY: U.S. Department of Energy...) announces the availability of the Lake Charles Carbon Capture and Sequestration Project Draft [[Page 28206... potential environmental impacts associated with the Lake Charles Carbon Capture and Sequestration Project...

  2. The interconnectedness between landowner knowledge, value, belief, attitude, and willingness to act: policy implications for carbon sequestration on private rangelands.

    PubMed

    Cook, Seth L; Ma, Zhao

    2014-02-15

    Rangelands can be managed to increase soil carbon and help mitigate emissions of carbon dioxide. This study assessed Utah rangeland owner's environmental values, beliefs about climate change, and awareness of and attitudes towards carbon sequestration, as well as their perceptions of potential policy strategies for promoting carbon sequestration on private rangelands. Data were collected from semi-structured interviews and a statewide survey of Utah rangeland owners, and were analyzed using descriptive and bivariate statistics. Over two-thirds of respondents reported some level of awareness of carbon sequestration and a generally positive attitude towards it, contrasting to their lack of interest in participating in a relevant program in the future. Having a positive attitude was statistically significantly associated with having more "biocentric" environmental values, believing the climate had been changing over the past 30 years, and having a stronger belief of human activities influencing the climate. Respondents valued the potential ecological benefits of carbon sequestration more than the potential financial or climate change benefits. Additionally, respondents indicated a preference for educational approaches over financial incentives. They also preferred to work with a private agricultural entity over a non-profit or government entity on improving land management practices to sequester carbon. These results suggest potential challenges for developing technically sound and socially acceptable policies and programs for promoting carbon sequestration on private rangelands. Potential strategies for overcoming these challenges include emphasizing the ecological benefits associated with sequestering carbon to appeal to landowners with ecologically oriented management objectives, enhancing the cooperation between private agricultural organizations and government agencies, and funneling resources for promoting carbon sequestration into existing land management and conservation programs that may produce carbon benefits. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars.

    PubMed

    Santín, Cristina; Doerr, Stefan H; Merino, Agustin; Bucheli, Thomas D; Bryant, Rob; Ascough, Philippa; Gao, Xiaodong; Masiello, Caroline A

    2017-09-11

    Pyrogenic carbon (PyC), produced naturally (wildfire charcoal) and anthropogenically (biochar), is extensively studied due to its importance in several disciplines, including global climate dynamics, agronomy and paleosciences. Charcoal and biochar are commonly used as analogues for each other to infer respective carbon sequestration potentials, production conditions, and environmental roles and fates. The direct comparability of corresponding natural and anthropogenic PyC, however, has never been tested. Here we compared key physicochemical properties (elemental composition, δ 13 C and PAHs signatures, chemical recalcitrance, density and porosity) and carbon sequestration potentials of PyC materials formed from two identical feedstocks (pine forest floor and wood) under wildfire charring- and slow-pyrolysis conditions. Wildfire charcoals were formed under higher maximum temperatures and oxygen availabilities, but much shorter heating durations than slow-pyrolysis biochars, resulting in differing physicochemical properties. These differences are particularly relevant regarding their respective roles as carbon sinks, as even the wildfire charcoals formed at the highest temperatures had lower carbon sequestration potentials than most slow-pyrolysis biochars. Our results challenge the common notion that natural charcoal and biochar are well suited as proxies for each other, and suggest that biochar's environmental residence time may be underestimated when based on natural charcoal as a proxy, and vice versa.

  4. Robust CO2 Injection: Application of Bayesian-Information-Gap Decision Theory

    NASA Astrophysics Data System (ADS)

    Grasinger, M.; O'Malley, D.; Vesselinov, V. V.; Karra, S.

    2015-12-01

    Carbon capture and sequestration has the potential to reduce greenhouse gasemissions. However, care must be taken when choosing a site for CO2 seques-tration to ensure that the CO2 remains sequestered for many years, and thatthe environment is not harmed in any way. Making a rational decision be-tween potential sites for sequestration is not without its challenges because, asin the case of many environmental and subsurface problems, there is a lot ofuncertainty that exists. A method for making decisions under various typesand severities of uncertainty, Bayesian-Information-Gap Decision Theory (BIGDT), is presented. BIG DT was coupled with a numerical model for CO2 wellinjection and the resulting framework was then applied to a problem of selectingbetween two potential sites for CO2 sequestration. The results of the analysisare presented, followed by a discussion of the decision process.

  5. Nitrogen dioxide sequestration using demolished concrete and its potential application in transportation infrastructure development : final report.

    DOT National Transportation Integrated Search

    2016-04-01

    Achieving environmental sustainability of the US transportation infrastructure via more environmentally sound construction is not a trivial task. Our : proposal, which addresses this critical area, is aiming at transforming concrete, the material of ...

  6. Estimating urban trees and carbon stock potentials for mitigating climate change in Lagos: Case of Ikeja Government Reserved Area (GRA)

    NASA Astrophysics Data System (ADS)

    Elias, P. O.; Faderin, A.

    2014-12-01

    Urban trees are a component of the urban infrastructure which offers diverse services including environmental, aesthetic and economic. The accumulation of carbon in the atmosphere resulting from the indiscriminate distribution of human populations and urban activities with the unsustainable consumption of natural resources contributes to global environmental change especially in coastal cities like Lagos. Carbon stocks and sequestration by urban trees are increasingly recognized to play significant roles for mitigating climate change. This paper focuses on the estimation of carbon stock and sequestration through biomass estimation and quantification in Ikeja GRA, Lagos. Ikeja possesses a characteristic feature as a microcosm of Lagos due to the wide range of land uses. A canopy assessment of tree population was carried out using itree canopy software. A GPS survey was used to collect an inventory of all trees showing their location, spatial distribution and other attributes. The analysis of the carbon storage and sequestration potential of both actual and potential tree planting sites involved biomass estimations from tree allometry equations. Trees were identified at species level and measurements of their dendrometric values were recorded and integrated into the GIS database to estimate biomass of trees and carbon storage. The trees in the study area were estimated to have a biomass of 441.9 mg and carbon storage of 221.395 kg/tree. By considering the potential tree planting sites the estimated carbon stored increased to 11,352.73 kg. Carbon sequestration value in the study area was found to be 1.6790 tonnes for the existing trees and 40.707 tonnes for the potential tree planting sites (PTPS). The estimation of carbon storage and sequestration values of trees are important incentives for carbon accounting/footprints and monitoring of climate change mitigation which has implications for evaluation and monitoring of urban ecosystem.

  7. The underappreciated potential of peatlands in global climate change mitigation strategies.

    PubMed

    Leifeld, J; Menichetti, L

    2018-03-14

    Soil carbon sequestration and avoidable emissions through peatland restoration are both strategies to tackle climate change. Here we compare their potential and environmental costs regarding nitrogen and land demand. In the event that no further areas are exploited, drained peatlands will cumulatively release 80.8 Gt carbon and 2.3 Gt nitrogen. This corresponds to a contemporary annual greenhouse gas emission of 1.91 (0.31-3.38) Gt CO 2 -eq. that could be saved with peatland restoration. Soil carbon sequestration on all agricultural land has comparable mitigation potential. However, additional nitrogen is needed to build up a similar carbon pool in organic matter of mineral soils, equivalent to 30-80% of the global fertilizer nitrogen application annually. Restoring peatlands is 3.4 times less nitrogen costly and involves a much smaller land area demand than mineral soil carbon sequestration, calling for a stronger consideration of peatland rehabilitation as a mitigation measure.

  8. Agroforestry: a sustainable environmental practice for carbon sequestration under the climate change scenarios-a review.

    PubMed

    Abbas, Farhat; Hammad, Hafiz Mohkum; Fahad, Shah; Cerdà, Artemi; Rizwan, Muhammad; Farhad, Wajid; Ehsan, Sana; Bakhat, Hafiz Faiq

    2017-04-01

    Agroforestry is a sustainable land use system with a promising potential to sequester atmospheric carbon into soil. This system of land use distinguishes itself from the other systems, such as sole crop cultivation and afforestation on croplands only through its potential to sequester higher amounts of carbon (in the above- and belowground tree biomass) than the aforementioned two systems. According to Kyoto protocol, agroforestry is recognized as an afforestation activity that, in addition to sequestering carbon dioxide (CO 2 ) to soil, conserves biodiversity, protects cropland, works as a windbreak, and provides food and feed to human and livestock, pollen for honey bees, wood for fuel, and timber for shelters construction. Agroforestry is more attractive as a land use practice for the farming community worldwide instead of cropland and forestland management systems. This practice is a win-win situation for the farming community and for the environmental sustainability. This review presents agroforestry potential to counter the increasing concentration of atmospheric CO 2 by sequestering it in above- and belowground biomass. The role of agroforestry in climate change mitigation worldwide might be recognized to its full potential by overcoming various financial, technical, and institutional barriers. Carbon sequestration in soil by various agricultural systems can be simulated by various models but literature lacks reports on validated models to quantify the agroforestry potential for carbon sequestration.

  9. The NatCarb geoportal: Linking distributed data from the Carbon Sequestration Regional Partnerships

    USGS Publications Warehouse

    Carr, T.R.; Rich, P.M.; Bartley, J.D.

    2007-01-01

    The Department of Energy (DOE) Carbon Sequestration Regional Partnerships are generating the data for a "carbon atlas" of key geospatial data (carbon sources, potential sinks, etc.) required for rapid implementation of carbon sequestration on a broad scale. The NATional CARBon Sequestration Database and Geographic Information System (NatCarb) provides Web-based, nation-wide data access. Distributed computing solutions link partnerships and other publicly accessible repositories of geological, geophysical, natural resource, infrastructure, and environmental data. Data are maintained and enhanced locally, but assembled and accessed through a single geoportal. NatCarb, as a first attempt at a national carbon cyberinfrastructure (NCCI), assembles the data required to address technical and policy challenges of carbon capture and storage. We present a path forward to design and implement a comprehensive and successful NCCI. ?? 2007 The Haworth Press, Inc. All rights reserved.

  10. Water Challenges for Geologic Carbon Capture and Sequestration

    PubMed Central

    Friedmann, Samuel J.; Carroll, Susan A.

    2010-01-01

    Carbon capture and sequestration (CCS) has been proposed as a means to dramatically reduce greenhouse gas emissions with the continued use of fossil fuels. For geologic sequestration, the carbon dioxide is captured from large point sources (e.g., power plants or other industrial sources), transported to the injection site and injected into deep geological formations for storage. This will produce new water challenges, such as the amount of water used in energy resource development and utilization and the “capture penalty” for water use. At depth, brine displacement within formations, storage reservoir pressure increases resulting from injection, and leakage are potential concerns. Potential impacts range from increasing water demand for capture to contamination of groundwater through leakage or brine displacement. Understanding these potential impacts and the conditions under which they arise informs the design and implementation of appropriate monitoring and controls, important both for assurance of environmental safety and for accounting purposes. Potential benefits also exist, such as co-production and treatment of water to both offset reservoir pressure increase and to provide local water for beneficial use. PMID:20127328

  11. Environmental technologies of woody crop production systems

    Treesearch

    Ronald S. Zalesny Jr.; John A. Stanturf; Emile S. Gardiner; Gary S. Ba??uelos; Richard A. Hallett; Amir Hass; Craig M. Stange; James H. Perdue; Timothy M. Young; David R. Coyle; William L. Headlee

    2016-01-01

    Soil erosion, loss of productivity potential, biodiversity loss, water shortage, and soil and water pollution are ongoing processes that decrease or degrade provisioning (e.g., biomass, freshwater) and regulating (e.g., carbon sequestration, soil quality) ecosystem services. Therefore, developing environmental technologies that maximize these services is essential for...

  12. Particulate matter emissions from biochar-amended soils as a potential tradeoff to the negative emission potential

    USDA-ARS?s Scientific Manuscript database

    Novel carbon sequestration strategies such as large-scale land application of biochar may provide sustainable pathways to increase the terrestrial storage of carbon. Biochar has a long residence time in the soil and hence comprehensive studies are urgently needed to quantify the environmental impact...

  13. Sequestration of hydrophobic organic contaminants by geosorbents

    USGS Publications Warehouse

    Luthy, Richard G.; Aiken, George R.; Brusseau, Mark L.; Cunningham, Scott D.; Gschwend, Philip M.; Pignatello, Joseph J.; Reinhard, Martin; Traina, Samuel J.; Weber, Walter J.; Westall, John C.

    1997-01-01

    The chemical interactions of hydrophobic organic contaminants (HOCs) with soils and sediments (geosorbents) may result in strong binding and slow subsequent release rates that significantly affect remediation rates and endpoints. The underlying physical and chemical phenomena potentially responsible for this apparent sequestration of HOCs by geosorbents are not well understood. This challenges our concepts for assessing exposure and toxicity and for setting environmental quality criteria. Currently there are no direct observational data revealing the molecular-scale locations in which nonpolar organic compounds accumulate when associated with natural soils or sediments. Hence macroscopic observations are used to make inferences about sorption mechanisms and the chemical factors affecting the sequestration of HOCs by geosorbents. Recent observations suggest that HOC interactions with geosorbents comprise different inorganic and organic surfaces and matrices, and distinctions may be drawn along these lines, particularly with regard to the roles of inorganic micropores, natural sorbent organic matter components, combustion residue particulate carbon, and spilled organic liquids. Certain manipulations of sorbates or sorbent media may help reveal sorption mechanisms, but mixed sorption phenomena complicate the interpretation of macroscopic data regarding diffusion of HOCs into and out of different matrices and the hysteretic sorption and aging effects commonly observed for geosorbents. Analytical characterizations at the microscale, and mechanistic models derived therefrom, are needed to advance scientific knowledge of HOC sequestration, release, and environmental risk.

  14. Implication of soil C sequestration on sustainable agriculture and environment.

    PubMed

    Mondini, C; Sequi, P

    2008-01-01

    Soil organic matter (SOM) is the largest C stock of the continental biosphere with 1550Pg. The size of C reservoir in the soil and environmental concerns on climate change have recently attracted the attention of scientist and politicians on C sequestration as an effective strategy to tackle greenhouse gas (GHG) emissions. It has been estimated that the potential for C storage in world cropland is relevant (about 0.6-1.2PgCy(-1)). However, there are several constraints of C sequestration that raise concern about its effectiveness as a strategy to offset climate change. C sequestration is finite in quantity and time, reversible, and can be further decreased by socio-economic restrictions. Given these limitations, C sequestration can play only a minor role in the reduction of emissions (2-5% of total GHG emission under the highest emission scenarios). Yet, C sequestration is still attractive for two main reasons: it is likely to be particularly effective in reducing atmospheric CO2 levels in the first 20-30yr of its implementation and presents ancillary benefits for environment and sustainability that make it a real win-win strategy. These beneficial implications are discussed in this paper with emphasis on the need of C sequestration not only to offset climatic changes, but also for the equilibria of the environment and for the sustainability of agriculture and of entire human society.

  15. Development and validation of a testing protocol for carbon sequestration using a controlled environment.

    DOT National Transportation Integrated Search

    2012-05-01

    Carbon footprints, carbon credits and associated carbon sequestration techniques are rapidly becoming part : of how environmental mitigation business is conducted, not only in Texas but globally. Terrestrial carbon : sequestration is the general term...

  16. Evaluation of the economic and environmental impact of converting cropland to forest: a case study in Dunhua county, China.

    PubMed

    Wang, C; Ouyang, H; Maclaren, V; Yin, Y; Shao, B; Boland, A; Tian, Y

    2007-11-01

    The Sloping Land Conversion Program (also known as "Grain for Green" or the Upland Conversion Program) for converting cropland to forest is one of China's most ambitious environmental initiatives, and is one of the world's largest land-conservation programs with a budget of RMB 337 billion (over US$ 40 billion). Although environmental impacts have played a vital role in the general reasoning and argumentation for forest plantations, environmental impact analyses have often received less attention than economic analyses in the planning of plantation forestry projects. The overall goal of this paper is to evaluate the program's environmental impact considering the farmer's interests and the potential social benefits due to carbon sequestration in different scenarios based on household and field survey data in Dunhua County. Our findings are that: (1) in many cases, the program did not give adequate consideration to land productivity and environmental heterogeneity when selecting plots; (2) more than half of the reforestation plots were on flat cropland (slopes of less than 5 degrees ); (3) in five of the eight townships, net incomes on reforested land were substantially above or below previous crop incomes, raising questions about the efficiency of the allocation of compensation to farmers participating in the program; (4) the potential carbon co-benefit increased the NPV of the program by 5954-7009 RMB/ha. In conclusion, we recommend that more attention should be paid to the quality of reforestation programs rather than just their scale and note that consideration of potential carbon sequestration co-benefits enhances the benefits of cropland conversion programs.

  17. Soil Carbon Storage in Christmas Tree Farms: Maximizing Ecosystem Management and Sustainability for Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Chapman, S. K.; Shaw, R.; Langley, A.

    2008-12-01

    Management of agroecosystems for the purpose of manipulating soil carbon stocks could be a viable approach for countering rising atmospheric carbon dioxide concentrations, while maximizing sustainability of the agroforestry industry. We investigated the carbon storage potential of Christmas tree farms in the southern Appalachian mountains as a potential model for the impacts of land management on soil carbon. We quantified soil carbon stocks across a gradient of cultivation duration and herbicide management. We compared soil carbon in farms to that in adjacent pastures and native forests that represent a control group to account for variability in other soil-forming factors. We partitioned tree farm soil carbon into fractions delineated by stability, an important determinant of long-term sequestration potential. Soil carbon stocks in the intermediate pool are significantly greater in the tree farms under cultivation for longer periods of time than in the younger tree farms. This pool can be quite large, yet has the ability to repond to biological environmental changes on the centennial time scale. Pasture soil carbon was significantly greater than both forest and tree farm soil carbon, which were not different from each other. These data can help inform land management and soil carbon sequestration strategies.

  18. Sustainability Assessment of Coal-Fired Power Plants with Carbon Capture and Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widder, Sarah H.; Butner, R. Scott; Elliott, Michael L.

    2011-11-30

    Carbon capture and sequestration (CCS) has the ability to dramatically reduce carbon dioxide (CO2) emissions from power production. Most studies find the potential for 70 to 80 percent reductions in CO2 emissions on a life-cycle basis, depending on the technology. Because of this potential, utilities and policymakers are considering the wide-spread implementation of CCS technology on new and existing coal plants to dramatically curb greenhouse gas (GHG) emissions from the power generation sector. However, the implementation of CCS systems will have many other social, economic, and environmental impacts beyond curbing GHG emissions that must be considered to achieve sustainable energymore » generation. For example, emissions of nitrogen oxides (NOx), sulfur oxides (SOx), and particulate matter (PM) are also important environmental concerns for coal-fired power plants. For example, several studies have shown that eutrophication is expected to double and acidification would increase due to increases in NOx emissions for a coal plant with CCS provided by monoethanolamine (MEA) scrubbing. Potential for human health risks is also expected to increase due to increased heavy metals in water from increased coal mining and MEA hazardous waste, although there is currently not enough information to relate this potential to actual realized health impacts. In addition to environmental and human health impacts, supply chain impacts and other social, economic, or strategic impacts will be important to consider. A thorough review of the literature for life-cycle analyses of power generation processes using CCS technology via the MEA absorption process, and other energy generation technologies as applicable, yielded large variability in methods and core metrics. Nonetheless, a few key areas of impact for CCS were developed from the studies that we reviewed. These are: the impact of MEA generation on increased eutrophication and acidification from ammonia emissions and increased toxicity from MEA production and the impact of increased coal use including the increased generation of NOx from combustion and transportation, impacts of increased mining of coal and limestone, and the disposal of toxic fly ash and boiler ash waste streams. Overall, the implementing CCS technology could contribute to a dramatic decrease in global GHG emissions, while most other environmental and human health impact categories increase only slightly on a global scale. However, the impacts on human toxicity and ecotoxicity have not been studied as extensively and could have more severe impacts on a regional or local scale. More research is needed to draw strong conclusions with respect to the specific relative impact of different CCS technologies. Specifically, a more robust data set that disaggregates data in terms of component processes and treats a more comprehensive set of environmental impacts categories from a life-cycle perspective is needed. In addition, the current LCA framework lacks the required temporal and spatial scales to determine the risk of environmental impact from carbon sequestration. Appropriate factors to use when assessing the risk of water acidification (groundwater/oceans/aquifers depending on sequestration site), risk of increased human toxicity impact from large accidental releases from pipeline or wells, and the legal and public policy risk associated with licensing CO2 sequestration sites are also not currently addressed. In addition to identifying potential environmental, social, or risk-related issues that could impede the large-scale deployment of CCS, performing LCA-based studies on energy generation technologies can suggest places to focus our efforts to achieve technically feasible, economically viable, and environmentally conscious energy generation technologies for maximum impact.« less

  19. Big Sky Carbon Sequestration Partnership

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susan Capalbo

    2005-12-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessmentmore » framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated has significant potential to sequester large amounts of CO{sub 2}. Simulations conducted to evaluate mineral trapping potential of mafic volcanic rock formations located in the Idaho province suggest that supercritical CO{sub 2} is converted to solid carbonate mineral within a few hundred years and permanently entombs the carbon. Although MMV for this rock type may be challenging, a carefully chosen combination of geophysical and geochemical techniques should allow assessment of the fate of CO{sub 2} in deep basalt hosted aquifers. Terrestrial carbon sequestration relies on land management practices and technologies to remove atmospheric CO{sub 2} where it is stored in trees, plants, and soil. This indirect sequestration can be implemented today and is on the front line of voluntary, market-based approaches to reduce CO{sub 2} emissions. Initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil Carbon (C) on rangelands, and forested, agricultural, and reclaimed lands. Rangelands can store up to an additional 0.05 mt C/ha/yr, while the croplands are on average four times that amount. Estimates of technical potential for soil sequestration within the region in cropland are in the range of 2.0 M mt C/yr over 20 year time horizon. This is equivalent to approximately 7.0 M mt CO{sub 2}e/yr. The forestry sinks are well documented, and the potential in the Big Sky region ranges from 9-15 M mt CO{sub 2} equivalent per year. Value-added benefits include enhanced yields, reduced erosion, and increased wildlife habitat. Thus the terrestrial sinks provide a viable, environmentally beneficial, and relatively low cost sink that is available to sequester C in the current time frame. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological and terrestrial sequestration reflect this concern. Research in Phase I has identified and validated best management practices for soil C in the Partnership region, and outlined a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. This is the basis for the integrative analysis that will be undertaken in Phase II to work with industry, state and local governments and with the pilot demonstration projects to quantify the economic costs and risks associated with all opportunities for carbon storage in the Big Sky region. Scientifically sound MMV is critical for public acceptance of these technologies.« less

  20. 76 FR 24007 - Notice of Intent To Prepare an Environmental Impact Statement for the Lake Charles Carbon Capture...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ... Charles Carbon Capture and Sequestration Project, Lake Charles, LA AGENCY: Department of Energy. ACTION... competitive process under the Industrial Carbon Capture and Sequestration (ICCS) Program. The Lake Charles Carbon Capture and Sequestration Project (Lake Charles CCS Project) would demonstrate: (1) advanced...

  1. Natural Terrestrial Sequestration Potential of Highplains Prairie to Subalpine Forest and Mined-Lands Soils Derived from Weathering of Tertiary Volcanics

    NASA Astrophysics Data System (ADS)

    Yager, D. B.; Burchell, A.; Robinson, R.; Odell, S.; Dick, R. P.; Johnson, C. A.; Hidinger, J.; Rathke, D.

    2007-12-01

    There is now widespread agreement that, if the climate is to be stabilized, then net greenhouse gas emissions must be greatly reduced (IPCC, 2007). The need to reduce net CO2 emissions plus the possible economic and environmental ramifications of not addressing climate change have stimulated important atmospheric carbon mitigation actions, as well as, studies to understand and quantify potential carbon sinks. Soils represent a potentially large and environmentally significant natural carbon reservoir. Increasing the natural terrestrial sequestration potential (NTS) of soils is among the seven, "Sokolow CO2 stabilization wedges' or carbon management strategies needed to thwart doubling of atmospheric CO2. Additionally, high plains to subalpine temperate soils tend to be less susceptible to baseline C pool declines due to global warming than are warmer regions and are important ecosystems in which to quantify soil carbon storage capacity. To examine the potential of magnesium silicate-bearing soils to sequester additional carbon, we sampled 60 high plains prairie to subalpine forest soil horizons derived from weathering of Tertiary-age dacite-andesite- basalt compositions in Colorado, U.S.A.: the San Luis Valley, San Juan Volcanic Field, Grand Mesa, White River- Roan Plateau (Flat Tops), Rocky Mountain National Park, Front Range and propylitically-altered terrain in the western San Juan Volcanic field containing secondary magnesium silicates (chlorite-species). Data for C, N, O (total conc., isotopes), metals, major and trace elements, Hg, S, microbial enzymes (β-glucosidase, arylsulfatase, acid neutralizing capacity (ANC), and 14C radiocarbon dates are reported. Samples demonstrate variable but elevated C relative to average global soil C. In particular, the propylitically-altered rocks have a high instantaneous ANC in laboratory tests (> 20 kg/ton CaCO3 equivalent) and derivative forest soils containing low-temperature charcoal "burn" horizons have high total organic carbon contents (12-14 Wt.% in the A-B horizons; 0 to 30 cm). These data are important to understanding the carbon sequestration potential that soils derived from intermediate to mafic igneous rocks can provide. Additionally, for range or forest management and mine waste remediation scenarios, this data suggests C mitigation efforts may be augmented by 'geomimicry' scenarios whereby projects model and enhance natural processes that support CO2 sequestration.

  2. 77 FR 58533 - Notice of Availability of the Draft Environmental Impact Statement for the W.A. Parish Post...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ....A. Parish Post-Combustion CO 2 Capture and Sequestration Project, Southeastern TX AGENCY: U.S... availability of the Draft Environmental Impact Statement for the W.A. Parish Post-Combustion Carbon Dioxide.... Parish Post-Combustion CO 2 Capture and Sequestration Project (Parish PCCS Project). NRG's proposed...

  3. Integrating science, economics and law into policy: The case of carbon sequestration in climate change policy

    NASA Astrophysics Data System (ADS)

    Richards, Kenneth

    Carbon sequestration, the extraction and storage of carbon from the atmosphere by biomass, could potentially provide a cost-effective means to reduce net greenhouse gas emissions. The claims on behalf of carbon sequestration may be inadvertently overstated, however. Several key observations emerge from this study. First, although carbon sequestration studies all report results in terms of dollars per ton, the definition of that term varies significantly, meaning that the results of various analyses can not be meaningfully compared. Second, when carbon sequestration is included in an energy-economy model of climate change policy, it appears that carbon sequestration could play a major, if not dominant role in a national carbon emission abatement program, reducing costs of emissions stabilization by as much as 80 percent, saving tens of billions of dollars per year. However, the results are very dependant upon landowners' perceived risk. Studies may also have overstated the potential for carbon sequestration because they have not considered the implementation process. This study demonstrates that three factors will reduce the cost-effectiveness of carbon sequestration. First, the implementation costs associated with measurement and governance of the government-private sector relation are higher than in the case of carbon source control. Second, legal constraints limit the range of instruments that the government can use to induce private landowners to expand their carbon sinks. The government will likely have to pay private parties to expand their sinks, or undertake direct government production. In either case, additional revenues will be required, introducing social costs associated with excess burden. Third, because of the very long time involved in developing carbon sinks (up to several decades) the government may not be able to make credible commitments against exactions of one type or another that would effectively reduce the value of private sector investments in carbon sinks. Consequently, the private sector will increase the rate of return required for participation, increasing the cost of this option. Carbon sequestration can still be a major factor in a national carbon emission abatement program. However, because of the interplay of science, economics and law, the most commonly prescribed environmental policy instruments--marketable allowance and taxes--have little or no direct role to play in the implementation process.

  4. Quantitative assessment of carbon sequestration reduction induced by disturbances in temperate Eurasian steppe

    NASA Astrophysics Data System (ADS)

    Chen, Yizhao; Ju, Weimin; Groisman, Pavel; Li, Jianlong; Propastin, Pavel; Xu, Xia; Zhou, Wei; Ruan, Honghua

    2017-11-01

    The temperate Eurasian steppe (TES) is a region where various environmental, social, and economic stresses converge. Multiple types of disturbance exist widely across the landscape, and heavily influence carbon cycling in this region. However, a current quantitative assessment of the impact of disturbances on carbon sequestration is largely lacking. In this study, we combined the boreal ecosystem productivity simulator (BEPS), the Shiyomi grazing model, and the global fire model (Glob-FIRM) to investigate the impact of the two major types of disturbance in the TES (i.e. domestic grazing and fire) on regional carbon sequestration. Model performance was validated using satellite data and field observations. Model outputs indicate that disturbance has a significant impact on carbon sequestration at a regional scale. The annual total carbon lost due to disturbances was 7.8 TgC yr-1, accounting for 14.2% of the total net ecosystem productivity (NEP). Domestic grazing plays the dominant role in terrestrial carbon consumption, accounting for 95% of the total carbon lost from the two disturbances. Carbon losses from both disturbances significantly increased from 1999 to 2008 (R 2 = 0.82, P < 0.001 for grazing, R 2 = 0.51, P < 0.05 for fire). Heavy domestic grazing in relatively barren grasslands substantially reduced carbon sequestration, particularly in the grasslands of Turkmenistan, Uzbekistan, and the far southwest of Inner Mongolia. This spatially-explicit information has potential implications for sustainable management of carbon sequestration in the vast grassland ecosystems.

  5. Geologic CO2 Sequestration: Predicting and Confirming Performance in Oil Reservoirs and Saline Aquifers

    NASA Astrophysics Data System (ADS)

    Johnson, J. W.; Nitao, J. J.; Newmark, R. L.; Kirkendall, B. A.; Nimz, G. J.; Knauss, K. G.; Ziagos, J. P.

    2002-05-01

    Reducing anthropogenic CO2 emissions ranks high among the grand scientific challenges of this century. In the near-term, significant reductions can only be achieved through innovative sequestration strategies that prevent atmospheric release of large-scale CO2 waste streams. Among such strategies, injection into confined geologic formations represents arguably the most promising alternative; and among potential geologic storage sites, oil reservoirs and saline aquifers represent the most attractive targets. Oil reservoirs offer a unique "win-win" approach because CO2 flooding is an effective technique of enhanced oil recovery (EOR), while saline aquifers offer immense storage capacity and widespread distribution. Although CO2-flood EOR has been widely used in the Permian Basin and elsewhere since the 1980s, the oil industry has just recently become concerned with the significant fraction of injected CO2 that eludes recycling and is therefore sequestered. This "lost" CO2 now has potential economic value in the growing emissions credit market; hence, the industry's emerging interest in recasting CO2 floods as co-optimized EOR/sequestration projects. The world's first saline aquifer storage project was also catalyzed in part by economics: Norway's newly imposed atmospheric emissions tax, which spurred development of Statoil's unique North Sea Sleipner facility in 1996. Successful implementation of geologic sequestration projects hinges on development of advanced predictive models and a diverse set of remote sensing, in situ sampling, and experimental techniques. The models are needed to design and forecast long-term sequestration performance; the monitoring techniques are required to confirm and refine model predictions and to ensure compliance with environmental regulations. We have developed a unique reactive transport modeling capability for predicting sequestration performance in saline aquifers, and used it to simulate CO2 injection at Sleipner; we are now extending this capability to address CO2-flood EOR/sequestration in oil reservoirs. We have also developed a suite of innovative geophysical and geochemical techniques for monitoring sequestration performance in both settings. These include electromagnetic induction imaging and electrical resistance tomography for tracking migration of immiscible CO2, noble gas isotopes for assessing trace CO2 leakage through the cap rock, and integrated geochemical sampling, analytical, and experimental methods for determining sequestration partitioning among solubility and mineral trapping mechanisms. We have proposed to demonstrate feasibility of the co-optimized EOR/sequestration concept and utility of our modeling and monitoring technologies to design and evaluate its implementation by conducting a demonstration project in the Livermore Oil Field. This small, mature, shallow field, located less than a mile east of Lawrence Livermore National Laboratory, is representative of many potential EOR/sequestration sites in California. In approach, this proposed demonstration is analogous to the Weyburn EOR/CO2 monitoring project, to which it will provide an important complement by virtue of its contrasting depth (immiscible versus Weyburn's miscible CO2 flood) and geologic setting (clay-capped sand versus Weyburn's anhydrite-capped carbonate reservoir).

  6. Case study on combined CO₂ sequestration and low-salinity water production potential in a shallow saline aquifer in Qatar.

    PubMed

    Ahmed, Tausif Khizar; Nasrabadi, Hadi

    2012-10-30

    CO₂ is one of the byproducts of natural gas production in Qatar. The high rate of natural gas production from Qatar's North Field (world's largest non-associated gas field) has led to the production of significant amounts of CO₂. The release of CO₂ into the atmosphere may be harmful from the perspective of global warming. In this work, we study the CO₂ sequestration potential in Qatar's Aruma aquifer. The Aruma aquifer is a saline aquifer in the southwest of Qatar. It occupies an area of approximately 1985 km₂ on land (16% of Qatar's total area). We have developed a compositional model for CO₂ sequestration in the Aruma aquifer on the basis of available log and flow test data. We suggest water production at some distance from the CO₂ injection wells as a possible way to control the pore pressure. This method increases the potential for safe sequestration of CO₂ in the aquifer without losing integrity of the caprock and without any CO₂ leakage. The water produced from this aquifer is considerably less saline than seawater and could be a good water source for the desalination process, which is currently the main source of water in Qatar. The outcome of the desalination process is water with higher salinity than the seawater that is currently discharged into the sea. This discharge can have negative long-term environmental effects. The water produced from the Aruma aquifer is considerably less saline than seawater and can be a partial solution to this problem. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. The fate of cyanide in leach wastes at gold mines: an environmental perspective

    USGS Publications Warehouse

    Johnson, Craig A.

    2015-01-01

    Cyanide-containing and cyanide-related species are subject to attenuation mechanisms that lead to dispersal to the atmosphere, chemical transformation to other carbon and nitrogen species, or sequestration as cyanometallic precipitates or adsorbed species on mineral surfaces. Dispersal to the atmosphere and chemical transformation amount to permanent elimination of cyanide, whereas sequestration amounts to storage of cyanide in locations from which it can potentially be remobilized by infiltrating waters if conditions change. From an environmental perspective, the most significant cyanide releases from gold leach operations involve catastrophic spills of process solutions or leakage of effluent to the unsaturated or saturated zones. These release pathways are unfavorable for two important cyanide attenuation mechanisms that tend to occur naturally: dispersal of free cyanide to the atmosphere and sunlight-catalyzed dissociation of strong cyanometallic complexes, which produces free cyanide that can then disperse to the atmosphere. The widest margins of environmental safety will be achieved where mineral processing operations are designed so that time for offgassing, aeration, and sunlight exposure are maximized in the event that cyanide-bearing solutions are released inadvertently.

  8. Making carbon sequestration a paying proposition

    NASA Astrophysics Data System (ADS)

    Han, Fengxiang X.; Lindner, Jeff S.; Wang, Chuji

    2007-03-01

    Atmospheric carbon dioxide (CO2) has increased from a preindustrial concentration of about 280 ppm to about 367 ppm at present. The increase has closely followed the increase in CO2 emissions from the use of fossil fuels. Global warming caused by increasing amounts of greenhouse gases in the atmosphere is the major environmental challenge for the 21st century. Reducing worldwide emissions of CO2 requires multiple mitigation pathways, including reductions in energy consumption, more efficient use of available energy, the application of renewable energy sources, and sequestration. Sequestration is a major tool for managing carbon emissions. In a majority of cases CO2 is viewed as waste to be disposed; however, with advanced technology, carbon sequestration can become a value-added proposition. There are a number of potential opportunities that render sequestration economically viable. In this study, we review these most economically promising opportunities and pathways of carbon sequestration, including reforestation, best agricultural production, housing and furniture, enhanced oil recovery, coalbed methane (CBM), and CO2 hydrates. Many of these terrestrial and geological sequestration opportunities are expected to provide a direct economic benefit over that obtained by merely reducing the atmospheric CO2 loading. Sequestration opportunities in 11 states of the Southeast and South Central United States are discussed. Among the most promising methods for the region include reforestation and CBM. The annual forest carbon sink in this region is estimated to be 76 Tg C/year, which would amount to an expenditure of 11.1-13.9 billion/year. Best management practices could enhance carbon sequestration by 53.9 Tg C/year, accounting for 9.3% of current total annual regional greenhouse gas emission in the next 20 years. Annual carbon storage in housing, furniture, and other wood products in 1998 was estimated to be 13.9 Tg C in the region. Other sequestration options, including the direct injection of CO2 in deep saline aquifers, mineralization, and biomineralization, are not expected to lead to direct economic gain. More detailed studies are needed for assessing the ultimate changes to the environment and the associated indirect cost savings for carbon sequestration.

  9. Making carbon sequestration a paying proposition.

    PubMed

    Han, Fengxiang X; Lindner, Jeff S; Wang, Chuji

    2007-03-01

    Atmospheric carbon dioxide (CO(2)) has increased from a preindustrial concentration of about 280 ppm to about 367 ppm at present. The increase has closely followed the increase in CO(2) emissions from the use of fossil fuels. Global warming caused by increasing amounts of greenhouse gases in the atmosphere is the major environmental challenge for the 21st century. Reducing worldwide emissions of CO(2) requires multiple mitigation pathways, including reductions in energy consumption, more efficient use of available energy, the application of renewable energy sources, and sequestration. Sequestration is a major tool for managing carbon emissions. In a majority of cases CO(2) is viewed as waste to be disposed; however, with advanced technology, carbon sequestration can become a value-added proposition. There are a number of potential opportunities that render sequestration economically viable. In this study, we review these most economically promising opportunities and pathways of carbon sequestration, including reforestation, best agricultural production, housing and furniture, enhanced oil recovery, coalbed methane (CBM), and CO(2) hydrates. Many of these terrestrial and geological sequestration opportunities are expected to provide a direct economic benefit over that obtained by merely reducing the atmospheric CO(2) loading. Sequestration opportunities in 11 states of the Southeast and South Central United States are discussed. Among the most promising methods for the region include reforestation and CBM. The annual forest carbon sink in this region is estimated to be 76 Tg C/year, which would amount to an expenditure of $11.1-13.9 billion/year. Best management practices could enhance carbon sequestration by 53.9 Tg C/year, accounting for 9.3% of current total annual regional greenhouse gas emission in the next 20 years. Annual carbon storage in housing, furniture, and other wood products in 1998 was estimated to be 13.9 Tg C in the region. Other sequestration options, including the direct injection of CO(2) in deep saline aquifers, mineralization, and biomineralization, are not expected to lead to direct economic gain. More detailed studies are needed for assessing the ultimate changes to the environment and the associated indirect cost savings for carbon sequestration.

  10. Mapping the Mineral Resource Base for Mineral Carbon-Dioxide Sequestration in the Conterminous United States

    USGS Publications Warehouse

    Krevor, S.C.; Graves, C.R.; Van Gosen, B. S.; McCafferty, A.E.

    2009-01-01

    This database provides information on the occurrence of ultramafic rocks in the conterminous United States that are suitable for sequestering captured carbon dioxide in mineral form, also known as mineral carbon-dioxide sequestration. Mineral carbon-dioxide sequestration is a proposed greenhouse gas mitigation technology whereby carbon dioxide (CO2) is disposed of by reacting it with calcium or magnesium silicate minerals to form a solid magnesium or calcium carbonate product. The technology offers a large capacity to permanently store CO2 in an environmentally benign form via a process that takes little effort to verify or monitor after disposal. These characteristics are unique among its peers in greenhouse gas disposal technologies. The 2005 Intergovernmental Panel on Climate Change report on Carbon Dioxide Capture and Storage suggested that a major gap in mineral CO2 sequestration is locating the magnesium-silicate bedrock available to sequester the carbon dioxide. It is generally known that silicate minerals with high concentrations of magnesium are suitable for mineral carbonation. However, no assessment has been made in the United States that details their geographical distribution and extent, nor has anyone evaluated their potential for use in mineral carbonation. Researchers at Columbia University and the U.S. Geological Survey have developed a digital geologic database of ultramafic rocks in the conterminous United States. Data were compiled from varied-scale geologic maps of magnesium-silicate ultramafic rocks. The focus of our national-scale map is entirely on ultramafic rock types, which typically consist primarily of olivine- and serpentine-rich rocks. These rock types are potentially suitable as source material for mineral CO2 sequestration.

  11. Potential Hydrogeomechanical Impacts of Geological CO2 Sequestration

    NASA Astrophysics Data System (ADS)

    McPherson, B. J.; Haerer, D.; Han, W.; Heath, J.; Morse, J.

    2006-12-01

    Long-term sequestration of anthropogenic "greenhouse gases" such as CO2 is a proposed approach to managing climate change. Deep brine reservoirs in sedimentary basins are possible sites for sequestration, given their ubiquitous nature. We used a mathematical sedimentary basin model, including coupling of multiphase CO2-groundwater flow and rock deformation, to evaluate residence times in possible brine reservoir storage sites, migration patterns and rates away from such sites, and effects of CO2 injection on fluid pressures and rock strain. Study areas include the Uinta and Paradox basins of Utah, the San Juan basin of New Mexico, and the Permian basin of west Texas. Regional-scale hydrologic and mechanical properties, including the presence of fracture zones, were calibrated using laboratory and field data. Our initial results suggest that, in general, long-term (~100 years or more) sequestration in deep brine reservoirs is possible, if guided by robust structural and hydrologic data. However, specific processes must be addressed to characterize and minimize risks. In addition to CO2 migration from target sequestration reservoirs into other reservoirs or to the land surface, another environmental issue is displacement of brines into freshwater aquifers. We evaluated the potential for such unintended aquifer contamination by displacement of brines out of adjacent sealing layers such as marine shales. Results suggest that sustained injection of CO2 may incur significant brine displacement out of adjacent sealing layers, depending on the injection history, initial brine composition, and hydrologic properties of both reservoirs and seals. Model simulations also suggest that as injection-induced overpressures migrate, effective stresses may follow this migration under some conditions, as will associated rock strain. Such "strain migration" may lead to induced or reactivated fractures or faults, but can be controlled through reservoir engineering.

  12. Dynamics and climate change mitigation potential of soil organic carbon sequestration.

    PubMed

    Sommer, Rolf; Bossio, Deborah

    2014-11-01

    When assessing soil organic carbon (SOC) sequestration and its climate change (CC) mitigation potential at global scale, the dynamic nature of soil carbon storage and interventions to foster it should be taken into account. Firstly, adoption of SOC-sequestration measures will take time, and reasonably such schemes could only be implemented gradually at large-scale. Secondly, if soils are managed as carbon sinks, then SOC will increase only over a limited time, up to the point when a new SOC equilibrium is reached. This paper combines these two processes and predicts potential SOC sequestration dynamics in agricultural land at global scale and the corresponding CC mitigation potential. Assuming that global governments would agree on a worldwide effort to gradually change land use practices towards turning agricultural soils into carbon sinks starting 2014, the projected 87-year (2014-2100) global SOC sequestration potential of agricultural land ranged between 31 and 64 Gt. This is equal to 1.9-3.9% of the SRES-A2 projected 87-year anthropogenic emissions. SOC sequestration would peak 2032-33, at that time reaching 4.3-8.9% of the projected annual SRES-A2 emission. About 30 years later the sequestration rate would have reduced by half. Thus, SOC sequestration is not a C wedge that could contribute increasingly to mitigating CC. Rather, the mitigation potential is limited, contributing very little to solving the climate problem of the coming decades. However, we deliberately did not elaborate on the importance of maintaining or increasing SOC for sustaining soil health, agro-ecosystem functioning and productivity; an issue of global significance that deserves proper consideration irrespectively of any potential additional sequestration of SOC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    James P. Barry; Peter G. Brewer

    OAK-B135 This report summarizes activities and results of investigations of the potential environmental consequences of direct injection of carbon dioxide into the deep-sea as a carbon sequestration method. Results of field experiments using small scale in situ releases of liquid CO2 are described in detail. The major conclusions of these experiments are that mortality rates of deep sea biota will vary depending on the concentrations of CO2 in deep ocean waters that result from a carbon sequestration project. Large changes in seawater acidity and carbon dioxide content near CO2 release sites will likely cause significant harm to deep-sea marine life.more » Smaller changes in seawater chemistry at greater distances from release sites will be less harmful, but may result in significant ecosystem changes.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter H. Israelsson; E. Eric Adams

    On December 4, 1997, the US Department of Energy (USDOE), the New Energy and Industrial Technology Development Organization of Japan (NEDO), and the Norwegian Research Council (NRC) entered into a Project Agreement for International Collaboration on CO{sub 2} Ocean Sequestration. Government organizations from Japan, Canada, and Australia, and a Swiss/Swedish engineering firm later joined the agreement, which outlined a research strategy for ocean carbon sequestration via direct injection. The members agreed to an initial field experiment, with the hope that if the initial experiment was successful, there would be subsequent field evaluations of increasingly larger scale to evaluate environmental impactsmore » of sequestration and the potential for commercialization. The evolution of the collaborative effort, the supporting research, and results for the International Collaboration on CO{sub 2} Ocean Sequestration were documented in almost 100 papers and reports, including 18 peer-reviewed journal articles, 46 papers, 28 reports, and 4 graduate theses. These efforts were summarized in our project report issued January 2005 and covering the period August 23, 1998-October 23, 2004. An accompanying CD contained electronic copies of all the papers and reports. This report focuses on results of a two-year sub-task to update an environmental assessment of acute marine impacts resulting from direct ocean sequestration. The approach is based on the work of Auerbach et al. [6] and Caulfield et al. [20] to assess mortality to zooplankton, but uses updated information concerning bioassays, an updated modeling approach and three modified injection scenarios: a point release of negatively buoyant solid CO{sub 2} hydrate particles from a moving ship; a long, bottom-mounted diffuser discharging buoyant liquid CO{sub 2} droplets; and a stationary point release of hydrate particles forming a sinking plume. Results suggest that in particular the first two discharge modes could be successfully designed to largely avoid zooplankton mortality. Sub-lethal and ecosystem effects are discussed qualitatively, but not analyzed quantitatively.« less

  15. Unraveling the stratigraphy of the Oriskany Sandstone: A necessity in assessing its site-specific carbon sequestration potential

    USGS Publications Warehouse

    Kostelnik, J.; Carter, K.M.

    2009-01-01

    The widespread distribution, favorable reservoir characteristics, and depth make the Lower Devonian Oriskany Sandstone a viable sequestration target in the Appalachian Basin. The Oriskany Sandstone is thickest in the structurally complex Ridge and Valley Province, thins toward the northern and western basin margins, and is even absent in other parts of the basin (i.e., the no-sand area of northwestern Pennsylvania). We evaluated four regions using petrographic data, core analyses, and geophysical log analyses. Throughout the entire study area, average porosities range from 1.35 to 14%. The most notable porosity types are primary intergranular, secondary dissolution, and fracture porosity. Intergranular primary porosity dominates at stratigraphic pinch-out zones near the Oriskany no-sand area and at the western limit of the Oriskany Sandstone. Secondary porosity occurs from dissolution of carbonate constituents primarily in the combination-traps natural gas play extending through western Pennsylvania, western West Virginia, and eastern Ohio. Fracture porosity dominates in the central Appalachian Plateau Province and Valley and Ridge Province. Based on average porosity, the most likely regions for successful sequestration in the Oriskany interval are (1) updip from Oriskany Sandstone pinch-outs in eastern Ohio, and (2) western Pennsylvania, western West Virginia, and eastern Ohio where production occurs from a combination of stratigraphic and structural traps. Permeability data, where available, were used to further evaluate the potential of these regions. Permeability ranges from 0.2 to 42.7 md. Stratigraphic pinch-outs at the northern and western limits of the basin have the highest permeabilities. We recommend detailed site assessments when evaluating the sequestration potential of a given injection site based on the variability observed in the Oriskany structure, lithology, and reservoir characteristics. ?? 2009. The American Association of Petroleum Geologists/Division of Environmental Ceosciences. All rights reserved.

  16. Use of native species to improve carbon sequestration and contribute towards solving the environmental problems of the timberlands in Biscay, northern Spain.

    PubMed

    Rodríguez-Loinaz, Gloria; Amezaga, Ibone; Onaindia, Miren

    2013-05-15

    The rapid transformation of natural forest areas into fast-growing exotic species plantations, where the main objective is timber and pulp production, has led to a neglect of other services forests provide in many parts of the world. One example of such a problem is the county of Biscay, where the management of these plantations has negative impacts on the environment, creating the necessity to evaluate alternative tree species for use in forestry. The actual crisis in the forest sector of the region could be an opportunity to change to native species plantations that could help restore ecosystem structure and function. However, forest managers of the region are using the current interest on carbon sequestration by forest to persist with the "pine and eucalyptus culture", arguing that these species provide a big C sequestration service. Moreover, they are promoting the expansion of eucalyptus plantations to obtain biomass for the pulp and paper industry and for bioenergy. The aim of this paper is to answer the following questions: Is this argument used by the foresters well-founded? or, could the use of native species in plantations improve the C sequestration service in Biscay while avoiding the environmental problems the actual plantations cause? To answer these questions we created three alternative future scenarios: a) the Services scenario, where there is a substitution of fast-growing exotic plantations by native broadleaf species plantations; b) the Biomass scenario, where there is a bet on eucalyptus plantations; and c) the Business as usual scenario. The changes in the C stock in living biomass in these scenarios have been simulated by a hybrid approach utilising inventories and models, and the period considered was 150 years. Our results show that the substitution of existing exotic plantations by plantations of native species has the greatest potential for increasing C sequestration. Although short- and mid-term outcomes may differ, when the long-term (more than 50 years) is considered, the C stock in the living biomass in the Services scenario is the greatest, accumulating 38% more C than the Business as usual scenario and 70% more C than the Biomass scenario at the end of the study period. Thus, changing pine and eucalyptus by native species in plantations, while solving some of the environmental problems of the actual plantations, sequesters more C in the long-term. As C sequestration initiatives only make sense if there is a good chance of long-term persistence of the C stocks created, there is no C sequestration argument for the foresters to continue with the actual policy of the use of fast-growing exotic species. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Biorefineries of carbon dioxide: From carbon capture and storage (CCS) to bioenergies production.

    PubMed

    Cheah, Wai Yan; Ling, Tau Chuan; Juan, Joon Ching; Lee, Duu-Jong; Chang, Jo-Shu; Show, Pau Loke

    2016-09-01

    Greenhouse gas emissions have several adverse environmental effects, like pollution and climate change. Currently applied carbon capture and storage (CCS) methods are not cost effective and have not been proven safe for long term sequestration. Another attractive approach is CO2 valorization, whereby CO2 can be captured in the form of biomass via photosynthesis and is subsequently converted into various form of bioenergy. This article summarizes the current carbon sequestration and utilization technologies, while emphasizing the value of bioconversion of CO2. In particular, CO2 sequestration by terrestrial plants, microalgae and other microorganisms are discussed. Prospects and challenges for CO2 conversion are addressed. The aim of this review is to provide comprehensive knowledge and updated information on the current advances in biological CO2 sequestration and valorization, which are essential if this approach is to achieve environmental sustainability and economic feasibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Particulate matter emissions from biochar-amended soils as a potential tradeoff to the negative emission potential

    NASA Astrophysics Data System (ADS)

    Ravi, Sujith; Sharratt, Brenton S.; Li, Junran; Olshevski, Stuart; Meng, Zhongju; Zhang, Jianguo

    2016-10-01

    Novel carbon sequestration strategies such as large-scale land application of biochar may provide sustainable pathways to increase the terrestrial storage of carbon. Biochar has a long residence time in the soil and hence comprehensive studies are urgently needed to quantify the environmental impacts of large-scale biochar application. In particular, black carbon emissions from soils amended with biochar may counteract the negative emission potential due to the impacts on air quality, climate, and biogeochemical cycles. We investigated, using wind tunnel experiments, the particulate matter emission potential of a sand and two agriculturally important soils amended with different concentrations of biochar, in comparison to control soils. Our results indicate that biochar application considerably increases particulate emissions possibly by two mechanisms-the accelerated emission of fine biochar particles and the generation and emission of fine biochar particles resulting from abrasion of large biochar particles by sand grains. Our study highlights the importance of considering the background soil properties (e.g., texture) and geomorphological processes (e.g., aeolian transport) for biochar-based carbon sequestration programs.

  19. An Overview of Geologic Carbon Sequestration Potential in California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cameron Downey; John Clinkenbeard

    2005-10-01

    As part of the West Coast Regional Carbon Sequestration Partnership (WESTCARB), the California Geological Survey (CGS) conducted an assessment of geologic carbon sequestration potential in California. An inventory of sedimentary basins was screened for preliminary suitability for carbon sequestration. Criteria included porous and permeable strata, seals, and depth sufficient for critical state carbon dioxide (CO{sub 2}) injection. Of 104 basins inventoried, 27 met the criteria for further assessment. Petrophysical and fluid data from oil and gas reservoirs was used to characterize both saline aquifers and hydrocarbon reservoirs. Where available, well log or geophysical information was used to prepare basin-wide mapsmore » showing depth-to-basement and gross sand distribution. California's Cenozoic marine basins were determined to possess the most potential for geologic sequestration. These basins contain thick sedimentary sections, multiple saline aquifers and oil and gas reservoirs, widespread shale seals, and significant petrophysical data from oil and gas operations. Potential sequestration areas include the San Joaquin, Sacramento, Ventura, Los Angeles, and Eel River basins, followed by the smaller Salinas, La Honda, Cuyama, Livermore, Orinda, and Sonoma marine basins. California's terrestrial basins are generally too shallow for carbon sequestration. However, the Salton Trough and several smaller basins may offer opportunities for localized carbon sequestration.« less

  20. Environmental Impacts of the Production and Application of Biochar - EuroChar Project

    NASA Astrophysics Data System (ADS)

    Rack, Mireille; Woods, Jeremy

    2014-05-01

    One of the potential benefits of biochar is carbon sequestration. To determine the overall net sequestration potential it is important to analyse the full supply chain, assessing both the direct and indirect emissions associated with the production and application of biochar. However, it is essential to also incorporate additional environmental impact categories to ensure the assessment of a more complete environmental impact profile. This paper uses a full life-cycle assessment (LCA) methodology to evaluate the results from the EuroChar, 'biochar for carbon sequestration and large-scale removal of GHG from the atmosphere', project. This EU Seventh Framework Programme project aims to investigate and reduce uncertainties around the impacts of, and opportunities for, biochar, and in particular explore possible pathways for its introduction into modern agricultural systems in Europe. The LCA methodology, according to the ISO standards, is applied to the project-specific supply chains to analyse the environmental impacts of biochar production and application. Two conversion technologies for the production of biochar are assessed, gasification and hydrothermal carbonization (HTC), in order to provide conversion efficiencies and emission factors for the biochar production component of the supply chain. The selected feedstocks include those derived from waste residues and dedicated crops. For the end use stage, various forms and methods for biochar application are considered. In addition to the Global Warming Potential category, other environmental impact categories are also included in the analysis. The resulting 'feedstock * conversion technology' matrix provides nine pathways for the production and application of biochar, which are applied as a representative basis for the scenario modelling. These scenarios have been developed in order to assess the feedstock and land availability in Europe for the production and application of biochar and to give an order of magnitude assessment as to the potential role for biochar as a material climate mitigation option. Preliminary results show net negative supply chain emissions, indicating biochar to be a carbon sink. Overall, the life cycle stage that contributes most significantly to the environmental impact profile is feedstock production. Feedstock selection is therefore expected to play a key role in determining the overall viability of biochar production and its use in land application. Further sensitivity analyses show that the allocation method of the attributional LCA has the greatest impact on the results, followed by the oxidation rate of the carbon in the biochar, and the transportation distances of the feedstock and biochar. Indirect impacts, such as avoided use of fossil fuel, can significantly alter the results. As the EuroChar project comes to a completion at the end of May 2014, the near-final results are presented at the EGU 2014 General Assembly.

  1. Estimating Ecosystem Carbon Stock Change in the Conterminous United States from 1971 to 2010

    NASA Astrophysics Data System (ADS)

    Liu, J.; Sleeter, B. M.; Zhu, Z.; Loveland, T. R.; Sohl, T.; Howard, S. M.; Hawbaker, T. J.; Liu, S.; Heath, L. S.; Cochrane, M. A.; Key, C. H.; Jiang, H.; Price, D. T.; Chen, J. M.

    2015-12-01

    There is significant geographic variability in U.S. ecosystem carbon sequestration due to natural and human environmental conditions. Climate change, natural disturbance and human land use are the major driving forces that can alter local and regional carbon sequestration rates. In this study, a comprehensive environmental input dataset (1-km resolution) was developed and used in the process-based Integrated Biosphere Simulator (IBIS) to quantify the U.S. carbon stock changes from 1971-2010, which potentially forms a baseline for future U.S. carbon scenarios. The key environmental data sources include land cover change information from more than 2,600 sample blocks across U.S. (10-km by 10-km in size, 60-m resolution, 1973-2000), wildland fire scar and burn severity information (30-m resolution, 1984-2010), vegetation canopy percentage and live biomass level (30-m resolution, ~2000), spatially heterogeneous atmospheric carbon dioxide and nitrogen deposition (~50-km resolution, 2003-2009), and newly available climate (4-km resolution, 1895-2010) and soil variables (1-km resolution, ~2000). The IBIS simulated the effects of atmospheric CO2 fertilization, nitrogen deposition, climate change, fire, logging, and deforestation/devegetation on ecosystem carbon changes. Multiple comparable simulations were implemented to quantify the contributions of key environmental drivers.

  2. A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control.

    PubMed

    Rao, Anand B; Rubin, Edward S

    2002-10-15

    Capture and sequestration of CO2 from fossil fuel power plants is gaining widespread interest as a potential method of controlling greenhouse gas emissions. Performance and cost models of an amine (MEA)-based CO2 absorption system for postcombustion flue gas applications have been developed and integrated with an existing power plant modeling framework that includes multipollutant control technologies for other regulated emissions. The integrated model has been applied to study the feasibility and cost of carbon capture and sequestration at both new and existing coal-burning power plants. The cost of carbon avoidance was shown to depend strongly on assumptions about the reference plant design, details of the CO2 capture system design, interactions with other pollution control systems, and method of CO2 storage. The CO2 avoidance cost for retrofit systems was found to be generally higher than for new plants, mainly because of the higher energy penalty resulting from less efficient heat integration as well as site-specific difficulties typically encountered in retrofit applications. For all cases, a small reduction in CO2 capture cost was afforded by the SO2 emission trading credits generated by amine-based capture systems. Efforts are underway to model a broader suite of carbon capture and sequestration technologies for more comprehensive assessments in the context of multipollutant environmental management.

  3. Carbon sequestration, optimum forest rotation and their environmental impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kula, Erhun, E-mail: erhun.kula@bahcesehir.edu.tr; Gunalay, Yavuz, E-mail: yavuz.gunalay@bahcesehir.edu.tr

    2012-11-15

    Due to their large biomass forests assume an important role in the global carbon cycle by moderating the greenhouse effect of atmospheric pollution. The Kyoto Protocol recognises this contribution by allocating carbon credits to countries which are able to create new forest areas. Sequestrated carbon provides an environmental benefit thus must be taken into account in cost-benefit analysis of afforestation projects. Furthermore, like timber output carbon credits are now tradable assets in the carbon exchange. By using British data, this paper looks at the issue of identifying optimum felling age by considering carbon sequestration benefits simultaneously with timber yields. Themore » results of this analysis show that the inclusion of carbon benefits prolongs the optimum cutting age by requiring trees to stand longer in order to soak up more CO{sub 2}. Consequently this finding must be considered in any carbon accounting calculations. - Highlights: Black-Right-Pointing-Pointer Carbon sequestration in forestry is an environmental benefit. Black-Right-Pointing-Pointer It moderates the problem of global warming. Black-Right-Pointing-Pointer It prolongs the gestation period in harvesting. Black-Right-Pointing-Pointer This paper uses British data in less favoured districts for growing Sitka spruce species.« less

  4. Geochemical Impacts to Groundwater from Geologic Carbon Sequestration: Controls on pH and Inorganic Carbon Concentrations from Reaction Path and Kinetic Modeling

    EPA Science Inventory

    Geologic carbon sequestration has the potential to cause long-term reductions in global emissions of carbon dioxide to the atmosphere. Safe and effective application of carbon sequestration technology requires an understanding of the potential risks to the quality of underground...

  5. Carbon sequestration potential estimates with changes in land use and tillage practice in Ohio, USA

    USGS Publications Warehouse

    Tan, Z.; Lal, R.

    2005-01-01

    Soil C sequestration through changes in land use and management is one of the important strategies to mitigate the global greenhouse effect. This study was conducted to estimate C sequestration potential of the top 20 cm depth of soil for two scenarios in Ohio, USA: (1) with reforestation of both current cropland and grassland where SOC pools are less than the baseline SOC pool under current forest; (2) with the adoption of NT on all current cropland. Based on Ohio Soil Survey Characterization Database and long-term experimental data of paired conservation tillage (CT) versus no-till (NT), we specified spatial variations of current SOC pools and C sequestration potentials associated with soil taxa within each major land resource area (MLRA). For scenario I, there would be 4.56 Mha of cropland having an average SOC sequestration capacity of 1.55 kg C m−2 and 0.80 Mha of grassland with that of 1.35 kg C m−2. Of all potential area, 73% are associated with Alfisols and 15% with Mollisols, but the achievable potential could vary significantly with individual MLRAs. Alternately, an average SOC sequestration rate of 62 g C m−2 year−1 was estimated with conversion from CT to NT for cultivated Alfisols, by which a cumulative increase of 71 Tg C resulted from reforestation of cropland could be realized in 25 years. Soils with lower antecedent C contents have higher C sequestration rates. In comparison with the results obtained at the state scale, the estimates of SOC sequestration potentials taxonomically associated with each specific MLRA may be more useful to the formulation of C credit trading programs.

  6. Characterization of the Helderberg Group as a geologic seal for CO 2 sequestration

    USGS Publications Warehouse

    Lewis, J.E.; McDowell, R.R.; Avary, K.L.; Carter, K.M.

    2009-01-01

    The Midwest Regional Carbon Sequestration Partnership recognizes that both the Devonian Oriskany Sandstone and the Silurian Salina Group offer potential for subsurface carbon dioxide storage in northern West Virginia. The Silurian-Devonian Helderberg Group lies stratigraphically between these two units, and consequendy, its potential as a geologic seal must be evaluated. Predominantly a carbonate interval with minor interbedded siliciclastics and chert, the Helderberg Group was deposited in an ancient epeiric sea. Although most previous investigations of this unit have concentrated on outcrops in eastern West Virginia, new information is available from an injection well drilled along the Ohio River at First Energy's R. E. Burger electric power plant near Shadyside, Ohio. Geophysical, seismic, and core data from this well have been combined with existing outcrop information to evaluate the Helderberg Group's potential as a seal. The data collected suggest that only secondary porosity remains, and permeability, if it exists, most likely occurs along faults or within fractures. ?? 2009. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  7. Multipoint Pressure and Temperature Sensing Fiber Optic Cable for Monitoring CO 2 Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Challener, William

    2015-02-10

    This report describes the work completed on contract DE-FE0010116. The goal of this two year project was to develop and demonstrate in the laboratory a highly accurate multi-point pressure measurement fiber optic cable based on MEMS pressure sensors suitable for downhole deployment in a CO 2 sequestration well. The sensor interrogator was also to be demonstrated in a remote monitoring system and environmental testing was to be completed to indicate its downhole survivability over a lengthy period of time (e.g., 20 years). An interrogator system based on a pulsed laser excitation was shown to be capable of multiple (potentially 100+)more » simultaneous sensor measurements. Two sensors packages were completed and spliced in a cable onto the same fiber and measured. One sensor package was subsequently measured at high temperatures and pressures in supercritical CO 2, while the other package was measured prior and after being subjected to high torque stresses to mimic downhole deployment. The environmental and stress tests indicated areas in which the package design should be further improved.« less

  8. Soil organic carbon sequestration potential and gap of the sub-tropical region

    NASA Astrophysics Data System (ADS)

    Chiti, T.; Santini, M.; Valentini, R.

    2012-04-01

    A database of soil organic carbon (SOC) stocks was created for the sub-tropical belt using existing global SOC databases (WISE3; various SOTER) and new data from an ongoing project (ERC Africa-GHG) specific for the tropical forests of the African continent. The intent of this database is to evaluate the sequestration potential of a critical area of the world where most of the primary rainforests are located, and actually show undoubtedly high SOC losses associated with deforestation. About 4100 profiles, quite well distributed over the entire sub-tropical belt, were used to calculate the actual SOC stock for the 0-30 cm and 30-100 cm depths of mineral soil. First, this actual SOC stock has been related to the current Land Use Systems; successively, it has been interpolated taking into account Homogeneous Land Units (HLUs) in terms of soil type, climate zone and land use. Then, relying on consistent projections, of both climate and land use changes, for the years 2050 and 2100 under extremes IPCC-SRES emission scenarios such as the B1 and the A2, potential SOC stocks for these time frames has been calculated. Soil carbon sequestration gap is calculated by the difference of the actual SOC stock and the future projections. When subtracting potential from the actual SOC stocks, negative values represent a gap in terms of possible SOC losses and so reduced carbon sequestration. The soil carbon gap indicates locations where there will be low soil-carbon levels associated with medium-to-high actual SOC stocks, and medium soil-carbon levels associated with high actual SOC stocks, depending on soil type, climate and land use conditions. On the long term, 2076-2100, a SOC gap is observed under all scenarios in South America, just below the Amazonia basin, where are located open and fragmented forests. However, in the Amazonia basin deforestation decrease since no sensible SOC losses were observed. An important gap is observed also in the Congo basin and West Africa, but the gap is more fragmented in small spots than that observed in South America. Forests of Asia seems to be less interested from SOC losses and the projections show almost no gaps under both scenarios. The soil organic carbon sequestration potential database is intended to provide an indication at the regional level of the potential for policy makers to provide environmental services and drive specific policy to increase sustainable land management.

  9. Potential contribution of the forestry sector in Bangladesh to carbon sequestration.

    PubMed

    Yong Shin, Man; Miah, Danesh M; Lee, Kyeong Hak

    2007-01-01

    The Kyoto Protocol provides for the involvement of developing countries in an atmospheric greenhouse gas reduction regime under its Clean Development Mechanism (CDM). Carbon credits are gained from reforestation and afforestation activities in developing countries. Bangladesh, a densely populated tropical country in South Asia, has a huge degraded forestland which can be reforested by CDM projects. To realize the potential of the forestry sector in developing countries for full-scale emission mitigation, the carbon sequestration potential of different species in different types of plantations should be integrated with the carbon trading system under the CDM of the Kyoto Protocol. This paper discusses the prospects and problems of carbon trading in Bangladesh, in relation to the CDM, in the context of global warming and the potential associated consequences. The paper analyzes the effects of reforestation projects on carbon sequestration in Bangladesh, in general, and in the hilly Chittagong region, in particular, and concludes by demonstrating the carbon trading opportunities. Results showed that tree tissue in the forests of Bangladesh stored 92tons of carbon per hectare (tC/ha), on average. The results also revealed a gross stock of 190tC/ha in the plantations of 13 tree species, ranging in age from 6 to 23 years. The paper confirms the huge atmospheric CO(2) offset by the forests if the degraded forestlands are reforested by CDM projects, indicating the potential of Bangladesh to participate in carbon trading for both its economic and environmental benefit. Within the forestry sector itself, some constraints are identified; nevertheless, the results of the study can expedite policy decisions regarding Bangladesh's participation in carbon trading through the CDM.

  10. Status and potential of terrestrial carbon sequestration in West Virginia

    Treesearch

    Benktesh D. Sharma; Jingxin Wang

    2011-01-01

    Terrestrial ecosystem management offers cost-effective ways to enhance carbon (C) sequestration. This study utilized C stock and C sequestration in forest and agricultural lands, abandoned mine lands, and harvested wood products to estimate the net current annual C sequestration in West Virginia. Several management options within these components were simulated using a...

  11. Models of reforestation productivity and carbon sequestration for land use and climate change adaptation planning in South Australia.

    PubMed

    Hobbs, Trevor J; Neumann, Craig R; Meyer, Wayne S; Moon, Travis; Bryan, Brett A

    2016-10-01

    Environmental management and regional land use planning has become more complex in recent years as growing world population, climate change, carbon markets and government policies for sustainability have emerged. Reforestation and agroforestry options for environmental benefits, carbon sequestration, economic development and biodiversity conservation are now important considerations of land use planners. New information has been collected and regionally-calibrated models have been developed to facilitate better regional land use planning decisions and counter the limitations of currently available models of reforestation productivity and carbon sequestration. Surveys of above-ground biomass of 264 reforestation sites (132 woodlots, 132 environmental plantings) within the agricultural regions of South Australia were conducted, and combined with spatial information on climate and soils, to develop new spatial and temporal models of plant density and above-ground biomass productivity from reforestation. The models can be used to estimate productivity and total carbon sequestration (i.e. above-ground + below-ground biomass) under a continuous range of planting designs (e.g. variable proportions of trees and shrubs or plant densities), timeframes and future climate scenarios. Representative spatial models (1 ha resolution) for 3 reforestation designs (i.e. woodlots, typical environmental planting, biodiverse environmental plantings) × 3 timeframes (i.e. 25, 45, 65 years) × 4 possible climates (i.e. no change, mild, moderate, severe warming and drying) were generated (i.e. 36 scenarios) for use within land use planning tools. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Reservoir uncertainty, Precambrian topography, and carbon sequestration in the Mt. Simon Sandstone, Illinois Basin

    USGS Publications Warehouse

    Leetaru, H.E.; McBride, J.H.

    2009-01-01

    Sequestration sites are evaluated by studying the local geological structure and confirming the presence of both a reservoir facies and an impermeable seal not breached by significant faulting. The Cambrian Mt. Simon Sandstone is a blanket sandstone that underlies large parts of Midwest United States and is this region's most significant carbon sequestration reservoir. An assessment of the geological structure of any Mt. Simon sequestration site must also include knowledge of the paleotopography prior to deposition. Understanding Precambrian paleotopography is critical in estimating reservoir thickness and quality. Regional outcrop and borehole mapping of the Mt. Simon in conjunction with mapping seismic reflection data can facilitate the prediction of basement highs. Any potential site must, at the minimum, have seismic reflection data, calibrated with drill-hole information, to evaluate the presence of Precambrian topography and alleviate some of the uncertainty surrounding the thickness or possible absence of the Mt. Simon at a particular sequestration site. The Mt. Simon is thought to commonly overlie Precambrian basement granitic or rhyolitic rocks. In places, at least about 549 m (1800 ft) of topographic relief on the top of the basement surface prior to Mt. Simon deposition was observed. The Mt. Simon reservoir sandstone is thin or not present where basement is topographically high, whereas the low areas can have thick Mt. Simon. The paleotopography on the basement and its correlation to Mt. Simon thickness have been observed at both outcrops and in the subsurface from the states of Illinois, Ohio, Wisconsin, and Missouri. ?? 2009. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  13. Changes in soil organic carbon in croplands subjected to fertilizer management: a global meta-analysis

    PubMed Central

    Han, Pengfei; Zhang, Wen; Wang, Guocheng; Sun, Wenjuan; Huang, Yao

    2016-01-01

    Cropland soil organic carbon (SOC) is undergoing substantial alterations due to both environmental and anthropogenic changes. Although numerous case studies have been conducted, there remains a lack of quantification of the consequences of such environmental and anthropogenic changes on the SOC sequestration across global agricultural systems. Here, we conducted a global meta-analysis of SOC changes under different fertilizer managements, namely unbalanced application of chemical fertilizers (UCF), balanced application of chemical fertilizers (CF), chemical fertilizers with straw application (CFS), and chemical fertilizers with manure application (CFM). We show that topsoil organic carbon (C) increased by 0.9 (0.7–1.0, 95% confidence interval (CI)) g kg−1 (10.0%, relative change, hereafter the same), 1.7 (1.2–2.3) g kg−1 (15.4%), 2.0 (1.9–2.2) g kg−1 (19.5%) and 3.5 (3.2–3.8) g kg−1 (36.2%) under UCF, CF, CFS and CFM, respectively. The C sequestration durations were estimated as 28–73 years under CFS and 26–117 years under CFM but with high variability across climatic regions. At least 2.0 Mg ha−1 yr−1 C input is needed to maintain the SOC in ~85% cases. We highlight a great C sequestration potential of applying CF, and adopting CFS and CFM is highly important for either improving or maintaining current SOC stocks across all agro–ecosystems. PMID:27251021

  14. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susan M. Capalbo

    2004-10-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources foundmore » in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed in the second quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO{sub 2} concentrations. While no key deliverables were due during the third quarter, progress on other deliverables is noted in the PowerPoint presentations and in this report. A series of meetings held during the second and third quarters have laid the foundations for assessing the issues surrounding carbon sequestration in this region, the need for a holistic approach to meeting energy demands and economic development potential, and the implementation of government programs or a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. In the fourth quarter, three deliverables have been completed, some in draft form to be revised and updated to include Wyoming. This is due primarily to some delays in funding to LANL and INEEL and the approval of a supplemental proposal to include Wyoming in much of the GIS data sets, analysis, and related materials. The deliverables are discussed in the following sections and greater details are provided in the materials that are attached to this report. In August 2004, a presentation was made to Pioneer Hi-Bred, discussing the Partnership and the synergies with terrestrial sequestration, agricultural industries, and ongoing, complimentary USDA efforts. The Partnership organized a Carbon session at the INRA 2004 Environmental and Subsurface Science Symposium in September 2004; also in September, a presentation was made to the Wyoming Carbon Sequestration Advisory Committee, followed up with a roundtable discussion.« less

  15. Coal bed sequestration of carbon dioxide

    USGS Publications Warehouse

    Stanton, Robert; Flores, Romeo M.; Warwick, Peter D.; Gluskoter, Harold J.; Stricker, Gary D.

    2001-01-01

    Geologic sequestration of CO2 generated from fossil fuel combustion may be an environmentally attractive method to reduce the amount of greenhouse gas emissions. Of the geologic options, sequestering CO2 in coal beds has several advantages. For example, CO2 injection can enhance methane production from coal beds; coal can trap CO2 for long periods of time; and potential major coal basins that contain ideal beds for sequestration are near many emitting sources of CO2.One mission of the Energy Resources Program of the U.S. Geological Survey is to maintain assessment information of the Nation’s resources of coal, oil, and gas. The National Coal Resources Assessment Project is currently completing a periodic assessment of 5 major coal-producing regions of the US. These regions include the Powder River and Williston and other Northern Rocky Mountain basins (Fort Union Coal Assessment Team, 1999), Colorado Plateau area (Kirschbaum and others, 2000), Gulf Coast Region, Appalachian Basin, and Illinois Basin. The major objective of this assessment is to estimate available coal resources and quality for the major producing coal beds of the next 25 years and produce digital databases and maps. Although the focus of this work has been on coal beds with the greatest potential for mining, it serves as a basis for future assessments of the coal beds for other uses such as coal bed methane resources, in situ gasification, and sites for sequestration of CO2. Coal bed methane production combined with CO2 injection and storage expands the use of a coal resource and can provide multiple benefits including increased methane recovery, methane drainage of a resource area, and the long-term storage of CO2.

  16. Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation.

    PubMed

    Wiesmeier, Martin; Hübner, Rico; Spörlein, Peter; Geuß, Uwe; Hangen, Edzard; Reischl, Arthur; Schilling, Bernd; von Lützow, Margit; Kögel-Knabner, Ingrid

    2014-02-01

    Sequestration of atmospheric carbon (C) in soils through improved management of forest and agricultural land is considered to have high potential for global CO2 mitigation. However, the potential of soils to sequester soil organic carbon (SOC) in a stable form, which is limited by the stabilization of SOC against microbial mineralization, is largely unknown. In this study, we estimated the C sequestration potential of soils in southeast Germany by calculating the potential SOC saturation of silt and clay particles according to Hassink [Plant and Soil 191 (1997) 77] on the basis of 516 soil profiles. The determination of the current SOC content of silt and clay fractions for major soil units and land uses allowed an estimation of the C saturation deficit corresponding to the long-term C sequestration potential. The results showed that cropland soils have a low level of C saturation of around 50% and could store considerable amounts of additional SOC. A relatively high C sequestration potential was also determined for grassland soils. In contrast, forest soils had a low C sequestration potential as they were almost C saturated. A high proportion of sites with a high degree of apparent oversaturation revealed that in acidic, coarse-textured soils the relation to silt and clay is not suitable to estimate the stable C saturation. A strong correlation of the C saturation deficit with temperature and precipitation allowed a spatial estimation of the C sequestration potential for Bavaria. In total, about 395 Mt CO2 -equivalents could theoretically be stored in A horizons of cultivated soils - four times the annual emission of greenhouse gases in Bavaria. Although achieving the entire estimated C storage capacity is unrealistic, improved management of cultivated land could contribute significantly to CO2 mitigation. Moreover, increasing SOC stocks have additional benefits with respect to enhanced soil fertility and agricultural productivity. © 2013 John Wiley & Sons Ltd.

  17. Can Advances in Science and Technology Prevent Global Warming? A Critical Review of Limitations and Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huesemann, Michael H.

    The most stringent emission scenarios published by the Intergovernmental Panel on Climate Change (IPCC) would result in the stabilization of atmospheric carbon dioxide (CO2) at concentrations of approximately 550 ppm which would produce a global temperature increase of at least 2 C by 2100. Given the large uncertainties regarding the potential risks associated with this degree of global warming, it would be more prudent to stabilize atmospheric CO2 concentrations at or below current levels which, in turn, would require a greater than 20-fold reduction (i.e., ?95%) in per capita carbon emissions in industrialized nations within the next 50 to 100more » years. Using the Kaya equation as a conceptual framework, this paper examines whether CO2 mitigation approaches such as energy efficiency improvements, carbon sequestration, and the development of carbon-free energy sources would be sufficient to bring about the required reduction in per capita carbon emissions without creating unforeseen negative impacts elsewhere. In terms of energy efficiency, large improvements (?5-fold) are in principle possible given aggressive investments in R&D and if market imperfections such as corporate subsidies are removed. However, energy efficiency improvements per se will not result in a reduction in carbon emissions if, as predicted by the IPCC, the size of the global economy has expanded 12-26 fold by 2100. Terrestrial carbon sequestration via reforestation and improved agricultural soil management has many environmental advantages but has only limited CO2 mitigation potential because the global terrestrial carbon sink (ca. 200 Gt C) is small relative to the size of fossil fuel deposits (?4000 Gt C). By contrast, very large amounts of CO2 can potentially be removed from the atmosphere via sequestration in geologic formations and oceans, but carbon storage is not permanent and is likely to create many unpredictable environmental consequences. Renewable solar energy can in theory provide large amounts of carbon-free power. However, biomass and hydroelectric energy can only be marginally expanded and large-scale solar energy installations (i.e., wind, photovoltaics, and direct thermal) are likely to have significant negative environmental impacts. Expansion of nuclear energy is highly unlikely due to concerns over reactor safety, radioactive waste management, weapons proliferation, and cost. In view of the serious limitations and liabilities of many proposed CO2 mitigation approaches it appears that there remain only few no-regrets options such as drastic energy efficiency improvements, extensive terrestrial carbon sequestration, and cautious expansion of renewable energy generation. These promising CO2 mitigation technologies have the potential to bring about the required 20-fold reduction in per capita carbon emission only if population and economic growth are halted without delay. Thus, addressing the problem of global warming requires not only technological research and development but also a reexamination of core values that mistakenly equate material consumption and economic growth to happiness and well-being.« less

  18. Federal Control of Geological Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reitze, Arnold W.

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. In response, the U.S. Department of Energy is making significant efforts to help develop and implement a commercial scale program of geologic carbon sequestration that involves capturing and storing carbon dioxide emitted from coal-burning electric power plants in deep underground formations. This article explores the technical andmore » legal problems that must be resolved in order to have a viable carbon sequestration program. It covers the responsibilities of the United States Environmental Protection Agency and the Departments of Energy, Transportation and Interior. It discusses the use of the Safe Drinking Water Act, the Clean Air Act, the National Environmental Policy Act, the Endangered Species Act, and other applicable federal laws. Finally, it discusses the provisions related to carbon sequestration that have been included in the major bills dealing with climate change that Congress has been considering in 2009 and 2010. The article concludes that the many legal issues that exist can be resolved, but whether carbon sequestration becomes a commercial reality will depend on reducing its costs or by imposing legal requirements on fossil-fired power plants that result in the costs of carbon emissions increasing to the point that carbon sequestration becomes a feasible option.« less

  19. Temporal Variability of Canopy Light Use Efficiency and its Environmental Controls in a Subtropical Mangrove Wetland

    NASA Astrophysics Data System (ADS)

    Zhu, X.

    2016-12-01

    Mangrove wetlands play an important role in global carbon cycle due to their strong carbon sequestration resulting from high plant carbon assimilation and low soil respiration. However, temporal variability of carbon sequestration in mangrove wetlands is less understood since carbon processes of mangrove wetlands are influenced by many complicated and concurrent environmental controls including tidal activities, site climate and soil conditions. Canopy light use efficiency (LUE), is the most important plant physiological parameter that can be used to describe the temporal dynamics of canopy photosynthesis, and therefore a better characterization of temporal variability of canopy LUE will improve our understanding in mangrove photosynthesis and carbon balance. One of our aims is to study the temporal variability of canopy LUE and its environmental controls in a subtropical mangrove wetland. Half-hourly canopy LUE is derived from eddy covariance (EC) carbon flux and photosynthesis active radiation observations, and half-hourly environmental controls we measure include temperature, humidity, precipitation, radiation, tidal height, salinity, etc. Another aim is to explore the links between canopy LUE and spectral indices derived from near-surface tower-based remote sensing (normalized difference vegetation index, enhanced vegetation index, photochemical reflectance index, solar-induced chlorophyll fluorescence, etc.), and then identify potential quantitative relationships for developing remote sensing-based estimation methods of canopy LUE. At present, some instruments in our in-situ observation system have not yet been installed (planned in next months) and therefore we don't have enough measurements to support our analysis. However, a preliminary analysis of our historical EC and climate observations in past several years indicates that canopy LUE shows strong temporal variability and is greatly affected by environmental factors such as tidal activity. Detailed and systematic analyses of temporal variability of canopy LUE and its environmental controls and potential remote sensing estimation methods will be conducted when our in-situ observation system is ready in near future.

  20. Sequestration Options for the West Coast States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myer, Larry

    The West Coast Regional Carbon Sequestration Partnership (WESTCARB) is one of seven partnerships that have been established by the U.S. Department of Energy (DOE) to evaluate carbon capture and sequestration (CCS) technologies best suited for different regions of the country. The West Coast Region comprises Arizona, California, Nevada, Oregon, Washington, Alaska, and British Columbia. Led by the California Energy Commission, WESTCARB is a consortium of about 70 organizations, including state natural resource and environmental protection agencies; national laboratories and universities; private companies working on carbon dioxide (CO{sub 2}) capture, transportation, and storage technologies; utilities; oil and gas companies; nonprofit organizations; and policy/governance coordinating organizations. Both terrestrial and geologic sequestration options were evaluated in the Region during the 18-month Phase I project. A centralized Geographic Information System (GIS) database of stationary source, geologic and terrestrial sink data was developed. The GIS layer of source locations was attributed with CO{sub 2} emissions and other data and a spreadsheet was developed to estimate capture costs for the sources in the region. Phase I characterization of regional geological sinks shows that geologic storage opportunities exist in the WESTCARB region in each of the major technology areas: saline formations, oil and gas reservoirs, and coal beds. California offers outstanding sequestration opportunities because of its large capacity and the potential of value-added benefits from enhanced oil recovery (EOR) and enhanced gas recovery. The estimate for storage capacity of saline formations in the ten largest basins in California ranges from about 150 to about 500 Gt of CO{sub 2}, the potential CO{sub 2}-EOR storage was estimated to be 3.4 Gt, and the cumulative production from gas reservoirs suggests a CO{sub 2} storage capacity of 1.7 Gt. A GIS-based method for source-sink matching was implemented and preliminary marginal cost curves developed, which showed that 20, 40, or 80 Mega tonnes (Mt) of CO{sub 2} per year could be sequestered in California at a cost ofmore » $31/tonne (t), $35/t, or $$50/t, respectively. Phase I also addressed key issues affecting deployment of CCS technologies, including storage-site monitoring, injection regulations, and health and environmental risks. A framework for screening and ranking candidate sites for geologic CO{sub 2} storage on the basis of HSE risk was developed. A webbased, state-by-state compilation of current regulations for injection wells, and permits/contracts for land use changes, was developed, and modeling studies were carried out to assess the application of a number of different geophysical techniques for monitoring geologic sequestration. Public outreach activities resulted in heightened awareness of sequestration among state, community and industry leaders in the Region. Assessment of the changes in carbon stocks in agricultural lands showed that Washington, Oregon and Arizona were CO{sub 2} sources for the period from 1987 to 1997. Over the same period, forest carbon stocks decreased in Washington, but increased in Oregon and Arizona. Results of the terrestrial supply curve analyses showed that afforestation of rangelands and crop lands offer major sequestration opportunities; at a price of $$20 per t CO{sub 2}, more than 1,233 MMT could be sequestered over 40-years in Washington and more than 1,813 MMT could be sequestered in Oregon.« less

  1. Estimating GHG Emissions from the Manufacturing of Field-Applied Biochar Pellets

    Treesearch

    Richard D. Bergman; Hanwen Zhang; Karl Englund; Keith Windell; Hongmei Gu

    2016-01-01

    Biochar application to forest soils can provide direct and indirect benefits, including carbon sequestration. Biochar, the result of thermochemical conversion of biomass, can have positive environmental climate benefits and can be more stable when field-applied to forest soils than wood itself. Categorizing greenhouse gas (GHG) emissions and carbon sequestration...

  2. Soil carbon sequestration is a climate stabilization wedge: comments on Sommer and Bossio (2014).

    PubMed

    Lassaletta, Luis; Aguilera, Eduardo

    2015-04-15

    Sommer and Bossio (2014) model the potential soil organic carbon (SOC) sequestration in agricultural soils (croplands and grasslands) during the next 87 years, concluding that this process cannot be considered as a climate stabilization wedge. We argue, however, that the amounts of SOC potentially sequestered in both scenarios (pessimistic and optimistic) fulfil the requirements for being considered as wedge because in both cases at least 25 GtC would be sequestered during the next 50 years. We consider that it is precisely in the near future, and meanwhile other solutions are developed, when this stabilization effort is most urgent even if after some decades the sequestration rate is significantly reduced. Indirect effects of SOC sequestration on mitigation could reinforce the potential of this solution. We conclude that the sequestration of organic carbon in agricultural soils as a climate change mitigation tool still deserves important attention for scientists, managers and policy makers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Interactions between carbon sequestration and shade tree diversity in a smallholder coffee cooperative in El Salvador.

