Sample records for serial imaging studies

  1. Variability of serial same-day left ventricular ejection fraction using quantitative gated SPECT.

    PubMed

    Vallejo, Enrique; Chaya, Hugo; Plancarte, Gerardo; Victoria, Diana; Bialostozky, David

    2002-01-01

    The accuracy of quantitative gated single photon emission computed tomography (SPECT) (QGS) and the potential limitations for estimation of left ventricular ejection fraction (LVEF) have been extensively evaluated. However, few studies have focused on the serial variability of QGS. This study was conducted to assess the serial variability of QGS for determination of LVEF between 2 sequential technetium 99m sestamibi-gated SPECT acquisitions at rest in both healthy and unhealthy subjects. The study population consisted of 2 groups: group I included 21 volunteers with a low likelihood of CAD, and group II included 22 consecutive patients with documented CAD. Both groups underwent serial SPECT imaging. The overall correlation between sequential images was high (r = 0.94, SEE = 5.3%), and the mean serial variability of LVEF was 5.15% +/- 3.51%. Serial variability was lower for images with high counts (3.45% +/- 3.23%) than for images with low counts (6.85% +/- 3.77%). The mean serial variability was not different between normal and abnormal high-dose images (3.0% +/- 1.56% vs 3.9% +/- 2.77%). However, mean serial variability for images derived from abnormal low-dose images was significantly greater than that derived from normal low-dose images (9.6% +/- 2.22% vs 3.1% +/- 2.12%, P <.05). Although QGS is an efficacious method to approximate LVEF values and is extremely valuable for incremental risk stratification of patients with coronary artery disease, it has significant variability in the estimation of LVEF on serial images. This should be taken into account when used for serial evaluation of LVEF.

  2. Common MRI acquisition non-idealities significantly impact the output of the boundary shift integral method of measuring brain atrophy on serial MRI.

    PubMed

    Preboske, Gregory M; Gunter, Jeff L; Ward, Chadwick P; Jack, Clifford R

    2006-05-01

    Measuring rates of brain atrophy from serial magnetic resonance imaging (MRI) studies is an attractive way to assess disease progression in neurodegenerative disorders, particularly Alzheimer's disease (AD). A widely recognized approach is the boundary shift integral (BSI). The objective of this study was to evaluate how several common scan non-idealities affect the output of the BSI algorithm. We created three types of image non-idealities between the image volumes in a serial pair used to measure between-scan change: inconsistent image contrast between serial scans, head motion, and poor signal-to-noise (SNR). In theory the BSI volume difference measured between each pair of images should be zero and any deviation from zero should represent corruption of the BSI measurement by some non-ideality intentionally introduced into the second scan in the pair. Two different BSI measures were evaluated, whole brain and ventricle. As the severity of motion, noise, and non-congruent image contrast increased in the second scan, the calculated BSI values deviated progressively more from the expected value of zero. This study illustrates the magnitude of the error in measures of change in brain and ventricle volume across serial MRI scans that can result from commonly encountered deviations from ideal image quality. The magnitudes of some of the measurement errors seen in this study exceed the disease effect in AD shown in various publications, which range from 1% to 2.78% per year for whole brain atrophy and 5.4% to 13.8% per year for ventricle expansion (Table 1). For example, measurement error may exceed 100% if image contrast properties dramatically differ between the two scans in a measurement pair. Methods to maximize consistency of image quality over time are an essential component of any quantitative serial MRI study.

  3. Serial Magnetization Transfer Imaging in Acute Optic Neuritis

    ERIC Educational Resources Information Center

    Hickman, S. J.; Toosy, A. T.; Jones, S. J.; Altmann, D. R.; Miszkiel, K. A.; MacManus, D. G.; Barker, G. J.; Plant, G. T.; Thompson, A. J.; Miller, D.H.

    2004-01-01

    In serial studies of multiple sclerosis lesions, reductions in magnetization transfer ratio (MTR) are thought to be due to demyelination and axonal loss, with later rises due to remyelination. This study followed serial changes in MTR in acute optic neuritis in combination with clinical and electrophysiological measurements to determine if the MTR…

  4. Tissue Probability Map Constrained 4-D Clustering Algorithm for Increased Accuracy and Robustness in Serial MR Brain Image Segmentation

    PubMed Central

    Xue, Zhong; Shen, Dinggang; Li, Hai; Wong, Stephen

    2010-01-01

    The traditional fuzzy clustering algorithm and its extensions have been successfully applied in medical image segmentation. However, because of the variability of tissues and anatomical structures, the clustering results might be biased by the tissue population and intensity differences. For example, clustering-based algorithms tend to over-segment white matter tissues of MR brain images. To solve this problem, we introduce a tissue probability map constrained clustering algorithm and apply it to serial MR brain image segmentation, i.e., a series of 3-D MR brain images of the same subject at different time points. Using the new serial image segmentation algorithm in the framework of the CLASSIC framework, which iteratively segments the images and estimates the longitudinal deformations, we improved both accuracy and robustness for serial image computing, and at the mean time produced longitudinally consistent segmentation and stable measures. In the algorithm, the tissue probability maps consist of both the population-based and subject-specific segmentation priors. Experimental study using both simulated longitudinal MR brain data and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data confirmed that using both priors more accurate and robust segmentation results can be obtained. The proposed algorithm can be applied in longitudinal follow up studies of MR brain imaging with subtle morphological changes for neurological disorders. PMID:26566399

  5. [Registration and 3D rendering of serial tissue section images].

    PubMed

    Liu, Zhexing; Jiang, Guiping; Dong, Wu; Zhang, Yu; Xie, Xiaomian; Hao, Liwei; Wang, Zhiyuan; Li, Shuxiang

    2002-12-01

    It is an important morphological research method to reconstruct the 3D imaging from serial section tissue images. Registration of serial images is a key step to 3D reconstruction. Firstly, an introduction to the segmentation-counting registration algorithm is presented, which is based on the joint histogram. After thresholding of the two images to be registered, the criterion function is defined as counting in a specific region of the joint histogram, which greatly speeds up the alignment process. Then, the method is used to conduct the serial tissue image matching task, and lies a solid foundation for 3D rendering. Finally, preliminary surface rendering results are presented.

  6. Serial block face scanning electron microscopy--the future of cell ultrastructure imaging.

    PubMed

    Hughes, Louise; Hawes, Chris; Monteith, Sandy; Vaughan, Sue

    2014-03-01

    One of the major drawbacks in transmission electron microscopy has been the production of three-dimensional views of cells and tissues. Currently, there is no one suitable 3D microscopy technique that answers all questions and serial block face scanning electron microscopy (SEM) fills the gap between 3D imaging using high-end fluorescence microscopy and the high resolution offered by electron tomography. In this review, we discuss the potential of the serial block face SEM technique for studying the three-dimensional organisation of animal, plant and microbial cells.

  7. Using Signal Detection Theory to Model Changes in Serial Learning of Radiological Image Interpretation

    ERIC Educational Resources Information Center

    Boutis, Kathy; Pecaric, Martin; Seeto, Brian; Pusic, Martin

    2010-01-01

    Signal detection theory (SDT) parameters can describe a learner's ability to discriminate (d[prime symbol]) normal from abnormal and the learner's criterion ([lambda]) to under or overcall abnormalities. To examine the serial changes in SDT parameters with serial exposure to radiological cases. 46 participants were recruited for this study: 20…

  8. Multimodality Molecular Imaging of Cardiac Cell Transplantation: Part I. Reporter Gene Design, Characterization, and Optical in Vivo Imaging of Bone Marrow Stromal Cells after Myocardial Infarction

    PubMed Central

    Parashurama, Natesh; Ahn, Byeong-Cheol; Ziv, Keren; Ito, Ken; Paulmurugan, Ramasamy; Willmann, Jürgen K.; Chung, Jaehoon; Ikeno, Fumiaki; Swanson, Julia C.; Merk, Denis R.; Lyons, Jennifer K.; Yerushalmi, David; Teramoto, Tomohiko; Kosuge, Hisanori; Dao, Catherine N.; Ray, Pritha; Patel, Manishkumar; Chang, Ya-fang; Mahmoudi, Morteza; Cohen, Jeff Eric; Goldstone, Andrew Brooks; Habte, Frezghi; Bhaumik, Srabani; Yaghoubi, Shahriar; Robbins, Robert C.; Dash, Rajesh; Yang, Phillip C.; Brinton, Todd J.; Yock, Paul G.; McConnell, Michael V.

    2016-01-01

    Purpose To use multimodality reporter-gene imaging to assess the serial survival of marrow stromal cells (MSC) after therapy for myocardial infarction (MI) and to determine if the requisite preclinical imaging end point was met prior to a follow-up large-animal MSC imaging study. Materials and Methods Animal studies were approved by the Institutional Administrative Panel on Laboratory Animal Care. Mice (n = 19) that had experienced MI were injected with bone marrow–derived MSC that expressed a multimodality triple fusion (TF) reporter gene. The TF reporter gene (fluc2-egfp-sr39ttk) consisted of a human promoter, ubiquitin, driving firefly luciferase 2 (fluc2), enhanced green fluorescent protein (egfp), and the sr39tk positron emission tomography reporter gene. Serial bioluminescence imaging of MSC-TF and ex vivo luciferase assays were performed. Correlations were analyzed with the Pearson product-moment correlation, and serial imaging results were analyzed with a mixed-effects regression model. Results Analysis of the MSC-TF after cardiac cell therapy showed significantly lower signal on days 8 and 14 than on day 2 (P = .011 and P = .001, respectively). MSC-TF with MI demonstrated significantly higher signal than MSC-TF without MI at days 4, 8, and 14 (P = .016). Ex vivo luciferase activity assay confirmed the presence of MSC-TF on days 8 and 14 after MI. Conclusion Multimodality reporter-gene imaging was successfully used to assess serial MSC survival after therapy for MI, and it was determined that the requisite preclinical imaging end point, 14 days of MSC survival, was met prior to a follow-up large-animal MSC study. © RSNA, 2016 Online supplemental material is available for this article. PMID:27308957

  9. Improved Software to Browse the Serial Medical Images for Learning

    PubMed Central

    2017-01-01

    The thousands of serial images used for medical pedagogy cannot be included in a printed book; they also cannot be efficiently handled by ordinary image viewer software. The purpose of this study was to provide browsing software to grasp serial medical images efficiently. The primary function of the newly programmed software was to select images using 3 types of interfaces: buttons or a horizontal scroll bar, a vertical scroll bar, and a checkbox. The secondary function was to show the names of the structures that had been outlined on the images. To confirm the functions of the software, 3 different types of image data of cadavers (sectioned and outlined images, volume models of the stomach, and photos of the dissected knees) were inputted. The browsing software was downloadable for free from the homepage (anatomy.co.kr) and available off-line. The data sets provided could be replaced by any developers for their educational achievements. We anticipate that the software will contribute to medical education by allowing users to browse a variety of images. PMID:28581279

  10. Improved Software to Browse the Serial Medical Images for Learning.

    PubMed

    Kwon, Koojoo; Chung, Min Suk; Park, Jin Seo; Shin, Byeong Seok; Chung, Beom Sun

    2017-07-01

    The thousands of serial images used for medical pedagogy cannot be included in a printed book; they also cannot be efficiently handled by ordinary image viewer software. The purpose of this study was to provide browsing software to grasp serial medical images efficiently. The primary function of the newly programmed software was to select images using 3 types of interfaces: buttons or a horizontal scroll bar, a vertical scroll bar, and a checkbox. The secondary function was to show the names of the structures that had been outlined on the images. To confirm the functions of the software, 3 different types of image data of cadavers (sectioned and outlined images, volume models of the stomach, and photos of the dissected knees) were inputted. The browsing software was downloadable for free from the homepage (anatomy.co.kr) and available off-line. The data sets provided could be replaced by any developers for their educational achievements. We anticipate that the software will contribute to medical education by allowing users to browse a variety of images. © 2017 The Korean Academy of Medical Sciences.

  11. Conductive resins improve charging and resolution of acquired images in electron microscopic volume imaging

    PubMed Central

    Nguyen, Huy Bang; Thai, Truc Quynh; Saitoh, Sei; Wu, Bao; Saitoh, Yurika; Shimo, Satoshi; Fujitani, Hiroshi; Otobe, Hirohide; Ohno, Nobuhiko

    2016-01-01

    Recent advances in serial block-face imaging using scanning electron microscopy (SEM) have enabled the rapid and efficient acquisition of 3-dimensional (3D) ultrastructural information from a large volume of biological specimens including brain tissues. However, volume imaging under SEM is often hampered by sample charging, and typically requires specific sample preparation to reduce charging and increase image contrast. In the present study, we introduced carbon-based conductive resins for 3D analyses of subcellular ultrastructures, using serial block-face SEM (SBF-SEM) to image samples. Conductive resins were produced by adding the carbon black filler, Ketjen black, to resins commonly used for electron microscopic observations of biological specimens. Carbon black mostly localized around tissues and did not penetrate cells, whereas the conductive resins significantly reduced the charging of samples during SBF-SEM imaging. When serial images were acquired, embedding into the conductive resins improved the resolution of images by facilitating the successful cutting of samples in SBF-SEM. These results suggest that improving the conductivities of resins with a carbon black filler is a simple and useful option for reducing charging and enhancing the resolution of images obtained for volume imaging with SEM. PMID:27020327

  12. Serial Scanning and Registration of High Resolution Quantitative Computed Tomography Volume Scans for the Determination of Local Bone Density Changes

    NASA Technical Reports Server (NTRS)

    Whalen, Robert T.; Napel, Sandy; Yan, Chye H.

    1996-01-01

    Progress in development of the methods required to study bone remodeling as a function of time is reported. The following topics are presented: 'A New Methodology for Registration Accuracy Evaluation', 'Registration of Serial Skeletal Images for Accurately Measuring Changes in Bone Density', and 'Precise and Accurate Gold Standard for Multimodality and Serial Registration Method Evaluations.'

  13. Assessment of the facial features and chin development of fetuses with use of serial three-dimensional sonography and the mandibular size monogram in a Chinese population.

    PubMed

    Tsai, Meng-Yin; Lan, Kuo-Chung; Ou, Chia-Yo; Chen, Jen-Huang; Chang, Shiuh-Young; Hsu, Te-Yao

    2004-02-01

    Our purpose was to evaluate whether the application of serial three-dimensional (3D) sonography and the mandibular size monogram can allow observation of dynamic changes in facial features, as well as chin development in utero. The mandibular size monogram has been established through a cross-sectional study involving 183 fetal images. The serial changes of facial features and chin development are assessed in a cohort study involving 40 patients. The monogram reveals that the Biparietal distance (BPD)/Mandibular body length (MBL) ratio is gradually decreased with the advance of gestational age. The cohort study conducted with serial 3D sonography shows the same tendency. Both the images and the results of paired-samples t test (P<.001) statistical analysis suggest that the fetuses develop wider chins and broader facial features in later weeks. The serial 3D sonography and mandibular size monogram display disproportionate growth of the fetal head and chin that leads to changes in facial features in late gestation. This fact must be considered when we evaluate fetuses at risk for development of micrognathia.

  14. An Advanced Preclinical Mouse Model for Acute Myeloid Leukemia Using Patients' Cells of Various Genetic Subgroups and In Vivo Bioluminescence Imaging

    PubMed Central

    Vick, Binje; Rothenberg, Maja; Sandhöfer, Nadine; Carlet, Michela; Finkenzeller, Cornelia; Krupka, Christina; Grunert, Michaela; Trumpp, Andreas; Corbacioglu, Selim; Ebinger, Martin; André, Maya C.; Hiddemann, Wolfgang; Schneider, Stephanie; Subklewe, Marion; Metzeler, Klaus H.; Spiekermann, Karsten; Jeremias, Irmela

    2015-01-01

    Acute myeloid leukemia (AML) is a clinically and molecularly heterogeneous disease with poor outcome. Adequate model systems are required for preclinical studies to improve understanding of AML biology and to develop novel, rational treatment approaches. Xenografts in immunodeficient mice allow performing functional studies on patient-derived AML cells. We have established an improved model system that integrates serial retransplantation of patient-derived xenograft (PDX) cells in mice, genetic manipulation by lentiviral transduction, and essential quality controls by immunophenotyping and targeted resequencing of driver genes. 17/29 samples showed primary engraftment, 10/17 samples could be retransplanted and some of them allowed virtually indefinite serial transplantation. 5/6 samples were successfully transduced using lentiviruses. Neither serial transplantation nor genetic engineering markedly altered sample characteristics analyzed. Transgene expression was stable in PDX AML cells. Example given, recombinant luciferase enabled bioluminescence in vivo imaging and highly sensitive and reliable disease monitoring; imaging visualized minimal disease at 1 PDX cell in 10000 mouse bone marrow cells and facilitated quantifying leukemia initiating cells. We conclude that serial expansion, genetic engineering and imaging represent valuable tools to improve the individualized xenograft mouse model of AML. Prospectively, these advancements enable repetitive, clinically relevant studies on AML biology and preclinical treatment trials on genetically defined and heterogeneous subgroups. PMID:25793878

  15. An application of stereoscopy and image processing in forensics: recovering obliterated firearms serial number

    NASA Astrophysics Data System (ADS)

    da Silva Nunes, L. C.; dos Santos, Paulo Acioly M.

    2004-10-01

    We present an application of the use of stereoscope to recovering obliterated firearms serial number. We investigate a promising new combined cheap method using both non-destructive and destructive techniques. With the use of a stereomicroscope coupled with a digital camera and a flexible cold light source, we can capture the image of the damaged area, and with continuous polishing and sometimes with the help of image processing techniques we could enhance the observed images and they can also be recorded as evidence. This method has already proven to be useful, in certain cases, in aluminum dotted pistol frames, whose serial number is printed with a laser, when etching techniques are not successful. We can also observe acid treated steel surfaces and enhance the images of recovered serial numbers, which sometimes lack of definition.

  16. SU-F-T-685: Evaluation of Tumor Hypoxic Fraction Using Serial Volumetric Imaging During Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chvetsov, A

    Purpose: To develop a tumor response model which could be uses to compute tumor hypoxic fraction using serial volumetric tumor imaging. This algorithm may be used for treatment response assessment and also for guidance of more expensive PET imaging of hypoxia. Methods: Previously developed two-level cell population tumor response model was modified to include a third cell level describing hypoxic and necrotic cells. This third level was considered constant value during radiotherapy treatment; therefore, inclusion additional parameter did not compromise stability of model fitting to imaging data. Fitting the model to serial volumetric imaging data was performed using a leastmore » squares objective function and simulated annealing algorithm. The problem of reconstruction of radiobiological parameters from serial imaging data was considered as inverse ill-posed problem described by the Fredholm integral equation of the first kind. Variational regularization was used to stabilize solutions. Results: To evaluate performance of the algorithm, we used a set of serial CT imaging data on tumor-volume for 14 head and neck cancer patients. The hypoxic fractions were reconstructed for each patient and the distribution of hypoxic fractions was compared to the distribution of initial hypoxic fractions previously measured using histograph. The measured and reconstructed from imaging data distributions of hypoxic fractions are in good agreement. The reconstructed distribution of cell surviving fraction was also in better agreement with in vitro data than previously obtained using the two-level cell population model. Conclusion: Our results indicate that it is possible to evaluate the initial hypoxic tumor fraction using serial volumetric imaging and a tumor response model. This algorithm can be used for treatment response assessment and guidance of more expensive PET imaging.« less

  17. Three-dimensional reconstruction from serial sections in PC-Windows platform by using 3D_Viewer.

    PubMed

    Xu, Yi-Hua; Lahvis, Garet; Edwards, Harlene; Pitot, Henry C

    2004-11-01

    Three-dimensional (3D) reconstruction from serial sections allows identification of objects of interest in 3D and clarifies the relationship among these objects. 3D_Viewer, developed in our laboratory for this purpose, has four major functions: image alignment, movie frame production, movie viewing, and shift-overlay image generation. Color images captured from serial sections were aligned; then the contours of objects of interest were highlighted in a semi-automatic manner. These 2D images were then automatically stacked at different viewing angles, and their composite images on a projected plane were recorded by an image transform-shift-overlay technique. These composition images are used in the object-rotation movie show. The design considerations of the program and the procedures used for 3D reconstruction from serial sections are described. This program, with a digital image-capture system, a semi-automatic contours highlight method, and an automatic image transform-shift-overlay technique, greatly speeds up the reconstruction process. Since images generated by 3D_Viewer are in a general graphic format, data sharing with others is easy. 3D_Viewer is written in MS Visual Basic 6, obtainable from our laboratory on request.

  18. Prominent hypointense veins on susceptibility weighted image in the cat brain with acute infarction: DWI, SWI, and PWI.

    PubMed

    Kim, Yong-Woo; Kim, Hak Jin; Choi, Seon Hee; Kim, Dong Chan

    2014-10-01

    The multiple prominent hypointense veins on susceptibility-weighted imaging (SWI) have been found in the ischemic territory of patients with acute ischemic stroke. Venous side is the unknown area in the hemodynamics of brain infarction. To evaluate the venous aspect in acute brain infarction through an animal study. The acute infarction in cat brains was induced with a bolus infusion of 0.25 mL of triolein through one side of the common carotid artery. The magnetic resonance (MR) images, including diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC) map, SW, and perfusion-weighted (PWI) images, were obtained serially at 2 h (n = 17), 1 day (n = 11), and 4 days (n = 4) after triolein infusion. The obtained MR images were evaluated qualitatively and quantitatively. For qualitative assessment, the signal intensity of the serial MR images was evaluated. The presence or absence and the location with serial changes of infarction were identified on DWI and ADC map images. The presence or absence of prominent hypointense veins and the serial changes of cortical veins were also evaluated on SWI. Quantitative assessment was performed by comparing the relative cerebral blood volume (rCBV), cerebral blood flow (rCBF), and mean transit times (MTT) of the lesions with those of the contralateral normal side calculated on PWI. The serial changes of rCBV, rCBF, and MTT ratio were also evaluated. Acute infarction in the first and second medial gyrus of lesion hemisphere was found by qualitative evaluation of DWI and ADC map images. On the serial evaluation of SWI, the cortical veins of cat brain with infarction were obscured at 2 h and then re-appeared at 1 day. The hemorrhage transformation and prominent hypointense veins were seen at 4 days on SWI. The quantitative evaluation revealed increased MTT ratios and decreased rCBV and rCBF ratios on PWIs in the acute infarction of cat brain. The prominent hypointense veins on SWI were seen in the half of the acute infarction at 4 days. The prominent hypointense veins on SWI may have good agreement with the increased MTT ratio. © The Foundation Acta Radiologica 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  19. Pancreas transplants: Evaluation using perfusion scintigraphy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuni, C.C.; du Cret, R.P.; Boudreau, R.J.

    1989-07-01

    To determine the value of scintigraphic perfusion studies in evaluating pancreas transplant patients, we reviewed 56 of these studies in 22 patients who had 27 transplants. Seventeen patients underwent two or more studies. The perfusion studies were performed with 20 mCi (740 MBq) of 99mTc-DTPA injected as a bolus followed by eight to 16 serial 2-sec images and a 500,000-count immediate static image. Images were evaluated for (1) the time and intensity of pancreatic peak radioactivity relative to the time and intensity of the iliac arterial peak; (2) relative pancreatic to iliac arterial intensity on the static image; and (3)more » size, homogeneity, and definition of the pancreas. Clinical diagnoses at the time of scintigraphy of normal function (n = 36), rejection (n = 13), pancreatitis (n = 6), or arterial thrombosis (n = 1) were based on insulin requirement, urine amylase, serum glucose, serum amylase, response to therapy, cultures, CT, MR, sonography, scintigraphy with 67Ga or 111In-WBCs, percutaneous drainage results, angiography, surgery, and pathologic examination of resected transplants. Three 99mTc-DTPA perfusion studies showed no pancreatic perfusion, four showed decreasing perfusion on serial studies, and five showed progressive loss of definition of the pancreas on serial studies. Of the three patients with no detectable perfusion, one had a normally functioning transplant, one had arterial thrombosis with transplant infarction, and one had severe rejection with minimal function. Decreasing perfusion was associated with rejection in three patients and pancreatitis in one. Decreasing definition was seen in four patients with rejection and one with pancreatitis. We conclude that perfusion scintigraphy is useful, primarily when performed serially, although nonspecific for evaluating pancreas transplants.« less

  20. Serial removal of caries lesions from tooth occlusal surfaces using near-IR image-guided IR laser ablation

    NASA Astrophysics Data System (ADS)

    Chan, Kenneth H.; Tom, Henry; Darling, Cynthia L.; Fried, Daniel

    2015-02-01

    Previous studies have established that caries lesions can be imaged with high contrast without the interference of stains at near-IR wavelengths greater than 1300-nm. It has been demonstrated that computer controlled laser scanning systems utilizing IR lasers operating at high pulse repetition rates can be used for serial imaging and selective removal of caries lesions. In this study, we report our progress towards the development of algorithms for generating rasterized ablation maps from near-IR reflectance images for the removal of natural lesions from tooth occlusal surfaces. An InGaAs camera and a filtered tungsten-halogen lamp producing near-IR light in the range of 1500-1700-nm were used to collect crosspolarization reflectance images of tooth occlusal surfaces. A CO2 laser operating at a wavelength of 9.3- μm with a pulse duration of 10-15-μs was used for image-guided ablation.

  1. A study on ground truth data for impact damaged polymer matrix composites

    NASA Astrophysics Data System (ADS)

    Wallentine, Sarah M.; Uchic, Michael D.

    2018-04-01

    This study presents initial results toward correlative characterization of barely-visible impact damage (BVID) in unidirectional carbon fiber reinforced polymer matrix composite laminate plates using nondestructive ultrasonic testing (UT) and destructive serial sectioning microscopy. To produce damage consistent with BVID, plates were impacted using an instrumented drop-weight tower with pneumatic anti-rebound brake. High-resolution, normal-incidence, single-sided, pulse-echo, immersion UT scans were performed to verify and map internal damage after impact testing. UT C-scans were registered to optical images of the specimen via landmark registration and the use of an affine transformation, allowing location of internal damage in reference to the overall plate and enabling specimen preparation for subsequent serial sectioning. The impact-damaged region was extracted from each plate, prepared and mounted for materialographic sectioning. A modified RoboMet.3D version 2 was employed for serial sectioning and optical microscopy characterization of the impact damaged regions. Automated montage capture of sub-micron resolution, bright-field reflection, 12-bit monochrome optical images was performed over the entire specimen cross-section. These optical images were post- processed to produce 3D data sets, including segmentation to improve visualization of damage features. Impact-induced delaminations were analyzed and characterized using both serial sectioning and ultrasonic methods. Those results and conclusions are presented, as well as future direction of the current study.

  2. Non-rigid registration of serial dedicated breast CT, longitudinal dedicated breast CT and PET/CT images using the diffeomorphic demons method.

