Sample records for serial electron micrographs

  1. Automation of 3D reconstruction of neural tissue from large volume of conventional serial section transmission electron micrographs.

    PubMed

    Mishchenko, Yuriy

    2009-01-30

    We describe an approach for automation of the process of reconstruction of neural tissue from serial section transmission electron micrographs. Such reconstructions require 3D segmentation of individual neuronal processes (axons and dendrites) performed in densely packed neuropil. We first detect neuronal cell profiles in each image in a stack of serial micrographs with multi-scale ridge detector. Short breaks in detected boundaries are interpolated using anisotropic contour completion formulated in fuzzy-logic framework. Detected profiles from adjacent sections are linked together based on cues such as shape similarity and image texture. Thus obtained 3D segmentation is validated by human operators in computer-guided proofreading process. Our approach makes possible reconstructions of neural tissue at final rate of about 5 microm3/manh, as determined primarily by the speed of proofreading. To date we have applied this approach to reconstruct few blocks of neural tissue from different regions of rat brain totaling over 1000microm3, and used these to evaluate reconstruction speed, quality, error rates, and presence of ambiguous locations in neuropil ssTEM imaging data.

  2. New developments in electron microscopy for serial image acquisition of neuronal profiles.

    PubMed

    Kubota, Yoshiyuki

    2015-02-01

    Recent developments in electron microscopy largely automate the continuous acquisition of serial electron micrographs (EMGs), previously achieved by laborious manual serial ultrathin sectioning using an ultramicrotome and ultrastructural image capture process with transmission electron microscopy. The new systems cut thin sections and capture serial EMGs automatically, allowing for acquisition of large data sets in a reasonably short time. The new methods are focused ion beam/scanning electron microscopy, ultramicrotome/serial block-face scanning electron microscopy, automated tape-collection ultramicrotome/scanning electron microscopy and transmission electron microscope camera array. In this review, their positive and negative aspects are discussed. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. An analysis of the circuitry of the visual pathway of the lateral eye of limullus

    NASA Technical Reports Server (NTRS)

    Sjoestrand, F. S.

    1970-01-01

    The methodology is discussed for three-dimensional analysis of the nervous system on the basis of electron micrographs of serial sections. An analysis is presented of a part of the circuitry of the rabbit retina. In addition, some exploratory work is reported with respect to the visual cortex of the cat brain. A proper technique for preservation of the visual cortex was worked out and a technique to localize microelectrode tips in the tissue in connection with electron microscopy was partially worked out.

  4. Serial Section Scanning Electron Microscopy (S3EM) on Silicon Wafers for Ultra-Structural Volume Imaging of Cells and Tissues

    PubMed Central

    Horstmann, Heinz; Körber, Christoph; Sätzler, Kurt; Aydin, Daniel; Kuner, Thomas

    2012-01-01

    High resolution, three-dimensional (3D) representations of cellular ultrastructure are essential for structure function studies in all areas of cell biology. While limited subcellular volumes have been routinely examined using serial section transmission electron microscopy (ssTEM), complete ultrastructural reconstructions of large volumes, entire cells or even tissue are difficult to achieve using ssTEM. Here, we introduce a novel approach combining serial sectioning of tissue with scanning electron microscopy (SEM) using a conductive silicon wafer as a support. Ribbons containing hundreds of 35 nm thick sections can be generated and imaged on the wafer at a lateral pixel resolution of 3.7 nm by recording the backscattered electrons with the in-lens detector of the SEM. The resulting electron micrographs are qualitatively comparable to those obtained by conventional TEM. S3EM images of the same region of interest in consecutive sections can be used for 3D reconstructions of large structures. We demonstrate the potential of this approach by reconstructing a 31.7 µm3 volume of a calyx of Held presynaptic terminal. The approach introduced here, Serial Section SEM (S3EM), for the first time provides the possibility to obtain 3D ultrastructure of large volumes with high resolution and to selectively and repetitively home in on structures of interest. S3EM accelerates process duration, is amenable to full automation and can be implemented with standard instrumentation. PMID:22523574

  5. Serial section scanning electron microscopy (S3EM) on silicon wafers for ultra-structural volume imaging of cells and tissues.

    PubMed

    Horstmann, Heinz; Körber, Christoph; Sätzler, Kurt; Aydin, Daniel; Kuner, Thomas

    2012-01-01

    High resolution, three-dimensional (3D) representations of cellular ultrastructure are essential for structure function studies in all areas of cell biology. While limited subcellular volumes have been routinely examined using serial section transmission electron microscopy (ssTEM), complete ultrastructural reconstructions of large volumes, entire cells or even tissue are difficult to achieve using ssTEM. Here, we introduce a novel approach combining serial sectioning of tissue with scanning electron microscopy (SEM) using a conductive silicon wafer as a support. Ribbons containing hundreds of 35 nm thick sections can be generated and imaged on the wafer at a lateral pixel resolution of 3.7 nm by recording the backscattered electrons with the in-lens detector of the SEM. The resulting electron micrographs are qualitatively comparable to those obtained by conventional TEM. S(3)EM images of the same region of interest in consecutive sections can be used for 3D reconstructions of large structures. We demonstrate the potential of this approach by reconstructing a 31.7 µm(3) volume of a calyx of Held presynaptic terminal. The approach introduced here, Serial Section SEM (S(3)EM), for the first time provides the possibility to obtain 3D ultrastructure of large volumes with high resolution and to selectively and repetitively home in on structures of interest. S(3)EM accelerates process duration, is amenable to full automation and can be implemented with standard instrumentation.

  6. Atom Optics for Bose-Einstein Condensates (BEC)

    DTIC Science & Technology

    2012-04-25

    Electron Micrograph of the Top View of Test Chip A .......................................29 11. A Scanning Electron Micrograph of the Cross...Sectional View of Test Chip A .....................29 12. A Scanning Electron Micrograph of the Top View of Test Chip B...30 13. A Scanning Electron Micrograph of the Cross Sectional View of Test Chip B .....................30 14. Toner Masks for Etching

  7. FIB-SEM tomography in biology.

    PubMed

    Kizilyaprak, Caroline; Bittermann, Anne Greet; Daraspe, Jean; Humbel, Bruno M

    2014-01-01

    Three-dimensional information is much easier to understand than a set of two-dimensional images. Therefore a layman is thrilled by the pseudo-3D image taken in a scanning electron microscope (SEM) while, when seeing a transmission electron micrograph, his imagination is challenged. First approaches to gain insight in the third dimension were to make serial microtome sections of a region of interest (ROI) and then building a model of the object. Serial microtome sectioning is a tedious and skill-demanding work and therefore seldom done. In the last two decades with the increase of computer power, sophisticated display options, and the development of new instruments, an SEM with a built-in microtome as well as a focused ion beam scanning electron microscope (FIB-SEM), serial sectioning, and 3D analysis has become far easier and faster.Due to the relief like topology of the microtome trimmed block face of resin-embedded tissue, the ROI can be searched in the secondary electron mode, and at the selected spot, the ROI is prepared with the ion beam for 3D analysis. For FIB-SEM tomography, a thin slice is removed with the ion beam and the newly exposed face is imaged with the electron beam, usually by recording the backscattered electrons. The process, also called "slice and view," is repeated until the desired volume is imaged.As FIB-SEM allows 3D imaging of biological fine structure at high resolution of only small volumes, it is crucial to perform slice and view at carefully selected spots. Finding the region of interest is therefore a prerequisite for meaningful imaging. Thin layer plastification of biofilms offers direct access to the original sample surface and allows the selection of an ROI for site-specific FIB-SEM tomography just by its pronounced topographic features.

  8. Morphology of the Vestibular Utricule in Toadfish, Opsanus Tau

    NASA Technical Reports Server (NTRS)

    Bass, L.; Smith, J.; Twombly, A.; Boyle, Richard; Varelas, Ehsanian J.; Johanson, C.

    2003-01-01

    The uticle is an otolith organ in the vertebrate inner ear that provides gravitoinertial acceleration information into the vestibular reflex pathways. The aim of the present study was to provide an anatomical description of this structure in the adult oyster toadfish, and establish a morphological basis for interpretation of subsequent functional studies. Light, scanning electron and transmission electron microscopy were applied to visualize the sensory epithelium and its neural innervation. Electrophysiological techniques were used to identify utricular afferents by their response to translation stimuli. Similar to nerve afferents supplying the semicircular canals and lagena, utricular afferents commonly exhibit a short-latency increase of firing rate in response to electrical activation of the central efferent pathway. Afferents were labeled with biocytin either intraaxonally or with extracellular bulk deposits. Light microscope images of serial thick sections were used to make three-dimensional reconstructions of individual labeled afferents to identify the dendritic morphology with respect to epithelial location. Scanning electron microscopy was used to visualize the surface of the otolith mass facing the otolith membrane, and the hair cell polarization patterns of strioler and extrastriolar regions. Transmission electron micrographs of serial thin sections were compiled to create a three-dimensional reconstruction of the labeled afferent over a segment of its dendritic field and to examine the hair cell-afferent synaptic contacts.

  9. Optimizing the 3D-reconstruction technique for serial block-face scanning electron microscopy.

    PubMed

    Wernitznig, Stefan; Sele, Mariella; Urschler, Martin; Zankel, Armin; Pölt, Peter; Rind, F Claire; Leitinger, Gerd

    2016-05-01

    Elucidating the anatomy of neuronal circuits and localizing the synaptic connections between neurons, can give us important insights in how the neuronal circuits work. We are using serial block-face scanning electron microscopy (SBEM) to investigate the anatomy of a collision detection circuit including the Lobula Giant Movement Detector (LGMD) neuron in the locust, Locusta migratoria. For this, thousands of serial electron micrographs are produced that allow us to trace the neuronal branching pattern. The reconstruction of neurons was previously done manually by drawing cell outlines of each cell in each image separately. This approach was very time consuming and troublesome. To make the process more efficient a new interactive software was developed. It uses the contrast between the neuron under investigation and its surrounding for semi-automatic segmentation. For segmentation the user sets starting regions manually and the algorithm automatically selects a volume within the neuron until the edges corresponding to the neuronal outline are reached. Internally the algorithm optimizes a 3D active contour segmentation model formulated as a cost function taking the SEM image edges into account. This reduced the reconstruction time, while staying close to the manual reference segmentation result. Our algorithm is easy to use for a fast segmentation process, unlike previous methods it does not require image training nor an extended computing capacity. Our semi-automatic segmentation algorithm led to a dramatic reduction in processing time for the 3D-reconstruction of identified neurons. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The effects of kinetic structure and micrograph content on achievement in reading micrographs by college biology students

    NASA Astrophysics Data System (ADS)

    Johnson, Virginia Abbott; Lockard, J. David

    The effects of kinetic structure and micrograph content on student achievement of reading micrograph skills were examined. The purpose of the study was to determine which form of kinetic structure, high or low, and/or micrograph content, unified or varied, was most effective and if there were any interactive effects. Randomly assigned to four treatment groups, 100 introductory college biology students attended three audiovisual presentations and practice sessions on reading light, transmission electron, and scanning electron micrographs. The micrograph skills test, administered at two points in time, assessed knowledge acquisition and retention. The test measured general concept skills and actual reading micrograph skills separately. All significant tests were considered with an = 0.05. High kinetic structure was found to be more effective than low kinetic structure in developing general concepts about micrographs. This finding supports Anderson's kinetic theory research. High kinetic structure instruction does not affect actual reading micrograph skills, but micrograph content does. Unified micrograph content practice sessions were more effective than varied micrograph content practice sessions. More attention should be given to the visual components of perceptual learning tasks.

  11. Charting the Isophasic Endophyte of Dwarf Mistletoe Arceuthobium douglasii (Viscaceae) in Host Apical Buds

    PubMed Central

    LYE, DAVID

    2006-01-01

    • Background and Aims Dwarf mistletoes (Arceuthobium; Viscaceae) are highly specialized dioecious angiosperms parasitic on many gymnosperm hosts in the northern hemisphere. Several dwarf mistletoe species are capable of inducing an unusual form of isophasic infection in which the internal (endophytic) system proliferates even into the apical buds of its hosts. Studies of the internal endophytic system have, for the most part, focused on the parasite within secondary host tissues. The present anatomical and ultrastructural study characterizes the growth pattern of the isophasic endophytic system of Arceuthobium douglasii within the dormant apical buds of Pseudotsuga menziesii. • Methods Semi-thin serial sections from dwarf mistletoe-infected host apical buds were mounted, stained and micrographed. Graphic files were created from the serial micrographs and these files were stacked. These stacked files were utilized to describe the pattern of growth of the endophyte within the host tissue. The interface between cells of the mistletoe and host was also examined at the ultrastructural level by transmission electron microscopy. • Key Results By utilizing a novel technique of superimposed graphics, the current study reveals an organized pattern of mistletoe distribution that penetrates further into host tissues than previously known. A consistent pattern of growth occurring even into the preformed leaves of the host is documented. • Conclusions The apparently non-intrusive growth of the parasite appears to be developmentally synchronized with that of the host. No symplastic connections were observed in the ultrastructural examination of the parasite/host interface within the apical buds of Pseudotsuga menziesii parasitized by A. douglasii or of Pinus contorta parasitized by A. americanum. PMID:16613903

  12. Sample preparation methods for scanning electron microscopy of homogenized Al-Mg-Si billets: A comparative study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Österreicher, Johannes Albert; Kumar, Manoj

    Characterization of Mg-Si precipitates is crucial for optimizing the homogenization heat treatment of Al-Mg-Si alloys. Although sample preparation is key for high quality scanning electron microscopy imaging, most common methods lead to dealloying of Mg-Si precipitates. In this article we systematically evaluate different sample preparation methods: mechanical polishing, etching with various reagents, and electropolishing using different electrolytes. We demonstrate that the use of a nitric acid and methanol electrolyte for electropolishing a homogenized Al-Mg-Si alloy prevents the dissolution of Mg-Si precipitates, resulting in micrographs of higher quality. This preparation method is investigated in depth and the obtained scanning electron microscopymore » images are compared with transmission electron micrographs: the shape and size of Mg-Si precipitates appear very similar in either method. The scanning electron micrographs allow proper identification and measurement of the Mg-Si phases including needles with lengths of roughly 200 nm. These needles are β″ precipitates as confirmed by high resolution transmission electron microscopy. - Highlights: •Secondary precipitation in homogenized 6xxx Al alloys is crucial for extrudability. •Existing sample preparation methods for SEM are improvable. •Electropolishing with nitric acid/methanol yields superior quality in SEM. •The obtained micrographs are compared to TEM micrographs.« less

  13. Distribution profile of inositol 1,4,5-trisphosphate receptor isoforms in adrenal chromaffin cells.

    PubMed

    Huh, Yang Hoon; Yoo, Jie Ae; Bahk, Sook Jin; Yoo, Seung Hyun

    2005-05-09

    Given the importance of inositol 1,4,5-trisphosphate receptor (IP(3)R)/Ca(2+) channels in the control of intracellular Ca(2+) concentrations, we determined the relative concentrations of the IP(3)R isoforms in subcellular organelles, based on serially sectioned electron micrographs. The endoplasmic reticulum (ER) was estimated to contain 15-20% of each of the three IP(3)R isoforms while secretory granules contained 58-69%. The nucleus contained approximately 15% each of IP(3)R-1 and -2, but 25% of IP(3)R-3, whereas the plasma membrane contained approximately 1% or less of each. These suggested that secretory granules, the nucleus and ER are at the center of IP(3)-dependent intracellular Ca(2+) control mechanisms in chromaffin cells.

  14. Attachment reaction of rat uterine luminal epithelium. II. The effect of progesterone on the morphology of the uterine glands and the luminal epithelium of the spayed, virgin rat.

    PubMed

    Ljungkvist, I

    1971-01-01

    Ovariosalpingectomized rat uterine glands and luminal epithelium were examined by electron microscopy and in serial cross sections under light microscopy after up to 8 days of treatment with 5 mg progesterone daily. Under light microscopy, the gland lumen was narrow or absent in many epon sections, but wide in many paraffin sections, filled with toluidine blue stained secretion, and serial sections showed that the openings were closed, allowing no connection between the gland lumen and the uterus. In electron micrographs, only those glands without an opening appeared altered by progesterone. The most notable differences in the glandular epithelium were microvilli, condensed ribosome-free cytoplasm next to the lumen, numerous vesicles, sacs and dilated Golgi cisternae in the apical cytoplasm, and more giant mitrochondria in the basal cytoplasm than usually seen in controls. In the luminal epithelium, there were 3 distinct regions: the apical region had condensed cytoplasm often extruded into the lumen, with close-packed, smooth, empty vesicles; the middle region had granular endoplasmic reticulum, mitrochondria, dense bodies, multivesicular bodies, and lipid granules; the basal region contained the nucleus, granular endoplasmic reticulum, mitrochondria and dense abodies. These observations were interpreted as indicative of a transitional state from secretion to absorption, especially since without an opening, secretion would be of little significance.

  15. Profiling with the electron microscope.

    NASA Technical Reports Server (NTRS)

    Vedder, J. F.; Lem, H. Y.

    1972-01-01

    Discussion of a profiling technique using a scanning electron microscope for obtaining depth information on a single micrograph of a small specimen. A stationary electron beam is used to form a series of contamination spots in a line across the specimen. Micrographs obtained by this technique are useful as a means of projection and display where stereo viewers are not practical.

  16. Electron microscopy of octacalcium phosphate in the dental calculus.

    PubMed

    Kakei, Mitsuo; Sakae, Toshiro; Yoshikawa, Masayoshi

    2009-12-01

    The purpose of this study was to morphologically demonstrate the presence of octacalcium phosphate in the dental calculus by judging from the crystal lattice image and its rapid transformation into apatite crystal, as part of our serial studies on biomineral products. We also aimed to confirm whether the physical properties of octacalcium phosphate are identical with those of the central dark lines observed in crystals of ordinary calcifying hard tissues. Electron micrographs showed that crystals of various sizes form in the dental calculus. The formation of each crystal seemed to be closely associated with the organic substance, possibly originating from degenerated microorganisms at the calcification front. Many crystals had an 8.2-A lattice interval, similar to that of an apatite crystal. Furthermore, some crystals clearly revealed an 18.7-A lattice interval and were vulnerable to electron bombardment. After electron beam exposure, this lattice interval was quickly altered to about half (i.e. 8.2 A), indicating structural conversion. Consequently, a number of apatite crystals in the dental calculus are possibly created by a conversion mechanism involving an octacalcium phosphate intermediate. However, we also concluded that the calcification process in the dental calculus is not similar to that of ordinary calcifying hard tissues.

  17. Macro-microscopic anatomy: obtaining a composite view of barrier zone formation in Acer saccharum

    Treesearch

    Kenneth Dudzik

    1988-01-01

    The technique for constructing a montage of large wood sections cut on a sliding microtome is discussed. Briefly, the technique involves photographing many serial micrographs in a pattern under a light microscope similar to the way flight lines are run in aerial photography. Assembly of the resulting overlapping photographs requires careful trimming. A composite of...

  18. IBIS integrated biological imaging system: electron micrograph image-processing software running on Unix workstations.

    PubMed

    Flifla, M J; Garreau, M; Rolland, J P; Coatrieux, J L; Thomas, D

    1992-12-01

    'IBIS' is a set of computer programs concerned with the processing of electron micrographs, with particular emphasis on the requirements for structural analyses of biological macromolecules. The software is written in FORTRAN 77 and runs on Unix workstations. A description of the various functions and the implementation mode is given. Some examples illustrate the user interface.

  19. Qualitative and quantitative interpretation of SEM image using digital image processing.

    PubMed

    Saladra, Dawid; Kopernik, Magdalena

    2016-10-01

    The aim of the this study is improvement of qualitative and quantitative analysis of scanning electron microscope micrographs by development of computer program, which enables automatic crack analysis of scanning electron microscopy (SEM) micrographs. Micromechanical tests of pneumatic ventricular assist devices result in a large number of micrographs. Therefore, the analysis must be automatic. Tests for athrombogenic titanium nitride/gold coatings deposited on polymeric substrates (Bionate II) are performed. These tests include microshear, microtension and fatigue analysis. Anisotropic surface defects observed in the SEM micrographs require support for qualitative and quantitative interpretation. Improvement of qualitative analysis of scanning electron microscope images was achieved by a set of computational tools that includes binarization, simplified expanding, expanding, simple image statistic thresholding, the filters Laplacian 1, and Laplacian 2, Otsu and reverse binarization. Several modifications of the known image processing techniques and combinations of the selected image processing techniques were applied. The introduced quantitative analysis of digital scanning electron microscope images enables computation of stereological parameters such as area, crack angle, crack length, and total crack length per unit area. This study also compares the functionality of the developed computer program of digital image processing with existing applications. The described pre- and postprocessing may be helpful in scanning electron microscopy and transmission electron microscopy surface investigations. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  20. A Binary Segmentation Approach for Boxing Ribosome Particles in Cryo EM Micrographs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adiga, Umesh P.S.; Malladi, Ravi; Baxter, William

    Three-dimensional reconstruction of ribosome particles from electron micrographs requires selection of many single-particle images. Roughly 100,000 particles are required to achieve approximately 10 angstrom resolution. Manual selection of particles, by visual observation of the micrographs on a computer screen, is recognized as a bottleneck in automated single particle reconstruction. This paper describes an efficient approach for automated boxing of ribosome particles in micrographs. Use of a fast, anisotropic non-linear reaction-diffusion method to pre-process micrographs and rank-leveling to enhance the contrast between particles and the background, followed by binary and morphological segmentation constitute the core of this technique. Modifying the shapemore » of the particles to facilitate segmentation of individual particles within clusters and boxing the isolated particles is successfully attempted. Tests on a limited number of micrographs have shown that over 80 percent success is achieved in automatic particle picking.« less

  1. Generating 3D and 3D-like animations of strongly uneven surface microareas of bloodstains from small series of partially out-of-focus digital SEM micrographs.

    PubMed

    Hortolà, Policarp

    2010-01-01

    When dealing with microscopic still images of some kinds of samples, the out-of-focus problem represents a particularly serious limiting factor for the subsequent generation of fully sharp 3D animations. In order to produce fully-focused 3D animations of strongly uneven surface microareas, a vertical stack of six digital secondary-electron SEM micrographs of a human bloodstain microarea was acquired. Afterwards, single combined images were generated using a macrophotography and light microscope image post-processing software. Subsequently, 3D animations of texture and topography were obtained in different formats using a combination of software tools. Finally, a 3D-like animation of a texture-topography composite was obtained in different formats using another combination of software tools. By one hand, results indicate that the use of image post-processing software not concerned primarily with electron micrographs allows to obtain, in an easy way, fully-focused images of strongly uneven surface microareas of bloodstains from small series of partially out-of-focus digital SEM micrographs. On the other hand, results also indicate that such small series of electron micrographs can be utilized for generating 3D and 3D-like animations that can subsequently be converted into different formats, by using certain user-friendly software facilities not originally designed for use in SEM, that are easily available from Internet. Although the focus of this study was on bloodstains, the methods used in it well probably are also of relevance for studying the surface microstructures of other organic or inorganic materials whose sharp displaying is difficult of obtaining from a single SEM micrograph.

  2. Evidence from electron micrographs that icosahedral quasicrystals are icosahedral twins of cubic crystals.

    PubMed

    Pauling, L

    1990-10-01

    An analysis of electron micrographs of Al5Mn quasicrystals obtained by rapidly cooling a molten alloy with composition Al17Mn and removing the Al matrix by electrosolution, revealing aggregates of 20 microcrystals at the corners of a pentagonal dodecahedron, supports the proposal that these microcrystals are cubic crystals twinned about an icosahedral seed, with each cubic microcrystal sharing a threefold axis and three symmetry planes with the seed.

  3. Accurate determination of lattice parameters based on Niggli reduced cell theory by using digitized electron diffraction micrograph.

    PubMed

    Yang, Yi; Cai, Canying; Lin, Jianguo; Gong, Lunjun; Yang, Qibin

    2017-05-01

    In this paper, we used Niggli reduced cell theory to determine lattice constants of a micro/nano crystal by using electron diffraction patterns. The Niggli reduced cell method enhanced the accuracy of lattice constant measurement obviously, because the lengths and the angles of lattice vectors of a primitive cell can be measured directly on the electron micrographs instead of a double tilt holder. With the aid of digitized algorithm and least square optimization by using three digitized micrographs, a valid reciprocal Niggli reduced cell number can be obtained. Thus a reciprocal and real Bravais lattices are acquired. The results of three examples, i.e., Mg 4 Zn 7 , an unknown phase (Precipitate phase in nickel-base superalloy) and Ba 4 Ti 13 O 30 showed that the maximum errors are 1.6% for lengths and are 0.3% for angles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Ultrastructure of Deoxyribonucleic Acid-Membrane Associations in Escherichia coli

    PubMed Central

    Altenburg, B. C.; Suit, Joan C.; Brinkley, B. R.

    1970-01-01

    Areas of contact between deoxyribonucleic acid (DNA) and intracytoplasmic membrane are frequently seen in the “extra” membrane-forming strain Escherichia coli 0111a1. By examination of serial sections, it has been estimated that these DNA-membrane associations occur in at least 60% of the extra membrane-containing cells. Most of the DNA masses contained only one contact area. Several cells in which the DNA had been stretched revealed individual fibers connecting to the membrane, suggesting a firm attachment of DNA to membrane. The areas of membrane associated with DNA fibers were usually between 100 and 500 nm in diameter, although some smaller areas were seen. Electron microscopic autoradiography of cells in which the replication forks were labeled showed grains over 24% of the profiles containing a contact area, whereas there were grains over only 16% of the profiles without a contact area. Data from autoradiographs of cells in which the label was “chased” away from the replication fork showed the reverse labeling pattern. These data indicate that the areas of contact between DNA and intracytoplasmic membranes seen in electron micrographs contain the DNA replication forks. Images PMID:4919755

  5. Synthesis of nanocrystalline diamonds by microwave plasma

    NASA Astrophysics Data System (ADS)

    Purohit, V. S.; Jain, Deepti; Sathe, V. G.; Ganesan, V.; Bhoraskar, S. V.

    2007-03-01

    Nanocrystalline diamonds, varying in size from 40 to 400 nm, with random faceting were grown without the help of initial nucleation sites on nickel substrates as seen by scanning electron micrographs. These carbonaceous films were deposited in a microwave plasma reactor using hexane/nitrogen based chemical vapour deposition. The substrate temperatures during deposition were varied from 400 to 600 °C. The morphological investigations obtained by scanning electron micrographs and atomic force microscopy revealed the presence of nanocrystallites with multifaceted structures. Micro Raman investigations were carried out on the deposited films, which conclusively inferred that the growth of nanodiamond crystallites seen in the scanning electron micrographs correlate with clear Raman peaks appearing at 1120 and 1140 cm-1. Nanoindentation analysis with atomic force microscopy has revealed that the carbonaceous deposition identified by the Raman line at ~1140 cm-1, in fact, is related to nanodiamond on account of its hardness which was ~30 GPa. X-ray diffraction data supported this fact.

  6. Composition and Science: A Symbiotic Relationship.

    ERIC Educational Resources Information Center

    Coward, Pat; Taylor, Jo

    Critical thinking skills were taught to students in a lower-track freshman English class through the use of cross-disciplinary subject matter. Given a set of three transmission electron micrographs, or photographs of magnified tissue used in histology and pathology, students were asked to support their conclusions on which two of micrographs A, B,…

  7. Modulation of statolith mass and grouping in white clover (Trifolium repens) growth in 1-g, microgravity and on the clinostat

    NASA Technical Reports Server (NTRS)

    Smith, J. D.; Todd, P.; Staehelin, L. A.

    1997-01-01

    Current models of gravity perception in higher plants focus on the buoyant weight of starch-filled amyloplasts as the initial gravity signal susceptor (statolith). However, no tests have yet determined if statolith mass is regulated to increase or decrease gravity stimulus to the plant. To this end, the root caps of white clover (Trifolium repens) grown in three gravity environments with three different levels of gravity stimulation have been examined: (i) 1-g control with normal static gravistimulation, (ii) on a slow clinostat with constant gravistimulation, and (iii) in the stimulus-free microgravity aboard the Space Shuttle. Seedlings were germinated and grown in the BioServe Fluid Processing Apparatus and root cap structure was examined at both light and electron microscopic levels, including three-dimensional cell reconstruction from serial sections. Quantitative analysis of the electron micrographs demonstrated that the starch content of amyloplasts varied with seedling age but not gravity condition. It was also discovered that, unlike in starch storage amyloplasts, all of the starch granules of statolith amyloplasts were encompassed by a fine filamentous, ribosome-excluding matrix. From light micrographic 3-D cell reconstructions, the absolute volume, number, and positional relationships between amyloplasts showed (i) that individual amyloplast volume increased in microgravity but remained constant in seedlings grown for up to three days on the clinostat, (ii) the number of amyloplasts per cell remained unchanged in microgravity but decreased on the clinostat, and (iii) the three-dimensional positions of amyloplasts were not random. Instead amyloplasts in microgravity were grouped near the cell centers while those from the clinostat appeared more dispersed. Taken together, these observations suggest that changing gravity stimulation can elicit feedback control over statolith mass by changing the size, number, and grouping of amyloplasts. These results support the starch-statolith theory of graviperception in higher plants and add to current models with a new feedback control loop as a mechanism for modulation of statolith responsiveness to inertial acceleration.

  8. A Stochastic Kinematic Model of Class Averaging in Single-Particle Electron Microscopy

    PubMed Central

    Park, Wooram; Midgett, Charles R.; Madden, Dean R.; Chirikjian, Gregory S.

    2011-01-01

    Single-particle electron microscopy is an experimental technique that is used to determine the 3D structure of biological macromolecules and the complexes that they form. In general, image processing techniques and reconstruction algorithms are applied to micrographs, which are two-dimensional (2D) images taken by electron microscopes. Each of these planar images can be thought of as a projection of the macromolecular structure of interest from an a priori unknown direction. A class is defined as a collection of projection images with a high degree of similarity, presumably resulting from taking projections along similar directions. In practice, micrographs are very noisy and those in each class are aligned and averaged in order to reduce the background noise. Errors in the alignment process are inevitable due to noise in the electron micrographs. This error results in blurry averaged images. In this paper, we investigate how blurring parameters are related to the properties of the background noise in the case when the alignment is achieved by matching the mass centers and the principal axes of the experimental images. We observe that the background noise in micrographs can be treated as Gaussian. Using the mean and variance of the background Gaussian noise, we derive equations for the mean and variance of translational and rotational misalignments in the class averaging process. This defines a Gaussian probability density on the Euclidean motion group of the plane. Our formulation is validated by convolving the derived blurring function representing the stochasticity of the image alignments with the underlying noiseless projection and comparing with the original blurry image. PMID:21660125

  9. PREVAIL: latest electron optics results

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Hans C.; Golladay, Steven D.; Gordon, Michael S.; Kendall, Rodney A.; Lieberman, Jon E.; Rockrohr, James D.; Stickel, Werner; Yamaguchi, Takeshi; Okamoto, Kazuya; Umemoto, Takaaki; Shimizu, Hiroyasu; Kojima, Shinichi; Hamashima, Muneki

    2002-07-01

    The PREVAIL electron optics subsystem developed by IBM has been installed at Nikon's facility in Kumagaya, Japan, for integration into the Nikon commercial EPL stepper. The cornerstone of the electron optics design is the Curvilinear Variable Axis Lens (CVAL) technique originally demonstrated with a proof of concept system. This paper presents the latest experimental results obtained with the electron optical subsystem at Nikon's facility. The results include micrographs illustrating proper CVAL operation through the spatial resolution achieved over the entire optical field of view. They also include data on the most critical issue of the EPL exposure approach: subfield stitching. The methodology of distortion correction will be described and both micrographs and metrology data of stitched subfields will be presented. This paper represents a progress report of the IBM/Nikon alliance activity on EPL.

  10. SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs

    PubMed Central

    Shaikh, Tanvir R; Gao, Haixiao; Baxter, William T; Asturias, Francisco J; Boisset, Nicolas; Leith, Ardean; Frank, Joachim

    2009-01-01

    This protocol describes the reconstruction of biological molecules from the electron micrographs of single particles. Computation here is performed using the image-processing software SPIDER and can be managed using a graphical user interface, termed the SPIDER Reconstruction Engine. Two approaches are described to obtain an initial reconstruction: random-conical tilt and common lines. Once an existing model is available, reference-based alignment can be used, a procedure that can be iterated. Also described is supervised classification, a method to look for homogeneous subsets when multiple known conformations of the molecule may coexist. PMID:19180078

  11. Directional budding of human immunodeficiency virus from monocytes.

    PubMed Central

    Perotti, M E; Tan, X; Phillips, D M

    1996-01-01

    Time-lapse cinematography revealed that activated human immunodeficiency virus (HIV)-infected monocytes crawl along surfaces, putting forward a leading pseudopod. Scanning electron micrographs showed monocyte pseudopods associated with spherical structures the size of HIV virions, and transmission electron micrographs revealed HIV virions budding from pseudopods. Filamentous actin (F-actin) was localized by electron microscopy in the pseudopod by heavy meromyosin decoration. Colocalization of F-actin and p24 viral antigen by light microscopy immunofluorescence indicated that F-actin and virus were present on the same pseudopod. These observations indicate that monocytes produce virus from a leading pseudopod. We suggest that HIV secretion at the leading edges of donor monocytes/macrophages may be an efficient way for HIV to infect target cells. PMID:8709212

  12. Facing the Limitations of Electronic Document Handling.

    ERIC Educational Resources Information Center

    Moralee, Dennis

    1985-01-01

    This essay addresses problems associated with technology used in the handling of high-resolution visual images in electronic document delivery. Highlights include visual fidelity, laser-driven optical disk storage, electronics versus micrographics for document storage, videomicrographics, and system configurations and peripherals. (EJS)

  13. Mosaic construction, processing, and review of very large electron micrograph composites

    NASA Astrophysics Data System (ADS)

    Vogt, Robert C., III; Trenkle, John M.; Harmon, Laurel A.

    1996-11-01

    A system of programs is described for acquisition, mosaicking, cueing and interactive review of large-scale transmission electron micrograph composite images. This work was carried out as part of a final-phase clinical analysis study of a drug for the treatment of diabetic peripheral neuropathy. MOre than 500 nerve biopsy samples were prepared, digitally imaged, processed, and reviewed. For a given sample, typically 1000 or more 1.5 megabyte frames were acquired, for a total of between 1 and 2 gigabytes of data per sample. These frames were then automatically registered and mosaicked together into a single virtual image composite, which was subsequently used to perform automatic cueing of axons and axon clusters, as well as review and marking by qualified neuroanatomists. Statistics derived from the review process were used to evaluate the efficacy of the drug in promoting regeneration of myelinated nerve fibers. This effort demonstrates a new, entirely digital capability for doing large-scale electron micrograph studies, in which all of the relevant specimen data can be included at high magnification, as opposed to simply taking a random sample of discrete locations. It opens up the possibility of a new era in electron microscopy--one which broadens the scope of questions that this imaging modality can be used to answer.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaka, Fowzia

    This method describes the characterization of HE powders by Scanning Electron Microscopy (SEM). HE particles are dispersed onto an aluminum standard SEM specimen mount. Electron micrographs are collected at various magnifications (150 to 10,000 X) depending on HE particle size.

  15. Cloud condensation nucleus counter by impactor sampling technique

    NASA Technical Reports Server (NTRS)

    Ohtake, T.

    1981-01-01

    Unlike typical CCN counters, this device counts the numbers of water droplets condensed on aerosol particles sampled on a microcover glass at various different relative humidities. The relative humidities ranged from 75 percent to a calculated value of 110 percent. A schematic of the apparatus is shown. The individual CCN can be identified in an optical micrograph and scanning electron micrograph and may be inspected for their chemical composition later.

  16. An approach to automated particle picking from electron micrographs based on reduced representation templates.

    PubMed

    Volkmann, Niels

    2004-01-01

    Reduced representation templates are used in a real-space pattern matching framework to facilitate automatic particle picking from electron micrographs. The procedure consists of five parts. First, reduced templates are constructed either from models or directly from the data. Second, a real-space pattern matching algorithm is applied using the reduced representations as templates. Third, peaks are selected from the resulting score map using peak-shape characteristics. Fourth, the surviving peaks are tested for distance constraints. Fifth, a correlation-based outlier screening is applied. Test applications to a data set of keyhole limpet hemocyanin particles indicate that the method is robust and reliable.

  17. Cellular morphometry of the bronchi of human and dog lungs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robbins, E.S.

    1991-09-01

    One hundred and forty-seven bronchial samples (generations 3--6) from 66 patients (62 usable; 36 female, 26 male; median age 61) have been dissected by generation from fixed surgical lung specimens obtained after the removal of pathological lesions. In addition, one hundred and fifty-six mongol dog bronchi (generations 2--6) dissected from different lobes of 26 dog lungs have also been similarly prepared. One hundred and twenty-seven human samples have been completely processed for electron microscopy and have yielded 994 electron micrographs of which 655 have been entered into the Computerized Stereological Analysis System (COSAS) and been used for the measurement ofmore » the distances of basal and mucous cell nuclei to the epithelial free surface. Similarly 328 micrographs of dog epithelium from 33 bronchial samples have been used to measure the distances of basal and mucous cell nuclei to the epithelial free surface and have been entered into COSAS. Using the COSAS planimetry program, we continue to expand our established data bases which describe the volume density and nuclear numbers per electron micrograph for 5 cell types of the human bronchial epithelial lining of men and women, as well as smokers, non-smokers and ex-smokers and similar parameters for the same 5 epithelial cell types of dog bronchi. Our micrographs of human bronchial epithelium have allowed us to analyze the recent suggestion that the DNA of lymphocytes may be subject to significant damage from Rn progeny while within the lung. Since the last progress report three papers have been submitted for publication. 17 refs., 4 tabs.« less

  18. Ultrastructural Study of Some Pollen Grains of Prairie Flowers

    ERIC Educational Resources Information Center

    Kozar, Frank

    1973-01-01

    Discusses the importance of the electron microscope, and in particular the scanning electron microscope, in studying the surface topography, sectional substructures, and patterns of development of pollen grains. The production, dispersal methods, and structure of pollen grains are described and illustrated with numerous electron micrographs. (JR)

  19. Simulation of local ion transport in lamellar block copolymer electrolytes based on electron micrographs

    DOE PAGES

    Chintapalli, Mahati; Higa, Kenneth; Chen, X. Chelsea; ...

    2016-12-19

    A method is presented in this paper to relate local morphology and ionic conductivity in a solid, lamellar block copolymer electrolyte for lithium batteries, by simulating conductivity through transmission electron micrographs. The electrolyte consists of polystyrene-block-poly(ethylene oxide) mixed with lithium bis(trifluoromethanesulfonyl) imide salt (SEO/LiTFSI), where the polystyrene phase is structural phase and the poly(ethylene oxide)/LiTFSI phase is ionically conductive. The electric potential distribution is simulated in binarized micrographs by solving the Laplace equation with constant potential boundary conditions. A morphology factor, f, is reported for each image by calculating the effective conductivity relative to a homogenous conductor. Images from twomore » samples are examined, one annealed with large lamellar grains and one unannealed with small grains. The average value off is 0.45 ± 0.04 for the annealed sample, and 0.37 ± 0.03 for the unannealed sample, both close to the value predicted by effective medium theory, 1/2. Simulated conductivities are compared to published experimental conductivities. The value of f Unannealed/f Annealed is 0.82 for simulations and 6.2 for experiments. Simulation results correspond well to predictions by effective medium theory but do not explain the experimental measurements. Finally, observation of nanoscale morphology over length scales greater than the size of the micrographs (~1 μm) may be required to explain the experimental results.« less

  20. Simulation of local ion transport in lamellar block copolymer electrolytes based on electron micrographs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chintapalli, Mahati; Higa, Kenneth; Chen, X. Chelsea

    A method is presented in this paper to relate local morphology and ionic conductivity in a solid, lamellar block copolymer electrolyte for lithium batteries, by simulating conductivity through transmission electron micrographs. The electrolyte consists of polystyrene-block-poly(ethylene oxide) mixed with lithium bis(trifluoromethanesulfonyl) imide salt (SEO/LiTFSI), where the polystyrene phase is structural phase and the poly(ethylene oxide)/LiTFSI phase is ionically conductive. The electric potential distribution is simulated in binarized micrographs by solving the Laplace equation with constant potential boundary conditions. A morphology factor, f, is reported for each image by calculating the effective conductivity relative to a homogenous conductor. Images from twomore » samples are examined, one annealed with large lamellar grains and one unannealed with small grains. The average value off is 0.45 ± 0.04 for the annealed sample, and 0.37 ± 0.03 for the unannealed sample, both close to the value predicted by effective medium theory, 1/2. Simulated conductivities are compared to published experimental conductivities. The value of f Unannealed/f Annealed is 0.82 for simulations and 6.2 for experiments. Simulation results correspond well to predictions by effective medium theory but do not explain the experimental measurements. Finally, observation of nanoscale morphology over length scales greater than the size of the micrographs (~1 μm) may be required to explain the experimental results.« less

  1. 3-D shape estimation of DNA molecules from stereo cryo-electron micro-graphs using a projection-steerable snake.

    PubMed

    Jacob, Mathews; Blu, Thierry; Vaillant, Cedric; Maddocks, John H; Unser, Michael

    2006-01-01

    We introduce a three-dimensional (3-D) parametric active contour algorithm for the shape estimation of DNA molecules from stereo cryo-electron micrographs. We estimate the shape by matching the projections of a 3-D global shape model with the micrographs; we choose the global model as a 3-D filament with a B-spline skeleton and a specified radial profile. The active contour algorithm iteratively updates the B-spline coefficients, which requires us to evaluate the projections and match them with the micrographs at every iteration. Since the evaluation of the projections of the global model is computationally expensive, we propose a fast algorithm based on locally approximating it by elongated blob-like templates. We introduce the concept of projection-steerability and derive a projection-steerable elongated template. Since the two-dimensional projections of such a blob at any 3-D orientation can be expressed as a linear combination of a few basis functions, matching the projections of such a 3-D template involves evaluating a weighted sum of inner products between the basis functions and the micrographs. The weights are simple functions of the 3-D orientation and the inner-products are evaluated efficiently by separable filtering. We choose an internal energy term that penalizes the average curvature magnitude. Since the exact length of the DNA molecule is known a priori, we introduce a constraint energy term that forces the curve to have this specified length. The sum of these energies along with the image energy derived from the matching process is minimized using the conjugate gradients algorithm. We validate the algorithm using real, as well as simulated, data and show that it performs well.

  2. The Plant Organelles Database 3 (PODB3) update 2014: integrating electron micrographs and new options for plant organelle research.

    PubMed

    Mano, Shoji; Nakamura, Takanori; Kondo, Maki; Miwa, Tomoki; Nishikawa, Shuh-ichi; Mimura, Tetsuro; Nagatani, Akira; Nishimura, Mikio

    2014-01-01

    The Plant Organelles Database 2 (PODB2), which was first launched in 2006 as PODB, provides static image and movie data of plant organelles, protocols for plant organelle research and external links to relevant websites. PODB2 has facilitated plant organellar research and the understanding of plant organelle dynamics. To provide comprehensive information on plant organelles in more detail, PODB2 was updated to PODB3 (http://podb.nibb.ac.jp/Organellome/). PODB3 contains two additional components: the electron micrograph database and the perceptive organelles database. Through the electron micrograph database, users can examine the subcellular and/or suborganellar structures in various organs of wild-type and mutant plants. The perceptive organelles database provides information on organelle dynamics in response to external stimuli. In addition to the extra components, the user interface for access has been enhanced in PODB3. The data in PODB3 are directly submitted by plant researchers and can be freely downloaded for use in further analysis. PODB3 contains all the information included in PODB2, and the volume of data and protocols deposited in PODB3 continue to grow steadily. We welcome contributions of data from all plant researchers to enhance the utility and comprehensiveness of PODB3.

  3. Cellular morphometry of the bronchi of human and dog lungs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robbins, E.S.

    1991-03-01

    One hundred and thirty-one bronchial samples from 62 patients have been dissected by generation from fixed surgical lung specimens obtained after the removal of pathological lesions. Complete patient records including occupational and smoking histories, as well as possible exposure to radon, are obtained. In addition, one hundred and sixty-two mongol dog bronchi dissected from different lobes of 23 dog lungs have also been similarly prepared. Ninety-four human samples have been completely processed for electron microscopy and have yielded 994 electron micrographs of which 532 have been entered into the Computerized Stereological Analysis System (COSAS) and been used for the measurementmore » of the distances of basal and mucous cell nuclei to the epithelial free surface. Similarly 240 micrographs of dog epithelium from 31 bronchial samples have been entered into COSAS. We have, using the COSAS planimetry program, established data bases which describe the volume density and nuclear numbers per electron micrograph for 5 cell types of the human bronchial epithelial lining of men and women, as well as smokers, non-smokers and ex-smokers and similar parameters for the epithelial cell types of dog bronchi. The data are being used to develop weighting factors for dosimetry and radon risk analysis. 26 refs., 7 figs., 4 tabs.« less

  4. Cellular morphometry of the bronchi of human and dog lungs. Progress report, April 1, 1991--October 1, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robbins, E.S.

    1991-09-01

    One hundred and forty-seven bronchial samples (generations 3--6) from 66 patients (62 usable; 36 female, 26 male; median age 61) have been dissected by generation from fixed surgical lung specimens obtained after the removal of pathological lesions. In addition, one hundred and fifty-six mongol dog bronchi (generations 2--6) dissected from different lobes of 26 dog lungs have also been similarly prepared. One hundred and twenty-seven human samples have been completely processed for electron microscopy and have yielded 994 electron micrographs of which 655 have been entered into the Computerized Stereological Analysis System (COSAS) and been used for the measurement ofmore » the distances of basal and mucous cell nuclei to the epithelial free surface. Similarly 328 micrographs of dog epithelium from 33 bronchial samples have been used to measure the distances of basal and mucous cell nuclei to the epithelial free surface and have been entered into COSAS. Using the COSAS planimetry program, we continue to expand our established data bases which describe the volume density and nuclear numbers per electron micrograph for 5 cell types of the human bronchial epithelial lining of men and women, as well as smokers, non-smokers and ex-smokers and similar parameters for the same 5 epithelial cell types of dog bronchi. Our micrographs of human bronchial epithelium have allowed us to analyze the recent suggestion that the DNA of lymphocytes may be subject to significant damage from Rn progeny while within the lung. Since the last progress report three papers have been submitted for publication. 17 refs., 4 tabs.« less

  5. Scanning electron microscopy of dentition: methodology and ultrastructural morphology of tooth wear.

    PubMed

    Shkurkin, G V; Almquist, A J; Pfeihofer, A A; Stoddard, E L

    1975-01-01

    Scanning electron micrographs were taken of sets of human molars-those of paleo-Indians used in mastication of, ostensibly, a highly abrasive diet, and those of contemporary Americans. Different ultrastructural patterns of enamel wear were observed between the groups.

  6. Synthesis of Single Crystalline ZnO Nanoparticles by Salt-Assisted Spray Pyrolysis

    NASA Astrophysics Data System (ADS)

    Panatarani, Camellia; Lenggoro, I. Wuled; Okuyama, Kikuo

    2003-04-01

    LiNO3 was used as a shield in the preparation of single crystalline ZnO particles by a spray pyrolysis process in order to prevent agglomeration and enhance the crystallinity of the ZnO. LiNO3 was added to a precursor solution of zinc acetate dihydrate prior to its atomization by means of an ultrasonic transducer. Agglomerate-free particles having a mean particle size of 26 nm were successfully obtained after washing the product. X-ray diffractometry, field-emission scanning electron micrograph and transmission electron micrograph data indicate that the size and morphology of ZnO were strongly influenced by the operating temperature used and the residence time of the particle in the reactor.

  7. Glomerular epithelial foot processes in normal man and rats. Distribution of true width and its intra- and inter-individual variation.

    PubMed

    Gundersen, H J; Seefeldt, T; Osterby, R

    1980-01-01

    The width of individual glomerular epithelial foot processes appears very different on electron micrographs. A method for obtainining distributions of the true width of foot processes from that of their apparent width on electron micrographs has been developed based on geometric probability theory pertaining to a specific geometric model. Analyses of foot process width in humans and rats show a remarkable interindividual invariance implying rigid control and therefore great biological significance of foot process width or a derivative thereof. The very low inter-individual variation of the true width, shown in the present paper, makes it possible to demonstrate slight changes in rather small groups of patients or experimental animals.

  8. Using digital colour to increase the realistic appearance of SEM micrographs of bloodstains.

    PubMed

    Hortolà, Policarp

    2010-10-01

    Although in the scientific-research literature the micrographs from scanning electron microscopes (SEMs) are usually displayed in greyscale, the potential of colour resources provided by the SEM-coupled image-acquiring systems and, subsidiarily, by image-manipulation free softwares deserves be explored as a tool for colouring SEM micrographs of bloodstains. After acquiring greyscale SEM micrographs of a (dark red to the naked eye) human blood smear on grey chert, they were manually obtained in red tone using both the SEM-coupled image-acquiring system and an image-manipulation free software, as well as they were automatically generated in thermal tone using the SEM-coupled system. Red images obtained by the SEM-coupled system demonstrated lower visual-discrimination capability than the other coloured images, whereas those in red generated by the free software rendered better magnitude of scopic information than the red images generated by the SEM-coupled system. Thermal-tone images, although were further from the real sample colour than the red ones, not only increased their realistic appearance over the greyscale images, but also yielded the best visual-discrimination capability among all the coloured SEM micrographs, and fairly enhanced the relief effect of the SEM micrographs over both the greyscale and the red images. The application of digital colour by means of the facilities provided by an SEM-coupled image-acquiring system or, when required, by an image-manipulation free software provides a user-friendly, quick and inexpensive way of obtaining coloured SEM micrographs of bloodstains, avoiding to do sophisticated, time-consuming colouring procedures. Although this work was focused on bloodstains, well probably other monochromatic or quasi-monochromatic samples are also susceptible of increasing their realistic appearance by colouring them using the simple methods utilized in this study.

  9. Morphology of the utricular otolith organ in the toadfish, Opsanus tau.

    PubMed

    Boyle, Richard; Ehsanian, Reza; Mofrad, Alireza; Popova, Yekaterina; Varelas, Joseph

    2018-06-15

    The utricle provides the vestibular reflex pathways with the sensory codes of inertial acceleration of self-motion and head orientation with respect to gravity to control balance and equilibrium. Here we present an anatomical description of this structure in the adult oyster toadfish and establish a morphological basis for interpretation of subsequent functional studies. Light, scanning, and transmission electron microscopy techniques were applied to visualize the sensory epithelium at varying levels of detail, its neural innervation and its synaptic organization. Scanning electron microscopy was used to visualize otolith mass and morphological polarization patterns of hair cells. Afferent nerve fibers were visualized following labeling with biocytin, and light microscope images were used to make three-dimensional (3-D) reconstructions of individual labeled afferents to identify dendritic morphology with respect to epithelial location. Transmission electron micrographs were compiled to create a serial 3-D reconstruction of a labeled afferent over a segment of its dendritic field and to examine the cell-afferent synaptic contacts. Major observations are: a well-defined striola, medial and lateral extra-striolar regions with a zonal organization of hair bundles; prominent lacinia projecting laterally; dependence of hair cell density on macular location; narrow afferent dendritic fields that follow the hair bundle polarization; synaptic specializations issued by afferents are typically directed towards a limited number of 7-13 hair cells, but larger dendritic fields in the medial extra-striola can be associated with > 20 hair cells also; and hair cell synaptic bodies can be confined to only an individual afferent or can synapse upon several afferents. © 2018 Wiley Periodicals, Inc.

  10. 76 FR 64115 - Privacy Act of 1974; Privacy Act System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ...-leaf binders or file folders, and in electronic media, including NASA's Ethics Program Tracking System... documents, electronic media, micrographic media, photographs, or motion pictures film, and various medical....; General Accounting Office's General Policies/Procedures and Communications Manual, Chapter 7; Treasury...

  11. Specimen preparation for high-resolution cryo-EM

    PubMed Central

    Passmore, Lori A.; Russo, Christopher J.

    2016-01-01

    Imaging a material with electrons at near-atomic resolution requires a thin specimen that is stable in the vacuum of the transmission electron microscope. For biological samples, this comprises a thin layer of frozen aqueous solution containing the biomolecular complex of interest. The process of preparing a high-quality specimen is often the limiting step in the determination of structures by single-particle electron cryomicroscopy (cryo-EM). Here we describe a systematic approach for going from a purified biomolecular complex in aqueous solution to high-resolution electron micrographs that are suitable for 3D structure determination. This includes a series of protocols for the preparation of vitrified specimens on various specimen supports, including all-gold and graphene. We also describe techniques for troubleshooting when a preparation fails to yield suitable specimens, and common mistakes to avoid during each part of the process. Finally, we include recommendations for obtaining the highest quality micrographs from prepared specimens with current microscope, detector and support technology. PMID:27572723

  12. Morphological Diversity of the Rod Spherule: A Study of Serially Reconstructed Electron Micrographs

    PubMed Central

    Li, Shuai; Mitchell, Joe; Briggs, Deidrie J.; Young, Jaime K.; Long, Samuel S.; Fuerst, Peter G.

    2016-01-01

    Purpose Rod spherules are the site of the first synaptic contact in the retina’s rod pathway, linking rods to horizontal and bipolar cells. Rod spherules have been described and characterized through electron micrograph (EM) and other studies, but their morphological diversity related to retinal circuitry and their intracellular structures have not been quantified. Most rod spherules are connected to their soma by an axon, but spherules of rods on the surface of the Mus musculus outer plexiform layer often lack an axon and have a spherule structure that is morphologically distinct from rod spherules connected to their soma by an axon. Retraction of the rod axon and spherule is often observed in disease processes and aging, and the retracted rod spherule superficially resembles rod spherules lacking an axon. We hypothesized that retracted spherules take on an axonless spherule morphology, which may be easier to maintain in a diseased state. To test our hypothesis, we quantified the spatial organization and subcellular structures of rod spherules with and without axons. We then compared them to the retracted spherules in a disease model, mice that overexpress Dscam (Down syndrome cell adhesion molecule), to gain a better understanding of the rod synapse in health and disease. Methods We reconstructed serial EM images of wild type and DscamGoF (gain of function) rod spherules at a resolution of 7 nm in the X-Y axis and 60 nm in the Z axis. Rod spherules with and without axons, and retracted spherules in the DscamGoF retina, were reconstructed. The rod spherule intracellular organelles, the invaginating dendrites of rod bipolar cells and horizontal cell axon tips were also reconstructed for statistical analysis. Results Stereotypical rod (R1) spherules occupy the outer two-thirds of the outer plexiform layer (OPL), where they present as spherical terminals with large mitochondria. This spherule group is highly uniform and composed more than 90% of the rod spherule population. Rod spherules lacking an axon (R2) were also described and characterized. This rod spherule group consists of a specific spatial organization that is strictly located at the apical OPL-facing layer of the Outer Nuclear Layer (ONL). The R2 spherule displays a large bowl-shaped synaptic terminal that hugs the rod soma. Retracted spherules in the DscamGoF retina were also reconstructed to test if they are structurally similar to R2 spherules. The misplaced rod spherules in DscamGoF have a gross morphology that is similar to R2 spherules but have significant disruption in internal synapse organization. Conclusion We described a morphological diversity within Mus musculus rod spherules. This diversity is correlated with rod location in the ONL and contributes to the intracellular differences within spherules. Analysis of the DscamGoF retina indicated that their R2 spherules are not significantly different than wild type R2 spherules, but that their retracted rod spherules have abnormal synaptic organization. PMID:26930660

  13. Morphological Diversity of the Rod Spherule: A Study of Serially Reconstructed Electron Micrographs.

    PubMed

    Li, Shuai; Mitchell, Joe; Briggs, Deidrie J; Young, Jaime K; Long, Samuel S; Fuerst, Peter G

    2016-01-01

    Rod spherules are the site of the first synaptic contact in the retina's rod pathway, linking rods to horizontal and bipolar cells. Rod spherules have been described and characterized through electron micrograph (EM) and other studies, but their morphological diversity related to retinal circuitry and their intracellular structures have not been quantified. Most rod spherules are connected to their soma by an axon, but spherules of rods on the surface of the Mus musculus outer plexiform layer often lack an axon and have a spherule structure that is morphologically distinct from rod spherules connected to their soma by an axon. Retraction of the rod axon and spherule is often observed in disease processes and aging, and the retracted rod spherule superficially resembles rod spherules lacking an axon. We hypothesized that retracted spherules take on an axonless spherule morphology, which may be easier to maintain in a diseased state. To test our hypothesis, we quantified the spatial organization and subcellular structures of rod spherules with and without axons. We then compared them to the retracted spherules in a disease model, mice that overexpress Dscam (Down syndrome cell adhesion molecule), to gain a better understanding of the rod synapse in health and disease. We reconstructed serial EM images of wild type and DscamGoF (gain of function) rod spherules at a resolution of 7 nm in the X-Y axis and 60 nm in the Z axis. Rod spherules with and without axons, and retracted spherules in the DscamGoF retina, were reconstructed. The rod spherule intracellular organelles, the invaginating dendrites of rod bipolar cells and horizontal cell axon tips were also reconstructed for statistical analysis. Stereotypical rod (R1) spherules occupy the outer two-thirds of the outer plexiform layer (OPL), where they present as spherical terminals with large mitochondria. This spherule group is highly uniform and composed more than 90% of the rod spherule population. Rod spherules lacking an axon (R2) were also described and characterized. This rod spherule group consists of a specific spatial organization that is strictly located at the apical OPL-facing layer of the Outer Nuclear Layer (ONL). The R2 spherule displays a large bowl-shaped synaptic terminal that hugs the rod soma. Retracted spherules in the DscamGoF retina were also reconstructed to test if they are structurally similar to R2 spherules. The misplaced rod spherules in DscamGoF have a gross morphology that is similar to R2 spherules but have significant disruption in internal synapse organization. We described a morphological diversity within Mus musculus rod spherules. This diversity is correlated with rod location in the ONL and contributes to the intracellular differences within spherules. Analysis of the DscamGoF retina indicated that their R2 spherules are not significantly different than wild type R2 spherules, but that their retracted rod spherules have abnormal synaptic organization.

  14. Serial block face scanning electron microscopy--the future of cell ultrastructure imaging.

    PubMed

    Hughes, Louise; Hawes, Chris; Monteith, Sandy; Vaughan, Sue

    2014-03-01

    One of the major drawbacks in transmission electron microscopy has been the production of three-dimensional views of cells and tissues. Currently, there is no one suitable 3D microscopy technique that answers all questions and serial block face scanning electron microscopy (SEM) fills the gap between 3D imaging using high-end fluorescence microscopy and the high resolution offered by electron tomography. In this review, we discuss the potential of the serial block face SEM technique for studying the three-dimensional organisation of animal, plant and microbial cells.

  15. Interaction of gases with lunar materials

    NASA Technical Reports Server (NTRS)

    Holmes, H. F.; Fuller, E. L., Jr.; Gammage, R. B.

    1974-01-01

    Quantitative efforts to assess the surface properties of lunar fines, particularly water induced porosity are discussed. Data show that: (1) changes induced in lunar fines are not visible in high energy electron micrographs, (2) scanning micrographs show no change in particle size distribution as a result of reaction with water, (3) water induced changes are internal to the particles themselves, (4) normal laboratory atmosphere blocks alteration reaction with water, and (5) surface properties of mature lunar soils appear to be almost independent of chemical composition and mineralogy, but there are some variations in their reactivity toward water.

  16. Fuzzy Reasoning to More Accurately Determine Void Areas on Optical Micrographs of Composite Structures

    NASA Technical Reports Server (NTRS)

    Dominquez, Jesus A.; Tate, Lanetra C.; Wright, M. Clara; Caraccio, Anne

    2013-01-01

    Accomplishing the best-performing composite matrix (resin) requires that not only the processing method but also the cure cycle generate low-void-content structures. If voids are present, the performance of the composite matrix will be significantly reduced. This is usually noticed by significant reductions in matrix-dominated properties, such as compression and shear strength. Voids in composite materials are areas that are absent of the composite components: matrix and fibers. The characteristics of the voids and their accurate estimation are critical to determine for high performance composite structures. One widely used method of performing void analysis on a composite structure sample is acquiring optical micrographs or Scanning Electron Microscope (SEM) images of lateral sides of the sample and retrieving the void areas within the micrographs/images using an image analysis technique. Segmentation for the retrieval and subsequent computation of void areas within the micrographs/images is challenging as the gray-scaled values of the void areas are close to the gray-scaled values of the matrix leading to the need of manually performing the segmentation based on the histogram of the micrographs/images to retrieve the void areas. The use of an algorithm developed by NASA and based on Fuzzy Reasoning (FR) proved to overcome the difficulty of suitably differentiate void and matrix image areas with similar gray-scaled values leading not only to a more accurate estimation of void areas on composite matrix micrographs but also to a faster void analysis process as the algorithm is fully autonomous.

  17. Superplastic Aluminum Evaluation

    DTIC Science & Technology

    1981-06-01

    Gold coated. 450 Lilt to electron beam ...................... ............... 111 16 Scanning electron micrograph of a cross section through a cavity... Gold coated. 450 tilt to electron beam ............. ...... .. ... 113 17 Typical EDAX spectra from (a) dark, angular, loose particles ((Fe,Cr)3SiAll...with atmospheric water vapor to form aluminum oxide and hydrogen. The hydrogen (already in monoatomic form) is very rapidly dissolved by the liquid

  18. A deep convolutional neural network approach to single-particle recognition in cryo-electron microscopy.

    PubMed

    Zhu, Yanan; Ouyang, Qi; Mao, Youdong

    2017-07-21

    Single-particle cryo-electron microscopy (cryo-EM) has become a mainstream tool for the structural determination of biological macromolecular complexes. However, high-resolution cryo-EM reconstruction often requires hundreds of thousands of single-particle images. Particle extraction from experimental micrographs thus can be laborious and presents a major practical bottleneck in cryo-EM structural determination. Existing computational methods for particle picking often use low-resolution templates for particle matching, making them susceptible to reference-dependent bias. It is critical to develop a highly efficient template-free method for the automatic recognition of particle images from cryo-EM micrographs. We developed a deep learning-based algorithmic framework, DeepEM, for single-particle recognition from noisy cryo-EM micrographs, enabling automated particle picking, selection and verification in an integrated fashion. The kernel of DeepEM is built upon a convolutional neural network (CNN) composed of eight layers, which can be recursively trained to be highly "knowledgeable". Our approach exhibits an improved performance and accuracy when tested on the standard KLH dataset. Application of DeepEM to several challenging experimental cryo-EM datasets demonstrated its ability to avoid the selection of un-wanted particles and non-particles even when true particles contain fewer features. The DeepEM methodology, derived from a deep CNN, allows automated particle extraction from raw cryo-EM micrographs in the absence of a template. It demonstrates an improved performance, objectivity and accuracy. Application of this novel method is expected to free the labor involved in single-particle verification, significantly improving the efficiency of cryo-EM data processing.

  19. A new electron microscope technique for the study of living materials.

    PubMed

    Kálmán, E

    1979-07-01

    In order to gain informations on the real structure of biological specimens the "wet technique" for electron microscopy has been developed. The construction and the working principle of a special microchamber are described. Applications of this technique for the investigation of blood cells, gametes and various bacteries are demonstrated by micrographs.