    PubMed

    Richards, Meryl Breton; Méndez, V Ernesto

    2014-04-01

    Agroforestry systems have substantial potential to conserve native biodiversity and provide ecosystem services. In particular, agroforestry systems have the potential to conserve native tree diversity and sequester carbon for climate change mitigation. However, little research has been conducted on the temporal stability of species diversity and aboveground carbon stocks in these systems or the relation between species diversity and aboveground carbon sequestration. We measured changes in shade-tree diversity and shade-tree carbon stocks in 14 plots of a 35-ha coffee cooperative over 9 years and analyzed relations between species diversity and carbon sequestration. Carbon sequestration was positively correlated with initial species richness of shade trees. Species diversity of shade trees did not change significantly over the study period, but carbon stocks increased due to tree growth. Our results show a potential for carbon sequestration and long-term biodiversity conservation in smallholder coffee agroforestry systems and illustrate the opportunity for synergies between biodiversity conservation and climate change mitigation. © 2013 Society for Conservation Biology.

  4. Net carbon flux in organic and conventional olive production systems

    NASA Astrophysics Data System (ADS)

    Saeid Mohamad, Ramez; Verrastro, Vincenzo; Bitar, Lina Al; Roma, Rocco; Moretti, Michele; Chami, Ziad Al

    2014-05-01

    Agricultural systems are considered as one of the most relevant sources of atmospheric carbon. However, agriculture has the potentiality to mitigate carbon dioxide mainly through soil carbon sequestration. Some agricultural practices, particularly fertilization and soil management, can play a dual role in the agricultural systems regarding the carbon cycle contributing to the emissions and to the sequestration process in the soil. Good soil and input managements affect positively Soil Organic Carbon (SOC) changes and consequently the carbon cycle. The present study aimed at comparing the carbon footprint of organic and conventional olive systems and to link it to the efficiency of both systems on carbon sequestration by calculating the net carbon flux. Data were collected at farm level through a specific and detailed questionnaire based on one hectare as a functional unit and a system boundary limited to olive production. Using LCA databases particularly ecoinvent one, IPCC GWP 100a impact assessment method was used to calculate carbon emissions from agricultural practices of both systems. Soil organic carbon has been measured, at 0-30 cm depth, based on soil analyses done at the IAMB laboratory and based on reference value of SOC, the annual change of SOC has been calculated. Substracting sequestrated carbon in the soil from the emitted on resulted in net carbon flux calculation. Results showed higher environmental impact of the organic system on Global Warming Potential (1.07 t CO2 eq. yr-1) comparing to 0.76 t CO2 eq. yr-1 in the conventional system due to the higher GHG emissions caused by manure fertilizers compared to the use of synthetic foliar fertilizers in the conventional system. However, manure was the main reason behind the higher SOC content and sequestration in the organic system. As a resultant, the organic system showed higher net carbon flux (-1.7 t C ha-1 yr-1 than -0.52 t C ha-1 yr-1 in the conventional system reflecting higher efficiency as a sink for atmospheric CO2 (the negative value of Net C flux indicates that a system is a net sink for atmospheric CO2). In conclusion, this study illustrates the importance of including soil carbon sequestration associated with CO2 emissions in the evaluation process between alternatives of agricultural systems. Thus, organic olive system offers an opportunity to increase carbon sequestration compared to the conventional one although it causes higher C emissions from manure fertilization. Keywords: Net carbon flux, GHG, organic, olive, soil organic carbon

  5. Fire assisted pastoralism vs. sustainable forestry--the implications of missing markets for carbon in determining optimal land use in the wet-dry tropics of Australia.

    PubMed

    Ockwell, David; Lovett, Jon C

    2005-04-01

    Using Cape York Peninsula, Queensland, Australia as a case study, this paper combines field sampling of woody vegetation with cost-benefit analysis to compare the social optimality of fire-assisted pastoralism with sustainable forestry. Carbon sequestration is estimated to be significantly higher in the absence of fire. Integration of carbon sequestration benefits for mitigating future costs of climate change into cost-benefit analysis demonstrates that sustainable forestry is a more socially optimal land use than fire-assisted pastoralism. Missing markets for carbon, however, imply that fire-assisted pastoralism will continue to be pursued in the absence of policy intervention. Creation of markets for carbon represents a policy solution that has the potential to drive land use away from fire-assisted pastoralism towards sustainable forestry and environmental conservation.

  6. Vadose Zone Flow and Transport of Dissolved Organic Carbon at Multiple Scales in Humid Regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardine, Philip M; Mayes, Melanie; Mulholland, Patrick J

    2006-06-01

    Scientists must embrace the necessity to offset global CO{sub 2} emissions regardless of politics. Efforts to enhance terrestrial organic carbon sequestration have traditionally focused on aboveground biomass and surface soils. An unexplored potential exists in thick lower horizons of widespread, mature soils such as Alfisols, Ultisols, and Oxisols. We present a case study of fate and transport of dissolved organic carbon (DOC) in a highly weathered Ultisol, involving spatial scales from the laboratory to the landscape. Our objectives were to interpret processes observed at various scales and provide an improved understanding of coupled hydrogeochemical mechanisms that control DOC mobility andmore » sequestration in deep subsoils within humid climatic regimes. Our approach is multiscale, using laboratory-scale batch and soil columns (0.2 by 1.0 m), an in situ pedon (2 by 2 by 3 m), a well-instrumented subsurface facility on a subwatershed (0.47 ha), and ephemeral and perennial stream discharge at the landscape scale (38.4 ha). Laboratory-scale experiments confirmed that lower horizons have the propensity to accumulate DOC, but that preferential fracture flow tends to limit sequestration. Intermediate-scale experiments demonstrated the beneficial effects of C diffusion into soil micropores. Field- and landscape-scale studies demonstrated coupled hydrological, geochemical, and microbiological mechanisms that limit DOC sequestration, and their sensitivity to local environmental conditions. Our results suggest a multi-scale approach is necessary to assess the propensity of deep subsoils to sequester organic C in situ. By unraveling fundamental organic C sequestration mechanisms, we improve the conceptual and quantitative understanding needed to predict and alter organic C budgets in soil systems.« less

  7. Native plant restoration combats environmental change: development of carbon and nitrogen sequestration capacity using small cordgrass in European salt marshes

    USDA-ARS?s Scientific Manuscript database

    Restoration of salt marshes is critical in the context of climate change and eutrophication of coastal waters, because their vegetation and sediments may act as carbon and nitrogen sinks. Our primary objectives were to quantify carbon (C) and nitrogen (N) stocks and sequestration rates in restored m...

  8. Soil organic matter formation and sequestration across a forested floodplain chronosequence

    Treesearch

    John D. Wigginton; B. Graeme Lockaby; Carl C. Trettin

    2000-01-01

    Successional changes in soil organic matter formation and carbon sequestration across a forested floodplain chronosequence were studied at the Savannah river site, National Environmental Research Park, SC, US. Four floodplain sites were selected for study, three of which are in various stages of recovery from impact due to thermal effluent discharge. The fourth is a...

  9. An Index-Based Approach to Assessing Recalcitrance and Soil Carbon Sequestration Potential of Engineered Black Carbons (Biochars)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Omar R.; Kuo, Li-Jung; Zimmerman, Andrew R.

    2012-01-10

    The ability of engineered black carbons (or biochars) to resist abiotic and, or biotic degradation (herein referred to as recalcitrance) is crucial to their successful deployment as a soil carbon sequestration strategy. A new recalcitrance index, the R{sub 50}, for assessing biochar quality for carbon sequestration is proposed. The R{sub 50} is based on the relative thermal stability of a given biochar to that of graphite and was developed and evaluated with a variety of biochars (n = 59), and soot-like black carbons. Comparison of R{sub 50}, with biochar physicochemical properties and biochar-C mineralization revealed the existence of a quantifiablemore » relationship between R{sub 50} and biochar recalcitrance. As presented here, the R{sub 50} is immediately applicable to pre-land application screening of biochars into Class A (R{sub 50} {>=} 0.70), Class B (0.50 {<=} R{sub 50} < 0.70) or Class C (R{sub 50} < 0.50) recalcitrance/carbon sequestration classes. Class A and Class C biochars would have carbon sequestration potential comparable to soot/graphite and uncharred plant biomass, respectively, while Class B biochars would have intermediate carbon sequestration potential. We believe that the coupling of the R{sub 50}, to an index-based degradation, and an economic model could provide a suitable framework in which to comprehensively assess soil carbon sequestration in biochars.« less

  10. GIS-based integrated assessment and decision support system for land use planning in consideration of carbon sequestration benefits

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Chen, J. M.; Li, Manchun; Ju, Weimin

    2007-06-01

    As the major eligible land use activities in the Clean Development Mechanism (CDM), afforestation and reforestation offer opportunities and potential economic benefits for developing countries to participate in carbon-trade in the potential international carbon (C) sink markets. However, the design and selection of appropriate afforestation and reforestation locations in CDM are complex processes which need integrated assessment (IA) of C sequestration (CS) potential, environmental effects, and socio-economic impacts. This paper promotes the consideration of CS benefits in local land use planning and presents a GIS-based integrated assessment and spatial decision support system (IA-SDSS) to support decision-making on 'where' and 'how' to afforest. It integrates an Integrated Terrestrial Ecosystem Carbon Model (InTEC) and a GIS platform for modeling regional long-term CS potential and assessment of geo-referenced land use criteria including CS consequence, and produces ranking of plantation schemes with different tree species using the Analytic hierarchy process (AHP) method. Three land use scenarios are investigated: (i) traditional land use planning criteria without C benefits, (ii) land use for CS with low C price, and (iii) land use for CS with high price. Different scenarios and consequences will influence the weights of tree-species selection in the AHP decision process.

  11. Assessing Carbon Storage and Sequestration of Seagrass Meadows on the Pacific Coast of Canada

    NASA Astrophysics Data System (ADS)

    Postlethwaite, V. R.; McGowan, A. E.; Robinson, C.; Kohfeld, K. E.; Pellatt, M. G.; Yakimishyn, J.; Chastain, S. G.

    2016-12-01

    Recent estimates suggest that seagrasses are highly efficient carbon sinks, storing a disproportionate amount of carbon for their relatively small area (only approximately 0.2% of the global ocean), and that they may bury carbon up to 12 times faster than terrestrial forests. Unfortunately, seagrass meadows are being lost at a rate of 0.4-2.6% yr-1, potentially releasing 0.15-1.02 Pg (billion tonnes) carbon dioxide into the atmosphere annually. Research on seagrass carbon stocks has been mainly limited to areas in the Mediterranean, Southeast Asia, and Western Australia, and specifically has been very limited in the Northeast Pacific. We aim to characterize the carbon storage and sequestration occurring in the Pacific Rim National Park Reserve and the Clayoquot Sound area, off the western coast of Vancouver Island, British Columbia (BC). Each of our sites varied in environmental characteristics representative of BC's seagrass meadows, including freshwater influence. Six cores, plus one from a "reference" site were taken from each meadow. Loss on ignition (LOI) and elemental analysis will be used to determine organic C and carbonate content. Additionally, we will use dry bulk density, 210Pb dating and seagrass density data to determine carbon accumulation rates and total meadow carbon stocks to provide a comprehensive picture of carbon storage and sequestration in BC's seagrass meadows. Carbon storage results will contribute to global estimates of seagrass carbon stocks via the Commission for Environmental Cooperation, as well as assist in marine ecosystem conservation planning and help in understanding the value of these ecosystems, especially as a means of climate change mitigation.

  12. Wastewater treatment by local microalgae strains for CO2 sequestration and biofuel production

    NASA Astrophysics Data System (ADS)

    Ansari, Abeera A.; Khoja, Asif Hussain; Nawar, Azra; Qayyum, Muneeb; Ali, Ehsan

    2017-11-01

    Currently, the scientific community is keenly working on environmental-friendly processes for the production of clean energy and sustainable development. The study was conducted to cultivate microalgae in raw institutional wastewater for water treatment, enriched production of biomass and CO2 sequestration. The strains which were used in this study are Scenedesmus sp. and Chlorella sp. which were isolated from Kallar Kahar Lake, Pakistan. Both strains were cultivated in synthetic growth medium (Bold's Basal Medium) to enhance biomass production. Afterward, microalgae cultures were inoculated in wastewater sample in mixotrophic mode under ambient conditions. The impurities in wastewater were successfully removed from the original sample by the 7th day of operation. COD 95%, nitrate 99.7% and phosphate 80.5% were removed by applying Scenedesmus sp. Meanwhile, Chlorella sp. reduced 84.86% COD, 98.2% nitrate and 70% phosphate, respectively. Interestingly, sulfates were removed from wastewater completely by both strains. Besides being useful in wastewater remediation, these microalgae strains were subsequently harvested for lipid extraction and potential biofuel production was determined. Therefore, the applied method is an environmentally safe, cost-effective and alternative technology for wastewater treatment. Furthermore, the achieved biomass through this process can be used for the production of biofuels.

  13. Poverty Alleviation and Environmental Restoration Using the Clean Development Mechanism: A Case Study from Humbo, Ethiopia

    NASA Astrophysics Data System (ADS)

    Brown, Douglas R.; Dettmann, Paul; Rinaudo, Tony; Tefera, Hailu; Tofu, Assefa

    2011-08-01

    Poverty, hunger and demand for agricultural land have driven local communities to overexploit forest resources throughout Ethiopia. Forests surrounding the township of Humbo were largely destroyed by the late 1960s. In 2004, World Vision Australia and World Vision Ethiopia identified forestry-based carbon sequestration as a potential means to stimulate community development while engaging in environmental restoration. After two years of consultation, planning and negotiations, the Humbo Community-based Natural Regeneration Project began implementation—the Ethiopian organization's first carbon sequestration initiative. The Humbo Project assists communities affected by environmental degradation including loss of biodiversity, soil erosion and flooding with an opportunity to benefit from carbon markets while reducing poverty and restoring the local agroecosystem. Involving the regeneration of 2,728 ha of degraded native forests, it brings social, economic and ecological benefits—facilitating adaptation to a changing climate and generating temporary certified emissions reductions (tCERs) under the Clean Development Mechanism. A key feature of the project has been facilitating communities to embrace new techniques and take responsibility for large-scale environmental change, most importantly involving Farmer Managed Natural Regeneration (FMNR). This technique is low-cost, replicable, and provides direct benefits within a short time. Communities were able to harvest fodder and firewood within a year of project initiation and wild fruits and other non-timber forest products within three years. Farmers are using agroforestry for both environmental restoration and income generation. Establishment of user rights and local cooperatives has generated community ownership and enthusiasm for this project—empowering the community to more sustainably manage their communal lands.

  14. Poverty alleviation and environmental restoration using the clean development mechanism: A case study from Humbo, Ethiopia.

    PubMed

    Brown, Douglas R; Dettmann, Paul; Rinaudo, Tony; Tefera, Hailu; Tofu, Assefa

    2011-08-01

    Poverty, hunger and demand for agricultural land have driven local communities to overexploit forest resources throughout Ethiopia. Forests surrounding the township of Humbo were largely destroyed by the late 1960s. In 2004, World Vision Australia and World Vision Ethiopia identified forestry-based carbon sequestration as a potential means to stimulate community development while engaging in environmental restoration. After two years of consultation, planning and negotiations, the Humbo Community-based Natural Regeneration Project began implementation--the Ethiopian organization's first carbon sequestration initiative. The Humbo Project assists communities affected by environmental degradation including loss of biodiversity, soil erosion and flooding with an opportunity to benefit from carbon markets while reducing poverty and restoring the local agroecosystem. Involving the regeneration of 2,728 ha of degraded native forests, it brings social, economic and ecological benefits--facilitating adaptation to a changing climate and generating temporary certified emissions reductions (tCERs) under the Clean Development Mechanism. A key feature of the project has been facilitating communities to embrace new techniques and take responsibility for large-scale environmental change, most importantly involving Farmer Managed Natural Regeneration (FMNR). This technique is low-cost, replicable, and provides direct benefits within a short time. Communities were able to harvest fodder and firewood within a year of project initiation and wild fruits and other non-timber forest products within three years. Farmers are using agroforestry for both environmental restoration and income generation. Establishment of user rights and local cooperatives has generated community ownership and enthusiasm for this project--empowering the community to more sustainably manage their communal lands.

  15. Assessing spatial uncertainty in reservoir characterization for carbon sequestration planning using public well-log data: A case study

    USGS Publications Warehouse

    Venteris, E.R.; Carter, K.M.

    2009-01-01

    Mapping and characterization of potential geologic reservoirs are key components in planning carbon dioxide (CO2) injection projects. The geometry of target and confining layers is vital to ensure that the injected CO2 remains in a supercritical state and is confined to the target layer. Also, maps of injection volume (porosity) are necessary to estimate sequestration capacity at undrilled locations. Our study uses publicly filed geophysical logs and geostatistical modeling methods to investigate the reliability of spatial prediction for oil and gas plays in the Medina Group (sandstone and shale facies) in northwestern Pennsylvania. Specifically, the modeling focused on two targets: the Grimsby Formation and Whirlpool Sandstone. For each layer, thousands of data points were available to model structure and thickness but only hundreds were available to support volumetric modeling because of the rarity of density-porosity logs in the public records. Geostatistical analysis based on this data resulted in accurate structure models, less accurate isopach models, and inconsistent models of pore volume. Of the two layers studied, only the Whirlpool Sandstone data provided for a useful spatial model of pore volume. Where reliable models for spatial prediction are absent, the best predictor available for unsampled locations is the mean value of the data, and potential sequestration sites should be planned as close as possible to existing wells with volumetric data. ?? 2009. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  16. Slowing the rate of loss of mineral wetlands on human dominated landscapes - Diversification of farmers markets to include carbon (Invited)

    NASA Astrophysics Data System (ADS)

    Creed, I. F.; Badiou, P.; Lobb, D.

    2013-12-01

    Canada is the fourth-largest exporter of agriculture and agri-food products in the world (exports valued at 28B), but instability of agriculture markets can make it difficult for farmers to cope with variability, and new mechanisms are needed for farmers to achieve economic stability. Capitalizing on carbon markets will help farmers achieve environmentally sustainable economic performance. In order to have a viable carbon market, governments and industries need to know what the carbon capital is and what potential there is for growth, and farmers need financial incentives that will not only allow them to conserve existing wetlands but that will also enable them to restore wetlands while making a living. In southern Ontario, farmers' needs to maximize the return on investment on marginal lands have resulted in loss of 70-90% of wetlands, making this region one of the most threatened region in terms of wetland degradation and loss in Canada. Our project establishes the role that mineral wetlands have in the net carbon balance by contributing insight into the potential benefits to carbon management provided by wetland restoration efforts in these highly degraded landscapes. The goal was to establish the magnitude of carbon offsets that could be achieved through wetland conservation (securing existing carbon stocks) and restoration (creating new carbon stocks). The experimental design was to focus on (1) small (0.2-2.0 ha) and (2) isolated (no inflow or outflow) mineral wetlands with the greatest restoration potential that included (3) a range of restoration ages (drained (0 yr), 3 yr, 6 yr, 12 yr, 20 yr, 35 yr, intact marshes) to capture potential changes in rates of carbon sequestration with restoration age of wetland. From each wetland, wetland soil carbon pools samples were collected at four positions: centre of wetland (open-water); emergent vegetation zone; wet meadow zone where flooding often occurs (i.e., high water mark); and upland where flooding rarely occurs (cores segmented into 5cm increments up to 45 cm, composited and analyzed for carbon pools using mass equivalent and carbon sequestration rates samples were taken at centre of wetland (open-water) (cores segmented into 1 cm increments up to 30 cm, composited and analyzed for Pb-210 and Cs-137 isotopes). The magnitude of wetland loss (≥10 ha) is estimated to be over 1.5 million ha in southern Ontario since the time of European settlement. About 75% of converted wetlands (1.1 million ha) are now classified as 'undifferentiated agricultural lands.' We use our measured carbon sequestration rate Mg CO2 equivalents ha/yr under different scenarios of landowner uptake (5-50%) and prices for carbon offsets (2-50/MgCO2 equivalents) to estimate carbon sequestration and the value of this sequestration in restored wetlands. The project provides empirical evidence that restoring wetlands for carbon sequence could improve the livelihood of farmers and that policies should be established to incentivize farmers to adopt wetland restoration practices on marginal areas in order to improve the economic performance and environmental sustainability of agriculture in Ontario.

  17. Atmospheric CO2 sequestration in iron and steel slag: Consett, Co. Durham, UK.

    PubMed

    Mayes, William Matthew; Riley, Alex L; Gomes, Helena I; Brabham, Peter; Hamlyn, Joanna; Pullin, Huw; Renforth, Phil

    2018-06-12

    Carbonate formation in waste from the steel industry could constitute a non-trivial proportion of global requirements to remove carbon dioxide from the atmosphere at potentially low cost. To constrain this potential, we examined atmospheric carbon dioxide sequestration in a >20 million tonne legacy slag deposit in northern England, UK. Carbonates formed from the drainage water of the heap had stable carbon and oxygen isotopes between -12 and -25 ‰ and -5 and -18 ‰ for δ13C and δ18O respectively, suggesting atmospheric carbon dioxide sequestration in high pH solutions. From analysis of solution saturation state, we estimate that between 280 and 2,900 tCO2 have precipitated from the drainage waters. However, by combining a thirty-seven-year dataset of the drainage water chemistry with geospatial analysis, we estimate that <1 % of the maximum carbon capture potential of the deposit may have been realised. This implies that uncontrolled deposition of slag is insufficient to maximise carbon sequestration, and there may be considerable quantities of unreacted legacy deposits available for atmospheric carbon sequestration.

  18. Development of an assessment methodology for hydrocarbon recovery potential using carbon dioxide and associated carbon sequestration-Workshop findings

    USGS Publications Warehouse

    Verma, Mahendra K.; Warwick, Peter D.

    2011-01-01

    The Energy Independence and Security Act of 2007 (Public Law 110-140) authorized the U.S. Geological Survey (USGS) to conduct a national assessment of geologic storage resources for carbon dioxide (CO2) and requested that the USGS estimate the "potential volumes of oil and gas recoverable by injection and sequestration of industrial carbon dioxide in potential sequestration formations" (121 Stat. 1711). The USGS developed a noneconomic, probability-based methodology to assess the Nation's technically assessable geologic storage resources available for sequestration of CO2 (Brennan and others, 2010) and is currently using the methodology to assess the Nation's CO2 geologic storage resources. Because the USGS has not developed a methodology to assess the potential volumes of technically recoverable hydrocarbons that could be produced by injection and sequestration of CO2, the Geologic Carbon Sequestration project initiated an effort in 2010 to develop a methodology for the assessment of the technically recoverable hydrocarbon potential in the sedimentary basins of the United States using enhanced oil recovery (EOR) techniques with CO2 (CO2-EOR). In collaboration with Stanford University, the USGS hosted a 2-day CO2-EOR workshop in May 2011, attended by 28 experts from academia, natural resource agencies and laboratories of the Federal Government, State and international geologic surveys, and representatives from the oil and gas industry. The geologic and the reservoir engineering and operations working groups formed during the workshop discussed various aspects of geology, reservoir engineering, and operations to make recommendations for the methodology.

  19. Model-Based Assessment of the CO2 Sequestration Potential of Coastal Ocean Alkalinization

    NASA Astrophysics Data System (ADS)

    Feng, E. Y.; Koeve, W.; Keller, D. P.; Oschlies, A.

    2017-12-01

    The potential of coastal ocean alkalinization (COA), a carbon dioxide removal (CDR) climate engineering strategy that chemically increases ocean carbon uptake and storage, is investigated with an Earth system model of intermediate complexity. The CDR potential and possible environmental side effects are estimated for various COA deployment scenarios, assuming olivine as the alkalinity source in ice-free coastal waters (about 8.6% of the global ocean's surface area), with dissolution rates being a function of grain size, ambient seawater temperature, and pH. Our results indicate that for a large-enough olivine deployment of small-enough grain sizes (10 µm), atmospheric CO2 could be reduced by more than 800 GtC by the year 2100. However, COA with coarse olivine grains (1000 µm) has little CO2 sequestration potential on this time scale. Ambitious CDR with fine olivine grains would increase coastal aragonite saturation Ω to levels well beyond those that are currently observed. When imposing upper limits for aragonite saturation levels (Ωlim) in the grid boxes subject to COA (Ωlim = 3.4 and 9 chosen as examples), COA still has the potential to reduce atmospheric CO2 by 265 GtC (Ωlim = 3.4) to 790 GtC (Ωlim = 9) and increase ocean carbon storage by 290 Gt (Ωlim = 3.4) to 913 Gt (Ωlim = 9) by year 2100.

  20. Deep horizons: Soil Carbon sequestration and storage potential in grassland soils

    NASA Astrophysics Data System (ADS)

    Torres-Sallan, Gemma; Schulte, Rogier; Lanigan, Gary J.; Byrne, Kenneth A.; Reidy, Brian; Creamer, Rachel

    2016-04-01

    Soil Organic Carbon (SOC) enhances soil fertility, holding nutrients in a plant-available form. It also improves aeration and water infiltration. Soils are considered a vital pool for C (Carbon) sequestration, as they are the largest pool of C after the oceans, and contain 3.5 more C than the atmosphere. SOC models and inventories tend to focus on the top 30 cm of soils, only analysing total SOC values. Association of C with microaggregates (53-250 μm) and silt and clay (<53 μm) is considered C sequestration as these fractions offer the greatest protection against mineralization. This study assessed the role of aggregation in C sequestration throughout the profile, down to 1 m depth, of 30 grassland sites divided in 6 soil types. One kg sample was collected for each horizon, sieved at 8 mm and dried at 40 °C. Through a wet sieving procedure, four aggregate sizes were isolated: large macroaggregates (>2000 μm); macroaggregates (250-2000 μm); microaggregates and silt & clay. Organic C associated to each aggregate fraction was analysed on a LECO combustion analyser. Sand-free C was calculated for each aggregate size. For all soil types, 84% of the SOC located in the first 30 cm was contained inside macroaggregates and large macroaggregates. Given that this fraction has a turnover time of 1 to 10 years, sampling at that depth only provides information on the labile fraction in soil, and does not consider the longer term C sequestration potential. Only when looking at the whole profile, two clear trends could be observed: 1) soils with a clay increase at depth had most of their C located in the silt and clay fractions, which indicate their enhanced C sequestration capacity, 2) free-draining soils had a bigger part of their SOC located in the macroaggregate fractions. These results indicate that current C inventories and models that focus on the top 30 cm, do not accurately measure soil C sequestration potential in soils, but rather the more labile fraction. However, at depth soil forming processes have been identified as a major factor influencing C sequestration potential in soils. This has a major impact in further quantifying and sustaining C sequestration into the future. Soils with a high sequestration potential at depth need to be managed to enhance the residence time to contribute to future off-setting of greenhouse gas emissions.

  1. Yield and soil carbon sequestration in grazed pastures sown with two or five forage species

    USDA-ARS?s Scientific Manuscript database

    Increasing plant species richness is often associated with an increase in productivity and associated ecosystem services such as soil C sequestration. In this paper we report on a nine-year experiment to evaluate the relative forage production and C sequestration potential of grazed pastures sown to...

  2. EnviroTech: Enhancing Environmental Literacy and Technology Assessment Skills

    ERIC Educational Resources Information Center

    Rose, Mary Annette

    2010-01-01

    It is no coincidence that many of the "Grand Challenges for Engineering" (National Academy of Engineering, 2007-2010)--such as carbon sequestration--address environmental problems that were precipitated by human inventiveness and engineering achievements. Although people recognize their dependence upon environmental processes to provide…

  3. Is a Clean Development Mechanism project economically justified? Case study of an International Carbon Sequestration Project in Iran.

    PubMed

    Katircioglu, Salih; Dalir, Sara; Olya, Hossein G

    2016-01-01

    The present study evaluates a carbon sequestration project for the three plant species in arid and semiarid regions of Iran. Results show that Haloxylon performed appropriately in the carbon sequestration process during the 6 years of the International Carbon Sequestration Project (ICSP). In addition to a high degree of carbon dioxide sequestration, Haloxylon shows high compatibility with severe environmental conditions and low maintenance costs. Financial and economic analysis demonstrated that the ICSP was justified from an economic perspective. The financial assessment showed that net present value (NPV) (US$1,098,022.70), internal rate of return (IRR) (21.53%), and payback period (6 years) were in an acceptable range. The results of the economic analysis suggested an NPV of US$4,407,805.15 and an IRR of 50.63%. Therefore, results of this study suggest that there are sufficient incentives for investors to participate in such kind of Clean Development Mechanism (CDM) projects.

  4. Anthropogenic Charcoal Deposits: Analogues for the Long-Term Functioning and Stability of Biochar in European Soils?

    NASA Astrophysics Data System (ADS)

    Mugford, Ian; Street-Perrot, Alayne; Santín, Cristina; Denman, Huw

    2014-05-01

    Anthropogenic charcoal deposits, characterised by thick charcoal-rich soil horizons, offer an invaluable Late Quaternary record of pyrogenic carbon (PyC) additions to soils. A traditional source of archaeological, anthracological and palaeoecological data, the potential contribution of anthropogenic charcoal deposits to soil science and assessment of carbon (C) sequestration is often overlooked. If addition of biochar to soils is to form a key component of a low-C economy, crucial questions must be addressed relating to its longevity and behaviour in the soil environment. With rare exceptions, previous studies have focussed on short-term incubation experiments and field or pot trials, often neglecting important natural soil and environmental processes. This study addresses these issues by comparing the physicochemical properties of European anthropogenic charcoal-rich deposits, with 14C ages ranging from > 43 ka to Modern, to native soils (nearby control sites). We will present results from a study of 23 charcoal-rich soil cores, collected from a 'Pre-historic' ditch mound, a Bronze Age burnt mound, a Roman furnace, and post-mediaeval and Modern Meilers, situated along a climatic gradient from Mediterranean (Southern Italy) to Humid Temperate (South Wales). The ability of charcoal to alter fertility and retain plant-available nutrients was assessed by measuring soil cation- exchange capacity. Retention of refractory C by the charcoal deposits was evaluated from their total organic C (TOC) contents, atomic H:C and O:C ratios, and residues after acid- dichromate oxidation. Picked charcoal fragments were also compared with modern biochars and biomass using: 1) their thermogravimetric recalcitrance (R50) indices (Harvey et al. 2012); and 2) attenuated total reflectance (ATR) FT-IR data, to gauge the development of functional groups linked to the long-term oxidation of the particle surfaces. Radiocarbon dating was used to assess the ages of the deposits. Our study attests to the considerable potential of anthropogenic charcoal deposits as a tool to predict the fate, functioning and C-sequestration potential of PyC in soils on long (102 - 103yr) time scales, which are inaccessible to field and laboratory experiments. Centuries to millennia after charcoal addition, these charcoal-rich soils have undergone limited environmental degradation and still display significant recalcitrance and C-sequestration potential.

  5. An Alternative View of the Climate Warming Mitigation Potential of U.S. Temperate Forests

    EPA Science Inventory

    Many U.S. federal and non-governmental agencies promote forestation as a means to mitigate climate warming because of the carbon sequestration potential of forests. This biogeochemical-oriented carbon sequestration policy is somewhat inconsistent with a decade or more of researc...

  6. Improving the feasibility of producing biofuels from microalgae using wastewater.

    PubMed

    Rawat, I; Bhola, V; Kumar, R Ranjith; Bux, F

    2013-01-01

    Biofuels have received much attention recently owing to energy consumption and environmental concerns. Despite many of the technologies being technically feasible, the processes are often too costly to be commercially viable. The major stumbling block to full-scale production of algal biofuels is the cost of upstream and downstream processes and environmental impacts such as water footprint and indirect greenhouse gas emissions from chemical nutrient production. The technoeconomics of biofuels production from microalgae is currently unfeasible due to the cost of inputs and productivities achieved. The use of a biorefinery approach sees the production costs reduced greatly due to utilization of waste streams for cultivation and the generation of several potential energy sources and value-added products while offering environmental protection. The use of wastewater as a production media, coupled with CO2 sequestration from flue gas greatly reduces the microalgal cultivation costs. Conversion of residual biomass and by-products, such as glycerol, for fuel production using an integrated approach potentially holds the key to near future commercial implementation of biofuels production.

  7. [Assessment on the availability of nitrogen fertilization in improving carbon sequestration potential of China's cropland soil].

    PubMed

    Lu, Fei; Wang, Xiao-Ke; Han, Bing; Ouyang, Zhi-Yun; Duan, Xiao-Nan; Zheng, Hua

    2008-10-01

    With reference to the situation of nitrogen fertilization in 2003 and the recommendations from agricultural experts on fertilization to different crops, two scenarios, namely, 'current situation' and 'fertilization as recommended', were set for estimating the current and potential carbon sequestration of China's cropland soil under nitrogen fertilization. After collecting and analyzing the typical data from the long-term agricultural experiment stations all over China, and based on the recent studies of soil organic matter and nutrient dynamics, we plotted China into four agricultural regions, and estimated the carbon sequestration rate and potential of cropland soil under the two scenarios in each province of China. Meanwhile, with the data concerning fossil fuel consumption for fertilizer production and nitrogen fertilization, the greenhouse gas leakage caused by nitrogen fertilizer production and application was estimated with the help of the parameters given by domestic studies and IPCC. We further proposed that the available carbon sequestration potential of cropland soil could be taken as the criterion of the validity and availability of carbon sequestration measures. The results showed that the application of synthetic nitrogen fertilizer could bring about a carbon sequestration potential of 21.9 Tg C x a(-1) in current situation, and 30.2 Tg C x a(-1) with fertilization as recommended. However, under the two scenarios, the greenhouse gas leakage caused by fertilizer production and application would reach 72.9 Tg C x a(-1) and 91.4 Tg C x a(-1), and thus, the actual available carbon sequestration potential would be -51.0 Tg C x a(-1) and -61.1 Tg C x a(-1), respectively. The situation was even worse under the 'fertilization as recommended' scenario, because the increase in the amount of nitrogen fertilization would lead to 10. 1 Tg C x a(-1) or more net greenhouse gas emission. All these results indicated that the application of synthetic nitrogen fertilizer could not be taken as a feasible measure for the carbon sequestration of cropland soil in China. Since synthetic fertilizer application is the basic guarantee of China's crop production, it was suggested to increase the efficiency of synthetic nitrogen fertilizer, and at the same time, to cut down the synthetic nitrogen fertilizer production and its application on the premise that the crop yield should be ensured.

  8. Potential soil carbon sequestration in overgrazed grassland ecosystems

    NASA Astrophysics Data System (ADS)

    Conant, Richard T.; Paustian, Keith

    2002-12-01

    Excessive grazing pressure is detrimental to plant productivity and may lead to declines in soil organic matter. Soil organic matter is an important source of plant nutrients and can enhance soil aggregation, limit soil erosion, and can also increase cation exchange and water holding capacities, and is, therefore, a key regulator of grassland ecosystem processes. Changes in grassland management which reverse the process of declining productivity can potentially lead to increased soil C. Thus, rehabilitation of areas degraded by overgrazing can potentially sequester atmospheric C. We compiled data from the literature to evaluate the influence of grazing intensity on soil C. Based on data contained within these studies, we ascertained a positive linear relationship between potential C sequestration and mean annual precipitation which we extrapolated to estimate global C sequestration potential with rehabilitation of overgrazed grassland. The GLASOD and IGBP DISCover data sets were integrated to generate a map of overgrazed grassland area for each of four severity classes on each continent. Our regression model predicted losses of soil C with decreased grazing intensity in drier areas (precipitation less than 333 mm yr-1), but substantial sequestration in wetter areas. Most (93%) C sequestration potential occurred in areas with MAP less than 1800 mm. Universal rehabilitation of overgrazed grasslands can sequester approximately 45 Tg C yr-1, most of which can be achieved simply by cessation of overgrazing and implementation of moderate grazing intensity. Institutional level investments by governments may be required to sequester additional C.

  9. Soil carbon sequestration potential in semi-arid grasslands in the conservation reserve program

    USDA-ARS?s Scientific Manuscript database

    The Conservation Reserve Program (CRP) in the USA plays a major role in carbon (C) sequestration to help mitigate rising CO2 levels and climate change. The Southern High Plains (SHP) region contains N900.000 ha enrolled in CRP, but a regionally specific C sequestration rate has not been studied, and...

  10. Soil Organic Carbon Sequestration by Tillage and Crop Rotation: A Global Data Analysis

    DOE Data Explorer

    West, Tristram O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Post, Wilfred M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2002-01-01

    Changes in agricultural management can potentially increase the accumulation rate of soil organic carbon (SOC), thereby sequestering CO2 from the atmosphere. This study was conducted to quantify potential soil carbon (C) sequestration rates for different crops in response to decreasing tillage intensity or enhancing rotation complexity, and to estimate the duration of time over which sequestration may occur. Analyses of C sequestration rates were completed using a global database of 67 long-term agricultural experiments, consisting of 276 paired treatments. Results indicate, on average, that a change from conventional tillage (CT) to no-till (NT) can sequester 57 ± 14 g C m–2 yr–1, excluding wheat (Triticum aestivum L.)-fallow systems which may not result in SOC accumulation with a change from CT to NT. Enhancing rotation complexity can sequester an average 14 ± 11 g C m–2 yr–1, excluding a change from continuous corn (Zea mays L.) to corn-soybean (Glycine max L.) which may not result in a significant accumulation of SOC. Carbon sequestration rates, with a change from CT to NT, can be expected to peak in 5-10 yr with SOC reaching a new equilibrium in 15-20 yr. Following initiation of an enhancement in rotation complexity, SOC may reach a new equilibrium in approximately 40-60 yr. Carbon sequestration rates, estimated for a number of individual crops and crop rotations in this study, can be used in spatial modeling analyses to more accurately predict regional, national, and global C sequestration potentials.

  11. CCS Activities Being Performed by the U.S. DOE

    PubMed Central

    Dressel, Brian; Deel, Dawn; Rodosta, Traci; Plasynski, Sean; Litynski, John; Myer, Larry

    2011-01-01

    The United States Department of Energy (DOE) is the lead federal agency for the development and deployment of carbon sequestration technologies. Its mission includes promoting scientific and technological innovations and transfer of knowledge for safe and permanent storage of CO2 in the subsurface. To accomplish its mission, DOE is characterizing and classifying potential geologic storage reservoirs in basins throughout the U.S. and Canada, and developing best practices for project developers, to help ensure the safety of future geologic storage projects. DOE’s Carbon Sequestration Program, Regional Carbon Sequestration Partnership (RCSP) Initiative, administered by the National Energy Technology Laboratory (NETL), is identifying, characterizing, and testing potential injection formations. The RCSP Initiative consists of collaborations among government, industry, universities, and international organizations. Through this collaborative effort, a series of integrated knowledge-based tools have been developed to help potential sequestration project developers. They are the Carbon Sequestration Atlas of the United States and Canada, National Carbon Sequestration Database and Geographic System (NATCARB), and best practice manuals for CCS including Depositional Reservoir Classification for CO2; Public Outreach and Education for Carbon Storage Projects; Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formation; Site Screening, Site Selection, and Initial Characterization of CO2 Storage in Deep Geologic Formations. DOE’s future research will help with refinement of these tools and additional best practice manuals (BPM) which focus on other technical aspects of project development. PMID:21556188

  12. Soil carbon sequestration potential of permanent pasture and continuous cropping soils in New Zealand.

    PubMed

    McNally, Sam R; Beare, Mike H; Curtin, Denis; Meenken, Esther D; Kelliher, Francis M; Calvelo Pereira, Roberto; Shen, Qinhua; Baldock, Jeff

    2017-11-01

    Understanding soil organic carbon (SOC) sequestration is important to develop strategies to increase the SOC stock and, thereby, offset some of the increases in atmospheric carbon dioxide. Although the capacity of soils to store SOC in a stable form is commonly attributed to the fine (clay + fine silt) fraction, the properties of the fine fraction that determine the SOC stabilization capacity are poorly known. The aim of this study was to develop an improved model to estimate the SOC stabilization capacity of Allophanic (Andisols) and non-Allophanic topsoils (0-15 cm) and, as a case study, to apply the model to predict the sequestration potential of pastoral soils across New Zealand. A quantile (90th) regression model, based on the specific surface area and extractable aluminium (pyrophosphate) content of soils, provided the best prediction of the upper limit of fine fraction carbon (FFC) (i.e. the stabilization capacity), but with different coefficients for Allophanic and non-Allophanic soils. The carbon (C) saturation deficit was estimated as the difference between the stabilization capacity of individual soils and their current C concentration. For long-term pastures, the mean saturation deficit of Allophanic soils (20.3 mg C g -1 ) was greater than that of non-Allophanic soils (16.3 mg C g -1 ). The saturation deficit of cropped soils was 1.14-1.89 times that of pasture soils. The sequestration potential of pasture soils ranged from 10 t C ha -1 (Ultic soils) to 42 t C ha -1 (Melanic soils). Although meeting the estimated national soil C sequestration potential (124 Mt C) is unrealistic, improved management practices targeted to those soils with the greatest sequestration potential could contribute significantly to off-setting New Zealand's greenhouse gas emissions. As the first national-scale estimate of SOC sequestration potential that encompasses both Allophanic and non-Allophanic soils, this serves as an informative case study for the international community. © 2017 John Wiley & Sons Ltd.

  13. Barriers and Prospects of Carbon Sequestration in India.

    PubMed

    Gupta, Anjali; Nema, Arvind K

    2014-04-01

    Carbon sequestration is considered a leading technology for reducing carbon dioxide (CO2) emissions from fossil-fuel based electricity generating power plants and could permit the continued use of coal and gas whilst meeting greenhouse gas targets. India will become the world's third largest emitter of CO2 by 2015. Considering the dependence of health of the Indian global economy, there is an imperative need to develop a global approach which could address the capturing and securely storing carbon dioxide emitted from an array of energy. Therefore technology such as carbon sequestration will deliver significant CO2 reductions in a timely fashion. Considerable energy is required for the capture, compression, transport and storage steps. With the availability of potential technical storage methods for carbon sequestration like forest, mineral and geological storage options with India, it would facilitate achieving stabilization goal in the near future. This paper examines the potential carbon sequestration options available in India and evaluates them with respect to their strengths, weakness, threats and future prospects.

  14. Comparaison de la performance environnementale de la production thermique d'electricite avec et sans sequestration geologique du dioxyde de carbone

    NASA Astrophysics Data System (ADS)

    Bellerive, Nathalie

    The research project hypothesis is that CO2 capture and sequestration technologies (CSC) leads to a significant decrease in global warming, but increases the impact of all other aspects of the study. This is because other processes used for CO2 capture and sequestration require additional quantities of raw materials and energy. Two other objectives are described in this project. The first is the modeling of an Integrated Gasification Combined Cycle power plant for which there is no known generic data. The second is to select the right hypothesis regarding electrical production technologies, CO2 capture, compression and transportation by pipeline and finally sequestration. "Life Cycle Assessment" (LCA) analyses were chosen for this research project. LCA is an exhaustive quantitative method used to evaluate potential environmental impacts associated with a product, a service or an activity from resource extraction to waste elimination. This tool is governed by ISO 14 040 through ISO 14 049 and is sustained by the Society of Environmental Toxicology and Chemistry (SETAC) and the United Nations Environment Program (UNEP). Two power plants were studied, the Integrated Gasification Combined Cycle (IGCC) power plant and the Natural Gas Combined Cycle (NGCC) power plant. In order to sequester CO2 in geological formation, it is necessary to extract CO2from emission flows. For the IGCC power plant, CO 2 was captured before the burning phase. For the NGCC power plant, the capture was done during the afterburning phase. Once the CO2 was isolated, it was compressed and directed through a transportation pipe 1 000 km in length on the ground surface and in the sea. It is hypothesized that the power plant is 300 km from the shore and the sequestration platform 700 km from France's shore, in the North Sea. The IGCC power plant modeling and data selection regarding CO2 capture and sequestration were done by using primary data from the industry and the Ecoinvent generic database (Version 1.2). This database was selected due to its European source. Finally, technical calculations and literature were used to complete the data inventory. This was validated by electrical experts in order to increase data and modeling precision. Results were similar for IGCC and NGCC power plants using Impact 2002+, an impacts analysis method. Global warming potential decreased by 67% with the implementation of CO2 capture and sequestration compared to systems without CSC. Results for all others impacts categories, demonstrated an increase from 16% to 116% in relative proportions compared to systems without CSC. The main contributor was the additional quantity of energy required to operate CO2 capture and compression facilities. This additional energy negatively affected the power plant's global efficiency because of the increase in the quantity of fossil fuel that needed to be extracted and consumed. The increase in other impacts was mainly due to additional electricity, fossil fuel (for extracting, treatment and transportation) and additional emissions generated during power plant operations. A scenario analysis was done to study the sensitivity and variability of uncertain data during the software modeling process of a power plant. Data on power plant efficiency is the most variable and sensitive during modeling, followed by the length of the transportation pipe and the leaking rate during CO2 sequestration. This result analysis is interesting because it led to the maximum efficiency scenario with capture (with a short CO 2 transportation distance and a low leaking rate) obtaining better results on all impact category indicators, compared to the minimum efficiency scenario without capture. In fact, positive results on all category indicators were possible during the system comparison between the two cases (with and without capture). (Abstract shortened by UMI.)

  15. Microbial Fuel Cell-driven caustic potash production from wastewater for carbon sequestration.

    PubMed

    Gajda, Iwona; Greenman, John; Melhuish, Chris; Santoro, Carlo; Ieropoulos, Ioannis

    2016-09-01

    This work reports on the novel formation of caustic potash (KOH) directly on the MFC cathode locking carbon dioxide into potassium bicarbonate salt (kalicinite) while producing, instead of consuming electrical power. Using potassium-rich wastewater as a fuel for microorganisms to generate electricity in the anode chamber, has resulted in the formation of caustic catholyte directly on the surface of the cathode electrode. Analysis of this liquid has shown to be highly alkaline (pH>13) and act as a CO2 sorbent. It has been later mineralised to kalicinite thus locking carbon dioxide into potassium bicarbonate salt. This work demonstrates an electricity generation method as a simple, cost-effective and environmentally friendly route towards CO2 sequestration that perhaps leads to a carbon negative economy. Moreover, it shows a potential application for both electricity production and nutrient recovery in the form of minerals from nutrient-rich wastewater streams such as urine for use as fertiliser in the future. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Method for sequestering CO.sub.2 and SO.sub.2 utilizing a plurality of waste streams

    DOEpatents

    Soong, Yee [Monroeville, PA; Allen, Douglas E [Salem, MA; Zhu, Chen [Monroe County, IN

    2011-04-12

    A neutralization/sequestration process is provided for concomitantly addressing capture and sequestration of both CO.sub.2 and SO.sub.2 from industrial gas byproduct streams. The invented process concomitantly treats and minimizes bauxite residues from aluminum production processes and brine wastewater from oil/gas production processes. The benefits of this integrated approach to coincidental treatment of multiple industrial waste byproduct streams include neutralization of caustic byproduct such as bauxite residue, thereby decreasing the risk associated with the long-term storage and potential environmental of storing caustic materials, decreasing or obviating the need for costly treatment of byproduct brines, thereby eliminating the need to purchase CaO or similar scrubber reagents typically required for SO.sub.2 treatment of such gasses, and directly using CO.sub.2 from flue gas to neutralize bauxite residue/brine mixtures, without the need for costly separation of CO.sub.2 from the industrial byproduct gas stream by processes such as liquid amine-based scrubbers.

  17. Where is the carbon? Carbon sequestration potential from private forestland in the Southern United States

    Treesearch

    Christopher S. Galik; Brian C. Murray; D. Evan Mercer

    2013-01-01

    Uncertainty surrounding the future supply of timber in the southern United States prompted the question, “Where is all the wood?” (Cubbage et al. 1995). We ask a similar question about the potential of southern forests to mitigate greenhouse gas (GHG) emissions by sequestering carbon. Because significant carbon sequestration potential occurs on individual nonindustrial...

  18. Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Raul Subia

    GE Global Research is developing an innovative energy technology for coal gasification with high efficiency and near-zero pollution. This Unmixed Fuel Processor (UFP) technology simultaneously converts coal, steam and air into three separate streams of hydrogen-rich gas, sequestration-ready CO{sub 2}, and high-temperature, high-pressure vitiated air to produce electricity in gas turbines. This is the draft final report for the first stage of the DOE-funded Vision 21 program. The UFP technology development program encompassed lab-, bench- and pilot-scale studies to demonstrate the UFP concept. Modeling and economic assessments were also key parts of this program. The chemical and mechanical feasibility weremore » established via lab and bench-scale testing, and a pilot plant was designed, constructed and operated, demonstrating the major UFP features. Experimental and preliminary modeling results showed that 80% H{sub 2} purity could be achieved, and that a UFP-based energy plant is projected to meet DOE efficiency targets. Future work will include additional pilot plant testing to optimize performance and reduce environmental, operability and combined cycle integration risks. Results obtained to date have confirmed that this technology has the potential to economically meet future efficiency and environmental performance goals.« less

  19. Diameter growth performance of tree functional groups in Puerto Rican secondary tropical forests.

    Treesearch

    Patricia Adame; Maria Uriarte; Thomas Brandeis

    2014-01-01

    Aim of study: Understanding the factors that control tree growth in successional stands is particularly important for quantifying the carbon sequestration potential and timber yield of secondary tropical forests. Understanding the factors that control tree growth in successional stands is particularly important for quantifying the carbon sequestration potential and...

  20. Impact of black carbon on the bioaccessibility of organic contaminants in soil.

    PubMed

    Semple, Kirk T; Riding, Matthew J; McAllister, Laura E; Sopena-Vazquez, Fatima; Bending, Gary D

    2013-10-15

    The ability of carbonaceous geosorbents (CGs) such as black carbon (BC) to extensively sorb many common environmental contaminants suggests that they potentially possesses qualities useful to the sequestration of harmful xenobiotics within contaminated land. Presently, however, there is limited understanding of the implications for the bioaccessibility, mobility and environmental risk of organic contaminants while sorbed to BC in soil and sediment, in addition to the inherent toxicity of BC itself to terrestrial flora and fauna. We review both the processes involved in and factors influencing BC sorption characteristics, and ultimately consider the impacts BC will have for bioavailability/bioaccessibility, toxicity and risk assessment/remediation of contaminated land. We conclude that while the application of BC is promising, additional work on both their toxicity effects and long-term stability is required before their full potential as a remediation agent can be safely exploited. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Assessing the impact of changes in climate and CO2 on potential carbon sequestration in agricultural soils

    NASA Astrophysics Data System (ADS)

    Jain, Atul K.; West, Tristram O.; Yang, Xiaojuan; Post, Wilfred M.

    2005-10-01

    Changes in soil management can potentially increase the accumulation of soil organic carbon (SOC), thereby sequestering CO2 from the atmosphere. However, the amount of carbon sequestered in soils can be augmented or lessened due to changes in climate and atmospheric CO2 concentration. The purpose of this paper is to study the influence of climate and CO2 feedbacks on soil carbon sequestration using a terrestrial carbon cycle model. Model simulations consist of observed adoption rates of no-tillage practices on croplands in the U.S. and Canada between 1981-2000. Model results indicate potential sequestration rates between 0.4-0.6 MgC/ha/yr in the Midwestern U.S. with decreasing rates towards the western, dryer regions of the U.S. It is estimated here that changes in climate and CO2 between 1981-2000 could be responsible for an additional soil carbon sequestration of 42 Tg. This is 5% of the soil carbon estimated to be potentially sequestered as the result of conversion to no-tillage in the U.S. and Canada.

  2. Fine resolution map of top- and subsoil carbon sequestration potential in France.

    PubMed

    Chen, Songchao; Martin, Manuel P; Saby, Nicolas P A; Walter, Christian; Angers, Denis A; Arrouays, Dominique

    2018-07-15

    Although soils have a high potential to offset CO 2 emissions through its conversion into soil organic carbon (SOC) with long turnover time, it is widely accepted that there is an upper limit of soil stable C storage, which is referred to SOC saturation. In this study we estimate SOC saturation in French topsoil (0-30cm) and subsoil (30-50cm), using the Hassink equation and calculate the additional SOC sequestration potential (SOC sp ) by the difference between SOC saturation and fine fraction C on an unbiased sampling set of sites covering whole mainland France. We then map with fine resolution the geographical distribution of SOC sp over the French territory using a regression Kriging approach with environmental covariates. Results show that the controlling factors of SOC sp differ from topsoil and subsoil. The main controlling factor of SOCsp in topsoils is land use. Nearly half of forest topsoils are over-saturated with a SOC sp close to 0 (mean and standard error at 0.19±0.12) whereas cropland, vineyard and orchard soils are largely unsaturated with degrees of C saturation deficit at 36.45±0.68% and 57.10±1.64%, respectively. The determinant of C sequestration potential in subsoils is related to parent material. There is a large additional SOC sp in subsoil for all land uses with degrees of C saturation deficit between 48.52±4.83% and 68.68±0.42%. Overall the SOCsp for French soils appears to be very large (1008Mt C for topsoil and 1360Mt C for subsoil) when compared to previous total SOC stocks estimates of about 3.5Gt in French topsoil. Our results also show that overall, 176Mt C exceed C saturation in French topsoil and might thus be very sensitive to land use change. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  3. Ammonoxidised lignins as slow nitrogen-releasing soil amendments and CO₂-binding matrix.

    PubMed

    Liebner, Falk; Pour, Georg; de la Rosa Arranz, José Maria; Hilscher, André; Rosenau, Thomas; Knicker, Heike

    2011-09-05

    Nitrogen (N) is a major nutrient element controlling the cycling of organic matter in the biosphere. Its availability in soils is closely related to biological productivity. In order to reduce the negative environmental impact, associated with the application of mineral N-fertilizers, the use of ammonoxidised technical lignins is suggested. They can act as potential slow N-release fertilisers which concomitantly may increase C sequestration of soils by its potential to bind CO₂. The idea of our study was to combine an improved chemical characterisation of ammonoxidised ligneous matter as well as their CO₂-binding potential, with laboratory pot experiments, performed to enable an evaluation of their behaviour and stability during the biochemical reworking occurring in active soils.

  4. Trade-based carbon sequestration accounting.

    PubMed

    King, Dennis M

    2004-04-01

    This article describes and illustrates an accounting method to assess and compare "early" carbon sequestration investments and trades on the basis of the number of standardized CO2 emission offset credits they will provide. The "gold standard" for such credits is assumed to be a relatively riskless credit based on a CO2 emission reduction that provides offsets against CO2 emissions on a one-for-one basis. The number of credits associated with carbon sequestration needs to account for time, risk, durability, permanence, additionality, and other factors that future trade regulators will most certainly use to assign "official" credits to sequestration projects. The method that is presented here uses established principles of natural resource accounting and conventional rules of asset valuation to "score" projects. A review of 20 "early" voluntary United States based CO2 offset trades that involve carbon sequestration reveals that the assumptions that buyers, sellers, brokers, and traders are using to characterize the economic potential of their investments and trades vary enormously. The article develops a "universal carbon sequestration credit scoring equation" and uses two of these trades to illustrate the sensitivity of trade outcomes to various assumptions about how future trade auditors are likely to "score" carbon sequestration projects in terms of their "equivalency" with CO2 emission reductions. The article emphasizes the importance of using a standard credit scoring method that accounts for time and risk to assess and compare even unofficial prototype carbon sequestration trades. The scoring method illustrated in this article is a tool that can protect the integrity of carbon sequestration credit trading and can assist buyers and sellers in evaluating the real economic potential of prospective trades.

  5. Carbon dioxide (CO2) sequestration in deep saline aquifers and formations: Chapter 3

    USGS Publications Warehouse

    Rosenbauer, Robert J.; Thomas, Burt

    2010-01-01

    Carbon dioxide (CO2) capture and sequestration in geologic media is one among many emerging strategies to reduce atmospheric emissions of anthropogenic CO2. This chapter looks at the potential of deep saline aquifers – based on their capacity and close proximity to large point sources of CO2 – as repositories for the geologic sequestration of CO2. The petrochemical characteristics which impact on the suitability of saline aquifers for CO2 sequestration and the role of coupled geochemical transport models and numerical tools in evaluating site feasibility are also examined. The full-scale commercial CO2 sequestration project at Sleipner is described together with ongoing pilot and demonstration projects.

  6. Big Sky Carbon Sequestration Partnership

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susan M. Capalbo

    2005-11-01

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork ismore » in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound MMV is critical for public acceptance of these technologies. Deliverables for the 7th Quarter reporting period include (1) for the geological efforts: Reports on Technology Needs and Action Plan on the Evaluation of Geological Sinks and Pilot Project Deployment (Deliverables 2 and 3), and Report on the Feasibility of Mineralization Trapping in the Snake River Plain Basin (Deliverable 14); (2) for the terrestrial efforts: Report on the Evaluation of Terrestrial Sinks and a Report of the Best Production Practices for Soil C Sequestration (Deliverables 8 and 15). In addition, the 7th Quarter activities for the Partnership included further development of the proposed activities for the deployment and demonstration phase of the carbon sequestration pilots including geological and terrestrial pilots, expansion of the Partnership to encompass regions and institutions that are complimentary to the steps we have identified, building greater collaborations with industry and stakeholders in the region, contributed to outreach efforts that spanned all partnerships, co-authorship on the Carbon Capture and Separation report, and developed a regional basis to address future energy opportunities in the region. The deliverables and activities are discussed in the following sections and appended to this report. The education and outreach efforts have resulted in a comprehensive plan which serves as a guide for implementing the outreach activities under Phase I. The public website has been expanded and integrated with the GIS carbon atlas. We have made presentations to stakeholders and policy makers including two tribal sequestration workshops, and made connections to other federal and state agencies concerned with GHG emissions, climate change, and efficient and environmentally-friendly energy production. In addition, the Partnership has plans for integration of our outreach efforts with students, especially at the tribal colleges and at the universities involved in our Partnership. This includes collaboration with MSU and with the U.S.-Norway Summer School, extended outreach efforts at LANL and INEEL, and with the student section of the ASME. Finally, the Big Sky Partnership was involved in key meetings and symposium in the 7th quarter including the USDOE Wye Institute Conference on Carbon Sequestration and Capture (April, 2005); the DOE/NETL Fourth Annual Conference on Carbon Capture and Sequestration (May 2005); Coal Power Development Conference (Denver, June 2005) and meetings with our Phase II industry partners and Governor's staff.« less

  7. Transdisciplinary integration and interfacing software in mechatronic system for carbon sequestration and harvesting energy in the agricultural soils for rewarding farmers through green certificates

    NASA Astrophysics Data System (ADS)

    Pop, P. P.; Pop-Vadean, A.; Barz, C.; Latinovic, T.

    2017-01-01

    In this article we will present a transdisciplinary approach to carbon sequestration in agricultural soils. The software provides a method proposed to measure the amount of carbon that can be captured from different soil types and different crop. The application has integrated an intuitive interface, is portable and calculate the number of green certificates as a reward for farmers financial support for environmental protection. We plan to initiate a scientific approach to environmental protection through financial incentives for agriculture fits in EU rules by taxing big polluters and rewarding those who maintain a suitable environment for the development of ecological and competitive agriculture.

  8. Soil carbon sequestration and biochar as negative emission technologies.

    PubMed

    Smith, Pete

    2016-03-01

    Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to <2 °C relative to the preindustrial era. Most recent scenarios from integrated assessment models require large-scale deployment of negative emissions technologies (NETs) to reach the 2 °C target. A recent analysis of NETs, including direct air capture, enhanced weathering, bioenergy with carbon capture and storage and afforestation/deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr(-1) ) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization. © 2016 John Wiley & Sons Ltd.

  9. The potential of land management to decrease global warming from climate change

    NASA Astrophysics Data System (ADS)

    Mayer, A.; Hausfather, Z.; Jones, A. D.; Silver, W. L.

    2016-12-01

    Recent evidence suggests that negative emissions (i.e. sequestration) is critical to slow climate change (IPCC, 2013; Gasser et al, 2015). Agricultural (crop and grazing) lands have the potential to act as a significant carbon sink. These ecosystems cover a significant proportion of the global land surface, and are largely degraded with regard to soil carbon due to previous management practices (Bai et al, 2008). However, few studies have examined the required scale of land management interventions that would be required to make a significant contribution to a portfolio of efforts aimed at limiting anthropogenic influences on global mean temperature. To address this, we modelled the quantitative effect of a range of soil carbon sequestration rates on global temperature to 2100. Results showed that by assuming a baseline emissions scenario outlined in RCP 2.6, the sequestration of an additional 0.7 Pg C per year through improved agricultural land management practices would produce a reduction of 0.1 degrees C from predicted global temperatures by the year 2100. We also compiled previous estimates of global carbon sequestration potential of agricultural soils to compare with our theoretical prediction to determine whether carbon sequestration through existing land management practices has potential to significantly reduce global temperatures. Assuming long-term soil carbon uptake, the combined potential of agricultural land management-based mitigation approaches exceeded 0.25 degrees C warming reduction by the year 2100. However, results were highly sensitive to potential carbon saturation, defined as the maximum threshold for carbon storage in soil. Our results suggest that current land management technologies and available land area exist and could make a measureable impact on warming reduction. Results also highlighted potential carbon saturation as a key gap in knowledge.

  10. Geological Carbon Sequestration in the Ohio River Valley: An Evaluation of Possible Target Formations

    NASA Astrophysics Data System (ADS)

    Dalton, T. A.; Daniels, J. J.

    2009-12-01

    The development of geological carbon sequestration within the Ohio River Valley is of major interest to the national electricity and coal industries because the Valley is home to a heavy concentration of coal-burning electricity generation plants and the infrastructure is impossible to eliminate in the short-term. It has been determined by Ohio's politicians and citizenry that the continued use of coal in this region until alternative energy supplies are available will be necessary over the next few years. Geologic sequestration is the only possible means of keeping the CO2 out of the atmosphere in the region. The cost of the sequestration effort greatly decreases CO2 emissions by sequestering CO2 directly on site of these plants, or by minimizing the distance between fossil-fueled generation and sequestration (i.e., by eliminating the cost of transportation of supercritical CO2 from plant to sequestration site). Thus, the practicality of CO2 geologic sequestration within the Ohio River Valley is central to the development of such a commercial effort. Though extensive work has been done by the Regional Partnerships of the DOE/NETL in the characterization of general areas for carbon sequestration throughout the nation, few projects have narrowed their focus into a single geologic region in order to evaluate the sites of greatest commercial potential. As an undergraduate of the Earth Sciences at Ohio State, I have engaged in thorough research to obtain a detailed understanding of the geology of the Ohio River Valley and its potential for commercial-scale carbon sequestration. Through this research, I have been able to offer an estimate of the areas of greatest interest for CO2 geologic sequestration. This research has involved petrological, mineralogical, geochemical, and geophysical analyses of four major reservoir formations within Ohio—the Rose Run, the Copper Ridge, the Clinton, and the Oriskany—along with an evaluation of the possible effects of injection into these saline reservoirs.

  11. Enhancement of Carbon Sequestration in west coast Douglas-fir Forests with Nitrogen Fertilization

    NASA Astrophysics Data System (ADS)

    Chen, B.; Jassal, R.; Black, A.; Brummer, C.; Spittlehouse, D.; Nesic, Z.

    2008-12-01

    Fertilization is one of the eligible management practices for C sequestering and hence reducing CO2 emissions under Article 3.4 of the Kyoto Protocol. In the coastal regions of British Columbia, which have very little nitrogen (N) deposition from pollution sources owing to their remote location, and soils deficient in N (Hanley et al., 1996), Douglas-fir stands respond to N fertilization (Brix, 1981; Fisher and Binkley, 2000; Chapin et al., 2002). However, a major concern with N fertilization is the potential loss from the soil surface of the highly potent greenhouse gas N2O, and little is known about such losses in N-fertilized forest soils. While it is necessary to determine and quantify the effects of N fertilization on stand C sequestration, it is also important to address environmental concerns by measuring N2O emissions to determine the net greenhouse gas (GHG) global warming potential (GWP). The GWP of N2O is 296 times (100-year time horizon) greater than that of CO2 (Ehhalt and Prather, 2001), yet there is little information on its net radiative forcing as a result of forest fertilization. We report two years of results on the effects of N fertilization in a chronosequence of three Douglas-fir stands (7, 19 and 58 years old, hereafter referred to as HDF00, HDF88 and DF49, respectively) on net C sequestration or net primary productivity measured using the eddy-covariance technique. DF49 (110 ha) and HDF88 (20 ha) were aerially fertilized with urea at 200 kg N ha-1 on Jan 13 and Feb 17, 2007, respectively, while due to its young age and competing understory, fertilizer to HDF00 (5 ha) was manually applied at 80 g urea/tree (60 kg N ha-1) along the tree drip line on Feb 13-14, 2007. Additionally, we calculate the net change in GHG GWP resulting from fertilization of DF49 by accounting for N2O emissions and energy costs of fertilizer production, transport, and application. We also compare polymer-coated slow-release urea (Environmentally Smart Nitrogen (ESN), Agrium Inc., Calgary, AB, Canada) with regular urea for its potential effectiveness in reducing N2O emissions from the forest-floor.

  12. An Analysis of the Climate Change Mitigation Potential through Soil Organic Carbon Sequestration in a Corn Belt Watershed.

    PubMed

    Bhattarai, Mukesh Dev; Secchi, Silvia; Schoof, Justin

    2017-01-01

    Land-based carbon sequestration constitutes a major low cost and immediately viable option in climate change mitigation. Using downscaled data from eight atmosphere-ocean general circulation models for a simulation period between 2015 and 2099, we examine the carbon sequestration potential of alternative agricultural land uses in an intensively farmed Corn Belt watershed and the impact of climate change on crop yields. Our results show that switching from conventional tillage continuous corn to no-till corn-soybean can sequester the equivalent of 192.1 MtCO 2 eq of soil organic carbon per hectare with a sequestration rate of 2.26 MtCO 2 eq ha -1 yr -1 . Our results also indicate that switchgrass can sequester the equivalent of 310.7 MtCO 2 eq of soil organic carbon per hectare with a sequestration rate of 3.65 MtCO 2 eq ha -1 yr -1 . Our findings suggest that, unlike for corn and soybean yields, climate change does not have a significant effect on switchgrass yields, possibly due to the carbon fertilization effect.

  13. An Analysis of the Climate Change Mitigation Potential through Soil Organic Carbon Sequestration in a Corn Belt Watershed

    NASA Astrophysics Data System (ADS)

    Bhattarai, Mukesh Dev; Secchi, Silvia; Schoof, Justin

    2017-01-01

    Land-based carbon sequestration constitutes a major low cost and immediately viable option in climate change mitigation. Using downscaled data from eight atmosphere-ocean general circulation models for a simulation period between 2015 and 2099, we examine the carbon sequestration potential of alternative agricultural land uses in an intensively farmed Corn Belt watershed and the impact of climate change on crop yields. Our results show that switching from conventional tillage continuous corn to no-till corn-soybean can sequester the equivalent of 192.1 MtCO2 eq of soil organic carbon per hectare with a sequestration rate of 2.26 MtCO2 eq ha-1 yr-1. Our results also indicate that switchgrass can sequester the equivalent of 310.7 MtCO2 eq of soil organic carbon per hectare with a sequestration rate of 3.65 MtCO2 eq ha-1 yr-1. Our findings suggest that, unlike for corn and soybean yields, climate change does not have a significant effect on switchgrass yields, possibly due to the carbon fertilization effect.

  14. Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region (RMCCS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McPherson, Brian; Matthews, Vince

    2013-09-30

    The primary objective of the “Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region” project, or RMCCS project, is to characterize the storage potential of the most promising geologic sequestration formations within the southwestern U.S. and the Central Rocky Mountain region in particular. The approach included an analysis of geologic sequestration formations under the Craig Power Station in northwestern Colorado, and application or extrapolation of those local-scale results to the broader region. A ten-step protocol for geologic carbon storage site characterization was a primary outcome of this project.

  15. CO2 Accounting and Risk Analysis for CO2 Sequestration at Enhanced Oil Recovery Sites.

    PubMed

    Dai, Zhenxue; Viswanathan, Hari; Middleton, Richard; Pan, Feng; Ampomah, William; Yang, Changbing; Jia, Wei; Xiao, Ting; Lee, Si-Yong; McPherson, Brian; Balch, Robert; Grigg, Reid; White, Mark

    2016-07-19

    Using CO2 in enhanced oil recovery (CO2-EOR) is a promising technology for emissions management because CO2-EOR can dramatically reduce sequestration costs in the absence of emissions policies that include incentives for carbon capture and storage. This study develops a multiscale statistical framework to perform CO2 accounting and risk analysis in an EOR environment at the Farnsworth Unit (FWU), Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil/gas-water flow and transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major risk metrics: CO2/water injection/production rates, cumulative net CO2 storage, cumulative oil/gas productions, and CO2 breakthrough time. The median and confidence intervals are estimated for quantifying uncertainty ranges of the risk metrics. A response-surface-based economic model has been derived to calculate the CO2-EOR profitability for the FWU site with a current oil price, which suggests that approximately 31% of the 1000 realizations can be profitable. If government carbon-tax credits are available, or the oil price goes up or CO2 capture and operating expenses reduce, more realizations would be profitable. The results from this study provide valuable insights for understanding CO2 storage potential and the corresponding environmental and economic risks of commercial-scale CO2-sequestration in depleted reservoirs.

  16. Cover crops do not increase C sequestration in production crops: evidence from 12 years of continuous measurements

    NASA Astrophysics Data System (ADS)

    Buysse, Pauline; Bodson, Bernard; Debacq, Alain; De Ligne, Anne; Heinesch, Bernard; Manise, Tanguy; Moureaux, Christine; Aubinet, Marc

    2017-04-01

    The numerous reports on carbon (C) loss from cropland soils have recently raised awareness on the climate change mitigation potential of these ecosystems, and on the necessity to improve C sequestration in these soils. Among the multiple solutions that are proposed, several field measurement and modelling studies reported that growing cover crops over fall and winter time could appear as an efficient solution. However, while the large majority of these studies are based on SOC stock inventories and very few information exists from the CO2 flux dynamics perspective. In the present work, we use the results from long-term (12 years) eddy-covariance measurements performed at the Lonzée Terrestrial Observatory (LTO, candidate ICOS site, Belgium) and focus on six intercrop periods managed with (3) and without (3) cover crops after winter wheat main crops, in order to compare their response to environmental factors and to investigate the impact of cover crops on Net Ecosystem Exchange (NEE). Our results showed that cumulated NEE was not significantly affected by the presence of cover crops. Indeed, while larger CO2 assimilation occurred during cover crop growth, this carbon gain was later lost by larger respiration rates due to larger crop residue amounts brought to the soil. As modelled by a Q10-like relationship, significantly larger R10 values were indeed observed during the three intercrop periods cultivated with cover crops. These CO2 flux-based results therefore tend to moderate the generally acknowledged positive impact of cover crops on net C sequestration by croplands. Our results indicate that the effect of growing cover crops on C sequestration could be less important than announced, at least at certain sites.

  17. Global negative emissions capacity of ocean macronutrient fertilization

    NASA Astrophysics Data System (ADS)

    Harrison, Daniel P.

    2017-03-01

    In order to meet the goal of limiting global average temperature increase to less than 2 °C, it is increasingly apparent that negative emissions technologies of up to 10 Pg C yr-1 will be needed before the end of the century. Recent research indicates that fertilization of the ocean with the macronutrients nitrogen and phosphorus where they limit primary production, may have sequestration advantages over fertilizing iron limited regions. Utilizing global datasets of oceanographic field measurements, and output from a high resolution global circulation model, the current study provides the first comprehensive assessment of the global potential for carbon sequestration from ocean macronutrient fertilization (OMF). Sufficient excess phosphate exists outside the iron limited surface ocean to support once-off sequestration of up to 3.6 Pg C by fertilization with nitrogen. Ongoing maximum capacity of nitrogen only fertilization is estimated at 0.7 ± 0.4 Pg C yr-1. Sequestration capacity is expected to decrease from the upper toward the lower bound over time under continued intense fertilization. If N and P were used in combination the capacity is ultimately limited by societies willingness to utilize phosphate resources. Doubling current phosphate production would allow an additional 0.9 Pg C yr-1 and consume 0.07% yr-1 of known global resources. Therefore offsetting up to around 15% (1.5 Pg C yr-1) of annual global CO2 emissions is assessed as being technically plausible. Environmental risks which to date have received little quantitative evaluation, could also limit the scale of implementation. These results reinforce the need to consider a multi-faceted approach to greenhouse gasses, including a reduction in emissions coupled with further research into negative emissions technologies.

  18. Efficiency of incentives to jointly increase carbon sequestration and species conservation on a landscape

    PubMed Central

    Nelson, Erik; Polasky, Stephen; Lewis, David J.; Plantinga, Andrew J.; Lonsdorf, Eric; White, Denis; Bael, David; Lawler, Joshua J.

    2008-01-01

    We develop an integrated model to predict private land-use decisions in response to policy incentives designed to increase the provision of carbon sequestration and species conservation across heterogeneous landscapes. Using data from the Willamette Basin, Oregon, we compare the provision of carbon sequestration and species conservation under five simple policies that offer payments for conservation. We evaluate policy performance compared with the maximum feasible combinations of carbon sequestration and species conservation on the landscape for various conservation budgets. None of the conservation payment policies produce increases in carbon sequestration and species conservation that approach the maximum potential gains on the landscape. Our results show that policies aimed at increasing the provision of carbon sequestration do not necessarily increase species conservation and that highly targeted policies do not necessarily do as well as more general policies. PMID:18621703

  19. A Multi-Level Approach to Outreach for Geologic Sequestration Projects

    USGS Publications Warehouse

    Greenberg, S.E.; Leetaru, H.E.; Krapac, I.G.; Hnottavange-Telleen, K.; Finley, R.J.

    2009-01-01

    Public perception of carbon capture and sequestration (CCS) projects represents a potential barrier to commercialization. Outreach to stakeholders at the local, regional, and national level is needed to create familiarity with and potential acceptance of CCS projects. This paper highlights the Midwest Geological Sequestration Consortium (MGSC) multi-level outreach approach which interacts with multiple stakeholders. The MGSC approach focuses on external and internal communication. External communication has resulted in building regional public understanding of CCS. Internal communication, through a project Risk Assessment process, has resulted in enhanced team communication and preparation of team members for outreach roles. ?? 2009 Elsevier Ltd. All rights reserved.

  20. Reduced carbon sequestration potential of biochar in acidic soil.

    PubMed

    Sheng, Yaqi; Zhan, Yu; Zhu, Lizhong

    2016-12-01

    Biochar application in soil has been proposed as a promising method for carbon sequestration. While factors affecting its carbon sequestration potential have been widely investigated, the number of studies on the effect of soil pH is limited. To investigate the carbon sequestration potential of biochar across a series of soil pH levels, the total carbon emission, CO 2 release from inorganic carbon, and phospholipid fatty acids (PLFAs) of six soils with various pH levels were compared after the addition of straw biochar produced at different pyrolysis temperatures. The results show that the acidic soils released more CO 2 (1.5-3.5 times higher than the control) after the application of biochar compared with neutral and alkaline soils. The degradation of both native soil organic carbon (SOC) and biochar were accelerated. More inorganic CO 2 release in acidic soil contributed to the increased degradation of biochar. Higher proportion of gram-positive bacteria in acidic soil (25%-36%) was responsible for the enhanced biochar degradation and simultaneously co-metabolism of SOC. In addition, lower substrate limitation for bacteria, indicated by higher C-O stretching after the biochar application in the acidic soil, also caused more CO 2 release. In addition to the soil pH, other factors such as clay contents and experimental duration also affected the phsico-chemical and biotic processes of SOC dynamics. Gram-negative/gram-positive bacteria ratio was found to be negatively related to priming effects, and suggested to serve as an indicator for priming effect. In general, the carbon sequestration potential of rice-straw biochar in soil reduced along with the decrease of soil pH especially in a short-term. Given wide spread of acidic soils in China, carbon sequestration potential of biochar may be overestimated without taking into account the impact of soil pH. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Estimating urban forest carbon sequestration potential in the southern United States using current remote sensing imagery sources

    Treesearch

    Krista Merry; Pete Bettinger; Jacek Siry; J. Michael Bowker

    2015-01-01

    With an increased interest in reducing carbon dioxide in the atmosphere, tree planting and maintenance in urban areas has become a viable option for increasing carbon sequestration. Methods for assessing the potential for planting trees within an urban area should allow for quick, inexpensive, and accurate estimations of available land using current remote sensing...

  2. Development of environmental impact monitoring protocol for offshore carbon capture and storage (CCS): A biological perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyewon, E-mail: hyewon@ldeo.columbia.edu; Kim, Yong Hoon, E-mail: Yong.Kim@rpsgroup.com; Kang, Seong-Gil, E-mail: kangsg@kriso.re.kr

    Offshore geologic storage of carbon dioxide (CO{sub 2}), known as offshore carbon capture and sequestration (CCS), has been under active investigation as a safe, effective mitigation option for reducing CO{sub 2} levels from anthropogenic fossil fuel burning and climate change. Along with increasing trends in implementation plans and related logistics on offshore CCS, thorough risk assessment (i.e. environmental impact monitoring) needs to be conducted to evaluate potential risks, such as CO{sub 2} gas leakage at injection sites. Gas leaks from offshore CCS may affect the physiology of marine organisms and disrupt certain ecosystem functions, thereby posing an environmental risk. Here,more » we synthesize current knowledge on environmental impact monitoring of offshore CCS with an emphasis on biological aspects and provide suggestions for better practice. Based on our critical review of preexisting literatures, this paper: 1) discusses key variables sensitive to or indicative of gas leakage by summarizing physico-chemical and ecological variables measured from previous monitoring cruises on offshore CCS; 2) lists ecosystem and organism responses to a similar environmental condition to CO{sub 2} leakage and associated impacts, such as ocean acidification and hypercapnia, to predict how they serve as responsive indicators of short- and long-term gas exposure, and 3) discusses the designs of the artificial gas release experiments in fields and the best model simulation to produce realistic leakage scenarios in marine ecosystems. Based on our analysis, we suggest that proper incorporation of biological aspects will provide successful and robust long-term monitoring strategies with earlier detection of gas leakage, thus reducing the risks associated with offshore CCS. - Highlights: • This paper synthesizes the current knowledge on environmental impact monitoring of offshore Carbon Capture and Sequestration (CCS). • Impacts of CO{sub 2} leakage (ocean acidification, hypercapnia) on marine organisms and ecosystems are discussed. • Insights and recommendations on EIA monitoring for CCS operations are proposed specifically in marine ecosystem perspective.« less

  3. Ecosystem carbon stocks and sequestration potential of federal lands across the conterminous United States

    USGS Publications Warehouse

    Tan, Zhengxi; Liu, Shuguang; Sohl, Terry L.; Wu, Yiping; Young, Claudia J.

    2015-01-01

    Federal lands across the conterminous United States (CONUS) account for 23.5% of the CONUS terrestrial area but have received no systematic studies on their ecosystem carbon (C) dynamics and contribution to the national C budgets. The methodology for US Congress-mandated national biological C sequestration potential assessment was used to evaluate ecosystem C dynamics in CONUS federal lands at present and in the future under three Intergovernmental Panel on Climate Change Special Report on Emission Scenarios (IPCC SRES) A1B, A2, and B1. The total ecosystem C stock was estimated as 11,613 Tg C in 2005 and projected to be 13,965 Tg C in 2050, an average increase of 19.4% from the baseline. The projected annual C sequestration rate (in kilograms of carbon per hectare per year) from 2006 to 2050 would be sinks of 620 and 228 for forests and grasslands, respectively, and C sources of 13 for shrublands. The federal lands’ contribution to the national ecosystem C budget could decrease from 23.3% in 2005 to 20.8% in 2050. The C sequestration potential in the future depends not only on the footprint of individual ecosystems but also on each federal agency’s land use and management. The results presented here update our current knowledge about the baseline ecosystem C stock and sequestration potential of federal lands, which would be useful for federal agencies to decide management practices to achieve the national greenhouse gas (GHG) mitigation goal.

  4. Ecosystem carbon stocks and sequestration potential of federal lands across the conterminous United States

    PubMed Central

    Tan, Zhengxi; Liu, Shuguang; Sohl, Terry L.; Wu, Yiping; Young, Claudia J.

    2015-01-01

    Federal lands across the conterminous United States (CONUS) account for 23.5% of the CONUS terrestrial area but have received no systematic studies on their ecosystem carbon (C) dynamics and contribution to the national C budgets. The methodology for US Congress-mandated national biological C sequestration potential assessment was used to evaluate ecosystem C dynamics in CONUS federal lands at present and in the future under three Intergovernmental Panel on Climate Change Special Report on Emission Scenarios (IPCC SRES) A1B, A2, and B1. The total ecosystem C stock was estimated as 11,613 Tg C in 2005 and projected to be 13,965 Tg C in 2050, an average increase of 19.4% from the baseline. The projected annual C sequestration rate (in kilograms of carbon per hectare per year) from 2006 to 2050 would be sinks of 620 and 228 for forests and grasslands, respectively, and C sources of 13 for shrublands. The federal lands’ contribution to the national ecosystem C budget could decrease from 23.3% in 2005 to 20.8% in 2050. The C sequestration potential in the future depends not only on the footprint of individual ecosystems but also on each federal agency’s land use and management. The results presented here update our current knowledge about the baseline ecosystem C stock and sequestration potential of federal lands, which would be useful for federal agencies to decide management practices to achieve the national greenhouse gas (GHG) mitigation goal. PMID:26417074

  5. A geochemical investigation into the effect of coal rank on the potential environmental effects of CO2 sequestration in deep coal beds

    USGS Publications Warehouse

    Kolak, Jonathan J.; Burruss, Robert A.

    2005-01-01

    Coal samples of different rank were extracted in the laboratory with supercritical CO2 to evaluate the potential for mobilizing hydrocarbons during CO2 sequestration or enhanced coal bed methane recovery from deep coal beds. The concentrations of aliphatic hydrocarbons mobilized from the subbituminous C, high-volatile C bituminous, and anthracite coal samples were 41.2, 43.1, and 3.11 ?g g-1 dry coal, respectively. Substantial, but lower, concentrations of polycyclic aromatic hydrocarbons (PAHs) were mobilized from these samples: 2.19, 10.1, and 1.44 ?g g-1 dry coal, respectively. The hydrocarbon distributions within the aliphatic and aromatic fractions obtained from each coal sample also varied with coal rank and reflected changes to the coal matrix associated with increasing degree of coalification. Bitumen present within the coal matrix may affect hydrocarbon partitioning between coal and supercritical CO2. The coal samples continued to yield hydrocarbons during consecutive extractions with supercritical CO2. The amount of hydrocarbons mobilized declined with each successive extraction, and the relative proportion of higher molecular weight hydrocarbons increased during successive extractions. These results demonstrate that the potential for mobilizing hydrocarbons from coal beds, and the effect of coal rank on this process, are important to consider when evaluating coal beds for CO2 storage.

  6. Assessing Impacts of 20 yr Old Miscanthus on Soil Organic Carbon Quality

    NASA Astrophysics Data System (ADS)

    Hu, Yaxian; Schäfer, Gerhard; Kuhn, Nikolaus

    2015-04-01

    The use of biomass as a renewable energy source has become increasingly popular in Upper Rhine Region to meet the demand for renewable energy. Miscanthus is one of the most favorite biofuel crops, due to its long life and large yields, as well as low energy and fertilizer inputs. However, current research on Miscanthus is mostly focused on the techniques and economics to produce biofuel or the impacts of side products such as ash and sulfur emissions to human health. Research on the potential impacts of Miscanthus onto soil quality, especially carbon quality after long-term adoption, is very limited. Some positive benefits, such as sequestrating organic carbon, have been repeatedly reported in previous research. Yet the quality of newly sequestrated organic carbon and its potential impacts onto global carbon cycling remain unclear. To fully account for the risks and benefits of Miscanthus, it is required to investigate the quality as well as the potential CO2 emissions of soil organic carbon on Miscanthus fields. As a part of the Interreg Project to assess the environmental impacts of biomass production in the Upper Rhine Region, this study aims to evaluate the carbon quality and the potential CO2 emissions after long-term Miscanthus adoption. Soils were sampled at 0-10, 10-40, 40-70, and 70-100 cm depths on three Miscanthus fields with up to 20 years of cultivation in Ammerzwiller France, Münchenstein Switzerland, and Farnsburg Switzerland. Soil texture, pH, organic carbon and nitrogen content were measured for each sampled layer. Topsoils of 0-10 cm and subsoils of 10-40 cm were also incubated for 40 days to determine the mineralization potential of the soil organic matter. Our results show that: 1) only in top soils of 0-10 cm, the 20 year old Miscanthus field has significantly higher soil organic carbon concentrations, than the control site. No significant differences were observed in deeper soil layers. Similar tendencies were also observed for organic nitrogen content as well C/N ratios. This indicates that the positive benefits of Miscanthus in sequestrating organic carbon and improving soil quality are probably only effective in top soils. 2) Soils from the 20 years old Miscanthus fields produced significantly more CO2 than the control site, suggesting the great susceptibility of organic carbon on Miscanthus fields to mineralization. Overall, our results indicate a potentially additional contribution of Miscanthus fields to atmospheric CO2 compared to reference soils, cautioning the widespread adoption of Miscanthus. Consequently, further studies aiming at a full emission balance are required to assess the overall environmental impacts of biomass production in the Upper Rhine Region.