    PubMed

    Santos, Jonathan; Chaudhari, Abhijit J; Joshi, Anand A; Ferrero, Andrea; Yang, Kai; Boone, John M; Badawi, Ramsey D

    2014-09-01

    Dedicated breast CT and PET/CT scanners provide detailed 3D anatomical and functional imaging data sets and are currently being investigated for applications in breast cancer management such as diagnosis, monitoring response to therapy and radiation therapy planning. Our objective was to evaluate the performance of the diffeomorphic demons (DD) non-rigid image registration method to spatially align 3D serial (pre- and post-contrast) dedicated breast computed tomography (CT), and longitudinally-acquired dedicated 3D breast CT and positron emission tomography (PET)/CT images. The algorithmic parameters of the DD method were optimized for the alignment of dedicated breast CT images using training data and fixed. The performance of the method for image alignment was quantitatively evaluated using three separate data sets; (1) serial breast CT pre- and post-contrast images of 20 women, (2) breast CT images of 20 women acquired before and after repositioning the subject on the scanner, and (3) dedicated breast PET/CT images of 7 women undergoing neo-adjuvant chemotherapy acquired pre-treatment and after 1 cycle of therapy. The DD registration method outperformed no registration (p < 0.001) and conventional affine registration (p ≤ 0.002) for serial and longitudinal breast CT and PET/CT image alignment. In spite of the large size of the imaging data, the computational cost of the DD method was found to be reasonable (3-5 min). Co-registration of dedicated breast CT and PET/CT images can be performed rapidly and reliably using the DD method. This is the first study evaluating the DD registration method for the alignment of dedicated breast CT and PET/CT images. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  3. Improved Serial Sectioning Techniques for Correlative Light-Electron Microscopy Mapping of Human Langerhans Islets

    PubMed Central

    Saitoh, Sei; Ohno, Nobuhiko; Saitoh, Yurika; Terada, Nobuo; Shimo, Satoshi; Aida, Kaoru; Fujii, Hideki; Kobayashi, Tetsuro; Ohno, Shinichi

    2018-01-01

    Combined analysis of immunostaining for various biological molecules coupled with investigations of ultrastructural features of individual cells is a powerful approach for studies of cellular functions in normal and pathological conditions. However, weak antigenicity of tissues fixed by conventional methods poses a problem for immunoassays. This study introduces a method of correlative light and electron microscopy imaging of the same endocrine cells of compact and diffuse islets from human pancreatic tissue specimens. The method utilizes serial sections obtained from Epon-embedded specimens fixed with glutaraldehyde and osmium tetroxide. Double-immunofluorescence staining of thick Epon sections for endocrine hormones (insulin and glucagon) and regenerating islet-derived gene 1 α (REG1α) was performed following the removal of Epoxy resin with sodium ethoxide, antigen retrieval by autoclaving, and de-osmification treatment with hydrogen peroxide. The immunofluorescence images of endocrine cells were superimposed with the electron microscopy images of the same cells obtained from serial ultrathin sections. Immunofluorescence images showed well-preserved secretory granules in endocrine cells, whereas electron microscopy observations demonstrated corresponding secretory granules and intracellular organelles in the same cells. In conclusion, the correlative imaging approach developed by us may be useful for examining ultrastructural features in combination with immunolocalisation of endocrine hormones in the same human pancreatic islets. PMID:29622846

  4. Implementation of a Landscape Lighting System to Display Images

    NASA Astrophysics Data System (ADS)

    Sun, Gi-Ju; Cho, Sung-Jae; Kim, Chang-Beom; Moon, Cheol-Hong

    The system implemented in this study consists of a PC, MASTER, SLAVEs and MODULEs. The PC sets the various landscape lighting displays, and the image files can be sent to the MASTER through a virtual serial port connected to the USB (Universal Serial Bus). The MASTER sends a sync signal to the SLAVE. The SLAVE uses the signal received from the MASTER and the landscape lighting display pattern. The video file is saved in the NAND Flash memory and the R, G, B signals are separated using the self-made display signal and sent to the MODULE so that it can display the image.

  5. Fast assembling of neuron fragments in serial 3D sections.

    PubMed

    Chen, Hanbo; Iascone, Daniel Maxim; da Costa, Nuno Maçarico; Lein, Ed S; Liu, Tianming; Peng, Hanchuan

    2017-09-01

    Reconstructing neurons from 3D image-stacks of serial sections of thick brain tissue is very time-consuming and often becomes a bottleneck in high-throughput brain mapping projects. We developed NeuronStitcher, a software suite for stitching non-overlapping neuron fragments reconstructed in serial 3D image sections. With its efficient algorithm and user-friendly interface, NeuronStitcher has been used successfully to reconstruct very large and complex human and mouse neurons.

  6. A novel image toggle tool for comparison of serial mammograms: automatic density normalization and alignment-development of the tool and initial experience.

    PubMed

    Honda, Satoshi; Tsunoda, Hiroko; Fukuda, Wataru; Saida, Yukihisa

    2014-12-01

    The purpose is to develop a new image toggle tool with automatic density normalization (ADN) and automatic alignment (AA) for comparing serial digital mammograms (DMGs). We developed an ADN and AA process to compare the images of serial DMGs. In image density normalization, a linear interpolation was applied by taking two points of high- and low-brightness areas. The alignment was calculated by determining the point of the greatest correlation while shifting the alignment between the current and prior images. These processes were performed on a PC with a 3.20-GHz Xeon processor and 8 GB of main memory. We selected 12 suspected breast cancer patients who had undergone screening DMGs in the past. Automatic processing was retrospectively performed on these images. Two radiologists subjectively evaluated them. The process of the developed algorithm took approximately 1 s per image. In our preliminary experience, two images could not be aligned approximately. When they were aligned, image toggling allowed detection of differences between examinations easily. We developed a new tool to facilitate comparative reading of DMGs on a mammography viewing system. Using this tool for toggling comparisons might improve the interpretation efficiency of serial DMGs.

  7. A novel method to acquire 3D data from serial 2D images of a dental cast

    NASA Astrophysics Data System (ADS)

    Yi, Yaxing; Li, Zhongke; Chen, Qi; Shao, Jun; Li, Xinshe; Liu, Zhiqin

    2007-05-01

    This paper introduced a newly developed method to acquire three-dimensional data from serial two-dimensional images of a dental cast. The system consists of a computer and a set of data acquiring device. The data acquiring device is used to take serial pictures of the a dental cast; an artificial neural network works to translate two-dimensional pictures to three-dimensional data; then three-dimensional image can reconstruct by the computer. The three-dimensional data acquiring of dental casts is the foundation of computer-aided diagnosis and treatment planning in orthodontics.

  8. SU-E-T-398: Evaluation of Radiobiological Parameters Using Serial Tumor Imaging During Radiotherapy as An Inverse Ill-Posed Problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chvetsov, A; Sandison, G; Schwartz, J

    Purpose: Combination of serial tumor imaging with radiobiological modeling can provide more accurate information on the nature of treatment response and what underlies resistance. The purpose of this article is to improve the algorithms related to imaging-based radiobilogical modeling of tumor response. Methods: Serial imaging of tumor response to radiation therapy represents a sum of tumor cell sensitivity, tumor growth rates, and the rate of cell loss which are not separated explicitly. Accurate treatment response assessment would require separation of these radiobiological determinants of treatment response because they define tumor control probability. We show that the problem of reconstruction ofmore » radiobiological parameters from serial imaging data can be considered as inverse ill-posed problem described by the Fredholm integral equation of the first kind because it is governed by a sum of several exponential processes. Therefore, the parameter reconstruction can be solved using regularization methods. Results: To study the reconstruction problem, we used a set of serial CT imaging data for the head and neck cancer and a two-level cell population model of tumor response which separates the entire tumor cell population in two subpopulations of viable and lethally damage cells. The reconstruction was done using a least squared objective function and a simulated annealing algorithm. Using in vitro data for radiobiological parameters as reference data, we shown that the reconstructed values of cell surviving fractions and potential doubling time exhibit non-physical fluctuations if no stabilization algorithms are applied. The variational regularization allowed us to obtain statistical distribution for cell surviving fractions and cell number doubling times comparable to in vitro data. Conclusion: Our results indicate that using variational regularization can increase the number of free parameters in the model and open the way to development of more advanced algorithms which take into account tumor heterogeneity, for example, related to hypoxia.« less

  9. Volume imaging NDE and serial sectioning of carbon fiber composites

    NASA Astrophysics Data System (ADS)

    Hakim, Issa; Schumacher, David; Sundar, Veeraraghavan; Donaldson, Steven; Creuz, Aline; Schneider, Rainer; Keller, Juergen; Browning, Charles; May, Daniel; Ras, Mohamad Abo; Meyendorf, Norbert

    2018-04-01

    A composite material is a combination of two or more materials with very different mechanical, thermal and electrical properties. The various forms of composite materials, due to their high material properties, are widely used as structural materials in the aviation, space, marine, automobile, and sports industries. However, some defects like voids, delamination, or inhomogeneous fiber distribution that form during the fabricating processes of composites can seriously affect the mechanical properties of the composite material. In this study, several imaging NDE techniques such as: thermography, high frequency eddy current, ultrasonic, x-ray radiography, x-ray laminography, and high resolution x-ray CT were conducted to characterize the microstructure of carbon fiber composites. Then, a 3D analysis was implemented by the destructive technique of serial sectioning for the same sample tested by the NDE methods. To better analyze the results of this work and extract a clear volume image for all features and defects contained in the composite material, an intensive comparison was conducted among hundreds of 3D-NDE and multi serial sections' scan images showing the microstructure variation.

  10. New developments in electron microscopy for serial image acquisition of neuronal profiles.

    PubMed

    Kubota, Yoshiyuki

    2015-02-01

    Recent developments in electron microscopy largely automate the continuous acquisition of serial electron micrographs (EMGs), previously achieved by laborious manual serial ultrathin sectioning using an ultramicrotome and ultrastructural image capture process with transmission electron microscopy. The new systems cut thin sections and capture serial EMGs automatically, allowing for acquisition of large data sets in a reasonably short time. The new methods are focused ion beam/scanning electron microscopy, ultramicrotome/serial block-face scanning electron microscopy, automated tape-collection ultramicrotome/scanning electron microscopy and transmission electron microscope camera array. In this review, their positive and negative aspects are discussed. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Segmentation propagation for the automated quantification of ventricle volume from serial MRI

    NASA Astrophysics Data System (ADS)

    Linguraru, Marius George; Butman, John A.

    2009-02-01

    Accurate ventricle volume estimates could potentially improve the understanding and diagnosis of communicating hydrocephalus. Postoperative communicating hydrocephalus has been recognized in patients with brain tumors where the changes in ventricle volume can be difficult to identify, particularly over short time intervals. Because of the complex alterations of brain morphology in these patients, the segmentation of brain ventricles is challenging. Our method evaluates ventricle size from serial brain MRI examinations; we (i) combined serial images to increase SNR, (ii) automatically segmented this image to generate a ventricle template using fast marching methods and geodesic active contours, and (iii) propagated the segmentation using deformable registration of the original MRI datasets. By applying this deformation to the ventricle template, serial volume estimates were obtained in a robust manner from routine clinical images (0.93 overlap) and their variation analyzed.

  12. Mechanization of Library Procedures in the Medium-sized Medical Library: IX. Holding Statements in PHILSOM: a Study of their Activity *

    PubMed Central

    Beckwith, Helen K.

    1970-01-01

    A study was made of the serial holding statements in PHILSOM over a six-month period, in order to determine the desirability of printing the complete serial holding statements monthly. Attention was given to the frequency of internal and update changes in both active and dead entries. The results indicate that while sufficient activity is observed in active serial entries to warrant their monthly updating, dead serial entries remain constant over this period. This indicates that a large group of PHILSOM entries can be easily identified and isolated, facilitating division and independent updating of the resultant lists. The desirability of such a division, however, must also take into consideration the user's ease in handling such a segmented listing. Images PMID:5439902

  13. Serial cardiac MRIs in adult Fontan patients detect progressive hepatic enlargement and congestion.

    PubMed

    Lewis, Matthew J; Hecht, Elizabeth; Ginns, Jonathan; Benton, Joshua; Prince, Martin; Rosenbaum, Marlon S

    2017-03-01

    The progression of hepatic disease in adult Fontan patients is not well understood. They reviewed the experience with serial cardiac MRIs (CMR) in adult Fontan patients to determine if hepatic anatomic markers of prolonged Fontan exposure were present and if clinical predictors of progressive hepatic congestion could be identified. A retrospective cohort study of all adult Fontan patients who had undergone at least two CMRs was performed. Hepatic dimensions, inferior vena cava (IVC) size, right hepatic vein (RHV) size and spleen diameter were determined from images acquired at the time of clinically guided CMR. Two radiologists with expertise in hepatic imaging graded congestion and liver size independently using post-gadolinium contrast sequences. Twenty-seven patients met inclusion criteria. Over a mean time of 5.1 years between CMRs, there was a significant increase in mean lateral-medial hepatic dimension (P = .005), mean RHV diameter (P = .004), and mean splenic diameter (P = .001). Serial post-gadolinium imaging was available in 25/27 (93%) patients of which 15/27 (55%) showed evidence of progressive hepatic congestion across serial studies. Progressive hepatic congestion was associated with single ventricle ejection fraction (SVEF) less than 50% (P = .008), and larger indexed end-diastolic (EDVI) and end-systolic volume (ESVI). RHV diameter was the only anatomic variable significantly correlated with time from Fontan completion (P = .004). Serial CMRs detected progressive liver and hepatic vein enlargement in our cohort of adult Fontan patients over a mean time of 5.2 years. Progressive hepatic congestion occurs in a significant number of adult Fontan patients and may be associated with ventricular enlargement and decreased ventricular function by CMR. © 2016 Wiley Periodicals, Inc.

  14. Serial Magnetic Resonance Imaging in Active Surveillance of Prostate Cancer: Incremental Value.

    PubMed

    Felker, Ely R; Wu, Jason; Natarajan, Shyam; Margolis, Daniel J; Raman, Steven S; Huang, Jiaoti; Dorey, Fred; Marks, Leonard S

    2016-05-01

    We assessed whether changes in serial multiparametric magnetic resonance imaging can help predict the pathological progression of prostate cancer in men on active surveillance. A retrospective cohort study was conducted of 49 consecutive men with Gleason 6 prostate cancer who underwent multiparametric magnetic resonance imaging at baseline and again more than 6 months later, each followed by a targeted prostate biopsy, between January 2011 and May 2015. We evaluated whether progression on multiparametric magnetic resonance imaging (an increase in index lesion suspicion score, increase in index lesion volume or decrease in index lesion apparent diffusion coefficient) could predict pathological progression (Gleason 3 + 4 or greater on subsequent biopsy, in systematic or targeted cores). Diagnostic performance of multiparametric magnetic resonance imaging was determined with and without clinical data using a binary logistic regression model. The mean interval between baseline and followup multiparametric magnetic resonance imaging was 28.3 months (range 11 to 43). Pathological progression occurred in 19 patients (39%). The sensitivity, specificity, positive predictive value and negative predictive value of multiparametric magnetic resonance imaging was 37%, 90%, 69% and 70%, respectively. Area under the receiver operating characteristic curve was 0.63. A logistic regression model using clinical information (maximum cancer core length greater than 3 mm on baseline biopsy or a prostate specific antigen density greater than 0.15 ng/ml(2) at followup biopsy) had an AUC of 0.87 for predicting pathological progression. The addition of serial multiparametric magnetic resonance imaging data significantly improved the AUC to 0.91 (p=0.044). Serial multiparametric magnetic resonance imaging adds incremental value to prostate specific antigen density and baseline cancer core length for predicting Gleason 6 upgrading in men on active surveillance. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  15. Serial sectioning for examination of photoreceptor cell architecture by focused ion beam technology

    PubMed Central

    Mustafi, Debarshi; Avishai, Amir; Avishai, Nanthawan; Engel, Andreas; Heuer, Arthur; Palczewski, Krzysztof

    2011-01-01

    Structurally deciphering complex neural networks requires technology with sufficient resolution to allow visualization of single cells and their intimate surrounding connections. Scanning electron microscopy (SEM), coupled with serial ion ablation (SIA) technology, presents a new avenue to study these networks. SIA allows ion ablation to remove nanometer sections of tissue for SEM imaging, resulting in serial section data collection for three-dimensional reconstruction. Here we highlight a method for preparing retinal tissues for imaging of photoreceptors by SIA-SEM technology. We show that this technique can be used to visualize whole rod photoreceptors and the internal disc elements from wild-type (wt) mice. The distance parameters of the discs and photoreceptors are in good agreement with previous work with other methods. Moreover, we show that large planes of retinal tissue can be imaged at high resolution to display the packing of normal rods. Finally, SIA-SEM imaging of retinal tissue from a mouse model (Nrl−/−) with phenotypic changes akin to the human disease enhanced S-cone syndrome (ESCS) revealed a structural profile of overall photoreceptor ultrastructure and internal elements that accompany this disease. Overall, this work presents a new method to study photoreceptor cells at high structural resolution that has a broad applicability to the visual neuroscience field. PMID:21439323

  16. Cryo-FIB-SEM serial milling and block face imaging: Large volume structural analysis of biological tissues preserved close to their native state.

    PubMed

    Vidavsky, Netta; Akiva, Anat; Kaplan-Ashiri, Ifat; Rechav, Katya; Addadi, Lia; Weiner, Steve; Schertel, Andreas

    2016-12-01

    Many important biological questions can be addressed by studying in 3D large volumes of intact, cryo fixed hydrated tissues (⩾10,000μm 3 ) at high resolution (5-20nm). This can be achieved using serial FIB milling and block face surface imaging under cryo conditions. Here we demonstrate the unique potential of the cryo-FIB-SEM approach using two extensively studied model systems; sea urchin embryos and the tail fin of zebrafish larvae. We focus in particular on the environment of mineral deposition sites. The cellular organelles, including mitochondria, Golgi, ER, nuclei and nuclear pores are made visible by the image contrast created by differences in surface potential of different biochemical components. Auto segmentation and/or volume rendering of the image stacks and 3D reconstruction of the skeleton and the cellular environment, provides a detailed view of the relative distribution in space of the tissue/cellular components, and thus of their interactions. Simultaneous acquisition of secondary and back-scattered electron images adds additional information. For example, a serial view of the zebrafish tail reveals the presence of electron dense mineral particles inside mitochondrial networks extending more than 20μm in depth in the block. Large volume imaging using cryo FIB SEM, as demonstrated here, can contribute significantly to the understanding of the structures and functions of diverse biological tissues. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Serial and semantic encoding of lists of words in schizophrenia patients with visual hallucinations.

    PubMed

    Brébion, Gildas; Ohlsen, Ruth I; Pilowsky, Lyn S; David, Anthony S

    2011-03-30

    Previous research has suggested that visual hallucinations in schizophrenia are associated with abnormal salience of visual mental images. Since visual imagery is used as a mnemonic strategy to learn lists of words, increased visual imagery might impede the other commonly used strategies of serial and semantic encoding. We had previously published data on the serial and semantic strategies implemented by patients when learning lists of concrete words with different levels of semantic organisation (Brébion et al., 2004). In this paper we present a re-analysis of these data, aiming at investigating the associations between learning strategies and visual hallucinations. Results show that the patients with visual hallucinations presented less serial clustering in the non-organisable list than the other patients. In the semantically organisable list with typical instances, they presented both less serial and less semantic clustering than the other patients. Thus, patients with visual hallucinations demonstrate reduced use of serial and semantic encoding in the lists made up of fairly familiar concrete words, which enable the formation of mental images. Although these results are preliminary, we propose that this different processing of the lists stems from the abnormal salience of the mental images such patients experience from the word stimuli. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  18. Reconstruction of vessel structures from serial whole slide sections of murine liver samples

    NASA Astrophysics Data System (ADS)

    Schwier, Michael; Hahn, Horst K.; Dahmen, Uta; Dirsch, Olaf

    2013-03-01

    Image-based analysis of the vascular structures of murine liver samples is an important tool for scientists to understand liver physiology and morphology. Typical assessment methods are MicroCT, which allows for acquiring images of the whole organ while lacking resolution for fine details, and confocal laser scanning microscopy, which allows detailed insights into fine structures while lacking the broader context. Imaging of histological serial whole slide sections is a recent technology able to fill this gap, since it provides a fine resolution up to the cellular level, but on a whole organ scale. However, whole slide imaging is a modality providing only 2D images. Therefore the challenge is to use stacks of serial sections from which to reconstruct the 3D vessel structures. In this paper we present a semi-automatic procedure to achieve this goal. We employ an automatic method that detects vessel structures based on continuity and shape characteristics. Furthermore it supports the user to perform manual corrections where required. With our methods we were able to successfully extract and reconstruct vessel structures from a stack of 100 and a stack of 397 serial sections of a mouse liver lobe, thus proving the potential of our approach.

  19. The application of coded excitation technology in medical ultrasonic Doppler imaging

    NASA Astrophysics Data System (ADS)

    Li, Weifeng; Chen, Xiaodong; Bao, Jing; Yu, Daoyin

    2008-03-01

    Medical ultrasonic Doppler imaging is one of the most important domains of modern medical imaging technology. The application of coded excitation technology in medical ultrasonic Doppler imaging system has the potential of higher SNR and deeper penetration depth than conventional pulse-echo imaging system, it also improves the image quality, and enhances the sensitivity of feeble signal, furthermore, proper coded excitation is beneficial to received spectrum of Doppler signal. Firstly, this paper analyzes the application of coded excitation technology in medical ultrasonic Doppler imaging system abstractly, showing the advantage and bright future of coded excitation technology, then introduces the principle and the theory of coded excitation. Secondly, we compare some coded serials (including Chirp and fake Chirp signal, Barker codes, Golay's complementary serial, M-sequence, etc). Considering Mainlobe Width, Range Sidelobe Level, Signal-to-Noise Ratio and sensitivity of Doppler signal, we choose Barker codes as coded serial. At last, we design the coded excitation circuit. The result in B-mode imaging and Doppler flow measurement coincided with our expectation, which incarnated the advantage of application of coded excitation technology in Digital Medical Ultrasonic Doppler Endoscope Imaging System.

  20. 3D imaging by serial block face scanning electron microscopy for materials science using ultramicrotomy.

    PubMed

    Hashimoto, Teruo; Thompson, George E; Zhou, Xiaorong; Withers, Philip J

    2016-04-01

    Mechanical serial block face scanning electron microscopy (SBFSEM) has emerged as a means of obtaining three dimensional (3D) electron images over volumes much larger than possible by focused ion beam (FIB) serial sectioning and at higher spatial resolution than achievable with conventional X-ray computed tomography (CT). Such high resolution 3D electron images can be employed for precisely determining the shape, volume fraction, distribution and connectivity of important microstructural features. While soft (fixed or frozen) biological samples are particularly well suited for nanoscale sectioning using an ultramicrotome, the technique can also produce excellent 3D images at electron microscope resolution in a time and resource-efficient manner for engineering materials. Currently, a lack of appreciation of the capabilities of ultramicrotomy and the operational challenges associated with minimising artefacts for different materials is limiting its wider application to engineering materials. Consequently, this paper outlines the current state of the art for SBFSEM examining in detail how damage is introduced during slicing and highlighting strategies for minimising such damage. A particular focus of the study is the acquisition of 3D images for a variety of metallic and coated systems. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Observation of three-dimensional internal structure of steel materials by means of serial sectioning with ultrasonic elliptical vibration cutting.

    PubMed

    Fujisaki, K; Yokota, H; Nakatsuchi, H; Yamagata, Y; Nishikawa, T; Udagawa, T; Makinouchi, A

    2010-01-01

    A three-dimensional (3D) internal structure observation system based on serial sectioning was developed from an ultrasonic elliptical vibration cutting device and an optical microscope combined with a high-precision positioning device. For bearing steel samples, the cutting device created mirrored surfaces suitable for optical metallography, even for long-cutting distances during serial sectioning of these ferrous materials. Serial sectioning progressed automatically by means of numerical control. The system was used to observe inclusions in steel materials on a scale of several tens of micrometers. Three specimens containing inclusions were prepared from bearing steels. These inclusions could be detected as two-dimensional (2D) sectional images with resolution better than 1 mum. A three-dimensional (3D) model of each inclusion was reconstructed from the 2D serial images. The microscopic 3D models had sharp edges and complicated surfaces.

  2. Automated segmentation of ventricles from serial brain MRI for the quantification of volumetric changes associated with communicating hydrocephalus in patients with brain tumor

    NASA Astrophysics Data System (ADS)

    Pura, John A.; Hamilton, Allison M.; Vargish, Geoffrey A.; Butman, John A.; Linguraru, Marius George

    2011-03-01

    Accurate ventricle volume estimates could improve the understanding and diagnosis of postoperative communicating hydrocephalus. For this category of patients, associated changes in ventricle volume can be difficult to identify, particularly over short time intervals. We present an automated segmentation algorithm that evaluates ventricle size from serial brain MRI examination. The technique combines serial T1- weighted images to increase SNR and segments the means image to generate a ventricle template. After pre-processing, the segmentation is initiated by a fuzzy c-means clustering algorithm to find the seeds used in a combination of fast marching methods and geodesic active contours. Finally, the ventricle template is propagated onto the serial data via non-linear registration. Serial volume estimates were obtained in an automated robust and accurate manner from difficult data.