  20. Applications of emerging transmission electron microscopy technology in PCD research and diagnosis.

    PubMed

    Shoemark, Amelia

    2017-01-01

    Primary Ciliary Dyskinesia (PCD) is a heterogeneous genetic condition characterized by dysfunction of motile cilia. Patients suffer from chronic infection and inflammation of the upper and lower respiratory tract. Diagnosis of PCD is confirmed by identification of a hallmark defect of ciliary ultrastructure or by identification of biallelic pathogenic mutations in a known PCD gene. Since the first description of PCD in 1976, assessment of ciliary ultrastructure by transmission electron microscopy (TEM) has been central to diagnosis and research. Electron tomography is a technique whereby a series of transmission electron micrographs are collected at different angles and reconstructed into a single 3D model of a specimen. Electron tomography provides improved spatial information and resolution compared to a single micrograph. Research by electron tomography has revealed new insight into ciliary ultrastructure and consequently ciliary function at a molecular and cellular level. Gene discovery studies in PCD have utilized electron tomography to define the structural consequences of variants in cilia genes. Modern transmission electron microscopes capable of electron tomography are increasingly being installed in clinical laboratories. This presents the possibility for the use of tomography technique in a diagnostic setting. This review describes the electron tomography technique, the contribution tomography has made to the understanding of basic cilia structure and function and finally the potential of the technique for use in PCD diagnosis.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vazehrad, S., E-mail: vazehrad@kth.se; Elfsberg, J., E-mail: jessica.elfsberg@scania.com; Diószegi, A., E-mail: attila.dioszegi@jth.hj.se

    An investigation on silicon segregation of lamellar, compacted and nodular graphite iron was carried out by applying a selective, immersion color etching and a modified electron microprobe to study the microstructure. The color etched micrographs of the investigated cast irons by revealing the austenite phase have provided data about the chronology and mechanism of microstructure formation. Moreover, electron microprobe has provided two dimensional segregation maps of silicon. A good agreement was found between the segregation profile of silicon in the color etched microstructure and the silicon maps achieved by electron microprobe analysis. However, quantitative silicon investigation was found to bemore » more accurate than color etching results to study the size of the eutectic colonies. - Highlights: • Sensitivity of a color etchant to silicon segregation is quantitatively demonstrated. • Si segregation measurement by EMPA approved the results achieved by color etching. • Color etched micrographs provided data about solidification mechanism in cast irons. • Austenite grain boundaries were identified by measuring the local Si concentration.« less

  2. Publications - GMC 53B | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Richfield Oil Company Wide Bay Unit #1, Alaska Peninsula Authors: Unknown Publication Date: Unknown Unknown, [n.d.], Scanning electron micrographs of selected radiolarians from the Richfield Oil Company

  3. Electron Micrographs of Quail Limb Bones formed in microgravity

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Electron micrographs of quail limb bones that formed under the influence of microgravity show decreased mineralization compared to bones formed in normal gravity. The letters B and C indicate bone and cartilage sides of the sample, respectively, with the arrows marking the junction between bone and cartilage cells. The asterisks indicate where mineralization begins. The bone that developed during spaceflight (top) shows less mineral compared to the control sample (bottom); the control sample clearly shows mineral deposits (dark spots) that are absent in the flight sample. Quail eggs are small and develop quickly, making them ideal for space experiments. In late 2001, the Avian Development Facility (ADF) made its first flight and carried eggs used in two investigations, development and function of the irner-ear balance system in normal and altered gravity environments, and skeletal development in embryonic quail.

  4. The effect of the distance between acidic site and basic site immobilized on mesoporous solid on the activity in catalyzing aldol condensation

    NASA Astrophysics Data System (ADS)

    Yu, Xiaofang; Yu, Xiaobo; Wu, Shujie; Liu, Bo; Liu, Heng; Guan, Jingqi; Kan, Qiubin

    2011-02-01

    Acid-base bifunctional heterogeneous catalysts containing carboxylic and amine groups, which were immobilized at defined distance from one another on the mesoporous solid were synthesized by immobilizing lysine onto carboxyl-SBA-15. The obtained materials were characterized by X-ray diffraction (XRD), N 2 adsorption, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron micrographs (SEM), transmission electron micrographs (TEM), elemental analysis, and back titration. Proximal-C-A-SBA-15 with a proximal acid-base distance was more active than maximum-C-A-SBA-15 with a maximum acid-base distance in aldol condensation reaction between acetone and various aldehydes. It appears that the distance between acidic site and basic site immobilized on mesoporous solid should be an essential factor for catalysis optimization.

  5. Transmission electron microscopy of amyloid fibrils.

    PubMed

    Gras, Sally L; Waddington, Lynne J; Goldie, Kenneth N

    2011-01-01

    Transmission Electron Microscopy of negatively stained and cryo-prepared specimens allows amyloid fibrils to be visualised at high resolution in a dried or a hydrated state, and is an essential method for characterising the morphology of fibrils and pre-fibrillar species. We outline the key steps involved in the preparation and observation of samples using negative staining and cryo-electron preservation. We also discuss methods to measure fibril characteristics, such as fibril width, from electron micrographs.

  6. Representing and computing regular languages on massively parallel networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, M.I.; O'Sullivan, J.A.; Boysam, B.

    1991-01-01

    This paper proposes a general method for incorporating rule-based constraints corresponding to regular languages into stochastic inference problems, thereby allowing for a unified representation of stochastic and syntactic pattern constraints. The authors' approach first established the formal connection of rules to Chomsky grammars, and generalizes the original work of Shannon on the encoding of rule-based channel sequences to Markov chains of maximum entropy. This maximum entropy probabilistic view leads to Gibb's representations with potentials which have their number of minima growing at precisely the exponential rate that the language of deterministically constrained sequences grow. These representations are coupled to stochasticmore » diffusion algorithms, which sample the language-constrained sequences by visiting the energy minima according to the underlying Gibbs' probability law. The coupling to stochastic search methods yields the all-important practical result that fully parallel stochastic cellular automata may be derived to generate samples from the rule-based constraint sets. The production rules and neighborhood state structure of the language of sequences directly determines the necessary connection structures of the required parallel computing surface. Representations of this type have been mapped to the DAP-510 massively-parallel processor consisting of 1024 mesh-connected bit-serial processing elements for performing automated segmentation of electron-micrograph images.« less

  7. Damage of Escherichia coli membrane by bactericidal agent polyhexamethylene guanidine hydrochloride: micrographic evidences.

    PubMed

    Zhou, Z X; Wei, D F; Guan, Y; Zheng, A N; Zhong, J J

    2010-03-01

    The purpose of this study was to provide micrographic evidences for the damaged membrane structure and intracellular structure change of Escherichia coli strain 8099, induced by polyhexamethylene guanidine hydrochloride (PHMG). The bactericidal effect of PHMG on E. coli was investigated based on beta-galactosidase activity assay, fluorescein-5-isothiocyanate confocal laser scanning microscopy, field emission scanning electron microscopy and transmission electron microscopy. The results revealed that a low dose (13 microg ml(-1)) of PHMG slightly damaged the outer membrane structure of the treated bacteria and increased the permeability of the cytoplasmic membrane, while no significant damage was observed to the morphological structure of the cells. A high dose (23 microg ml(-1)) of PHMG collapsed the outer membrane structure, led to the formation of a local membrane pore across the membrane and badly damaged the internal structure of the cells. Subsequently, intracellular components were leaked followed by cell inactivation. Dose-dependent membrane disruption was the main bactericidal mechanism of PHMG. The formation of the local membrane pores was probable after exposure to a high dose (23 microg ml(-1)) of PHMG. Micrographic evidences were provided about the damaged membrane structure and intracellular structure change of E. coli. The presented information helps understand the bactericidal mechanism of PHMG by membrane damage.

  8. Publications - GMC 53A | Alaska Division of Geological & Geophysical

    Science.gov Websites

    quartz sand grains from ARCO Alaska, Inc. West Mikkelsen St. #1 Authors: Unknown Publication Date Reference Unknown, [n.d.], Scanning electron micrographs of selected radiolarians and quartz sand grains

  9. Investigation of the Optical and Electronic Properties of Crystalline Organic Materials

    DTIC Science & Technology

    1990-06-14

    38 (A) EFFECTS OF DEPOSTION RATE ---------------- 38 0 (B) EFFECTS OF SUBSTRATE TEMPERATURE ------ 40 11.5 ANISOTROPIES IN CRYSTALLINE ORGANIC THIN...depostion rate .- ------------------------------------------------------------------ 41 Fig. 2.10: Scanning electron micrographs showing the surface...materials grown be lattice-matched. Hence, relatively strain -free heterostructures using materials with large lattice-mismatch can be realized by the

  10. [Construction of porous hydroxyapatite (HA) block loaded with cultured chondrocytes].

    PubMed

    Yan, M; Dang, G

    1999-07-01

    To construct a kind of bone healing enhancing implant with cultured chondrocytes bound to hydroxyapatite (HA). Chondrocytes were obtained from the costicartilage of rat and were cultured on the porous HA blocks, 3 mm x 3 mm x 4 mm size, for three and seven days. Scanning electron micrograph was taken to show whether the cells grew outside and inside the pore of HA block. The cells cultured on tiny glass sheet for 2 days were used to prove where the cells come from by in situ hybridization technique with alpha1 (II) cDNA probe. Scanning electron micrographs showed that the pores of the HA surface and inside of the blocks are filled with cultured cells, especially the longer cultured block. The cells were chondrocytes confirmed by in situ hybridization. The porous HA can be used as cell cultured substrate and chondrocyte can adhere and proliferate inside the porous HA block.

  11. Transmission electron microscope studies of extraterrestrial materials

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.

    1995-01-01

    Transmission Electron Microscopy, X-Ray spectrometry and electron-energy-loss spectroscopy are used to analyse carbon in interplanetary dust particles. Optical micrographs are shown depicting cross sections of the dust particles embedded in sulphur. Selected-area electron diffraction patterns are shown. Transmission Electron Microscope specimens of lunar soil were prepared using two methods: ion-milling and ultramicrotomy. A combination of high resolution TEM imaging and electron diffraction is used to characterize the opaque assemblages. The opaque assemblages analyzed in this study are dominated by ilmenite with lesser rutile and spinel exsolutions, and traces of Fe metal.

  12. Field Emission Auger Electron Spectroscopy with Scanning Auger Microscopy |

    Science.gov Websites

    0.5 at.% for elements from lithium to uranium. Depth Profiling Removes successive layers by using size (> ~25 nm). Imaging Obtains SEM micrographs with up to 20,000x magnification by using raster scanning with a highly focused electron beam ≥25 nm in diameter. Using the same raster scan, SAM can

  13. Isolation of Mesophyll Cells and Bundle Sheath Cells from Digitaria sanguinalis (L.) Scop. Leaves and a Scanning Microscopy Study of the Internal Leaf Cell Morphology 1

    PubMed Central

    Edwards, Gerald E.; Black, Clanton C.

    1971-01-01

    A technique is described for the separation of mesophyll and bundle sheath cells from Digitaria sanguinalis leaves and evidence for separation is given with light and scanning electron micrographs. Gentle grinding of fully differentiated leaves in a mortar releases mesophyll cells which are isolated on nylon nets by filtration. More extensive grinding of the remaining tissue yields bundle sheath strands which are isolated by filtration with stainless steel sieves and nylon nets. Further grinding of bundle sheath strands in a tissue homogenizer releases bundle sheath cells which are collected on nylon nets. Percentage of purity derived from cell counts and yield data on a chlorophyll basis are given. The internal leaf cell morphology is presented in scanning electron micrographs and compared with light micrographs of fully-differentiated D. sanguinalis leaves. In leaves of plants which possess the C4-dicarboxylic acid cycle of photosynthesis, the relationship of leaf morphology to photosynthesis in mesophyll and bundle sheath cells is considered, and the hypothesis is presented that as atmospheric CO2 enters a leaf about 85% is fixed by the C4-dicarboxylic acid cycle in the mesophyll cells and 10 to 15% is fixed by the reductive pentose phosphate cycle in the bundle sheath cells. A technique also is given for the isolation of mesophyll cells from spinach leaves. Images PMID:16657571

  14. Irradiation of amorphous Ta42Si13N45 film with a femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Romano, V.; Meier, M.; Theodore, N. D.; Marble, D. K.; Nicolet, M.-A.

    2011-07-01

    Films of 260 nm thickness, with atomic composition Ta42Si13N45, on 4″ silicon wafers, have been irradiated in air with single laser pulses of 200 femtoseconds duration and 800 nm wave length. As sputter-deposited, the films are structurally amorphous. A laterally truncated Gaussian beam with a near-uniform fluence of ˜0.6 J/cm2 incident normally on such a film ablates 23 nm of the film. Cross-sectional transmission electron micrographs show that the surface of the remaining film is smooth and flat on a long-range scale, but contains densely distributed sharp nanoprotrusions that sometimes surpass the height of the original surface. Dark field micrographs of the remaining material show no nanograins. Neither does glancing angle X-ray diffraction with a beam illuminating many diffraction spots. By all evidence, the remaining film remains amorphous after the pulsed femtosecond irradiation. The same single pulse, but with an enhanced and slightly peaked fluence profile, creates a spot with flat peripheral terraces whose lateral extents shrink with depth, as scanning electron and atomic force micrographs revealed. Comparison of the various figures suggests that the sharp nanoprotrusions result from an ejection of material by brittle fraction and spallation, not from ablation by direct beam-solid interaction. Conditions under which spallation should dominate over ablation are discussed.

  15. Isolation of Mesophyll Cells and Bundle Sheath Cells from Digitaria sanguinalis (L.) Scop. Leaves and a Scanning Microscopy Study of the Internal Leaf Cell Morphology.

    PubMed

    Edwards, G E; Black, C C

    1971-01-01

    A technique is described for the separation of mesophyll and bundle sheath cells from Digitaria sanguinalis leaves and evidence for separation is given with light and scanning electron micrographs. Gentle grinding of fully differentiated leaves in a mortar releases mesophyll cells which are isolated on nylon nets by filtration. More extensive grinding of the remaining tissue yields bundle sheath strands which are isolated by filtration with stainless steel sieves and nylon nets. Further grinding of bundle sheath strands in a tissue homogenizer releases bundle sheath cells which are collected on nylon nets. Percentage of purity derived from cell counts and yield data on a chlorophyll basis are given.The internal leaf cell morphology is presented in scanning electron micrographs and compared with light micrographs of fully-differentiated D. sanguinalis leaves. In leaves of plants which possess the C(4)-dicarboxylic acid cycle of photosynthesis, the relationship of leaf morphology to photosynthesis in mesophyll and bundle sheath cells is considered, and the hypothesis is presented that as atmospheric CO(2) enters a leaf about 85% is fixed by the C(4)-dicarboxylic acid cycle in the mesophyll cells and 10 to 15% is fixed by the reductive pentose phosphate cycle in the bundle sheath cells.A technique also is given for the isolation of mesophyll cells from spinach leaves.

  16. Serials Solutions and LinkFinderPlus at the University of Wales Swansea

    ERIC Educational Resources Information Center

    Brown, Andrew; Smyth, Neil

    2005-01-01

    Purpose: To provide practical information on two electronic journal-related products implemented in Library and Information Services at University of Wales Swansea. Design/methodology/approach: An overview is provided of the evaluation of electronic journal management products undertaken and subsequent implementation. Findings: Serials Solutions…

  17. Serials Pricing and the Role of the Electronic Journal.

    ERIC Educational Resources Information Center

    Metz, Paul; Gherman, Paul M.

    1991-01-01

    This third in a series of articles on scholarly communications and serials prices focuses on the possible role of electronic journals. Highlights include the increase in scientific and scholarly productivity; price differentials between private and for-profit journals; publisher's costs and profits; copyright issues; and the role of libraries and…

  18. Cortical microtubules in sweet clover columella cells developed in microgravity

    NASA Technical Reports Server (NTRS)

    Hilaire, E.; Paulsen, A. Q.; Brown, C. S.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    Electron micrographs of columella cells from sweet clover seedlings grown and fixed in microgravity revealed longitudinal and cross sectioned cortical microtubules. This is the first report demonstrating the presence and stability of this network in plants in microgravity.

  19. Atom Chips on Direct Bonded Copper Substrates (Postprint)

    DTIC Science & Technology

    2012-01-19

    joining of a thin sheet of pure copper to a ceramic substrate14 and is commonly used in power electronics due to its high current handling and heat...Squires et al. Rev. Sci. Instrum. 82, 023101 (2011) FIG. 1. A scanning electron micrograph of the top view of test chip A. the photolithographically...the etching pro- cesses and masking methods were quantified using a scanning electron microscope. Two test chips (A and B) are presented below and are

  20. Serial crystallography captures enzyme catalysis in copper nitrite reductase at atomic resolution from one crystal.

    PubMed

    Horrell, Sam; Antonyuk, Svetlana V; Eady, Robert R; Hasnain, S Samar; Hough, Michael A; Strange, Richard W

    2016-07-01

    Relating individual protein crystal structures to an enzyme mechanism remains a major and challenging goal for structural biology. Serial crystallography using multiple crystals has recently been reported in both synchrotron-radiation and X-ray free-electron laser experiments. In this work, serial crystallography was used to obtain multiple structures serially from one crystal (MSOX) to study in crystallo enzyme catalysis. Rapid, shutterless X-ray detector technology on a synchrotron MX beamline was exploited to perform low-dose serial crystallography on a single copper nitrite reductase crystal, which survived long enough for 45 consecutive 100 K X-ray structures to be collected at 1.07-1.62 Å resolution, all sampled from the same crystal volume. This serial crystallography approach revealed the gradual conversion of the substrate bound at the catalytic type 2 Cu centre from nitrite to nitric oxide, following reduction of the type 1 Cu electron-transfer centre by X-ray-generated solvated electrons. Significant, well defined structural rearrangements in the active site are evident in the series as the enzyme moves through its catalytic cycle, namely nitrite reduction, which is a vital step in the global denitrification process. It is proposed that such a serial crystallography approach is widely applicable for studying any redox or electron-driven enzyme reactions from a single protein crystal. It can provide a 'catalytic reaction movie' highlighting the structural changes that occur during enzyme catalysis. The anticipated developments in the automation of data analysis and modelling are likely to allow seamless and near-real-time analysis of such data on-site at some of the powerful synchrotron crystallographic beamlines.

  1. High-resolution electron microscope observation of voids in amorphous Ge.

    NASA Technical Reports Server (NTRS)

    Donovan, T. M.; Heinemann, K.

    1971-01-01

    Electron micrographs have been obtained which clearly show the existence of a void network in amorphous Ge films formed at substrate temperatures of 25 and 150 C, and the absence of a void network in films formed at higher substrate temperatures of 200 and 250 C. These results correlate quite well with density measurements and predictions of void densities by indirect methods.

  2. Holography and tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howells, M.

    This session includes a collection of outlines of pertinent information, diagrams, graphs, electron micrographs, and color photographs pertaining to historical aspects and recent advances in the development of X-ray Gabor Holography. Many of the photographs feature or pertain to instrumentation used in holography, tomography, and cryo-holography.

  3. Low-dose fixed-target serial synchrotron crystallography.

    PubMed

    Owen, Robin L; Axford, Danny; Sherrell, Darren A; Kuo, Anling; Ernst, Oliver P; Schulz, Eike C; Miller, R J Dwayne; Mueller-Werkmeister, Henrike M

    2017-04-01

    The development of serial crystallography has been driven by the sample requirements imposed by X-ray free-electron lasers. Serial techniques are now being exploited at synchrotrons. Using a fixed-target approach to high-throughput serial sampling, it is demonstrated that high-quality data can be collected from myoglobin crystals, allowing room-temperature, low-dose structure determination. The combination of fixed-target arrays and a fast, accurate translation system allows high-throughput serial data collection at high hit rates and with low sample consumption.

  4. Oil refinery dusts: morphological and size analysis by TEM.

    PubMed

    Sielicki, Przemysław; Janik, Helena; Guzman, Agnieszka; Broniszewski, Mieczysław; Namieśnik, Jacek

    2011-03-01

    The objectives of this work were to develop a means of sampling atmospheric dusts on the premises of an oil refinery for electron microscopic study to carry out preliminary morphological analyses and to compare these dusts with those collected at sites beyond the refinery limits. Carbon and collodion membranes were used as a support for collection of dust particles straight on transmission electron microscopy (TEM) grids. Micrographs of the dust particles were taken at magnifications from ×4,000 to ×80,000 with a Tesla BS500 transmission electron microscope. Four parameters were defined on the basis of the micrographs: surface area, Feret diameter, circumference, and shape coefficient. The micrographs and literature data were used to classify the atmospheric dusts into six groups: particles with an irregular shape and rounded edges; particles with an irregular shape and sharp edges; soot and its aggregates; spherical particles; singly occurring, ultrafine dust particles; and particles not allocated to any of the previous five groups. The types of dusts found in all the samples were similar, although differences did exist between the various morphological parameters. Dust particles with the largest Feret diameter were present in sample 3 (mean, 0.739 μm)-these were collected near the refinery's effluent treatment plant. The particles with the smallest diameter were found in the sample that had been intended to be a reference sample for the remaining results (mean, 0.326 μm). The dust particles collected in the refinery had larger mean Feret diameters, even 100% larger, than those collected beyond it. Particles with diameters from 0.1 to 0.2 μm made up the most numerous group in all the samples collected in the refinery.

  5. Amorphization induced by focused ion beam milling in metallic and electronic materials.

    PubMed

    Huh, Yoon; Hong, Ki Jung; Shin, Kwang Soo

    2013-08-01

    Focused ion beam (FIB) milling using high-energy gallium ions is widely used in the preparation of specimens for transmission electron microscopy (TEM). However, the energetic ion beam induces amorphization on the edge of specimens during milling, resulting in a mischievous influence on the clearness of high-quality transmission electron micrographs. In this work, the amorphization induced by the FIB milling was investigated by TEM for three kinds of materials, metallic materials in bulk shape, and semiconductive and electronic ceramic materials as a substrate for the deposition of thin films.

  6. Large-Scale Document Automation: The Systems Integration Issue.

    ERIC Educational Resources Information Center

    Kalthoff, Robert J.

    1985-01-01

    Reviews current technologies for electronic imaging and its recording and transmission, including digital recording, optical data disks, automated image-delivery micrographics, high-density-magnetic recording, and new developments in telecommunications and computers. The role of the document automation systems integrator, who will bring these…

  7. A SIMPLE FREEZE-FRACTURE REPLICATION METHOD FOR ELECTRON MICROSCOPY

    PubMed Central

    Bullivant, Stanley; Ames, Adelbert

    1966-01-01

    A simple method to achieve results similar to the freeze-etching technique of Moor et al. (1961) is described. The frozen tissue is cut under liquid nitrogen with a razor blade outside the evaporator rather than inside with a cooled microtome. The conditions of the experiment do not favor sublimation, and it is proposed that the structure of the replica be explained by local faults in the cleavage plane which leaves structures, such as membranes, standing above the ice. Micrographs of replicas of glycerol-protected frozen small intestine of mouse prepared by the method are presented and the structural details they show are discussed. The problem of vapor-deposited contamination is discussed. It is concluded that this is a practical method for obtaining electron micrographs that are relatively free of artifact, and that further improvements may be expected from the use of rapidly frozen fresh tissue and a clean vacuum system, possibly of the ion-pumped type. PMID:5962938

  8. Photoluminescence from narrow InAs-AlSb quantum wells

    NASA Technical Reports Server (NTRS)

    Brar, Berinder; Kroemer, Herbert; Ibbetson, James; English, John H.

    1993-01-01

    We report on photoluminescence spectra from narrow InAs-AlSb quantum wells. Strong, clearly resolved peaks for well widths from 2 to 8 monolayers were observed. Transmission electron micrographs show direct evidence for the structural quality of the quantum well structures. The transition energies of the narrowest wells suggest a strong influence of the AlSb X-barrier on the electronic states in the conduction band.

  9. Study on biofilm-forming properties of clinical isolates of Staphylococcus aureus.

    PubMed

    Taj, Yasmeen; Essa, Farhan; Aziz, Faisal; Kazmi, Shahana Urooj

    2012-05-14

    The purpose of this study was to observe the formation of biofilm, an important virulence factor, by isolates of Staphylococcus aureus (S. aureus) in Pakistan by different conventional methods and through electron microscopy. We screened 115 strains of S. aureus isolated from different clinical specimens by tube method (TM), air-liquid interface coverslip assay method, Congo red agar (CRA) method, and scanning electron microscopy (SEM). Out of 115 S. aureus isolates, 63 (54.78%) showed biofilm formation by tube method. Biofilm forming bacteria were further categorized as high producers (n = 23, 20%) and moderate producers (n = 40, 34.78%). TM coordinated well with the coverslip assay for strong biofilm-producing strains in 19 (16.5%) isolates. By coverslip method, weak producers were difficult to differentiate from biofilm negative isolates. Screening on CRA showed biofilm formation only in four (3.47%) strains. Scanning electron micrographs showed the biofilm-forming strains of S. aureus arranged in a matrix on the propylene surface and correlated well with the TM. Biofilm production is a marker of virulence for clinically relevant staphylococcal infections. It can be studied by various methods but screening on CRA is not recommended for investigation of biofilm formation in Staphylococcus aureus. Electron micrograph images correlate well with the biofilm production as observed by TM.

  10. IFLA General Conference, 1987. Division of Collections and Services. Interlending and Document Delivery Section. Serial Publications Section. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    The five papers compiled here cover topics related to electronic publishing, library collections and services, interlibrary loan, and serials. In "The Impact of Electronic Publishing on Library Collection and Services: An American View," Joseph W. Price considers possible consequences on library collections and services in the United…

  11. SD-SEM: sparse-dense correspondence for 3D reconstruction of microscopic samples.

    PubMed

    Baghaie, Ahmadreza; Tafti, Ahmad P; Owen, Heather A; D'Souza, Roshan M; Yu, Zeyun

    2017-06-01

    Scanning electron microscopy (SEM) imaging has been a principal component of many studies in biomedical, mechanical, and materials sciences since its emergence. Despite the high resolution of captured images, they remain two-dimensional (2D). In this work, a novel framework using sparse-dense correspondence is introduced and investigated for 3D reconstruction of stereo SEM images. SEM micrographs from microscopic samples are captured by tilting the specimen stage by a known angle. The pair of SEM micrographs is then rectified using sparse scale invariant feature transform (SIFT) features/descriptors and a contrario RANSAC for matching outlier removal to ensure a gross horizontal displacement between corresponding points. This is followed by dense correspondence estimation using dense SIFT descriptors and employing a factor graph representation of the energy minimization functional and loopy belief propagation (LBP) as means of optimization. Given the pixel-by-pixel correspondence and the tilt angle of the specimen stage during the acquisition of micrographs, depth can be recovered. Extensive tests reveal the strength of the proposed method for high-quality reconstruction of microscopic samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Digital image analysis to quantify carbide networks in ultrahigh carbon steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hecht, Matthew D.; Webler, Bryan A.; Picard, Yoosuf N., E-mail: ypicard@cmu.edu

    A method has been developed and demonstrated to quantify the degree of carbide network connectivity in ultrahigh carbon steels through digital image processing and analysis of experimental micrographs. It was shown that the network connectivity and carbon content can be correlated to toughness for various ultrahigh carbon steel specimens. The image analysis approach first involved segmenting the carbide network and pearlite matrix into binary contrast representations via a grayscale intensity thresholding operation. Next, the carbide network pixels were skeletonized and parceled into braches and nodes, allowing the determination of a connectivity index for the carbide network. Intermediate image processing stepsmore » to remove noise and fill voids in the network are also detailed. The connectivity indexes of scanning electron micrographs were consistent in both secondary and backscattered electron imaging modes, as well as across two different (50 × and 100 ×) magnifications. Results from ultrahigh carbon steels reported here along with other results from the literature generally showed lower connectivity indexes correlated with higher Charpy impact energy (toughness). A deviation from this trend was observed at higher connectivity indexes, consistent with a percolation threshold for crack propagation across the carbide network. - Highlights: • A method for carbide network analysis in steels is proposed and demonstrated. • ImageJ method extracts a network connectivity index from micrographs. • Connectivity index consistent in different imaging conditions and magnifications. • Impact energy may plateau when a critical network connectivity is exceeded.« less

  13. PDA Serials: Practical and Policy Issues for Librarians

    ERIC Educational Resources Information Center

    Good, Stephen

    2007-01-01

    Personal Digital Assistant serials are not just a subset of electronic serials from an acquisitions/collection development point of view because of their total dependence on patron-owned technology. Even if viewed as a "free" resource there are issues of expense and effort involved in gathering, classifying, and providing access and awareness of…

  14. Morphological evidence for local microcircuits in rat vestibular maculae

    NASA Technical Reports Server (NTRS)

    Ross, M. D.

    1997-01-01

    Previous studies suggested that intramacular, unmyelinated segments of vestibular afferent nerve fibers and their large afferent endings (calyces) on type I hair cells branch. Many of the branches (processes) contain vesicles and are presynaptic to type II hair cells, other processes, intramacular nerve fibers, and calyces. This study used serial section transmission electron microscopy and three-dimensional reconstruction methods to document the origins and distributions of presynaptic processes of afferents in the medial part of the adult rat utricular macula. The ultrastructural research focused on presynaptic processes whose origin and termination could be observed in a single micrograph. Results showed that calyces had 1) vesiculated, spine-like processes that invaginated type I cells and 2) other, elongate processes that ended on type II cells pre- as well as postsynaptically. Intramacular, unmyelinated segments of afferent nerve fibers gave origin to branches that were presynaptic to type II cells, calyces, calyceal processes, and other nerve fibers in the macula. Synapses with type II cells occurred opposite subsynaptic cisternae (C synapses); all other synapses were asymmetric. Vesicles were pleomorphic but were differentially distributed according to process origin. Small, clear-centered vesicles, approximately 40-60 nm in diameter, predominated in processes originating from afferent nerve fibers and basal parts of calyces. Larger vesicles approximately 70-120 nm in diameter having approximately 40-80 nm electron-opaque cores were dominant in processes originating from the necks of calyces. Results are interpreted to indicate the existence of a complex system of intrinsic feedforward (postsynaptic)-feedback (presynaptic) connections in a network of direct and local microcircuits. The morphological findings support the concept that maculae dynamically preprocess linear acceleratory information before its transmission to the central nervous system.

  15. Serials Management in the Electronic Era: Papers in Honor of Peter Gellatly, Founding Editor of "The Serials Librarian."

    ERIC Educational Resources Information Center

    Cole, Jim, Ed.; Williams, James W., Ed.

    This book assesses progress and technical changes in the field of serials management and anticipates future directions and challenges for librarians. The book consists of 18 chapters: (1) "Introduction" (Jim Cole and James W. Williams); (2) "Peter Gellatly--Editor with a Deft Touch" (Ruth C. Carter); (3) "The "Deseret…

  16. 17 CFR 1.31 - Books and records; keeping and inspection.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., easily readable projection or production of micrographic media or electronic storage media images; (ii... keep such records, any easily readable hard-copy image that representatives of the Commission or... such records, copies of such records on such compatible data processing media as defined in § 15.00(d...

  17. 17 CFR 1.31 - Books and records; keeping and inspection.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., easily readable projection or production of micrographic media or electronic storage media images; (ii... keep such records, any easily readable hard-copy image that representatives of the Commission or... such records, copies of such records on such compatible data processing media as defined in § 15.00(d...

  18. Structural, morphological and optical properties of chromium oxide nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babukutty, Blessy; Parakkal, Fasalurahman; Nair, Swapna S., E-mail: swapna.s.nair@gmail.com

    2015-06-24

    Chromium oxide nanoparticles are synthesized by reduction route from chloride precursors with surfactant, trioctylphosphine oxide (TOPO). Structural and morphological characterization are analyzed using X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). Transmission Electron micrographs show that the average grain size lies in the range 5nm to 10nm. Optical characterization has been done by UV-VIS spectrophotometer. Distinct optical absorptions of Cr{sup 3+} ions show hinting towards the presence of Cr{sub 2}O{sub 3}. Presence of oxygen is also confirmed from Electron Energy Loss Spectroscopy (EELS) studies.

  19. Structural characterization and gas reactions of small metal particles by high resolution in-situ TEM (Transmission Electron Microscopy) and TED (Transmission Electron Diffraction)

    NASA Technical Reports Server (NTRS)

    Heinemann, K.

    1987-01-01

    The detection and size analysis of small metal particles supported on amorphous substrates becomes increasingly difficult when the particle size approaches that of the phase contrast background structures of the support. An approach of digital image analysis, involving Fourier transformation of the original image, filtering, and image reconstruction was studied with respect to the likelihood of unambiguously detecting particles of less than 1 nm diameter on amorphous substrates from a single electron micrograph.

  20. Characterization of Air Particles Giving False Responses with Biological Detectors

    DTIC Science & Technology

    1975-07-01

    Particle size distril)ution of SM particles 63 20- Scanning electron micrographs of typical aggregates of 21. SM bacteria 64 22. Scanning electron...for calcite (density = 2.75) were recalculated for bacteria (density ca 1.15). Both sets of size data are plotted in figure 13. The particle sizes given...Preceding page blank -23- Table 2. Particulate Substances Giving a CL Response >10 mV Algae Disodium phosphate Kelp Dandruff Sheep manure Lemon powder

  1. Synthesis, characterization, and nonlinear optical properties of graphene oxide functionalized with tetra-amino porphyrin

    NASA Astrophysics Data System (ADS)

    Yamuna, R.; Ramakrishnan, S.; Dhara, Keerthy; Devi, R.; Kothurkar, Nikhil K.; Kirubha, E.; Palanisamy, P. K.

    2013-01-01

    The synthesis of a porphyrin-graphene oxide hybrid (GO-TAP) was carried out by covalently functionalizing graphene oxide (GO) with 5,10,15,20 mesotetra (4-aminophenyl) porphyrin (TAP) through an amide linkage. The GO-TAP hybrid has been characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and UV-visible spectroscopy. The peak intensity of the Soret band of the material was suppressed compared to neat TAP. This indicates a strong interaction between the electronic energy level of TAP and GO in the GO-TAP hybrid. The functionalization of GO with TAP significantly improved its solubility and dispersion stability in organic solvents. Scanning electron micrographs reveal that the hybrid was found to be similar to the unmodified GO but slightly more wrinkled. Transmission electron micrographs also demonstrate that GO sheet in the hybrid is more wrinkled with some dark spot due to functionalization. Atomic force microscopy results also reveal that the TAP functionalization increases the thickness of GO sheet to 2.0-3.0 nm from 1.2 to 1.8 nm. We observed improved nonlinear optical and optical limiting properties for the hybrid compared to both graphene oxide and porphyrin. GO-TAP shows fluorescence quenching compared with porphyrin, indicating excellent electron and/or energy transfer to GO from TAP. Thermogravimetric analysis confirms that the GO-TAP hybrid has outstanding thermal stability.

  2. Challenges of microtome‐based serial block‐face scanning electron microscopy in neuroscience

    PubMed Central

    WANNER, A. A.; KIRSCHMANN, M. A.

    2015-01-01

    Summary Serial block‐face scanning electron microscopy (SBEM) is becoming increasingly popular for a wide range of applications in many disciplines from biology to material sciences. This review focuses on applications for circuit reconstruction in neuroscience, which is one of the major driving forces advancing SBEM. Neuronal circuit reconstruction poses exceptional challenges to volume EM in terms of resolution, field of view, acquisition time and sample preparation. Mapping the connections between neurons in the brain is crucial for understanding information flow and information processing in the brain. However, information on the connectivity between hundreds or even thousands of neurons densely packed in neuronal microcircuits is still largely missing. Volume EM techniques such as serial section TEM, automated tape‐collecting ultramicrotome, focused ion‐beam scanning electron microscopy and SBEM (microtome serial block‐face scanning electron microscopy) are the techniques that provide sufficient resolution to resolve ultrastructural details such as synapses and provides sufficient field of view for dense reconstruction of neuronal circuits. While volume EM techniques are advancing, they are generating large data sets on the terabyte scale that require new image processing workflows and analysis tools. In this review, we present the recent advances in SBEM for circuit reconstruction in neuroscience and an overview of existing image processing and analysis pipelines. PMID:25907464

  3. Chapter 16 Lumen Modification

    Treesearch

    Rebecca E. Ibach; Roger M. Rowell

    2012-01-01

    When wood is vacuum impregnated with liquid vinyl monomers that do not swell wood, and then in situ polymerized either by chemical catalyst-heat, or gamma radiation, the polymer is located almost solely in the lumens of the wood. Figure 16.1 is a scanning electron microscopy (SEM) micrograph of unmodified wood showing open cells that are...

  4. Trachymolgus purpureus sp. nov., an armored snout mite (Acari: Bdellidae) from the Ozark highlands: morphology, development, and key to Trachymolgus Berlese

    USDA-ARS?s Scientific Manuscript database

    Trachymolgus purpureus Fisher & Dowling sp. nov. is described from the Ozark highlands of North America. A diversity of imaging techniques are used to illustrate the species including field emission low-temperature scanning electron microscopy (FE-LTSEM), stereomicrography, compound light micrograph...

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haddow, Andrew D., E-mail: adhaddow@gmail.com; Guzman, Hilda; Popov, Vsevolod L.

    We report here the first evidence of vertical transmission of Aedes flavivirus (AEFV) and its first isolation in the Western Hemisphere. AEFV strain SPFLD-MO-2011-MP6 was isolated in C6/36 cells from a pool of male Aedes albopictus mosquitoes that were reared to adults from larvae collected in southwest Missouri, USA, in 2011. Electron micrographs of the virus showed virions of approximately 45 nm in diameter with morphological characteristics associated with flaviviruses. The genomic sequence demonstrated that AEFV-SPFLD-MO-2011-MP6 shares a high degree of nucleotide and amino acid sequence identity with the AEFV Narita-21 strain, isolated in Japan in 2003. Intracerebral inoculation ofmore » newborn mice with the virus failed to produce observable illness or death and the virus did not replicate in vertebrate cells, consistent with a lack of vertebrate host range. - Highlights: ► The first report of Aedes flavivirus (AEFV) in the Western Hemisphere. ► The first evidence of vertical transmission of AEFV in mosquitoes. ► The first electron micrograph of AEFV. ► The first attempt to infect animals with AEFV.« less

  6. Biological Oceanography

    NASA Astrophysics Data System (ADS)

    Dyhrman, Sonya

    2004-10-01

    The ocean is arguably the largest habitat on the planet, and it houses an astounding array of life, from microbes to whales. As a testament to this diversity and its importance, the discipline of biological oceanography spans studies of all levels of biological organization, from that of single genes, to organisms, to their population dynamics. Biological oceanography also includes studies on how organisms interact with, and contribute to, essential global processes. Students of biological oceanography are often as comfortable looking at satellite images as they are electron micrographs. This diversity of perspective begins the textbook Biological Oceanography, with cover graphics including a Coastal Zone Color Scanner image representing chlorophyll concentration, an electron micrograph of a dinoflagellate, and a photograph of a copepod. These images instantly capture the reader's attention and illustrate some of the different scales on which budding oceanographers are required to think. Having taught a core graduate course in biological oceanography for many years, Charlie Miller has used his lecture notes as the genesis for this book. The text covers the subject of biological oceanography in a manner that is targeted to introductory graduate students, but it would also be appropriate for advanced undergraduates.

  7. Examination of Scanning Electron Microscope and Computed Tomography Images of PICA

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Stackpoole, Margaret M.; Shklover, Valery

    2010-01-01

    Micrographs of PICA (Phenolic Impregnated Carbon Ablator) taken using a Scanning Electron Microscope (SEM) and 3D images taken with a Computed Tomography (CT) system are examined. PICA is a carbon fiber based composite (Fiberform ) with a phenolic polymer matrix. The micrographs are taken at different surface depths and at different magnifications in a sample after arc jet testing and show different levels of oxidative removal of the charred matrix (Figs 1 though 13). CT scans, courtesy of Xradia, Inc. of Concord CA, were captured for samples of virgin PICA, charred PICA and raw Fiberform (Fig. 14). We use these images to calculate the thermal conductivity (TC) of these materials using correlation function (CF) methods. CF methods give a mathematical description of how one material is embedded in another and is thus ideally suited for modeling composites like PICA. We will evaluate how the TC of the materials changes as a function of surface depth. This work is in collaboration with ETH-Zurich, which has expertise in high temperature materials and TC modeling (including CF methods).

  8. Morphometric synaptology of a whole neuron profile using a semiautomatic interactive computer system.

    PubMed

    Saito, K; Niki, K

    1983-07-01

    We propose a new method of dealing with morphometric synaptology that processes all synapses and boutons around the HRP marked neuron on a large composite electron micrograph, rather than a qualitative or a piecemeal quantitative study of a particular synapse and/or bouton that is not positioned on the surface of the neuron. This approach requires the development of both neuroanatomical procedures, by which a specific whole neuronal profile is identified, and valuable specialized tools, which support the collection and analysis of a great volume of morphometric data from composite electron micrographs, in order to reduce the burden of the morphologist. The present report is also concerned with the total and reliable semi-automatic interactive computer system for gathering and analyzing morphometric data that has been under development in our laboratory. A morphologist performs the pattern recognition portion by using a large-sized tablet digitizer and a menu-sheet command, and the system registers the various morphometric values of many different neurons and performs statistical analysis. Some examples of morphometric measurements and analysis show the usefulness and efficiency of the proposed system and method.

  9. Insights into the mode of action of anticandidal herbal monoterpenoid geraniol reveal disruption of multiple MDR mechanisms and virulence attributes in Candida albicans.

    PubMed

    Singh, Shweta; Fatima, Zeeshan; Hameed, Saif

    2016-07-01

    The anticandidal potential of Geraniol (Ger) against Candida albicans has already been established. The present study reveals deeper insights into the mechanisms of action of Ger. We observed that the repertoire of antifungal activity was not only limited to C. albicans and its clinical isolates but also against non-albicans species of Candida. The membrane tampering effect was visualized through transmission electron micrographs, depleted ergosterol levels and altered plasma membrane ATPase activity. Ger also affects cell wall as revealed by spot assays with cell wall-perturbing agents and scanning electron micrographs. Functional calcineurin pathway seems to be indispensable for the antifungal effect of Ger as calcineurin signaling mutant was hypersensitive to Ger while calcineurin overexpressing strain remained resistant. Ger also causes mitochondrial dysfunction, impaired iron homeostasis and genotoxicity. Furthermore, Ger inhibits both virulence attributes of hyphal morphogenesis and biofilm formation. Taken together, our results suggest that Ger is potential antifungal agent that warrants further investigation in clinical applications so that it could be competently employed in therapeutic strategies to treat Candida infections.

  10. A new look at lunar soil collected from the sea of tranquility during the Apollo 11 mission.

    PubMed

    Kiely, Carol; Greenberg, Gary; Kiely, Christopher J

    2011-02-01

    Complementary state-of-the-art optical, scanning electron, and X-ray microscopy techniques have been used to study the morphology of Apollo 11 lunar soil particles (10084-47). The combination of innovative lighting geometries with image processing of a through focal series of images has allowed us to obtain a unique collection of high-resolution light micrographs of these fascinating particles. Scanning electron microscopy (SEM) stereo-pair imaging has been exploited to illustrate some of the unique morphological properties of lunar regolith. In addition, for the first time, X-ray micrographs with submicron resolution have been taken of individual particles using X-ray ultramicroscopy (XuM). This SEM-based technique lends itself readily to the imaging of pores, cracks, and inclusions and allows the internal structure of an entire particle to be viewed. Rotational SEM and XuM movies have also been constructed from a series of images collected at sequential angles through 360°. These offer a new and insightful view of these complex particles providing size, shape, and spatial information on many of their internal features.

  11. Preferential inclusion of extrachromosomal genetic elements in yeast meiotic spores.

    PubMed

    Brewer, B J; Fangman, W L

    1980-09-01

    During meiosis and sporulation in the yeast Saccharomyces cerevisiae, extrachromosomal traits are efficiently transmitted to haploid spores. Although the pattern of inheritance of chromosomal traits reflects the mechanism of regular chromosomal segregation in meiosis, it is not known what processes are reflected by the efficient inheritance of extrachromosomal traits. Because extrachromosomal genetic elements in yeast are present in multiple copies, perpetuation of an extrachromosomal trait could occur by the passive envelopment of a subset of copies or by an active sequestering of all or a subset of copies within the four spores. We show that only subsets of the four extrachromosomal nucleic acids commonly found in yeast are transmitted through meiosis--55% of mitochondrial DNA copies, 82% of the 2-micron DNA plasmids, and about 70% of the L and M double-stranded RNAs. However, electron micrographs of serial sections through yeast asci indicate that the four spore enclose only 30% of the total ascus material. Thus these extrachromosomal elements are preferentially included within the spores, indicating that their inheritance is not a random process. Transmission of mitochondrial DNA can be accounted for by the observed enclosure of 52% of the mitochondrial volume within the spores. The high transmission frequencies of the double-stranded RNAs (which exist as virus-like particles in the cytoplasm) and 2-micron DNA must indicate that either these nucleic acids are actively recruited from the cytoplasm by some mechanism or they are associated in some way with the nucleus during meiosis.

  12. Using simulated fluorescence cell micrographs for the evaluation of cell image segmentation algorithms.

    PubMed

    Wiesmann, Veit; Bergler, Matthias; Palmisano, Ralf; Prinzen, Martin; Franz, Daniela; Wittenberg, Thomas

    2017-03-18

    Manual assessment and evaluation of fluorescent micrograph cell experiments is time-consuming and tedious. Automated segmentation pipelines can ensure efficient and reproducible evaluation and analysis with constant high quality for all images of an experiment. Such cell segmentation approaches are usually validated and rated in comparison to manually annotated micrographs. Nevertheless, manual annotations are prone to errors and display inter- and intra-observer variability which influence the validation results of automated cell segmentation pipelines. We present a new approach to simulate fluorescent cell micrographs that provides an objective ground truth for the validation of cell segmentation methods. The cell simulation was evaluated twofold: (1) An expert observer study shows that the proposed approach generates realistic fluorescent cell micrograph simulations. (2) An automated segmentation pipeline on the simulated fluorescent cell micrographs reproduces segmentation performances of that pipeline on real fluorescent cell micrographs. The proposed simulation approach produces realistic fluorescent cell micrographs with corresponding ground truth. The simulated data is suited to evaluate image segmentation pipelines more efficiently and reproducibly than it is possible on manually annotated real micrographs.

  13. Observation of a brine layer on an ice surface with an environmental scanning electron microscope at higher pressures and temperatures.

    PubMed

    Krausko, Ján; Runštuk, Jiří; Neděla, Vilém; Klán, Petr; Heger, Dominik

    2014-05-20

    Observation of a uranyl-salt brine layer on an ice surface using backscattered electron detection and ice surface morphology using secondary-electron detection under equilibrium conditions was facilitated using an environmental scanning electron microscope (ESEM) at temperatures above 250 K and pressures of hundreds of Pa. The micrographs of a brine layer over ice grains prepared by either slow or shock freezing provided a complementary picture of the contaminated ice grain boundaries. Fluorescence spectroscopy of the uranyl ions in the brine layer confirmed that the species exists predominately in the solvated state under experimental conditions of ESEM.

  14. Fabrication of nylon/fullerene polymer memory

    NASA Astrophysics Data System (ADS)

    Jayan, Manuvel; Davis, Rosemary; Karthik, M. P.; Devika, K.; Kumar, G. Vijay; Sriraj, B.; Predeep, P.

    2017-06-01

    Two terminal Organic memories in passive matrix array form with device structure, Al/Nylon/ (Nylon+C60)/Nylon/ Al are fabricated. The current-voltage measurements showed hysteresis and the devices are thoroughly characterized for write-read-erase-read cycles. The control over the dispersion concentration, capacity of fullerene to readily accept electrons and the constant diameter of fullerene made possible uniform device fabrication with reproducible results. Scanning electron micrographs indicated that the device thickness remained uniform in the range of 19 micrometers.

  15. Unusual chemical compositions of noctilucent-cloud particle nuclei

    NASA Technical Reports Server (NTRS)

    Hemenway, C. L.

    1973-01-01

    Two sounding rocket payloads were launched from the ESRO range in Sweden during a noctilucent cloud display. Large numbers of submicron particles were collected, most of which appear to be made up of a high density material coated with a low density material. Typical electron micrographs are shown. Particle chemical compositions have been measured by use of dispersive X-ray analysis equipment attached to an electron microscope and have revealed that most of the high density particle nuclei have atomic weights greater than iron.

  16. Scanning Transmission Electron Microscopy at High Resolution

    PubMed Central

    Wall, J.; Langmore, J.; Isaacson, M.; Crewe, A. V.

    1974-01-01

    We have shown that a scanning transmission electron microscope with a high brightness field emission source is capable of obtaining better than 3 Å resolution using 30 to 40 keV electrons. Elastic dark field images of single atoms of uranium and mercury are shown which demonstrate this fact as determined by a modified Rayleigh criterion. Point-to-point micrograph resolution between 2.5 and 3.0 Å is found in dark field images of micro-crystallites of uranium and thorium compounds. Furthermore, adequate contrast is available to observe single atoms as light as silver. Images PMID:4521050

  17. A novel cell culture technique for electron microscopy.

    PubMed

    Wang, F; Ledford, L B; Head, J F; Elliott, R L

    1993-12-15

    A simplified technique for the monolayer growth of cultured cells and their in situ embedment on the inner surface of the pyramidal portion of the Beem capsule for electron microscopy has been developed. The results demonstrated that the cell monolayers grew well on the surface of the Beem capsule and could be embedded in situ. Electron micrographs showed cells in their natural state of contact with one another. The plasma membrane and intracellular organelles were well preserved. This method minimizes many difficult steps and eliminates the disruption of cells by scraping, pelleting, or enzymatic reaction to remove them.

  18. Two-dimensional simulation and modeling in scanning electron microscope imaging and metrology research.

    PubMed

    Postek, Michael T; Vladár, András E; Lowney, Jeremiah R; Keery, William J

    2002-01-01

    Traditional Monte Carlo modeling of the electron beam-specimen interactions in a scanning electron microscope (SEM) produces information about electron beam penetration and output signal generation at either a single beam-landing location, or multiple landing positions. If the multiple landings lie on a line, the results can be graphed in a line scan-like format. Monte Carlo results formatted as line scans have proven useful in providing one-dimensional information about the sample (e.g., linewidth). When used this way, this process is called forward line scan modeling. In the present work, the concept of image simulation (or the first step in the inverse modeling of images) is introduced where the forward-modeled line scan data are carried one step further to construct theoretical two-dimensional (2-D) micrographs (i.e., theoretical SEM images) for comparison with similar experimentally obtained micrographs. This provides an ability to mimic and closely match theory and experiment using SEM images. Calculated and/or measured libraries of simulated images can be developed with this technique. The library concept will prove to be very useful in the determination of dimensional and other properties of simple structures, such as integrated circuit parts, where the shape of the features is preferably measured from a single top-down image or a line scan. This paper presents one approach to the generation of 2-D simulated images and presents some suggestions as to their application to critical dimension metrology.

  19. Ecology and life history of an amoebomastigote, Paratetramitus jugosus, from a microbial mat: new evidence for multiple fission

    NASA Technical Reports Server (NTRS)

    Enzien, M.; McKhann, H. I.; Margulis, L.

    1989-01-01

    Five microbial habitats (gypsum crust, gypsum photosynthetic community, Microcoleus mat, Thiocapsa scum, and black mud) were sampled for the presence of the euryhaline, rapidly growing amoebomastigote, Paratetramitus jugosus. Field investigations of microbial mats from Baja California Norte, Mexico, and Salina Bido near Matanzas, Cuba, reveal that P. jugosus is most frequently found in the Thiocapsa layer of microbial mats. Various stages of the life history were studied using phase-contrast, differential-interference, and transmission electron microscopy. Mastigote stages were induced and studied by electron microscopy; mastigotes that actively feed on bacteria bear two or more undulipodia. A three-dimensional drawing of the kinetid ("basal apparatus") based on electron micrographs is presented. Although promitoses were occasionally observed, it is unlikely that they can account for the rapid growth of P. jugosus populations on culture media. Dense, refractile, spherical, and irregular-shaped bodies were seen at all times in all cultures along with small mononucleate (approximately 2-7 micrometers diameter) amoebae. Cytochemical studies employing two different fluorescent stains for DNA (DAPI, mithramycin) verified the presence of DNA in these small bodies. Chromatin-like material seen in electron micrographs within the cytoplasm and blebbing off nuclei were interpreted to the chromatin bodies. Our interpretation, consistent with the data but not proven, is that propagation by multiple fission of released chromatin bodies that become small amoebae may occur in Paratetramitus jugosus. These observations are consistent with descriptions of amoeba propagules in the early literature (Hogue, 1914).

  20. Optical modulator system

    NASA Technical Reports Server (NTRS)

    Brand, J.

    1972-01-01

    The fabrication, test, and delivery of an optical modulator system which will operate with a mode-locked Nd:YAG laser indicating at either 1.06 or 0.53 micrometers is discussed. The delivered hardware operates at data rates up to 400 Mbps and includes a 0.53 micrometer electrooptic modulator, a 1.06 micrometer electrooptic modulator with power supply and signal processing electronics with power supply. The modulators contain solid state drivers which accept digital signals with MECL logic levels, temperature controllers to maintain a stable thermal environment for the modulator crystals, and automatic electronic compensation to maximize the extinction ratio. The modulators use two lithium tantalate crystals cascaded in a double pass configuration. The signal processing electronics include encoding electronics which are capable of digitizing analog signals between the limit of + or - 0.75 volts at a maximum rate of 80 megasamples per second with 5 bit resolution. The digital samples are serialized and made available as a 400 Mbps serial NRZ data source for the modulators. A pseudorandom (PN) generator is also included in the signal processing electronics. This data source generates PN sequences with lengths between 31 bits and 32,767 bits in a serial NRZ format at rates up to 400 Mbps.

  1. Serial Killers: Academic Libraries Respond to Soaring Costs.

    ERIC Educational Resources Information Center

    McCarthy, Paul

    1994-01-01

    Discusses ways in which academic libraries are responding to rising costs of serials. Topics addressed include pricing by publishers; the effect of journal cancellations on research activities; interlibrary loans and document delivery services; coordinated cancelling; electronic journals; and experiences at the University of Arizona. (LRW)

  2. Chinese wine classification system based on micrograph using combination of shape and structure features

    NASA Astrophysics Data System (ADS)

    Wan, Yi

    2011-06-01

    Chinese wines can be classification or graded by the micrographs. Micrographs of Chinese wines show floccules, stick and granule of variant shape and size. Different wines have variant microstructure and micrographs, we study the classification of Chinese wines based on the micrographs. Shape and structure of wines' particles in microstructure is the most important feature for recognition and classification of wines. So we introduce a feature extraction method which can describe the structure and region shape of micrograph efficiently. First, the micrographs are enhanced using total variation denoising, and segmented using a modified Otsu's method based on the Rayleigh Distribution. Then features are extracted using proposed method in the paper based on area, perimeter and traditional shape feature. Eight kinds total 26 features are selected. Finally, Chinese wine classification system based on micrograph using combination of shape and structure features and BP neural network have been presented. We compare the recognition results for different choices of features (traditional shape features or proposed features). The experimental results show that the better classification rate have been achieved using the combinational features proposed in this paper.

  3. Structure of IgG and IgY molecules in ribosome-antibody complexes as studied by electron microscopy.

    PubMed

    Noll, F; Lutsch, G; Bielka, H

    1982-03-01

    The overall shape and dimensions of IgG (rabbit) and IgY (chicken) antibodies against ribosomal proteins have been studied in electron micrographs of ribosome-antibody complexes. The antibodies appear as Y-shaped molecules with an angle of about 90 degrees between their Fab arms. The length of one Fab arm amounts to about 10 nm. No differences between the IgG and IgY molecules could be detected electron microscopically. The data obtained on the shape of IgG and IgY correlate with those of earlier electron microscopic studies while the determined size of the Fab arms is in the range found by scattering methods.

  4. Tulane/Xavier Vaccine Peptide Program

    DTIC Science & Technology

    2014-09-01

    liposomes, and hydrophobically modified chitosan (HMC) coated liposomes. The oil-in-water (O/W) microemulsions are composed of isopropyl myristate...vesicles. To prepare the hydrophobically modified chitosan (HMC) coated liposomes, chitosan is added drop by drop to the liposome dispersion with...continuous stirring for 2 hours to ensure chitosan has been evenly attached on the liposome surface. A representative electron micrograph of the

  5. 17 CFR 240.17Ad-7 - Record retention.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... electronic or micrographic media and may be preserved in those formats for the time required by § 240.17Ad-7... substitute for the hard copy records required to be maintained pursuant to § 240.17Ad-6. (1) For purposes of..., in escrow with an independent third party and keep current a copy of the physical and logical format...

  6. Lunar sample analysis

    NASA Technical Reports Server (NTRS)

    Housley, R. M.

    1983-01-01

    The evolution of the lunar regolith under solar wind and micrometeorite bombardment is discussed as well as the size distribution of ultrafine iron in lunar soil. The most important characteristics of complex graphite, sulfide, arsenide, palladium, and platinum mineralization in a pegmatoid pyroxenite of the Stillwater Complex in Montana are examined. Oblique reflected light micrographs and backscattered electron SEM images of the graphite associations are included.

  7. Thermal Barrier Coatings (les Revetements anti-mur de chaleur)

    DTIC Science & Technology

    1998-04-01

    blades and vanes of advanced aircraft engines », 1992, Yokohama International Gas Turbine Congress... turbine blade and nozzle guide vane aerofoils for the aerogas turbine engine . Figure 9 Scanning electron micrograph of the surface of a plasma...2. Liebert C. H. et al, "Durability of zirconia thermal barrier coatings on air cooled turbine blades in cyclic jet engine operation", NASA

  8. 17 CFR 240.17a-4 - Records to be preserved by certain exchange members, brokers and dealers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... readable projection or production of micrographic media or electronic storage media images and for producing easily readable images. (ii) Be ready at all times to provide, and immediately provide, any... as specified in this section or in § 240.17a-3. (j) Every member, broker and dealer subject to this...

  9. 17 CFR 240.17a-4 - Records to be preserved by certain exchange members, brokers and dealers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... readable projection or production of micrographic media or electronic storage media images and for producing easily readable images. (ii) Be ready at all times to provide, and immediately provide, any... as specified in this section or in § 240.17a-3. (j) Every member, broker and dealer subject to this...

  10. 17 CFR 240.17a-4 - Records to be preserved by certain exchange members, brokers and dealers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... projection or production of micrographic media or electronic storage media images and for producing easily readable images. (ii) Be ready at all times to provide, and immediately provide, any facsimile enlargement... § 240.17a-3. (j) Every member, broker and dealer subject to this section shall furnish promptly to a...

  11. 17 CFR 240.17a-4 - Records to be preserved by certain exchange members, brokers and dealers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... readable projection or production of micrographic media or electronic storage media images and for producing easily readable images. (ii) Be ready at all times to provide, and immediately provide, any... as specified in this section or in § 240.17a-3. (j) Every member, broker and dealer subject to this...

  12. Synthesis and fungicidal activity of novel 2,5-disubstituted-1,3,4- thiadiazole derivatives containing 5-phenyl-2-furan

    NASA Astrophysics Data System (ADS)

    Cui, Zi-Ning; Li, Ya-Sheng; Hu, De-Kun; Tian, Hao; Jiang, Jia-Zhen; Wang, Yuan; Yan, Xiao-Jing

    2016-01-01

    A series of 2,5-disubstituted-1,3,4-thiadiazoles were synthesized using Lawesson’s reagent by an efficient approach under microwave irradiation in good yields. Their structures were characterized by MS, IR, 1H NMR, 13C NMR, and elemental analysis. Their in vitro and in vivo fungicidal activities revealed that the title compounds exhibited considerable activity against five selected fungi, especially to Phytophthora infestans. In order to illustrate the mechanism of title compounds against P. infestans, scanning electron micrographs (SEM) and transmission electron micrographs (TEM) were applied. The morphological and ultrastructural studies demonstrated that compound I18 led to swelling of hyphae, thickening and proliferating multilayer cell walls, excessive septation and accumulation of dense bodies. The bioassay results indicated compound I18 might act on cell wall biosynthesis, and blocked the nutrition transportation and led to cells senescence and death. Meanwhile, compound I18 had broad fungicidal activity against other twenty different kinds of fungi. These results suggested that title compounds were eligible to be development candidates and compound I18 as a promising lead compound was worthy to be further discovery, especially against P. infestans.

  13. Conductive polymer/reduced graphene oxide/Au nano particles as efficient composite materials in electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Shabani Shayeh, J.; Ehsani, A.; Ganjali, M. R.; Norouzi, P.; Jaleh, B.

    2015-10-01

    Polyaniline/reduced graphene oxide/Au nano particles (PANI/rGO/AuNPs) as a hybrid supercapacitor were deposited on a glassy carbon electrode (GCE) by cyclic voltammetry (CV) method as ternary composites and their electrochemical performance was evaluated in acidic medium. Scanning electron micrographs clearly revealed the formation of nanocomposites on the surface of the working electrode. Scanning electron micrographs (SEM) clearly revealed the formation of nanocomposites on the surface of working electrode. Different electrochemical methods including galvanostatic charge-discharge (CD) experiments, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were carried out in order to investigate the applicability of the system as a supercapacitor. Based on the cyclic voltammogram results obtained, PANI/rGO/AuNPs gave higher specific capacitance, power and energy values than PANI at a current density of 1 mA cm-2. Specific capacitance (SC) of PANI and PANI/rGO/AuNPs electrodes calculated using CV method are 190 and 303 F g-1, respectively. The present study introduces new nanocomposite materials for electrochemical redox capacitors with advantages including long life cycle and stability due to synergistic effects of each component.

  14. HRTEMFringeAnalyzer a free python module for an automated analysis of fringe pattern in transmission electron micrographs.

    PubMed

    Alxneit, Ivo

    2018-03-30

    A python module (HRTEMFringeAnalyzer) is reported to evaluate the local crystallinity of samples from high-resolution transmission electron microscopy images in a mostly automated fashion. The user only selects the size of a square analyser window and a step size which translates the window in the micrograph. Together they define the resolution of the results obtained. Regions where fringe patterns are visible are identified and their lattice spacing d and direction ϕ as well as the corresponding mean errors σ determined. 1/σd is proportional to the coherence length of the structure, whereas σφ is a measure of how well the direction of the fringes is defined. Maps of these four indicators are computed. The performance of the program is demonstrated on two very different samples: ill-crystalline carbon deposits on a coked Ni/LFNO (reduced LaFe 0.8 Ni 0.2 O3±δ) catalyst and well-crystallized nanoparticles of zinc doped ceria. In the latter case, the automatic segmentation of large aggregates into individual crystalline domains is achieved by ϕ maps. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  15. Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components. [examined with a scanning electron microscope

    NASA Technical Reports Server (NTRS)

    Campbell, J. E.

    1974-01-01

    The uses of scanning electron microscopy in assessing changes that occur in spores exposed to wet and dry heat cycles at elevated temperatures were examined. Several species of Bacillus and other nonspore-forming species of organisms were used for the experiment. Surface morphology of viable and nonviable organisms was clearly detectable by this method, making it a potentially useful technique for investigating microbial inactivation on space vehicle surfaces and components. Micrographs of the spores and bacterial cells are provided.

  16. Electron beam irradiated polymer electrolyte film: Morphology, dielectric and AC conductivity studies

    NASA Astrophysics Data System (ADS)

    Yesappa, L.; Niranjana, M.; Ashokkumar, S. P.; Vijeth, H.; Ganesh, S.; Devendrappa, H.