  7. Toward optimal soil organic carbon sequestration with effects of agricultural management practices and climate change in Tai-Lake paddy soils of China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Liming; Zhuang, Qianlai; He, Yujie

    Understanding the impacts of climate change and agricultural management practices on soil organic carbon (SOC) dynamics is critical for implementing optimal farming practices and maintaining agricultural productivity. This study examines the influence of climate and agricultural management on carbon sequestration potentials in Tai-Lake Paddy soils of China using the DeNitrification-DeComposition (DNDC) model, with a high-resolution soil database (1:50,000). Model simulations considered the effects of no tillage, increasing manure application, increasing/decreasing of N-fertilizer application and crop residues, water management, and climatic shifts in temperature and precipitation. We found that the carbon sequestration potential for the 2.32 Mha paddy soils of themore » Tai-Lake region varied from 4.71 to 44.31 Tg C during the period 2001-2019, with an annual average SOC changes ranged from 107 to 1005 kg C ha -1 yr -1. The sequestration potential significantly increased with increasing application of N-fertilizer, manure, conservation tillage, and crop residues. To increase soil C sequestration in this region, no-tillage and increasing of crop residue return to soils and manure application are recommended. Our analysis of climate impacts on SOC sequestration suggests that the rice paddies in this region will continue to be a carbon sink under future warming conditions. In addition, because the region’s annual precipitation (>1200 mm) is high, we also recommend reducing irrigation water use for these rice paddies to conserve freshwater in the Tai-Lake region.« less

  8. Pilot Studies of Geologic and Terrestrial Carbon Sequestration in the Big Sky Region, USA, and Opportunities for Commercial Scale Deployment of New Technologies

    NASA Astrophysics Data System (ADS)

    Waggoner, L. A.; Capalbo, S. M.; Talbott, J.

    2007-05-01

    Within the Big Sky region, including Montana, Idaho, South Dakota, Wyoming and the Pacific Northwest, industry is developing new coal-fired power plants using the abundant coal and other fossil-based resources. Of crucial importance to future development programs are robust carbon mitigation plans that include a technical and economic assessment of regional carbon sequestration opportunities. The objective of the Big Sky Carbon Sequestration Partnership (BSCSP) is to promote the development of a regional framework and infrastructure required to validate and deploy carbon sequestration technologies. Initial work compiled sources and potential sinks for carbon dioxide (CO2) in the Big Sky Region and developed the online Carbon Atlas. Current efforts couple geologic and terrestrial field validation tests with market assessments, economic analysis and regulatory and public outreach. The primary geological efforts are in the demonstration of carbon storage in mafic/basalt formations, a geology not yet well characterized but with significant long-term storage potential in the region and other parts of the world; and in the Madison Formation, a large carbonate aquifer in Wyoming and Montana. Terrestrial sequestration relies on management practices and technologies to remove atmospheric CO2 to storage in trees, plants, and soil. This indirect sequestration method can be implemented today and is on the front-line of voluntary, market-based approaches to reduce CO2 emissions. Details of pilot projects are presented including: new technologies, challenges and successes of projects and potential for commercial-scale deployment.

  9. What did we do and what can we do with our global soil resources?

    NASA Astrophysics Data System (ADS)

    Stoorvogel, Jetse

    2017-04-01

    Our global soil resources increasingly meet the headlines: soil degradation leads to irreversible changes and a loss of the global production potential, soil resources play a key role to reach the sustainable development goals, and soils are seen as a potential solution to some of the climate change mitigation through carbon sequestration. However, global assessments of soil degradation, soil resources, and the potential of soils to provide ecosystem services are not very consistent. This study aims to contribute to the discussion by providing a realistic opportunity space on the options for our soil resources. First, the natural and current soil conditions are estimated using the S-World methodology. S-World has been developed to provide global maps of soil properties at a 30 arc-second resolution for environmental modelling. By running the S-world methodology for current but also for natural land cover, natural and current soil conditions are estimated. This analysis tells us what we did to our global soil resources. Subsequently, the same methodology is used to analyse a range of different scenarios for the future to explore the potential for soil restoration and carbon sequestration. Although the actual management interventions required are not analysed, the analysis does provide the opportunity space and thus what we can do with our soil resources in terms of realistic ranges. The results are interpreted in the context of the Sustainable Development Goals and the recent 4‰-initiative for climate change mitigation.

  10. Environmental performance of straw-based pulp making: A life cycle perspective.

    PubMed

    Sun, Mingxing; Wang, Yutao; Shi, Lei

    2018-03-01

    Agricultural straw-based pulp making plays a vital role in pulp and paper industry, especially in forest deficient countries such as China. However, the environmental performance of straw-based pulp has scarcely been studied. A life cycle assessment on wheat straw-based pulp making in China was conducted to fill of the gaps in comprehensive environmental assessments of agricultural straw-based pulp making. On average, the global warming potential (GWP), GWP excluding biogenic carbon, acidification potential and eutrophication potential of wheat straw based pulp making are 2299kg CO 2 -eq, 4550kg CO 2 -eq, 16.43kg SO 2 -eq and 2.56kg Phosphate-eq respectively. The dominant factors contributing to environmental impacts are coal consumption, electricity consumption, and chemical (NaOH, ClO 2 ) input. Chemical input decrease and energy recovery increase reduce the total environmental impacts dramatically. Compared with wood-based and recycled pulp making, wheat straw-based pulp making has higher environmental impacts, which are mainly due to higher energy and chemical requirements. However, the environmental impacts of wheat straw-based pulp making are lower than hemp and flax based pulp making from previous studies. It is also noteworthy that biogenic carbon emission is significant in bio industries. If carbon sequestration is taken into account in pulp making industry, wheat straw-based pulp making is a net emitter rather than a net absorber of carbon dioxide. Since wheat straw-based pulp making provides an alternative for agricultural residue management, its evaluation framework should be expanded to further reveal its environmental benefits. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The Effect of the Agricultural Carbon Sequestration and Agrochemical Reduction on the Regional Water Environment Quality

    NASA Astrophysics Data System (ADS)

    Leyi, Wang; Baoli, Zhang; Xin, Li; Juan, Du

    2018-05-01

    This paper analysed the impact of the agricultural carbon reduction and emission reduction measures implementation on the environmental quality of surface water and groundwater in winter and summer in Henan and Anhui Province project areas by using entropy weight fuzzy matter element analysis method. The result showed that the reduction in the application of chemical fertilizers and pesticides had a certain impact on the improvement of the water environment by using agricultural carbon sequestration technologies.

  12. Sustainability of meat production beyond carbon footprint: a synthesis of case studies from grazing systems in Uruguay.

    PubMed

    Picasso, Valentín D; Modernel, Pablo D; Becoña, Gonzalo; Salvo, Lucía; Gutiérrez, Lucía; Astigarraga, Laura

    2014-11-01

    Livestock production has been challenged as a large contributor to climate change, and carbon footprint has become a widely used measure of cattle environmental impact. This analysis of fifteen beef grazing systems in Uruguay quantifies the range of variation of carbon footprint, and the trade-offs with other relevant environmental variables, using a partial life cycle assessment (LCA) methodology. Using carbon footprint as the primary environmental indicator has several limitations: different metrics (GWP vs. GTP) may lead to different conclusions, carbon sequestration from soils may drastically affect the results, and systems with lower carbon footprint may have higher energy use, soil erosion, nutrient imbalance, pesticide ecotoxicity, and impact on biodiversity. A multidimensional assessment of sustainability of meat production is therefore needed to inform decision makers. There is great potential to improve grazing livestock systems productivity while reducing carbon footprint and other environmental impacts, and conserving biodiversity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Interaction of ice storms and management practices on current carbon sequestration in forests with potential mitigation under future CO2 atmosphere

    Treesearch

    Heather R. McCarthy; Ram Oren; Hyun-Seok Kim; Kurt H. Johnsen; Chris Maier; Seth G. Pritchard; Michael A. Davis

    2006-01-01

    Ice storms are disturbance events with potential impacts on carbon sequestration. Common forest management practices, such as fertilization and thinning, can change wood and stand properties and thus may change vulnerability to ice storm damage. At the same time, increasing atmospheric CO2 levels may also influence ice storm vulnerability. Here...

  14. Calcium silicates synthesised from industrial residues with the ability for CO2 sequestration.

    PubMed

    Morales-Flórez, Victor; Santos, Alberto; López, Antonio; Moriña, Isabel; Esquivias, Luis

    2014-12-01

    This work explored several synthesis routes to obtain calcium silicates from different calcium-rich and silica-rich industrial residues. Larnite, wollastonite and calcium silicate chloride were successfully synthesised with moderate heat treatments below standard temperatures. These procedures help to not only conserve natural resources, but also to reduce the energy requirements and CO2 emissions. In addition, these silicates have been successfully tested as carbon dioxide sequesters, to enhance the viability of CO2 mineral sequestration technologies using calcium-rich industrial by-products as sequestration agents. Two different carbon sequestration experiments were performed under ambient conditions. Static experiments revealed carbonation efficiencies close to 100% and real-time resolved experiments characterised the dynamic behaviour and ability of these samples to reduce the CO2 concentration within a mixture of gases. The CO2 concentration was reduced up to 70%, with a carbon fixation dynamic ratio of 3.2 mg CO2 per g of sequestration agent and minute. Our results confirm the suitability of the proposed synthesis routes to synthesise different calcium silicates recycling industrial residues, being therefore energetically more efficient and environmentally friendly procedures for the cement industry. © The Author(s) 2014.

  15. Recent progress in the development of a SPARROW model of sediment for the conterminous U.S.

    USGS Publications Warehouse

    Schwarz, Gregory; Smith, Richard; Alexander, Richard; Gray, John

    2003-01-01

    Suspended sediment has long been recognized as an important contaminant affecting water resources. Besides its direct role in determining water clarity, bridge scour and reservoir storage, sediment serves as a vehicle for the transport of many binding contaminants, including nutrients, trace metals, semi- volatile organic compounds, and numerous pesticides (U.S. Environmental Protection Agency 2000a). Recent efforts to address water quality concerns through the TMDL process have identified sediment as the single most prevalent cause of impairment in the Nation’s streams and rivers (U.S. Environmental Protection Agency 2000b). Moreover, sediment has been identified as a medium for the transport and sequestration of organic carbon, playing a potentially important role in understanding sources and sinks in the global carbon budget (Stallard 1998).

  16. Effects of salinity and the extent of water on supercritical CO2-induced phlogopite dissolution and secondary mineral formation.

    PubMed

    Shao, Hongbo; Ray, Jessica R; Jun, Young-Shin

    2011-02-15

    To ensure the viability of geologic CO2 sequestration (GCS), we need a holistic understanding of reactions at supercritical CO2 (scCO2)-saline water-rock interfaces and the environmental factors affecting these interactions. This research investigated the effects of salinity and the extent of water on the dissolution and surface morphological changes of phlogopite [KMg2.87Si3.07Al1.23O10(F,OH)2], a model clay mineral in potential GCS sites. Salinity enhanced the dissolution of phlogopite and affected the location, shape, size, and phase of secondary minerals. In low salinity solutions, nanoscale particles of secondary minerals formed much faster, and there were more nanoparticles than in high salinity solutions. The effect of water extent was investigated by comparing scCO2-H2O(g)-phlogopite and scCO2-H2O(l)-phlogopite interactions. Experimental results suggested that the presence of a thin water film adsorbed on the phlogopite surface caused the formation of dissolution pits and a surface coating of secondary mineral phases that could change the physical properties of rocks. These results provide new information for understanding reactions at scCO2-saline water-rock interfaces in deep saline aquifers and will help design secure and environmentally sustainable CO2 sequestration projects.

  17. Carbon Sequestration in Unconventional Reservoirs: Geophysical, Geochemical and Geomechanical Considerations

    NASA Astrophysics Data System (ADS)

    Zakharova, Natalia V.

    In the face of the environmental challenges presented by the acceleration of global warming, carbon capture and storage, also called carbon sequestration, may provide a vital option to reduce anthropogenic carbon dioxide emissions, while meeting the world's energy demands. To operate on a global scale, carbon sequestration would require thousands of geologic repositories that could accommodate billions of tons of carbon dioxide per year. In order to reach such capacity, various types of geologic reservoirs should be considered, including unconventional reservoirs such as volcanic rocks, fractured formations, and moderate-permeability aquifers. Unconventional reservoirs, however, are characterized by complex pore structure, high heterogeneity, and intricate feedbacks between physical, chemical and mechanical processes, and their capacity to securely store carbon emissions needs to be confirmed. In this dissertation, I present my contribution toward the understanding of geophysical, geochemical, hydraulic, and geomechanical properties of continental basalts and fractured sedimentary formations in the context of their carbon storage capacity. The data come from two characterization projects, in the Columbia River Flood Basalt in Washington and the Newark Rift Basin in New York, funded by the U.S. Department of Energy through Big Sky Carbon Sequestration Partnerships and TriCarb Consortium for Carbon Sequestration. My work focuses on in situ analysis using borehole geophysical measurements that allow for detailed characterization of formation properties on the reservoir scale and under nearly unaltered subsurface conditions. The immobilization of injected CO2 by mineralization in basaltic rocks offers a critical advantage over sedimentary reservoirs for long-term CO2 storage. Continental flood basalts, such as the Columbia River Basalt Group, possess a suitable structure for CO2 storage, with extensive reservoirs in the interflow zones separated by massive impermeable basalt in flow interiors. Other large igneous provinces and ocean floor basalts could accommodate centuries' worth of world's CO2 emissions. Low-volume basaltic flows and fractured intrusives may potentially serve as smaller-scale CO2 storage targets. However, as illustrated by the example of the Palisade sill in the Newark basin, even densely fractured intrusive basalts are often impermeable, and instead may serve as caprock for underlying formations. Hydraulic properties of fractured formations are very site-specific, but observations and theory suggest that the majority of fractures at depth remain closed. Hydraulic tests in the northern Newark basin indicate that fractures introduce strong anisotropy and heterogeneity to the formation properties, and very few of them augment hydraulic conductivity of these fractured formations. Overall, they are unlikely to provide enough storage capacity for safe CO 2 injection at large scales, but can be suitable for small-scale controlled experiments and pilot injection tests. The risk of inducing earthquakes by underground injection has emerged as one of the primary concerns for large-scale carbon sequestration, especially in fractured and moderately permeable formations. Analysis of in situ stress and distribution of fractures in the subsurface are important steps for evaluating the risks of induced seismicity. Preliminary results from the Newark basin suggest that local stress perturbation may potentially create favorable stress conditions for CO2 sequestration by allowing a considerable pore pressure increase without carrying large risks of fault reactivation. Additional in situ stress data are needed, however, to accurately constrain the magnitude of the minimum horizontal stress, and it is recommended that such tests be conducted at all potential CO 2 storage sites.

  18. Soil Carbon 4 per mille

    NASA Astrophysics Data System (ADS)

    Minasny, Budiman; van Wesemael, Bas

    2017-04-01

    The '4 per mille Soils for Food Security and Climate' was launched at the COP21 aiming to increase global soil organic matter stocks by 4 per mille (or 0.4 %) per year as a compensation for the global emissions of greenhouse gases by anthropogenic sources. This paper surveyed the soil organic carbon (SOC) stock estimates and sequestration potentials from 20 regions in the world (New Zealand, Chile, South Africa, Australia, Tanzania, Indonesia, Kenya, Nigeria, India, China Taiwan, South Korea, China Mainland, United States of America, France, Canada, Belgium, England & Wales, Ireland, Scotland, and Russia) and asked whether the 4 per mille initiative is feasible. This study highlights region specific efforts and scopes for soil carbon sequestration. Reported soil C sequestration rates generally show that under best management practices, 4 per mille or even higher sequestration rates can be accomplished. High C sequestration rates (up to 10 per mille) can be achieved for soils with low initial SOC stock (topsoil less than 30 t C ha-1), and at the first twenty years after implementation of best management practices. In addition, areas that have reached equilibrium but not at their saturation level will not be able to further increase their sequestration. We found that most studies on SOC sequestration globally only consider topsoil (up to 0.3 m depth), as it is considered to be most affected by management techniques. The 4 per mille initiative was based on a blanket calculation of the whole global soil profile C stock, however the potential to increase SOC is mostly on managed agricultural lands. If we consider 4 per mille on global topsoil of agricultural land, SOC sequestration is about 3.6 Gt C per year, which effectively offset 40% of global anthropogenic greenhouse gas emissions. As a strategy for climate change mitigation, soil carbon sequestration buys time over the next ten to twenty years while other effective sequestration and low carbon technologies become viable. The challenge for cropping farmers is to find disruptive technologies that will further improve soil condition and deliver increased soil carbon. Progress in 4 per mille requires collaboration and communication between scientists, farmers, policy makers, and marketeers.

  19. A Review of CO2 Sequestration Projects and Application in China

    PubMed Central

    Tang, Yong; Yang, Ruizhi; Bian, Xiaoqiang

    2014-01-01

    In 2008, the top CO2 emitters were China, United States, and European Union. The rapid growing economy and the heavy reliance on coal in China give rise to the continued growth of CO2 emission, deterioration of anthropogenic climate change, and urgent need of new technologies. Carbon Capture and sequestration is one of the effective ways to provide reduction of CO2 emission and mitigation of pollution. Coal-fired power plants are the focus of CO2 source supply due to their excessive emission and the energy structure in China. And over 80% of the large CO2 sources are located nearby storage reservoirs. In China, the CO2 storage potential capacity is of about 3.6 × 109 t for all onshore oilfields; 30.483 × 109 t for major gas fields between 900 m and 3500 m of depth; 143.505 × 109 t for saline aquifers; and 142.67 × 109 t for coal beds. On the other hand, planation, soil carbon sequestration, and CH4–CO2 reforming also contribute a lot to carbon sequestration. This paper illustrates some main situations about CO2 sequestration applications in China with the demonstration of several projects regarding different ways of storage. It is concluded that China possesses immense potential and promising future of CO2 sequestration. PMID:25302323

  20. Development Of An Agroforestry Sequestration Project In KhammamDistrict Of India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudha, P.; Ramprasad, V.; Nagendra, M.D.V.

    2007-06-01

    Large potential for agroforestry as a mitigation option hasgiven rise to scientific and policy questions. This paper addressesmethodological issues in estimating carbon sequestration potential,baseline determination, additionality and leakage in Khammam district,Andhra Pradesh, southern part of India. Technical potential forafforestation was determined considering the various landuse options. Forestimating the technical potential, culturable wastelands, fallow andmarginal croplands were considered for Eucalyptus clonal plantations.Field studies for aboveground and below ground biomass, woody litter andsoil organic carbon for baseline and project scenario were conducted toestimate the carbon sequestration potential. The baseline carbon stockwas estimated to be 45.33 tC/ha. The additional carbon sequestrationpotential under themore » project scenario for 30 years is estimated to be12.82 tC/ha/year inclusive of harvest regimes and carbon emissions due tobiomass burning and fertilizer application. The project scenario thoughhas a higher benefit cost ratio compared to baseline scenario, initialinvestment cost is high. Investment barrier exists for adoptingagroforestry in thedistrict.« less

  1. Carbon sequestration index as a determinant for climate change mitigation: Case study of Bintan Island

    NASA Astrophysics Data System (ADS)

    Wahyudi, A.'an J.; Afdal; Prayudha, Bayu; Dharmawan, I. W. E.; Irawan, Andri; Abimanyu, Haznan; Meirinawati, Hanny; Surinati, Dewi; Syukri, Agus F.; Yuliana, Chitra I.; Yuniati, Putri I.

    2018-02-01

    The increase of the anthropogenic carbon dioxide (CO2) affects the global carbon cycle altering the atmospheric system and initiates the climate changes. There are two ways to mitigate these changes, by maintaining the greenhouse gasses below the carbon budget and by conserving the marine and terrestrial vegetation for carbon sequestration. These two strategies become variable to the carbon sequestration index (CSI) that represents the potential of a region in carbon sequestration, according to its natural capacity. As a study case, we conducted carbon sequestration research in Bintan region (Bintan Island and its surrounding), Riau Archipelago province. This research was aimed to assess the CSI and its possibility for climate change mitigation. We observed carbon sequestration of seagrass meadows and mangrove, greenhouse gas (CO2) emission (correlated to population growth, the increase of vehicles), and CSI. Bintan region has 125,849.9 ha of vegetation area and 14,879.6 ha of terrestrial and marine vegetation area, respectively. Both vegetation areas are able to sequester 0.262 Tg C yr-1 in total and marine vegetation contributes about 77.1%. Total CO2 emission in Bintan region is up to 0.273 Tg C yr-1, produced by transportation, industry and land use sectors. Therefore, CSI of the Bintan region is 0.98, which is above the global average (i.e. 0.58). This value demonstrates that the degree of sequestration is comparable to the total carbon emission. This result suggests that Bintan’s vegetation has high potential for reducing greenhouse gas effects.

  2. A national look at carbon capture and storage-National carbon sequestration database and geographical information system (NatCarb)

    USGS Publications Warehouse

    Carr, T.R.; Iqbal, A.; Callaghan, N.; ,; Look, K.; Saving, S.; Nelson, K.

    2009-01-01

    The US Department of Energy's Regional Carbon Sequestration Partnerships (RCSPs) are responsible for generating geospatial data for the maps displayed in the Carbon Sequestration Atlas of the United States and Canada. Key geospatial data (carbon sources, potential storage sites, transportation, land use, etc.) are required for the Atlas, and for efficient implementation of carbon sequestration on a national and regional scale. The National Carbon Sequestration Database and Geographical Information System (NatCarb) is a relational database and geographic information system (GIS) that integrates carbon storage data generated and maintained by the RCSPs and various other sources. The purpose of NatCarb is to provide a national view of the carbon capture and storage potential in the U.S. and Canada. The digital spatial database allows users to estimate the amount of CO2 emitted by sources (such as power plants, refineries and other fossil-fuel-consuming industries) in relation to geologic formations that can provide safe, secure storage sites over long periods of time. The NatCarb project is working to provide all stakeholders with improved online tools for the display and analysis of CO2 carbon capture and storage data. NatCarb is organizing and enhancing the critical information about CO2 sources and developing the technology needed to access, query, model, analyze, display, and distribute natural resource data related to carbon management. Data are generated, maintained and enhanced locally at the RCSP level, or at specialized data warehouses, and assembled, accessed, and analyzed in real-time through a single geoportal. NatCarb is a functional demonstration of distributed data-management systems that cross the boundaries between institutions and geographic areas. It forms the first step toward a functioning National Carbon Cyberinfrastructure (NCCI). NatCarb provides access to first-order information to evaluate the costs, economic potential and societal issues of CO2 capture and storage, including public perception and regulatory aspects. NatCarb online access has been modified to address the broad needs of a spectrum of users. NatCarb includes not only GIS and database query tools for high-end user, but simplified display for the general public using readily available web tools such as Google Earth???and Google Maps???. Not only is NatCarb connected to all the RCSPs, but data are also pulled from public servers including the U.S. Geological Survey-EROS Data Center and from the Geography Network. Data for major CO2 sources have been obtained from U.S. Environmental Protection Agency (EPA) databases, and data on major coal basins and coalbed methane wells were obtained from the Energy Information Administration (EIA). ?? 2009 Elsevier Ltd. All rights reserved.

  3. Carbon sequestration and its role in the global carbon cycle

    USGS Publications Warehouse

    McPherson, Brian J.; Sundquist, Eric T.

    2009-01-01

    For carbon sequestration the issues of monitoring, risk assessment, and verification of carbon content and storage efficacy are perhaps the most uncertain. Yet these issues are also the most critical challenges facing the broader context of carbon sequestration as a means for addressing climate change. In response to these challenges, Carbon Sequestration and Its Role in the Global Carbon Cycle presents current perspectives and research that combine five major areas: • The global carbon cycle and verification and assessment of global carbon sources and sinks • Potential capacity and temporal/spatial scales of terrestrial, oceanic, and geologic carbon storage • Assessing risks and benefits associated with terrestrial, oceanic, and geologic carbon storage • Predicting, monitoring, and verifying effectiveness of different forms of carbon storage • Suggested new CO2 sequestration research and management paradigms for the future. The volume is based on a Chapman Conference and will appeal to the rapidly growing group of scientists and engineers examining methods for deliberate carbon sequestration through storage in plants, soils, the oceans, and geological repositories.

  4. Ocean sequestration of crop residue carbon: recycling fossil fuel carbon back to deep sediments.

    PubMed

    Strand, Stuart E; Benford, Gregory

    2009-02-15

    For significant impact any method to remove CO2 from the atmosphere must process large amounts of carbon efficiently, be repeatable, sequester carbon for thousands of years, be practical, economical and be implemented soon. The only method that meets these criteria is removal of crop residues and burial in the deep ocean. We show here that this method is 92% efficient in sequestration of crop residue carbon while cellulosic ethanol production is only 32% and soil sequestration is about 14% efficient. Deep ocean sequestration can potentially capture 15% of the current global CO2 annual increase, returning that carbon backto deep sediments, confining the carbon for millennia, while using existing capital infrastructure and technology. Because of these clear advantages, we recommend enhanced research into permanent sequestration of crop residues in the deep ocean.

  5. [Characteristics of carbon storage of Inner Mongolia forests: a review].

    PubMed

    Yang, Hao; Hu, Zhong-Min; Zhang, Lei-Ming; Li, Sheng-Gong

    2014-11-01

    Forests in Inner Mongolia account for an important part of the forests in China in terms of their large area and high living standing volume. This study reported carbon storage, carbon density, carbon sequestration rate and carbon sequestration potential of forest ecosystems in Inner Mongolia using the biomass carbon data from the related literature. Through analyzing the data of forest inventory and the generalized allometric equations between volume and biomass, previous studies had reported that biomass carbon storage of the forests in Inner Mongolia was about 920 Tg C, which was 12 percent of the national forest carbon storage, the annual average growth rate was about 1.4%, and the average of carbon density was about 43 t · hm(-2). Carbon storage and carbon density showed an increasing trend over time. Coniferous and broad-leaved mixed forest, Pinus sylvestris var. mongolica forest and Betula platyphylla forest had higher carbon sequestration capacities. Carbon storage was reduced due to human activities such as thinning and clear cutting. There were few studies on carbon storage of the forests in Inner Mongolia with focus on the soil, showing that the soil car- bon density increased with the stand age. Study on the carbon sequestration potential of forest ecosystems was still less. Further study was required to examine dynamics of carbon storage in forest ecosystems in Inner Mongolia, i. e., to assess carbon storage in the forest soils together with biomass carbon storage, to compute biomass carbon content of species organs as 45% in the allometric equations, to build more species-specific and site-specific allometric equations including root biomass for different dominant species, and to take into account the effects of climate change on carbon sequestration rate and carbon sequestration potential.

  6. Assessing Potential Future Carbon Dynamics with Climate Change and Fire Management in a Mountainous Landscape on the Olympic Peninsula, Washington, USA

    NASA Astrophysics Data System (ADS)

    Kennedy, R. S.

    2010-12-01

    Forests of the mountainous landscapes of the maritime Pacific Northwestern USA may have high carbon sequestration potential via their high productivity and moderate to infrequent fire regimes. With climate change, there may be shifts in incidence and severity of fire, especially in the drier areas of the region, via changes to forest productivity and hydrology, and consequent effects to C sequestration and forest structure. To explore this issue, I assessed potential effects of fire management (little fire suppression/wildland fire management/highly effective fire suppression) under two climate change scenarios on future C sequestration dynamics (amounts and spatial pattern) in Olympic National Park, WA, over a 500-year simulation period. I used the simulation platform FireBGCv2, which contains a mechanistic, individual tree succession model, a spatially explicit climate-based biophysical model that uses daily weather data, and a spatially explicit fire model incorporating ignition, spread, and effects on ecosystem components. C sequestration patterns varied over time and spatial and temporal patterns differed somewhat depending on the climate change scenario applied and the fire management methods employed. Under the more extreme climate change scenario with little fire suppression, fires were most frequent and severe and C sequestration decreased. General trends were similar under the more moderate climate change scenario, as compared to current climate, but spatial patterns differed. Both climate change scenarios under highly effective fire suppression showed about 50% of starting total C after the initial transition phase, whereas with 10% fire suppression both scenarios exhibited about 10% of starting amounts. Areas of the landscape that served as refugia for older forest under increasing frequency of high severity fire were also hotspots for C sequestration in a landscape experiencing increasing frequency of disturbance with climate change.

  7. State and Regional Control of Geological Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reitze, Arnold; Durrant, Marie

    2011-03-01

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. Carbon capture and geologic sequestration offer one method to reduce carbon emissions from coal and other hydrocarbon energy production. While the federal government is providing increased funding for carbon capture and sequestration, recent congressional legislative efforts to create a framework for regulating carbon emissions have failed. However,more » regional and state bodies have taken significant actions both to regulate carbon and facilitate its capture and sequestration. This article explores how regional bodies and state government are addressing the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. Several regional bodies have formed regulations and model laws that affect carbon capture and storage, and three bodies comprising twenty-three states—the Regional Greenhouse Gas Initiative, the Midwest Regional Greenhouse Gas Reduction Accord, and the Western Climate initiative—have cap-­and-trade programs in various stages of development. State property, land use and environmental laws affect the development and implementation of carbon capture and sequestration projects, and unless federal standards are imposed, state laws on torts and renewable portfolio requirements will directly affect the liability and viability of these projects. This paper examines current state laws and legislative efforts addressing carbon capture and sequestration.« less

  8. Carbon sequestration potential for forage and pasture systems

    USDA-ARS?s Scientific Manuscript database

    Grassland soils represent a large reservoir of organic and inorganic carbon. Regionally, grasslands are annual CO2 sources or sinks depending on crop and soil management, current soil organic carbon (SOC) concentration and climate. Land management changes (LMC) impact SOC sequestration rate, the du...

  9. Community perceptions of carbon sequestration: insights from California

    NASA Astrophysics Data System (ADS)

    Wong-Parodi, Gabrielle; Ray, Isha

    2009-07-01

    Over the last decade, many energy experts have supported carbon sequestration as a viable technological response to climate change. Given the potential importance of sequestration in US energy policy, what might explain the views of communities that may be directly impacted by the siting of this technology? To answer this question, we conducted focus groups in two communities who were potentially pilot project sites for California's DOE-funded West Coast Regional Partnership (WESTCARB). We find that communities want a voice in defining the risks to be mitigated as well as the justice of the procedures by which the technology is implemented. We argue that a community's sense of empowerment is key to understanding its range of carbon sequestration opinions, where 'empowerment' includes the ability to mitigate community-defined risks of the technology. This sense of empowerment protects the community against the downside risk of government or corporate neglect, a risk that is rarely identified in risk assessments but that should be factored into assessment and communication strategies.

  10. Two-Stage, Integrated, Geothermal-CO2 Storage Reservoirs: An Approach for Sustainable Energy Production, CO2-Sequestration Security, and Reduced Environmental Risk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buscheck, T A; Chen, M; Sun, Y

    2012-02-02

    We introduce a hybrid two-stage energy-recovery approach to sequester CO{sub 2} and produce geothermal energy at low environmental risk and low cost by integrating geothermal production with CO{sub 2} capture and sequestration (CCS) in saline, sedimentary formations. Our approach combines the benefits of the approach proposed by Buscheck et al. (2011b), which uses brine as the working fluid, with those of the approach first suggested by Brown (2000) and analyzed by Pruess (2006), using CO{sub 2} as the working fluid, and then extended to saline-formation CCS by Randolph and Saar (2011a). During stage one of our hybrid approach, formation brine,more » which is extracted to provide pressure relief for CO{sub 2} injection, is the working fluid for energy recovery. Produced brine is applied to a consumptive beneficial use: feedstock for fresh water production through desalination, saline cooling water, or make-up water to be injected into a neighboring reservoir operation, such as in Enhanced Geothermal Systems (EGS), where there is often a shortage of a working fluid. For stage one, it is important to find economically feasible disposition options to reduce the volume of brine requiring reinjection in the integrated geothermal-CCS reservoir (Buscheck et al. 2012a). During stage two, which begins as CO{sub 2} reaches the production wells; coproduced brine and CO{sub 2} are the working fluids. We present preliminary reservoir engineering analyses of this approach, using a simple conceptual model of a homogeneous, permeable CO{sub 2} storage formation/geothermal reservoir, bounded by relatively impermeable sealing units. We assess both the CO{sub 2} sequestration capacity and geothermal energy production potential as a function of well spacing between CO{sub 2} injectors and brine/CO{sub 2} producers for various well patterns and for a range of subsurface conditions.« less

  11. Carbon Sequestration in Wetland Soils of the Northern Gulf of Mexico Coastal Region

    EPA Science Inventory

    Coastal wetlands play an important but complex role in the global carbon cycle, contributing to the ecosystem service of greenhouse gas regulation through carbon sequestration. Although coastal wetlands occupy a small percent of the total US land area, their potential for carbon...

  12. Assessing the 100-Year Climate Change Mitigation Potential of Large-Scale Tropical Forest Restoration Under the Bonn Challenge

    NASA Astrophysics Data System (ADS)

    Wheeler, C. E.; Mitchard, E. T.; Lewis, S. L.

    2017-12-01

    Restoring degraded and deforested tropical lands to sequester carbon is widely considered to offer substantial climate change mitigation opportunities, if conducted over large spatial scales. Despite this assertion, explicit estimates of how much carbon could be sequestered because of large-scale restoration are rare and have large uncertainties. This is principally due to the many different characteristics of land available for restoration, and different potential restoration activities, which together cause very different rates of carbon sequestration. For different restoration pathways: natural regeneration of degraded and secondary forest, timber plantations and agroforestry, we estimate carbon sequestration rates from the published literature. Then based on tropical restoration commitments made under the Bonn challenge and using carbon density maps, these carbon sequestration rates were used to predict total pan-tropical carbon sequestration to 2100. Restoration of degraded or secondary forest via natural regeneration offers the greatest carbon sequestration potential, considerably exceeding the carbon captured by either timber plantations or agroforestry. This is predominantly due to naturally regenerating forests representing a more permanent store of carbon in comparison to timber plantations and agroforestry land-use options, which, due to their rotational nature, result in the sequential return of carbon to the atmosphere. If the Bonn Challenge is to achieve its ambition of providing substantial climate change mitigation from restoration it must incorporate large areas of natural regeneration back to an intact forest state, otherwise it stands to be a missed opportunity in helping meet the Paris climate change goals.

  13. Potential restrictions for CO2 sequestration sites due to shale and tight gas production.

    PubMed

    Elliot, T R; Celia, M A

    2012-04-03

    Carbon capture and geological sequestration is the only available technology that both allows continued use of fossil fuels in the power sector and reduces significantly the associated CO(2) emissions. Geological sequestration requires a deep permeable geological formation into which captured CO(2)can be injected, and an overlying impermeable formation, called a caprock, that keeps the buoyant CO(2) within the injection formation. Shale formations typically have very low permeability and are considered to be good caprock formations. Production of natural gas from shale and other tight formations involves fracturing the shale with the explicit objective to greatly increase the permeability of the shale. As such, shale gas production is in direct conflict with the use of shale formations as a caprock barrier to CO(2) migration. We have examined the locations in the United States where deep saline aquifers, suitable for CO(2) sequestration, exist, as well as the locations of gas production from shale and other tight formations. While estimated sequestration capacity for CO(2) sequestration in deep saline aquifers is large, up to 80% of that capacity has areal overlap with potential shale-gas production regions and, therefore, could be adversely affected by shale and tight gas production. Analysis of stationary sources of CO(2) shows a similar effect: about two-thirds of the total emissions from these sources are located within 20 miles of a deep saline aquifer, but shale and tight gas production could affect up to 85% of these sources. These analyses indicate that colocation of deep saline aquifers with shale and tight gas production could significantly affect the sequestration capacity for CCS operations. This suggests that a more comprehensive management strategy for subsurface resource utilization should be developed.

  14. Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils

    PubMed Central

    Vogel, Cordula; Mueller, Carsten W.; Höschen, Carmen; Buegger, Franz; Heister, Katja; Schulz, Stefanie; Schloter, Michael; Kögel-Knabner, Ingrid

    2014-01-01

    The sequestration of carbon and nitrogen by clay-sized particles in soils is well established, and clay content or mineral surface area has been used to estimate the sequestration potential of soils. Here, via incubation of a sieved (<2 mm) topsoil with labelled litter, we find that only some of the clay-sized surfaces bind organic matter (OM). Surprisingly, <19% of the visible mineral areas show an OM attachment. OM is preferentially associated with organo-mineral clusters with rough surfaces. By combining nano-scale secondary ion mass spectrometry and isotopic tracing, we distinguish between new labelled and pre-existing OM and show that new OM is preferentially attached to already present organo-mineral clusters. These results, which provide evidence that only a limited proportion of the clay-sized surfaces contribute to OM sequestration, revolutionize our view of carbon sequestration in soils and the widely used carbon saturation estimates. PMID:24399306

  15. A ranking of net national contributions to climate change mitigation through tropical forest conservation.

    PubMed

    Carrasco, L R; Papworth, S K

    2014-12-15

    Deforestation in tropical regions causes 15% of global anthropogenic carbon emissions and reduces the mitigation potential of carbon sequestration services. A global market failure occurs as the value of many ecosystem services provided by forests is not recognised by the markets. Identifying the contribution of individual countries to tropical carbon stocks and sequestration might help identify responsibilities and facilitate debate towards the correction of the market failure through international payments for ecosystem services. We compare and rank tropical countries' contributions by estimating carbon sequestration services vs. emissions disservices. The annual value of tropical carbon sequestration services in 2010 from 88 tropical countries was estimated to range from $2.8 to $30.7 billion, using market and social prices of carbon respectively. Democratic Republic of Congo, India and Sudan contribute the highest net carbon sequestration, whereas Brazil, Nigeria and Indonesia are the highest net emitters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Three approaches for estimating recovery factors in carbon dioxide enhanced oil recovery

    USGS Publications Warehouse

    Verma, Mahendra K.

    2017-07-17

    PrefaceThe Energy Independence and Security Act of 2007 authorized the U.S. Geological Survey (USGS) to conduct a national assessment of geologic storage resources for carbon dioxide (CO2) and requested the USGS to estimate the “potential volumes of oil and gas recoverable by injection and sequestration of industrial carbon dioxide in potential sequestration formations” (42 U.S.C. 17271(b)(4)). Geologic CO2 sequestration associated with enhanced oil recovery (EOR) using CO2 in existing hydrocarbon reservoirs has the potential to increase the U.S. hydrocarbon recoverable resource. The objective of this report is to provide detailed information on three approaches that can be used to calculate the incremental recovery factors for CO2-EOR. Therefore, the contents of this report could form an integral part of an assessment methodology that can be used to assess the sedimentary basins of the United States for the hydrocarbon recovery potential using CO2-EOR methods in conventional oil reservoirs.

  17. Global Sequestration Potential of Increased Organic Carbon in Cropland Soils.

    PubMed

    Zomer, Robert J; Bossio, Deborah A; Sommer, Rolf; Verchot, Louis V

    2017-11-14

    The role of soil organic carbon in global carbon cycles is receiving increasing attention both as a potentially large and uncertain source of CO 2 emissions in response to predicted global temperature rises, and as a natural sink for carbon able to reduce atmospheric CO 2 . There is general agreement that the technical potential for sequestration of carbon in soil is significant, and some consensus on the magnitude of that potential. Croplands worldwide could sequester between 0.90 and 1.85 Pg C/yr, i.e. 26-53% of the target of the "4p1000 Initiative: Soils for Food Security and Climate". The importance of intensively cultivated regions such as North America, Europe, India and intensively cultivated areas in Africa, such as Ethiopia, is highlighted. Soil carbon sequestration and the conservation of existing soil carbon stocks, given its multiple benefits including improved food production, is an important mitigation pathway to achieve the less than 2 °C global target of the Paris Climate Agreement.

  18. Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhang, Qingrui; Teng, Jie; Zou, Guodong; Peng, Qiuming; Du, Qing; Jiao, Tifeng; Xiang, Jianyong

    2016-03-01

    Rationally tailored intercalation for two-dimensional (2D) layered MXene materials has aroused extraordinary enthusiasm for broadening their applications. Herein, a novel sandwiched structural 2D MXene-iron oxide (MXI) material, prepared by selectively exfoliating an Al layer followed by magnetic ferric oxide intercalation, exhibits remarkable applicability to trace phosphate sequestration in the environmental remediation realm. Compared with commercial adsorbents, the resultant MXI nanocomposite exhibits a fast separation in 120 s together with the superior treatment capacities of 2100 kg and 2400 kg per kg in simulated and real phosphate wastewater applications, respectively. Such efficient sequestration is ascribed to the formation of a unique nano-ferric oxide morphology. The ultrafine nano-Fe2O3 particles can intercalate into the interior layers of MXene, widening the layer distance, and stimulating the available overlapping activated layers; while the efficient phosphate removal can be achieved by the strong complexation onto the embedded magnetic nano-Fe3O4 with a unique sandwich-structure as well as the stimulated Ti-O terminal within MXene. Apart from the fact that this approach suggests a complementary means for environmental remediation, it opens a new trajectory to achieve the functionalization of MXene.Rationally tailored intercalation for two-dimensional (2D) layered MXene materials has aroused extraordinary enthusiasm for broadening their applications. Herein, a novel sandwiched structural 2D MXene-iron oxide (MXI) material, prepared by selectively exfoliating an Al layer followed by magnetic ferric oxide intercalation, exhibits remarkable applicability to trace phosphate sequestration in the environmental remediation realm. Compared with commercial adsorbents, the resultant MXI nanocomposite exhibits a fast separation in 120 s together with the superior treatment capacities of 2100 kg and 2400 kg per kg in simulated and real phosphate wastewater applications, respectively. Such efficient sequestration is ascribed to the formation of a unique nano-ferric oxide morphology. The ultrafine nano-Fe2O3 particles can intercalate into the interior layers of MXene, widening the layer distance, and stimulating the available overlapping activated layers; while the efficient phosphate removal can be achieved by the strong complexation onto the embedded magnetic nano-Fe3O4 with a unique sandwich-structure as well as the stimulated Ti-O terminal within MXene. Apart from the fact that this approach suggests a complementary means for environmental remediation, it opens a new trajectory to achieve the functionalization of MXene. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09303a

  19. GEOCHEMICAL INVESTIGATIONS OF CO₂-BRINE-ROCK INTERACTIONS OF THE KNOX GROUP IN THE ILLINOIS BASIN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoksoulian, Lois; Berger, Peter; Freiburg, Jared

    Increased output of greenhouse gases, particularly carbon dioxide (CO₂), into the atmosphere from anthropogenic sources is of great concern. A potential technology to reduce CO₂ emissions is geologic carbon sequestration. This technology is currently being evaluated in the United States and throughout the world. The geology of the Illinois Basin exhibits outstanding potential as a carbon sequestration target, as demonstrated by the ongoing Illinois Basin – Decatur Project that is using the Mt. Simon Sandstone reservoir and Eau Claire Shale seal system to store and contain 1 million tonnes of CO₂. The Knox Group-Maquoketa Shale reservoir and seal system, locatedmore » stratigraphically above the Mt. Simon Sandstone-Eau Claire Shale reservoir and seal system, has little economic value as a resource for fossil fuels or as a potable water source, making it ideal as a potential carbon sequestration target. In order for a reservoir-seal system to be effective, it must be able to contain the injected CO₂ without the potential for the release of harmful contaminants liberated by the reaction between CO₂-formation fluids and reservoir and seal rocks. This study examines portions of the Knox Group (Potosi Dolomite, Gunter Sandstone, New Richmond Sandstone) and St. Peter Sandstone, and Maquoketa Shale from various locations around the Illinois Basin. A total of 14 rock and fluid samples were exposed to simulated sequestration conditions (9101–9860 kPa [1320–1430 psi] and 32°–42°C [90°– 108°F]) for varying amounts of time (6 hours to 4 months). Knox Group reservoir rocks exhibited dissolution of dolomite in the presence of CO₂ as indicated by petrographic examination, X-ray diffraction analysis, and fluid chemistry analysis. These reactions equilibrated rapidly, and geochemical modeling confirmed that these reactions reached equilibrium within the time frames of the experiments. Pre-reaction sample mineralogy and postreaction fluid geochemistry from this study suggests only limited potential for the release of United States Environmental Protection Agency regulated inorganic contaminants into potable water sources. Short-term core flood experiments further verify that the carbonate reactions occurring in Knox Group reservoir samples reach equilibrium rapidly. The core flood experiments also lend insight to pressure changes that may occur during CO₂ injection. The Maquoketa Shale experiments reveal that this rock is initially chemically reactive when in contact with CO₂ and brine. However, due to the conservative nature of silicate and clay reaction kinetics and the rapid equilibration of carbonate reactions that occur in the shale, these reactions would not present a significant risk to the competency of the shale as an effective seal rock.« less

  20. 78 FR 27374 - Environmental Impacts Statements; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-10

    ..., LA, Lake Charles Carbon Capture and Sequestration Project, Comment Period Ends: 06/24/2013, Contact... Project, Exploration and Mine Development, Cibola National Forest, Comment Period Ends: 06/13/2013...

  1. Algae-Based Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Haoyang, Cai

    2018-03-01

    Our civilization is facing a series of environmental problems, including global warming and climate change, which are caused by the accumulation of green house gases in the atmosphere. This article will briefly analyze the current global warming problem and propose a method that we apply algae cultivation to absorb carbon and use shellfish to sequestrate it. Despite the importance of decreasing CO2 emissions or developing carbon-free energy sources, carbon sequestration should be a key issue, since the amount of carbon dioxide that already exists in the atmosphere is great enough to cause global warming. Algae cultivation would be a good choice because they have high metabolism rates and provides shellfish with abundant food that contains carbon. Shellfish’s shells, which are difficult to be decomposed, are reliable storage of carbon, compared to dead organisms like trees and algae. The amount of carbon that can be sequestrated by shellfish is considerable. However, the sequestrating rate of algae and shellfish is not high enough to affect the global climate. Research on algae and shellfish cultivation, including gene technology that aims to create “super plants” and “super shellfish”, is decisive to the solution. Perhaps the baton of history will shift to gene technology, from nuclear physics that has lost appropriate international environment after the end of the Cold War. Gene technology is vital to human survival.

  2. Estimating the potential of carbon sequestration by Korean forestry sector under climate change and management scenarios

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kim, M.; Son, Y.; Lee, W. K.

    2017-12-01

    Korean forests have recovered by the national-scale reforestation program and can contribute to the national greenhouse gas (GHG) mitigation goal. The forest carbon (C) sequestration is expected to change by climate change and forest management regime. In this context, estimating the changes in GHG mitigation potential of Korean forestry sector by climate and management is a timely issue. Thus, we estimated the forest C sequestration of Korea under four scenarios (2010­-2050): constant temperature with no management (CT_No), representative concentration pathway (RCP) 8.5 with no management (RCP_No), constant temperature with thinning management (CT_Man), and RCP 8.5 with thinning management (RCP_Man). Dynamic stand growth model (KO-G-Dynamic; for biomass) and forest C model (FBDC model; for non-biomass) were used at approximately 64,000 simulation units (1km2). As model input data, the forest data (e.g., forest type and stand age) and climate data were spatially prepared from the national forest inventories and the RCP 8.5 climate data. The model simulation results showed that the mean annual C sequestrations during the period (Tg C yr-1) were 11.0, 9.9, 11.5, and 10.5, respectively, under the CT_No, RCP_No, CT_Man, and RCP_Man, respectively, at the national scale. The C sequestration decreased with the time passage due to the maturity of the forests. The climate change seemed disadvantageous to the C sequestration by the forest ecosystems (≒ -1.0 Tg C yr-1) due to the increase in organic matter decomposition. In particular, the decrease in C sequestration by the climate change was greater for the needle-leaved species, compared to the broad-leaved species. Meanwhile, the forest management enhanced forest C sequestration (≒ 0.5 Tg C yr-1). Accordingly, implementing appropriate forest management strategies for adaptation would contribute to maintaining the C sequestration by Korean forestry sector under climate change. Acknowledgement: This study was supported by Korean Ministry of Environment (2014001310008).

  3. Geological Sequestration of CO2 A Brief Overview and Potential for Application for Oklahoma

    EPA Science Inventory

    Geologic sequestration of CO2 is a component of C capture and storage (CCS), an emerging technology for reducing CO2 emissions to the atmosphere, and involves injection of captured CO2 into deep subsurface formations. Similar to the injection of hazardous wastes, before injection...

  4. Soil carbon

    Treesearch

    Charles H. Perry; Michael C. Amacher

    2007-01-01

    Why Is Soil Carbon Important? The sequestration of carbon by forest and agricultural soils has the potential to significantly reduce greenhouse gas concentrations (Pacala and Socolow 2004). Many countries are implementing field inventories of soil carbon, often combined with data from other sources, to estimate soil carbon sequestration rates and amounts (Kurz and Apps...

  5. Assessing the potential to sequester carbon within state highway rights-of-way in New Mexico phase 2: development of a right-of-way carbon sequestration program.

    DOT National Transportation Integrated Search

    2016-06-13

    The New Mexico Department of Transportation (NMDOT) was selected by the Federal Highway : Administration (FHWA) to determine the feasibility of maximizing carbon sequestration within state : highway rightsofway (ROW). Golder Associates Inc. was...

  6. Technical feasibility and carbon footprint of biochar co-production with tomato plant residue.

    PubMed

    Llorach-Massana, Pere; Lopez-Capel, Elisa; Peña, Javier; Rieradevall, Joan; Montero, Juan Ignacio; Puy, Neus

    2017-09-01

    World tomato production is in the increase, generating large amounts of organic agricultural waste, which are currently incinerated or composted, releasing CO 2 into the atmosphere. Organic waste is not only produced from conventional but also urban agricultural practices due recently gained popularity. An alternative to current waste management practices and carbon sequestration opportunity is the production of biochar (thermally converted biomass) from tomato plant residues and use as a soil amendment. To address the real contribution of biochar for greenhouse gas mitigation, it is necessary to assess the whole life cycle from the production of the tomato biomass feedstock to the actual distribution and utilisation of the biochar produced in a regional context. This study is the first step to determine the technical and environmental potential of producing biochar from tomato plant (Solanum lycopersicum arawak variety) waste biomass and utilisation as a soil amendment. The study includes the characterisation of tomato plant residue as biochar feedstock (cellulose, hemicellulose, lignin and metal content); feedstock thermal stability; and the carbon footprint of biochar production under urban agriculture at pilot and small-scale plant, and conventional agriculture at large-scale plant. Tomato plant residue is a potentially suitable biochar feedstock under current European Certification based on its lignin content (19.7%) and low metal concentration. Biomass conversion yields of over 40%, 50% carbon stabilization and low pyrolysis temperature conditions (350-400°C) would be required for biochar production to sequester carbon under urban pilot scale conditions; while large-scale biochar production from conventional agricultural practices have not the potential to sequestrate carbon because its logistics, which could be improved. Therefore, the diversion of tomato biomass waste residue from incineration or composting to biochar production for use as a soil amendment would environmentally be beneficial, but only if high biochar yields could be produced. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Translating National Level Forest Service Goals to Local Level Land Management: Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    McNulty, S.; Treasure, E.

    2017-12-01

    The USDA Forest Service has many national level policies related to multiple use management. However, translating national policy to stand level forest management can be difficult. As an example of how a national policy can be put into action, we examined three case studies in which a desired future condition is evaluated at the national, region and local scale. We chose to use carbon sequestration as the desired future condition because climate change has become a major area of concern during the last decade. Several studies have determined that the 193 million acres of US national forest land currently sequester 11% to 15% of the total carbon emitted as a nation. This paper provides a framework by which national scale strategies for maintaining or enhancing forest carbon sequestration is translated through regional considerations and local constraints in adaptive management practices. Although this framework used the carbon sequestration as a case study, this framework could be used with other national level priorities such as the National Environmental Protection Act (NEPA) or the Endangered Species Act (ESA).

  8. A guide to potential soil carbon sequestration; land-use management for mitigation of greenhouse gas emissions

    USGS Publications Warehouse

    Markewich, H.W.; Buell, G.R.

    2001-01-01

    Terrestrial carbon sequestration has a potential role in reducing the recent increase in atmospheric carbon dioxide (CO2) that is, in part, contributing to global warming. Because the most stable long-term surface reservoir for carbon is the soil, changes in agriculture and forestry can potentially reduce atmospheric CO2 through increased soil-carbon storage. If local governments and regional planning agencies are to effect changes in land-use management that could mitigate the impacts of increased greenhouse gas (GHG) emissions, it is essential to know how carbon is cycled and distributed on the landscape. Only then can a cost/benefit analysis be applied to carbon sequestration as a potential land-use management tool for mitigation of GHG emissions. For the past several years, the U.S. Geological Survey (USGS) has been researching the role of terrestrial carbon in the global carbon cycle. Data from these investigations now allow the USGS to begin to (1) 'map' carbon at national, regional, and local scales; (2) calculate present carbon storage at land surface; and (3) identify those areas having the greatest potential to sequester carbon.

  9. Feasibility Study of Carbon Sequestration Through Reforestation in the Chesapeake Bay Watershed of Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andy Lacatell; David Shoch; Bill Stanley

    The Chesapeake Rivers conservation area encompasses approximately 2,000 square miles of agricultural and forest lands in four Virginia watersheds that drain to the Chesapeake Bay. Consulting a time series of classified Landsat imagery for the Chesapeake Rivers conservation area, the project team developed a GIS-based protocol for identifying agricultural lands that could be reforested, specifically agricultural lands that had been without forest since 1990. Subsequent filters were applied to the initial candidate reforestation sites, including individual sites > 100 acres and sites falling within TNC priority conservation areas. The same data were also used to produce an analysis of baselinemore » changes in forest cover within the study period. The Nature Conservancy and the Virginia Department of Forestry identified three reforestation/management models: (1) hardwood planting to establish old-growth forest, (2) loblolly pine planting to establish working forest buffer with hardwood planting to establish an old-growth core, and (3) loblolly pine planting to establish a working forest. To assess the relative carbon sequestration potential of these different strategies, an accounting of carbon and total project costs was completed for each model. Reforestation/management models produced from 151 to 171 tons carbon dioxide equivalent per acre over 100 years, with present value costs of from $2.61 to $13.28 per ton carbon dioxide equivalent. The outcome of the financial analysis was especially sensitive to the land acquisition/conservation easement cost, which represented the most significant, and also most highly variable, single cost involved. The reforestation/management models explored all require a substantial upfront investment prior to the generation of carbon benefits. Specifically, high land values represent a significant barrier to reforestation projects in the study area, and it is precisely these economic constraints that demonstrate the economic additionality of any carbon benefits produced via reforestation--these are outcomes over and above what is currently possible given existing market opportunities. This is reflected and further substantiated in the results of the forest cover change analysis, which demonstrated a decline in area of land in forest use in the study area for the 1987/88-2001 period. The project team collected data necessary to identify sites for reforestation in the study area, environmental data for the determining site suitability for a range of reforestation alternatives and has identified and addressed potential leakage and additionality issues associated with implementing a carbon sequestration project in the Chesapeake Rivers Conservation Area. Furthermore, carbon emissions reductions generated would have strong potential for recognition in existing reporting systems such as the U.S. Department of Energy 1605(b) voluntary reporting requirements and the Chicago Climate Exchange. The study identified 384,398 acres on which reforestation activities could potentially be sited. Of these candidate sites, sites totaling 26,105 acres are an appropriate size for management (> 100 acres) and located in priority conservation areas identified by The Nature Conservancy. Total carbon sequestration potential of reforestation in the study area, realized over a 100 year timeframe, ranges from 58 to 66 million tons of carbon dioxide equivalent, and on the priority sites alone, potential for carbon sequestration approaches or exceeds 4 million tons of carbon dioxide equivalent. In the absence of concerted reforestation efforts, coupled with policy strategies, the region will likely face continued declines in forest land.« less

  10. Development of Protective Coatings for Co-Sequestration Processes and Pipelines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bierwagen, Gordon; Huang, Yaping

    2011-11-30

    The program, entitled Development of Protective Coatings for Co-Sequestration Processes and Pipelines, examined the sensitivity of existing coating systems to supercritical carbon dioxide (SCCO2) exposure and developed new coating system to protect pipelines from their corrosion under SCCO2 exposure. A literature review was also conducted regarding pipeline corrosion sensors to monitor pipes used in handling co-sequestration fluids. Research was to ensure safety and reliability for a pipeline involving transport of SCCO2 from the power plant to the sequestration site to mitigate the greenhouse gas effect. Results showed that one commercial coating and one designed formulation can both be supplied asmore » potential candidates for internal pipeline coating to transport SCCO2.« less

  11. Using experimental and geospatial data to estimate regional carbon sequestration potential under no-till management

    USGS Publications Warehouse

    Tan, Z.; Lal, R.; Liu, S.

    2006-01-01

    Conservation management of croplands at the plot scale has demonstrated a great potential to mitigate the greenhouse effect through sequestration of atmospheric carbon (C) into soil. This study estimated the potential of soil to sequester C through the conversion of croplands from conventional tillage (CT) to no-till (NT) in the East Central United States between 1992 and 2012. This study used the baseline soil organic C (SOC) pool (SOCP) inventory and the empirical models that describe the relationships of the SOCP under CT and NT, respectively, to their baseline SOCP in the upper 30-cm depth of soil. The baseline SOCP were obtained from the State Soil Geographic database, and the cropland distribution map was generated from the 1992 National Land Cover Database. The results indicate that if all the croplands under CT in 1992 were converted to NT, the SOCP would increase by 16.8% by 2012, which results in a total C sink of 136 Tg after 20 years. A greater sequestration rate would occur in soils with lower baseline SOCP, but the sink strength would be weaker with increasing SOCP levels. The CT-induced C sources tend to become larger in soils with higher baseline levels, which can be significantly reduced by adopting NT. We conclude that baseline SOC contents are an indicator of C sequestration potential with NT practices. ?? 2006 Lippincott Williams & Wilkins, Inc.

  12. Development of multi-functional streetscape green infrastructure using a performance index approach.

    PubMed

    Tiwary, A; Williams, I D; Heidrich, O; Namdeo, A; Bandaru, V; Calfapietra, C

    2016-01-01

    This paper presents a performance evaluation framework for streetscape vegetation. A performance index (PI) is conceived using the following seven traits, specific to the street environments - Pollution Flux Potential (PFP), Carbon Sequestration Potential (CSP), Thermal Comfort Potential (TCP), Noise Attenuation Potential (NAP), Biomass Energy Potential (BEP), Environmental Stress Tolerance (EST) and Crown Projection Factor (CPF). Its application is demonstrated through a case study using fifteen street vegetation species from the UK, utilising a combination of direct field measurements and inventoried literature data. Our results indicate greater preference to small-to-medium size trees and evergreen shrubs over larger trees for streetscaping. The proposed PI approach can be potentially applied two-fold: one, for evaluation of the performance of the existing street vegetation, facilitating the prospects for further improving them through management strategies and better species selection; two, for planning new streetscapes and multi-functional biomass as part of extending the green urban infrastructure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. A Holistic Approach to Managing Microalgae for Biofuel Applications

    PubMed Central

    Show, Pau Loke; Tang, Malcolm S. Y.; Nagarajan, Dillirani; Ling, Tau Chuan; Ooi, Chien-Wei; Chang, Jo-Shu

    2017-01-01

    Microalgae contribute up to 60% of the oxygen content in the Earth’s atmosphere by absorbing carbon dioxide and releasing oxygen during photosynthesis. Microalgae are abundantly available in the natural environment, thanks to their ability to survive and grow rapidly under harsh and inhospitable conditions. Microalgal cultivation is environmentally friendly because the microalgal biomass can be utilized for the productions of biofuels, food and feed supplements, pharmaceuticals, nutraceuticals, and cosmetics. The cultivation of microalgal also can complement approaches like carbon dioxide sequestration and bioremediation of wastewaters, thereby addressing the serious environmental concerns. This review focuses on the factors affecting microalgal cultures, techniques adapted to obtain high-density microalgal cultures in photobioreactors, and the conversion of microalgal biomass into biofuels. The applications of microalgae in carbon dioxide sequestration and phycoremediation of wastewater are also discussed. PMID:28117737

  14. Land Use Strategies for Optimizing Carbon Sequestration within the Head of the Lower Mississippi Watershed

    NASA Astrophysics Data System (ADS)

    Weaver, L.

    2015-12-01

    The world is currently in a stage of extreme growth, characterized by increasing demands for food and increasing greenhouse gas emissions. The population for 2050 is forecasted to grow by 2.3 billion people, resulting in close to a 40% increase in food demand (Alexandratos, Bruinsma 2012). This will severely increase pressure on the earth and on crop harvesting processes to incorporate carbon emissions reduction strategies. Optimal land use analysis and innovation can provide feasible solutions for these problems. A key environmental feature around which land use systems should be carefully planned and maintained is the Mississippi River, the largest watershed system in the United States. Along head of the Lower Mississippi Watershed lie several farming communities including Cairo, Illinois. The primary land use for the area inhabited by these communities consists of soybeans, corn, and pasture. These crops have varying carbon storage capacities, economic and social benefits, and environmental consequences. In order to maximize social, economic, and environmental benefits and sustainability, these crops were analyzed over time, spatial correlation, and crop size area. When considering risks of carbon emissions, economic decline, landscape erosion and harmful runoff, a localized switchgrass buffer remains a feasible solution. Its strengths as a native, reliable plant with high carbon sequestration and biomass harvest potential yield it to be more prevalently implemented at the head of the Lower Mississippi Watershed. However, there are multiple factors that must be considered before implementing broad agricultural policies and practices. Thorough analyses should be performed frequently to assess the effects of major land use change and can be used to identify the optimized applications for farmers and communities.

  15. A novel dendrochronological approach reveals drivers of carbon sequestration in tree species of riparian forests across spatiotemporal scales.

    PubMed

    Rieger, Isaak; Kowarik, Ingo; Cherubini, Paolo; Cierjacks, Arne

    2017-01-01

    Aboveground carbon (C) sequestration in trees is important in global C dynamics, but reliable techniques for its modeling in highly productive and heterogeneous ecosystems are limited. We applied an extended dendrochronological approach to disentangle the functioning of drivers from the atmosphere (temperature, precipitation), the lithosphere (sedimentation rate), the hydrosphere (groundwater table, river water level fluctuation), the biosphere (tree characteristics), and the anthroposphere (dike construction). Carbon sequestration in aboveground biomass of riparian Quercus robur L. and Fraxinus excelsior L. was modeled (1) over time using boosted regression tree analysis (BRT) on cross-datable trees characterized by equal annual growth ring patterns and (2) across space using a subsequent classification and regression tree analysis (CART) on cross-datable and not cross-datable trees. While C sequestration of cross-datable Q. robur responded to precipitation and temperature, cross-datable F. excelsior also responded to a low Danube river water level. However, CART revealed that C sequestration over time is governed by tree height and parameters that vary over space (magnitude of fluctuation in the groundwater table, vertical distance to mean river water level, and longitudinal distance to upstream end of the study area). Thus, a uniform response to climatic drivers of aboveground C sequestration in Q. robur was only detectable in trees of an intermediate height class and in taller trees (>21.8m) on sites where the groundwater table fluctuated little (≤0.9m). The detection of climatic drivers and the river water level in F. excelsior depended on sites at lower altitudes above the mean river water level (≤2.7m) and along a less dynamic downstream section of the study area. Our approach indicates unexploited opportunities of understanding the interplay of different environmental drivers in aboveground C sequestration. Results may support species-specific and locally adapted forest management plans to increase carbon dioxide sequestration from the atmosphere in trees. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The Influence of Seal Properties on Pressure Buildup and Leakage of Carbon Dioxide from Sequestration Reservoirs (Invited)

    NASA Astrophysics Data System (ADS)

    Benson, S. M.; Chabora, E.

    2009-12-01

    The transport properties of seals, namely permeability, relative permeability, and capillary pressure control both migration of carbon dioxide and brine through the seal. Only recently has the the importance of brine migration emerged as key issue in the environmental performance of carbon dioxide sequestration projects. In this study we use numerical simulation to show that brine migration through the seal can be either advantageous or deleterious to the environmental performance of a carbon dioxide sequestration project. Brine migration through the seal can lower the pressure buildup in the storage reservoir, thereby reducing the risk of leakage or geomechanical stresses on the seal. On the other hand, if the seal is penetrated by a permeable fault it can lead to focused flow up a fault, which could lead to brine migration into drinking water aquifers. We also show that as the carbon dioxide plume grows, brine flow undergoes a complex evolution from upward flow to downward flows driven by countercurrent migration of carbon dioxide and brine in the seal and capillary pressure gradients at the base of the seal. Finally, we discuss desirable attributes seals, taking into account both carbon dioxide and brine migration through the seal. In particular, identifying seals that provide an effective capillary barrier to block the flow of carbon dioxide while allowing some brine migration through the seal can help to control pressure buildup and allow more efficient utilization of a sequestration reservoir. This could be particularly important in those settings that may be limited by the maximum allowable pressure buildup.

  17. A terrain-attribute based approach to assessing soil carbon sequestration in the Oregon Coast range mountains

    EPA Science Inventory

    Determining how to best mitigate Global Climate Change through the sequestration of atmospheric CO2 requires developing an understanding of potential ecosystem C sinks and the rates at which C can be sequestered in soils and vegetation under a variety of land uses. The largest g...

  18. Terrestrial biological carbon sequestration: science for enhancement and implementation

    Treesearch

    Wilfred M. Post; James E. Amonette; Richard Birdsey; Charles T. Jr. Garten; R. Cesar Izaurralde; Philip Jardine; Julie Jastrow; Rattan Lal; Gregg Marland

    2009-01-01

    The purpose of this chapter is to review terrestrial biological carbon sequestration and evaluate the potential carbon storage capacity if present and new techniques are more aggressively utilized. Photosynthetic CO2 capture from the atmosphere and storage of the C in aboveground and belowground biomass and in soil organic and inorganic forms can...

  19. Forest carbon trends in the Southern United States

    Treesearch

    Robert A. Mickler; James E. Smith; Linda S. Heath

    2004-01-01

    Forest, agricultural, rangeland, wetland, and urban landscapes have different rates of carbon (C) sequestration and total C sequestration potential under alternative management options. Future changes in the proportion and spatial distribution of land use could increase or decrease the capacity of areas to sequester C in terrestrial ecosystems. As the ecosystems within...

  20. Current knowledge on effects of forest silvicultural operations on carbon sequestration in southern forests

    Treesearch

    John D. Cason; Donald L. Grebner; Andrew J. Londo; Stephen C. Grado

    2006-01-01

    Incentive programs to reduce carbon dioxide (CO2) emissions are increasing in number with the growing threat of global warming. Terrestrial sequestration of CO2 through forestry practices on newly established forests is a potential mitigation tool for developing carbon markets in the United States. The extent of industrial...

  1. Modeling and Spatially Distributing Forest Net Primary Production at the Regional Scale

    Treesearch

    R.A. Mickler; T.S. Earnhardt; J.A. Moore

    2002-01-01

    Abstract - Forest, agricultural, rangeland, wetland, and urban landscapes have different rates of carbon sequestration and total carbon sequestration potential under alternative management options. Changes in the proportion and spatial distribution of land use could enhance or degrade that area’s ability to sequester carbon in terrestrial ecosystems...

  2. U.S. Department of Energy's regional carbon sequestration partnership initiative: Update on validation and development phases

    USGS Publications Warehouse

    Rodosta, T.; Litynski, J.; Plasynski, S.; Spangler, L.; Finley, R.; Steadman, E.; Ball, D.; Gerald, H.; McPherson, B.; Burton, E.; Vikara, D.

    2011-01-01

    The U.S. Department of Energy (DOE) is the lead federal agency for the development and deployment of carbon sequestration technologies. The Regional Carbon Sequestration Partnerships (RCSPs) are the mechanism DOE utilizes to prove the technology and to develop human capital, stakeholder networks, information for regulatory policy, best practices documents and training to work toward the commercialization of carbon capture and storage (CCS). The RCSPs are tasked with determining the most suitable technologies, regulations, and infrastructure for carbon capture, transport, and storage in their respective geographic areas of responsibility. The seven partnerships include more than 400 state agencies, universities, national laboratories, private companies, and environmental organizations, spanning 43 states and four Canadian provinces. The Regional Partnerships Initiative is being implemented in three phases: Characterization, Validation, and Development. The initial Characterization Phase began in 2003 and was completed in 2005 and focused on characterization of CO2 storage potential within each region. It was followed by the Validation Phase, which began in 2005 and is nearing completion in 2011. The focus of the Validation Phase has been on small-scale field tests throughout the seven partnerships in various formation types such as saline, oil-bearing, and coal seams. The Validation Phase has characterized suitable CO2 storage reservoirs and identified the need for comprehensive legal and regulatory frameworks to enable commercial-scale CCS deployment. Finally, the Development Phase will consist of a series of large-scale, one-million-ton, injection tests throughout the United States and Canada. The objective of these large-scale tests is to identify the regulatory path or challenges in permitting CCS projects, to demonstrate the technology can inject CO2 safely, and to verify its permanence in geologic formations in preparation for the commercialization of geologic sequestration. ?? 2010 Elsevier Ltd. All rights reserved. ?? 2011 Published by Elsevier Ltd.

  3. Simulating CO2 Leakage and Seepage From Geologic Carbon Sequestration Sites: Implications for Near-Surface Monitoring

    NASA Astrophysics Data System (ADS)

    Oldenburg, C. M.; Lewicki, J. L.; Zhang, Y.

    2003-12-01

    The injection of CO2 into deep geologic formations for the purpose of carbon sequestration entails risk that CO2 will leak upward from the target formation and ultimately seep out of the ground surface. We have developed a coupled subsurface and atmospheric surface layer modeling capability based on TOUGH2 to simulate CO2 leakage and seepage. Simulation results for representative subsurface and surface layer conditions are used to specify the requirements of potential near-surface monitoring strategies relevant to both health, safety, and environmental risk assessment as well as sequestration verification. The coupled model makes use of the standard multicomponent and multiphase framework of TOUGH2 and extends the model domain to include an atmospheric surface layer. In the atmospheric surface layer, we assume a logarithmic velocity profile for the time-averaged wind and make use of Pasquill-Gifford and Smagorinski dispersion coefficients to model surface layer dispersion. Results for the unsaturated zone and surface layer show that the vadose zone pore space can become filled with pure CO2 even for small leakage fluxes, but that CO2 concentrations above the ground surface are very low due to the strong effects of dispersion caused by surface winds. Ecological processes such as plant photosynthesis and root respiration, as well as biodegradation in soils, strongly affect near-surface CO2 concentrations and fluxes. The challenge for geologic carbon sequestration verification is to discern the leakage and seepage signal from the ecological signal. Our simulations point to the importance of subsurface monitoring and the need for geochemical (e.g., isotopic) analyses to distinguish leaking injected fossil CO2 from natural ecological CO2. This work was supported by the Office of Science, U.S. Department of Energy under contract No. DE-AC03-76SF00098.

  4. Basin-Scale Hydrologic Impacts of CO2 Storage: Regulatory and Capacity Implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birkholzer, J.T.; Zhou, Q.

    Industrial-scale injection of CO{sub 2} into saline sedimentary basins will cause large-scale fluid pressurization and migration of native brines, which may affect valuable groundwater resources overlying the deep sequestration reservoirs. In this paper, we discuss how such basin-scale hydrologic impacts can (1) affect regulation of CO{sub 2} storage projects and (2) may reduce current storage capacity estimates. Our assessment arises from a hypothetical future carbon sequestration scenario in the Illinois Basin, which involves twenty individual CO{sub 2} storage projects in a core injection area suitable for long-term storage. Each project is assumed to inject five million tonnes of CO{sub 2}more » per year for 50 years. A regional-scale three-dimensional simulation model was developed for the Illinois Basin that captures both the local-scale CO{sub 2}-brine flow processes and the large-scale groundwater flow patterns in response to CO{sub 2} storage. The far-field pressure buildup predicted for this selected sequestration scenario suggests that (1) the area that needs to be characterized in a permitting process may comprise a very large region within the basin if reservoir pressurization is considered, and (2) permits cannot be granted on a single-site basis alone because the near- and far-field hydrologic response may be affected by interference between individual sites. Our results also support recent studies in that environmental concerns related to near-field and far-field pressure buildup may be a limiting factor on CO{sub 2} storage capacity. In other words, estimates of storage capacity, if solely based on the effective pore volume available for safe trapping of CO{sub 2}, may have to be revised based on assessments of pressure perturbations and their potential impact on caprock integrity and groundwater resources, respectively. We finally discuss some of the challenges in making reliable predictions of large-scale hydrologic impacts related to CO{sub 2} sequestration projects.« less

  5. Delineation of Magnesium-rich Ultramafic Rocks Available for Mineral Carbon Sequestration in the United States

    USGS Publications Warehouse

    Krevor, S.C.; Graves, C.R.; Van Gosen, B. S.; McCafferty, A.E.

    2009-01-01

    The 2005 Intergovernmental Panel on Climate Change report on Carbon Dioxide Capture and Storage suggested that a major gap in mineral carbon sequestration is locating the magnesium-silicate bedrock available to sequester CO2. It is generally known that silicate minerals with high concentrations of magnesium are suitable for mineral carbonation. However, no assessment has been made covering the entire United States detailing their geographical distribution and extent, or evaluating their potential for use in mineral carbonation. Researchers at Columbia University and the U.S. Geological Survey have developed a digital geologic database of ultramafic rocks in the continental United States. Data were compiled from varied-scale geologic maps of magnesium-silicate ultramafic rocks. These rock types are potentially suitable as source material for mineral carbon-dioxide sequestration. The focus of the national-scale map is entirely on suitable ultramafic rock types, which typically consist primarily of olivine and serpentine minerals. By combining the map with digital datasets that show non-mineable lands (such as urban areas and National Parks), estimates on potential depth of a surface mine, and the predicted reactivities of the mineral deposits, one can begin to estimate the capacity for CO2 mineral sequestration within the United States. ?? 2009 Elsevier Ltd. All rights reserved.

  6. Integrity of Pre-existing Wellbores in Geological Sequestration of CO 2 – Assessment Using a Coupled Geomechanics-fluid Flow Model

    DOE PAGES

    Kelkar, Sharad; Carey, J. William; Dempsey, David; ...

    2014-12-31

    Assessment of potential CO 2 and brine leakage from wellbores is central to any consideration of the viability of geological CO 2 sequestration. Depleted oil and gas reservoirs are some of the potential candidates for consideration as sequestration sites. The sequestration sites are expected to cover laterally extensive areas to be of practical interest. Hence there is a high likelihood that such sites will contain many pre-existing abandoned wells. Most existing work on wellbore integrity has focused on field and laboratory studies of chemical reactivity. Very little work has been done on the impacts of mechanical stresses on wellbore performance.more » This study focuses on the potential enhancement of fluid flow pathways in the near-wellbore environment due to modifications in the geomechanical stress field resulting from the CO 2 injection operations. The majority of the operational scenarios for CO 2 sequestration lead to significant rise in the formation pore pressure. This is expected to lead to an expansion of the reservoir rock and build-up of shear stresses near wellbores where the existence of cement and casing are expected to constrain the expansion. If the stress buildup is large enough, this can lead to failure with attendant permeability enhancement that can potentially provide leakage pathways to shallower aquifers and the surface. In this study, we use a numerical model to simulate key features of a wellbore (casing, annulus and cement) embedded in a system that includes the upper aquifer, caprock, and storage aquifer. We present the sensitivity of damage initiation and propagation to various operational and formation parameters. We consider Mohr-Coulomb shear-failure models; tensile failure is also likely to occur but will require higher stress changes and will be preceded by shear failure. The modeling is performed using the numerical simulator FEHM developed at LANL that models coupled THM processes during multi-phase fluid flow and deformation in fractured porous media. FEHM has been developed extensively under projects on conventional/unconventional energy extraction (geothermal, oil, and gas), radionuclide and contaminant transport, watershed management, and CO 2 sequestration.« less

  7. GRACEnet: addressing policy needs through coordinated cross-location research

    USGS Publications Warehouse

    Jawson, Michael D.; Walthall, Charles W.; Shafer, Steven R.; Liebig, Mark; Franzluebbers, Alan J.; Follett, Ronald F.

    2012-01-01

    GRACEnet (Greenhouse gas Reduction through Agricultural Carbon Enhancement network) was conceived to build upon ongoing USDA Agricultural Research Service (ARS) research to improve soil productivity, while addressing the challenges and opportunities of interest in C sequestration from a climate change perspective. The vision for GRACEnet was and remains: Knowledge and information used to implement scientifically based agricultural management practices from the field to national policy scales on C sequestration, greenhouse gas (GHG) emissions, and environmental benefits. The national focus of GRACEnet uses a standardized approach by ARS laboratories and university and land manager (e.g. farmer and rancher) cooperators to assess C sequestration and GHG emission from different crop and grassland systems. Since 2002, GRACEnet has significantly expanded GHG mitigation science and delivered usable information to agricultural research and policy organizations. Recent developments suggest GRACEnet will have international impact by contributing leadership and technical guidance for the Global Research Alliance on Agricultural Greenhouse Gases.

  8. Response comment: Carbon sequestration on Mars

    USGS Publications Warehouse

    Edwards, Christopher; Ehlmann, Bethany L.

    2016-01-01

    Martian atmospheric pressure has important implications for the past and present habitability of the planet, including the timing and causes of environmental change. The ancient Martian surface is strewn with evidence for early water bound in minerals (e.g., Ehlmann and Edwards, 2014) and recorded in surface features such as large catastrophically created outflow channels (e.g., Carr, 1979), valley networks (Hynek et al., 2010; Irwin et al., 2005), and crater lakes (e.g., Fassett and Head, 2008). Using orbital spectral data sets coupled with geologic maps and a set of numerical spectral analysis models, Edwards and Ehlmann (2015) constrained the amount of atmospheric sequestration in early Martian rocks and found that the majority of this sequestration occurred prior to the formation of the early Hesperian/late Noachian valley networks (Fassett and Head, 2011; Hynek et al., 2010), thus implying the atmosphere was already thin by the time these surface-water-related features were formed.

  9. Carbon Sequestration by Fruit Trees - Chinese Apple Orchards as an Example

    PubMed Central

    Wu, Ting; Wang, Yi; Yu, Changjiang; Chiarawipa, Rawee; Zhang, Xinzhong; Han, Zhenhai; Wu, Lianhai

    2012-01-01

    Apple production systems are an important component in the Chinese agricultural sector with 1.99 million ha plantation. The orchards in China could play an important role in the carbon (C) cycle of terrestrial ecosystems and contribute to C sequestration. The carbon sequestration capability in apple orchards was analyzed through identifying a set of potential assessment factors and their weighting factors determined by a field model study and literature. The dynamics of the net C sink in apple orchards in China was estimated based on the apple orchard inventory data from 1990s and the capability analysis. The field study showed that the trees reached the peak of C sequestration capability when they were 18 years old, and then the capability began to decline with age. Carbon emission derived from management practices would not be compensated through C storage in apple trees before reaching the mature stage. The net C sink in apple orchards in China ranged from 14 to 32 Tg C, and C storage in biomass from 230 to 475 Tg C between 1990 and 2010. The estimated net C sequestration in Chinese apple orchards from 1990 to 2010 was equal to 4.5% of the total net C sink in the terrestrial ecosystems in China. Therefore, apple production systems can be potentially considered as C sinks excluding the energy associated with fruit production in addition to provide fruits. PMID:22719974

  10. Carbon sequestration by fruit trees--Chinese apple orchards as an example.

    PubMed

    Wu, Ting; Wang, Yi; Yu, Changjiang; Chiarawipa, Rawee; Zhang, Xinzhong; Han, Zhenhai; Wu, Lianhai

    2012-01-01

    Apple production systems are an important component in the Chinese agricultural sector with 1.99 million ha plantation. The orchards in China could play an important role in the carbon (C) cycle of terrestrial ecosystems and contribute to C sequestration. The carbon sequestration capability in apple orchards was analyzed through identifying a set of potential assessment factors and their weighting factors determined by a field model study and literature. The dynamics of the net C sink in apple orchards in China was estimated based on the apple orchard inventory data from 1990s and the capability analysis. The field study showed that the trees reached the peak of C sequestration capability when they were 18 years old, and then the capability began to decline with age. Carbon emission derived from management practices would not be compensated through C storage in apple trees before reaching the mature stage. The net C sink in apple orchards in China ranged from 14 to 32 Tg C, and C storage in biomass from 230 to 475 Tg C between 1990 and 2010. The estimated net C sequestration in Chinese apple orchards from 1990 to 2010 was equal to 4.5% of the total net C sink in the terrestrial ecosystems in China. Therefore, apple production systems can be potentially considered as C sinks excluding the energy associated with fruit production in addition to provide fruits.

  11. Immobilized carbonic anhydrase on mesoporous cruciate flower-like metal organic framework for promoting CO2 sequestration.

    PubMed

    Ren, Sizhu; Feng, Yuxiao; Wen, Huan; Li, Conghai; Sun, Baoting; Cui, Jiandong; Jia, Shiru

    2018-05-25

    CO 2 capture by immobilized carbonic anhydrase (CA) has become an alternative and environmental friendly approach in CO 2 sequestration technology. However, the immobilized CA usually exhibits low CO 2 sequestration efficiency due to no gas adsorption function for the conventional CA supports. Metal organic frameworks (MOFs) are an excellent material for gas adsorption and enzyme immobilization. Herein, a combined immobilization system of CA and ZIF-8 with cruciate flower-like morphology for CO 2 adsorption was prepared for the first time by adsorbing CA onto ZIF-8. The immobilization efficiency was greater than 95%, and the maximum activity recovery reached 75%, indicating the highly efficient immobilization process. The resultant CA@ZIF-8 composites exhibited outstanding thermostability, the tolerance against denaturants, and reusability compared with free CA. Furthermore, we demonstrated for the first time that the shape of ZIF-8 could be controlled by adjusting concentrations of Zn 2+ ions at the high concentration of 2-methylimidazole (1 M). More importantly, we also demonstrated the applicability of the CA@ZIF-8 composites to the sequestration of CO 2 in carbonate minerals. The yields of the CaCO 3 obtained by using CA@ZIF-8 composites were 22-folds compared to free CA. Thus, this CA@ZIF-8 composite can be successfully used as a robust biocatalyst for sequestration of CO 2 . Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Nitrogen feedbacks increase future terrestrial ecosystem carbon uptake in an individual-based dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Wårlind, D.; Smith, B.; Hickler, T.; Arneth, A.

    2014-01-01

    Recently a considerable amount of effort has been put into quantifying how interactions of the carbon and nitrogen cycle affect future terrestrial carbon sinks. Dynamic vegetation models, representing the nitrogen cycle with varying degree of complexity, have shown diverging constraints of nitrogen dynamics on future carbon sequestration. In this study, we use the dynamic vegetation model LPJ-GUESS to evaluate how population dynamics and resource competition between plant functional types, combined with nitrogen dynamics, have influenced the terrestrial carbon storage in the past and to investigate how terrestrial carbon and nitrogen dynamics might change in the future (1850 to 2100; one exemplary "business-as-usual" climate scenario). Single factor model experiments of CO2 fertilisation and climate change show generally similar directions of the responses of C-N interactions, compared to the C-only version of the model, as documented in previous studies. Under a RCP 8.5 scenario, nitrogen limitation suppresses potential CO2 fertilisation, reducing the cumulative net ecosystem carbon uptake between 1850 and 2100 by 61%, and soil warming-induced increase in nitrogen mineralisation reduces terrestrial carbon loss by 31%. When environmental changes are considered conjointly, carbon sequestration is limited by nitrogen dynamics until present. However, during the 21st century nitrogen dynamics induce a net increase in carbon sequestration, resulting in an overall larger carbon uptake of 17% over the full period. This contradicts earlier model results that showed an 8 to 37% decrease in carbon uptake, questioning the often stated assumption that projections of future terrestrial C dynamics from C-only models are too optimistic.

  13. Feasibility of Autonomous Monitoring of CO2 Leakage in Aquifers: Results From Controlled Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Versteeg, R.; Leger, E.; Dafflon, B.

    2016-12-01

    Geologic sequestration of CO2 is one of the primary proposed approaches for reducing total atmospheric CO2 concentrations. MVAA (Monitoring, Verification, Accounting and Assessment) of CO2 sequestration is an essential part of the geologic CO2 sequestration cycle. MVAA activities need to meet multiple operational, regulatory and environmental objectives, including ensuring the protection of underground sources of drinking water. Anticipated negative consequences of CO2 leakage into groundwater, besides possible brine contamination and release of gaseous CO2, include a significant increase of dissolved CO2 into shallow groundwater systems, which will decrease groundwater pH and can potentially mobilize naturally occurring trace metals and ions that are commonly absorbed to or contained in sediments. Autonomous electrical geophysical monitoring in aquifers has the potential of allowing for rapid and automated detection of CO2 leakage. However, while the feasibility of such monitoring has been demonstrated by a number of different field experiments, automated interpretation of complex electrical resistivity data requires the development of quantitative relationships between complex electrical resistivity signatures and dissolved CO2 in the aquifer resulting from leakage Under a DOE SBIR funded effort we performed multiple tank scale experiments in which we investigated complex electrical resistivity signatures associated with dissolved CO2 plumes in saturated sediments. We also investigated the feasibility of distinguishing CO2 leakage signatures from signatures associated with other processes such as salt water movement, temperature variations and other variations in chemical or physical conditions. In addition to these experiments we also numerically modeled the tank experiments. These experiments showed that (a) we can distinguish CO2 leakage signatures from other signatures, (b) CO2 leakage signatures have a consistent characteristic, (c) laboratory experiments are in agreement with field results, and (d) we can numerically simulate the main characteristics of CO2 leakage and associated electrical geophysical signatures.

  14. Carbon sequestration in macroalgal mats of brackish-water habitats in Indian Sunderbans: Potential as renewable organic resource.

    PubMed

    Gorain, Prakash Chandra; Sengupta, Sarban; Satpati, Gour Gopal; Paul, Ishita; Tripathi, Sudipta; Pal, Ruma

    2018-06-01

    Large influx of excess nutrients into sub-tropical brackish-water habitats is expected to radically affect the algal populations in the heavily populated Sunderbans brackish-water ecozone. Twelve selected brackish-water sites in the Indian Sunderbans were surveyed to investigate the growth performance of mat-forming dominant algal/cyanobacterial macrophytes and their potential for carbon (C) sequestration into hydrologic and pedologic pools. The mats were dominated by particular taxa at different seasons related to physico-chemical properties of the wetland habitats. Different environmental variables and biomass productivity parameters were measured on fortnightly basis to assess the carbon cycle related to dominant algal blooms of the study area. The dominating species at the twelve sites included seven genera (Spirogyra, Rhizoclonium, Ulva, Cladophora, Pithophora, Chaetomorpha) belonging to Chlorophyta, three genera (Polysiphonia, Gracilaria, Catenella) belonging to Rhodophyta and Lyngbya majuscula from cyanobacteria. Multivariate statistical methods indicated that nutrient availability, particularly dissolved P concentration and N:P ratio in the water column, along with salinity in the water column mainly affected biomass yield and C sequestration of mat-forming macrophytes and OC input into water column. However, OC contents of underlying muck proved to be very stable, though small influxes of OC occurred at each bloom. High biomass yields (34-3107 g/m 2 ) of the dominant mat components accumulated enormous stocks of OC, very little of which reaches the pedologic pool. This transient biomass might be utilized as dietary supplements or biofuel feedstocks. Availability of important dietary fatty acids in Spirogyra punctulata, Gracilaria sp., Polysiphonia mollis, Rhizoclonium riparium, R. tortuosum, Pithophora oedogonia and Ulva lactuca was considered as suitability of these species as nutraceuticals. Fatty acid compositions of L. majuscula, Catenella repens, R. tortuosum and Cladophora crystallina were estimated to be applicable for producing biodiesel for usage in sub-tropical climates. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Soil carbon management in large-scale Earth system modelling: implications for crop yields and nitrogen leaching

    NASA Astrophysics Data System (ADS)

    Olin, S.; Lindeskog, M.; Pugh, T. A. M.; Schurgers, G.; Wårlind, D.; Mishurov, M.; Zaehle, S.; Stocker, B. D.; Smith, B.; Arneth, A.