  3. An automatic alignment tool to improve repeatability of left ventricular function and dyssynchrony parameters in serial gated myocardial perfusion SPECT studies

    PubMed Central

    Zhou, Yanli; Faber, Tracy L.; Patel, Zenic; Folks, Russell D.; Cheung, Alice A.; Garcia, Ernest V.; Soman, Prem; Li, Dianfu; Cao, Kejiang; Chen, Ji

    2013-01-01

    Objective Left ventricular (LV) function and dyssynchrony parameters measured from serial gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) using blinded processing had a poorer repeatability than when manual side-by-side processing was used. The objective of this study was to validate whether an automatic alignment tool can reduce the variability of LV function and dyssynchrony parameters in serial gated SPECT MPI. Methods Thirty patients who had undergone serial gated SPECT MPI were prospectively enrolled in this study. Thirty minutes after the first acquisition, each patient was repositioned and a gated SPECT MPI image was reacquired. The two data sets were first processed blinded from each other by the same technologist in different weeks. These processed data were then realigned by the automatic tool, and manual side-by-side processing was carried out. All processing methods used standard iterative reconstruction and Butterworth filtering. The Emory Cardiac Toolbox was used to measure the LV function and dyssynchrony parameters. Results The automatic tool failed in one patient, who had a large, severe scar in the inferobasal wall. In the remaining 29 patients, the repeatability of the LV function and dyssynchrony parameters after automatic alignment was significantly improved from blinded processing and was comparable to manual side-by-side processing. Conclusion The automatic alignment tool can be an alternative method to manual side-by-side processing to improve the repeatability of LV function and dyssynchrony measurements by serial gated SPECT MPI. PMID:23211996

  4. Ill-posed problem and regularization in reconstruction of radiobiological parameters from serial tumor imaging data

    NASA Astrophysics Data System (ADS)

    Chvetsov, Alevei V.; Sandison, George A.; Schwartz, Jeffrey L.; Rengan, Ramesh

    2015-11-01

    The main objective of this article is to improve the stability of reconstruction algorithms for estimation of radiobiological parameters using serial tumor imaging data acquired during radiation therapy. Serial images of tumor response to radiation therapy represent a complex summation of several exponential processes as treatment induced cell inactivation, tumor growth rates, and the rate of cell loss. Accurate assessment of treatment response would require separation of these processes because they define radiobiological determinants of treatment response and, correspondingly, tumor control probability. However, the estimation of radiobiological parameters using imaging data can be considered an inverse ill-posed problem because a sum of several exponentials would produce the Fredholm integral equation of the first kind which is ill posed. Therefore, the stability of reconstruction of radiobiological parameters presents a problem even for the simplest models of tumor response. To study stability of the parameter reconstruction problem, we used a set of serial CT imaging data for head and neck cancer and a simplest case of a two-level cell population model of tumor response. Inverse reconstruction was performed using a simulated annealing algorithm to minimize a least squared objective function. Results show that the reconstructed values of cell surviving fractions and cell doubling time exhibit significant nonphysical fluctuations if no stabilization algorithms are applied. However, after applying a stabilization algorithm based on variational regularization, the reconstruction produces statistical distributions for survival fractions and doubling time that are comparable to published in vitro data. This algorithm is an advance over our previous work where only cell surviving fractions were reconstructed. We conclude that variational regularization allows for an increase in the number of free parameters in our model which enables development of more-advanced parameter reconstruction algorithms.

  5. Macroscopic in vivo imaging of facial nerve regeneration in Thy1-GFP rats.

    PubMed

    Placheta, Eva; Wood, Matthew D; Lafontaine, Christine; Frey, Manfred; Gordon, Tessa; Borschel, Gregory H

    2015-01-01

    Facial nerve injury leads to severe functional and aesthetic deficits. The transgenic Thy1-GFP rat is a new model for facial nerve injury and reconstruction research that will help improve clinical outcomes through translational facial nerve injury research. To determine whether serial in vivo imaging of nerve regeneration in the transgenic rat model is possible, facial nerve regeneration was imaged under the main paradigms of facial nerve injury and reconstruction. Fifteen male Thy1-GFP rats, which express green fluorescent protein (GFP) in their neural structures, were divided into 3 groups in the laboratory: crush-injury, direct repair, and cross-face nerve grafting (30-mm graft length). The distal nerve stump or nerve graft was predegenerated for 2 weeks. The facial nerve of the transgenic rats was serially imaged at the time of operation and after 2, 4, and 8 weeks of regeneration. The imaging was performed under a GFP-MDS-96/BN excitation stand (BLS Ltd). Facial nerve injury. Optical fluorescence of regenerating facial nerve axons. Serial in vivo imaging of the regeneration of GFP-positive axons in the Thy1-GFP rat model is possible. All animals survived the short imaging procedures well, and nerve regeneration was followed over clinically relevant distances. The predegeneration of the distal nerve stump or the cross-face nerve graft was, however, necessary to image the regeneration front at early time points. Crush injury was not suitable to sufficiently predegenerate the nerve (and to allow for degradation of the GFP through Wallerian degeneration). After direct repair, axons regenerated over the coaptation site in between 2 and 4 weeks. The GFP-positive nerve fibers reached the distal end of the 30-mm-long cross-face nervegrafts after 4 to 8 weeks of regeneration. The time course of facial nerve regeneration was studied by serial in vivo imaging in the transgenic rat model. Nerve regeneration was followed over clinically relevant distances in a small number of experimental animals, as they were subsequently imaged at multiple time points. The Thy1-GFP rat model will help improve clinical outcomes of facial reanimation surgery through improving the knowledge of facial nerve regeneration after surgical procedures. NA.

  6. Image-guided removal of occlusal caries lesions with a λ= 9.3-µm CO2 laser using near-IR transillumination

    PubMed Central

    Chung, Leon C.; Tom, Henry; Chan, Kenneth H.; Simon, Jacob C.; Fried, Daniel; Darling, Cynthia L.

    2015-01-01

    Previous studies have shown that near-IR transillumination is well suited for imaging deep occlusal lesions. The purpose of this study was to determine if near-IR images can be used to guide a CO2 laser for the selective removal of natural occlusal lesions on extracted teeth. Near-IR occlusal transillumination images of extracted human teeth with natural occlusal caries lesions were acquired using an InGaAs camera and near-IR light at wavelengths from 1290 to 1470-nm from a filtered tungsten halogen source. A CO2 laser operating at 9.3-µm with a pulse duration of 10–15-µs and a pulse repetition rate of 100–300-Hz was used for caries removal. Optical Coherence tomography was used to confirm lesion presence and serial scans were used to assess selective removal. Teeth were also sectioned for histological examination using polarized light microscopy. This study suggests that near-infrared transillumination is a promising method for the image guided laser ablation of occlusal caries lesions but the use of serial near-IR transillumination imaging for monitoring lesion removal was limited. PMID:25914498

  7. Image-guided removal of occlusal caries lesions with a λ= 9.3-μm CO2 laser using near-IR transillumination

    NASA Astrophysics Data System (ADS)

    Chung, Leon C.; Tom, Henry; Chan, Kenneth H.; Simon, Jacob C.; Fried, Daniel; Darling, Cynthia L.

    2015-02-01

    Previous studies have shown that near-IR transillumination is well suited for imaging deep occlusal lesions. The purpose of this study was to determine if near-IR images can be used to guide a CO2 laser for the selective removal of natural occlusal lesions on extracted teeth. Near-IR occlusal transillumination images of extracted human teeth with natural occlusal caries lesions were acquired using an InGaAs camera and near-IR light at wavelengths from 1290 to 1470-nm from a filtered tungsten halogen source. A CO2 laser operating at 9.3-μm with a pulse duration of 10-15-μs and a pulse repetition rate of 100-300-Hz was used for caries removal. Optical Coherence tomography was used to confirm lesion presence and serial scans were used to assess selective removal. Teeth were also sectioned for histological examination using polarized light microscopy. This study suggests that near-infrared transillumination is a promising method for the image guided laser ablation of occlusal caries lesions but the use of serial near-IR transillumination imaging for monitoring lesion removal was limited.

  8. Development of CMOS Imager Block for Capsule Endoscope

    NASA Astrophysics Data System (ADS)

    Shafie, S.; Fodzi, F. A. M.; Tung, L. Q.; Lioe, D. X.; Halin, I. A.; Hasan, W. Z. W.; Jaafar, H.

    2014-04-01

    This paper presents the development of imager block to be associated in a capsule endoscopy system. Since the capsule endoscope is used to diagnose gastrointestinal diseases, the imager block must be in small size which is comfortable for the patients to swallow. In this project, a small size 1.5V button battery is used as the power supply while the voltage supply requirements for other components such as microcontroller and CMOS image sensor are higher. Therefore, a voltage booster circuit is proposed to boost up the voltage supply from 1.5V to 3.3V. A low power microcontroller is used to generate control pulses for the CMOS image sensor and to convert the 8-bits parallel data output to serial data to be transmitted to the display panel. The results show that the voltage booster circuit was able to boost the voltage supply from 1.5V to 3.3V. The microcontroller precisely controls the CMOS image sensor to produce parallel data which is then serialized again by the microcontroller. The serial data is then successfully translated to 2fps image and displayed on computer.

  9. Serial dependence in the perception of attractiveness.

    PubMed

    Xia, Ye; Leib, Allison Yamanashi; Whitney, David

    2016-12-01

    The perception of attractiveness is essential for choices of food, object, and mate preference. Like perception of other visual features, perception of attractiveness is stable despite constant changes of image properties due to factors like occlusion, visual noise, and eye movements. Recent results demonstrate that perception of low-level stimulus features and even more complex attributes like human identity are biased towards recent percepts. This effect is often called serial dependence. Some recent studies have suggested that serial dependence also exists for perceived facial attractiveness, though there is also concern that the reported effects are due to response bias. Here we used an attractiveness-rating task to test the existence of serial dependence in perceived facial attractiveness. Our results demonstrate that perceived face attractiveness was pulled by the attractiveness level of facial images encountered up to 6 s prior. This effect was not due to response bias and did not rely on the previous motor response. This perceptual pull increased as the difference in attractiveness between previous and current stimuli increased. Our results reconcile previously conflicting findings and extend previous work, demonstrating that sequential dependence in perception operates across different levels of visual analysis, even at the highest levels of perceptual interpretation.

  10. Validating Intravascular Imaging with Serial Optical Coherence Tomography and Confocal Fluorescence Microscopy.

    PubMed

    Tardif, Pier-Luc; Bertrand, Marie-Jeanne; Abran, Maxime; Castonguay, Alexandre; Lefebvre, Joël; Stähli, Barbara E; Merlet, Nolwenn; Mihalache-Avram, Teodora; Geoffroy, Pascale; Mecteau, Mélanie; Busseuil, David; Ni, Feng; Abulrob, Abedelnasser; Rhéaume, Éric; L'Allier, Philippe; Tardif, Jean-Claude; Lesage, Frédéric

    2016-12-15

    Atherosclerotic cardiovascular diseases are characterized by the formation of a plaque in the arterial wall. Intravascular ultrasound (IVUS) provides high-resolution images allowing delineation of atherosclerotic plaques. When combined with near infrared fluorescence (NIRF), the plaque can also be studied at a molecular level with a large variety of biomarkers. In this work, we present a system enabling automated volumetric histology imaging of excised aortas that can spatially correlate results with combined IVUS/NIRF imaging of lipid-rich atheroma in cholesterol-fed rabbits. Pullbacks in the rabbit aortas were performed with a dual modality IVUS/NIRF catheter developed by our group. Ex vivo three-dimensional (3D) histology was performed combining optical coherence tomography (OCT) and confocal fluorescence microscopy, providing high-resolution anatomical and molecular information, respectively, to validate in vivo findings. The microscope was combined with a serial slicer allowing for the imaging of the whole vessel automatically. Colocalization of in vivo and ex vivo results is demonstrated. Slices can then be recovered to be tested in conventional histology.

  11. Investigating the impact of blood pressure increase to the brain using high resolution serial histology and image processing

    NASA Astrophysics Data System (ADS)

    Lesage, F.; Castonguay, A.; Tardif, P. L.; Lefebvre, J.; Li, B.

    2015-09-01

    A combined serial OCT/confocal scanner was designed to image large sections of biological tissues at microscopic resolution. Serial imaging of organs embedded in agarose blocks is performed by cutting through tissue using a vibratome which sequentially cuts slices in order to reveal new tissue to image, overcoming limited light penetration encountered in microscopy. Two linear stages allow moving the tissue with respect to the microscope objective, acquiring a 2D grid of volumes (1x1x0.3 mm) with OCT and a 2D grid of images (1x1mm) with the confocal arm. This process is repeated automatically, until the entire sample is imaged. Raw data is then post-processed to re-stitch each individual acquisition and obtain a reconstructed volume of the imaged tissue. This design is being used to investigate correlations between white matter and microvasculature changes with aging and with increase in pulse pressure following transaortic constriction in mice. The dual imaging capability of the system allowed to reveal different contrast information: OCT imaging reveals changes in refractive indices giving contrast between white and grey matter in the mouse brain, while transcardial perfusion of FITC or pre-sacrifice injection of Evans Blue shows microsvasculature properties in the brain with confocal imaging.

  12. Mechanization in a New Medical School Library II. Serials and Circulation

    PubMed Central

    Payne, Ladye Margarete; Small, Louise; Divett, Robert T.

    1966-01-01

    The serials and circulation phases of the data-processing system in use at the University of New Mexico Library of the Medical Sciences are described. The development of the programs is also reported. The serials program uses simple punched card equipment. The circulation program uses the IBM 357 Data Collection System and punched card data-processing equipment. Images PMID:5921473

  13. Eye movement related brain responses to emotional scenes during free viewing

    PubMed Central

    Simola, Jaana; Torniainen, Jari; Moisala, Mona; Kivikangas, Markus; Krause, Christina M.

    2013-01-01

    Emotional stimuli are preferentially processed over neutral stimuli. Previous studies, however, disagree on whether emotional stimuli capture attention preattentively or whether the processing advantage is dependent on allocation of attention. The present study investigated attention and emotion processes by measuring brain responses related to eye movement events while 11 participants viewed images selected from the International Affective Picture System (IAPS). Brain responses to emotional stimuli were compared between serial and parallel presentation. An “emotional” set included one image with high positive or negative valence among neutral images. A “neutral” set comprised four neutral images. The participants were asked to indicate which picture—if any—was emotional and to rate that picture on valence and arousal. In the serial condition, the event-related potentials (ERPs) were time-locked to the stimulus onset. In the parallel condition, the ERPs were time-locked to the first eye entry on an image. The eye movement results showed facilitated processing of emotional, especially unpleasant information. The EEG results in both presentation conditions showed that the LPP (“late positive potential”) amplitudes at 400–500 ms were enlarged for the unpleasant and pleasant pictures as compared to neutral pictures. Moreover, the unpleasant scenes elicited stronger responses than pleasant scenes. The ERP results did not support parafoveal emotional processing, although the eye movement results suggested faster attention capture by emotional stimuli. Our findings, thus, suggested that emotional processing depends on overt attentional resources engaged in the processing of emotional content. The results also indicate that brain responses to emotional images can be analyzed time-locked to eye movement events, although the response amplitudes were larger during serial presentation. PMID:23970856

  14. Exertional muscle injury: evaluation of concentric versus eccentric actions with serial MR imaging.

    PubMed

    Shellock, F G; Fukunaga, T; Mink, J H; Edgerton, V R

    1991-06-01

    Eccentric muscular actions involve the forced lengthening or stretching of muscles and tend to produce exertional injuries. This study used magnetic resonance (MR) imaging to serially evaluate muscles in five healthy, untrained subjects who performed exhaustive biceps exercise by doing isolated eccentric and concentric actions with a dumbbell. Symptoms were assessed, and T2-weighted images of the arms were obtained before exercise and 1, 3, 5, 10, 25, 40, 50, 60, and 80 days after exercise. Statistically significant increases in T2 relaxation times indicative of muscle injury occurred on each day of MR imaging evaluation in muscles performing eccentric actions, peaking on day 3 in two subjects; day 5, two subjects; and day 10, one subject. The pattern and extent of the abnormalities on MR images were variable. Pain, soreness, and joint stiffness were present on days 1, 3, and 5 in muscles that performed eccentric actions. MR imaging showed subclinical abnormalities that lasted as long as 75 days after the disappearance of symptoms (two subjects). Muscles that performed concentric actions had no changes in T2 relaxation times and were asymptomatic throughout the study.

  15. Serial Section Scanning Electron Microscopy (S3EM) on Silicon Wafers for Ultra-Structural Volume Imaging of Cells and Tissues

    PubMed Central

    Horstmann, Heinz; Körber, Christoph; Sätzler, Kurt; Aydin, Daniel; Kuner, Thomas

    2012-01-01

    High resolution, three-dimensional (3D) representations of cellular ultrastructure are essential for structure function studies in all areas of cell biology. While limited subcellular volumes have been routinely examined using serial section transmission electron microscopy (ssTEM), complete ultrastructural reconstructions of large volumes, entire cells or even tissue are difficult to achieve using ssTEM. Here, we introduce a novel approach combining serial sectioning of tissue with scanning electron microscopy (SEM) using a conductive silicon wafer as a support. Ribbons containing hundreds of 35 nm thick sections can be generated and imaged on the wafer at a lateral pixel resolution of 3.7 nm by recording the backscattered electrons with the in-lens detector of the SEM. The resulting electron micrographs are qualitatively comparable to those obtained by conventional TEM. S3EM images of the same region of interest in consecutive sections can be used for 3D reconstructions of large structures. We demonstrate the potential of this approach by reconstructing a 31.7 µm3 volume of a calyx of Held presynaptic terminal. The approach introduced here, Serial Section SEM (S3EM), for the first time provides the possibility to obtain 3D ultrastructure of large volumes with high resolution and to selectively and repetitively home in on structures of interest. S3EM accelerates process duration, is amenable to full automation and can be implemented with standard instrumentation. PMID:22523574

  16. Serial section scanning electron microscopy (S3EM) on silicon wafers for ultra-structural volume imaging of cells and tissues.

    PubMed

    Horstmann, Heinz; Körber, Christoph; Sätzler, Kurt; Aydin, Daniel; Kuner, Thomas

    2012-01-01

    High resolution, three-dimensional (3D) representations of cellular ultrastructure are essential for structure function studies in all areas of cell biology. While limited subcellular volumes have been routinely examined using serial section transmission electron microscopy (ssTEM), complete ultrastructural reconstructions of large volumes, entire cells or even tissue are difficult to achieve using ssTEM. Here, we introduce a novel approach combining serial sectioning of tissue with scanning electron microscopy (SEM) using a conductive silicon wafer as a support. Ribbons containing hundreds of 35 nm thick sections can be generated and imaged on the wafer at a lateral pixel resolution of 3.7 nm by recording the backscattered electrons with the in-lens detector of the SEM. The resulting electron micrographs are qualitatively comparable to those obtained by conventional TEM. S(3)EM images of the same region of interest in consecutive sections can be used for 3D reconstructions of large structures. We demonstrate the potential of this approach by reconstructing a 31.7 µm(3) volume of a calyx of Held presynaptic terminal. The approach introduced here, Serial Section SEM (S(3)EM), for the first time provides the possibility to obtain 3D ultrastructure of large volumes with high resolution and to selectively and repetitively home in on structures of interest. S(3)EM accelerates process duration, is amenable to full automation and can be implemented with standard instrumentation.

  17. Serial optical coherence scanning reveals an association between cardiac function and the heart architecture in the aging rodent heart

    PubMed Central

    Castonguay, Alexandre; Lefebvre, Joël; Pouliot, Philippe; Avti, Pramod; Moeini, Mohammad; Lesage, Frédéric

    2017-01-01

    Normal aging is accompanied by structural changes in the heart architecture. To explore this remodeling, we used a serial optical coherence tomography scanner to image entire mouse hearts at micron scale resolution. Ex vivo hearts of 7 young (4 months) and 5 old (24 months) C57BL/6 mice were acquired with the imaging platform. OCT of the myocardium revealed myofiber orientation changing linearly from the endocardium to the epicardium. In old mice, this rate of change was lower when compared to young mice while the average volume of old mice hearts was significantly larger (p<0.05). Myocardial wall thickening was also accompanied by extracellular spacing in the endocardium, resulting in a lower OCT attenuation coefficient in old mice endocardium (p<0.05). Prior to serial sectioning, cardiac function of the same hearts was imaged in vivo using MRI and revealed a reduced ejection fraction with aging. The use of a serial optical coherence tomography scanner allows new insight into fine age-related changes of the heart associated with changes in heart function. PMID:29188099

  18. Clinical outcomes from an innovative protocol using serial ultrasound imaging and a single MR image to guide brachytherapy for locally advanced cervix cancer.

    PubMed

    van Dyk, Sylvia; Narayan, Kailash; Bernshaw, David; Kondalsamy-Chennakesavan, Srinivas; Khaw, Pearly; Lin, Ming Yin; Schneider, Michal

    The aim of this study was to report clinical outcomes in a series of patients who underwent serial ultrasound and a single MRI to plan and verify intracavitary brachytherapy. Data for patients who were referred for curative intent radiotherapy for International Federation of Gynecology and Obstetrics (FIGO) Stage 1-1V cervix cancer between January 2007 and March 2012 were analyzed. All patients received external beam radiotherapy with concurrent chemotherapy and sequential high-dose rate brachytherapy. Brachytherapy was planned and verified using serial ultrasound imaging and a single MRI. Data from 191 patients were available for analyses. The median (range) followup time was 5.08 (0.25-8.25) years. Five-year local control, failure-free survival, cancer-specific survival, and overall survival were 86%, 57.3%, 70% and 63%, respectively. Mean (standard deviation) combined external beam radiotherapy and brachytherapy target doses, equivalent to doses in 2 Gy fractions were 80.4 Gy10 (3.89), median (range) 80 (49-96) Gy10. Grade 3 or greater gastrointestinal, genitourinary, or vaginal late toxicity occurred in 3%, 1.6%, and 2% of patients, respectively. Survival, patterns of failure, and late complication rates were similar to published series of MRI/CT-based brachytherapy practices. This large study demonstrates that favorable treatment outcomes can be obtained using a pragmatic and innovative combination of ultrasound and MR imaging. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  19. Imaging mouse cerebellum with serial optical coherence scanner (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Chao J.; Williams, Kristen; Orr, Harry; Taner, Akkin

    2017-02-01

    We present the serial optical coherence scanner (SOCS), which consists of a polarization sensitive optical coherence tomography and a vibratome with associated controls for serial imaging, to visualize the cerebellum and adjacent brainstem of mouse. The cerebellar cortical layers and white matter are distinguished by using intrinsic optical contrasts. Images from serial scans reveal the large-scale anatomy in detail and map the nerve fiber pathways in the cerebellum and adjacent brainstem. The optical system, which has 5.5 μm axial resolution, utilizes a scan lens or a water-immersion microscope objective resulting in 10 μm or 4 μm lateral resolution, respectively. The large-scale brain imaging at high resolution requires an efficient way to collect large datasets. It is important to improve the SOCS system to deal with large-scale and large number of samples in a reasonable time. The imaging and slicing procedure for a section took about 4 minutes due to a low speed of the vibratome blade to maintain slicing quality. SOCS has potential to investigate pathological changes and monitor the effects of therapeutic drugs in cerebellar diseases such as spinocerebellar ataxia 1 (SCA1). The SCA1 is a neurodegenerative disease characterized by atrophy and eventual loss of Purkinje cells from the cerebellar cortex, and the optical contrasts provided by SOCS is being evaluated for biomarkers of the disease.

  20. An Integrated Micro- and Macroarchitectural Analysis of the Drosophila Brain by Computer-Assisted Serial Section Electron Microscopy

    PubMed Central

    Cardona, Albert; Saalfeld, Stephan; Preibisch, Stephan; Schmid, Benjamin; Cheng, Anchi; Pulokas, Jim; Tomancak, Pavel; Hartenstein, Volker

    2010-01-01

    The analysis of microcircuitry (the connectivity at the level of individual neuronal processes and synapses), which is indispensable for our understanding of brain function, is based on serial transmission electron microscopy (TEM) or one of its modern variants. Due to technical limitations, most previous studies that used serial TEM recorded relatively small stacks of individual neurons. As a result, our knowledge of microcircuitry in any nervous system is very limited. We applied the software package TrakEM2 to reconstruct neuronal microcircuitry from TEM sections of a small brain, the early larval brain of Drosophila melanogaster. TrakEM2 enables us to embed the analysis of the TEM image volumes at the microcircuit level into a light microscopically derived neuro-anatomical framework, by registering confocal stacks containing sparsely labeled neural structures with the TEM image volume. We imaged two sets of serial TEM sections of the Drosophila first instar larval brain neuropile and one ventral nerve cord segment, and here report our first results pertaining to Drosophila brain microcircuitry. Terminal neurites fall into a small number of generic classes termed globular, varicose, axiform, and dendritiform. Globular and varicose neurites have large diameter segments that carry almost exclusively presynaptic sites. Dendritiform neurites are thin, highly branched processes that are almost exclusively postsynaptic. Due to the high branching density of dendritiform fibers and the fact that synapses are polyadic, neurites are highly interconnected even within small neuropile volumes. We describe the network motifs most frequently encountered in the Drosophila neuropile. Our study introduces an approach towards a comprehensive anatomical reconstruction of neuronal microcircuitry and delivers microcircuitry comparisons between vertebrate and insect neuropile. PMID:20957184

  1. Segmenting lung fields in serial chest radiographs using both population-based and patient-specific shape statistics.

    PubMed

    Shi, Y; Qi, F; Xue, Z; Chen, L; Ito, K; Matsuo, H; Shen, D

    2008-04-01

    This paper presents a new deformable model using both population-based and patient-specific shape statistics to segment lung fields from serial chest radiographs. There are two novelties in the proposed deformable model. First, a modified scale invariant feature transform (SIFT) local descriptor, which is more distinctive than the general intensity and gradient features, is used to characterize the image features in the vicinity of each pixel. Second, the deformable contour is constrained by both population-based and patient-specific shape statistics, and it yields more robust and accurate segmentation of lung fields for serial chest radiographs. In particular, for segmenting the initial time-point images, the population-based shape statistics is used to constrain the deformable contour; as more subsequent images of the same patient are acquired, the patient-specific shape statistics online collected from the previous segmentation results gradually takes more roles. Thus, this patient-specific shape statistics is updated each time when a new segmentation result is obtained, and it is further used to refine the segmentation results of all the available time-point images. Experimental results show that the proposed method is more robust and accurate than other active shape models in segmenting the lung fields from serial chest radiographs.

  2. Serial diffusion-weighted imaging in subacute sclerosing panencephalitis.

    PubMed

    Kanemura, Hideaki; Aihara, Masao

    2008-06-01

    Subacute sclerosing panencephalitis may be associated with clinical features of frontal lobe dysfunction. We previously reported that frontal lobe volume falls significantly as clinical stage progresses, using three-dimensional magnetic resonance imaging-based brain volumetry. The hypothesis that frontal volume increases correlate with clinical improvement, however, was not tested in our previous study. Therefore, we reevaluated our patient with subacute sclerosing panencephalitis, to determine whether apparent diffusion coefficient maps can characterize the clinical course of subacute sclerosing panencephalitis. We studied an 8-year-old boy with subacute sclerosing panencephalitis, using serial diffusion-weighted imaging magnetic resonance imaging, and measured the regional apparent diffusion coefficient. The regional apparent diffusion coefficient of the frontal lobe decreased significantly with clinical progression, whereas it increased to within normal range during clinical improvements. The apparent diffusion coefficient of the other regions did not change. These results suggest that the clinical signs of patients with subacute sclerosing panencephalitis are attributable to frontal lobe dysfunction, and that apparent diffusion coefficient measurements may be useful in predicting the clinical course of subacute sclerosing panencephalitis.

  3. Three Dimensional Visualization of Human Cardiac Conduction Tissue in Whole Heart Specimens by High-Resolution Phase-Contrast CT Imaging Using Synchrotron Radiation.