    2018-05-01

    The polymer (PVdF-co-HFP: LiClO4=90:10, PHL10) electrolyte films prepared by solution casting method and studied morphology, dielectric properties and ac conductivity before and after electron beam (EB) irradiation. The polarized optical micrographs reveals size of spherulite reduced with increasing EB dose represents increase in amorphousity. The dielectric measurements were studied at different temperatures and observed increase with frequency at different temperatures upon EB irradiation. The ac conductivity increases with frequency due to effect of EB dose.

  17. Advances in Serials Management. Volume 6.

    ERIC Educational Resources Information Center

    Hepfer, Cindy, Ed.; Gammon, Julia, Ed.; Malinowski, Teresa, Ed.

    In order to further discussion and support constructive change, this volume presents the following eight papers on various dimensions of serials management: (1) "CD-ROMs, Surveys, and Sales: The OSA [Optical Society of America] Experience" (Frank E. Harris and Alan Tourtlotte); (2) "Management and Integration of Electronic Journals into the…

  18. 3D imaging by serial block face scanning electron microscopy for materials science using ultramicrotomy.

    PubMed

    Hashimoto, Teruo; Thompson, George E; Zhou, Xiaorong; Withers, Philip J

    2016-04-01

    Mechanical serial block face scanning electron microscopy (SBFSEM) has emerged as a means of obtaining three dimensional (3D) electron images over volumes much larger than possible by focused ion beam (FIB) serial sectioning and at higher spatial resolution than achievable with conventional X-ray computed tomography (CT). Such high resolution 3D electron images can be employed for precisely determining the shape, volume fraction, distribution and connectivity of important microstructural features. While soft (fixed or frozen) biological samples are particularly well suited for nanoscale sectioning using an ultramicrotome, the technique can also produce excellent 3D images at electron microscope resolution in a time and resource-efficient manner for engineering materials. Currently, a lack of appreciation of the capabilities of ultramicrotomy and the operational challenges associated with minimising artefacts for different materials is limiting its wider application to engineering materials. Consequently, this paper outlines the current state of the art for SBFSEM examining in detail how damage is introduced during slicing and highlighting strategies for minimising such damage. A particular focus of the study is the acquisition of 3D images for a variety of metallic and coated systems. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Sensory Neuroanatomy of Parastrongyloides trichosuri, a Nematode Parasite of Mammals: Amphidial Neurons of the First-Stage Larva

    PubMed Central

    Zhu, He; Li, Jian; Nolan, Thomas J.; Schad, Gerhard A.; Lok, James B.

    2011-01-01

    Owing to its ability to switch between free-living and parasitic modes of development, Parastrongyloides trichosuri represents a valuable model with which to study the evolution of parasitism among the nematodes, especially aspects pertaining to morphogenesis of infective third-stage larvae. In the free-living nematode Caenorhabditis elegans, developmental fates of third-stage larvae are determined in part by environmental cues received by chemosensory neurons in the amphidial sensillae. As a basis for comparative study, we have described the neuroanatomy of the amphidial sensillae of P. trichosuri. Using computational methods we incorporated serial electron micrographs into a three-dimensional reconstruction of the amphidial neurons of this parasite. Each amphid is innervated by 13 neurons, and the dendritic processes of 10 of these extend nearly to the amphidial pore. Dendritic processes of two specialized neurons leave the amphidial channel and terminate within invaginations of the sheath cell. One of these is similar to the finger cell of C. elegans, terminating in digitiform projections. The other projects a single cilium into the sheath cell. The dendritic process of a third specialized neuron terminates within the tight junction of the amphid. Each amphidial neuron was traced from the tip of its dendrite(s) to its cell body in the lateral ganglion. Positions of these cell bodies approximate those of morphologically similar amphidial neurons in Caenorhabditis elegans, so the standard nomenclature for amphidial neurons in C. elegans was adopted. A map of cell bodies within the lateral ganglion of P. trichosuri was prepared to facilitate functional study of these neurons. PMID:21456026

  20. Application of automatic image analysis for morphometric studies of peroxisomes stained cytochemically for catalase. II. Light-microscopic application.

    PubMed

    Beier, K; Fahimi, H D

    1987-01-01

    The feasibility of the application of a television-based image analyzer, the Texture Analysis System (TAS, Leitz Wetzlar, FRG) in conjunction with a light microscope for morphometric studies of hepatic peroxisomes has been investigated. Rat liver peroxisomes were stained with the alkaline-DAB method for localization of catalase and semithin (0.25 and 1 micron) sections of plastic-embedded material were examined under an oil immersion objective. The TAS detected the peroxisomal profiles selectively and determined their morphometric parameters automatically. The same parameters were obtained also by morphometric analysis of electron micrographs from the same material. The volume density of peroxisomes determined by TAS in semithin sections of normal liver, after correction for section thickness, is quite close to the corresponding value obtained by morphometry of electron micrographs. The difference is approximately 20%. In animals treated with the hypolipidemic drug bezafibrate, which causes proliferation of peroxisomes, TAS detected readily the increase in volume density of peroxisomes in semithin sections. In comparison with electron microscopy, however, the light-microscopic approach seems to underestimate the proliferation. The lower resolution of the light microscope and overlapping of neighbouring particles in relatively thick sections used for light-microscopic analysis may account for the differences. The present study has demonstrated the usefulness of automatic image analysis in conjunction with selective cytochemical staining of peroxisomes for morphometry of this organelle in rat liver. The light-microscopic approach is not only faster but is also extremely economical by obviating the use of an electron microscope.

  1. Innovative Processing of Composites for Ultra-High Temperature Applications. Book 3

    DTIC Science & Technology

    1993-11-01

    SiC Samples Prepared with Four Preceramic Polymer Infiltration / Pyrolysis (at 15750C) Cycles Figure 21 Scanning Electron...Micrograph of Large Pores near the Surface of Siliconized SIC Sample with Four Preceramic Polymer Infiltration / Pyrolysis (at 1575*C) Cycles II...In order to achieve dense, bulk composites with maximum SiC /Si ratio, two infiltration / pyrolysis cycles were used. S (4) After siliconization,

  2. Bordered pit structure and function determine spatial patterns of air-seeding thresholds in xylem of Douglas-fir (Pseudotsuga menziesii; Pinaceae) trees.

    Treesearch

    J.C. Domec; B. Lachenbruch; F.C. Meinzer

    2006-01-01

    The air-seeding hypothesis predicts that xylem embolism resistance is linked directly to bordered pit functioning. We tested this prediction in trunks, roots, and branches at different vertical and radial locations in young and old trees of Pseudotsuga menziesii. Dimensions of bordered pits were measured from light and scanning electron micrographs...

  3. Mix-and-diffuse serial synchrotron crystallography

    DOE PAGES

    Beyerlein, Kenneth R.; Dierksmeyer, Dennis; Mariani, Valerio; ...

    2017-10-09

    Unravelling the interaction of biological macromolecules with ligands and substrates at high spatial and temporal resolution remains a major challenge in structural biology. The development of serial crystallography methods at X-ray free-electron lasers and subsequently at synchrotron light sources allows new approaches to tackle this challenge. Here, a new polyimide tape drive designed for mix-and-diffuse serial crystallography experiments is reported. The structure of lysozyme bound by the competitive inhibitor chitotriose was determined using this device in combination with microfluidic mixers. The electron densities obtained from mixing times of 2 and 50 s show clear binding of chitotriose to the enzymemore » at a high level of detail. Here, the success of this approach shows the potential for high-throughput drug screening and even structural enzymology on short timescales at bright synchrotron light sources.« less

  4. Mix-and-diffuse serial synchrotron crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beyerlein, Kenneth R.; Dierksmeyer, Dennis; Mariani, Valerio

    Unravelling the interaction of biological macromolecules with ligands and substrates at high spatial and temporal resolution remains a major challenge in structural biology. The development of serial crystallography methods at X-ray free-electron lasers and subsequently at synchrotron light sources allows new approaches to tackle this challenge. Here, a new polyimide tape drive designed for mix-and-diffuse serial crystallography experiments is reported. The structure of lysozyme bound by the competitive inhibitor chitotriose was determined using this device in combination with microfluidic mixers. The electron densities obtained from mixing times of 2 and 50 s show clear binding of chitotriose to the enzymemore » at a high level of detail. Here, the success of this approach shows the potential for high-throughput drug screening and even structural enzymology on short timescales at bright synchrotron light sources.« less

  5. 77 FR 66920 - Registration of Claims to Copyright: Group Registration of Serial Issues Filed Electronically

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-08

    ... LIBRARY OF CONGRESS Copyright Office 37 CFR Part 202 [Docket No. RM 2012-11] Registration of..., Library of Congress. ACTION: Interim regulations. SUMMARY: The Copyright Office is adopting interim..., applicants must still send two complimentary subscription copies of the serial promptly to the Library of...

  6. Time-resolved structural studies with serial crystallography: A new light on retinal proteins

    PubMed Central

    Panneels, Valérie; Wu, Wenting; Tsai, Ching-Ju; Nogly, Przemek; Rheinberger, Jan; Jaeger, Kathrin; Cicchetti, Gregor; Gati, Cornelius; Kick, Leonhard M.; Sala, Leonardo; Capitani, Guido; Milne, Chris; Padeste, Celestino; Pedrini, Bill; Li, Xiao-Dan; Standfuss, Jörg; Abela, Rafael; Schertler, Gebhard

    2015-01-01

    Structural information of the different conformational states of the two prototypical light-sensitive membrane proteins, bacteriorhodopsin and rhodopsin, has been obtained in the past by X-ray cryo-crystallography and cryo-electron microscopy. However, these methods do not allow for the structure determination of most intermediate conformations. Recently, the potential of X-Ray Free Electron Lasers (X-FELs) for tracking the dynamics of light-triggered processes by pump-probe serial femtosecond crystallography has been demonstrated using 3D-micron-sized crystals. In addition, X-FELs provide new opportunities for protein 2D-crystal diffraction, which would allow to observe the course of conformational changes of membrane proteins in a close-to-physiological lipid bilayer environment. Here, we describe the strategies towards structural dynamic studies of retinal proteins at room temperature, using injector or fixed-target based serial femtosecond crystallography at X-FELs. Thanks to recent progress especially in sample delivery methods, serial crystallography is now also feasible at synchrotron X-ray sources, thus expanding the possibilities for time-resolved structure determination. PMID:26798817

  7. A 3D reconstruction of pancreas development in the human embryos during embryonic period (Carnegie stages 15-23).

    PubMed

    Radi, M; Gaubert, J; Cristol-Gaubert, R; Baecker, V; Travo, P; Prudhomme, M; Godlewski, G; Prat-Pradal, D

    2010-01-01

    The goal in this paper was to rebuild a three dimensional (3D) reconstruction of the dorsal and ventral pancreatic buds, in the human embryos, at Carnegie stages 15-23. The early development of the pancreas is studied by tissue observation and reconstruction by a computer-assisted method, using a light micrograph images from consecutive serial sagittal sections (diameter 7 microm) of ten human embryos ranging from Carnegie stages 15-23, CRL 7-27 mm, fixed, dehydrated and embedded in paraffin, were stained alternately with haematoxylin-eosin or Heindenhain'Azan. The images were digitalized by Canon Camera 350 EOS D. The serial views were aligned automatically by software, manual alignment was performed, the data were analysed following segmentation and threshold. The two buds were clearly identified at stage 15. In stage 16, both pancreatic buds were in final position, and begin to merge in stage 17. From stage 18 to the stage 23, surrounding connective tissue differentiated. In the stage 23, the morphology of the pancreas was definitive. The superior portion of the anterior face of the pancreas's head was arising from the dorsal bud. The rest of the head including the uncinate process emanated from the ventral bud. The 3D computer-assisted reconstruction of the human pancreas visualized the relationships between the two pancreatic buds. This explains the disposition and the modality of the components fusion. This embryologic development permits a better understanding of congenital abnormalities.

  8. A new method of three-dimensional computer assisted reconstruction of the developing biliary tract.

    PubMed

    Prudhomme, M; Gaubert-Cristol, R; Jaeger, M; De Reffye, P; Godlewski, G

    1999-01-01

    A three-dimensional (3-D) computer assisted reconstruction of the biliary tract was performed in human and rat embryos at Carnegie stage 23 to describe and compare the biliary structures and to point out the anatomic relations between the structures of the hepatic pedicle. Light micrograph images from consecutive serial sagittal sections (diameter 7 mm) of one human and 16 rat embryos were directly digitalized with a CCD camera. The serial views were aligned automatically by software. The data were analysed following segmentation and thresholding, allowing automatic reconstruction. The main bile ducts ascended in the mesoderm of the hepatoduodenal ligament. The extrahepatic bile ducts: common bile duct (CD), cystic duct and gallbladder in the human, formed a compound system which could not be shown so clearly in histologic sections. The hepato-pancreatic ampulla was studied as visualised through the duodenum. The course of the CD was like a chicane. The gallbladder diameter and length were similar to those of the CD. Computer-assisted reconstruction permitted easy acquisition of the data by direct examination of the sections through the microscope. This method showed the relationships between the different structures of the hepatic pedicle and allowed estimation of the volume of the bile duct. These findings were not obvious in two-dimensional (2-D) views from histologic sections. Each embryonic stage could be rebuilt in 3-D, which could introduce the time as a fourth dimension, fundamental for the study of organogenesis.

  9. MORPH-II, a software package for the analysis of scanning-electron-micrograph images for the assessment of the fractal dimension of exposed stone surfaces

    USGS Publications Warehouse

    Mossotti, Victor G.; Eldeeb, A. Raouf

    2000-01-01

    Turcotte, 1997, and Barton and La Pointe, 1995, have identified many potential uses for the fractal dimension in physicochemical models of surface properties. The image-analysis program described in this report is an extension of the program set MORPH-I (Mossotti and others, 1998), which provided the fractal analysis of electron-microscope images of pore profiles (Mossotti and Eldeeb, 1992). MORPH-II, an integration of the modified kernel of the program MORPH-I with image calibration and editing facilities, was designed to measure the fractal dimension of the exposed surfaces of stone specimens as imaged in cross section in an electron microscope.

  10. Serial sectioning methods for 3D investigations in materials science.

    PubMed

    Zankel, Armin; Wagner, Julian; Poelt, Peter

    2014-07-01

    A variety of methods for the investigation and 3D representation of the inner structure of materials has been developed. In this paper, techniques based on slice and view using scanning microscopy for imaging are presented and compared. Three different methods of serial sectioning combined with either scanning electron or scanning ion microscopy or atomic force microscopy (AFM) were placed under scrutiny: serial block-face scanning electron microscopy, which facilitates an ultramicrotome built into the chamber of a variable pressure scanning electron microscope; three-dimensional (3D) AFM, which combines an (cryo-) ultramicrotome with an atomic force microscope, and 3D FIB, which delivers results by slicing with a focused ion beam. These three methods complement one another in many respects, e.g., in the type of materials that can be investigated, the resolution that can be obtained and the information that can be extracted from 3D reconstructions. A detailed review is given about preparation, the slice and view process itself, and the limitations of the methods and possible artifacts. Applications for each technique are also provided. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Auger spectroscopy of fracture surfaces of ceramics

    NASA Technical Reports Server (NTRS)

    Marcus, H. L.; Harris, J. M.; Szalkowski, F. J.

    1974-01-01

    Results of Auger electron spectroscopy (AES) studies of fracture surfaces in a series of ceramic materials, including Al2O3, MgO, and Si3N4, which were formed using different processing techniques. AES on the fractured surface of a lunar sample is also discussed. Scanning electron micrograph fractography is used to relate the surface chemistry to the failure mode. Combined argon ion sputtering and AES studies demonstrate the local variations in chemistry near the fracture surface. The problems associated with doing AES in insulators are also discussed, and the experimental techniques directed toward solving them are described.

  12. Shifting Priorities: Print and Electronic Serials at the University of Montana

    ERIC Educational Resources Information Center

    Millet, Michelle S.; Mueller, Susan

    2005-01-01

    Following a library-wide brainstorming session and retreat, the Dean of the Maureen and Mike Mansfield Library tasked an ad-hoc committee to discuss implications for the library and its users if certain processes were implemented or eliminated in order to streamline the processing of serials. As the library's collection continues to shift from…

  13. Serial Millisecond Crystallography of Membrane Proteins.

    PubMed

    Jaeger, Kathrin; Dworkowski, Florian; Nogly, Przemyslaw; Milne, Christopher; Wang, Meitian; Standfuss, Joerg

    2016-01-01

    Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) is a powerful method to determine high-resolution structures of pharmaceutically relevant membrane proteins. Recently, the technology has been adapted to carry out serial millisecond crystallography (SMX) at synchrotron sources, where beamtime is more abundant. In an injector-based approach, crystals grown in lipidic cubic phase (LCP) or embedded in viscous medium are delivered directly into the unattenuated beam of a microfocus beamline. Pilot experiments show the application of microjet-based SMX for solving the structure of a membrane protein and compatibility of the method with de novo phasing. Planned synchrotron upgrades, faster detectors and software developments will go hand-in-hand with developments at free-electron lasers to provide a powerful methodology for solving structures from microcrystals at room temperature, ligand screening or crystal optimization for time-resolved studies with minimal or no radiation damage.

  14. Military and Veterans Rehabilitation and Recovery from Injury Network (MAVERICK): Chronic Effects of Neurotrauma Consortium (CENC)

    DTIC Science & Technology

    2015-10-01

    novel interventions to prevent or mitigate cognitive and behavioral decline, and contribute to long-term planning for service member and veterans...Neurodegeneration, and CENC 0056 Visual Sensory Impairments. j. “Vestibular Sensory Deficits and Cognitive Adaptation in mTBI” study was approved by... Goldstein perform electron micrographic analysis at Boston University. V. Biostatistics [B], Data Management [DM], and Study Management [SM] Core

  15. Control of Growth Within Drosophila Peripheral Nerves by Ras and Protein Kinase A

    DTIC Science & Technology

    2008-02-01

    assistance and Kei Ito, Vanessa Auld, Marc Tatar, Hideyuki Okano, Sally Leevers, Ernst Hafen, Exelixis Corporation, and the Bloomington Drosophila Stock...and Auld, 1999) and were provided by Van - essa Auld (University of British Columbia, Vancouver, British Columbia, Canada) and Kei Ito (National...nerve barrier (Auld et al., 1995) and an outer, meso- dermally derived perineurial glia ( Edwards et al., 1993). A trans- mission electron micrograph

  16. Soviet Developments in High Temperature Ceramics No. 1, January-December 1975

    DTIC Science & Technology

    1976-02-25

    in microstructure and granulometric composition of silicon nitride in the process of hot pressing were studied by optical and electron micrographic...and on the laboratory-made a-alumina specimens^have shown that densely- sintered ceramics can be produced by a simplified process using a- Al -O...dusting of the powdered ceramic materials, spinel slurry deposition and subsequent fusion by a plasma jet traveling along the coated surface at

  17. Structure and Electrical Properties of RF Sputter Deposited Indium Antimonide Thin Films

    DTIC Science & Technology

    1975-12-01

    Figure 6b is from the dark area in the upper right-hand corner of the micrograph. A plot of the average grain size of InSb films grown on p-a CaF2 as...1966). 29. R. F. Potter, Phys. Rev. 103, 47 (1956). 30. D. B. Holt, J. Phys. Chem. Solids 27, 1053 (1966). 31. H. F. Matare ’, Defect Electronics in

  18. Directed Biosynthesis of Oriented Crystalline Cellulose for Advanced Composite Fibers

    DTIC Science & Technology

    2012-05-03

    8 growth rate Table 2. An optimized minimal salts high conductivity growth medium (named 9 Son-Matsuoka- Fructose , SMF) based on the optimized...basis for a high -conductivity medium for Acetobacter that also contained corn steep liquor. List of Figures Figure 1. Scanning electron micrographs of...bacterial cellulose production include corn steep liquor (Matsuoka et al., 1996) apples, beer wort (Brown, 1886; Herrmann, 1928), corn syrup , kale (black

  19. Solid State Research

    DTIC Science & Technology

    1985-02-15

    Wave Mach-Zehnder Interferometric Modulator with Center-Tapped Electrode. The Two Y Junctions have 2° Full Branching Angles, and the Direction of...and < 110> Directions 20 3-6 Nomarski Micrographs of Seeded 50-/um Ge-on-Insulator Islands After ZMR and Defect Etching 21 3-7 Scanning Electron...achieved to date in this long- wavelength region. A LiNb03 guided-wave interferometric modulator has been demonstrated at A. = 3.39 /um with a

  20. Synthesis, characterization and photoluminescence properties of Bi³⁺ co-doped CaSiO₃:Eu³⁺ nanophosphor.

    PubMed

    Kumar, M Madesh; Krishna, R Hari; Nagabhushana, B M; Shivakumara, C

    2015-03-15

    Ceramic luminescent powders with the composition Ca(0.96-x)Eu0.04Bi(x)SiO3 (x=0.01-0.05) were prepared by solution combustion method. The nanopowders are characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and photoluminescence (PL) techniques. PXRD patterns of calcined (950°C for 3h) Ca(0.96-x)Eu0.04Bi(x)SiO3 powders exhibit monoclinic phase with mean crystallite sizes ranging from 28 to 48 nm. SEM micrographs show the products are foamy, agglomerated and fluffy in nature due to the large amount of gases liberated during combustion reaction. TEM micrograph shows the crystalline characteristics of the nanoparticles. Upon 280 nm excitation, the photoluminescence of the Ca(0.96-x)Eu0.04Bi(x)SiO3 particles show red emission at 611 nm corresponding to 5D0→7F2 transition. It is observed that PL intensity increases with Bi(3+) concentration. Our work demonstrates very interesting energy transfer from Bi(3+) to Eu(3+) in CaSiO3 host. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Synthesis of graphene oxide and reduced graphene oxide by needle platy natural vein graphite

    NASA Astrophysics Data System (ADS)

    Rathnayake, R. M. N. M.; Wijayasinghe, H. W. M. A. C.; Pitawala, H. M. T. G. A.; Yoshimura, Masamichi; Huang, Hsin-Hui

    2017-01-01

    Among natural graphite varieties, needle platy vein graphite (NPG) has very high purity. Therefore, it is readily used to prepare graphene oxide (GO) and reduced graphene oxide (rGO). In this study, GO and rGO were prepared using chemical oxidation and reduction process, respectively. The synthesized materials were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. XRD studies confirmed the increase of the interlayer spacing of GO and rGO in between 3.35 to 8.66 A°. AFM studies showed the layer height of rGO to be 1.05 nm after the reduction process. TEM micrographs clearly illustrated that the prepared GO has more than 25 layers, while the rGO has only less than 15 layers. Furthermore, the effect of chemical oxidation and reduction processes on surface morphology of graphite were clearly observed in FESEM micrographs. The calculated RO/C of GO and rGO using XPS analysis are 5.37% and 1.77%, respectively. The present study revealed the successful and cost effective nature of the chemical oxidation, and the reduction processes for the production of GO and rGO out of natural vein graphite.

  2. Activation of Poly(ADP-Ribose)Polymerase in rat hepatocytes does not contribute to their cell death by oxidative stress.

    PubMed

    Latour, I; Leunda-Casi, A; Denef, J F; Buc Calderon, P

    2000-01-10

    Oxidative stress induced by tert-butyl hydroperoxide (tBOOH) in freshly isolated rat hepatocytes caused DNA damage and loss of membrane integrity. Such DNA lesions are likely to be single strand breaks since neither caryolysis nor chromatine condensation was seen in electron micrographs from tBOOH-treated cells. In addition, pulsed field gel electrophoresis of genomic DNA from both control and tBOOH-treated hepatocytes showed similar profiles, indicating the absence of internucleosomal DNA cleavage, a classical reflection of apoptotic endonuclease activity. The activation of the repair enzyme poly(ADP-ribose)polymerase (PARP) following DNA damage by tBOOH induced a dramatic drop in both NAD(+) and ATP. The inhibition of PARP by 3-aminobenzamide enhanced DNA damage by tBOOH, restored NAD(+) and ATP levels, but did not result in better survival against cell killing by tBOOH. The lack of the protective effect of PARP inhibitor, therefore, does not implicate PARP in the mechanism of tBOOH-induced cytotoxicity. Electron micrographs also show no mitochondrial swelling in cells under oxidative stress, but such organelles were mainly located around the nucleus, a picture already observed in autoschizis, a new suggested kind of cell death which shows both apoptotic and necrotic morphological characteristics. Copyright 2000 Academic Press.

  3. High-Temperature (940 °C) furnace in 18/20 T cold bore magnet

    NASA Astrophysics Data System (ADS)

    Wang, Ze; Hou, Yubin; Feng, Qiyuan; Dong, Hongliang; Lu, Qingyou

    2018-01-01

    We present a high-temperature furnace that can work continuously in an 18/20 T cold bore magnet. A specially designed liquid nitrogen (LN2) jacket is between the high-temperature parts of the furnace and the liquid helium in the magnet Dewar. With LN2 serving as the cooling medium, the calculated value of radiation received by the liquid helium (LHe) is as low as 0.004 W. The furnace can be put into LHe Dewar directly. Together with the magnet, the furnace can provide experimental conditions of a strong static magnetic field and temperatures up to 940 °C. A cobalt oxide synthesis in solution was carried out at 200 °C with and without a 15 T magnetic field for 8 h. Differences in material structure with the applied field were observed in transmission electron micrographs of the products. A Co film sample was treated at 900 °C with and without a 6.8 T magnetic field for 30 min. The scanning electron micrographs of the treated samples show that magnetic field had a clear effect on the heat treatment process. These two applications confirmed the performance of the furnace both in high magnetic field and at high temperature.

  4. Photoreactivation and dark repair of environmental E. coli strains following 24 kHz continuous ultrasound and UV-C irradiation.

    PubMed

    Kaur, Jasjeet; Karthikeyan, Raghupathy; Pillai, Suresh D

    2016-07-02

    In this study, effects of 24 kHz continuous ultrasound and UV-C on inactivation and potential repair of environmental E. coli strains were studied through a culture based method and a metabolic activity assay. Three environmental E. coli strains isolated from fecal samples of feral hog and deer and treated wastewater effluent were studied and compared with a laboratory E. coli strain (ATCC® 10798). Metabolic activity of E. coli cells during the inactivation and repair period was assessed using the AlamarBlue® assay. Transmission electron microscopy assays were also performed to evaluate morphological damage of bacterial cell wall. After 24 h of photoreactivation period, laboratory E. coli strain (ATCC® 10798) reactivated by 30% and 42% in contrast to E. coli isolate from treated wastewater effluent, which reactivated by 53% and 82% after ultrasound and UV-C treatment, respectively. Possible shearing and reduction in cell size of E. coli strains exposed to ultrasound was revealed by transmission electron micrographs. Metabolic activity of E. coli strains was greatly reduced due to morphological damage to cell membrane caused by 24 kHz continuous ultrasound. Based upon experimental data and TEM micrographs, it could be concluded that ultrasound irradiation has potential in advanced water treatment and water reuse applications.

  5. Analysis of Phase Separation in Czochralski Grown Single Crystal Ilmenite

    NASA Technical Reports Server (NTRS)

    Wilkins, R.; Powell, Kirk St. A.; Loregnard, Kieron R.; Lin, Sy-Chyi; Muthusami, Jayakumar; Zhou, Feng; Pandey, R. K.; Brown, Geoff; Hawley, M. E.

    1998-01-01

    Ilmenite (FeTiOs) is a wide bandgap semiconductor with an energy gap of 2.58 eV. Ilmenite has properties suited for radiation tolerant applications, as well as a variety of other electronic applications. Single crystal ilmenite has been grown from the melt using the Czochralski method. Growth conditions have a profound effect on the microstructure of the samples. Here we present data from a variety of analytical techniques which indicate that some grown crystals exhibit distinct phase separation during growth. This phase separation is apparent for both post-growth annealed and unannealed samples. Under optical microscopy, there appear two distinct areas forming a matrix with an array of dots on order of 5 pm diameter. While appearing bright in the optical micrograph, atomic force microscope (AFM) shows the dots to be shallow pits on the surface. Magnetic force microscope (MFM) shows the dots to be magnetic. Phase identification via electron microprobe analysis (EMPA) indicates two major phases in the unannealed samples and four in the annealed samples, where the dots appear to be almost pure iron. This is consistent with micrographs taken with a scanning probe microscope used in the magnetic force mode. Samples that do not exhibit the phase separation have little or no discernible magnetic structure detectable by the MFM.

  6. ultraLM and miniLM: Locator tools for smart tracking of fluorescent cells in correlative light and electron microscopy.

    PubMed

    Brama, Elisabeth; Peddie, Christopher J; Wilkes, Gary; Gu, Yan; Collinson, Lucy M; Jones, Martin L

    2016-12-13

    In-resin fluorescence (IRF) protocols preserve fluorescent proteins in resin-embedded cells and tissues for correlative light and electron microscopy, aiding interpretation of macromolecular function within the complex cellular landscape. Dual-contrast IRF samples can be imaged in separate fluorescence and electron microscopes, or in dual-modality integrated microscopes for high resolution correlation of fluorophore to organelle. IRF samples also offer a unique opportunity to automate correlative imaging workflows. Here we present two new locator tools for finding and following fluorescent cells in IRF blocks, enabling future automation of correlative imaging. The ultraLM is a fluorescence microscope that integrates with an ultramicrotome, which enables 'smart collection' of ultrathin sections containing fluorescent cells or tissues for subsequent transmission electron microscopy or array tomography. The miniLM is a fluorescence microscope that integrates with serial block face scanning electron microscopes, which enables 'smart tracking' of fluorescent structures during automated serial electron image acquisition from large cell and tissue volumes.

  7. Nano-fEM: protein localization using photo-activated localization microscopy and electron microscopy.

    PubMed

    Watanabe, Shigeki; Richards, Jackson; Hollopeter, Gunther; Hobson, Robert J; Davis, Wayne M; Jorgensen, Erik M

    2012-12-03

    Mapping the distribution of proteins is essential for understanding the function of proteins in a cell. Fluorescence microscopy is extensively used for protein localization, but subcellular context is often absent in fluorescence images. Immuno-electron microscopy, on the other hand, can localize proteins, but the technique is limited by a lack of compatible antibodies, poor preservation of morphology and because most antigens are not exposed to the specimen surface. Correlative approaches can acquire the fluorescence image from a whole cell first, either from immuno-fluorescence or genetically tagged proteins. The sample is then fixed and embedded for electron microscopy, and the images are correlated (1-3). However, the low-resolution fluorescence image and the lack of fiducial markers preclude the precise localization of proteins. Alternatively, fluorescence imaging can be done after preserving the specimen in plastic. In this approach, the block is sectioned, and fluorescence images and electron micrographs of the same section are correlated (4-7). However, the diffraction limit of light in the correlated image obscures the locations of individual molecules, and the fluorescence often extends beyond the boundary of the cell. Nano-resolution fluorescence electron microscopy (nano-fEM) is designed to localize proteins at nano-scale by imaging the same sections using photo-activated localization microscopy (PALM) and electron microscopy. PALM overcomes the diffraction limit by imaging individual fluorescent proteins and subsequently mapping the centroid of each fluorescent spot (8-10). We outline the nano-fEM technique in five steps. First, the sample is fixed and embedded using conditions that preserve the fluorescence of tagged proteins. Second, the resin blocks are sectioned into ultrathin segments (70-80 nm) that are mounted on a cover glass. Third, fluorescence is imaged in these sections using the Zeiss PALM microscope. Fourth, electron dense structures are imaged in these same sections using a scanning electron microscope. Fifth, the fluorescence and electron micrographs are aligned using gold particles as fiducial markers. In summary, the subcellular localization of fluorescently tagged proteins can be determined at nanometer resolution in approximately one week.

  8. Improved Serial Sectioning Techniques for Correlative Light-Electron Microscopy Mapping of Human Langerhans Islets

    PubMed Central

    Saitoh, Sei; Ohno, Nobuhiko; Saitoh, Yurika; Terada, Nobuo; Shimo, Satoshi; Aida, Kaoru; Fujii, Hideki; Kobayashi, Tetsuro; Ohno, Shinichi

    2018-01-01

    Combined analysis of immunostaining for various biological molecules coupled with investigations of ultrastructural features of individual cells is a powerful approach for studies of cellular functions in normal and pathological conditions. However, weak antigenicity of tissues fixed by conventional methods poses a problem for immunoassays. This study introduces a method of correlative light and electron microscopy imaging of the same endocrine cells of compact and diffuse islets from human pancreatic tissue specimens. The method utilizes serial sections obtained from Epon-embedded specimens fixed with glutaraldehyde and osmium tetroxide. Double-immunofluorescence staining of thick Epon sections for endocrine hormones (insulin and glucagon) and regenerating islet-derived gene 1 α (REG1α) was performed following the removal of Epoxy resin with sodium ethoxide, antigen retrieval by autoclaving, and de-osmification treatment with hydrogen peroxide. The immunofluorescence images of endocrine cells were superimposed with the electron microscopy images of the same cells obtained from serial ultrathin sections. Immunofluorescence images showed well-preserved secretory granules in endocrine cells, whereas electron microscopy observations demonstrated corresponding secretory granules and intracellular organelles in the same cells. In conclusion, the correlative imaging approach developed by us may be useful for examining ultrastructural features in combination with immunolocalisation of endocrine hormones in the same human pancreatic islets. PMID:29622846

  9. Radiation-Tolerant, SpaceWire-Compatible Switching Fabric

    NASA Technical Reports Server (NTRS)

    Katzman, Vladimir

    2011-01-01

    Current and future near-Earth and deep space exploration programs and space defense programs require the development of robust intra-spacecraft serial data transfer electronics that must be reconfigurable, fault-tolerant, and have the ability to operate effectively for long periods of time in harsh environmental conditions. Existing data transfer systems based on state-of-the-art serial data transfer protocols or passive backplanes are slow, power-hungry, and poorly reconfigurable. They provide limited expandability and poor tolerance to radiation effects and total ionizing dose (TID) in particular, which presents harmful threats to modern submicron electronics. This novel approach is based on a standard library of differential cells tolerant to TID, and patented, multi-level serial interface architecture that ensures the reliable operation of serial interconnects without application of a data-strobe or other encoding techniques. This proprietary, high-speed differential interface presents a lowpower solution fully compatible with the SpaceWire (SW) protocol. It replaces a dual data-strobe link with two identical independent data channels, thus improving the system s tolerance to harsh environments through additional double redundancy. Each channel incorporates an automatic line integrity control circuitry that delivers error signals in case of broken or shorted lines.

  10. Large volume serial section tomography by Xe Plasma FIB dual beam microscopy.

    PubMed

    Burnett, T L; Kelley, R; Winiarski, B; Contreras, L; Daly, M; Gholinia, A; Burke, M G; Withers, P J

    2016-02-01

    Ga(+) Focused Ion Beam-Scanning Electron Microscopes (FIB-SEM) have revolutionised the level of microstructural information that can be recovered in 3D by block face serial section tomography (SST), as well as enabling the site-specific removal of smaller regions for subsequent transmission electron microscope (TEM) examination. However, Ga(+) FIB material removal rates limit the volumes and depths that can be probed to dimensions in the tens of microns range. Emerging Xe(+) Plasma Focused Ion Beam-Scanning Electron Microscope (PFIB-SEM) systems promise faster removal rates. Here we examine the potential of the method for large volume serial section tomography as applied to bainitic steel and WC-Co hard metals. Our studies demonstrate that with careful control of milling parameters precise automated serial sectioning can be achieved with low levels of milling artefacts at removal rates some 60× faster. Volumes that are hundreds of microns in dimension have been collected using fully automated SST routines in feasible timescales (<24h) showing good grain orientation contrast and capturing microstructural features at the tens of nanometres to the tens of microns scale. Accompanying electron back scattered diffraction (EBSD) maps show high indexing rates suggesting low levels of surface damage. Further, under high current Ga(+) FIB milling WC-Co is prone to amorphisation of WC surface layers and phase transformation of the Co phase, neither of which have been observed at PFIB currents as high as 60nA at 30kV. Xe(+) PFIB dual beam microscopes promise to radically extend our capability for 3D tomography, 3D EDX, 3D EBSD as well as correlative tomography. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  11. In Vitro Antifungal Activity of Hexahydropyrimidine Derivatives against the Causative Agents of Dermatomycosis

    PubMed Central

    Caneschi, César A.; Senra, Mônica P.; Carvalho, Gustavo S. G.; da Silva, Adilson D.

    2017-01-01

    Nitrogenated heterocyclic compounds are present in both natural and synthetic drugs, and hexahydropyrimidine derivatives may prove to be efficient in treating dermatomycosis causing fungi. This study evaluated the antifungal activity of four hexahydropyrimidine derivatives against the dermatomycosis causing fungi. These derivatives were synthesized, characterized, and assessed in terms of their activity against Trichophyton mentagrophytes, Microsporum canis, Microsporum gypseum, Trichophyton rubrum, Fusarium oxysporum, and Epidermophyton floccosum between concentrations 7.8 and 1,000 μg mL−1. Scanning electron micrographs were assessed for the active derivatives and reference drugs, and these micrographs revealed that new agents cause morphological changes in fungi. The derivatives HHP1, HHP3, and HHP4 revealed poor activity against the four fungal strains (MICs range 500–1000 μg mL−1). Compound HHP3 was found to be the best potential antifungal agent among those tested and was the most effective among all the active derivatives that caused morphological changes in the susceptible strains. PMID:29226215

  12. Materials characterization and histological analysis of explanted polypropylene, PTFE, and PET hernia meshes from an individual patient

    PubMed Central

    Wood, A. J.; Cozad, M. J.; Grant, D. A.; Ostdiek, A. M.; Bachman, S. L.

    2014-01-01

    During its tenure in vivo, synthetic mesh materials are exposed to foreign body responses, which can alter physicochemical properties of the material. Three different synthetic meshes comprised of polypropylene, expanded polytetrafluoroethylene (ePTFE), and polyethylene terephthalate (PET) materials were explanted from a single patient providing an opportunity to compare physicochemical changes between three different mesh materials in the same host. Results from infrared spectroscopy demonstrated significant oxidation in polypropylene mesh while ePTFE and PET showed slight chemical changes that may be caused by adherent scar tissue. Differential scanning calorimetry results showed a significant decrease in the heat of enthalpy and melt temperature in the polypropylene mesh while the ePTFE and PET showed little change. The presence of giant cells and plasma cells surrounding the ePTFE and PET were indicative of an active foreign body response. Scanning electron micrographs and photo micrographs displayed tissue entrapment and distortion of all three mesh materials. PMID:23371769

  13. Experimental Study of Grit Particle Enhancement in Non-Shock Ignition

    NASA Astrophysics Data System (ADS)

    Browning, Richard V.; Peterson, Paul D.; Roemer, Edward L.; Oldenborg, Michael R.; Thompson, Darla G.; Deluca, Racci

    2006-07-01

    The drop weight impact test is the most commonly used configuration for evaluating sensitivity of explosives to non-shock ignition. Although developed 60 years ago and widely used both as a material compression test and as a test bed for understanding the ignition process itself, little is known about the flow mechanisms or involvement of grit particles as sensitizing agents. In this paper, we present the results of a series of experiments designed to study the flow mechanisms and events leading up to ignition. The experimental configuration used involves two pellet sizes, 3 and 5 mm in diameter, tested with three conditions: (1) smooth steel anvils, (2) standard flint sandpaper, and (3) shed grit particles loaded between the steel anvils and the pellet faces. Diagnostics include optical micrographs, and scanning electron micrographs. Un-reacted samples show a variety of morphologies, including what appear to be quenched reaction sites, even at very low drop heights. Quasi-static crushing experiments were also done to quantify load-time histories.

  14. Experimental Study of Grit Particle Enhancement in Non-Shock Ignition of PBX 9501

    NASA Astrophysics Data System (ADS)

    Peterson, Paul

    2005-07-01

    The drop weight impact test is the most commonly used configuration for evaluating sensitivity of explosives to non-shock ignition. Although developed 60 years ago and widely used both as a material compression test and as a test bed for understanding the ignition process itself, little is known about the flow mechanisms or involvement of grit particles as sensitizing agents. In this paper we present the results of a series of experiments designed to study the flow mechanisms and events leading up to ignition. The experimental configuration used involves two pellet sizes, 3 and 5 mm in diameter, tested in three conditions, (1) with smooth steel anvils, (2) with standard flint sandpaper, and (3) with shed grit particles loaded between the steel anvils and the pellet faces. Diagnostics include optical micrographs, and scanning electron micrographs. Un-reacted samples show a variety of morphologies, including what appear to be quenched reaction sites, even at very low drop heights. Quasi-static crushing experiments were also done to quantify load-time histories.

  15. Formalization, equivalence and generalization of basic resonance electrical circuits

    NASA Astrophysics Data System (ADS)

    Penev, Dimitar; Arnaudov, Dimitar; Hinov, Nikolay

    2017-12-01

    In the work are presented basic resonance circuits, which are used in resonance energy converters. The following resonant circuits are considered: serial, serial with parallel load parallel capacitor, parallel and parallel with serial loaded inductance. For the circuits under consideration, expressions are generated for the frequencies of own oscillations and for the equivalence of the active power emitted in the load. Mathematical expressions are graphically constructed and verified using computer simulations. The results obtained are used in the model based design of resonant energy converters with DC or AC output. This guaranteed the output indicators of power electronic devices.

  16. Native sulfur/chlorine SAD phasing for serial femtosecond crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakane, Takanori; Song, Changyong; POSTECH, Pohang 790-784

    Sulfur SAD phasing facilitates the structure determination of diverse native proteins using femtosecond X-rays from free-electron lasers via serial femtosecond crystallography. Serial femtosecond crystallography (SFX) allows structures to be determined with minimal radiation damage. However, phasing native crystals in SFX is not very common. Here, the structure determination of native lysozyme from single-wavelength anomalous diffraction (SAD) by utilizing the anomalous signal of sulfur and chlorine at a wavelength of 1.77 Å is successfully demonstrated. This sulfur SAD method can be applied to a wide range of proteins, which will improve the determination of native crystal structures.

  17. Innervation of the anterior byssal retractor muscle in Mytilus edulis L. II. Ultrastructure of the glio-interstitial cells.

    PubMed

    Gilloteaux, J

    1975-08-27

    Studies on the intrinsic innervation of the anterior byssal retractor muscle (ABRM) in Mytilus edulis L. were continued at the ultrastructural level. Electron micrographs show nerve processes ensheathed by glio-interstitial cells running between muscle fibers. The glio-interstitial cells may represent all the types of osmiophilic cells previously described by the light microscopic ZIO technique in the anterior byssal retractor muscle.

  18. Preparation and Characterization of Carbon Filaments

    DTIC Science & Technology

    1991-04-01

    Kawasumi, "Whiskerization of Carbon Beads by Vapor Phase Growth of Carbon Fibers to Obtain Sea Urchin -Type Particles", Carbon 21, 89 (1983). 5) R.T.K...multiple fiber microstructure are possible on what appears to be a single fiber along the length of the fiber. However, without SEM micrographs, it is...180 minutes. Scanning Electron Microscopic ( SEM ) observations were cared out using P Philips series 505 SEM system, typically operating at an

  19. Magnetic resonance investigation of magnetic-labeled baker's yeast cells

    NASA Astrophysics Data System (ADS)

    Godoy Morais, J. P. M.; Azevedo, R. B.; Silva, L. P.; Lacava, Z. G. M.; Báo, S. N.; Silva, O.; Pelegrini, F.; Gansau, C.; Buske, N.; Safarik, I.; Safarikova, M.; Morais, P. C.

    2004-05-01

    In this study, the interaction of DMSA-coated magnetite nanoparticles (5 and 10 nm core-size) with Saccharomyces cerevisae was investigated using magnetic resonance (MR) and transmission electron microscopy (TEM). The TEM micrographs revealed magnetite nanoparticles attached externally to the cell wall. The MR data support the strong interaction among the nanoparticles supported by the cells. A remarkable shift in the resonance field was used as signature of particle attachment to the cell wall.

  20. Leukomyelitis in the Goat: A Report of Three Cases

    PubMed Central

    Wilkie, I. W.

    1980-01-01

    Three cases of focal myelitis in the spinal cords of young goats are described. The clinical findings and pathological changes were similar to those reported for viral leukoencephalomyelitis of goats. There were granular structures in a few cells in malacic areas, which on electron micrographs appear to be clumps of chromatin in the nuclei of gemistocytic astrocytes. They may represent mitotic figures. ImagesFigure 1.Figure 2.Figure 3.Figure 4. PMID:7427848

  1. California Black Oak Drying Problems and the Bacterial Factor.

    DTIC Science & Technology

    1979-01-01

    operations in Anderson area and to adjacent kilns by spacing stickers 18 inches apart and Georgia and wondered if bacterial tree drying softwood lumber at...on stickers in a weighted, volatile fatty acids which are the sapwood , and then from the outer, covered pile placed outdoors on the characteristic of...1. JT~~~ Figure 1 —Scanning electron micrographs of nonintected sapwood (A-B) and bacterially infected heartwood (C-D) from

  2. Electronic Publishing and Library Technical Services.

    ERIC Educational Resources Information Center

    Aveney, Brian

    1984-01-01

    Trends in electronic editions, on-demand publishing, and online publishing are reviewed and their potential effects on library services and organization are discussed, including library material selection, acquisitions, cataloging, serials, circulation, and home printers. Thirteen references are provided. (EJS)

  3. EMHP: an accurate automated hole masking algorithm for single-particle cryo-EM image processing.

    PubMed

    Berndsen, Zachary; Bowman, Charles; Jang, Haerin; Ward, Andrew B

    2017-12-01

    The Electron Microscopy Hole Punch (EMHP) is a streamlined suite of tools for quick assessment, sorting and hole masking of electron micrographs. With recent advances in single-particle electron cryo-microscopy (cryo-EM) data processing allowing for the rapid determination of protein structures using a smaller computational footprint, we saw the need for a fast and simple tool for data pre-processing that could run independent of existing high-performance computing (HPC) infrastructures. EMHP provides a data preprocessing platform in a small package that requires minimal python dependencies to function. https://www.bitbucket.org/chazbot/emhp Apache 2.0 License. bowman@scripps.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  4. Rethinking cell structure.

    PubMed Central

    Penman, S

    1995-01-01

    Cell structure, emerging from behind the veil of conventional electron microscopy, appears far more complex than formerly realized. The standard plastic-embedded, ultrathin section can image only what is on the section surface and masks the elaborate networks of the cytoplasm and nucleus. Embedment-free electron microscopy gives clear, high-contrast micrographs of cell structure when combined with removal of obscuring material such as soluble proteins. The resinless ultrathin section is the technique of choice; it is simple and inexpensive, and it uses ordinary electron microscopes. The resulting pictures reveal a world of complex cell structure and function. These images necessarily change our conception of the cytoskeleton, nuclear matrix, mitosis, and the relation of membranes to cytostructure. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7777493

  5. MORPH-I (Ver 1.0) a software package for the analysis of scanning electron micrograph (binary formatted) images for the assessment of the fractal dimension of enclosed pore surfaces

    USGS Publications Warehouse

    Mossotti, Victor G.; Eldeeb, A. Raouf; Oscarson, Robert

    1998-01-01

    MORPH-I is a set of C-language computer programs for the IBM PC and compatible minicomputers. The programs in MORPH-I are used for the fractal analysis of scanning electron microscope and electron microprobe images of pore profiles exposed in cross-section. The program isolates and traces the cross-sectional profiles of exposed pores and computes the Richardson fractal dimension for each pore. Other programs in the set provide for image calibration, display, and statistical analysis of the computed dimensions for highly complex porous materials. Requirements: IBM PC or compatible; minimum 640 K RAM; mathcoprocessor; SVGA graphics board providing mode 103 display.

  6. Liquid sample delivery techniques for serial femtosecond crystallography

    PubMed Central

    Weierstall, Uwe

    2014-01-01

    X-ray free-electron lasers overcome the problem of radiation damage in protein crystallography and allow structure determination from micro- and nanocrystals at room temperature. To ensure that consecutive X-ray pulses do not probe previously exposed crystals, the sample needs to be replaced with the X-ray repetition rate, which ranges from 120 Hz at warm linac-based free-electron lasers to 1 MHz at superconducting linacs. Liquid injectors are therefore an essential part of a serial femtosecond crystallography experiment at an X-ray free-electron laser. Here, we compare different techniques of injecting microcrystals in solution into the pulsed X-ray beam in vacuum. Sample waste due to mismatch of the liquid flow rate to the X-ray repetition rate can be addressed through various techniques. PMID:24914163

  7. Effects of interdot hopping and Coulomb blockade on the thermoelectric properties of serially coupled quantum dots

    PubMed Central

    2012-01-01

    We have theoretically studied the thermoelectric properties of serially coupled quantum dots (SCQDs) embedded in an insulator connected to metallic electrodes. In the framework of Keldysh Green’s function technique, the Landauer formula of transmission factor is obtained using the equation of motion method. Based on such analytical expressions of charge and heat currents, we calculate the electrical conductance, Seebeck coefficient, electron thermal conductance, and figure of merit (ZT) of SCQDs in the linear response regime. The effects of interdot hopping and electron Coulomb interactions on ZT are analyzed. We demonstrate that ZT is not a monotonic increasing function of interdot electron hopping strength (tc). We also show that in the absence of phonon thermal conductance, SCQD can reach the Carnot efficiency as tcapproaches zero. PMID:22591807

  8. Covalent modification and exfoliation of graphene oxide using ferrocene

    NASA Astrophysics Data System (ADS)

    Avinash, M. B.; Subrahmanyam, K. S.; Sundarayya, Y.; Govindaraju, T.

    2010-09-01

    Large scale preparation of single-layer graphene and graphene oxide is of great importance due to their potential applications. We report a simple room temperature method for the exfoliation of graphene oxide using covalent modification of graphene oxide with ferrocene to obtain single-layer graphene oxide sheets. The samples were characterized by FESEM, HRTEM, AFM, EDAX, FT-IR, Raman and Mössbauer spectroscopic studies. HRTEM micrograph of the covalently modified graphene oxide showed increased interlayer spacing of ~2.4 nm due to ferrocene intercalation. The presence of single-layer graphene oxide sheets were confirmed by AFM studies. The covalently modified ferrocene-graphene oxide composite showed interesting magnetic behavior.Large scale preparation of single-layer graphene and graphene oxide is of great importance due to their potential applications. We report a simple room temperature method for the exfoliation of graphene oxide using covalent modification of graphene oxide with ferrocene to obtain single-layer graphene oxide sheets. The samples were characterized by FESEM, HRTEM, AFM, EDAX, FT-IR, Raman and Mössbauer spectroscopic studies. HRTEM micrograph of the covalently modified graphene oxide showed increased interlayer spacing of ~2.4 nm due to ferrocene intercalation. The presence of single-layer graphene oxide sheets were confirmed by AFM studies. The covalently modified ferrocene-graphene oxide composite showed interesting magnetic behavior. Electronic supplementary information (ESI) available: Magnetic data; AFM images; TEM micrographs; and Mössbauer spectroscopic data. See DOI: 10.1039/c0nr00024h

  9. Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein

    DOE PAGES

    Tenboer, Jason; Basu, Shibom; Zatsepin, Nadia; ...

    2014-12-05

    We report that serial femtosecond crystallography using ultrashort pulses from X-ray Free Electron Lasers (XFELs) offers the possibility to study light-triggered dynamics of biomolecules. Using microcrystals of the blue light photoreceptor, photoactive yellow protein, as a model system, we present high resolution, time-resolved difference electron density maps of excellent quality with strong features, which allow the determination of structures of reaction intermediates to 1.6 Å resolution. These results open the way to the study of reversible and non-reversible biological reactions on time scales as short as femtoseconds under conditions which maximize the extent of reaction initiation throughout the crystal.

  10. In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells

    DOE PAGES

    Jakobi, Arjen J.; Passon, Daniel M.; Knoops, Kevin; ...

    2016-03-01

    The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. Furthermore, the observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined.

  11. In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakobi, Arjen J.; Passon, Daniel M.; Knoops, Kevin

    The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. Furthermore, the observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined.

  12. In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells

    PubMed Central

    Jakobi, Arjen J.; Passon, Daniel M.; Knoops, Kèvin; Stellato, Francesco; Liang, Mengning; White, Thomas A.; Seine, Thomas; Messerschmidt, Marc; Chapman, Henry N.; Wilmanns, Matthias

    2016-01-01

    The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. The observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined. PMID:27006771

  13. Conductive resins improve charging and resolution of acquired images in electron microscopic volume imaging

    PubMed Central

    Nguyen, Huy Bang; Thai, Truc Quynh; Saitoh, Sei; Wu, Bao; Saitoh, Yurika; Shimo, Satoshi; Fujitani, Hiroshi; Otobe, Hirohide; Ohno, Nobuhiko

    2016-01-01

    Recent advances in serial block-face imaging using scanning electron microscopy (SEM) have enabled the rapid and efficient acquisition of 3-dimensional (3D) ultrastructural information from a large volume of biological specimens including brain tissues. However, volume imaging under SEM is often hampered by sample charging, and typically requires specific sample preparation to reduce charging and increase image contrast. In the present study, we introduced carbon-based conductive resins for 3D analyses of subcellular ultrastructures, using serial block-face SEM (SBF-SEM) to image samples. Conductive resins were produced by adding the carbon black filler, Ketjen black, to resins commonly used for electron microscopic observations of biological specimens. Carbon black mostly localized around tissues and did not penetrate cells, whereas the conductive resins significantly reduced the charging of samples during SBF-SEM imaging. When serial images were acquired, embedding into the conductive resins improved the resolution of images by facilitating the successful cutting of samples in SBF-SEM. These results suggest that improving the conductivities of resins with a carbon black filler is a simple and useful option for reducing charging and enhancing the resolution of images obtained for volume imaging with SEM. PMID:27020327

  14. LabVIEW Serial Driver Software for an Electronic Load

    NASA Technical Reports Server (NTRS)

    Scullin, Vincent; Garcia, Christopher

    2003-01-01

    A LabVIEW-language computer program enables monitoring and control of a Transistor Devices, Inc., Dynaload WCL232 (or equivalent) electronic load via an RS-232 serial communication link between the electronic load and a remote personal computer. (The electronic load can operate at constant voltage, current, power consumption, or resistance.) The program generates a graphical user interface (GUI) at the computer that looks and acts like the front panel of the electronic load. Once the electronic load has been placed in remote-control mode, this program first queries the electronic load for the present values of all its operational and limit settings, and then drops into a cycle in which it reports the instantaneous voltage, current, and power values in displays that resemble those on the electronic load while monitoring the GUI images of pushbuttons for control actions by the user. By means of the pushbutton images and associated prompts, the user can perform such operations as changing limit values, the operating mode, or the set point. The benefit of this software is that it relieves the user of the need to learn one method for operating the electronic load locally and another method for operating it remotely via a personal computer.

  15. A high resolution electron microscopy investigation of curvature in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Weldon, D. N.; Blau, W. J.; Zandbergen, H. W.

    1995-07-01

    Evidence for heptagon inclusion in multi-walled carbon nanotubes was sought in arc-produced carbon deposits. Transmission electron microscopy revealed many curved nanotubes although their relative abundance was low. Close examination of the micrographs in the regions of expected heptagon inclusion shows that the curvature is accomplished by folding or fracture of the lattice planes. This observed phenomenon contradicts the theoretical modelling studies which predict stable structures with negative curvature accomplished by heptagon/pentagon pairs. A possible explanation for curvature in single-walled tubes is presented based on a molecular mechanics geometry optimisation study of spa inclusion in a graphite sheet.

  16. Pulsed Laser-Assisted Focused Electron-Beam-Induced Etching of Titanium with XeF 2 : Enhanced Reaction Rate and Precursor Transport

    DOE PAGES

    Noh, J. H.; Fowlkes, J. D.; Timilsina, R.; ...

    2015-01-28

    We introduce a laser-assisted focused electron-beam-induced etching (LA-FEBIE) process which is a versatile, direct write nanofabrication method that allows nanoscale patterning and editing; we do this in order to enhance the etch rate of electron-beam-induced etching. The results demonstrate that the titanium electron stimulated etch rate via the XeF2 precursor can be enhanced up to a factor of 6 times with an intermittent pulsed laser assist. Moreover, the evolution of the etching process is correlated to in situ stage current measurements and scanning electron micrographs as a function of time. Finally, the increased etch rate is attributed to photothermally enhancedmore » Ti–F reaction and TiF4 desorption and in some regimes enhanced XeF2 surface diffusion to the reaction zone.« less

  17. An historical account of the development and applications of the negative staining technique to the electron microscopy of viruses.

    PubMed

    Horne, R W; Wildy, P

    1979-09-01

    A brief historical account of the development and applications of the negative staining techniques to the study of the structure of viruses and their components as observed in the electron microscope is presented. Although the basic method of surrounding or embedding specimens in opaque dyes was used in light microscopy dating from about 1884, the equivalent preparative techniques applied to electron microscopy were comparatively recent. The combination of experiments on a sophisticated bacterial virus and the installation of a high resolution electron microscope in the Cavendish Laboratory, Cambridge, during 1954, subsequently led to the analysis of several important morphological features of animal, plant and bacterial viruses. The implications of the results from these early experiments on viruses and recent developments in negative staining methods for high resolution image analysis of electron micrographs are also discussed.

  18. Ultrastructural organization of the hamster renal pelvis.

    PubMed

    Lacy, E R; Schmidt-Nielsen, B

    1979-08-01

    The renal pelvis of the hamster has been studied by light microscopy (epoxy resin sections), transmission electron microscopy, and morphometric analysis of electron micrographs. Three morphologically distinct epithelia line the pelvis, and each covers a different zone of the kidney. A thin epithelium covering the outer medulla (OM) consists of two cell types: (1) granular cells are most numerous and have apically positioned granules which stain intensely with toluidine blue, are membrane-bound, and contain a fine particulate matter that stains light grey to black in electron micrographs. (2) Basal cells do not have granules, are confined to the basal lamina region, and do not reach the mucosal epithelial surface. The inner medulla (IM) is covered by a pelvic epithelium morphologically similar to collecting duct epithelium of IM. Some cells in this portion of the pelvic epithelium (IM) stain intensely dark with toluidine blue, osmium tetroxide, lead, and uranyl acetate. Transitional epithelium, which separates cortex (C) from pelvic urine, has an asymmetric luminal plasma membrane and discoid vesicles, each of which is similar to those previously observed in mammalian ureter and urinary bladder epithelia. Based on morphological comparisons with other epithelia, the IM and OM pelvic epithelia would appear permeable to solutes and/or water, while the transitional epithelium covering the C appears relatively impermeable. It would also appear that the exchange of solutes and water between pelvic urine and OM would involve capillaries, primarily, since morphometric analysis showed that both fenestrated and continuous capillaries of the OM were extremely abundant (greater than 60% of OM pelvic surface area) just under the thin pelvic epithelium.

  19. Particle Morphology From Wood-Burning Cook Stoves Emissions

    NASA Astrophysics Data System (ADS)

    Peralta, O.; Carabali, G.; Castro, T.; Torres, R.; Ruiz, L. G.; Molina, L. T.; Saavedra, I.

    2013-12-01

    Emissions from three wood-burning cook stoves were sampled to collect particles. Transmission electron microscope (TEM) copper grids were placed on the last two stages of an 8-stage MOUDI cascade impactor (d50= 0.32, and 0.18 μm). Samples were obtained on two heating stages of cooking, the first is a quick heating process to boil 1 liter of water, and the second is to keep the water at 90 C. Absorption coefficient, scattering coefficients, and particles concentration (0.01 - 2.5 μm aerodynamic diameter) were measured simultaneously using an absorption photometer (operated at 550 nm), a portable integrating nephelometer (at 530 nm), and a condensation particle counter connected to a chamber to dilute the wood stoves emissions. Transmission electron micrographic images of soot particles were acquired at different magnifications using a High Resolution Transmission Electron Microscope (HRTEM) JEOL HRTEM 4000EX operating at 200 kV, equipped with a GATAN digital micrograph system for image acquisition. The morphology of soot particles was analyzed calculating the border-based fractal dimension (Df). Particles sampled on the first heating stage exhibit complex shapes with high values of Df, which are present as aggregates formed by carbon ceno-spheres. The presence of high numbers of carbon ceno-spheres can be attributed to pyrolysis, thermal degradation, and others processes prior to combustion. Energy dispersive X-ray spectroscopy (EDS) was used to determine the elemental composition of particles. EDS analysis in particles with d50= 0.18 μm showed a higher content of carbonaceous material and relevant amounts of Si, S and K.

  20. Computer synthesis of high resolution electron micrographs

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1976-01-01

    Specimen damage, spherical aberration, low contrast and noisy sensors combine to prevent direct atomic viewing in a conventional electron microscope. The paper describes two methods for obtaining ultra-high resolution in biological specimens under the electron microscope. The first method assumes the physical limits of the electron objective lens and uses a series of dark field images of biological crystals to obtain direct information on the phases of the Fourier diffraction maxima; this information is used in an appropriate computer to synthesize a large aperture lens for a 1-A resolution. The second method assumes there is sufficient amplitude scatter from images recorded in focus which can be utilized with a sensitive densitometer and computer contrast stretching to yield fine structure image details. Cancer virus characterization is discussed as an illustrative example. Numerous photographs supplement the text.

  1. Studies of electronic and magnetic properties of LaVO3 thin film

    NASA Astrophysics Data System (ADS)

    Jana, Anupam; Karwal, Sharad; Choudhary, R. J.; Phase, D. M.

    2018-04-01

    We have investigated the electronic and magnetic properties of pulsed laser deposited Mott insulator LaVO3 (LVO) thin film. Structural characterization revels the single phase [00l] oriented LVO thin film. Enhancement of out of plane lattice parameter indicates the compressively strained LVO film. Electron spectroscopic studies demonstrate that vanadium is present in V3+ state. An energy dispersive X-ray spectroscopic study ensures the stoichiometric growth of the film. Very smooth surface is observed in scanning electron micrograph. Colour mapping for elemental distribution reflect the homogeneity of LVO film. The bifurcation between zero-field-cooled and Field-cooled curves clearly points towards the weak ferromagnetic phase presence in compressively strained LVO thin film. A finite value of coercivity at 300 K reflects the possibility of room temperature ferromagnetism of LVO thin film.