    2015-06-01

    We explore cropland management alternatives and the effect these can have on future C and N pools and fluxes using the land use-enabled dynamic vegetation model LPJ-GUESS. Simulated crop production, cropland carbon storage, carbon sequestration and nitrogen leaching from croplands are evaluated and discussed. Compared to the version of LPJ-GUESS that does not include land use dynamics, estimates of soil carbon stocks and nitrogen leaching from terrestrial to aquatic ecosystems were improved. We explore trade-offs between important ecosystem services that can be provided from agricultural fields such as crop yields, retention of nitrogen and carbon storage. These trade-offs are evaluated for current land use and climate and further explored for future conditions within the two future climate change scenarios, RCP 2.6 and 8.5. Our results show that the potential for carbon sequestration due to typical cropland management practices such as no-till and cover-crops proposed in literature is not realised, globally or over larger climatic regions. Our results highlight important considerations to be made when modelling C-N interactions in agricultural ecosystems under future environmental change, and the effects these have on terrestrial biogeochemical cycles.

  16. Trappeindia himalayensis gen. et sp. nov., a sequestrate fungus with potential affinity to Strobilomyces (Basidiomycotina, Boletales)

    Treesearch

    M.A. Castellano; S.L. Miller; L. Singh; T.N. Lakhanpal

    2012-01-01

    An unusual sequestrate fungus forming ectomycorrhizae with Cedrus deodora (Roxb.) Laud. forms sporocarps in the northwestern Himalayas of India during spring. It has a dark brown to black peridium with a solid, white to brown, loculate gleba containing spherical, reticulate spores. It resembles no described genus and is described here as ...

  17. Estimating long-term carbon sequestration patterns in even- and uneven-aged southern pine stands

    Treesearch

    Don C. Bragg; James M. Guldin

    2010-01-01

    Carbon (C) sequestration has become an increasingly important consideration for forest management in North America, and has particular potential in pine-dominated forests of the southern United States. Using existing literature on plantations and long-term studies of naturally regenerated loblolly (Pinus taeda) and shortleaf (Pinus echinata) pine-dominated stands on...

  18. The issues of energy and carbon cycle: new perspectives for assessing the environmental impact of animal waste utilization.

    PubMed

    Ceotto, E

    2005-01-01

    This paper focuses on the benefits of an efficient use of animal waste from the standpoint of curbing the rise of anthropogenic carbon dioxide (CO(2)) in the atmosphere. An effective use of animal waste resources might provide a partial, but still important, contribution in reducing net CO(2) emissions. In particular: the fulfillment of nutrient requirements of crop plants growing in non-limiting conditions and thus sequestering CO(2) at their potential level; the chance of diminishing the use of fossil energy, and related CO(2) emissions, required for manufacturing industrial fertilizers; the possibility of enhancing carbon sequestration in agricultural soils by the application of farmyard manure. The future success of agriculture in providing these ecosystem services can only be achieved with a changed social awareness of the links between sustainable land use and global environmental change.

  19. Agronomic and remedial benefits and risks of applying biochar to soil: Current knowledge and future research directions.

    PubMed

    Kuppusamy, Saranya; Thavamani, Palanisami; Megharaj, Mallavarapu; Venkateswarlu, Kadiyala; Naidu, Ravi

    2016-02-01

    'Biochar' represents an emerging technology that is increasingly being recognized for its potential role in carbon sequestration, reducing greenhouse gas emissions, waste management, renewable energy, soil improvement, crop productivity enhancement and environmental remediation. Published reviews have so far focused mainly on the above listed agronomic and environmental benefits of applying biochar, yet paid little or no attention to its harmful effects on the ecological system. This review highlights a balanced overview of the advantages and disadvantages of the pyrolysis process of biochar production, end-product quality and the benefits versus drawbacks of biochar on: (a) soil geochemistry and albedo, (b) microflora and fauna, (c) agrochemicals, (d) greenhouse gas efflux, (e) nutrients, (f) crop yield, and (g) contaminants (organic and inorganic). Future research should focus more on the unintended long-term consequences of biochar on biological organisms and their processes in the soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Physical and Economic Integration of Carbon Capture Methods with Sequestration Sinks

    NASA Astrophysics Data System (ADS)

    Murrell, G. R.; Thyne, G. D.

    2007-12-01

    Currently there are several different carbon capture technologies either available or in active development for coal- fired power plants. Each approach has different advantages, limitations and costs that must be integrated with the method of sequestration and the physiochemical properties of carbon dioxide to evaluate which approach is most cost effective. For large volume point sources such as coal-fired power stations, the only viable sequestration sinks are either oceanic or geological in nature. However, the carbon processes and systems under consideration produce carbon dioxide at a variety of pressure and temperature conditions that must be made compatible with the sinks. Integration of all these factors provides a basis for meaningful economic comparisons between the alternatives. The high degree of compatibility between carbon dioxide produced by integrated gasification combined cycle technology and geological sequestration conditions makes it apparent that this coupling currently holds the advantage. Using a basis that includes complete source-to-sink sequestration costs, the relative cost benefit of pre-combustion IGCC compared to other post-combustion methods is on the order of 30%. Additional economic benefits arising from enhanced oil recovery revenues and potential sequestration credits further improve this coupling.

  1. The Lifestyle Carbon Dividend: Assessment of the Carbon Sequestration Potential of Grasslands and Pasturelands Reverted to Native Forests

    NASA Astrophysics Data System (ADS)

    Rao, S.; Jain, A. K.; Shu, S.

    2015-12-01

    What is the potential of a global transition to a vegan lifestyle to sequester carbon and mitigate climate change? To answer this question, we use an Earth System Model (ESM), the Integrated Science Assessment Model (ISAM). ISAM is a fully coupled biogeochemistry (carbon and nitrogen cycles) and biogeophysics (hydrology and thermal energy) ESM, which calculates carbon sources and sinks due to land cover and land use change activities, such as reforestation and afforestation. We calculate the carbon sequestration potential of grasslands and pasturelands that can be reverted to native forests as 265 GtC on 1.96E+7 km2 of land area, just 41% of the total area of such lands on Earth. The grasslands and pasturelands are assumed to revert back to native forests which existed prior to any human intervention and these include tropical, temperate and boreal forests. The results are validated with above ground regrowth measurements. Since this carbon sequestration potential is greater than the 240 GtC of that has been added to the atmosphere since the industrial era began, it shows that such global lifestyle transitions have tremendous potential to mitigate and even reverse climate change.

  2. Direct gas-solid carbonation kinetics of steel slag and the contribution to in situ sequestration of flue gas CO(2) in steel-making plants.

    PubMed

    Tian, Sicong; Jiang, Jianguo; Chen, Xuejing; Yan, Feng; Li, Kaimin

    2013-12-01

    Direct gas-solid carbonation of steel slag under various operational conditions was investigated to determine the sequestration of the flue gas CO2 . X-ray diffraction analysis of steel slag revealed the existence of portlandite, which provided a maximum theoretical CO2 sequestration potential of 159.4 kg CO 2 tslag (-1) as calculated by the reference intensity ratio method. The carbonation reaction occurred through a fast kinetically controlled stage with an activation energy of 21.29 kJ mol(-1) , followed by 10(3) orders of magnitude slower diffusion-controlled stage with an activation energy of 49.54 kJ mol(-1) , which could be represented by a first-order reaction kinetic equation and the Ginstling equation, respectively. Temperature, CO2 concentration, and the presence of SO2 impacted on the carbonation conversion of steel slag through their direct and definite influence on the rate constants. Temperature was the most important factor influencing the direct gas-solid carbonation of steel slag in terms of both the carbonation conversion and reaction rate. CO2 concentration had a definite influence on the carbonation rate during the kinetically controlled stage, and the presence of SO2 at typical flue gas concentrations enhanced the direct gas-solid carbonation of steel slag. Carbonation conversions between 49.5 % and 55.5 % were achieved in a typical flue gas at 600 °C, with the maximum CO2 sequestration amount generating 88.5 kg CO 2 tslag (-1) . Direct gas-solid carbonation of steel slag showed a rapid CO2 sequestration rate, high CO2 sequestration amounts, low raw-material costs, and a large potential for waste heat utilization, which is promising for in situ carbon capture and sequestration in the steel industry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The impact of cultivar diversity in bioenergy feedstock production systems on soil carbon sequestration rates

    NASA Astrophysics Data System (ADS)

    De Graaff, M.; Morris, G.; Jastrow, J. D.; SIX, J. W.

    2013-12-01

    Land-use change for bioenergy production can create greenhouse gas (GHG) emissions through disturbance of soil carbon (C) pools, but native species with extensive root systems may rapidly repay the GHG debt, particularly when grown in diverse mixtures, by enhancing soil C sequestration upon land-use change. Native bioenergy candidate species, switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerardii) show extensive within-species variation, and our preliminary data show that increased cultivar diversity can enhance yield. We aim to assess how shifting C3-dominated nonnative perennial grasslands to C4-dominated native perennial grasslands for use as bioenergy feedstock affects soil C stocks, and how within-species diversity in switchgrass and big bluestem affects soil C sequestration rates. Our experiment is conducted at the Fermilab National Environmental Research Park, and compares different approaches for perennial feedstock production ranging across a biodiversity gradient, where diversity is manipulated at both the species- and cultivar level, and nitrogen (N) is applied at two levels (0 and 67 kg/ha). Preliminary results indicate that switchgrass and big bluestem differentially affect soil C sequstration, and that increasing diversity may enhance soil C sequestration rates.

  4. Design of a perfluorocarbon tracer based monitoring network to support monitoring verification and accounting of sequestered CO2

    NASA Astrophysics Data System (ADS)

    Watson, T.; Sullivan, T.

    2013-05-01

    The levels of CO2 in the atmosphere have been growing since the beginning of the industrial revolution. The current level is 391 ppm. If there are no efforts to mitigate CO2 emissions, the levels will rise to 750 ppm by 2100. Geologic carbon sequestration is one strategy that may be used to begin to reduce emissions. Sequestration will not be effective unless reservoir leak rates are significantly less than 1%. There must be rigorous monitoring protocols in place to ensure sequestration projects meet regulatory and environmental goals. Monitoring for CO2 leakage directly is difficult because of the large background levels and variability of CO2 in the atmosphere. Using tracers to tag the sequestered CO2 can mitigate some of the difficulties of direct measurement but a tracer monitoring network and the levels of tagging need to be carefully designed. Simple diffusion and dispersion models are used to predict the surface and atmospheric concentrations that would be seen by a network monitoring a sequestration site. Levels of tracer necessary to detect leaks from 0.01 to 1% are presented and suggestions for effective monitoring and protection of global tracer utility are presented.

  5. Modeling the greenhouse gas budget of straw returning in China: feasibility of mitigation and countermeasures.

    PubMed

    Lu, Fei; Wang, Xiao-Ke; Han, Bing; Ouyang, Zhi-Yun; Zheng, Hua

    2010-05-01

    Straw returning is considered to be one of the most promising carbon sequestration measures in China's cropland. A compound model, namely "Straw Returning and Burning Model-Expansion" (SRBME), was built to estimate the net mitigation potential, economic benefits, and air pollutant reduction of straw returning. Three scenarios, that is, baseline, "full popularization of straw returning (FP)," and "full popularization of straw returning and precision fertilization (FP + P)," were set to reflect popularization of straw returning. The results of the SRBME indicated that (1) compared with the soil carbon sequestration of 13.37 Tg/yr, the net mitigation potentials, which were 6.328 Tg/yr for the FP scenario and 9.179 Tg/yr for the FP + P scenario, had different trends when the full budget of the greenhouse gases was considered; (2) when the feasibility in connection with greenhouse gas (GHG) mitigation, economic benefits, and environmental benefits was taken into consideration, straw returning was feasible in 15 provinces in the FP scenario, with a total net mitigation potential of 7.192 TgCe/yr and the total benefits of CNY 1.473 billion (USD 216.6 million); (3) in the FP + P scenario, with the implementation of precision fertilization, straw returning was feasible in 26 provinces with a total net mitigation potential of 10.39 TgCe/yr and the total benefits of CNY 5.466 billion (USD 803.8 million); (4) any extent of change in the treatment of straw from being burnt to being returned would contribute to air pollution reduction; (5) some countermeasures, such as CH(4) reduction in rice paddies, precision fertilization, financial support, education and propaganda, would promote the feasibility of straw returning as a mitigation measure.

  6. Soil organic carbon sequestration and tillage systems in Mediterranean environments

    NASA Astrophysics Data System (ADS)

    Francaviglia, Rosa; Di Bene, Claudia; Marchetti, Alessandro; Farina, Roberta

    2016-04-01

    Soil carbon sequestration is of special interest in Mediterranean areas, where rainfed cropping systems are prevalent, inputs of organic matter to soils are low and mostly rely on crop residues, while losses are high due to climatic and anthropic factors such as intensive and non-conservative farming practices. The adoption of reduced or no tillage systems, characterized by a lower soil disturbance in comparison with conventional tillage, has proved to be positively effective on soil organic carbon (SOC) conservation and other physical and chemical processes, parameters or functions, e.g. erosion, compaction, ion retention and exchange, buffering capacity, water retention and aggregate stability. Moreover, soil biological and biochemical processes are usually improved by the reduction of tillage intensity. The work deals with some results available in the scientific literature, and related to field experiment on arable crops performed in Italy, Greece, Morocco and Spain. Data were organized in a dataset containing the main environmental parameters (altitude, temperature, rainfall), soil tillage system information (conventional, minimum and no-tillage), soil parameters (bulk density, pH, particle size distribution and texture), crop type, rotation, management and length of the experiment in years, initial SOCi and final SOCf stocks. Sampling sites are located between 33° 00' and 43° 32' latitude N, 2-860 m a.s.l., with mean annual temperature and rainfall in the range 10.9-19.6° C and 355-900 mm. SOC data, expressed in t C ha-1, have been evaluated both in terms of Carbon Sequestration Rate, given by [(SOCf-SOCi)/length in years], and as percentage change in comparison with the initial value [(SOCf-SOCi)/SOCi*100]. Data variability due to the different environmental, soil and crop management conditions that influence SOC sequestration and losses will be examined.

  7. New insights into mechanisms driving carbon allocation in tropical forests.

    PubMed

    Hofhansl, Florian; Schnecker, Jörg; Singer, Gabriel; Wanek, Wolfgang

    2015-01-01

    The proportion of carbon allocated to wood production is an important determinant of the carbon sink strength of global forest ecosystems. Understanding the mechanisms controlling wood production and its responses to environmental drivers is essential for parameterization of global vegetation models and to accurately predict future responses of tropical forests in terms of carbon sequestration. Here, we synthesize data from 105 pantropical old-growth rainforests to investigate environmental controls on the partitioning of net primary production to wood production (%WP) using structural equation modeling. Our results reveal that %WP is governed by two independent pathways of direct and indirect environmental controls. While temperature and soil phosphorus availability indirectly affected %WP via increasing productivity, precipitation and dry season length both directly increased %WP via tradeoffs along the plant economics spectrum. We provide new insights into the mechanisms driving %WP, allowing us to conclude that projected climate change could enhance %WP in less productive tropical forests, thus increasing carbon sequestration in montane forests, but adversely affecting lowland forests. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  8. Future C loss in mid-latitude mineral soils: climate change exceeds land use mitigation potential in France

    PubMed Central

    Meersmans, Jeroen; Arrouays, Dominique; Van Rompaey, Anton J. J.; Pagé, Christian; De Baets, Sarah; Quine, Timothy A.

    2016-01-01

    Many studies have highlighted significant interactions between soil C reservoir dynamics and global climate and environmental change. However, in order to estimate the future soil organic carbon sequestration potential and related ecosystem services well, more spatially detailed predictions are needed. The present study made detailed predictions of future spatial evolution (at 250 m resolution) of topsoil SOC driven by climate change and land use change for France up to the year 2100 by taking interactions between climate, land use and soil type into account. We conclude that climate change will have a much bigger influence on future SOC losses in mid-latitude mineral soils than land use change dynamics. Hence, reducing CO2 emissions will be crucial to prevent further loss of carbon from our soils. PMID:27808169

  9. Future C loss in mid-latitude mineral soils: climate change exceeds land use mitigation potential in France.

    PubMed

    Meersmans, Jeroen; Arrouays, Dominique; Van Rompaey, Anton J J; Pagé, Christian; De Baets, Sarah; Quine, Timothy A

    2016-11-03

    Many studies have highlighted significant interactions between soil C reservoir dynamics and global climate and environmental change. However, in order to estimate the future soil organic carbon sequestration potential and related ecosystem services well, more spatially detailed predictions are needed. The present study made detailed predictions of future spatial evolution (at 250 m resolution) of topsoil SOC driven by climate change and land use change for France up to the year 2100 by taking interactions between climate, land use and soil type into account. We conclude that climate change will have a much bigger influence on future SOC losses in mid-latitude mineral soils than land use change dynamics. Hence, reducing CO 2 emissions will be crucial to prevent further loss of carbon from our soils.

  10. Isolation and characterization of a new class of amphipathic biopolymers capable of self-assembly from aqueous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, G.G.; Cannon, G.C.; McCormick, C.L.

    Extensive research is being done in many laboratories to investigate the role of synthetic hydrophobically-modified polymers and amphipathic proteins for their potential in phase-transfer, sequestration, and elimination of polluting hydrocarbons and surfactants. Our laboratory has begun a research program which is aimed at the development of a new class of environmentally benign biomaterials using the amphipathic proteins termed {open_quotes}hydrophobins{close_quotes} and an associated polysaccharide, schizophyllan. These biopolymers can stabilize oil dispersions, attach strongly to polyethylene and polytetrafluoroethylene surfaces rendering them hydrophilic, and can self-assemble into a stable, flexible membrane. Preliminary experiments in our laboratory and others have demonstrated the immense technologicalmore » potential of this class of biomaterials for surface modification of membranes and coatings, fouling resistance, controlled delivery, protective encapsulation, and drag reduction.« less

  11. 78 FR 15011 - Environmental Impacts Statements; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ..., Final EIS, DOE, TX, W.A. Parish Post-Combustion CO 2 Capture and Sequestration Project, Review Period.... 20130055, Final EIS, NPS, IA, Effigy Mounds National Monument Final General Management Plan, Review Period...] BILLING CODE 6560-50-P ...

  12. Carbon storage capacity of semi-arid grassland soils and sequestration potentials in northern China.

    PubMed

    Wiesmeier, Martin; Munro, Sam; Barthold, Frauke; Steffens, Markus; Schad, Peter; Kögel-Knabner, Ingrid

    2015-10-01

    Organic carbon (OC) sequestration in degraded semi-arid environments by improved soil management is assumed to contribute substantially to climate change mitigation. However, information about the soil organic carbon (SOC) sequestration potential in steppe soils and their current saturation status remains unknown. In this study, we estimated the OC storage capacity of semi-arid grassland soils on the basis of remote, natural steppe fragments in northern China. Based on the maximum OC saturation of silt and clay particles <20 μm, OC sequestration potentials of degraded steppe soils (grazing land, arable land, eroded areas) were estimated. The analysis of natural grassland soils revealed a strong linear regression between the proportion of the fine fraction and its OC content, confirming the importance of silt and clay particles for OC stabilization in steppe soils. This relationship was similar to derived regressions in temperate and tropical soils but on a lower level, probably due to a lower C input and different clay mineralogy. In relation to the estimated OC storage capacity, degraded steppe soils showed a high OC saturation of 78-85% despite massive SOC losses due to unsustainable land use. As a result, the potential of degraded grassland soils to sequester additional OC was generally low. This can be related to a relatively high contribution of labile SOC, which is preferentially lost in the course of soil degradation. Moreover, wind erosion leads to substantial loss of silt and clay particles and consequently results in a direct loss of the ability to stabilize additional OC. Our findings indicate that the SOC loss in semi-arid environments induced by intensive land use is largely irreversible. Observed SOC increases after improved land management mainly result in an accumulation of labile SOC prone to land use/climate changes and therefore cannot be regarded as contribution to long-term OC sequestration. © 2015 John Wiley & Sons Ltd.

  13. Ground penetrating radar survey and lineament analysis of the West Pearl Queen carbon sequestration pilot site, New Mexico

    NASA Astrophysics Data System (ADS)

    Wilson, T. H.; Wells, A. W.; Diehl, R. R.; Bromhal, G. S.; Carpenter, W.; Smith, D. H.

    2004-05-01

    The potential for leakage of injected CO2 at carbon sequestration sites is a significant concern in the design and deployment of long term carbon sequestration efforts. Effective and reliable monitoring of near-surface environments in the vicinity of these sites is essential to ensure the viability of sequestration activities as well as long term public and environmental safety. This study reports on near-surface geological and geophysical characterization efforts conducted at the NETL West Pearl Queen carbon sequestration pilot site in southeastern New Mexico and their use in uncovering possible mechanisms facilitating escape of small amounts (10e-13 liters) of tracer injected with the CO2. In this pilot test, a small amount of CO2 (2100 tonnes) was injected into the Shattuck sandstone member of the Permian Queen Formation early in 2003. Tracers injected with the CO2 were detected within a few days of injection and continued to escape for several months following injection. Geological and geophysical characterization of the near-surface environment in the vicinity of the injection well incorporated lineament interpretations and a detailed ground penetrating radar survey conducted over a circular area extending out 300 meters from the injection well. The near-surface geology consists of a few-feet thick veneer of late Pleistocene and Holocene sand dunes covering the middle Pleistocene Mescalero caliche. The lineament study incorporated interpretation of black and white aerial photos from 1949, digital orthophotos, and Landsat TM imagery. Analysis reveals distinct northeast and northwest trending lineament sets. The GPR survey defines the presence of a nearly continuous blanket of caliche beneath the area. However, the thickness of the caliche zone varies significantly, and it is disrupted by numerous fault-like features, amplitude anomalies, and reflection gaps. Some of these disruptions are traceable over distances of 25 to 200 meters and their aerial distribution shows some association with the distribution of tracers detected in the near-surface across the site. The observations suggest that the caliche has undergone significant karstification and could provide pathways along which CO2 could migrate through the near-surface from a leaky well casing or, less likely, along more extensive vertical migration pathways.

  14. Electricity without carbon dioxide: Assessing the role of carbon capture and sequestration in United States electric markets

    NASA Astrophysics Data System (ADS)

    Johnson, Timothy Lawrence

    2002-09-01

    Stabilization of atmospheric greenhouse gas concentrations will likely require significant cuts in electric sector carbon dioxide (CO2) emissions. The ability to capture and sequester CO2 in a manner compatible with today's fossil-fuel based power generating infrastructure offers a potentially low-cost contribution to a larger climate change mitigation strategy. This thesis fills a niche between economy-wide studies of CO 2 abatement and plant-level control technology assessments by examining the contribution that carbon capture and sequestration (CCS) might make toward reducing US electric sector CO2 emissions. The assessment's thirty year perspective ensures that costs sunk in current infrastructure remain relevant and allows time for technological diffusion, but remains free of assumptions about the emergence of unidentified radical innovations. The extent to which CCS might lower CO2 mitigation costs will vary directly with the dispatch of carbon capture plants in actual power-generating systems, and will depend on both the retirement of vintage capacity and competition from abatement alternatives such as coal-to-gas fuel switching and renewable energy sources. This thesis therefore adopts a capacity planning and dispatch model to examine how the current distribution of generating units, natural gas prices, and other industry trends affect the cost of CO2 control via CCS in an actual US electric market. The analysis finds that plants with CO2 capture consistently provide significant reductions in base-load emissions at carbon prices near 100 $/tC, but do not offer an economical means of meeting peak demand unless CO2 reductions in excess of 80 percent are required. Various scenarios estimate the amount by which turn-over of the existing generating infrastructure and the severity of criteria pollutant constraints reduce mitigation costs. A look at CO2 sequestration in the seabed beneath the US Outer Continental Shelf (OCS) complements this model-driven assessment by considering issues of risk, geological storage capacity, and regulation. Extensive experience with offshore oil and gas operations suggests that the technical uncertainties associated with OCS sequestration are not large. The legality of seabed CO 2 disposal under US law and international environmental agreements, however, is ambiguous, and the OCS may be the first region where these regulatory regimes clash over CO2 sequestration.

  15. The United States Department of Energy's Regional Carbon Sequestration Partnerships program: a collaborative approach to carbon management.

    PubMed

    Litynski, John T; Klara, Scott M; McIlvried, Howard G; Srivastava, Rameshwar D

    2006-01-01

    This paper reviews the Regional Carbon Sequestration Partnerships (RCSP) concept, which is a first attempt to bring the U.S. Department of Energy's (DOE) carbon sequestration program activities into the "real world" by using a geographically-disposed-system type approach for the U.S. Each regional partnership is unique and covers a unique section of the U.S. and is tasked with determining how the research and development activities of DOE's carbon sequestration program can best be implemented in their region of the country. Although there is no universal agreement on the cause, it is generally understood that global warming is occurring, and many climate scientists believe that this is due, in part, to the buildup of carbon dioxide (CO(2)) in the atmosphere. This is evident from the finding presented in the National Academy of Science Report to the President on Climate Change which stated "Greenhouse gases are accumulating in Earth's atmosphere as a result of human activities, causing surface air temperatures and subsurface ocean temperatures to rise. Temperatures are, in fact, rising. The changes observed over the last several decades are likely mostly due to human activities, ...". In the United States, emissions of CO(2) originate mainly from the combustion of fossil fuels for energy production, transportation, and other industrial processes. Roughly one third of U.S. anthropogenic CO(2) emissions come from power plants. Reduction of CO(2) emissions through sequestration of carbon either in geologic formations or in terrestrial ecosystems can be part of the solution to the problem of global warming. However, a number of steps must be accomplished before sequestration can become a reality. Cost effective capture and separation technology must be developed, tested, and demonstrated; a database of potential sequestration sites must be established; and techniques must be developed to measure, monitor, and verify the sequestered CO(2). Geographical differences in fossil fuel use, the industries present, and potential sequestration sinks across the United States dictate the use of a regional approach to address the sequestration of CO(2). To accommodate these differences, the DOE has created a nationwide network of seven Regional Carbon Sequestration Partnerships (RCSP) to help determine and implement the carbon sequestration technologies, infrastructure, and regulations most appropriate to promote CO(2) sequestration in different regions of the nation. These partnerships currently represent 40 states, three Indian Nations, four Canadian Provinces, and over 200 organizations, including academic institutions, research institutions, coal companies, utilities, equipment manufacturers, forestry and agricultural representatives, state and local governments, non-governmental organizations, and national laboratories. These partnerships are dedicated to developing the necessary infrastructure and validating the carbon sequestration technologies that have emerged from DOE's core R&D and other programs to mitigate emissions of CO(2), a potent greenhouse gas. The partnerships provide a critical link to DOE's plans for FutureGen, a highly efficient and technologically sophisticated coal-fired power plant that will produce both hydrogen and electricity with near-zero emissions. Though limited to the situation in the U.S., the paper describes for the international scientific community the approach being taken by the U.S. to prepare for carbon sequestration, should that become necessary.

  16. Public land, timber harvests, and climate mitigation: quantifying carbon sequestration potential on U.S. public timberlands

    Treesearch

    Brooks M. Depro; Brian C. Murray; Ralph J. Alig; Alyssa Shanks

    2008-01-01

    Scientists and policymakers have long recognized the role that forests can play in countering the atmospheric buildup of carbon dioxide (C02), a greenhouse gas (GHG). In the United States, terrestrial carbon sequestration in private and public forests offsets approximately 11 percent of all GHG emissions from all sectors of the economy annually....

  17. Vegetation carbon sequestration in Chinese forests from 2010 to 2050.

    PubMed

    He, Nianpeng; Wen, Ding; Zhu, Jianxing; Tang, Xuli; Xu, Li; Zhang, Li; Hu, Huifeng; Huang, Mei; Yu, Guirui

    2017-04-01

    Forests store a large part of the terrestrial vegetation carbon (C) and have high C sequestration potential. Here, we developed a new forest C sequestration (FCS) model based on the secondary succession theory, to estimate vegetation C sequestration capacity in China's forest vegetation. The model used the field measurement data of 3161 forest plots and three future climate scenarios. The results showed that logistic equations provided a good fit for vegetation biomass with forest age in natural and planted forests. The FCS model has been verified with forest biomass data, and model uncertainty is discussed. The increment of vegetation C storage in China's forest vegetation from 2010 to 2050 was estimated as 13.92 Pg C, while the average vegetation C sequestration rate was 0.34 Pg C yr -1 with a 95% confidence interval of 0.28-0.42 Pg C yr -1 , which differed significantly between forest types. The largest contributor to the increment was deciduous broadleaf forest (37.8%), while the smallest was deciduous needleleaf forest (2.7%). The vegetation C sequestration rate might reach its maximum around 2020, although vegetation C storage increases continually. It is estimated that vegetation C sequestration might offset 6-8% of China's future emissions. Furthermore, there was a significant negative relationship between vegetation C sequestration rate and C emission rate in different provinces of China, suggesting that developed provinces might need to compensate for undeveloped provinces through C trade. Our findings will provide valuable guidelines to policymakers for designing afforestation strategies and forest C trade in China. © 2016 John Wiley & Sons Ltd.

  18. NATIVE PLANTS FOR OPTIMIZING CARBON SEQUESTRATION IN RECLAIMED LANDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. UNKEFER; M. EBINGER; ET AL

    Carbon emissions and atmospheric concentrations are expected to continue to increase through the next century unless major changes are made in the way carbon is managed. Managing carbon has emerged as a pressing national energy and environmental need that will drive national policies and treaties through the coming decades. Addressing carbon management is now a major priority for DOE and the nation. One way to manage carbon is to use energy more efficiently to reduce our need for major energy and carbon source-fossil fuel combustion. Another way is to increase our use of low-carbon and carbon free fuels and technologies.more » A third way, and the focus of this proposal, is carbon sequestration, in which carbon is captured and stored thereby mitigating carbon emissions. Sequestration of carbon in the terrestrial biosphere has emerged as the principle means by which the US will meet its near-term international and economic requirements for reducing net carbon emissions (DOE Carbon Sequestration: State of the Science. 1999; IGBP 1998). Terrestrial carbon sequestration provides three major advantages. First, terrestrial carbon pools and fluxes are of sufficient magnitude to effectively mitigate national and even global carbon emissions. The terrestrial biosphere stores {approximately}2060 GigaTons of carbon and transfers approximately 120 GigaTons of carbon per year between the atmosphere and the earth's surface, whereas the current global annual emissions are about 6 GigaTons. Second, we can rapidly and readily modify existing management practices to increase carbon sequestration in our extensive forest, range, and croplands. Third, increasing soil carbon is without negative environment consequences and indeed positively impacts land productivity. The terrestrial carbon cycle is dependent on several interrelationships between plants and soils. Because the soil carbon pool ({approximately}1500 Giga Tons) is approximately three times that in terrestrial vegetation ({approximately}560 GigaTons), the principal focus of terrestrial sequestration efforts is to increase soil carbon. But soil carbon ultimately derives from vegetation and therefore must be managed indirectly through aboveground management of vegetation and nutrients. Hence, the response of whole ecosystems must be considered in terrestrial carbon sequestration strategies.« less

  19. Sequestering CO2 in the Ocean: Options and Consequences

    NASA Astrophysics Data System (ADS)

    Rau, G. H.; Caldeira, K.

    2002-12-01

    The likelihood of negative climate and environmental impacts associated with increasing atmospheric CO2 has prompted serious consideration of various CO2 mitigation strategies. Among these are methods of capturing and storing of CO2 in the ocean. Two approaches that have received the most attention in this regard have been i) ocean fertilization to enhanced biological uptake and fixation of CO2, and ii) the chemical/mechanical capture and injection of CO2 into the deep ocean. Both methods seek to enhance or speed up natural mechanisms of CO2 uptake and storage by the ocean, namely i) the biological CO2 "pump" or ii) the passive diffusion of CO2 into the surface ocean and subsequent mixing into the deep sea. However, as will be reviewed, concerns about the capacity and effectiveness of either strategy in long-term CO2 sequestration have been raised. Both methods are not without potentially significant environmental impacts, and the costs of CO2 capture and injection (option ii) are currently prohibitive. An alternate method of ocean CO2 sequestration would be to react and hydrate CO2 rich waste gases (e.g., power plant flue gas) with seawater and to subsequently neutralize the resulting carbonic acid with limestone to produce calcium and bicarbonate ions in solution. This approach would simply speed up the CO2 uptake and sequestration that naturally (but very slowly) occurs via global carbonate weathering. This would avoid much of the increased acidity associated with direct CO2 injection while obviating the need for costly CO2 separation and capture. The addition of the resulting bicarbonate- and carbonate-rich solution to the ocean would help to counter the decrease in pH and carbonate ion concentration, and hence loss of biological calcification that is presently occurring as anthropogenic CO2 invades the ocean from the atmosphere. However, as with any approach to CO2 mitigation, the costs, impacts, risks, and benefits of this method need to be better understood and weighed against those of alternative strategies, including business as usual.

  20. Long-term manure amendments and chemical fertilizers enhanced soil organic carbon sequestration in a wheat (Triticum aestivum L.)-maize (Zea mays L.) rotation system.

    PubMed

    Zhang, Shuiqing; Huang, Shaomin; Li, Jianwei; Guo, Doudou; Lin, Shan; Lu, Guoan

    2017-06-01

    The carbon sequestration potential is affected by cropping system and management practices, but soil organic carbon (SOC) sequestration potential under fertilizations remains unclear in north China. This study examined SOC change, total C input to soil and, via integration of these estimates over years, carbon sequestration efficiency (CSE, the ratio of SOC change over C input) under no fertilization (control), chemical nitrogen fertilizer alone (N) or combined with phosphorus and potassium fertilizers (NP, NK, PK and NPK), or chemical fertilizers combined with low or high (1.5×) manure input (NPKM and 1.5NPKM). Results showed that, as compared with the initial condition, SOC content increased by 0.03, 0.06, 0.05, 0.09, 0.16, 0.26, 0.47 and 0.68 Mg C ha -1 year -1 under control, N, NK, PK, NP, NPK, NPKM and 1.5NPKM treatments respectively. Correspondingly, the C inputs of wheat and maize were 1.24, 1.34, 1.55, 1.33, 2.72, 2.96, 2.97 and 3.15 Mg ha -1 year -1 respectively. The long-term fertilization-induced CSE showed that about 11% of the gross C input was transformed into SOC pool. Overall, this study demonstrated that decade-long manure input combined with chemical fertilizers can maintain high crop yield and lead to SOC sequestration in north China. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. An Analysis of the Climate Change Mitigation Potential through Soil Organic Carbon Sequestration in a Corn Belt Watershed

    NASA Astrophysics Data System (ADS)

    Bhattarai, M. D.; Secchi, S.; Schoof, J. T.

    2015-12-01

    The sequestration of carbon constitutes one of major options in agricultural climate change land-based mitigation. We examined the carbon sequestration potential of alternative agricultural land uses in an intensively farmed Corn Belt watershed. We Used downscaled data from eight atmosphere-ocean general circulation models (AOGCMs) for a simulation period between 2015 and 2099 with three emission pathways reflecting low, medium and high greenhouse gas scenarios. The use of downscaled data, coupled with high resolution land use and soil data, can help policy makers and land managers better understand spatial and temporal impacts of climate change. We consider traditional practices such as no-till corn-soybean rotations and continuous corn and include also switchgrass, a bioenergy crop. Our results show that switching from conventional tillage continuous corn to no-till corn-soybean can sequester the equivalent of 156,000 MtCO2 of soil organic carbon with a sequestration rate of 2.38 MtCO2 ha-1 yr-1 for the simulated period. Our results also indicate that switchgrass can sequester the equivalent of 282,000 MtCO2 of soil organic carbon with a sequestration rate of 4.4 MtCO2 ha-1 yr-1 for the period. Our finding also suggests that while climate change impacts corn and soybean yields, it does not have a significant effect on switchgrass yields possibly due to carbon fertilization effect on switchgrass yields.

  2. Meta-modeling soil organic carbon sequestration potential and its application at regional scale.

    PubMed

    Luo, Zhongkui; Wang, Enli; Bryan, Brett A; King, Darran; Zhao, Gang; Pan, Xubin; Bende-Michl, Ulrike

    2013-03-01

    Upscaling the results from process-based soil-plant models to assess regional soil organic carbon (SOC) change and sequestration potential is a great challenge due to the lack of detailed spatial information, particularly soil properties. Meta-modeling can be used to simplify and summarize process-based models and significantly reduce the demand for input data and thus could be easily applied on regional scales. We used the pre-validated Agricultural Production Systems sIMulator (APSIM) to simulate the impact of climate, soil, and management on SOC at 613 reference sites across Australia's cereal-growing regions under a continuous wheat system. We then developed a simple meta-model to link the APSIM-modeled SOC change to primary drivers, i.e., the amount of recalcitrant SOC, plant available water capacity of soil, soil pH, and solar radiation, temperature, and rainfall in the growing season. Based on high-resolution soil texture data and 8165 climate data points across the study area, we used the meta-model to assess SOC sequestration potential and the uncertainty associated with the variability of soil characteristics. The meta-model explained 74% of the variation of final SOC content as simulated by APSIM. Applying the meta-model to Australia's cereal-growing regions reveals regional patterns in SOC, with higher SOC stock in cool, wet regions. Overall, the potential SOC stock ranged from 21.14 to 152.71 Mg/ha with a mean of 52.18 Mg/ha. Variation of soil properties induced uncertainty ranging from 12% to 117% with higher uncertainty in warm, wet regions. In general, soils in Australia's cereal-growing regions under continuous wheat production were simulated as a sink of atmospheric carbon dioxide with a mean sequestration potential of 8.17 Mg/ha.

  3. Tall fescue management in the Piedmont: Sequestration of soil organic and total nitrogen

    USDA-ARS?s Scientific Manuscript database

    High quality soil-surface characteristics are important for developing environmentally sustainable agroecosystems. We evaluated the factorial combination of fertilization regime (inorganic and broiler litter) and tall fescue [Lolium arundinaceum (Schreb.) Darbysh.]-endophyte association (free, nove...

  4. Artificial neural network approach for mapping contrasting tillage practices

    USDA-ARS?s Scientific Manuscript database

    Tillage information is crucial for environmental modeling as it directly affects evapotranspiration, infiltration, runoff, carbon sequestration, and soil losses due to wind and water erosion from agricultural fields. However, collecting this information can be time consuming and costly. Remote sensi...

  5. Carbon Issues Task Force Report for the Idaho Strategic Energy Alliance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travis L. Mcling

    2010-10-01

    The Carbon Issues Task Force has the responsibility to evaluate emissions reduction and carbon offset credit options, geologic carbon sequestration and carbon capture, terrestrial carbon sequestration on forest lands, and terrestrial carbon sequestration on agricultural lands. They have worked diligently to identify ways in which Idaho can position itself to benefit from potential carbon-related federal legislation, including identifying opportunities for Idaho to engage in carbon sequestration efforts, barriers to development of these options, and ways in which these barriers can be overcome. These are the experts to which we will turn when faced with federal greenhouse gas-related legislation and howmore » we should best react to protect and provide for Idaho’s interests. Note that the conclusions and recommended options in this report are not intended to be exhaustive, but rather form a starting point for an informed dialogue regarding the way-forward in developing Idaho energy resources.« less

  6. Distribution of nitrogen-15 tracers applied to the canopy of a mature spruce-hemlock stand, Howland, Maine, USA

    Treesearch

    David Bryan Dail; David Y. Hollinger; Eric A. Davidson; Ivan Fernandez; Herman C. Sievering; Neal A. Scott; Elizabeth Gaige

    2009-01-01

    In N-limited ecosystems, fertilization by N deposition may enhance plant growth and thus impact C sequestration. In many N deposition-C sequestration experiments, N is added directly to the soil, bypassing canopy processes and potentially favoring N immobilization by the soil. To understand the impact of enhanced N deposition on a low fertility unmanaged forest and...

  7. Geologic Carbon Sequestration in a Lightly Explored Basin: the Puget-Willamette Lowland

    NASA Astrophysics Data System (ADS)

    Jackson, J. S.

    2007-12-01

    The Puget-Willamette Lowland is located between the Cascade Range and Olympic Mountains-Coast Range. Exploration for oil and gas there commenced in 1890. Over 700 wells subsequently drilled yield one commercial gas discovery. Eocene sediments deposited west of an ancestral Cascade Range include a coal-bearing sequence covering much of the Puget-Willamette Lowland. The terrestrial deposits pass into marine deposits to the west. Syn- depositional normal faulting and strike-slip faulting are evident in several sub-basins. In the southern Lowland, normal faults were modified by episodes of late Eocene and Miocene transpression, which resulted in mild inversion of older normal faults Preserved sediments indicate that local subsidence continued into Miocene- Pliocene time, and was followed in the northern Lowland by extensive Pleistocene glaciation. In the northern Lowland, Holocene faulting is recognized in outcrop and is interpreted on seismic data acquired in Puget Sound. Structures formed by early Miocene or earlier events may have trapped migrating hydrocarbons. Structures formed or modified by Holocene faulting very probably post-date hydrocarbon generation and migration. The region appears to host potential geologic sequestration targets, including coals, sandstones, and vesicular basalt flows. The size and location of potential traps is poorly constrained by present data. Experience in better explored fore arc basins suggests 10 to 30 percent of the basin may be deformed into suitable trapping geometries. Modern seismic data is required to identify potential sequestration traps. More than one well will be required to confirm the presence and size of these traps. The present boom in oil and gas drilling has created a robust environment for seismic and drilling companies, who command unprecedented rates for their services. Only one seismic crew is presently active on the West Coast, and only a few exploration drilling rigs are available. If this environment persists, then sequestration efforts will compete directly with the hydrocarbon industry for these services, leading to higher service company prices as well as delayed schedules. Carbon sequestration policy thus entails financial incentives that allow geologic sequestration projects to compete for exploration services.

  8. Sequestration of flue gas CO₂ by direct gas-solid carbonation of air pollution control system residues.

    PubMed

    Tian, Sicong; Jiang, Jianguo

    2012-12-18

    Direct gas-solid carbonation reactions of residues from an air pollution control system (APCr) were conducted using different combinations of simulated flue gas to study the impact on CO₂ sequestration. X-ray diffraction analysis of APCr determined the existence of CaClOH, whose maximum theoretical CO₂ sequestration potential of 58.13 g CO₂/kg APCr was calculated by the reference intensity ratio method. The reaction mechanism obeyed a model of a fast kinetics-controlled process followed by a slow product layer diffusion-controlled process. Temperature is the key factor in direct gas-solid carbonation and had a notable influence on both the carbonation conversion and the CO₂ sequestration rate. The optimal CO₂ sequestrating temperature of 395 °C was easily obtained for APCr using a continuous heating experiment. CO₂ content in the flue gas had a definite influence on the CO₂ sequestration rate of the kinetics-controlled process, but almost no influence on the final carbonation conversion. Typical concentrations of SO₂ in the flue gas could not only accelerate the carbonation reaction rate of the product layer diffusion-controlled process, but also could improve the final carbonation conversion. Maximum carbonation conversions of between 68.6% and 77.1% were achieved in a typical flue gas. Features of rapid CO₂ sequestration rate, strong impurities resistance, and high capture conversion for direct gas-solid carbonation were proved in this study, which presents a theoretical foundation for the applied use of this encouraging technology on carbon capture and storage.

  9. An Optimal Centralized Carbon Dioxide Repository for Florida, USA

    PubMed Central

    Poiencot, Brandon; Brown, Christopher

    2011-01-01

    For over a decade, the United States Department of Energy, and engineers, geologists, and scientists from all over the world have investigated the potential for reducing atmospheric carbon emissions through carbon sequestration. Numerous reports exist analyzing the potential for sequestering carbon dioxide at various sites around the globe, but none have identified the potential for a statewide system in Florida, USA. In 2005, 83% of Florida’s electrical energy was produced by natural gas, coal, or oil (e.g., fossil fuels), from power plants spread across the state. In addition, only limited research has been completed on evaluating optimal pipeline transportation networks to centralized carbon dioxide repositories. This paper describes the feasibility and preliminary locations for an optimal centralized Florida-wide carbon sequestration repository. Linear programming optimization modeling is used to plan and route an idealized pipeline network to existing Florida power plants. Further analysis of the subsurface geology in these general locations will provide insight into the suitability of the subsurface conditions and the available capacity for carbon sequestration at selected possible repository sites. The identification of the most favorable site(s) is also presented. PMID:21695024

  10. An optimal centralized carbon dioxide repository for Florida, USA.

    PubMed

    Poiencot, Brandon; Brown, Christopher

    2011-04-01

    For over a decade, the United States Department of Energy, and engineers, geologists, and scientists from all over the world have investigated the potential for reducing atmospheric carbon emissions through carbon sequestration. Numerous reports exist analyzing the potential for sequestering carbon dioxide at various sites around the globe, but none have identified the potential for a statewide system in Florida, USA. In 2005, 83% of Florida's electrical energy was produced by natural gas, coal, or oil (e.g., fossil fuels), from power plants spread across the state. In addition, only limited research has been completed on evaluating optimal pipeline transportation networks to centralized carbon dioxide repositories. This paper describes the feasibility and preliminary locations for an optimal centralized Florida-wide carbon sequestration repository. Linear programming optimization modeling is used to plan and route an idealized pipeline network to existing Florida power plants. Further analysis of the subsurface geology in these general locations will provide insight into the suitability of the subsurface conditions and the available capacity for carbon sequestration at selected possible repository sites. The identification of the most favorable site(s) is also presented.

  11. Life cycle analysis of pistachio production in Greece.

    PubMed

    Bartzas, Georgios; Komnitsas, Kostas

    2017-10-01

    In the present paper, a life cycle assessment (LCA) study regarding pistachio (Pistacia vera L.) cultivation in Aegina island, Greece, was performed to evaluate the energy use footprint and the associated environmental impacts. In this context, a detailed life cycle inventory was created based on site-survey data and used for a holistic cradle-to-farm gate LCA analysis using the GaBi 6.5 software. The main impact categories assessed were acidification potential (AP), eutrophication potential (EP), global warming potential (GWP), ozone depletion potential (ODP), photochemical ozone creation potential (POCP) and cumulative energy demand (CED). In order to reveal the main environmental concerns pertinent to pistachio production and in turn propose measures for the reduction of environmental and energetic impacts, three scenarios were compared, namely the Baseline scenario (BS) that involves current cultivation practices, the Green Energy (GE) scenario that involves the use of biological fertilizers i.e. compost, and the Waste Utilization (WU) scenario that involves the production of biochar from pistachio and other agricultural wastes and its subsequent soil application to promote carbon sequestration and improve soil quality. Based on the results of this study, the use of compost for fertilization (GE scenario), which results in approximately 9% savings in terms of energy consumption and the five environmental impact categories studied compared to BS scenario, is considered a promising alternative cultivation strategy. Slightly higher savings (10% on average) in terms of the five calculated environmental impact categories, compared to the BS scenario, were indicated when the WU scenario was considered. Regarding energy consumption, the WU scenario results in minor increase, 3%, compared to the BS scenario. Results of uncertainty analysis performed using the Monte Carlo technique and contribution analysis showed that GE and WU scenarios offer reliable and significant eco-profile improvements for pistachio production in the study area compared to the current situation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Strategic Environmental Research and Development Program (SERDP) Annual Report to Congress - Fiscal Year 2004

    DTIC Science & Technology

    2005-03-01

    1305), Battelle Memorial Institute • Identification of Metabolic Routes and Catabolic Enzymes Involved in Phytoremediation of the Nitro-Substituted...Heavy metals are among the most common soil contaminants, particularly cadmium, arsenic , chromium, and lead. DoD facilities can have extensive soil...Precipitation and Long-Term Sequestration of Metal Sulfides (CU-1373), GeoSyntec Consultants, Inc. • Environmental Fate and Exposure Assessment of Arsenic in

  13. Carbon exchange by establishing biofuel crops in Central Illinois

    USDA-ARS?s Scientific Manuscript database

    Perennial grass biofuels may contribute to long-term carbon sequestration in soils, thereby providing a broad range of environmental benefits at multiple scales. To quantify those benefits, the carbon balance was investigated over three perennial grass biofuel crops miscanthus (Miscanthus giganteus)...

  14. Nitrogen feedbacks increase future terrestrial ecosystem carbon uptake in an individual-based dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Wårlind, D.; Smith, B.; Hickler, T.; Arneth, A.

    2014-11-01

    Recently a considerable amount of effort has been put into quantifying how interactions of the carbon and nitrogen cycle affect future terrestrial carbon sinks. Dynamic vegetation models, representing the nitrogen cycle with varying degree of complexity, have shown diverging constraints of nitrogen dynamics on future carbon sequestration. In this study, we use LPJ-GUESS, a dynamic vegetation model employing a detailed individual- and patch-based representation of vegetation dynamics, to evaluate how population dynamics and resource competition between plant functional types, combined with nitrogen dynamics, have influenced the terrestrial carbon storage in the past and to investigate how terrestrial carbon and nitrogen dynamics might change in the future (1850 to 2100; one representative "business-as-usual" climate scenario). Single-factor model experiments of CO2 fertilisation and climate change show generally similar directions of the responses of C-N interactions, compared to the C-only version of the model as documented in previous studies using other global models. Under an RCP 8.5 scenario, nitrogen limitation suppresses potential CO2 fertilisation, reducing the cumulative net ecosystem carbon uptake between 1850 and 2100 by 61%, and soil warming-induced increase in nitrogen mineralisation reduces terrestrial carbon loss by 31%. When environmental changes are considered conjointly, carbon sequestration is limited by nitrogen dynamics up to the present. However, during the 21st century, nitrogen dynamics induce a net increase in carbon sequestration, resulting in an overall larger carbon uptake of 17% over the full period. This contrasts with previous results with other global models that have shown an 8 to 37% decrease in carbon uptake relative to modern baseline conditions. Implications for the plausibility of earlier projections of future terrestrial C dynamics based on C-only models are discussed.

  15. Agricultural land abandonment in Mediterranean environment provides ecosystem services via soil carbon sequestration.

    PubMed

    Novara, Agata; Gristina, Luciano; Sala, Giovanna; Galati, Antonino; Crescimanno, Maria; Cerdà, Artemi; Badalamenti, Emilio; La Mantia, Tommaso

    2017-01-15

    Abandonment of agricultural land leads to several consequences for ecosystem functions. Agricultural abandonment may be a significant and low cost strategy for carbon sequestration and mitigation of anthropogenic CO 2 emissions due to the vegetation recovery and increase in soil organic matter. The aim of this study was to: (i) estimate the influence of different Soil Regions (areas characterized by a typical climate and parent material association) and Bioclimates (zones with homogeneous climatic regions and thermotype indices) on soil organic carbon (SOC) dynamics after agricultural land abandonment; and (ii) to analyse the efficiency of the agri-environment policy (agri-environment measures) suggested by the European Commission in relation to potential SOC stock ability in the Sicilian Region (Italy). In order to quantify the effects of agricultural abandonment on SOC, a dataset with original data that was sampled in Sicily and existing data from the literature were analysed according to the IPCC (Intergovernmental Panel on Climate Change) methodology. Results showed that abandonment of cropland soils increased SOC stock by 9.03MgCha -1 on average, ranging from 5.4MgCha -1 to 26.7MgCha -1 in relation to the Soil Region and Bioclimate. The estimation of SOC change after agricultural use permitted calculation of the payments for ecosystem service (PES) of C sequestration after agricultural land abandonment in relation to environmental benefits, increasing in this way the efficiency of PES. Considering the 14,337ha of abandoned lands in Sicily, the CO 2 emission as a whole was reduced by 887,745Mg CO 2 . Therefore, it could be concluded that abandoned agricultural fields represents a valid opportunity to mitigate agriculture sector emissions in Sicily. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Comparison of municipal solid waste treatment technologies from a life cycle perspective in China.

    PubMed

    Dong, Jun; Chi, Yong; Zou, Daoan; Fu, Chao; Huang, Qunxing; Ni, Mingjiang

    2014-01-01

    China has endured the increasing generation of municipal solid waste; hence, environmental analysis of current waste management systems is of crucial importance. This article presents a comprehensive life cycle assessment of three waste treatment technologies practiced in Hangzhou, China: landfill with and without energy recovery, and incineration with waste-to-energy. Adopting region-specific data, the study covers various environmental impacts, such as global warming, acidification, nutrient enrichment, photochemical ozone formation, human toxicity and ecotoxicity. The results show that energy recovery poses a positive effect in environmental savings. Environmental impacts decrease significantly in landfill with the utilization of biogas owing to combined effects by emission reduction and electricity generation. Incineration is preferable to landfill, but toxicity-related impacts also need to be improved. Furthermore, sensitivity analysis shows that the benefit of carbon sequestration will noticeably decrease global warming potential of both landfill scenarios. Gas collection efficiency is also a key parameter influencing the performance of landfill. Based on the results, improvement methods are proposed. Energy recovery is recommended both in landfill and incineration. For landfill, gas collection systems should be upgraded effectively; for incineration, great efforts should be made to reduce heavy metals and dioxin emissions.

  17. Carbon sequestration efficiency of organic amendments in a long-term experiment on a vertisol in Huang-Huai-Hai Plain, China.

    PubMed

    Hua, Keke; Wang, Daozhong; Guo, Xisheng; Guo, Zibin

    2014-01-01

    Soil organic carbon (SOC) sequestration is important for improving soil fertility of cropland and for the mitigation of greenhouse gas emissions to the atmosphere. The efficiency of SOC sequestration depends on the quantity and quality of the organic matter, soil type, and climate. Little is known about the SOC sequestration efficiency of organic amendments in Vertisols. Thus, we conducted the research based on 29 years (1982-2011) of long-term fertilization experiment with a no fertilizer control and five fertilization regimes: CK (control, no fertilizer), NPK (mineral NPK fertilizers alone), NPK+1/2W (mineral NPK fertilizers combined with half the amount of wheat straw), NPK+W (mineral NPK fertilizers combined with full the amount of wheat straw), NPK+PM (mineral NPK fertilizers combined with pig manure) and NPK+CM (mineral NPK fertilizers combined cattle manure). Total mean annual C inputs were 0.45, 1.55, 2.66, 3.71, 4.68 and 6.56 ton/ha/yr for CK, NPK, NPKW1/2, NPKW, NPKPM and NPKCM, respectively. Mean SOC sequestration rate was 0.20 ton/ha/yr in the NPK treatment, and 0.39, 0.50, 0.51 and 0.97 ton/ha/yr in the NPKW1/2, NPKW, NPKPM, and NPKCM treatments, respectively. A linear relationship was observed between annual C input and SOC sequestration rate (SOCsequestration rate  = 0.16 Cinput -0.10, R = 0.95, P<0.01), suggesting a C sequestration efficiency of 16%. The Vertisol required an annual C input of 0.63 ton/ha/yr to maintain the initial SOC level. Moreover, the C sequestration efficiencies of wheat straw, pig manure and cattle manure were 17%, 11% and 17%, respectively. The results indicate that the Vertisol has a large potential to sequester SOC with a high efficiency, and applying cattle manure or wheat straw is a recommendable SOC sequestration practice in Vertisols.

  18. Carbon Sequestration Efficiency of Organic Amendments in a Long-Term Experiment on a Vertisol in Huang-Huai-Hai Plain, China

    PubMed Central

    Hua, Keke; Wang, Daozhong; Guo, Xisheng; Guo, Zibin

    2014-01-01

    Soil organic carbon (SOC) sequestration is important for improving soil fertility of cropland and for the mitigation of greenhouse gas emissions to the atmosphere. The efficiency of SOC sequestration depends on the quantity and quality of the organic matter, soil type, and climate. Little is known about the SOC sequestration efficiency of organic amendments in Vertisols. Thus, we conducted the research based on 29 years (1982–2011) of long-term fertilization experiment with a no fertilizer control and five fertilization regimes: CK (control, no fertilizer), NPK (mineral NPK fertilizers alone), NPK+1/2W (mineral NPK fertilizers combined with half the amount of wheat straw), NPK+W (mineral NPK fertilizers combined with full the amount of wheat straw), NPK+PM (mineral NPK fertilizers combined with pig manure) and NPK+CM (mineral NPK fertilizers combined cattle manure). Total mean annual C inputs were 0.45, 1.55, 2.66, 3.71, 4.68 and 6.56 ton/ha/yr for CK, NPK, NPKW1/2, NPKW, NPKPM and NPKCM, respectively. Mean SOC sequestration rate was 0.20 ton/ha/yr in the NPK treatment, and 0.39, 0.50, 0.51 and 0.97 ton/ha/yr in the NPKW1/2, NPKW, NPKPM, and NPKCM treatments, respectively. A linear relationship was observed between annual C input and SOC sequestration rate (SOCsequestration rate  = 0.16 Cinput –0.10, R = 0.95, P<0.01), suggesting a C sequestration efficiency of 16%. The Vertisol required an annual C input of 0.63 ton/ha/yr to maintain the initial SOC level. Moreover, the C sequestration efficiencies of wheat straw, pig manure and cattle manure were 17%, 11% and 17%, respectively. The results indicate that the Vertisol has a large potential to sequester SOC with a high efficiency, and applying cattle manure or wheat straw is a recommendable SOC sequestration practice in Vertisols. PMID:25265095

  19. Ecological carbon sequestration via wood harvest and storage (WHS): Can it be a viable climate and energy strategy?

    NASA Astrophysics Data System (ADS)

    Zeng, N.; Zaitchik, B. F.; King, A. W.; Wullschleger, S. D.

    2016-12-01

    A carbon sequestration strategy is proposed in which forests are sustainably managed to optimal carbon productivity, and a fraction of the wood is selectively harvested and stored to prevent decomposition under anaerobic, dry or cold conditions. Because a large flux of CO2 is constantly assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink. The live trees serve as a `carbon scrubber' or `carbon remover' that provides continuous sequestration (negative emissions). The stored wood is a semi-permanent carbon sink, but also serves as a `biomass/bioenergy reserve' that could be utilized in the future.Based on forest coarse wood production rate, land availability, bioconservation and other practical constraints, we estimate a carbon sequestration potential for wood harvest and storage (WHS) 1-3 GtC y-1. The implementation of such a scheme at our estimated lower value of 1 GtC y-1 would imply a doubling of the current world wood harvest rate. This can be achieved by harvesting wood at a modest harvesting intensity of 1.2 tC ha-1 y-1, over a forest area of 8 Mkm2 (800 Mha). To achieve the higher value of 3 GtC y-1, forests need to be managed this way on half of the world's forested land, or on a smaller area but with higher harvest intensity. However, the actual implementation may face challenges that vary regionally. We propose `carbon sequestration and biomass farms' in the tropical deforestation frontiers with mixed land use for carbon, energy, agriculture, as well as conservation. In another example, the forests damaged by insect infestation could be thinned to reduce fire and harvested for carbon sequestration.We estimate a cost of $10-50/tCO2 for harvest and storage around the landing site. The technique is low tech, distributed and reversible. We compare the potential of WHS with a number of other carbon sequestration methods. We will also show its impact on future land carbon sink and climate target using carbon-cliamte model projections.

  20. Carbon sequestration by Australian tidal marshes.

    PubMed

    Macreadie, Peter I; Ollivier, Q R; Kelleway, J J; Serrano, O; Carnell, P E; Ewers Lewis, C J; Atwood, T B; Sanderman, J; Baldock, J; Connolly, R M; Duarte, C M; Lavery, P S; Steven, A; Lovelock, C E

    2017-03-10

    Australia's tidal marshes have suffered significant losses but their recently recognised importance in CO 2 sequestration is creating opportunities for their protection and restoration. We compiled all available data on soil organic carbon (OC) storage in Australia's tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha -1 (range 14-963 Mg OC ha -1 ). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha -1 yr -1 . Geomorphology was the most important predictor of OC stocks, with fluvial sites having twice the stock of OC as seaward sites. Australia's 1.4 million hectares of tidal marshes contain an estimated 212 million tonnes of OC in the surface 1 m, with a potential CO 2 -equivalent value of $USD7.19 billion. Annual sequestration is 0.75 Tg OC yr -1 , with a CO 2 -equivalent value of $USD28.02 million per annum. This study provides the most comprehensive estimates of tidal marsh blue carbon in Australia, and illustrates their importance in climate change mitigation and adaptation, acting as CO 2 sinks and buffering the impacts of rising sea level. We outline potential further development of carbon offset schemes to restore the sequestration capacity and other ecosystem services provided by Australia tidal marshes.

  1. Milkweed butterfly resistance to plant toxins is linked to sequestration, not coping with a toxic diet.

    PubMed

    Petschenka, Georg; Agrawal, Anurag A

    2015-11-07

    Insect resistance to plant toxins is widely assumed to have evolved in response to using defended plants as a dietary resource. We tested this hypothesis in the milkweed butterflies (Danaini) which have progressively evolved higher levels of resistance to cardenolide toxins based on amino acid substitutions of their cellular sodium-potassium pump (Na(+)/K(+)-ATPase). Using chemical, physiological and caterpillar growth assays on diverse milkweeds (Asclepias spp.) and isolated cardenolides, we show that resistant Na(+)/K(+)-ATPases are not necessary to cope with dietary cardenolides. By contrast, sequestration of cardenolides in the body (as a defence against predators) is associated with the three levels of Na(+)/K(+)-ATPase resistance. To estimate the potential physiological burden of cardenolide sequestration without Na(+)/K(+)-ATPase adaptations, we applied haemolymph of sequestering species on isolated Na(+)/K(+)-ATPase of sequestering and non-sequestering species. Haemolymph cardenolides dramatically impair non-adapted Na(+)/K(+)-ATPase, but had systematically reduced effects on Na(+)/K(+)-ATPase of sequestering species. Our data indicate that major adaptations to plant toxins may be evolutionarily linked to sequestration, and may not necessarily be a means to eat toxic plants. Na(+)/K(+)-ATPase adaptations thus were a potential mechanism through which predators spurred the coevolutionary arms race between plants and insects. © 2015 The Author(s).

  2. Milkweed butterfly resistance to plant toxins is linked to sequestration, not coping with a toxic diet

    PubMed Central

    Petschenka, Georg; Agrawal, Anurag A.

    2015-01-01

    Insect resistance to plant toxins is widely assumed to have evolved in response to using defended plants as a dietary resource. We tested this hypothesis in the milkweed butterflies (Danaini) which have progressively evolved higher levels of resistance to cardenolide toxins based on amino acid substitutions of their cellular sodium–potassium pump (Na+/K+-ATPase). Using chemical, physiological and caterpillar growth assays on diverse milkweeds (Asclepias spp.) and isolated cardenolides, we show that resistant Na+/K+-ATPases are not necessary to cope with dietary cardenolides. By contrast, sequestration of cardenolides in the body (as a defence against predators) is associated with the three levels of Na+/K+-ATPase resistance. To estimate the potential physiological burden of cardenolide sequestration without Na+/K+-ATPase adaptations, we applied haemolymph of sequestering species on isolated Na+/K+-ATPase of sequestering and non-sequestering species. Haemolymph cardenolides dramatically impair non-adapted Na+/K+-ATPase, but had systematically reduced effects on Na+/K+-ATPase of sequestering species. Our data indicate that major adaptations to plant toxins may be evolutionarily linked to sequestration, and may not necessarily be a means to eat toxic plants. Na+/K+-ATPase adaptations thus were a potential mechanism through which predators spurred the coevolutionary arms race between plants and insects. PMID:26538594

  3. Representing Carbon Capture and Storage in MARKAL EPAUS9r16a

    EPA Science Inventory

    Energy system models are used to evaluate the energy and environmental implications of alternative pathways for producing and using energy. Many such models include representations of the costs and capacities of carbon capture and sequestration (CCS). In this presentation, Dan Lo...

  4. Environmental applications of HTC technology: Biochar production, carbon sequestration, and waste conversion

    USDA-ARS?s Scientific Manuscript database

    Motivations for the development and use of hydrothermal carbonization (or wet pyrolysis) have been primarily directed towards the sustainable creation of carbon nanomaterials/nanostructures for use in applications ranging from hydrogen storage to chemical adsorption. The utility of this process, how...

  5. Sediment Carbon Accumulation in Southern Latitude Saltmarsh Communities of Tasmania, Australia.

    PubMed

    Ellison, Joanna C; Beasy, Kim M

    2018-05-02

    Carbon sequestration values of wetlands are greatest in their sediments. Northern hemisphere research dominates the earlier saltmarsh carbon sequestration literature, recently augmented by analyses across mainland Australia where species assemblages, catchment histories and environmental settings differ. No previous assessment has been made for Tasmania. Carbon stores and accumulation rates in saltmarsh sediments of the Rubicon estuary, Tasmania, were investigated. Carbon was determined from sediment cores by Elemental Analyser, combined with analysis of organic content and bulk density. Carbon accumulation was determined using short-term and long-term sediment accretion indicators. Results showed carbon densities to be lower than global averages, with variation found between carbon stores of native and introduced species zones. Cores from introduced Spartina anglica indicated a trend of higher sediment carbon percentages relative to cores from native saltmarsh Juncus kraussii and Sarcocornia quinqueflora , and in finer grain sizes. Sediment carbon stock of 30 cm depths was 49.5 Mg C ha −1 for native saltmarsh and 55.5 Mg C ha −1 for Spartina . Carbon percentages were low owing to high catchment inorganic sediment yields, however carbon accumulation rates were similar to global averages, particularly under Spartina . Covering 85% of saltmarsh area in the estuary, Spartina contributes the majority to carbon stores, potentially indicating a previously unrecognized value for this invasive species in Australia.

  6. Spatial Associations and Chemical Composition of Organic Carbon Sequestered in Fe, Ca, and Organic Carbon Ternary Systems.

    PubMed

    Sowers, Tyler D; Adhikari, Dinesh; Wang, Jian; Yang, Yu; Sparks, Donald L

    2018-05-25

    Organo-mineral associations of organic carbon (OC) with iron (Fe) oxides play a major role in environmental OC sequestration, a process crucial to mitigating climate change. Calcium has been found to have high coassociation with OC in soils containing high Fe content, increase OC sorption extent to poorly crystalline Fe oxides, and has long been suspected to form bridging complexes with Fe and OC. Due to the growing realization that Ca may be an important component of C cycling, we launched a scanning transmission X-ray microscopy (STXM) investigation, paired with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, in order to spatially resolve Fe, Ca, and OC relationships and probe the effect of Ca on sorbed OC speciation. We performed STXM-NEXAFS analysis on 2-line ferrihydrite reacted with leaf litter-extractable dissolved OC and citric acid in the absence and presence of Ca. Organic carbon was found to highly associate with Ca ( R 2 = 0.91). Carboxylic acid moieties were dominantly sequestered; however, Ca facilitated the additional sequestration of aromatic and phenolic moieties. Also, C NEXAFS revealed polyvalent metal ion complexation. Our results provide evidence for the presence of Fe-Ca-OC ternary complexation, which has the potential to significantly impact how organo-mineral associations are modeled.

  7. Watershed delineation and nitrogen source analysis for Bayou ...

    EPA Pesticide Factsheets

    Nutrient pollution in stormwater runoff from urbanized areas contributes to water quality degradation in streams and receiving waterbodies. Agriculture, population growth, and industrial activities are significant sources of nitrogen inputs for surface waters. Increased nitrogen loading stimulates eutrophication through algal blooms, which leads to an overall decrease in drinking water and aquatic habitat quality. Bayou Chico, a highly urbanized watershed in the Pensacola Bay system in northwest Florida, is a nutrient-impaired waterbody under management to reduce bacteria and nutrient loadings, in accordance with the Florida Department of Environmental Protection’s (FDEP) Basin Management Action Plan. Best management practices and green infrastructure (GI) throughout Bayou Chico help reduce nitrogen inputs by retaining and filtering water. GI can function as a nitrogen sink by sorption or infiltration into soils, sequestration into plant material, and denitrification through microbial processes. However, a better understanding of the efficiency of these systems is needed to better inform management practices on future nitrogen reduction. This project will address two issues relating to the presence of nitrogen in the Bayou Chico watershed: 1) the identification of specific nitrogen sources within urbanized areas, and 2) the potential rates of nitrogen removal and sequestration from GI and nitrogen transport throughout the bayou. To accomplish these goals, nitr

  8. Certification Framework Based on Effective Trapping for Geologic Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldenburg, Curtis M.; Bryant, Steven L.; Nicot, Jean-Philippe

    2009-01-15

    We have developed a certification framework (CF) for certifying the safety and effectiveness of geologic carbon sequestration (GCS) sites. Safety and effectiveness are achieved if CO{sub 2} and displaced brine have no significant impact on humans, other living things, resources, or the environment. In the CF, we relate effective trapping to CO{sub 2} leakage risk which takes into account both the impact and probability of leakage. We achieve simplicity in the CF by using (1) wells and faults as the potential leakage pathways, (2) compartments to represent environmental resources that may be impacted by leakage, (3) CO{sub 2} fluxes andmore » concentrations in the compartments as proxies for impact to vulnerable entities, (4) broad ranges of storage formation properties to generate a catalog of simulated plume movements, and (5) probabilities of intersection of the CO{sub 2} plume with the conduits and compartments. We demonstrate the approach on a hypothetical GCS site in a Texas Gulf Coast saline formation. Through its generality and flexibility, the CF can contribute to the assessment of risk of CO{sub 2} and brine leakage as part of the certification process for licensing and permitting of GCS sites around the world regardless of the specific regulations in place in any given country.« less

  9. Carbon dynamics and land-use choices: building a regional-scale multidisciplinary model

    USGS Publications Warehouse

    Kerr, Suzi; Liu, Shu-Guang; Pfaff, Alexander S.P.; Hughes, R. Flint

    2003-01-01

    Policy enabling tropical forests to approach their potential contribution to global-climate-change mitigation requires forecasts of land use and carbon storage on a large scale over long periods. In this paper, we present an integrated modeling methodology that addresses these needs. We model the dynamics of the human land-use system and of C pools contained in each ecosystem, as well as their interactions. The model is national scale, and is currently applied in a preliminary way to Costa Rica using data spanning a period of over 50 years. It combines an ecological process model, parameterized using field and other data, with an economic model, estimated using historical data to ensure a close link to actual behavior. These two models are linked so that ecological conditions affect land-use choices and vice versa. The integrated model predicts land use and its consequences for C storage for policy scenarios. These predictions can be used to create baselines, reward sequestration, and estimate the value in both environmental and economic terms of including C sequestration in tropical forests as part of the efforts to mitigate global climate change. The model can also be used to assess the benefits from costly activities to increase accuracy and thus reduce errors and their societal costs.

  10. Microalgae: a robust "green bio-bridge" between energy and environment.

    PubMed

    Chen, Yimin; Xu, Changan; Vaidyanathan, Seetharaman

    2018-05-01

    Microalgae are a potential candidate for biofuel production and environmental treatment because of their specific characteristics (e.g. fast growth, carbon neutral, and rich lipid accumulations). However, several primary bottlenecks still exist in current technologies, including low biomass conversion efficiency, bio-invasion from the external environment, limited or costly nutrient sources, and high energy and capital input for harvest, and stalling its industrial progression. Coupling biofuel production with environmental treatment renders microalgae a more feasible feedstock. This review focuses on microalgae biotechnologies for both bioenergy generation and environmental treatment (e.g. CO 2 sequestration and wastewater reclamation). Different intelligent technologies have been developed, especially during the last decade, to eliminate the bottlenecks, including mixotrophic/heterotrophic cultivation, immobilization, and co-cultivation. It has been realized that any single purpose for the cultivation of microalgae is not an economically feasible option. Combinations of applications in biorefineries are gradually reckoned to be necessary as it provides more economically feasible and environmentally sustainable operations. This presents microalgae as a special niche occupier linking the fields of energy and environmental sciences and technologies. The integrated application of microalgae is also proven by most of the life-cycle analysis studies. This study summarizes the latest development of primary microalgal biotechnologies in the two areas that will bring researchers a comprehensive view towards industrialization with an economic perspective.

  11. The Effect of Government Actions on Environmental Technology Innovation: Applications to the Integrated Assessment of Carbon Sequestration Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, E. S.; Hounshell, D. A.; Yeh, S.

    2004-01-15

    This project seeks to improve the ability of integrated assessment models (IA) to incorporate changes in technology, especially environmental technologies, cost and performance over time. In this report, we present results of research that examines past experience in controlling other major power plant emissions that might serve as a reasonable guide to future rates of technological progress in carbon capture and sequestration (CCS) systems. In particular, we focus on U.S. and worldwide experience with sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) control technologies over the past 30 years, and derive empirical learning rates for these technologies. The patternsmore » of technology innovation are captured by our analysis of patent activities and trends of cost reduction over time. Overall, we found learning rates of 11% for the capital costs of flue gas desulfurization (FGD) system for SO{sub 2} control, and 13% for selective catalytic reduction (SCR) systems for NO{sub x} control. We explore the key factors responsible for the observed trends, especially the development of regulatory policies for SO{sub 2} and NO{sub x} control, and their implications for environmental control technology innovation.« less

  12. Approach for environmental baseline water sampling

    USGS Publications Warehouse

    Smith, K.S.

    2011-01-01

    Samples collected during the exploration phase of mining represent baseline conditions at the site. As such, they can be very important in forecasting potential environmental impacts should mining proceed, and can become measurements against which future changes are compared. Constituents in stream water draining mined and mineralized areas tend to be geochemically, spatially, and temporally variable, which presents challenges in collecting both exploration and baseline water-quality samples. Because short-term (daily) variations can complicate long-term trends, it is important to consider recent findings concerning geochemical variability of stream-water constituents at short-term timescales in designing sampling plans. Also, adequate water-quality information is key to forecasting potential ecological impacts from mining. Therefore, it is useful to collect baseline water samples adequate tor geochemical and toxicological modeling. This requires complete chemical analyses of dissolved constituents that include major and minor chemical elements as well as physicochemical properties (including pH, specific conductance, dissolved oxygen) and dissolved organic carbon. Applying chemical-equilibrium and appropriate toxicological models to water-quality information leads to an understanding of the speciation, transport, sequestration, bioavailability, and aquatic toxicity of potential contaminants. Insights gained from geochemical and toxicological modeling of water-quality data can be used to design appropriate mitigation and for economic planning for future mining activities.

  13. Assessing carbon dynamics in semiarid ecosystems : Balancing potential gains with potential large rapid losses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breshears, D. D.; Ebinger, M. H.; Unkefer, P. J.

    Photosynthesis and respiration are the largest fluxes into and out of the biosphere (Molles 1999). Consequently, small changes in these fluxes can potentially produce large changes in the storage of carbon in the biosphere. Terrestrial carbon fluxes account for more than half of the carbon transferred between the atmosphere and the earth's surface (about 120 GigaTons/year), and current stores of carbon in terrestrial ecosystem are estimated at 2060 GigaTons. Increasing attention is being focused on the role of managing and sequestering carbon in the terrestrial biosphere as a means for addressing global climate change (IGBP, 1998; U.S. Department of Energy,more » 1999). Terrestrial ecosystems are widely recognized as a major biological scrubber for atmosphereic CO{sub 2} and their ability to finction as such can be increased significantly over the next 25 years through careful manipulation. The potential for terrestrial carbon gains has been the subject of much attention (Dixon et al., 1994; Masera et al. 1997; Cao and Woodward, 1998; DeLucia et al. 1999). In contrast to other strategies for reducing net carbon emissions, terrestrial sequestration has the potential for rapid implementation. Strategies that focus on soil carbon are likely to be effective because in addition to being a storage pool of carbon, soil carbon also improves site productivity through improving soil quality (e.g., water retention and nutrient availability). The carbon pool in soils is immense and highly dynamic. The flux of carbon into and out of soils is one of the largest uncertainties in the total mass balance of global carbon (NRC, 1999; La1 et al., 1998; Cambardella, 1998). Reducing these uncertainties is key to developing carbon sequestration strategies. Soil carbon pools have been greatly depleted over recent centuries, and there is potential to increase storage of carbon in these soils through effective land management. Whereas carbon in vegetation can be managed directly through land use, carbon in soils generally must be managed indirectly through manipulation of vegetation and nutrients. Land management as well as climate changes have the potential to increase soil carbon, but also could trigger large soil carbon losses. Recently, the importance of accounting for countervailing losses in assessing potential amounts of terrestrial carbon that can be sequestered has been highlighted (Schlesinger, 1999; Walker et al., 1999). Realistic assessment of terrestrial carbon sequestration strategies must consider net results of an applied strategy, not simply projected carbon gains. In addition, large, rapid losses of carbon resulting from carbon management strategies could exacerbate the global warming rather than mitigating it. Such potential losses include rapid loss of carbon in vegetation due to fire and rapid loss of soil carbon triggered by reductions in ground cover (e.g., fire, drought). Therefore, strategies for terrestrial carbon sequestration must determine how to increase terrestrial carbon while minimizing the risk of large-scale catastrophic losses. Our objectives in this paper are to (1) highlight approaches that are being considered in terms of terrestrial carbon sequestration, (2) highlight case studies for which large losses of carbon may occur, and (3) suggest future directions and application for terrestrial carbon sequestration.« less

  14. Rapid assessment of U.S. forest and soil organic carbon storage and forest biomass carbon-sequestration capacity

    USGS Publications Warehouse

    Sundquist, Eric T.; Ackerman, Katherine V.; Bliss, Norman B.; Kellndorfer, Josef M.; Reeves, Matt C.; Rollins, Matthew G.

    2009-01-01

    This report provides results of a rapid assessment of biological carbon stocks and forest biomass carbon sequestration capacity in the conterminous United States. Maps available from the U.S. Department of Agriculture are used to calculate estimates of current organic carbon storage in soils (73 petagrams of carbon, or PgC) and forest biomass (17 PgC). Of these totals, 3.5 PgC of soil organic carbon and 0.8 PgC of forest biomass carbon occur on lands managed by the U.S. Department of the Interior (DOI). Maps of potential vegetation are used to estimate hypothetical forest biomass carbon sequestration capacities that are 3–7 PgC higher than current forest biomass carbon storage in the conterminous United States. Most of the estimated hypothetical additional forest biomass carbon sequestration capacity is accrued in areas currently occupied by agriculture and development. Hypothetical forest biomass carbon sequestration capacities calculated for existing forests and woodlands are within ±1 PgC of estimated current forest biomass carbon storage. Hypothetical forest biomass sequestration capacities on lands managed by the DOI in the conterminous United States are 0–0.4 PgC higher than existing forest biomass carbon storage. Implications for forest and other land management practices are not considered in this report. Uncertainties in the values reported here are large and difficult to quantify, particularly for hypothetical carbon sequestration capacities. Nevertheless, this rapid assessment helps to frame policy and management discussion by providing estimates that can be compared to amounts necessary to reduce predicted future atmospheric carbon dioxide levels.

  15. Effect of heterogeneousatmospheric CO2 on simulated global carbon budget

    USGS Publications Warehouse

    Zhang, Zhen; Jiang, Hong; Liu, Jinxun; Ju, Weimin; Zhang, Xiuying

    2013-01-01

    The effects of rising atmospheric carbon dioxide (CO2) on terrestrial carbon (C) sequestration have been a key focus in global change studies. As anthropological CO2 emissions substantially increase, the spatial variability of atmospheric CO2 should be considered to reduce the potential bias on C source and sink estimations. In this study, the global spatial–temporal patterns of near surface CO2 concentrations for the period 2003-2009 were established using the SCIAMACHY satellite observations and the GLOBALVIEW-CO2 field observations. With this CO2 data and the Integrated Biosphere Simulator (IBIS), our estimation of the global mean annual NPP and NEP was 0.5% and 7% respectively which differs from the traditional C sequestration assessments. The Amazon, Southeast Asia, and Tropical Africa showed higher C sequestration than the traditional assessment, and the rest of the areas around the world showed slightly lower C sequestration than the traditional assessment. We find that the variability of NEP is less intense under heterogeneous CO2 pattern on a global scale. Further studies of the cause of CO2 variation and the interactions between natural and anthropogenic processes of C sequestration are needed.

  16. Effects of biochars produced from solid organic municipal waste on soil quality parameters

    USDA-ARS?s Scientific Manuscript database

    New, value-added uses for solid organic waste are needed for environmental and economic sustainability. Fortunately, value-added biochars can be produced from mixed organic solid waste, thereby addressing solid waste management issues, and enabling long-term carbon sequestration. We hypothesize that...

  17. Influence of soil properties on heavy metal sequestration by biochar amendment: 2. copper desorption isotherms

    USDA-ARS?s Scientific Manuscript database

    Contaminant desorption constrains the long-term effectiveness of remediation technologies, and is strongly influenced by dynamic non-equilibrium states of environmental and biological media. Information is currently lacking in the influence of biochar and activated carbon amendments on desorption of...

  18. Subsurface Transport Over Multiple Phases Demonstration Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-01-05

    The STOMP simulator is a suite of numerical simulators developed by Pacific Northwest National Laboratory for addressing problems involving coupled multifluid hydrologic, thermal, geochemical, and geomechanical processes in the subsurface. The simulator has been applied to problems concerning environmental remediation, environmental stewardship, carbon sequestration, conventional petroleum production, and the production of unconventional hydrocarbon fuels. The simulator is copyrighted by Battelle Memorial Institute, and is available outside of PNNL via use agreements. To promote the open exchange of scientific ideas the simulator is provided as source code. A demonstration version of the simulator has been developed, which will provide potential newmore » users with an executable (not source code) implementation of the software royalty free. Demonstration versions will be offered via the STOMP website for all currently available operational modes of the simulator. The demonstration versions of the simulator will be configured with the direct banded linear system solver and have a limit of 1,000 active grid cells. This will provide potential new users with an opportunity to apply the code to simple problems, including many of the STOMP short course problems, without having to pay a license fee. Users will be required to register on the STOMP website prior to receiving an executable.« less

  19. Modelling short-rotation coppice and tree planting for urban carbon management - a citywide analysis.

    PubMed

    McHugh, Nicola; Edmondson, Jill L; Gaston, Kevin J; Leake, Jonathan R; O'Sullivan, Odhran S

    2015-10-01

    The capacity of urban areas to deliver provisioning ecosystem services is commonly overlooked and underutilized. Urban populations have globally increased fivefold since 1950, and they disproportionately consume ecosystem services and contribute to carbon emissions, highlighting the need to increase urban sustainability and reduce environmental impacts of urban dwellers. Here, we investigated the potential for increasing carbon sequestration, and biomass fuel production, by planting trees and short-rotation coppice (SRC), respectively, in a mid-sized UK city as a contribution to meeting national commitments to reduce CO 2 emissions.Iterative GIS models were developed using high-resolution spatial data. The models were applied to patches of public and privately owned urban greenspace suitable for planting trees and SRC, across the 73 km 2 area of the city of Leicester. We modelled tree planting with a species mix based on the existing tree populations, and SRC with willow and poplar to calculate biomass production in new trees, and carbon sequestration into harvested biomass over 25 years.An area of 11 km 2 comprising 15% of the city met criteria for tree planting and had the potential over 25 years to sequester 4200 tonnes of carbon above-ground. Of this area, 5·8 km 2 also met criteria for SRC planting and over the same period this could yield 71 800 tonnes of carbon in harvested biomass.The harvested biomass could supply energy to over 1566 domestic homes or 30 municipal buildings, resulting in avoided carbon emissions of 29 236 tonnes of carbon over 25 years when compared to heating by natural gas. Together with the net carbon sequestration into trees, a total reduction of 33 419 tonnes of carbon in the atmosphere could be achieved in 25 years by combined SRC and tree planting across the city. Synthesis and applications . We demonstrate that urban greenspaces in a typical UK city are underutilized for provisioning ecosystem services by trees and especially SRC, which has high biomass production potential. For urban greenspace management, we recommend that planting SRC in urban areas can contribute to reducing food-fuel conflicts on agricultural land and produce renewable energy sources close to centres of population and demand.

  20. Geologic framework for the national assessment of carbon dioxide storage resources─South Florida Basin: Chapter L in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Roberts-Ashby, Tina L.; Brennan, Sean T.; Merrill, Matthew D.; Blondes, Madalyn S.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.; Warwick, Peter D.; Corum, Margo D.

    2015-08-26

    This report presents five storage assessment units (SAUs) that have been identified as potentially suitable for geologic carbon dioxide sequestration within a 35,075-square-mile area that includes the entire onshore and State-water portions of the South Florida Basin. Platform-wide, thick successions of laterally extensive carbonates and evaporites deposited in highly cyclic depositional environments in the South Florida Basin provide several massive, porous carbonate reservoirs that are separated by evaporite seals. For each storage assessment unit identified within the basin, the areal distribution of the reservoir-seal couplet identified as suitable for geologic Carbon dioxide sequestration is presented, along with a description of the geologic characteristics that influence the potential carbon dioxide storage volume and reservoir performance. On a case-by-case basis, strategies for estimating the pore volume existing within structurally and (or) stratigraphically closed traps are also discussed. Geologic information presented in this report has been employed to calculate potential storage capacities for carbon dioxide sequestration in the storage assessment units assessed herein, although complete assessment results are not contained in this report.

  1. Soil Carbon in the Time of Climate Change

    NASA Astrophysics Data System (ADS)

    Amundson, R.