    PubMed

    Shinohara, Gen; Morita, Kiyozo; Hoshino, Masato; Ko, Yoshihiro; Tsukube, Takuro; Kaneko, Yukihiro; Morishita, Hiroyuki; Oshima, Yoshihiro; Matsuhisa, Hironori; Iwaki, Ryuma; Takahashi, Masashi; Matsuyama, Takaaki; Hashimoto, Kazuhiro; Yagi, Naoto

    2016-11-01

    The feasibility of synchrotron radiation-based phase-contrast computed tomography (PCCT) for visualization of the atrioventricular (AV) conduction axis in human whole heart specimens was tested using four postmortem structurally normal newborn hearts obtained at autopsy. A PCCT imaging system at the beamline BL20B2 in a SPring-8 synchrotron radiation facility was used. The PCCT imaging of the conduction system was performed with "virtual" slicing of the three-dimensional reconstructed images. For histological verification, specimens were cut into planes similar to the PCCT images, then cut into 5-μm serial sections and stained with Masson's trichrome. In PCCT images of all four of the whole hearts of newborns, the AV conduction axis was distinguished as a low-density structure, which was serially traceable from the compact node to the penetrating bundle within the central fibrous body, and to the branching bundle into the left and right bundle branches. This was verified by histological serial sectioning. This is the first demonstration that visualization of the AV conduction axis within human whole heart specimens is feasible with PCCT. © The Author(s) 2016.

  4. Optimizing image registration and infarct definition in stroke research.

    PubMed

    Harston, George W J; Minks, David; Sheerin, Fintan; Payne, Stephen J; Chappell, Michael; Jezzard, Peter; Jenkinson, Mark; Kennedy, James

    2017-03-01

    Accurate representation of final infarct volume is essential for assessing the efficacy of stroke interventions in imaging-based studies. This study defines the impact of image registration methods used at different timepoints following stroke, and the implications for infarct definition in stroke research. Patients presenting with acute ischemic stroke were imaged serially using magnetic resonance imaging. Infarct volume was defined manually using four metrics: 24-h b1000 imaging; 1-week and 1-month T2-weighted FLAIR; and automatically using predefined thresholds of ADC at 24 h. Infarct overlap statistics and volumes were compared across timepoints following both rigid body and nonlinear image registration to the presenting MRI. The effect of nonlinear registration on a hypothetical trial sample size was calculated. Thirty-seven patients were included. Nonlinear registration improved infarct overlap statistics and consistency of total infarct volumes across timepoints, and reduced infarct volumes by 4.0 mL (13.1%) and 7.1 mL (18.2%) at 24 h and 1 week, respectively, compared to rigid body registration. Infarct volume at 24 h, defined using a predetermined ADC threshold, was less sensitive to infarction than b1000 imaging. 1-week T2-weighted FLAIR imaging was the most accurate representation of final infarct volume. Nonlinear registration reduced hypothetical trial sample size, independent of infarct volume, by an average of 13%. Nonlinear image registration may offer the opportunity of improving the accuracy of infarct definition in serial imaging studies compared to rigid body registration, helping to overcome the challenges of anatomical distortions at subacute timepoints, and reducing sample size for imaging-based clinical trials.

  5. EDRN Breast and Ovary Cancer CVC, Study 3: Phase 3 Validation of screening decision rules in preclinical UKCTOCS serial samples — EDRN Public Portal

    Cancer.gov

    We will collaborate with investigators from University College London to test a screening decision rule in preclinical serial samples from the U.K. Collaborative Trial of Ovarian Cancer Screening (UKCTOCS) to learn if the panel can do better than CA125 alone. The UKCTOCS is an ideal setting for retrospective validation of an early detection marker panel and decision rule because it offers serial samples collected annually and use of imaging in women with rising CA125. Multi-modal strategies using serum markers HE4, MSLN, MMP7, and CA125 will be compared to strategies relying exclusively on CA125 and transvaginal sonography (TVS).

  6. Disentangling perceptual from motor implicit sequence learning with a serial color-matching task.

    PubMed

    Gheysen, Freja; Gevers, Wim; De Schutter, Erik; Van Waelvelde, Hilde; Fias, Wim

    2009-08-01

    This paper contributes to the domain of implicit sequence learning by presenting a new version of the serial reaction time (SRT) task that allows unambiguously separating perceptual from motor learning. Participants matched the colors of three small squares with the color of a subsequently presented large target square. An identical sequential structure was tied to the colors of the target square (perceptual version, Experiment 1) or to the manual responses (motor version, Experiment 2). Short blocks of sequenced and randomized trials alternated and hence provided a continuous monitoring of the learning process. Reaction time measurements demonstrated clear evidence of independently learning perceptual and motor serial information, though revealed different time courses between both learning processes. No explicit awareness of the serial structure was needed for either of the two types of learning to occur. The paradigm introduced in this paper evidenced that perceptual learning can occur with SRT measurements and opens important perspectives for future imaging studies to answer the ongoing question, which brain areas are involved in the implicit learning of modality specific (motor vs. perceptual) or general serial order.

  7. Technical report on the surface reconstruction of stacked contours by using the commercial software

    NASA Astrophysics Data System (ADS)

    Shin, Dong Sun; Chung, Min Suk; Hwang, Sung Bae; Park, Jin Seo

    2007-03-01

    After drawing and stacking contours of a structure, which is identified in the serially sectioned images, three-dimensional (3D) image can be made by surface reconstruction. Usually, software is composed for the surface reconstruction. In order to compose the software, medical doctors have to acquire the help of computer engineers. So in this research, surface reconstruction of stacked contours was tried by using commercial software. The purpose of this research is to enable medical doctors to perform surface reconstruction to make 3D images by themselves. The materials of this research were 996 anatomic images (1 mm intervals) of left lower limb, which were made by serial sectioning of a cadaver. On the Adobe Photoshop, contours of 114 anatomic structures were drawn, which were exported to Adobe Illustrator files. On the Maya, contours of each anatomic structure were stacked. On the Rhino, superoinferior lines were drawn along all stacked contours to fill quadrangular surfaces between contours. On the Maya, the contours were deleted. 3D images of 114 anatomic structures were assembled with their original locations preserved. With the surface reconstruction technique, developed in this research, medical doctors themselves could make 3D images of the serially sectioned images such as CTs and MRIs.

  8. Three-dimensional characterization of pigment dispersion in dried paint films using focused ion beam-scanning electron microscopy.

    PubMed

    Lin, Jui-Ching; Heeschen, William; Reffner, John; Hook, John

    2012-04-01

    The combination of integrated focused ion beam-scanning electron microscope (FIB-SEM) serial sectioning and imaging techniques with image analysis provided quantitative characterization of three-dimensional (3D) pigment dispersion in dried paint films. The focused ion beam in a FIB-SEM dual beam system enables great control in slicing paints, and the sectioning process can be synchronized with SEM imaging providing high quality serial cross-section images for 3D reconstruction. Application of Euclidean distance map and ultimate eroded points image analysis methods can provide quantitative characterization of 3D particle distribution. It is concluded that 3D measurement of binder distribution in paints is effective to characterize the order of pigment dispersion in dried paint films.

  9. Correlation of myocardial p-(123)I-iodophenylpentadecanoic acid retention with (18)F-FDG accumulation during experimental low-flow ischemia.

    PubMed

    Shi, Cindy Q; Young, Lawrence H; Daher, Edouard; DiBella, Edward V R; Liu, Yi-Hwa; Heller, Eliot N; Zoghbi, Sami; Wackers, Frans J Th; Soufer, Robert; Sinusas, Albert J

    2002-03-01

    Myocardial ischemia is associated with reduced free fatty acid (FFA) beta-oxidation and increased glucose utilization. This study evaluated the potential of dynamic SPECT imaging of a FFA analog, p-(123)I-iodophenylpentadecanoic acid (IPPA), for detection of ischemia and compares retention of IPPA with (18)F-FDG accumulation. In a canine model of regional low-flow ischemia (n = 9), serial IPPA SPECT images (2 min per image) were acquired over 52--90 min. In a subset of dogs (n = 6), (18)F-FDG was injected after completing SPECT imaging and allowed to accumulate for 40 min before killing the animals. Flow was assessed with radiolabeled microspheres. Myocardial metabolism was evaluated independently by selective coronary arterial and venous sampling. Serial IPPA SPECT images showed an initial defect in the ischemic region (0.70% plus minus 0.03% ischemic-to-nonischemic ratio), which normalized within 48 min because of the slower IPPA clearance from the ischemic region (t(1/2) = 54.2 plus minus 3.3 min) relative to the nonischemic region (t(1/2) = 36.7 plus minus 5.6 min) (P < 0.05). Delayed myocardial IPPA and (18)F-FDG activities were correlated (r = 0.70; n = 576 segments), and both were maximally increased in segments with a moderate flow reduction (IPPA, 151% of nonischemic; (18)F-FDG, 450% of nonischemic; P < 0.05). Serial SPECT imaging showed delayed myocardial clearance of IPPA in ischemic regions with moderate flow reduction, which lead to increased late myocardial retention of IPPA. Retention of IPPA correlated with (18)F-FDG accumulation, supporting the potential of IPPA as a noninvasive marker of ischemic myocardium.

  10. Automated Detection of Synapses in Serial Section Transmission Electron Microscopy Image Stacks

    PubMed Central

    Kreshuk, Anna; Koethe, Ullrich; Pax, Elizabeth; Bock, Davi D.; Hamprecht, Fred A.

    2014-01-01

    We describe a method for fully automated detection of chemical synapses in serial electron microscopy images with highly anisotropic axial and lateral resolution, such as images taken on transmission electron microscopes. Our pipeline starts from classification of the pixels based on 3D pixel features, which is followed by segmentation with an Ising model MRF and another classification step, based on object-level features. Classifiers are learned on sparse user labels; a fully annotated data subvolume is not required for training. The algorithm was validated on a set of 238 synapses in 20 serial 7197×7351 pixel images (4.5×4.5×45 nm resolution) of mouse visual cortex, manually labeled by three independent human annotators and additionally re-verified by an expert neuroscientist. The error rate of the algorithm (12% false negative, 7% false positive detections) is better than state-of-the-art, even though, unlike the state-of-the-art method, our algorithm does not require a prior segmentation of the image volume into cells. The software is based on the ilastik learning and segmentation toolkit and the vigra image processing library and is freely available on our website, along with the test data and gold standard annotations (http://www.ilastik.org/synapse-detection/sstem). PMID:24516550

  11. Tomographic techniques for the study of exceptionally preserved fossils

    PubMed Central

    Sutton, Mark D

    2008-01-01

    Three-dimensional fossils, especially those preserving soft-part anatomy, are a rich source of palaeontological information; they can, however, be difficult to work with. Imaging of serial planes through an object (tomography) allows study of both the inside and outside of three-dimensional fossils. Tomography may be performed using physical grinding or sawing coupled with photography, through optical techniques of serial focusing, or using a variety of scanning technologies such as neutron tomography, magnetic resonance imaging and most usefully X-ray computed tomography. This latter technique is applicable at a variety of scales, and when combined with a synchrotron X-ray source can produce very high-quality data that may be augmented by phase-contrast information to enhance contrast. Tomographic data can be visualized in several ways, the most effective of which is the production of isosurface-based ‘virtual fossils’ that can be manipulated and dissected interactively. PMID:18426749

  12. Longitudinal fibre splitting in muscular dystrophy: a serial cinematographic study

    PubMed Central

    Isaacs, Edward R.; Bradley, Walter G.; Henderson, Gerald

    1973-01-01

    A technique of block surface-staining and serial cinematography was modified to review serial sections of normal and dystrophic muscle from the Bar Harbor 129 Re strain of mice as a preliminary study of fibre splitting in dystrophic muscle. Using this technique, muscle fibres were reconstructed for up to 1·5 mm of their length without difficulty. Split fibres were identified only when the actual separation of fibres was observed. Splitting was seen to be a significant cause of the variations in fibre diameter and was at times responsible for the formation of groups of small atrophic fibres which resembled those seen in denervation atrophy. Complex multiple splitting and recombination of daughter and parent fibres was also observed and reconstructed to scale. These results may have considerable significance for the interpretation of physiological data on both human and murine dystrophic muscle. Images PMID:4753877

  13. Zebrafish skeleton development: High resolution micro-CT and FIB-SEM block surface serial imaging for phenotype identification

    PubMed Central

    Silvent, Jeremie; Akiva, Anat; Brumfeld, Vlad; Reznikov, Natalie; Rechav, Katya; Yaniv, Karina; Addadi, Lia; Weiner, Steve

    2017-01-01

    Although bone is one of the most studied living materials, many questions about the manner in which bones form remain unresolved, including fine details of the skeletal structure during development. In this study, we monitored skeleton development of zebrafish larvae, using calcein fluorescence, high-resolution micro-CT 3D images and FIB-SEM in the block surface serial imaging mode. We compared calcein staining of the skeletons of the wild type and nacre mutants, which are transparent zebrafish, with micro-CT for the first 30 days post fertilization embryos, and identified significant differences. We quantified the bone volumes and mineral contents of bones, including otoliths, during development, and showed that such developmental differences, including otolith development, could be helpful in identifying phenotypes. In addition, high-resolution imaging revealed the presence of mineralized aggregates in the notochord, before the formation of the first bone in the axial skeleton. These structures might play a role in the storage of the mineral. Our results highlight the potential of these high-resolution 3D approaches to characterize the zebrafish skeleton, which in turn could prove invaluable information for better understanding the development and the characterization of skeletal phenotypes. PMID:29220379

  14. Parallel and serial grouping of image elements in visual perception.

    PubMed

    Houtkamp, Roos; Roelfsema, Pieter R

    2010-12-01

    The visual system groups image elements that belong to an object and segregates them from other objects and the background. Important cues for this grouping process are the Gestalt criteria, and most theories propose that these are applied in parallel across the visual scene. Here, we find that Gestalt grouping can indeed occur in parallel in some situations, but we demonstrate that there are also situations where Gestalt grouping becomes serial. We observe substantial time delays when image elements have to be grouped indirectly through a chain of local groupings. We call this chaining process incremental grouping and demonstrate that it can occur for only a single object at a time. We suggest that incremental grouping requires the gradual spread of object-based attention so that eventually all the object's parts become grouped explicitly by an attentional labeling process. Our findings inspire a new incremental grouping theory that relates the parallel, local grouping process to feedforward processing and the serial, incremental grouping process to recurrent processing in the visual cortex.

  15. Temporal Subtraction of Serial CT Images with Large Deformation Diffeomorphic Metric Mapping in the Identification of Bone Metastases.

    PubMed

    Sakamoto, Ryo; Yakami, Masahiro; Fujimoto, Koji; Nakagomi, Keita; Kubo, Takeshi; Emoto, Yutaka; Akasaka, Thai; Aoyama, Gakuto; Yamamoto, Hiroyuki; Miller, Michael I; Mori, Susumu; Togashi, Kaori

    2017-11-01

    Purpose To determine the improvement of radiologist efficiency and performance in the detection of bone metastases at serial follow-up computed tomography (CT) by using a temporal subtraction (TS) technique based on an advanced nonrigid image registration algorithm. Materials and Methods This retrospective study was approved by the institutional review board, and informed consent was waived. CT image pairs (previous and current scans of the torso) in 60 patients with cancer (primary lesion location: prostate, n = 14; breast, n = 16; lung, n = 20; liver, n = 10) were included. These consisted of 30 positive cases with a total of 65 bone metastases depicted only on current images and confirmed by two radiologists who had access to additional imaging examinations and clinical courses and 30 matched negative control cases (no bone metastases). Previous CT images were semiautomatically registered to current CT images by the algorithm, and TS images were created. Seven radiologists independently interpreted CT image pairs to identify newly developed bone metastases without and with TS images with an interval of at least 30 days. Jackknife free-response receiver operating characteristics (JAFROC) analysis was conducted to assess observer performance. Reading time was recorded, and usefulness was evaluated with subjective scores of 1-5, with 5 being extremely useful and 1 being useless. Significance of these values was tested with the Wilcoxon signed-rank test. Results The subtraction images depicted various types of bone metastases (osteolytic, n = 28; osteoblastic, n = 26; mixed osteolytic and blastic, n = 11) as temporal changes. The average reading time was significantly reduced (384.3 vs 286.8 seconds; Wilcoxon signed rank test, P = .028). The average figure-of-merit value increased from 0.758 to 0.835; however, this difference was not significant (JAFROC analysis, P = .092). The subjective usefulness survey response showed a median score of 5 for use of the technique (range, 3-5). Conclusion TS images obtained from serial CT scans using nonrigid registration successfully depicted newly developed bone metastases and showed promise for their efficient detection. © RSNA, 2017 Online supplemental material is available for this article.

  16. Large scale serial two-photon microscopy to investigate local vascular changes in whole rodent brain models of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Delafontaine-Martel, P.; Lefebvre, J.; Damseh, R.; Castonguay, A.; Tardif, P.; Lesage, F.

    2018-02-01

    In this study, an automated serial two-photon microscope was used to image a fluorescent gelatin filled rodent's brain in 3D. A method to compute vascular density using automatic segmentation was combined with coregistration techniques to build group-level vasculature metrics. By studying the medial prefrontal cortex and the hippocampal formation of 3 age groups (2, 4.5 and 8 months old), we compared vascular density for both WT and an Alzheimer model transgenic brain (APP/PS1). We observe a loss of vascular density caused by the ageing process and we propose further analysis to confirm our results.

  17. Therapeutic modulation of the natural history of coronary atherosclerosis: lessons learned from serial imaging studies.

    PubMed

    Andrews, Jordan; Puri, Rishi; Kataoka, Yu; Nicholls, Stephen J; Psaltis, Peter J

    2016-08-01

    Despite advances in risk prediction, preventive and therapeutic strategies, atherosclerotic cardiovascular disease remains a major public health challenge worldwide, carrying considerable morbidity, mortality and health economic burden. There continues to be a need to better understand the natural history of this disease to guide the development of more effective treatment, integral to which is the rapidly evolving field of coronary artery imaging. Various imaging modalities have been refined to enable detailed visualization of the pathological substrate of atherosclerosis, providing accurate and reproducible measures of coronary plaque burden and composition, including the presence of high-risk characteristics. The serial application of such techniques, including coronary computed tomography angiography (CTA), intravascular ultrasound (IVUS) and optical coherence tomography (OCT) have uncovered important insights into the progression of coronary plaque over time in patients with stable and unstable coronary artery disease (CAD), and its responsiveness to therapeutic interventions. Here we review the use of different imaging modalities for the surveillance of coronary atherosclerosis and the lessons they have provided about the modulation of CAD by both traditional and experimental therapies.

  18. Rhesus monkeys (Macaca mulatta) show robust primacy and recency in memory for lists from small, but not large, image sets.

    PubMed

    Basile, Benjamin M; Hampton, Robert R

    2010-02-01

    The combination of primacy and recency produces a U-shaped serial position curve typical of memory for lists. In humans, primacy is often thought to result from rehearsal, but there is little evidence for rehearsal in nonhumans. To further evaluate the possibility that rehearsal contributes to primacy in monkeys, we compared memory for lists of familiar stimuli (which may be easier to rehearse) to memory for unfamiliar stimuli (which are likely difficult to rehearse). Six rhesus monkeys saw lists of five images drawn from either large, medium, or small image sets. After presentation of each list, memory for one item was assessed using a serial probe recognition test. Across four experiments, we found robust primacy and recency with lists drawn from small and medium, but not large, image sets. This finding is consistent with the idea that familiar items are easier to rehearse and that rehearsal contributes to primacy, warranting further study of the possibility of rehearsal in monkeys. However, alternative interpretations are also viable and are discussed. Copyright 2009 Elsevier B.V. All rights reserved.

  19. 3D correlative light and electron microscopy of cultured cells using serial blockface scanning electron microscopy

    PubMed Central

    Lerner, Thomas R.; Burden, Jemima J.; Nkwe, David O.; Pelchen-Matthews, Annegret; Domart, Marie-Charlotte; Durgan, Joanne; Weston, Anne; Jones, Martin L.; Peddie, Christopher J.; Carzaniga, Raffaella; Florey, Oliver; Marsh, Mark; Gutierrez, Maximiliano G.

    2017-01-01

    ABSTRACT The processes of life take place in multiple dimensions, but imaging these processes in even three dimensions is challenging. Here, we describe a workflow for 3D correlative light and electron microscopy (CLEM) of cell monolayers using fluorescence microscopy to identify and follow biological events, combined with serial blockface scanning electron microscopy to analyse the underlying ultrastructure. The workflow encompasses all steps from cell culture to sample processing, imaging strategy, and 3D image processing and analysis. We demonstrate successful application of the workflow to three studies, each aiming to better understand complex and dynamic biological processes, including bacterial and viral infections of cultured cells and formation of entotic cell-in-cell structures commonly observed in tumours. Our workflow revealed new insight into the replicative niche of Mycobacterium tuberculosis in primary human lymphatic endothelial cells, HIV-1 in human monocyte-derived macrophages, and the composition of the entotic vacuole. The broad application of this 3D CLEM technique will make it a useful addition to the correlative imaging toolbox for biomedical research. PMID:27445312

  20. A prospective evaluation of the repeatability of left ventricular ejection fraction measurement by gated SPECT.

    PubMed

    Kliner, Dustin; Wang, Li; Winger, Daniel; Follansbee, William P; Soman, Prem

    2015-12-01

    Gated single-photon emission computed tomography (SPECT) is widely used for myocardial perfusion imaging and provides an automated assessment of left ventricular ejection fraction (LVEF). We prospectively tested the repeatability of serial SPECT-derived LVEF. This information is essential in order to inform the interpretation of a change in LV function on serial testing. Consenting patients (n = 50) from among those referred for clinically indicated gated myocardial perfusion SPECT (MPs) were recruited. Following the clinical rest-stress study, patients were repositioned on the camera table for a second acquisition using identical parameters. Patient positioning, image acquisition and processing for the second scan were independently performed by a technologist blinded to the clinical scan. Quantitative LVEF was generated by Quantitative Gated SPECT and recorded as EF1 and EF2, respectively. Repeatability of serial results was assessed using the Bland-Altman method. The limits of repeatability and repeatability coefficients were generated to determine the maximum variation in LVEF that can be expected to result from test variability. Repeatability was tested across a broad range of LV systolic function and myocardial perfusion. The mean difference between EF1 and EF2 was 1.6% (EF units), with 95% limits of repeatability of +9.1% to -6.0% (repeatability coefficient 7.5%). Correlation between serial EF measurements was excellent (r = 0.9809). Similar results were obtained in subgroups based on normal or abnormal EF and myocardial perfusion. The largest repeatability coefficient of 8.1% was seen in patients with abnormal LV systolic function. When test protocol and acquisition parameters are kept constant, a difference of >8% EF units on serial MPs is indicative of a true change 95% of the time.

  1. Detection of neuron membranes in electron microscopy images using a serial neural network architecture.

    PubMed

    Jurrus, Elizabeth; Paiva, Antonio R C; Watanabe, Shigeki; Anderson, James R; Jones, Bryan W; Whitaker, Ross T; Jorgensen, Erik M; Marc, Robert E; Tasdizen, Tolga

    2010-12-01

    Study of nervous systems via the connectome, the map of connectivities of all neurons in that system, is a challenging problem in neuroscience. Towards this goal, neurobiologists are acquiring large electron microscopy datasets. However, the shear volume of these datasets renders manual analysis infeasible. Hence, automated image analysis methods are required for reconstructing the connectome from these very large image collections. Segmentation of neurons in these images, an essential step of the reconstruction pipeline, is challenging because of noise, anisotropic shapes and brightness, and the presence of confounding structures. The method described in this paper uses a series of artificial neural networks (ANNs) in a framework combined with a feature vector that is composed of image intensities sampled over a stencil neighborhood. Several ANNs are applied in series allowing each ANN to use the classification context provided by the previous network to improve detection accuracy. We develop the method of serial ANNs and show that the learned context does improve detection over traditional ANNs. We also demonstrate advantages over previous membrane detection methods. The results are a significant step towards an automated system for the reconstruction of the connectome. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Normal variation in sagittal spinal alignment parameters in adult patients: an EOS study using serial imaging.

    PubMed

    Hey, Hwee Weng Dennis; Tan, Kian Loong Melvin; Moorthy, Vikaesh; Lau, Eugene Tze-Chun; Lau, Leok-Lim; Liu, Gabriel; Wong, Hee-Kit

    2018-03-01

    To describe normal variations in sagittal spinal radiographic parameters over an interval period and establish physiological norms and guidelines for which these images should be interpreted. Data were prospectively collected from a continuous series of adult patients with first-episode mild low back pain presenting to a single institution. The sagittal parameters of two serial radiographic images taken 6-months apart were obtained with the EOS ® slot scanner. Measured parameters include CL, TK, TL, LL, PI, PT, SS, and end and apical vertebrae. Chi-squared test and Wilcoxon Signed Rank test were used to compare categorical and continuous variables, respectively. Sixty patients with a total of 120 whole-body sagittal X-rays were analysed. Mean age was 52.1 years (SD 21.2). Mean interval between the first and second X-rays was 126.2 days (SD 47.2). Small variations (< 1°) occur for all except PT (1.2°), CL (1.2°), and SVA (2.9 cm). Pelvic tilt showed significant difference between two images (p = 0.035). Subgroup analysis based on the time interval between X-rays, and between the first and second X-rays, did not show significant differences. Consistent findings were found for end and apical vertebrae of the thoracic and lumbar spine between the first and second X-rays for sagittal curve shapes. Radiographic sagittal parameters vary between serial images and reflect dynamism in spinal balancing. SVA and PT are predisposed to the widest variation. SVA has the largest variation between individuals of low pelvic tilt. Therefore, interpretation of these parameters should be patient specific and relies on trends rather than a one-time assessment.

  3. Quantification of red myotomal muscle volume and geometry in the shortfin mako shark (Isurus oxyrinchus) and the salmon shark (Lamna ditropis) using T1-weighted magnetic resonance imaging.

    PubMed

    Perry, Cameron N; Cartamil, Daniel P; Bernal, Diego; Sepulveda, Chugey A; Theilmann, Rebecca J; Graham, Jeffrey B; Frank, Lawrence R

    2007-04-01

    T1-weighted magnetic resonance imaging (MRI) in conjunction with image and segmentation analysis (i.e., the process of digitally partitioning tissues based on specified MR image characteristics) was evaluated as a noninvasive alternative for differentiating muscle fiber types and quantifying the amounts of slow, red aerobic muscle in the shortfin mako shark (Isurus oxyrinchus) and the salmon shark (Lamna ditropis). MRI-determinations of red muscle quantity and position made for the mid-body sections of three mako sharks (73.5-110 cm fork length, FL) are in close agreement (within the 95% confidence intervals) with data obtained for the same sections by the conventional dissection method involving serial cross-sectioning and volumetric analyses, and with previously reported findings for this species. The overall distribution of salmon shark red muscle as a function of body fork length was also found to be consistent with previously acquired serial dissection data for this species; however, MR imaging revealed an anterior shift in peak red muscle cross-sectional area corresponding to an increase in body mass. Moreover, MRI facilitated visualization of the intact and anatomically correct relationship of tendon linking the red muscle and the caudal peduncle. This study thus demonstrates that MRI is effective in acquiring high-resolution three-dimensional digital data with high contrast between different fish tissue types. Relative to serial dissection, MRI allows more precise quantification of the position, volume, and other details about the types of muscle within the fish myotome, while conserving specimen structural integrity. Copyright (c) 2007 Wiley-Liss, Inc.