  2. Using a Decision Grid Process to Build Consensus in Electronic Resources Cancellation Decisions

    ERIC Educational Resources Information Center

    Foudy, Gerri; McManus, Alesia

    2005-01-01

    Many libraries are expending an increasing part of their collections budgets on electronic resources. At the same time many libraries, especially those which are state funded, face diminishing budgets and high rates of inflation for serials subscriptions in all formats, including electronic resources. Therefore, many libraries need to develop ways…

  3. An overview of state-of-the-art image restoration in electron microscopy.

    PubMed

    Roels, J; Aelterman, J; Luong, H Q; Lippens, S; Pižurica, A; Saeys, Y; Philips, W

    2018-06-08

    In Life Science research, electron microscopy (EM) is an essential tool for morphological analysis at the subcellular level as it allows for visualization at nanometer resolution. However, electron micrographs contain image degradations such as noise and blur caused by electromagnetic interference, electron counting errors, magnetic lens imperfections, electron diffraction, etc. These imperfections in raw image quality are inevitable and hamper subsequent image analysis and visualization. In an effort to mitigate these artefacts, many electron microscopy image restoration algorithms have been proposed in the last years. Most of these methods rely on generic assumptions on the image or degradations and are therefore outperformed by advanced methods that are based on more accurate models. Ideally, a method will accurately model the specific degradations that fit the physical acquisition settings. In this overview paper, we discuss different electron microscopy image degradation solutions and demonstrate that dedicated artefact regularisation results in higher quality restoration and is applicable through recently developed probabilistic methods. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  4. Moire-Fringe Images of Twin Boundaries in Chemical Vapor Deposited Diamond

    DTIC Science & Technology

    1992-07-10

    Moire-Fringe Images of Twin Boundaries in Chemical Vapor Deposited Diamond IJ PERSONAL AUITHOR(S) - D. Shechtman. A. Fldman, M.D. Vaudin, and J.L...micrographs of chemical vapor deposited diamond can be interprete as Moire fringes that occur when viewing twin boundaries that are inclined to the electron...Dist J Special TECHNICAL REPORT No. 14 eca MOIRE-FRINGE IMAGES OF TWIN BOUNDARIES IN CHEMICAL VAPOR DEPOSITED DIAMOND D. Shechtman, A. Feldman, M.D

  5. Control of Growth Within Drosophila Peripheral Nerves by Ras and Protein Kinase A

    DTIC Science & Technology

    2007-02-01

    Grant W81XWH-04- 1-0272 (M.S.). We are grateful to Angela Lynn, Vanathi Sundaresan, and Gia Fazio for technical assistance and Kei Ito, Vanessa Auld, Marc...by Van - essa Auld (University of British Columbia, Vancouver, British Columbia, Canada) and Kei Ito (National Institute for Basic Biology, Okazaki, Ja...and an outer, meso- dermally derived perineurial glia ( Edwards et al., 1993). A trans- mission electron micrograph (TEM) of a peripheral nerve cross

  6. Fine structure of the eggs of Anopheles (Anopheles) apicimacula (Diptera:Culicidae).

    PubMed

    Rodriguez, M H; Chávez, B; Orozco, A; Martínez-Palomo, A

    1996-09-01

    The eggs of Anopheles (Anopheles) apicimacula Dyar and Knab are described from scanning electron micrographs. The eggs are boat-shaped, with frills that extend ventrally along the length of the egg and surround the deck region. The ornamentation on the dorsal and lateral surfaces is formed by groups of smooth, round tubercles. The ventral surface is covered by irregularly jagged tubercles. Prominent lobed tubercles are present at the anterior and posterior ends of the deck.

  7. Supercritical Fluid Infusion of Iron Additives in Polymeric Matrices

    NASA Technical Reports Server (NTRS)

    Nazem, Negin; Taylor, Larry T.

    1999-01-01

    The objective of this project was the experimentation to measure preparation of iron nanophases within polymeric matrices via supercritical fluid infusion of iron precursors followed by thermal reduction. Another objective was to determine if supercritical CO2 could infuse into the polymer. The experiment is described along with the materials, and the supercritical fluid infusion and cure procedures. X-ray photoelectron spectra and transmission electron micrographs were obtained. The results are summarized in charts, and tables.

  8. Topical Meeting on Microphysics of Surfaces, Beams, and Adsorbates Held at Santa Fe, New Mexico on 4-6 February 1985.

    DTIC Science & Technology

    1985-12-18

    during excimer laser ablation. Results are %%% Study on the Mechanism of Ion-Assisted Etching, F. H. M. correlated with interferometric measurements of...report on real time interferometric measurements of free electron density and laser induced .,- fluorescence studies of atoms and molecules in the...compared with morphology exam- Ined with Nomarski micrographs and SEM. In addition, the struc- ture and composition of the deposited lines were analysed

  9. Direct and continuous synthesis of VO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Powell, M. J.; Marchand, P.; Denis, C. J.; Bear, J. C.; Darr, J. A.; Parkin, I. P.

    2015-11-01

    Monoclinic VO2 nanoparticles are of interest due to the material's thermochromic properties, however, direct synthesis routes to VO2 nanoparticles are often inaccessible due to the high synthesis temperatures or long reaction times required. Herein, we present a two-step synthesis route for the preparation of monoclinic VO2 nanoparticles using Continuous Hydrothermal Flow Synthesis (CHFS) followed by a short post heat treatment step. A range of particle sizes, dependent on synthesis conditions, were produced from 50 to 200 nm by varying reaction temperatures and the residence times in the process. The nanoparticles were characterised by powder X-ray diffraction, Raman and UV/Vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The nanoparticles were highly crystalline with rod and sphere-like morphologies present in TEM micrographs, with the size of both the rod and spherical particles being highly dependent on both reaction temperature and residence time. SEM micrographs showed the surface of the powders produced from the CHFS process to be highly uniform. The samples were given a short post synthesis heat treatment to ensure that they were phase pure monoclinic VO2, which led to them exhibiting a large and reversible switch in optical properties (at near-IR wavelengths), which suggests that if such materials can be incorporated into coatings or in composites, they could be used for fenestration in architectural applications.

  10. Effect of clay content on morphology and processability of electrospun keratin/poly(lactic acid) nanofiber.

    PubMed

    Isarankura Na Ayutthaya, Siriorn; Tanpichai, Supachok; Sangkhun, Weradesh; Wootthikanokkhan, Jatuphorn

    2016-04-01

    This research work has concerned the development of volatile organic compounds (VOCs) removal filters from biomaterials, based on keratin extracted from chicken feather waste and poly(lactic acid) (PLA) (50/50%w/w) blend. Clay (Na-montmorillonite) was also added to the blend solution prior to carrying out an electro-spinning process. The aim of this study was to investigate the effect of clay content on viscosity, conductivity, and morphology of the electrospun fibers. Scanning electron micrographs showed that smooth and bead-free fibers were obtained when clay content used was below 2 pph. XRD patterns of the electrospun fibers indicated that the clay was intercalated and exfoliated within the polymers matrix. Percentage crystallinity of keratin in the blend increased after adding the clay, as evidenced from FTIR spectra and DSC thermograms. Transmission electron micrographs revealed a kind of core-shell structure with clay being predominately resided within the keratin rich shell and at the interfacial region. Filtration performance of the electrospun keratin/PLA fibers, described in terms of pressure drop and its capability of removing methylene blue, were also explored. Overall, our results demonstrated that it was possible to improve process-ability, morphology and filtration efficiency of the electrospun keratin fibers by adding a suitable amount of clay. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Direct and continuous synthesis of VO2 nanoparticles.

    PubMed

    Powell, M J; Marchand, P; Denis, C J; Bear, J C; Darr, J A; Parkin, I P

    2015-11-28

    Monoclinic VO2 nanoparticles are of interest due to the material's thermochromic properties, however, direct synthesis routes to VO2 nanoparticles are often inaccessible due to the high synthesis temperatures or long reaction times required. Herein, we present a two-step synthesis route for the preparation of monoclinic VO2 nanoparticles using Continuous Hydrothermal Flow Synthesis (CHFS) followed by a short post heat treatment step. A range of particle sizes, dependent on synthesis conditions, were produced from 50 to 200 nm by varying reaction temperatures and the residence times in the process. The nanoparticles were characterised by powder X-ray diffraction, Raman and UV/Vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The nanoparticles were highly crystalline with rod and sphere-like morphologies present in TEM micrographs, with the size of both the rod and spherical particles being highly dependent on both reaction temperature and residence time. SEM micrographs showed the surface of the powders produced from the CHFS process to be highly uniform. The samples were given a short post synthesis heat treatment to ensure that they were phase pure monoclinic VO2, which led to them exhibiting a large and reversible switch in optical properties (at near-IR wavelengths), which suggests that if such materials can be incorporated into coatings or in composites, they could be used for fenestration in architectural applications.

  12. Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity.

    PubMed

    Wang, Chao; Kim, Yeon Ju; Singh, Priyanka; Mathiyalagan, Ramya; Jin, Yan; Yang, Deok Chun

    2016-06-01

    The synthesis of silver nanoparticles (AgNPs) by microorganisms is an area attracting growing interest in nanobiotechnology, due to the applications of these nanoparticles in various products including cosmetics and biosensors, and in the biomedical, clinical, and bioimaging fields as well. Various microorganisms have been found to be able to synthesize AgNPs when silver salts are supplied in the reaction system. The main objectives of this study were to evaluate the efficiency of synthesis of AgNPs by the strain Bacillus methylotrophicus DC3, isolated from the soil of Korean ginseng, a traditionally known oriental medicinal plant in Korea. The AgNPs showed maximum absorbance at 416 nm, when assayed by ultraviolet-visible spectroscopy (UV-vis). The field emission transmission electron micrograph (FE-TEM) results showed that the particles were spherical and 10-30 nm in size. In addition, the product was also characterized by energy dispersive X-ray spectroscopy (EDX), which displayed a 3 keV peak corresponding to the silver nanocrystal. Elemental mapping results also confirmed the presence of silver elements in the electron micrograph region. Furthermore, the AgNPs demonstrated antimicrobial activity against various pathogenic microorganisms such as Candida albicans, Salmonella enterica, Escherichia coli, and Vibrio parahaemolyticus, with enhanced antimicrobial activity being exhibited against C. albicans. Therefore, the current study describes the simple, efficient, and green method of synthesis of AgNPs by B. methylotrophicus DC3.

  13. Identifying local structural states in atomic imaging by computer vision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laanait, Nouamane; Ziatdinov, Maxim; He, Qian

    The availability of atomically resolved imaging modalities enables an unprecedented view into the local structural states of materials, which manifest themselves by deviations from the fundamental assumptions of periodicity and symmetry. Consequently, approaches that aim to extract these local structural states from atomic imaging data with minimal assumptions regarding the average crystallographic configuration of a material are indispensable to advances in structural and chemical investigations of materials. Here, we present an approach to identify and classify local structural states that is rooted in computer vision. This approach introduces a definition of a structural state that is composed of both localmore » and non-local information extracted from atomically resolved images, and is wholly untethered from the familiar concepts of symmetry and periodicity. Instead, this approach relies on computer vision techniques such as feature detection, and concepts such as scale-invariance. We present the fundamental aspects of local structural state extraction and classification by application to simulated scanning transmission electron microscopy images, and analyze the robustness of this approach in the presence of common instrumental factors such as noise, limited spatial resolution, and weak contrast. Finally, we apply this computer vision-based approach for the unsupervised detection and classification of local structural states in an experimental electron micrograph of a complex oxides interface, and a scanning tunneling micrograph of a defect engineered multilayer graphene surface.« less

  14. Identifying local structural states in atomic imaging by computer vision

    DOE PAGES

    Laanait, Nouamane; Ziatdinov, Maxim; He, Qian; ...

    2016-11-02

    The availability of atomically resolved imaging modalities enables an unprecedented view into the local structural states of materials, which manifest themselves by deviations from the fundamental assumptions of periodicity and symmetry. Consequently, approaches that aim to extract these local structural states from atomic imaging data with minimal assumptions regarding the average crystallographic configuration of a material are indispensable to advances in structural and chemical investigations of materials. Here, we present an approach to identify and classify local structural states that is rooted in computer vision. This approach introduces a definition of a structural state that is composed of both localmore » and non-local information extracted from atomically resolved images, and is wholly untethered from the familiar concepts of symmetry and periodicity. Instead, this approach relies on computer vision techniques such as feature detection, and concepts such as scale-invariance. We present the fundamental aspects of local structural state extraction and classification by application to simulated scanning transmission electron microscopy images, and analyze the robustness of this approach in the presence of common instrumental factors such as noise, limited spatial resolution, and weak contrast. Finally, we apply this computer vision-based approach for the unsupervised detection and classification of local structural states in an experimental electron micrograph of a complex oxides interface, and a scanning tunneling micrograph of a defect engineered multilayer graphene surface.« less

  15. Oil-free hyaluronic acid matrix for serial femtosecond crystallography

    NASA Astrophysics Data System (ADS)

    Sugahara, Michihiro; Song, Changyong; Suzuki, Mamoru; Masuda, Tetsuya; Inoue, Shigeyuki; Nakane, Takanori; Yumoto, Fumiaki; Nango, Eriko; Tanaka, Rie; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Yabashi, Makina; Nureki, Osamu; Numata, Keiji; Iwata, So

    2016-04-01

    The grease matrix was originally introduced as a microcrystal-carrier for serial femtosecond crystallography and has been expanded to applications for various types of proteins, including membrane proteins. However, the grease-based matrix has limited application for oil-sensitive proteins. Here we introduce a grease-free, water-based hyaluronic acid matrix. Applications for proteinase K and lysozyme proteins were able to produce electron density maps at 2.3-Å resolution.

  16. From Macrocrystals to Microcrystals: A Strategy for Membrane Protein Serial Crystallography.

    PubMed

    Dods, Robert; Båth, Petra; Arnlund, David; Beyerlein, Kenneth R; Nelson, Garrett; Liang, Mengling; Harimoorthy, Rajiv; Berntsen, Peter; Malmerberg, Erik; Johansson, Linda; Andersson, Rebecka; Bosman, Robert; Carbajo, Sergio; Claesson, Elin; Conrad, Chelsie E; Dahl, Peter; Hammarin, Greger; Hunter, Mark S; Li, Chufeng; Lisova, Stella; Milathianaki, Despina; Robinson, Joseph; Safari, Cecilia; Sharma, Amit; Williams, Garth; Wickstrand, Cecilia; Yefanov, Oleksandr; Davidsson, Jan; DePonte, Daniel P; Barty, Anton; Brändén, Gisela; Neutze, Richard

    2017-09-05

    Serial protein crystallography was developed at X-ray free-electron lasers (XFELs) and is now also being applied at storage ring facilities. Robust strategies for the growth and optimization of microcrystals are needed to advance the field. Here we illustrate a generic strategy for recovering high-density homogeneous samples of microcrystals starting from conditions known to yield large (macro) crystals of the photosynthetic reaction center of Blastochloris viridis (RC vir ). We first crushed these crystals prior to multiple rounds of microseeding. Each cycle of microseeding facilitated improvements in the RC vir serial femtosecond crystallography (SFX) structure from 3.3-Å to 2.4-Å resolution. This approach may allow known crystallization conditions for other proteins to be adapted to exploit novel scientific opportunities created by serial crystallography. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Revealing 3D Ultrastructure and Morphology of Stem Cell Spheroids by Electron Microscopy.

    PubMed

    Jaros, Josef; Petrov, Michal; Tesarova, Marketa; Hampl, Ales

    2017-01-01

    Cell culture methods have been developed in efforts to produce biologically relevant systems for developmental and disease modeling, and appropriate analytical tools are essential. Knowledge of ultrastructural characteristics represents the basis to reveal in situ the cellular morphology, cell-cell interactions, organelle distribution, niches in which cells reside, and many more. The traditional method for 3D visualization of ultrastructural components, serial sectioning using transmission electron microscopy (TEM), is very labor-intensive due to contentious TEM slice preparation and subsequent image processing of the whole collection. In this chapter, we present serial block-face scanning electron microscopy, together with complex methodology for spheroid formation, contrasting of cellular compartments, image processing, and 3D visualization. The described technique is effective for detailed morphological analysis of stem cell spheroids, organoids, as well as organotypic cell cultures.

  18. An Effective Method of Preparing Sections of Bacillus polymyxa Sporangia and Spores for Electron Microscopy

    PubMed Central

    Holbert, Pauline E.

    1960-01-01

    Bacillus polymyxa sporangia and spores were prepared for examination in the electron microscope by methods whose critical features were apparently: judicious use of vacuum, to encourage complete penetration of the embedding medium; the use of epoxy resins as embedding media; and cutting of the thin sections with a diamond knife. Electron micrographs of material prepared in this manner exhibit undeformed sporangial sections. Some of the structures revealed have been shown before, though perhaps less distinctly; other structures are revealed here for the first time. While this single study does not pretend to elucidate all the complexities of sporulation in bacteria, these and similar images should make this possible, and some mention of the preparatory techniques that lead to them seems advisable at this time. PMID:14402552

  19. Single clay sheets inside electrospun polymer nanofibers

    NASA Astrophysics Data System (ADS)

    Sun, Zhaohui

    2005-03-01

    Nanofibers were prepared from polymer solution with clay sheets by electrospinning. Plasma etching, as a well controlled process, was used to supply electrically excited gas molecules from a glow discharge. To reveal the structure and arrangement of clay layers in the polymer matrix, plasma etching was used to remove the polymer by controlled gasification to expose the clay sheets due to the difference in reactivity. The shape, flexibility, and orientation of clay sheets were studied by transmission and scanning electron microscopy. Additional quantitative information on size distribution and degree of exfoliation of clay sheets were obtained by analyzing electron micrograph of sample after plasma etching. Samples in various forms including fiber, film and bulk, were thinned by plasma etching. Morphology and dispersion of inorganic fillers were studied by electron microscopy.

  20. Applications for Micrographics in Large Scale Information Systems of the Future. Volume II: Part III. A Review of Micrographics State-of-the-Art.

    ERIC Educational Resources Information Center

    Information Dynamics Corp., Reading, MA.

    A five-year development program plan was drawn up for the Defense Documentation Center (DDC). This report presents in summary form the results of various surveys and reviews performed in selected areas of micrographics to support the efforts of the program's planners. Exhibits of supporting documentation are presented, together with a discussion…

  1. Automated Detection of Synapses in Serial Section Transmission Electron Microscopy Image Stacks

    PubMed Central

    Kreshuk, Anna; Koethe, Ullrich; Pax, Elizabeth; Bock, Davi D.; Hamprecht, Fred A.

    2014-01-01

    We describe a method for fully automated detection of chemical synapses in serial electron microscopy images with highly anisotropic axial and lateral resolution, such as images taken on transmission electron microscopes. Our pipeline starts from classification of the pixels based on 3D pixel features, which is followed by segmentation with an Ising model MRF and another classification step, based on object-level features. Classifiers are learned on sparse user labels; a fully annotated data subvolume is not required for training. The algorithm was validated on a set of 238 synapses in 20 serial 7197×7351 pixel images (4.5×4.5×45 nm resolution) of mouse visual cortex, manually labeled by three independent human annotators and additionally re-verified by an expert neuroscientist. The error rate of the algorithm (12% false negative, 7% false positive detections) is better than state-of-the-art, even though, unlike the state-of-the-art method, our algorithm does not require a prior segmentation of the image volume into cells. The software is based on the ilastik learning and segmentation toolkit and the vigra image processing library and is freely available on our website, along with the test data and gold standard annotations (http://www.ilastik.org/synapse-detection/sstem). PMID:24516550

  2. Serial single molecule electron diffraction imaging: diffraction background of superfluid helium droplets

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; He, Yunteng; Lei, Lei; Alghamdi, Maha; Oswalt, Andrew; Kong, Wei

    2017-08-01

    In an effort to solve the crystallization problem in crystallography, we have been engaged in developing a method termed "serial single molecule electron diffraction imaging" (SS-EDI). The unique features of SS-EDI are superfluid helium droplet cooling and field-induced orientation: together the two features constitute a molecular goniometer. Unfortunately, the helium atoms surrounding the sample molecule also contribute to a diffraction background. In this report, we analyze the properties of a superfluid helium droplet beam and its doping statistics, and demonstrate the feasibility of overcoming the background issue by using the velocity slip phenomenon of a pulsed droplet beam. Electron diffraction profiles and pair correlation functions of ferrocene-monomer-doped droplets and iodine-nanocluster-doped droplets are presented. The timing of the pulsed electron gun and the effective doping efficiency under different dopant pressures can both be controlled for size selection. This work clears any doubt of the effectiveness of superfluid helium droplets in SS-EDI, thereby advancing the effort in demonstrating the "proof-of-concept" one step further.

  3. Two temperature approach to femtosecond laser oxidation of molybdenum and morphological study

    NASA Astrophysics Data System (ADS)

    Kotsedi, L.; Kaviyarasu, K.; Fuku, X. G.; Eaton, S. M.; Amara, E. H.; Bireche, F.; Ramponi, R.; Maaza, M.

    2017-11-01

    The two-temperature model was used to gain insight into the thermal evolution of the hot electrons and the crystal lattice of the molybdenum thin coating during femtosecond laser treatment. The heat from the laser raised the bulk temperature of the sample through heat transfer from the hot electron to the crystal lattice of the material, which then led to the melting of the top layer of the film. This process resulted in the hot melt reacting ambient oxygen, which in turn oxidized the surface of molybdenum coating. The topological study and morphology of the oxidized film was conducted using high-resolution scanning electron microscope, with micrographs taken in both the cross-sectional geometry and normal incidence to the electron beam. The molybdenum oxide nanorods were clearly observed and the x-ray diffraction patterns showed the diffraction peaks due to molybdenum oxide.

  4. Wavelength Independent Optical Microscopy and Lithography

    DTIC Science & Technology

    1987-10-31

    methods have been used in the past to fabricate the submicron apertures needed in near-field microscopy (2-4). However, under this contract we developed an...screens. Durig, et al. (4) in Zurich produced apertures at the tip of a single crystal of quartz etched using HF to make a fine point and covered...stage pulling process was used . Scanning electron li __ NO iI |06 j JlliM ° wm ..... 3 micrographs of a 100nm diameter pipette and a 500nm diameter

  5. Characteristics of aerobic granules grown on glucose a sequential batch shaking reactor.

    PubMed

    Cai, Chun-guang; Zhu, Nan-wen; Liu, Jun-shen; Wang, Zhen-peng; Cai, Wei-min

    2004-01-01

    Aerobic heterotrophic granular sludge was cultivated in a sequencing batch shaking reactor (SBSR) in which a synthetic wastewater containing glucose as carbon source was fed. The characteristics of the aerobic granules were investigated. Compared with the conventional activated sludge flocs, the aerobic granules exhibit excellent physical characteristics in terms of settleability, size, shape, biomass density, and physical strength. Scanning electron micrographs revealed that in mature granules little filamentous bacteria could be found, rod-shaped and coccoid bacteria were the dominant microorganisms.

  6. Crystal structure of hexagonal MnAl(4).

    PubMed

    Pauling, L

    1987-06-01

    A structure is proposed for the hexagonal form of MnAl(4), with a(H) = 28.4 A and c(H) = 12.43 A, on the basis of a high-resolution electron micrograph and comparison with crystals of known structures. The proposed structure involves seven 104-atom complexes of 20 Friauf polyhedra, sharing some atoms with one another. It is closely related to the 23.36-A cubic structure of MnAl(4) and to the 14.19-A cubic structure of Mg(32)(Al,Zn)(49).

  7. A Coupled EBSD/EDS Method to Determine the Primary- and Secondary-Alpha Textures in Titanium Alloys With Duplex Microstructures (Preprint)

    DTIC Science & Technology

    2007-07-01

    primary and secondary alpha in micrographs and thus to correlate microstructural features and texture data [3- 6 ]. For instance, Germain, et al. [3, 4 ...Following electropolishing , the sample was mounted 7/3/2007 6 on the tilting stage inside an XL30 field-emission-gun scanning-electron-microscope (FEG...AFRL-RX-WP-TP-2008-4338 A COUPLED EBSD/EDS METHOD TO DETERMINE THE PRIMARY–AND SECONDARY–ALPHA TEXTURES IN TITANIUM ALLOYS WITH DUPLEX

  8. Metal cluster's effect on the optical properties of cesium bromide thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Kuldeep; Arun, P.; Ravi Kant, Chhaya; Juluri, Bala Krishna

    2012-06-01

    Cesium bromide (CsBr) films grown on glass substrates by thermal evaporation showed prominent absorption peaks in the UV-visible region. Interestingly, these absorption spectra showed peaks which red shifted over time in ambient exposure. Structural and morphological studies suggested decrease in particle size overtime which was unusual. Electron micrographs show the formation of "daughter" cesium nanorods from parent CsBr particles. Theoretical calculations show the optical behavior observed to be due to localized surface plasmon resonance resulting from cesium nanorods.

  9. Nanographite-TiO2 photoanode for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Sharma, S. S.; Sharma, Khushboo; Sharma, Vinay

    2016-05-01

    Nanographite-TiO2 (NG-TiO2) composite was successfully synthesized by the hydrothermal method and its performance as the photoanode for dye-sensitized solar cells (DSSCs) was investigated. Environmental Scanning electron microscope (E-SEM) micrographs show the uniform distribution of TiO2 nanoflowers deposited over nanographite sheets. The average performance characteristics of the assembled cell in terms of short-ciruit current density (JSC), open circuit voltage (VOC), fill factor (FF) and photoelectric conversion efficiency (η) were measured.

  10. Unusual structural transition of antimicrobial VP1 peptide.

    PubMed

    Shanmugam, Ganesh; Phambu, Nsoki; Polavarapu, Prasad L

    2011-05-01

    VP1 peptide, an active domain of m-calpain enzyme with antimicrobial activity is found to undergo an unusual conformational transition in trifluoroethanol (TFE) solvent. The nature of, and time dependent variations in, circular dichroism associated with the amide I vibrations, suggest that VP1 undergoes self-aggregation forming anti-parallel β-sheet structure in TFE. Transmission electron micrograph (TEM) images revealed that β-sheet aggregates formed by VP1 possess fibril-like assemblies. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Modes of Thermal Protection in Polar Bear Cubs - at Birth and upon Emergence from the Den,

    DTIC Science & Technology

    1978-01-01

    Morphological characteristics potentially relevant to temperature regulation were visually examined. Fat and skeletal muscle (m. psoas and m. latissimus dorsi ... latissimus dorsi ) were excised and processed for electron microscopical examination as described for the newborn cubs. In order to investigate the...circles o 0 ). The weight of the cub as 12.5 kg. 21 Fig. 6 Two micrographs of the latissimus dorsi muscle of a polar bear A and B. cub aged approximately

  12. CTER-rapid estimation of CTF parameters with error assessment.

    PubMed

    Penczek, Pawel A; Fang, Jia; Li, Xueming; Cheng, Yifan; Loerke, Justus; Spahn, Christian M T

    2014-05-01

    In structural electron microscopy, the accurate estimation of the Contrast Transfer Function (CTF) parameters, particularly defocus and astigmatism, is of utmost importance for both initial evaluation of micrograph quality and for subsequent structure determination. Due to increases in the rate of data collection on modern microscopes equipped with new generation cameras, it is also important that the CTF estimation can be done rapidly and with minimal user intervention. Finally, in order to minimize the necessity for manual screening of the micrographs by a user it is necessary to provide an assessment of the errors of fitted parameters values. In this work we introduce CTER, a CTF parameters estimation method distinguished by its computational efficiency. The efficiency of the method makes it suitable for high-throughput EM data collection, and enables the use of a statistical resampling technique, bootstrap, that yields standard deviations of estimated defocus and astigmatism amplitude and angle, thus facilitating the automation of the process of screening out inferior micrograph data. Furthermore, CTER also outputs the spatial frequency limit imposed by reciprocal space aliasing of the discrete form of the CTF and the finite window size. We demonstrate the efficiency and accuracy of CTER using a data set collected on a 300kV Tecnai Polara (FEI) using the K2 Summit DED camera in super-resolution counting mode. Using CTER we obtained a structure of the 80S ribosome whose large subunit had a resolution of 4.03Å without, and 3.85Å with, inclusion of astigmatism parameters. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A gallery of the key characters to ease identification of Dermanyssus gallinae (Acari: Gamasida: Dermanyssidae) and allow differentiation from Ornithonyssus sylviarum (Acari: Gamasida: Macronyssidae).

    PubMed

    Di Palma, Antonella; Giangaspero, Annunziata; Cafiero, Maria Assunta; Germinara, Giacinto S

    2012-05-30

    Dermanyssus gallinae (poultry red mite) is a major threat for the poultry industry and is of significant interest for public health. Identification of D. gallinae can be difficult for scientists not familiar with mite morphology and terminology especially when trying to use identification keys. Moreover, this species may easily be confused with another dermanyssoid mite, Ornithonyssus sylviarum (northern fowl mite), which often shares the same hosts and environment. Specimens of D. gallinae were collected at poultry farms in the Puglia and performed for light and scanning electron microscopy observations, identification and micrographs. Moreover specimens of O. sylviarum were collected separately macerated and mounted on slides for light microscopy observations, identification and pictures. The micrographs used in this study, based on LM and SEM observations, highlight the following important identifying characters of D. gallinae: the prominent shoulders of the dorsal shield and the jagged edges of the shield reticulations, the position of setae j1, s1 and the epigynal pores, and the presence on tibia IV pl of one seta. Additional micrographs highlighting the shape of the dorsal (abruptly narrowed posteriorly) and epigynal (narrowly rounded posteriorly) shields and the chelicera (elongate, with distinct digits) of O. sylviarum enable its differentiation from D.gallinae. The photographic support provided here (both LM and SEM pictures) can be considered a practical tool for scientists who are not well acquainted with the morphology of D.gallinae, and who are involved with classical and molecular systematics, veterinary and human health aspects of poultry red mites.

  14. Formation of interconnections between carbon nanotubes and copper using tin solder

    NASA Astrophysics Data System (ADS)

    Mittal, Jagjiwan; Lina, Kwang-Lung

    2013-06-01

    A process is developed for connecting Multiwalled carbon nanotubes (MWCNTs) between Cu terminals using tin solder. Connections were made on the Cu grid after heating the Sn coated nanotubes above the melting point of tin. High resolution transmission electron microscopy (HRTEM) micrographs demonstrated the joining by CNTs either as straight between two sides or on the one side after bending in the middle. The connections were found to be stable in air and electron beam under TEM observations. Energy dispersive X-ray (EDX) study showed that the formation of intermetallic compound η-C6Sn5 was responsible for the formation and stability of joints between Cu and MWCNT.

  15. Cutin plays a role in differentiation of endosperm-derived callus of kiwifruit.

    PubMed

    Popielarska-Konieczna, Marzena; Kozieradzka-Kiszkurno, Małgorzata; Bohdanowicz, Jerzy

    2011-11-01

    Cutin fluorescence, after auramine O treatment, was detected on the surface of organogenic areas (protuberances) of endosperm derived callus induced on Murashige and Skoog medium with thidiazuron (0.5 mg l(-1)) in darkness. Electron micrographs of the protuberances revealed cuticle, visible as a dark-staining layer, and amorphous waxes on the cell wall. In some cases the cells of the epidermis-like layer and shoot buds at early stages of development showed thick and characteristically wavy cutin. This waviness corresponds with the wrinkled appearance of the cell wall as observed by scanning electron microscopy. The role of multivesicular bodies in cutin production and transfer to the plasma membrane is discussed.

  16. A Novel Application for the Cavalieri Principle: A Stereological and Methodological Study

    PubMed Central

    Altunkaynak, Berrin Zuhal; Altunkaynak, Eyup; Unal, Deniz; Unal, Bunyamin

    2009-01-01

    Objective The Cavalieri principle was applied to consecutive pathology sections that were photographed at the same magnification and used to estimate tissue volumes via superimposing a point counting grid on these images. The goal of this study was to perform the Cavalieri method quickly and practically. Materials and Methods In this study, 10 adult female Sprague Dawley rats were used. Brain tissue was removed and sampled both systematically and randomly. Brain volumes were estimated using two different methods. First, all brain slices were scanned with an HP ScanJet 3400C scanner, and their images were shown on a PC monitor. Brain volume was then calculated based on these images. Second, all brain slices were photographed in 10× magnification with a microscope camera, and brain volumes were estimated based on these micrographs. Results There was no statistically significant difference between the volume measurements of the two techniques (P>0.05; Paired Samples t Test). Conclusion This study demonstrates that personal computer scanning of serial tissue sections allows for easy and reliable volume determination based on the Cavalieri method. PMID:25610077

  17. A novel application for the cavalieri principle: a stereological and methodological study.

    PubMed

    Altunkaynak, Berrin Zuhal; Altunkaynak, Eyup; Unal, Deniz; Unal, Bunyamin

    2009-08-01

    The Cavalieri principle was applied to consecutive pathology sections that were photographed at the same magnification and used to estimate tissue volumes via superimposing a point counting grid on these images. The goal of this study was to perform the Cavalieri method quickly and practically. In this study, 10 adult female Sprague Dawley rats were used. Brain tissue was removed and sampled both systematically and randomly. Brain volumes were estimated using two different methods. First, all brain slices were scanned with an HP ScanJet 3400C scanner, and their images were shown on a PC monitor. Brain volume was then calculated based on these images. Second, all brain slices were photographed in 10× magnification with a microscope camera, and brain volumes were estimated based on these micrographs. There was no statistically significant difference between the volume measurements of the two techniques (P>0.05; Paired Samples t Test). This study demonstrates that personal computer scanning of serial tissue sections allows for easy and reliable volume determination based on the Cavalieri method.

  18. Preparation, characterization, and in vitro release of gentamicin from coralline hydroxyapatite-alginate composite microspheres.

    PubMed

    Sivakumar, M; Rao, K Panduranga

    2003-05-01

    In this work, composite microspheres were prepared from bioactive ceramics such as coralline hydroxyapatite [Ca(10)(PO(4))(6)(OH)(2)] granules, a biodegradable polymer, sodium alginate, and an antibiotic, gentamicin. Previously, we have shown a gentamicin release from coralline hydroxyapatite granules-chitosan composite microspheres. In the present investigation, we attempted to prepare composite microspheres containing coralline hydroxyapatite granules and sodium alginate by the dispersion polymerization technique with gentamicin incorporated by absorption method. The crystal structure of the composite microspheres was analyzed using X-ray powder diffractometer. Fourier transform infrared spectra clearly indicated the presence of per-acid of sodium alginate, phosphate, and hydroxyl groups in the composite microspheres. Scanning electron micrographs and optical micrographs showed that the composite microspheres were spherical in shape and porous in nature. The particle size of composite microspheres was analyzed, and the average size was found to be 15 microns. The thermal behavior of composite microspheres was studied using thermogravimetric analysis and differential scanning calorimetric analysis. The cumulative in vitro release profile of gentamicin from composite microspheres showed near zero order patterns. Copyright 2003 Wiley Periodicals, Inc.

  19. Preparation, characterization and in vitro release of gentamicin from coralline hydroxyapatite-gelatin composite microspheres.

    PubMed

    Sivakumar, M; Panduranga Rao, K

    2002-08-01

    Composite microspheres have been prepared from bioactive ceramics such as coralline hydroxyapatite [CHA, Ca10(PO4)6(OH)2] granules, a biodegradable polymer, gelatin and an antibiotic, gentamicin. In our earlier work, we have shown a gentamicin release from CHA granules--chitosan composite microspheres. In the present investigation, an attempt was made to prepare the composite microspheres containing coralline hydroxyapatite and gelatin (CHA-G), which were prepared by the dispersion polymerization technique and the gentamicin was incorporated by the absorption method. The crystal structure of the composite microspheres was analyzed using X-ray powder diffractometer. The Fourier transformed infrared spectrum clearly indicated the presence of amide and hydroxyl groups in the composite microspheres. Scanning electron micrographs and optical micrographs show that the composite microspheres are spherical in shape and porous in nature. The particle size of composite microspheres was analyzed and the average size was found to be 16 microm. The thermal behavior of composite microspheres was studied using thermogravimetric analysis and differential scanning calorimetric analysis. The cumulative in vitro release profile of gentamicin from composite microspheres showed near zero order patterns.

  20. Crystallographic data processing for free-electron laser sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Thomas A., E-mail: taw@physics.org; Barty, Anton; Stellato, Francesco

    2013-07-01

    A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A detailed analysis of the nature and impact of indexing ambiguities is presented. Simulations of the Monte Carlo integration scheme, which accounts for the partially recorded nature of the diffraction intensities, are presented and show thatmore » the integration of partial reflections could be made to converge more quickly if the bandwidth of the X-rays were to be increased by a small amount or if a slight convergence angle were introduced into the incident beam.« less

  1. Composition and Structure of Microalgae Indicated in Raman and Hyperspectral Spectra and Scanning Electron Microscopy: from Cyanobacteria to Isolates from Coal-bed Methane Water Ponds

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Zhou, Z.; Apple, M. E.; Spangler, L.

    2017-12-01

    Microalgae can be used for many potential applications for human's benefits. These potential applications included biofuel production from microalgae, biofiltering to cleaning water, chemical extraction as nutrients, etc. However, exploration for such applications is still in the early stages. For instance, many species and strains of microalgae have been investigated for their lipid content and growing conditions for efficient productions of lipids, but no specific species have yet been chosen as a fuel source for commercial production because of the huge biodiversity and subsequently a wide range of species that can potentially be exploited for biodiesel production, the great variability between species in their fuel precursor producing capabilities. Numerous coal-bed methane water ponds were established in the world as a consequence of coal-bed methane production from deep coal seams. Microalgae were isolated from such ponds and potentially these ponds can be used as venues for algal production. In this study, we characterized chemical composition and structure of the Cyanobacteria Anabaena cylindrica (UTEX # 1611) and isolates from coal-bed methane ponds Nannochloropsis gaditana and PW95 using Laser Raman Spectroscopy (LRS), hyperspectral spectra, and Scanning Electron Microscope (SEM). The objective is to seek bio-indicators for potential applications of these microalgae species. For instance, indicator of rich content lips shows the great potential for biofuel production. Fig.1 shows an example of the Raman spectra of the three species in desiccated form. The spectral peaks were isolated and the corresponding composition was identified. The insert at the right hand of the Raman spectrum of each species is the micrograph of the cell morphology under a microscope. The Raman spectra of cells in aquatic solutions were also obtained and compared with the desiccated form. The hyperspectral reflectances of the three species show quite different characteristics and the main absorption bands and scattering bands were located and their association with composition and structure were analyzed and discussed. SEM micrographs will be collected and the composition and structure derived from the SEM micrographs will be discussed and compared with those derived from the Raman spectra and hyperspectral spectra.

  2. Electronic Data Interchange (EDI) for Libraries and Publishers.

    ERIC Educational Resources Information Center

    Santosuosso, Joe

    1992-01-01

    Defines electronic data interchange (EDI) as the exchange of data between computer systems without human intervention or interpretation. Standards are discussed; and the implementation of EDI in libraries and the serials publishing community in the areas of orders and acquisitions, claims, and invoice processing is described. (LRW)

  3. Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser

    DOE PAGES

    Wu, Wenting; Nogly, Przemyslaw; Rheinberger, Jan; ...

    2015-06-27

    Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delivered into the X-ray pulses of an X-ray free-electron laser (XFEL) after a precise photoactivation delay. Here in this study, a millilitre batch production of high-density microcrystals was developed by four methodical conversion steps starting from known vapour-diffusion crystallization protocols: (i) screening the low-salt crystallizationmore » conditions preferred for serial crystallography by vapour diffusion, (ii) optimization of batch crystallization, (iii) testing the crystal size and quality using second-harmonic generation (SHG) imaging and X-ray powder diffraction and (iv) production of millilitres of rhodopsin crystal suspension in batches for serial crystallography tests; these crystals diffracted at an XFEL at the Linac Coherent Light Source using a liquid-jet setup.« less

  4. Programmed serial stereochemical relay and its application in the synthesis of morphinans† †Electronic supplementary information (ESI) available. CCDC 1526432. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc03189k Click here for additional data file. Click here for additional data file.

    PubMed Central

    Ho (Kenny) Park, Kun; Chen, Rui

    2017-01-01

    Herein we report a rationally designed, serial point-to-axial and axial-to-point stereoinduction and its integration into multi-step and target-oriented organic synthesis. In this proof-of-concept study, the configurational stability of several carefully designed atropisomeric intermediates and the fidelity of their unconventional stereoinductions were systematically investigated. The highly functionalized prepared synthetic intermediate was further applied in a novel chemical method to access the morphinans and it is potentially applicable to other structurally related alkaloids. PMID:29147530

  5. Three-dimensional characterization of pigment dispersion in dried paint films using focused ion beam-scanning electron microscopy.

    PubMed

    Lin, Jui-Ching; Heeschen, William; Reffner, John; Hook, John

    2012-04-01

    The combination of integrated focused ion beam-scanning electron microscope (FIB-SEM) serial sectioning and imaging techniques with image analysis provided quantitative characterization of three-dimensional (3D) pigment dispersion in dried paint films. The focused ion beam in a FIB-SEM dual beam system enables great control in slicing paints, and the sectioning process can be synchronized with SEM imaging providing high quality serial cross-section images for 3D reconstruction. Application of Euclidean distance map and ultimate eroded points image analysis methods can provide quantitative characterization of 3D particle distribution. It is concluded that 3D measurement of binder distribution in paints is effective to characterize the order of pigment dispersion in dried paint films.

  6. A novel self-aligned oxygen (SALOX) implanted SOI MOSFET device structure

    NASA Astrophysics Data System (ADS)

    Tzeng, J. C.; Baerg, W.; Ting, C.; Siu, B.

    The morphology of the novel self-aligned oxygen implanted SOI (SALOX SOI) [1] MOSFET was studied. The channel silicon of SALOX SOI was confirmed to be undamaged single crystal silicon and was connected with the substrate. Buried oxide formed by oxygen implantation in this SALOX SOI structure was shown by a cross section transmission electron micrograph (X-TEM) to be amorphous. The source/drain silicon on top of the buried oxide was single crystal, as shown by the transmission electron diffraction (TED) pattern. The source/drain regions were elevated due to the buried oxide volume expansion. A sharp silicon—silicon dioxide interface between the source/drain silicon and buried oxide was observed by Auger electron spectroscopy (AES). Well behaved n-MOS transistor current voltage characteristics were obtained and showed no I-V kink.

  7. Polyhydroxybutyrate particles in Synechocystis sp PCC 6803: facts and fiction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsang, TK; Roberson, RW; Vermaas, WFJ

    Transmission electron microscopy has been used to identify poly-3-hydroxybutyrate (PHB) granules in cyanobacteria for over 40 years. Spherical inclusions inside the cell that are electron-transparent and/or slightly electron-dense and that are found in transmission electron micrographs of cyanobacteria are generally assumed to be PHB granules. The aim of this study was to test this assumption in different strains of the cyanobacterium Synechocystis sp. PCC 6803. Inclusions that resemble PHB granules were present in strains lacking a pair of genes essential for PHB synthesis and in wild-type cells under conditions that no PHB granules could be detected by fluorescence staining ofmore » PHB. Indeed, in these cells PHB could not be demonstrated chemically by GC/MS either. Based on the results gathered, it is concluded that not all the slightly electron-dense spherical inclusions are PHB granules in Synechocystis sp. PCC 6803. This result is potentially applicable to other cyanobacteria. Alternate assignments for these inclusions are discussed.« less

  8. The exocytotic fusion pore modeled as a lipidic pore.

    PubMed Central

    Nanavati, C; Markin, V S; Oberhauser, A F; Fernandez, J M

    1992-01-01

    Freeze-fracture electron micrographs from degranulating cells show that the lumen of the secretory granule is connected to the extracellular compartment via large (20 to 150 nm diameter) aqueous pores. These exocytotic fusion pores appear to be made up of a highly curved bilayer that spans the plasma and granule membranes. Conductance measurements, using the patch-clamp technique, have been used to study the fusion pore from the instant it conducts ions. These measurements reveal the presence of early fusion pores that are much smaller than those observed in electron micrographs. Early fusion pores open abruptly, fluctuate, and then either expand irreversibly or close. The molecular structure of these early fusion pores is unknown. In the simplest extremes, these early fusion pores could be either ion channel like protein pores or lipidic pores. Here, we explored the latter possibility, namely that of the early exocytotic fusion pore modeled as a lipid-lined pore whose free energy was composed of curvature elastic energy and work done by tension. Like early exocytotic fusion pores, we found that these lipidic pores could open abruptly, fluctuate, and expand irreversibly. Closure of these lipidic pores could be caused by slight changes in lipid composition. Conductance distributions for stable lipidic pores matched those of exocytotic fusion pores. These findings demonstrate that lipidic pores can exhibit the properties of exocytotic fusion pores, thus providing an alternate framework with which to understand and interpret exocytotic fusion pore data. PMID:1420930

  9. Adhesion of resin composite core materials to dentin.

    PubMed

    O'Keefe, K L; Powers, J M

    2001-01-01

    This study determined (1) the effect of polymerization mode of resin composite core materials and dental adhesives on the bond strength to dentin, and (2) if dental adhesives perform as well to dentin etched with phosphoric acid as to dentin etched with self-etching primer. Human third molars were sectioned 2 mm from the highest pulp horn and polished. Three core materials (Fluorocore [dual cured], Core Paste [self-cured], and Clearfil Photo Core [light cured]) and two adhesives (Prime & Bond NT Dual Cure and Clearfil SE Bond [light cured]) were bonded to dentin using two dentin etching conditions. After storage, specimens were debonded in microtension and bond strengths were calculated. Scanning electron micrographs of representative bonding interfaces were analyzed. Analysis showed differences among core materials, adhesives, and etching conditions. Among core materials, dual-cured Fluorocore had the highest bond strengths. There were incompatibilities between self-cured Core Paste and Prime & Bond NT in both etched (0 MPa) and nonetched (3.0 MPa) dentin. Among adhesives, in most cases Clearfil SE Bond had higher bond strengths than Prime & Bond NT and bond strengths were higher to self-etched than to phosphoric acid-etched dentin. Scanning electron micrographs did not show a relationship between resin tags and bond strengths. There were incompatibilities between a self-cured core material and a dual-cured adhesive. All other combinations of core materials and adhesives produced strong in vitro bond strengths both in the self-etched and phosphoric acid-etched conditions.

  10. Sunlight persistence and rainfastness of spray-dried formulations of baculovirus isolated from Anagrapha falcifera (Lepidoptera: Noctuidae).

    PubMed

    Tamez-Guerra, P; McGuire, M R; Behle, R W; Hamm, J J; Sumner, H R; Shasha, B S

    2000-04-01

    Nuclear polyhedrosis viruses such as the one isolated from the celery looper, Anagrapha falcifera (Kirby) (AfMNPV), have the potential to be successful bioinsecticides if improved formulations can prevent rapid loss of insecticidal activity from environmental conditions such as sunlight and rainfall. We tested 16 spray-dried formulations of AfMNPV to determine the effect of different ingredients (e.g., lignin, corn flour, and so on) on insecticidal activity after simulated rain and simulated sunlight (at Peoria, IL) and natural sunlight exposures (at Tifton, GA). The most effective formulation contained pregelatinized corn flour and potassium lignate, which retained more than half of its original activity after 5 cm of simulated rain, and almost full activity after 8 h of simulated sunlight. In Georgia, formulations made with and without lignin were compared for persistence of insecticidal activity when exposed to natural sunlight. In addition, the effect of fluorescent brighteners as formulation components and spray tank additives was tested. Results showed that the formulations with lignin had more insecticidal activity remaining after sunlight exposure than formulations without lignin. The inclusion of brighteners in the formulation did not improve initial activity or virus persistence. However, a 1% tank mix significantly enhanced activity and improved persistence. Scanning electron micrographs revealed discreet particles, and transmission electron micrographs showed virus embedded within microgranules. Results demonstrated that formulations made with natural ingredients could improve persistence of virus-based biopesticides.

  11. Investigating the effect of multiple grain-grain interfaces on electric transport behavior of [50 wt% BaFe12O19-50 wt% Na0.5Bi0.5TiO3] magnetoelectric nanocomposite system

    NASA Astrophysics Data System (ADS)

    Pattanayak, Ranjit; Raut, Subhajit; Dash, Tapan; Mohapatra, Soumyaranjan; Muduli, Rakesh; Panigrahi, Simanchala

    2017-05-01

    Polycrystalline [50 wt% BaFe12O19 (BaM)-50 wt% Na0.5Bi0.5TiO3 (NBT)] particulate novel magnetoelectric nanocomposite system was successfully fabricated by solid state reaction technique. The Rietveld refinement of X-ray diffraction pattern was provided the evidence about the pure phase formation of desired nanocomposite system as well as the presence of both ferrimagnetic (FM) BaM & ferroelectric (FE) NBT phases separately. The Field Scanning Electron Micrograph (FESEM) and Scanning Tunneling Electron Micrograph (STEM) explored the information about grain size and connectivity of the composite system. The XPS study was helped to examine the presence of oxygen vacancy (Ov) as well as multi oxidation states of transition metal ions for nanocomposite system. In this report we have systematically examined the conduction mechanism of different interfaces (BaM-BaM, BaM-NBT and NBT-NBT) by the help of complex impedance spectroscopy technique. From our investigation it was observed that, different interfaces activates at different temperature ranges. Due to absence of OV, BaM-NBT interfaces conduction dominants over BaM-BaM interfaces conduction even at room temperature (RT). The mechanism behind the appeared high dielectric loss (tanδ) at RT which was reduced when NBT-NBT interfaces were activates at higher temperature was explained by Maxwell-Wagner type interfacial polarization concept.

  12. Silk sericin/polyacrylamide in situ forming hydrogels for dermal reconstruction.

    PubMed

    Kundu, Banani; Kundu, Subhas C

    2012-10-01

    In situ forming tissue sealants are advantageous due to ease in application, complete coverage of defect site and assured comfort levels to patients. The interconnected three-dimensional hydrophilic networks perfectly manage typical dermal wounds by suitably scaffolding skin fibroblast, diffusing the nutrients, therapeutics and exudates while still maintaining an adequately moist environment. We evaluate the cell homing ability of semi-interpenetrating non-mulberry tropical tasar silk sericin/polyacrylamide hydrophilic network with a keen understanding of its network characteristics and correlation of protein concentration with the performance as cell scaffold. Interconnectivity of porous networks observed through scanning electron micrograph revealed pore sizes ranging from 23 to 52 μm. The enhanced β-sheet content with the increasing sericin concentration in far red spectroscopy study supported their corresponding improved compressive strength. These semi-interpenetrating networks were found to possess a maximum fluid uptake of 112% of its weight, hence preventing the accumulation of exudates at the wound area. The present systems appear to possess characteristics like rapid gelation (~5min) at 37 °C, 98% porosity enabling the migration of fibroblasts during healing (observed through confocal and scanning electron micrographs), cell adhesion together with the absence of any cyto-toxic effect suggesting its potential as in situ tissue sealants. The compressive strength up to 61 kPa ensured ease in handling even when wet. The results prove the suitability to use non-mulberry tasar cocoon silk sericin/polyacrylamide semi-interpenetrating network as a reconstructive dermal sealant. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Quantitative evaluation of high-resolution features in images of negatively stained Tobacco Mosaic Virus.

    PubMed

    Chang, C F; Williams, R C; Grano, D A; Downing, K H; Glaeser, R M

    1983-01-01

    This study investigates the causes of the apparent differences between the optical diffraction pattern of a micrograph of a Tobacco Mosaic Virus (TMV) particle, the optical diffraction pattern of a ten-fold photographically averaged image, and the computed diffraction pattern of the original micrograph. Peak intensities along the layer lines in the transform of the averaged image appear to be quite unlike those in the diffraction pattern of the original micrograph, and the diffraction intensities for the averaged image extend to unexpectedly high resolution. A carefully controlled, quantitative comparison reveals, however, that the optical diffraction pattern of the original micrograph and that of the ten-fold averaged image are essentially equivalent. Using computer-based image processing, we discovered that the peak intensities on the 6th layer line have values very similar in magnitude to the neighboring noise, in contrast to what was expected from the optical diffraction pattern of the original micrograph. This discrepancy was resolved by recording a series of optical diffraction patterns when the original micrograph was immersed in oil. These patterns revealed the presence of a substantial phase grating effect, which exaggerated the peak intensities on the 6th layer line, causing an erroneous impression that the high resolution features possessed a good signal-to-noise ratio. This study thus reveals some pitfalls and misleading results that can be encountered when using optical diffraction patterns to evaluate image quality.

  14. Realizing what's essential: a case study on integrating electronic journal management into a print-centric technical services department.

    PubMed

    Dollar, Daniel M; Gallagher, John; Glover, Janis; Marone, Regina Kenny; Crooker, Cynthia

    2007-04-01

    To support migration from print to electronic resources, the Cushing/Whitney Medical Library at Yale University reorganized its Technical Services Department to focus on managing electronic resources. The library hired consultants to help plan the changes and to present recommendations for integrating electronic resource management into every position. The library task force decided to focus initial efforts on the periodical collection. To free staff time to devote to electronic journals, most of the print subscriptions were switched to online only and new workflows were developed for e-journals. Staff learned new responsibilities such as activating e-journals, maintaining accurate holdings information in the online public access catalog and e-journals database ("electronic shelf reading"), updating the link resolver knowledgebase, and troubleshooting. All of the serials team members now spend significant amounts of time managing e-journals. The serials staff now spends its time managing the materials most important to the library's clientele (e-journals and databases). The team's proactive approach to maintenance work and rapid response to reported problems should improve patrons' experiences using e-journals. The library is taking advantage of new technologies such as an electronic resource management system, and library workflows and procedures will continue to evolve as technology changes.

  15. Realizing what's essential: a case study on integrating electronic journal management into a print-centric technicalservices department

    PubMed Central

    Dollar, Daniel M.; Gallagher, John; Glover, Janis; Marone, Regina Kenny; Crooker, Cynthia

    2007-01-01

    Objective: To support migration from print to electronic resources, the Cushing/Whitney Medical Library at Yale University reorganized its Technical Services Department to focus on managing electronic resources. Methods: The library hired consultants to help plan the changes and to present recommendations for integrating electronic resource management into every position. The library task force decided to focus initial efforts on the periodical collection. To free staff time to devote to electronic journals, most of the print subscriptions were switched to online only and new workflows were developed for e-journals. Results: Staff learned new responsibilities such as activating e-journals, maintaining accurate holdings information in the online public access catalog and e-journals database (“electronic shelf reading”), updating the link resolver knowledgebase, and troubleshooting. All of the serials team members now spend significant amounts of time managing e-journals. Conclusions: The serials staff now spends its time managing the materials most important to the library's clientele (e-journals and databases). The team's proactive approach to maintenance work and rapid response to reported problems should improve patrons' experiences using e-journals. The library is taking advantage of new technologies such as an electronic resource management system, and library workflows and procedures will continue to evolve as technology changes. PMID:17443247

  16. Low-dose electron energy-loss spectroscopy using electron counting direct detectors.

    PubMed

    Maigné, Alan; Wolf, Matthias

    2018-03-01

    Since the development of parallel electron energy loss spectroscopy (EELS), charge-coupled devices (CCDs) have been the default detectors for EELS. With the recent development of electron-counting direct-detection cameras, micrographs can be acquired under very low electron doses at significantly improved signal-to-noise ratio. In spectroscopy, in particular in combination with a monochromator, the signal can be extremely weak and the detection limit is principally defined by noise introduced by the detector. Here we report the use of an electron-counting direct-detection camera for EEL spectroscopy. We studied the oxygen K edge of amorphous ice and obtained a signal noise ratio up to 10 times higher than with a conventional CCD.We report the application of electron counting to record time-resolved EEL spectra of a biological protein embedded in amorphous ice, revealing chemical changes observed in situ while exposed by the electron beam. A change in the fine structure of nitrogen K and the carbon K edges were recorded during irradiation. A concentration of 3 at% nitrogen was detected with a total electron dose of only 1.7 e-/Å2, extending the boundaries of EELS signal detection at low electron doses.

  17. Three-dimensional reconstruction of root cells and interdental cells in the rat inner ear by serial section scanning electron microscopy.

    PubMed

    Shodo, Ryusuke; Hayatsu, Manabu; Koga, Daisuke; Horii, Arata; Ushiki, Tatsuo

    2017-01-01

    In the cochlea, a high K + environment in the endolymph is essential for the maintenance of normal hearing function, and the transport of K + ions through gap junctions of the cochlear epithelium is thought to play an important role in endolymphatic homeostasis. The aim of the present study was to demonstrate the three-dimensional (3D) ultrastructure of spiral ligament root cells and interdental cells, which are located at both ends of the gap junction system of the cochlea epithelium. Serial semi-thin sections of plastic-embedded rat cochlea were mounted on glass slides, stained with uranyl acetate and lead citrate, and observed by scanning electron microscopy (SEM) using the backscattered electron (BSE) mode. 3D reconstruction of BSE images of serial sections revealed that the root cells were linked together to form a branched structure like an elaborate "tree root" in the spiral ligament. The interdental cells were also connected to each other, forming a comb-shaped cellular network with a number of cellular strands in the spiral limbus. Furthermore, TEM studies of ultra-thin sections revealed the rich presence of gap junctions in both root cells and interdental cells. These findings suggest the possibility that both root cells and interdental cells contribute to K + circulation as the end portion of the epithelial cell gap junction system of the cochlea.

  18. Study of Mechano-Chemical Machining of Ceramics and the Effect on Thin Film Behavior.

    DTIC Science & Technology

    1981-06-01

    polished 7 dry on nylon using NaCI 3 Photomicrographs of the etched surfaces of MgO polished 8 .wet on glass using NaCl 4 Surface profile and Nomarski ...micrograph of a Si wafer 10 taken before mechano-chemical polishing 5 Surface profile and Nomarski micrograph of a Si wafer 11 taken after mechano... Nomarski micrographs of mechano-chemically-polished 21 sapphire and tape-cast alumina 14 Surface profiles of mechano-chemically-polished sapphire 22

  19. A study of the UV and VUV degradation of FEP

    NASA Technical Reports Server (NTRS)

    George, Graeme A.; Hill, David J. T.; Odonnell, James H.; Pomery, Peter J.; Rasoul, Firas A.

    1993-01-01

    UV and VUV degradation of fluorinated ethylene propylene (FEP) copolymer was studied using electron spin resonance (ESR) spectroscopy, x-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The ESR study revealed the formation of a terminal polymer radical. The stability of this radical was investigated under different environments. An XPS study of FEP film exposed to VUV and atomic oxygen showed that oxidation takes place on the polymer surface. The study revealed also that the percentage of CF2 in the polymer surface decreased with exposure time and the percentage of CF, CF3, and carbon attached to oxygen increased. SEM micrographs of FEP film exposed to VUV and atomic oxygen identified a rough surface with undulations similar to sand dunes.

  20. A facile synthesis of metal nanoparticle - graphene composites for better absorption of solar radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Bindu; Mulla, Rafiq; Rabinal, M. K., E-mail: mkrabinal@yahoo.com

    2015-06-24

    Herein, a facile chemical approach has been adopted to prepare silver nanoparticles (AgNPs)- graphene (G) composite to study photothermal effect. Sodium borohydride (SBH), a strong reducing agent has been selected for this work. Effect of SBH concentrations on optical behavior of AgNPs-G composite was also investigated. Resultant materials were characterized by various techniques including X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), optical absorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM micrographs confirm wrapping of AgNPs into graphene whereas XRD analysis reveals their particle size variation between 47 nm to 69 nm. Optical studies throw a light on theirmore » strong absorption behavior towards solar radiation.« less

  1. Electron microscope study of Sarcocystis sp

    USGS Publications Warehouse

    Zeve, V.H.; Price, D.L.; Herman, C.M.

    1966-01-01

    Sarcocystis sp. obtained from wild populations of grackles, Quiscalus quiscula (Linn.), were examined to clarify the effect of the parasite on the host. Electron micrographs are presented to show areas of muscle destruction adjacent to the parasite which appear to be mechanically produced by the parasite. The microtubules within the villus-like projections of the cyst suggest that their possible function is absorptive and/or conductive with regard to the production of a toxin or the conveyance of nutritive material to the developing cells. The proposed function of submembranous filaments and their relation to the conoid is discussed. Similarities in the ultrastructure to Toxoplasma and other protozoa tend to negate the relegation of Sarcocystis to the fungi and further emphasize its protozoan nature.

  2. A scanning electron microscope technique for studying the sclerites of Cichlidogyrus.

    PubMed

    Fannes, Wouter; Vanhove, Maarten P M; Huyse, Tine; Paladini, Giuseppe

    2015-05-01

    The genus Cichlidogyrus (Monogenea: Ancyrocephalidae) includes more than 90 species, most of which are gill parasites of African cichlid fishes. Cichlidogyrus has been studied extensively in recent years, but scanning electron microscope (SEM) investigations of the isolated hard parts have not yet been undertaken. In this paper, we describe a method for isolating and scanning the sclerites of individual Cichlidogyrus worms. Twenty-year-old, formol-fixed specimens of Cichlidogyrus casuarinus were subjected to proteinase K digestion in order to release the sclerites from the surrounding soft tissues. SEM micrographs of the haptoral sclerites and the male copulatory organ are presented. The ability to digest formol-fixed specimens makes this method a useful tool for the study of historical museum collections.

  3. Ultrastructure of a Thermotolerant Basidiomycete Possibly Suitable for Production of Food Protein

    PubMed Central

    Hofsten, Bengt V.; Hofsten, Angelica V.

    1974-01-01

    The imperfect cellulolytic fungus Sporotrichum pulverulentum, which is commonly found growing in wood-chip piles, was grown in submerged culture on wheat shorts and other cereal flours. These substrates were broken down in 1 to 4 days at 30 to 40 C, and the mycelial mass was easily harvested by filtration. Scanning electron micrographs of hyphae in mycelial pellets are presented, and thin sections of conidia and hyphae were studied in a transmission electron microscope. Dolipores in septa of hyphae were observed, and cell walls are shown to be lamellar, which is characteristic of the Basidiomycetes. Actively growing hyphae are full of cytoplasm with numerous mitochondria, whereas old mycelial pellets contain highly vacuolated and almost empty cells. Images PMID:4833364

  4. Structural and morphological study of chemically synthesized CdSe thin films

    NASA Astrophysics Data System (ADS)

    Agrawal, P.; Singh, Randhir; Sharma, Jeewan; Sachdeva, M.; Singh, Anupinder; Bhargava, A.

    2018-05-01

    Nanocrystalline CdSe thin films were prepared by Chemical Bath Deposition (CBD) method using potassium nitrilo-triacetic acid cadmium complex and sodium selenosulphite. The as deposited films were red in color, uniform and well adherent to the glass substrate. These films were strongly dependent on the deposition parameters such as bath composition, deposition temperature and time. Films were annealed at 350 °C for four hours. The morphological, structural and optical properties were studied using X-ray diffraction (XRD), UV-VIS spectrophotometer measurements, scanning electron microscopy and atomic force microscopy. The XRD analysis confirmed that films are predominantly in hexagonal phase. Scanning electron micrograph shows that the grains are uniformly spread all over the film and each grain contains many nanocrystals with spherical shapes.

  5. A gallery of the key characters to ease identification of Dermanyssus gallinae (Acari: Gamasida: Dermanyssidae) and allow differentiation from Ornithonyssus sylviarum (Acari: Gamasida: Macronyssidae)

    PubMed Central

    2012-01-01

    Background Dermanyssus gallinae (poultry red mite) is a major threat for the poultry industry and is of significant interest for public health. Identification of D. gallinae can be difficult for scientists not familiar with mite morphology and terminology especially when trying to use identification keys. Moreover, this species may easily be confused with another dermanyssoid mite, Ornithonyssus sylviarum (northern fowl mite), which often shares the same hosts and environment. Methods Specimens of D. gallinae were collected at poultry farms in the Puglia and performed for light and scanning electron microscopy observations, identification and micrographs. Moreover specimens of O. sylviarum were collected separately macerated and mounted on slides for light microscopy observations, identification and pictures. Results The micrographs used in this study, based on LM and SEM observations, highlight the following important identifying characters of D. gallinae: the prominent shoulders of the dorsal shield and the jagged edges of the shield reticulations, the position of setae j1, s1 and the epigynal pores, and the presence on tibia IV pl of one seta. Additional micrographs highlighting the shape of the dorsal (abruptly narrowed posteriorly) and epigynal (narrowly rounded posteriorly) shields and the chelicera (elongate, with distinct digits) of O. sylviarum enable its differentiation from D.gallinae. Conclusion The photographic support provided here (both LM and SEM pictures) can be considered a practical tool for scientists who are not well acquainted with the morphology of D.gallinae, and who are involved with classical and molecular systematics, veterinary and human health aspects of poultry red mites. PMID:22647594

  6. Xyce

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomquist, Heidi K.; Fixel, Deborah A.; Fett, David Brian

    The Xyce Parallel Electronic Simulator simulates electronic circuit behavior in DC, AC, HB, MPDE and transient mode using standard analog (DAE) and/or device (PDE) device models including several age and radiation aware devices. It supports a variety of computing platforms (both serial and parallel) computers. Lastly, it uses a variety of modern solution algorithms dynamic parallel load-balancing and iterative solvers.