    2017-12-01

    The Earth is in the midst of human induced climate change driven by the emission of greenhouse gases largely through fossil fuels and land conversion. Drastically and rapidly reducing the net emissions are critical to avoid societally disruptive climate changes by the end of the Century. In the midst of this change are soils, that have a vast store of C and for a given change in conditions, can either rapidly add or remove C from the atmosphere. Mainstream soil and agricultural science has focused on the former for nearly two decades, conducting research and estimates of the potential global C sequestration potential of soils due to changed land management. This has culminated with the French 4 per mille initiative. While it is possible that in some countries, at some times, economic or political forces may drive farming practices one way or another, the estimated requirement that 30 to 70% of all farms on Earth adopt the best practices needed to achieve this goal is simply unrealistic. In addition, it diverts attention and resources from much more viable alternatives, and is clouding the growing need for climate adaption strategies that soil and environmental science will need to provide. Soil C sequestration will never be a significant "bridge" to C-free energy during the next few decades, which is the time frame of critical importance. Most likely, soil will be part of the CO2 sources. Few agricultural sequestration studies explicitly consider the positive feedback between soil C and temperature, and on-going loss of soil C to the atmosphere. Truly comprehensive studies of the combined management vs. climate feedback effects on soil C are few, but tend to conclude that even managed soils will continue to be a net source of CO2 this century. Only by reducing fossil fuel C emissions will we successfully, and in a time frame required by the Earth's climate system, contend with the greenhouse gas issue. Better soil C management is unlikely to slow or hold off climate change, but better adapting soils (through sound practices) to these changes may help us better contend with the negative effects of the looming change.

  2. Temporal-Spatial Pattern of Carbon Stocks in Forest Ecosystems in Shaanxi, Northwest China

    PubMed Central

    Cui, Gaoyang; Chen, Yunming; Cao, Yang

    2015-01-01

    The precise and accurate quantitative evaluation of the temporal and spatial pattern of carbon (C) storage in forest ecosystems is critical for understanding the role of forests in the global terrestrial C cycle and is essential for formulating forest management policies to combat climate change. In this study, we examined the C dynamics of forest ecosystems in Shaanxi, northwest China, based on four forest inventories (1989–1993, 1994–1998, 1999–2003, and 2004–2008) and field-sampling measurements (2012). The results indicate that the total C storage of forest ecosystems in Shaanxi increased by approximately 29.3%, from 611.72 Tg in 1993 to 790.75 Tg in 2008, partially as a result of ecological restoration projects. The spatial pattern of C storage in forest ecosystems mainly exhibited a latitude-zonal distribution across the province, increasing from north (high latitude) to south (low latitude) generally, which signifies the effect of environmental conditions, chiefly water and heat related factors, on forest growth and C sequestration. In addition, different data sources and estimation methods had a significant effect on the results obtained, with the C stocks in 2008 being considerably overestimated (864.55 Tg) and slightly underestimated (778.07 Tg) when measured using the mean C density method and integrated method, respectively. Overall, our results demonstrated that the forest ecosystem in Shaanxi acted as a C sink over the last few decades. However, further studies should be carried out with a focus on adaption of plants to environmental factors along with forest management for vegetation restoration to maximize the C sequestration potential and to better cope with climate change. PMID:26353011

  3. A method for assessing carbon stocks, carbon sequestration, and greenhouse-gas fluxes in ecosystems of the United States under present conditions and future scenarios

    USGS Publications Warehouse

    Bergamaschi, Brian A.; Bernknopf, Richard; Clow, David; Dye, Dennis; Faulkner, Stephen; Forney, William; Gleason, Robert; Hawbaker, Todd; Liu, Jinxun; Liu, Shu-Guang; Prisley, Stephen; Reed, Bradley; Reeves, Matthew; Rollins, Matthew; Sleeter, Benjamin; Sohl, Terry; Stackpoole, Sarah; Stehman, Stephen; Striegl, Robert G.; Wein, Anne; Zhu, Zhi-Liang; Zhu, Zhi-Liang

    2010-01-01

    he Energy Independence and Security Act of 2007 (EISA), Section 712, mandates the U.S. Department of the Interior to develop a methodology and conduct an assessment of the Nation’s ecosystems, focusing on carbon stocks, carbon sequestration, and emissions of three greenhouse gases (GHGs): carbon dioxide, methane, and nitrous oxide. The major requirements include (1) an assessment of all ecosystems (terrestrial systems, such as forests, croplands, wetlands, grasslands/shrublands; and aquatic ecosystems, such as rivers, lakes, and estuaries); (2) an estimate of the annual potential capacities of ecosystems to increase carbon sequestration and reduce net GHG emissions in the context of mitigation strategies (including management and restoration activities); and (3) an evaluation of the effects of controlling processes, such as climate change, land-use and land-cover change, and disturbances such as wildfires.The concepts of ecosystems, carbon pools, and GHG fluxes follow conventional definitions in use by major national and international assessment or inventory efforts. In order to estimate current ecosystem carbon stocks and GHG fluxes and to understand the potential capacity and effects of mitigation strategies, the method will use two time periods for the assessment: 2001 through 2010, which establishes a current ecosystem carbon and GHG baseline and will be used to validate the models; and 2011 through 2050, which will be used to assess potential capacities based on a set of scenarios. The scenario framework will be constructed using storylines of the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES), along with both reference and enhanced land-use and land-cover (LULC) and land-management parameters. Additional LULC and land-management mitigation scenarios will be constructed for each storyline to increase carbon sequestration and reduce GHG fluxes in ecosystems. Input from regional experts and stakeholders will be solicited to construct these scenarios.The methods for mapping the current LULC and ecosystem disturbances will require the extensive use of both remote-sensing data and field-survey data (for example, forest inventories) to capture and characterize landscape-changing events. For potential LULC changes and ecosystem disturbances, key drivers such as socioeconomic and climate changes will be used in addition to the biophysical data. The result of these analyses will be a series of maps for each future year for each scenario. These annual maps will form the basis for estimating carbon storage and GHG emissions. For terrestrial ecosystems, carbon storage, carbon-sequestration capacities, and GHG emissions under the present conditions and future scenarios will be assessed using the LULC-change and ecosystem-disturbance estimates in map format with a spatially explicit biogeochemical ensemble modeling system that incorporates properties of management activities (such as tillage or harvesting) and properties of individual ecosystems (such as energy exchange, vegetation characteristics, hydrological cycling, and soil attributes). For aquatic ecosystems, carbon burial in sediments and fluxes of GHG are functions of the present and future potential stream flow and sediment transport and will be assessed using empirical hydrological modeling methods. Validation and uncertainty analysis methods described in the methodology will follow established guidelines to assess the quality of the assessment results.The U.S. Environmental Protection Agency’s Level II ecoregions map will be the practical instrument for developing and delivering assessment results. Consequently, the ecoregion (there are 22 modified ecoregions) will be the reporting unit of the assessment because the scenarios, assessment results, validation, and uncertainty analysis will be produced at that scale. The implementation of these methods will require collaborations among various Federal agencies, State agencies, nongovernmental organizations, and the science community. Using the method described in this document, the assessment can be completed in approximately 3 to 4 years. The primary deliverables will be assessment reports containing tables, charts, and maps that will present the estimated GHG parameters annually for 2001 through 2050 by ecosystem, pool, and scenario. The results will permit the evaluation of a range of policies, mitigation options, and research topics, such as the demographic, LULC-change, or climate-change effects on carbon stocks, carbon sequestration, and GHG fluxes in ecosystems.

  4. Evidence for environmentally enhanced forest growth

    PubMed Central

    Fang, Jingyun; Kato, Tomomichi; Guo, Zhaodi; Yang, Yuanhe; Hu, Huifeng; Shen, Haihua; Zhao, Xia; Kishimoto-Mo, Ayaka W.; Tang, Yanhong; Houghton, Richard A.

    2014-01-01

    Forests in the middle and high latitudes of the northern hemisphere function as a significant sink for atmospheric carbon dioxide (CO2). This carbon (C) sink has been attributed to two processes: age-related growth after land use change and growth enhancement due to environmental changes, such as elevated CO2, nitrogen deposition, and climate change. However, attribution between these two processes is largely controversial. Here, using a unique time series of an age-class dataset from six national forest inventories in Japan and a new approach developed in this study (i.e., examining changes in biomass density at each age class over the inventory periods), we quantify the growth enhancement due to environmental changes and its contribution to biomass C sink in Japan’s forests. We show that the growth enhancement for four major plantations was 4.0∼7.7 Mg C⋅ha−1 from 1980 to 2005, being 8.4–21.6% of biomass C sequestration per hectare and 4.1–35.5% of the country's total net biomass increase of each forest type. The growth enhancement differs among forest types, age classes, and regions. Our results provide, to our knowledge, the first ground-based evidence that global environmental changes can increase C sequestration in forests on a broad geographic scale and imply that both the traits and age of trees regulate the responses of forest growth to environmental changes. These findings should be incorporated into the prediction of forest C cycling under a changing climate. PMID:24979781

  5. Environmental drivers of deadwood dynamics in woodlands and forests

    Treesearch

    M. Garbarino; R. Marzano; John Shaw; J. N. Long

    2015-01-01

    Deadwood dynamics play a key role in many forest ecosystems. Understanding the mechanisms involved in the accumulation and depletion of deadwood can enhance our understanding of fundamental processes such as carbon sequestration and disturbance regimes, allowing better predictions of future changes related to alternative management and climate scenarios. A...

  6. Biosolids amendment dramatically increases sequestration of crop residue-carbon in agricultural soils in western Illinois

    USDA-ARS?s Scientific Manuscript database

    Release of carbon dioxide through microbial respiration from the world’s crop residues (non-edible plant parts left in the field after harvest) represents an important form of carbon transfer from terrestrial ecosystems to the atmosphere. We hypothesized that alleviation of environmental stress (moi...

  7. Calibration of the soil conditioning index (SCI) to soil organic carbon in the southeastern USA

    USDA-ARS?s Scientific Manuscript database

    Prediction of soil organic C sequestration with adoption of various conservation agricultural management approaches is needed to meet the emerging market for environmental services provided by agricultural land stewardship. The soil conditioning index (SCI) is a relatively simple model used by the ...

  8. MECHANISM(S) OF UPTAKE AND SEQUESTRATION OF LEAD AND OTHER HEAVY METALS BY PSEUDOMONAS AERUGINOSA CHL-004

    EPA Science Inventory

    Heavy metals in soils and sediments of anthropogenic origin are a major environmental concern, due to the significant health risks they pose and due to the difficulties encountered with their remediation. Diverse industries involved in energy production, pigment synthesis and the...

  9. 40 CFR 98.441 - Reporting threshold.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Reporting threshold. 98.441 Section 98.441 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Geologic Sequestration of Carbon Dioxide § 98.441 Reporting threshold. (a) You must report under this subpart if...

  10. 40 CFR 98.441 - Reporting threshold.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Reporting threshold. 98.441 Section 98.441 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Geologic Sequestration of Carbon Dioxide § 98.441 Reporting threshold. (a) You must report under this subpart if...

  11. 40 CFR 98.441 - Reporting threshold.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Reporting threshold. 98.441 Section 98.441 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Geologic Sequestration of Carbon Dioxide § 98.441 Reporting threshold. (a) You must report under this subpart if...

  12. Land-use changes and carbon sequestration through the twentieth century in a Mediterranean mountain ecosystem: implications for land management.

    PubMed

    Padilla, Francisco M; Vidal, Beatriz; Sánchez, Joaquín; Pugnaire, Francisco I

    2010-12-01

    Ecosystems in the western Mediterranean basin have undergone intense changes in land use throughout the centuries, resulting in areas with severe alterations. Today, most these areas have become sensitive to human activity, prone to profound changes in land-use configuration and ecosystem services. A consensus exists amongst stakeholders that ecosystem services must be preserved but managerial strategies that help to preserve them while ensuring sustainability are often inadequate. To provide a basis for measuring implications of land-use change on carbon sequestration services, changes in land use and associated carbon sequestration potential throughout the 20th century in a rural area at the foothills of the Sierra Nevada range (SE Spain) were explored. We found that forest systems replaced dryland farming and pastures from the middle of the century onwards as a result of agricultural abandonment and afforestation programs. The area has always acted as a carbon sink with sequestration rates ranging from 28,961 t CO(2) year(-1) in 1921 to 60,635 t CO(2) year(-1) in 1995, mirroring changes in land use. Conversion from pastures to woodland, for example, accounted for an increase in carbon sequestration above 30,000 t CO(2) year(-1) by the end of the century. However, intensive deforestation would imply a decrease of approximately 66% of the bulk CO(2) fixed. In our study area, woodland conservation is essential to maintain the ecosystem services that underlie carbon sequestration. Our essay could inspire policymakers to better achieve goals of increasing carbon sequestration rates and sustainability within protected areas. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Time-Lapse Seismic Monitoring and Performance Assessment of CO 2 Sequestration in Hydrocarbon Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta-Gupta, Akhil

    Carbon dioxide sequestration remains an important and challenging research topic as a potentially viable approach for mitigating the effects of greenhouse gases on global warming (e.g., Chu and Majumdar, 2012; Bryant, 2007; Orr, 2004; Hepple and Benson, 2005; Bachu, 2003; Grimston et al., 2001). While CO 2 can be sequestered in oceanic or terrestrial biomass, the most mature and effective technology currently available is sequestration in geologic formations, especially in known hydrocarbon reservoirs (Barrufet et al., 2010; Hepple and Benson, 2005). However, challenges in the design and implementation of sequestration projects remain, especially over long time scales. One problem ismore » that the tendency for gravity override caused by the low density and viscosity of CO 2. In the presence of subsurface heterogeneity, fractures and faults, there is a significant risk of CO 2 leakage from the sequestration site into overlying rock compared to other liquid wastes (Hesse and Woods, 2010; Ennis-King and Patterson, 2002; Tsang et al., 2002). Furthermore, the CO 2 will likely interact chemically with the rock in which it is stored, so that understanding and predicting its transport behavior during sequestration can be complex and difficult (Mandalaparty et al., 2011; Pruess et al., 2003). Leakage of CO 2 can lead to such problems as acidification of ground water and killing of plant life, in addition to contamination of the atmosphere (Ha-Duong, 2003; Gasda et al., 2004). The development of adequate policies and regulatory systems to govern sequestration therefore requires improved characterization of the media in which CO 2 is stored and the development of advanced methods for detecting and monitoring its flow and transport in the subsurface (Bachu, 2003).« less

  14. Carbon sequestration by Australian tidal marshes

    PubMed Central

    Macreadie, Peter I.; Ollivier, Q. R.; Kelleway, J. J.; Serrano, O.; Carnell, P. E.; Ewers Lewis, C. J.; Atwood, T. B.; Sanderman, J.; Baldock, J.; Connolly, R. M.; Duarte, C. M.; Lavery, P. S.; Steven, A.; Lovelock, C. E.

    2017-01-01

    Australia’s tidal marshes have suffered significant losses but their recently recognised importance in CO2 sequestration is creating opportunities for their protection and restoration. We compiled all available data on soil organic carbon (OC) storage in Australia’s tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha−1 (range 14–963 Mg OC ha−1). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha−1 yr−1. Geomorphology was the most important predictor of OC stocks, with fluvial sites having twice the stock of OC as seaward sites. Australia’s 1.4 million hectares of tidal marshes contain an estimated 212 million tonnes of OC in the surface 1 m, with a potential CO2-equivalent value of $USD7.19 billion. Annual sequestration is 0.75 Tg OC yr−1, with a CO2-equivalent value of $USD28.02 million per annum. This study provides the most comprehensive estimates of tidal marsh blue carbon in Australia, and illustrates their importance in climate change mitigation and adaptation, acting as CO2 sinks and buffering the impacts of rising sea level. We outline potential further development of carbon offset schemes to restore the sequestration capacity and other ecosystem services provided by Australia tidal marshes. PMID:28281574

  15. A Policy Option To Provide Sufficient Funding For Massive-Scale Sequestration of CO2

    NASA Astrophysics Data System (ADS)

    Kithil, P. W.

    2007-12-01

    Global emissions of CO2 now are nearly 30 billion tons per year, and are growing rapidly due to strong economic growth. Atmospheric levels of CO2 have reached 380 ppm and recent reports suggest the rate of increase has gone from 1% per year in the 1990's to 3% per year now - with potential to cross 550ppm in the 2020 decade. Without stabilization of atmospheric CO2 below 550ppm, climate models predict unacceptably higher average temperatures with significant risk of runaway global warming this century. While there is much talk about reducing CO2 emissions by switching to non-fossil energy sources, imposing energy efficiency, and a host of other changes, there are no new large-scale energy sources on the horizon. The options are to impose draconian cuts in fossil energy consumption that will keep us below 550ppm (devastating the global economy) - or to adopt massive-scale sequestration of CO2. Three approaches are feasible: biological ocean sequestration, geologic sequestration, and biological terrestrial sequestration. Biological sequestration is applicable to all CO2 sources, whereas geologic sequestration is limited to fossil-fuel power plants and some large point-source emitters such as cement plants and large industrial facilities. Sequestration provides a direct mechanism for reducing atmospheric levels of CO2, whereas offsetting technologies such as wind power or improved efficiency, reduce the need for more fossil fuels but do not physically remove CO2 from the environment. The primary geologic technique, carbon capture & sequestration (CCS), prevents CO2 from entering the atmosphere but likewise does not reduce existing levels of atmospheric CO2. Biological sequestration (ocean or terrestrial) physically removes CO2 from the atmosphere. Since we cannot shut down our global economy, urgent action is needed to counteract CO2 emissions, and avoid catastrophic climate change. Given the long lead time and/or small impact of offsetting energy sources, sequestration is the only way to achieve near and medium-term reductions in atmospheric CO2 levels. To finance massive-scale sequestration of CO2, we propose the World Trade Organization (WTO) become an active player in the sequestration market. Given the WTO's role as overseer of international trade agreements annually representing 30 trillion in imports and exports of goods and services, it is by far the largest global economic force and therefore offers the broadest economic base. Absent a real solution to CO2 emissions, the global economy - and world trade - will shrink dramatically. The WTO can jumpstart the market for CO2 sequestration by issuing long term contracts to purchase bona fide sequestration-derived CO2 credits. Under this proposal, an initial price of 100 per ton which steps-down by 5% per year could bring forth the sequestration investment needed to achieve upwards of 10 billion tons sequestered CO2 per year by 2025 (seven billion tons from biological ocean sequestration and at least three billion tons from geologic and terrestrial sequestration). Assuming a contract term of 40 years, and a parallel commodity market continues to develop for CO2 credits, at some time in the future the WTO's contractual price will be less than the commodity market price - and the WTO begins to recover its investment. Under one set of assumptions, the net WTO annual subsidy would peak at $86 billion by 2022, equal to an across-the-board WTO tariff on imports and exports of about 1.01%, then become positive a few years later as the market price climbed above WTO's contracted price. Under this proposal, the WTO effectively subsidizes CO2 sequestration in the near to medium term and then recoups its investment and reaps large profits over the long term.

  16. Biologically Enhanced Carbon Sequestration: Research Needs and Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldenburg, Curtis; Oldenburg, Curtis M.; Torn, Margaret S.

    2008-03-21

    Fossil fuel combustion, deforestation, and biomass burning are the dominant contributors to increasing atmospheric carbon dioxide (CO{sub 2}) concentrations and global warming. Many approaches to mitigating CO{sub 2} emissions are being pursued, and among the most promising are terrestrial and geologic carbon sequestration. Recent advances in ecology and microbial biology offer promising new possibilities for enhancing terrestrial and geologic carbon sequestration. A workshop was held October 29, 2007, at Lawrence Berkeley National Laboratory (LBNL) on Biologically Enhanced Carbon Sequestration (BECS). The workshop participants (approximately 30 scientists from California, Illinois, Oregon, Montana, and New Mexico) developed a prioritized list of researchmore » needed to make progress in the development of biological enhancements to improve terrestrial and geologic carbon sequestration. The workshop participants also identified a number of areas of supporting science that are critical to making progress in the fundamental research areas. The purpose of this position paper is to summarize and elaborate upon the findings of the workshop. The paper considers terrestrial and geologic carbon sequestration separately. First, we present a summary in outline form of the research roadmaps for terrestrial and geologic BECS. This outline is elaborated upon in the narrative sections that follow. The narrative sections start with the focused research priorities in each area followed by critical supporting science for biological enhancements as prioritized during the workshop. Finally, Table 1 summarizes the potential significance or 'materiality' of advances in these areas for reducing net greenhouse gas emissions.« less

  17. Nitrogen-Related Constraints of Carbon Uptake by Large-Scale Forest Expansion: Simulation Study for Climate Change and Management Scenarios

    NASA Astrophysics Data System (ADS)

    Kracher, Daniela

    2017-11-01

    Increase of forest areas has the potential to increase the terrestrial carbon (C) sink. However, the efficiency for C sequestration depends on the availability of nutrients such as nitrogen (N), which is affected by climatic conditions and management practices. In this study, I analyze how N limitation affects C sequestration of afforestation and how it is influenced by individual climate variables, increased harvest, and fertilizer application. To this end, JSBACH, the land component of the Earth system model of the Max Planck Institute for Meteorology is applied in idealized simulation experiments. In those simulations, large-scale afforestation increases the terrestrial C sink in the 21st century by around 100 Pg C compared to a business as usual land-use scenario. N limitation reduces C sequestration roughly by the same amount. The relevance of compensating effects of uptake and release of carbon dioxide by plant productivity and soil decomposition, respectively, gets obvious from the simulations. N limitation of both fluxes compensates particularly in the tropics. Increased mineralization under global warming triggers forest expansion, which otherwise is restricted by N availability. Due to compensating higher plant productivity and soil respiration, the global net effect of warming for C sequestration is however rather small. Fertilizer application and increased harvest enhance C sequestration as well as boreal expansion. The additional C sequestration achieved by fertilizer application is offset to a large part by additional emissions of nitrous oxide.

  18. Environmental impact assessment and monetary ecosystem service valuation of an ecosystem under different future environmental change and management scenarios; a case study of a Scots pine forest.

    PubMed

    Schaubroeck, Thomas; Deckmyn, Gaby; Giot, Olivier; Campioli, Matteo; Vanpoucke, Charlotte; Verheyen, Kris; Rugani, Benedetto; Achten, Wouter; Verbeeck, Hans; Dewulf, Jo; Muys, Bart

    2016-05-15

    For a sustainable future, we must sustainably manage not only the human/industrial system but also ecosystems. To achieve the latter goal, we need to predict the responses of ecosystems and their provided services to management practices under changing environmental conditions via ecosystem models and use tools to compare the estimated provided services between the different scenarios. However, scientific articles have covered a limited amount of estimated ecosystem services and have used tools to aggregate services that contain a significant amount of subjective aspects and that represent the final result in a non-tangible unit such as 'points'. To resolve these matters, this study quantifies the environmental impact (on human health, natural systems and natural resources) in physical units and uses an ecosystem service valuation based on monetary values (including ecosystem disservices with associated negative monetary values). More specifically, the paper also focuses on the assessment of ecosystem services related to pollutant removal/generation flows, accounting for the inflow of eutrophying nitrogen (N) when assessing the effect of N leached to groundwater. Regarding water use/provisioning, evapotranspiration is alternatively considered a disservice because it implies a loss of (potential) groundwater. These approaches and improvements, relevant to all ecosystems, are demonstrated using a Scots pine stand from 2010 to 2089 for a combination of three environmental change and three management scenarios. The environmental change scenarios considered interannual climate variability trends and included alterations in temperature, precipitation, nitrogen deposition, wind speed, Particulate matter (PM) concentration and CO2 concentration. The addressed flows/ecosystem services, including disservices, are as follows: particulate matter removal, freshwater loss, CO2 sequestration, wood production, NOx emissions, NH3 uptake and nitrogen pollution/removal. The monetary ecosystem service valuation yields a total average estimate of 361-1242 euro ha(-1) yr(-1). PM2.5 (<2.5 μm) removal is the key service, with a projected value of 622-1172 euro ha(-1) yr(-1). Concerning environmental impact assessment, with net CO2 uptake being the most relevant contributing flow, a loss prevention of 0.014-0.029 healthy life years ha(-1) yr(-1) is calculated for the respective flows. Both assessment methods favor the use of the least intensive management scenario due to its resulting higher CO2 sequestration and PM removal, which are the most important services of the considered ones. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, James A

    Concentrations of CO{sub 2} in the Earth’s atmosphere have increased dramatically in the past 100 years due to deforestation, land use change, and fossil fuel combustion. These humancaused, higher levels of CO{sub 2} may enhance the atmospheric greenhouse effect and may contribute to climate change. Many reclaimed coal-surface mine areas in the eastern U.S. are not in productive use. Reforestation of these lands could provide societal benefits, including sequestration of atmospheric carbon. The goal of this project was to determine the biological and economic feasibility of restoring high-quality forests on the tens of thousands of hectares of mined land andmore » to measure carbon sequestration and wood production benefits that would be achieved from large-scale application of forest restoration procedures. We developed a mine soil quality model that can be used to estimate the suitability of selected mined sites for carbon sequestration projects. Across the mine soil quality gradient, we tested survival and growth performance of three species assemblages under three levels of silvicultural. Hardwood species survived well in WV and VA, and survived better than the other species used in OH, while white pine had the poorest survival of all species at all sites. Survival was particularly good for the site-specific hardwoods planted at each site. Weed control plus tillage may be the optimum treatment for hardwoods and white pine, as any increased growth resulting from fertilization may not offset the decreased survival that accompanied fertilization. Grassland to forest conversion costs may be a major contributor to the lack of reforestation of previously reclaimed mine lands in the Appalachian coal-mining region. Otherwise profitable forestry opportunities may be precluded by these conversion costs, which for many combinations of factors (site class, forest type, timber prices, regeneration intensity, and interest rate) result in negative land expectation values. Improved technology and/or knowledge of reforestation practices in these situations may provide opportunities to reduce the costs of converting many of these sites as research continues into these practices. It also appears that in many cases substantial payments, non-revenue values, or carbon values are required to reach “profitability” under the present circumstances. It is unclear when, or in what form, markets will develop to support any of these add-on values to supplement commercial forestry revenues. However, as these markets do develop, they will only enhance the viability of forestry on reclaimed mined lands, although as we demonstrate in our analysis of carbon payments, the form of the revenue source may itself influence management, potentially mitigating some of the benefits of reforestation. For a representative mined-land resource base, reforestation of mined lands with mixed pine-hardwood species would result in an average estimated C accumulation in forms that can be harvested for use as wood products or are likely to remain in the soil C pool at ~250 Mg C ha{sup -1} over a 60 year period following reforestation. The “additionality” of this potential C sequestration was estimated considering data in scientific literature that defines C accumulation in mined-land grasslands over the long term. Given assumptions detailed in the text, these lands have the potential to sequester ~180 Mg C ha{sup -1}, a total of 53.5 x 10{sup 6} Mg C, over 60 years, an average of ~900,000 Mg C / yr, an amount equivalent to about 0.04% of projected US C emissions at the midpoint of a 60-year period (circa 2040) following assumed reforestation. Although potential sequestration quantities are not great relative to potential national needs should an energy-related C emissions offset requirement be developed at some future date, these lands are available and unused for other economically valued purposes and many possess soil and site properties that are well-suited to reforestation. Should such reforestation occur, it would also produce ancillary benefits by providing environmental services, such as enhanced watershed protection, and producing timber and renewable-fuel products.« less

  20. [Greenhouse gas emissions, carbon leakage and net carbon sequestration from afforestation and forest management: A review.

    PubMed

    Liu, Bo Jie; Lu, Fei; Wang, Xiao Ke; Liu, Wei Wei

    2017-02-01

    Forests play an important role in climate change mitigation and concentration of CO 2 reduction in the atmosphere. Forest management, especially afforestation and forest protection, could increase carbon stock of forests significantly. Carbon sequestration rate of afforestation ranges from 0.04 to 7.52 t C·hm -2 ·a -1 , while that of forest protection is 0.33-5.20 t C·hm -2 ·a -1 . At the same time, greenhouse gas (GHG) is generated within management boundary due to the production and transportation of the materials consumed in relevant activities of afforestation and forest management. In addition, carbon leakage is also generated outside boundary from activity shifting, market effects and change of environments induced by forest management. In this review, we summarized the definition of emission sources of GHG, monitoring methods, quantity and rate of greenhouse gas emissions within boundary of afforestation and forest management. In addition, types, monitoring methods and quantity of carbon leakage outside boundary of forest management were also analyzed. Based on the reviewed results of carbon sequestration, we introduced greenhouse gas emissions within boundary and carbon leakage, net carbon sequestration as well as the countervailing effects of greenhouse gas emissions and carbon leakage to carbon sequestration. Greenhouse gas emissions within management boundary counteract 0.01%-19.3% of carbon sequestration, and such counteraction could increase to as high as 95% considering carbon leakage. Afforestation and forest management have substantial net carbon sequestration benefits, when only taking direct greenhouse gas emissions within boundary and measurable carbon leakage from activity shifting into consideration. Compared with soil carbon sequestration measures in croplands, afforestation and forest management is more advantageous in net carbon sequestration and has better prospects for application in terms of net mitigation potential. Along with the implementation of the new stage of key ecological stewardship projects in China as well as the concern on carbon benefits brought by projects, it is necessary to make efforts to increase net carbon sequestration via reducing greenhouse gas emissions and carbon leakage. Rational planning before start-up of the projects should be promoted to avoid carbon emissions due to unnecessary consumption of materials and energy. Additionally, strengthening the control and monitoring on greenhouse gas emissions and carbon leakage during the implementation of projects are also advocated.

  1. Carbon Capture and Sequestration from a Hydrogen Production Facility in an Oil Refinery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engels, Cheryl; Williams, Bryan, Valluri, Kiranmal; Watwe, Ramchandra

    2010-06-21

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. Asmore » part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE?s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities (associated with CO2 capture technologies and geologic sequestration MVA), and Environmental Information Volume. Specific accomplishments of this Phase include: 1. Finalization of the Project Management Plan 2. Development of engineering designs in sufficient detail for defining project performance and costs 3. Preparation of Environmental Information Volume 4. Completion of Hazard Identification Studies 5. Completion of control cost estimates and preparation of business plan During the Phase 1 detailed cost estimate, project costs increased substantially from the previous estimate. Furthermore, the detailed risk assessment identified integration risks associated with potentially impacting the steam methane reformer operation. While the Phase 1 work identified ways to mitigate these integration risks satisfactorily from an operational perspective, the associated costs and potential schedule impacts contributed to the decision not to proceed to Phase 2. We have concluded that the project costs and integration risks at Texas City are not commensurate with the potential benefits of the project at this time.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phelps, Tommy Joe; Moon, Ji Won; Roh, Yul

    The behavior of metal ions leaching and precipitated mineral phases of metal-rich fly ash (FA) was examined in order to evaluate microbial impacts on carbon sequestration and metal immobilization. The leaching solutions consisted of aerobic deionized water (DW) and artificial eutrophic water (AEW) that was anaerobic, organic- and mineral-rich, and higher salinity as is typical of bottom water in eutrophic algae ponds. The Fe- and Ca-rich FAs were predominantly composed of quartz, mullite, portlandite, calcite, hannebachite, maghemite, and hematite. After 86 days, only Fe and Ca contents exhibited a decrease in leaching solutions while other major and trace elements showedmore » increasing or steady trends in preference to the type of FA and leaching solution. Ca-rich FA showed strong carbon sequestration efficiency ranging up to 32.3 g CO(2)/kg FA after 86 days, corresponding to almost 65% of biotic carbon sequestration potential under some conditions. Variations in the properties of FAs such as chemical compositions, mineral constituents as well as the type of leaching solution impacted CO(2) capture. Even though the relative amount of calcite increased sixfold in the AEW and the relative amount of mineral phase reached 37.3 wt% using Ca-rich FA for 86 days, chemical sequestration did not accomplish simultaneous precipitation and sequestration of several heavy metals.« less

  3. Indirect Effects of Energy Development in Grasslands

    NASA Astrophysics Data System (ADS)

    Duquette, Cameron Albert

    Grassland landscapes in North America are undergoing rapid industrialization due to energy development facilitated by the growing popularity of fracking and horizontal drilling technology. Each year over 3 million hectares are lost from grassland and shrubland habitats to well infrastructure. Direct footprints from energy infrastructure cause impacts to vegetation cover, available cattle forage, carbon sequestration potential, and usable space for wildlife. However, legacy effects from well construction and noise pollution, light pollution, and altered viewsheds have the potential to impact areas beyond this direct footprint, causing additive and persistent changes to nearby grassland function. While these additional areas may be small on a well pad basis, they may have substantial cumulative impacts over time. To investigate these effects via a diversity of mechanisms, we studied the seasonal habitat selection of northern bobwhite (Colinus virginianus, hereafter bobwhite) in an energy-producing landscape to evaluate space use patterns relative to energy infrastructure. Habitat selection was modeled in the breeding and nonbreeding season using resource Utilization functions (RUFs). We then investigated patterns of vegetation, arthropod, and soil characteristics surrounding well pads to assess small scale environmental gradients extending away from drilling pads via a combination of multivariate and univariate techniques (i.e., Nonmetric dimensional scaling and ANOVA). We found minimal avoidance of energy structures by quail, suggesting a tolerance of moderate development levels. All small-scale effects studied except for soil moisture were impacted at the pad itself (P < 0.01). Off-pad impacts to arthropod abundance and biomass were spatially limited to areas close to pads, while vegetation cover was typically lower than the surrounding habitat beyond 10 m of pads. Soil surface temperature was higher at distances close to well pads, and soil moisture was not different between areas close to and far from well pads. Small-scale gradient results indicate vegetation effects around active drilling pads, potentially increasing erosion and decreasing nesting cover, decreasing carbon sequestration potential, and decreasing forage. Collectively, this research highlights the complexity and importance of impact thresholds in landscape fragmentation.

  4. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEmore » EER (prime contractor) was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the tenth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting January 1, 2003 and ending March 31, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, and program management.« less

  5. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL tomore » develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the fifth quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2001 and ending December 31, 2001. The report includes an introduction summarizing the AGC concept, main program tasks, and program objectives; it also provides a summary of program activities covering program management and progress in tasks including lab- and bench-scale experimental testing, pilot-scale design, and economic studies.« less

  6. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL tomore » develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the seventh quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting April 1, 2002 and ending June 30, 2002. The report includes an introduction summarizing the AGC concept, main program tasks, and program objectives; it also provides a summary of program activities covering program management and progress in tasks including lab-/bench-scale experimental testing and pilot-scale design.« less

  7. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision 21 program from U.S. DOE NETL tomore » develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the second annual technical progress report for the Vision 21 AGC program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2001 and ending September 30, 2002. The report includes an introduction summarizing the AGC concept, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab- and bench-scale experimental testing, pilot-scale design and assembly, and program management.« less

  8. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL tomore » develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the third quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting April 1, 2001 and ending June 30, 2001. The report includes an introduction summarizing the AGC concept, main program tasks, objectives of this program, and provides a summary of program activities covering program management and progress in first year tasks including lab- and bench-scale design, facilities preparation, and engineering studies.« less

  9. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEmore » EER was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the ninth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2002 and ending December 31, 2002. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab- and bench-scale experimental testing, pilot-scale design and assembly, and program management.« less

  10. CBTLE Data

    EPA Pesticide Factsheets

    Data used in the manuscript's tables and figures. Most data represent the modeled optimal capacity of the coal-and-biomass-to-liquid fuels-and-electricity (CBTLE) with integrated carbon capture and sequestration (CCS) over a wide range of scenarios.This dataset is associated with the following publication:Aitken, M., D. Loughlin , R. Dodder , and W. Yelverton. Economic and environmental evaluation of coal-and-biomass-to-liquids-and-electricity plants equipped with carbon capture and storage. CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY. Springer-Verlag, New York, NY, USA, 18(2): 573-581, (2015).

  11. New insights into the nation's carbon storage potential

    USGS Publications Warehouse

    Warwick, Peter D.; Zhu, Zhi-Liang

    2012-01-01

    Carbon sequestration is a method of securing carbon dioxide (CO2) to prevent its release into the atmosphere, where it contributes to global warming as a greenhouse gas. Geologic storage of CO2 in porous and permeable rocks involves injecting high-pressure CO2 into a subsurface rock unit that has available pore space. Biologic carbon sequestration refers to both natural and anthropogenic processes by which CO2 is removed from the atmosphere and stored as carbon in vegetation, soils, and sediments.

  12. Developing tools to identify marginal lands and assess their potential for bioenergy production

    NASA Astrophysics Data System (ADS)

    Galatsidas, Spyridon; Gounaris, Nikolaos; Dimitriadis, Elias; Rettenmaier, Nils; Schmidt, Tobias; Vlachaki, Despoina

    2017-04-01

    The term "marginal land" is currently intertwined in discussions about bioenergy although its definition is neither specific nor firm. The uncertainty arising from marginal land classification and quantification is one of the major constraining factors for its potential use. The clarification of political aims, i.e. "what should be supported?" is also an important constraining factor. Many approaches have been developed to identify marginal lands, based on various definitions according to the management goals. Concerns have been frequently raised regarding the impacts of marginal land use on environment, ecosystem services and sustainability. Current tools of soil quality and land potentials assessment fail to meet the needs of marginal land identification and exploitation for biomass production, due to the lack of comprehensive analysis of interrelated land functions and their quantitative evaluation. Land marginality is determined by dynamic characteristics in many cases and may therefore constitute a transitional state, which requires reassessment in due time. Also, marginal land should not be considered simply a dormant natural resource waiting to be used, since it may already provide multiple benefits and services to society relating to wildlife, biodiversity, carbon sequestration, etc. The consequences of cultivating such lands need to be fully addressed to present a balanced view of their sustainable potential for bioenergy. This framework is the basis for the development of the SEEMLA tools, which aim at supporting the identification, assessment, management of marginal lands in Europe and the decision-making for sustainable biomass production of them using appropriate bioenergy crops. The tools comprise two applications, a web-based one (independent of spatial data) and a GIS-based application (land regionalization on the basis of spatial data), which both incorporate: - Land resource characteristics, restricting the cultivation of agricultural crops but effectively sustaining bioenergy plants (soil, climate, topography, vegetation, etc.) - Bioenergy plant characteristics and their ability to grow on marginal lands - Needs and concerns on environmental issues and ecosystem benefits and services (biodiversity, carbon sequestration potential, soil organic carbon trend, etc.) - Sustainability assessments (incl. e.g. LCA) of biomass production at market scale - Analysis results of generic scenarios for biomass production, harvesting, logistics and conditioning, as well as biomass conversion and use from pilot cases growing various crops The SEEMLA approach of marginal lands evaluation will provide private and public stakeholders with necessary guidance for selecting suitable lands and implementing efficient exploitation strategies for bioenergy production, on the basis of sound environmental and socio-economic criteria.

  13. A Critical Review of the Impacts of Leaking CO 2 Gas and Brine on Groundwater Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qafoku, Nikolla; Zheng, Liange; Bacon, Diana H.

    2015-09-30

    Geological carbon sequestration (GCS) is a global carbon emission reduction strategy involving the capture of CO 2 emitted from fossil fuel burning power plants, as well as the subsequent injection of the captured CO 2 gas into deep saline aquifers or depleted oil and gas reservoirs. A critical question that arises from the proposed GCS is the potential impacts of CO 2 injection on the quality of drinking-water systems overlying CO 2 sequestration storage sites. Although storage reservoirs are evaluated and selected based on their ability to safely and securely store emplaced fluids, leakage of CO 2 from storage reservoirsmore » is a primary risk factor and potential barrier to the widespread acceptance of geologic CO 2 sequestration (OR Harvey et al. 2013; Y-S Jun et al. 2013; DOE 2007). Therefore, a systematic understanding of how CO 2 leakage would affect the geochemistry of potable aquifers, and subsequently control or affect elemental and contaminant release via sequential and/or simultaneous abiotic and biotic processes and reactions is vital.« less

  14. Nitrogen balance in response to dryland crop rotations and cultural practices

    USDA-ARS?s Scientific Manuscript database

    Nitrogen balance provides a measure of agroecosystem performance and environmental sustainability by taking into accounts of N inputs and outputs and N retention in the soil. The objective of this study was to evaluate N balance based on N inputs and outputs and soil N sequestration after 7 yr in re...

  15. Addressing multi-use issues in sustainable forest management with signal-transfer modeling

    Treesearch

    Robert J. Luxmoore; William W. Hargrove; M. Lynn Tharp; W. Mac Post; Michael W. Berry; Karen S. Minser; Wendell P. Cropper; Dale W. Johnson; Boris Zeide; Ralph L. Amateis; Harold E. Burkhart; V. Clark Baldwin; Kelly D. Peterson

    2002-01-01

    Management decisions concerning impacts of projected changes in environmental and social conditions on multi-use forest products and services, such as productivity, water supply or carbon sequestration, may be facilitated with signal-transfer modeling. This simulation method utilizes a hierarchy of simulators in which the integrated responses (signals) from smaller-...

  16. The impacts of inherent soil properties, environmental conditions, and restoration time on ecological benefits during CRP restoration

    USDA-ARS?s Scientific Manuscript database

    The Conservation Reserve Program (CRP) has numerous benefits including reduced soil erosion, increased C sequestration, and biodiversity through the conversion of highly erodible cropland to grasslands. The rate and magnitude of these changes varies and the factors that impact these changes are larg...

  17. Recapturing nutrients from dairy waste using biochar

    NASA Astrophysics Data System (ADS)

    Sarkhot, D.; Ghezzehei, T. A.; Berhe, A. A.

    2009-12-01

    Biochar or biomass derived black carbon is known to be highly resistant to decomposition with half-life periods ranging from hundreds of years to millennia. It is also reported to enhance soil productivity due to high nutrient retention and favorable effects on soil pH, water retention capacity as well as microbial population. Brazilian Terra Preta soils have shown the potential of biochar for long-term carbon sequestration capacity and productivity of soil and many researchers have now focused on utilizing this phenomenon to create fertile, carbon-rich soils, called Terra Preta Nova. Although the highly adsorptive nature of biochar is well characterized, the potential for using biochar in environmental cleanup efforts is relatively unexplored. Dairy waste is a source of significant water pollution because it introduces excess nutrients such as phosphates and nitrates into the soil and water system. Since many soils have limited capacity to retain nitrate and phosphate, especially for long periods of time, the utility of dairy waste manure to enhance soil fertility and nutrient availability to plants is limited. Here, we present results from a project that we started to determine the potential of biochar to recover the excess nutrients from dairy flushed manure. In this initial study, a commercially available biochar amendment was ground and used in a batch sorption experiment with the dairy flushed manure from a local dairy in Merced, California. Four manure dilutions viz. 10, 25, 50 and 100%, and three shaking times, viz. 1, 12 and 24 hours were used for this study. We then calculated the amount of ammonia, nitrate and phosphate adsorbed by the biochar using differences in nutrient concentrations before and after the sorption experiment. Biochar showed significant capacity of adsorbing these nutrients, suggesting a potential for controlling the dairy pollution. The resulting enriched biochar can potentially act as a slow release fertilizer and enhance soil productivity as well as increasing the long-term carbon sequestration potential of soils. We are currently initiating further research to determine the desorption potenial of the biochar sorbed nutrients in soil.

  18. Separation and capture of CO2 from large stationary sources and sequestration in geological formations--coalbeds and deep saline aquifers.

    PubMed

    White, Curt M; Strazisar, Brian R; Granite, Evan J; Hoffman, James S; Pennline, Henry W

    2003-06-01

    The topic of global warming as a result of increased atmospheric CO2 concentration is arguably the most important environmental issue that the world faces today. It is a global problem that will need to be solved on a global level. The link between anthropogenic emissions of CO2 with increased atmospheric CO2 levels and, in turn, with increased global temperatures has been well established and accepted by the world. International organizations such as the United Nations Framework Convention on Climate Change (UNFCCC) and the Intergovernmental Panel on Climate Change (IPCC) have been formed to address this issue. Three options are being explored to stabilize atmospheric levels of greenhouse gases (GHGs) and global temperatures without severely and negatively impacting standard of living: (1) increasing energy efficiency, (2) switching to less carbon-intensive sources of energy, and (3) carbon sequestration. To be successful, all three options must be used in concert. The third option is the subject of this review. Specifically, this review will cover the capture and geologic sequestration of CO2 generated from large point sources, namely fossil-fuel-fired power gasification plants. Sequestration of CO2 in geological formations is necessary to meet the President's Global Climate Change Initiative target of an 18% reduction in GHG intensity by 2012. Further, the best strategy to stabilize the atmospheric concentration of CO2 results from a multifaceted approach where sequestration of CO2 into geological formations is combined with increased efficiency in electric power generation and utilization, increased conservation, increased use of lower carbon-intensity fuels, and increased use of nuclear energy and renewables. This review covers the separation and capture of CO2 from both flue gas and fuel gas using wet scrubbing technologies, dry regenerable sorbents, membranes, cryogenics, pressure and temperature swing adsorption, and other advanced concepts. Existing commercial CO2 capture facilities at electric power-generating stations based on the use of monoethanolamine are described, as is the Rectisol process used by Dakota Gasification to separate and capture CO2 from a coal gasifier. Two technologies for storage of the captured CO2 are reviewed--sequestration in deep unmineable coalbeds with concomitant recovery of CH4 and sequestration in deep saline aquifers. Key issues for both of these techniques include estimating the potential storage capacity, the storage integrity, and the physical and chemical processes that are initiated by injecting CO2 underground. Recent studies using computer modeling as well as laboratory and field experimentation are presented here. In addition, several projects have been initiated in which CO2 is injected into a deep coal seam or saline aquifer. The current status of several such projects is discussed. Included is a commercial-scale project in which a million tons of CO2 are injected annually into an aquifer under the North Sea in Norway. The review makes the case that this can all be accomplished safely with off-the-shelf technologies. However, substantial research and development must be performed to reduce the cost, decrease the risks, and increase the safety of sequestration technologies. This review also includes discussion of possible problems related to deep injection of CO2. There are safety concerns that need to be addressed because of the possibilities of leakage to the surface and induced seismic activity. These issues are presented along with a case study of a similar incident in the past. It is clear that monitoring and verification of storage will be a crucial part of all geological sequestration practices so that such problems may be avoided. Available techniques include direct measurement of CO2 and CH4 surface soil fluxes, the use of chemical tracers, and underground 4-D seismic monitoring. Ten new hypotheses were formulated to describe what happens when CO2 is pumped into a coal seam. These hypotheses provide significant insight into the fundamental chemical, physical, and thermodynamic phenomena that occur during coal seam sequestration of CO2.

  19. Living Shorelines: Coastal Resilience with a Blue Carbon Benefit

    PubMed Central

    Davis, Jenny L.; Currin, Carolyn A.; O’Brien, Colleen; Raffenburg, Craig; Davis, Amanda

    2015-01-01

    Living shorelines are a type of estuarine shoreline erosion control that incorporates native vegetation and preserves native habitats. Because they provide the ecosystem services associated with natural coastal wetlands while also increasing shoreline resilience, living shorelines are part of the natural and hybrid infrastructure approach to coastal resiliency. Marshes created as living shorelines are typically narrow (< 30 m) fringing marshes with sandy substrates that are well flushed by tides. These characteristics distinguish living shorelines from the larger meadow marshes in which most of the current knowledge about created marshes was developed. The value of living shorelines for providing both erosion control and habitat for estuarine organisms has been documented but their capacity for carbon sequestration has not. We measured carbon sequestration rates in living shorelines and sandy transplanted Spartina alterniflora marshes in the Newport River Estuary, North Carolina. The marshes sampled here range in age from 12 to 38 years and represent a continuum of soil development. Carbon sequestration rates ranged from 58 to 283 g C m-2 yr-1 and decreased with marsh age. The pattern of lower sequestration rates in older marshes is hypothesized to be the result of a relative enrichment of labile organic matter in younger sites and illustrates the importance of choosing mature marshes for determination of long-term carbon sequestration potential. The data presented here are within the range of published carbon sequestration rates for S. alterniflora marshes and suggest that wide-scale use of the living shoreline approach to shoreline management may come with a substantial carbon benefit. PMID:26569503

  20. Living Shorelines: Coastal Resilience with a Blue Carbon Benefit.

    PubMed

    Davis, Jenny L; Currin, Carolyn A; O'Brien, Colleen; Raffenburg, Craig; Davis, Amanda

    2015-01-01

    Living shorelines are a type of estuarine shoreline erosion control that incorporates native vegetation and preserves native habitats. Because they provide the ecosystem services associated with natural coastal wetlands while also increasing shoreline resilience, living shorelines are part of the natural and hybrid infrastructure approach to coastal resiliency. Marshes created as living shorelines are typically narrow (< 30 m) fringing marshes with sandy substrates that are well flushed by tides. These characteristics distinguish living shorelines from the larger meadow marshes in which most of the current knowledge about created marshes was developed. The value of living shorelines for providing both erosion control and habitat for estuarine organisms has been documented but their capacity for carbon sequestration has not. We measured carbon sequestration rates in living shorelines and sandy transplanted Spartina alterniflora marshes in the Newport River Estuary, North Carolina. The marshes sampled here range in age from 12 to 38 years and represent a continuum of soil development. Carbon sequestration rates ranged from 58 to 283 g C m-2 yr-1 and decreased with marsh age. The pattern of lower sequestration rates in older marshes is hypothesized to be the result of a relative enrichment of labile organic matter in younger sites and illustrates the importance of choosing mature marshes for determination of long-term carbon sequestration potential. The data presented here are within the range of published carbon sequestration rates for S. alterniflora marshes and suggest that wide-scale use of the living shoreline approach to shoreline management may come with a substantial carbon benefit.

  1. Potential and cost of carbon sequestration in the Tanzanian forest sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makundi, Willy R.

    2001-01-01

    The forest sector in Tanzania offers ample opportunities to reduce greenhouse gas emissions (GHG) and sequestered carbon (C) in terrestrial ecosystems. More than 90% of the country's demand for primary energy is obtained from biomass mostly procured unsustainably from natural forests. This study examines the potential to sequester C through expansion of forest plantations aimed at reducing the dependence on natural forest for wood fuel production, as well as increase the country's output of industrial wood from plantations. These were compared ton conservation options in the tropical and miombo ecosystems. Three sequestration options were analyzed, involving the establishment of shortmore » rotation and long rotation plantations on about 1.7 x 106 hectares. The short rotation community forest option has a potential to sequester an equilibrium amount of 197.4 x 106 Mg C by 2024 at a net benefit of $79.5 x 106, while yielding a NPV of $0.46 Mg-1 C. The long rotation options for softwood and hardwood plantations will reach an equilibrium sequestration of 5.6 and 11.8 x 106 Mg C at a negative NPV of $0.60 Mg-1 C and $0.32 Mg-1 C. The three options provide cost competitive opportunities for sequestering about 7.5 x 106 Mg C yr -1 while providing desired forest products and easing the pressure on the natural forests in Tanzania. The endowment costs of the sequestration options were all found to be cheaper than the emission avoidance cost for conservation options which had an average cost of $1.27 Mg-1 C, rising to $ 7.5 Mg-1 C under some assumptions on vulnerability to encroachment. The estimates shown here may represent the upper bound, because the actual potential will be influenced by market prices for inputs and forest products, land use policy constraints and the structure of global C transactions.« less

  2. Biophysical risks to carbon sequestration and storage in Australian drylands.

    PubMed

    Nolan, Rachael H; Sinclair, Jennifer; Eldridge, David J; Ramp, Daniel

    2018-02-15

    Carbon abatement schemes that reduce land clearing and promote revegetation are now an important component of climate change policy globally. There is considerable potential for these schemes to operate in drylands which are spatially extensive. However, projects in these environments risk failure through unplanned release of stored carbon to the atmosphere. In this review, we identify factors that may adversely affect the success of vegetation-based carbon abatement projects in dryland ecosystems, evaluate their likelihood of occurrence, and estimate the potential consequences for carbon storage and sequestration. We also evaluate management strategies to reduce risks posed to these carbon abatement projects. Identified risks were primarily disturbances, including unplanned fire, drought, and grazing. Revegetation projects also risk recruitment failure, thereby failing to reach projected rates of sequestration. Many of these risks are dependent on rainfall, which is highly variable in drylands and susceptible to further variation under climate change. Resprouting vegetation is likely to be less vulnerable to disturbance and have faster recovery rates upon release from disturbance. We conclude that there is a strong impetus for identifying management strategies and risk reduction mechanisms for carbon abatement projects. Risk mitigation would be enhanced by effective co-ordination of mitigation strategies at scales larger than individual abatement project boundaries, and by implementing risk assessment throughout project planning and implementation stages. Reduction of risk is vital for maximising carbon sequestration of individual projects and for reducing barriers to the establishment of new projects entering the market. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Carbon Sequestration and Fertility after Centennial Time Scale Incorporation of Charcoal into Soil

    PubMed Central

    Criscuoli, Irene; Alberti, Giorgio; Baronti, Silvia; Favilli, Filippo; Martinez, Cristina; Calzolari, Costanza; Pusceddu, Emanuela; Rumpel, Cornelia; Viola, Roberto; Miglietta, Franco

    2014-01-01

    The addition of pyrogenic carbon (C) in the soil is considered a potential strategy to achieve direct C sequestration and potential reduction of non-CO2 greenhouse gas emissions. In this paper, we investigated the long term effects of charcoal addition on C sequestration and soil physico-chemical properties by studying a series of abandoned charcoal hearths in the Eastern Alps of Italy established in the XIX century. This natural setting can be seen as an analogue of a deliberate experiment with replications. Carbon sequestration was assessed indirectly by comparing the amount of pyrogenic C present in the hearths (23.3±4.7 kg C m−2) with the estimated amount of charcoal that was left on the soil after the carbonization (29.3±5.1 kg C m−2). After taking into account uncertainty associated with parameters’ estimation, we were able to conclude that 80±21% of the C originally added to the soil via charcoal can still be found there and that charcoal has an overall Mean Residence Time of 650±139 years, thus supporting the view that charcoal incorporation is an effective way to sequester atmospheric CO2. We also observed an overall change in the physical properties (hydrophobicity and bulk density) of charcoal hearth soils and an accumulation of nutrients compared to the adjacent soil without charcoal. We caution, however, that our site-specific results should not be generalized without further study. PMID:24614647

  4. Crowd-Sourcing Management Activity Data to Drive GHG Emission Inventories in the Land Use Sector

    NASA Astrophysics Data System (ADS)

    Paustian, K.; Herrick, J.

    2015-12-01

    Greenhouse gas (GHG) emissions from the land use sector constitute the largest source category for many countries in Africa. Enhancing C sequestration and reducing GHG emissions on managed lands in Africa has to potential to attract C financing to support adoption of more sustainable land management practices that, in addition to GHG mitigation, can provide co-benefits of more productive and climate-resilient agroecosystems. However, robust systems to measure and monitor C sequestration/GHG reductions are currently a significant barrier to attracting more C financing to land use-related mitigation efforts.Anthropogenic GHG emissions are driven by a variety of environmental factors, including climate and soil attributes, as well as human-activities in the form of land use and management practices. GHG emission inventories typically use empirical or process-based models of emission rates that are driven by environmental and management variables. While a lack of field-based flux and C stock measurements are a limiting factor for GHG estimation, we argue that an even greater limitation may be availabiity of data on the management activities that influence flux rates, particularly in developing countries in Africa. In most developed countries there is a well-developed infrastructure of agricultural statistics and practice surveys that can be used to drive model-based GHG emission estimations. However, this infrastructure is largely lacking in developing countries in Africa. While some activity data (e.g. land cover change) can be derived from remote sensing, many key data (e.g., N fertilizer practices, residue management, manuring) require input from the farmers themselves. The explosive growth in cellular technology, even in many of the poorest parts of Africa, suggests the potential for a new crowd-sourcing approach and direct engagement with farmers to 'leap-frog' the land resource information model of developed countries. Among the many benefits of this approach would be high resolution management data to support GHG inventories at multiple scales. We present an overall conceptual model for this approach and examples from on-going projects in Africa employing direct farmer engagement, cellular technology and apps to develop this information resource.

  5. Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: from imagination to reality?

    PubMed

    Zhu, Yong-Guan; Rosen, Barry P

    2009-04-01

    Phytoremediation to clean up arsenic-contaminated environments has been widely hailed as environmentally friendly and cost effective, and genetic engineering is believed to improve the efficiency and versatility of phytoremediation. Successful genetic engineering requires the thorough understanding of the mechanisms involved in arsenic tolerance and accumulation by natural plant species. Key mechanisms include arsenate reduction, arsenic sequestration in vacuoles of root or shoot, arsenic loading to the xylem, and volatilization through the leaves. Key advances include the identification of arsenic (As) translocation from root to shoot in the As hyperaccumulator, Pteris vittata, and the characterization of related key genes from hyperaccumulator and nonaccumulators. In this paper we have proposed three pathways for genetic engineering: arsenic sequestration in the root, hyperaccumulation of arsenic in aboveground tissues, and phytovolatilization.

  6. Addressing the Grand Challenge of atmospheric carbon dioxide: geologic sequestration vs. biological recycling

    PubMed Central

    2011-01-01

    On February 15, 2008, the National Academy of Engineering unveiled their list of 14 Grand Challenges for Engineering. Building off of tremendous advancements in the past century, these challenges were selected for their role in assuring a sustainable existence for the rapidly increasing global community. It is no accident that the first five Challenges on the list involve the development of sustainable energy sources and management of environmental resources. While the focus of this review is to address the single Grand Challenge of "develop carbon sequestration methods", is will soon be clear that several other Challenges are intrinsically tied to it through the principles of sustainability. How does the realm of biological engineering play a role in addressing these Grand Challenges? PMID:22047501

  7. Environmental life cycle assessment of producing willow, alfalfa and straw from spring barley as feedstocks for bioenergy or biorefinery systems.

    PubMed

    Parajuli, Ranjan; Knudsen, Marie Trydeman; Djomo, Sylvestre Njakou; Corona, Andrea; Birkved, Morten; Dalgaard, Tommy

    2017-05-15

    The current study aimed at evaluating potential environmental impacts for the production of willow, alfalfa and straw from spring barley as feedstocks for bioenergy or biorefinery systems. A method of Life Cycle Assessment was used to evaluate based on the following impact categories: Global Warming Potential (GWP 100 ), Eutrophication Potential (EP), Non-Renewable Energy (NRE) use, Agricultural Land Occupation (ALO), Potential Freshwater Ecotoxicity (PFWTox) and Soil quality. With regard to the methods, soil organic carbon (SOC) change related to the land occupation was calculated based on the net carbon input to the soil. Freshwater ecotoxicity was calculated using the comparative toxicity units of the active ingredients and their average emission distribution fractions to air and freshwater. Soil quality was based on the change in the SOC stock estimated during the land use transformation and land occupation. Environmental impacts for straw were economically allocated from the impacts obtained for spring barley. The results obtained per ton dry matter showed a lower carbon footprint for willow and alfalfa compared to straw. It was due to higher soil carbon sequestration and lower N 2 O emissions. Likewise, willow and alfalfa had lower EP than straw. Straw had lowest NRE use compared to other biomasses. PFWTox was lower in willow and alfalfa compared to straw. A critical negative effect on soil quality was found with the spring barley production and hence for straw. Based on the energy output to input ratio, willow performed better than other biomasses. On the basis of carbohydrate content of straw, the equivalent dry matter of alfalfa and willow would be requiring higher. The environmental impacts of the selected biomasses in biorefinery therefore would differ based on the conversion efficiency, e.g. of the carbohydrates in the related biorefinery processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Evaluating natural flood management measures using an ecosystem based adaptation framework: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Iacob, Oana; Rowan, John; Brown, Iain; Ellis, Chris

    2014-05-01

    Climate change is projected to alter river flows and the magnitude/frequency characteristics of floods and droughts. As a result flood risk is expected to increase with environmental, social and economic impacts. Traditionally flood risk management has been heavily relying on engineering measures, however with climate change their capacity to provide protection is expected to decrease. Ecosystem-based adaptation highlights the interdependence of human and natural systems, and the potential to buffer the impacts of climate change by maintaining functioning ecosystems that continue to provide multiple societal benefits. Natural flood management measures have the potential to provide a greater adaptive capacity to negate the impacts of climate change and provide ancillary benefits. To understand the impacts of different NFM measures on ecosystem services a meta-analysis was undertaken. Twenty five studies from across the world were pulled together to assess their effectiveness on reducing the flood risk but also on other ecosystems services as defined by the UK National Ecosystem Assessment, which distinguishes between provisioning, regulating, cultural and supporting services. Four categories of NFM measures were considered: (i) afforestation measures, (ii) drainage and blocking the drains, (iii) wetland restoration and (iv) combined measures. Woodland expansion measures provide significant benefits for flood protection more pronounced for low magnitude events, but also for other services such as carbon sequestration and water quality. These measures however will come at a cost for livestock and crop provisioning services as a result of land use changes. Drainage operations and blocking the drains have mixed impacts on carbon sequestration and water quality depending on soil type, landscape settings and local characteristics. Wetland and floodplain restoration measures have generally a few disbenefits and provide improvements for regulating and supporting services. Mixed measures are expected to have cumulative benefits which are likely to outweigh disbenefits and packages of actions are recommended rather than individual or localised actions for an integrated catchment management approach. NFM measures have the potential to provide significant environmental gains, however the time lags between the moment these measures are set in place until they become effective must be considered especially in flood vulnerable communities where there is already a stakeholders demand to decrease the risk of flooding even for the current level of exposure.

  9. Environmental impact of converting Conservation Reserve Program land to perennial bioenergy crops in Illinois.

    NASA Astrophysics Data System (ADS)

    Blanc-Betes, E.; Hudiburg, T. W.; Khanna, M.; DeLucia, E. H.

    2017-12-01

    Reducing dependence on fossil fuels by the 20% by 2022 mandated by the Energy Independence and Security Act would require 35 billion Ga of ethanol and the loss of 9 to 12 Mha of food producing land to biofuel production, challenging our ability to develop a sustainable bioenergy source while meeting the food demands of a growing population. There are currently 8.5 Mha of land enrolled in the Conservation Reserve Program (CRP), a US government funded program to incentivize the retirement of environmentally sensitive cropland out of conventional crop production. About 63% of CRP land area could potentially be converted to energy crops, contributing to biofuel targets without displacing food. With high yields and low fertilization and irrigation requirements, perennial cellulosic crops (e.g. switchgrass and Miscanthus) not only would reduce land requirements by up to 15% compared to prairies or corn-based biofuel, but also serve other conservation goals such as C sequestration in soils, and water and air quality improvement. Here, we use the DayCent biogeochemical model to assess the potential of CRP land conversion to switchgrass or Miscanthus to provide a sustainable source of biofuel, reduce GHG emissions and increase soil organic carbon (SOC) storage in the area of Illinois, which at present contributes to 10% of the biofuel production in the US. Model simulations indicate that the replacement of traditional corn-soy rotation with CRP reduces GHG emissions by 3.3 Mg CO2-eq ha-1 y-1 and increases SOC storage at a rate of 0.5 Mg C ha-1 y-1. Conversion of CRP land to cellulosic perennials would further reduce GHG emissions by 1.1 Mg CO2-eq ha-1 y-1 for switchgrass and 6.2 Mg CO2-eq ha-1 y-1 for Miscanthus, and increase C sequestration in soils (1.7 Tg C for switchgrass and 7.7 Tg C for Miscanthus in 30 years). Cellulosic energy crops would increase average annual yields by approximately 5.6 Mg ha-1 for switchgrass and 13.6 Mg ha-1 for Miscanthus, potentially producing 78 and 188 million Ga of bioethanol annually, respectively. This represents an increase of 5% and 12% in the Illinois annual biofuel production, displacing up to 4% of current fossil fuel consumption in the state of Illinois without detriment for food production.

  10. Ocean urea fertilization for carbon credits poses high ecological risks.

    PubMed

    Glibert, Patricia M; Azanza, Rhodora; Burford, Michele; Furuya, Ken; Abal, Eva; Al-Azri, Adnan; Al-Yamani, Faiza; Andersen, Per; Anderson, Donald M; Beardall, John; Berg, G Mine; Brand, Larry; Bronk, Deborah; Brookes, Justin; Burkholder, Joann M; Cembella, Allan; Cochlan, William P; Collier, Jackie L; Collos, Yves; Diaz, Robert; Doblin, Martina; Drennen, Thomas; Dyhrman, Sonya; Fukuyo, Yasuwo; Furnas, Miles; Galloway, James; Granéli, Edna; Ha, Dao Viet; Hallegraeff, Gustaaf; Harrison, John; Harrison, Paul J; Heil, Cynthia A; Heimann, Kirsten; Howarth, Robert; Jauzein, Cécile; Kana, Austin A; Kana, Todd M; Kim, Hakgyoon; Kudela, Raphael; Legrand, Catherine; Mallin, Michael; Mulholland, Margaret; Murray, Shauna; O'Neil, Judith; Pitcher, Grant; Qi, Yuzao; Rabalais, Nancy; Raine, Robin; Seitzinger, Sybil; Salomon, Paulo S; Solomon, Caroline; Stoecker, Diane K; Usup, Gires; Wilson, Joanne; Yin, Kedong; Zhou, Mingjiang; Zhu, Mingyuan

    2008-06-01

    The proposed plan for enrichment of the Sulu Sea, Philippines, a region of rich marine biodiversity, with thousands of tonnes of urea in order to stimulate algal blooms and sequester carbon is flawed for multiple reasons. Urea is preferentially used as a nitrogen source by some cyanobacteria and dinoflagellates, many of which are neutrally or positively buoyant. Biological pumps to the deep sea are classically leaky, and the inefficient burial of new biomass makes the estimation of a net loss of carbon from the atmosphere questionable at best. The potential for growth of toxic dinoflagellates is also high, as many grow well on urea and some even increase their toxicity when grown on urea. Many toxic dinoflagellates form cysts which can settle to the sediment and germinate in subsequent years, forming new blooms even without further fertilization. If large-scale blooms do occur, it is likely that they will contribute to hypoxia in the bottom waters upon decomposition. Lastly, urea production requires fossil fuel usage, further limiting the potential for net carbon sequestration. The environmental and economic impacts are potentially great and need to be rigorously assessed.

  11. Ocean Urea Fertilization for Carbon Credits Poses High Ecological Risks

    PubMed Central

    Glibert, Patricia M.; Azanza, Rhodora; Burford, Michele; Furuya, Ken; Abal, Eva; Al-Azri, Adnan; Al-Yamani, Faiza; Andersen, Per; Beardall, John; Berg, G. Mine; Brand, Larry; Bronk, Deborah; Brookes, Justin; Burkholder, JoAnn M.; Cembella, Allan; Cochlan, William P.; Collier, Jackie; Collos, Yves; Diaz, Robert; Doblin, Martina; Drennen, Thomas; Dyhrman, Sonya; Fukuyo, Yasuwo; Furnas, Miles; Galloway, James; Granéli, Edna; Ha, Dao Viet; Hallegraeff, Gustaaf; Harrison, John; Harrison, Paul J.; Heil, Cynthia A.; Heimann, Kirsten; Howarth, Robert; Jauzein, Cécile; Kana, Austin A.; Kana, Todd M.; Kim, Hakgyoon; Kudela, Raphael; Legrand, Catherine; Mallin, Michael; Mulholland, Margaret; Murray, Shauna; O’Neil, Judith; Pitcher, Grant; Qi, Yuzao; Rabalais, Nancy; Raine, Robin; Seitzinger, Sybil; Solomon, Caroline; Stoecker, Diane K.; Usup, Gires; Wilson, Joanne; Yin, Kedong; Zhou, Mingjiang; Zhu, Mingyuan

    2017-01-01

    The proposed plan for enrichment of the Sulu Sea, Philippines, a region of rich marine biodiversity, with thousands of tonnes of urea in order to stimulate algal blooms and sequester carbon is flawed for multiple reasons. Urea is preferentially used as a nitrogen source by some cyanobacteria and dinoflagellates, many of which are neutrally or positively buoyant. Biological pumps to the deep sea are classically leaky, and the inefficient burial of new biomass makes the estimation of a net loss of carbon from the atmosphere questionable at best. The potential for growth of toxic dinoflagellates is also high, as many grow well on urea and some even increase their toxicity when grown on urea. Many toxic dinoflagellates form cysts which can settle to the sediment and germinate in subsequent years, forming new blooms even without further fertilization. If large-scale blooms do occur, it is likely that they will contribute to hypoxia in the bottom waters upon decomposition. Lastly, urea production requires fossil fuel usage, further limiting the potential for net carbon sequestration. The environmental and economic impacts are potentially great and need to be rigorously assessed. PMID:18439628

  12. Greenhouse gas balance of mountain dairy farms as affected by grassland carbon sequestration.

    PubMed

    Salvador, Sara; Corazzin, Mirco; Romanzin, Alberto; Bovolenta, Stefano

    2017-07-01

    Recent studies on milk production have often focused on environmental impacts analysed using the Life Cycle Assessment (LCA) approach. In grassland-based livestock systems, soil carbon sequestration might be a potential sink to mitigate greenhouse gas (GHG) balance. Nevertheless, there is no commonly shared methodology. In this work, the GHG emissions of small-scale mountain dairy farms were assessed using the LCA approach. Two functional units, kg of Fat and Protein Corrected Milk (FPCM) and Utilizable Agricultural Land (UAL), and two different emissions allocations methods, no allocation and physical allocation, which accounts for the co-product beef, were considered. Two groups of small-scale dairy farms were identified based on the Livestock Units (LU) reared: <30 LU (LLU) and >30 LU (HLU). Before considering soil carbon sequestration in LCA, performing no allocation methods, LLU farms tended to have higher GHG emission than HLU farms per kg of FPCM (1.94 vs. 1.59 kg CO 2 -eq/kg FPCM, P ≤ 0.10), whereas the situation was reversed upon considering the m 2 of UAL as a functional unit (0.29 vs. 0.89 kg CO 2 -eq/m 2 , P ≤ 0.05). Conversely, considering physical allocation, the difference between the two groups became less noticeable. When the contribution from soil carbon sequestration was included in the LCA and no allocation method was performed, LLU farms registered higher values of GHG emission per kg of FPCM than HLU farms (1.38 vs. 1.10 kg CO 2 -eq/kg FPCM, P ≤ 0.05), and the situation was likewise reversed in this case upon considering the m 2 of UAL as a functional unit (0.22 vs. 0.73 kg CO 2 -eq/m 2 , P ≤ 0.05). To highlight how the presence of grasslands is crucial for the carbon footprint of small-scale farms, this study also applied a simulation for increasing the forage self-sufficiency of farms to 100%. In this case, an average reduction of GHG emission per kg of FPCM of farms was estimated both with no allocation and with physical allocation, reaching 27.0% and 28.8%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Numerically Simulating Carbonate Mineralization of Basalt with Injection of Carbon Dioxide into Deep Saline Formations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Mark D.; McGrail, B. Peter; Schaef, Herbert T.

    2006-07-08

    The principal mechanisms for the geologic sequestration of carbon dioxide in deep saline formations include geological structural trapping, hydrological entrapment of nonwetting fluids, aqueous phase dissolution and ionization, and geochemical sorption and mineralization. In sedimentary saline formations the dominant mechanisms are structural and dissolution trapping, with moderate to weak contributions from hydrological and geochemical trapping; where, hydrological trapping occurs during the imbibition of aqueous solution into pore spaces occupied by gaseous carbon dioxide, and geochemical trapping is controlled by generally slow reaction kinetics. In addition to being globally abundant and vast, deep basaltic lava formations offer mineralization kinetics that makemore » geochemical trapping a dominate mechanism for trapping carbon dioxide in these formations. For several decades the United States Department of Energy has been investigating Columbia River basalt in the Pacific Northwest as part of its environmental programs and options for natural gas storage. Recently this nonpotable and extensively characterized basalt formation is being reconsidered as a potential reservoir for geologic sequestration of carbon dioxide. The reservoir has an estimated storage capacity of 100 giga tonnes of carbon dioxide and comprises layered basalt flows with sublayering that generally alternates between low permeability massive and high permeability breccia. Chemical analysis of the formation shows 10 wt% Fe, primarily in the +2 valence. The mineralization reaction that makes basalt formations attractive for carbon dioxide sequestration is that of calcium, magnesium, and iron silicates reacting with dissolved carbon dioxide, producing carbonate minerals and amorphous quartz. Preliminary estimates of the kinetics of the silicate-to-carbonate reactions have been determined experimentally and this research is continuing to determine effects of temperature, pressure, rock composition and mineral assemblages on the reaction rates. This study numerically investigates the injection, migration and sequestration of supercritical carbon dioxide in deep Columbia River basalt formations using the multifluid subsurface flow and reactive transport simulator STOMP-CO2 with its ECKEChem module. Simulations are executed on high resolution multiple stochastic realizations of the layered basalt systems and demonstrate the migration behavior through layered basalt formations and the mineralization of dissolved carbon dioxide. Reported results include images of the migration behavior, distribution of carbonate formation, quantities of injected and sequestered carbon dioxide, and percentages of the carbon dioxide sequestered by different mechanisms over time.« less

  14. Do mitigation strategies reduce global warming potential in the northern U.S. corn belt?

    PubMed

    Johnson, Jane M-F; Archer, David W; Weyers, Sharon L; Barbour, Nancy W

    2011-01-01

    Agricultural management practices that enhance C sequestration, reduce greenhouse gas emission (nitrous oxide [N₂O], methane [CH₄], and carbon dioxide [CO₂]), and promote productivity are needed to mitigate global warming without sacrificing food production. The objectives of the study were to compare productivity, greenhouse gas emission, and change in soil C over time and to assess whether global warming potential and global warming potential per unit biomass produced were reduced through combined mitigation strategies when implemented in the northern U.S. Corn Belt. The systems compared were (i) business as usual (BAU); (ii) maximum C sequestration (MAXC); and (iii) optimum greenhouse gas benefit (OGGB). Biomass production, greenhouse gas flux change in total and organic soil C, and global warming potential were compared among the three systems. Soil organic C accumulated only in the surface 0 to 5 cm. Three-year average emission of N₂O and CH was similar among all management systems. When integrated from planting to planting, N₂O emission was similar for MAXC and OGGB systems, although only MAXC was fertilized. Overall, the three systems had similar global warming potential based on 4-yr changes in soil organic C, but average rotation biomass was less in the OGGB systems. Global warming potential per dry crop yield was the least for the MAXC system and the most for OGGB system. This suggests management practices designed to reduce global warming potential can be achieved without a loss of productivity. For example, MAXC systems over time may provide sufficient soil C sequestration to offset associated greenhouse gas emission. by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Assessing ocean alkalinity for carbon sequestration

    NASA Astrophysics Data System (ADS)

    Renforth, Phil; Henderson, Gideon

    2017-09-01

    Over the coming century humanity may need to find reservoirs to store several trillions of tons of carbon dioxide (CO2) emitted from fossil fuel combustion, which would otherwise cause dangerous climate change if it were left in the atmosphere. Carbon storage in the ocean as bicarbonate ions (by increasing ocean alkalinity) has received very little attention. Yet recent work suggests sufficient capacity to sequester copious quantities of CO2. It may be possible to sequester hundreds of billions to trillions of tons of C without surpassing postindustrial average carbonate saturation states in the surface ocean. When globally distributed, the impact of elevated alkalinity is potentially small and may help ameliorate the effects of ocean acidification. However, the local impact around addition sites may be more acute but is specific to the mineral and technology. The alkalinity of the ocean increases naturally because of rock weathering in which >1.5 mol of carbon are removed from the atmosphere for every mole of magnesium or calcium dissolved from silicate minerals (e.g., wollastonite, olivine, and anorthite) and 0.5 mol for carbonate minerals (e.g., calcite and dolomite). These processes are responsible for naturally sequestering 0.5 billion tons of CO2 per year. Alkalinity is reduced in the ocean through carbonate mineral precipitation, which is almost exclusively formed from biological activity. Most of the previous work on the biological response to changes in carbonate chemistry have focused on acidifying conditions. More research is required to understand carbonate precipitation at elevated alkalinity to constrain the longevity of carbon storage. A range of technologies have been proposed to increase ocean alkalinity (accelerated weathering of limestone, enhanced weathering, electrochemical promoted weathering, and ocean liming), the cost of which may be comparable to alternative carbon sequestration proposals (e.g., $20-100 tCO2-1). There are still many unanswered technical, environmental, social, and ethical questions, but the scale of the carbon sequestration challenge warrants research to address these.

  16. Caprock Breach: A Threat to Secure Geologic Sequestration

    NASA Astrophysics Data System (ADS)

    Selvadurai, A. P.; Dong, W.

    2013-12-01

    The integrity of caprock in providing a reliable barrier is crucial to several environmental geosciences endeavours related to geologic sequestration of CO2, deep geologic disposal of hazardous wastes and contaminants. The integrity of geologic barriers can be compromised by several factors. The re-activation of dormant fractures and development of new fractures in the caprock during the injection process are regarded as effects that can pose a threat to storage security. Other poromechanical influences of pore structure collapse due to chemically induced erosion of the porous fabric resulting in worm-hole type features can also contribute to compromising storage security. The assessment of the rate of steady or transient seepage through defects in the caprock can allow geoscientists to make prudent evaluations of the effectiveness of a sequestration strategy. While complicated computational simulations can be used to calculate leakage through defects, it is useful to explore alternative analytical results that could be used in providing preliminary estimates of leakage rates through defects in the caprock in a storage setting. The relevance of such developments is underscored by the fact that the permeability characteristics of the storage formation, the fracture and the surficial rocks overlying the caprock can rarely be quantified with certainty. This paper presents the problem of a crack in a caprock that connects to a storage formation and an overburden rock or surficial soil formation. The geologic media are maintained at constant far-field flow potentials and leakage takes place at either steady or transient conditions. The paper develops an analytical result that can be used to estimate the steady seepage through the crack. The analytical result can also be used to estimate the leakage through hydraulically non-intersecting cracks and leakage from caprock-well casing interfaces. The analytical result is used to estimate the accuracy of a computational procedure based on a finite element procedure.

  17. Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO₂

    DOE PAGES

    Middleton, Richard S.; Carey, James William; Currier, Robert P.; ...

    2015-06-01

    Hydraulic fracturing of shale formations in the United States has led to a domestic energy boom. Currently, water is the only fracturing fluid regularly used in commercial shale oil and gas production. Industry and researchers are interested in non-aqueous working fluids due to their potential to increase production, reduce water requirements, and to minimize environmental impacts. Using a combination of new experimental and modeling data at multiple scales, we analyze the benefits and drawbacks of using CO₂ as a working fluid for shale gas production. We theorize and outline potential advantages of CO₂ including enhanced fracturing and fracture propagation, reductionmore » of flow-blocking mechanisms, increased desorption of methane adsorbed in organic-rich parts of the shale, and a reduction or elimination of the deep re-injection of flow-back water that has been linked to induced seismicity and other environmental concerns. We also examine likely disadvantages including costs and safety issues associated with handling large volumes of supercritical CO₂. The advantages could have a significant impact over time leading to substantially increased gas production. In addition, if CO₂ proves to be an effective fracturing fluid, then shale gas formations could become a major utilization option for carbon sequestration.« less

  18. The role of reforestation in carbon sequestration

    NASA Astrophysics Data System (ADS)

    Nave, L. E.; Walters, B. F.; Hofmeister, K.; Perry, C. H.; Mishra, U.; Domke, G. M.; Swanston, C.

    2017-12-01

    In the United States (U.S.), the maintenance of forest cover is a legal mandate for federally managed forest lands. Reforestation is one option for maintaining forest cover on managed or disturbed lands, and as a land use change can increase forest cover on previously non-forested lands, enhancing carbon (C)-based ecosystem services and functions such as the production of woody biomass for forest products and the mitigation of atmospheric CO2 pollution and climate change. Nonetheless, multiple assessments indicate that reforestation in the U.S. lags behind its potential, with continued ecosystem services and functions at risk if reforestation is not increased. In this context, there is need for multiple independent analyses that quantify the role of reforestation in C sequestration. Here, we report the findings of a large-scale data synthesis aimed at four objectives: 1) estimate C storage in major pools in forest and other land cover types; 2) quantify sources of variation in C pools; 3) compare the impacts of reforestation and afforestation on C pools; 4) assess whether results hold or diverge across ecoregions. Our data-driven analysis provides four key inferences regarding reforestation and other land use impacts on C sequestration. First, soils are the dominant C pool under all land cover types in the U.S., and spatial variation in soil C pool sizes has less to do with land cover than with other factors. Second, where historically cultivated lands are being reforested, topsoils are sequestering significant amounts of C, with the majority of reforested lands yet to reach sequestration capacity (relative to forested baseline). Third, the establishment of woody vegetation delivers immediate to multi-decadal C sequestration benefits in biomass and coarse woody debris pools, with two- to three-fold C sequestration benefits during the first several decades following planting. Fourth, opportunities to enhance C sequestration through reforestation vary among ecoregions, according to current levels of planting, typical forest growth rates, and past land uses (especially cultivation). Altogether, our results suggest that an immediate, but phased and spatially targeted approach to reforestation can enhance C sequestration in forest biomass and soils in the U.S. for decades to centuries to come.

  19. Urbanization dramatically altered the water balances of a paddy field dominated basin in southern China

    Treesearch

    L. Hao; G. Sun; Y. Liu; J. Wan; M. Qin; H. Qian; C. Liu; R. John; P. Fan; J. Chen

    2015-01-01

    Rice paddy fields provide important ecosystem services (e.g., food production, water retention, carbon sequestration) to a large population globally. However, these benefits are declining as a result of rapid environmental and socioeconomic transformations characterized by population growth, urbanization, and climate change in many Asian countries. This case study...

  20. Combined effects of climate and land management on watershed vegetation dynamics in an arid environment

    Treesearch

    Peilong Liu; Lu Hao; Cen Pan; Decheng Zhou; Yongqiang Liu; Ge Sun

    2017-01-01

    Leaf area index (LAI) is a key parameter to characterize vegetation dynamics and ecosystemstructure that determines the ecosystem functions and services such as cleanwater supply and carbon sequestration in awatershed. However, linking LAI dynamics and environmental controls (i.e., coupling biosphere, atmosphere, and anthroposphere) remains challenging and such type of...

  1. Finding of No Significant Impact & Tiered Environmental Assessment: Public Law 84-99 Rehabilitation Program Levee Unit 624-627 - Mosquito Creek Pottawattamie County, Iowa

    DTIC Science & Technology

    2014-10-01

    production; materials cycling (e.g., nitrogen, carbon, oxygen, phosphorous, and sulfur ); transformation, detoxification, and sequestration of pollutants and...be removed or covered by other material, such as concrete, asphalt , soil, gravel, etc. Temporary fills may be placed upon the substrate, but must be

  2. Air pollution removal by urban forests in Canada and its effect on air quality and human health

    Treesearch

    David J. Nowak; Satoshi Hirabayashi; Marlene Doyle; Mark McGovern; Jon Pasher

    2018-01-01

    Urban trees perform a number of ecosystem services including air pollution removal, carbon sequestration, cooling air temperatures and providing aesthetic beauty to the urban landscape. Trees remove air pollution by intercepting particulate matter on plant surfaces and absorbing gaseous pollutants through the leaf stomata. Computer simulations with local environmental...

  3. Grassland to shrubland state transitions enhance carbon sequestration in the northern Chihuahuan Desert

    Treesearch

    M. D. Petrie; S. L. Collins; A. M. Swann; P. L. Ford; M. E. Litvak

    2015-01-01

    The replacement of native C4-dominated grassland by C3-dominated shrubland is considered an ecological state transition where different ecological communities can exist under similar environmental conditions. These state transitions are occurring globally, and may be exacerbated by climate change. One consequence of the global increase in woody vegetation may be...

  4. Ex situ growth and biomass of Populus bioenergy crops irrigated and fertilized with landfill leachate

    Treesearch

    Ronald S. Jr. Zalesny; Adam H. Wiese; Edmund O. Bauer; Donald E. Riemenschneider

    2009-01-01

    Merging traditional intensive forestry with waste management offers dual goals of fiber and bioenergy production, along with environmental benefits such as soil/water remediation and carbon sequestration. As part of an ongoing effort to acquire data about initial genotypic performance, we evaluated: (1) the early aboveground growth of trees belonging to currently...

  5. Degradation State and Sequestration Potential of Carbon in Coastal Wetlands of Texas: Mangrove Vs. Saltmarsh Ecosystems

    NASA Astrophysics Data System (ADS)

    Sterne, A. M. E.; Kaiser, K.; Louchouarn, P.; Norwood, M. J.

    2015-12-01

    The estimated magnitude of the organic carbon (OC) stocks contained in the first meter of US coastal wetland soils represents ~10% of the entire OC stock in US soils (4 vs. 52 Pg, respectively). Because this stock extends to several meters below the surface for many coastal wetlands, it becomes paramount to understand the fate of OC under ecosystem shifts, varying natural environmental constraints, and changing land use. In this project we analyze the major classes of biochemicals including total hydrolysable neutral carbohydrates, enantiomeric amino acids, phenols, and cutins/suberins at two study sites located on the Texas coastline to investigate chemical composition and its controls on organic carbon preservation in mangrove (Avicennia germinans) and saltmarsh grass (Spartina alterniflora) dominated wetlands. Results show neutral carbohydrates and lignin contribute 30-70% and 10-40% of total OC, respectively, in plant litter and surface sediments at both sites. Sharp declines of carbohydrate yields with depth occur parallel to increasing Ac/AlS,V ratios indicating substantial decomposition of both the polysaccharide and lignin components of litter detritus. Contrasts in the compositions and relative abundances of all previously mentioned compound classes are further discussed to examine the role of litter biochemistry in OC preservation. For example, the selective preservation of cellulose over hemicellulose in sediments indicates macromolecular structure plays a key role in preservation between plant types. It is concluded that the chemical composition of litter material controls the composition and magnitude of OC stored in sediments. Ultimately, as these ecosystems transition from one dominant plant type to another, as is currently observed along the Texas coastline, there is the potential for OC sequestration efficiency to shift due to the changing composition of OC input to sediments.

  6. Depositional and diagenetic variability within the Cambrian Mount Simon Sandstone: Implications for carbon dioxide sequestration

    USGS Publications Warehouse

    Bowen, B.B.; Ochoa, R.I.; Wilkens, N.D.; Brophy, J.; Lovell, T.R.; Fischietto, N.; Medina, C.R.; Rupp, J.A.