  4. Nonoperative management of blunt renal trauma: Is routine early follow-up imaging necessary?

    PubMed Central

    Malcolm, John B; Derweesh, Ithaar H; Mehrazin, Reza; DiBlasio, Christopher J; Vance, David D; Joshi, Salil; Wake, Robert W; Gold, Robert

    2008-01-01

    Background There is no consensus on the role of routine follow-up imaging during nonoperative management of blunt renal trauma. We reviewed our experience with nonoperative management of blunt renal injuries in order to evaluate the utility of routine early follow-up imaging. Methods We reviewed all cases of blunt renal injury admitted for nonoperative management at our institution between 1/2002 and 1/2006. Data were compiled from chart review, and clinical outcomes were correlated with CT imaging results. Results 207 patients were identified (210 renal units). American Association for the Surgery of Trauma (AAST) grades I, II, III, IV, and V were assigned to 35 (16%), 66 (31%), 81 (39%), 26 (13%), and 2 (1%) renal units, respectively. 177 (84%) renal units underwent routine follow-up imaging 24–48 hours after admission. In three cases of grade IV renal injury, a ureteral stent was placed after serial imaging demonstrated persistent extravasation. In no other cases did follow-up imaging independently alter clinical management. There were no urologic complications among cases for which follow-up imaging was not obtained. Conclusion Routine follow-up imaging is unnecessary for blunt renal injuries of grades I-III. Grade IV renovascular injuries can be followed clinically without routine early follow-up imaging, but urine extravasation necessitates serial imaging to guide management decisions. The volume of grade V renal injuries in this study is not sufficient to support or contest the need for routine follow-up imaging. PMID:18768088

  5. Bayer image parallel decoding based on GPU

    NASA Astrophysics Data System (ADS)

    Hu, Rihui; Xu, Zhiyong; Wei, Yuxing; Sun, Shaohua

    2012-11-01

    In the photoelectrical tracking system, Bayer image is decompressed in traditional method, which is CPU-based. However, it is too slow when the images become large, for example, 2K×2K×16bit. In order to accelerate the Bayer image decoding, this paper introduces a parallel speedup method for NVIDA's Graphics Processor Unit (GPU) which supports CUDA architecture. The decoding procedure can be divided into three parts: the first is serial part, the second is task-parallelism part, and the last is data-parallelism part including inverse quantization, inverse discrete wavelet transform (IDWT) as well as image post-processing part. For reducing the execution time, the task-parallelism part is optimized by OpenMP techniques. The data-parallelism part could advance its efficiency through executing on the GPU as CUDA parallel program. The optimization techniques include instruction optimization, shared memory access optimization, the access memory coalesced optimization and texture memory optimization. In particular, it can significantly speed up the IDWT by rewriting the 2D (Tow-dimensional) serial IDWT into 1D parallel IDWT. Through experimenting with 1K×1K×16bit Bayer image, data-parallelism part is 10 more times faster than CPU-based implementation. Finally, a CPU+GPU heterogeneous decompression system was designed. The experimental result shows that it could achieve 3 to 5 times speed increase compared to the CPU serial method.

  6. High-performance serial block-face SEM of nonconductive biological samples enabled by focal gas injection-based charge compensation.

    PubMed

    Deerinck, T J; Shone, T M; Bushong, E A; Ramachandra, R; Peltier, S T; Ellisman, M H

    2018-05-01

    A longstanding limitation of imaging with serial block-face scanning electron microscopy is specimen surface charging. This charging is largely due to the difficulties in making biological specimens and the resins in which they are embedded sufficiently conductive. Local accumulation of charge on the specimen surface can result in poor image quality and distortions. Even minor charging can lead to misalignments between sequential images of the block-face due to image jitter. Typically, variable-pressure SEM is used to reduce specimen charging, but this results in a significant reduction to spatial resolution, signal-to-noise ratio and overall image quality. Here we show the development and application of a simple system that effectively mitigates specimen charging by using focal gas injection of nitrogen over the sample block-face during imaging. A standard gas injection valve is paired with a precisely positioned but retractable application nozzle, which is mechanically coupled to the reciprocating action of the serial block-face ultramicrotome. This system enables the application of nitrogen gas precisely over the block-face during imaging while allowing the specimen chamber to be maintained under high vacuum to maximise achievable SEM image resolution. The action of the ultramicrotome drives the nozzle retraction, automatically moving it away from the specimen area during the cutting cycle of the knife. The device described was added to a Gatan 3View system with minimal modifications, allowing high-resolution block-face imaging of even the most charge prone of epoxy-embedded biological samples. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  7. Sensitivity to image recurrence across eye-movement-like image transitions through local serial inhibition in the retina

    PubMed Central

    Krishnamoorthy, Vidhyasankar; Weick, Michael; Gollisch, Tim

    2017-01-01

    Standard models of stimulus encoding in the retina postulate that image presentations activate neurons according to the increase of preferred contrast inside the receptive field. During natural vision, however, images do not arrive in isolation, but follow each other rapidly, separated by sudden gaze shifts. We here report that, contrary to standard models, specific ganglion cells in mouse retina are suppressed after a rapid image transition by changes in visual patterns across the transition, but respond with a distinct spike burst when the same pattern reappears. This sensitivity to image recurrence depends on opposing effects of glycinergic and GABAergic inhibition and can be explained by a circuit of local serial inhibition. Rapid image transitions thus trigger a mode of operation that differs from the processing of simpler stimuli and allows the retina to tag particular image parts or to detect transition types that lead to recurring stimulus patterns. DOI: http://dx.doi.org/10.7554/eLife.22431.001 PMID:28230526

  8. Radiation-induced liver disease as a mimic of liver metastases at serial PET/CT during neoadjuvant chemoradiation of distal esophageal cancer.

    PubMed

    Grant, Michael J; Didier, Ryne A; Stevens, Jeffrey S; Beyder, Dmitry D; Hunter, John G; Thomas, Charles R; Coakley, Fergus V

    2014-10-01

    To determine the frequency and appearance of radiation-induced liver disease on PET/CT in patients undergoing serial imaging during neoadjuvant chemoradiation of distal esophageal cancer. In this IRB-approved, HIPAA-compliant retrospective analysis, we identified 112 patients with distal esophageal cancer treated by neoadjuvant chemoradiation who had serial PET/CT imaging available for review. Two readers reviewed all studies in consensus and recorded those cases where new foci of visually detectable increased FDG avidity appeared in the liver during therapy. The etiology of such foci was determined from corresponding findings at CT or MRI, by hepatic biopsy during surgery, by characteristic evolution on post-operative imaging, or by a combination of these methods. New foci of FDG avidity developed in the liver during neoadjuvant therapy in 10 of 112 (9%) patients, of whom nine (8%) were determined to have radiation-induced liver disease based on further imaging and/or biopsy and one of whom had developed interval metastatic disease based on biopsy. In the cases of radiation-induced liver disease, the abnormal foci were found only in the caudate and left hepatic lobes, near the primary tumor, while the patient who developed interval metastatic disease had involvement of the inferior right hepatic lobe, remote from the radiation therapy field. New foci of increased FDG avidity are commonly seen in the caudate and left hepatic lobes of the liver during neoadjuvant chemoradiation of distal esophageal cancer, and these findings generally reflect radiation-induced liver disease rather than metastatic disease.

  9. Serial dopamine transporter imaging of nigrostriatal function in patients with idiopathic rapid-eye-movement sleep behaviour disorder: a prospective study.

    PubMed

    Iranzo, Alex; Valldeoriola, Francesc; Lomeña, Francisco; Molinuevo, José Luis; Serradell, Mónica; Salamero, Manel; Cot, Albert; Ros, Domènec; Pavía, Javier; Santamaria, Joan; Tolosa, Eduardo

    2011-09-01

    Serial dopamine transporter (DAT) imaging in patients with Parkinson's disease (PD) and other synucleinopathies shows progressive nigrostriatal dopaminergic dysfunction. Because idiopathic rapid-eye-movement (REM) sleep behaviour disorder (IRBD) can precede the classic symptoms of PD and other synucleinopathies, we postulated that serial DAT imaging in patients with IRBD could be used to detect decline in striatal tracer uptake, indicating progressive nigrostriatal cell degeneration. In a prospective study, 20 patients with IRBD (mean age 70·55 years [SD 6·02]) underwent serial DAT imaging with (123)I-2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl)-nortropane ((123)I-FP-CIT) SPECT at baseline and again after 1·5 years and 3 years; 20 age-matched and sex-matched control participants (69·50 years [6·77]) underwent imaging at baseline and 3 years. The striatum to occipital cortex uptake ratios were calculated for the putamen and caudate nucleus in each hemisphere. In patients, the ratio was judged to be reduced when it was less than two SD of the mean ratio in controls at the same timepoint. Differences in (123)I-FP-CIT uptake between patients and controls in each striatal region and rates of decline were assessed by use of multivariate ANOVA (MANOVA). Compared with controls, patients had significantly reduced mean (123)I-FP-CIT binding in all four striatal regions at baseline and after 3 years. Striatal (123)I-FP-CIT uptake was reduced compared with that in controls in ten patients at baseline and in 13 patients after 3 years. In patients, the mean reduction in (123)I-FP-CIT uptake from baseline to 3 years was 19·36% (95% CI 15·14 to 23·59) in the left putamen, 15·57% (10·87 to 20·28) in the right putamen, 10·81% (6·49 to 15·18) in the left caudate nucleus, and 7·14% (2·74 to 11·56) in the right caudate nucleus. After adjustment for the baseline (123)I-FP-CIT uptake ratios, the decline in (123)I-FP-CIT binding at baseline to 3 years was significantly greater in patients than in controls in the left putamen (9·78% difference between groups, 95% CI 3·22 to 16·32), right putamen (5·43%, 1·99 to 12·86), and left caudate nucleus (8·07%, 1·44 to 14·70), but not in the right caudate nucleus (4·16%, -3·00 to 11·34). At the 3-year assessment, three patients were diagnosed with PD. These patients had the lowest (123)I-FP-CIT uptake at baseline and a mean reduction in (123)I-FP-CIT uptake at 3 years of 32·81% in the left putamen, 30·40% in the right putamen, 26·51% in the left caudate nucleus, and 23·75% in the right caudate nucleus. In patients with IRBD, serial (123)I-FP-CIT SPECT shows decline in striatal tracer uptake that reflects progressive nigrostriatal dopaminergic dysfunction. Serial (123)I-FP-CIT SPECT can be used to monitor the progression of nigrostriatal deficits in patients with IRBD, and could be useful in studies of potential disease-modifying compounds in these patients. Fondo de Investigaciones Sanitarias of Spain. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Target recognition of ladar range images using even-order Zernike moments.

    PubMed

    Liu, Zheng-Jun; Li, Qi; Xia, Zhi-Wei; Wang, Qi

    2012-11-01

    Ladar range images have attracted considerable attention in automatic target recognition fields. In this paper, Zernike moments (ZMs) are applied to classify the target of the range image from an arbitrary azimuth angle. However, ZMs suffer from high computational costs. To improve the performance of target recognition based on small samples, even-order ZMs with serial-parallel backpropagation neural networks (BPNNs) are applied to recognize the target of the range image. It is found that the rotation invariance and classified performance of the even-order ZMs are both better than for odd-order moments and for moments compressed by principal component analysis. The experimental results demonstrate that combining the even-order ZMs with serial-parallel BPNNs can significantly improve the recognition rate for small samples.

  11. High speed imaging television system

    DOEpatents

    Wilkinson, William O.; Rabenhorst, David W.

    1984-01-01

    A television system for observing an event which provides a composite video output comprising the serially interlaced images the system is greater than the time resolution of any of the individual cameras.

  12. Multi-stained whole slide image alignment in digital pathology

    NASA Astrophysics Data System (ADS)

    Déniz, Oscar; Toomey, David; Conway, Catherine; Bueno, Gloria

    2015-03-01

    In Digital Pathology, one of the most simple and yet most useful feature is the ability to view serial sections of tissue simultaneously on a computer monitor. This enables the pathologist to evaluate the histology and expression of multiple markers for a patient in a single review. However, the rate limiting step in this process is the time taken for the pathologist to open each individual image, align the sections within the viewer, with a maximum of four slides at a time, and then manually move around the section. In addition, due to tissue processing and pre-analytical steps, sections with different stains have non-linear variations between the two acquisitions, that is, they will stretch and change shape from section to section. To date, no solution has come close to a workable solution to automatically align the serial sections into one composite image. This research work address this problem to obtain an automated serial section alignment tool enabling the pathologists to simply scroll through the various sections in a single viewer. To this aim a multi-resolution intensity-based registration method using mutual information as a similarity metric, an optimizer based on an evolutionary process and a bilinear transformation has been used. To characterize the performance of the algorithm 40 cases x 5 different serial sections stained with hematoxiline-eosine (HE), estrogen receptor (ER), progesterone receptor (PR), Ki67 and human epidermal growth factor receptor 2 (Her2), have been considered. The qualitative results obtained are promising, with average computation time of 26.4s for up to 14660x5799 images running interpreted code.

  13. /sup 99m/Tc-IDA hepatobiliary imaging following upper abdominal surgery. [IDA = acetanilide iminodiacetic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenthall, L.; Fonseca, C.; Arzoumanian, A.

    1979-03-01

    Bile flow patterns were studied with serial /sup 99m/Tc-IDA images in 19 patients with cholecysto- and choledochointestinal anastomoses, gastroenteric bypasses, and combinations of the two. Complications such as anastomotic, afferent, and efferent loop obstruction and bile leakage were readily detected even in the presence of jaundice. This noninvasive technique warrants further investigation to determine its indications and weaknesses.

  14. Automation of 3D reconstruction of neural tissue from large volume of conventional serial section transmission electron micrographs.

    PubMed

    Mishchenko, Yuriy

    2009-01-30

    We describe an approach for automation of the process of reconstruction of neural tissue from serial section transmission electron micrographs. Such reconstructions require 3D segmentation of individual neuronal processes (axons and dendrites) performed in densely packed neuropil. We first detect neuronal cell profiles in each image in a stack of serial micrographs with multi-scale ridge detector. Short breaks in detected boundaries are interpolated using anisotropic contour completion formulated in fuzzy-logic framework. Detected profiles from adjacent sections are linked together based on cues such as shape similarity and image texture. Thus obtained 3D segmentation is validated by human operators in computer-guided proofreading process. Our approach makes possible reconstructions of neural tissue at final rate of about 5 microm3/manh, as determined primarily by the speed of proofreading. To date we have applied this approach to reconstruct few blocks of neural tissue from different regions of rat brain totaling over 1000microm3, and used these to evaluate reconstruction speed, quality, error rates, and presence of ambiguous locations in neuropil ssTEM imaging data.

  15. In vivo time-serial evaluation of laser-induced choroidal neovascularization in rats simultaneously using photoacoustic microscopy and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Dai, Cuixia; Li, Lin; Liu, Wenlu; Wang, Fenghua; Zhou, Chuanqing

    2018-02-01

    Determination of the precise location and degree of condition of the Choroidal neovascularization (CNV) lesion is essential for diagnosation Neovascular age-related macular degeneration (AMD) and evaluation the efficacy of treatment. Given the complimentary contrast mechanisms of Photoacoustic microscopy (PAM) and Optical coherence tomography (OCT), the combination of PAM and OCT imaging could potentially provide much sensitive and specific detection of CNV. In this paper, we validated the opportunity to evaluate the information of laser-induced CNV and presented the in vivo time-serial evaluation of the CNV by simultaneously using PAM and OCT techniques. In vivo PAM and OCT examination was performed after laser photocoagulation applied to the rat fundus at days 1, 3, 5, 7, 14. Time-serial results showed that CNV in rats increased to its maximum at day 7 and decreased at day 14. Evolution of CNV information was given in PAM images with a high contrast and details of high axial resolution OCT images were simultaneously given to show the hyperreflective reaction progress.

  16. 3-D Imaging In Virtual Environment: A Scientific Clinical and Teaching Tool

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; DeVincenzi, Donald L. (Technical Monitor)

    1996-01-01

    The advent of powerful graphics workstations and computers has led to the advancement of scientific knowledge through three-dimensional (3-D) reconstruction and imaging of biological cells and tissues. The Biocomputation Center at NASA Ames Research Center pioneered the effort to produce an entirely computerized method for reconstruction of objects from serial sections studied in a transmission electron microscope (TEM). The software developed, ROSS (Reconstruction of Serial Sections), is now being distributed to users across the United States through Space Act Agreements. The software is in widely disparate fields such as geology, botany, biology and medicine. In the Biocomputation Center, ROSS serves as the basis for development of virtual environment technologies for scientific and medical use. This report will describe the Virtual Surgery Workstation Project that is ongoing with clinicians at Stanford University Medical Center, and the role of the Visible Human data in the project.

  17. Multi-class segmentation of neuronal electron microscopy images using deep learning

    NASA Astrophysics Data System (ADS)

    Khobragade, Nivedita; Agarwal, Chirag

    2018-03-01

    Study of connectivity of neural circuits is an essential step towards a better understanding of functioning of the nervous system. With the recent improvement in imaging techniques, high-resolution and high-volume images are being generated requiring automated segmentation techniques. We present a pixel-wise classification method based on Bayesian SegNet architecture. We carried out multi-class segmentation on serial section Transmission Electron Microscopy (ssTEM) images of Drosophila third instar larva ventral nerve cord, labeling the four classes of neuron membranes, neuron intracellular space, mitochondria and glia / extracellular space. Bayesian SegNet was trained using 256 ssTEM images of 256 x 256 pixels and tested on 64 different ssTEM images of the same size, from the same serial stack. Due to high class imbalance, we used a class-balanced version of Bayesian SegNet by re-weighting each class based on their relative frequency. We achieved an overall accuracy of 93% and a mean class accuracy of 88% for pixel-wise segmentation using this encoder-decoder approach. On evaluating the segmentation results using similarity metrics like SSIM and Dice Coefficient, we obtained scores of 0.994 and 0.886 respectively. Additionally, we used the network trained using the 256 ssTEM images of Drosophila third instar larva for multi-class labeling of ISBI 2012 challenge ssTEM dataset.

  18. Successfully Managed Acute Transverse Myelitis Related to Scrub Typhus and Serial Image Findings

    PubMed Central

    Yun, Jae Sung; Song, Ji Soo; Choi, Eun Jung; Hwang, Jeong-Hwan; Lee, Chang-Seop; Park, Eun Hae

    2017-01-01

    Central nervous system involvement manifesting as meningitis or meningoencephalitis is a known complication of scrub typhus, but very few spinal cord lesions such as acute transverse myelitis (ATM) have been reported in association with this disease. Scrub typhus patients with a spinal lesion present with neurologic symptoms including dysuria, motor, and sensory weakness. Herein, we describe a rare case of ATM associated with scrub typhus. Clinical characteristics, cerebrospinal fluid cytology, Orientia tsutsugamushi serum antibody titer, and serial magnetic resonance imaging scans resulted in a diagnosis of ATM associated with scrub typhus. PMID:28115665

  19. Successfully Managed Acute Transverse Myelitis Related to Scrub Typhus and Serial Image Findings.

    PubMed

    Yun, Jae Sung; Song, Ji Soo; Choi, Eun Jung; Hwang, Jeong-Hwan; Lee, Chang-Seop; Park, Eun Hae

    2017-03-01

    AbstractCentral nervous system involvement manifesting as meningitis or meningoencephalitis is a known complication of scrub typhus, but very few spinal cord lesions such as acute transverse myelitis (ATM) have been reported in association with this disease. Scrub typhus patients with a spinal lesion present with neurologic symptoms including dysuria, motor, and sensory weakness. Herein, we describe a rare case of ATM associated with scrub typhus. Clinical characteristics, cerebrospinal fluid cytology, Orientia tsutsugamushi serum antibody titer, and serial magnetic resonance imaging scans resulted in a diagnosis of ATM associated with scrub typhus.

  20. A high-resolution optical imaging system for obtaining the serial transverse section images of biologic tissue

    NASA Astrophysics Data System (ADS)

    Wu, Li; Zhang, Bin; Wu, Ping; Liu, Qian; Gong, Hui

    2007-05-01

    A high-resolution optical imaging system was designed and developed to obtain the serial transverse section images of the biologic tissue, such as the mouse brain, in which new knife-edge imaging technology, high-speed and high-sensitive line-scan CCD and linear air bearing stages were adopted and incorporated with an OLYMPUS microscope. The section images on the tip of the knife-edge were synchronously captured by the reflection imaging in the microscope while cutting the biologic tissue. The biologic tissue can be sectioned at interval of 250 nm with the same resolution of the transverse section images obtained in x and y plane. And the cutting job can be automatically finished based on the control program wrote specially in advance, so we save the mass labor of the registration of the vast images data. In addition, by using this system a larger sample can be cut than conventional ultramicrotome so as to avoid the loss of the tissue structure information because of splitting the tissue sample to meet the size request of the ultramicrotome.

  1. Segmented-field radiography in scoliosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, W.W.; Barnes, G.T.; Nasca, R.J.

    1985-02-01

    A method of scoliosis imaging using segmented fields is presented. The method is advantageous for patients requiring serial radiographic monitoring, as it results in markedly reduced radiation doses to critical organs, particularly the breast. Absorbed dose to the breast was measured to be 8.8 mrad (88 ..mu..Gy) for a full-field examination and 0.051 mrad (5.1 ..mu..Gy) for the segmented-field study. The segmented-field technique also results in improved image quality. Experience with 53 studies in 23 patients is reported.

  2. An automated voxelized dosimetry tool for radionuclide therapy based on serial quantitative SPECT/CT imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Price A.; Kron, Tomas; Beauregard, Jean-Mathieu

    2013-11-15

    Purpose: To create an accurate map of the distribution of radiation dose deposition in healthy and target tissues during radionuclide therapy.Methods: Serial quantitative SPECT/CT images were acquired at 4, 24, and 72 h for 28 {sup 177}Lu-octreotate peptide receptor radionuclide therapy (PRRT) administrations in 17 patients with advanced neuroendocrine tumors. Deformable image registration was combined with an in-house programming algorithm to interpolate pharmacokinetic uptake and clearance at a voxel level. The resultant cumulated activity image series are comprised of values representing the total number of decays within each voxel's volume. For PRRT, cumulated activity was translated to absorbed dose basedmore » on Monte Carlo-determined voxel S-values at a combination of long and short ranges. These dosimetric image sets were compared for mean radiation absorbed dose to at-risk organs using a conventional MIRD protocol (OLINDA 1.1).Results: Absorbed dose values to solid organs (liver, kidneys, and spleen) were within 10% using both techniques. Dose estimates to marrow were greater using the voxelized protocol, attributed to the software incorporating crossfire effect from nearby tumor volumes.Conclusions: The technique presented offers an efficient, automated tool for PRRT dosimetry based on serial post-therapy imaging. Following retrospective analysis, this method of high-resolution dosimetry may allow physicians to prescribe activity based on required dose to tumor volume or radiation limits to healthy tissue in individual patients.« less

  3. Confocal microscopy studies of morphology and apoptosis: ovaries, limbs, embryos and insects

    EPA Science Inventory

    Confocal laser scanning microscopy (CLSM) is a technique that is capable of generating serial sections of whole-mount tissue and then reassembling the computer-stored images as a virtual 3-dimensional structure. In many ways CLSM offers an alternative to traditional sectioning ap...

  4. Alignment of large image series using cubic B-splines tessellation: application to transmission electron microscopy data.

    PubMed

    Dauguet, Julien; Bock, Davi; Reid, R Clay; Warfield, Simon K

    2007-01-01

    3D reconstruction from serial 2D microscopy images depends on non-linear alignment of serial sections. For some structures, such as the neuronal circuitry of the brain, very large images at very high resolution are necessary to permit reconstruction. These very large images prevent the direct use of classical registration methods. We propose in this work a method to deal with the non-linear alignment of arbitrarily large 2D images using the finite support properties of cubic B-splines. After initial affine alignment, each large image is split into a grid of smaller overlapping sub-images, which are individually registered using cubic B-splines transformations. Inside the overlapping regions between neighboring sub-images, the coefficients of the knots controlling the B-splines deformations are blended, to create a virtual large grid of knots for the whole image. The sub-images are resampled individually, using the new coefficients, and assembled together into a final large aligned image. We evaluated the method on a series of large transmission electron microscopy images and our results indicate significant improvements compared to both manual and affine alignment.

  5. 45 CFR 164.514 - Other requirements relating to uses and disclosures of protected health information.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... numbers; (J) Account numbers; (K) Certificate/license numbers; (L) Vehicle identifiers and serial numbers... and voice prints; (Q) Full face photographic images and any comparable images; and (R) Any other..., including finger and voice prints; and (xvi) Full face photographic images and any comparable images. (3...

  6. 45 CFR 164.514 - Other requirements relating to uses and disclosures of protected health information.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... numbers; (J) Account numbers; (K) Certificate/license numbers; (L) Vehicle identifiers and serial numbers... and voice prints; (Q) Full face photographic images and any comparable images; and (R) Any other..., including finger and voice prints; and (xvi) Full face photographic images and any comparable images. (3...

  7. 45 CFR 164.514 - Other requirements relating to uses and disclosures of protected health information.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... numbers; (J) Account numbers; (K) Certificate/license numbers; (L) Vehicle identifiers and serial numbers... and voice prints; (Q) Full face photographic images and any comparable images; and (R) Any other..., including finger and voice prints; and (xvi) Full face photographic images and any comparable images. (3...

  8. 45 CFR 164.514 - Other requirements relating to uses and disclosures of protected health information.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... numbers; (J) Account numbers; (K) Certificate/license numbers; (L) Vehicle identifiers and serial numbers... and voice prints; (Q) Full face photographic images and any comparable images; and (R) Any other..., including finger and voice prints; and (xvi) Full face photographic images and any comparable images. (3...

  9. 45 CFR 164.514 - Other requirements relating to uses and disclosures of protected health information.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... numbers; (J) Account numbers; (K) Certificate/license numbers; (L) Vehicle identifiers and serial numbers... and voice prints; (Q) Full face photographic images and any comparable images; and (R) Any other..., including finger and voice prints; and (xvi) Full face photographic images and any comparable images. (3...