  7. 3D correlative light and electron microscopy of cultured cells using serial blockface scanning electron microscopy

    PubMed Central

    Lerner, Thomas R.; Burden, Jemima J.; Nkwe, David O.; Pelchen-Matthews, Annegret; Domart, Marie-Charlotte; Durgan, Joanne; Weston, Anne; Jones, Martin L.; Peddie, Christopher J.; Carzaniga, Raffaella; Florey, Oliver; Marsh, Mark; Gutierrez, Maximiliano G.

    2017-01-01

    ABSTRACT The processes of life take place in multiple dimensions, but imaging these processes in even three dimensions is challenging. Here, we describe a workflow for 3D correlative light and electron microscopy (CLEM) of cell monolayers using fluorescence microscopy to identify and follow biological events, combined with serial blockface scanning electron microscopy to analyse the underlying ultrastructure. The workflow encompasses all steps from cell culture to sample processing, imaging strategy, and 3D image processing and analysis. We demonstrate successful application of the workflow to three studies, each aiming to better understand complex and dynamic biological processes, including bacterial and viral infections of cultured cells and formation of entotic cell-in-cell structures commonly observed in tumours. Our workflow revealed new insight into the replicative niche of Mycobacterium tuberculosis in primary human lymphatic endothelial cells, HIV-1 in human monocyte-derived macrophages, and the composition of the entotic vacuole. The broad application of this 3D CLEM technique will make it a useful addition to the correlative imaging toolbox for biomedical research. PMID:27445312

  8. 500 MHz narrowband beam position monitor electronics for electron synchrotrons

    NASA Astrophysics Data System (ADS)

    Mohos, I.; Dietrich, J.

    1998-12-01

    Narrowband beam position monitor electronics were developed in the Forschungszentrum Jülich-IKP for the orbit measurement equipment used at ELSA Bonn. The equipment uses 32 monitor chambers, each with four capacitive button electrodes. The monitor electronics, consisting of an rf signal processing module (BPM-RF) and a data acquisition and control module (BPM-DAQ), sequentially process and measure the monitor signals and deliver calculated horizontal and vertical beam position data via a serial network.

  9. Three-dimensional imaging of adherent cells using FIB/SEM and STEM.

    PubMed

    Villinger, Clarissa; Schauflinger, Martin; Gregorius, Heiko; Kranz, Christine; Höhn, Katharina; Nafeey, Soufi; Walther, Paul

    2014-01-01

    In this chapter we describe three different approaches for three-dimensional imaging of electron microscopic samples: serial sectioning transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) tomography, and focused ion beam/scanning electron microscopy (FIB/SEM) tomography. With these methods, relatively large volumes of resin-embedded biological structures can be analyzed at resolutions of a few nm within a reasonable expenditure of time. The traditional method is serial sectioning and imaging the same area in all sections. Another method is TEM tomography that involves tilting a section in the electron beam and then reconstruction of the volume by back projection of the images. When the scanning transmission (STEM) mode is used, thicker sections (up to 1 μm) can be analyzed. The third approach presented here is focused ion beam/scanning electron microscopy (FIB/SEM) tomography, in which a sample is repeatedly milled with a focused ion beam (FIB) and each newly produced block face is imaged with the scanning electron microscope (SEM). This process can be repeated ad libitum in arbitrary small increments allowing 3D analysis of relatively large volumes such as eukaryotic cells. We show that resolution of this approach is considerably improved when the secondary electron signal is used. However, the most important prerequisite for three-dimensional imaging is good specimen preparation. For all three imaging methods, cryo-fixed (high-pressure frozen) and freeze-substituted samples have been used.

  10. Effect of inhibitors on Zn-dendrite formation for zinc-polyaniline secondary battery

    NASA Astrophysics Data System (ADS)

    Kan, Jinqing; Xue, Huaiguo; Mu, Shaolin

    The effects of Pb 2+, sodium lauryl sulfate and Triton X-100 on inhibition of Zn-dendrite growth in Zn-polyaniline batteries were studied by scanning electron micrograph and cyclic voltammetry. The results show that Triton X-100 in the region of 0.02-500 ppm in the electrolyte containing 2.5 M ZnCl 2 and 2.0 M NH 4Cl with pH 4.40 can effectively inhibit zinc-dendrite growth during charge-discharge cycles of the battery and yield longer cycles.

  11. Crystal structure of hexagonal MnAl4

    PubMed Central

    Pauling, Linus

    1987-01-01

    A structure is proposed for the hexagonal form of MnAl4, with aH = 28.4 Å and cH = 12.43 Å, on the basis of a high-resolution electron micrograph and comparison with crystals of known structures. The proposed structure involves seven 104-atom complexes of 20 Friauf polyhedra, sharing some atoms with one another. It is closely related to the 23.36-Å cubic structure of MnAl4 and to the 14.19-Å cubic structure of Mg32(Al,Zn)49. Images PMID:16593837

  12. Evaluation, development, and characterization of superconducting materials for space application

    NASA Technical Reports Server (NTRS)

    Thorpe, A. N.

    1989-01-01

    Results are reported of low magnetic field studies of dc magnetic susceptibility and ac magnetic susceptibility of bulk samples and powders. These data are analyzed and compared with the microstructures and compositions of the samples as determined by scanning electron microscopic micrographs, X-ray and chemical analysis. Particular emphasis is given to the interpretation of the ac magnetic susceptibility data which were obtained as function of the magnitude and frequency of the ac measuring field, and low values of an applied dc magnetic field. Two general conclusions are given and briefly discussed.

  13. A Single-Site Platinum CO Oxidation Catalyst in Zeolite KLTL: Microscopic and Spectroscopic Determination of the Locations of the Platinum Atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kistler, Joseph D.; Chotigkrai, Nutchapon; Xu, Pinghong

    2014-07-01

    A stable site-isolated mononuclear platinum catalyst with a well-defined structure is presented. Platinum complexes supported in zeolite KLTL were synthesized from [Pt(NH 3) 4](NO 3) 2, oxidized at 633 K, and used to catalyze CO oxidation. Finally, IR and X-ray absorption spectra and electron micrographs determine the structures and locations of the platinum complexes in the zeolite pores, demonstrate the platinum-support bonding, and show that the platinum remained site isolated after oxidation and catalysis.

  14. Microstructural investigations of 0.2% carbon content steel

    NASA Astrophysics Data System (ADS)

    Tollabimazraehno, Sajjad; Hingerl, Kurt

    2011-10-01

    The effect of thermal annealing to get different phases on low carbon steel was investigated. Steel sheets (0.2 wt. % C) of 900 μm thickness were heat treated to produce different structures. All the samples have the same starting point, transformation to coarse austenite at 900 degree Celsius. The nano indentation results revealed that samples have different hadness. By making conventional SEM micrographs, focus ion beam maps, and Electron backscatter diffraction (EBSD) the microstructural development and grain boundary variation of transformed phases martensite, biainte, tempered martensite and different combination of these phases were studied.

  15. Investigating of the Field Emission Performance on Nano-Apex Carbon Fiber and Tungsten Tips

    NASA Astrophysics Data System (ADS)

    Mousa, Marwan S.; Alnawasreh, Shadi; Madanat, Mazen A.; Al-Rabadi, Anas N.

    2015-10-01

    Field electron emission measurements have been performed on carbon-based and tungsten microemitters. Several samples of both types of emitters with different apex radii have been obtained employing electrolytic etching techniques using sodium hydroxide (NaOH) solution with different molarities depending on the material used. A suitable, home-built, field electron microscope (FEM) with 10 mm tip to screen separation distance was used to electrically characterize the electron emitters. Measurements were carried out under ultra high vacuum (UHV) conditions with base pressure of 10-9 mbar. The current-voltage characteristics (I-V) presented as Fowler-Nordheim (FN) type plots, and field electron emission images have been recorded. In this work, initial comparison of the field electron emission performance of these micro and nanoemitters has been carried out, with the aim of obtaining a reliable, stable and long life powerful electron source. We compare the apex radii measured from the micrographs obtained from the SEM images to those extracted from the FN-type _I-V_plots for carbon fibers and tungsten tips.

  16. High-resolution Single Particle Analysis from Electron Cryo-microscopy Images Using SPHIRE

    PubMed Central

    Moriya, Toshio; Saur, Michael; Stabrin, Markus; Merino, Felipe; Voicu, Horatiu; Huang, Zhong; Penczek, Pawel A.; Raunser, Stefan; Gatsogiannis, Christos

    2017-01-01

    SPHIRE (SPARX for High-Resolution Electron Microscopy) is a novel open-source, user-friendly software suite for the semi-automated processing of single particle electron cryo-microscopy (cryo-EM) data. The protocol presented here describes in detail how to obtain a near-atomic resolution structure starting from cryo-EM micrograph movies by guiding users through all steps of the single particle structure determination pipeline. These steps are controlled from the new SPHIRE graphical user interface and require minimum user intervention. Using this protocol, a 3.5 Å structure of TcdA1, a Tc toxin complex from Photorhabdus luminescens, was derived from only 9500 single particles. This streamlined approach will help novice users without extensive processing experience and a priori structural information, to obtain noise-free and unbiased atomic models of their purified macromolecular complexes in their native state. PMID:28570515

  17. Automated grain mapping using wide angle convergent beam electron diffraction in transmission electron microscope for nanomaterials.

    PubMed

    Kumar, Vineet

    2011-12-01

    The grain size statistics, commonly derived from the grain map of a material sample, are important microstructure characteristics that greatly influence its properties. The grain map for nanomaterials is usually obtained manually by visual inspection of the transmission electron microscope (TEM) micrographs because automated methods do not perform satisfactorily. While the visual inspection method provides reliable results, it is a labor intensive process and is often prone to human errors. In this article, an automated grain mapping method is developed using TEM diffraction patterns. The presented method uses wide angle convergent beam diffraction in the TEM. The automated technique was applied on a platinum thin film sample to obtain the grain map and subsequently derive grain size statistics from it. The grain size statistics obtained with the automated method were found in good agreement with the visual inspection method.

  18. Diffusion, convection, and solidification in cw-mode free electron laser nitrided titanium

    NASA Astrophysics Data System (ADS)

    Höche, Daniel; Shinn, Michelle; Müller, Sven; Schaaf, Peter

    2009-04-01

    Titanium sheets were irradiated by free electron laser radiation in cw mode in pure nitrogen. Due to the interaction, nitrogen diffusion occurs and titanium nitride was synthesized in the tracks. Overlapping tracks have been utilized to create coatings in order to improve the tribological properties of the sheets. Caused by the local heating and the spatial dimension of the melt pool, convection effects were observed and related to the track properties. Stress, hardness, and nitrogen content were investigated with x-ray diffraction, nanoindention, and resonant nuclear reaction analysis. The measured results were correlated with the scan parameters, especially to the lateral track shift. Cross section micrographs were prepared and investigated by means of scanning electron microscopy. They show the solidification behavior, phase formation, and the nitrogen distribution. The experiments give an insight into the possibilities of materials processing using such a unique heat source.

  19. Averaging scheme for atomic resolution off-axis electron holograms.

    PubMed

    Niermann, T; Lehmann, M

    2014-08-01

    All micrographs are limited by shot-noise, which is intrinsic to the detection process of electrons. For beam insensitive specimen this limitation can in principle easily be circumvented by prolonged exposure times. However, in the high-resolution regime several instrumental instabilities limit the applicable exposure time. Particularly in the case of off-axis holography the holograms are highly sensitive to the position and voltage of the electron-optical biprism. We present a novel reconstruction algorithm to average series of off-axis holograms while compensating for specimen drift, biprism drift, drift of biprism voltage, and drift of defocus, which all might cause problematic changes from exposure to exposure. We show an application of the algorithm utilizing also the possibilities of double biprism holography, which results in a high quality exit-wave reconstruction with 75 pm resolution at a very high signal-to-noise ratio. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Transmission electron microscopy characterization of macromolecular domain cavities and microstructure of single-crystal calcite tooth plates of the sea urchin Lytechinus variegatus.

    PubMed

    Robach, J S; Stock, S R; Veis, A

    2005-07-01

    The calcite plates and prisms in Lytechinus variegatus teeth form a complex biocomposite and employ a myriad of strengthening and toughening strategies. These crystal elements have macromolecule-containing internal cavities that may act to prevent cleavage. Transmission electron microscopy employing a small objective aperture was used to quantify several characteristics of these cavities. Cavity diameters ranged from 10 to 225 nm, the mean cavity diameter was between 50 and 60 nm, and cavities comprised approximately 20% of the volume of the crystal. Some cavities exhibited faceting and trace analysis identified these planes as being predominately of {1014} type. Through focus series of micrographs show the cavities were homogeneously distributed throughout the foil. The electron beam decomposed a substance within cavities and this suggests that these cavities are filled with a hydrated organic phase.

  1. X-ray Diffraction from Membrane Protein Nanocrystals

    PubMed Central

    Hunter, M.S.; DePonte, D.P.; Shapiro, D.A.; Kirian, R.A.; Wang, X.; Starodub, D.; Marchesini, S.; Weierstall, U.; Doak, R.B.; Spence, J.C.H.; Fromme, P.

    2011-01-01

    Membrane proteins constitute >30% of the proteins in an average cell, and yet the number of currently known structures of unique membrane proteins is <300. To develop new concepts for membrane protein structure determination, we have explored the serial nanocrystallography method, in which fully hydrated protein nanocrystals are delivered to an x-ray beam within a liquid jet at room temperature. As a model system, we have collected x-ray powder diffraction data from the integral membrane protein Photosystem I, which consists of 36 subunits and 381 cofactors. Data were collected from crystals ranging in size from 100 nm to 2 μm. The results demonstrate that there are membrane protein crystals that contain <100 unit cells (200 total molecules) and that 3D crystals of membrane proteins, which contain <200 molecules, may be suitable for structural investigation. Serial nanocrystallography overcomes the problem of x-ray damage, which is currently one of the major limitations for x-ray structure determination of small crystals. By combining serial nanocrystallography with x-ray free-electron laser sources in the future, it may be possible to produce molecular-resolution electron-density maps using membrane protein crystals that contain only a few hundred or thousand unit cells. PMID:21190672

  2. Total coliphages removal by activated sludge process and their morphological diversity by transmission electron microscopy.

    PubMed

    Jebri, Sihem; Hmaied, Fatma; Yahya, Mariem; Ben Ammar, Aouatef; Hamdi, Moktar

    This study was conducted to isolate phages in treated sewage collected from wastewater treatment plant, and explore their morphological diversity by transmission electron microscopy (TEM). Fates of total bacteriophages and their reduction by biological treatment were also assayed. Phages were isolated using the plaque assay then negatively stained and observed by electron microscope. Electron micrographs showed different types of phages with different shapes and sizes. The majority of viruses found in treated sewage ranged from 30 to 100 nm in capsid diameter. Many of them were tailed, belonging to Siphoviridae, Myoviridae and Podoviridae families. Non-tailed phage particles were also found at a low rate, presumably belonging to Leviviridae or Microviridae families. This study shows the diversity and the abundance of bacteriophages in wastewater after biological treatment. Their persistence in wastewater reused in agriculture should raise concerns about their potential role in controlling bacterial populations in the environment. They should be also included in water treatment quality controlling guidelines as fecal and viral indicators.

  3. 25 CFR 547.14 - What are the minimum technical standards for electronic random number generation?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... CLASS II GAMES § 547.14 What are the minimum technical standards for electronic random number generation... rules of the game. For example, if a bingo game with 75 objects with numbers or other designations has a... serial correlation (outcomes shall be independent from the previous game); and (x) Test on subsequences...

  4. 25 CFR 547.14 - What are the minimum technical standards for electronic random number generation?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... CLASS II GAMES § 547.14 What are the minimum technical standards for electronic random number generation... rules of the game. For example, if a bingo game with 75 objects with numbers or other designations has a... serial correlation (outcomes shall be independent from the previous game); and (x) Test on subsequences...

  5. 25 CFR 547.14 - What are the minimum technical standards for electronic random number generation?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... CLASS II GAMES § 547.14 What are the minimum technical standards for electronic random number generation... rules of the game. For example, if a bingo game with 75 objects with numbers or other designations has a... serial correlation (outcomes shall be independent from the previous game); and (x) Test on subsequences...

  6. The Decline of Print: Ten Years of Print Serial Use in a Small Academic Medical Library

    ERIC Educational Resources Information Center

    Rosati, Karen Thompson

    2006-01-01

    Tracking use of print journals over a ten-year period has allowed The University of South Carolina (USC) School of Medicine Library an essential tool for more accurate collection development, for both print and electronic selection. This lengthy study has provided usage statistics for purchasing decisions regarding electronic subscriptions still…

  7. X-ray microscopy as an approach to increasing accuracy and efficiency of serial block-face imaging for correlated light and electron microscopy of biological specimens.

    PubMed

    Bushong, Eric A; Johnson, Donald D; Kim, Keun-Young; Terada, Masako; Hatori, Megumi; Peltier, Steven T; Panda, Satchidananda; Merkle, Arno; Ellisman, Mark H

    2015-02-01

    The recently developed three-dimensional electron microscopic (EM) method of serial block-face scanning electron microscopy (SBEM) has rapidly established itself as a powerful imaging approach. Volume EM imaging with this scanning electron microscopy (SEM) method requires intense staining of biological specimens with heavy metals to allow sufficient back-scatter electron signal and also to render specimens sufficiently conductive to control charging artifacts. These more extreme heavy metal staining protocols render specimens light opaque and make it much more difficult to track and identify regions of interest (ROIs) for the SBEM imaging process than for a typical thin section transmission electron microscopy correlative light and electron microscopy study. We present a strategy employing X-ray microscopy (XRM) both for tracking ROIs and for increasing the efficiency of the workflow used for typical projects undertaken with SBEM. XRM was found to reveal an impressive level of detail in tissue heavily stained for SBEM imaging, allowing for the identification of tissue landmarks that can be subsequently used to guide data collection in the SEM. Furthermore, specific labeling of individual cells using diaminobenzidine is detectable in XRM volumes. We demonstrate that tungsten carbide particles or upconverting nanophosphor particles can be used as fiducial markers to further increase the precision and efficiency of SBEM imaging.

  8. X-ray Microscopy as an Approach to Increasing Accuracy and Efficiency of Serial Block-face Imaging for Correlated Light and Electron Microscopy of Biological Specimens

    PubMed Central

    Bushong, Eric A.; Johnson, Donald D.; Kim, Keun-Young; Terada, Masako; Hatori, Megumi; Peltier, Steven T.; Panda, Satchidananda; Merkle, Arno; Ellisman, Mark H.

    2015-01-01

    The recently developed three-dimensional electron microscopic (EM) method of serial block-face scanning electron microscopy (SBEM) has rapidly established itself as a powerful imaging approach. Volume EM imaging with this scanning electron microscopy (SEM) method requires intense staining of biological specimens with heavy metals to allow sufficient back-scatter electron signal and also to render specimens sufficiently conductive to control charging artifacts. These more extreme heavy metal staining protocols render specimens light opaque and make it much more difficult to track and identify regions of interest (ROIs) for the SBEM imaging process than for a typical thin section transmission electron microscopy correlative light and electron microscopy study. We present a strategy employing X-ray microscopy (XRM) both for tracking ROIs and for increasing the efficiency of the workflow used for typical projects undertaken with SBEM. XRM was found to reveal an impressive level of detail in tissue heavily stained for SBEM imaging, allowing for the identification of tissue landmarks that can be subsequently used to guide data collection in the SEM. Furthermore, specific labeling of individual cells using diaminobenzidine is detectable in XRM volumes. We demonstrate that tungsten carbide particles or upconverting nanophosphor particles can be used as fiducial markers to further increase the precision and efficiency of SBEM imaging. PMID:25392009

  9. High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography

    PubMed Central

    Boutet, Sébastien; Lomb, Lukas; Williams, Garth J.; Barends, Thomas R. M.; Aquila, Andrew; Doak, R. Bruce; Weierstall, Uwe; DePonte, Daniel P.; Steinbrener, Jan; Shoeman, Robert L.; Messerschmidt, Marc; Barty, Anton; White, Thomas A.; Kassemeyer, Stephan; Kirian, Richard A.; Seibert, M. Marvin; Montanez, Paul A.; Kenney, Chris; Herbst, Ryan; Hart, Philip; Pines, Jack; Haller, Gunther; Gruner, Sol M.; Philipp, Hugh T.; Tate, Mark W.; Hromalik, Marianne; Koerner, Lucas J.; van Bakel, Niels; Morse, John; Ghonsalves, Wilfred; Arnlund, David; Bogan, Michael J.; Caleman, Carl; Fromme, Raimund; Hampton, Christina Y.; Hunter, Mark S.; Johansson, Linda C.; Katona, Gergely; Kupitz, Christopher; Liang, Mengning; Martin, Andrew V.; Nass, Karol; Redecke, Lars; Stellato, Francesco; Timneanu, Nicusor; Wang, Dingjie; Zatsepin, Nadia A.; Schafer, Donald; Defever, James; Neutze, Richard; Fromme, Petra; Spence, John C. H.; Chapman, Henry N.; Schlichting, Ilme

    2013-01-01

    Structure determination of proteins and other macromolecules has historically required the growth of high-quality crystals sufficiently large to diffract x-rays efficiently while withstanding radiation damage. We applied serial femtosecond crystallography (SFX) using an x-ray free-electron laser (XFEL) to obtain high-resolution structural information from microcrystals (less than 1 micrometer by 1 micrometer by 3 micrometers) of the well-characterized model protein lysozyme. The agreement with synchrotron data demonstrates the immediate relevance of SFX for analyzing the structure of the large group of difficult-to-crystallize molecules. PMID:22653729

  10. Plasticity of rat central inhibitory synapses through GABA metabolism

    PubMed Central

    Engel, Dominique; Pahner, Ingrid; Schulze, Katrin; Frahm, Christiane; Jarry, Hubertus; Ahnert-Hilger, Gudrun; Draguhn, Andreas

    2001-01-01

    The production of the central inhibitory transmitter GABA (γ-aminobutyric acid) varies in response to different patterns of activity. It therefore seems possible that GABA metabolism can determine inhibitory synaptic strength and that presynaptic GABA content is a regulated parameter for synaptic plasticity. We altered presynaptic GABA metabolism in cultured rat hippocampal slices using pharmacological tools. Degradation of GABA by GABA-transaminase (GABA-T) was blocked by γ-vinyl-GABA (GVG) and synthesis of GABA through glutamate decarboxylase (GAD) was suppressed with 3-mercaptopropionic acid (MPA). We measured miniature GABAergic postsynaptic currents (mIPSCs) in CA3 pyramidal cells using the whole-cell patch clamp technique. Elevated intra-synaptic GABA levels after block of GABA-T resulted in increased mIPSC amplitude and frequency. In addition, tonic GABAergic background noise was enhanced by GVG. Electron micrographs from inhibitory synapses identified by immunogold staining for GABA confirmed the enhanced GABA content but revealed no further morphological alterations. The suppression of GABA synthesis by MPA had opposite functional consequences: mIPSC amplitude and frequency decreased and current noise was reduced compared with control. However, we were unable to demonstrate the decreased GABA content in biochemical analyses of whole slices or in electron micrographs. We conclude that the transmitter content of GABAergic vesicles is variable and that postsynaptic receptors are usually not saturated, leaving room for up-regulation of inhibitory synaptic strength. Our data reveal a new mechanism of plasticity at central inhibitory synapses and provide a rationale for the activity-dependent regulation of GABA synthesis in mammals. PMID:11533137

  11. Biochemical and immunochemical analyses of detergent solubilized antigens from membrane vesicles of Aspergillus fumigatus.

    PubMed

    Piechura, J E; Riefel, R S; Daft, L J

    1987-11-01

    A membrane vesicle fraction isolated from exponentially growing Aspergillus fumigatus strain Ag 507 cultures was obtained by mechanical disruption of intact Aspergillus cells under specific osmotic conditions followed by a pH fractionation technique. Electron micrographs of the membrane vesicles indicated unit membrane structures free from cell wall material. High glucose-6-phosphatase and low lactate dehydrogenase activities verified the relative purity of the membrane vesicle fraction. Allergic bronchopulmonary aspergillosis (ABPA) patient and normal human sera were incubated with the membrane vesicle fraction followed by colloidal gold tagged rabbit antiserum to human IgG or IgE. Electron micrographs indicated ABPA patient sera possessed specific IgG and IgE antibodies to membranous components. The detergent octyl-beta-D-glucopyranoside was used to extract membrane vesicle components (MC). The enzyme profile of MC compared with cell sap components (CS) showed differences in types of enzymes. Two-dimensional polyacrylamide gel electrophoretic analyses of MC and CS detected components shared as well as unique to each fraction. In crossed immunoelectrophoresis using both rabbit antisera raised to MC and ABPA patient sera, 5 peaks were detected, while analysis of CS using rabbit antisera raised to CS produced 20 major peaks. Immunoelectrophoresis and double immunodiffusion data supported the crossed immunoelectrophoretic data: MC differed from CS. Enzyme-linked immunosorbent assay indicated high specific IgG and IgE antibody levels to MC in ABPA patient sera. Crossed immuno-affinoelectrophoresis with concanavalin A partially characterized the MC, which consist of components which have glycoprotein elements (i.e., containing alpha-D-glucose or alpha-D-mannose).

  12. Shocked Quartz Aggregates of the Cretaceous-Tertiary Boundary at Colorado, USA

    NASA Astrophysics Data System (ADS)

    Miura, Y.; Okamoto, M.; Iancu, O. G.

    1993-07-01

    Shock-metamorphosed quartz (i.e., shocked quartz) at the Cretaceous-Tertiary boundary (K/T) at Colorado [1,2] reveals the following mineralogical data by X-ray diffractometry and high-resolution electron micrograph with energy- dispersive spectrometry. 1. Shocked quartz is not normal (perfect crystalline) quartz mineral but various quartz aggregates that show relatively low X-ray intensity (i.e., imperfect crystalline) and shock lamellae with crystalline quartz and amorphous glass [3]. 2. Analytical electron micrographs indicate that crystalline quartz silica with spotty dislocation features is included in dendritic amorphous glasses of potassium (K) feldspar composition. Various compositions of glassy materials are found in shocked quartz aggregates as matrix or alternate shock lamellae, which is important to estimate the target rock of impact. The composition of glassy matrix is dendritic K-feldspar in the K/T boundary at Clear Creak North (CCN), Colorado, whereas that in the Barringer Crater is quartz-rich composition from the target rock of sandstone (or some mixture with iron meteorite), and that in artificial impact rock [3] is dendritic silica composition. It is found in this study that shocked quartz aggregates from the CCN K/T boundary samples are supplied from quartz and K-feldspar-bearing target rock at impact event (Table 1). Table 1, which appears here in the hard copy, shows the compositions, texture, and origin of shocked quartz aggregates. References: [1] Alvarez L. W. et al. (1980) Science, 208, 1095-1107. [2] Izett G. (1989) GSA Spec. Pap. 249, 1-194. [3] Miura Y. (1991) Shock Waves, 1, 35-41, Springer-Verlag.

  13. Development and characterization of Mn2+-doped MgO nanoparticles by solution combustion synthesis

    NASA Astrophysics Data System (ADS)

    Basha, Md. Hussain; Gopal, N. O.; Rao, J. L.; Nagabhushana, H.; Nagabhushana, B. M.; Chakradhar, R. P. S.

    2015-06-01

    Mn doped MgO Nanoparticles have been prepared by Solution Combustion Synthesis. The synthesized sample is characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Electron Paramagnetic Resonance (EPR). The prepared MgO:Mn (1 mol%) nano crystals appear to be of simple cubic crystalline phase with lattice parameters a = 4.218(2) Å and cell volume = 74.98 (7) Å3. SEM micrograph of powders show highly porous, many agglomerates with irregular morphology, large voids, cracks and pores. EPR spectrum of the sample at room temperature exhibit an isotropic sextet hyperfine pattern, centered at g=1.99, characteristic if Mn2+ ions with S=I=5/2.The observed g value and the hyperfine value reveal the ionic bonding between Mn2+ and its surroundings.

  14. Hydroxyapatite nanocrystals: simple preparation, characterization and formation mechanism.

    PubMed

    Mohandes, Fatemeh; Salavati-Niasari, Masoud; Fathi, Mohammadhossein; Fereshteh, Zeinab

    2014-12-01

    Crystalline hydroxyapatite (HAP) nanoparticles and nanorods have been successfully synthesized via a simple precipitation method. To control the shape and particle size of HAP nanocrystals, coordination ligands derived from 2-hydroxy-1-naphthaldehyde were first prepared, characterized by Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance ((1)H-NMR) spectroscopies, and finally applied in the synthesis process of HAP. On the other hand, the HAP nanocrystals were also characterized by several techniques including powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). According to the FE-SEM and TEM micrographs, it was found that the morphology and crystallinity of the HAP powders depended on the coordination mode of the ligands. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Influence of various surface pretreatments on adherence of sputtered molybdenum disulfide to silver, gold, copper, and bronze

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1973-01-01

    Solid film lubricants of radio frequency sputtered molybdenum disulfide (MoS2) were applied to silver, gold, copper, and bronze surfaces that had various pretreatments (mechanical polishing, sputter etching, oxidation, and sulfurization). Optical and electron transmission micrographs and electron diffraction patterns were used to interpret the film formation characteristics and to evaluate the sputtering conditions in regard to the film and substrate compatibility. Sputtered MoS2 films flaked and peeled on silver, copper, and bronze surfaces except when the surfaces had been specially oxidized. The flaking and peeling was a result of sulfide compound formation and the corresponding grain growth of the sulfide film. Sputtered MoS2 films showed no peeling and flaking on gold surfaces regardless of surface pretreatment.

  16. Dark-field transmission electron microscopy and the Debye-Waller factor of graphene

    PubMed Central

    Hubbard, William A.; White, E. R.; Dawson, Ben; Lodge, M. S.; Ishigami, Masa; Regan, B. C.

    2014-01-01

    Graphene's structure bears on both the material's electronic properties and fundamental questions about long range order in two-dimensional crystals. We present an analytic calculation of selected area electron diffraction from multi-layer graphene and compare it with data from samples prepared by chemical vapor deposition and mechanical exfoliation. A single layer scatters only 0.5% of the incident electrons, so this kinematical calculation can be considered reliable for five or fewer layers. Dark-field transmission electron micrographs of multi-layer graphene illustrate how knowledge of the diffraction peak intensities can be applied for rapid mapping of thickness, stacking, and grain boundaries. The diffraction peak intensities also depend on the mean-square displacement of atoms from their ideal lattice locations, which is parameterized by a Debye-Waller factor. We measure the Debye-Waller factor of a suspended monolayer of exfoliated graphene and find a result consistent with an estimate based on the Debye model. For laboratory-scale graphene samples, finite size effects are sufficient to stabilize the graphene lattice against melting, indicating that ripples in the third dimension are not necessary. PMID:25242882

  17. Dark-field transmission electron microscopy and the Debye-Waller factor of graphene.

    PubMed

    Shevitski, Brian; Mecklenburg, Matthew; Hubbard, William A; White, E R; Dawson, Ben; Lodge, M S; Ishigami, Masa; Regan, B C

    2013-01-15

    Graphene's structure bears on both the material's electronic properties and fundamental questions about long range order in two-dimensional crystals. We present an analytic calculation of selected area electron diffraction from multi-layer graphene and compare it with data from samples prepared by chemical vapor deposition and mechanical exfoliation. A single layer scatters only 0.5% of the incident electrons, so this kinematical calculation can be considered reliable for five or fewer layers. Dark-field transmission electron micrographs of multi-layer graphene illustrate how knowledge of the diffraction peak intensities can be applied for rapid mapping of thickness, stacking, and grain boundaries. The diffraction peak intensities also depend on the mean-square displacement of atoms from their ideal lattice locations, which is parameterized by a Debye-Waller factor. We measure the Debye-Waller factor of a suspended monolayer of exfoliated graphene and find a result consistent with an estimate based on the Debye model. For laboratory-scale graphene samples, finite size effects are sufficient to stabilize the graphene lattice against melting, indicating that ripples in the third dimension are not necessary.

  18. ELECTRON MICROSCOPE AND X-RAY DIFFRACTION STUDIES ON A HOMOLOGOUS SERIES OF SATURATED PHOSPHATIDYLCHOLINES.

    PubMed

    ELBERS, P F; VERVERGAERT, P H

    1965-05-01

    Three homologous saturated phosphatidylcholines were studied by electron microscopy after tricomplex fixation. The results are compared with those obtained by x-ray diffraction analysis of the same and some other homologous compounds, in the dry crystalline state and after tricomplex fixation. By electron microscopy alternating dark and light bands are observed which are likely to correspond to phosphatide double layers. X-Ray diffraction reveals the presence of lamellar structures of regular spacing. The layer spacings obtained by both methods are in good agreement. From the electron micrographs the width of the polar parts of the double layers can be derived directly. The width of the carboxylglycerylphosphorylcholine moiety of the layers is found by extrapolating the x-ray diffraction data to zero chain length of the fatty acids. When from this width the contribution of the carboxylglyceryl part of the molecules is subtracted, again we find good agreement with the electron microscope measurements. An attempt has been made to account for the different layer spacings measured in terms of orientation of the molecules within the double layers.

  19. Seeing tobacco mosaic virus through direct electron detectors

    PubMed Central

    Fromm, Simon A.; Bharat, Tanmay A.M.; Jakobi, Arjen J.; Hagen, Wim J.H.; Sachse, Carsten

    2015-01-01

    With the introduction of direct electron detectors (DED) to the field of electron cryo-microscopy, a wave of atomic-resolution structures has become available. As the new detectors still require comparative characterization, we have used tobacco mosaic virus (TMV) as a test specimen to study the quality of 3D image reconstructions from data recorded on the two direct electron detector cameras, K2 Summit and Falcon II. Using DED movie frames, we explored related image-processing aspects and compared the performance of micrograph-based and segment-based motion correction approaches. In addition, we investigated the effect of dose deposition on the atomic-resolution structure of TMV and show that radiation damage affects negative carboxyl chains first in a side-chain specific manner. Finally, using 450,000 asymmetric units and limiting the effects of radiation damage, we determined a high-resolution cryo-EM map at 3.35 Å resolution. Here, we provide a comparative case study of highly ordered TMV recorded on different direct electron detectors to establish recording and processing conditions that enable structure determination up to 3.2 Å in resolution using cryo-EM. PMID:25528571

  20. Lipidic cubic phase serial millisecond crystallography using synchrotron radiation

    PubMed Central

    Nogly, Przemyslaw; James, Daniel; Wang, Dingjie; White, Thomas A.; Zatsepin, Nadia; Shilova, Anastasya; Nelson, Garrett; Liu, Haiguang; Johansson, Linda; Heymann, Michael; Jaeger, Kathrin; Metz, Markus; Wickstrand, Cecilia; Wu, Wenting; Båth, Petra; Berntsen, Peter; Oberthuer, Dominik; Panneels, Valerie; Cherezov, Vadim; Chapman, Henry; Schertler, Gebhard; Neutze, Richard; Spence, John; Moraes, Isabel; Burghammer, Manfred; Standfuss, Joerg; Weierstall, Uwe

    2015-01-01

    Lipidic cubic phases (LCPs) have emerged as successful matrixes for the crystallization of membrane proteins. Moreover, the viscous LCP also provides a highly effective delivery medium for serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs). Here, the adaptation of this technology to perform serial millisecond crystallography (SMX) at more widely available synchrotron microfocus beamlines is described. Compared with conventional microcrystallography, LCP-SMX eliminates the need for difficult handling of individual crystals and allows for data collection at room temperature. The technology is demonstrated by solving a structure of the light-driven proton-pump bacteriorhodopsin (bR) at a resolution of 2.4 Å. The room-temperature structure of bR is very similar to previous cryogenic structures but shows small yet distinct differences in the retinal ligand and proton-transfer pathway. PMID:25866654

  1. Mapping the continuous reciprocal space intensity distribution of X-ray serial crystallography.

    PubMed

    Yefanov, Oleksandr; Gati, Cornelius; Bourenkov, Gleb; Kirian, Richard A; White, Thomas A; Spence, John C H; Chapman, Henry N; Barty, Anton

    2014-07-17

    Serial crystallography using X-ray free-electron lasers enables the collection of tens of thousands of measurements from an equal number of individual crystals, each of which can be smaller than 1 µm in size. This manuscript describes an alternative way of handling diffraction data recorded by serial femtosecond crystallography, by mapping the diffracted intensities into three-dimensional reciprocal space rather than integrating each image in two dimensions as in the classical approach. We call this procedure 'three-dimensional merging'. This procedure retains information about asymmetry in Bragg peaks and diffracted intensities between Bragg spots. This intensity distribution can be used to extract reflection intensities for structure determination and opens up novel avenues for post-refinement, while observed intensity between Bragg peaks and peak asymmetry are of potential use in novel direct phasing strategies.

  2. Asymmetry in serial femtosecond crystallography data.

    PubMed

    Sharma, Amit; Johansson, Linda; Dunevall, Elin; Wahlgren, Weixiao Y; Neutze, Richard; Katona, Gergely

    2017-03-01

    Serial crystallography is an increasingly important approach to protein crystallography that exploits both X-ray free-electron laser (XFEL) and synchrotron radiation. Serial crystallography recovers complete X-ray diffraction data by processing and merging diffraction images from thousands of randomly oriented non-uniform microcrystals, of which all observations are partial Bragg reflections. Random fluctuations in the XFEL pulse energy spectrum, variations in the size and shape of microcrystals, integrating over millions of weak partial observations and instabilities in the XFEL beam position lead to new types of experimental errors. The quality of Bragg intensity estimates deriving from serial crystallography is therefore contingent upon assumptions made while modeling these data. Here it is observed that serial femtosecond crystallography (SFX) Bragg reflections do not follow a unimodal Gaussian distribution and it is recommended that an idealized assumption of single Gaussian peak profiles be relaxed to incorporate apparent asymmetries when processing SFX data. The phenomenon is illustrated by re-analyzing data collected from microcrystals of the Blastochloris viridis photosynthetic reaction center and comparing these intensity observations with conventional synchrotron data. The results show that skewness in the SFX observations captures the essence of the Wilson plot and an empirical treatment is suggested that can help to separate the diffraction Bragg intensity from the background.

  3. Three-dimensional characterization of ODS ferritic steel using by FIB-SEM serial sectioning method.

    PubMed

    Endo, T; Sugino, Y; Ohono, N; Ukai, S; Miyazaki, N; Wang, Y; Ohnuki, S

    2014-11-01

    Considerable attention has been paid to the research of the electron tomography due to determine the three-dimensional (3D) structure of materials [1]. One of the electron tomography techniques, focused ion beam/scanning electron microscopy (FIB-SEM) imaging has advantages of high resolutions (10 nm), large area observation (μm order) and simultaneous energy dispersive x- ray microanalysis (EDS)/ electron backscatter diffraction (EBSD) analysis. The purpose of this study, three-dimensional EBSD analysis of ODS ferritic steel which carried out cold work using FIB-SEM equipment was conducted, and it aimed at analyzing the microstructure obtained there. The zone annealing tests were conducted for ferritic steel [2,3], which were produced through mechanical alloying and hot-extrusion. After zone annealing, specimens were mechanically polished with #400∼4000 emery paper, 1 µm diamond paste and alumina colloidal silica. The serial sectioning and the 3D-electron backscattering diffraction (3D-EBSD) analysis were carried out. We made the micro pillar (30 x 30 x 15 µm). The EBSD measurements were carried out in each layer after serial sectioning at a step size and milling depth was 80 nm with 30 slices. After EBSD analysis, the series of cross-sectional images were aligned according to arbitrarily specified areas and then stacked up to form a volume. Consequently, we obtained the 3D-IPF maps for ODS ferritic steel. In this specimen, the {111} and {001} grains are layered by turns. In addition, the volume fraction value of both plane are similar. The aspect ratio increases with specimen depth. The 3D-EBSD mapping is useful to analysis of the bulk material since this method obtain many microstructure information, such a shape, volume and orientation of the crystal, grain boundary. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. International Micrographics Standards: Report of the 1979 Paris Meeting of ISO/TC171.

    ERIC Educational Resources Information Center

    Heynen, Jeffrey

    1980-01-01

    Describes a meeting of the technical committee on micrographics of the International Organization for Standardization, and fcuses on the committee's work relating to the reproduction of library materials within the general context of international standards-making activities. (FM)

  5. INSPECTION MEANS FOR INDUCTION MOTORS

    DOEpatents

    Williams, A.W.

    1959-03-10

    an appartus is descripbe for inspcting electric motors and more expecially an appartus for detecting falty end rings inn suqirrel cage inductio motors while the motor is running. In its broua aspects, the mer would around ce of reference tedtor means also itons in the phase ition of the An electronic circuit for conversion of excess-3 binary coded serial decimal numbers to straight binary coded serial decimal numbers is reported. The converter of the invention in its basic form generally coded pulse words of a type having an algebraic sign digit followed serially by a plurality of decimal digits in order of decreasing significance preceding a y algebraic sign digit followed serially by a plurality of decimal digits in order of decreasing significance. A switching martix is coupled to said input circuit and is internally connected to produce serial straight binary coded pulse groups indicative of the excess-3 coded input. A stepping circuit is coupled to the switching matrix and to a synchronous counter having a plurality of x decimal digit and plurality of y decimal digit indicator terminals. The stepping circuit steps the counter in synchornism with the serial binary pulse group output from the switching matrix to successively produce pulses at corresponding ones of the x and y decimal digit indicator terminals. The combinations of straight binary coded pulse groups and corresponding decimal digit indicator signals so produced comprise a basic output suitable for application to a variety of output apparatus.

  6. Tungsten Carbide Grain Size Computation for WC-Co Dissimilar Welds

    NASA Astrophysics Data System (ADS)

    Zhou, Dongran; Cui, Haichao; Xu, Peiquan; Lu, Fenggui

    2016-06-01

    A "two-step" image processing method based on electron backscatter diffraction in scanning electron microscopy was used to compute the tungsten carbide (WC) grain size distribution for tungsten inert gas (TIG) welds and laser welds. Twenty-four images were collected on randomly set fields per sample located at the top, middle, and bottom of a cross-sectional micrograph. Each field contained 500 to 1500 WC grains. The images were recognized through clustering-based image segmentation and WC grain growth recognition. According to the WC grain size computation and experiments, a simple WC-WC interaction model was developed to explain the WC dissolution, grain growth, and aggregation in welded joints. The WC-WC interaction and blunt corners were characterized using scanning and transmission electron microscopy. The WC grain size distribution and the effects of heat input E on grain size distribution for the laser samples were discussed. The results indicate that (1) the grain size distribution follows a Gaussian distribution. Grain sizes at the top of the weld were larger than those near the middle and weld root because of power attenuation. (2) Significant WC grain growth occurred during welding as observed in the as-welded micrographs. The average grain size was 11.47 μm in the TIG samples, which was much larger than that in base metal 1 (BM1 2.13 μm). The grain size distribution curves for the TIG samples revealed a broad particle size distribution without fine grains. The average grain size (1.59 μm) in laser samples was larger than that in base metal 2 (BM2 1.01 μm). (3) WC-WC interaction exhibited complex plane, edge, and blunt corner characteristics during grain growth. A WC ( { 1 {bar{{1}}}00} ) to WC ( {0 1 1 {bar{{0}}}} ) edge disappeared and became a blunt plane WC ( { 10 1 {bar{{0}}}} ) , several grains with two- or three-sided planes and edges disappeared into a multi-edge, and a WC-WC merged.

  7. Miscibility and Morphology of Poly(lactic ACID)/POLY(Β-HYDROXYBUTYRATE) Blends

    NASA Astrophysics Data System (ADS)

    Tri Phuong, Nguyen; Guinault, Alain; Sollogoub, Cyrille

    2011-01-01

    The miscibility and morphology of poly(lactic)acid (PLA)/polyβ-hydroxybutyrate (PHB) prepared by melt blending method were investigated by Fourier transform infrared (FTIR), Differential scanning calorimetry (DSC), melt rheology and scanning electron microscopy (SEM) observations. FTIR and DSC methods present some limits to examine the miscibility state of PLA/PHB blends. This drawback can be overcome with the Cole-Cole method by observing the η" = f(η') curves to confirm the miscibility of semicrystalline PLA/ semicrystalline PHB blends. MEB micrographs of fractured surface of blends were also used to investigate the miscibility of these blends.

  8. Water extractable arabinoxylan aerogels prepared by supercritical CO2 drying.

    PubMed

    Marquez-Escalante, Jorge; Carvajal-Millan, Elizabeth; Miki-Yoshida, Mario; Alvarez-Contreras, Lorena; Toledo-Guillén, Alma Rosa; Lizardi-Mendoza, Jaime; Rascón-Chu, Agustín

    2013-05-14

    Water extractable arabinoxylan (WEAX) aerogels were prepared by extracting the solvent from the alcogels (WEAX hydrogels with an alcohol as the solvent) with carbon dioxide under supercritical conditions. WEAX aerogels were characterized using scanning electron microscopy and adsorption and desorption nitrogen isotherms. The micrographs indicate a heterogeneous porous network structure in WEAX aerogel. Adsorption/desorption nitrogen isotherms of this material were type IV, which confirm that this material possess a mesoporous structure. WEAX aerogels rehydration capability was evaluated and the water absorption mechanism was determined. The WEAX aerogels water absorption mechanism was non-Fickian (n = 0.54).

  9. Mechanical Properties of Cu-Cr-Nb Alloys

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    1997-01-01

    The chemical compositions of the alloys are listed. The alloying levels were near the values for stochiometric Cr2Nb. A slight excess of Cr was chosen for increased hydrogen embrittlement resistance. The microstructures of all Cu-Cr-Nb alloys were very similar. Two typical transmission electron microscope (TEM) micrographs are presented. The images show the presence of large mount of Cr2Nb precipitates in a nearly pure Cu matrix. The interactions between dislocations and precipitates are currently under investigations, but as the images demonstrates, the extremely fine (less then 15 nm) Cr2Nb are the primary strengtheners for the alloy.

  10. Modeling the electrical resistance of gold film conductors on uniaxially stretched elastomeric substrates

    NASA Astrophysics Data System (ADS)

    Cao, Wenzhe; Görrn, Patrick; Wagner, Sigurd

    2011-05-01

    The electrical resistance of gold film conductors on polydimethyl siloxane substrates at stages of uniaxial stretching is measured and modeled. The surface area of a gold conductor is assumed constant during stretching so that the exposed substrate takes up all strain. Sheet resistances are calculated from frames of scanning electron micrographs by numerically solving for the electrical potentials of all pixels in a frame. These sheet resistances agree sufficiently well with values measured on the same conductors to give credence to the model of a stretchable network of gold links defined by microcracks.

  11. Biosynthesis of Gold Nanoparticles Using Pseudomonas Aeruginosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abd El-Aziz, M.; Badr, Y.; Mahmoud, M. A.

    2007-02-14

    Pseudomonas aeruginosa were used for extracellular biosynthesis of gold nanoparticles (Au NPs). Consequently, Au NPs were formed due to reduction of gold ion by bacterial cell supernatant of P. aeruginos ATCC 90271, P. aeruginos (2) and P. aeruginos (1). The UV-Vis. and fluorescence spectra of the bacterial as well as chemical prepared Au NPs were recorded. Transmission electron microscopy (TEM) micrograph showed the formation of well-dispersed gold nanoparticles in the range of 15-30 nm. The process of reduction being extracellular and may lead to the development of an easy bioprocess for synthesis of Au NPs.

  12. Interaction of TGA with CdSe nanoparticles

    NASA Astrophysics Data System (ADS)

    Bharti, Shivani; Singh, Satvinder; Jain, Shikshita; Kaur, Gurvir; Gupta, Shikha; Tripathi, S. K.

    2018-05-01

    In this paper, the interaction of thioglycolic acid (TGA) with CdSe atomic cluster have been studied using first principle calculations and experimentally synthesized using chemical route method. Density Functional Theory (DFT) have been used for all the calculations. Structural and electronic properties have been studied theorectically and results have been compared to the experimentally obtained micrographs from TEM microscopy. The most stable interaction of CdSe cluster is obtained with thiol group of TGA due to the high bond dissiciation energy between Cd-S than Cd-O. Theoretical calculations have been performed using Gaussian basis set approach.

  13. Preparation and characterization of Fe50Co50 nanostructured alloy

    NASA Astrophysics Data System (ADS)

    Yepes, N.; Orozco, J.; Caamaño, Z.; Mass, J.; Pérez, G.

    2014-04-01

    Nanostructured Fe50Co50 alloy was prepared by mechanical alloying of Fe and Co powders in a planetary high energy ball milling. The microstructure and structural evolution of the alloy have been investigated as a function of milling time (0 h, 8 h, 20 h and 35 h) by scanning electron microscopy (SEM) and X-Ray diffraction (XRD) characterization techniques. SEM micrographs showed different powder particles morphologies during the mechanical alloying stages. By XRD analysis it could be identified the structural phases of the alloy and the crystallite size was calculated as a function of the milling time.

  14. Micrographics: A Bibliography of Sources.

    ERIC Educational Resources Information Center

    Thornberry, Patricia Lee; Michael, James D.

    This extensive micrographics bibliography, which includes citations drawn from a literature search and prepared bibliographies, covers microforms, microfiche, and microfilm. Sections include 3 pages of book citations, 6 pages citing ERIC documents, and 33 pages of journal citations. Topics covered include microform library usage and usage in other…

  15. Deceleration of probe beam by stage bias potential improves resolution of serial block-face scanning electron microscopic images.

    PubMed

    Bouwer, James C; Deerinck, Thomas J; Bushong, Eric; Astakhov, Vadim; Ramachandra, Ranjan; Peltier, Steven T; Ellisman, Mark H

    2017-01-01

    Serial block-face scanning electron microscopy (SBEM) is quickly becoming an important imaging tool to explore three-dimensional biological structure across spatial scales. At probe-beam-electron energies of 2.0 keV or lower, the axial resolution should improve, because there is less primary electron penetration into the block face. More specifically, at these lower energies, the interaction volume is much smaller, and therefore, surface detail is more highly resolved. However, the backscattered electron yield for metal contrast agents and the backscattered electron detector sensitivity are both sub-optimal at these lower energies, thus negating the gain in axial resolution. We found that the application of a negative voltage (reversal potential) applied to a modified SBEM stage creates a tunable electric field at the sample. This field can be used to decrease the probe-beam-landing energy and, at the same time, alter the trajectory of the signal to increase the signal collected by the detector. With decelerated low landing-energy electrons, we observed that the probe-beam-electron-penetration depth was reduced to less than 30 nm in epoxy-embedded biological specimens. Concurrently, a large increase in recorded signal occurred due to the re-acceleration of BSEs in the bias field towards the objective pole piece where the detector is located. By tuning the bias field, we were able to manipulate the trajectories of the  primary and secondary electrons, enabling the spatial discrimination of these signals using an advanced ring-type BSE detector configuration or a standard monolithic BSE detector coupled with a blocking aperture.

  16. First staging of two laser accelerators.

    PubMed

    Kimura, W D; van Steenbergen, A; Babzien, M; Ben-Zvi, I; Campbell, L P; Cline, D B; Dilley, C E; Gallardo, J C; Gottschalk, S C; He, P; Kusche, K P; Liu, Y; Pantell, R H; Pogorelsky, I V; Quimby, D C; Skaritka, J; Steinhauer, L C; Yakimenko, V

    2001-04-30

    Staging of two laser-driven, relativistic electron accelerators has been demonstrated for the first time in a proof-of-principle experiment, whereby two distinct and serial laser accelerators acted on an electron beam in a coherently cumulative manner. Output from a CO2 laser was split into two beams to drive two inverse free electron lasers (IFEL) separated by 2.3 m. The first IFEL served to bunch the electrons into approximately 3 fs microbunches, which were rephased with the laser wave in the second IFEL. This represents a crucial step towards the development of practical laser-driven electron accelerators.

  17. 77 FR 35718 - Certain Universal Serial Bus (“USB”) Portable Storage Devices, Including USB Flash Drives and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-14

    ... on the Commission's electronic docket (EDIS) at http://edis.usitc.gov . Hearing-impaired persons are... Sunnyvale, California; Kingston Technology Company, Inc. of Fountain Valley, California; Patriot Memory, LLC...

  18. Creating a transducer electronic datasheet using I2C serial EEPROM memory and PIC32-based microcontroller development board

    NASA Astrophysics Data System (ADS)

    Croitoru, Bogdan; Tulbure, Adrian; Abrudean, Mihail; Secara, Mihai

    2015-02-01

    The present paper describes a software method for creating / managing one type of Transducer Electronic Datasheet (TEDS) according to IEEE 1451.4 standard in order to develop a prototype of smart multi-sensor platform (with up to ten different analog sensors simultaneously connected) with Plug and Play capabilities over ETHERNET and Wi-Fi. In the experiments were used: one analog temperature sensor, one analog light sensor, one PIC32-based microcontroller development board with analog and digital I/O ports and other computing resources, one 24LC256 I2C (Inter Integrated Circuit standard) serial Electrically Erasable Programmable Read Only Memory (EEPROM) memory with 32KB available space and 3 bytes internal buffer for page writes (1 byte for data and 2 bytes for address). It was developed a prototype algorithm for writing and reading TEDS information to / from I2C EEPROM memories using the standard C language (up to ten different TEDS blocks coexisting in the same EEPROM device at once). The algorithm is able to write and read one type of TEDS: transducer information with standard TEDS content. A second software application, written in VB.NET platform, was developed in order to access the EEPROM sensor information from a computer through a serial interface (USB).

  19. New method for designing serial resonant power converters

    NASA Astrophysics Data System (ADS)

    Hinov, Nikolay

    2017-12-01

    In current work is presented one comprehensive method for design of serial resonant energy converters. The method is based on new simplified approach in analysis of such kind power electronic devices. It is grounded on supposing resonant mode of operation when finding relation between input and output voltage regardless of other operational modes (when controlling frequency is below or above resonant frequency). This approach is named `quasiresonant method of analysis', because it is based on assuming that all operational modes are `sort of' resonant modes. An estimation of error was made because of the a.m. hypothesis and is compared to the classic analysis. The `quasiresonant method' of analysis gains two main advantages: speed and easiness in designing of presented power circuits. Hence it is very useful in practice and in teaching Power Electronics. Its applicability is proven with mathematic modelling and computer simulation.

  20. Characterization and use of the spent beam for serial operation of LCLS

    DOE PAGES

    Boutet, Sébastien; Foucar, Lutz; Barends, Thomas R. M.; ...

    2015-04-11

    X-ray free-electron laser sources such as the Linac Coherent Light Source offer very exciting possibilities for unique research. However, beam time at such facilities is very limited and in high demand. This has led to significant efforts towards beam multiplexing of various forms. One such effort involves re-using the so-called spent beam that passes through the hole in an area detector after a weak interaction with a primary sample. This beam can be refocused into a secondary interaction region and used for a second, independent experiment operating in series. The beam profile of this refocused beam was characterized for amore » particular experimental geometry at the Coherent X-ray Imaging instrument at LCLS. A demonstration of this multiplexing capability was performed with two simultaneous serial femtosecond crystallography experiments, both yielding interpretable data of sufficient quality to produce electron density maps.« less

  1. Characterization and use of the spent beam for serial operation of LCLS

    PubMed Central

    Boutet, Sébastien; Foucar, Lutz; Barends, Thomas R. M.; Botha, Sabine; Doak, R. Bruce; Koglin, Jason E.; Messerschmidt, Marc; Nass, Karol; Schlichting, Ilme; Seibert, M. Marvin; Shoeman, Robert L.; Williams, Garth J.

    2015-01-01

    X-ray free-electron laser sources such as the Linac Coherent Light Source offer very exciting possibilities for unique research. However, beam time at such facilities is very limited and in high demand. This has led to significant efforts towards beam multiplexing of various forms. One such effort involves re-using the so-called spent beam that passes through the hole in an area detector after a weak interaction with a primary sample. This beam can be refocused into a secondary interaction region and used for a second, independent experiment operating in series. The beam profile of this refocused beam was characterized for a particular experimental geometry at the Coherent X-ray Imaging instrument at LCLS. A demonstration of this multiplexing capability was performed with two simultaneous serial femtosecond crystallography experiments, both yielding interpretable data of sufficient quality to produce electron density maps. PMID:25931079

  2. Development of a front end controller/heap manager for PHENIX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ericson, M.N.; Allen, M.D.; Musrock, M.S.

    1996-12-31

    A controller/heap manager has been designed for applicability to all detector subsystem types of PHENIX. the heap manager performs all functions associated with front end electronics control including ADC and analog memory control, data collection, command interpretation and execution, and data packet forming and communication. Interfaces to the unit consist of a timing and control bus, a serial bus, a parallel data bus, and a trigger interface. The topology developed is modular so that many functional blocks are identical for a number of subsystem types. Programmability is maximized through the use of flexible modular functions and implementation using field programmablemore » gate arrays (FPGAs). Details of unit design and functionality will be discussed with particular detail given to subsystems having analog memory-based front end electronics. In addition, mode control, serial functions, and FPGA implementation details will be presented.« less

  3. X-ray free electron lasers motivate bioanalytical characterization of protein nanocrystals: serial femtosecond crystallography.

    PubMed

    Bogan, Michael J

    2013-04-02

    Atomic resolution structures of large biomacromolecular complexes can now be recorded at room temperature from crystals with submicrometer dimensions using intense femtosecond pulses delivered by the world's largest and most powerful X-ray machine, a laser called the Linac Coherent Light Source. Abundant opportunities exist for the bioanalytical sciences to help extend this revolutionary advance in structural biology to the ultimate goal of recording molecular-movies of noncrystalline biomacromolecules. This Feature will introduce the concept of serial femtosecond crystallography to the nonexpert, briefly review progress to date, and highlight some potential contributions from the analytical sciences.

  4. Infrared-Proximity-Sensor Modules For Robot

    NASA Technical Reports Server (NTRS)

    Parton, William; Wegerif, Daniel; Rosinski, Douglas

    1995-01-01

    Collision-avoidance system for articulated robot manipulators uses infrared proximity sensors grouped together in array of sensor modules. Sensor modules, called "sensorCells," distributed processing board-level products for acquiring data from proximity-sensors strategically mounted on robot manipulators. Each sensorCell self-contained and consists of multiple sensing elements, discrete electronics, microcontroller and communications components. Modules connected to central control computer by redundant serial digital communication subsystem including both serial and a multi-drop bus. Detects objects made of various materials at distance of up to 50 cm. For some materials, such as thermal protection system tiles, detection range reduced to approximately 20 cm.

  5. Programmable Pulse-Position-Modulation Encoder

    NASA Technical Reports Server (NTRS)

    Zhu, David; Farr, William

    2006-01-01

    A programmable pulse-position-modulation (PPM) encoder has been designed for use in testing an optical communication link. The encoder includes a programmable state machine and an electronic code book that can be updated to accommodate different PPM coding schemes. The encoder includes a field-programmable gate array (FPGA) that is programmed to step through the stored state machine and code book and that drives a custom high-speed serializer circuit board that is capable of generating subnanosecond pulses. The stored state machine and code book can be updated by means of a simple text interface through the serial port of a personal computer.

  6. Protein crystal screening and characterization for serial femtosecond nanocrystallography

    PubMed Central

    Darmanin, Connie; Strachan, Jamie; Adda, Christopher G.; Ve, Thomas; Kobe, Bostjan; Abbey, Brian

    2016-01-01

    The recent development of X-ray free electron lasers (XFELs) has spurred the development of serial femtosecond nanocrystallography (SFX) which, for the first time, is enabling structure retrieval from sub-micron protein crystals. Although there are already a growing number of structures published using SFX, the technology is still very new and presents a number of unique challenges as well as opportunities for structural biologists. One of the biggest barriers to the success of SFX experiments is the preparation and selection of suitable protein crystal samples. Here we outline a protocol for preparing and screening for suitable XFEL targets. PMID:27139248

  7. Deconstructing Complexity: Serial Block-Face Electron Microscopic Analysis of the Hippocampal Mossy Fiber Synapse

    PubMed Central

    Wilke, Scott A.; Antonios, Joseph K.; Bushong, Eric A.; Badkoobehi, Ali; Malek, Elmar; Hwang, Minju; Terada, Masako; Ellisman, Mark H.

    2013-01-01

    The hippocampal mossy fiber (MF) terminal is among the largest and most complex synaptic structures in the brain. Our understanding of the development of this morphologically elaborate structure has been limited because of the inability of standard electron microscopy techniques to quickly and accurately reconstruct large volumes of neuropil. Here we use serial block-face electron microscopy (SBEM) to surmount these limitations and investigate the establishment of MF connectivity during mouse postnatal development. Based on volume reconstructions, we find that MF axons initially form bouton-like specializations directly onto dendritic shafts, that dendritic protrusions primarily arise independently of bouton contact sites, and that a dramatic increase in presynaptic and postsynaptic complexity follows the association of MF boutons with CA3 dendritic protrusions. We also identify a transient period of MF bouton filopodial exploration, followed by refinement of sites of synaptic connectivity. These observations enhance our understanding of the development of this highly specialized synapse and illustrate the power of SBEM to resolve details of developing microcircuits at a level not easily attainable with conventional approaches. PMID:23303931

  8. Three Dimensional Characterization of Tin Crystallography and Cu6Sn5 Intermetallics in Solder Joints by Multiscale Tomography

    NASA Astrophysics Data System (ADS)

    Kirubanandham, A.; Lujan-Regalado, I.; Vallabhaneni, R.; Chawla, N.

    2016-11-01

    Decreasing pitch size in electronic packaging has resulted in a drastic decrease in solder volumes. The Sn grain crystallography and fraction of intermetallic compounds (IMCs) in small-scale solder joints evolve much differently at the smaller length scales. A cross-sectional study limits the morphological analysis of microstructural features to two dimensions. This study utilizes serial sectioning technique in conjunction with electron backscatter diffraction to investigate the crystallographic orientation of both Sn grains and Cu6Sn5 IMCs in Cu/Pure Sn/Cu solder joints in three dimensional (3D). Quantification of grain aspect ratio is affected by local cooling rate differences within the solder volume. Backscatter electron imaging and focused ion beam serial sectioning enabled the visualization of morphology of both nanosized Cu6Sn5 IMCs and the hollow hexagonal morphology type Cu6Sn5 IMCs in 3D. Quantification and visualization of microstructural features in 3D thus enable us to better understand the microstructure and deformation mechanics within these small scale solder joints.