    2011-01-01

    The Cambrian Mount Simon Sandstone is the major target reservoir for ongoing geologic carbon dioxide (CO2) sequestration demonstrations throughout the midwest United States. The potential CO2 reservoir capacity, reactivity, and ultimate fate of injected CO2 depend on textural and compositional properties determined by depositional and diagenetic histories that vary vertically and laterally across the formation. Effective and efficient prediction and use of the available pore space requires detailed knowledge of the depositional and diagenetic textures and mineralogy, how these variables control the petrophysical character of the reservoir, and how they vary spatially. Here, we summarize the reservoir characteristics of the Mount Simon Sandstone based on examination of geophysical logs, cores, cuttings, and analysis of more than 150 thin sections. These samples represent different parts of the formation and depth ranges of more than 9000 ft (>2743 m) across the Illinois Basin and surrounding areas. This work demonstrates that overall reservoir quality and, specifically, porosity do not exhibit a simple relationship with depth, but vary both laterally and with depth because of changes in the primary depositional facies, framework composition (i.e., feldspar concentration), and diverse diagenetic modifications. Diagenetic processes that have been significant in modifying the reservoir include formation of iron oxide grain coatings, chemical compaction, feldspar precipitation and dissolution, multiple generations of quartz overgrowth cementation, clay mineral precipitation, and iron oxide cementation. These variables provide important inputs for calculating CO2 capacity potential, modeling reactivity, and are also an important baseline for comparisons after CO2 injection. Copyright ??2011. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  7. Public Review Draft: A Method for Assessing Carbon Stocks, Carbon Sequestration, and Greenhouse-Gas Fluxes in Ecosystems of the United States Under Present Conditions and Future Scenarios

    USGS Publications Warehouse

    Bergamaschi, Brian A.; Bernknopf, Richard; Clow, David; Dye, Dennis; Faulkner, Stephen; Forney, William; Gleason, Robert; Hawbaker, Todd; Liu, Jinxun; Liu, Shu-Guang; Prisley, Stephen; Reed, Bradley; Reeves, Matthew; Rollins, Matthew; Sleeter, Benjamin; Sohl, Terry; Stackpoole, Sarah; Stehman, Stephen; Striegl, Robert G.; Wein, Anne; Zhu, Zhi-Liang; Zhu, Zhi-Liang

    2010-01-01

    The Energy Independence and Security Act of 2007 (EISA), Section 712, authorizes the U.S. Department of the Interior to develop a methodology and conduct an assessment of the Nation's ecosystems focusing on carbon stocks, carbon sequestration, and emissions of three greenhouse gases (GHGs): carbon dioxide, methane, and nitrous oxide. The major requirements include (1) an assessment of all ecosystems (terrestrial systems, such as forests, croplands, wetlands, shrub and grasslands; and aquatic ecosystems, such as rivers, lakes, and estuaries), (2) an estimation of annual potential capacities of ecosystems to increase carbon sequestration and reduce net GHG emissions in the context of mitigation strategies (including management and restoration activities), and (3) an evaluation of the effects of controlling processes, such as climate change, land use and land cover, and wildlfires. The purpose of this draft methodology for public review is to propose a technical plan to conduct the assessment. Within the methodology, the concepts of ecosystems, carbon pools, and GHG fluxes used for the assessment follow conventional definitions in use by major national and international assessment or inventory efforts. In order to estimate current ecosystem carbon stocks and GHG fluxes and to understand the potential capacity and effects of mitigation strategies, the method will use two time periods for the assessment: 2001 through 2010, which establishes a current ecosystem GHG baseline and will be used to validate the models; and 2011 through 2050, which will be used to assess future potential conditions based on a set of projected scenarios. The scenario framework is constructed using storylines of the Intergovernmental Panel on Climate Change (IPCC) Special Report Emission Scenarios (SRES), along with initial reference land-use and land-cover (LULC) and land-management scenarios. An additional three LULC and land-management mitigation scenarios will be constructed for each storyline to enhance carbon sequestration and reduce GHG fluxes in ecosystems. Input from regional experts and stakeholders will be solicited to construct realistic and meaningful scenarios. The methods for mapping the current LULC and ecosystem disturbances will require the extensive use of both remote-sensing data and in-situ (for example, forest inventory data) to capture and characterize landscape-change events. For future potential LULC and ecosystem disturbances, key drivers such as socioeconomic, policy, and climate assumptions will be used in addition to biophysical data. The product of these analyses will be a series of maps for each future year for each scenario. These annual maps will form the basis for estimating carbon storage and GHG emissions. For terrestrial ecosystems, carbon storage, carbon-sequestration capacities, and GHG emissions under the current and projected future conditions will be assessed using the LULC and ecosystem-disturbance estimates in map format with a spatially explicit biogeochemical ensemble modeling system that incorporates properties of management activities (such as tillage or harvesting) and properties of individual ecosystems (such as elevation, vegetation characteristics, and soil attributes). For aquatic ecosystems, carbon burial in sediments and GHG fluxes are functions of the current and projected future stream flow and sediment transports, and therefore will be assessed using empirical modeling methods. Validation and uncertainty analysis methods described in the methodology will follow established guidelines to assess the quality of the assessment results. The U.S. Environmental Protection Agency's Level II ecoregions map (which delineates 24 ecoregions for the Nation) will be the practical instrument for developing and delivering assessment results. Consequently, the ecoregion will be the reporting unit of the assessment because the mitigation scenarios, assessment results, validation, and uncertainty analysis will be

  8. Impacts of crop rotations on soil organic carbon sequestration

    NASA Astrophysics Data System (ADS)

    Gobin, Anne; Vos, Johan; Joris, Ingeborg; Van De Vreken, Philippe

    2013-04-01

    Agricultural land use and crop rotations can greatly affect the amount of carbon sequestered in the soil. We developed a framework for modelling the impacts of crop rotations on soil carbon sequestration at the field scale with test case Flanders. A crop rotation geo-database was constructed covering 10 years of crop rotation in Flanders using the IACS parcel registration (Integrated Administration and Control System) to elicit the most common crop rotation on major soil types in Flanders. In order to simulate the impact of crop cover on carbon sequestration, the Roth-C model was adapted to Flanders' environment and coupled to common crop rotations extracted from the IACS geodatabases and statistical databases on crop yield. Crop allometric models were used to calculate crop residues from common crops in Flanders and subsequently derive stable organic matter fluxes to the soil (REGSOM). The REGSOM model was coupled to Roth-C model was run for 30 years and for all combinations of seven main arable crops, two common catch crops and two common dosages of organic manure. The common crops are winter wheat, winter barley, sugar beet, potato, grain maize, silage maize and winter rapeseed; the catch crops are yellow mustard and Italian ryegrass; the manure dosages are 35 ton/ha cattle slurry and 22 ton/ha pig slurry. Four common soils were simulated: sand, loam, sandy loam and clay. In total more than 2.4 million simulations were made with monthly output of carbon content for 30 years. Results demonstrate that crop cover dynamics influence carbon sequestration for a very large percentage. For the same rotations carbon sequestration is highest on clay soils and lowest on sandy soils. Crop residues of grain maize and winter wheat followed by catch crops contribute largely to the total carbon sequestered. This implies that agricultural policies that impact on agricultural land management influence soil carbon sequestration for a large percentage. The framework is therefore suited for further scenario analysis and impact assessment in order to support agri-environmental policy decisions.

  9. Hydrocarbon-Degrading Bacteria Exhibit a Species-Specific Response to Dispersed Oil while Moderating Ecotoxicity

    PubMed Central

    Overholt, Will A.; Marks, Kala P.; Romero, Isabel C.; Hollander, David J.; Snell, Terry W.

    2015-01-01

    The Deepwater Horizon blowout in April 2010 represented the largest accidental marine oil spill and the largest release of chemical dispersants into the environment to date. While dispersant application may provide numerous benefits to oil spill response efforts, the impacts of dispersants and potential synergistic effects with crude oil on individual hydrocarbon-degrading bacteria are poorly understood. In this study, two environmentally relevant species of hydrocarbon-degrading bacteria were utilized to quantify the response to Macondo crude oil and Corexit 9500A-dispersed oil in terms of bacterial growth and oil degradation potential. In addition, specific hydrocarbon compounds were quantified in the dissolved phase of the medium and linked to ecotoxicity using a U.S. Environmental Protection Agency (EPA)-approved rotifer assay. Bacterial treatment significantly and drastically reduced the toxicity associated with dispersed oil (increasing the 50% lethal concentration [LC50] by 215%). The growth and crude oil degradation potential of Acinetobacter were inhibited by Corexit by 34% and 40%, respectively; conversely, Corexit significantly enhanced the growth of Alcanivorax by 10% relative to that in undispersed oil. Furthermore, both bacterial strains were shown to grow with Corexit as the sole carbon and energy source. Hydrocarbon-degrading bacterial species demonstrate a unique response to dispersed oil compared to their response to crude oil, with potentially opposing effects on toxicity. While some species have the potential to enhance the toxicity of crude oil by producing biosurfactants, the same bacteria may reduce the toxicity associated with dispersed oil through degradation or sequestration. PMID:26546426

  10. Identifying/Quantifying Environmental Trade-offs Inherent in GHG Reduction Strategies for Coal-Fired Power.

    PubMed

    Schivley, Greg; Ingwersen, Wesley W; Marriott, Joe; Hawkins, Troy R; Skone, Timothy J

    2015-07-07

    Improvements to coal power plant technology and the cofired combustion of biomass promise direct greenhouse gas (GHG) reductions for existing coal-fired power plants. Questions remain as to what the reduction potentials are from a life cycle perspective and if it will result in unintended increases in impacts to air and water quality and human health. This study provides a unique analysis of the potential environmental impact reductions from upgrading existing subcritical pulverized coal power plants to increase their efficiency, improving environmental controls, cofiring biomass, and exporting steam for industrial use. The climate impacts are examined in both a traditional-100 year GWP-method and a time series analysis that accounts for emission and uptake timing over the life of the power plant. Compared to fleet average pulverized bed boilers (33% efficiency), we find that circulating fluidized bed boilers (39% efficiency) may provide GHG reductions of about 13% when using 100% coal and reductions of about 20-37% when cofiring with 30% biomass. Additional greenhouse gas reductions from combined heat and power are minimal if the steam coproduct displaces steam from an efficient natural gas boiler. These upgrades and cofiring biomass can also reduce other life cycle impacts, although there may be increased impacts to water quality (eutrophication) when using biomass from an intensely cultivated source. Climate change impacts are sensitive to the timing of emissions and carbon sequestration as well as the time horizon over which impacts are considered, particularly for long growth woody biomass.

  11. Microbial Reverse-Electrodialysis Electrolysis and Chemical-Production Cell for H2 Production and CO2 Sequestration.

    PubMed

    Zhu, Xiuping; Hatzell, Marta C; Logan, Bruce E

    2014-04-08

    Natural mineral carbonation can be accelerated using acid and alkali solutions to enhance atmospheric CO 2 sequestration, but the production of these solutions needs to be carbon-neutral. A microbial reverse-electrodialysis electrolysis and chemical-production cell (MRECC) was developed to produce these solutions and H 2 gas using only renewable energy sources (organic matter and salinity gradient). Using acetate (0.82 g/L) as a fuel for microorganisms to generate electricity in the anode chamber (liquid volume of 28 mL), 0.45 mmol of acid and 1.09 mmol of alkali were produced at production efficiencies of 35% and 86%, respectively, along with 10 mL of H 2 gas. Serpentine dissolution was enhanced 17-87-fold using the acid solution, with approximately 9 mL of CO 2 absorbed and 4 mg of CO 2 fixed as magnesium or calcium carbonates. The operational costs, based on mineral digging and grinding, and water pumping, were estimated to be only $25/metric ton of CO 2 fixed as insoluble carbonates. Considering the additional economic benefits of H 2 generation and possible wastewater treatment, this method may be a cost-effective and environmentally friendly method for CO 2 sequestration.

  12. A review on soil carbon accumulation due to the management change of major Brazilian agricultural activities.

    PubMed

    La Scala, N; De Figueiredo, E B; Panosso, A R

    2012-08-01

    Agricultural areas deal with enormous CO2 intake fluxes offering an opportunity for greenhouse effect mitigation. In this work we studied the potential of soil carbon sequestration due to the management conversion in major agricultural activities in Brazil. Data from several studies indicate that in soybean/maize, and related rotation systems, a significant soil carbon sequestration was observed over the year of conversion from conventional to no-till practices, with a mean rate of 0.41 Mg C ha(-1) year(-1). The same effect was observed in sugarcane fields, but with a much higher accumulation of carbon in soil stocks, when sugarcane fields are converted from burned to mechanised based harvest, where large amounts of sugarcane residues remain on the soil surface (1.8 Mg C ha(-1) year(-1)). The higher sequestration potential of sugarcane crops, when compared to the others, has a direct relation to the primary production of this crop. Nevertheless, much of this mitigation potential of soil carbon accumulation in sugarcane fields is lost once areas are reformed, or intensive tillage is applied. Pasture lands have shown soil carbon depletion once natural areas are converted to livestock use, while integration of those areas with agriculture use has shown an improvement in soil carbon stocks. Those works have shown that the main crop systems of Brazil have a huge mitigation potential, especially in soil carbon form, being an opportunity for future mitigation strategies.

  13. What happens to soil ecological properties when conservation reserve program land is disturbed

    USDA-ARS?s Scientific Manuscript database

    Each year, expiring Conservation Reserve Program (CRP) contracts results in the conversion of restored CRP land back to croplands, potentially reversing multiple ecological benefits including C sequestration potential and microbial biodiversity. We evaluated microbial community composition (fatty ac...

  14. Current Techniques of Growing Algae Using Flue Gas from Exhaust Gas Industry: a Review.

    PubMed

    Huang, Guanhua; Chen, Feng; Kuang, Yali; He, Huan; Qin, An

    2016-03-01

    The soaring increase of flue gas emission had caused global warming, environmental pollution as well as climate change. Widespread concern on reduction of flue gas released from industrial plants had considered the microalgae as excellent biological materials for recycling the carbon dioxide directly emitted from exhaust industries. Microalgae also have the potential to be the valuable feedback for renewable energy production due to their high growth rate and abilities to sequester inorganic carbon through photosynthetic process. In this review article, we will illustrate important relative mechanisms in the metabolic processes of biofixation by microalgae and their recent experimental researches and advances of sequestration of carbon dioxide by microalgae on actual industrial and stimulate flue gases, novel photobioreactor cultivation systems as well as the perspectives and limitations of microalgal cultivation in further development.

  15. Activated Neutrophils Are Associated with Pediatric Cerebral Malaria Vasculopathy in Malawian Children

    PubMed Central

    Feintuch, Catherine Manix; Saidi, Alex; Seydel, Karl; Chen, Grace; Goldman-Yassen, Adam; Mita-Mendoza, Neida K.; Kim, Ryung S.; Frenette, Paul S.; Taylor, Terrie

    2016-01-01

    ABSTRACT Most patients with cerebral malaria (CM) sustain cerebral microvascular sequestration of Plasmodium falciparum-infected red blood cells (iRBCs). Although many young children are infected with P. falciparum, CM remains a rare outcome; thus, we hypothesized that specific host conditions facilitate iRBC cerebral sequestration. To identify these host factors, we compared the peripheral whole-blood transcriptomes of Malawian children with iRBC cerebral sequestration, identified as malarial-retinopathy-positive CM (Ret+CM), to the transcriptomes of children with CM and no cerebral iRBC sequestration, defined as malarial-retinopathy-negative CM (Ret-CM). Ret+CM was associated with upregulation of 103 gene set pathways, including cytokine, blood coagulation, and extracellular matrix (ECM) pathways (P < 0.01; false-discovery rate [FDR] of <0.05). Neutrophil transcripts were the most highly upregulated individual transcripts in Ret+CM patients. Activated neutrophils can modulate diverse host processes, including the ECM, inflammation, and platelet biology to potentially facilitate parasite sequestration. Therefore, we compared plasma neutrophil proteins and neutrophil chemotaxis between Ret+CM and Ret-CM patients. Plasma levels of human neutrophil elastase, myeloperoxidase, and proteinase 3, but not lactoferrin or lipocalin, were elevated in Ret+CM patients, and neutrophil chemotaxis was impaired, possibly related to increased plasma heme. Neutrophils were rarely seen in CM brain microvasculature autopsy samples, and no neutrophil extracellular traps were found, suggesting that a putative neutrophil effect on endothelial cell biology results from neutrophil soluble factors rather than direct neutrophil cellular tissue effects. Meanwhile, children with Ret-CM had lower levels of inflammation, higher levels of alpha interferon, and upregulation of Toll-like receptor pathways and other host transcriptional pathways, which may represent responses that do not favor cerebral iRBC sequestration. PMID:26884431

  16. An Evaluation of Subsurface Microbial Activity Conditional to Subsurface Temperature, Porosity, and Permeability at North American Carbon Sequestration Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, B.; Mordensky, S.; Verba, Circe

    Several nations, including the United States, recognize global climate change as a force transforming the global ecosphere. Carbon dioxide (CO 2) is a greenhouse gas that contributes to the evolving climate. Reduction of atmospheric CO 2 levels is a goal for many nations and carbon sequestration which traps CO 2 in the Earth’s subsurface is one method to reduce atmospheric CO 2 levels. Among the variables that must be considered in developing this technology to a national scale is microbial activity. Microbial activity or biomass can change rock permeability, alter artificial seals around boreholes, and play a key role inmore » biogeochemistry and accordingly may determine how CO 2 is sequestered underground. Certain physical parameters of a reservoir found in literature (e.g., temperature, porosity, and permeability) may indicate whether a reservoir can host microbial communities. In order to estimate which subsurface formations may host microbes, this report examines the subsurface temperature, porosity, and permeability of underground rock formations that have high potential to be targeted for CO 2 sequestration. Of the 268 North American wellbore locations from the National Carbon Sequestration Database (NATCARB; National Energy and Technology Laboratory, 2015) and 35 sites from Nelson and Kibler (2003), 96 sequestration sites contain temperature data. Of these 96 sites, 36 sites have temperatures that would be favorable for microbial survival, 48 sites have mixed conditions for supporting microbial populations, and 11 sites would appear to be unfavorable to support microbial populations. Future studies of microbe viability would benefit from a larger database with more formation parameters (e.g. mineralogy, structure, and groundwater chemistry), which would help to increase understanding of where CO 2 sequestration could be most efficiently implemented.« less

  17. Use of relational databases to evaluate regional petroleum accumulation, groundwater flow, and CO2 sequestration in Kansas

    USGS Publications Warehouse

    Carr, T.R.; Merriam, D.F.; Bartley, J.D.

    2005-01-01

    Large-scale relational databases and geographic information system tools are used to integrate temperature, pressure, and water geo-chemistry data from numerous wells to better understand regional-scale geothermal and hydrogeological regimes of the lower Paleozoic aquifer systems in the mid-continent and to evaluate their potential for geologic CO2 sequestration. The lower Paleozoic (Cambrian to Mississippian) aquifer systems in Kansas, Missouri, and Oklahoma comprise one of the largest regional-scale saline aquifer systems in North America. Understanding hydrologic conditions and processes of these regional-scale aquifer systems provides insight to the evolution of the various sedimentary basins, migration of hydrocarbons out of the Anadarko and Arkoma basins, and the distribution of Arbuckle petroleum reservoirs across Kansas and provides a basis to evaluate CO2 sequestration potential. The Cambrian and Ordovician stratigraphic units form a saline aquifer that is in hydrologic continuity with the freshwater recharge from the Ozark plateau and along the Nemaha anticline. The hydrologic continuity with areas of freshwater recharge provides an explanation for the apparent underpressure in the Arbuckle Group. Copyright ?? 2005. The American Association of Petroleum Geologists. All rights reserved.

  18. Effect of rainfall seasonality on carbon storage in tropical dry ecosystems

    NASA Astrophysics Data System (ADS)

    Rohr, Tyler; Manzoni, Stefano; Feng, Xue; Menezes, Rômulo S. C.; Porporato, Amilcare

    2013-07-01

    seasonally dry conditions are typical of large areas of the tropics, their biogeochemical responses to seasonal rainfall and soil carbon (C) sequestration potential are not well characterized. Seasonal moisture availability positively affects both productivity and soil respiration, resulting in a delicate balance between C deposition as litterfall and C loss through heterotrophic respiration. To understand how rainfall seasonality (i.e., duration of the wet season and rainfall distribution) affects this balance and to provide estimates of long-term C sequestration, we develop a minimal model linking the seasonal behavior of the ensemble soil moisture, plant productivity, related C inputs through litterfall, and soil C dynamics. A drought-deciduous caatinga ecosystem in northeastern Brazil is used as a case study to parameterize the model. When extended to different patterns of rainfall seasonality, the results indicate that for fixed annual rainfall, both plant productivity and soil C sequestration potential are largely, and nonlinearly, dependent on wet season duration. Moreover, total annual rainfall is a critical driver of this relationship, leading at times to distinct optima in both production and C storage. These theoretical predictions are discussed in the context of parameter uncertainties and possible changes in rainfall regimes in tropical dry ecosystems.

  19. Potential for Carbon Sequestration in European Soils: Preliminary Estimates for Five Scenarios Using Results from Long-Term Experiments

    DOE Data Explorer

    Smith, P. [University of Aberdeen, Aberdeen, UK; Powlson, D. [University of Aberdeen, Aberdeen, UK; Glendining, M. [University of Aberdeen, Aberdeen, UK; Smith, J. [University of Aberdeen, Aberdeen, UK

    2003-01-01

    One of the main options for carbon mitigation identified by the IPCC is the sequestration of carbon in soils. In this paper we use statistical relationships derived from European long-term experiments to explore the potential for carbon sequestration in soils in the European Union. We examine five scenarios, namely (a) the amendment of arable soils with animal manure, (b) the amendment of arable soils with sewage sludge, (c) the incorporation of cereal straw into the soils in which it was grown, (d) the afforestation of surplus arable land through natural woodland regeneration, and (e) extensification of agriculture through ley-arable farming. Our calculations suggest only limited potential to increase soil carbon stocks over the next century by addition of animal manure, sewage sludge or straw (<15 Tg C y–1), but greater potential through extensification of agriculture (~40 Tg C y–1) or through the afforestation of surplus arable land (~50 Tg C y–1). We estimate that extensification could increase the total soil carbon stock of the European Union by 17%. Afforestation of 30% of present arable land would increase soil carbon stocks by about 8% over a century and would substitute up to 30 Tg C y–1 of fossil fuel carbon if the wood were used as biofuel. However, even the afforestation scenario, with the greatest potential for carbon mitigation, can sequester only 0.8% of annual global anthropogenic CO2-carbon. Our figures suggest that, although efforts in temperate agriculture can contribute to global carbon mitigation, the potential is small compared to that available through reducing anthropogenic CO2 emissions by halting tropical and sub-tropical deforestation or by reducing fossil fuel burning.

  20. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics

    PubMed Central

    Chazdon, Robin L.; Broadbent, Eben N.; Rozendaal, Danaë M. A.; Bongers, Frans; Zambrano, Angélica María Almeyda; Aide, T. Mitchell; Balvanera, Patricia; Becknell, Justin M.; Boukili, Vanessa; Brancalion, Pedro H. S.; Craven, Dylan; Almeida-Cortez, Jarcilene S.; Cabral, George A. L.; de Jong, Ben; Denslow, Julie S.; Dent, Daisy H.; DeWalt, Saara J.; Dupuy, Juan M.; Durán, Sandra M.; Espírito-Santo, Mario M.; Fandino, María C.; César, Ricardo G.; Hall, Jefferson S.; Hernández-Stefanoni, José Luis; Jakovac, Catarina C.; Junqueira, André B.; Kennard, Deborah; Letcher, Susan G.; Lohbeck, Madelon; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A.; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R. F.; Ochoa-Gaona, Susana; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A.; Piotto, Daniel; Powers, Jennifer S.; Rodríguez-Velazquez, Jorge; Romero-Pérez, Isabel Eunice; Ruíz, Jorge; Saldarriaga, Juan G.; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B.; Steininger, Marc K.; Swenson, Nathan G.; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D. M.; Vester, Hans; Vieira, Ima Celia G.; Bentos, Tony Vizcarra; Williamson, G. Bruce; Poorter, Lourens

    2016-01-01

    Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km2 of land (28.1% of the total study area). Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO2 sequestration of 31.09 Pg CO2. This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from 1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forest management, natural regeneration of second-growth forests provides a low-cost mechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services. PMID:27386528

  1. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics.

    PubMed

    Chazdon, Robin L; Broadbent, Eben N; Rozendaal, Danaë M A; Bongers, Frans; Zambrano, Angélica María Almeyda; Aide, T Mitchell; Balvanera, Patricia; Becknell, Justin M; Boukili, Vanessa; Brancalion, Pedro H S; Craven, Dylan; Almeida-Cortez, Jarcilene S; Cabral, George A L; de Jong, Ben; Denslow, Julie S; Dent, Daisy H; DeWalt, Saara J; Dupuy, Juan M; Durán, Sandra M; Espírito-Santo, Mario M; Fandino, María C; César, Ricardo G; Hall, Jefferson S; Hernández-Stefanoni, José Luis; Jakovac, Catarina C; Junqueira, André B; Kennard, Deborah; Letcher, Susan G; Lohbeck, Madelon; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R F; Ochoa-Gaona, Susana; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A; Piotto, Daniel; Powers, Jennifer S; Rodríguez-Velazquez, Jorge; Romero-Pérez, Isabel Eunice; Ruíz, Jorge; Saldarriaga, Juan G; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B; Steininger, Marc K; Swenson, Nathan G; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D M; Vester, Hans; Vieira, Ima Celia G; Bentos, Tony Vizcarra; Williamson, G Bruce; Poorter, Lourens

    2016-05-01

    Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km(2) of land (28.1% of the total study area). Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO2 sequestration of 31.09 Pg CO2. This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from 1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forest management, natural regeneration of second-growth forests provides a low-cost mechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services.

  2. Life cycle assessment of treatment and handling options for a highly saline brine extracted from a potential CO2 storage site.

    PubMed

    Salih, Hafiz H; Li, Jiaxing; Kaplan, Ruth; Dastgheib, Seyed A

    2017-10-01

    Carbon dioxide (CO 2 ) injection in deep saline aquifers is a promising option for CO 2 geological sequestration. However, brine extraction may be necessary to control the anticipated increase in reservoir pressure resulting from CO 2 injection. The extracted brines usually have elevated concentrations of total dissolved solids (TDS) and other contaminants and require proper handling or treatment. Different options for the handling or treatment of a high-TDS brine extracted from a potential CO 2 sequestration site (Mt. Simon Sandstone, Illinois, USA) are evaluated here through a life cycle assessment (LCA) study. The objective of this LCA study is to evaluate the environmental impact (EI) of various treatment or disposal options, namely, deep well disposal (Case 1); near-zero liquid discharge (ZLD) treatment followed by disposal of salt and brine by-products (Case 2); and near-ZLD treatment assuming beneficial use of the treatment by-products (Case 3). Results indicate that energy use is the dominant factor determining the overall EI. Because of the high energy consumption, desalination of the pretreated brine (Cases 2 and 3) results in the highest EI. Consequently, the overall EI of desalination cases falls mainly into two EI categories: global warming potential and resources-fossil fuels. Deep well disposal has the least EI when the EI of brine injection into deep formations is not included. The overall freshwater consumption associated with different life cycle stages of the selected disposal or treatment options is 0.6-1.8 m 3 of freshwater for every 1.0 m 3 of brine input. The freshwater consumption balance is 0.6 m 3 for every 1.0 m 3 of brine input for Case 3 when desalination by-products are utilized for beneficial uses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Applying data mining methods to the assessment of soil contamination and carbon sequestration under Mediterranean Climate. The case study of Guadiamar basin (SW Spain).

    NASA Astrophysics Data System (ADS)

    Muñoz Vallés, Sara; Pino-Mejías, Rafael; Blanco-Velázquez, Francisco J.; Anaya-Romero, María

    2017-04-01

    In the present background of increasing access to vast datasets of soil and environmental records, the application of the newest analytical techniques and approaches for modelling offer excellent opportunities to define recommendations and simulate processes for land degradation and management. In this regard, data mining techniques have been successfully applied in different fields of environmental sciences, performing an innovative tool to explore relevant questions and providing valuable results and useful applications through an efficient management and analysis of large and heterogeneous datasets. Soil Organic matter, pH and trace elements in soil perform close relationships, with ability to alter each other and lead to emerging, synergic properties for soils. In addition, effects associated to climate and land use change promotes mechanisms of feedback that could amplify the negative effects of soil contamination on human health, biodiversity conservation and soil ecosystem services maintenance. The aim of this study was to build and compare several data mining models for the prediction of potential and interrelated functions of soil contamination and carbon sequestration by soils. In this context, under the framework of the EU RECARE project (Preventing and Remediating degradation of Soils in Europe through Land Care), the Guadiamar valley (SW Spain) is used as case study. The area was affected by around four hm3 of acid waters and two hm3 of mud rich in heavy metals, resulting from a mine spill, in 1998, where more than 4,600 ha of agricultural and pasture land were affected. The area was subjected to a large-scale phyto-management project, and consequently protected as "Green Corridor". In this study, twenty environmental variables were taken into account and several base models for supervised classification problems were selected, including linear and quadratic discriminant analysis, logistic regression, neural networks and support vector machines. A database with a size of about 30 Mb of alfa-numeric environmental data from the Guadiamar basin was randomly split into three parts, namely training set (50%), validation set (25%), and test set (25%). The techniques were compared from the viewpoint of their accuracy, robustness of results and applicability, and the best models in terms of overall performance were identified. Finally, results were compared with priorities defined in the current regional and national regulations and policies.

  4. Calculation of hydrocarbon-in-place in gas and gas-condensate reservoirs - Carbon dioxide sequestration

    USGS Publications Warehouse

    Verma, Mahendra K.

    2012-01-01

    The Energy Independence and Security Act of 2007 (Public Law 110-140) authorized the U.S. Geological Survey (USGS) to conduct a national assessment of geologic storage resources for carbon dioxide (CO2), requiring estimation of hydrocarbon-in-place volumes and formation volume factors for all the oil, gas, and gas-condensate reservoirs within the U.S. sedimentary basins. The procedures to calculate in-place volumes for oil and gas reservoirs have already been presented by Verma and Bird (2005) to help with the USGS assessment of the undiscovered resources in the National Petroleum Reserve, Alaska, but there is no straightforward procedure available for calculating in-place volumes for gas-condensate reservoirs for the carbon sequestration project. The objective of the present study is to propose a simple procedure for calculating the hydrocarbon-in-place volume of a condensate reservoir to help estimate the hydrocarbon pore volume for potential CO2 sequestration.

  5. Comparison of alkaline industrial wastes for aqueous mineral carbon sequestration through a parallel reactivity study.

    PubMed

    Noack, Clinton W; Dzombak, David A; Nakles, David V; Hawthorne, Steven B; Heebink, Loreal V; Dando, Neal; Gershenzon, Michael; Ghosh, Rajat S

    2014-10-01

    Thirty-one alkaline industrial wastes from a wide range of industrial processes were acquired and screened for application in an aqueous carbon sequestration process. The wastes were evaluated for their potential to leach polyvalent cations and base species. Following mixing with a simple sodium bicarbonate solution, chemistries of the aqueous and solid phases were analyzed. Experimental results indicated that the most reactive materials were capable of sequestering between 77% and 93% of the available carbon under experimental conditions in four hours. These materials - cement kiln dust, spray dryer absorber ash, and circulating dry scrubber ash - are thus good candidates for detailed, process-oriented studies. Chemical equilibrium modeling indicated that amorphous calcium carbonate is likely responsible for the observed sequestration. High variability and low reactive fractions render many other materials less attractive for further pursuit without considering preprocessing or activation techniques. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Geophysical delineation of Mg-rich ultramafic rocks for mineral carbon sequestration

    USGS Publications Warehouse

    McCafferty, Anne E.; Van Gosen, Bradley S.; Krevor, Sam C.; Graves, Chris R.

    2009-01-01

    This presentation covers three general topics: (1) description of a new geologic compilation of the United States that shows the location of magnesium-rich ultramafic rocks in the conterminous United States; (2) conceptual illustration of the potential ways that ultramafic rocks could be used to sequester carbon dioxide; and (3) description of ways to use geophysical data to refine and extend the geologic mapping of ultramafic rocks and to better characterize their mineralogy.The geophysical focus of this research is twofold. First, we illustrate how airborne magnetic data can be used to map the shallow subsurface geometry of ultramafic rocks for the purpose of estimating the volume of rock material available for mineral CO2 sequestration. Secondly, we explore, on a regional to outcrop scale, how magnetic mineralogy, as expressed in magnetic anomalies, may vary with magnesium minerals, which are the primary minerals of interest for CO2 sequestration. 

  7. Melanosomal sequestration of cytotoxic drugs contributes to the intractability of malignant melanomas

    PubMed Central

    Chen, Kevin G.; Valencia, Julio C.; Lai, Barry; Zhang, Guofeng; Paterson, Jill K.; Rouzaud, François; Berens, Werner; Wincovitch, Stephen M.; Garfield, Susan H.; Leapman, Richard D.; Hearing, Vincent J.; Gottesman, Michael M.

    2006-01-01

    Multidrug resistance mechanisms underlying the intractability of malignant melanomas remain largely unknown. In this study, we demonstrate that the development of multidrug resistance in melanomas involves subcellular sequestration of intracellular cytotoxic drugs such as cis-diaminedichloroplatinum II (cisplatin; CDDP). CDDP is initially sequestered in subcellular organelles such as melanosomes, which significantly reduces its nuclear localization when compared with nonmelanoma/KB-3-1 epidermoid carcinoma cells. The melanosomal accumulation of CDDP remarkably modulates melanogenesis through a pronounced increase in tyrosinase activity. The altered melanogenesis manifested an ≈8-fold increase in both intracellular pigmentation and extracellular transport of melanosomes containing CDDP. Thus, our experiments provide evidence that melanosomes contribute to the refractory properties of melanoma cells by sequestering cytotoxic drugs and increasing melanosome-mediated drug export. Preventing melanosomal sequestration of cytotoxic drugs by inhibiting the functions of melanosomes may have great potential as an approach to improving the chemosensitivity of melanoma cells. PMID:16777967

  8. Geologic framework for the national assessment of carbon dioxide storage resources: U.S. Gulf Coast: Chapter H in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Roberts-Ashby, Tina L.; Brennan, Sean T.; Buursink, Marc L.; Covault, Jacob A.; Craddock, William H.; Drake II, Ronald M.; Merrill, Matthew D.; Slucher, Ernie R.; Warwick, Peter D.; Blondes, Madalyn S.; Gosai, Mayur A.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.; Warwick, Peter D.; Corum, Margo D.

    2014-01-01

    This report presents 27 storage assessment units (SAUs) within the United States (U.S.) Gulf Coast. The U.S. Gulf Coast contains a regionally extensive, thick succession of clastics, carbonates, salts, and other evaporites that were deposited in a highly cyclic depositional environment that was subjected to a fluctuating siliciclastic sediment supply and transgressive and regressive sea levels. At least nine major depositional packages contain porous strata that are potentially suitable for geologic carbon dioxide (CO2) sequestration within the region. For each SAU identified within these packages, the areal distribution of porous rock that is suitable for geologic CO2 sequestration is discussed, along with a description of the geologic characteristics that influence the potential CO2 storage volume and reservoir performance. These characteristics include reservoir depth, gross thickness, net-porous thickness, porosity, permeability, and groundwater salinity. Additionally, a characterization of the overlying regional seal for each SAU is presented. On a case-by-case basis, strategies for estimating the pore volume existing within structurally and (or) stratigraphically closed traps are also presented. Geologic information presented in this report has been employed to calculate potential storage capacities for CO2 sequestration in the SAUs that are assessed herein, although complete assessment results are not contained in this report.

  9. Does grazing management matter for soil carbon sequestration in shortgrass steppe?

    USDA-ARS?s Scientific Manuscript database

    Considerable uncertainty remains regarding the potential of grazing management on semiarid rangelands to sequester soil carbon. Short-term (less than 1 decade) studies have determined that grazing management potentially influences fluxes of carbon, but such studies are strongly influenced by prevail...

  10. Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: from imagination to reality?

    PubMed Central

    Zhu, Yong-Guan; Rosen, Barry P

    2015-01-01

    Phytoremediation to clean up arsenic-contaminated environments has been widely hailed as environmentally friendly and cost effective, and genetic engineering is believed to improve the efficiency and versatility of phytoremediation. Successful genetic engineering requires the thorough understanding of the mechanisms involved in arsenic tolerance and accumulation by natural plant species. Key mechanisms include arsenate reduction, arsenic sequestration in vacuoles of root or shoot, arsenic loading to the xylem, and volatilization through the leaves. Key advances include the identification of arsenic (As) translocation from root to shoot in the As hyperaccumulator, Pteris vittata, and the characterization of related key genes from hyperaccumulator and nonaccumulators. In this paper we have proposed three pathways for genetic engineering: arsenic sequestration in the root, hyperaccumulation of arsenic in aboveground tissues, and phytovolatilization. PMID:19303764

  11. Mitigating climate change through small-scale forestry in the USA: opportunities and challenges

    Treesearch

    Susan Charnley; David Diaz; Hannah Gosnell

    2010-01-01

    Forest management for carbon sequestration is a low-cost, low-technology, relatively easy way to help mitigate global climate change that can be adopted now while additional long-term solutions are developed. Carbon-oriented management of forests also offers forest owners an opportunity to obtain a new source of income, and commonly has environmental co-benefits. The...

  12. Assessment of weather-associated causes of red spruce winter injury and consequences to aboveground carbon sequestration

    Treesearch

    Paul G. Schaberg; Brynne E. Lazarus; Gary J. Hawley; Joshua M. Halman; Catherine H. Borer; Christopher F. Hansen

    2011-01-01

    Despite considerable study, it remains uncertain what environmental factors contribute to red spruce (Picea rubens Sarg.) foliar winter injury and how much this injury influences tree C stores. We used a long-term record of winter injury in a plantation in New Hampshire and conducted stepwise linear regression analyses with local weather and regional...

  13. Modeling of CO 2 sequestration in coal seams: Role of CO 2 -induced coal softening on injectivity, storage efficiency and caprock deformation: Original Research Article: Modeling of CO 2 sequestration in coal seams

    DOE PAGES

    Ma, Tianran; Rutqvist, Jonny; Liu, Weiqun; ...

    2017-01-30

    An effective and safe operation for sequestration of CO 2 in coal seams requires a clear understanding of injection-induced coupled hydromechanical processes such as the evolution of pore pressure, permeability, and induced caprock deformation. In this study, CO 2 injection into coal seams was studied using a coupled flow-deformation model with a new stress-dependent porosity and permeability model that considers CO 2 -induced coal softening. Based on triaxial compression tests of coal samples extracted from the site of the first series of enhanced coalbed methane field tests in China, a softening phenomenon that a substantial (one-order-of-magnitude) decrease of Young's modulusmore » and an increase of Poisson's ratio with adsorbed CO 2 content was observed. Such softening was considered in the numerical simulation through an exponential relation between elastic properties (Young's modulus and Poisson's ratio) and CO 2 pressure considering that CO 2 content is proportional to the CO 2 pressure. Our results of the numerical simulation show that the softening of the coal strongly affects the CO 2 sequestration performance, first by impeding injectivity and stored volume (cumulative injection) during the first week of injection, and thereafter by softening mediated rebound in permeability that tends to increase injectivity and storage over the longer term. A sensitivity study shows that stronger CO 2 -induced coal softening and higher CO 2 injection pressure contribute synergistically to increase a significant increase of CO 2 injectivity and adsorption, but also result in larger caprock deformations and uplift. This study demonstrates the importance of considering the CO 2 -induced softening when analyzing the performance and environmental impact of CO 2 -sequestration operations in unminable coal seams.« less

  14. Modeling of CO 2 sequestration in coal seams: Role of CO 2 -induced coal softening on injectivity, storage efficiency and caprock deformation: Original Research Article: Modeling of CO 2 sequestration in coal seams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Tianran; Rutqvist, Jonny; Liu, Weiqun

    An effective and safe operation for sequestration of CO 2 in coal seams requires a clear understanding of injection-induced coupled hydromechanical processes such as the evolution of pore pressure, permeability, and induced caprock deformation. In this study, CO 2 injection into coal seams was studied using a coupled flow-deformation model with a new stress-dependent porosity and permeability model that considers CO 2 -induced coal softening. Based on triaxial compression tests of coal samples extracted from the site of the first series of enhanced coalbed methane field tests in China, a softening phenomenon that a substantial (one-order-of-magnitude) decrease of Young's modulusmore » and an increase of Poisson's ratio with adsorbed CO 2 content was observed. Such softening was considered in the numerical simulation through an exponential relation between elastic properties (Young's modulus and Poisson's ratio) and CO 2 pressure considering that CO 2 content is proportional to the CO 2 pressure. Our results of the numerical simulation show that the softening of the coal strongly affects the CO 2 sequestration performance, first by impeding injectivity and stored volume (cumulative injection) during the first week of injection, and thereafter by softening mediated rebound in permeability that tends to increase injectivity and storage over the longer term. A sensitivity study shows that stronger CO 2 -induced coal softening and higher CO 2 injection pressure contribute synergistically to increase a significant increase of CO 2 injectivity and adsorption, but also result in larger caprock deformations and uplift. This study demonstrates the importance of considering the CO 2 -induced softening when analyzing the performance and environmental impact of CO 2 -sequestration operations in unminable coal seams.« less

  15. The value of carbon sequestration and storage in coastal habitats

    NASA Astrophysics Data System (ADS)

    Beaumont, N. J.; Jones, L.; Garbutt, A.; Hansom, J. D.; Toberman, M.

    2014-01-01

    Coastal margin habitats are globally significant in terms of their capacity to sequester and store carbon, but their continuing decline, due to environmental change and human land use decisions, is reducing their capacity to provide this ecosystem service. In this paper the UK is used as a case study area to develop methodologies to quantify and value the ecosystem service of blue carbon sequestration and storage in coastal margin habitats. Changes in UK coastal habitat area between 1900 and 2060 are documented, the long term stocks of carbon stored by these habitats are calculated, and the capacity of these habitats to sequester CO2 is detailed. Changes in value of the carbon sequestration service of coastal habitats are then projected for 2000-2060 under two scenarios, the maintenance of the current state of the habitat and the continuation of current trends of habitat loss. If coastal habitats are maintained at their current extent, their sequestration capacity over the period 2000-2060 is valued to be in the region of £1 billion UK sterling (3.5% discount rate). However, if current trends of habitat loss continue, the capacity of the coastal habitats both to sequester and store CO2 will be significantly reduced, with a reduction in value of around £0.25 billion UK sterling (2000-2060; 3.5% discount rate). If loss-trends due to sea level rise or land reclamation worsen, this loss in value will be greater. This case study provides valuable site specific information, but also highlights global issues regarding the quantification and valuation of carbon sequestration and storage. Whilst our ability to value ecosystem services is improving, considerable uncertainty remains. If such ecosystem valuations are to be incorporated with confidence into national and global policy and legislative frameworks, it is necessary to address this uncertainty. Recommendations to achieve this are outlined.

  16. The social context of carbon sequestration: considerations from a multi-scale environmental history of the Old Peanut Basin of Senegal

    USGS Publications Warehouse

    Tschakert, P.; Tappan, G.

    2004-01-01

    This paper presents the results of a multi-scale investigation of environmental change in the Old Peanut Basin of Senegal throughout the 20th century. Based on historical accounts, ethnographies, aerial photos, satellite images, field and household surveys as well as various participatory research activities with farmers in selected villages, the study attempts to make explicit layered scales of analysis, both temporally and spatially. It shows that, despite some general trends of resource degradation in the Old Peanut Basin, local farming systems have embarked on different pathways of change to adapt to their evolving environment. It also illustrates that high diversity with respect to soil fertility management exists at the farm and household level. Finally, the paper proposes a farmer-oriented approach to carbon sequestration in order to integrate recommended technical options more efficiently into the complex and dynamic livelihoods of smallholders in dryland environments. This approach includes pathway-specific land use and management options at the level of farming systems and, at the level of individual households, a basket of possible practices from which farmers can choose depending on their multiple needs, capacities, and adaptive strategies to cope with risk and uncertainty.

  17. An Analysis of the Distribution and Economics of Oil Fields for Enhanced Oil Recovery-Carbon Capture and Storage

    NASA Astrophysics Data System (ADS)

    Hall, Kristyn Ann

    The rising carbon dioxide emissions contributing to climate change has lead to the examination of potential ways to mitigate the environmental impact. One such method is through the geological sequestration of carbon (CCS). Although there are several different forms of geological sequestration (i.e. Saline Aquifers, Oil and Gas Reservoirs, Unminable Coal Seams) the current projects are just initiating the large scale-testing phase. The lead entry point into CCS projects is to combine the sequestration with enhanced oil recovery (EOR) due to the improved economic model as a result of the oil recovery and the pre-existing knowledge of the geological structures. The potential scope of CCS-EOR projects throughout the continental United States in terms of a systematic examination of individual reservoir storage potential has not been examined. Instead the majority of the research completed has centered on either estimating the total United States storage potential or the potential of a single specific reservoir. The purpose of this paper is to examine the relationship between oil recovery, carbon dioxide storage and cost during CCS-EOR. The characteristics of the oil and gas reservoirs examined in this study from the Nehring Oil and Gas Database were used in the CCS-EOR model developed by Sean McCoy to estimate the lifting and storage costs of the different reservoirs throughout the continental United States. This allows for an examination of both technical and financial viability of CCS-EOR as an intermediate step for future CCS projects in other geological formations. One option for mitigating climate change is to store industrial CO2 emissions in geologic reservoirs as part of a process known as carbon capture and storage (CCS). There is general consensus that large-scale deployment of CCS would best be initiated by combining geologic sequestration with enhanced oil recovery (EOR), which can use CO2 to improve production from declining oil fields. Revenues from the produced oil could help offset the current high costs of CCS. The cumulative potential of CCS-EOR in the continental U.S. has been evaluated in terms of both CO2 storage capacity and additional oil production. This thesis examines the same potential, but on a reservoir-by-reservoir basis. Reservoir properties from the Nehring Oil and Gas Database are used as inputs to a CCS-EOR model developed by McCoy (YR) to estimate the storage capacity, oil production and CCS-EOR costs for over 10,000 oil reservoirs located throughout the continental United States. We find that 86% of the reservoirs could store ≤1 y or CO2 emissions from a single 500 MW coal-fired power plant (i.e., 3 Mtons CO2). Less than 1% of the reservoirs, on the other hand, appear capable of storing ≥30 y of CO2 emissions from a 500 MW plan. But these larger reservoirs are also estimated to contain 48% of the predicted additional oil that could be produced through CCS-EOR. The McCoy model also predicts that the reservoirs will on average produce 4.5 bbl of oil for each ton of sequestered CO2, a ratio known as the utilization factor. This utilization factor is 1.5 times higher that arrived at by the U.S. Department of Energy, and leads to a cumulative production of oil for all the reservoirs examined of ˜183 billion barrels along with a cumulative storage capacity of 41 Mtons CO2. This is equivalent to 26.5 y of current oil consumption by the nation, and 8.5 y of current coal plant emissions.

  18. Strategic system development toward biofuel, desertification, and crop production monitoring in continental scales using satellite-based photosynthesis models

    NASA Astrophysics Data System (ADS)

    Kaneko, Daijiro

    2013-10-01

    The author regards fundamental root functions as underpinning photosynthesis activities by vegetation and as affecting environmental issues, grain production, and desertification. This paper describes the present development of monitoring and near real-time forecasting of environmental projects and crop production by approaching established operational monitoring step-by-step. The author has been developing a thematic monitoring structure (named RSEM system) which stands on satellite-based photosynthesis models over several continents for operational supports in environmental fields mentioned above. Validation methods stand not on FLUXNET but on carbon partitioning validation (CPV). The models demand continuing parameterization. The entire frame system has been built using Reanalysis meteorological data, but model accuracy remains insufficient except for that of paddy rice. The author shall accomplish the system that incorporates global environmental forces. Regarding crop production applications, industrialization in developing countries achieved through direct investment by economically developed nations raises their income, resulting in increased food demand. Last year, China began to import rice as it had in the past with grains of maize, wheat, and soybeans. Important agro-potential countries make efforts to cultivate new crop lands in South America, Africa, and Eastern Europe. Trends toward less food sustainability and stability are continuing, with exacerbation by rapid social and climate changes. Operational monitoring of carbon sequestration by herbaceous and bore plants converges with efforts at bio-energy, crop production monitoring, and socio-environmental projects such as CDM A/R, combating desertification, and bio-diversity.

  19. Mesoporous aluminosilicate glasses: Potential materials for dye removal from wastewater effluents

    NASA Astrophysics Data System (ADS)

    Almeida, Flavio P.; Botelho, Moema B. S.; Doerenkamp, Carsten; Kessler, Elizaveta; Ferrari, Cynthia R.; Eckert, Hellmut; de Camargo, Andrea S. S.

    2017-09-01

    Mesoporous amorphous sodium-aluminosilicate host matrices of composition Si1-xAlxNaxO2, 0.1 ≤ x ≤ 0.33, obtained by sol-gel methodology, have been used as sequestrating agents for the cationic dye Rhodamine 6 G (Rh6G) in solution. Favorable adsorption kinetics and a wide pH working range (4-10) as well as high sorption capacities for Rh6G render these materials potentially useful reagents for effective dye removal from wastewaters. While the experimentally realized sorption capacities fall significantly below the theoretical limits, used materials can be thermally re-cycled by pyrolizing the sequestrated dye molecules. Solid state NMR and BET measurements show that this process occurs under preservation of the materials' structural integrity, allowing it to be re-used multiple times.

  20. Integrated Monitoring and Modeling of Carbon Dioxide Leakage Risk Using Remote Sensing, Ground-Based Monitoring, Atmospheric Models and Risk-Indexing Tools

    NASA Astrophysics Data System (ADS)

    Burton, E. A.; Pickles, W. L.; Gouveia, F. J.; Bogen, K. T.; Rau, G. H.; Friedmann, J.

    2006-12-01

    Correct assessment of the potential for CO2 leakage to the atmosphere or near surface is key to managing the risk associated with CO2 storage. Catastrophic, point-source leaks, diffuse seepage, and low leakage rates all merit assessment. Smaller leaks may be early warnings of catastrophic failures, and may be sufficient to damage natural vegetation or crops. Small leaks also may lead to cumulative build-up of lethal levels of CO2 in enclosed spaces, such as basements, groundwater-well head spaces, and caverns. Working with our ZERT partners, we are integrating a variety of monitoring and modeling approaches to understand how to assess potential health, property and environmental risks across this spectrum of leakage types. Remote sensing offers a rapid technique to monitor large areas for adverse environmental effects. If it can be deployed prior to the onset of storage operations, remote sensing also can document baseline conditions against which future claims of environmental damage can be compared. LLNL has been using hyperspectral imaging to detect plant stress associated with CO2 gas leakage, and has begun investigating use of NASA's new satellite or airborne instrumentation that directly measures gas compositions in the atmosphere. While remote sensing techniques have been criticized as lacking the necessary resolution to address environmental problems, new instruments and data processing techniques are demonstrated to resolve environmental changes at the scale associated with gas-leakage scenarios. During the shallow low-flow- CO2 release field experiments planned by ZERT, for the first time, we will have the opportunity to ground- truth hyperspectral data by simultaneous measurement of changes in hyperspectral readings, soil and root zone microbiology, ambient air, soil and aquifer CO2 concentrations. When monitoring data appear to indicate a CO2 leakage event, risk assessment and mitigation of that event requires a robust and nearly real-time method for estimating its associated risk, spatially and temporally. This requires integration of subsurface, surface and atmospheric data and models. To date, we have developed techniques to map risk based on predicted atmospheric plumes and GIS/MT (meteorologic- topographic) risk-indexing tools. This methodology was derived from study of large CO2 releases from an abandoned well penetrating a natural CO2 reservoir at Crystal Geyser, Utah. This integrated approach will provide a powerful tool to screen for high-risk zones at proposed sequestration sites, to design and optimize surface networks for site monitoring and/or to guide setting science-based regulatory compliance requirements for monitoring sequestration sites, as well as to target critical areas for first responders should a catastrophic-release event occur. This work was performed under the auspices of the U.S. Dept. of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  1. Environmental factors controlling phytoplankton productivity and phenology in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Ardyna, M.; Claustre, H.; Sallee, J. B.; Gentili, B.; D'Ortenzio, F.

    2016-02-01

    The Southern Ocean (SO), highly sensitive to climate change, is currently experiencing a rapid warming and freshening. Such drastic hydrographical changes may significantly alter the SO's biological carbon pump (i.e., the efficiency of primary production and its transfers to higher trophic levels and/or sequestration to depth). However, before making any predictions, a better understanding of the biogeography and environmental factors controlling phytoplankton processes (i.e., productivity and phenology) in the Southern Ocean is clearly needed. We present here a bio-regionalization of the SO from satellite-derived observations, where a range of three orders of magnitude of productivity is observed. A clear latitudinal gradient in the bloom initiation was underpinned following the light regime, with some exception in well-mixed and sea-ice edge areas. Environmental factors controlling the phytoplankton phenology and productivity appear to be completely decoupled. Phytoplankton productivity in the SO is clearly associated to both shallow areas and front locations, where iron limitation seems to be less pronounced. These findings will give us a more comprehensive understanding in both space and time of the limiting factors of PP (i.e., nutrients, light-mixing regime…), which are of fundamental interest for identifying and explaining potential ongoing changes in SO's marine ecosystems.

  2. The Soil-Plant-Atmosphere Continuum of Mangroves: A Simple Ecohydrological model

    NASA Astrophysics Data System (ADS)

    Perri, Saverio; Viola, Francesco; Valerio Noto, Leonardo; Molini, Annalisa

    2016-04-01

    Mangroves represent the only forest able to grow at the interface between a terrestrial and a marine habitat. Although globally they have been estimated to account only for 1% of carbon sequestration from forests, as coastal ecosystems they account for about 14% of carbon sequestration by the global ocean. Despite the continuously increasing number of hydrological and ecological field observations, the ecohydrology of mangroves remains largely understudied. Modeling mangrove response to variations in environmental conditions needs to take into account the effect of waterlogging and salinity on transpiration and CO2 assimilation. However, similar ecohydrological models for halophytes are not yet documented in the literature. In this contribution we adapt a Soil-Plant-Atmosphere Continuum (SPAC) model to the mangrove ecosystems. Such SPAC model is based on a macroscopic approach and the transpiration rate is hence obtained by solving the plant and leaf water balance and the leaf energy balance, taking explicitly into account the role of osmotic water potential and salinity in governing plant resistance to water fluxes. Exploiting the well-known coupling of transpiration and CO2 exchange through the stomatal conductance, we also estimate the CO2 assimilation rate. The SPAC is hence tested against experimental data obtained from the literature, showing the reliability and effectiveness of this minimalist approach in reproducing observed processes. Results show that the developed SPAC model is able to realistically simulate the main ecohydrological traits of mangroves, indicating the salinity as a crucial limiting factor for mangrove trees transpiration and CO2 assimilation.

  3. Wind Erosion Caused by Land Use Changes Significantly Reduces Ecosystem Carbon Storage and Carbon Sequestration Potentials in Grassland

    NASA Astrophysics Data System (ADS)

    Li, P.; Chi, Y. G.; Wang, J.; Liu, L.

    2017-12-01

    Wind erosion exerts a fundamental influence on the biotic and abiotic processes associated with ecosystem carbon (C) cycle. However, how wind erosion under different land use scenarios will affect ecosystem C balance and its capacity for future C sequestration are poorly quantified. Here, we established an experiment in a temperate steppe in Inner Mongolia, and simulated different intensity of land uses: control, 50% of aboveground vegetation removal (50R), 100% vegetation removal (100R) and tillage (TI). We monitored lateral and vertical carbon flux components and soil characteristics from 2013 to 2016. Our study reveals three key findings relating to the driving factors, the magnitude and consequence of wind erosion on ecosystem C balance: (1) Frequency of heavy wind exerts a fundamental control over the severity of soil erosion, and its interaction with precipitation and vegetation characteristics explained 69% variation in erosion intensity. (2) With increases in land use intensity, the lateral C flux induced by wind erosion increased rapidly, equivalent to 33%, 86%, 111% and 183% of the net ecosystem exchange of the control site under control, 50R, 100R and TI sites, respectively. (3) After three years' treatment, erosion induced decrease in fine fractions led to 31%, 43%, 85% of permanent loss of C sequestration potential in the surface 5cm soil for 50R, 100R and TI sites. Overall, our study demonstrates that lateral C flux associated with wind erosion is too large to be ignored. The loss of C-enriched fine particles not only reduces current ecosystem C content, but also results in irreversible loss of future soil C sequestration potential. The dynamic soil characteristics need be considered when projecting future ecosystem C balance in aeolian landscape. We also propose that to maintain the sustainability of grassland ecosystems, land managers should focus on implementing appropriate land use rather than rely on subsequent managements on degraded soils.

  4. Living Trees are a Major Source of Methane in the Temperate Forest

    NASA Astrophysics Data System (ADS)

    Covey, Kristofer

    2017-04-01

    Globally, forests sequester about 1.1 ± 0.8 Pg C yr-1, an ecosystem service worth hundreds of billions of dollars annually. Following the COP21 meeting in Paris, an international consensus emerged: The protection and expansion of forests worldwide is a necessary component of climate mitigation strategies to limit warming to less than 2°C. The physiological processes governing sequestration of CO2 in living trees are well studied and the resulting pattern in global forest carbon sequestration is clear. The role living trees play in the production and emission of methane (CH4) remains unclear, despite the fact it has the potential to offset climate benefits of forest CO2 sequestration. A known but largely unexplored pathway of forest CH4 production involves microbial-based methanogenesis in the wood of living trees. In the first regional-scale study of tree trunk gas composition, we examine the ubiquity and potential source strength of this pathway. Trunk methane concentrations were as high as 67.4% by volume (375,000-times atmospheric), with the highest concentrations found in older angiosperms (18,293 μLṡL-1 ± 3,096). Bark flux chambers from 23 living trees show emissions under field conditions, and large static chambers demonstrate high rates of production in felled Acer rubrum trunk sections. Diffusion flux modeling of trunk concentrations suggests wood-based microflora could produce a global CH4 efflux of 26 Tg CH4 yr-1. Applying these fluxes to provide a spatially explicit map of trunk-based CH4 flux, we estimate the potential relationship between carbon sequestration rates and CH4 emission by forest trees in Eastern North America. Methane emissions from the trunk-based methanogenic pathway could reduce the average climate mitigation value of these temperate forests by 10-30%. We highlight the need to improve earth systems models to account for the full complexity of forest climate interactions and provide a data layer useful in reducing large uncertainty in global methane budgets.

  5. Isolation and characterization of a CO2-tolerant Lactobacillus strain from Crystal Geyser, Utah, U.S.A.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santillan, Eugenio-Felipe U.; Shanahan, Timothy M.; Omelon, Christopher R.

    2015-07-23

    When CO 2 is sequestered into the deep subsurface, changes to the subsurface microbial community will occur. Capnophiles, microorganisms that grow in CO 2-rich environments, are some organisms that may be selected for under the new environmental conditions. To determine whether capnophiles comprise an important part of CO 2-rich environments, an isolate from Crystal Geyser, Utah, U.S.A., a CO 2- rich spring considered a carbon sequestration analog, was characterized. The isolate was cultured under varying CO 2, pH, salinity, and temperature, as well as different carbon substrates and terminal electron acceptors (TEAs) to elucidate growth conditions and metabolic activity. Designatedmore » CG-1, the isolate is related (99%) to Lactobacillus casei in 16S rRNA gene identity, growing at PCO 2 between 0 and 1.0 MPa. Growth is inhibited at 2.5 MPa, but stationary phase cultures exposed to this pressure survive beyond 5 days. At 5.0 MPa, survival is at least 24 h. CG-1 grows in neutral pH, 0.25 M NaCl, and between 25° and 45°C and consumes glucose, lactose, sucrose, or crude oil, likely performing lactic acid fermentation. Fatty acid profiles between 0.1 and 1.0 MPa suggests decreases in cell size and increases in membrane rigidity. Transmission electron microscopy reveals rod shaped bacteria at 0.1 MPa. At 1.0 MPa, cells are smaller, amorphous, and produce abundant capsular material. Its ability to grow in environments regardless of the presence of CO 2 suggests we have isolated an organism that is more capnotolerant than capnophilic. Results also show that microorganisms are capable of surviving the stressful conditions created by the introduction of CO 2 for sequestration. Furthermore, our ability to culture an environmental isolate indicates that organisms found in CO 2 environments from previous genomic and metagenomics studies are viable, metabolizing, and potentially affecting the surrounding environment.« less

  6. Isolation and characterization of a CO2-tolerant Lactobacillus strain from Crystal Geyser, Utah, U.S.A.

    NASA Astrophysics Data System (ADS)

    Santillan, Eugenio Felipe; Shanahan, Timothy; Omelon, Christopher; Major, Jonathan; Bennett, Philip

    2015-07-01

    When CO2 is sequestered into the deep subsurface, changes to the subsurface microbial community will occur. Capnophiles, microorganisms that grow in CO2-rich environments, are some organisms that may be selected for under the new environmental conditions. To determine whether capnophiles comprise an important part of CO2-rich environments, an isolate from Crystal Geyser, Utah, U.S.A., a CO2- rich spring considered a carbon sequestration analogue, was characterized. The isolate was cultured under varying CO2, pH, salinity, and temperature, as well as different carbon substrates and terminal electron acceptors (TEAs) to elucidate growth conditions and metabolic activity. Designated CG-1, the isolate is related (99%) to Lactobacillus casei in 16S rRNA gene identity, growing at PCO2 between 0 to 1.0 MPa. Growth is inhibited at 2.5 MPa, but stationary phase cultures exposed to this pressure survive beyond 5 days. At 5.0 MPa, survival is at least 24 hours. CG-1 grows in neutral pH, 0.25 M NaCl, and between 25° to 45°C andconsumes glucose, lactose, sucrose, or crude oil, likely performing lactic acid fermentation. Fatty acid profiles between 0.1 MPa to 1.0 MPa suggests decreases in cell size and increases in membrane rigidity. Transmission electron microscopy reveals rod shaped bacteria at 0.1 MPa. At 1.0 MPa, cells are smaller, amorphous, and produce abundant capsular material. Its ability to grow in environments regardless of the presence of CO2 suggests we have isolated an organism that is more capnotolerant than capnophilic. Results also show that microorganisms are capable of surviving the stressful conditions created by the introduction of CO2 for sequestration. Furthermore, our ability to culture an environmental isolate indicates that organisms found in CO2 environments from previous genomic and metagenomics studies are viable, metabolizing, and potentially affecting the surrounding environment.

  7. Microbial Communities in Terrestrial CO2 Springs: Insights into the Long-Term Effects of Carbon Sequestration on Subsurface Microorganisms

    NASA Astrophysics Data System (ADS)

    Santillan, E. F. U.; Major, J. R.; Bennett, P.

    2014-12-01

    Over long timescales, microbial populations and communities living in environments where CO2 has been sequestered will adapt to this environmental stress. Their presence and activities can have implications for fluid flow, geochemistry, and the fate of the stored CO2. Because of the interplay between microorganisms and environment, many environmental factors beyond CO2 will also contribute to community structure, including groundwater composition and mineralogy. To determine the long-term effect of CO2 on microbial communities, we analyzed terrestrial CO2 springs as analogues to CO2 sequestration in 3 locations in the United States: the Little Grand Wash Fault (LGW), UT; Bravo Dome (BD), NM; and Klickitat Mineral Spring (KMS), WA. These sites differed in multiple aspects such as depth, salinity, Fe content, and mineralogy. LGW and BD were located in the Colorado Plateau in sedimentary locations while KMS was located within the Columbia River Basalt Group. Sites were compared to non-CO2 springs in similar sedimentary formations for comparison. Microbial communities from sedimentary formations were characterized by low diversity and the dominance of the phylotypes Acinetobacter or Burkholderia compared to non-CO2 springs, suggesting community stress and the selection of specific organisms most resilient to CO2. Communities in the basalt formation were more diverse, though diversity is lower than a non-CO2 community sampled from the same formation (Lavalleur and Colwell 2013). Organisms present at the basalt site contained novel lineages, such as the OP candidate phyla. KMS was also the only site containing Archaea, such as Methanoplanus, suggesting CH4 production at depth. Statistical analyses indicate other factors such as depth and nutrient availability may be other factors that can affect diversity in addition to CO2. Growth of a CO2-tolerant organism from LGW also shows organisms in these environments are viable. Results confirm the presence of microbial communities at high PCO2 and suggest that while CO2 is one environmental stress that can lower diversity, many other environmental factors can also influence survival. Lavalleur, H.J., Colwell, F.S., 2013. Microbial characterization of basalt formation waters targeted for geological carbon sequestration. FEMS Microbiology Ecology 85, 62-73.

  8. Probiotic Lactobacillus rhamnosus Reduces Organophosphate Pesticide Absorption and Toxicity to Drosophila melanogaster

    PubMed Central

    Trinder, Mark; McDowell, Tim W.; Daisley, Brendan A.; Ali, Sohrab N.; Leong, Hon S.; Sumarah, Mark W.

    2016-01-01

    ABSTRACT Organophosphate pesticides used in agriculture can pose health risks to humans and wildlife. We hypothesized that dietary supplementation with Lactobacillus, a genus of commensal bacteria, would reduce absorption and toxicity of consumed organophosphate pesticides (parathion and chlorpyrifos [CP]). Several Lactobacillus species were screened for toleration of 100 ppm of CP or parathion in MRS broth based on 24-h growth curves. Certain Lactobacillus strains were unable to reach stationary-phase culture maxima and displayed an abnormal culture morphology in response to pesticide. Further characterization of commonly used, pesticide-tolerant and pesticide-susceptible, probiotic Lactobacillus rhamnosus strain GG (LGG) and L. rhamnosus strain GR-1 (LGR-1), respectively, revealed that both strains could significantly sequester organophosphate pesticides from solution after 24-h coincubations. This effect was independent of metabolic activity, as L. rhamnosus GG did not hydrolyze CP and no difference in organophosphate sequestration was observed between live and heat-killed strains. Furthermore, LGR-1 and LGG reduced the absorption of 100 μM parathion or CP in a Caco-2 Transwell model of the small intestine epithelium. To determine the effect of sequestration on acute toxicity, newly eclosed Drosophila melanogaster flies were exposed to food containing 10 μM CP with or without supplementation with live LGG. Supplementation with LGG simultaneously, but not with administration of CP 3 days prior (prophylactically), mitigated CP-induced mortality. In summary, the results suggest that L. rhamnosus may be useful for reducing toxic organophosphate pesticide exposure via passive binding. These findings could be transferable to clinical and livestock applications due to affordability and practical ability to supplement products with food-grade bacteria. IMPORTANCE The consequences of environmental pesticide pollution due to widespread usage in agriculture and soil leaching are becoming a major societal concern. Although the long-term effects of low-dose pesticide exposure for humans and wildlife remain largely unknown, logic suggests that these chemicals are not aligned with ecosystem health. This observation is most strongly supported by the agricultural losses associated with honeybee population declines, known as colony collapse disorder, in which pesticide usage is a likely trigger. Lactobacilli are bacteria used as beneficial microorganisms in fermented foods and have shown potentials to sequester and degrade environmental toxins. This study demonstrated that commonly used probiotic strains of lactobacilli could sequester, but not metabolize, organophosphate pesticides (parathion and chlorpyrifos). This Lactobacillus-mediated sequestration was associated with decreased intestinal absorption and insect toxicity in appropriate models. These findings hold promise for supplementing human, livestock, or apiary foods with probiotic microorganisms to reduce organophosphate pesticide exposure. PMID:27520820

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meckel, Timothy; Trevino, Ramon

    This project characterized the Miocene-age sub-seafloor stratigraphy in the near-offshore portion of the Gulf of Mexico adjacent to the Texas coast. The large number of industrial sources of carbon dioxide (CO₂) in coastal counties and the high density of onshore urbanization and environmentally sensitive areas make this offshore region extremely attractive for long-term storage of carbon dioxide emissions from industrial sources (CCS). The study leverages dense existing geologic data from decades of hydrocarbon exploration in and around the study area to characterize the regional geology for suitability and storage capacity. Primary products of the study include: regional static storage capacitymore » estimates, sequestration “leads” and prospects with associated dynamic capacity estimates, experimental studies of CO₂-brine-rock interaction, best practices for site characterization, a large-format ‘Atlas’ of sequestration for the study area, and characterization of potential fluid migration pathways for reducing storage risks utilizing novel high-resolution 3D (HR3D) seismic surveys. In addition, three subcontracted studies address source-to-sink matching optimization, offshore well bore management and environmental aspects. The various geologic data and interpretations are integrated and summarized in a series of cross-sections and maps, which represent a primary resource for any near-term commercial deployment of CCS in the area. The regional study characterized and mapped important geologic features (e.g., Clemente-Tomas fault zone, the regionally extensive Marginulina A and Amphistegina B confining systems, etc.) that provided an important context for regional static capacity estimates and specific sequestration prospects of the study. A static capacity estimate of the majority of the Study area (14,467 mi 2) was estimated at 86 metric Gigatonnes. While local capacity estimates are likely to be lower due to reservoir-scale characteristics, the offshore Miocene interval is a storage resource of National interest for providing CO₂ storage as an atmospheric emissions abatement strategy. The natural petroleum system was used as an analog to infer seal quality and predict possible migration pathways of fluids in an engineered system of anthropogenic CO₂ injection and storage. The regional structural features (e.g., Clemente-Tomas fault zone) that exert primary control on the trapping and distribution of Miocene hydrocarbons are expected to perform similarly for CCS. Industrial-scale CCS will require storage capacity utilizing well-documented Miocene hydrocarbon (dominantly depleted gas) fields and their larger structural closures, as well as barren (unproductive, brine-filled) closures. No assessment was made of potential for CO₂ utilization for enhanced oil and gas recovery. The use of 3D numerical fluid flow simulations have been used in the study to greatly assist in characterizing the potential storage capacity of a specific reservoir. Due to the complexity of geologic systems (stratigraphic heterogeneity) and inherent limitations on producing a 3D geologic model, these simulations are typically simplified scenarios that explore the influence of model property variability (sensitivity study). A specific site offshore San Luis Pass (southern Galveston Island) was undertaken successfully, indicating stacked storage potential. Downscaling regional capacity estimates to the local scale (and the inverse) has proven challenging, and remains an outstanding gap in capacity assessments. In order to characterize regional seal performance and identify potential brine and CO₂ leakage pathways, results from three high-resolution 3D (HR3D) seismic datasets acquired by the study using novel HR3D (P-Cable) acquisition system showed steady and significant improvements in data quality because of improved acquisition and processing technique. Finely detailed faults and stratigraphy in the shallowest 1000 milliseconds (~800 m) of data allowed for the identification and mapping of unconformable surfaces including what is probably a surface associated with the last Pleistocene glacial lowstand. The identification of a previously unrecognized (in commercial seismic data) gas chimney that was clearly defined in the 2013 HR3D survey, indicates that HR3D surveys may be useful as both a characterization tool for the overburden of a potential carbon sequestration site and as an additional monitoring tool for future engineered injection sites. Geochemical modeling indicated that injection of CO₂ would result in minor dissolution of calcite, K-feldspar and albite. In addition, modeling of typical brines in Miocene age rocks indicate that approximately 5% of injection capacity would result from CO₂ dissolution into the brine. After extensive searches, no rock samples of the Marginulina A and Amphistegina B seals (“caprocks”) were obtained, but analyses of available core samples of other Miocene age mudrocks (seals or caprocks) indicate that they have sealing ability sufficient for potential CO 2 storage in underlying sandstone units.« less

  10. [Carbon sequestration in soil particle-sized fractions during reversion of desertification at Mu Us Sand land.

    PubMed

    Ma, Jian Ye; Tong, Xiao Gang; Li, Zhan Bin; Fu, Guang Jun; Li, Jiao; Hasier

    2016-11-18

    The aim of this study was to investigate the effects of carbon sequestration in soil particle-sized fractions during reversion of desertification at Mu Us Sand Land, soil samples were collected from quicksand land, semifixed sand and fixed sand lands that were established by the shrub for 20-55 year-old and the arbor for 20-50 year-old at sand control region of Yulin in Northern Shaanxi Province. The dynamics and sequestration rate of soil organic carbon (SOC) associated with sand, silt and clay were measured by physical fractionation method. The results indicated that, compared with quicksand area, the carbon content in total SOC and all soil particle-sized fractions at bothsand-fixing sand forest lands showed a significant increasing trend, and the maximum carbon content was observed in the top layer of soils. From quicksand to fixed sand land with 55-year-old shrub and 50-year-old arbor, the annual sequestration rate of carbon stock in 0-5 cm soil depth was same in silt by 0.05 Mg·hm -2 ·a -1 . The increase rate of carbon sequestration in sand was 0.05 and 0.08 Mg·hm -2 ·a -1 , and in clay was 0.02 and 0.03 Mg·hm -2 ·a -1 at shrubs and arbors land, respectively. The increase rate of carbon sequestration in 0-20 cm soil layer for all the soil particles was averagely 2.1 times as that of 0-5 cm. At the annual increase rate of carbon, the stock of carbon in sand, silt and clay at the two fixed sand lands were increased by 6.7, 18.1 and 4.4 times after 50-55 year-old reversion of quicksand land to fixed sand. In addition, the average percentages that contributed to accumulation of total SOC by different particles in 0-20 cm soil were in the order of silt carbon (39.7%)≈sand carbon (34.6%) > clay carbon (25.6%). Generally, the soil particle-sized fractions had great carbon sequestration potential during reversion of desertification in Mu Us Sand Land, and the slit and sand were the main fractions for carbon sequestration at both fixed sand lands.

  11. Long-term climate change mitigation potential with organic matter management on grasslands.

    PubMed

    Ryals, Rebecca; Hartman, Melannie D; Parton, William J; DeLonge, Marcia S; Silver, Whendee L

    2015-03-01

    Compost amendments to grasslands have been proposed as a strategy to mitigate climate change through carbon (C) sequestration, yet little research exists exploring the net mitigation potential or the long-term impacts of this strategy. We used field data and the DAYCENT biogeochemical model to investigate the climate change mitigation potential of compost amendments to grasslands in California, USA. The model was used to test ecosystem C and greenhouse gas responses to a range of compost qualities (carbon to nitrogen [C:N] ratios of 11.1, 20, or 30) and application rates (single addition of 14 Mg C/ha or 10 annual additions of 1.4 Mg C · ha(-1) · yr(-1)). The model was parameterized using site-specific weather, vegetation, and edaphic characteristics and was validated by comparing simulated soil C, nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) fluxes, and net primary production (NPP) with three years of field data. All compost amendment scenarios led to net greenhouse gas sinks that persisted for several decades. Rates of climate change mitigation potential ranged from 130 ± 3 g to 158 ± 8 g CO2-eq · m(-2) ·yr(-1) (where "eq" stands for "equivalents") when assessed over a 10-year time period and 63 ± 2 g to 84 ± 10 g CO2- eq · m(-2) · yr(-1) over a 30-year time period. Both C storage and greenhouse gas emissions increased rapidly following amendments. Compost amendments with lower C:N led to higher C sequestration rates over time. However, these soils also experienced greater N20 fluxes. Multiple smaller compost additions resulted in similar cumulative C sequestration rates, albeit with a time lag, and lower cumulative N2O emissions. These results identify a trade-off between maximizing C sequestration and minimizing N2O emissions following amendments, and suggest that compost additions to grassland soils can have a long-term impact on C and greenhouse gas dynamics that contributes to climate change mitigation.

  12. Dissolved Organic Carbon and Natural Terrestrial Sequestration Potential in Volcanic Terrain, San Juan Mountains, Colorado

    NASA Astrophysics Data System (ADS)

    Yager, D. B.; Burchell, A.; Johnson, R. H.; Kugel, M.; Aiken, G.; Dick, R.

    2009-12-01

    The need to reduce atmospheric CO2 levels has stimulated studies to understand and quantify carbon sinks and sources. Soils represent a potentially significant natural terrestrial carbon sequestration (NTS) reservoir. This project is part of a collaborative effort to characterize carbon (C) stability in temperate soils. To examine the potential for dissolved organic carbon (DOC) values as a qualitative indicator of C-stability, peak-flow (1500 ft3/s) and low-flow (200 ft3/s) samples from surface and ground waters were measured for DOC. DOC concentrations are generally low. Median peak-flow values from all sample sites (mg/L) were: streams (0.9); seeps (1.2); wells (0.45). Median low-flow values were: streams (0.7); seeps (0.75); wells (0.5). Median DOC values decrease between June and September 0.45 mg/L for seeps, and 0.2 mg/L for streams. Elevated DOC in some ground waters as compared to surface waters indicates increased contact time with soil organic matter. Elevated peak-flow DOC in areas with propylitically-altered bedrocks, composed of a secondary acid neutralizing assemblage of calcite-chlorite-epidote, reflects increased microbial and vegetation activity as compared to reduced organic matter accumulation in highly-altered terrain composed of an acid generating assemblage with abundant pyrite. Waters sampled in propylitically-altered bedrock terrain exhibit the lowest values during low-flow and suggest bedrock alteration type may influence DOC. Previous studies revealed undisturbed soils sampled have 2 to 6 times greater total organic soil carbon (TOSC) than global averages. Forest soils underlain by intermediate to mafic volcanic bedrock have the highest C (34.15 wt%), C: N (43) and arylsulfatase enzyme activity (ave. 278, high 461 µg p-nitrophenol/g/h). Unreclaimed mine sites have the lowest C (0 to 0.78 wt%), and arylsulfatase enzyme activity (0 to 41). Radiocarbon dates on charcoal collected from paleo-burn horizons illustrate Rocky Mountain soils may represent an old and if undisturbed, stable carbon pool (500 -5,440 ± 40 yrs B.P). Undisturbed and reclaimed soils derived from propylitic bedrocks also exhibit high TOSC (13.5 - 25.6 wt%), C: N (27), arylsulfatase (338). This is consistent with earlier studies in which propylitic bedrocks were identified as having a high acid-neutralizing capacity (ANC). Observations at natural reclamation sites suggest “bio-geo-mimicry” techniques that use ANC rock plus other soil amendments (biochar, nutrients, mycorrhizea, seeding) may aid reclamation measures and support carbon sequestration. The data demonstrate that volcanic-hosted watersheds may exhibit both high TOSC and low DOC. This is attributed to: host rock-weathering release of nutrients important for soil productivity, ANC, formation of secondary mineral carbonates; development of intermediate soil aggregates and adsorption-enhancing clays that stabilize C and N, environmental factors such as climate, moisture retention, and land use. Future work will explore the potential of DOC flux as a proxy for NTS potential.

  13. Current and Projected Carbon Dynamics in US Agricultural Systems

    NASA Astrophysics Data System (ADS)

    Ogle, S. M.; Paustian, K.; Zhang, Y.; Kent, J.; Gurung, R.; Klotz, R.

    2016-12-01

    Agricultural lands occur across a variety of landscapes in the United States, and carbon dynamics are largely controlled by management decisions along with edaphic characteristics, climate and other environmental drivers. Due to the influence of management, there is potential to sequester carbon in soils with adoption of conservation practices, such as setting aside degraded land from production, limiting tillage disturbance, enhancing crop production with higher yielding varieties, planting cover crops, and restoring wetlands where they have been drained for crop production. In 2010, the level of sequestration in mineral soils across US croplands was 48 million metric tonnes CO2 equivalent, which is down from the high during the past 25 years of 90 million metric tonnes CO2 equivalent. In contrast, drained wetlands that are used for crop production were emitting 22.1 million metric tonnes CO2 equivalent in 2010. In the short term, restoring drained wetlands would decrease CO2emissions to the atmosphere, and even with the additional CH4 emissions from restored wetlands, there would an overall reduction in greenhouse gas emissions from these lands. In turn, this would make a significant contribution to the USDA Climate Smart Agriculture Plan for reducing greenhouse gas emissions by 120 million metric tonnes CO2 equivalent in support of the Paris Agreement. The potential to sequester carbon in the future will also be impacted by climate change, in addition to the management decisions of land managers. We simulated future carbon dynamics through 2060 based on climate change projections for RCP 2.5, 4.5 and 8.5 scenarios, with and without CO2 fertilization effects. We are using the results as input to a general equilibrium model for the agricultural economic sector to better understand the economic consequences of climate change and the potential for greenhouse gas mitigation. By evaluating the influence of climate change and economic welfare, our study is providing a basis to understand the potential long-term contribution of carbon sequestration in support of a Climate Smart Agriculture Program in the United States.

  14. Mineral Carbonation Potential of CO2 from Natural and Industrial-based Alkalinity Sources

    NASA Astrophysics Data System (ADS)

    Wilcox, J.; Kirchofer, A.

    2014-12-01

    Mineral carbonation is a Carbon Capture and Storage (CSS) technology where gaseous CO2 is reacted with alkaline materials (such as silicate minerals and alkaline industrial wastes) and converted into stable and environmentally benign carbonate minerals (Metz et al., 2005). Here, we present a holistic, transparent life cycle assessment model of aqueous mineral carbonation built using a hybrid process model and economic input-output life cycle assessment approach. We compared the energy efficiency and the net CO2 storage potential of various mineral carbonation processes based on different feedstock material and process schemes on a consistent basis by determining the energy and material balance of each implementation (Kirchofer et al., 2011). In particular, we evaluated the net CO2 storage potential of aqueous mineral carbonation for serpentine, olivine, cement kiln dust, fly ash, and steel slag across a range of reaction conditions and process parameters. A preliminary systematic investigation of the tradeoffs inherent in mineral carbonation processes was conducted and guidelines for the optimization of the life-cycle energy efficiency are provided. The life-cycle assessment of aqueous mineral carbonation suggests that a variety of alkalinity sources and process configurations are capable of net CO2 reductions. The maximum carbonation efficiency, defined as mass percent of CO2 mitigated per CO2 input, was 83% for CKD at ambient temperature and pressure conditions. In order of decreasing efficiency, the maximum carbonation efficiencies for the other alkalinity sources investigated were: olivine, 66%; SS, 64%; FA, 36%; and serpentine, 13%. For natural alkalinity sources, availability is estimated based on U.S. production rates of a) lime (18 Mt/yr) or b) sand and gravel (760 Mt/yr) (USGS, 2011). The low estimate assumes the maximum sequestration efficiency of the alkalinity source obtained in the current work and the high estimate assumes a sequestration efficiency of 85%. The total CO2 storage potential for the alkalinity sources considered in the U.S. ranges from 1.3% to 23.7% of U.S. CO2 emissions, depending on the assumed availability of natural alkalinity sources and efficiency of the mineral carbonation processes.

  15. Estimating the CO2 sequestration potential of depleted and fractured shale formations using CH4 production rates

    NASA Astrophysics Data System (ADS)

    Clarens, A. F.; Tao, Z.

    2013-12-01

    Oil and gas production from hydraulically fractured shale formations is an abundant new source of domestically available energy for the United States. It will also result in significant CO2 emissions with important climate implications. Several studies have suggested that fractured shale formations could be used to permanently store CO2 once they are depleted of hydrocarbons. Many of the largest shale formations being developed in the United States have temperature and pressure profiles that are similar to those of saline aquifers being widely studied for geologic carbon sequestration. Here a modeling framework was developed that can be used to estimate the sequestration capacity for a shale formation based on historical CH4 production. The model is applied to those portions of the Marcellus formation found in Pennsylvania because reliable data on well production is readily available for this state. Production data from over 300 wells was compiled and used to estimate historical production and to extrapolate projected production. In shales, much of the CO2 would be sorbed to the pore and fracture surface and so this model considers sorption kinetics as well as total sorption capacity. The results suggest that shale formations could represent a significant repository for geologic carbon sequestration. The Marcellus shale in Pennsylvania alone could store between 10.4 and 18.4 Gigatonnes of CO2 between now and 2030. This would be over 50% of total annual US CO2 emissions from stationary sources. The mass transfer and sorption kinetics results indicate that CO2 injection proceeds several times faster than CH4 production. Model estimates were most sensitive to the permeability of the formation and assumptions about the ultimate ratio of adsorbed CH4 to CO2. CH4 production is a useful basis for calculating sequestration capacity because gas mass transfer out of the formation will be impacted by the same factors (e.g., temperature, pressure, and moisture content) influencing gas injection. The differences between horizontal and non-horizontal wells were taken into account to understand how well structure would influence gas transport kinetics. It was assumed that only the sorbed CO2 would stay in the formation over time. These estimates for sequestration capacity suggest that the approach merits further study to understand the viability of this approach and opportunities to leverage existing infrastructure. Other synergies could exist in terms of monitoring. Related impacts associated with induced seismicity and leakage would need to be explored to understand the full potential of this approach. The sequestration capacity estimated using this model supports continued exploration into this pathway for producing carbon neutral energy.

  16. Evaluating the Contribution of Soil Carbon to Global Climate Change Mitigation in an Integrated Assessment

    NASA Astrophysics Data System (ADS)

    Thomson, A. M.; Izaurralde, R. C.; Clarke, L. E.

    2006-12-01

    Assessing the contribution of terrestrial carbon sequestration to national and international climate change mitigation requires integration across scientific and disciplinary boundaries. In a study for the US Climate Change Technology Program, site based measurements and geographic data were used to develop a three- pool, first-order kinetic model of global agricultural soil carbon (C) stock changes over 14 continental scale regions. This model was then used together with land use scenarios from the MiniCAM integrated assessment model in a global analysis of climate change mitigation options. MiniCAM evaluated mitigation strategies within a set of policy environments aimed at achieving atmospheric CO2 stabilization by 2100 under a suite of technology and development scenarios. Adoption of terrestrial sequestration practices is based on competition for land and economic markets for carbon. In the reference case with no climate policy, conversion of agricultural land from conventional cultivation to no tillage over the next century in the United States results in C sequestration of 7.6 to 59.8 Tg C yr-1, which doubles to 19.0 to 143.4 Tg C yr-1 under the most aggressive climate policy. Globally, with no carbon policy, agricultural C sequestration rates range from 75.2 to 18.2 Tg C yr-1 over the century, with the highest rates occurring in the first fifty years. Under the most aggressive global climate change policy, sequestration in agricultural soils reaches up to 190 Tg C yr-1 in the first 15 years. The contribution of agricultural soil C sequestration is a small fraction of the total global carbon offsets necessary to reach the stabilization targets (9 to 20 Gt C yr-1) by the end of the century. This integrated assessment provides decision makers with science-based estimates of the potential magnitude of terrestrial C sequestration relative to other greenhouse gas mitigation strategies in all sectors of the global economy. It also provides insight into the behavior of terrestrial C mitigation options in the presence and absence of climate change mitigation policies.