  10. Changes in Serial Optical Topography and TMS during Task Performance after Constraint-Induced Movement Therapy in Stroke: A Case Study

    PubMed Central

    Park, Si-Woon; Butler, Andrew J.; Cavalheiro, Vanessa; Alberts, Jay L.; Wolf, Steven L.

    2013-01-01

    The authors examined serial changes in optical topography in a stroke patient performing a functional task, as well as clinical and physiologic measures while undergoing constraint-induced therapy (CIT). A 73-year-old right hemiparetic patient, who had a subcortical stroke 4 months previously, received 2 weeks of CIT. During the therapy, daily optical topography imaging using near-infrared light was measured serially while the participant performed a functional key-turning task. Clinical outcome measures included the Wolf Motor Function Test (WMFT), Motor Activity Log (MAL), and functional key grip test. Transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) were also used to map cortical areas and hemodynamic brain responses, respectively. Optical topography measurement showed an overall decrease in oxy-hemoglobin concentration in both hemispheres as therapy progressed and the laterality index increased toward the contralateral hemisphere. An increased TMS motor map area was observed in the contralateral cortex following treatment. Posttreatment fMRI showed bilateral primary motor cortex activation, although slightly greater in the contralateral hemisphere, during affected hand movement. Clinical scores revealed marked improvement in functional activities. In one patient who suffered a stroke, 2 weeks of CIT led to improved function and cortical reorganization in the hemisphere contralateral to the affected hand. PMID:15228805

  11. Quantitative volumetric imaging of normal, neoplastic and hyperplastic mouse prostate using ultrasound.

    PubMed

    Singh, Shalini; Pan, Chunliu; Wood, Ronald; Yeh, Chiuan-Ren; Yeh, Shuyuan; Sha, Kai; Krolewski, John J; Nastiuk, Kent L

    2015-09-21

    Genetically engineered mouse models are essential to the investigation of the molecular mechanisms underlying human prostate pathology and the effects of therapy on the diseased prostate. Serial in vivo volumetric imaging expands the scope and accuracy of experimental investigations of models of normal prostate physiology, benign prostatic hyperplasia and prostate cancer, which are otherwise limited by the anatomy of the mouse prostate. Moreover, accurate imaging of hyperplastic and tumorigenic prostates is now recognized as essential to rigorous pre-clinical trials of new therapies. Bioluminescent imaging has been widely used to determine prostate tumor size, but is semi-quantitative at best. Magnetic resonance imaging can determine prostate volume very accurately, but is expensive and has low throughput. We therefore sought to develop and implement a high throughput, low cost, and accurate serial imaging protocol for the mouse prostate. We developed a high frequency ultrasound imaging technique employing 3D reconstruction that allows rapid and precise assessment of mouse prostate volume. Wild-type mouse prostates were examined (n = 4) for reproducible baseline imaging, and treatment effects on volume were compared, and blinded data analyzed for intra- and inter-operator assessments of reproducibility by correlation and for Bland-Altman analysis. Examples of benign prostatic hyperplasia mouse model prostate (n = 2) and mouse prostate implantation of orthotopic human prostate cancer tumor and its growth (n =  ) are also demonstrated. Serial measurement volume of the mouse prostate revealed that high frequency ultrasound was very precise. Following endocrine manipulation, regression and regrowth of the prostate could be monitored with very low intra- and interobserver variability. This technique was also valuable to monitor the development of prostate growth in a model of benign prostatic hyperplasia. Additionally, we demonstrate accurate ultrasound image-guided implantation of orthotopic tumor xenografts and monitoring of subsequent tumor growth from ~10 to ~750 mm(3) volume. High frequency ultrasound imaging allows precise determination of normal, neoplastic and hyperplastic mouse prostate. Low cost and small image size allows incorporation of this imaging modality inside clean animal facilities, and thereby imaging of immunocompromised models. 3D reconstruction for volume determination is easily mastered, and both small and large relative changes in volume are accurately visualized. Ultrasound imaging does not rely on penetration of exogenous imaging agents, and so may therefore better measure poorly vascularized or necrotic diseased tissue, relative to bioluminescent imaging (IVIS). Our method is precise and reproducible with very low inter- and intra-observer variability. Because it is non-invasive, mouse models of prostatic disease states can be imaged serially, reducing inter-animal variability, and enhancing the power to detect small volume changes following therapeutic intervention.

  12. X-ray microscopy as an approach to increasing accuracy and efficiency of serial block-face imaging for correlated light and electron microscopy of biological specimens.

    PubMed

    Bushong, Eric A; Johnson, Donald D; Kim, Keun-Young; Terada, Masako; Hatori, Megumi; Peltier, Steven T; Panda, Satchidananda; Merkle, Arno; Ellisman, Mark H

    2015-02-01

    The recently developed three-dimensional electron microscopic (EM) method of serial block-face scanning electron microscopy (SBEM) has rapidly established itself as a powerful imaging approach. Volume EM imaging with this scanning electron microscopy (SEM) method requires intense staining of biological specimens with heavy metals to allow sufficient back-scatter electron signal and also to render specimens sufficiently conductive to control charging artifacts. These more extreme heavy metal staining protocols render specimens light opaque and make it much more difficult to track and identify regions of interest (ROIs) for the SBEM imaging process than for a typical thin section transmission electron microscopy correlative light and electron microscopy study. We present a strategy employing X-ray microscopy (XRM) both for tracking ROIs and for increasing the efficiency of the workflow used for typical projects undertaken with SBEM. XRM was found to reveal an impressive level of detail in tissue heavily stained for SBEM imaging, allowing for the identification of tissue landmarks that can be subsequently used to guide data collection in the SEM. Furthermore, specific labeling of individual cells using diaminobenzidine is detectable in XRM volumes. We demonstrate that tungsten carbide particles or upconverting nanophosphor particles can be used as fiducial markers to further increase the precision and efficiency of SBEM imaging.

  13. X-ray Microscopy as an Approach to Increasing Accuracy and Efficiency of Serial Block-face Imaging for Correlated Light and Electron Microscopy of Biological Specimens

    PubMed Central

    Bushong, Eric A.; Johnson, Donald D.; Kim, Keun-Young; Terada, Masako; Hatori, Megumi; Peltier, Steven T.; Panda, Satchidananda; Merkle, Arno; Ellisman, Mark H.

    2015-01-01

    The recently developed three-dimensional electron microscopic (EM) method of serial block-face scanning electron microscopy (SBEM) has rapidly established itself as a powerful imaging approach. Volume EM imaging with this scanning electron microscopy (SEM) method requires intense staining of biological specimens with heavy metals to allow sufficient back-scatter electron signal and also to render specimens sufficiently conductive to control charging artifacts. These more extreme heavy metal staining protocols render specimens light opaque and make it much more difficult to track and identify regions of interest (ROIs) for the SBEM imaging process than for a typical thin section transmission electron microscopy correlative light and electron microscopy study. We present a strategy employing X-ray microscopy (XRM) both for tracking ROIs and for increasing the efficiency of the workflow used for typical projects undertaken with SBEM. XRM was found to reveal an impressive level of detail in tissue heavily stained for SBEM imaging, allowing for the identification of tissue landmarks that can be subsequently used to guide data collection in the SEM. Furthermore, specific labeling of individual cells using diaminobenzidine is detectable in XRM volumes. We demonstrate that tungsten carbide particles or upconverting nanophosphor particles can be used as fiducial markers to further increase the precision and efficiency of SBEM imaging. PMID:25392009

  14. Lexical and Semantic Binding in Verbal Short-Term Memory

    ERIC Educational Resources Information Center

    Jefferies, Elizabeth; Frankish, Clive R.; Ralph, Matthew A. Lambon

    2006-01-01

    Semantic dementia patients make numerous phoneme migration errors in their immediate serial recall of poorly comprehended words. In this study, similar errors were induced in the word recall of healthy participants by presenting unpredictable mixed lists of words and nonwords. This technique revealed that lexicality, word frequency, imageability,…

  15. MO-C-17A-10: Comparison of Dose Deformable Accumulation by Using Parallel and Serial Approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Z; Li, M; Wong, J

    Purpose: The uncertainty of dose accumulation over multiple CT datasets with deformable fusion may have significant impact on clinical decisions. In this study, we investigate the difference of two dose summation approaches involving deformable fusion. Methods: Five patients, four external beam and one brachytherapy(BT), were chosen for the study. The BT patient was treated with CT-based HDR. The CT image sets acquired in the imageguidance process (8-11 CTs/patient) were used to determine the dose delivered to the four external beam patients. (prostate, pelvis, lung and head and neck). For the HDR patient (cervix), five CT image sets and the correspondingmore » BT plans were used. In total 44 CT datasets and RT dose/plans were imported into the image fusion software MiM (6.0.4) for analysis.For each of the five clinical cases, the dose from each fraction was accumulated into the primary CT dataset by using both Parallel and Serial approaches. The dose-volume histogram (DVH) for CTV and selected organs-at-risks (OAR) were generated. The D95(CTV), OAR(mean) and OAR(max) for the four external beam cases the D90(CTV), and the max dose to bladder and rectum for the BT case were compared. Results: For the four external beam patients, the difference in D95(CTV) were <1.2% PD between the parallel and the serial approaches. The differences of the OAR(mean) and the OAR(max ) range from 0 to 3.7% and <1% PD respectively. For the HDR patient, the dose difference for D90 is 11% PD while that of the max dose to bladder and rectum were 11.5% and 23.3% respectively. Conclusion: For external beam treatments, the parallel and serial approaches have <5% difference probably because tumor volume and OAR have less changes from fraction to fraction. For the brachytherapy case, >10% dose difference between the two approaches was observed as significant volume changes of tumor and OAR were observed among treatment fractions.« less

  16. Noninvasive image derived heart input function for CMRglc measurements in small animal slow infusion FDG PET studies

    NASA Astrophysics Data System (ADS)

    Xiong, Guoming; Cumming, Paul; Todica, Andrei; Hacker, Marcus; Bartenstein, Peter; Böning, Guido

    2012-12-01

    Absolute quantitation of the cerebral metabolic rate for glucose (CMRglc) can be obtained in positron emission tomography (PET) studies when serial measurements of the arterial [18F]-fluoro-deoxyglucose (FDG) input are available. Since this is not always practical in PET studies of rodents, there has been considerable interest in defining an image-derived input function (IDIF) by placing a volume of interest (VOI) within the left ventricle of the heart. However, spill-in arising from trapping of FDG in the myocardium often leads to progressive contamination of the IDIF, which propagates to underestimation of the magnitude of CMRglc. We therefore developed a novel, non-invasive method for correcting the IDIF without scaling to a blood sample. To this end, we first obtained serial arterial samples and dynamic FDG-PET data of the head and heart in a group of eight anaesthetized rats. We fitted a bi-exponential function to the serial measurements of the IDIF, and then used the linear graphical Gjedde-Patlak method to describe the accumulation in myocardium. We next estimated the magnitude of myocardial spill-in reaching the left ventricle VOI by assuming a Gaussian point-spread function, and corrected the measured IDIF for this estimated spill-in. Finally, we calculated parametric maps of CMRglc using the corrected IDIF, and for the sake of comparison, relative to serial blood sampling from the femoral artery. The uncorrected IDIF resulted in 20% underestimation of the magnitude of CMRglc relative to the gold standard arterial input method. However, there was no bias with the corrected IDIF, which was robust to the variable extent of myocardial tracer uptake, such that there was a very high correlation between individual CMRglc measurements using the corrected IDIF with gold-standard arterial input results. Based on simulation, we furthermore find that electrocardiogram-gating, i.e. ECG-gating is not necessary for IDIF quantitation using our approach.

  17. Comparing three-dimensional serial optical coherence tomography histology to MRI imaging in the entire mouse brain

    NASA Astrophysics Data System (ADS)

    Castonguay, Alexandre; Lefebvre, Joël; Pouliot, Philippe; Lesage, Frédéric

    2018-01-01

    An automated serial histology setup combining optical coherence tomography (OCT) imaging with vibratome sectioning was used to image eight wild type mouse brains. The datasets resulted in thousands of volumetric tiles resolved at a voxel size of (4.9×4.9×6.5) μm3 stitched back together to give a three-dimensional map of the brain from which a template OCT brain was obtained. To assess deformation caused by tissue sectioning, reconstruction algorithms, and fixation, OCT datasets were compared to both in vivo and ex vivo magnetic resonance imaging (MRI) imaging. The OCT brain template yielded a highly detailed map of the brain structure, with a high contrast in white matter fiber bundles and was highly resemblant to the in vivo MRI template. Brain labeling using the Allen brain framework showed little variation in regional brain volume among imaging modalities with no statistical differences. The high correspondence between the OCT template brain and its in vivo counterpart demonstrates the potential of whole brain histology to validate in vivo imaging.

  18. 68Ga-EDTA PET/CT imaging and plasma clearance for glomerular filtration rate quantification: comparison to conventional 51Cr-EDTA.

    PubMed

    Hofman, Michael; Binns, David; Johnston, Val; Siva, Shankar; Thompson, Mick; Eu, Peter; Collins, Marnie; Hicks, Rodney J

    2015-03-01

    Glomerular filtration rate (GFR) can accurately be determined using (51)Cr-ethylenediaminetetraacetic acid (EDTA) plasma clearance counting but is time-consuming and requires technical skills and equipment not always available in imaging departments. (68)Ga-EDTA can be readily available using an onsite generator, and PET/CT enables both imaging of renal function and accurate camera-based quantitation of clearance of activity from blood and its appearance in the urine. This study aimed to assess agreement between (68)Ga-EDTA GFR ((68)Ga-GFR) and (51)Cr-EDTA GFR ((51)Cr-GFR), using serial plasma sampling and PET imaging. (68)Ga-EDTA and (51)Cr-EDTA were injected concurrently in 31 patients. Dynamic PET/CT encompassing the kidneys was acquired for 10 min followed by 3 sequential 3-min multibed step acquisitions from kidneys to bladder. PET quantification was performed using renal activity at 1-2 min (PETinitial), renal excretion at 2-10 min (PETearly), and, subsequently, urinary excretion into the collecting system and bladder (PETlate). Plasma sampling at 2, 3, and 4 h was performed, with (68)Ga followed by (51)Cr counting after positron decay. The level of agreement for GFR determination was calculated using a Bland-Altman plot and Pearson correlation coefficient (PCC). (51)Cr-GFR ranged from 10 to 220 mL/min (mean, 85 mL/min). There was good agreement between (68)Ga-GFR and (51)Cr-GFR using serial plasma sampling, with a Bland-Altman bias of -14 ± 20 mL/min and a PCC of 0.94 (95% confidence interval, 0.88-0.97). Of the 3 methods used for camera-based quantification, the strongest correlation was for plasma sampling-derived GFR with PETlate (PCC of 0.90; 95% confidence interval, 0.80-0.95). (68)Ga-GFR agreed well with (51)Cr-GFR for estimation of GFR using serial plasma counting. PET dynamic imaging provides a method to estimate GFR without plasma sampling, with the additional advantage of enabling renal imaging in a single study. Additional validation in a larger cohort is warranted to further assess utility. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  19. Integrin αvβ3 as a Promising Target to Image Neoangiogenesis Using In-House Generator-Produced Positron Emitter (68)Ga-Labeled DOTA-Arginine-Glycine-Aspartic Acid (RGD) Ligand.

    PubMed

    Vatsa, Rakhee; Bhusari, Priya; Kumar, Sunil; Chakraborty, Sudipta; Dash, Ashutosh; Singh, Gurpreet; Dhawan, Devinder Kumar; Shukla, Jaya; Mittal, Bhagwant Rai

    2015-06-01

    For the growth and spread of a tumor beyond 2 mm, angiogenesis plays a crucial role, and association of various integrins with angiogenesis is evidential. The aim of the study was radiolabeling of DOTA-chelated RGD (arginine-glycine-aspartic acid) peptide with (68)Ga for PET imaging in locally advanced breast carcinoma. DOTA-RGD was incubated with (68)GaCl3, eluted in 0.05 m HCl. Elution volume, peptide amount, and reaction pH were studied. Radio-ITLC, gas chromatography, endotoxin, and sterility testing were performed. Serial (n=3) and whole-body (n=2) PET/CT imaging was done on patients post i.v. injection of 111-185 MBq of (68)Ga-DOTA-RGD. Maximum radiolabeling yield was achieved with 3 mL elution volume of 15-20 μg peptide at pH 3.5-4.0 with 10 minutes of incubation at 95°C. Product samples were sterile having 99.5% radiochemical purity with residual ethanol content and endotoxins in injectable limits. Intense radiotracer uptake was noticed in the tumor with SUVmax 15.3 at 45 minutes in serial images. Physiological radiotracer uptake was seen in the liver, spleen, ventricles, and thyroid with excretion through the kidneys. The authors concluded that (68)Ga-DOTA-RGD has the potential for imaging α,vβ3 integrin-expressing tumors.

  20. Experimental Study into the Performance Impact of the Environmental Noise on Undersea Pulsed Laser Serial Imagers

    DTIC Science & Technology

    2011-10-01

    lighter line) the multiple backscatter peak is stronger and the target return is weaker. Finally, the reflection from the target in the object plane... beam attenuation lengths). Optical properties were monitored by a Wetlabs ac-9 meter with attenuation and absorption being adjusted for scattering...UNCLASSIFIED UNCLASSIFIED 923 center of the imager optical axis between two positions, such that in one position the laser beam clearly passed through the hole

  1. Computational Fluid Dynamics Simulations of Inhaled Nano-and Micro-Particle Deposition in the Rhesus Monkey Nasal Passages

    DTIC Science & Technology

    2016-12-01

    reconstruction of the adult model was originally developed by Kepler et al. (1998) from serial Magnetic Resonance Imaging ( MRI ) sections of the right...upper airways and MRI imaging of a lung cast to form a contiguous reconstruction from the nostrils through 19 airway generations of the lung. For this...and Musante, C. J. (2001). A nonhuman primate aerosol deposition model for toxicological and pharmaceutical studies. Inhal. Toxicol. 13:307-324

  2. Computational Fluid Dynamics Simulations of Inhaled Nano- and Micro-Particle Deposition in the Rhesus Monkey Nasal Passages

    DTIC Science & Technology

    2016-12-01

    reconstruction of the adult model was originally developed by Kepler et al. (1998) from serial Magnetic Resonance Imaging ( MRI ) sections of the right...upper airways and MRI imaging of a lung cast to form a contiguous reconstruction from the nostrils through 19 airway generations of the lung. For this...and Musante, C. J. (2001). A nonhuman primate aerosol deposition model for toxicological and pharmaceutical studies. Inhal. Toxicol. 13:307-324

  3. An image retrieval framework for real-time endoscopic image retargeting.

    PubMed

    Ye, Menglong; Johns, Edward; Walter, Benjamin; Meining, Alexander; Yang, Guang-Zhong

    2017-08-01

    Serial endoscopic examinations of a patient are important for early diagnosis of malignancies in the gastrointestinal tract. However, retargeting for optical biopsy is challenging due to extensive tissue variations between examinations, requiring the method to be tolerant to these changes whilst enabling real-time retargeting. This work presents an image retrieval framework for inter-examination retargeting. We propose both a novel image descriptor tolerant of long-term tissue changes and a novel descriptor matching method in real time. The descriptor is based on histograms generated from regional intensity comparisons over multiple scales, offering stability over long-term appearance changes at the higher levels, whilst remaining discriminative at the lower levels. The matching method then learns a hashing function using random forests, to compress the string and allow for fast image comparison by a simple Hamming distance metric. A dataset that contains 13 in vivo gastrointestinal videos was collected from six patients, representing serial examinations of each patient, which includes videos captured with significant time intervals. Precision-recall for retargeting shows that our new descriptor outperforms a number of alternative descriptors, whilst our hashing method outperforms a number of alternative hashing approaches. We have proposed a novel framework for optical biopsy in serial endoscopic examinations. A new descriptor, combined with a novel hashing method, achieves state-of-the-art retargeting, with validation on in vivo videos from six patients. Real-time performance also allows for practical integration without disturbing the existing clinical workflow.

  4. TakeTwo: an indexing algorithm suited to still images with known crystal parameters

    PubMed Central

    Ginn, Helen Mary; Roedig, Philip; Kuo, Anling; Evans, Gwyndaf; Sauter, Nicholas K.; Ernst, Oliver; Meents, Alke; Mueller-Werkmeister, Henrike; Miller, R. J. Dwayne; Stuart, David Ian

    2016-01-01

    The indexing methods currently used for serial femtosecond crystallography were originally developed for experiments in which crystals are rotated in the X-ray beam, providing significant three-dimensional information. On the other hand, shots from both X-ray free-electron lasers and serial synchrotron crystallo­graphy experiments are still images, in which the few three-dimensional data available arise only from the curvature of the Ewald sphere. Traditional synchrotron crystallography methods are thus less well suited to still image data processing. Here, a new indexing method is presented with the aim of maximizing information use from a still image given the known unit-cell dimensions and space group. Efficacy for cubic, hexagonal and orthorhombic space groups is shown, and for those showing some evidence of diffraction the indexing rate ranged from 90% (hexagonal space group) to 151% (cubic space group). Here, the indexing rate refers to the number of lattices indexed per image. PMID:27487826

  5. High-Speed and Scalable Whole-Brain Imaging in Rodents and Primates.

    PubMed

    Seiriki, Kaoru; Kasai, Atsushi; Hashimoto, Takeshi; Schulze, Wiebke; Niu, Misaki; Yamaguchi, Shun; Nakazawa, Takanobu; Inoue, Ken-Ichi; Uezono, Shiori; Takada, Masahiko; Naka, Yuichiro; Igarashi, Hisato; Tanuma, Masato; Waschek, James A; Ago, Yukio; Tanaka, Kenji F; Hayata-Takano, Atsuko; Nagayasu, Kazuki; Shintani, Norihito; Hashimoto, Ryota; Kunii, Yasuto; Hino, Mizuki; Matsumoto, Junya; Yabe, Hirooki; Nagai, Takeharu; Fujita, Katsumasa; Matsuda, Toshio; Takuma, Kazuhiro; Baba, Akemichi; Hashimoto, Hitoshi

    2017-06-21

    Subcellular resolution imaging of the whole brain and subsequent image analysis are prerequisites for understanding anatomical and functional brain networks. Here, we have developed a very high-speed serial-sectioning imaging system named FAST (block-face serial microscopy tomography), which acquires high-resolution images of a whole mouse brain in a speed range comparable to that of light-sheet fluorescence microscopy. FAST enables complete visualization of the brain at a resolution sufficient to resolve all cells and their subcellular structures. FAST renders unbiased quantitative group comparisons of normal and disease model brain cells for the whole brain at a high spatial resolution. Furthermore, FAST is highly scalable to non-human primate brains and human postmortem brain tissues, and can visualize neuronal projections in a whole adult marmoset brain. Thus, FAST provides new opportunities for global approaches that will allow for a better understanding of brain systems in multiple animal models and in human diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. TakeTwo: an indexing algorithm suited to still images with known crystal parameters

    DOE PAGES

    Ginn, Helen Mary; Roedig, Philip; Kuo, Anling; ...

    2016-08-01

    The indexing methods currently used for serial femtosecond crystallography were originally developed for experiments in which crystals are rotated in the X-ray beam, providing significant three-dimensional information. On the other hand, shots from both X-ray free-electron lasers and serial synchrotron crystallography experiments are still images, in which the few three-dimensional data available arise only from the curvature of the Ewald sphere. Traditional synchrotron crystallography methods are thus less well suited to still image data processing. Here, a new indexing method is presented with the aim of maximizing information use from a still image given the known unit-cell dimensions and spacemore » group. Efficacy for cubic, hexagonal and orthorhombic space groups is shown, and for those showing some evidence of diffraction the indexing rate ranged from 90% (hexagonal space group) to 151% (cubic space group). Here, the indexing rate refers to the number of lattices indexed per image.« less

  7. Microscopic neural image registration based on the structure of mitochondria

    NASA Astrophysics Data System (ADS)

    Cao, Huiwen; Han, Hua; Rao, Qiang; Xiao, Chi; Chen, Xi

    2017-02-01

    Microscopic image registration is a key component of the neural structure reconstruction with serial sections of neural tissue. The goal of microscopic neural image registration is to recover the 3D continuity and geometrical properties of specimen. During image registration, various distortions need to be corrected, including image rotation, translation, tissue deformation et.al, which come from the procedure of sample cutting, staining and imaging. Furthermore, there is only certain similarity between adjacent sections, and the degree of similarity depends on local structure of the tissue and the thickness of the sections. These factors make the microscopic neural image registration a challenging problem. To tackle the difficulty of corresponding landmarks extraction, we introduce a novel image registration method for Scanning Electron Microscopy (SEM) images of serial neural tissue sections based on the structure of mitochondria. The ellipsoidal shape of mitochondria ensures that the same mitochondria has similar shape between adjacent sections, and its characteristic of broad distribution in the neural tissue guarantees that landmarks based on the mitochondria distributed widely in the image. The proposed image registration method contains three parts: landmarks extraction between adjacent sections, corresponding landmarks matching and image deformation based on the correspondences. We demonstrate the performance of our method with SEM images of drosophila brain.

  8. Identification of serial number on bank card using recurrent neural network

    NASA Astrophysics Data System (ADS)

    Liu, Li; Huang, Linlin; Xue, Jian

    2018-04-01

    Identification of serial number on bank card has many applications. Due to the different number printing mode, complex background, distortion in shape, etc., it is quite challenging to achieve high identification accuracy. In this paper, we propose a method using Normalization-Cooperated Gradient Feature (NCGF) and Recurrent Neural Network (RNN) based on Long Short-Term Memory (LSTM) for serial number identification. The NCGF maps the gradient direction elements of original image to direction planes such that the RNN with direction planes as input can recognize numbers more accurately. Taking the advantages of NCGF and RNN, we get 90%digit string recognition accuracy.

  9. Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser

    DOE PAGES

    Wu, Wenting; Nogly, Przemyslaw; Rheinberger, Jan; ...

    2015-06-27

    Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delivered into the X-ray pulses of an X-ray free-electron laser (XFEL) after a precise photoactivation delay. Here in this study, a millilitre batch production of high-density microcrystals was developed by four methodical conversion steps starting from known vapour-diffusion crystallization protocols: (i) screening the low-salt crystallizationmore » conditions preferred for serial crystallography by vapour diffusion, (ii) optimization of batch crystallization, (iii) testing the crystal size and quality using second-harmonic generation (SHG) imaging and X-ray powder diffraction and (iv) production of millilitres of rhodopsin crystal suspension in batches for serial crystallography tests; these crystals diffracted at an XFEL at the Linac Coherent Light Source using a liquid-jet setup.« less

  10. Does well maintained graft provide consistent return to play after medial ulnar collateral ligament reconstruction of the elbow joint in elite baseball players?