  9. New hardware and workflows for semi-automated correlative cryo-fluorescence and cryo-electron microscopy/tomography.

    PubMed

    Schorb, Martin; Gaechter, Leander; Avinoam, Ori; Sieckmann, Frank; Clarke, Mairi; Bebeacua, Cecilia; Bykov, Yury S; Sonnen, Andreas F-P; Lihl, Reinhard; Briggs, John A G

    2017-02-01

    Correlative light and electron microscopy allows features of interest defined by fluorescence signals to be located in an electron micrograph of the same sample. Rare dynamic events or specific objects can be identified, targeted and imaged by electron microscopy or tomography. To combine it with structural studies using cryo-electron microscopy or tomography, fluorescence microscopy must be performed while maintaining the specimen vitrified at liquid-nitrogen temperatures and in a dry environment during imaging and transfer. Here we present instrumentation, software and an experimental workflow that improves the ease of use, throughput and performance of correlated cryo-fluorescence and cryo-electron microscopy. The new cryo-stage incorporates a specially modified high-numerical aperture objective lens and provides a stable and clean imaging environment. It is combined with a transfer shuttle for contamination-free loading of the specimen. Optimized microscope control software allows automated acquisition of the entire specimen area by cryo-fluorescence microscopy. The software also facilitates direct transfer of the fluorescence image and associated coordinates to the cryo-electron microscope for subsequent fluorescence-guided automated imaging. Here we describe these technological developments and present a detailed workflow, which we applied for automated cryo-electron microscopy and tomography of various specimens. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. High-speed fixed-target serial virus crystallography

    DOE PAGES

    Roedig, Philip; Ginn, Helen M.; Pakendorf, Tim; ...

    2017-06-19

    Here, we report a method for serial X-ray crystallography at X-ray free-electron lasers (XFELs), which allows for full use of the current 120-Hz repetition rate of the Linear Coherent Light Source (LCLS). Using a micropatterned silicon chip in combination with the high-speed Roadrunner goniometer for sample delivery, we were able to determine the crystal structures of the picornavirus bovine enterovirus 2 (BEV2) and the cytoplasmic polyhedrosis virus type 18 polyhedrin, with total data collection times of less than 14 and 10 min, respectively. Our method requires only micrograms of sample and should therefore broaden the applicability of serial femtosecond crystallographymore » to challenging projects for which only limited sample amounts are available. By synchronizing the sample exchange to the XFEL repetition rate, our method allows for most efficient use of the limited beam time available at XFELs and should enable a substantial increase in sample throughput at these facilities.« less

  11. Pink-beam serial crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meents, A.; Wiedorn, M. O.; Srajer, V.

    Serial X-ray crystallography allows macromolecular structure determination at both X-ray free electron lasers (XFELs) and, more recently, synchrotron sources. The time resolution for serial synchrotron crystallography experiments has been limited to millisecond timescales with monochromatic beams. The polychromatic, “pink”, beam provides a more than two orders of magnitude increased photon flux and hence allows accessing much shorter timescales in diffraction experiments at synchrotron sources. Here we report the structure determination of two different protein samples by merging pink-beam diffraction patterns from many crystals, each collected with a single 100 ps X-ray pulse exposure per crystal using a setup optimized formore » very low scattering background. In contrast to experiments with monochromatic radiation, data from only 50 crystals were required to obtain complete datasets. The high quality of the diffraction data highlights the potential of this method for studying irreversible reactions at sub-microsecond timescales using high-brightness X-ray facilities.« less

  12. Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography

    PubMed Central

    Mueller, C.; Marx, A.; Epp, S. W.; Zhong, Y.; Kuo, A.; Balo, A. R.; Soman, J.; Schotte, F.; Lemke, H. T.; Owen, R. L.; Pai, E. F.; Pearson, A. R.; Olson, J. S.; Anfinrud, P. A.; Ernst, O. P.; Dwayne Miller, R. J.

    2015-01-01

    We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linac Coherent Light Source (LCLS, Menlo Park, California, USA). The chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs. PMID:26798825

  13. High-speed fixed-target serial virus crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roedig, Philip; Ginn, Helen M.; Pakendorf, Tim

    Here, we report a method for serial X-ray crystallography at X-ray free-electron lasers (XFELs), which allows for full use of the current 120-Hz repetition rate of the Linear Coherent Light Source (LCLS). Using a micropatterned silicon chip in combination with the high-speed Roadrunner goniometer for sample delivery, we were able to determine the crystal structures of the picornavirus bovine enterovirus 2 (BEV2) and the cytoplasmic polyhedrosis virus type 18 polyhedrin, with total data collection times of less than 14 and 10 min, respectively. Our method requires only micrograms of sample and should therefore broaden the applicability of serial femtosecond crystallographymore » to challenging projects for which only limited sample amounts are available. By synchronizing the sample exchange to the XFEL repetition rate, our method allows for most efficient use of the limited beam time available at XFELs and should enable a substantial increase in sample throughput at these facilities.« less

  14. Pink-beam serial crystallography

    DOE PAGES

    Meents, A.; Wiedorn, M. O.; Srajer, V.; ...

    2017-11-03

    Serial X-ray crystallography allows macromolecular structure determination at both X-ray free electron lasers (XFELs) and, more recently, synchrotron sources. The time resolution for serial synchrotron crystallography experiments has been limited to millisecond timescales with monochromatic beams. The polychromatic, “pink”, beam provides a more than two orders of magnitude increased photon flux and hence allows accessing much shorter timescales in diffraction experiments at synchrotron sources. Here we report the structure determination of two different protein samples by merging pink-beam diffraction patterns from many crystals, each collected with a single 100 ps X-ray pulse exposure per crystal using a setup optimized formore » very low scattering background. In contrast to experiments with monochromatic radiation, data from only 50 crystals were required to obtain complete datasets. The high quality of the diffraction data highlights the potential of this method for studying irreversible reactions at sub-microsecond timescales using high-brightness X-ray facilities.« less

  15. High-speed fixed-target serial virus crystallography

    PubMed Central

    Roedig, Philip; Ginn, Helen M.; Pakendorf, Tim; Sutton, Geoff; Harlos, Karl; Walter, Thomas S.; Meyer, Jan; Fischer, Pontus; Duman, Ramona; Vartiainen, Ismo; Reime, Bernd; Warmer, Martin; Brewster, Aaron S.; Young, Iris D.; Michels-Clark, Tara; Sauter, Nicholas K.; Kotecha, Abhay; Kelly, James; Rowlands, David J.; Sikorsky, Marcin; Nelson, Silke; Damiani, Daniel S.; Alonso-Mori, Roberto; Ren, Jingshan; Fry, Elizabeth E.; David, Christian; Stuart, David I.; Wagner, Armin; Meents, Alke

    2017-01-01

    We report a method for serial X-ray crystallography at X-ray free electron lasers (XFELs), which allows for full use of the current 120 Hz repetition rate of the Linear Coherent Light Source (LCLS). Using a micro-patterned silicon chip in combination with the high-speed Roadrunner goniometer for sample delivery we were able to determine the crystal structures of a picornavirus, bovine enterovirus 2 (BEV2), and the cytoplasmic polyhedrosis virus type 18 polyhedrin. Total data collection times were less than 14 and 10 minutes, respectively. Our method requires only micrograms of sample and will therefore broaden the applicability of serial femtosecond crystallography to challenging projects for which only limited sample amounts are available. By synchronizing the sample exchange to the XFEL repetition rate, our method allows for the most efficient use of the limited beamtime available at XFELs and should enable a substantial increase in sample throughput at these facilities. PMID:28628129

  16. Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography.

    PubMed

    Mueller, C; Marx, A; Epp, S W; Zhong, Y; Kuo, A; Balo, A R; Soman, J; Schotte, F; Lemke, H T; Owen, R L; Pai, E F; Pearson, A R; Olson, J S; Anfinrud, P A; Ernst, O P; Dwayne Miller, R J

    2015-09-01

    We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linac Coherent Light Source (LCLS, Menlo Park, California, USA). The chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs.

  17. Metallography of Aluminum and Its Alloys : Use of Electrolytic Polishing

    NASA Technical Reports Server (NTRS)

    Jacquet, Pierre A

    1955-01-01

    Recent methods are described for electropolishing aluminum and aluminum alloys. Numerous references are included of electrolytic micrographic investigations carried out during the period 1948 to 1952. A detailed description of a commercial electrolytic polishing unit, suitable for micrographic examination of aluminum and its alloys, is included.

  18. Micrographics: A Quarter-Century Perspective.

    ERIC Educational Resources Information Center

    Ach, William K.

    2000-01-01

    Discusses the uses of micrographics in higher education, based on a 25-year period at Wake Forest University's (Winston-Salem, North Carolina) Library. Discusses acquisition of scholarly collections in microform on a subscription plan; the trend away from microopaques to microfiche and the advent of the reader-printer; improved access to microform…

  19. Archival Stability of Microfilm--A Technical Review.

    ERIC Educational Resources Information Center

    Materazzi, Albert R.

    The purpose of this report is to acquaint all personnel with some technical aspects of micrographics. The various film types used in the production of microfiche are discussed, including silver halide, diazo, and vesicular films. Other imaging systems used in micrographics are reviewed, and a basic introduction to sensitometry is given. The…

  20. High-Performance Wireless Telemetry

    NASA Technical Reports Server (NTRS)

    Griebeler, Elmer; Nawash, Nuha; Buckley, James

    2011-01-01

    Prior technology for machinery data acquisition used slip rings, FM radio communication, or non-real-time digital communication. Slip rings are often noisy, require much space that may not be available, and require access to the shaft, which may not be possible. FM radio is not accurate or stable, and is limited in the number of channels, often with channel crosstalk, and intermittent as the shaft rotates. Non-real-time digital communication is very popular, but complex, with long development time, and objections from users who need continuous waveforms from many channels. This innovation extends the amount of information conveyed from a rotating machine to a data acquisition system while keeping the development time short and keeping the rotating electronics simple, compact, stable, and rugged. The data are all real time. The product of the number of channels, times the bit resolution, times the update rate, gives a data rate higher than available by older methods. The telemetry system consists of a data-receiving rack that supplies magnetically coupled power to a rotating instrument amplifier ring in the machine being monitored. The ring digitizes the data and magnetically couples the data back to the rack, where it is made available. The transformer is generally a ring positioned around the axis of rotation with one side of the transformer free to rotate and the other side held stationary. The windings are laid in the ring; this gives the data immunity to any rotation that may occur. A medium-frequency sine-wave power source in a rack supplies power through a cable to a rotating ring transformer that passes the power on to a rotating set of electronics. The electronics power a set of up to 40 sensors and provides instrument amplifiers for the sensors. The outputs from the amplifiers are filtered and multiplexed into a serial ADC. The output from the ADC is connected to another rotating ring transformer that conveys the serial data from the rotating section to the stationary section. From there, a cable conveys the serial data to the remote rack, where it is reconditioned to logic level specifications, de-serialized, and converted back to analog. In the rotating electronics are code generators to indicate the beginning of files for data synchronization.

  1. Reversion phenomena of Cu-Cr alloys

    NASA Technical Reports Server (NTRS)

    Nishikawa, S.; Nagata, K.; Kobayashi, S.

    1985-01-01

    Cu-Cr alloys which were given various aging and reversion treatments were investigated in terms of electrical resistivity and hardness. Transmission electron microscopy was one technique employed. Some results obtained are as follows: the increment of electrical resistivity after the reversion at a constant temperature decreases as the aging temperature rises. In a constant aging condition, the increment of electrical resistivity after the reversion increases, and the time required for a maximum reversion becomes shorter as the reversion temperature rises. The reversion phenomena can be repeated, but its amount decreases rapidly by repetition. At first, the amount of reversion increases with aging time and reaches its maximum, and then tends to decrease again. Hardness changes by the reversion are very small, but the hardness tends to soften slightly. Any changes in transmission electron micrographs by the reversion treatment cannot be detected.

  2. Leaching behavior and ESEM characterization of water-sensitive mudstone in southwestern Taiwan.

    PubMed

    Chen, Hung-Ta; Lin, Tzong-Tzeng; Chang, Juu-En

    2003-05-01

    This investigation attempts to understand the critical soluble salts in natural mudstone and the leaching, microstructural, and microchemical characteristics in soaked mudstone using scanning electron microscopy (SEM)/energy-dispersive X-ray analysis (EDAX), X-ray fluorescence spectrometry (XRF), X-ray diffractometry (XRD), conductivity measurement, ion chromatography (IC), and environmental scanning electron microscopy (ESEM)/EDAX techniques. Natural mudstone probably includes soluble salts such as Na2SO4, NaCl, NaCO3, and CaCO3. The dissolution of Na2SO4 controls water-sensitive mudstone very susceptible to slaking and dispersion. ESEM micrographs clearly show evidence of mudstone-slaking during soaking since the visible pores are filled with small aggregative masses. A calcium-bearing precipitate from the soaked mudstone is speculated to be attributable to the decomposition of the hydrated product of the fresh mudstone.

  3. Role of an Oxidant Mixture as Surface Modifier of Porous Silicon Microstructures Evaluated by Spectroscopic Ellipsometry

    PubMed Central

    Montiel-González, Zeuz; Escobar, Salvador; Nava, Rocío; del Río, J. Antonio; Tagüeña-Martínez, Julia

    2016-01-01

    Current research on porous silicon includes the construction of complex structures with luminescent and/or photonic properties. However, their preparation with both characteristics is still challenging. Recently, our group reported a possible method to achieve that by adding an oxidant mixture to the electrolyte used to produce porous silicon. This mixture can chemically modify their microstructure by changing the thickness and surface passivation of the pore walls. In this work, we prepared a series of samples (with and without oxidant mixture) and we evaluated the structural differences through their scanning electron micrographs and their optical properties determined by spectroscopic ellipsometry. The results showed that ellipsometry is sensitive to slight variations in the porous silicon structure, caused by changes in their preparation. The fitting process, based on models constructed from the features observed in the micrographs, allowed us to see that the mayor effect of the oxidant mixture is on samples of high porosity, where the surface oxidation strongly contributes to the skeleton thinning during the electrochemical etching. This suggests the existence of a porosity threshold for the action of the oxidant mixture. These results could have a significant impact on the design of complex porous silicon structures for different optoelectronic applications. PMID:27097767

  4. Role of an Oxidant Mixture as Surface Modifier of Porous Silicon Microstructures Evaluated by Spectroscopic Ellipsometry.

    PubMed

    Montiel-González, Zeuz; Escobar, Salvador; Nava, Rocío; del Río, J Antonio; Tagüeña-Martínez, Julia

    2016-04-21

    Current research on porous silicon includes the construction of complex structures with luminescent and/or photonic properties. However, their preparation with both characteristics is still challenging. Recently, our group reported a possible method to achieve that by adding an oxidant mixture to the electrolyte used to produce porous silicon. This mixture can chemically modify their microstructure by changing the thickness and surface passivation of the pore walls. In this work, we prepared a series of samples (with and without oxidant mixture) and we evaluated the structural differences through their scanning electron micrographs and their optical properties determined by spectroscopic ellipsometry. The results showed that ellipsometry is sensitive to slight variations in the porous silicon structure, caused by changes in their preparation. The fitting process, based on models constructed from the features observed in the micrographs, allowed us to see that the mayor effect of the oxidant mixture is on samples of high porosity, where the surface oxidation strongly contributes to the skeleton thinning during the electrochemical etching. This suggests the existence of a porosity threshold for the action of the oxidant mixture. These results could have a significant impact on the design of complex porous silicon structures for different optoelectronic applications.

  5. Telocytes in pancreas of the Chinese giant salamander (Andrias davidianus).

    PubMed

    Zhang, Hui; Yu, Pengcheng; Zhong, Shengwei; Ge, Tingting; Peng, Shasha; Guo, Xiaoquan; Zhou, Zuohong

    2016-11-01

    Telocytes (TCs), novel interstitial cells, have been identified in various organs of many mammals. However, information about TCs of lower animals remains rare. Herein, pancreatic TCs of the Chinese giant salamanders (Andrias davidianus) were identified by CD34 immunohistochemistry (IHC) and transmission electron microscopy (TEM). The IHC micrographs revealed CD34 + TCs with long telopodes (Tps) that were located in the interstitium of the pancreas. CD34 + TCs/Tps were frequently observed between exocrine acinar cells and were close to blood vessels. The TEM micrographs also showed the existence of TCs in the interstitium of the pancreas. TCs had distinctive ultrastructural features, such as one to three very long and thin Tps with podoms and podomers, caveolae, dichotomous branching, neighbouring exosomes and vesicles. The Tps and exosomes were found in close proximity to exocrine acinar cells and α cells. It is suggested that TCs may play a role in the regeneration of acinar cells and α cells. In conclusion, our results demonstrated the presence of TCs in the pancreas of the Chinese giant salamander. This finding will assist us in a better understanding of TCs functions in the amphibian pancreas. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  6. Kaolinite flocculation induced by smectite addition - a transmission X-ray microscopic study.

    PubMed

    Zbik, Marek S; Song, Yen-Fang; Frost, Ray L

    2010-09-01

    The influence of smectite addition on kaolinite suspensions in water was investigated by transmission X-ray microscopy (TXM) and Scanning Electron Microscopy (SEM). Sedimentation test screening was also conducted. Micrographs were processed by the STatistic IMage Analysing (STIMAN) program and structural parameters were calculated. From the results of the sedimentation tests important influences of small smectite additions to about 3wt.% on kaolinite suspension flocculation has been found. In order to determine the reason for this smectite impact on kaolinite suspension, macroscopic behaviour micro-structural examination using Transmission X-ray Microscope (TXM) and SEM has been undertaken. TXM & SEM micrographs of freeze-dried kaolinite-smectite suspensions with up to 20% smectite showed a high degree of orientation of the fabric made of highly oriented particles and greatest density when 3wt.% of smectite was added to the 10wt.% dense kaolinite suspension. In contrast, suspensions containing pure kaolinite do not show such platelet mutual orientation but homogenous network of randomly oriented kaolinite platelets. This suggests that in kaolinite-smectite suspensions, smectite forms highly oriented basic framework into which kaolinite platelets may bond in face to face preferential contacts strengthening structure and allowing them to show plastic behaviour which is cause of platelets orientation. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Fibrinogen Nový Jicín and Praha II: cases of hereditary Aalpha 16 Arg-->Cys and Aalpha 16 Arg-->His dysfibrinogenemia.

    PubMed

    Kotlín, Roman; Chytilová, Martina; Suttnar, Jirí; Riedel, Tomás; Salaj, Peter; Blatný, Jan; Santrůcek, Jirí; Klener, Pavel; Dyr, Jan E

    2007-01-01

    Various dysfibrinogenemias have been described worldwide. This paper describes two new cases of dysfibrinogenemia identified in the Czech Republic. The proposita of fibrinogen Nový Jicín, a 12-year-old girl, presented with hemorrhagic complications, low Clauss fibrinogen level (0.3 g/l) and prolonged both thrombin (70.8 s) and reptilase (>180 s) time. Her mother and sister both presented with normal coagulation tests, normal fibrinogen level and reported no history of bleeding. The carriers of the fibrinogen Praha II were a 31-year-old man and his 11-year-old daughter. They both presented with low fibrinogen Clauss level (0.88 g/l) and prolonged thrombin and reptilase time. To identify the genetic mutation responsible for these dysfibrinogens, genomic DNA extracted from the blood was analyzed. The presence of the mutant chains in the circulation was determined by MALDI-TOF mass spectroscopy. Scanning electron micrographs of the patients' fibrin clots were obtained. The kinetics of fibrinopeptide release and fibrin polymerization were impaired for both fibrinogen Nový Jicín and Praha II. DNA sequencing showed heterogeneous fibrinogen Aalpha R16C mutation in the fibrinogen Nový Jicín case and heterogeneous fibrinogen Aalpha R16H in the fibrinogen Praha II case. The mutant chains were found to be expressed to the circulation by MALDI-TOF mass spectroscopy. Scanning electron micrographs of the patient's fibrin clot were found to be abnormal. The case of dysfibrinogenemia Aalpha R16C-fibrinogen Nový Jicín and the case of dysfibrinogenemia Aalpha R16H were found by routine coagulation testing and were genetically identified.

  8. Preparation of acid-base bifunctional mesoporous KIT-6 (KIT: Korea Advanced Institute of Science and Technology) and its catalytic performance in Knoevenagel reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ling; Wang, Chunhua; Guan, Jingqi, E-mail: guanjq@jlu.edu.cn

    2014-05-01

    Acid-base bifunctional mesoporous catalysts Al-KIT-6-NH{sub 2} containing different aluminum content have been synthesized through post synthetic grafting method. The materials were characterized by X-ray diffraction (XRD), scanning electron micrographs (SEM), transmission electron micrographs (TEM), Fourier-transform infrared spectroscopy (FTIR), IR spectra of pyridine adsorption, NH{sub 3}-TPD and TG analysis. The characterization results indicated that the pore structure of KIT-6 was well kept after the addition of aluminum and grafting of aminopropyl groups. The acid amount of Al-KIT-6 increased with enhancing aluminum content. Catalytic results showed that weak acid and weak base favor the Knoevenagel reaction, while catalysts with strong acid andmore » weak base exhibited worse catalytic behavior. - Graphical abstract: The postulated steps of mechanism for the acid-base catalyzed process are as follows: (1) the aldehyde gets activated by the surface acidic sites which allow the amine undergoes nucleophilic to attack the carbonyl carbon of benzaldehyde. (2) Water is released in the formation of imine intermediate. (3) The ethyl cyanoacetate reacts with the intermediate. (4) The benzylidene ethyl cyanoacetate is formed and the amine is regenerated. - Highlights: • KIT-6 and Al-KIT-6-NH{sub 2} with different Si/Al ratios has been successfully prepared. • 79.4% Yield was obtained over 46-Al-KIT-6-NH{sub 2} within 20 min in Knoevenagel reaction. • Low Al-content Al-KIT-6-NH{sub 2} shows better catalytic stability than high Al-content catalysts. • There is acid-base synergistic effect in Knoevenagel reaction.« less

  9. Structure of the Rift Valley fever virus nucleocapsid protein reveals another architecture for RNA encapsidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raymond, Donald D.; Piper, Mary E.; Gerrard, Sonja R.

    2010-07-13

    Rift Valley fever virus (RVFV) is a negative-sense RNA virus (genus Phlebovirus, family Bunyaviridae) that infects livestock and humans and is endemic to sub-Saharan Africa. Like all negative-sense viruses, the segmented RNA genome of RVFV is encapsidated by a nucleocapsid protein (N). The 1.93-{angstrom} crystal structure of RVFV N and electron micrographs of ribonucleoprotein (RNP) reveal an encapsidated genome of substantially different organization than in other negative-sense RNA virus families. The RNP polymer, viewed in electron micrographs of both virus RNP and RNP reconstituted from purified N with a defined RNA, has an extended structure without helical symmetry. N-RNA speciesmore » of {approx}100-kDa apparent molecular weight and heterogeneous composition were obtained by exhaustive ribonuclease treatment of virus RNP, by recombinant expression of N, and by reconstitution from purified N and an RNA oligomer. RNA-free N, obtained by denaturation and refolding, has a novel all-helical fold that is compact and well ordered at both the N and C termini. Unlike N of other negative-sense RNA viruses, RVFV N has no positively charged surface cleft for RNA binding and no protruding termini or loops to stabilize a defined N-RNA oligomer or RNP helix. A potential protein interaction site was identified in a conserved hydrophobic pocket. The nonhelical appearance of phlebovirus RNP, the heterogeneous {approx}100-kDa N-RNA multimer, and the N fold differ substantially from the RNP and N of other negative-sense RNA virus families and provide valuable insights into the structure of the encapsidated phlebovirus genome.« less

  10. Cutting efficiency of a mid-infrared laser on human enamel.

    PubMed

    Levy, G; Koubi, G F; Miserendino, L J

    1998-02-01

    In this study, the cutting ability of a newly developed dental laser was compared with a dental high-speed handpiece and rotary bur for removal of enamel. Measurements of the volume of tissue removed, energy emitted, and time of exposure were used to quantify the ablation rate (rate of tissue removal) for each test group and compared. Cutting efficiency (mm3/s) of the laser was calculated based on the mean volume of tissue removed per pulse (mm3/pulse) and unit energy expended (mm3/J) over the range of applied powers (2, 4, 6, and 8 W). The specimens were then examined by light microscopy and scanning electron micrographs for qualitative analysis of the amount of remaining debris and the presence of the smear layer on the prepared enamel surface. Calculations of the cutting efficiency of the laser over the range of powers tested revealed a linear relationship with the level of applied power. The maximum average rate of tissue removal by the laser was 0.256 mm3/s at 8 W, compared with 0.945 mm3/s by the dental handpiece. Light microscopy and scanning electron micrograph examinations revealed a reduction in the amount of remaining debris and smear layer in the laser-prepared enamel surfaces, compared with the conventional method. Based on the results of this study, the cutting efficiency of the high-speed handpiece and dental bur was 3.7 times greater than the laser over the range of powers tested, but the laser appeared to create a cleaner enamel surface with minimal thermal damage. Further modifications of the laser system are suggested for improvement of laser cutting efficiency.

  11. An Integrated Micro- and Macroarchitectural Analysis of the Drosophila Brain by Computer-Assisted Serial Section Electron Microscopy

    PubMed Central

    Cardona, Albert; Saalfeld, Stephan; Preibisch, Stephan; Schmid, Benjamin; Cheng, Anchi; Pulokas, Jim; Tomancak, Pavel; Hartenstein, Volker

    2010-01-01

    The analysis of microcircuitry (the connectivity at the level of individual neuronal processes and synapses), which is indispensable for our understanding of brain function, is based on serial transmission electron microscopy (TEM) or one of its modern variants. Due to technical limitations, most previous studies that used serial TEM recorded relatively small stacks of individual neurons. As a result, our knowledge of microcircuitry in any nervous system is very limited. We applied the software package TrakEM2 to reconstruct neuronal microcircuitry from TEM sections of a small brain, the early larval brain of Drosophila melanogaster. TrakEM2 enables us to embed the analysis of the TEM image volumes at the microcircuit level into a light microscopically derived neuro-anatomical framework, by registering confocal stacks containing sparsely labeled neural structures with the TEM image volume. We imaged two sets of serial TEM sections of the Drosophila first instar larval brain neuropile and one ventral nerve cord segment, and here report our first results pertaining to Drosophila brain microcircuitry. Terminal neurites fall into a small number of generic classes termed globular, varicose, axiform, and dendritiform. Globular and varicose neurites have large diameter segments that carry almost exclusively presynaptic sites. Dendritiform neurites are thin, highly branched processes that are almost exclusively postsynaptic. Due to the high branching density of dendritiform fibers and the fact that synapses are polyadic, neurites are highly interconnected even within small neuropile volumes. We describe the network motifs most frequently encountered in the Drosophila neuropile. Our study introduces an approach towards a comprehensive anatomical reconstruction of neuronal microcircuitry and delivers microcircuitry comparisons between vertebrate and insect neuropile. PMID:20957184

  12. Silver nanoparticle production by Rhizopus stolonifer and its antibacterial activity against extended spectrum {beta}-lactamase producing (ESBL) strains of Enterobacteriaceae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banu, Afreen; Rathod, Vandana, E-mail: drvandanarathod@rediffmail.com; Ranganath, E.

    Highlights: {yields} Silver nanoparticle production by using Rhizopus stolonifer. {yields} Antibacterial activity of silver nanoparticles against extended spectrum {beta}-lactamase producing (ESBL) strains of Enterobacteriaceae. {yields} Synergistic effect of antibiotics with silver nanoparticles towards ESBL-strains. {yields} Characterization of silver nanoparticles made by UV-vis spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, atomic force microscopy (AFM). -- Abstract: This report focuses on the synthesis of silver nanoparticles using the fungus, Rhizopus stolonifer and its antimicrobial activity. Research in nanotechnology highlights the possibility of green chemistry pathways to produce technologically important nanomaterials. Characterization of newly synthesized silvermore » nanoparticles was made by UV-visible absorption spectroscopy, scanning electron microscope (SEM), transmission electron microscope (TEM), Fourier transform infrared (FTIR) spectroscopy and atomic force microscope (AFM). TEM micrograph revealed the formation of spherical nanoparticles with size ranging between 3 and 20 nm. The biosynthesized silver nanoparticles (AgNPs) showed excellent antibacterial activity against ESBL-strains which includes E. coli, Proteus. sp. and Klebsiella sp.« less

  13. Gastroesophageal junction of Anatolian shepherd dog; a study by topographic anatomy, scanning electron and light microscopy.

    PubMed

    Alsafy, M A M; El-Gendy, S A A

    2012-03-01

    The aim of this study was to cast a spotlight on the topography and to point out the clinical importance of the gastroesophageal junction (GEJ) in Anatolian Shepherd dogs. Nine Anatolian Shepherd dogs were used to study the morphology of the GEJ. The esophagus was appeared has a portion within the thoracic cavity while no portion of the esophagus presented within the abdominal cavity that documented the absence of the intra-abdominal portion in all studied dogs. The topographic anatomy, scanning electron and light microscopic examinations revealed that the gastroesophageal junction was located at the level of the phrenico-esophageal ligament (PEL) inside the esophageal hiatus. Our results were distinguished the morphology of the esophageal and gastric cardiac mucosa at the level of the gastroesophageal junction by the scanning electron micrographs. The light microscopical examination was explained the PEL attached to the esophageal side in one dog and to the gastric cardiac side in three dogs.

  14. The use of castor oil and ricinoleic acid in lead chalcogenide nanocrystal synthesis

    NASA Astrophysics Data System (ADS)

    Kyobe, Joseph W. M.; Mubofu, Egid B.; Makame, Yahya M. M.; Mlowe, Sixberth; Revaprasadu, Neerish

    2016-08-01

    A green solution-based thermolysis method for the synthesis of lead chalcogenide (PbE, E = S, Se, Te) nanocrystals in castor oil (CSTO) and its isolate ricinoleic acid (RA) is described. The blue shift observed from the optical spectra of CSTO and RA-capped PbE nanocrystals (NCs) confirmed the evidence of quantum confinement. The dimensions of PbE NCs obtained from NIR absorption spectra, transmission electron microscopy (TEM), and X-ray diffraction (XRD) studies were in good agreement. The particle sizes estimated were in the range of 20, 25, and 130 nm for castor oil-capped PbS, PbSe, and PbTe, respectively. Well-defined close to cubic-shaped particles were observed in the scanning electron microscopy (SEM) images of PbSe and PbTe nanocrystals. The high-resolution TEM and selective area electron diffraction (SAED) micrographs of the as-synthesized crystalline PbE NCs showed distinct lattice fringes with d-spacing distances corroborating with the standard values reported in literature.

  15. Willy: A prize noble Ur-Fremdling - Its history and implications for the formation of Fremdlinge and CAI

    NASA Technical Reports Server (NTRS)

    Armstrong, J. T.; El Goresy, A.; Wasserburg, G. J.

    1985-01-01

    The structure and composition of Willy, a 150-micron-diameter Fremdling in CAI 5241 from the Allende meteorite, are investigated using optical, secondary-electron, and electron-backscatter microscopy and electron-microprobe analysis. The results are presented in diagrams, maps, tables, graphs, and micrographs and compared with those for other Allende Fremdlinge. Willy is found to have a concentric-zone structure comprising a complex porous core of magnetite, metal, sulfide, scheelite, and other minor phases; a compact magnetite-apatite mantle; a thin (20 microns or less) reaction-assemblage zone; and a dense outer rim of fassaite with minor spinel. A multistage formation sequence involving changes in T and fO2 and preceding the introduction of Willy into the CAI (which itself preceded CAI spinel and silicate formation) is postulated, and it is inferred from the apparent lack of post-capture recrystallization that Willy has not been subjected to temperatures in excess of 600 C and may represent the precursor material for many other Fremdlinge.

  16. Hierarchical self-assembly of a bow-shaped molecule bearing self-complementary hydrogen bonding sites into extended supramolecular assemblies.

    PubMed

    Ikeda, Masato; Nobori, Tadahito; Schmutz, Marc; Lehn, Jean-Marie

    2005-01-07

    The bow-shaped molecule 1 bearing a self-complementary DAAD-ADDA (D=donor A=acceptor) hydrogen-bonding array generates, in hydrocarbon solvents, highly ordered supramolecular sheet aggregates that subsequently give rise to gels by formation of an entangled network. The process of hierarchical self-assembly of compound 1 was investigated by the concentration and temperature dependence of UV-visible and (1)H NMR spectra, fluorescence spectra, and electron microscopy data. The temperature dependence of the UV-visible spectra indicates a highly cooperative process for the self-assembly of compound 1 in decaline. The electron micrograph of the decaline solution of compound 1 (1.0 mM) revealed supramolecular sheet aggregates forming an entangled network. The selected area electronic diffraction patterns of the supramolecular sheet aggregates were typical for single crystals, indicative of a highly ordered assembly. The results exemplify the generation, by hierarchical self-assembly, of highly organized supramolecular materials presenting novel collective properties at each level of organization.

  17. [Microanalytical identification of barium sulphate crystals in statoliths of Chara rhizoids (Ch. fragilis, desv.)].

    PubMed

    Schröter, K; Läuchli, A; Sievers, A

    1975-01-01

    In contrast to the statocytes of higher plants, in which amyloplasts function as statoliths, Chara-rhizoids contain statolith vacuoles filled with biocrystallites of BaSO4. This was revealed by qualitative and quantitative electron microprobe analysis, atomic absorption spectrophotometry and selected area electron diffraction. The barium sulphate crystallites are rods which are linearly composed of globular subunits approximately 7 nm in diameter.The electron optical evidence of the crystallites depends on the nature of the fixatives. Best structural preservation was observed after fixation in a buffered solution of glutaraldehyde plus acrolein without addition of heavy metals. OsO4 and particularly KMnO4 partially dissolve the biocrystallites as well as synthetic BaSO4. The crystal solubility must be taken into consideration when micrographs of such small crystallites are interpreted.The fact that BaSO4 is chemically very inert seems to exclude biochemical interactions of the statoliths with other cell components during graviperception. It favours the theory that only the mass of the statoliths is effective.

  18. Morphological and Microstructural Evolution of Phosphorous-Rich Layer in SnAgCu/Ni-P UBM Solder Joint

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Chi; Shih, Toung-Yi; Tien, Shih-Kang; Duh, Jenq-Gong

    2007-11-01

    Interfacial morphologies and microstructure of Sn-3Ag-0.5Cu/Ni-P under bump metallization (UBM) with various phosphorous contents were investigated by transmission electron microscope (TEM) and field emission electron probe microanalyzer (FE-EPMA). It was revealed that as the Ni-Sn-P compound was formed between the solder matrix and Ni-P UBM, the conventionally so-called phosphorous-rich (P-rich) layer was transformed to a series of layer compounds, including Ni3P, Ni12P5 and Ni2P. The relationship between Ni-Sn-P formation and evolution of P-rich layers was probed by electron microscopic characterization with the aid of the phase diagram of Ni-P. On the basis of the TEM micrograph, the selected area diffraction (SAD) pattern, and the FE-EPMA results, the detailed phase evolution of P-rich layers in the SnAgCu/Ni-P joint was revealed and proposed.

  19. New polyelectrolyte complex from pectin/chitosan and montmorillonite clay.

    PubMed

    da Costa, Marcia Parente Melo; de Mello Ferreira, Ivana Lourenço; de Macedo Cruz, Mauricio Tavares

    2016-08-01

    A new nanocomposite hydrogel was prepared by forming a crosslinked hybrid polymer network based on chitosan and pectin in the presence of montmorillonite clay. The influence of clay concentration (0.5 and 2% wt) as well as polymer ratios (1:1, 1:2 and 2:1) was investigated carefully. The samples were characterized by different techniques: transmission and scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, infrared spectroscopy, swelling degree and compression test. Most samples presented swelling degree above 1000%, which permits characterizing them as superabsorbent material. Images obtained by transmission electron microscopy showed the presence of clay nanoparticles into hydrogel. The hydrogels' morphological properties were evaluated by scanning electron microscope in high and low-vacuum. The micrographs showed that the samples presented porous. The incorporation of clay produced hydrogels with differentiated morphology. Thermogravimetric analysis results revealed that the incorporation of clay in the samples provided greater thermal stability to the hydrogels. The compression resistance also increased with addition of clay. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Evaluation of the cavity margins after Er:YAG laser ablation of the enamel and dentin

    NASA Astrophysics Data System (ADS)

    Dostalova, Tatjana; Krejsa, Otakar; Jelinkova, Helena; Hamal, Karel

    1994-12-01

    This study investigates the checks of cavity margin after enamel and dentin ablation. The Er:YAG laser enamel and dentin ablation can be directly connected with the danger of cracks originating in the enamel near the cavity. This study evaluates the quality of the enamel edges after Er:YAG laser preparation. The enamel and dentin of buccal surfaces were ablated by the Er:YAG laser radiation. An Erbium:YAG laser system with the energy of 200 mJ was used to generate 200 microsecond(s) long pulses of mid-infrared 2.94 micrometers light in multimode configuration. The laser was operating in a free running mode, the repetition rate being 0.5 Hz with average laser power of 100 mW. Laser radiation was focused on the tooth tissue. Water cooling was used during the procedure in order to prevent tooth tissue destruction. The time of laser preparation was 5 minutes. A cavity of class V was prepared. The teeth were immersed into 0.5% basic fuchsin and then centrifuged at 6000 rev/min for 20 minutes. The microphotographs of the margins stained with 0.5% basic fuchsin were made and then the longitudinal section of the teeth were evaluated. The micrographs of the longitudinal section were checked and measured afterwards. The effect of the investigated laser irradiation on the origin of cracks was analyzed in the scanning electron microscope. Micrographs of each tooth before and after the laser ablation were compared. Micrographs of the intact teeth after extraction present the cracks of the enamel. They depend on the pressure exerted during extraction. The influence of the laser ablation proper is it bears no signs of new cracks. The conclusions of this study demonstrate the non-invasive nature of the Er:YAG laser ablation of the hard dental tissues.

  1. Automated in-chamber specimen coating for serial block-face electron microscopy.

    PubMed

    Titze, B; Denk, W

    2013-05-01

    When imaging insulating specimens in a scanning electron microscope, negative charge accumulates locally ('sample charging'). The resulting electric fields distort signal amplitude, focus and image geometry, which can be avoided by coating the specimen with a conductive film prior to introducing it into the microscope chamber. This, however, is incompatible with serial block-face electron microscopy (SBEM), where imaging and surface removal cycles (by diamond knife or focused ion beam) alternate, with the sample remaining in place. Here we show that coating the sample after each cutting cycle with a 1-2 nm metallic film, using an electron beam evaporator that is integrated into the microscope chamber, eliminates charging effects for both backscattered (BSE) and secondary electron (SE) imaging. The reduction in signal-to-noise ratio (SNR) caused by the film is smaller than that caused by the widely used low-vacuum method. Sample surfaces as large as 12 mm across were coated and imaged without charging effects at beam currents as high as 25 nA. The coatings also enabled the use of beam deceleration for non-conducting samples, leading to substantial SNR gains for BSE contrast. We modified and automated the evaporator to enable the acquisition of SBEM stacks, and demonstrated the acquisition of stacks of over 1000 successive cut/coat/image cycles and of stacks using beam deceleration or SE contrast. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  2. An Investigation of Concrete Deterioration at South Florida Water Management District Structure S65E

    DTIC Science & Technology

    2014-02-01

    24 Figure 19. SEM micrographs of deterioration observed on fracture surface including borehole near exposed surface and transition between...photomicrographs of repaired concrete surface. ........................................ 36 Figure A6. Supplemental photomicrographs of fractured sample...38 Figure B1. Supplemental SEM micrographs of inner non-deteriorated concrete fracture surface

  3. Conductive Polymer Blends

    DTIC Science & Technology

    1988-04-26

    FIGURES Figure 1. Schematic of the suspension copolymerization approach ................ 8 Figure 2. SEM micrograph of fracture surface near molded...micrograph of fracture surface near molded edge of sample 1430-58b.............................................................. 18 Figure 12. SEM... caprolactam . The caprolactam (11.3 g) was placed in a large tube equipped with a nitrogen inlet, and heated under nitrogen to 80*C, whereupon

  4. Histopathologic pitfalls of Mohs micrographic surgery and a review of tumor histology.

    PubMed

    França, Katlein; Alqubaisy, Yasser; Hassanein, Ashraf; Nouri, Keyvan; Lotti, Torello

    2018-06-01

    Mohs micrographic surgery is a specialized subset of staged surgical excisions with each subsequent stage being driven largely by the histologic findings of the previous stage. Therefore, it is imperative that histologic analysis is performed in an accurate manner. Frozen section and tissue flattening is a crucial step in Mohs surgery. Frozen sections introduce certain artifacts and these artifacts must be interpreted in the correct context. Basal and squamous cell carcinomas are the most common tumors encountered in Mohs micrographic surgery, and their histopathology is also associated with certain "pitfalls". Basal cell carcinoma should be distinguished from hair follicles, folliculocentric basaloid proliferations, poromas, nevus sebaceous, desmoplastic trichoepitheliomas, and spiradenomas, to name but a few histologic entities. Similarly, squamous cell carcinoma should be distinguished from hypertrophic actinic keratoses, pseudoepitheliomatous hyperplasia, sebaceous carcinoma, and microcystic adnexal carcinoma. In addition, there are numerous subtypes of basal cell and squamous carcinomas that the Mohs surgeon should be aware of due to differences in the biologic behavior of these tumors. This review presents a number of the common histologic pitfalls of Mohs micrographic surgery and a review of tumor histology.

  5. Espina: A Tool for the Automated Segmentation and Counting of Synapses in Large Stacks of Electron Microscopy Images

    PubMed Central

    Morales, Juan; Alonso-Nanclares, Lidia; Rodríguez, José-Rodrigo; DeFelipe, Javier; Rodríguez, Ángel; Merchán-Pérez, Ángel

    2011-01-01

    The synapses in the cerebral cortex can be classified into two main types, Gray's type I and type II, which correspond to asymmetric (mostly glutamatergic excitatory) and symmetric (inhibitory GABAergic) synapses, respectively. Hence, the quantification and identification of their different types and the proportions in which they are found, is extraordinarily important in terms of brain function. The ideal approach to calculate the number of synapses per unit volume is to analyze 3D samples reconstructed from serial sections. However, obtaining serial sections by transmission electron microscopy is an extremely time consuming and technically demanding task. Using focused ion beam/scanning electron microscope microscopy, we recently showed that virtually all synapses can be accurately identified as asymmetric or symmetric synapses when they are visualized, reconstructed, and quantified from large 3D tissue samples obtained in an automated manner. Nevertheless, the analysis, segmentation, and quantification of synapses is still a labor intensive procedure. Thus, novel solutions are currently necessary to deal with the large volume of data that is being generated by automated 3D electron microscopy. Accordingly, we have developed ESPINA, a software tool that performs the automated segmentation and counting of synapses in a reconstructed 3D volume of the cerebral cortex, and that greatly facilitates and accelerates these processes. PMID:21633491

  6. 2D strain mapping using scanning transmission electron microscopy Moiré interferometry and geometrical phase analysis.

    PubMed

    Pofelski, A; Woo, S Y; Le, B H; Liu, X; Zhao, S; Mi, Z; Löffler, S; Botton, G A

    2018-04-01

    A strain characterization technique based on Moiré interferometry in a scanning transmission electron microscope (STEM) and geometrical phase analysis (GPA) method is demonstrated. The deformation field is first captured in a single STEM Moiré hologram composed of multiple sets of periodic fringes (Moiré patterns) generated from the interference between the periodic scanning grating, fixing the positions of the electron probe on the sample, and the crystal structure. Applying basic principles from sampling theory, the Moiré patterns arrangement is then simulated using a STEM electron micrograph reference to convert the experimental STEM Moiré hologram into information related to the crystal lattice periodicities. The GPA method is finally applied to extract the 2D relative strain and rotation fields. The STEM Moiré interferometry enables the local information to be de-magnified to a large length scale, comparable to what can be achieved in dark-field electron holography. The STEM Moiré GPA method thus extends the conventional high-resolution STEM GPA capabilities by providing comparable quantitative 2D strain mapping with a larger field of view (up to a few microns). Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Bright-field electron tomography of individual inorganic fullerene-like structures

    NASA Astrophysics Data System (ADS)

    Bar Sadan, Maya; Wolf, Sharon G.; Houben, Lothar

    2010-03-01

    Nanotubes and fullerene-like nanoparticles of various inorganic layered compounds have been studied extensively in recent years. Their characterisation on the atomic scale has proven essential for progress in synthesis as well as for the theoretical modelling of their physical properties. We show that with electron tomography it is possible to achieve a reliable reconstruction of the 3D structure of nested WS2 or MoS2 fullerene-like and nanotube structures with sub-nanometre resolution using electron microscopes that are not aberration-corrected. Model-based simulations were used to identify imaging parameters, under which structural features such as the shell structure can be retained in the tomogram reconstructed from bright-field micrographs. The isolation of a particle out of an agglomerate for the analysis of a single structure and its interconnection with other particles is facilitated through the tomograms. The internal structure of the layers within the particle alongside the shape and content of its internal void are reconstructed. The tomographic reconstruction yields insights regarding the growth process as well as structural defects, such as non-continuous layers, which relate to the lubrication properties.Nanotubes and fullerene-like nanoparticles of various inorganic layered compounds have been studied extensively in recent years. Their characterisation on the atomic scale has proven essential for progress in synthesis as well as for the theoretical modelling of their physical properties. We show that with electron tomography it is possible to achieve a reliable reconstruction of the 3D structure of nested WS2 or MoS2 fullerene-like and nanotube structures with sub-nanometre resolution using electron microscopes that are not aberration-corrected. Model-based simulations were used to identify imaging parameters, under which structural features such as the shell structure can be retained in the tomogram reconstructed from bright-field micrographs. The isolation of a particle out of an agglomerate for the analysis of a single structure and its interconnection with other particles is facilitated through the tomograms. The internal structure of the layers within the particle alongside the shape and content of its internal void are reconstructed. The tomographic reconstruction yields insights regarding the growth process as well as structural defects, such as non-continuous layers, which relate to the lubrication properties. Electronic supplementary information (ESI) available: Figs. S1 and S2 and movies S1-S6. See DOI: 10.1039/b9nr00251k

  8. Serial femtosecond X-ray diffraction of enveloped virus microcrystals

    DOE PAGES

    Lawrence, Robert M.; Conrad, Chelsie E.; Zatsepin, Nadia A.; ...

    2015-08-20

    Serial femtosecond crystallography (SFX) using X-ray free-electron lasers has produced high-resolution, room temperature, time-resolved protein structures. We report preliminary SFX of Sindbis virus, an enveloped icosahedral RNA virus with ~700 Å diameter. Microcrystals delivered in viscous agarose medium diffracted to ~40 Å resolution. Small-angle diffuse X-ray scattering overlaid Bragg peaks and analysis suggests this results from molecular transforms of individual particles. Viral proteins undergo structural changes during entry and infection, which could, in principle, be studied with SFX. This is a pertinent step toward determining room temperature structures from virus microcrystals that may enable time-resolved studies of enveloped viruses.

  9. Long-term hepatotoxicity of polyethylene-glycol functionalized multi-walled carbon nanotubes in mice

    NASA Astrophysics Data System (ADS)

    Zhang, Danying; Deng, Xiaoyong; Ji, Zongfei; Shen, Xizhong; Dong, Ling; Wu, Minghong; Gu, Taoying; Liu, Yuanfang

    2010-04-01

    The toxicity of polyethylene-glycol functionalized (PEGylated) multi-walled carbon nanotubes (MWCNTs) and non-PEGylated MWCNTs in vivo was evaluated and compared. Mice were exposed to MWCNTs by intravenous injection. The activity level of glutathione, superoxide dismutase and gene expression in liver, as well as some biochemical parameters and the tumor necrosis factor alpha level in blood were measured over 2 months. The pathological and electron micrographic observations of liver evidently indicate that the damage caused by non-PEGylated MWCNTs is slightly more severe than that of PEGylated MWCNTs, which means that PEGylation can partly, but not substantially, improve the in vivo biocompatibility of MWCNTs.

  10. Systematics and biology of the new genus Macrosaccus with descriptions of two new species (Lepidoptera, Gracillariidae)

    PubMed Central

    Davis, Donald R.; De Prins, Jurate

    2011-01-01

    Abstract The new genus Macrosaccus Davis & De Prins is proposed for three species formerly assigned to the genus Phyllonorycter: Macrosaccus robiniella (Clemens), Macrosaccus morrisella (Fitch), and Macrosaccus uhlerella (Fitch); two new, closely related species: Macrosaccus neomexicanus Davis and Macrosaccus gliricidius Davis, are also proposed. Descriptions of the adults, pupae, larvae, life histories, and distributions are supplemented with photographs, line drawings, and scanning electron micrographs. Larvae of all species are serpentine/blotch leaf miners on various genera of the plant family Fabaceae. The genus is endemic to the New World, with the invasive species Macrosaccus robiniella now widely established in Europe. PMID:21594070

  11. Synthesis of multiwalled carbon nanotube from different grades of carbon black using arc discharge method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, Neha, E-mail: n4neha31@gmail.com; Sharma, N. N.; Director, School of Automobile, Mechanical & Mechatronics, Manipal University,Jaipur,India

    2016-04-13

    This paper describes the synthesis of nanotube from different grades (Tread * A(non-ASTM), N134,N121,N660 and N330)of carbon black using DC arc discharge method at 40A current for 60sec. Carbon black samples of different grades were procured from industry (Aditya Birla Science and Technology Limited, India). Scanning Electron Micrographs (SEM) of the deposited carbon nanostructures suggests that MWCNTs are formed at 40A and for a minimal exposure time of 60sec.The result formed indicates the N330 grade of carbon black gets converted to MWCNTs (Multiwall Carbon nanotube) as compared to other grades.

  12. Two new species of the genus Paramitraceras Pickard-Cambridge, 1905 (Opiliones: Laniatores: Stygnopsidae) from Chiapas, Mexico.

    PubMed

    Cruz-López, Jesús A; Francke, Oscar F

    2013-01-01

    Parainitraceras pickardcanibridgei sp. nov. and Paramitraceras tzotzil sp. nov. from Chiapas, Mexico are described based on specimens previously determined as Paramitraceras granulatum Pickard-Cambridge, 1905 by Goodnight and Goodnight. The male genitalia of the new species and P. granulatum are illustrated with scanning electronic micrographs (SEMs) or drawings derived from them. The importance of the ocular tubercle, cheliceral dentition and sexual dimorphism, pedipalpal armature and male genitalia as taxonomic characters within the genus is discussed as well as differences and similarities between Paramitraceras Pickard-Cambridge, 1905 and its most similar genus, Sbordonia Šilhavý, 1977.

  13. Removal of Micrometer Size Morphological Defects and Enhancement of Ultraviolet Emission by Thermal Treatment of Ga-Doped ZnO Nanostructures

    PubMed Central

    Manzoor, Umair; Kim, Do K.; Islam, Mohammad; Bhatti, Arshad S.

    2014-01-01

    Mixed morphologies of Ga-doped Zinc Oxide (ZnO) nanostructures are synthesized by vapor transport method. Systematic scanning electron microscope (SEM) studies of different morphologies, after periodic heat treatments, gives direct evidence of sublimation. SEM micrographs give direct evidence that morphological defects of nanostructures can be removed by annealing. Ultra Violet (UV) and visible emission depends strongly on the annealing temperatures and luminescent efficiency of UV emission is enhanced significantly with each subsequent heat treatment. X-Ray diffraction (XRD) results suggest that crystal quality improved by annealing and phase separation may occur at high temperatures. PMID:24489725

  14. Removal of micrometer size morphological defects and enhancement of ultraviolet emission by thermal treatment of Ga-doped ZnO nanostructures.

    PubMed

    Manzoor, Umair; Kim, Do K; Islam, Mohammad; Bhatti, Arshad S

    2014-01-01

    Mixed morphologies of Ga-doped Zinc Oxide (ZnO) nanostructures are synthesized by vapor transport method. Systematic scanning electron microscope (SEM) studies of different morphologies, after periodic heat treatments, gives direct evidence of sublimation. SEM micrographs give direct evidence that morphological defects of nanostructures can be removed by annealing. Ultra Violet (UV) and visible emission depends strongly on the annealing temperatures and luminescent efficiency of UV emission is enhanced significantly with each subsequent heat treatment. X-Ray diffraction (XRD) results suggest that crystal quality improved by annealing and phase separation may occur at high temperatures.

  15. Antarctica as a Martian model.

    NASA Technical Reports Server (NTRS)

    Vishniac, W. V.; Mainzer, S. E.

    1973-01-01

    Results of a survey of a variety of environments in the dry valleys of Antarctica, ranging from mountain crests to valley floors. The main purpose of the investigation was the determination of active microbial multiplication in the soil. A series of techniques was employed which permitted the detection of bacterial growth in situ. All evidence points to an active growth of micro-organisms in the Antarctic soil in all locations examined. The measurements were supported by electron micrographs of soil films which showed colonial growth covering soil particles. These findings suggest that Antarctica does not serve as a useful model for the Martian environment in evaluating quarantine standards.

  16. Observation of ferromagnetism in Mn doped KNbO3

    NASA Astrophysics Data System (ADS)

    Manikandan, M.; Venkateswaran, C.

    2015-06-01

    Pure and Mn doped KNbO3 have been prepared by ball milling assisted ceramic method. Mn ion had been doped at Nb site to induce ferromagnetism at room temperature. X-ray diffraction (XRD) patterns reveal the formation of orthorhombic phase. High resolution scanning electron micrograph (HR-SEM) of both pure and Mn doped samples show a mixture of spherical and plate like particles. Room temperature magnetic behavior of both the samples were analyzed using vibrating sample magnetometer (VSM). 5% Mn doped KNbO3 exhibits ferromagnetic behavior. Observed ferromagnetic feature has been explained by interactions between bound magnetic polarons which are created by Mn4+ ions.

  17. Image Analysis of a Negatively Curved Graphitic Sheet Model for Amorphous Carbon

    NASA Astrophysics Data System (ADS)

    Bursill, L. A.; Bourgeois, Laure N.

    High-resolution electron micrographs are presented which show essentially curved single sheets of graphitic carbon. Image calculations are then presented for the random surface schwarzite-related model of Townsend et al. (Phys. Rev. Lett. 69, 921-924, 1992). Comparison with experimental images does not rule out the contention that such models, containing surfaces of negative curvature, may be useful for predicting some physical properties of specific forms of nanoporous carbon. Some difficulties of the model predictions, when compared with the experimental images, are pointed out. The range of application of this model, as well as competing models, is discussed briefly.

  18. New Evidence for the Presence of Indigenous Microfossils in Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Rozanov, Alexei Yu.

    2004-01-01

    We present additional evidence for the presence of indigenous microfossils in carbonaceous meteorites scanning electron micrograph studies of freshly fractured interior surfaces of pristine samples of the Murchison CM2 carbonaceous meteorite have revealed forms in-situ that are recognizable as biofilms as well as complex and highly structured forms similar to calcareous and siliceous microfossils. Some of the forms encountered are very well-preserved and exhibit complex associated microstructures similar to bacterial flagella. New images will be presented of forms recently encountered in carbonaceous meteorites and they will be compared with those of known microbial extremophiles. KEYWORDS: carbonaceous chondrites, Murchison, microfossils, extremophiles

  19. The structure of 110 tilt boundaries in large area solar silicon

    NASA Technical Reports Server (NTRS)

    Ast, D. G.; Cunningham, B.; Vaudin, M.

    1982-01-01

    The models of Hornstra and their connection to the repeating group description of grain boundaries (7-10) are discussed. A model for the Sigma = 27 boundary containing a zig-zag arrangement of dislocations is constructed and it is shown that zig-zag models can account for the contrast features observed in high resolution transmission electron micrographs of second and third order twin boundaries in silicon. The boundaries discussed are symmetric with a 110 tilt axis and a (110) boundary plane in the median lattice (the median plane). The median lattice is identical in structure and halfway in orientation between the crystal lattices either side of the boundary.

  20. Inherent optical properties of the coccolithophore: Emiliania huxleyi.

    PubMed

    Zhai, Peng-Wang; Hu, Yongxiang; Trepte, Charles R; Winker, David M; Josset, Damien B; Lucker, Patricia L; Kattawar, George W

    2013-07-29

    A realistic nonspherical model for Emiliania huxleyi (EHUX) is built, based on electron micrographs of coccolithophore cells. The Inherent Optical Properties (IOP) of the EHUX are then calculated numerically by using the discrete dipole approximation. The coccolithophore model includes a near-spherical core with the refractive index of 1.04 + m(i)j, and a carbonate shell formed by smaller coccoliths with refractive index of 1.2 + m(i)j, where m(i) = 0 or 0.01 and j(2) = -1. The reported IOP are the Mueller scattering matrix, backscattering probability, and depolarization ratio. Our calculation shows that the Mueller matrices of coccolithophores show different angular dependence from those of coccoliths.

  1. Technology and Microcomputers for an Information Centre/Special Library.

    ERIC Educational Resources Information Center

    Daehn, Ralph M.

    1984-01-01

    Discusses use of microcomputer hardware and software, telecommunications methods, and advanced library methods to create a specialized information center's database of literature relating to farm machinery and food processing. Systems and services (electronic messaging, serials control, database creation, cataloging, collections, circulation,…

  2. The microcomputer in cell and neurobiology research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mize, R.R.

    1985-01-01

    This book contains 21 chapters. They are divided into the following sections: The Microcomputer as a Research Tool, Microcomputer Uses in Light and Electron Microscopy, Microcomputer Uses in Morphometry, Serial Section Reconstruction, Microcomputer Uses in Imaging and Densitometry, and Microcomputer Uses in Electrophysiology.

  3. Low- Z polymer sample supports for fixed-target serial femtosecond X-ray crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feld, Geoffrey K.; Heymann, Michael; Benner, W. Henry

    X-ray free-electron lasers (XFELs) offer a new avenue to the structural probing of complex materials, including biomolecules. Delivery of precious sample to the XFEL beam is a key consideration, as the sample of interest must be serially replaced after each destructive pulse. The fixed-target approach to sample delivery involves depositing samples on a thin-film support and subsequent serial introduction via a translating stage. Some classes of biological materials, including two-dimensional protein crystals, must be introduced on fixed-target supports, as they require a flat surface to prevent sample wrinkling. A series of wafer and transmission electron microscopy (TEM)-style grid supports constructedmore » of low- Z plastic have been custom-designed and produced. Aluminium TEM grid holders were engineered, capable of delivering up to 20 different conventional or plastic TEM grids using fixed-target stages available at the Linac Coherent Light Source (LCLS). As proof-of-principle, X-ray diffraction has been demonstrated from two-dimensional crystals of bacteriorhodopsin and three-dimensional crystals of anthrax toxin protective antigen mounted on these supports at the LCLS. In conclusion, the benefits and limitations of these low- Z fixed-target supports are discussed; it is the authors' belief that they represent a viable and efficient alternative to previously reported fixed-target supports for conducting diffraction studies with XFELs.« less

  4. Optical Waveguide Scattering Reduction. II.

    DTIC Science & Technology

    1980-12-01

    Direct Methods..........................13 Topographical Approaches ................... 13 Nomarski Microscopy ................... 13 TIR Microscopy...6 3 Nomarski micrograph showing artifacts near the edge of a Ti- diffused LiNbO3 waveguide (50OX) ....... ................ 9...4 Nomarski micrograph showing the results of a 10 min heat treat- ment of LiNbO 3 at 850’C in flowing 02 ... ............. ... 12 5 Nomarski

  5. Microbial structures in an Alpine Thermal Spring - Microscopic techniques for the examination of Biofilms in a Subsurface Environment

    NASA Astrophysics Data System (ADS)

    Dornmayr-Pfaffenhuemer, Marion; Pierson, Elisabeth; Janssen, Geert-Jan; Stan-Lotter, Helga

    2010-05-01

    The research into extreme environments hast important implications for biology and other sciences. Many of the organisms found there provide insights into the history of Earth. Life exists in all niches where water is present in liquid form. Isolated environments such as caves and other subsurface locations are of interest for geomicrobiological studies. And because of their "extra-terrestrial" conditions such as darkness and mostly extreme physicochemical state they are also of astrobiological interest. The slightly radioactive thermal spring at Bad Gastein (Austria) was therefore examined for the occurrence of subsurface microbial communities. The surfaces of the submerged rocks in this warm spring were overgrown by microbial mats. Scanning electron microscopy (SEM) performed by the late Dr. Wolfgang Heinen revealed an interesting morphological diversity in biofilms found in this environment (1, 2). Molecular analysis of the community structure of the radioactive subsurface thermal spring was performed by Weidler et al. (3). The growth of these mats was simulated using sterile glass slides which were exposed to the water stream of the spring. Those mats were analysed microscopically. Staining, using fluorescent dyes such as 4',6-Diamidino-2-phenylindol (DAPI), gave an overview of the microbial diversity of these biofilms. Additional SEM samples were prepared using different fixation protocols. Scanning confocal laser microscopy (SCLM) allowed a three dimensional view of the analysed biofilms. This work presents some electron micrographs of Dr. Heinen and additionally new microscopic studies of the biofilms formed on the glass slides. The appearances of the new SEM micrographs were compared to those of Dr. Heinen that were done several years ago. The morphology and small-scale distribution in the microbial mat was analyzed by fluorescence microscopy. The examination of natural biomats and biofilms grown on glass slides using several microscopical techniques suggest that the thermal springs in the Central Alps near Bad Gastein represent a novel and unique habitat for microbial life. Results obtained during these studies revealed reproducibility of Dr. Heinen's micrographs. Hollow reticulated filaments and flat ribbons with parallel hexagonal chambers (web-structures) were found repeatedly. Given the chance that subsurface environments represent a potent opportunity to detect life on planetary bodies it is of big interest to search for representative biosignatures found on earth today. References: 1. Lauwers A. M. & Heinen W. (1985) Mikroskopie (Wien) 42, 94-101. 2. Heinen W. & Lauwers A. M. (1985) Mikroskopie (Wien) 42, 124-134. 3. Weidler G. W., Dornmayr-Pfaffenhuemer M., Gerbl F. W., Heinen W., Stan-Lotter H. (2007) AEM 73, 259-270.

  6. Use of CCSDS Packets Over SpaceWire to Control Hardware

    NASA Technical Reports Server (NTRS)

    Haddad, Omar; Blau, Michael; Haghani, Noosha; Yuknis, William; Albaijes, Dennis

    2012-01-01

    For the Lunar Reconnaissance Orbiter, the Command and Data Handling subsystem consisted of several electronic hardware assemblies that were connected with SpaceWire serial links. Electronic hardware would be commanded/controlled and telemetry data was obtained using the SpaceWire links. Prior art focused on parallel data buses and other types of serial buses, which were not compatible with the SpaceWire and the core flight executive (CFE) software bus. This innovation applies to anything that utilizes both SpaceWire networks and the CFE software. The CCSDS (Consultative Committee for Space Data Systems) packet contains predetermined values in its payload fields that electronic hardware attached at the terminus of the SpaceWire node would decode, interpret, and execute. The hardware s interpretation of the packet data would enable the hardware to change its state/configuration (command) or generate status (telemetry). The primary purpose is to provide an interface that is compatible with the hardware and the CFE software bus. By specifying the format of the CCSDS packet, it is possible to specify how the resulting hardware is to be built (in terms of digital logic) that results in a hardware design that can be controlled by the CFE software bus in the final application

  7. Alstom Francis Turbine Ring Gates: from Retrofitting to Commissioning

    NASA Astrophysics Data System (ADS)

    A, Nguyen P.; G, Labrecque; M-O, Thibault; M, Bergeron; A, Steinhilber; D, Havard

    2014-03-01

    The Ring Gate synchronisation system developed by Alstom is new and patented. It uses hydraulic cylinders connected in pairs by a serial connection. The new hydraulic synchronisation system, when compared to the previous mechanical synchronisation system, has several advantages. It is a compact design; it reduces the number of mechanical components as well as maintenance costs. The new system maintains the Ring Gates robustness. The new approach is an evolution from mechanical to hydraulic synchronization assisted by electronic control. The new synchronization system eliminates several mechanical components that used to add wear and friction and which are usually difficult to adjust during maintenance. Tension chains and sprockets and associated controls are eliminated. Through the position sensors, the redundancy of the ring gate synchronization system makes it predictable and reliable. The electronic control compensates for any variation in operation, for example a leak in the hydraulic system. An emergency closing is possible without the electronic control system due to the stiffness of hydraulic serial connection in the hydraulic cylinder pairs. The Ring Gate can work safely against uneven loads and frictions. The development will be reviewed and its application discussed through commissioning results.