  17. Wind erosion reduces soil organic carbon sequestration falsely indicating ineffective management practices

    NASA Astrophysics Data System (ADS)

    Chappell, Adrian; Baldock, Jeffrey A.

    2016-09-01

    Improved management of agricultural land has the potential to reduce greenhouse gas emissions and to reduce atmospheric CO2 via soil carbon sequestration. However, SOC stocks are reduced by soil erosion which is commonly omitted from calculations of crop production, C cycling, C sequestration and C accounting. We used fields from the wind eroded dryland cropping region of Western Australia to demonstrate the global implications for C sequestration and C accounting of omitting soil erosion. For the fields we previously estimated mean net (1950s-1990) soil erosion of 1.2 ± 1.0 t ha-1 y-1. The mean net (1990-2013) soil erosion increased by nearly four times to 4.4 ± 2.1 t ha-1 y-1. Conservation agriculture has evidently not reduced wind erosion in this region. The mean net (1990-2013) SOC erosion was up to 0.2 t C ha-1 y-1 across all sampled fields and similar to measured sequestration rates in the region (up to 0.5 t C ha-1 y-1; 10 years) for many management practices recommended for building SOC stocks. The minimum detectable change (MDC; 10 years) of SOC without erosion was up to 0.2 t C ha-1 y-1 whilst the MDC of SOC with erosion was up to 0.4 t C ha-1 y-1. These results illustrate the generally applicable outcome: (i) if SOC erosion is equal to (or greater than) the increase in SOC due to management practices, the change will not be detectable (or a loss will be evident); (ii) without including soil erosion in SOC sequestration calculations, the monitoring of SOC stocks will lead to, at best the inability to detect change and, at worst the false impression that management practices have failed to store SOC. Furthermore, continued omission of soil erosion in crop production, C accounting and C sequestration will most likely undermine confidence in policy designed to encourage adoption of C farming and the attendant benefits for soil stewardship and food security.

  18. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-08-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes ofmore » air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and is scheduled to be complete by the end of August 2003. The current project status and preliminary monitoring results are summarized in this report.« less

  19. Sequestration of Ag(I) from aqueous solution as Ag(0) nanostructures by nanoscale zero valent iron (nZVI)

    NASA Astrophysics Data System (ADS)

    Zhang, Yalei; Yan, Jing; Dai, Chaomeng; Li, Yuting; Zhu, Yan; Zhou, Xuefei

    2015-11-01

    This study investigates the application of nanoparticle zero valent iron (nZVI) to sequester Ag(I) as Ag(0) nanostructures from aqueous solution. Batch experiments were performed with nZVI exposed to aqueous Ag(I) to investigate the effects of environmental parameters, including nZVI dose, temperature and pH. High temperature facilitates Ag(I) sequestration, and the rate constants are determined to be 0.02, 0.12, and 0.31 mg L/m2 at 30, 50, and 60 °C, respectively. Ag(I) sequestration was adversely affected by adding nitric acid to the solution due to significant acid washing, decreasing the available nZVI active sites. Characterization techniques including TEM, XRD, and HR-XPS revealed that nZVI is oxidized to lepidocrocite and magnetite/maghemite and confirmed the formation of nanocrystalline silver. HR-XPS analysis indicated that Ag2O forms rapidly as an intermediate due to Ag(I) adsorption onto the FeOOH layer. The Ag(0) nanostructures that are formed are fractal, spherical, and dendritic or rod-like, respectively, in morphology by FE-TEM images at different Ag/Fe mass ratios. A general reaction model for the interaction Ag(I) with nZVI is proposed. Our results suggest that nZVI is effective for Ag(I) removal.

  20. Ecosystem accounts define explicit and spatial trade-offs for managing natural resources.

    PubMed

    Keith, Heather; Vardon, Michael; Stein, John A; Stein, Janet L; Lindenmayer, David

    2017-11-01

    Decisions about natural resource management are frequently complex and vexed, often leading to public policy compromises. Discord between environmental and economic metrics creates problems in assessing trade-offs between different current or potential resource uses. Ecosystem accounts, which quantify ecosystems and their benefits for human well-being consistent with national economic accounts, provide exciting opportunities to contribute significantly to the policy process. We advanced the application of ecosystem accounts in a regional case study by explicitly and spatially linking impacts of human and natural activities on ecosystem assets and services to their associated industries. This demonstrated contributions of ecosystems beyond the traditional national accounts. Our results revealed that native forests would provide greater benefits from their ecosystem services of carbon sequestration, water yield, habitat provisioning and recreational amenity if harvesting for timber production ceased, thus allowing forests to continue growing to older ages.

  1. Using hyperspectral plant signatures for CO2 leak detection during the 2008 ZERT CO2 sequestration field experiment in Bozeman, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Male, E.J.; Pickles, W.L.; Silver, E.A.

    2009-11-01

    Hyperspectral plant signatures can be used as a short-term, as well as long-term (100-yr timescale) monitoring technique to verify that CO2 sequestration fields have not been compromised. An influx of CO2 gas into the soil can stress vegetation, which causes changes in the visible to nearinfrared reflectance spectral signature of the vegetation. For 29 days, beginning on July 9th, 2008, pure carbon dioxide gas was released through a 100-meter long horizontal injection well, at a flow rate of 300 kg/day. Spectral signatures were recorded almost daily from an unmown patch of plants over the injection with a ''FieldSpec Pro'' spectrometermore » by Analytical Spectral Devices, Inc. Measurements were taken both inside and outside of the CO2 leak zone to normalize observations for other environmental factors affecting the plants.« less

  2. Comparison of Carbon Sequestration Rates and Energy Balance of Turf in the Denver Urban Ecosystem and an Adjacent Native Grassland

    NASA Astrophysics Data System (ADS)

    Thienelt, T. S.; Anderson, D. E.; Powell, K. M.

    2011-12-01

    Urban ecosystems are currently characterized by rapid growth, are expected to continually expand and, thus, represent an important driver of land use change. A significant component of urban ecosystems is lawns, potentially the single largest irrigated "crop" in the U.S. Beginning in March of 2011 (ahead of the growing season), eddy covariance measurements of net carbon exchange and evapotranspiration along with energy balance fluxes were conducted for a well-watered, fertilized lawn (rye-bluegrass-mix) in metropolitan Denver and for a nearby tallgrass prairie (big bluestem, switchgrass, cheatgrass, blue grama). Due to the semi-arid climate conditions of the Denver region, differences in management (i.e., irrigation and fertilization) are expected to have a discernible impact on ecosystem productivity and thus on carbon sequestration rates, evapotranspiration, and the sensible and latent heat partitioning of the energy balance. By mid-July, preliminary data indicated that cumulative evapotranspiration was approximately 270 mm and 170 mm for urban and native grasslands, respectively, although cumulative carbon sequestration at that time was similar for both (approximately 40 mg/m2). However, the pattern of carbon exchange differed between the grasslands. Both sites showed daily net uptake of carbon starting in late May, but the urban lawn displayed greater diurnal variability as well as greater uptake rates in general, especially following fertilization in mid-June. In contrast, the trend of carbon uptake at the prairie site was occasionally reversed following strong convective precipitation events, resulting in a temporary net release of carbon. The continuing acquisition of data and investigation of these relations will help us assess the potential impact of urban growth on regional carbon sequestration.

  3. Long-term effect of a single application of organic refuse on carbon sequestration and soil physical properties.

    PubMed

    Albaladejo, J; Lopez, J; Boix-Fayos, C; Barbera, G G; Martinez-Mena, M

    2008-01-01

    Restoration of degraded lands could be a way to reverse soil degradation and desertification in semiarid areas and mitigate greenhouse gases (GHG). Our objective was to evaluate the long-term effects of a single addition of organic refuse on soil physical properties and measure its carbon sequestration potential. In 1988, a set of five plots (87 m(2) each) was established in an open desert-like scrubland (2-4% cover) in Murcia, Spain, to which urban solid refuse (USR) was added in a single treatment at different rates. Soil properties were monitored over a 5-yr period. Sixteen years after the addition, three of the plots were monitored again (P0: control, P1: 13 kg m(-2), P2: 26 kg m(-2) of USR added) to assess the lasting effect of the organic addition on the soil organic carbon (SOC) pools and on the physical characteristics of the soil. The SOC content was higher in P2 (16.4 g kg(-1)) and in P1 (11.8 g kg(-1)) than in P0 (7.9 g kg(-1)). Likewise, aerial biomass increased from 0.18 kg m(-2) in P0 up to 0.27 kg m(-2) in P1 and 0.46 kg m(-2) in P2. This represents a total C sequestration of 9.5 Mg ha(-1) in P2 and 3.4 Mg ha(-1) in P1, most of the sequestered C remaining in the recalcitrant soil pool. Additionally, higher saturated hydraulic conductivity, aggregate stability, and available water content values and lower bulk density values were measured in the restored plots. Clearly, a single addition of organic refuse to the degraded soils to increase the potential for C sequestration was effective.

  4. Development of anomaly detection models for deep subsurface monitoring

    NASA Astrophysics Data System (ADS)

    Sun, A. Y.

    2017-12-01

    Deep subsurface repositories are used for waste disposal and carbon sequestration. Monitoring deep subsurface repositories for potential anomalies is challenging, not only because the number of sensor networks and the quality of data are often limited, but also because of the lack of labeled data needed to train and validate machine learning (ML) algorithms. Although physical simulation models may be applied to predict anomalies (or the system's nominal state for that sake), the accuracy of such predictions may be limited by inherent conceptual and parameter uncertainties. The main objective of this study was to demonstrate the potential of data-driven models for leakage detection in carbon sequestration repositories. Monitoring data collected during an artificial CO2 release test at a carbon sequestration repository were used, which include both scalar time series (pressure) and vector time series (distributed temperature sensing). For each type of data, separate online anomaly detection algorithms were developed using the baseline experiment data (no leak) and then tested on the leak experiment data. Performance of a number of different online algorithms was compared. Results show the importance of including contextual information in the dataset to mitigate the impact of reservoir noise and reduce false positive rate. The developed algorithms were integrated into a generic Web-based platform for real-time anomaly detection.

  5. Carbon Sequestration: is Science Leading Policy or Will Policy Direct Science?

    NASA Astrophysics Data System (ADS)

    Anderson, A. K.

    2007-12-01

    Climate-related policy is in its infancy on capital hill, as policy makers only recently started to converge on the acceptance that climate change is a credible, scientific reality. Until recently much of the debate and policy decisions have been related to whether or not climate change, or more specifically global warming, is occurring. The climate debate has shifted from discussing the science behind climate change to addressing how we can reduce carbon dioxide emissions. In the 110th Congress, policy makers have come to realize and accept that we, as a nation, are one of the largest global emitters of carbon dioxide to the atmosphere. Geologic carbon sequestration has gained significant congressional attention and is considered to be one of the most promising carbon mitigation tools. In the present Congress, scientific experts have testified before numerous committees about the various caveats of geologic carbon sequestration. As a result, policy has been and is currently being drafted to address the challenges facing large-scale commercial demonstration of geologic sequestration facilities. Policy has been passed through both the House and Senate that is aimed at increasing funding for basic and advanced research, development, and demonstration of small- to large-scale carbon dioxide injection projects. This legislation is only the beginning of a series of legislation that is under development. In the next year, policy will be introduced that will likely address issues related to pore space and mineral rights ownership, regulatory framework for carbon dioxide transport and injection, long-term injection site monitoring protocol, personal and environmental safety, and liability issues, to name a few. Policy is not limited to the technical aspects of carbon capture, transport, and storage, but is also being developed to help stimulate a market that will be operating under climate constraints. Financial incentives have been proposed that will assist industrial carbon dioxide emitters in making the transition into a carbon-constrained economy. Science has driven the initial policy that has been proposed to date; however, the topic of carbon sequestration has been advanced through Congress at a near record-breaking pace. As such, there is an increased need to hear from scientists in academia and industry alike to continue to make good policy decisions related to carbon sequestration based on sound scientific advice.

  6. Commercial silicate phosphate sequestration and desorption leads to a gradual decline of aquatic systems.

    PubMed

    Svatos, Karl B W

    2018-02-01

    Laboratory desorption behaviour, function and elemental composition of commercially marketed silicate minerals used to sequester phosphorus pollution as well as Zeolite, Smectite, and Kaolinite were determined to see whether their use by environmental scientists and water managers in eutrophic waterways has the potential to contribute to longer-term environmental impacts. As expected, lower phosphorus concentrations were observed, following treatment. However, data relating to desorption, environmental fate and bioavailability of phospho-silicate complexes (especially those containing rare earth elements) appear to be underrepresented in product testing and trial publications. Analysis of desorption of phosphate (P) was > 5 μg[P]/L for all three non-commercial samples and 0 > μg[P]/L > 5 for all commercial silicates for a range of concentrations from 0 to 300 μg[P]/L. Based on a review of bioaccumulation data specific to the endangered Cherax tenuimanus (Hairy Marron) and other endemic species, this is significant considering anything > 20 μg[La]/L is potentially lethal to the hairy marron, other crustaceans and even other phyla. Where prokaryotic and eukaryotic effects are underreported, this represents a significant challenge. Especially where product protocols recommend continual reapplication, this is significant because both the forward and reverse reactions are equally important. The users of silicate minerals in water columns should accept the dynamic nature of the process and pay equal attention to both adsorption and desorption because desorption behaviour is an inherent trait. Even if broader desorption experimentation is difficult, expensive and time-consuming, it is a critical consideration nonetheless.

  7. Mesoscale carbon sequestration site screening and CCS infrastructure analysis.

    PubMed

    Keating, Gordon N; Middleton, Richard S; Stauffer, Philip H; Viswanathan, Hari S; Letellier, Bruce C; Pasqualini, Donatella; Pawar, Rajesh J; Wolfsberg, Andrew V

    2011-01-01

    We explore carbon capture and sequestration (CCS) at the meso-scale, a level of study between regional carbon accounting and highly detailed reservoir models for individual sites. We develop an approach to CO(2) sequestration site screening for industries or energy development policies that involves identification of appropriate sequestration basin, analysis of geologic formations, definition of surface sites, design of infrastructure, and analysis of CO(2) transport and storage costs. Our case study involves carbon management for potential oil shale development in the Piceance-Uinta Basin, CO and UT. This study uses new capabilities of the CO(2)-PENS model for site screening, including reservoir capacity, injectivity, and cost calculations for simple reservoirs at multiple sites. We couple this with a model of optimized source-sink-network infrastructure (SimCCS) to design pipeline networks and minimize CCS cost for a given industry or region. The CLEAR(uff) dynamical assessment model calculates the CO(2) source term for various oil production levels. Nine sites in a 13,300 km(2) area have the capacity to store 6.5 GtCO(2), corresponding to shale-oil production of 1.3 Mbbl/day for 50 years (about 1/4 of U.S. crude oil production). Our results highlight the complex, nonlinear relationship between the spatial deployment of CCS infrastructure and the oil-shale production rate.

  8. Global Simulation of Bioenergy Crop Productivity: Analytical Framework and Case Study for Switchgrass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Shujiang; Kline, Keith L; Nair, S. Surendran

    A global energy crop productivity model that provides geospatially explicit quantitative details on biomass potential and factors affecting sustainability would be useful, but does not exist now. This study describes a modeling platform capable of meeting many challenges associated with global-scale agro-ecosystem modeling. We designed an analytical framework for bioenergy crops consisting of six major components: (i) standardized natural resources datasets, (ii) global field-trial data and crop management practices, (iii) simulation units and management scenarios, (iv) model calibration and validation, (v) high-performance computing (HPC) simulation, and (vi) simulation output processing and analysis. The HPC-Environmental Policy Integrated Climate (HPC-EPIC) model simulatedmore » a perennial bioenergy crop, switchgrass (Panicum virgatum L.), estimating feedstock production potentials and effects across the globe. This modeling platform can assess soil C sequestration, net greenhouse gas (GHG) emissions, nonpoint source pollution (e.g., nutrient and pesticide loss), and energy exchange with the atmosphere. It can be expanded to include additional bioenergy crops (e.g., miscanthus, energy cane, and agave) and food crops under different management scenarios. The platform and switchgrass field-trial dataset are available to support global analysis of biomass feedstock production potential and corresponding metrics of sustainability.« less

  9. Simultaneous nutrient removal, optimised CO2 mitigation and biofuel feedstock production by Chlorogonium sp. grown in secondary treated non-sterile saline sewage effluent.

    PubMed

    Lee, Kwan Yin; Ng, Tsz Wai; Li, Guiying; An, Taicheng; Kwan, Ka Ki; Chan, King Ming; Huang, Guocheng; Yip, Ho Yin; Wong, Po Keung

    2015-10-30

    The phycoremediation process has great potential for effectively addressing environmental pollution. To explore the capabilities of simultaneous algal nutrient removal, CO2 mitigation and biofuel feedstock production from spent water resources, a Chlorogonium sp. isolated from a tilapia pond in Hong Kong was grown in non-sterile saline sewage effluent for a bioremediation study. With high removal efficiencies of NH3-N (88.35±14.39%), NO3(-)-N (85.39±14.96%), TN (93.34±6.47%) and PO4(3-)-P (91.80±17.44%), Chlorogonium sp. achieved a CO2 consumption rate of 58.96 mg L(-1) d(-1), which was optimised by the response surface methodology. Under optimised conditions, the lipid content of the algal biomass reached 24.26±2.67%. Overall, the isolated Chlorogonium sp. showed promising potential in the simultaneous purification of saline sewage effluent in terms of tertiary treatment and CO2 sequestration while delivering feedstock for potential biofuel production in a waste-recycling manner. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Contaminant sequestration in karstic aquifers: Experiments and quantification

    NASA Astrophysics Data System (ADS)

    Li, Guangquan; Loper, David E.; Kung, Robin

    2008-02-01

    A karstic aquifer typically has significant secondary porosity consisting of an interconnected system of caves or conduits. Conduit-borne contaminants can enter the contiguous limestone matrix, remain inside for a longer time than in the conduit, and subsequently be flushed out. This retention or sequestration can significantly influence the fate of contaminants within the aquifer and alter the shape of the breakthrough curve. The mechanisms involved in sequestration have been identified and quantified by analysis of the breakthrough curves generated by a set of laboratory experiments in which a conduit, porous limestone matrix, and conservative contaminant were simulated by a porous-walled pipe, chamber of closely packed glass beads, and salt, respectively. Experiments were conducted with both active and passive transfer of water between conduit and matrix, simulating differing hydrogeologic regimes. In active transfer the primary control parameter is the volume of water transferred; sequestration is primarily due to advection with the effects of diffusion and dispersion being minimal. In passive transfer the control parameters are the conduit Reynolds number and the duration that contaminant resides in the conduit; sequestration is caused by the combined effects of the conduit pressure drop, pressure variation due to bedform, and diffusion. Active and passive transfer can be unified by analyzing the ratio of the scale of pressure variation to the conduit length. In accordance with the resolved mechanisms a variety of models have been constructed to recover solute distributions in the matrix and to regenerate breakthrough curves. These analyses and models provide a potential approach to investigate contaminant migration in karstic aquifers.

  11. Utilization of the St. Peter Sandstone in the Illinois Basin for CO2 Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Will, Robert; Smith, Valerie; Leetaru, Hannes

    2014-09-30

    This project is part of a larger project co-funded by the United States Department of Energy (US DOE) under cooperative agreement DE-FE0002068 from 12/08/2009 through 9/31/2014. The study is to evaluate the potential of formations within the Cambro-Ordovician strata above the Mt. Simon Sandstone as potential targets for carbon dioxide (CO2) sequestration in the Illinois and Michigan Basins. This report evaluates the potential injectivity of the Ordovician St. Peter Sandstone. The evaluation of this formation was accomplished using wireline data, core data, pressure data, and seismic data acquired through funding in this project as well as existing data from twomore » additional, separately funded projects: the US DOE funded Illinois Basin – Decatur Project (IBDP) being conducted by the Midwest Geological Sequestration Consortium (MGSC) in Macon County, Illinois, and the Illinois Industrial Carbon Capture and Sequestration (ICCS) Project funded through the American Recovery and Reinvestment Act (ARRA), which received a phase two award from DOE. This study addresses the question of whether or not the St. Peter Sandstone may serve as a suitable target for CO2 sequestration at locations within the Illinois Basin where it lies at greater depths (below the underground source of drinking water (USDW)) than at the IBDP site. The work performed included numerous improvements to the existing St. Peter reservoir model created in 2010. Model size and spatial resolution were increased resulting in a 3 fold increase in the number of model cells. Seismic data was utilized to inform spatial porosity distribution and an extensive core database was used to develop porosity-permeability relationships. The analysis involved a Base Model representative of the St. Peter at “in-situ” conditions, followed by the creation of two hypothetical models at in-situ + 1,000 feet (ft.) (300 m) and in-situ + 2,000 ft. (600 m) depths through systematic depthdependent adjustment of the Base Model parameters. Properties for the depth shifted models were based on porosity versus depth relationship extracted from the core database followed by application of the porosity-permeability relationship. Each of the three resulting models were used as input to dynamic simulations with the single well injection target of 3.2 million tons per annum (MTPA) for 30 years using an appropriate fracture gradient based bottom hole pressure limit for each injection level. Modeling results are presented in terms of well bottomhole pressure (BHP), injection rate profiles, and three-dimensional (3D) saturation and differential pressure volumes at selected simulation times. Results suggest that the target CO2 injection rate of 3.2 MTPA may be achieved in the St. Peter Sandstone at in-situ conditions and at the in-situ +1,000 ft. (300 m) depth using a single injector well. In the latter case the target injection rate is achieved after a ramp up period which is caused by multi-phase flow effects and thus subject to increased modeling uncertainty. Results confirm that the target rate may not be achieved at the in-situ +2,000 ft. (600 m) level even with multiple wells. These new modeling results for the in-situ case are more optimistic than previous modeling results. This difference is attributed to the difference in methods and data used to develop model permeability distributions. Recommendations for further work include restriction of modeling activity to the in-situ +1,000 ft. (300 m) and shallower depth interval, sensitivity and uncertainty analysis, and refinement of porosity and permeability estimates through depth and area selective querying of the available core database. It is also suggested that further modeling efforts include scope for evaluating project performance in terms of metrics directly related to the Environmental Protection Agency (EPA) Class VI permit requirements for the area of review (AoR) definition and post injection site closure monitoring.« less

  12. Risk Assessment of Carbon Sequestration into A Naturally Fractured Reservoir at Kevin Dome, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Minh; Onishi, Tsubasa; Carey, James William

    In this report, we describe risk assessment work done using the National Risk Assessment Partnership (NRAP) applied to CO 2 storage at Kevin Dome, Montana. Geologic CO 2 sequestration in saline aquifers poses certain risks including CO 2/brine leakage through wells or non-sealing faults into groundwater or to the land surface. These risks are difficult to quantify due to data availability and uncertainty. One solution is to explore the consequences of these limitations by running large numbers of numerical simulations on the primary CO2 injection reservoir, shallow reservoirs/aquifers, faults, and wells to assess leakage risks and uncertainties. However, a largemore » number of full-physics simulations is usually too computationally expensive. The NRAP integrated assessment model (NRAP-IAM) uses reduced order models (ROMs) developed from full-physics simulations to address this issue. A powerful stochastic framework allows NRAPIAM to explore complex interactions among many uncertain variables and evaluate the likely performance of potential sequestration sites.« less

  13. Habitat characteristics provide insights of carbon storage in seagrass meadows.

    PubMed

    Mazarrasa, Inés; Samper-Villarreal, Jimena; Serrano, Oscar; Lavery, Paul S; Lovelock, Catherine E; Marbà, Núria; Duarte, Carlos M; Cortés, Jorge

    2018-02-16

    Seagrass meadows provide multiple ecosystem services, yet they are among the most threatened ecosystems on earth. Because of their role as carbon sinks, protection and restoration of seagrass meadows contribute to climate change mitigation. Blue Carbon strategies aim to enhance CO 2 sequestration and avoid greenhouse gasses emissions through the management of coastal vegetated ecosystems, including seagrass meadows. The implementation of Blue Carbon strategies requires a good understanding of the habitat characteristics that influence C org sequestration. Here, we review the existing knowledge on Blue Carbon research in seagrass meadows to identify the key habitat characteristics that influence C org sequestration in seagrass meadows, those factors that threaten this function and those with unclear effects. We demonstrate that not all seagrass habitats have the same potential, identify research priorities and describe the implications of the results found for the implementation and development of efficient Blue Carbon strategies based on seagrass meadows. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Melanosomal sequestration of cytotoxic drugs contributes to the intractability of malignant melanomas

    NASA Astrophysics Data System (ADS)

    Chen, Kevin G.; Valencia, Julio C.; Lai, Barry; Zhang, Guofeng; Paterson, Jill K.; Rouzaud, François; Berens, Werner; Wincovitch, Stephen M.; Garfield, Susan H.; Leapman, Richard D.; Hearing, Vincent J.; Gottesman, Michael M.

    2006-06-01

    Multidrug resistance mechanisms underlying the intractability of malignant melanomas remain largely unknown. In this study, we demonstrate that the development of multidrug resistance in melanomas involves subcellular sequestration of intracellular cytotoxic drugs such as cis-diaminedichloroplatinum II (cisplatin; CDDP). CDDP is initially sequestered in subcellular organelles such as melanosomes, which significantly reduces its nuclear localization when compared with nonmelanoma/KB-3-1 epidermoid carcinoma cells. The melanosomal accumulation of CDDP remarkably modulates melanogenesis through a pronounced increase in tyrosinase activity. The altered melanogenesis manifested an 8-fold increase in both intracellular pigmentation and extracellular transport of melanosomes containing CDDP. Thus, our experiments provide evidence that melanosomes contribute to the refractory properties of melanoma cells by sequestering cytotoxic drugs and increasing melanosome-mediated drug export. Preventing melanosomal sequestration of cytotoxic drugs by inhibiting the functions of melanosomes may have great potential as an approach to improving the chemosensitivity of melanoma cells. cancer | melanosomes | skin | tumor therapy | multidrug resistance

  15. Analysis and Comparison of Carbon Capture & Sequestration Policies

    NASA Astrophysics Data System (ADS)

    Burton, E.; Ezzedine, S. M.; Reed, J.; Beyer, J. H.; Wagoner, J. L.

    2010-12-01

    Several states and countries have adopted or are in the process of crafting policies to enable geologic carbon sequestration projects. These efforts reflect the recognition that existing statutory and regulatory frameworks leave ambiguities or gaps that elevate project risk for private companies considering carbon sequestration projects, and/or are insufficient to address a government’s mandate to protect the public interest. We have compared the various approaches that United States’ state and federal governments have taken to provide regulatory frameworks to address carbon sequestration. A major purpose of our work is to inform the development of any future legislation in California, should it be deemed necessary to meet the goals of Assembly Bill 1925 (2006) to accelerate the adoption of cost-effective geologic sequestration strategies for the long-term management of industrial carbon dioxide in the state. Our analysis shows a diverse issues are covered by adopted and proposed carbon capture and sequestration (CCS) legislation and that many of the new laws focus on defining regulatory frameworks for underground injection of CO2, ambiguities in property issues, or assigning legal liability. While these approaches may enable the progress of early projects, future legislation requires a longer term and broader view that includes a quantified integration of CCS into a government’s overall climate change mitigation strategy while considering potentially counterproductive impacts on CCS of other climate change mitigation strategies. Furthermore, legislation should be crafted in the context of a vision for CCS as an economically viable and widespread industry. While an important function of new CCS legislation is enabling early projects, it must be kept in mind that applying the same laws or protocols in the future to a widespread CCS industry may result in business disincentives and compromise of the public interest in mitigating GHG emissions. Protection of the public interest requires that monitoring and verification track the long term fate of pipelined CO2 regardless of its end use in order to establish that climate change goals are being met.

  16. Mechanisms of Soil Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Lal, Rattan

    2015-04-01

    Carbon (C) sequestration in soil is one of the several strategies of reducing the net emission of CO2 into the atmosphere. Of the two components, soil organic C (SOC) and soil inorganic C (SIC), SOC is an important control of edaphic properties and processes. In addition to off-setting part of the anthropogenic emissions, enhancing SOC concentration to above the threshold level (~1.5-2.0%) in the root zone has numerous ancillary benefits including food and nutritional security, biodiversity, water quality, among others. Because of its critical importance in human wellbeing and nature conservancy, scientific processes must be sufficiently understood with regards to: i) the potential attainable, and actual sink capacity of SOC and SIC, ii) permanence of the C sequestered its turnover and mean residence time, iii) the amount of biomass C needed (Mg/ha/yr) to maintain and enhance SOC pool, and to create a positive C budget, iv) factors governing the depth distribution of SOC, v) physical, chemical and biological mechanisms affecting the rate of decomposition by biotic and abiotic processes, vi) role of soil aggregation in sequestration and protection of SOC and SIC pool, vii) the importance of root system and its exudates in transfer of biomass-C into the SOC pools, viii) significance of biogenic processes in formation of secondary carbonates, ix) the role of dissolved organic C (DOC) in sequestration of SOC and SIC, and x) importance of weathering of alumino-silicates (e.g., powered olivine) in SIC sequestration. Lack of understanding of these and other basic processes leads to misunderstanding, inconsistencies in interpretation of empirical data, and futile debates. Identification of site-specific management practices is also facilitated by understanding of the basic processes of sequestration of SOC and SIC. Sustainable intensification of agroecosystems -- producing more from less by enhancing the use efficiency and reducing losses of inputs, necessitates thorough understanding of the processes, factors and causes of SOC and SIC dynamics in soils of natural and managed ecosystems.

  17. Grassland to shrubland state transitions enhance carbon sequestration in the northern Chihuahuan Desert.

    PubMed

    Petrie, M D; Collins, S L; Swann, A M; Ford, P L; Litvak, M E

    2015-03-01

    The replacement of native C4 -dominated grassland by C3 -dominated shrubland is considered an ecological state transition where different ecological communities can exist under similar environmental conditions. These state transitions are occurring globally, and may be exacerbated by climate change. One consequence of the global increase in woody vegetation may be enhanced ecosystem carbon sequestration, although the responses of arid and semiarid ecosystems may be highly variable. During a drier than average period from 2007 to 2011 in the northern Chihuahuan Desert, we found established shrubland to sequester 49 g C m(-2) yr(-1) on average, while nearby native C4 grassland was a net source of 31 g C m(-2) yr(-1) over this same period. Differences in C exchange between these ecosystems were pronounced--grassland had similar productivity compared to shrubland but experienced higher C efflux via ecosystem respiration, while shrubland was a consistent C sink because of a longer growing season and lower ecosystem respiration. At daily timescales, rates of carbon exchange were more sensitive to soil moisture variation in grassland than shrubland, such that grassland had a net uptake of C when wet but lost C when dry. Thus, even under unfavorable, drier than average climate conditions, the state transition from grassland to shrubland resulted in a substantial increase in terrestrial C sequestration. These results illustrate the inherent tradeoffs in quantifying ecosystem services that result from ecological state transitions, such as shrub encroachment. In this case, the deleterious changes to ecosystem services often linked to grassland to shrubland state transitions may at least be partially offset by increased ecosystem carbon sequestration. © 2014 John Wiley & Sons Ltd.

  18. The role of multilateral institutions.

    PubMed

    Kiss, Agi; Castro, Gonzalo; Newcombe, Kenneth

    2002-08-15

    In line with its mission of alleviating poverty through support for environmentally and socially sustainable economic development, The World Bank (along with some other multilateral development banks) is working to help developing countries capture a share of the emerging global market in greenhouse-gas-emissions reductions ('carbon trading'). Under the Kyoto Protocol of the United Nations Framework Convention on Climate Change (UNFCCC), the Joint Implementation instrument and the Clean Development Mechanism now provide an opening for substantial international resource transfers and potential for supporting sustainable development through the transfer of cleaner technologies or sustainable forestry and agro-forestry practices. For example, carbon sequestration represents a non-extractive non-consumptive sustainable use of living natural resources that can be incorporated within a multiple-use 'integrated ecosystem management' approach. The World Bank initiated the Prototype Carbon Fund (PCF) in April 2000, to help spur the development of a global carbon market and to 'learn by doing' how to use carbon-purchase transactions across a range of energy-sector technologies (and some forestry applications) to achieve environmentally credible and cost-effective emissions reductions that benefit developing countries and economies in transition. Building on the success of the PCF ($145 million raised from public and private-sector investors), The World Bank expects to launch two new funds in 2002: the Biocarbon Fund and the Community Development Carbon Fund. These funds will target synergies between carbon markets and objectives such as biodiversity conservation, combating desertification and small-scale community-driven development. Experience from the PCF shows that developing countries can have a comparative advantage in supplying this global market, as emissions reductions can be achieved in developing countries in the range of $3-$5 per ton of CO(2) equivalent, compared with a marginal abatement cost of $10-$15 per ton of CO(2) equivalent in most countries within the Organization for Economic Cooperation and Development. However, realizing this economic potential over the next decade, and targeting the market to the rural poor, will require substantial assistance with project development and government legal and institutional capacity building. Specific needs include raising awareness of the potential of carbon markets at all levels (particularly in energy and land-use sectors), clarifying property rights, particularly in the case of communally held land and resources, ensuring the existence of an attractive investment climate, eliminating policies that create perverse incentives and constraints, and mitigating logistical, political and 'reputational' risks that could deter private-sector investors. It will also be necessary to find ways to reconcile the short-term needs of the rural poor and the typically long-term revenue stream associated with carbon sequestration.

  19. Potential Flue Gas Impurities in Carbon Dioxide Streams Separated from Coal-fired Power Plants

    EPA Science Inventory

    For geological sequestration of CO2 separated from pulverized coal combustion flue gas, it is necessary to adequately evaluate the potential impacts of flue gas impurities on groundwater aquifers in the case of the CO2 leakage from its storage sites. This s...

  20. Mapping and imputing potential productivity of Pacific Northwest forests using climate variables

    Treesearch

    Gregory Latta; Hailemariam Temesgen; Tara Barrett

    2009-01-01

    Regional estimation of potential forest productivity is important to diverse applications, including biofuels supply, carbon sequestration, and projections of forest growth. Using PRISM (Parameter-elevation Regressions on Independent Slopes Model) climate and productivity data measured on a grid of 3356 Forest Inventory and Analysis plots in Oregon and Washington, we...

  1. Sequestration of carbon in soil organic matter in Senegal: an overview

    USGS Publications Warehouse

    Tieszen, Larry L.; Tappan, G. Gray; Toure, A.

    2004-01-01

    The project focuses on four objectives in specific locations across the agroecological zones of Senegal. These objectives are: use of soil sampling and biogeochemical modeling to quantify the biophysical potential for carbon sequestration and to determine the sensitivity of the carbon stocks to various management and climate scenarios, to evaluate the socio-economic and cultural requirements necessary for successful project implementation directed toward an aggregation of smallholders to sequester around 100,000 t carbon (C), to support capacity building to develop a Carbon Specialist Team, and to initiate extrapolation from site-specific project areas to the Sahel region and the national level.

  2. Bacterial metabolism of environmental arsenic--mechanisms and biotechnological applications.

    PubMed

    Kruger, Martin C; Bertin, Philippe N; Heipieper, Hermann J; Arsène-Ploetze, Florence

    2013-05-01

    Arsenic causes threats for environmental and human health in numerous places around the world mainly due to its carcinogenic potential at low doses. Removing arsenic from contaminated sites is hampered by the occurrence of several oxidation states with different physicochemical properties. The actual state of arsenic strongly depends on its environment whereby microorganisms play important roles in its geochemical cycle. Due to its toxicity, nearly all organisms possess metabolic mechanisms to resist its hazardous effects, mainly by active extrusion, but also by extracellular precipitation, chelation, and intracellular sequestration. Some microbes are even able to actively use various arsenic compounds in their metabolism, either as an electron donor or as a terminal electron acceptor for anaerobic respiration. Some microorganisms can also methylate inorganic arsenic, probably as a resistance mechanism, or demethylate organic arsenicals. Bioavailability of arsenic in water and sediments is strongly influenced by such microbial activities. Therefore, understanding microbial reactions to arsenic is of importance for the development of technologies for improved bioremediation of arsenic-contaminated waters and environments. This review gives an overview of the current knowledge on bacterial interactions with arsenic and on biotechnologies for its detoxification and removal.

  3. Carbon Sequestration and Carbon Capture and Storage (CCS) in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Hisyamudin Muhd Nor, Nik; Norhana Selamat, Siti; Hanif Abd Rashid, Muhammad; Fauzi Ahmad, Mohd; Jamian, Saifulnizan; Chee Kiong, Sia; Fahrul Hassan, Mohd; Mohamad, Fariza; Yokoyama, Seiji

    2016-06-01

    Southeast Asia is a standout amongst the most presented districts to unnatural weather change dangers even they are not principle worldwide carbon dioxide (CO2) maker, its discharge will get to be significant if there is no move made. CO2 wellsprings of Southeast Asia are mainly by fossil fuel through era of power and warmth generation, and also transportation part. The endeavors taken by these nations can be ordered into administrative and local level. This paper review the potential for carbon catch and capacity (CCS) as a part of the environmental change moderation system for the Malaysian power area utilizing an innovation appraisal structure. The country's recorded pattern of high dependence on fossil fuel for its power segment makes it a prime possibility for CCS reception. This issue leads to gradual increment of CO2 emission. It is evident from this evaluation that CCS can possibly assume a vital part in Malaysia's environmental change moderation methodology gave that key criteria are fulfilled. With the reason to pick up considerations from all gatherings into the earnestness of an Earth-wide temperature boost issue in Southeast Asia, assume that more efficient measures can be taken to effectively accomplish CO2 diminishment target.

  4. PAH dissipation in spiked soil: impacts of bioavailability, microbial activity, and trees.

    PubMed

    Mueller, Kevin E; Shann, Jodi R

    2006-08-01

    While trees have demonstrated potential in phytoremediation of several organic contaminants, little is known regarding their ability to impact the common soil contaminant PAHs. Several species of native North American trees were planted in soil artificially contaminated with three PAHs. Plant biomass, PAH dissipation, and microbial mineralization were monitored over the course of one year and environmental conditions were allowed to follow typical seasonal patterns. PAH dissipation and mineralization were not affected by planting. Extensive and rapid loss of PAHs was observed and attributed to high bioavailability and microbial activity in all treatments. The rate of this loss may have masked any significant planting effects. Anthracene was found to be more recalcitrant than pyrene or phenanthrene. Parallel soil aging studies indicated that sequestration to soil components was minimal. Contrary to common inferences in literature, amendment with decaying fine roots inhibited PAH degradation by the soil microbial community. Seasonal variation in environmental factors and rhizosphere dynamics may have also reduced or negated the effect of planting and should be taken into account in future phytoremediation trials. The unique root traits of trees may pose a challenge to traditional thought regarding PAH dissipation in the rhizosphere of plants.

  5. U.S. DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale

    USGS Publications Warehouse

    Goodman, Angela; Hakala, J. Alexandra; Bromhal, Grant; Deel, Dawn; Rodosta, Traci; Frailey, Scott; Small, Michael; Allen, Doug; Romanov, Vyacheslav; Fazio, Jim; Huerta, Nicolas; McIntyre, Dustin; Kutchko, Barbara; Guthrie, George

    2011-01-01

    A detailed description of the United States Department of Energy (US-DOE) methodology for estimating CO2 storage potential for oil and gas reservoirs, saline formations, and unmineable coal seams is provided. The oil and gas reservoirs are assessed at the field level, while saline formations and unmineable coal seams are assessed at the basin level. The US-DOE methodology is intended for external users such as the Regional Carbon Sequestration Partnerships (RCSPs), future project developers, and governmental entities to produce high-level CO2 resource assessments of potential CO2 storage reservoirs in the United States and Canada at the regional and national scale; however, this methodology is general enough that it could be applied globally. The purpose of the US-DOE CO2 storage methodology, definitions of storage terms, and a CO2 storage classification are provided. Methodology for CO2 storage resource estimate calculation is outlined. The Log Odds Method when applied with Monte Carlo Sampling is presented in detail for estimation of CO2 storage efficiency needed for CO2 storage resource estimates at the regional and national scale. CO2 storage potential reported in the US-DOE's assessment are intended to be distributed online by a geographic information system in NatCarb and made available as hard-copy in the Carbon Sequestration Atlas of the United States and Canada. US-DOE's methodology will be continuously refined, incorporating results of the Development Phase projects conducted by the RCSPs from 2008 to 2018. Estimates will be formally updated every two years in subsequent versions of the Carbon Sequestration Atlas of the United States and Canada.

  6. Velocity Model for CO2 Sequestration in the Southeastern United States Atlantic Continental Margin

    NASA Astrophysics Data System (ADS)

    Ollmann, J.; Knapp, C. C.; Almutairi, K.; Almayahi, D.; Knapp, J. H.

    2017-12-01

    The sequestration of carbon dioxide (CO2) is emerging as a major player in offsetting anthropogenic greenhouse gas emissions. With 40% of the United States' anthropogenic CO2 emissions originating in the southeast, characterizing potential CO2 sequestration sites is vital to reducing the United States' emissions. The goal of this research project, funded by the Department of Energy (DOE), is to estimate the CO2 storage potential for the Southeastern United States Atlantic Continental Margin. Previous studies find storage potential in the Atlantic continental margin. Up to 16 Gt and 175 Gt of storage potential are estimated for the Upper Cretaceous and Lower Cretaceous formations, respectively. Considering 2.12 Mt of CO2 are emitted per year by the United States, substantial storage potential is present in the Southeastern United States Atlantic Continental Margin. In order to produce a time-depth relationship, a velocity model must be constructed. This velocity model is created using previously collected seismic reflection, refraction, and well data in the study area. Seismic reflection horizons were extrapolated using well log data from the COST GE-1 well. An interpolated seismic section was created using these seismic horizons. A velocity model will be made using P-wave velocities from seismic reflection data. Once the time-depth conversion is complete, the depths of stratigraphic units in the seismic refraction data will be compared to the newly assigned depths of the seismic horizons. With a lack of well control in the study area, the addition of stratigraphic unit depths from 171 seismic refraction recording stations provides adequate data to tie to the depths of picked seismic horizons. Using this velocity model, the seismic reflection data can be presented in depth in order to estimate the thickness and storage potential of CO2 reservoirs in the Southeastern United States Atlantic Continental Margin.

  7. Treatment for unstable pulmonary sequestration injury in patient with severe blunt trauma: A case report.

    PubMed

    Hiraki, Sakiko; Okada, Yohei; Arai, Yusuke; Ishii, Wataru; Iiduka, Ryoji

    2017-08-01

    Pulmonary sequestration is a congenital malformation characterized by nonfunctioning tissue not communicating with the tracheobronchial tree. As the blood pressure in the artery feeding the sequestrated lung tissue is higher than that in the normal pulmonary artery, the risk of massive hemorrhage in pulmonary sequestration is high. We herein present the first case of a severe blunt trauma patient with unstable pulmonary sequestration injury. The mechanism of pulmonary sequestration injury is vastly different than that of injury to normal lung. We suggest that proximal feeding artery embolization should be performed before surgical intervention in patients with massive hemorrhage of pulmonary sequestration due to severe chest trauma.

  8. Establishing MICHCARB, a geological carbon sequestration research and education center for Michigan, implemented through the Michigan Geological Repository for Research and Education, part of the Department of Geosciences at Western Michigan University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, David A.; Harrison, William B.

    The Michigan Geological Repository for Research and Education (MGRRE), part of the Department of Geosciences at Western Michigan University (WMU) at Kalamazoo, Michigan, established MichCarb—a geological carbon sequestration resource center by: • Archiving and maintaining a current reference collection of carbon sequestration published literature • Developing statewide and site-specific digital research databases for Michigan’s deep geological formations relevant to CO2 storage, containment and potential for enhanced oil recovery • Producing maps and tables of physical properties as components of these databases • Compiling all information into a digital atlas • Conducting geologic and fluid flow modeling to address specific predictivemore » uses of CO2 storage and enhanced oil recovery, including compiling data for geological and fluid flow models, formulating models, integrating data, and running the models; applying models to specific predictive uses of CO2 storage and enhanced oil recovery • Conducting technical research on CO2 sequestration and enhanced oil recovery through basic and applied research of characterizing Michigan oil and gas and saline reservoirs for CO2 storage potential volume, injectivity and containment. Based on our research, we have concluded that the Michigan Basin has excellent saline aquifer (residual entrapment) and CO2/Enhanced oil recovery related (CO2/EOR; buoyant entrapment) geological carbon sequestration potential with substantial, associated incremental oil production potential. These storage reservoirs possess at least satisfactory injectivity and reliable, permanent containment resulting from associated, thick, low permeability confining layers. Saline aquifer storage resource estimates in the two major residual entrapment, reservoir target zones (Lower Paleozoic Sandstone and Middle Paleozoic carbonate and sandstone reservoirs) are in excess of 70-80 Gmt (at an overall 10% storage efficiency factor; an approximately P50 probability range for all formations using DOE-NETL, 2010, storage resource estimation methodology). Incremental oil production resulting from successful implementation of CO2/EOR for the highest potential Middle Paleozoic reef reservoirs (Silurian, Northern Niagaran Reef trend) in Michigan is estimated at 130 to over 200 MMBO (22-33 Mm3). In addition, between 200 and 400 Mmt of CO2 could be sequestered in the course of successful deployment of CO2/EOR in the northern reef trend’s largest depleted (primary production) oil fields (those that have produced in excess of 500,000 BO; 80,000 m3of oil). • Effecting technology transfer to members of industry and governmental agencies by establishing an Internet Website at which all data, reports and results are accessible; publishing results in relevant journals; conducting technology transfer workshops as part of our role as the Michigan Center of the Petroleum Technology Transfer Council or any successor organization.« less

  9. Influence of Vegetation Restoration on Topsoil Organic Carbon in a Small Catchment of the Loess Hilly Region, China

    PubMed Central

    Qin, Yunbin; Xin, Zhongbao; Yu, Xinxiao; Xiao, Yuling

    2014-01-01

    Understanding effects of land-use changes driven by the implementation of the “Grain for Green” project and the corresponding changes in soil organic carbon (SOC) storage is important in evaluating the environmental benefits of this ecological restoration project. The goals of this study were to quantify the current soil organic carbon density (SOCD) in different land-use types [cultivated land, abandoned land (cessation of farming), woodland, wild grassland and orchards] in a catchment of the loess hilly and gully region of China to evaluate the benefits of SOC sequestration achieved by vegetation restoration in the past 10 years as well as to discuss uncertain factors affecting future SOC sequestration. Based on soil surveys (N = 83) and laboratory analyses, the results show that the topsoil (0–20 cm) SOCD was 20.44 Mg/ha in this catchment. Using the SOCD in cultivated lands (19.08 Mg/ha) as a reference, the SOCD in woodlands and abandoned lands was significantly higher by 33.81% and 8.49%, respectively, whereas in orchards, it was lower by 10.80%. The correlation analysis showed that SOC and total nitrogen (TN) were strongly correlated (R 2 = 0.98) and that the average C∶N (SOC∶TN) ratio was 9.69. With increasing years since planting, the SOCD in woodlands showed a tendency to increase; however, no obvious difference was observed in orchards. A high positive correlation was found between SOCD and elevation (R 2 = 0.395), but a low positive correlation was found between slope and SOCD (R2 = 0.170, P = 0.127). In the past 10 years of restoration, SOC storage did not increase significantly (2.74% or 3706.46 t) in the catchment where the conversion of cultivated land to orchards was the primary restoration pattern. However, the potential contribution of vegetation restoration to SOC sequestration in the next several decades would be massive if the woodland converted from the cropland is well managed and maintained. PMID:24926873

  10. Final Technical Report. Reactivity of Iron-Bearing Minerals and CO 2 Sequestration and Surface Chemistry of Pyrite. An Interdisciplinary Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strongin, Daniel

    2014-12-31

    Over the course of the scientific program, two areas of research were pursued: reactions of iron oxides with supercritical CO 2 and sulfide and surface reactivity of pyrite. The latter area of interest was to understand the chemistry that results when supercritical CO 2 (scCO 2 ) with H 2 S and/or SO 2 in deep saline formations (DFS) contacts iron bearing minerals. Understanding the complexities the sulfur co-injectants introduce is a critical step in developing CO 2 sequestration as a climate-mitigating strategy. The research strategy was to understand macroscopic observations of this chemistry with anmore » atomic/molecular level view using surface analytical techniques. Research showed that the exposure of iron (oxyhdr)oxides (which included ferrihydrite, goethite, and hematite) to scCO 2 in the presence of sulfide led to reactions that formed siderite (FeCO 3). The results have important implications for the sequestration of CO 2 via carbonation reactions in the Earth’s subsurface. An earlier area of focus in the project was to understand pyrite oxidation in microscopic detail. This understanding was used to understand macroscopic observations of pyrite reactivity. Results obtained from this research led to a better understanding how pyrite reacts in a range of chemical environments. Geochemical and modern surface science techniques were used to understand the chemistry of pyrite in important environmental conditions. The program relied on a strong integration the results of these techniques to provide a fundamental understanding to the macroscopic chemistry exhibited by pyrite in the environment. Major achievements during these studies included developing an understanding of the surface sites on pyrite that controlled its reactivity under oxidizing conditions. In particular sulfur anion vacancies and/or ferric sites were sites of reactivity. Studies also showed that the adsorption of phospholipid on the surface to selectively suppress the reactivity of these sites could of potential importance for suppressing acid mine drainage in the environment (a problem common to coal-mining sites). Biotic studies showed that microbial activity that promotes the oxidation of pyrite to produce AMD could also be suppressed by the adsorption of phospholipid.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Finley

    The Midwest Geological Sequestration Consortium (MGSC) has investigated the options for geological carbon dioxide (CO{sub 2}) sequestration in the 155,400-km{sup 2} (60,000-mi{sup 2}) Illinois Basin. Within the Basin, underlying most of Illinois, western Indiana, and western Kentucky, are relatively deeper and/or thinner coal resources, numerous mature oil fields, and deep salt-water-bearing reservoirs that are potentially capable of storing CO{sub 2}. The objective of this Assessment was to determine the technical and economic feasibility of using these geological sinks for long-term storage to avoid atmospheric release of CO{sub 2} from fossil fuel combustion and thereby avoid the potential for adverse climatemore » change. The MGSC is a consortium of the geological surveys of Illinois, Indiana, and Kentucky joined by six private corporations, five professional business associations, one interstate compact, two university researchers, two Illinois state agencies, and two consultants. The purpose of the Consortium is to assess carbon capture, transportation, and storage processes and their costs and viability in the three-state Illinois Basin region. The Illinois State Geological Survey serves as Lead Technical Contractor for the Consortium. The Illinois Basin region has annual emissions from stationary anthropogenic sources exceeding 276 million metric tonnes (304 million tons) of CO{sub 2} (>70 million tonnes (77 million tons) carbon equivalent), primarily from coal-fired electric generation facilities, some of which burn almost 4.5 million tonnes (5 million tons) of coal per year. Assessing the options for capture, transportation, and storage of the CO{sub 2} emissions within the region has been a 12-task, 2-year process that has assessed 3,600 million tonnes (3,968 million tons) of storage capacity in coal seams, 140 to 440 million tonnes (154 to 485 million tons) of capacity in mature oil reservoirs, 7,800 million tonnes (8,598 million tons) of capacity in saline reservoirs deep beneath geological structures, and 30,000 to 35,000 million tonnes (33,069 to 38,580 million tons) of capacity in saline reservoirs on a regional dip >1,219 m (4,000 ft) deep. The major part of this effort assessed each of the three geological sinks: coals, oil reservoirs, and saline reservoirs. We linked and integrated options for capture, transportation, and geological storage with the environmental and regulatory framework to define sequestration scenarios and potential outcomes for the region. Extensive use of Geographic Information Systems (GIS) and visualization technology was made to convey results to project sponsors, other researchers, the business community, and the general public. An action plan for possible technology validation field tests involving CO{sub 2} injection was included in a Phase II proposal (successfully funded) to the U.S. Department of Energy with cost sharing from Illinois Clean Coal Institute.« less

  12. Developing markets for forest environmental services: an opportunity for promoting equity while securing efficiency?

    PubMed

    Landell-Mills, Natasha

    2002-08-15

    Market-based approaches to environmental management are all the rage. Claims that market mechanisms can encourage environmental protection and promote greater economic efficiency while saving taxpayers' money are tantalizing. In the forestry sector, policy makers are widely heeding this advice and shrinking command-and-control systems in favour of incentive mechanisms that seek to align private enthusiasm with the public good. In some cases, governments are even promoting the creation of markets where none existed before. In others, markets are evolving of their own accord. In such times of change, it is difficult to stand back and take stock. Yet, it is during such times that guidance is most needed. In the rush to introduce market-based solutions to environmental problems, a particular concern is how markets are impacting on the poor. In this paper an effort is made to draw on a recent review of markets for four forest environmental services (biodiversity conservation, carbon sequestration, watershed protection and landscape beauty) to draw out preliminary insights into how markets are performing with respect to their impacts on the poor. The evidence suggests a need for caution. While the potential benefits are significant, the poor face an uphill battle in realizing them. Key constraints facing the poor include a lack of property rights over forest resources and their environmental services; inadequate skills and education; poor market information; lack of market contacts; inadequate communication infrastructure; inappropriate contract design; and lack of access to financial resources. To tackle these, four potential ways forward are highlighted: (1) assign property rights to forest assets and their related environmental services in ways that respect customary arrangements and poor people's tenure; (2) strengthen capacity for market participation, e.g. through training and education; (3) invest in the provision of market information, advice and, essentially, a contact point for buyers and sellers, perhaps through the establishment of a 'market support centre'; and (4) improve access to finance so that poor individuals can make necessary up-front investments in market participation.

  13. Essays on carbon policy and enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Cook, Benjamin R.

    The growing concerns about climate change have led policy makers to consider various regulatory schemes designed to reduce the stock and growth of atmospheric CO2 concentrations while at the same time improving energy security. The most prominent proposals are the so called "cap-and-trade" frameworks which set aggregate emission levels for a jurisdiction and then issue or sell a corresponding number of allowances to emitters. Typically, these policy measures will also encourage the deployment of carbon capture and storage (CCS) in geological formations and mature oil fields through subsidies or other incentives. The ability to store CO 2 in mature oil fields through the deployment of CO2 enhanced oil recovery (CO2--EOR) is particularly attractive as it can simultaneously improve oil recovery at those fields, and serve as a possible financial bridge to the development of CO2 transportation infrastructure. The purpose of this research is to explore the impact that a tandem subsidy-tax policy regime may have on bargaining between emitters and sequestration providers, and also to identify oil units in Wyoming that can profitably undertake CO 2--EOR as a starting point for the build-out of CO2 pipelines. In the first essay an economics lab experiment is designed to simulate private bargaining between carbon emitters (such as power plants) and carbon sequestration sites when the emitter faces carbon taxes, sequestration subsidies or both. In a tax-subsidy policy regime the carbon tax (or purchased allowances) can be avoided by sequestering the carbon, and in some cases the emitter can also earn a subsidy to help pay for the sequestration. The main policy implications of the experiment results are that the sequestration market might be inefficient, and sequestration providers seem to have bargaining power sufficient to command high prices. This may lead to the integration of CO2 sources and sequestration sites, and reduced prices for the injectable CO2 purchased by oil operators for enhanced oil recovery. The second essay extends the CO2--EOR economic model described in a recent Energy Journal article by Klaas van 't Veld and Owen R. Phillips (2010). This essay takes a Monte Carlo approach to the economic scoping model which focuses more directly on the probabilistic outcomes for each individual oil field-reservoir combination (FRC). Using data on Wyoming oil fields the essay analyzes 197 FRCs in order to identify oil units with robust CO2--EOR profit potential over a wide range of uncertainty regarding future oil prices and reservoir characteristics. Of the 197 FRCs considered, 93 of them are found to meet an industry threshold IRR of 20 percent in at least half of scenarios with limited chance of actually taking losses. The third essay continues to employ the CO2--EOR economic scoping model, but focuses on Wyoming's aggregate EOR potential and attendant CO2 requirements. A similar Monte Carlo analysis is used to construct incremental oil "supply" and cumulative CO2 purchase "demand" curve estimates. Finally, the study uses a resampling technique similar to bootstrapping in order to create probabilistic distributions of Wyoming's aggregate EOR potential by assigning probabilities to individual oil prices. Although the data only covers oil fields with at least 5 MMbo of production, the analysis suggests around 768 MMbo of additional oil is likely to be recovered with CO2--EOR utilizing roughly 5.5 Tcf of injectable CO2.

  14. Developing ground penetrating radar (GPR) for enhanced root and soil organic carbon imaging: Optimizing bioenergy crop adaptation and agro-ecosystem services

    NASA Astrophysics Data System (ADS)

    Hays, D. B.; Delgado, A.; Bruton, R.; Dobreva, I. D.; Teare, B.; Jessup, R.; Rajan, N.; Bishop, M. P.; Lacey, R.; Neely, H.; Hons, F.; Novo, A.

    2016-12-01

    Selection of the ideal high biomass energy feedstock and crop cultivars for our national energy and production needs should consider not only the value of the harvested above ground feedstock, but also the local and global environmental services it provides in terms of terrestrial carbon (C) phyto-sequestration and improved soil organic matter enrichment. Selection of ideal crops cultivars is mature, while biofuel feedstock is well under way. What is lacking, however, is high throughput phenotyping (HTP) and integrated real-time data analysis technologies for selecting ideal genotypes within these crops that also confer recalcitrant high biomass or perennial root systems not only for C phyto-sequestration, but also for adaptation to conservation agro-ecosystems, increasing soil organic matter and soil water holding capacity. In no-till systems, significant studies have shown that increasing soil organic carbon is derived primarily from root and not above ground biomass. As such, efforts to increase plant soil phyto-sequestration will require a focus on developing optimal root systems within cultivated crops. We propose to achieve a significant advancement in the use of ground penetrating radar (GPR) as one approach to phenotype root biomass and 3D architecture, and to quantify soil carbon sequestration. In this context, GPR can be used for genotypic selection in breeding nurseries and unadapted germplasm with favorable root architectures, and for assessing management and nutrient practices that promote root growth. GPR has been used for over a decade to successfully map coarse woody roots. Only few have evaluated its efficacy for imaging finer fibrous roots found in grasses, or tap root species. The objectives of this project is to: i) Empirically define the optimal ground penetrating radar (GPR)-antenna array for 3D root and soil organic carbon imaging and quantification in high biomass grass systems; and ii) Develop novel 3- and 4-dimensional data analysis methodologies for using GPR for non-invasive crop root and soil C phyto-sequestration 3-D imaging and quantification within a spatially variable soil matrix. Current results and future directions will be presented and discussed.

  15. Effective CO2 sequestration monitoring using joint inversion result of seismic and electromagnetic data

    NASA Astrophysics Data System (ADS)

    Noh, K.; Jeong, S.; Seol, S. J.; Byun, J.; Kwon, T.

    2015-12-01

    Man-made carbon dioxide (CO2) released into the atmosphere is a significant contributor to the greenhouse gas effect and related global warming. Sequestration of CO2 into saline aquifers has been proposed as one of the most practical options of all geological sequestration possibilities. During CO2 geological sequestration, monitoring is indispensable to delineate the change of CO2 saturation and migration of CO2 in the subsurface. Especially, monitoring of CO2 saturation in aquifers provides useful information for determining amount of injected CO2. Seismic inversion can provide the migration of CO2 plume with high resolution because velocity is reduced when CO2 replaces the pore fluid during CO2 injection. However, the estimation of CO2 saturation using the seismic method is difficult due to the lower sensitivity of the velocity to the saturation when the CO2 saturation up to 20%. On the other hand, marine controlled-source EM (mCSEM) inversion is sensitive to the resistivity changes resulting from variations in CO2 saturation, even though it has poor resolution than seismic method. In this study, we proposed an effective CO2 sequestration monitoring method using joint inversion of seismic and mCSEM data based on a cross-gradient constraint. The method was tested with realistic CO2 injection models in a deep brine aquifer beneath a shallow sea which is selected with consideration for the access convenience for the installation of source and receiver and an environmental safety. Resistivity images of CO2 plume by the proposed method for different CO2 injection stages have been significantly improved over those obtained from individual EM inversion. In addition, we could estimate a reliable CO2 saturation by rock physics model (RPM) using the P-wave velocity and the improved resistivity. The proposed method is a basis of three-dimensional estimation of reservoir parameters such as porosity and fluid saturation, and the method can be also applied for detecting a reservoir and calculating the accurate oil and gas reserves.

  16. Reaction mechanisms for enhancing carbon dioxide mineral sequestration

    NASA Astrophysics Data System (ADS)

    Jarvis, Karalee Ann

    Increasing global temperature resulting from the increased release of carbon dioxide into the atmosphere is one of the greatest problems facing society. Nevertheless, coal plants remain the largest source of electrical energy and carbon dioxide gas. For this reason, researchers are searching for methods to reduce carbon dioxide emissions into the atmosphere from the combustion of coal. Mineral sequestration of carbon dioxide reacted in electrolyte solutions at 185°C and 2200 psi with olivine (magnesium silicate) has been shown to produce environmentally benign carbonates. However, to make this method feasible for industrial applications, the reaction rate needs to be increased. Two methods were employed to increase the rate of mineral sequestration: reactant composition and concentration were altered independently in various runs. The products were analyzed with complete combustion for total carbon content. Crystalline phases in the product were analyzed with Debye-Scherrer X-ray powder diffraction. To understand the reaction mechanism, single crystals of San Carlos Olivine were reacted in two solutions: (0.64 M NaHCO3/1 M NaCl) and (5.5 M KHCO3) and analyzed with scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), and fluctuation electron microscopy (FEM) to study the surface morphology, atomic crystalline structure, composition and amorphous structure. From solution chemistry studies, it was found that increasing the activity of the bicarbonate ion increased the conversion rate of carbon dioxide to magnesite. The fastest conversion, 60% conversion in one hour, occurred in a solution of 5.5 M KHCO3. The reaction product particles, magnesium carbonate, significantly increased in both number density and size on the coupon when the bicarbonate ion activity was increased. During some experiments reaction vessel corrosion also altered the mineral sequestration mechanism. Nickel ions from vessel corrosion led to nickel precipitation in the carbonate particles and the lack of an amorphous silica reaction layer on the olivine. It was concluded that nickel ions destabilized the silica passivation layer and led to faster growth of carbonate precipitates. Overall, nickel ions increased the reaction rate of mineral sequestration of carbon dioxide.

  17. Carbon stocks of tropical coastal wetlands within the karstic landscape of the Mexican Caribbean.

    PubMed

    Adame, Maria Fernanda; Kauffman, J Boone; Medina, Israel; Gamboa, Julieta N; Torres, Olmo; Caamal, Juan P; Reza, Miriam; Herrera-Silveira, Jorge A

    2013-01-01

    Coastal wetlands can have exceptionally large carbon (C) stocks and their protection and restoration would constitute an effective mitigation strategy to climate change. Inclusion of coastal ecosystems in mitigation strategies requires quantification of carbon stocks in order to calculate emissions or sequestration through time. In this study, we quantified the ecosystem C stocks of coastal wetlands of the Sian Ka'an Biosphere Reserve (SKBR) in the Yucatan Peninsula, Mexico. We stratified the SKBR into different vegetation types (tall, medium and dwarf mangroves, and marshes), and examined relationships of environmental variables with C stocks. At nine sites within SKBR, we quantified ecosystem C stocks through measurement of above and belowground biomass, downed wood, and soil C. Additionally, we measured nitrogen (N) and phosphorus (P) from the soil and interstitial salinity. Tall mangroves had the highest C stocks (987±338 Mg ha(-1)) followed by medium mangroves (623±41 Mg ha(-1)), dwarf mangroves (381±52 Mg ha(-1)) and marshes (177±73 Mg ha(-1)). At all sites, soil C comprised the majority of the ecosystem C stocks (78-99%). Highest C stocks were measured in soils that were relatively low in salinity, high in P and low in N∶P, suggesting that P limits C sequestration and accumulation potential. In this karstic area, coastal wetlands, especially mangroves, are important C stocks. At the landscape scale, the coastal wetlands of Sian Ka'an covering ≈172,176 ha may store 43.2 to 58.0 million Mg of C.

  18. Soil carbon management in large-scale Earth system modelling: implications for crop yields and nitrogen leaching

    NASA Astrophysics Data System (ADS)

    Olin, S.; Lindeskog, M.; Pugh, T. A. M.; Schurgers, G.; Wårlind, D.; Mishurov, M.; Zaehle, S.; Stocker, B. D.; Smith, B.; Arneth, A.

    2015-11-01

    Croplands are vital ecosystems for human well-being and provide important ecosystem services such as crop yields, retention of nitrogen and carbon storage. On large (regional to global)-scale levels, assessment of how these different services will vary in space and time, especially in response to cropland management, are scarce. We explore cropland management alternatives and the effect these can have on future C and N pools and fluxes using the land-use-enabled dynamic vegetation model LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem Simulator). Simulated crop production, cropland carbon storage, carbon sequestration and nitrogen leaching from croplands are evaluated and discussed. Compared to the version of LPJ-GUESS that does not include land-use dynamics, estimates of soil carbon stocks and nitrogen leaching from terrestrial to aquatic ecosystems were improved. Our model experiments allow us to investigate trade-offs between these ecosystem services that can be provided from agricultural fields. These trade-offs are evaluated for current land use and climate and further explored for future conditions within the two future climate change scenarios, RCP (Representative Concentration Pathway) 2.6 and 8.5. Our results show that the potential for carbon sequestration due to typical cropland management practices such as no-till management and cover crops proposed in previous studies is not realised, globally or over larger climatic regions. Our results highlight important considerations to be made when modelling C-N interactions in agricultural ecosystems under future environmental change and the effects these have on terrestrial biogeochemical cycles.

  19. Carbon sequestration pilot program : estimated land available for carbon sequestration in the national highway system

    DOT National Transportation Integrated Search

    2010-05-01

    The Federal Highway Administration (FHWA) established the Carbon Sequestration Pilot Program (CSPP) in 2008 to assess whether a roadside carbon sequestration effort through modified maintenance and management practices is appropriate and feasible for...

  20. Controlled Landfill Project in Yolo County, California for Environmental Benefits of Waste Stabilization and Minimization of Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Yazdani, R.; Augenstein, D.; Kieffer, J.; Cohen, K.

    2003-12-01

    The Department of Public Works of Yolo County, California, USA has been testing an advanced approach to landfill bioreactors, controlled (or "enhanced") landfilling, at its Yolo County Central Landfill site near Davis, CA, since 1994. Overall objectives have been the management of waste landfilling for: (1) rapid completion of total gas generation; (2) maximum, high-efficiency gas capture; (3) waste volume reduction; and (4) maximum greenhouse gas and carbon sequestration benefits. Methane generation is controlled and enhanced through carefully managed moisture additions, and by taking advantage of landfill temperature elevation. The generated landfill methane, an important greenhouse gas, is recovered with high efficiency through extraction from a porous recovery layer beneath a surface geomembrane cover. Instrumentation included a total of 56 moisture and 15 temperature sensors in the two cells, gas flow monitoring by positive displacement gas meters, and accurate quantification of liquid inputs and outputs. Gas composition, waste volume reduction, base hydrostatic head, and a range of environmental compliance parameters has been monitored since 1995. Partitioning gas tracer tests using the injection of two gases at dilute concentrations in the landfill have also been initiated to compute the fraction of pore space occupied by water between the points of tracer injection and tracer measurement. There has been rapid waste volume reduction in the enhanced cell that corresponds to the solids' reduction to gas. Monitoring is planned for the next several years, until stabilization parameters are determined complete. Encouraging performance is indicated by: (1) sensor data; (2) gas generation results; (3) data from landfill cores; and (4) decomposition-related indicators including rapid volume reduction. When data are synthesized, project results have attractive implications for new approaches to landfill management. Over seven-years, methane recoveries have averaged over fivefold the "typical" values for comparable landfill waste. In terms of "greenhouse benefit," fractional VOC and methane energy recovery are estimated to exceed 90%, with corresponding methane and VOC emission reductions. Analyses done for the greenhouse gas mitigation program of the U.S. Department of Energy National Energy Technology Laboratory indicate favorable economics justified on landfill life extension, as well as environmental benefits. The "controlled landfill" project findings suggest potential for low-cost mitigation of waste greenhouse methane emissions, maximum landfill carbon sequestration, and maximization of beneficial energy capture from landfills. Details and results obtained since 1994 will be presented.

  1. Earth observation for regional scale environmental and natural resources management

    NASA Astrophysics Data System (ADS)

    Bernknopf, R.; Brookshire, D.; Faulkner, S.; Chivoiu, B.; Bridge, B.; Broadbent, C.

    2013-12-01

    Earth observations (EO) provide critical information to natural resource assessment. Three examples are presented: conserving potable groundwater in intense agricultural regions, maximizing ecosystem service benefits at regional scales from afforestation investment and management, and enabling integrated natural and behavioral sciences for resource management and policy analysis. In each of these cases EO of different resolutions are used in different ways to help in the classification, characterization, and availability of natural resources and ecosystem services. To inform decisions, each example includes a spatiotemporal economic model to optimize the net societal benefits of resource development and exploitation. 1) EO is used for monitoring land use in intensively cultivated agricultural regions. Archival imagery is coupled to a hydrogeological process model to evaluate the tradeoff between agrochemical use and retention of potable groundwater. EO is used to couple individual producers and regional resource managers using information from markets and natural systems to aid in the objective of maximizing agricultural production and maintaining groundwater quality. The contribution of EO is input to a nitrate loading and transport model to estimate the cumulative impact on groundwater at specified distances from specific sites (wells) for 35 Iowa counties and two aquifers. 2) Land use/land cover (LULC) derived from EO is used to compare biological carbon sequestration alternatives and their provisioning of ecosystem services. EO is used to target land attributes that are more or less desirable for enhancing ecosystem services in two parishes in Louisiana. Ecological production functions are coupled with value data to maximize the expected return on investment in carbon sequestration and other ancillary ecosystem services while minimizing the risk. 3) Environmental and natural resources management decisions employ probabilistic estimates of yet-to-find or yet-to-develop volumes of natural and environmental resources and ecosystem services. The potential quantities of resources available are of great societal relevance, as are the resources that are necessarily disturbed in the development of economic reserves. EO is input to a multidimensional decision framework for natural resources and ecosystem services. Imagery supports a spatiotemporal model of regional resource extraction and the associated impacts on ecosystem services. The framework is used to assess societal tradeoffs by evaluating the benefits and costs of future development or preservation in a comparison of regional development options.

  2. Caterpillar chemical defense and parasitoid success: Cotesia congregata parasitism of Ceratomia catalpae.

    PubMed

    Lampert, Evan C; Dyer, Lee A; Bowers, M Deane

    2010-09-01

    Sequestration of plant compounds by herbivorous insects as a defense against predators is well documented; however, few studies have examined the effectiveness of sequestration as a defense against parasitoids. One assumption of the "nasty host" hypothesis is that sequestration of plant defense compounds is deleterious to parasitoid development. We tested this hypothesis with larvae of the sequestering sphingid Ceratomia catalpae, which is heavily parasitized by the endoparasitoid Cotesia congregata, despite sequestering high concentrations of the iridoid glycoside catalpol from their catalpa host plants. We collected C. catalpae and catalpa leaves from six populations in the Eastern US, and allowed any C. congregata to emerge in the lab. Leaf iridoid glycosides and caterpillar iridoid glycosides were quantified, and we examined associations between sequestered caterpillar iridoid glycosides and C. congregata performance. Caterpillar iridoid glycosides were not associated with C. congregata field parasitism or number of offspring produced. Although wasp survival was over 90% in all populations, there was a slight negative relationship between caterpillar iridoid glycosides and wasp survival. Iridoid glycosides were present in caterpillars at levels that are deterrent to a variety of vertebrate and invertebrate predators. Thus, our results support the alternative hypothesis that unpalatable, chemically defended hosts are "safe havens" for endoparasitoids. Future trials examining the importance of catalpol sequestration to potential natural enemies of C. congregata and C. catalpae are necessary to strengthen this conclusion.

  3. Engineered Escherichia coli with Periplasmic Carbonic Anhydrase as a Biocatalyst for CO2 Sequestration

    PubMed Central

    Jo, Byung Hoon; Kim, Im Gyu; Seo, Jeong Hyun; Kang, Dong Gyun

    2013-01-01

    Carbonic anhydrase is an enzyme that reversibly catalyzes the hydration of carbon dioxide (CO2). It has been suggested recently that this remarkably fast enzyme can be used for sequestration of CO2, a major greenhouse gas, making this a promising alternative for chemical CO2 mitigation. To promote the economical use of enzymes, we engineered the carbonic anhydrase from Neisseria gonorrhoeae (ngCA) in the periplasm of Escherichia coli, thereby creating a bacterial whole-cell catalyst. We then investigated the application of this system to CO2 sequestration by mineral carbonation, a process with the potential to store large quantities of CO2. ngCA was highly expressed in the periplasm of E. coli in a soluble form, and the recombinant bacterial cell displayed the distinct ability to hydrate CO2 compared with its cytoplasmic ngCA counterpart and previously reported whole-cell CA systems. The expression of ngCA in the periplasm of E. coli greatly accelerated the rate of calcium carbonate (CaCO3) formation and exerted a striking impact on the maximal amount of CaCO3 produced under conditions of relatively low pH. It was also shown that the thermal stability of the periplasmic enzyme was significantly improved. These results demonstrate that the engineered bacterial cell with periplasmic ngCA can successfully serve as an efficient biocatalyst for CO2 sequestration. PMID:23974145

  4. Development of Improved Caprock Integrity and Risk Assessment Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruno, Michael

    GeoMechanics Technologies has completed a geomechanical caprock integrity analysis and risk assessment study funded through the US Department of Energy. The project included: a detailed review of historical caprock integrity problems experienced in the natural gas storage industry; a theoretical description and documentation of caprock integrity issues; advanced coupled transport flow modelling and geomechanical simulation of three large-scale potential geologic sequestration sites to estimate geomechanical effects from CO₂ injection; development of a quantitative risk and decision analysis tool to assess caprock integrity risks; and, ultimately the development of recommendations and guidelines for caprock characterization and CO₂ injection operating practices. Historicalmore » data from gas storage operations and CO₂ sequestration projects suggest that leakage and containment incident risks are on the order of 10-1 to 10-2, which is higher risk than some previous studies have suggested for CO₂. Geomechanical analysis, as described herein, can be applied to quantify risks and to provide operating guidelines to reduce risks. The risk assessment tool developed for this project has been applied to five areas: The Wilmington Graben offshore Southern California, Kevin Dome in Montana, the Louden Field in Illinois, the Sleipner CO₂ sequestration operation in the North Sea, and the In Salah CO₂ sequestration operation in North Africa. Of these five, the Wilmington Graben area represents the highest relative risk while the Kevin Dome area represents the lowest relative risk.« less

  5. Azolla along a phosphorus gradient: biphasic growth response linked to diazotroph traits and phosphorus-induced iron chlorosis.

    PubMed

    Temmink, Ralph J M; Harpenslager, Sarah F; Smolders, Alfons J P; van Dijk, Gijs; Peters, Roy C J H; Lamers, Leon P M; van Kempen, Monique M L

    2018-03-13

    Azolla spp., a water fern often used for phytoremediation, is a strong phosphorus (P) accumulator due to its high growth rate and N 2 fixing symbionts (diazotrophs). It is known that plant growth is stimulated by P, but the nature of the interactive response of both symbionts along a P gradient, and related changes in growth-limiting factors, are unclear. We determined growth, and N and P sequestration rates of Azolla filiculoides in N-free water at different P concentrations. The growth response appeared to be biphasic and highest at levels ≥10 P µmol l -1 . Diazotrophic N sequestration increased upon P addition, and rates were three times higher at high P than at low P. At 10 µmol P l -1 , N sequestration rates reached its maximum and A. filiculoides growth became saturated. Due to luxury consumption, P sequestration rates increased until 50 µmol P l -1 . At higher P concentrations (≥50 µmol l -1 ), however, chlorosis occurred that seems to be caused by iron- (Fe-), and not by N-deficiency. We demonstrate that traits of the complete symbiosis in relation to P and Fe availability determine plant performance, stressing the role of nutrient stoichiometry. The results are discussed regarding Azolla's potential use in a bio-based economy.

  6. Profitability Evaluation of a Hybrid Geothermal and CO2 Sequestration Project for a Coastal Hot Saline Aquifer.

    NASA Astrophysics Data System (ADS)

    Plaksina, Tatyana; Kanfar, Mohammed

    2017-11-01

    With growing interest in commercial projects involving industrial volume CO2 sequestration, a concern about proper containment and control over the gas plume becomes particularly prominent. In this study, we explore the potential of using a typical coastal geopressured hot saline aquifer for two commercial purposes. The first purpose is to harvest geothermal heat of the aquifer for electricity generation and/or direct use and the second one is to utilize the same rock volume for safe and controlled CO2 sequestration without interruption of heat production. To achieve these goals, we devised and economically evaluated a scheme that recovers operational and capital costs within first 4 years and yields positive internal rate of return of about 15% at the end of the operations. Using our strategic design of well placement and operational scheduling, we were able to achieve in our numerical simulation study the following results. First, the hot water production rates allowed to run a 30 MW organic Rankine cycle plant for 20 years. Second, during the last 10 years of operation we managed to inject into the same reservoir (volume of 0.8 x 109 m3) approximately 10 million ton of the supercritical gas. Third, decades of numerical monitoring the plume after the end of the operations showed that this large volume of CO2 is securely sequestrated inside the reservoir without compromising the caprock integrity.

  7. Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests.

    PubMed

    Clemmensen, Karina E; Finlay, Roger D; Dahlberg, Anders; Stenlid, Jan; Wardle, David A; Lindahl, Björn D

    2015-03-01

    Boreal forest soils store a major proportion of the global terrestrial carbon (C) and below-ground inputs contribute as much as above-ground plant litter to the total C stored in the soil. A better understanding of the dynamics and drivers of root-associated fungal communities is essential to predict long-term soil C storage and climate feedbacks in northern ecosystems. We used 454-pyrosequencing to identify fungal communities across fine-scaled soil profiles in a 5000 yr fire-driven boreal forest chronosequence, with the aim of pinpointing shifts in fungal community composition that may underlie variation in below-ground C sequestration. In early successional-stage forests, higher abundance of cord-forming ectomycorrhizal fungi (such as Cortinarius and Suillus species) was linked to rapid turnover of mycelial biomass and necromass, efficient nitrogen (N) mobilization and low C sequestration. In late successional-stage forests, cord formers declined, while ericoid mycorrhizal ascomycetes continued to dominate, potentially facilitating long-term humus build-up through production of melanized hyphae that resist decomposition. Our results suggest that cord-forming ectomycorrhizal fungi and ericoid mycorrhizal fungi play opposing roles in below-ground C storage. We postulate that, by affecting turnover and decomposition of fungal tissues, mycorrhizal fungal identity and growth form are critical determinants of C and N sequestration in boreal forests. © 2014 The Authors New Phytologist © 2014 New Phytologist Trust.

  8. Cynara cardunculus suitability as energetic crop in the south east of Spain using compost as amendment

    NASA Astrophysics Data System (ADS)

    Lag, A.; Gómez, I.; Navarro, J.; Córdoba, P.; Bartual, J.

    2009-04-01

    Global warming demands urgent actions to reduce problems derivated from it. In this sense, fossil fuels should be replaced gradually with renewable energy sources, like energetic crops, to decrease or at least maintain CO2 levels in the atmosphere. For example, net carbon emissions from generation of a unit of bioenergy are 10 to 20 times lower than emissions from fossil fuel based generation. Compared with fossil fuels, the use of lignocellulosic feedstocks has greenhouse gas reduction potential and highly positive net energy returns because of low input demand and high yields per unit land area. In addition, conversion of degradated agricultural soils to perennial crops can improve soil quality by increasing C sequestration due to their perenniality, high biomass production, and deep root systems. For all these reasons, the aim of this study is to ascertain Cynara cardunculus sp suitability as energetic crop in the south-east of Spain, using compost as organic amendment. Five compost treatments were applied to the soil: 0 (D1), 20 (D2), 40 (D3), 60 (D4) and 80 (D5) t of compost/ha. The experiment lasted 5 months, sampling 3 times (January; April and June). Twelve Cynara Cardunculus plants were placed in each plot (4x7 m); half of them were collected at the end of the experiment. Treated sewage water was used to irrigate the crop. Organic carbon in soil and above ground biomass were studied. Dry weight yield production was between 494 (D4) to 740 kg/ha (D3). Considering that 45 to 50 % of plant dry weight matter could be assumed as carbon, carbon sequestration range from 0.8 to 1.2 t of CO2/ha for a short period of 5 months. Soil Organic carbon levels, at the end of the experiment, increased in each compost treatment compared with control value as follow: 16% (D2); 33% (D3); 43% (D4) and 73% (D5). The results show that Cynara cardunculus sp could be used as energetic crop in the south east of Spain, as it was suggested by the European Environmental Agency. However, further studies are needed with longer test time to set production potential of biomass, organic matter evolution and nature, carbon sequestration balance and compost influence in these properties. Acknowledgements: The author gratefully acknowledges the Spanish Ministry of Innovation and Science for a research fellowship (AP2007-01641); the "Estación Agraria Experimental de Elche" and "Instituto Valenciano de Investigaciones Agrarias" for their collaboration.

  9. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-12-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes ofmore » air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The remaining task to be completed is to test the biofilter prior to operation, which is currently anticipated to begin in January 2004. The current project status and preliminary monitoring results are summarized in this report.« less

  10. Red mud as a carbon sink: variability, affecting factors and environmental significance.

    PubMed

    Si, Chunhua; Ma, Yingqun; Lin, Chuxia

    2013-01-15

    The capacity of red mud to sequester CO(2) varied markedly due to differences in bauxite type, processing and disposal methods. Calcium carbonates were the dominant mineral phases responsible for the carbon sequestration in the investigated red mud types. The carbon sequestration capacity of red mud was not fully exploited due to shortages of soluble divalent cations for formation of stable carbonate minerals. Titanate and silicate ions were the two major oxyanions that appeared to strongly compete with carbonate ions for the available soluble Ca. Supply of additional soluble Ca and Mg could be a viable pathway for maximizing carbon sequestration in red mud and simultaneously reducing the causticity of red mud. It is roughly estimated that over 100 million tonnes of CO(2) have been unintentionally sequestered in red mud around the world to date through the natural weathering of historically produced red mud. Based on the current production rate of red mud, it is likely that some 6 million tonnes of CO(2) will be sequestered annually through atmospheric carbonation. If appropriate technologies are in place for incorporating binding cations into red mud, approximately 6 million tonnes of additional CO(2) can be captured and stored in the red mud while the hazardousness of red mud is simultaneously reduced. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Protecting terrestrial ecosystems and the climate through a global carbon market.

    PubMed

    Bonnie, Robert; Carey, Melissa; Petsonk, Annie

    2002-08-15

    Protecting terrestrial ecosystems through international environmental laws requires the development of economic mechanisms that value the Earth's natural systems. The major international treaties to address ecosystem protection lack meaningful binding obligations and the requisite financial instruments to affect large-scale conservation. The Kyoto Protocol's emissions-trading framework creates economic incentives for nations to reduce greenhouse-gas (GHG) emissions cost effectively. Incorporating GHG impacts from land-use activities into this system would create a market for an important ecosystem service provided by forests and agricultural lands: sequestration of atmospheric carbon. This would spur conservation efforts while reducing the 20% of anthropogenic CO(2) emissions produced by land-use change, particularly tropical deforestation. The Kyoto negotiations surrounding land-use activities have been hampered by a lack of robust carbon inventory data. Moreover, the Protocol's provisions agreed to in Kyoto made it difficult to incorporate carbon-sequestering land-use activities into the emissions-trading framework without undermining the atmospheric GHG reductions contemplated in the treaty. Subsequent negotiations since 1997 failed to produce a crediting system that provides meaningful incentives for enhanced carbon sequestration. Notably, credit for reducing rates of tropical deforestation was explicitly excluded from the Protocol. Ultimately, an effective GHG emissions-trading framework will require full carbon accounting for all emissions and sequestration from terrestrial ecosystems. Improved inventory systems and capacity building for developing nations will, therefore, be necessary.

  12. Geochemical monitoring for potential environmental impacts of geologic sequestration of CO2

    USGS Publications Warehouse

    Kharaka, Yousif K.; Cole, David R.; Thordsen, James J.; Gans, Kathleen D.; Thomas, Randal B.

    2013-01-01

    Carbon dioxide sequestration is now considered an important component of the portfolio of options for reducing greenhouse gas emissions to stabilize their atmospheric levels at values that would limit global temperature increases to the target of 2 °C by the end of the century (Pacala and Socolow 2004; IPCC 2005, 2007; Benson and Cook 2005; Benson and Cole 2008; IEA 2012; Romanak et al. 2013). Increased anthropogenic emissions of CO2 have raised its atmospheric concentrations from about 280 ppmv during pre-industrial times to ~400 ppmv today, and based on several defined scenarios, CO2 concentrations are projected to increase to values as high as 1100 ppmv by 2100 (White et al. 2003; IPCC 2005, 2007; EIA 2012; Global CCS Institute 2012). An atmospheric CO2 concentration of 450 ppmv is generally the accepted level that is needed to limit global temperature increases to the target of 2 °C by the end of the century. This temperature limit likely would moderate the adverse effects related to climate change that could include sea-level rise from the melting of alpine glaciers and continental ice sheets and from the ocean warming; increased frequency and intensity of wildfires, floods, droughts, and tropical storms; and changes in the amount, timing, and distribution of rain, snow, and runoff (IPCC 2007; Sundquist et al. 2009; IEA 2012). Rising atmospheric CO2 concentrations are also increasing the amount of CO2 dissolved in ocean water lowering its pH from 8.1 to 8.0, with potentially disruptive effects on coral reefs, plankton and marine ecosystems (Adams and Caldeira 2008; Schrag 2009; Sundquist et al. 2009). Sedimentary basins in general and deep saline aquifers in particular are being investigated as possible repositories for the large volumes of anthropogenic CO2 that must be sequestered to mitigate global warming and related climate changes (Hitchon 1996; Benson and Cole 2008; Verma and Warwick 2011).