    PubMed

    Park, Jin-Young; Oh, Kyung-Soo; Bahng, Seung-Chul; Chung, Seok-Won; Choi, Jin-Ho

    2014-06-01

    Several studies have reported the clinical outcomes of medial ulnar collateral ligament (MUCL) reconstruction of the elbow joint in throwing athletes, including the rate of return to sports. However, little has been known about the imaging outcomes after MUCL reconstruction. The aim of this study is to report the clinical and imaging outcomes after MUCL reconstruction using figure of eight fashion in the elite and professional baseball players. This study included 17 baseball players, who underwent MUCL reconstruction between July 2007 and May 2010. The average follow-up period was 48.6 months. Imaging assessment consisted of preoperative plain and stress radiographs, magnetic resonance imaging, and postoperative serial ultrasonography. The clinical assessments were composed of visual analogue scale (VAS) for pain, range of motion, and the Conway scale. The mean VAS score was 6.4 (range, 3 to 8) preoperatively and 2.2 (range, 0 to 4) postoperatively (p < 0.05). There were nine players (53%) classified as excellent who returned to sports at the same or higher level compared to preinjury. Serial ultrasonography revealed well-maintained grafts at 3 and 12 months in all of the players. Five out of 17 players showed decreased echogenecity in the common flexor tendon at 3 months, which was considered as remaining tissue swelling and resolved completely at 12 months. All grafts are well-maintained until 12-months based on the ultrasonographic findings, although only 53% of the players returned to preinjury level.

  11. Expanding Functionality of Commercial Optical Coherence Tomography Systems by Integrating a Custom Endoscope

    PubMed Central

    Welge, Weston A.; Barton, Jennifer K.

    2015-01-01

    Optical coherence tomography (OCT) is a useful imaging modality for detecting and monitoring diseases of the gastrointestinal tract and other tubular structures. The non-destructiveness of OCT enables time-serial studies in animal models. While turnkey commercial research OCT systems are plenty, researchers often require custom imaging probes. We describe the integration of a custom endoscope with a commercial swept-source OCT system and generalize this description to any imaging probe and OCT system. A numerical dispersion compensation method is also described. Example images demonstrate that OCT can visualize the mouse colon crypt structure and detect adenoma in vivo. PMID:26418811

  12. Challenges of microtome‐based serial block‐face scanning electron microscopy in neuroscience

    PubMed Central

    WANNER, A. A.; KIRSCHMANN, M. A.

    2015-01-01

    Summary Serial block‐face scanning electron microscopy (SBEM) is becoming increasingly popular for a wide range of applications in many disciplines from biology to material sciences. This review focuses on applications for circuit reconstruction in neuroscience, which is one of the major driving forces advancing SBEM. Neuronal circuit reconstruction poses exceptional challenges to volume EM in terms of resolution, field of view, acquisition time and sample preparation. Mapping the connections between neurons in the brain is crucial for understanding information flow and information processing in the brain. However, information on the connectivity between hundreds or even thousands of neurons densely packed in neuronal microcircuits is still largely missing. Volume EM techniques such as serial section TEM, automated tape‐collecting ultramicrotome, focused ion‐beam scanning electron microscopy and SBEM (microtome serial block‐face scanning electron microscopy) are the techniques that provide sufficient resolution to resolve ultrastructural details such as synapses and provides sufficient field of view for dense reconstruction of neuronal circuits. While volume EM techniques are advancing, they are generating large data sets on the terabyte scale that require new image processing workflows and analysis tools. In this review, we present the recent advances in SBEM for circuit reconstruction in neuroscience and an overview of existing image processing and analysis pipelines. PMID:25907464

  13. Resolution extension by image summing in serial femtosecond crystallography of two-dimensional membrane-protein crystals

    DOE PAGES

    Casadei, Cecilia M.; Tsai, Ching-Ju; Barty, Anton; ...

    2018-01-01

    Previous proof-of-concept measurements on single-layer two-dimensional membrane-protein crystals performed at X-ray free-electron lasers (FELs) have demonstrated that the collection of meaningful diffraction patterns, which is not possible at synchrotrons because of radiation-damage issues, is feasible. Here, the results obtained from the analysis of a thousand single-shot, room-temperature X-ray FEL diffraction images from two-dimensional crystals of a bacteriorhodopsin mutant are reported in detail. The high redundancy in the measurements boosts the intensity signal-to-noise ratio, so that the values of the diffracted intensities can be reliably determined down to the detector-edge resolution of 4 Å. The results show that two-dimensional serial crystallography atmore » X-ray FELs is a suitable method to study membrane proteins to near-atomic length scales at ambient temperature. The method presented here can be extended to pump–probe studies of optically triggered structural changes on submillisecond timescales in two-dimensional crystals, which allow functionally relevant large-scale motions that may be quenched in three-dimensional crystals.« less

  14. Resolution extension by image summing in serial femtosecond crystallography of two-dimensional membrane-protein crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casadei, Cecilia M.; Tsai, Ching-Ju; Barty, Anton

    Previous proof-of-concept measurements on single-layer two-dimensional membrane-protein crystals performed at X-ray free-electron lasers (FELs) have demonstrated that the collection of meaningful diffraction patterns, which is not possible at synchrotrons because of radiation-damage issues, is feasible. Here, the results obtained from the analysis of a thousand single-shot, room-temperature X-ray FEL diffraction images from two-dimensional crystals of a bacteriorhodopsin mutant are reported in detail. The high redundancy in the measurements boosts the intensity signal-to-noise ratio, so that the values of the diffracted intensities can be reliably determined down to the detector-edge resolution of 4 Å. The results show that two-dimensional serial crystallography atmore » X-ray FELs is a suitable method to study membrane proteins to near-atomic length scales at ambient temperature. The method presented here can be extended to pump–probe studies of optically triggered structural changes on submillisecond timescales in two-dimensional crystals, which allow functionally relevant large-scale motions that may be quenched in three-dimensional crystals.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, B.; Packard, B.S.; Read, E.J.

    Lymphoid cells infiltrating into human tumors can be expanded in vitro in medium containing interleukin-2 (IL-2). Adoptive transfer of these tumor-infiltrating lymphocytes (TIL) mediates potent antitumor effects in murine tumor models. Clinical trials to evaluate the efficacy of these cells in patients with advanced cancer are underway. We have investigated whether infused TIL labeled with indium 111 (111In) oxine can traffic and localize to metastatic deposits of tumor. Six patients with metastatic malignant melanoma who had multiple sites of subcutaneous, nodal, and/or visceral disease were the subjects of the study. The patients received cyclophosphamide 36 hours before receiving the intravenousmore » (IV) infusion of TIL followed by IL-2 IV every eight hours. The distribution and localization of the TIL were evaluated using serial whole body gamma camera imaging, serial blood and urine samplings, and serial biopsies of tumor and normal tissue. 111In-labeled TIL localized to lung, liver, and spleen within two hours after the infusion of activity. Activity in the lung diminished within 24 hours. As early as 24 hours after injection of 111In-labeled TIL, localization of TIL to sites of metastatic deposits was demonstrated in all six patients using either imaging studies or biopsy specimens or both. 111In activity in tumor tissue biopsies ranged from three to 40 times greater than activity in normal tissue. A progressive increase in the radioactive counts at sites of tumor deposit was seen. This study shows that labeled TIL can localize preferentially to tumor, and provides information concerning the possible mechanism of the therapeutic effects of TIL.« less

  16. Confocal microscopy imaging of solid tissue

    EPA Science Inventory

    Confocal laser scanning microscopy (CLSM) is a technique that is capable of generating serial sections of whole-mount tissue and then reassembling the computer acquired images as a virtual 3-dimensional structure. In many ways CLSM offers an alternative to traditional sectioning ...

  17. Ultrasound Techniques for Space Applications

    NASA Technical Reports Server (NTRS)

    Rooney, James A.

    1985-01-01

    Ultrasound has proven to be a safe non-invasive technique for imaging organs and measuring cardiovascular function. It has unique advantages for application to problems with man in space including evaluation of cardiovascular function both in serial studies and during critical operations. In addition, specialized instrumentation may be capable of detecting the onset of decompression sickness during EVA activities. A spatial location and three-dimensional reconstruction system is being developed to improve the accuracy and reproducibility for serial comparative ultrasound studies of cardiovascular function. The three-dimensional method permits the acquisition of ultrasonic images from many views that can be recombined into a single reconstruction of the heart or vasculature. In addition to conventional imaging and monitoring systems, it is sometimes necessary or desirable to develop instrumentation for special purposes. One example of this type of development is the design of a pulsed-Doppler system to monitor cerebral blood flow during critical operations such as re-entry. A second example is the design of a swept-frequency ultrasound system for the detection of bubbles in the circulatory system and/or soft tissues as an early indication of the onset of decompression sickness during EVA activities. This system exploits the resonant properties of bubbles and can detect both fundamental and second harmonic emissions from the insonified region.

  18. Intraindividual Analysis of Signal Intensity Changes in the Dentate Nucleus After Consecutive Serial Applications of Linear and Macrocyclic Gadolinium-Based Contrast Agents.

    PubMed

    Radbruch, Alexander; Weberling, Lukas D; Kieslich, Pascal J; Hepp, Johanna; Kickingereder, Philipp; Wick, Wolfgang; Schlemmer, Heinz-Peter; Bendszus, Martin

    2016-11-01

    Recent studies reported an increase in the dentate nucleus (DN)-to-pons signal intensity (SI) ratio (DN-pons SI ratio) on unenhanced T1-weighted images in patients who received consecutive serial injections of linear gadolinium-based contrast agents (GBCAs). In contrast, most studies found no increase in the DN-pons SI ratio when patients were treated with consecutive serial injections of macrocyclic GBCAs. However, the potential difference between macrocyclic and linear GBCAs has never been assessed in individuals who received subsequent applications of both contrast agents. In this retrospective study, we assessed the evolution of the DN-pons SI ratio change in patients that were treated with a comparable number of serial consecutive injections of the linear GBCA gadopentetate dimeglumine and subsequent serial injections of the macrocyclic GBCAs gadobutrol and gadoterate meglumine. Data of 36 patients was analyzed. All patients underwent at least 5 consecutive administrations of the linear GBCA gadopentetate dimeglumine followed by an equal number of consecutive administrations of the macrocyclic GBCA gadobutrol. In 12 of the 36 patients, 5 or more final consecutive injections of the macrocyclic GBCA gadoterate meglumine were analyzed additionally. The difference of DN-pons SI ratios on unenhanced T1-weighted images was calculated by subtracting the ratio at the first examination from the ratio at the last examination in each of the 3 periods. The mean DN-pons SI ratio difference in the gadopentetate dimeglumine period was significantly greater than 0 (mean ± SD, 0.0448 ± 0.0345; P < 0.001), whereas the mean DN-pons SI ratio difference in the subsequent gadobutrol and gadoterate meglumine period was significantly smaller than 0 (gadobutrol: -0.0178 ± 0.0459, P = 0.026; gadoterate meglumine: -0.0250 ± 0.0284, P = 0.011). In this observational study, the application of the linear GBCA gadopentetate dimeglumine was associated with a DN-pons SI ratio increase, whereas subsequent applications of the macrocyclic GBCAs gadobutrol or gadoterate meglumine in the same patients were not. Rather, the current data tentatively suggest a decrease in preexisting hyperintensities over time when linear GBCAs are changed to macrocyclic GBCAs, potentially indicating a washout effect or precipitation of gadolinium. Future patient studies need to include control groups to replicate the present results, and additional animal studies should be conducted to clarify the underlying mechanism of the proposed SI decrease.

  19. Data processing pipeline for serial femtosecond crystallography at SACLA.

    PubMed

    Nakane, Takanori; Joti, Yasumasa; Tono, Kensuke; Yabashi, Makina; Nango, Eriko; Iwata, So; Ishitani, Ryuichiro; Nureki, Osamu

    2016-06-01

    A data processing pipeline for serial femtosecond crystallography at SACLA was developed, based on Cheetah [Barty et al. (2014). J. Appl. Cryst. 47 , 1118-1131] and CrystFEL [White et al. (2016). J. Appl. Cryst. 49 , 680-689]. The original programs were adapted for data acquisition through the SACLA API, thread and inter-node parallelization, and efficient image handling. The pipeline consists of two stages: The first, online stage can analyse all images in real time, with a latency of less than a few seconds, to provide feedback on hit rate and detector saturation. The second, offline stage converts hit images into HDF5 files and runs CrystFEL for indexing and integration. The size of the filtered compressed output is comparable to that of a synchrotron data set. The pipeline enables real-time feedback and rapid structure solution during beamtime.

  20. A 3-Dimensional Atlas of Human Tongue Muscles

    PubMed Central

    SANDERS, IRA; MU, LIANCAI

    2013-01-01

    The human tongue is one of the most important yet least understood structures of the body. One reason for the relative lack of research on the human tongue is its complex anatomy. This is a real barrier to investigators as there are few anatomical resources in the literature that show this complex anatomy clearly. As a result, the diagnosis and treatment of tongue disorders lags behind that for other structures of the head and neck. This report intended to fill this gap by displaying the tongue’s anatomy in multiple ways. The primary material used in this study was serial axial images of the male and female human tongue from the Visible Human (VH) Project of the National Library of Medicine. In addition, thick serial coronal sections of three human tongues were rendered translucent. The VH axial images were computer reconstructed into serial coronal sections and each tongue muscle was outlined. These outlines were used to construct a 3-dimensional computer model of the tongue that allows each muscle to be seen in its in vivo anatomical position. The thick coronal sections supplement the 3-D model by showing details of the complex interweaving of tongue muscles throughout the tongue. The graphics are perhaps the clearest guide to date to aid clinical or basic science investigators in identifying each tongue muscle in any part of the human tongue. PMID:23650264

  1. Three-dimensional surface reconstruction for industrial computed tomography

    NASA Technical Reports Server (NTRS)

    Vannier, M. W.; Knapp, R. H.; Gayou, D. E.; Sammon, N. P.; Butterfield, R. L.; Larson, J. W.

    1985-01-01

    Modern high resolution medical computed tomography (CT) scanners can produce geometrically accurate sectional images of many types of industrial objects. Computer software has been developed to convert serial CT scans into a three-dimensional surface form, suitable for display on the scanner itself. This software, originally developed for imaging the skull, has been adapted for application to industrial CT scanning, where serial CT scans thrrough an object of interest may be reconstructed to demonstrate spatial relationships in three dimensions that cannot be easily understood using the original slices. The methods of three-dimensional reconstruction and solid modeling are reviewed, and reconstruction in three dimensions from CT scans through familiar objects is demonstrated.

  2. FIB-SEM tomography in biology.

    PubMed

    Kizilyaprak, Caroline; Bittermann, Anne Greet; Daraspe, Jean; Humbel, Bruno M

    2014-01-01

    Three-dimensional information is much easier to understand than a set of two-dimensional images. Therefore a layman is thrilled by the pseudo-3D image taken in a scanning electron microscope (SEM) while, when seeing a transmission electron micrograph, his imagination is challenged. First approaches to gain insight in the third dimension were to make serial microtome sections of a region of interest (ROI) and then building a model of the object. Serial microtome sectioning is a tedious and skill-demanding work and therefore seldom done. In the last two decades with the increase of computer power, sophisticated display options, and the development of new instruments, an SEM with a built-in microtome as well as a focused ion beam scanning electron microscope (FIB-SEM), serial sectioning, and 3D analysis has become far easier and faster.Due to the relief like topology of the microtome trimmed block face of resin-embedded tissue, the ROI can be searched in the secondary electron mode, and at the selected spot, the ROI is prepared with the ion beam for 3D analysis. For FIB-SEM tomography, a thin slice is removed with the ion beam and the newly exposed face is imaged with the electron beam, usually by recording the backscattered electrons. The process, also called "slice and view," is repeated until the desired volume is imaged.As FIB-SEM allows 3D imaging of biological fine structure at high resolution of only small volumes, it is crucial to perform slice and view at carefully selected spots. Finding the region of interest is therefore a prerequisite for meaningful imaging. Thin layer plastification of biofilms offers direct access to the original sample surface and allows the selection of an ROI for site-specific FIB-SEM tomography just by its pronounced topographic features.

  3. Embryonic stem cell grafting in normal and infarcted myocardium: serial assessment with MR imaging and PET dual detection.

    PubMed

    Qiao, Hui; Zhang, Hualei; Zheng, Yuanjie; Ponde, Datta E; Shen, Dinggang; Gao, Fabao; Bakken, Ashley B; Schmitz, Alexander; Kung, Hank F; Ferrari, Victor A; Zhou, Rong

    2009-03-01

    To use magnetic resonance (MR) imaging and positron emission tomography (PET) dual detection of cardiac-grafted embryonic stem cells (ESCs) to examine (a) survival and proliferation of ESCs in normal and infarcted myocardium, (b) host macrophage versus grafted ESC contribution to serial MR imaging signal over time, and (c) cardiac function associated with the formation of grafts and whether improvement in cardiac function is related to cardiac differentiation of ESCs. All animal procedures were approved by the institutional animal care and use committee. Murine ESCs were stably transfected with a mutant version of herpes simplex virus type 1 thymidine kinase, HSV1-sr39tk, and also were labeled with superparamagnetic iron oxide (SPIO) particles. Cells were injected directly in the border zone of the infarcted heart or in corresponding regions of normal hearts in athymic rats. PET and MR imaging were performed longitudinally for 4 weeks in the same animals. ESCs survived and underwent proliferation in the infarcted and normal hearts, as demonstrated by serial increases in 9-(4-[(18)F]fluoro-3-hydroxymethylbutyl) guanine PET signals. In parallel, the hypointense areas on MR images at the injection sites decreased over time. Double staining for host macrophages and SPIO particles revealed that the majority of SPIO-containing cells were macrophages at week 4 after injection. Left ventricular ejection fraction increased in the ESC-treated rats but decreased in culture media-treated rats, and border-zone function was preserved in ESC-treated animals; however, cardiac differentiation of ESCs was less than 0.5%. Dual-modality imaging permits complementary information in regard to cell survival and proliferation, graft formation, and effects on cardiac function. http://radiology.rsnajnls.org/cgi/content/full/250/3/821/DC1. RSNA, 2009

  4. Soft tissue examination of the fetal rat and rabbit head by magnetic resonance imaging.

    PubMed

    French, Julian M; Woodhouse, Neil

    2013-01-01

    The use of magnetic resonance imaging of the fetal rat and rabbit head, as an alternative to the traditional methods of fixation and preparation of serial sections, is described. Labeled magnetic resonance images of normal head anatomy have been provided as a reference for use when evaluating the internal structures of the head.

  5. Serial killers with military experience: applying learning theory to serial murder.

    PubMed

    Castle, Tammy; Hensley, Christopher

    2002-08-01

    Scholars have endeavored to study the motivation and causality behind serial murder by researching biological, psychological, and sociological variables. Some of these studies have provided support for the relationship between these variables and serial murder. However, the study of serial murder continues to be an exploratory rather than explanatory research topic. This article examines the possible link between serial killers and military service. Citing previous research using social learning theory for the study of murder, this article explores how potential serial killers learn to reinforce violence, aggression, and murder in military boot camps. As with other variables considered in serial killer research, military experience alone cannot account for all cases of serial murder. Future research should continue to examine this possible link.

  6. Serial MR Imaging of Intramuscular Hematoma: Experimental Study in a Rat Model with the Pathologic Correlation

    PubMed Central

    Lee, Yeon Soo; Kwon, Soon Tae; Kim, Jong Ok

    2011-01-01

    Objective We wanted to demonstrate the temporal changes of the magnetic resonance imaging (MRI) findings in experimentally-induced intramuscular hematomas in rats and to correlate these data with the concurrent pathologic observations. Materials and Methods Intramuscular hematoma was induced in 30 rats. The MR images were obtained at 1, 4, 7 and 10 days and at 2, 3, 4, 6 and 8 weeks after muscle injury. The characteristic serial MRI findings were evaluated and the relative signal intensities were calculated. Pathologic specimens were obtained at each time point. Results On the T1-weighted imaging (T1WI), the intramuscular hematomas exhibited isointensity compared to that of muscle or the development of a high signal intensity (SI) rim on day one after injury. The high SI persisted until eight weeks after injury. On the T2-weighted imaging (T2WI), the hematomas showed high SI or centrally low SI on day one after injury, and mainly high SI after four days. A dark signal rim was apparent after seven days, which was indicative of hemosiderin on the pathology. The gradient echo (GRE) imaging yielded dark signal intensities at all stages. Conclusion Unlike brain hematomas, experimentally-induced intramuscular hematomas show increased SI on both the T1WI and T2WI from the acute stage onward, and this is pathologically correlated with a rich blood supply and rapid healing response to injury in the muscle. On the T2WI and GRE imaging, high SI with a peripheral dark signal rim is apparent from seven days to the chronic stage. PMID:21228942

  7. Stereotactic intracranial implantation and in vivo bioluminescent imaging of tumor xenografts in a mouse model system of glioblastoma multiforme.

    PubMed

    Baumann, Brian C; Dorsey, Jay F; Benci, Joseph L; Joh, Daniel Y; Kao, Gary D

    2012-09-25

    Glioblastoma multiforme (GBM) is a high-grade primary brain cancer with a median survival of only 14.6 months in humans despite standard tri-modality treatment consisting of surgical resection, post-operative radiation therapy and temozolomide chemotherapy. New therapeutic approaches are clearly needed to improve patient survival and quality of life. The development of more effective treatment strategies would be aided by animal models of GBM that recapitulate human disease yet allow serial imaging to monitor tumor growth and treatment response. In this paper, we describe our technique for the precise stereotactic implantation of bio-imageable GBM cancer cells into the brains of nude mice resulting in tumor xenografts that recapitulate key clinical features of GBM. This method yields tumors that are reproducible and are located in precise anatomic locations while allowing in vivo bioluminescent imaging to serially monitor intracranial xenograft growth and response to treatments. This method is also well-tolerated by the animals with low perioperative morbidity and mortality.

  8. ultraLM and miniLM: Locator tools for smart tracking of fluorescent cells in correlative light and electron microscopy.

    PubMed

    Brama, Elisabeth; Peddie, Christopher J; Wilkes, Gary; Gu, Yan; Collinson, Lucy M; Jones, Martin L

    2016-12-13

    In-resin fluorescence (IRF) protocols preserve fluorescent proteins in resin-embedded cells and tissues for correlative light and electron microscopy, aiding interpretation of macromolecular function within the complex cellular landscape. Dual-contrast IRF samples can be imaged in separate fluorescence and electron microscopes, or in dual-modality integrated microscopes for high resolution correlation of fluorophore to organelle. IRF samples also offer a unique opportunity to automate correlative imaging workflows. Here we present two new locator tools for finding and following fluorescent cells in IRF blocks, enabling future automation of correlative imaging. The ultraLM is a fluorescence microscope that integrates with an ultramicrotome, which enables 'smart collection' of ultrathin sections containing fluorescent cells or tissues for subsequent transmission electron microscopy or array tomography. The miniLM is a fluorescence microscope that integrates with serial block face scanning electron microscopes, which enables 'smart tracking' of fluorescent structures during automated serial electron image acquisition from large cell and tissue volumes.

  9. 3D imaging of cement-based materials at submicron resolution by combining laser scanning confocal microscopy with serial sectioning.

    PubMed

    Yio, M H N; Mac, M J; Wong, H S; Buenfeld, N R

    2015-05-01

    In this paper, we present a new method to reconstruct large volumes of nontransparent porous materials at submicron resolution. The proposed method combines fluorescence laser scanning confocal microscopy with serial sectioning to produce a series of overlapping confocal z-stacks, which are then aligned and stitched based on phase correlation. The method can be extended in the XY plane to further increase the overall image volume. Resolution of the reconstructed image volume does not degrade with increase in sample size. We have used the method to image cementitious materials, hardened cement paste and concrete and the results obtained show that the method is reliable. Possible applications of the method such as three-dimensional characterization of the pores and microcracks in hardened concrete, three-dimensional particle shape characterization of cementitious materials and three-dimensional characterization of other porous materials such as rocks and bioceramics are discussed. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  10. A Proposal of New Reference System for the Standard Axial, Sagittal, Coronal Planes of Brain Based on the Serially-Sectioned Images

    PubMed Central

    Park, Jin Seo; Park, Hyo Seok; Shin, Dong Sun; Har, Dong-Hwan; Cho, Zang-Hee; Kim, Young-Bo; Han, Jae-Yong; Chi, Je-Geun

    2010-01-01

    Sectional anatomy of human brain is useful to examine the diseased brain as well as normal brain. However, intracerebral reference points for the axial, sagittal, and coronal planes of brain have not been standardized in anatomical sections or radiological images. We made 2,343 serially-sectioned images of a cadaver head with 0.1 mm intervals, 0.1 mm pixel size, and 48 bit color and obtained axial, sagittal, and coronal images based on the proposed reference system. This reference system consists of one principal reference point and two ancillary reference points. The two ancillary reference points are the anterior commissure and the posterior commissure. And the principal reference point is the midpoint of two ancillary reference points. It resides in the center of whole brain. From the principal reference point, Cartesian coordinate of x, y, z could be made to be the standard axial, sagittal, and coronal planes. PMID:20052359

  11. Monitoring of benzene-induced hematotoxicity in mice by serial leukocyte counting using a microcavity array.

    PubMed

    Hosokawa, Masahito; Asami, Marie; Yoshino, Tomoko; Tsujimura, Noriyuki; Takahashi, Masayuki; Nakasono, Satoshi; Tanaka, Tsuyoshi; Matsunaga, Tadashi

    2013-02-15

    Monitoring of hematotoxicity, which requires serial blood collection, is difficult to carry out in small animals due to a lack of non-invasive, individual animal-appropriate techniques that enable enumeration of leukocyte subsets from limited amounts of whole blood. In this study, a microfluidic device equipped with a microcavity array that enables highly efficient separation of leukocytes from submicroliters of whole blood was applied for hematotoxicity monitoring in mice. The microcavity array can specifically separate leukocytes from whole blood based on differences in the size and deformability between leukocytes and other blood cells. Mouse leukocytes recovered on aligned microcavities were continuously processed for image-based immunophenotypic analysis. Our device successfully recovered almost 100% of mouse leukocytes in 0.1 μL of whole blood without the effect of serial blood collection such as changes in body weight and total leukocyte count. We assessed benzene-associated hematotoxicity in mice using this system. Mice were administered with benzene once daily and the depression of leukocyte numbers induced in individual mice was successfully monitored from tail vein blood collected every other day for 2 weeks. Serial monitoring of the leukocyte number in individual mice will contribute to the understanding of hematotoxicity and reduction of the number of animal experiment trials. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Echocardiographic Image Quality Deteriorates with Age in Children and Young Adults with Duchenne Muscular Dystrophy.