  8. Serial block face-scanning electron microscopy: a tool for studying embryonic development at the cell-matrix interface.

    PubMed

    Starborg, Tobias; Kadler, Karl E

    2015-03-01

    Studies of gene regulation, signaling pathways, and stem cell biology are contributing greatly to our understanding of early embryonic vertebrate development. However, much less is known about the events during the latter half of embryonic development, when tissues comprising mostly extracellular matrix (ECM) are formed. The matrix extends far beyond the boundaries of individual cells and is refractory to study by conventional biochemical and molecular techniques; thus major gaps exist in our knowledge of the formation and three-dimensional (3D) organization of the dense tissues that form the bulk of adult vertebrates. Serial block face-scanning electron microscopy (SBF-SEM) has the ability to image volumes of tissue containing numerous cells at a resolution sufficient to study the organization of the ECM. Furthermore, whereas light microscopy was once relatively straightforward and electron microscopy was performed in specialist laboratories, the tables are turned; SBF-SEM is relatively straightforward and is becoming routine in high-end resolution studies of embryonic structures in vivo. In this review, we discuss the emergence of SBF-SEM as a tool for studying embryonic vertebrate development. © 2015 Wiley Periodicals, Inc.

  9. Using transmission electron microscopy and 3View® to determine collagen fibril size and three-dimensional organization

    PubMed Central

    Mironov, Aleksandr; Cootes, Timothy F.; Holmes, David F.; Kadler, Karl E.

    2017-01-01

    Collagen fibrils are the major tensile element in vertebrate tissues where they occur as ordered bundles in the extracellular matrix. Abnormal fibril assembly and organization results in scarring, fibrosis, poor wound healing and connective tissue diseases. Transmission electron microscopy (TEM) is used to assess formation of the fibrils, predominantly by measuring fibril diameter. Here we describe an enhanced protocol for measuring fibril diameter as well as fibril-volume-fraction, mean fibril length, fibril cross-sectional shape, and fibril 3D organization that are also major determinants of tissue function. Serial section TEM (ssTEM) has been used to visualize fibril 3D-organization in vivo. However, serial block face-scanning electron microscopy (SBF-SEM) has emerged as a time-efficient alternative to ssTEM. The protocol described below is suitable for preparing tissues for TEM and SBF-SEM (by 3View®). We demonstrate the power of 3View® for studying collagen fibril organization in vivo and show how to find and track individual fibrils. Time scale: ~8 days from isolating the tissue to having a 3D image stack. PMID:23807286

  10. Water-repellent coatings prepared by modification of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Chakradhar, R. P. S.; Dinesh Kumar, V.

    Superhydrophobic coatings with a static water contact angle (WCA) > 150° were prepared by modifying ZnO nanoparticles with stearic acid (ZnO@SA). ZnO nanoparticles of size ˜14 nm were prepared by solution combustion method. X-ray diffraction (XRD) studies reveal that as prepared ZnO has hexagonal wurtzite structure whereas the modified coatings convert to zinc stearate. Field emission scanning electron micrographs (FE-SEM) show the dual morphology of the coatings exhibiting both particles and flakes. The flakes are highly fluffy in nature with voids and nanopores. Fourier transformed infrared (FTIR) spectrum shows the stearate ion co-ordinates with Zn2+ in the bidentate form. The surface properties such as surface free energy (γp) and work of adhesion (W) of the unmodified and modified ZnO coatings have been evaluated. The electron paramagnetic resonance (EPR) spectroscopy reveals that surface defects play a major role in the wetting behavior.

  11. Synthesis of nano-crystalline hydroxyapatite and ammonium sulfate from phosphogypsum waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mousa, Sahar, E-mail: dollyriri@yahoo.com; King Abdulaziz University, Science and Art College, Chemistry Department, Rabigh Campus, P.O. Box:344, Postal code: 21911 Rabigh; Hanna, Adly

    2013-02-15

    Graphical abstract: TEM micrograph of dried HAP at 800 °C. -- Abstract: Phosphogypsum (PG) waste which is derived from phosphoric acid manufacture by using wet method was converted into hydroxyapatite (HAP) and ammonium sulfate. Very simple method was applied by reacting PG with phosphoric acid in alkaline medium with adjusting pH using ammonia solution. The obtained nano-HAP was dried at 80 °C and calcined at 600 °C and 900 °C for 2 h. Both of HAP and ammonium sulfate were characterized by X-ray diffraction (XRD) and infrared spectroscopy (IR) to study the structural evolution. The thermal behavior of nano-HAP wasmore » studied; the particle size and morphology were estimated by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). All the results showed that HAP nano-crystalline and ammonium sulfate can successfully be produced from phosphogypsum waste.« less

  12. Microstructure and Mechanical Characterization of Friction-Stir-Welded Dual-Phase Brass

    NASA Astrophysics Data System (ADS)

    Ramesh, R.; Dinaharan, I.; Akinlabi, E. T.; Murugan, N.

    2018-03-01

    Friction stir welding (FSW) is an ideal process to join brass to avoid the evaporation of zinc. In the present investigation, 6-mm-thick dual-phase brass plates were joined efficiently using FSW at various tool rotational speeds. The microstructures were studied using optical microscopy, electron backscattered diffraction and transmission electron microscopy. The optical micrographs revealed the evolution of various zones across the joint line. The microstructure of the heat-affected zone was similar to that of base metal. The weld zone exhibited finer grains due to dynamic recrystallization. The recrystallization was inhomogeneous and the inhomogeneity reduced with increased tool rotational speed. The dual phase was preserved in the weld zone due to the retention of zinc. The severe plastic deformation created a lot of dislocations in the weld zone. The weld zone was strengthened after welding. The role of tool rotational speed on the joint strength is further reported.

  13. Low-cost and eco-friendly synthesis of silver nanoparticles using coconut (Cocos nucifera) oil cake extract and its antibacterial activity.

    PubMed

    Govarthanan, Muthusamy; Seo, Young-Seok; Lee, Kui-Jae; Jung, Ik-Boo; Ju, Ho-Jong; Kim, Jae Su; Cho, Min; Kamala-Kannan, Seralathan; Oh, Byung-Taek

    2016-12-01

    The present study reports the simple, inexpensive, eco-friendly synthesis of silver nanoparticles (AgNPs) using coconut oil cake extract. Scanning electron microscopy-energy dispersive spectroscopy peak at 3 keV confirmed the presence of silver. Transmission electron micrograph showed that nanoparticles are mostly circular with an average size of 10-70 nm. The results of the X-ray powder diffraction analysis (2θ = 46.2, 67.4 and 76.8) indicated the crystal nature of the AgNPs. Fourier transform infrared spectroscopy analysis indicates that proteins present in the oilcake extract could be responsible for the reduction of silver ions. The synthesized AgNPs (1-4 mm) reduced the growth rate of multi-antibiotic-resistant bacteria such as Aeromonas sp., Acinetobacter sp. and Citrobacter sp. isolated from livestock wastewater.

  14. Synthesis and magnetic properties of NiFe2-xSmxO4 nanopowder

    NASA Astrophysics Data System (ADS)

    Hassanzadeh-Tabrizi, S. A.; Behbahanian, Shahrzad; Amighian, Jamshid

    2016-07-01

    NiFe2-xSmxO4 (x=0.00, 0.05, 0.10 and 0.15) nanopowders were synthesized via a sol-gel combustion route. The structural studies were carried out by X-ray diffractometer, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The XRD results confirmed the formation of single-phase spinel cubic structure. The crystallite size decreased with an increase of samarium ion concentration, while lattice parameter and lattice strain increased with samarium substitution. TEM micrographs showed that agglomerated nanoparticles with particle sizes ranging from 35 to 90 nm were obtained. The magnetic studies were carried out using vibrating sample magnetometer. Magnetic measurements revealed that the saturation magnetization (Ms) of NiFe2-xSmxO4 nanoparticles decreases with increasing Sm3+substitution. The reduction of saturation magnetization is attributed to the dilution of the magnetic interaction. The coercivity (Hc) of samples increases by adding samarium.

  15. Unconventional Magnetic Domain Structure in the Ferromagnetic Phase of MnP Single Crystals

    NASA Astrophysics Data System (ADS)

    Koyama, Tsukasa; Yano, Shin-ichiro; Togawa, Yoshihiko; Kousaka, Yusuke; Mori, Shigeo; Inoue, Katsuya; Kishine, Jun-ichiro; Akimitsu, Jun

    2012-04-01

    We have studied ferromagnetic (FM) structures in the FM phase of MnP single crystals by low-temperature Lorentz transmission electron microscopy and small-angle electron diffraction analysis. In Lorentz Fresnel micrographs, striped FM domain structures were observed at an external magnetic field less than 10 Oe in specimens with the ab-plane in their plane. From real- and reciprocal-space analyses, it was clearly identified that striped FM domains oriented to the c-axis appear with Bloch-type domain walls in the b-direction and order regularly along the a-axis with a constant separation less than 100 nm. Moreover, the magnetic chirality reverses in alternate FM domain walls. These specific spin configuration of striped FM domains will affect the magnetic phase transition from the FM phase to the proper screw spiral phase at low temperature or to the FAN phase in magnetic fields in MnP.

  16. Study of structural, spectroscopic and dielectric properties of multiferroic cadmium doped Samarium manganite synthesized by solid state reaction method

    NASA Astrophysics Data System (ADS)

    Gupta, Vandana; Raina, Bindu; Verma, Seema; Bamzai, K. K.

    2018-05-01

    Samarium manganite doped with cadmium having general formula Sm1-xCdxMnO3 for x = 0.05, 0.15 were synthesized by solid state reaction technique. These compositions were characterized by various techniques like X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and dielectric. XRD analysis confirms the single phase formation with pervoskites structure having orthorhombic phase. Densities were determined and compared with the results obtained by Archimedes principle. The scanning electron micrograph shows that the particle size distribution is almost homogeneous and spherical in shape. FTIR analysis confirms the presence of various atomic bonds within a molecule. A very large value of dielectric constant was observed at low frequencies due to the presence of grains and interfaces. The dielectric constant value decreases with increase in cadmium doping at samarium site.

  17. Microscopy based studies on the interaction of bio-based silver nanoparticles with Bombyx mori Nuclear Polyhedrosis virus.

    PubMed

    Tamilselvan, Selvaraj; Ashokkumar, Thirunavukkarasu; Govindaraju, Kasivelu

    2017-04-01

    In the present investigation, silver nanoparticles (AgNPs) interactions with Bombyx mori Nuclear Polyhedrosis virus (BmNPV) were characterized using High-Resolution Scanning Electron Microscopy (HR-SEM), Energy Dispersive X-ray Analysis (EDAX), Transmission Electron Microscopy (TEM), Atomic Force Microcopy (AFM) and Confocal Microscope (CM). HR-SEM study reveals that the biosynthesized AgNPs have interacted with BmNPV and were found on the surface. TEM micrographs of normal and viral polyhedra treated with AgNPs showed that the nanoparticles were accumulated in the membrane and it was noted that some of the AgNPs successfully penetrated the membrane by reaching the capsid of BmNPV. AFM and confocal microscopy studies reveal that the disruption in the shell membrane tends to lose its stability due to exposure of AgNPs to BmNPV. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Exfoliated graphite/titanium dioxide nanocomposites for photodegradation of eosin yellow

    NASA Astrophysics Data System (ADS)

    Ndlovu, Thabile; Kuvarega, Alex T.; Arotiba, Omotayo A.; Sampath, Srinivasan; Krause, Rui W.; Mamba, Bhekie B.

    2014-05-01

    An improved photocatalyst consisting of a nanocomposite of exfoliated graphite and titanium dioxide (EG-TiO2) was prepared. SEM and TEM micrographs showed that the spherical TiO2 nanoparticles were evenly distributed on the surface of the EG sheets. A four times photocatalytic enhancement was observed for this floating nanocomposite compared to TiO2 and EG alone for the degradation of eosin yellow. For all the materials, the reactions followed first order kinetics where for EG-TiO2, the rate constant was much higher than for EG and TiO2 under visible light irradiation. The enhanced photocatalytic activity of EG-TiO2 was ascribed to the capability of graphitic layers to accept and transport electrons from the excited TiO2, promoting charge separation. This indicates that carbon, a cheap and abundant material, can be a good candidate as an electron attracting reservoir for photocatalytic organic pollutant degradation.

  19. Development and characterization of Mn{sup 2+}-doped MgO nanoparticles by solution combustion synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basha, Md. Hussain; Gopal, N. O., E-mail: nogopal@yahoo.com; Rao, J. L.

    2015-06-24

    Mn doped MgO Nanoparticles have been prepared by Solution Combustion Synthesis. The synthesized sample is characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Electron Paramagnetic Resonance (EPR). The prepared MgO:Mn (1 mol%) nano crystals appear to be of simple cubic crystalline phase with lattice parameters a = 4.218(2) Å and cell volume = 74.98 (7) Å{sup 3}. SEM micrograph of powders show highly porous, many agglomerates with irregular morphology, large voids, cracks and pores. EPR spectrum of the sample at room temperature exhibit an isotropic sextet hyperfine pattern, centered at g=1.99, characteristic if Mn{sup 2+} ions with S=I=5/2.The observedmore » g value and the hyperfine value reveal the ionic bonding between Mn{sup 2+} and its surroundings.« less

  20. Defective enamel ultrastructure in diabetic rodents.

    PubMed

    Atar, M; Atar-Zwillenberg, D R; Verry, P; Spornitz, U M

    2004-07-01

    We investigated six different types of diabetic rodents. Four expressed a genetic obesity resulting in diabetes. One developed diabetes induced by a diet-dependent obesity, and one with genetic diabetes received anti-diabetic medication. The tooth samples were examined under a scanning electron microscope and with an energy dispersive microanalysis (EDX). The electron micrographs showed severe, varying degrees of damage within the six different diabetic animal types, such as irregular crystallite deposition and prism perforations in genetically obese animals compared to less-disordered prism structures in diet-dependent obesity. Anti-diabetic medication resulted in normal enamel ultrastructure. The EDX analysis revealed a reduction in the amount of calcium and phosphorus in all regions affected by diabetes. Based on these animal studies, we suggest that both juvenile diabetes type I (in infants) and adult diabetes type II (in pregnant mothers, affecting the developing foetus) may affect the normal development of teeth in humans.

  1. Cultivation of pathogenic Treponema pallidum in vitro.

    PubMed

    Horváth, I; Duncan, W P; Bullard, J C

    1981-01-01

    Treponema pallidum was discovered relatively late and was not cultured in vitro. Both the delineation of T. pallidum biology and the eradication of syphilis suggest the necessity of cultivation in vitro. An attempt has been made with an improved medium to cultivate pathogenic T. pallidum Budapest strain in vitro. Only in the first passage, evidence of in vitro multiplication of T. pallidum has been established by (i) macroscopic observation, (ii) darkfield examination, (iii) electron microscopic examination, (iv) optical densities, (v) tritium labelled thymidine incorporation, and (vi) the pathogenicity off the cultured organisms was evidenced by rabbit challenge. Explanation of the oxygen utilization of T. pallidum suspension is discussed. Unidentified formations were observed on electron micrographs from the 96 h cultures. They may belong to the multiplication forms of treponemes. Further experiments are needed for their identification and for expansion of the multiplication of T. pallidum beyond the first passage.

  2. The Unicorn Collection Management System: Its Structure and Features.

    ERIC Educational Resources Information Center

    Young, Jacky; Veatch, James R., Jr.

    1988-01-01

    Discusses the design principles behind the Unicorn Collection Management System, an integrated library system which includes modules for bibliographic and inventory control, circulation, academic reserves, serials control, authority control, acquisition, electronic mail, bulletin board, and enhanced public access. The flexibility of the system is…

  3. Surfing the Internet. An Introduction.

    ERIC Educational Resources Information Center

    Polly, Jean Armour

    1992-01-01

    Describes resources available through INTERNET that are of interest to librarians, including electronic newsletters and serials, online library catalogs, bulletin boards, remote access to software or text files, utilities to help navigate the network, sources for learning more about the INTERNET, discussion list guides, and INTERNET library…

  4. Fixed-target protein serial microcrystallography with an x-ray free electron laser

    PubMed Central

    Hunter, Mark S.; Segelke, Brent; Messerschmidt, Marc; Williams, Garth J.; Zatsepin, Nadia A.; Barty, Anton; Benner, W. Henry; Carlson, David B.; Coleman, Matthew; Graf, Alexander; Hau-Riege, Stefan P.; Pardini, Tommaso; Seibert, M. Marvin; Evans, James; Boutet, Sébastien; Frank, Matthias

    2014-01-01

    We present results from experiments at the Linac Coherent Light Source (LCLS) demonstrating that serial femtosecond crystallography (SFX) can be performed to high resolution (~2.5 Å) using protein microcrystals deposited on an ultra-thin silicon nitride membrane and embedded in a preservation medium at room temperature. Data can be acquired at a high acquisition rate using x-ray free electron laser sources to overcome radiation damage, while sample consumption is dramatically reduced compared to flowing jet methods. We achieved a peak data acquisition rate of 10 Hz with a hit rate of ~38%, indicating that a complete data set could be acquired in about one 12-hour LCLS shift using the setup described here, or in even less time using hardware optimized for fixed target SFX. This demonstration opens the door to ultra low sample consumption SFX using the technique of diffraction-before-destruction on proteins that exist in only small quantities and/or do not produce the copious quantities of microcrystals required for flowing jet methods. PMID:25113598

  5. Review of free software tools for image analysis of fluorescence cell micrographs.

    PubMed

    Wiesmann, V; Franz, D; Held, C; Münzenmayer, C; Palmisano, R; Wittenberg, T

    2015-01-01

    An increasing number of free software tools have been made available for the evaluation of fluorescence cell micrographs. The main users are biologists and related life scientists with no or little knowledge of image processing. In this review, we give an overview of available tools and guidelines about which tools the users should use to segment fluorescence micrographs. We selected 15 free tools and divided them into stand-alone, Matlab-based, ImageJ-based, free demo versions of commercial tools and data sharing tools. The review consists of two parts: First, we developed a criteria catalogue and rated the tools regarding structural requirements, functionality (flexibility, segmentation and image processing filters) and usability (documentation, data management, usability and visualization). Second, we performed an image processing case study with four representative fluorescence micrograph segmentation tasks with figure-ground and cell separation. The tools display a wide range of functionality and usability. In the image processing case study, we were able to perform figure-ground separation in all micrographs using mainly thresholding. Cell separation was not possible with most of the tools, because cell separation methods are provided only by a subset of the tools and are difficult to parametrize and to use. Most important is that the usability matches the functionality of a tool. To be usable, specialized tools with less functionality need to fulfill less usability criteria, whereas multipurpose tools need a well-structured menu and intuitive graphical user interface. © 2014 Fraunhofer-Institute for Integrated Circuits IIS Journal of Microscopy © 2014 Royal Microscopical Society.

  6. Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, C.; Marx, A.; Epp, S. W.

    We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linacmore » Coherent Light Source (LCLS, Menlo Park, California, USA). As a result, the chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs.« less

  7. The room temperature crystal structure of a bacterial phytochrome determined by serial femtosecond crystallography

    DOE PAGES

    Edlund, Petra; Takala, Heikki; Claesson, Elin; ...

    2016-10-19

    Phytochromes are a family of photoreceptors that control light responses of plants, fungi and bacteria. A sequence of structural changes, which is not yet fully understood, leads to activation of an output domain. Time-resolved serial femtosecond crystallography (SFX) can potentially shine light on these conformational changes. Here we report the room temperature crystal structure of the chromophore-binding domains of the Deinococcus radiodurans phytochrome at 2.1 Å resolution. The structure was obtained by serial femtosecond X-ray crystallography from microcrystals at an X-ray free electron laser. We find overall good agreement compared to a crystal structure at 1.35 Å resolution derived frommore » conventional crystallography at cryogenic temperatures, which we also report here. The thioether linkage between chromophore and protein is subject to positional ambiguity at the synchrotron, but is fully resolved with SFX. As a result, the study paves the way for time-resolved structural investigations of the phytochrome photocycle with time-resolved SFX.« less

  8. Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography

    DOE PAGES

    Mueller, C.; Marx, A.; Epp, S. W.; ...

    2015-08-18

    We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linacmore » Coherent Light Source (LCLS, Menlo Park, California, USA). As a result, the chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs.« less

  9. The room temperature crystal structure of a bacterial phytochrome determined by serial femtosecond crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edlund, Petra; Takala, Heikki; Claesson, Elin

    Phytochromes are a family of photoreceptors that control light responses of plants, fungi and bacteria. A sequence of structural changes, which is not yet fully understood, leads to activation of an output domain. Time-resolved serial femtosecond crystallography (SFX) can potentially shine light on these conformational changes. Here we report the room temperature crystal structure of the chromophore-binding domains of the Deinococcus radiodurans phytochrome at 2.1 Å resolution. The structure was obtained by serial femtosecond X-ray crystallography from microcrystals at an X-ray free electron laser. We find overall good agreement compared to a crystal structure at 1.35 Å resolution derived frommore » conventional crystallography at cryogenic temperatures, which we also report here. The thioether linkage between chromophore and protein is subject to positional ambiguity at the synchrotron, but is fully resolved with SFX. As a result, the study paves the way for time-resolved structural investigations of the phytochrome photocycle with time-resolved SFX.« less

  10. The Readability of Online Patient Information About Mohs Micrographic Surgery.

    PubMed

    Vargas, Christina R; DePry, Jennifer; Lee, Bernard T; Bordeaux, Jeremy S

    2016-10-01

    Mohs micrographic surgery has become increasingly used in the treatment of cutaneous malignancies over the past decade. Concurrently, more patients are using the Internet as a resource for medical information than ever before. The average American adult reads at an eighth grade level. The American Medical Association and National Institutes of Health have recommended a sixth grade target reading level for patient health materials. This study evaluates the readability of currently available online information about Mohs micrographic surgery in the context of these recommendations. An Internet search for the term "Mohs surgery" was performed and the first 10 results were identified. Patient information from each primary site was downloaded and formatted into plain text. Readability was assessed using 9 established tests; text was analyzed both overall and by Web site for comparison. A total of 101 articles were collected from the first 10 Web site search results; the overall average reading level was 14.4. All articles exceeded the recommended sixth grade reading level. Online resources about Mohs micrographic surgery are too difficult for many patients to read. The paucity of appropriately written patient information available on the Internet may hinder informed decision-making, participation, and subsequent postoperative satisfaction.

  11. Production of bacterial cellulose using different carbon sources and culture media.

    PubMed

    Mohammadkazemi, Faranak; Azin, Mehrdad; Ashori, Alireza

    2015-03-06

    In this work, the effects of carbon sources and culture media on the production and structural properties of bacterial cellulose (BC) have been studied. BC nanofibers were synthesized using Gluconacetobacter xylinus strain PTCC 1734. Media used were Hestrin-Schramm (H), Yamanaka (Y), and Zhou (Z). Five different carbon sources, namely date syrup, glucose, mannitol, sucrose, and food-grade sucrose were used in these media. All the produced BC pellicles were characterized in terms of dry weight production, biomass yield, thermal stability, crystallinity and morphology by thermogravimetric analysis (TGA), x-ray diffraction (XRD), and field emission scanning electron microscopy (FE-SEM). The obtained results showed that mannitol lead to the highest yield, followed by sucrose. The highest production efficiency of mannitol might be due to the nitrogen source, which plays an important role. The maximum improvement on the thermal stability of the composites was achieved when mannitol was used in H medium. In addition, the crystallinity was higher in BC formed in H medium compared to other media. FE-SEM micrographs illustrated that the BC pellicles, synthesized in the culture media H and Z, were stable, unlike those in medium Y that were unstable. The micrographs of BC produced in media containing mannitol and sucrose provided evidence of the strong interfacial adhesion between the BC fibers without noticeable aggregates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Growth and characterization of a new nonlinear optical organic crystal: 2,4,6-Trimethylacetanilide

    NASA Astrophysics Data System (ADS)

    Upadhyaya, V.; Prabhu, Sharada G.

    2015-09-01

    A new nonlinear optical organic material, 2,4,6-trimethylacetanilide (246TMAA), also known as N-[2,4,6- trimethylphenyl]acetamide, has been synthesized and grown as a single crystal by the slow evaporation technique by organic solvents. The grown crystals have been characterized by morphology study. The crystals are prismatic. Surface examination shows granular dendritic pattern in optical micrograph. The Scanning Electron Micrograph shows the layered growth of the crystal. The Differential Scanning Calorimeter plot shows no phase change until melting point (219°C). The density of the crystals is 1.1g/cc and the crystals are soft. The crystals are transparent in the visible region and in the ultra-violet region till 280 nm. 246TMAA crystallizes with 2 molecules in a monoclinic unit cell in the noncentrosymmetric point group m, space group Pn. Refractive indices of this optically biaxial crystal along the three crystallophysical axes have been measured at 633 nm. The optical second harmonic generation efficiency of the crystal at 1064 nm is about half that of the urea crystal, measured by powder method using Nd:YAG laser. The results show that the 246TMAA crystal can efficiently be used for up-conversion of infrared radiation into visible green light. The powder X-ray diffraction spectrum of the crystal has been obtained.

  13. Double-flow focused liquid injector for efficient serial femtosecond crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oberthuer, Dominik; Knoška, Juraj; Wiedorn, Max O.

    Serial femtosecond crystallography requires reliable and efficient delivery of fresh crystals across the beam of an X-ray free-electron laser over the course of an experiment. We introduce a double-flow focusing nozzle to meet this challenge, with significantly reduced sample consumption, while improving jet stability over previous generations of nozzles. We demonstrate its use to determine the first room-temperature structure of RNA polymerase II at high resolution, revealing new structural details. Furthermore, the double flow-focusing nozzles were successfully tested with three other protein samples and the first room temperature structure of an extradiol ring-cleaving dioxygenase was solved by utilizing the improvedmore » operation and characteristics of these devices.« less

  14. Double-flow focused liquid injector for efficient serial femtosecond crystallography

    PubMed Central

    Oberthuer, Dominik; Knoška, Juraj; Wiedorn, Max O.; Beyerlein, Kenneth R.; Bushnell, David A.; Kovaleva, Elena G.; Heymann, Michael; Gumprecht, Lars; Kirian, Richard A.; Barty, Anton; Mariani, Valerio; Tolstikova, Aleksandra; Adriano, Luigi; Awel, Salah; Barthelmess, Miriam; Dörner, Katerina; Xavier, P. Lourdu; Yefanov, Oleksandr; James, Daniel R.; Nelson, Garrett; Wang, Dingjie; Calvey, George; Chen, Yujie; Schmidt, Andrea; Szczepek, Michael; Frielingsdorf, Stefan; Lenz, Oliver; Snell, Edward; Robinson, Philip J.; Šarler, Božidar; Belšak, Grega; Maček, Marjan; Wilde, Fabian; Aquila, Andrew; Boutet, Sébastien; Liang, Mengning; Hunter, Mark S.; Scheerer, Patrick; Lipscomb, John D.; Weierstall, Uwe; Kornberg, Roger D.; Spence, John C. H.; Pollack, Lois; Chapman, Henry N.; Bajt, Saša

    2017-01-01

    Serial femtosecond crystallography requires reliable and efficient delivery of fresh crystals across the beam of an X-ray free-electron laser over the course of an experiment. We introduce a double-flow focusing nozzle to meet this challenge, with significantly reduced sample consumption, while improving jet stability over previous generations of nozzles. We demonstrate its use to determine the first room-temperature structure of RNA polymerase II at high resolution, revealing new structural details. Moreover, the double flow-focusing nozzles were successfully tested with three other protein samples and the first room temperature structure of an extradiol ring-cleaving dioxygenase was solved by utilizing the improved operation and characteristics of these devices. PMID:28300169

  15. Double-flow focused liquid injector for efficient serial femtosecond crystallography

    DOE PAGES

    Oberthuer, Dominik; Knoška, Juraj; Wiedorn, Max O.; ...

    2017-03-16

    Serial femtosecond crystallography requires reliable and efficient delivery of fresh crystals across the beam of an X-ray free-electron laser over the course of an experiment. We introduce a double-flow focusing nozzle to meet this challenge, with significantly reduced sample consumption, while improving jet stability over previous generations of nozzles. We demonstrate its use to determine the first room-temperature structure of RNA polymerase II at high resolution, revealing new structural details. Furthermore, the double flow-focusing nozzles were successfully tested with three other protein samples and the first room temperature structure of an extradiol ring-cleaving dioxygenase was solved by utilizing the improvedmore » operation and characteristics of these devices.« less

  16. Myofibrosarcoma treated with Mohs micrographic surgery.

    PubMed

    Chiller, Katarina; Parker, Douglas; Washington, Carl

    2004-12-01

    Myofibrosarcoma is a rare malignant mesenchymal tumor composed predominantly of differentiated myofibroblasts. These tumors occur in both children and adults alike and are most commonly located on the head and neck. Recurrences rates range from 44% to 75%, and metastatic disease has been reported in up to 44% of cases. The objective was to present a case of a myofibrosarcoma treated with Mohs micrographic surgery and discuss the use of ultrastructural evaluation in the diagnosis of this rare tumor. A 31-year-old African American woman who presented to the Emory University Dermatologic Surgery Clinic with a 4-month history of a 2.5 x 2.5-cm indurated firm painful right upper lateral thigh nodule. A prior biopsy revealed a proliferation of somewhat bland spindled cells with large zones of necrosis with prominent mitotic figures, changes compatible with a cellular dermatofibroma. Because the lesion exhibited clinically suspicious characteristics such as rapid growth and deep infiltration, the patient was subsequently referred to Emory for further evaluation. There was no evidence of lymphadenopathy and a chest X-ray was unremarkable. A two-staged (five and four sections, respectively) uneventful Mohs micrographic surgery procedure was performed resulting in a defect measuring 3.5 x 3.5 x 1.0 cm. Primary closure was achieved with no complication, and the final scar measured 10 cm. Because of the suspicious clinical behavior of this tumor debulking specimen was sent for permanent section. Histopathologic interpretation of these sections was consistent with a fibrosarcoma with myofibroblastic differentiation. No clinical recurrence noted after 14-month follow-up. Mohs micrographic surgery is a technique that has been shown to provide superior cure rates in the treatment of many mesenchymal tumors. Here, we report the first case of myofibrosarcoma treated with Mohs micrographic surgery. Myofibrosarcoma is a rare but aggressive tumor that can be difficult to distinguish from other somewhat less aggressive malignancies such as dermatofibrosarcoma protuberans or malignant fibrous histiocytoma. Specific histopathologic criteria are reviewed. We recommend including Mohs micrographic surgery in the armamentarium for the treatment of this rare tumor.

  17. Scanning electron microscopy of Ancylostoma spp. dog infective larvae captured and destroyed by the nematophagous fungus Duddingtonia flagrans.

    PubMed

    Maciel, A S; Araújo, J V; Campos, A K; Benjamin, L A; Freitas, L G

    2009-06-01

    The interaction between the nematode-trapping fungus Duddingtonia flagrans (isolate CG768) against Ancylostoma spp. dog infective larvae (L(3)) was evaluated by means of scanning electron microscopy. Adhesive network trap formation was observed 6h after the beginning of the interaction, and the capture of Ancylostoma spp. L(3) was observed 8h after the inoculation these larvae on the cellulose membranes colonized by the fungus. Scanning electron micrographs were taken at 0, 12, 24, 36 and 48 h, where 0 is the time when Ancylostoma spp. L(3) was first captured by the fungus. Details of the capture structure formed by the fungus were described. Nematophagous Fungus Helper Bacteria (NHB) were found at interactions points between the D. flagrans and Ancylostoma spp. L(3). The cuticle penetration by the differentiated fungal hyphae with the exit of nematode internal contents was observed 36 h after the capture. Ancylostoma spp. L(3) were completely destroyed after 48 h of interaction with the fungus. The scanning electron microscopy technique was efficient on the study of this interaction, showing that the nematode-trapping fungus D. flagrans (isolate CG768) is a potential exterminator of Ancylostoma spp. L(3).

  18. Adding the Third Dimension to Virus Life Cycles: Three-Dimensional Reconstruction of Icosahedral Viruses from Cryo-Electron Micrographs

    PubMed Central

    Baker, T. S.; Olson, N. H.; Fuller, S. D.

    1999-01-01

    Viruses are cellular parasites. The linkage between viral and host functions makes the study of a viral life cycle an important key to cellular functions. A deeper understanding of many aspects of viral life cycles has emerged from coordinated molecular and structural studies carried out with a wide range of viral pathogens. Structural studies of viruses by means of cryo-electron microscopy and three-dimensional image reconstruction methods have grown explosively in the last decade. Here we review the use of cryo-electron microscopy for the determination of the structures of a number of icosahedral viruses. These studies span more than 20 virus families. Representative examples illustrate the use of moderate- to low-resolution (7- to 35-Å) structural analyses to illuminate functional aspects of viral life cycles including host recognition, viral attachment, entry, genome release, viral transcription, translation, proassembly, maturation, release, and transmission, as well as mechanisms of host defense. The success of cryo-electron microscopy in combination with three-dimensional image reconstruction for icosahedral viruses provides a firm foundation for future explorations of more-complex viral pathogens, including the vast number that are nonspherical or nonsymmetrical. PMID:10585969

  19. 76 FR 32355 - Privacy Act of 1974: New System Of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-06

    ... following data fields: Full name; Social Security number; date of birth; signature; image (photograph..., RETAINING, AND DISPOSING OF RECORDS IN THE SYSTEM: STORAGE: Records are stored in electronic media or in... retrievable by name, Social Security number, other ID number, PIV card serial number, image (photograph), and...

  20. 49 CFR Appendix A to Part 395 - Electronic On-Board Recorder Performance Specifications

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (to home office or wireless service provider). External Sensor Issue NO_ECM no ECM data No sensory information received from vehicle's Engine Control Module (ECM). External Sensor Issue ECM_ID ECM ID number mismatch ECM identification/serial number mismatch (with preprogrammed information). 2. Communications...

  1. For All of Us? A Report on the 12th National Cataloguing Conference, Canberra, 1997.

    ERIC Educational Resources Information Center

    Naun, Chew Chiat

    1997-01-01

    Provides an overview of the 1997 national cataloging conference of the Australian Library and Information Association (ALIA). Topics include innovation and enervation, cataloging skills for electronic documents, the Anglo-American Cataloging Rules, content versus carrier, issues related to seriality, networking, human resource management, career…

  2. Cryo-FIB-SEM serial milling and block face imaging: Large volume structural analysis of biological tissues preserved close to their native state.

    PubMed

    Vidavsky, Netta; Akiva, Anat; Kaplan-Ashiri, Ifat; Rechav, Katya; Addadi, Lia; Weiner, Steve; Schertel, Andreas

    2016-12-01

    Many important biological questions can be addressed by studying in 3D large volumes of intact, cryo fixed hydrated tissues (⩾10,000μm 3 ) at high resolution (5-20nm). This can be achieved using serial FIB milling and block face surface imaging under cryo conditions. Here we demonstrate the unique potential of the cryo-FIB-SEM approach using two extensively studied model systems; sea urchin embryos and the tail fin of zebrafish larvae. We focus in particular on the environment of mineral deposition sites. The cellular organelles, including mitochondria, Golgi, ER, nuclei and nuclear pores are made visible by the image contrast created by differences in surface potential of different biochemical components. Auto segmentation and/or volume rendering of the image stacks and 3D reconstruction of the skeleton and the cellular environment, provides a detailed view of the relative distribution in space of the tissue/cellular components, and thus of their interactions. Simultaneous acquisition of secondary and back-scattered electron images adds additional information. For example, a serial view of the zebrafish tail reveals the presence of electron dense mineral particles inside mitochondrial networks extending more than 20μm in depth in the block. Large volume imaging using cryo FIB SEM, as demonstrated here, can contribute significantly to the understanding of the structures and functions of diverse biological tissues. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Radiation Hardened Electronics for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project consists of a series of tasks designed to develop and mature a broad spectrum of radiation hardened and low temperature electronics technologies. Three approaches are being taken to address radiation hardening: improved material hardness, design techniques to improve radiation tolerance, and software methods to improve radiation tolerance. Within these approaches various technology products are being addressed including Field Programmable Gate Arrays (FPGA), Field Programmable Analog Arrays (FPAA), MEMS Serial Processors, Reconfigurable Processors, and Parallel Processors. In addition to radiation hardening, low temperature extremes are addressed with a focus on material and design approaches.

  4. Dielectric and Impedance Characteristics of Nickel-Modified BiFeO3-BaTiO3 Electronic Compound

    NASA Astrophysics Data System (ADS)

    Das, S. N.; Pardhan, S. K.; Bhuyan, S.; Sahoo, S.; Choudhary, R. N. P.; Goswami, M. N.

    2018-01-01

    The temperature- and field-dependent capacitive, resistive and conducting characteristics of nickel-modified binary electronic systems of bismuth ferrite (BiFeO3) and barium titanate (BaTiO3) have been investigated using dielectric and impedance spectroscopy techniques. The orthorhombic crystal structures of the solid solution (Bi1-2xNixBax)(Fe1-2xTi0.2x)O3 (with x = 0.10, 0.15, 0.20 and 0.25) have been identified from powder x-ray crystallography. The micrographs exhibit the development of dense samples with reduced grain size for higher percentage of Ni in the BiFeO3-BaTiO3. The stoichiometric content of each sample has been realized using the energy dispersive x-ray technique. The relationship between micro-structural study and frequency-temperature-dependent electrical properties of the compound has revealed a negative temperature coefficient of resistance behavior. A non-Debye-type relaxation process is observed from the Niquist plot. The studied compound presents important dielectric properties for the formulation of electronic devices.

  5. Effects of a non-rinse conditioner on the enamel of primary teeth.

    PubMed

    Fava, Marcelo; Myaki, Silvio Issáo; Arana-Chavez, Victor Elias; Fava-de-Moraes, Flavio

    2003-01-01

    The aim of this in vitro study was to evaluate by scanning electron microscopy the morphological aspects of the enamel of primary teeth after etching with 36% phosphoric acid or a non-rinse conditioner. Ten naturally exfoliated anterior primary teeth were selected. The samples were subjected to prophylaxis with pumice paste and water using a low-speed hand piece. Etching was done on the buccal surface. Specimens were divided into 2 groups: G1 (n=10): etching with 36% phosphoric acid gel - Conditioner 36 (Dentsply) for 20 s, followed by water rinse for 15 s; G2 (n=10): etching with NRC - Non Rinse Conditioner (Dentsply) for 20 s, followed by air drying for 15 s. The samples were dehydrated, mounted on metal stubs, coated with gold and observed with Jeol JSM-6100 scanning electron microscope. Electron-micrographic analysis showed that both etching agents were effective for etching the enamel of primary teeth causing the formation of microporosities on the enamel surface, although the etching pattern was more effective with the use of 36% phosphoric acid gel.

  6. Joint denoising and distortion correction of atomic scale scanning transmission electron microscopy images

    NASA Astrophysics Data System (ADS)

    Berkels, Benjamin; Wirth, Benedikt

    2017-09-01

    Nowadays, modern electron microscopes deliver images at atomic scale. The precise atomic structure encodes information about material properties. Thus, an important ingredient in the image analysis is to locate the centers of the atoms shown in micrographs as precisely as possible. Here, we consider scanning transmission electron microscopy (STEM), which acquires data in a rastering pattern, pixel by pixel. Due to this rastering combined with the magnification to atomic scale, movements of the specimen even at the nanometer scale lead to random image distortions that make precise atom localization difficult. Given a series of STEM images, we derive a Bayesian method that jointly estimates the distortion in each image and reconstructs the underlying atomic grid of the material by fitting the atom bumps with suitable bump functions. The resulting highly non-convex minimization problems are solved numerically with a trust region approach. Existence of minimizers and the model behavior for faster and faster rastering are investigated using variational techniques. The performance of the method is finally evaluated on both synthetic and real experimental data.

  7. STEM Tomography Imaging of Hypertrophied Golgi Stacks in Mucilage-Secreting Cells.

    PubMed

    Kang, Byung-Ho

    2016-01-01

    Because of the weak penetrating power of electrons, the signal-to-noise ratio of a transmission electron micrograph (TEM) worsens as section thickness increases. This problem is alleviated by the use of the scanning transmission electron microscopy (STEM). Tomography analyses using STEM of thick sections from yeast and mammalian cells are of higher quality than are bright-field (BF) images. In this study, we compared regular BF tomograms and STEM tomograms from 500-nm thick sections from hypertrophied Golgi stacks of alfalfa root cap cells. Due to their thickness and intense heavy metal staining, BF tomograms of the thick sections suffer from poor contrast and high noise levels. We were able to mitigate these drawbacks by using STEM tomography. When we performed STEM tomography of densely stained chloroplasts of Arabidopsis cotyledon, we observed similar improvements relative to BF tomograms. A longer time is required to collect a STEM tilt series than similar BF TEM images, and dynamic autofocusing required for STEM imaging often fails at high tilt angles. Despite these limitations, STEM tomography is a powerful method for analyzing structures of large or dense organelles of plant cells.

  8. Bright-field electron tomography of individual inorganic fullerene-like structures.

    PubMed

    Bar Sadan, Maya; Wolf, Sharon G; Houben, Lothar

    2010-03-01

    Nanotubes and fullerene-like nanoparticles of various inorganic layered compounds have been studied extensively in recent years. Their characterisation on the atomic scale has proven essential for progress in synthesis as well as for the theoretical modelling of their physical properties. We show that with electron tomography it is possible to achieve a reliable reconstruction of the 3D structure of nested WS(2) or MoS(2) fullerene-like and nanotube structures with sub-nanometre resolution using electron microscopes that are not aberration-corrected. Model-based simulations were used to identify imaging parameters, under which structural features such as the shell structure can be retained in the tomogram reconstructed from bright-field micrographs. The isolation of a particle out of an agglomerate for the analysis of a single structure and its interconnection with other particles is facilitated through the tomograms. The internal structure of the layers within the particle alongside the shape and content of its internal void are reconstructed. The tomographic reconstruction yields insights regarding the growth process as well as structural defects, such as non-continuous layers, which relate to the lubrication properties.

  9. Big Data Analytics for Scanning Transmission Electron Microscopy Ptychography

    NASA Astrophysics Data System (ADS)

    Jesse, S.; Chi, M.; Belianinov, A.; Beekman, C.; Kalinin, S. V.; Borisevich, A. Y.; Lupini, A. R.

    2016-05-01

    Electron microscopy is undergoing a transition; from the model of producing only a few micrographs, through the current state where many images and spectra can be digitally recorded, to a new mode where very large volumes of data (movies, ptychographic and multi-dimensional series) can be rapidly obtained. Here, we discuss the application of so-called “big-data” methods to high dimensional microscopy data, using unsupervised multivariate statistical techniques, in order to explore salient image features in a specific example of BiFeO3 domains. Remarkably, k-means clustering reveals domain differentiation despite the fact that the algorithm is purely statistical in nature and does not require any prior information regarding the material, any coexisting phases, or any differentiating structures. While this is a somewhat trivial case, this example signifies the extraction of useful physical and structural information without any prior bias regarding the sample or the instrumental modality. Further interpretation of these types of results may still require human intervention. However, the open nature of this algorithm and its wide availability, enable broad collaborations and exploratory work necessary to enable efficient data analysis in electron microscopy.

  10. Electron Microscopic Observations of Rabbit Antibodies.

    PubMed

    Hall, C E; Nisonoff, A; Slayter, H S

    1959-12-01

    Electron micrographs were obtained showing the individual, shadow-cast macromolecules from solutions of purified anti-p-azobenzoate rabbit antibody and of normal gamma-globulin. The two materials look alike and consist mainly of asymmetrical rod-like particles about 30 to 40 A in diameter. Lengths are not constant but the weight average is about 250 A for the antibodies and about 200 A for the gamma-globulin. The average observed dimensions are reasonably consistent with values deduced from physical-chemical methods, although the shape is more nearly that of a cylindrical rod rather than the ellipsoid employed in hydrodynamical theory. Mixtures of antibody and specific dihaptenic dye were examined in attempts to establish the mode of the specific aggregation. At the high dilutions necessary for electron microscopy (0.1 mg./ml.), the effect of the dye was small and tended to be masked by non-specific aggregation on drying. The evidence suggests that under these conditions the specific reaction involves an end-to-end aggregation of the elementary particles to produce a weight average length about twice that of the pure antibody.

  11. Molecular architecture of the yeast Mediator complex

    PubMed Central

    Robinson, Philip J; Trnka, Michael J; Pellarin, Riccardo; Greenberg, Charles H; Bushnell, David A; Davis, Ralph; Burlingame, Alma L; Sali, Andrej; Kornberg, Roger D

    2015-01-01

    The 21-subunit Mediator complex transduces regulatory information from enhancers to promoters, and performs an essential role in the initiation of transcription in all eukaryotes. Structural information on two-thirds of the complex has been limited to coarse subunit mapping onto 2-D images from electron micrographs. We have performed chemical cross-linking and mass spectrometry, and combined the results with information from X-ray crystallography, homology modeling, and cryo-electron microscopy by an integrative modeling approach to determine a 3-D model of the entire Mediator complex. The approach is validated by the use of X-ray crystal structures as internal controls and by consistency with previous results from electron microscopy and yeast two-hybrid screens. The model shows the locations and orientations of all Mediator subunits, as well as subunit interfaces and some secondary structural elements. Segments of 20–40 amino acid residues are placed with an average precision of 20 Å. The model reveals roles of individual subunits in the organization of the complex. DOI: http://dx.doi.org/10.7554/eLife.08719.001 PMID:26402457

  12. AlGaAs/InGaAs/AlGaAs double pulse doped pseudomorphic high electron mobility transistor structures on InGaAs substrates

    NASA Astrophysics Data System (ADS)

    Hoke, W. E.; Lyman, P. S.; Mosca, J. J.; McTaggart, R. A.; Lemonias, P. J.; Beaudoin, R. M.; Torabi, A.; Bonner, W. A.; Lent, B.; Chou, L.-J.; Hsieh, K. C.

    1997-10-01

    Double pulse doped AlGaAs/InGaAs/AlGaAs pseudomorphic high electron mobility transistor (PHEMT) structures have been grown on InxGa1-xAs (x=0.025-0.07) substrates using molecular beam epitaxy. A strain compensated, AlGaInAs/GaAs superlattice was used for improved resistivity and breakdown. Excellent electrical and optical properties were obtained for 110-Å-thick InGaAs channel layers with indium concentrations up to 31%. A room temperature mobility of 6860 cm2/V s with 77 K sheet density of 4.0×1012cm-2 was achieved. The InGaAs channel photoluminescence intensity was equivalent to an analogous structure on a GaAs substrate. To reduce strain PHEMT structures with a composite InGaP/AlGaAs Schottky layer were also grown. The structures also exhibited excellent electrical and optical properties. Transmission electron micrographs showed planar channel interfaces for highly strained In0.30Ga0.70As channel layers.

  13. Microstructural Evolution of Secondary Phases in the Cast Duplex Stainless Steels CD3MN and CD3MWCuN

    NASA Astrophysics Data System (ADS)

    Kim, Yoon-Jun; Ugurlu, Ozan; Jiang, Chao; Gleeson, Brian; Chumbley, L. Scott

    2007-02-01

    The isothermal formation behavior of secondary phases in two types of duplex stainless steels (DSS), CD3MN and CD3MWCuN, was characterized. Samples were heat treated from 1 minute to 30 days at temperatures from 700°C to 900°C. Small carbide (M23C6) and nitride (Cr2N) precipitates, together with the intermetallic phases sigma and chi, were observed using scanning electron microscopy (SEM) and confirmed by transmission electron microscopy (TEM) analyses. Based on SEM analysis, time-temperature-transformation (TTT) curves for the sigma and chi phases were determined by measuring their volume fractions from backscattered electron micrographs of heat-treated and quenched sample cross sections. Resulting TTT curves showed that the maximum formation temperature for chi is lower than that for sigma, while the time to reach 1 vol pct formation is much less for sigma than it is for chi. The thermodynamic driving forces associated with the sigma and chi formation were assessed using Thermo-Calc.

  14. Effects of carbon dioxide, Nd:YAG and carbon dioxide-Nd:YAG combination lasers at high energy densities on synthetic hydroxyaptite.

    PubMed

    Meurman, J H; Voegel, J C; Rauhamaa-Mäkinen, R; Gasser, P; Thomann, J M; Hemmerle, J; Luomanen, M; Paunio, I; Frank, R M

    1992-01-01

    The aim of this study was to determine the crystalline structure and chemical alterations of synthetic hydroxyapatite after irradiation with either CO2, Nd:YAG or CO2-Nd:YAG combination lasers at high energy densities of 500-3,230 J.cm2. Further, dissolution kinetics of the lased material were analysed and compared with those of unlased apatite. Electron microscopy showed that the lased material consisted of two kinds of crystals. From the micrographs their diameters varied from 600 to 1,200 A and from 3,000 to 6,000 A, respectively. The larger crystals showed 6.9-Angström periodic lattice fringes in the transmission electron microscope. alpha-Tricalcium phosphate (TCP) was identified by X-ray diffraction. Selective-area electron diffraction identified the large crystals to consist of tricalcium phosphate while the smaller crystals were probably hydroxyapatite. Assays of dissolution kinetics showed that at these high energy densities lased material dissolved more rapidly than unlased synthetic hydroxyapatite due to the higher solubility of TCP.

  15. Metallic glass coating on metals plate by adjusted explosive welding technique

    NASA Astrophysics Data System (ADS)

    Liu, W. D.; Liu, K. X.; Chen, Q. Y.; Wang, J. T.; Yan, H. H.; Li, X. J.

    2009-09-01

    Using an adjusted explosive welding technique, an aluminum plate has been coated by a Fe-based metallic glass foil in this work. Scanning electronic micrographs reveal a defect-free metallurgical bonding between the Fe-based metallic glass foil and the aluminum plate. Experimental evidence indicates that the Fe-based metallic glass foil almost retains its amorphous state and mechanical properties after the explosive welding process. Additionally, the detailed explosive welding process has been simulated by a self-developed hydro-code and the bonding mechanism has been investigated by numerical analysis. The successful welding between the Fe-based metallic glass foil and the aluminum plate provides a new way to obtain amorphous coating on general metal substrates.

  16. Burnaia Miller, 2001 (Gastropoda, Heterobranchia, Nudibranchia): a facelinid genus with an Aeolidiidae's outward appearance

    NASA Astrophysics Data System (ADS)

    Carmona, Leila; Pola, Marta; Gosliner, Terrence M.; Cervera, Juan Lucas

    2015-09-01

    In recent years, several morphological and molecular analyses have been undertaken to study the phylogenetic systematics of Aeolidiidae members. The monospecific genus Burnaia could not be included in the previous analysis, due to the lack of material. This study includes two specimens of Burnaia helicochorda from Australia and places them in their systematic position using two mitochondrial and one nuclear genes (COI and 16S, and H3, respectively). A description of its anatomy is also included with colour pictures of the animal and scanning electron micrographs of radula and jaws. Based on our results, B. helicochorda does not belong to Aeolidiidae since it appears nested among some facelinids.

  17. Robust estimation for class averaging in cryo-EM Single Particle Reconstruction.

    PubMed

    Huang, Chenxi; Tagare, Hemant D

    2014-01-01

    Single Particle Reconstruction (SPR) for Cryogenic Electron Microscopy (cryo-EM) aligns and averages the images extracted from micrographs to improve the Signal-to-Noise ratio (SNR). Outliers compromise the fidelity of the averaging. We propose a robust cross-correlation-like w-estimator for combating the effect of outliers on the average images in cryo-EM. The estimator accounts for the natural variation of signal contrast among the images and eliminates the need for a threshold for outlier rejection. We show that the influence function of our estimator is asymptotically bounded. Evaluations of the estimator on simulated and real cryo-EM images show good performance in the presence of outliers.

  18. Method for producing carbon nanotubes

    DOEpatents

    Phillips, Jonathan [Santa Fe, NM; Perry, William L [Jemez Springs, NM; Chen, Chun-Ku [Albuquerque, NM

    2006-02-14

    Method for producing carbon nanotubes. Carbon nanotubes were prepared using a low power, atmospheric pressure, microwave-generated plasma torch system. After generating carbon monoxide microwave plasma, a flow of carbon monoxide was directed first through a bed of metal particles/glass beads and then along the outer surface of a ceramic tube located in the plasma. As a flow of argon was introduced into the plasma through the ceramic tube, ropes of entangled carbon nanotubes, attached to the surface of the tube, were produced. Of these, longer ropes formed on the surface portion of the tube located in the center of the plasma. Transmission electron micrographs of individual nanotubes revealed that many were single-walled.

  19. Heteroepitaxial growth of Cd(1-x)Mn(x)Te on GaAs by metalorganic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Nouhi, Akbar; Stirn, Richard J.

    1987-01-01

    In this letter, preliminary results are reported of heteroepitaxial growth of the dilute magnetic semiconductor alloy Cd(1-x)Mn(x)Te on GaAs by metalorganic chemical vapor deposition. Dimethylcadmium (DMCd), diethyltellurium (DETe), and tricarbonyl (methylcyclopentadienyl) manganese (TCPMn) were used as source materials. The TCPMn had to be heated to as high as 140 C to provide the required vapor pressure. Films with Mn atomic fractions up to 30 percent have been grown over the temperature range 410-450 C. Results of optical absorption/transmission, photoluminescence, and X-ray diffraction measurements are presented along with a scanning electron micrograph showing good surface morphology of the grown layers.

  20. Isolation of Autolysosomes from Tobacco BY-2 Cells.

    PubMed

    Takatsuka, Chihiro; Inoue-Aono, Yuko; Moriyasu, Yuji

    2017-01-01

    Autolysosomes are organelles that sequester and degrade a portion of the cytoplasm during autophagy. Although autophagosomes are short lived compared to other organelles such as mitochondria, plastids, and peroxisomes, many autolysosomes accumulate in tobacco BY-2 cells cultured under sucrose starvation conditions in the presence of a cysteine protease inhibitor. We here describe our methodology for isolating autolysosomes from BY-2 cells by conventional cell fractionation using a Percoll gradient. The autolysosome fraction separates clearly from fractions containing mitochondria and peroxisomes. It contains acid phosphatase, vacuolar H + -ATPase, and protease activity. Electron micrographs show that the fraction contains partially degraded cytoplasm seen in autolysosomes before isolation although an autolysosome structure is only partially preserved.

  1. Challenge of Near-Field Recording beyond 50.4 Gbit/in2

    NASA Astrophysics Data System (ADS)

    Kishima, Koichiro; Ichimura, Isao; Saito, Kimihiro; Yamamoto, Kenji; Kuroda, Yuji; Iida, Atsushi; Masuhara, Shin; Osato, Kiyoshi

    2002-03-01

    The possibility of an areal density over 50 Gbit/in2 was examined in near-field phase-change recording. The disk structure was optimized to maximize readout signals under the land-and-groove recording condition at a tracking pitch of 160 nm. We also evaluated the signal crosstalk from adjacent tracks. Eye diagrams of 50.4 Gbit/in2 areal density were demonstrated using 1.5 \\mathit{NA} optics and a GaN laser diode. The track pitch and linear bit density are 160 nm and 80 nm/bit, respectively. The transmission electron microscope (TEM) micrograph of recorded amorphous marks at an areal density of 50.4 Gbit/in2 is also presented.

  2. Fabrication of high-k dielectric Calcium Copper Titanate (CCTO) target by solid state route

    NASA Astrophysics Data System (ADS)

    Tripathy, N.; Das, K. C.; Ghosh, S. P.; Bose, G.; Kar, J. P.

    2016-02-01

    CaCu3Ti4O12 (CCTO) ceramic pellet of 10mm diameter has been synthesized by adopting solid state route. The structural and morphological characterization of the ceramics sample was carried out by X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. XRD pattern revealed the CCTO phase formation, where as SEM micrograph shows the sample consisting of well defined grain and grain boundaries. The room temperature dielectric constant of the sample was found to be ∼ 5000 at 1kHz. After successful preparation of CCTO pellet, a 2 inch diameter CCTO sputtering target is also fabricated in order to deposit CCTO thin films for microelectronic applications.

  3. Image enhancement by holography.

    NASA Technical Reports Server (NTRS)

    Stroke, G. W.

    1973-01-01

    The speed of the holographic image deblurring method has recently been further enhanced by a new speed in the realization of the powerful holographic image-deblurring filter. The filter makes it possible to carry out the deblurring, in the optical computer used, in times of the order of one second. The experimental achievements using the holographic image-enhancement method are illustrated with examples ranging from out-of-focus or motion-blurred photographs, including 'amateur' photos recorded on Polaroid film, to the sharpening of the best available electron micrographs of viruses. Images recorded with X-rays, notably from rocket-borne photos of the sun, and out-of-focus photographs from cameras in NASA satellites have been similarly deblurred.

  4. Structural and electrical properties of In-implanted Ge

    DOE PAGES

    Feng, R.; Kremer, F.; Sprouster, D. J.; ...

    2015-10-22

    Here, we report on the effects of dopant concentration on the structural and electrical properties of In-implanted Ge. For In concentrations of ≤ 0.2 at. %, extended x-ray absorption fine structure and x-ray absorption near-edge structure measurements demonstrate that all In atoms occupy a substitutional lattice site while metallic In precipitates are apparent in transmission electron micrographs for In concentrations ≥0.6 at. %. Evidence of the formation of In-vacancy complexes deduced from extended x-ray absorption fine structure measurements is complimented by density functional theory simulations. Hall effect measurements of the conductivity, carrier density, and carrier mobility are then correlated withmore » the substitutional In fraction.« less

  5. Creation of hydrophobic surfaces using a paint containing functionalized oxide particles

    NASA Astrophysics Data System (ADS)

    Sino, Paul Albert L.; Herrera, Marvin U.; Balela, Mary Donnabelle L.

    2017-05-01

    Hydrophobic surfaces were created by coating various substrates (aluminum sheet, soda-lime glass, silicon carbide polishing paper, glass with double-sided adhesive) with paint containing functionalized oxide particles. The paint was created by functionalizing oxide particles (ground ZnO, TiO2 nanoparticles, or TiO2 microparticles) with fluorosilane molecules in absolute ethanol. Water contact angle of samples shows that the coated substrate becomes hydrophobic (water contact angle ≥ 90°). Among the oxides that were used, ground ZnO yielded contact angle exemplifying superhydrophobicity (water contact angle ≥ 150°). Scanning electron micrograph of paint-containing TiO2 nanoparticles shows rough functionalized oxides structures which probably increase the hydrophobicity of the surface.

  6. Focused ion beam and field-emission microscopy of metallic filaments in memory devices based on thin films of an ambipolar organic compound consisting of oxadiazole, carbazole, and fluorene units

    USGS Publications Warehouse

    Pearson, Christopher; Bowen, Leon; Lee, Myung Won; Fisher, Alison L.; Linton, Katherine E.; Bryce, Martin R.; Petty, Michael C.

    2013-01-01

    We report on the mechanism of operation of organic thin film resistive memory architectures based on an ambipolar compound consisting of oxadiazole, carbazole, and fluorene units. Cross-sections of the devices have been imaged by electron microscopy both before and after applying a voltage. The micrographs reveal the growth of filaments, with diameters of 50 nm–100 nm, on the metal cathode. We suggest that these are formed by the drift of aluminium ions from the anode and are responsible for the observed switching and negative differential resistance phenomena in the memory devices.

  7. Degradation of pentachlorophenol by polyurethane-immobilized Flavobacterium cells.

    PubMed Central

    O'Reilly, K T; Crawford, R L

    1989-01-01

    Polyurethane-immobilized Flavobacterium cells (ATCC 39723) degraded pentachlorophenol (PCP) at initial concentrations as high as 300 mg liter-1. The reversible binding of PCP to the polyurethane was shown to be important in the protection of the cells from inhibition of PCP degradation. The degradation activity of the bacteria was monitored for 150 days in semicontinuous batch reactors. The degradation rate dropped by about 0.6% per day. PCP was degraded in a continuous-culture bioreactor at a rate of 3.5 to 4 mg g of foam-1 day-1 for 25 days. Electron micrographs of the polyurethane suggested that the cells were entrapped within 50- to 500-microns-diameter pockets in the foam. PMID:2508552

  8. Fabrication of highly dense SiN4 ceramics without additives by high pressure sintering

    NASA Technical Reports Server (NTRS)

    Takatori, K.; Shimade, M.; Koizumi, M.

    1984-01-01

    Silicon nitride (Si3N4) is one of candidate materials for the engineering ceramics which is used at high temperatures. The mechanical strengths of hot pressed or sintered Si2N4 ceramics containing some amount of additives, however, are deteriorated at elevated temperatures. To improve the high temperature strength of Si3N4 ceramics, an attempt to consolidate Si3N4 without additives was made by high pressure sintering technique. Scanning electron micrographs of fracture surfaces of the sintered bodies showed the bodies had finely grained and fully self-bonded sintered bodies were 310N sq m at room temperature and 174N/sq m at 1200 C.

  9. The Arsenic Cycle in Searles Lake, California: An Arsenic-Rich, Salt-Saturated Soda Lake. II. Isolation of Arsenic-Metabolizing Microbes.

    NASA Astrophysics Data System (ADS)

    Switzer Blum, J.; Hoeft, S. E.; Stolz, J. F.; Langley, S.; Beveridge, T. J.; Kulp, T. R.; Oremland, R. S.

    2004-12-01

    The motivation for isolating arsenic-metabolizing prokaryotes from Searles Lake was to characterize the physiology of microbes that can cope simultaneously with at least 3 environmental extremes: saturating salt concentration, high pH, and high dissolved inorganic arsenic. A secondary motivation was to find extremely halophilc Archaea that could respire As(V), as this has only been reported for the Crenarchaea. Enrichment cultures of arsenate [As(V)]-respirers were established by inoculating Searles Lake mud into an anaerobic, alkaline (pH = 9.8) artificial medium containing 346 g/L dissolved salts, with lactate as the electron donor and As(V) as the electron acceptor. After about 6 months of bi-weekly transfers, the enrichment was purified by serial dilution, with the highest growth-positive dilution tube exhibiting motile cells having uniform morphology (curved rods). This culture, strain SLAS-1, grew by oxidizing lactate to acetate plus carbon dioxide while reducing As(V) to arsenite [As(III)]. The doubling time was 48 hours at 346 g/L salinity, and nearly equivalent growth rates were observed over a salinity range of 200 to 346 g/l, with no growth evident below 200 g/L. The pH range was 8.5 to 10, with an optimum at 9.5. Strain SLAS-1 has an unusual motility that can be characterized as a "fish-like" swimming motion. Thin section electron micrographs revealed the presence of an internal cytoplasmic filament that runs the full length of the microorganism. We suggest that this filament may be involved in cellular motility. However, taxonomic classification of SLAS-1 made by 16S rRNA gene sequences aligned it in the order Haloanaerobacteriales of the Domain Bacteria. In a further effort to isolate haloalkaliphilic Archaea, a similar enrichment strategy was employed as above, but cell-wall antibiotics were added to the medium to discourage the growth of Bacteria. An enrichment culture, designated Serl-Ab, was established that oxidized lactate to acetate plus carbon dioxide. Preliminary evidence suggests that the culture consists of a lactate-oxidizing sulfate-reducer growing in synthrophy with a chemoautotrophic, sulfide-oxidizing As(V)-respirer. Terminal restriction length polymorphism analysis has indicated the presence of both bacterial and archaeal components in the Serl-Ab enrichment, although it is not yet known which is responsible for the observed As(V)-reduction and sulfate-reduction. Efforts are ongoing to resolve Serl-Ab by using classical isolation procedures for a heterotrophic sulfate reducer and an autotrophic As(V)-respirer. In addition, new efforts are being undertaken to isolate hydrogen-oxidizing As(V)-respirers, as well as aerobic As(III)-oxidizers from the extreme environment of Searles Lake.