  13. Modeling Impacts of Alternative Practices on Net Global Warming Potential and Greenhouse Gas Intensity from Rice–Wheat Annual Rotation in China

    PubMed Central

    Wang, Jinyang; Zhang, Xiaolin; Liu, Yinglie; Pan, Xiaojian; Liu, Pingli; Chen, Zhaozhi; Huang, Taiqing; Xiong, Zhengqin

    2012-01-01

    Background Evaluating the net exchange of greenhouse gas (GHG) emissions in conjunction with soil carbon sequestration may give a comprehensive insight on the role of agricultural production in global warming. Materials and Methods Measured data of methane (CH4) and nitrous oxide (N2O) were utilized to test the applicability of the Denitrification and Decomposition (DNDC) model to a winter wheat – single rice rotation system in southern China. Six alternative scenarios were simulated against the baseline scenario to evaluate their long-term (45-year) impacts on net global warming potential (GWP) and greenhouse gas intensity (GHGI). Principal Results The simulated cumulative CH4 emissions fell within the statistical deviation ranges of the field data, with the exception of N2O emissions during rice-growing season and both gases from the control treatment. Sensitivity tests showed that both CH4 and N2O emissions were significantly affected by changes in both environmental factors and management practices. Compared with the baseline scenario, the long-term simulation had the following results: (1) high straw return and manure amendment scenarios greatly increased CH4 emissions, while other scenarios had similar CH4 emissions, (2) high inorganic N fertilizer increased N2O emissions while manure amendment and reduced inorganic N fertilizer scenarios decreased N2O emissions, (3) the mean annual soil organic carbon sequestration rates (SOCSR) under manure amendment, high straw return, and no-tillage scenarios averaged 0.20 t C ha−1 yr−1, being greater than other scenarios, and (4) the reduced inorganic N fertilizer scenario produced the least N loss from the system, while all the scenarios produced comparable grain yields. Conclusions In terms of net GWP and GHGI for the comprehensive assessment of climate change and crop production, reduced inorganic N fertilizer scenario followed by no-tillage scenario would be advocated for this specified cropping system. PMID:23029173

  14. Offsetting global warming-induced elevated greenhouse gas emissions from an arable soil by biochar application.

    PubMed

    Bamminger, Chris; Poll, Christian; Marhan, Sven

    2018-01-01

    Global warming will likely enhance greenhouse gas (GHG) emissions from soils. Due to its slow decomposability, biochar is widely recognized as effective in long-term soil carbon (C) sequestration and in mitigation of soil GHG emissions. In a long-term soil warming experiment (+2.5 °C, since July 2008) we studied the effect of applying high-temperature Miscanthus biochar (0, 30 t/ha, since August 2013) on GHG emissions and their global warming potential (GWP) during 2 years in a temperate agroecosystem. Crop growth, physical and chemical soil properties, temperature sensitivity of soil respiration (R s ), and metabolic quotient (qCO 2 ) were investigated to yield further information about single effects of soil warming and biochar as well as on their interactions. Soil warming increased total CO 2 emissions by 28% over 2 years. The effect of warming on soil respiration did not level off as has often been observed in less intensively managed ecosystems. However, the temperature sensitivity of soil respiration was not affected by warming. Overall, biochar had no effect on most of the measured parameters, suggesting its high degradation stability and its low influence on microbial C cycling even under elevated soil temperatures. In contrast, biochar × warming interactions led to higher total N 2 O emissions, possibly due to accelerated N-cycling at elevated soil temperature and to biochar-induced changes in soil properties and environmental conditions. Methane uptake was not affected by soil warming or biochar. The incorporation of biochar-C into soil was estimated to offset warming-induced elevated GHG emissions for 25 years. Our results highlight the suitability of biochar for C sequestration in cultivated temperate agricultural soil under a future elevated temperature. However, the increased N 2 O emissions under warming limit the GHG mitigation potential of biochar. © 2017 John Wiley & Sons Ltd.

  15. In situ sediment treatment using activated carbon: a demonstrated sediment cleanup technology.

    PubMed

    Patmont, Clayton R; Ghosh, Upal; LaRosa, Paul; Menzie, Charles A; Luthy, Richard G; Greenberg, Marc S; Cornelissen, Gerard; Eek, Espen; Collins, John; Hull, John; Hjartland, Tore; Glaza, Edward; Bleiler, John; Quadrini, James

    2015-04-01

    This paper reviews general approaches for applying activated carbon (AC) amendments as an in situ sediment treatment remedy. In situ sediment treatment involves targeted placement of amendments using installation options that fall into two general approaches: 1) directly applying a thin layer of amendments (which potentially incorporates weighting or binding materials) to surface sediment, with or without initial mixing; and 2) incorporating amendments into a premixed, blended cover material of clean sand or sediment, which is also applied to the sediment surface. Over the past decade, pilot- or full-scale field sediment treatment projects using AC-globally recognized as one of the most effective sorbents for organic contaminants-were completed or were underway at more than 25 field sites in the United States, Norway, and the Netherlands. Collectively, these field projects (along with numerous laboratory experiments) have demonstrated the efficacy of AC for in situ treatment in a range of contaminated sediment conditions. Results from experimental studies and field applications indicate that in situ sequestration and immobilization treatment of hydrophobic organic compounds using either installation approach can reduce porewater concentrations and biouptake significantly, often becoming more effective over time due to progressive mass transfer. Certain conditions, such as use in unstable sediment environments, should be taken into account to maximize AC effectiveness over long time periods. In situ treatment is generally less disruptive and less expensive than traditional sediment cleanup technologies such as dredging or isolation capping. Proper site-specific balancing of the potential benefits, risks, ecological effects, and costs of in situ treatment technologies (in this case, AC) relative to other sediment cleanup technologies is important to successful full-scale field application. Extensive experimental studies and field trials have shown that when applied correctly, in situ treatment via contaminant sequestration and immobilization using a sorbent material such as AC has progressed from an innovative sediment remediation approach to a proven, reliable technology. © 2014 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of SETAC.

  16. FACTORS AFFECTING CARBON ACCUMULATION IN NEW ENGLAND EELGRASS MEADOWS

    EPA Science Inventory

    As atmospheric and oceanic concentrations of carbon dioxide continue to increase, quantifying the carbon storage potential of seagrass meadows and improving the understanding of the factors controlling carbon sequestration in seagrass meadows is essential information for decision...

  17. 40 CFR 98.448 - Geologic sequestration monitoring, reporting, and verification (MRV) plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... than 1 year. (2) Identification of potential surface leakage pathways for CO2 in the maximum monitoring area and the likelihood, magnitude, and timing, of surface leakage of CO2 through these pathways. (3) A...

  18. 40 CFR 98.448 - Geologic sequestration monitoring, reporting, and verification (MRV) plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... than 1 year. (2) Identification of potential surface leakage pathways for CO2 in the maximum monitoring area and the likelihood, magnitude, and timing, of surface leakage of CO2 through these pathways. (3) A...

  19. Quantification of carbon accumulation in eleven New England eelgrass meadows

    EPA Science Inventory

    As atmospheric and oceanic concentrations of carbon dioxide continue to increase, quantifying the carbon storage potential of seagrass meadows and improving the understanding of the factors controlling carbon sequestration in seagrass meadows is essential information for decision...

  20. Cytoplasmic sequestration of the tumor suppressor p53 by a heat shock protein 70 family member, mortalin, in human colorectal adenocarcinoma cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gestl, Erin E., E-mail: egestl@wcupa.edu; Anne Boettger, S., E-mail: aboettger@wcupa.edu

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer Eight human colorectal cell lines were evaluated for p53 and mortalin localization. Black-Right-Pointing-Pointer Six cell lines displayed cytoplasmic sequestration of the tumor suppressor p53. Black-Right-Pointing-Pointer Direct interaction between mortalin and p53 was shown in five cell lines. Black-Right-Pointing-Pointer Cell lines positive for p53 sequestration yielded elevated p53 expression levels. Black-Right-Pointing-Pointer This study yields the first evidence of cytoplasmic sequestration p53 by mortalin. -- Abstract: While it is known that cytoplasmic retention of p53 occurs in many solid tumors, the mechanisms responsible for this retention have not been positively identified. Since heatshock proteins like mortalin have been associated withmore » p53 inactivation in other tumors, the current study sought to characterize this potential interaction in never before examined colorectal adenocarcinoma cell lines. Six cell lines, one with 3 different fractions, were examined to determine expression of p53 and mortalin and characterize their cellular localization. Most of these cell lines displayed punctate p53 and mortalin localization in the cell cytoplasm with the exception of HCT-8 and HCT116 379.2 cells, where p53 was not detected. Nuclear p53 was only observed in HCT-116 40-16, LS123, and HT-29 cell lines. Mortalin was only localized in the cytoplasm in all cell lines. Co-immunoprecipitation and immunohistochemistry revealed that p53 and mortalin were bound and co-localized in the cytoplasmic fraction of four cell lines, HCT-116 (40-16 and 386; parental and heterozygous fractions respectively of the same cell line), HT-29, LS123 and LoVo, implying that p53 nuclear function is limited in those cell lines by being restricted to the cytoplasm. Mortalin gene expression levels were higher than gene expression levels of p53 in all cell lines. Cell lines with cytoplasmic sequestration of p53, however, also displayed elevated p53 gene expression levels compared to cell lines without p53 sequestration. Our data reveal the characteristic cytoplasmic sequestration of p53 by the heat shock protein mortalin in human colorectal adenocarcinoma cell lines, as is the case for other cancers, such as glioblastomas and hepatocellular carcinomas.« less

  1. Modeling of CBM production, CO2 injection, and tracer movement at a field CO2 sequestration site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siriwardane, Hema J.; Bowes, Benjamin D.; Bromhal, Grant S.

    2012-07-01

    Sequestration of carbon dioxide in unmineable coal seams is a potential technology mainly because of the potential for simultaneous enhanced coalbed methane production (ECBM). Several pilot tests have been performed around the globe leading to mixed results. Numerous modeling efforts have been carried out successfully to model methane production and carbon dioxide (CO{sub 2}) injection. Sensitivity analyses and history matching along with several optimization tools were used to estimate reservoir properties and to investigate reservoir performance. Geological and geophysical techniques have also been used to characterize field sequestration sites and to inspect reservoir heterogeneity. The fate and movement of injectedmore » CO{sub 2} can be determined by using several monitoring techniques. Monitoring of perfluorocarbon (PFC) tracers is one of these monitoring technologies. As a part of this monitoring technique, a small fraction of a traceable fluid is added to the injection wellhead along with the CO{sub 2} stream at different times to monitor the timing and location of the breakthrough in nearby monitoring wells or offset production wells. A reservoir modeling study was performed to simulate a pilot sequestration site located in the San Juan coal basin of northern New Mexico. Several unknown reservoir properties at the field site were estimated by modeling the coal seam as a dual porosity formation and by history matching the methane production and CO{sub 2} injection. In addition to reservoir modeling of methane production and CO{sub 2} injection, tracer injection was modeled. Tracers serve as a surrogate for determining potential leakage of CO{sub 2}. The tracer was modeled as a non-reactive gas and was injected into the reservoir as a mixture along with CO{sub 2}. Geologic and geometric details of the field site, numerical modeling details of methane production, CO{sub 2} injection, and tracer injection are presented in this paper. Moreover, the numerical predictions of the tracer arrival times were compared with the measured field data. Results show that tracer modeling is useful in investigating movement of injected CO{sub 2} into the coal seam at the field site. Also, such new modeling techniques can be utilized to determine potential leakage pathways, and to investigate reservoir anisotropy and heterogeneity.« less

  2. Advances in Multiphase Flow and Transport in the Subsurface Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xiaoqing; Finsterle, Stefan; Zhang, Keni

    Multiphase flow and transport processes in the subsurface environment are extremely important in a number of industrial and environmental applications at various spatial and temporal scales. Thus, it is necessary to identify, understand, and predict these processes to improve the production of conventional and unconventional oil and gas, to increase the safety of geological sequestration of carbon dioxide and nuclear waste disposal, and to make remediation of contaminated aquifers more effective.

  3. Advances in Multiphase Flow and Transport in the Subsurface Environment

    DOE PAGES

    Shi, Xiaoqing; Finsterle, Stefan; Zhang, Keni; ...

    2018-03-04

    Multiphase flow and transport processes in the subsurface environment are extremely important in a number of industrial and environmental applications at various spatial and temporal scales. Thus, it is necessary to identify, understand, and predict these processes to improve the production of conventional and unconventional oil and gas, to increase the safety of geological sequestration of carbon dioxide and nuclear waste disposal, and to make remediation of contaminated aquifers more effective.

  4. Designing payments for ecosystem services: Lessons from previous experience with incentive-based mechanisms

    PubMed Central

    Jack, B. Kelsey; Kousky, Carolyn; Sims, Katharine R. E.

    2008-01-01

    Payments for ecosystem services (PES) policies compensate individuals or communities for undertaking actions that increase the provision of ecosystem services such as water purification, flood mitigation, or carbon sequestration. PES schemes rely on incentives to induce behavioral change and can thus be considered part of the broader class of incentive- or market-based mechanisms for environmental policy. By recognizing that PES programs are incentive-based, policymakers can draw on insights from the substantial body of accumulated knowledge about this class of instruments. In particular, this article offers a set of lessons about how the environmental, socioeconomic, political, and dynamic context of a PES policy is likely to interact with policy design to produce policy outcomes, including environmental effectiveness, cost-effectiveness, and poverty alleviation. PMID:18621696

  5. Designing payments for ecosystem services: Lessons from previous experience with incentive-based mechanisms.

    PubMed

    Jack, B Kelsey; Kousky, Carolyn; Sims, Katharine R E

    2008-07-15

    Payments for ecosystem services (PES) policies compensate individuals or communities for undertaking actions that increase the provision of ecosystem services such as water purification, flood mitigation, or carbon sequestration. PES schemes rely on incentives to induce behavioral change and can thus be considered part of the broader class of incentive- or market-based mechanisms for environmental policy. By recognizing that PES programs are incentive-based, policymakers can draw on insights from the substantial body of accumulated knowledge about this class of instruments. In particular, this article offers a set of lessons about how the environmental, socioeconomic, political, and dynamic context of a PES policy is likely to interact with policy design to produce policy outcomes, including environmental effectiveness, cost-effectiveness, and poverty alleviation.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigg, Reid; McPherson, Brian; Lee, Rober

    The Southwest Regional Partnership on Carbon Sequestration (SWP) one of seven regional partnerships sponsored by the U.S. Department of Energy (USDOE) carried out five field pilot tests in its Phase II Carbon Sequestration Demonstration effort, to validate the most promising sequestration technologies and infrastructure concepts, including three geologic pilot tests and two terrestrial pilot programs. This field testing demonstrated the efficacy of proposed sequestration technologies to reduce or offset greenhouse gas emissions in the region. Risk mitigation, optimization of monitoring, verification, and accounting (MVA) protocols, and effective outreach and communication were additional critical goals of these field validation tests. Themore » program included geologic pilot tests located in Utah, New Mexico, Texas, and a region-wide terrestrial analysis. Each geologic sequestration test site was intended to include injection of a minimum of ~75,000 tons/year CO{sub 2}, with minimum injection duration of one year. These pilots represent medium- scale validation tests in sinks that host capacity for possible larger-scale sequestration operations in the future. These validation tests also demonstrated a broad variety of carbon sink targets and multiple value-added benefits, including testing of enhanced oil recovery and sequestration, enhanced coalbed methane production and a geologic sequestration test combined with a local terrestrial sequestration pilot. A regional terrestrial sequestration demonstration was also carried out, with a focus on improved terrestrial MVA methods and reporting approaches specific for the Southwest region.« less

  7. Technical Report on Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bill Stanley; Sandra Brown; Zoe Kant

    2009-01-07

    The Nature Conservancy participated in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project was 'Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration'. The objectives of the project were to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providingmore » new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Final Technical Report discusses the results of the six tasks that The Nature Conservancy undertook to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between July 1st 2001 and July 10th 2008. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool. The project occurred in two phases. The first was a focused exploration of specific carbon measurement and monitoring methodologies and pre-selected carbon sequestration opportunities. The second was a more systematic and comprehensive approach to compare various competing measurement and monitoring methodologies, and assessment of a variety of carbon sequestration opportunities in order to find those that are the lowest cost with the greatest combined carbon and other environmental benefits. In the first phase we worked in the U.S., Brazil, Belize, Bolivia, Peru, and Chile to develop and refine specific carbon inventory methods, pioneering a new remote-sensing method for cost-effectively measuring and monitoring terrestrial carbon sequestration and system for developing carbon baselines for both avoided deforestation and afforestation/reforestation projects. We evaluated the costs and carbon benefits of a number of specific terrestrial carbon sequestration activities throughout the U.S., including reforestation of abandoned mined lands in southwest Virginia, grassland restoration in Arizona and Indiana, and reforestation in the Mississippi Alluvial Delta. The most cost-effective U.S. terrestrial sequestration opportunity we found through these studies was reforestation in the Mississippi Alluvial Delta. In Phase II we conducted a more systematic assessment and comparison of several different measurement and monitoring approaches in the Northern Cascades of California, and a broad 11-state Northeast regional assessment, rather than pre-selected and targeted, analysis of terrestrial sequestration costs and benefits. Work was carried out in Brazil, Belize, Chile, Peru and the USA. Partners include the Winrock International Institute for Agricultural Development, The Sampson Group, Programme for Belize, Society for Wildlife Conservation (SPVS), Universidad Austral de Chile, Michael Lefsky, Colorado State University, UC Berkeley, the Carnegie Institution of Washington, ProNaturaleza, Ohio State University, Stephen F. Austin University, Geographical Modeling Services, Inc., WestWater, Los Alamos National Laboratory, Century Ecosystem Services, Mirant Corporation, General Motors, American Electric Power, Salt River Project, Applied Energy Systems, KeySpan, NiSource, and PSEG. This project, 'Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration', has resulted in over 50 presentations and reports, available publicly through the Department of Energy or by visiting the links listed in Appendix 1. More important than the reports, the project has helped to lead to the development of on-the-ground projects in Southwestern Virginia, Louisiana, and Chile while informing policy development in Virginia, the Regional Greenhouse Gas Initiative, the California Climate Action Registry and U.S. and international programs.« less

  8. Probiotic Lactobacillus rhamnosus Reduces Organophosphate Pesticide Absorption and Toxicity to Drosophila melanogaster.

    PubMed

    Trinder, Mark; McDowell, Tim W; Daisley, Brendan A; Ali, Sohrab N; Leong, Hon S; Sumarah, Mark W; Reid, Gregor

    2016-10-15

    Organophosphate pesticides used in agriculture can pose health risks to humans and wildlife. We hypothesized that dietary supplementation with Lactobacillus, a genus of commensal bacteria, would reduce absorption and toxicity of consumed organophosphate pesticides (parathion and chlorpyrifos [CP]). Several Lactobacillus species were screened for toleration of 100 ppm of CP or parathion in MRS broth based on 24-h growth curves. Certain Lactobacillus strains were unable to reach stationary-phase culture maxima and displayed an abnormal culture morphology in response to pesticide. Further characterization of commonly used, pesticide-tolerant and pesticide-susceptible, probiotic Lactobacillus rhamnosus strain GG (LGG) and L. rhamnosus strain GR-1 (LGR-1), respectively, revealed that both strains could significantly sequester organophosphate pesticides from solution after 24-h coincubations. This effect was independent of metabolic activity, as L. rhamnosus GG did not hydrolyze CP and no difference in organophosphate sequestration was observed between live and heat-killed strains. Furthermore, LGR-1 and LGG reduced the absorption of 100 μM parathion or CP in a Caco-2 Transwell model of the small intestine epithelium. To determine the effect of sequestration on acute toxicity, newly eclosed Drosophila melanogaster flies were exposed to food containing 10 μM CP with or without supplementation with live LGG. Supplementation with LGG simultaneously, but not with administration of CP 3 days prior (prophylactically), mitigated CP-induced mortality. In summary, the results suggest that L. rhamnosus may be useful for reducing toxic organophosphate pesticide exposure via passive binding. These findings could be transferable to clinical and livestock applications due to affordability and practical ability to supplement products with food-grade bacteria. The consequences of environmental pesticide pollution due to widespread usage in agriculture and soil leaching are becoming a major societal concern. Although the long-term effects of low-dose pesticide exposure for humans and wildlife remain largely unknown, logic suggests that these chemicals are not aligned with ecosystem health. This observation is most strongly supported by the agricultural losses associated with honeybee population declines, known as colony collapse disorder, in which pesticide usage is a likely trigger. Lactobacilli are bacteria used as beneficial microorganisms in fermented foods and have shown potentials to sequester and degrade environmental toxins. This study demonstrated that commonly used probiotic strains of lactobacilli could sequester, but not metabolize, organophosphate pesticides (parathion and chlorpyrifos). This Lactobacillus-mediated sequestration was associated with decreased intestinal absorption and insect toxicity in appropriate models. These findings hold promise for supplementing human, livestock, or apiary foods with probiotic microorganisms to reduce organophosphate pesticide exposure. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. Oxy Coal Combustion at the US EPA

    EPA Science Inventory

    Oxygen enriched coal (oxy-coal) combustion is a developing, and potentially a strategically key technology intended to accommodate direct CO2 recovery and sequestration. Oxy-coal combustion is also intended for retrofit application to existing power plants. During oxy-coal comb...

  10. 78 FR 10003 - Proposed Collection; Comment Request for Notice 2009-XX (NOT-151370-08)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... comments concerning Notice 2009-XX, Credit for Carbon Dioxide Sequestration under Section 45Q. [email protected] . SUPPLEMENTARY INFORMATION: Title: Credit for Carbon Dioxide Sequestration under Section... carbon dioxide sequestration (CO 2 sequestration credit) under Sec. 45Q of the Internal Revenue Code...

  11. Experimental multi-phase H2O-CO2 brine interactions at elevated temperature and pressure: Implications for CO2 sequestration in deep-saline aquifers

    USGS Publications Warehouse

    Rosenbauer, R.; Koksalan, T.

    2004-01-01

    The burning of fossil fuel and other anthropogenic activities have caused a continuous and dramatic 30% increase of atmospheric CO2 over the past 150 yr. CO2 sequestration is increasingly being viewed as a tool for managing these anthropogenic CO2 emissions to the atmosphere. CO2-saturated brine-rock experiments were carried out to evaluate the effects of multiphase H2O-CO2 fluids on mineral equilibria and the potential for CO2 sequestration in mineral phases within deep-saline aquifers. Experimental results were generally consistent with theoretical thermodynamic calculations. The solubility of CO2 was enhanced in brines in the presence of both limestone and sandstone relative to brines alone. Reactions between CO2 saturated brines and arkosic sandstones were characterized by desiccation of the brine and changes in the chemical composition of the brine suggesting fixation of CO2 in mineral phases. These reactions were occurring on a measurable but kinetically slow time scale at 120??C.

  12. Advances in Geological CO{sub 2} Sequestration and Co-Sequestration with O{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verba, Circe A; O'Connor, William K.; Ideker, J.H.

    2012-10-28

    The injection of CO{sub 2} for Enhanced Oil Recovery (EOR) and sequestration in brine-bearing formations for long term storage has been in practice or under investigation in many locations globally. This study focused on the assessment of cement wellbore seal integrity in CO{sub 2}- and CO{sub 2}-O{sub 2}-saturated brine and supercritical CO{sub 2} environments. Brine chemistries (NaCl, MgCl{sub 2}, CaCl{sub 2}) at various saline concentrations were investigated at a pressure of 28.9 MPa (4200 psi) at both 50{degree}C and 85{degree}C. These parameters were selected to simulate downhole conditions at several potential CO{sub 2} injection sites in the United States. Classmore » H portland cement is not thermodynamically stable under these conditions and the formation of carbonic acid degrades the cement. Dissociation occurs and leaches cations, forming a CaCO{sub 3} buffered zone, amorphous silica, and other secondary minerals. Increased temperature affected the structure of C-S-H and the hydration of the cement leading to higher degradation rates.« less

  13. Environmental application of biochar: Current status and perspectives.

    PubMed

    Oliveira, Fernanda R; Patel, Anil K; Jaisi, Deb P; Adhikari, Sushil; Lu, Hui; Khanal, Samir Kumar

    2017-12-01

    In recent years, there has been a significant interest on biochar for various environmental applications, e.g., pollutants removal, carbon sequestration, and soil amelioration. Biochar has several unique properties, which makes it an efficient, cost-effective and environmentally-friendly material for diverse contaminants removal. The variability in physicochemical properties (e.g., surface area, microporosity, and pH) provides an avenue for biochar to maximize its efficacy to targeted applications. This review aims to highlight the vital role of surface architecture of biochar in different environmental applications. Particularly, it provides a critical review of current research updates related to the pollutants interaction with surface functional groups of biochars and the effect of the parameters variability on biochar attributes pertinent to specific pollutants removal, involved mechanisms, and competence for these removals. Moreover, future research directions of biochar research are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Carbon benefits from protected areas in the conterminous United States

    Treesearch

    Daolan Zheng; Linda S. Heath; Mark J. Ducey

    2013-01-01

    Conversion of forests to other land cover or land use releases the carbon stored in the forests and reduces carbon sequestration potential of the land. The rate of forest conversion could be reduced by establishing protected areas for biological diversity and other conservation goals. The purpose of this study is to quantify the efficiency and potential of forest land...

  15. Potential gains in storage on productive forestlands in the northeastern United Sates through stocking management

    Treesearch

    Coeli Hoover; Linda S. Heath

    2011-01-01

    One method of increasing forest carbon stocks that is often discussed is increasing stocking levels on existing forested lands. However, estimates of the potential increases in forest carbon sequestration as a result of increased stocking levels are not readily available. Using the USDA Forest Service's Forest Inventory and Analysis data coupled with the Forest...

  16. Wildfire and fuel treatment effects on forest carbon dynamics in the western United States

    Treesearch

    Joseph C. Restiano; David L. Peterson

    2013-01-01

    Sequestration of carbon (C) in forests has the potential to mitigate the effects of climate change by offsetting future emissions of greenhouse gases. However, in dry temperate forests, wildfire is a natural disturbance agent with the potential to release large fluxes of C into the atmosphere. Climate-driven increases in wildfire extent and severity arc expected to...

  17. Carbon dioxide capture, storage and production of biofuel and biomaterials by bacteria: A review.

    PubMed

    Kumar, Manish; Sundaram, Smita; Gnansounou, Edgard; Larroche, Christian; Thakur, Indu Shekhar

    2018-01-01

    Due to industrialization and urbanization, as humans continue to rely on fossil fuels, carbon dioxide (CO 2 ) will inevitably be generated and result in an increase of Global Warming Gases (GWGs). However, their prospect is misted up because of the environmental and economic intimidation posed by probable climate shift, generally called it as the "green house effect". Among all GWGs, the major contributor in greenhouse effect is CO 2 . Mitigation strategies that include capture and storage of CO 2 by biological means may reduce the impact of CO 2 emissions on environment. The biological CO 2 sequestration has significant advantage, since increasing atmospheric CO 2 level supports productivity and overall storage capacity of the natural system. This paper reviews CO 2 sequestration mechanism in bacteria and their pathways for production of value added products such as, biodiesel, bioplastics, extracellular polymeric substance (EPS), biosurfactants and other related biomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Soil carbon sequestration potential for "grain for green" project in Loess Plateau, China

    USGS Publications Warehouse

    Chang, R.; Fu, B.; Liu, Gaisheng; Liu, S.

    2011-01-01

    Conversion of cropland into perennial vegetation land can increase soil organic carbon (SOC) accumulation, which might be an important mitigation measure to sequester carbon dioxide from the atmosphere. The “Grain for Green” project, one of the most ambitious ecological programmes launched in modern China, aims at transforming the low-yield slope cropland into grassland and woodland. The Loess Plateau in China is the most important target of this project due to its serious soil erosion. The objectives of this study are to answer three questions: (1) what is the rate of the SOC accumulation for this “Grain for Green” project in Loess Plateau? (2) Is there a difference in SOC sequestration among different restoration types, including grassland, shrub and forest? (3) Is the effect of restoration types on SOC accumulation different among northern, middle and southern regions of the Loess Plateau? Based on analysis of the data collected from the literature conducted in the Loess Plateau, we found that SOC increased at a rate of 0.712 TgC/year in the top 20 cm soil layer for 60 years under this project across the entire Loess Plateau. This was a relatively reliable estimation based on current data, although there were some uncertainties. Compared to grassland, forest had a significantly greater effect on SOC accumulation in middle and southern Loess Plateau but had a weaker effect in the northern Loess Plateau. There were no differences found in SOC sequestration between shrub and grassland across the entire Loess Plateau. Grassland had a stronger effect on SOC sequestration in the northern Loess Plateau than in the middle and southern regions. In contrast, forest could increase more SOC in the middle and southern Loess Plateau than in the northern Loess Plateau, whereas shrub had a similar effect on SOC sequestration across the Loess Plateau. Our results suggest that the “Grain for Green” project can significantly increase the SOC storage in Loess Plateau, and it is recommended to expand grassland and shrub areas in the northern Loess Plateau and forest in the middle and southern Loess Plateau to enhance the SOC sequestration in this area.

  19. Carbon sequestration and fertility after centennial time scale incorporation of charcoal into soil

    NASA Astrophysics Data System (ADS)

    Criscuoli, Irene; Alberti, Giorgio; Baronti, Silvia; Favilli, Filippo; Martinez, Cristina; Calzolari, Costanza; Pusceddu, Emanuela; Rumpel, Cornelia; Viola, Roberto; Miglietta, Franco

    2014-05-01

    The addition of pyrogenic carbon (C) in the soil is considered a sustainable strategy to achieve direct C sequestration and potential reduction of non-CO2 greenhouse gas emissions. In this paper, we investigated the long term effects of charcoal addition on C sequestration and soil chemico-physical properties by studying a series of abandoned charcoal hearths in the Eastern Alps established in the XIX century. This natural setting can be seen as an analogue of a deliberate experiment with replications. Carbon sequestration was assessed indirectly by comparing the amount of C present in the hearths with the estimated amount of charcoal that was left on the soil after the carbonization. Approximately 80% of the C originally added to the soil via charcoal can still be found today, thus supporting the view that charcoal incorporation is an effective way to sequester atmospheric CO2. We also observed an improvement in the physical properties (hydrophobicity and bulk density) of charcoal hearth soils and an accumulation of nutrients compared to the adjacent soil without charcoal. Then, we focused on the morphological and physical characterization of several fragments, using scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray fluorescence (XRF). Such study enabled the identification of peculiar morphological features of tracheids, which were tentatively associated to a differential oxidation of the structures that were created during carbonization from lignine and cellulose. In order to assess the effect of soil-aging we compared the old-biochar with a modern one obtained from the same feedstock and with similar carbonization process. XRD and XRF analysis were performed on both old and modern biochar, in order to study the multiphase crystalline structure and chemical elements found. We observed mineralization and a fossilization of old biochar samples respect to the modern ones, with accumulation of several mineral oxides and a substantial presence of quartz. A graphene structure was also found, indicating weak bonds in the carbon structures, explained by inter-molecular Van der Waals forces. Furthermore, we have detected a graphite oxide structure responsible of the bending effect in the tracheid, revealed in SEM images. We consider that those results may contribute to the ongoing debate on the best, most suitable geo-engineering strategies that can potentially enable effective and sustainable carbon sequestration in agricultural soils using biochar.

  20. Marine Socio-Environmental Covariates: queryable global layers of environmental and anthropogenic variables for marine ecosystem studies.

    PubMed

    Yeager, Lauren A; Marchand, Philippe; Gill, David A; Baum, Julia K; McPherson, Jana M

    2017-07-01

    Biophysical conditions, including climate, environmental stress, and habitat availability, are key drivers of many ecological processes (e.g., community assembly and productivity) and associated ecosystem services (e.g., carbon sequestration and fishery production). Furthermore, anthropogenic impacts such as coastal development and fishing can have drastic effects on the structure and function of marine ecosystems. Scientists need to account for environmental variation and human impacts to accurately model, manage, and conserve marine ecosystems. Although there are many types of environmental data available from global remote sensing and open-source data products, some are inaccessible to potential end-users because they exist as global layers in high temporal and spatial resolutions which require considerable computational power to process. Additionally, coastal locations often suffer from missing data or data quality issues which limit the utility of some global marine products for coastal sites. Herein we present the Marine Socio-Environmental Covariates dataset for the global oceans, which consists of environmental and anthropogenic variables summarized in ecologically relevant ways. The dataset includes four sets of environmental variables related to biophysical conditions (net primary productivity models corrected for shallow-water reflectance, wave energy including sheltered-coastline corrections) and landscape context (coral reef and land cover within varying radii). We also present two sets of anthropogenic variables, human population density (within varying radii) and distance to large population center, which can serve as indicators of local human impacts. We have paired global, summarized layers available for download with an online data querying platform that allows users to extract data for specific point locations with finer control of summary statistics. In creating these global layers and online platform, we hope to make the data accessible to a wide array of end-users with the goal of advancing marine ecosystem studies. © 2017 by the Ecological Society of America.

  1. Impact of downslope soil transport on carbon storage and fate in permafrost dominated landscapes

    NASA Astrophysics Data System (ADS)

    Shelef, E.; Rowland, J. C.; Wilson, C. J.; Altmann, G.; Hilley, G. E.

    2014-12-01

    A large fraction of high latitude permafrost-dominated landscapes are covered by soil mantled hillslopes. In these landscapes, soil organic carbon (SOC) accumulates and is lost through lateral transport processes. At present, these processes are not included in regional or global landsurface climate models. We present preliminary results of a soil transport and storage model over a permafrost dominated hillslope. In this model soil carbon is transported downslope within a mobile layer that thaws every summer. The model tracks soil transport and its subsequent storage at the hillslope's base. In a scenario where a carbon poor subsurface is blanketed by a carbon-rich surface layer, the progressive downslope soil transport can result in net carbon sequestration. This sequestration occurs because SOC is carried from the hilllsope's near-surface layer, where it is produced by plants and is capable of decomposing, into depositional sites at the hillslope's base where it is stored in frozen deposits such that it's decomposition rate is effectively zero. We use the model to evaluate the quantities of carbon stored in depositional settings during the Holocene, and to predict changes in sequestration rate in response to thaw depth thickening expected to occur within the next century due to climate-change. At the Holocene time scale, we show that a large amount of SOC is likely stored in depositional sites that comprise only a small fraction of arctic landscapes. The convergent topography of these sites makes them susceptible to fluvial erosion and suggests that increased fluvial incision in response to climate-change-induced thawing has the potential to release significant amounts of carbon to the river system, and potentially to the atmosphere. At the time scale of the next century, increased thaw depth may increase soil-transport rates on hillslopes and therefore increase SOC sequestration rates at a magnitude that may partly compensate for the carbon release expected from permafrost thawing. Model guided field data collection is essential to reduce the uncertainty of these estimates.

  2. A feasibility study of geological CO2 sequestration in the Ordos Basin, China

    USGS Publications Warehouse

    Jiao, Z.; Surdam, R.C.; Zhou, L.; Stauffer, P.H.; Luo, T.

    2011-01-01

    The Shaanxi Province/Wyoming CCS Partnership (supported by DOE NETL) aims to store commercial quantities of CO2 safely and permanently in the Ordovician Majiagou Formation in the northern Ordos Basin, Shaanxi Province, China. This objective is imperative because at present, six coal-to-liquid facilities in Shaanxi Province are capturing and venting significant quantities of CO2. The Wyoming State Geological Survey and the Shaanxi Provincial Institute of Energy Resource and Chemical Engineering conducted a feasibility study to determine the potential for geological CO2 sequestration in the northern Ordos Basin near Yulin. The Shaanbei Slope of the Ordos Basin is a huge monoclinal structure with a high-priority sequestration reservoir (Majiagou Formation) that lies beneath a 2,000+ meter-thick sequence of Mesozoic rocks containing a multitude of lowpermeability lithologies. The targeted Ordovician Majiagou Formation in the location of interest is more than 700 meters thick. The carbonate reservoir is located at depths where pressures and temperatures are well above the supercritical point of CO2. The targeted reservoir contains high-salinity brines (20,000-50,000 ppm) that have little or no economic value. The targeted reservoir is continuous as inferred from well logs, and cores show that porosity ranges from 1 to 15% with average measured porosity of 8%, and that permeability ranges from 1-35 md. This paper focuses on calculations that will help evaluate the capacity estimates through the use of high-resolution multiphase numerical simulation models, as well as a more simple volumetric approach. The preliminary simulation results show that the Ordovician Majiagou Formation in the Ordos Basin has excellent potential for geological CO2 sequestration and could store the CO2 currently emitted by coal-to-liquid facilities in Shaanxi Province for hundreds of years (i.e., 9 Mt/year CO2; 450 Mt over a 50-year period at one injection site). ?? 2011 Published by Elsevier Ltd.

  3. Assessment on the rates and potentials of soil organic carbon sequestration in agricultural lands in Japan using a process-based model and spatially explicit land-use change inventories - Part 2: Future potentials

    NASA Astrophysics Data System (ADS)

    Yagasaki, Y.; Shirato, Y.

    2014-08-01

    Future potentials of the sequestration of soil organic carbon (SOC) in agricultural lands in Japan were estimated using a simulation system we recently developed to simulate SOC stock change at country-scale under varying land-use change, climate, soil, and agricultural practices, in a spatially explicit manner. Simulation was run from 1970 to 2006 with historical inventories, and subsequently to 2020 with future scenarios of agricultural activity comprised of various agricultural policy targets advocated by the Japanese government. Furthermore, the simulation was run subsequently until 2100 while forcing no temporal changes in land-use and agricultural activity to investigate duration and course of SOC stock change at country scale. A scenario with an increased rate of organic carbon input to agricultural fields by intensified crop rotation in combination with the suppression of conversion of agricultural lands to other land-use types was found to have a greater reduction of CO2 emission by enhanced soil carbon sequestration, but only under a circumstance in which the converted agricultural lands will become settlements that were considered to have a relatively lower rate of organic carbon input. The size of relative reduction of CO2 emission in this scenario was comparable to that in another contrasting scenario (business-as-usual scenario of agricultural activity) in which a relatively lower rate of organic matter input to agricultural fields was assumed in combination with an increased rate of conversion of the agricultural fields to unmanaged grasslands through abandonment. Our simulation experiment clearly demonstrated that net-net-based accounting on SOC stock change, defined as the differences between the emissions and removals during the commitment period and the emissions and removals during a previous period (base year or base period of Kyoto Protocol), can be largely influenced by variations in future climate. Whereas baseline-based accounting, defined as differences between the net emissions in the accounting period and the ex ante estimation of net business-as-usual emissions for the same period, has robustness over variations in future climate and effectiveness to factor out some of the direct human-induced effects such as changing land-use and agricultural activity. Factors affecting uncertainties in the estimation of the country-scale potential of SOC sequestration were discussed, especially those related to estimation of the rate of organic carbon input to soils under different land-use types. Our study suggested that, in order to assist decision making of policy on agriculture, land management, and mitigation of global climate change, it is also important to take account of duration and time course of SOC sequestration, supposition on land-use change pattern in future, as well as feasibility of agricultural policy planning.

  4. Geologic Sequestration of CO2: Potential Permeability Changes in Host Formations of the San Juan Basin, New Mexico

    NASA Astrophysics Data System (ADS)

    Abel, A. P.; McPherson, B.; Lichtner, P.; Bond, G.; Stringer, J.; Grigg, R.

    2002-12-01

    Terrestrial sequestration through injection into geologic formations is one proposed method for the isolation of anthropogenic CO2 from the atmosphere. A variety of physical and chemical processes are known to occur both during and after geologic CO2 injection, including diagenetic chemical reactions and associated permeability changes. Although it is commonly assumed that CO2 sequestered in this way will ultimately become mineralized, the rates of these changes, including CO2 hydration in brines, are known to be relatively slow. Bond and others (this volume) have developed a biomimetic approach to CO2 sequestration, in which the rate of CO2 hydration is accelerated by the use of a biological catalyst. Together with the hydrated CO2, cations from produced brines may be used to form solid-state carbonate minerals at the earth's surface, or this bicarbonate solution may be reinjected for geologic sequestration. Chemical composition of produced brines will affect both the diagenetic reactions that occur within the host formation, and the precipitation reactions that will occur above ground. In a specific case study of the San Juan Basin, New Mexico, we are cataloging different brines present in that basin. We are using this information to facilitate evaluation of potential applications of the biomimetic process and geologic sequestration. In a separate collaborative study by Grigg and others (this volume), laboratory experiments have been conducted on multiphase CO2 and brine injection and flow through saturated rock cores. We are extending from that study to our specific case study of the San Juan basin, to examine and characterize potential permeability changes associated with accelerated diagenesis due to the presence of high concentrations of CO2 or bicarbonate solutions in situ. We are developing and conducting new laboratory experiments to evaluate relative permeability (to CO2 and brine) of selected strata from the Fruitland Formation and Pictured Cliffs Sandstone. In addition to relative permeability, we are conducting longer-term flow tests reflecting marked permeability changes, and documenting the changes by comparing detailed pre-test measurements of porosity and permeability to post-test measurements. We are using these experimental results to parameterize coupled-flow and reactive-chemistry models of a selected cross-section of the San Juan basin. Our flow and chemistry model is based on the Los Alamos National Laboratory reactive chemistry simulator, TRANS, coupled to the Lawrence Berkeley Laboratory flow simulator, TOUGH2. The purpose of these simulation models is to evaluate potential CO2- and bicarbonate-induced diagenetic changes in permeability and flow at the basin-scale. In addition they will provide useful information in relation to brine extraction. We are also using these calibrated basin models to examine natural diagenesis and permeability evolution associated with changing brine properties and flow conditions over geologic time.

  5. Derivation of groundwater threshold values for analysis of impacts predicted at potential carbon sequestration sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Last, G. V.; Murray, C. J.; Bott, Y.

    2016-06-01

    The U.S. Department of Energy’s (DOE’s) National Risk Assessment Partnership (NRAP) Project is developing reduced-order models to evaluate potential impacts to groundwater quality due to carbon dioxide (CO 2) or brine leakage, should it occur from deep CO 2 storage reservoirs. These efforts targeted two classes of aquifer – an unconfined fractured carbonate aquifer based on the Edwards Aquifer in Texas, and a confined alluvium aquifer based on the High Plains Aquifer in Kansas. Hypothetical leakage scenarios focus on wellbores as the most likely conduits from the storage reservoir to an underground source of drinking water (USDW). To facilitate evaluationmore » of potential degradation of the USDWs, threshold values, below which there would be no predicted impacts, were determined for each of these two aquifer systems. These threshold values were calculated using an interwell approach for determining background groundwater concentrations that is an adaptation of methods described in the U.S. Environmental Protection Agency’s Unified Guidance for Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities. Results demonstrate the importance of establishing baseline groundwater quality conditions that capture the spatial and temporal variability of the USDWs prior to CO 2 injection and storage.« less

  6. Simulating carbon sequestration using cellular automata and land use assessment for Karaj, Iran

    NASA Astrophysics Data System (ADS)

    Khatibi, Ali; Pourebrahim, Sharareh; Mokhtar, Mazlin Bin

    2018-06-01

    Carbon sequestration has been proposed as a means of slowing the atmospheric and marine accumulation of greenhouse gases. This study used observed and simulated land use/cover changes to investigate and predict carbon sequestration rates in the city of Karaj. Karaj, a metropolis of Iran, has undergone rapid population expansion and associated changes in recent years, and these changes make it suitable for use as a case study for rapidly expanding urban areas. In particular, high quality agricultural space, green space and gardens have rapidly transformed into industrial, residential and urban service areas. Five classes of land use/cover (residential, agricultural, rangeland, forest and barren areas) were considered in the study; vegetation and soil samples were taken from 20 randomly selected locations. The level of carbon sequestration was determined for the vegetation samples by calculating the amount of organic carbon present using the dry plant weight method, and for soil samples by using the method of Walkley and Black. For each area class, average values of carbon sequestration in vegetation and soil samples were calculated to give a carbon sequestration index. A cellular automata approach was used to simulate changes in the classes. Finally, the carbon sequestration indices were combined with simulation results to calculate changes in carbon sequestration for each class. It is predicted that, in the 15 year period from 2014 to 2029, much agricultural land will be transformed into residential land, resulting in a severe reduction in the level of carbon sequestration. Results from this study indicate that expansion of forest areas in urban counties would be an effective means of increasing the levels of carbon sequestration. Finally, future opportunities to include carbon sequestration into the simulation of land use/cover changes are outlined.

  7. Going With the Flow: An Aid in Detecting and Differentiating Bronchopulmonary Sequestrations and Hybrid Lesions.

    PubMed

    Oliver, Edward R; DeBari, Suzanne E; Giannone, Mariann M; Pogoriler, Jennifer E; Johnson, Ann M; Horii, Steven C; Gebb, Juliana S; Howell, Lori J; Adzick, N Scott; Coleman, Beverly G

    2018-02-01

    To assess the ability of prenatal ultrasound (US) in identifying systemic feeding arteries in bronchopulmonary sequestrations and hybrid lesions and report the ability of US in classifying bronchopulmonary sequestrations as intralobar or extralobar. Institutional Review Board-approved radiology and clinical database searches from 2008 to 2015 were performed for prenatal lung lesions with final diagnoses of bronchopulmonary sequestrations or hybrid lesions. All patients had detailed US examinations, and most patients had ultrafast magnetic resonance imaging (MRI). Lesion location, size, and identification of systemic feeding arteries and draining veins were assessed with US. The study consisted of 102 bronchopulmonary sequestrations and 86 hybrid lesions. The median maternal age was 30 years. The median gestational age was 22 weeks 5 days. Of bronchopulmonary sequestrations, 66 had surgical pathologic confirmation, and 100 had postnatal imaging. Bronchopulmonary sequestration locations were intrathoracic (n = 77), intra-abdominal (n = 19), and transdiaphragmatic (n = 6). Of hybrid lesions, 84 had surgical pathologic confirmation, and 83 had postnatal imaging. Hybrid lesion locations were intrathoracic (n = 84) and transdiaphragmatic (n = 2). Ultrasound correctly identified systemic feeding arteries in 86 of 102 bronchopulmonary sequestrations and 79 of 86 hybrid lesions. Of patients who underwent MRI, systemic feeding arteries were reported in 62 of 92 bronchopulmonary sequestrations and 56 of 81 hybrid lesions. Ultrasound identified more systemic feeding arteries than MRI in both bronchopulmonary sequestrations and hybrid lesions (P < .01). Magnetic resonance imaging identified systemic feeding arteries that US did not in only 2 cases. In cases in which both systemic feeding arteries and draining veins were identified, US could correctly predict intrathoracic lesions as intralobar or extralobar in 44 of 49 bronchopulmonary sequestrations and 68 of 73 hybrid lesions. Ultrasound is most accurate for systemic feeding artery detection in bronchopulmonary sequestrations and hybrid lesions and can also type the lesions as intralobar or extralobar when draining veins are evaluated. © 2017 by the American Institute of Ultrasound in Medicine.

  8. Linking Soil Microbial Ecology to Ecosystem Functioning in Integrated Crop-Livestock Systems

    USDA-ARS?s Scientific Manuscript database

    Enhanced soil stability, nutrient cycling and C sequestration potential are important ecosystem functions driven by soil microbial processes and are directly influenced by agricultural management. Integrated crop-livestock agroecosystems (ICL) can enhance these functions via high-residue returning c...

  9. United States National Sewage Sludge Repository at Arizona State University--a new resource and research tool for environmental scientists, engineers, and epidemiologists.

    PubMed

    Venkatesan, Arjun K; Done, Hansa Y; Halden, Rolf U

    2015-02-01

    Processed municipal sewage sludges (MSS) are an abundant, unwanted by-product of wastewater treatment, increasingly applied to agriculture and forestry for inexpensive disposal and soil conditioning. Due to their high organic carbon and lipid contents, MSS not only is rich in carbon and nutrients but also represents a "sink" for recalcitrant, hydrophobic, and potentially bioaccumulative compounds. Indeed, many organics sequestered and concentrated in MSS meet the US Environmental Protection Agency's definition of being persistent, bioaccumulative, and toxic (PBT). In a strategic effort, our research team at the Biodesign Institute has created the National Sewage Sludge Repository (NSSR), a large repository of digested MSSs from 164 wastewater treatment plants from across the USA, as part of the Human Health Observatory (H2O) at Arizona State University (ASU). The NSSR likely represents the largest archive of digested MSS specimens in the USA. The present study summarizes key findings gleaned thus far from analysis of NSSR samples. For example, we evaluated the content of toxicants in MSS and computed estimates of nationwide inventories of mass produced chemicals that become sequestrated in sludge and later are released into the environment during sludge disposal on land. Ongoing efforts document co-occurrence of a variety of PBT compounds in both MSS and human samples, while also identifying a large number of potentially harmful MSS constituents for which human exposure data are still lacking. Finally, we summarize future opportunities and invite collaborative use of the NSSR by the research community. The H2O at ASU represents a new resource and research tool for environmental scientists and the larger research community. As illustrated in this work, this repository can serve to (i) identify and prioritize emerging contaminants, (ii) provide spatial and temporal trends of contaminants, (iii) inform and evaluate the effectiveness of environmental policy-making and regulations, and (iv) approximate, ongoing exposures and body burdens of mass-produced chemicals in human society.

  10. United States National Sewage Sludge Repository at Arizona State University – A New Resource and Research Tool for Environmental Scientists, Engineers, and Epidemiologists

    PubMed Central

    Venkatesan, Arjun K.; Done, Hansa Y.; Halden, Rolf U.

    2014-01-01

    Processed municipal sewage sludges (MSS) are an abundant, unwanted by-product of wastewater treatment, increasingly applied to agriculture and forestry for inexpensive disposal and soil conditioning. Due to their high organic-carbon and lipid contents, MSS not only is rich in carbon and nutrients but also represents a ‘sink’ for recalcitrant, hydrophobic and potentially bioaccumulative compounds. Indeed, many organics sequestered and concentrated in MSS meet the U.S. Environmental Protection Agency's definition of being persistent, bioaccumulative, and toxic (PBT). In a strategic effort, our research team at the Biodesign Institute has created the National Sewage Sludge Repository (NSSR), a large repository of digested MSSs from 164 wastewater treatment plants from across the USA, as part of the Human Health Observatory (H2O) at Arizona State University (ASU). The NSSR likely represents the largest archive of digested MSS specimens in the USA. The present study summarizes key findings gleaned thus far from analysis of NSSR samples. For example, we evaluated the content of toxicants in MSS and computed estimates of nationwide inventories of mass produced chemicals that become sequestrated in sludge and later are released into the environment during sludge disposal on land. Ongoing efforts document co-occurrence of a variety of PBT compounds in both MSS and human samples, while also identifying a large number of potentially harmful MSS constituents for which human exposure data are still lacking. Finally, we summarize new future opportunities and invite collaborative use the NSSR by the research community. The H2O at ASU represents a resource and research tool for environmental scientists and the larger research community. As illustrated in this work, this repository can serve to (i) identify and prioritize emerging contaminants; (ii) provide spatial and temporal trends of contaminants; (iii) inform and evaluate the effectiveness of environmental policy-making and regulations; and (iv) approximate, ongoing exposures and body burdens of mass-produced chemicals in human society. PMID:24824503

  11. Optimization of Environmental Conditions to Maximize Carbon Dioxide Sequestration Through Algal Growth

    DTIC Science & Technology

    2010-03-01

    this would complete the fossil fuel cycle, as algae are understood to be the progenitors of our current oil based fossil fuel stocks. As primary... oil . However, considering the scope of the world’s energy uses, these sources cannot possibly replace the fossil fuels currently in use. Some...122 Jatropha 1892 140 77 Coconut 2689 99 54 Oil Palm 5950 45 24 * For meeting 50% of transport fuel requirements in the United States

  12. Estimated Impacts of Sequestration-Level Funding: United States Department of Defense Fiscal Year 1015 Budget Request

    DTIC Science & Technology

    2014-04-01

    Prepositioned Stocks, and Environmental Restoration. The other O&M portfolio indirectly supports Service readiness by funding such areas as training and...and administration. The portfolio also supports intelligence programs and defense-wide activities, such as the Defense Health Program, Special...2.0) (1.6) (1.1) (0.9) (5.7) SUMMARY OF MILCON Under BCA levels, the MILCON accounts would decline to allow for the rebalancing of resources

  13. Preliminary Estimates of the Potential for Carbon Mitigation in European Soils Through No-Till Farming

    DOE Data Explorer

    Smith, P. [University of Aberdeen, Aberdeen, UK; Powlson, D. [University of Aberdeen, Aberdeen, UK; Glendining, M. [University of Aberdeen, Aberdeen, UK; Smith, J. [University of Aberdeen, Aberdeen, UK

    2003-01-01

    in this paper we estimate the European potential for carbon mitigation of no-till farming using results from European tillage experiments. Our calculations suggest some potential in terms of (a) reduced agricultural fossil fuel emissions, and (b) increased soil carbon sequestration. We estimate that 100% conversion to no-till farming would be likely to sequester about 23 Tg C y–11 in the European Union or about 43 Tg C y–1 in the wider Europe (excluding the former Soviet Union). In addition, up to 3.2 Tg C y–1 could be saved in agricultural fossil fuel emissions. Compared to estimates of the potential for carbon sequestration of other carbon mitigation options, no-till agriculture shows nearly twice the potential of scenarios whereby soils are amended with organic materials. Our calculations suggest that 100% conversion to no-till agriculture in Europe could mitigate all fossil fuel-carbon emissions from agriculture in Europe. However, this is equivalent to only about 4.1% of total anthropogenic CO2-carbon produced annually in Europe (excluding the former Soviet Union) which in turn is equivalent to about 0.8% of global annual anthropogenic CO2-carbon emissions.

  14. Role of soil health in maintaining environmental sustainability of surface coal mining.

    PubMed

    Acton, Peter M; Fox, James F; Campbell, J Elliott; Jones, Alice L; Rowe, Harold; Martin, Darren; Bryson, Sebastian

    2011-12-01

    Mountaintop coal mining (MCM) in the Southern Appalachian forest region greatly impacts both soil and aquatic ecosystems. Policy and practice currently in place emphasize water quality and soil stability but do not consider upland soil health. Here we report soil organic carbon (SOC) measurements and other soil quality indicators for reclaimed soils in the Southern Appalachian forest region to quantify the health of the soil ecosystem. The SOC sequestration rate of the MCM soils was 1.3 MgC ha(-1) yr(-1) and stocks ranged from 1.3 ± 0.9 to 20.9 ± 5.9 Mg ha(-1) and contained only 11% of the SOC of surrounding forest soils. Comparable reclaimed mining soils reported in the literature that are supportive of soil ecosystem health had SOC stocks 2.5-5 times greater than the MCM soils and sequestration rates were also 1.6-3 times greater. The high compaction associated with reclamation in this region greatly reduces both the vegetative rooting depth and infiltration of the soil and increases surface runoff, thus bypassing the ability of soil to naturally filter groundwater. In the context of environmental sustainability of MCM, it is proposed that the entire watershed ecosystem be assessed and that a revision of current policy be conducted to reflect the health of both water and soil.

  15. Microbial potential for carbon and nutrient cycling in a geogenic supercritical carbon dioxide reservoir.

    PubMed

    Freedman, Adam J E; Tan, BoonFei; Thompson, Janelle R

    2017-06-01

    Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected supercritical (sc) CO 2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO 2 reservoirs, which serve as analogs for the long-term fate of sequestered scCO 2 , harbor a 'deep carbonated biosphere' with carbon cycling potential. We sampled subsurface fluids from scCO 2 -water separators at a natural scCO 2 reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content. Sequence annotations indicated dominance of Sulfurospirillum, Rhizobium, Desulfovibrio and four members of the Clostridiales family. Genomes extracted from metagenomes using homology and compositional approaches revealed diverse mechanisms for growth and nutrient cycling, including pathways for CO 2 and N 2 fixation, anaerobic respiration, sulfur oxidation, fermentation and potential for metabolic syntrophy. Differences in biogeochemical potential between two production well communities were consistent with differences in fluid chemical profiles, suggesting a potential link between microbial activity and geochemistry. The existence of a microbial ecosystem associated with the McElmo Dome scCO 2 reservoir indicates that potential impacts of the deep biosphere on CO 2 fate and transport should be taken into consideration as a component of GCS planning and modelling. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Processes regulating progressive nitrogen limitation under elevated carbon dioxide: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Liang, Junyi; Qi, Xuan; Souza, Lara; Luo, Yiqi

    2016-05-01

    The nitrogen (N) cycle has the potential to regulate climate change through its influence on carbon (C) sequestration. Although extensive research has explored whether or not progressive N limitation (PNL) occurs under CO2 enrichment, a comprehensive assessment of the processes that regulate PNL is still lacking. Here, we quantitatively synthesized the responses of all major processes and pools in the terrestrial N cycle with meta-analysis of CO2 experimental data available in the literature. The results showed that CO2 enrichment significantly increased N sequestration in the plant and litter pools but not in the soil pool, partially supporting one of the basic assumptions in the PNL hypothesis that elevated CO2 results in more N sequestered in organic pools. However, CO2 enrichment significantly increased the N influx via biological N fixation and the loss via N2O emission, but decreased the N efflux via leaching. In addition, no general diminished CO2 fertilization effect on plant growth was observed over time up to the longest experiment of 13 years. Overall, our analyses suggest that the extra N supply by the increased biological N fixation and decreased leaching may potentially alleviate PNL under elevated CO2 conditions in spite of the increases in plant N sequestration and N2O emission. Moreover, our syntheses indicate that CO2 enrichment increases soil ammonium (NH4+) to nitrate (NO3-) ratio. The changed NH4+/NO3- ratio and subsequent biological processes may result in changes in soil microenvironments, above-belowground community structures and associated interactions, which could potentially affect the terrestrial biogeochemical cycles. In addition, our data synthesis suggests that more long-term studies, especially in regions other than temperate ones, are needed for comprehensive assessments of the PNL hypothesis.

  17. Climate warming feedback from mountain birch forest expansion: reduced albedo dominates carbon uptake.

    PubMed

    de Wit, Heleen A; Bryn, Anders; Hofgaard, Annika; Karstensen, Jonas; Kvalevåg, Maria M; Peters, Glen P

    2014-07-01

    Expanding high-elevation and high-latitude forest has contrasting climate feedbacks through carbon sequestration (cooling) and reduced surface reflectance (warming), which are yet poorly quantified. Here, we present an empirically based projection of mountain birch forest expansion in south-central Norway under climate change and absence of land use. Climate effects of carbon sequestration and albedo change are compared using four emission metrics. Forest expansion was modeled for a projected 2.6 °C increase in summer temperature in 2100, with associated reduced snow cover. We find that the current (year 2000) forest line of the region is circa 100 m lower than its climatic potential due to land-use history. In the future scenarios, forest cover increased from 12% to 27% between 2000 and 2100, resulting in a 59% increase in biomass carbon storage and an albedo change from 0.46 to 0.30. Forest expansion in 2100 was behind its climatic potential, forest migration rates being the primary limiting factor. In 2100, the warming caused by lower albedo from expanding forest was 10 to 17 times stronger than the cooling effect from carbon sequestration for all emission metrics considered. Reduced snow cover further exacerbated the net warming feedback. The warming effect is considerably stronger than previously reported for boreal forest cover, because of the typically low biomass density in mountain forests and the large changes in albedo of snow-covered tundra areas. The positive climate feedback of high-latitude and high-elevation expanding forests with seasonal snow cover exceeds those of afforestation at lower elevation, and calls for further attention of both modelers and empiricists. The inclusion and upscaling of these climate feedbacks from mountain forests into global models is warranted to assess the potential global impacts. © 2013 John Wiley & Sons Ltd.

  18. 100% Solids Polyurethane Sequestration Coating

    DTIC Science & Technology

    2014-04-11

    Distribution Unlimited 100% Solids Polyurethane Sequestration Coating The views, opinions and/or findings contained in this report are those of the...Papers published in non peer-reviewed journals: 100% Solids Polyurethane Sequestration Coating Report Title Report developed under Topic #CBD13-101...Final Technical Report Contract #: W911NF-13-P-0010 Proposal #: 63958CHSB1 Project: 100% Solids Polyurethane Sequestration Coating

  19. Essays on the U.S. biofuel policies: Welfare impacts and the potential for reduction of GHG emission

    NASA Astrophysics Data System (ADS)

    Hossiso, Kassu Wamisho

    This dissertation study investigates the impact of the US biofuel policies related to greenhouse gas (GHG) emission regulation, tax credit and renewable fuel standard (RFS2) mandate over production and consumption of ethanol as well as technical and environmental performance of corn ethanol plants. The study develops analytical models and provides quantitative estimation of the impact of various biofuel policies in each of the three chapters. Chapter 1 of this dissertation examines the tradeoff between achieving the environmental goal of minimizing life cycle GHG emissions and minimizing production costs in recently built dry-grind corn ethanol plants. The results indicate that the average ethanol plant is able to reduce GHG emissions by 36 % relative to the level under cost minimization, but production costs are 22 % higher. To move from least cost to least emissions allocations, ethanol plants would on average produce 25 % more of wet byproduct and 47% less of dry byproduct. Using a multi-output, multi-input partial equilibrium model, Chapter 2 explores the impact of the tax credit and RFS2 mandate policy on market price of ethanol, byproducts, corn, and other factor inputs employed in the production of corn ethanol. In the short-run, without tax credit ethanol plants will not have the incentive to produce the minimum level of ethanol required by RFS2. In the long-run, if ethanol plants to have the incentive to produce the minimum RFS2 mandate without tax credit policy, gasoline price will need to increase by order of 50% or more relative to the 2011 price. Chapter 3 develop meta-regression model to investigate the extent to which statistical heterogeneity among results of multiple studies on soil organic carbon (SOC) sequestration rates can be related to one or more characteristics of the studies in response to conventional tillage (CT) and no-till (NT). Regarding the difference in the rate of SOC sequestration between NT and CT, our results shows that the percentage of heterogeneity in the true treatment effect that is attributable to between-study variability is 49%, whereas 51 % is attributable to within-study sampling variability.

  20. Some aspects of ecophysiological and biogeochemical responses of tropical forests to atmospheric change.

    PubMed Central

    Chambers, Jeffrey Q; Silver, Whendee L

    2004-01-01

    Atmospheric changes that may affect physiological and biogeochemical processes in old-growth tropical forests include: (i) rising atmospheric CO2 concentration; (ii) an increase in land surface temperature; (iii) changes in precipitation and ecosystem moisture status; and (iv) altered disturbance regimes. Elevated CO2 is likely to directly influence numerous leaf-level physiological processes, but whether these changes are ultimately reflected in altered ecosystem carbon storage is unclear. The net primary productivity (NPP) response of old-growth tropical forests to elevated CO2 is unknown, but unlikely to exceed the maximum experimentally measured 25% increase in NPP with a doubling of atmospheric CO2 from pre-industrial levels. In addition, evolutionary constraints exhibited by tropical plants adapted to low CO2 levels during most of the Late Pleistocene, may result in little response to increased carbon availability. To set a maximum potential response for a Central Amazon forest, using an individual-tree-based carbon cycling model, a modelling experiment was performed constituting a 25% increase in tree growth rate, linked to the known and expected increase in atmospheric CO2. Results demonstrated a maximum carbon sequestration rate of ca. 0.2 Mg C per hectare per year (ha(-1) yr(-1), where 1 ha = 10(4) m2), and a sequestration rate of only 0.05 Mg C ha(-1) yr(-1) for an interval centred on calendar years 1980-2020. This low rate results from slow growing trees and the long residence time of carbon in woody tissues. By contrast, changes in disturbance frequency, precipitation patterns and other environmental factors can cause marked and relatively rapid shifts in ecosystem carbon storage. It is our view that observed changes in tropical forest inventory plots over the past few decades is more probably being driven by changes in disturbance or other environmental factors, than by a response to elevated CO2. Whether these observed changes in tropical forests are the beginning of long-term permanent shifts or a transient response is uncertain and remains an important research priority. PMID:15212096

  1. Investing carbon offsets in woody forests - the best solution for California?

    NASA Astrophysics Data System (ADS)

    Dass, P.; Houlton, B. Z.; Warlind, D.

    2016-12-01

    Increasing atmospheric carbon dioxide (CO2) concentrations from fossil fuel combustion, land conversion and biomass burning are principal to climate change and its manifolds risks on human health, the environment and the global economy. Effective mitigation of climate change thereby involves cutting fossil-fuel emissions at the source or capturing CO2 in engineered or natural ecosystem stocks, or both. The lifetime of CO2 in the atmosphere exceeds 100 years; thus, in the case of CO2 sequestration by natural ecosystems, the residence time of soil and vegetation carbon(C) is a critical component of the efficacy of C offsets in the marketplace, particularly in local to global Cap and Trade frameworks. Here we use a land-surface model to analyze trade-offs in C investment into natural forest vs. grassland sinks and the role of fire in driving the most sustained pathways of CO2 sequestration under Cap and Trade policies. We focus on the California Climate Exchange and AB32 as the model system for examining risks of CO2 offset investments by considering model-based scenarios of (a.) natural woody forests (mixture of trees, shrubs and grasslands) or (b.) pure grasslands (no woody vegetation allowed) under conditions of drought and changes in fire frequency. While forests capture more carbon than grasslands, the latter stores a greater fraction of C in below ground stocks, making it less vulnerable to climate-driven disturbances. Preliminary results for simulations carried out for the last century for the state of California corroborate this hypothesis: while trees capture 100 GgCyr-1 more than grasses, CO2 emissions due to fire is less by 20 GgCyr-1 from grasslands when compared to forest environments. Since policies need to regard potential future scenarios, we present results that investigate how the alternate systems of trees and grasses respond to (i.) the environmental conditions of the no-mitigation scenario (RCP 8.5) through the year 2100, (ii.) periods of extended drought and (iii.) environmental conditions favoring higher incidences of fire.

  2. A Review of Major Non-Power-Related Carbon Dioxide Stream Compositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Last, George V.; Schmick, Mary T.

    A critical component in the assessment of long-term risk from geologic sequestration of carbon dioxide (CO2) is the ability to predict mineralogical and geochemical changes within storage reservoirs as a result of rock-brine-CO2 reactions. Impurities and/or other constituents in CO2 source streams selected for sequestration can affect both the chemical and physical (e.g., density, viscosity, interfacial tension) properties of CO2 in the deep subsurface. The nature and concentrations of these impurities are a function of both the industrial source(s) of CO2, as well as the carbon capture technology used to extract the CO2 and produce a concentrated stream for subsurfacemore » injection and geologic sequestration. This article reviews the relative concentrations of CO2 and other constituents in exhaust gases from major non-energy-related industrial sources of CO2. Assuming that carbon capture technology would remove most of the incondensable gases N2, O2, and Ar, leaving SO2 and NOx as the main impurities, the authors then summarize the relative proportions of the remaining impurities assumed to be present in CO2 source streams that could be targeted for geologic sequestration. The summary is presented relative to five potential sources of CO2: 1) Flue Gas with Flue Gas Desulfurization, 2) Combustion Stack from Coke Production, 3) Portland Cement Kilns, 4) Natural Gas Combustion, and 5) Lime Production.« less

  3. Nitrogen deposition and soil carbon sequestration: enzymes, experiments, and model estimates (Invited)

    NASA Astrophysics Data System (ADS)

    Goodale, C. L.; Weiss, M.; Tonitto, C.; Stone, M.

    2010-12-01

    Atmospheric nitrogen has long been expected to increase forest carbon sequestration, by means of enhanced productivity and litter production. More recently, N deposition has received attention for its potential for inducing soil C sequestration by suppressing microbial decomposition. Here, we present a range of measurements and model projections of the effects of N additions on soil C dynamics in forest soils of the northeastern U.S. A review of field-scale measurements of soil C stocks suggests modest enhancements of soil C storage in long-term N addition studies. Measurements of forest floor material from six long-term N addition studies showed that N additions suppressed microbial biomass and oxidative enzyme activity across sites. Additional analyses on soils from two of these sites are exploring the interactive effects of temperature and N addition on the activity of a range of extracellular enzymes used for decomposition of a range of organic matter. Incubations of forest floor material from four of these sites showed inhibition of heterotrophic respiration by an average of 28% during the first week of incubation, although this inhibition disappeared after 2 to 11 months. Nitrogen additions had no significant effect on DOC loss or on the partitioning of soil C into light or heavy (mineral-associated) organic matter. Last, we have adapted a new model of soil organic matter decomposition for the PnET-CN model to assess the long-term impact of suppressed decomposition on C sequestration in various soil C pools.

  4. Neutron Scattering Measurements of Carbon Dioxide Adsorption in Pores within the Marcellus Shale: Implications for Sequestration.

    PubMed

    Stefanopoulos, Konstantinos L; Youngs, Tristan G A; Sakurovs, Richard; Ruppert, Leslie F; Bahadur, Jitendra; Melnichenko, Yuri B

    2017-06-06

    Shale is an increasingly viable source of natural gas and a potential candidate for geologic CO 2 sequestration. Understanding the gas adsorption behavior on shale is necessary for the design of optimal gas recovery and sequestration projects. In the present study neutron diffraction and small-angle neutron scattering measurements of adsorbed CO 2 in Marcellus Shale samples were conducted on the Near and InterMediate Range Order Diffractometer (NIMROD) at the ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory along an adsorption isotherm of 22 °C and pressures of 25 and 40 bar. Additional measurements were conducted at approximately 22 and 60 °C at the same pressures on the General-Purpose Small-Angle Neutron Scattering (GP-SANS) instrument at Oak Ridge National Laboratory. The structures investigated (pores) for CO 2 adsorption range in size from Å level to ∼50 nm. The results indicate that, using the conditions investigated densification or condensation effects occurred in all accessible pores. The data suggest that at 22 °C the CO 2 has liquid-like properties when confined in pores of around 1 nm radius at pressures as low as 25 bar. Many of the 2.5 nm pores, 70% of 2 nm pores, most of the <1 nm pores, and all pores <0.25 nm, are inaccessible or closed to CO 2 , suggesting that despite the vast numbers of micropores in shale, the micropores will be unavailable for storage for geologic CO 2 sequestration.

  5. Feedback regulation on PTEN/AKT pathway by the ER stress kinase PERK mediated by interaction with the Vault complex.

    PubMed

    Zhang, Wei; Neo, Suat Peng; Gunaratne, Jayantha; Poulsen, Anders; Boping, Liu; Ong, Esther Hongqian; Sangthongpitag, Kanda; Pendharkar, Vishal; Hill, Jeffrey; Cohen, Stephen M

    2015-03-01

    The high proliferation rate of cancer cells, together with environmental factors such as hypoxia and nutrient deprivation can cause Endoplasmic Reticulum (ER) stress. The protein kinase PERK is an essential mediator in one of the three ER stress response pathways. Genetic and pharmacological inhibition of PERK has been reported to limit tumor growth in xenograft models. Here we provide evidence that inactive PERK interacts with the nuclear pore-associated Vault complex protein and that this compromises Vault-mediated nuclear transport of PTEN. Pharmacological inhibition of PERK under ER stress results is abnormal sequestration of the Vault complex, leading to increased cytoplasmic PTEN activity and lower AKT activation. As the PI3K/PTEN/AKT pathway is crucial for many aspects of cell growth and survival, this unexpected effect of PERK inhibitors on AKT activity may have implications for their potential use as therapeutic agents. Copyright © 2014. Published by Elsevier Inc.

  6. Effects of raised CO2 concentration on the egg production rate and early development of two marine copepods (Acartia steueri and Acartia erythraea).

    PubMed

    Kurihara, Haruko; Shimode, Shinji; Shirayama, Yoshihisa

    2004-11-01

    Direct injection of CO(2) into the deep ocean is receiving increasing attention as a way to mitigate increasing atmospheric CO(2) concentration. To assess the potential impact of the environmental change associated with CO(2) sequestration in the ocean, we studied the lethal and sub-lethal effects of raised CO(2) concentration in seawater on adult and early stage embryos of marine planktonic copepods. We found that the reproduction rate and larval development of copepods are very sensitive to increased CO(2) concentration. The hatching rate tended to decrease, and nauplius mortality rate to increase, with increased CO(2) concentration. These results suggest that the marine copepod community will be negatively affected by the disposal of CO(2). This could decrease on the carbon export flux to the deep ocean and change the biological pump. Clearly, further studies are needed to determine whether ocean CO(2) injection is an acceptable strategy to reduce anthropogenic CO(2).

  7. Mitigating oil spills in the water column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barry, Edward; Libera, Joseph A.; Mane, Anil U.

    The scale and scope of uncontrolled oil spills can be devastating. Diverse marine environments and fragile ecologies are some of the most susceptible to the many ill effects, while the economic costs can be crippling. A notoriously difficult challenge with no known technological solution is the successful removal of oil dispersed in the water column. Here, we address this problem through cheap and reusable oil sorbents based on the chemical modification of polymer foams. Interfacial chemistry was optimized and subsequently tested in a simulated marine environment at the National Oil Spill Response Research & Renewable Energy Test Facility, Ohmsett. Wemore » find favorable performance for surface oil mitigation and, for the first time, demonstrate the advanced sorbent's efficiency and efficacy at pilot scale in extraction of crude oil and refined petroleum products dispersed in the water column. As a result, this is a potentially disruptive technology, opening a new field of environmental science focused on sub-surface pollutant sequestration.« less

  8. Mitigating oil spills in the water column

    DOE PAGES

    Barry, Edward; Libera, Joseph A.; Mane, Anil U.; ...

    2017-10-05

    The scale and scope of uncontrolled oil spills can be devastating. Diverse marine environments and fragile ecologies are some of the most susceptible to the many ill effects, while the economic costs can be crippling. A notoriously difficult challenge with no known technological solution is the successful removal of oil dispersed in the water column. Here, we address this problem through cheap and reusable oil sorbents based on the chemical modification of polymer foams. Interfacial chemistry was optimized and subsequently tested in a simulated marine environment at the National Oil Spill Response Research & Renewable Energy Test Facility, Ohmsett. Wemore » find favorable performance for surface oil mitigation and, for the first time, demonstrate the advanced sorbent's efficiency and efficacy at pilot scale in extraction of crude oil and refined petroleum products dispersed in the water column. As a result, this is a potentially disruptive technology, opening a new field of environmental science focused on sub-surface pollutant sequestration.« less

  9. Carbon Storage and Sequestration in Ecosystems of the Western United States: Finings of a Recent Resource Assessment

    NASA Astrophysics Data System (ADS)

    Zhu, Z.; Bergamaschi, B. A.; Hawbaker, T. J.; Liu, S.; Sleeter, B. M.; Sohl, T. L.; Stackpoole, S. M.

    2012-12-01

    A new assessment was conducted covering 2.66 million km2 in the Western United States extending from the Rockies to the Pacific coastal waters, in two time periods: baseline (the first half of the 2000s) and future (projections from baseline to 2050), using in-situ and remotely sensed data together with statistical methods and simulation models. The total carbon storage in the ecosystems of the Western United States in 2005 was approximately 13,920 TgC; distributed in live biomass (38%), soil organic carbon (39%), and woody debris and other surface carbon pools (23%). Estimated mean values of major flux terms included net ecosystem production (-127.2 TgC/yr), inland lateral flux (7.2 TgC/yr) from rivers/streams to coastal areas, emissions from inland water surfaces to the atmosphere (28.2 TgC/yr), and emissions form the wildland fires (10.0 TgC/yr). Average C sequestration rates for the region were estimated: -86.6 TgC/yr in net flux for all terrestrial ecosystems, -2.4 and -2.0 TgC/yr in net burial rates in lakes and reservoirs and in the Pacific coastal waters respectively, for a total sequestration rate of -90.9 TgC/yr across all of the major ecosystems. A negative sign denotes uptake, sequestration, or a carbon sink. Most of the net carbon flux is in forests (62.2%, -72.1 gC/m2/yr), followed by grasslands/shrublands (29.6%, -16.4 gC/m2/yr), agricultural lands (7.1%, -38.3 gC/m2/yr), and wetlands (0.96%, -82.1 gC/m2/yr). Projected on the basis of future land-use and land-cover scenarios and climate projections, the total amount of carbon that potentially could be stored in the ecosystems of the Western United States in 2050 was estimated to range from 13,743 to 19,407 TgC, an increase of 1,325-3,947 TgC (or 10.7 to 25.5 %) from baseline conditions of 2005. The potential mean (averaged between 2006 and 2050) annual net carbon flux in terrestrial ecosystems was projected to range from -113.9 TgC/yr to 2.9 TgC/yr. When compared to the baseline net carbon flux estimates, the projected future carbon-sequestration rates in the Western United States represent a potential decline by 16.5 to 49 TgC/yr. The projected decline is largely associated with grasslands/shrublands and forests in the Rockies. Under future projections of climate change, the GHG combustion emissions from wildfires were projected to increase by 28 to 56 percent, relative to baseline conditions.

  10. Chemical composition of core samples from Newark Basin, a potential carbon sequestration site

    NASA Astrophysics Data System (ADS)

    Seltzer, A. M.; Yang, Q.; Goldberg, D.

    2012-12-01

    Injection of carbon dioxide into deep saline aquifers has been identified as a promising mitigation option of greenhouse gases, the successful management of which is considered to be one of the most urgent and important challenges. Given the high energy production in the New York metropolitan area, the Newark Basin region is considered to be a potential future sequestration site. However, the risk of an upward leak of sequestered CO2, especially to a shallow drinking water aquifer, is a key concern facing geological sequestration as a safe and viable mitigation option. In this study, we measured the chemical composition of 25 cores from various depths throughout Newark Basin as a precursor for an ex situ incubation experiment using these rock samples and aquifer water to simulate a leak event. Inductively coupled plasma mass spectrometry analysis of microwave-assisted digested rock powders and X-ray fluorescence analysis of the rock powders were conducted to obtain the concentrations of major and trace elements. Most of the major and trace elements show wide concentration ranges at one to two orders of magnitude. Understanding the chemical composition of these Newark Basin core samples is important not only for characterizing materials used for the later lab incubation, but also for gaining a broader understanding of the chemistry of the Newark Basin and profiling the region according to the varying risks associated with a leak of sequestered CO2 to a drinking water aquifer.

  11. Nitrous oxide emission and soil carbon sequestration from herbaceous perennial biofuel feedstocks

    USDA-ARS?s Scientific Manuscript database

    Greenhouse gas (GHG) mitigation and renewable, domestic fuels are needed in the United States. Switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerdardii Vitman) are potential bioenergy feedstocks that may meet this need. However, managing perennial grasses for feedstock requires nitro...

  12. Species and media effects on soil carbon dynamics in the landscape

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to determine the carbon sequestration potential from woody ornamental plants. Three species [cleyera (Ternstroemia gymnanthera Thunb. ‘Conthery’), Indian hawthorn (Rhaphiolepis indica L.), and loropetalum (Loropetalum chinensis Oliv.‘Ruby’) were container-grown for on...

  13. CARBON BALANCE OF FOREST BIOMES IN THE FORMER USSR

    EPA Science Inventory

    Sources and sinks of carbon and the sequestration potential of forest biomes in the former Soviet Union (FSU) were assessed under non-equilibrium conditions by considering, 1) net ecosystem productivity (NEP) of different age forest stands and actual forest coverage, 2) carbon fl...

  14. Predicted fire behavior and societal benefits in three eastern Sierra Nevada vegetation types

    Treesearch

    C.A. Dicus; K. Delfino; D.R. Weise

    2009-01-01

    We investigated potential fire behavior and various societal benefits (air pollution removal, carbon sequestration, and carbon storage) provided by woodlands of pinyon pine (Pinus monophylla) and juniper (Juniperus californica), shrublands of Great Basin sagebrush (Artemisia tridentata) and rabbitbrush (Ericameria nauseosa...

  15. Methods and apparatus for measuring small leaks from carbon dioxide sequestration facilities

    DOEpatents

    Nelson, Jr., David D.; Herndon, Scott C.

    2018-01-02

    In one embodiment, a CO.sub.2 leak detection instrument detects leaks from a site (e.g., a CO.sub.2 sequestration facility) using rapid concentration measurements of CO.sub.2, O.sub.2 and optionally water concentration that are achieved, for example, using laser spectroscopy (e.g. direct absorption laser spectroscopy). Water vapor in the sample gas may not be removed, or only partially removed. The sample gas may be collected using a multiplexed inlet assembly from a plurality of locations. CO.sub.2 and O.sub.2 concentrations may be corrected based on the water concentration. A resulting dataset of the CO.sub.2 and O.sub.2 concentrations is analyzed over time intervals to detect any changes in CO.sub.2 concentration that are not anti-correlated with O.sub.2 concentration, and to identify a potential CO.sub.2 leak in response thereto. The analysis may include determining eddy covariance flux measurements of sub-surface potential carbon.

  16. Quantification of key long-term risks at CO₂ sequestration sites: Latest results from US DOE's National Risk Assessment Partnership (NRAP) Project

    DOE PAGES

    Pawar, Rajesh; Bromhal, Grant; Carroll, Susan; ...

    2014-12-31

    Risk assessment for geologic CO₂ storage including quantification of risks is an area of active investigation. The National Risk Assessment Partnership (NRAP) is a US-Department of Energy (US-DOE) effort focused on developing a defensible, science-based methodology and platform for quantifying risk profiles at geologic CO₂ sequestration sites. NRAP has been developing a methodology that centers round development of an integrated assessment model (IAM) using system modeling approach to quantify risks and risk profiles. The IAM has been used to calculate risk profiles with a few key potential impacts due to potential CO₂ and brine leakage. The simulation results are alsomore » used to determine long-term storage security relationships and compare the long-term storage effectiveness to IPCC storage permanence goal. Additionally, we also demonstrate application of IAM for uncertainty quantification in order to determine parameters to which the uncertainty in model results is most sensitive.« less

  17. Carbon dioxide emission from bamboo culms.

    PubMed

    Zachariah, E J; Sabulal, B; Nair, D N K; Johnson, A J; Kumar, C S P

    2016-05-01

    Bamboos are one of the fastest growing plants on Earth, and are widely considered to have high ability to capture and sequester atmospheric carbon, and consequently to mitigate climate change. We tested this hypothesis by measuring carbon dioxide (CO2 ) emissions from bamboo culms and comparing them with their biomass sequestration potential. We analysed diurnal effluxes from Bambusa vulgaris culm surface and gas mixtures inside hollow sections of various bamboos using gas chromatography. Corresponding variations in gas pressure inside the bamboo section and culm surface temperature were measured. SEM micrographs of rhizome and bud portions of bamboo culms were also recorded. We found very high CO2 effluxes from culm surface, nodes and buds of bamboos. Positive gas pressure and very high concentrations of CO2 were observed inside hollow sections of bamboos. The CO2 effluxes observed from bamboos were very high compared to their carbon sequestration potential. Our measurements suggest that bamboos are net emitters of CO2 during their lifespan. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. Integrated mangrove-shrimp cultivation: Potential for blue carbon sequestration.

    PubMed

    Ahmed, Nesar; Thompson, Shirley; Glaser, Marion

    2018-05-01

    Globally, shrimp farming has had devastating effects on mangrove forests. However, mangroves are the most carbon-rich forests, with blue carbon (i.e., carbon in coastal and marine ecosystems) emissions seriously augmented due to devastating effects on mangrove forests. Nevertheless, integrated mangrove-shrimp cultivation has emerged as a part of the potential solution to blue carbon emissions. Integrated mangrove-shrimp farming is also known as organic aquaculture if deforested mangrove area does not exceed 50% of the total farm area. Mangrove destruction is not permitted in organic aquaculture and the former mangrove area in parts of the shrimp farm shall be reforested to at least 50% during a period of maximum 5 years according to Naturland organic aquaculture standards. This article reviews integrated mangrove-shrimp cultivation that can help to sequester blue carbon through mangrove restoration, which can be an option for climate change mitigation. However, the adoption of integrated mangrove-shrimp cultivation could face several challenges that need to be addressed in order to realize substantial benefits from blue carbon sequestration.

  19. Charcoal addition to soils in NE England: a carbon sink with environmental co-benefits?

    PubMed

    Bell, M J; Worrall, F

    2011-04-01

    Interest in the application of biochar (charcoal produced during the pyrolysis of biomass) to agricultural land is increasing across the world, recognised as a potential way to capture and store atmospheric carbon. Its interest is heightened by its potential co-benefits for soil quality and fertility. The majority of research has however been undertaken in tropical rather than temperate regions. This study assessed the potential for lump-wood charcoal addition (as a substitute for biochar) to soil types which are typically under arable and forest land-use in North East England. The study was undertaken over a 28 week period and found: i) No significant difference in net ecosystem respiration (NER) between soils containing charcoal and those without, other than in week 1 of the trial. ii) A significantly higher dissolved organic carbon (DOC) flux from soils containing large amounts of charcoal than from those untreated, when planted with ryegrass. iii) That when increased respiration or DOC loss did occur, neither was sufficiently large to alter the carbon sink benefits of charcoal application. iv) That charcoal incorporation resulted in a significantly lower nitrate flux in soil leachate from mineral soils. v) That charcoal incorporation caused significant increases in soil pH, from 6.98 to 7.22 on bare arable soils when 87,500 kg charcoal/ha was applied. Consideration of both the carbon sink and environmental benefits observed here suggests that charcoal application to temperate soils typical of North East England should be considered as a method of carbon sequestration. Before large scale land application is encouraged, further large scale trials should be undertaken to confirm the positive results of this research. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Stabilization of biosolids with nanoscale zero-valent iron (nZVI)

    NASA Astrophysics Data System (ADS)

    Li, Xiao-qin; Brown, Derick G.; Zhang, Wei-xian

    2007-04-01

    Biosolids are the treated organic residuals, also known as sludge, that are generated from domestic wastewater treatment plants. According to the USEPA, over 7 millions tons (dry weight) of biosolids are generated every year in the US by more than the 16,000 wastewater treatment plants and a large portion of these biosolids is disposed on land. Nuisance odors, the potential of pathogen transmission, and presence of toxic and persistent organic chemicals and metals in biosolids have for the most part limited the use of land applications. This paper presents zero-valent iron nanoparticles (1-100 nm) for the treatment and stabilization of biosolids. Iron nanoparticles have been shown to form stable and nonvolatile surface complexes with malodorous sulfur compounds such as hydrogen sulfide and methyl sulfides, degrade persistent organic pollutants such as PCBs and chlorinated pesticides, and sequestrate toxic metal ions such as mercury and lead. The end products from the nanoparticle reactions are iron oxides and oxyhydroxides, similar to the ubiquitous iron minerals in the environment. Due to the large surface area and high surface reactivity, only a relatively low dose (<0.1% wt) of iron nanoparticles is needed for effective biosolids stabilization. The iron nanoparticle technology may thus offer an economically and environmentally sustainable and unique solution to one of the most vexing environmental problems.

Top