  10. Some personal and historical notes on the utility of "deep-etch" electron microscopy for making cell structure/function correlations.

    PubMed

    Heuser, John E

    2014-11-01

    This brief essay talks up the advantages of metal replicas for electron microscopy and explains why they are still the best way to image frozen cells in the electron microscope. Then it explains our approach to freezing, namely the Van Harreveld trick of "slamming" living cells onto a supercold block of metal sprayed with liquid helium at -269ºC, and further talks up this slamming over the alternative of high-pressure freezing, which is much trickier but enjoys greater favor at the moment. This leads me to bemoan the fact that there are not more young investigators today who want to get their hands on electron microscopes and use our approach to get the most "true to life" views of cells out of them with a minimum of hassle. Finally, it ends with a few perspectives on my own career and concludes that, personally, I'm permanently stuck with the view of the "founding fathers" that cell ultrastructure will ultimately display and explain all of cell function, or as Palade said in his Nobel lecture,electron micrographs are "irresistible and half transparent … their meaning buried under only a few years of work," and "reasonable working hypotheses are already suggested by the ultrastructural organization itself." © 2014 Heuser.

  11. Applications for Micrographics in Large Scale Information Systems of the Future. Volume I: Part I. Summary. Part II. Five-Year Plan for DDC Micrographic Development Actions.

    ERIC Educational Resources Information Center

    Information Dynamics Corp., Reading, MA.

    A study intended to provide the Defense Documentation Center (DDC) with a five-year plan for the development of improved and new microfiche products, services, and production capabilities is summarized in this report. In addition, the major findings, conclusions, and recommendations developed during the study are noted. The results of the research…

  12. Application of fractal and grey level co-occurrence matrix analysis in evaluation of brain corpus callosum and cingulum architecture.

    PubMed

    Pantic, Igor; Dacic, Sanja; Brkic, Predrag; Lavrnja, Irena; Pantic, Senka; Jovanovic, Tomislav; Pekovic, Sanja

    2014-10-01

    This aim of this study was to assess the discriminatory value of fractal and grey level co-occurrence matrix (GLCM) analysis methods in standard microscopy analysis of two histologically similar brain white mass regions that have different nerve fiber orientation. A total of 160 digital micrographs of thionine-stained rat brain white mass were acquired using a Pro-MicroScan DEM-200 instrument. Eighty micrographs from the anterior corpus callosum and eighty from the anterior cingulum areas of the brain were analyzed. The micrographs were evaluated using the National Institutes of Health ImageJ software and its plugins. For each micrograph, seven parameters were calculated: angular second moment, inverse difference moment, GLCM contrast, GLCM correlation, GLCM variance, fractal dimension, and lacunarity. Using the Receiver operating characteristic analysis, the highest discriminatory value was determined for inverse difference moment (IDM) (area under the receiver operating characteristic (ROC) curve equaled 0.925, and for the criterion IDM≤0.610 the sensitivity and specificity were 82.5 and 87.5%, respectively). Most of the other parameters also showed good sensitivity and specificity. The results indicate that GLCM and fractal analysis methods, when applied together in brain histology analysis, are highly capable of discriminating white mass structures that have different axonal orientation.

  13. Assessment of microcrystal quality by transmission electron microscopy for efficient serial femtosecond crystallography.

    PubMed

    Barnes, Christopher O; Kovaleva, Elena G; Fu, Xiaofeng; Stevenson, Hilary P; Brewster, Aaron S; DePonte, Daniel P; Baxter, Elizabeth L; Cohen, Aina E; Calero, Guillermo

    2016-07-15

    Serial femtosecond crystallography (SFX) employing high-intensity X-ray free-electron laser (XFEL) sources has enabled structural studies on microcrystalline protein samples at non-cryogenic temperatures. However, the identification and optimization of conditions that produce well diffracting microcrystals remains an experimental challenge. Here, we report parallel SFX and transmission electron microscopy (TEM) experiments using fragmented microcrystals of wild type (WT) homoprotocatechuate 2,3-dioxygenase (HPCD) and an active site variant (H200Q). Despite identical crystallization conditions and morphology, as well as similar crystal size and density, the indexing efficiency of the diffraction data collected using the H200Q variant sample was over 7-fold higher compared to the diffraction results obtained using the WT sample. TEM analysis revealed an abundance of protein aggregates, crystal conglomerates and a smaller population of highly ordered lattices in the WT sample as compared to the H200Q variant sample. While not reported herein, the 1.75 Å resolution structure of the H200Q variant was determined from ∼16 min of beam time, demonstrating the utility of TEM analysis in evaluating sample monodispersity and lattice quality, parameters critical to the efficiency of SFX experiments. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. From 2D slices to 3D volumes: image based reconstruction and morphological characterization of hippocampal cells on charged and uncharged surfaces using FIB/SEM serial sectioning.

    PubMed

    Schmidt, Franziska; Kühbacher, Markus; Gross, Ulrich; Kyriakopoulos, Antonius; Schubert, Helmut; Zehbe, Rolf

    2011-03-01

    3D imaging at a subcellular resolution is a powerful tool in the life sciences to investigate cells and their interactions with native tissues or artificial objects. While a tomographic experimental setup achieving a sufficient structural resolution can be established with either X-rays or electrons, the use of electrons is usually limited to very thin samples in transmission electron microscopy due to the poor penetration depths of electrons. The combination of a serial sectioning approach and scanning electron microscopy in state of the art dual beam experimental setups therefore offers a means to image highly resolved spatial details using a focused ion beam for slicing and an electron beam for imaging. The advantage of this technique over X-ray μCT or X-ray microscopy attributes to the fact that absorption is not a limiting factor in imaging and therefore even strong absorbing structures can be spatially reconstructed with a much higher possible resolution. This approach was used in this study to elucidate the effect of an electric potential on the morphology of cells from a hippocampal cell line (HT22) deposited on gold microelectrodes. While cells cultivated on two different controls (gold and polymer substrates) did show the expected stretched morphology, cells on both the anode and the cathode differed significantly. Cells deposited on the anode part of the electrode exhibited the most extreme deviation, being almost spherical and showed signs of chromatin condensation possibly indicating cell death. Furthermore, EDX was used as supplemental methodology for combined chemical and structural analyses. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. High-pressure freezing and freeze substitution of Arabidopsis for electron microscopy.

    PubMed

    Austin, Jotham R

    2014-01-01

    The objectives of electron microscopy ultrastructural studies are to examine cellular architecture and relate the cell's structural machinery to dynamic functional roles. This aspiration is difficult to achieve if specimens have not been adequately preserved in a "living state"; hence specimen preparation is of the utmost importance for the success of any electron micrographic study. High-pressure freezing (HPF)/freeze substitution (FS) has long been recognized as the primer technique for the preservation of ultrastructure in biological samples. In most cases a basic HPF/freeze substitution protocol is sufficient to obtain superior ultrastructural preservation and structural contrast, which allows one to use more advanced microscopy techniques such as 3D electron tomography. However, for plant tissues, which have a thick cell wall, large water-filled vacuoles, and air spaces (all of which are detrimental to cryopreservation), these basic HPF/FS protocols often yield undesirable results. In particular, ice crystal artifacts and the staining of membrane systems are often poorly or negatively stained, which make 3D segmentation of a tomogram difficult. To overcome these problems, various aspects of the HPF/FS protocol can be altered, including the cryo-filler(s) used, freeze substitution cocktail, and the resin infiltration process. This chapter will describe these modifications for the preparation of plant tissues for routine electron microscopic studies, immunocytochemistry, and 3D tomographic electron imaging.

  16. 3-D Reconstruction of Macular Type II Cell Innervation Patterns in Space-Flight and Control Rats

    NASA Technical Reports Server (NTRS)

    Ross, Muriel Dorothy; Montgomery, K.; Linton, S.; Cheng, R.; Tomko, David L. (Technical Monitor)

    1995-01-01

    A semiautomated method for reconstructing objects from serial thin sections has been developed in the Biocomputation Center. The method is being used to completely, for the first time, type II hair cells and their innervations. The purposes are to learn more about the fundamental circuitry of the macula on Earth and to determine whether changes in connectivities occur under space flight conditions. Data captured directly from a transmission electron microscope via a video camera are sent to a graphics workstation. There, the digitized micrographs are mosaicked into sections and contours are traced, registered and displayed by semiautomated methods. Current reconstructions are of type II cells from the medial part of rat maculas collected in-flight on the Space Life Sciences-2 mission, 4.5 hrs post-flight, and from a ground control. Results show that typical type II cells receive processes from tip to six nearby calyces or afferents. Nearly all processes are elongated and have bouton-like enlargements; some have numerous vesicles. Multiple (2 to 4) processes from a single calyx to a type II cell are common, and approximately 1/3 of the processes innervale 2 or 3 type II cells or a neighboring cluster. From 2% to 6% of the cells resemble type I cells morphologically but have demi-calyces. Thus far, increments in synaptic number in type II cells of flight rats are prominent along processes that supply two hair cells. It is clear that reconstruction methods provide insights into details of macular circuitry not obtainable by other techniques. The results demonstrate a morphological basis for interactions between adjacent receptive fields through feed back-feed forward connections, and for dynamic alterations in receptive field range and activity during preprocessing of linear acceleratory information by the maculas. The reconstruction method we have developed will find further applications in the study of the details of neuronal architecture of more complex systems, to seek out shared organizational properties or neuronal networks and to understand better localization of synaptic changes in altered environments.

  17. Using high resolution computed tomography to visualize the three dimensional structure and function of plant vasculature.

    PubMed

    McElrone, Andrew J; Choat, Brendan; Parkinson, Dilworth Y; MacDowell, Alastair A; Brodersen, Craig R

    2013-04-05

    High resolution x-ray computed tomography (HRCT) is a non-destructive diagnostic imaging technique with sub-micron resolution capability that is now being used to evaluate the structure and function of plant xylem network in three dimensions (3D) (e.g. Brodersen et al. 2010; 2011; 2012a,b). HRCT imaging is based on the same principles as medical CT systems, but a high intensity synchrotron x-ray source results in higher spatial resolution and decreased image acquisition time. Here, we demonstrate in detail how synchrotron-based HRCT (performed at the Advanced Light Source-LBNL Berkeley, CA, USA) in combination with Avizo software (VSG Inc., Burlington, MA, USA) is being used to explore plant xylem in excised tissue and living plants. This new imaging tool allows users to move beyond traditional static, 2D light or electron micrographs and study samples using virtual serial sections in any plane. An infinite number of slices in any orientation can be made on the same sample, a feature that is physically impossible using traditional microscopy methods. Results demonstrate that HRCT can be applied to both herbaceous and woody plant species, and a range of plant organs (i.e. leaves, petioles, stems, trunks, roots). Figures presented here help demonstrate both a range of representative plant vascular anatomy and the type of detail extracted from HRCT datasets, including scans for coast redwood (Sequoia sempervirens), walnut (Juglans spp.), oak (Quercus spp.), and maple (Acer spp.) tree saplings to sunflowers (Helianthus annuus), grapevines (Vitis spp.), and ferns (Pteridium aquilinum and Woodwardia fimbriata). Excised and dried samples from woody species are easiest to scan and typically yield the best images. However, recent improvements (i.e. more rapid scans and sample stabilization) have made it possible to use this visualization technique on green tissues (e.g. petioles) and in living plants. On occasion some shrinkage of hydrated green plant tissues will cause images to blur and methods to avoid these issues are described. These recent advances with HRCT provide promising new insights into plant vascular function.

  18. Using High Resolution Computed Tomography to Visualize the Three Dimensional Structure and Function of Plant Vasculature

    PubMed Central

    McElrone, Andrew J.; Choat, Brendan; Parkinson, Dilworth Y.; MacDowell, Alastair A.; Brodersen, Craig R.

    2013-01-01

    High resolution x-ray computed tomography (HRCT) is a non-destructive diagnostic imaging technique with sub-micron resolution capability that is now being used to evaluate the structure and function of plant xylem network in three dimensions (3D) (e.g. Brodersen et al. 2010; 2011; 2012a,b). HRCT imaging is based on the same principles as medical CT systems, but a high intensity synchrotron x-ray source results in higher spatial resolution and decreased image acquisition time. Here, we demonstrate in detail how synchrotron-based HRCT (performed at the Advanced Light Source-LBNL Berkeley, CA, USA) in combination with Avizo software (VSG Inc., Burlington, MA, USA) is being used to explore plant xylem in excised tissue and living plants. This new imaging tool allows users to move beyond traditional static, 2D light or electron micrographs and study samples using virtual serial sections in any plane. An infinite number of slices in any orientation can be made on the same sample, a feature that is physically impossible using traditional microscopy methods. Results demonstrate that HRCT can be applied to both herbaceous and woody plant species, and a range of plant organs (i.e. leaves, petioles, stems, trunks, roots). Figures presented here help demonstrate both a range of representative plant vascular anatomy and the type of detail extracted from HRCT datasets, including scans for coast redwood (Sequoia sempervirens), walnut (Juglans spp.), oak (Quercus spp.), and maple (Acer spp.) tree saplings to sunflowers (Helianthus annuus), grapevines (Vitis spp.), and ferns (Pteridium aquilinum and Woodwardia fimbriata). Excised and dried samples from woody species are easiest to scan and typically yield the best images. However, recent improvements (i.e. more rapid scans and sample stabilization) have made it possible to use this visualization technique on green tissues (e.g. petioles) and in living plants. On occasion some shrinkage of hydrated green plant tissues will cause images to blur and methods to avoid these issues are described. These recent advances with HRCT provide promising new insights into plant vascular function. PMID:23609036

  19. Studies on the plasma membrane H sup + -ATPase of oat roots: Preparation and assay, cytological localization, and sulfhydryl chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, D.B.

    1989-01-01

    Biochemical and cytological studies were performed on the plasma membrane proton pump (H{sup +}-ATPase) of oat roots (Avena sativa cv. Stout). H{sup +}-ATPase activity in oat root plasma membranes is inhibited by N-ethylmaleimide (NEM), a covalent modifier of protein sulfhydryl groups. The rate of inhibition is reduced in the presence of ADP or MgADP. An M{sub r} = 100,000 plasma membrane polypeptide showed reduced labelling by ({sup 3}H)NEM in the presence of ADP. When tryptic peptides from ({sup 3}H)NEM-labeled M{sub r} = 100,000 polypeptide were separated by reverse-phase high-pressure liquid chromatography (HPLC), only one radioactive peak consistently showed labeling inmore » the presence of ADP. In order to determine the location and identity of the NEM-reactive residue, the radioactive peptide in this peak was further purified by HPLC. The amino acid sequence(s) in the resulting sample were then determined by Edman degradation on an automated gas-phase sequenator. The PTH-amino acids released at each cycle of the degradation were separated by HPLC. Analysis of the chromatograms suggested that the radio-labeled residue was located in a peptide of sequence V-E-N-Q-D-A-I-D-A-C{sup *}-M-V-G-M-L-A-D-P-K. The NEM-reactive residue was cysteine, based on the retention time of the radioactivity released. The ATP-hydrolyzing activity observed in electron micrographs by lead-precipitation of enzymically released inorganic phosphate was compared with that observed in in vitro assays of the soluble and plasma membrane fractions of oat root homogenates. Although an ATP-hydrolyzing activity was observed on the plasma membrane in the electron micrographs, its substrate specificity and inhibitor sensitivity was identical to that observed for phosphatase activity.« less

  20. A Proposal for the Consolidation of Dermatology Services of Walter Reed Army Medical Center and the National Naval Medical Center

    DTIC Science & Technology

    1999-08-01

    This includes the treatment of common skin conditions such as acne, dermatitis, psoriasis, vitiligo or alopecia to the more complex laser surgeries and...Phototherapy, Laser Surgery, Pediatric Dermatology, HIV Dermatology, Patch Testing, MOHS Micrographic Surgery, and Dermatologic Surgery. The entire...Dermatology Service is located on the first floor of the hospital. Minor surgical and MOHS Micrographic Surgery, ultraviolet treatment, and laser surgery

  1. Fixed Target combined with Spectral Mapping: Approaching 100% Hit Rates for Serial Crystallography

    PubMed Central

    Pare-Labrosse, Olivier; Kuo, Anling; Marx, Alexander; Epp, Sascha W.; Sherrell, Darren A.; Eger, Bryan T.; Zhong, Yinpeng; Loch, Rolf; Mariani, Valerio; Alonso-Mori, Roberto; Nelson, Silke; Lemke, Henrik T.; Owen, Robin L.; Pearson, Arwen R.; Stuart, David I.; Ernst, Oliver P.; Mueller-Werkmeister, Henrike M.; Miller, R. J. Dwayne

    2018-01-01

    The advent of ultrafast highly brilliant coherent X-ray Free Electron Laser sources has driven the development of novel structure determination approaches for proteins, and promises visualisation of protein dynamics on the fastest timescales with full atomic resolution. Significant efforts are being applied to the development of sample delivery systems that allow these unique sources to be most efficiently exploited for high throughput serial femtosecond crystallography. We present here the next generation of a fixed target crystallography chip designed for rapid and reliable delivery of up to 11,259 protein crystals with high spatial precision. An experimental scheme for predetermining the positions of crystals in the chip by means of in-situ spectroscopy using a fiducial system for rapid, precise alignment and registration of the crystal positions is presented. This delivers unprecedented performance in serial crystallography experiments at room temperature under atmospheric pressure with a raw hit rate approaching 100% with an effective indexing rate of approximately 50%, increasing the efficiency of beam usage, and allowing the method to be applied to systems where the number of crystals is limited. PMID:27487825

  2. Fixed target combined with spectral mapping: approaching 100% hit rates for serial crystallography.

    PubMed

    Oghbaey, Saeed; Sarracini, Antoine; Ginn, Helen M; Pare-Labrosse, Olivier; Kuo, Anling; Marx, Alexander; Epp, Sascha W; Sherrell, Darren A; Eger, Bryan T; Zhong, Yinpeng; Loch, Rolf; Mariani, Valerio; Alonso-Mori, Roberto; Nelson, Silke; Lemke, Henrik T; Owen, Robin L; Pearson, Arwen R; Stuart, David I; Ernst, Oliver P; Mueller-Werkmeister, Henrike M; Miller, R J Dwayne

    2016-08-01

    The advent of ultrafast highly brilliant coherent X-ray free-electron laser sources has driven the development of novel structure-determination approaches for proteins, and promises visualization of protein dynamics on sub-picosecond timescales with full atomic resolution. Significant efforts are being applied to the development of sample-delivery systems that allow these unique sources to be most efficiently exploited for high-throughput serial femtosecond crystallography. Here, the next iteration of a fixed-target crystallography chip designed for rapid and reliable delivery of up to 11 259 protein crystals with high spatial precision is presented. An experimental scheme for predetermining the positions of crystals in the chip by means of in situ spectroscopy using a fiducial system for rapid, precise alignment and registration of the crystal positions is presented. This delivers unprecedented performance in serial crystallography experiments at room temperature under atmospheric pressure, giving a raw hit rate approaching 100% with an effective indexing rate of approximately 50%, increasing the efficiency of beam usage and allowing the method to be applied to systems where the number of crystals is limited.

  3. Review: Serial Femtosecond Crystallography: A Revolution in Structural Biology

    PubMed Central

    Martin-Garcia, Jose M.; Conrad, Chelsie E.; Coe, Jesse; Roy-Chowdhury, Shatabdi; Fromme, Petra

    2016-01-01

    Macromolecular crystallography at synchrotron sources has proven to be the most influential method within structural biology, producing thousands of structures since its inception. While its utility has been instrumental in progressing our knowledge of structures of molecules, it suffers from limitations such as the need for large, well-diffracting crystals, and radiation damage that can hamper native structural determination. The recent advent of X-ray free electron lasers (XFELs) and their implementation in the emerging field of serial femtosecond crystallography (SFX) has given rise to a remarkable expansion upon existing crystallographic constraints, allowing structural biologists access to previously restricted scientific territory. SFX relies on exceptionally brilliant, micro-focused X-ray pulses, which are femtoseconds in duration, to probe nano/micrometer sized crystals in a serial fashion. This results in data sets comprised of individual snapshots, each capturing Bragg diffraction of single crystals in random orientations prior to their subsequent destruction. Thus structural elucidation while avoiding radiation damage, even at room temperature, can now be achieved. This emerging field has cultivated new methods for nanocrystallogenesis, sample delivery, and data processing. Opportunities and challenges within SFX are reviewed herein. PMID:27143509

  4. Serial femtosecond crystallography: A revolution in structural biology.

    PubMed

    Martin-Garcia, Jose M; Conrad, Chelsie E; Coe, Jesse; Roy-Chowdhury, Shatabdi; Fromme, Petra

    2016-07-15

    Macromolecular crystallography at synchrotron sources has proven to be the most influential method within structural biology, producing thousands of structures since its inception. While its utility has been instrumental in progressing our knowledge of structures of molecules, it suffers from limitations such as the need for large, well-diffracting crystals, and radiation damage that can hamper native structural determination. The recent advent of X-ray free electron lasers (XFELs) and their implementation in the emerging field of serial femtosecond crystallography (SFX) has given rise to a remarkable expansion upon existing crystallographic constraints, allowing structural biologists access to previously restricted scientific territory. SFX relies on exceptionally brilliant, micro-focused X-ray pulses, which are femtoseconds in duration, to probe nano/micrometer sized crystals in a serial fashion. This results in data sets comprised of individual snapshots, each capturing Bragg diffraction of single crystals in random orientations prior to their subsequent destruction. Thus structural elucidation while avoiding radiation damage, even at room temperature, can now be achieved. This emerging field has cultivated new methods for nanocrystallogenesis, sample delivery, and data processing. Opportunities and challenges within SFX are reviewed herein. Published by Elsevier Inc.

  5. Cardiac myocyte diversity and a fibroblast network in the junctional region of the zebrafish heart revealed by transmission and serial block-face scanning electron microscopy.

    PubMed

    Lafontant, Pascal J; Behzad, Ali R; Brown, Evelyn; Landry, Paul; Hu, Norman; Burns, Alan R

    2013-01-01

    The zebrafish has emerged as an important model of heart development and regeneration. While the structural characteristics of the developing and adult zebrafish ventricle have been previously studied, little attention has been paid to the nature of the interface between the compact and spongy myocardium. Here we describe how these two distinct layers are structurally and functionally integrated. We demonstrate by transmission electron microscopy that this interface is complex and composed primarily of a junctional region occupied by collagen, as well as a population of fibroblasts that form a highly complex network. We also describe a continuum of uniquely flattened transitional cardiac myocytes that form a circumferential plate upon which the radially-oriented luminal trabeculae are anchored. In addition, we have uncovered within the transitional ring a subpopulation of markedly electron dense cardiac myocytes. At discrete intervals the transitional cardiac myocytes form contact bridges across the junctional space that are stabilized through localized desmosomes and fascia adherentes junctions with adjacent compact cardiac myocytes. Finally using serial block-face scanning electron microscopy, segmentation and volume reconstruction, we confirm the three-dimensional nature of the junctional region as well as the presence of the sheet-like fibroblast network. These ultrastructural studies demonstrate the previously unrecognized complexity with which the compact and spongy layers are structurally integrated, and provide a new basis for understanding development and regeneration in the zebrafish heart.

  6. Understanding the formation and growth of Ag nanoparticles on silver chromate induced by electron irradiation in electron microscope: A combined experimental and theoretical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabbro, Maria T.; Department of Inorganic and Organic Chemistry, Universitat Jaume I, Campus del Riu Sec, E-12071 Castellón; Gracia, Lourdes

    Ag{sub 2}CrO{sub 4} microcrystals were synthesized using the co-precipitation method. These microcrystals were characterized through X-ray diffraction (XRD) with Rietveld analysis, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) with energy-dispersive spectroscopy (EDS), micro-Raman (MR). XRD patterns and Rietveld refinement data showed that the material exhibits an orthorhombic structure without any deleterious phases. FE-SEM and TEM micrographs revealed the morphology and the growth of Ag nanoparticles on Ag{sub 2}CrO{sub 4} microcrystals during electron beam irradiation. These events were directly monitored in real-time. Their optical properties were investigated using ultraviolet-visible (UV–vis) diffuse reflectance spectroscopy that allowed the calculation of themore » optical band gap energy. Theoretical analyses based on the density functional theory level indicate that the incorporation of electrons is responsible for structural modifications and formation of defects on the [AgO{sub 6}] and [AgO{sub 4}] clusters, generating ideal conditions for the growth of Ag nanoparticles. - Graphical abstract: Theoretical representation of the Ag{sub 2}CrO{sub 4} orthorhombic structure. Display Omitted - Highlights: • The Ag{sub 2}CrO{sub 4} microcrystals indicate an orthorhombic structure. • The formation of Ag{sup 0} promotes Ag-nanoparticle growth on the surface of the Ag{sub 2}CrO{sub 4}. • Electron irradiation of the material induces the formation of Ag vacancies.« less

  7. Structural Changes in Senescing Oilseed Rape Leaves at Tissue and Subcellular Levels Monitored by Nuclear Magnetic Resonance Relaxometry through Water Status

    PubMed Central

    Musse, Maja; De Franceschi, Loriane; Cambert, Mireille; Sorin, Clément; Le Caherec, Françoise; Burel, Agnès; Bouchereau, Alain; Mariette, François; Leport, Laurent

    2013-01-01

    Nitrogen use efficiency is relatively low in oilseed rape (Brassica napus) due to weak nitrogen remobilization during leaf senescence. Monitoring the kinetics of water distribution associated with the reorganization of cell structures, therefore, would be valuable to improve the characterization of nutrient recycling in leaf tissues and the associated senescence processes. In this study, nuclear magnetic resonance (NMR) relaxometry was used to describe water distribution and status at the cellular level in different leaf ranks of well-watered plants. It was shown to be able to detect slight variations in the evolution of senescence. The NMR results were linked to physiological characterization of the leaves and to light and electron micrographs. A relationship between cell hydration and leaf senescence was revealed and associated with changes in the NMR signal. The relative intensities and the transverse relaxation times of the NMR signal components associated with vacuole water were positively correlated with senescence, describing water uptake and vacuole and cell enlargement. Moreover, the relative intensity of the NMR signal that we assigned to the chloroplast water decreased during the senescence process, in agreement with the decrease in relative chloroplast volume estimated from micrographs. The results are discussed on the basis of water flux occurring at the cellular level during senescence. One of the main applications of this study would be for plant phenotyping, especially for plants under environmental stress such as nitrogen starvation. PMID:23903438

  8. Surface modification of ultra thin PES-zeolite using thermal annealing to increase flux and rejection of produced water treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusworo, T. D., E-mail: tdkusworo@che.undip.ac.id; Widayat,; Pradini, A. W.

    2015-12-29

    Membrane technology is an alternative of water treatment based on filtration that is being developed. Surface Modification using heat treatment has been investigated to improve the performance of ultra thin PES-Zeolite nanocomposite membrane for produced water treatment from Pertamina Balongan. Two types of membranes with surface modification and without modification were prepared to study the effect of surface modification on its permeation properties. Asymmetric ultra thin PES-Zeolite nanocomposite membrane for produced water treatment was casted using the dry/wet phase inversion technique from dope solutions containing polyethersulfone, N-methyl-2-pyrrolidone (NMP) as a solvent and zeolite as a filler. Experimental results showed thatmore » the heat treatment at near glass transition temperature was increase the rejection of COD, Turbidity and ion Ca{sup 2+}. The better adherence of zeolite particles in the polymer matrix combined with formation of charge transfer complexes (CTCs) and cross-linking might be the main factors to enhance the percent of rejection. Field emission scanning electron microscopy (FESEM) micrographs showed that the selective layer and the substructure of PES-zeolite membrane became denser and more compact after the heat treatment. The FESEM micrographs also showed that the heat treatment was increased the adherence of zeolite particle and polymer. Membranes treated at 180 °C for 15 seconds indicated increase the rejection and small decrease in flux for produced water treatment.« less

  9. Mohs Micrographic Surgery Dermatopathology Concordance in Canada: A Single-Institution Experience.

    PubMed

    Chia, Justin C; Abi Daoud, Marie S; Williamson, Tyler S; Kurwa, Habib A

    2018-06-01

    Mohs micrographic surgery (MMS) is a surgical modality that achieves high cure rates of nonmelanoma skin cancers but is dependent on accurate histologic examination of surgical margins. Therefore, quality assurance is essential to ongoing assessment of histological margins. To prospectively determine the concordance rate between a Mohs surgeon (MS) and dermatopathologist (DP) with respect to tumour status (ie, present or absent) and tumour type. Secondary end points were to determine the relationship between discordant interpretations and slide quality and to assess the feasibility of using an electronic webform for data collection. Ten percent (10%) of the planned MMS cases between January 2015 and March 2016 were randomly selected by a histotechnologist at the start of each month. The MS and DP were blinded to the chosen cases, and slides were reviewed independently at the beginning of the following month. Data were collected using an online webform. A blinded third party determined if there were discrepancies in interpretation, and any discordant slides were reviewed together and a consensus was reached. A total of 270 slides from 54 total cases were reviewed. The overall tumour status concordance rate was 93.6%. Cohen's κ was 0.86. Tumour type concordance was 98.9%. No discrepancy required a change in patient care. All discrepant slides were from cases that required multiple stages. This is the first study looking at MS-DP concordance in Canada, and our findings support the MS acting as his or her own pathologist.

  10. Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser

    PubMed Central

    Kupitz, Christopher; Basu, Shibom; Grotjohann, Ingo; Fromme, Raimund; Zatsepin, Nadia A.; Rendek, Kimberly N.; Hunter, Mark S.; Shoeman, Robert L.; White, Thomas A.; Wang, Dingjie; James, Daniel; Yang, Jay-How; Cobb, Danielle E.; Reeder, Brenda; Sierra, Raymond G.; Liu, Haiguang; Barty, Anton; Aquila, Andrew L.; Deponte, Daniel; Kirian, Richard A.; Bari, Sadia; Bergkamp, Jesse J.; Beyerlein, Kenneth R.; Bogan, Michael J.; Caleman, Carl; Chao, Tzu-Chiao; Conrad, Chelsie E.; Davis, Katherine M.; Fleckenstein, Holger; Galli, Lorenzo; Hau-Riege, Stefan P.; Kassemeyer, Stephan; Laksmono, Hartawan; Liang, Mengning; Lomb, Lukas; Marchesini, Stefano; Martin, Andrew V.; Messerschmidt, Marc; Milathianaki, Despina; Nass, Karol; Ros, Alexandra; Roy-Chowdhury, Shatabdi; Schmidt, Kevin; Seibert, Marvin; Steinbrener, Jan; Stellato, Francesco; Yan, Lifen; Yoon, Chunhong; Moore, Thomas A.; Moore, Ana L.; Pushkar, Yulia; Williams, Garth J.; Boutet, Sébastien; Doak, R. Bruce; Weierstall, Uwe; Frank, Matthias; Chapman, Henry N.; Spence, John C. H.; Fromme, Petra

    2015-01-01

    Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which maintains the Earth’s oxygenic atmosphere1. In this process, the oxygen-evolving complex (OEC) of PSII cycles through five states, S0 to S4, in which four electrons are sequentially extracted from the OEC in four light-driven charge-separation events. Here we describe time resolved experiments on PSII nano/microcrystals from Thermosynechococcus elongatus performed with the recently developed2 technique of serial femtosecond crystallography. Structures have been determined from PSII in the dark S1 state and after double laser excitation (putative S3 state) at 5 and 5.5 Å resolution, respectively. The results provide evidence that PSII undergoes significant conformational changes at the electron acceptor side and at the Mn4CaO5 core of the OEC. These include an elongation of the metal cluster, accompanied by changes in the protein environment, which could allow for binding of the second substrate water molecule between the more distant protruding Mn (referred to as the ‘dangler’ Mn) and the Mn3CaOx cubane in the S2 to S3 transition, as predicted by spectroscopic and computational studies3,4. This work shows the great potential for time-resolved serial femtosecond crystallography for investigation of catalytic processes in biomolecules. PMID:25043005

  11. One-dimensional nanoferroic rods; synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Seddik, U.; Okasha, N.; Imam, N. G.

    2015-11-01

    One-dimensional nanoferroic rods of BaTiO3 were synthesized by improved citrate auto-combustion technology using tetrabutyl titanate. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), transmission electron microscopy (TEM), atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) have been used to characterize the prepared sample. The results indicated that the crystal structure of BaTiO3 is tetragonal phase with an average crystallite size of 47 nm. SEM image gives a cauliflower-like morphology of the agglomerated nanorods. The stoichiometry of the chemical composition of the BaTiO3 ceramic was confirmed by EDX. TEM micrograph exhibited that BaTiO3 nanoparticles have rod-like shape with an average length of 120 nm and width of 43 nm. AFM was used to investigate the surface topography and its roughness. The topography image in 3D showed that the BaTiO3 particles have a rod shape with an average particle size of 116 nm which in agreement with 3D TEM result.

  12. Effect of Annealing Temperature on Microstructure and Mechanical Properties of Hot-Dip Galvanizing DP600 Steel

    NASA Astrophysics Data System (ADS)

    Hai-yan, Sun; Zhi-li, Liu; Yang, Xu; Jian-qiang, Shi; Lian-xuan, Wang

    Hot-dip galvanizing dual phase steel DP600 steel grade with low Si was produced by steel plant and experiments by simulating galvanizing thermal history. The microstructure was observed and analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effect of different annealing temperatures on the microstructure and mechanical properties of dual-phase steel was also discussed. The experimental results show that the dual-phase steel possesses excellent strength and elongation that match EN10346 600MPa standards. The microstructure is ferrite and martensite. TEM micrograph shows that white ferrite with black martensite islands inlay with a diameter of around 1um and the content of 14 18%. The volume will expand and phase changing take the form of shear transformation when ferrite converted to martensite. So there are high density dislocations in ferrite crystalline grain near martensite. The martensite content growing will be obvious along with annealing temperature going up. But the tendency will be weak when temperature high.

  13. Structural, thermal and electrical characterizations of multiwalled carbon nanotubes and polyaniline composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Kamal, E-mail: singhkamal204@gmail.com; Garg, Leena; Singh, Jaspal

    2016-05-06

    The undoped and doped composite of MWNTs (Multiwalled Carbon Nanotubes) with PANI (/Polyaniline) was prepared by chemical oxidative polymerization. The MWNTs/PANI composites have been characterized by using various techniques like Thermogravometric Analysis (TGA), Fourier transform infrared (FT-IR) spectrometer and Field emission scanning electron microscope (FE-SEM) and conductivity measurement by using two probe method. TGA results has shown that thermal stability followed the pattern undoped MWNTs/PANI composite < doped MWNTs/PANI composite. FE-SEM micrographs demonstrated the morphological changes on the surface of MWNTs as a result of composite formation. Fourier transformed infrared (FT-IR) spectra ascertained the formation of the composite. Study ofmore » electrical characteristics demonstrated that the doped MWNTs/PANI composite (1.2 × 10{sup 1} Scm{sup −1}) have better conductivity than the undoped MWNTs/PANI composite (10{sup −4} Scm{sup −1}). These CNTs based polymeric composites are of great importance in developing new nano-scale devices for future chemical, mechanical and electronic applications.« less

  14. Effects of formulation variables and characterization of guaifenesin wax microspheres for controlled release.

    PubMed

    Mani, Narasimhan; Park, M O; Jun, H W

    2005-01-01

    Sustained-release wax microspheres of guaifenesin, a highly water-soluble drug, were prepared by the hydrophobic congealable disperse method using a salting-out procedure. The effects of formulation variables on the loading efficiency, particle properties, and in-vitro drug release from the microspheres were determined. The type of dispersant, the amount of wetting agent, and initial stirring time used affected the loading efficiency, while the volume of external phase and emulsification speed affected the particle size of the microspheres to a greater extent. The crystal properties of the drug in the wax matrix and the morphology of the microspheres were studied by differential scanning calorimetry (DSC), powder x-ray diffraction (XRD), and scanning electron microscopy (SEM). The DSC thermograms of the microspheres showed that the drug lost its crystallinity during the microencapsulation process, which was further confirmed by the XRD data. The electron micrographs of the drug-loaded microspheres showed well-formed spherical particles with a rough exterior.

  15. cisTEM, user-friendly software for single-particle image processing.

    PubMed

    Grant, Timothy; Rohou, Alexis; Grigorieff, Nikolaus

    2018-03-07

    We have developed new open-source software called cis TEM (computational imaging system for transmission electron microscopy) for the processing of data for high-resolution electron cryo-microscopy and single-particle averaging. cis TEM features a graphical user interface that is used to submit jobs, monitor their progress, and display results. It implements a full processing pipeline including movie processing, image defocus determination, automatic particle picking, 2D classification, ab-initio 3D map generation from random parameters, 3D classification, and high-resolution refinement and reconstruction. Some of these steps implement newly-developed algorithms; others were adapted from previously published algorithms. The software is optimized to enable processing of typical datasets (2000 micrographs, 200 k - 300 k particles) on a high-end, CPU-based workstation in half a day or less, comparable to GPU-accelerated processing. Jobs can also be scheduled on large computer clusters using flexible run profiles that can be adapted for most computing environments. cis TEM is available for download from cistem.org. © 2018, Grant et al.

  16. Microbial examination of anaerobic sludge adaptation to animal slurry.

    PubMed

    Moset, V; Cerisuelo, A; Ferrer, P; Jimenez, A; Bertolini, E; Cambra-López, M

    2014-01-01

    The objective of this study was to evaluate changes in the microbial population of anaerobic sludge digesters during the adaptation to pig slurry (PS) using quantitative real-time polymerase chain reaction (qPCR) and qualitative scanning electron microscopy (SEM). Additionally, the relationship between microbial parameters and sludge physicochemical composition and methane yield was examined. Results showed that the addition of PS to an unadapted thermophilic anaerobic digester caused an increase in volatile fatty acids (VFA) concentration, a decrease in removal efficiency and CH4 yield. Additionally, increases in total bacteria and total archaea were observed using qPCR. Scanning electron micrographs provided a general overview of the sludge's cell morphology, morphological diversity and degree of organic matter degradation. A change in microbial morphotypes from homogeneous cell morphologies to a higher morphological diversity, similar to that observed in PS, was observed with the addition of PS by SEM. Therefore, the combination of qPCR and SEM allowed expanding the knowledge about the microbial adaptation to animal slurry in thermophilic anaerobic digesters.

  17. Evaluation of hemocompatibility and in vitro immersion on microwave-assisted hydroxyapatite-alumina nanocomposites.

    PubMed

    Radha, G; Balakumar, S; Venkatesan, Balaji; Vellaichamy, Elangovan

    2015-05-01

    This study reports the microwave-assisted synthesis and characterization of nHAp (nano-hydroxyapatite)-alumina composites. The crystalline phase and interaction of alumina with nHAp was analyzed using X-ray diffraction (XRD) and Raman microscopy analysis, respectively. High resolution transmission electron microscopy (HRTEM) micrographs exhibit morphological changes of nHAp composites with increasing alumina concentrations. Microhardness studies reveal the enhanced mechanical strength of nHAp10 and nHAp20 nanocomposites than pure nHAp. In vitro bioactivity of the nanocomposites was studied by immersing samples in simulated body fluid (Hank's solution) for 21 days. The surface of biomineralized samples were analyzed using field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDX). Hemolytic assay revealed acceptable compatibility for varying concentrations of all the samples. Cell proliferation assay was systematically investigated for 1 day and 3 days on Saos-2 osteoblast-like cell lines and it was found that nHAp nanocomposites improved the proliferation. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. cisTEM, user-friendly software for single-particle image processing

    PubMed Central

    2018-01-01

    We have developed new open-source software called cisTEM (computational imaging system for transmission electron microscopy) for the processing of data for high-resolution electron cryo-microscopy and single-particle averaging. cisTEM features a graphical user interface that is used to submit jobs, monitor their progress, and display results. It implements a full processing pipeline including movie processing, image defocus determination, automatic particle picking, 2D classification, ab-initio 3D map generation from random parameters, 3D classification, and high-resolution refinement and reconstruction. Some of these steps implement newly-developed algorithms; others were adapted from previously published algorithms. The software is optimized to enable processing of typical datasets (2000 micrographs, 200 k – 300 k particles) on a high-end, CPU-based workstation in half a day or less, comparable to GPU-accelerated processing. Jobs can also be scheduled on large computer clusters using flexible run profiles that can be adapted for most computing environments. cisTEM is available for download from cistem.org. PMID:29513216

  19. Preparation, characterization, and antibacterial activity studies of silver-loaded poly(styrene-co-acrylic acid) nanocomposites.

    PubMed

    Song, Cunfeng; Chang, Ying; Cheng, Ling; Xu, Yiting; Chen, Xiaoling; Zhang, Long; Zhong, Lina; Dai, Lizong

    2014-03-01

    A simple method for preparing a new type of stable antibacterial agent was presented. Monodisperse poly(styrene-co-acrylic acid) (PSA) nanospheres, serving as matrices, were synthesized via soap-free emulsion polymerization. Field-emission scanning electron microscopy micrographs indicated that PSA nanospheres have interesting surface microstructures and well-controlled particle size distributions. Silver-loaded poly(styrene-co-acrylic acid) (PSA/Ag-NPs) nanocomposites were prepared in situ through interfacial reduction of silver nitrate with sodium borohydride, and further characterized by transmission electron microscopy and X-ray diffraction. Their effects on antibacterial activity including inhibition zone, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and bactericidal kinetics were evaluated. In the tests, PSA/Ag-NPs nanocomposites showed excellent antibacterial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli. These nanocomposites are considered to have potential application in antibacterial coatings on biomedical devices to reduce nosocomial infection rates. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Direct observation of small cluster mobility and ripening. [during annealing of metal films on amorphous substrates

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Poppa, H.

    1975-01-01

    Direct evidence is reported for the simultaneous occurrence of Ostwald ripening and short-distance cluster mobility during annealing of discontinuous metal films on clean amorphous substrates. The annealing characteristics of very thin particulate deposits of silver on amorphized clean surfaces of single crystalline thin graphite substrates were studied by in-situ transmission electron microscopy (TEM) under controlled environmental conditions (residual gas pressure of 10 to the minus 9th power torr) in the temperature range from 25 to 450 C. Sputter cleaning of the substrate surface, metal deposition, and annealing were monitored by TEM observation. Pseudostereographic presentation of micrographs in different annealing stages, the observation of the annealing behavior at cast shadow edges, and measurements with an electronic image analyzing system were employed to aid the visual perception and the analysis of changes in deposit structure recorded during annealing. Slow Ostwald ripening was found to occur in the entire temperature range, but the overriding surface transport mechanism was short-distance cluster mobility.

  1. Investigations on Mechanical Behaviour of Micro Graphite Particulates Reinforced Al-7Si Alloy Composites

    NASA Astrophysics Data System (ADS)

    Nagaraj, N.; Mahendra, K. V.; Nagaral, Madeva

    2018-02-01

    Micro particulates reinforced metal matrix composites are finding wide range of applications in automotive and sports equipment manufacturing industries. In the present study, an attempt has been made to develop Al-7Si-micro graphite particulates reinforced composites by using liquid melt method. 3 and 6 wt. % of micro graphite particulates were added to the Al-7Si base matrix. Microstructural characterization was done by using scanning electron microscope and energy dispersive spectroscope. Mechanical behaviour of Al-7Si-3 and 6 wt. % composites were evaluated as per ASTM standards. Scanning electron micrographs revealed the uniform distribution of micro graphite particulates in the Al-7Si alloy matrix. EDS analysis confirmed the presence of B and C elements in graphite reinforced composites. Further, it was noted that ultimate tensile and yield strength of Al-7Si alloy increased with the addition of 3 and 6wt. % of graphite particulates. Hardness of graphite reinforced composites was lesser than the base matrix.

  2. Synthesis and electrochemical properties of olivine LiFePO 4 prepared by a carbothermal reduction method

    NASA Astrophysics Data System (ADS)

    Liu, Hui-ping; Wang, Zhi-xing; Li, Xin-hai; Guo, Hua-jun; Peng, Wen-jie; Zhang, Yun-he; Hu, Qi-yang

    LiFePO 4/C composite cathode material was prepared by carbothermal reduction method, which uses NH 4H 2PO 4, Li 2CO 3 and cheap Fe 2O 3 as starting materials, acetylene black and glucose as carbon sources. The precursor of LiFePO 4/C was characterized by differential thermal analysis and thermogravimetry. X-ray diffraction (XRD), scanning electron microscopy (SEM) micrographs showed that the LiFePO 4/C is olivine-type phase, and the addition of the carbon reduced the LiFePO 4 grain size. The carbon is dispersed between the grains, ensuring a good electronic contact. The products sintered at 700 °C for 8 h with glucose as carbon source possessed excellent electrochemical performance. The synthesized LiFePO 4 composites showed a high electrochemical capacity of 159.3 mAh g -1 at 0.1 C rate, and the capacity fading is only 2.2% after 30 cycles.

  3. Structural and electrical properties of LiCo3/5Cu2/5VO4 ceramics

    NASA Astrophysics Data System (ADS)

    Ram, Moti

    2010-05-01

    The LiCo3/5Cu2/5VO4 compound is prepared by a solution-based chemical method and characterized by the techniques of X-ray diffraction, scanning electron microscopy and complex impedance spectroscopy. The X-ray diffraction study shows an orthorhombic unit cell structure of the material with lattice parameters a=13.8263 (30) Å, b=8.7051 (30) Å and c=3.1127 (30) Å. The nature of scanning electron micrographs of a sintered pellet of the material reveals that grains of unequal sizes (˜0.2-3 μm) present an average grain size with a polydisperse distribution on the surface of the sample. Complex plane diagrams indicate grain interior and grain boundary contributions to the electrical response in the material. The electrical conductivity study reveals that electrical conduction in the material is a thermally activated process. The frequency dependence of the a.c. conductivity obeys Jonscher’s universal law.

  4. Marangoni Convection during Free Electron Laser Nitriding of Titanium

    NASA Astrophysics Data System (ADS)

    Höche, Daniel; Müller, Sven; Rapin, Gerd; Shinn, Michelle; Remdt, Elvira; Gubisch, Maik; Schaaf, Peter

    2009-08-01

    Pure titanium was treated by free electron laser (FEL) radiation in a nitrogen atmosphere. As a result, nitrogen diffusion occurs and a TiN coating was synthesized. Local gradients of interfacial tension due to the local heating lead to a Marangoni convection, which determines the track properties. Because of the experimental inaccessibility of time-dependent occurrences, finite element calculations were performed, to determine the physical processes such as heat transfer, melt flow, and mass transport. In order to calculate the surface deformation of the gas-liquid interface, the level set approach was used. The equations were modified and coupled with heat-transfer and diffusion equations. The process was characterized by dimensionless numbers such as the Reynolds, Peclet, and capillary numbers, to obtain more information about the acting forces and the coating development. Moreover, the nitrogen distribution was calculated using the corresponding transport equation. The simulations were compared with cross-sectional micrographs of the treated titanium sheets and checked for their validity. Finally, the process presented is discussed and compared with similar laser treatments.

  5. Amino acid-functionalized multi-walled carbon nanotubes for improving compatibility with chiral poly(amide-ester-imide) containing L-phenylalanine and L-tyrosine linkages

    NASA Astrophysics Data System (ADS)

    Abdolmaleki, Amir; Mallakpour, Shadpour; Borandeh, Sedigheh

    2013-12-01

    Amino acid functionalized multi-walled carbon nanotubes (f-MWCNTs)/poly(amide-ester-imide) (PAEI) composites were fabricated by solution mixing method. Proper functionalization and mixing strategy of MWCNTs provides the best opportunity for better distribution and bonding of nanoparticles to the polymer matrix. MWCNTs have been chemically modified with L-phenylalanine to improve their compatibility with L-phenylalanine based PAEI. Field emission scanning electron microscopy micrographs of composite revealed that f-MWCNTs made a good interaction with polymer chains by wrapping the polymer around them, and transmission electron microscopy results confirmed well dispersion with nano size of f-MWCNTs in the polymer matrix. In addition, thermal analysis showed good enhancement in thermal properties of composites compared to pure polymer. Thermal stability of the composites containing f-MWCNTs was enhanced due to their good dispersion and improved interfacial interaction between the amino acid based PAEI matrix and f-MWCNTs.

  6. Cristispira from oyster styles: complex morphology of large symbiotic spirochetes

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Nault, L.; Sieburth, J. M.

    1991-01-01

    Crystalline styles (digestive organs) of bivalve mollusks provide the habitat for highly motile bacteria. Styles from freshly-collected oysters, Crassostrea virginica, were studied by electron microscopy; Cristispira spirochetes were abundant in these organs. Detailed study reveals these spirochetes to be among the most complex prokaryotic cells known. More than 600 periplasmic flagella and an adhering outer lipoprotein membrane (e.g., a 270 degrees sillon) form the ultrastructural basis for the "crista," first described by light microscopy. Unique rosette structures corresponding to the "chambers" or "ovoid inclusions" of light microscopy were detected at the periphery of all protoplasmic cylinders. Polar organelles and linearly aligned flagellar insertions are conspicuous. In size and complexity, Cristispira more resembles Pillotina, Diplocalyx, Clevelandina and Hollandina (large spirochetes symbiotic in termites) than it does Treponema. Cristispira pectinis (Gross, 1910), the type species; Spirillum ostrea (Noguchi, 1921); and another, less frequent bacterial symbiont are the predominant inhabitants of the dense style matrix. The ultrastructure of the spirillum and an electron micrograph of the third bacterium are shown.

  7. A comparative study of pure and copper (Cu)-doped ZnO nanorods for antibacterial and photocatalytic applications with their mechanism of action

    NASA Astrophysics Data System (ADS)

    Bhuyan, Tamanna; Khanuja, Manika; Sharma, R.; Patel, S.; Reddy, M. R.; Anand, S.; Varma, A.

    2015-07-01

    The present study reports the synthesis of pure and Cu-doped ZnO nanorods for antibacterial and photocatalytic applications. The samples were synthesized by simple, low cost mechanical-assisted thermal decomposition process. The synthesized materials were characterized by scanning electron microscopy, UV-Visible spectroscopy, and photoluminescence studies. The antibacterial activity of characterized samples was determined against Gram-positive bacteria such as Staphylococcus aureus and Streptococcus pyogenes and Gram-negative bacteria such as Escherichia coli using shake flask method with respect to time. The significant antibacterial activity was perceived from scanning electron micrographs that clearly revealed bacterial cell lysis resulting in the release of cytoplasmic content followed by cell death. The degradation of methylene blue was used as a model organic dye for photocatalytic activity. The present study demonstrates the superior photocatalytic and antibacterial activity of Cu-doped ZnO nanorods with respect to pure ZnO nanorods.

  8. Corrosion Chemistry in Inhibited HDA.

    DTIC Science & Technology

    1980-11-30

    mg HF. 200 B.1 Teflon PFA Reactor 201 (xviii) .. .. - i LIST OF MICROGRAPHS Micrograph Follows Page 4.1 A1/HDA x 1,000 80 4.2 A1/0.4 Wt % PF5 x 2,000...Ethylene Propylene copolymer Teflon PTFE Polytetrafluoroethylene Teflon PFA Perfluoroalkoxy fluorocarbon resin Spectroscopy IR (ir) Infra-red UV...fluoroplastic apparatus (to avoid any possible contamination by the reaction products of HF with glass). Iron powder (0.3g) was placed in a PFA screw-cap

  9. Plant-Mimetic Heat Pipes for Operation with Large Inertial and Gravitation Stresses

    DTIC Science & Technology

    2012-08-16

    tensiometer based on the integration of the membrane with a MEMS-based pressure sen heat transfer, biomimicry , microfluidics, plant science U U U U...stable at each tension. Inset shows an optical micrograph of 25 cavities; dark cavities are filled and bright cavities are empty (cavitated). (C... Optical micrograph of a silicon membrane that has been anodically etched from the top to form nano- porous silicon and wet etched from the bottom to

  10. Solid State Research.

    DTIC Science & Technology

    1983-02-15

    0.1 J/cm2 at 520 us, and Pulse Repetition Rate Was 10 Hs. 33 2-8 Nomarski Optical Micrograph of a Photodeposited Waveguide in LtNbO3 After Indiffusion...evaluate the interferometric array, the technique shown in Fig. 1-5 was used. With the two-mirror system shown, an incident planar wavefront could be...t- -’-, ,i- 1 0 110 - Fig. 2-8. Nomarski optical micrograph of a photodeposited waveguide in LiNbO3 after indiffusion. Small-scale divisions

  11. The use of Mohs micrographic surgery (MMS) for melanoma in situ (MIS) of the trunk and proximal extremities.

    PubMed

    Stigall, Landon E; Brodland, David G; Zitelli, John A

    2016-11-01

    Evaluation of the entire surgical margin results in high rates of complete excision, low local recurrence rates, and maximal tissue conservation. Although well recognized for melanoma of the head and neck, few studies have focused exclusively on the trunk and proximal extremities. We sought to evaluate the efficacy of Mohs micrographic surgery for melanoma in situ (MIS) of the trunk and proximal extremities, and determine adequate excision margins for MIS when total margin evaluation is not used. Long-term outcomes in 882 cases of MIS treated with Mohs micrographic surgery were analyzed and compared with historical controls. Rates of complete excision were determined for increasing surgical margin intervals. One local recurrence occurred in our cohort (0.1%). Only 83% of MIS were excised with a 6-mm margin. Margins of 9 mm were needed to excise 97% of MIS, statistically equivalent to thin melanomas. We used a nonrandomized, single-institution, retrospective design. Mohs micrographic surgery may cure the 17% of MIS that exceed traditional excision margins of 5 mm and is a valuable option for these patients. Surgical margins of at least 0.9 cm should be considered for MIS of the trunk and extremities when total margin evaluation is not used. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  12. Specialised sympathetic neuroeffector associations in rat iris arterioles

    PubMed Central

    SANDOW, SHAUN L.; WHITEHOUSE, DREW; HILL, CARYL E.

    1998-01-01

    Vascular sympathetic neuroeffector associations have been examined in rat iris arterioles using serial section electron microscopy and reconstruction techniques. Examination of random sections showed that, of all profiles of varicosities (199) seen to lie closer than 4 μm to vascular smooth muscle cells, only a small proportion (29/199) were found in close association with vascular smooth muscle cells, where adjacent membranes were separated by less than 100 nm. However, serial section examination, from intervaricose region to intervaricose region, of 79 varicosities similarly observed lying within 4 μm of vascular smooth muscle cells showed that 54 formed close associations with vascular smooth muscle cells. In serial sections, all these varicosities were also closely associated with melanocytes and of the 25 remaining varicosities, 22 formed close associations with melanocytes alone, whilst 3 did not come into close association with any effector cell. The increased observation of close associations with vascular smooth muscle cells in serial sections, compared with random sections, is consistent with the demonstration that the area of contact only occupies, on average, a small percentage (5%) of the total surface area of the varicosity as seen in the 3-dimensional reconstructions. In both random and serial sections, close associations were observed between varicosities and vascular smooth muscle cells or melanocytes irrespective of whether fibres were present singly or in small nerve bundles. Three-dimensional reconstruction of associations of varicosities and vascular smooth muscle cells demonstrated several common features, such as accumulations of synaptic vesicles and loss of Schwann cell covering at the region of membrane facing the effector cell. The similarity in the appearance of the neuroeffector association seen in this study and those described in previous studies provides evidence for the existence of a common sympathetic neuroeffector association, irrespective of the receptor subtype involved in neurotransmission. PMID:9568560

  13. Charge reconfiguration in arrays of quantum dots

    NASA Astrophysics Data System (ADS)

    Bayer, Johannes C.; Wagner, Timo; Rugeramigabo, Eddy P.; Haug, Rolf J.

    2017-12-01

    Semiconductor quantum dots are potential building blocks for scalable qubit architectures. Efficient control over the exchange interaction and the possibility of coherently manipulating electron states are essential ingredients towards this goal. We studied experimentally the shuttling of electrons trapped in serial quantum dot arrays isolated from the reservoirs. The isolation hereby enables a high degree of control over the tunnel couplings between the quantum dots, while electrons can be transferred through the array by gate voltage variations. Model calculations are compared with our experimental results for double, triple, and quadruple quantum dot arrays. We are able to identify all transitions observed in our experiments, including cotunneling transitions between distant quantum dots. The shuttling of individual electrons between quantum dots along chosen paths is demonstrated.

  14. Effect of processing route for preparation of mullite from kaolinite and alumina

    NASA Astrophysics Data System (ADS)

    Behera, Pallavi Suhasinee; Bhattacharyya, Sunipa

    2018-05-01

    In current work, two different types of mullite ceramic powder were prepared using kaolinite and alumina by solid state and chemical precipitation route. The phases, bond types and microstructural evolution of the mullite powders were investigated by X-ray diffraction, infrared analysis, and field emission scanning electron microscopy to study the mullitisation behavior. The solid state method evident a pure mullite phase formation at 1550 °C. In case of chemical precipitation route small amount of alumina peak was noticed along with major phase of mullite which was also clearly apprehended from FESEM micrographs and IR spectra. Densification was more for the samples prepared by solid state process which may be correlated to the delayed mullitization process in chemical precipitation route.

  15. Investigation of thermal fatigue in fiber composite materials. [(thermal cycling tests)

    NASA Technical Reports Server (NTRS)

    Fahmy, A. A.; Cunningham, T. G.

    1976-01-01

    Graphite-epoxy laminates were thermally cycled to determine the effects of thermal cycles on tensile properties and thermal expansion coefficients of the laminates. Three 12-ply laminate configurations were subjected to up to 5,000 thermal cycles. The cumulative effect of the thermal cycles was determined by destructive inspection (electron micrographs and tensile tests) of samples after progressively larger numbers of cycles. After thermal cycling, the materials' tensile strengths, moduli, and thermal expansion coefficients were significantly lower than for the materials as fabricated. Most of the degradation of properties occurred after only a few cycles. The property degradation was attributed primarily to the progressive development of matrix cracks whose locations depended upon the layup orientation of the laminate.

  16. High-temperature Friction and Wear Resistance of Ni-Co-SiC Composite Coatings

    NASA Astrophysics Data System (ADS)

    Guo, Fang; Sun, Wan-chang; Jia, Zong-wei; Liu, Xiao-jia; Dong, Ya-ru

    2018-05-01

    Ni-Co alloy and SiC micro-particles were co-deposited on 45 steel by electrodeposition for high temperature performance. The high temperature tribological characteristics were studied by use of a ball-on-disk method. The micrographs and phase structure of the Ni-Co-SiC composite coatings after high-temperature friction were observed by using a field emission scanning electron microscope(FESEM). The results reveal that the Ni-Co-SiC composite coating presents better wear resistance and lower friction coefficient at high temperature in comparison with that of Ni-Co coating and 45 steel substrate. The embedded SiC particles could strengthen the alloy coating by dispersion strengthening effect and changing the friction mechanism from adhesive wear to abrasive wear.

  17. The influence of chemical surface modification of kenaf fiber using hydrogen peroxide on the mechanical properties of biodegradable kenaf fiber/poly(lactic acid) composites.

    PubMed

    Razak, Nur Inani Abdul; Ibrahim, Nor Azowa; Zainuddin, Norhazlin; Rayung, Marwah; Saad, Wan Zuhainis

    2014-03-07

    Bleaching treatment of kenaf fiber was performed in alkaline medium containing hydrogen peroxide solution maintained at pH 11 and 80 °C for 60 min. The bleached kenaf fiber was analyzed using Fourier Transform Infrared (FTIR) and X-ray Diffraction (XRD) analysis. The bleached kenaf fiber was then compounded with poly-(lactic acid) (PLA) via a melt blending method. The mechanical (tensile, flexural and impact) performance of the product was tested. The fiber treatment improved the mechanical properties of PLA/bleached kenaf fiber composites. Scanning electron micrograph (SEM) morphological analysis showed improvement of the interfacial adhesion between the fiber surface and polymer matrix.

  18. Chemical processes involved in the initiation of hot corrosion of B-1900 and NASA-TRW VIA

    NASA Technical Reports Server (NTRS)

    Fryburg, G. C.; Kohl, F. J.; Stearns, C. A.

    1979-01-01

    Sodium sulfate induced hot corrosion of B-1900 and NASA-TRW VIA at 900 C was studied with special emphasis on the chemical reactions occurring during and immediately after the induction period. Thermogravimetric tests were run for set periods of time after which the samples were washed with water and water soluable metal salts and/or residual sulfates were analyzed chemically. Element distributions within the oxide layer were obtained from electron microprobe X-ray micrographs. A third set of samples were subjected to surface analysis by X-ray photoelectron spectroscopy. Evolution of SO2 was monitored throughout many of the hot corrosion tests. Results are interpreted in terms of acid-base fluxing mechanisms.

  19. Boron nitride nanowires synthesis via a simple chemical vapor deposition at 1200 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Pervaiz; Khandaker, Mayeen Uddin; Amin, Yusoff Mohd

    2015-04-24

    A very simple chemical vapor deposition technique is used to synthesize high quality boron nitride nanowires at 1200 °C within a short growth duration of 30 min. FESEM micrograph shows that the as-synthesized boron nitride nanowires have a clear wire like morphology with diameter in the range of ∼20 to 150 nm. HR-TEM confirmed the wire-like structure of boron nitride nanowires, whereas XPS and Raman spectroscopy are used to find out the elemental composition and phase of the synthesized material. The synthesized boron nitride nanowires have potential applications as a sensing element in solid state neutron detector, neutron capture therapy and microelectronicmore » devices with uniform electronic properties.« less

  20. Effect of surface topography on structural growth of thick sputtered films

    NASA Technical Reports Server (NTRS)

    Spalvins, T.; Brainard, W. A.

    1974-01-01

    Primarily thick sputtered S-Monel, silver, and 304 stainless steel coatings were deposited on mica, glass, and metal substrates with various surface finishes to investigate the structural growth of the coating by scanning electron microscopy. Compositional changes within the coating were analyzed by X-ray dispersion microscopy. Defects in the surface finish act as preferential nucleation sites and form isolated and complex nodules and various surface overgrowths in the coating. These nodules do not disappear after full annealing. Further, they have undesirable effects on mechanial properties; cracks are initiated at the nodules when the coating is stressed by mechanical forces. These effects are illustrated by micrographs. Nodular growth within a coating can be minimized or eliminated by reducing the surface roughness.

Top