    PubMed

    Power, Alyssa; Poonja, Sabrina; Disler, Dal; Myers, Kimberley; Patton, David J; Mah, Jean K; Fine, Nowell M; Greenway, Steven C

    2017-01-01

    Advances in medical care for patients with Duchenne muscular dystrophy (DMD) have resulted in improved survival and an increased prevalence of cardiomyopathy. Serial echocardiographic surveillance is recommended to detect early cardiac dysfunction and initiate medical therapy. Clinical anecdote suggests that echocardiographic quality diminishes over time, impeding accurate assessment of left ventricular systolic function. Furthermore, evidence-based guidelines for the use of cardiac imaging in DMD, including cardiac magnetic resonance imaging (CMR), are limited. The objective of our single-center, retrospective study was to quantify the deterioration in echocardiographic image quality with increasing patient age and identify an age at which CMR should be considered. We retrospectively reviewed and graded the image quality of serial echocardiograms obtained in young patients with DMD. The quality of 16 left ventricular segments in two echocardiographic views was visually graded using a binary scoring system. An endocardial border delineation percentage (EBDP) score was calculated by dividing the number of segments with adequate endocardial delineation in each imaging window by the total number of segments present in that window and multiplying by 100. Linear regression analysis was performed to model the relationship between the EBDP scores and patient age. Fifty-five echocardiograms from 13 patients (mean age 11.6 years, range 3.6-19.9) were systematically reviewed. By 13 years of age, 50% of the echocardiograms were classified as suboptimal with ≥30% of segments inadequately visualized, and by 15 years of age, 78% of studies were suboptimal. Linear regression analysis revealed a negative correlation between patient age and EBDP score ( r  = -2.49, 95% confidence intervals -4.73, -0.25; p  = 0.032), with the score decreasing by 2.5% for each 1 year increase in age. Echocardiographic image quality declines with increasing age in DMD. Alternate imaging modalities may play a role in cases of poor echocardiographic image quality.

  13. Serial analysis of 3D H-1 MRSI for patients with newly diagnosed GBM treated with combination therapy that includes bevacizumab.

    PubMed

    Nelson, Sarah J; Li, Yan; Lupo, Janine M; Olson, Marram; Crane, Jason C; Molinaro, Annette; Roy, Ritu; Clarke, Jennifer; Butowski, Nicholas; Prados, Michael; Cha, Soonmee; Chang, Susan M

    2016-10-01

    Interpretation of changes in the T1- and T2-weighted MR images from patients with newly diagnosed glioblastoma (GBM) treated with standard of care in conjunction with anti-angiogenic agents is complicated by pseudoprogression and pseudoresponse. The hypothesis being tested in this study was that 3D H-1 magnetic resonance spectroscopic imaging (MRSI) provides estimates of levels of choline, creatine, N-acetylaspartate (NAA), lactate and lipid that change in response to treatment and that metrics describing these characteristics are associated with survival. Thirty-one patients with newly diagnosed GBM and being treated with radiation therapy (RT), temozolomide, erlotinib and bevacizumab were recruited to receive serial MR scans that included 3-D lactate edited MRSI at baseline, mid-RT, post-RT and at specific follow-up time points. The data were processed to provide estimates of metrics representing changes in metabolite levels relative to normal appearing brain. Cox proportional hazards analysis was applied to examine the relationship of these parameters with progression free survival (PFS) and overall survival (OS). There were significant reductions in parameters that describe relative levels of choline to NAA and creatine, indicating that the treatment caused a decrease in tumor cellularity. Changes in the levels of lactate and lipid relative to the NAA from contralateral brain were consistent with vascular normalization. Metabolic parameters from the first serial follow-up scan were associated with PFS and OS, when accounting for age and extent of resection. Integrating metabolic parameters into the assessment of patients with newly diagnosed GBM receiving therapies that include anti-angiogenic agents may be helpful for tracking changes in tumor burden, resolving ambiguities in anatomic images caused by non-specific treatment effects and for predicting outcome.

  14. Serial Head and Brain Imaging of 17 Fetuses With Confirmed Zika Virus Infection in Colombia, South America.

    PubMed

    Parra-Saavedra, Miguel; Reefhuis, Jennita; Piraquive, Juan Pablo; Gilboa, Suzanne M; Badell, Martina L; Moore, Cynthia A; Mercado, Marcela; Valencia, Diana; Jamieson, Denise J; Beltran, Mauricio; Sanz-Cortes, Magda; Rivera-Casas, Ana Maria; Yepez, Mayel; Parra, Guido; Ospina Martinez, Martha; Honein, Margaret A

    2017-07-01

    To evaluate fetal ultrasound and magnetic resonance imaging findings among a series of pregnant women with confirmed Zika virus infection to evaluate the signs of congenital Zika syndrome with respect to timing of infection. We conducted a retrospective case series of pregnant women referred to two perinatal clinics in Barranquilla and Ibagué, Colombia, who had findings consistent with congenital Zika syndrome and Zika virus infection confirmed in maternal, fetal, or neonatal samples. Serial ultrasound measurements, fetal magnetic resonance imaging results, laboratory results, and perinatal outcomes were evaluated. We describe 17 cases of confirmed prenatal maternal Zika virus infection with adverse fetal outcomes. Among the 14 symptomatic women, the median gestational age for maternal Zika virus symptoms was 10 weeks (range 7-14 weeks of gestation). The median time between Zika virus symptom onset and microcephaly (head circumference less than 3 standard deviations below the mean) was 18 weeks (range 15-24 weeks). The earliest fetal head circumference measurement consistent with microcephaly diagnosis was at 24 weeks of gestation. The earliest sign of congenital Zika syndrome was talipes equinovarus, which in two patients was noted first at 19 weeks of gestation. Common findings on fetal magnetic resonance imaging were microcephaly, ventriculomegaly, polymicrogyria, and calcifications. Our analysis suggests a period of at least 15 weeks between maternal Zika virus infection in pregnancy and development of microcephaly and highlights the importance of serial and detailed neuroimaging.

  15. Serial and Parallel Processing in the Primate Auditory Cortex Revisited

    PubMed Central

    Recanzone, Gregg H.; Cohen, Yale E.

    2009-01-01

    Over a decade ago it was proposed that the primate auditory cortex is organized in a serial and parallel manner in which there is a dorsal stream processing spatial information and a ventral stream processing non-spatial information. This organization is similar to the “what”/“where” processing of the primate visual cortex. This review will examine several key studies, primarily electrophysiological, that have tested this hypothesis. We also review several human imaging studies that have attempted to define these processing streams in the human auditory cortex. While there is good evidence that spatial information is processed along a particular series of cortical areas, the support for a non-spatial processing stream is not as strong. Why this should be the case and how to better test this hypothesis is also discussed. PMID:19686779

  16. Imaging burst kinetics and spatial coordination during serial killing by single natural killer cells

    PubMed Central

    Choi, Paul J.; Mitchison, Timothy J.

    2013-01-01

    Cytotoxic lymphocytes eliminate virus-infected and cancerous cells by immune recognition and killing through the perforin-granzyme pathway. Traditional killing assays measure average target cell lysis at fixed times and high effector:target ratios. Such assays obscure kinetic details that might reveal novel physiology. We engineered target cells to report on granzyme activity, used very low effector:target ratios to observe potential serial killing, and performed low magnification time-lapse imaging to reveal time-dependent statistics of natural killer (NK) killing at the single-cell level. Most kills occurred during serial killing, and a single NK cell killed up to 10 targets over a 6-h assay. The first kill was slower than subsequent kills, especially on poor targets, or when NK signaling pathways were partially inhibited. Spatial analysis showed that sequential kills were usually adjacent. We propose that NK cells integrate signals from the previous and current target, possibly by simultaneous contact. The resulting burst kinetics and spatial coordination may control the activity of NK cells in tissues. PMID:23576740

  17. Learning of serial digits leads to frontal activation in functional MR imaging.

    PubMed

    Karakaş, Hakki Muammer; Karakaş, Sirel

    2006-03-01

    Clinical studies have shown that performance on the serial digit learning test (SDLT) is dependent upon the mesial temporal lobes, which are responsible for learning and its consolidation. However, an effective SDLT performance is also dependent upon sequencing, temporal ordering, and the utilization of mnemonic strategies. All of these processes are among the functions of the frontal lobes; in spite of this, the relationship between SDLT performance and the frontal lobes has not been demonstrated with previously used mapping techniques. The aim of this study was to investigate the areas of the brain that are activated by SDLT performance. Ten healthy, right handed volunteers (mean age, 20.1 years; SD: 3.3) who had 12 years of education were studied with a 1.0 T MR imaging scanner. BOLD (blood oxygen level dependent) contrast and a modified SDLT were used. Activated loci were automatically mapped using a proportional grid. In learning, the most consistent activation was observed in B-a-7 of the right (80%) and the left hemispheres (50%). In recall, the most consistent activation was observed in B-a-7 of the right hemisphere (60%). Activations were observed in 2.5+/-0.97 Talairach volumes in learning, whereas they encompassed 1.7+/-0.95 volumes in recall. The difference between both phases (learning and recall) regarding total activated volume was significant (p < 0.05). The prefrontal activation during SDLT performance was not related to learning or to recall, but to a function that is common to both of these cognitive processes. A candidate for this common factor may be the executive functions, which also include serial position processing and temporal ordering.

  18. Two-Dimensional Sectioned Images and Three-Dimensional Surface Models for Learning the Anatomy of the Female Pelvis

    ERIC Educational Resources Information Center

    Shin, Dong Sun; Jang, Hae Gwon; Hwang, Sung Bae; Har, Dong-Hwan; Moon, Young Lae; Chung, Min Suk

    2013-01-01

    In the Visible Korean project, serially sectioned images of the pelvis were made from a female cadaver. Outlines of significant structures in the sectioned images were drawn and stacked to build surface models. To improve the accessibility and informational content of these data, a five-step process was designed and implemented. First, 154 pelvic…

  19. Whole-brain serial-section electron microscopy in larval zebrafish.

    PubMed

    Hildebrand, David Grant Colburn; Cicconet, Marcelo; Torres, Russel Miguel; Choi, Woohyuk; Quan, Tran Minh; Moon, Jungmin; Wetzel, Arthur Willis; Scott Champion, Andrew; Graham, Brett Jesse; Randlett, Owen; Plummer, George Scott; Portugues, Ruben; Bianco, Isaac Henry; Saalfeld, Stephan; Baden, Alexander David; Lillaney, Kunal; Burns, Randal; Vogelstein, Joshua Tzvi; Schier, Alexander Franz; Lee, Wei-Chung Allen; Jeong, Won-Ki; Lichtman, Jeff William; Engert, Florian

    2017-05-18

    High-resolution serial-section electron microscopy (ssEM) makes it possible to investigate the dense meshwork of axons, dendrites, and synapses that form neuronal circuits. However, the imaging scale required to comprehensively reconstruct these structures is more than ten orders of magnitude smaller than the spatial extents occupied by networks of interconnected neurons, some of which span nearly the entire brain. Difficulties in generating and handling data for large volumes at nanoscale resolution have thus restricted vertebrate studies to fragments of circuits. These efforts were recently transformed by advances in computing, sample handling, and imaging techniques, but high-resolution examination of entire brains remains a challenge. Here, we present ssEM data for the complete brain of a larval zebrafish (Danio rerio) at 5.5 days post-fertilization. Our approach utilizes multiple rounds of targeted imaging at different scales to reduce acquisition time and data management requirements. The resulting dataset can be analysed to reconstruct neuronal processes, permitting us to survey all myelinated axons (the projectome). These reconstructions enable precise investigations of neuronal morphology, which reveal remarkable bilateral symmetry in myelinated reticulospinal and lateral line afferent axons. We further set the stage for whole-brain structure-function comparisons by co-registering functional reference atlases and in vivo two-photon fluorescence microscopy data from the same specimen. All obtained images and reconstructions are provided as an open-access resource.

  20. Whole-brain serial-section electron microscopy in larval zebrafish

    NASA Astrophysics Data System (ADS)

    Hildebrand, David Grant Colburn; Cicconet, Marcelo; Torres, Russel Miguel; Choi, Woohyuk; Quan, Tran Minh; Moon, Jungmin; Wetzel, Arthur Willis; Scott Champion, Andrew; Graham, Brett Jesse; Randlett, Owen; Plummer, George Scott; Portugues, Ruben; Bianco, Isaac Henry; Saalfeld, Stephan; Baden, Alexander David; Lillaney, Kunal; Burns, Randal; Vogelstein, Joshua Tzvi; Schier, Alexander Franz; Lee, Wei-Chung Allen; Jeong, Won-Ki; Lichtman, Jeff William; Engert, Florian

    2017-05-01

    High-resolution serial-section electron microscopy (ssEM) makes it possible to investigate the dense meshwork of axons, dendrites, and synapses that form neuronal circuits. However, the imaging scale required to comprehensively reconstruct these structures is more than ten orders of magnitude smaller than the spatial extents occupied by networks of interconnected neurons, some of which span nearly the entire brain. Difficulties in generating and handling data for large volumes at nanoscale resolution have thus restricted vertebrate studies to fragments of circuits. These efforts were recently transformed by advances in computing, sample handling, and imaging techniques, but high-resolution examination of entire brains remains a challenge. Here, we present ssEM data for the complete brain of a larval zebrafish (Danio rerio) at 5.5 days post-fertilization. Our approach utilizes multiple rounds of targeted imaging at different scales to reduce acquisition time and data management requirements. The resulting dataset can be analysed to reconstruct neuronal processes, permitting us to survey all myelinated axons (the projectome). These reconstructions enable precise investigations of neuronal morphology, which reveal remarkable bilateral symmetry in myelinated reticulospinal and lateral line afferent axons. We further set the stage for whole-brain structure-function comparisons by co-registering functional reference atlases and in vivo two-photon fluorescence microscopy data from the same specimen. All obtained images and reconstructions are provided as an open-access resource.

  1. Phase 0 Trial of Itraconazole for Early-Stage Non-Small Cell Lung Cancer

    DTIC Science & Technology

    2016-10-01

    tissue and blood sampling in addition to magnetic resonance imaging ( MRI ) scans for biomarker analysis. At the time of surgery, resected tissue will...original proposal, these subjects underwent study-related MRI scans, skin biopsies, blood tests, treatment with itraconazole, and surgical resection...not complete serial MRIs scans. Task 2: Determine anti-angiogenic effects of itraconazole Subtask 2a: Blood-based PD studies As described in the

  2. 76 FR 32355 - Privacy Act of 1974: New System Of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-06

    ... following data fields: Full name; Social Security number; date of birth; signature; image (photograph..., RETAINING, AND DISPOSING OF RECORDS IN THE SYSTEM: STORAGE: Records are stored in electronic media or in... retrievable by name, Social Security number, other ID number, PIV card serial number, image (photograph), and...

  3. Visual Priming of Inverted and Rotated Objects

    ERIC Educational Resources Information Center

    Knowlton, Barbara J.; McAuliffe, Sean P.; Coelho, Chase J.; Hummel, John E.

    2009-01-01

    Object images are identified more efficiently after prior exposure. Here, the authors investigated shape representations supporting object priming. The dependent measure in all experiments was the minimum exposure duration required to correctly identify an object image in a rapid serial visual presentation stream. Priming was defined as the change…

  4. Technique of semiautomatic surface reconstruction of the visible Korean human data using commercial software.

    PubMed

    Park, Jin Seo; Shin, Dong Sun; Chung, Min Suk; Hwang, Sung Bae; Chung, Jinoh

    2007-11-01

    This article describes the technique of semiautomatic surface reconstruction of anatomic structures using widely available commercial software. This technique would enable researchers to promptly and objectively perform surface reconstruction, creating three-dimensional anatomic images without any assistance from computer engineers. To develop the technique, we used data from the Visible Korean Human project, which produced digitalized photographic serial images of an entire cadaver. We selected 114 anatomic structures (skin [1], bones [32], knee joint structures [7], muscles [60], arteries [7], and nerves [7]) from the 976 anatomic images which were generated from the left lower limb of the cadaver. Using Adobe Photoshop, the selected anatomic structures in each serial image were outlined, creating a segmented image. The Photoshop files were then converted into Adobe Illustrator files to prepare isolated segmented images, so that the contours of the structure could be viewed independent of the surrounding anatomy. Using Alias Maya, these isolated segmented images were then stacked to construct a contour image. Gaps between the contour lines were filled with surfaces, and three-dimensional surface reconstruction could be visualized with Rhinoceros. Surface imperfections were then corrected to complete the three-dimensional images in Alias Maya. We believe that the three-dimensional anatomic images created by these methods will have widespread application in both medical education and research. 2007 Wiley-Liss, Inc

  5. The universal serial bus endoscope: design and initial clinical experience.

    PubMed

    Hernandez-Zendejas, Gregorio; Dobke, Marek K; Guerrerosantos, Jose

    2004-01-01

    Endoscopic forehead lift is a well-established procedure in aesthetic plastic surgery. Many agree that currently available video-endoscopic equipment is bulky, multipieced and sometimes cumbersome in the operating theater. A novel system, the Universal Serial Bus Endoscope (USBE) was designed to simplify and reduce the number of necessary equipment pieces in the endoscopic setup. The USBE is attached by a single cable to a Universal Serial Bus (USB) port of a laptop computer. A built-in miniaturized cold light source provides illumination. A built-in digital camera chip enables procedure recording. The real-time images and movies obtained with USBE are displayed on the computer's screen and recorded on the laptop's hard disk drive. In this study, 25 patients underwent endoscopic browlift using the USBE system to test its clinical usefulness, all with good results and without complications or need for revision. The USBE was found to be reliable and easier to use than current video-endoscope equipment. The operative time needed to complete the procedure by the authors was reduced approximately 50%. The design and main technical characteristics of the USBE are presented.

  6. Effect of hydration status on atrial and ventricular volumes and function in healthy adult volunteers.

    PubMed

    Schantz, Daryl I; Dragulescu, Andreea; Memauri, Brett; Grotenhuis, Heynric B; Seed, Mike; Grosse-Wortmann, Lars

    2016-10-01

    Assessment of cardiac chamber volumes is a fundamental part of cardiac magnetic resonance (CMR) imaging. While the effects of inter- and intraobserver variability have been studied and have a recognized effect on the comparability of serial cardiac MR imaging studies, the effect of differences in hydration status has not been evaluated. To evaluate the effects of volume administration on cardiac chamber volumes. Thirteen healthy adults underwent a baseline cardiac MR to evaluate cardiac chamber volumes after an overnight fast. They were then given two saline boluses of 10 ml/kg of body weight and the cardiac MR was repeated immediately after each bolus. From the baseline scan to the final scan there was a significant increase in all four cardiac chamber end-diastolic volumes. Right atrial volumes increased 8.0%, from 61.1 to 66.0 ml/m2 (P<0.001), and left atrial volumes increased 10.0%, from 50.0 to 55.0 ml/m2 (P<0.001). Right ventricular volumes increased 6.0%, from 91.1 to 96.5 ml/m2 (P<0.001), and left ventricular volumes increased 3.2%, from 87.0 to 89.8 ml/m2 (P<0.001). Hydration status has a significant effect on the end-diastolic volumes of all cardiac chambers assessed by cardiac MR. Thus, hydration represents a "variable" that should be taken into account when assessing cardiac chamber volumes, especially when performing serial imaging studies in a patient.

  7. Comparison of multihardware parallel implementations for a phase unwrapping algorithm

    NASA Astrophysics Data System (ADS)

    Hernandez-Lopez, Francisco Javier; Rivera, Mariano; Salazar-Garibay, Adan; Legarda-Sáenz, Ricardo

    2018-04-01

    Phase unwrapping is an important problem in the areas of optical metrology, synthetic aperture radar (SAR) image analysis, and magnetic resonance imaging (MRI) analysis. These images are becoming larger in size and, particularly, the availability and need for processing of SAR and MRI data have increased significantly with the acquisition of remote sensing data and the popularization of magnetic resonators in clinical diagnosis. Therefore, it is important to develop faster and accurate phase unwrapping algorithms. We propose a parallel multigrid algorithm of a phase unwrapping method named accumulation of residual maps, which builds on a serial algorithm that consists of the minimization of a cost function; minimization achieved by means of a serial Gauss-Seidel kind algorithm. Our algorithm also optimizes the original cost function, but unlike the original work, our algorithm is a parallel Jacobi class with alternated minimizations. This strategy is known as the chessboard type, where red pixels can be updated in parallel at same iteration since they are independent. Similarly, black pixels can be updated in parallel in an alternating iteration. We present parallel implementations of our algorithm for different parallel multicore architecture such as CPU-multicore, Xeon Phi coprocessor, and Nvidia graphics processing unit. In all the cases, we obtain a superior performance of our parallel algorithm when compared with the original serial version. In addition, we present a detailed comparative performance of the developed parallel versions.

  8. Presymptomatic atrophy in autosomal dominant Alzheimer's disease: A serial magnetic resonance imaging study.

    PubMed

    Kinnunen, Kirsi M; Cash, David M; Poole, Teresa; Frost, Chris; Benzinger, Tammie L S; Ahsan, R Laila; Leung, Kelvin K; Cardoso, M Jorge; Modat, Marc; Malone, Ian B; Morris, John C; Bateman, Randall J; Marcus, Daniel S; Goate, Alison; Salloway, Stephen P; Correia, Stephen; Sperling, Reisa A; Chhatwal, Jasmeer P; Mayeux, Richard P; Brickman, Adam M; Martins, Ralph N; Farlow, Martin R; Ghetti, Bernardino; Saykin, Andrew J; Jack, Clifford R; Schofield, Peter R; McDade, Eric; Weiner, Michael W; Ringman, John M; Thompson, Paul M; Masters, Colin L; Rowe, Christopher C; Rossor, Martin N; Ourselin, Sebastien; Fox, Nick C

    2018-01-01

    Identifying at what point atrophy rates first change in Alzheimer's disease is important for informing design of presymptomatic trials. Serial T1-weighted magnetic resonance imaging scans of 94 participants (28 noncarriers, 66 carriers) from the Dominantly Inherited Alzheimer Network were used to measure brain, ventricular, and hippocampal atrophy rates. For each structure, nonlinear mixed-effects models estimated the change-points when atrophy rates deviate from normal and the rates of change before and after this point. Atrophy increased after the change-point, which occurred 1-1.5 years (assuming a single step change in atrophy rate) or 3-8 years (assuming gradual acceleration of atrophy) before expected symptom onset. At expected symptom onset, estimated atrophy rates were at least 3.6 times than those before the change-point. Atrophy rates are pathologically increased up to seven years before "expected onset". During this period, atrophy rates may be useful for inclusion and tracking of disease progression. Copyright © 2017 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  9. Radiotracer Imaging Allows for Noninvasive Detection and Quantification of Abnormalities in Angiosome Foot Perfusion in Diabetic Patients With Critical Limb Ischemia and Nonhealing Wounds

    PubMed Central

    Alvelo, Jessica L.; Papademetris, Xenophon; Mena-Hurtado, Carlos; Jeon, Sangchoon; Sumpio, Bauer E.; Sinusas, Albert J.

    2018-01-01

    Background: Single photon emission computed tomography (SPECT)/computed tomography (CT) imaging allows for assessment of skeletal muscle microvascular perfusion but has not been quantitatively assessed in angiosomes, or 3-dimensional vascular territories, of the foot. This study assessed and compared resting angiosome foot perfusion between healthy subjects and diabetic patients with critical limb ischemia (CLI). Additionally, the relationship between SPECT/CT imaging and the ankle–brachial index—a standard tool for evaluating peripheral artery disease—was assessed. Methods and Results: Healthy subjects (n=9) and diabetic patients with CLI and nonhealing ulcers (n=42) underwent SPECT/CT perfusion imaging of the feet. CT images were segmented into angiosomes for quantification of relative radiotracer uptake, expressed as standardized uptake values. Standardized uptake values were assessed in ulcerated angiosomes of patients with CLI and compared with whole-foot standardized uptake values in healthy subjects. Serial SPECT/CT imaging was performed to assess uptake kinetics of technetium-99m-tetrofosmin. The relationship between angiosome perfusion and ankle–brachial index was assessed via correlational analysis. Resting perfusion was significantly lower in CLI versus healthy subjects (P=0.0007). Intraclass correlation coefficients of 0.95 (healthy) and 0.93 (CLI) demonstrated excellent agreement between serial perfusion measurements. Correlational analysis, including healthy and CLI subjects, demonstrated a significant relationship between ankle–brachial index and SPECT/CT (P=0.01); however, this relationship was not significant for diabetic CLI patients only (P=0.2). Conclusions: SPECT/CT imaging assesses regional foot perfusion and detects abnormalities in microvascular perfusion that may be undetectable by conventional ankle–brachial index in patients with diabetes mellitus. SPECT/CT may provide a novel approach for evaluating responses to targeted therapies. PMID:29748311

  10. Sample Size Estimation for Alzheimer's Disease Trials from Japanese ADNI Serial Magnetic Resonance Imaging.

    PubMed

    Fujishima, Motonobu; Kawaguchi, Atsushi; Maikusa, Norihide; Kuwano, Ryozo; Iwatsubo, Takeshi; Matsuda, Hiroshi

    2017-01-01

    Little is known about the sample sizes required for clinical trials of Alzheimer's disease (AD)-modifying treatments using atrophy measures from serial brain magnetic resonance imaging (MRI) in the Japanese population. The primary objective of the present study was to estimate how large a sample size would be needed for future clinical trials for AD-modifying treatments in Japan using atrophy measures of the brain as a surrogate biomarker. Sample sizes were estimated from the rates of change of the whole brain and hippocampus by the k-means normalized boundary shift integral (KN-BSI) and cognitive measures using the data of 537 Japanese Alzheimer's Neuroimaging Initiative (J-ADNI) participants with a linear mixed-effects model. We also examined the potential use of ApoE status as a trial enrichment strategy. The hippocampal atrophy rate required smaller sample sizes than cognitive measures of AD and mild cognitive impairment (MCI). Inclusion of ApoE status reduced sample sizes for AD and MCI patients in the atrophy measures. These results show the potential use of longitudinal hippocampal atrophy measurement using automated image analysis as a progression biomarker and ApoE status as a trial enrichment strategy in a clinical trial of AD-modifying treatment in Japanese people.

  11. The utility and cost of routine follow-up procedures in the surveillance of ovarian and primary peritoneal carcinoma: a 16-year institutional review.

    PubMed

    Rettenmaier, N B; Rettenmaier, C R; Wojciechowski, T; Abaid, L N; Brown, J V; Micha, J P; Goldstein, B H

    2010-11-23

    The purpose of this study was to evaluate the number of ovarian cancer and primary peritoneal cancer (PPC) progressive disease cases identified via routine follow-up procedures and the corresponding cost throughout a 16-year period at a single medical institution. Previously undiagnosed epithelial ovarian (n=241), PPC (n=23), and concurrent ovarian and uterine (n=24) cancer patients were treated and then followed via CA-125, imaging (e.g., CT scan, chest X-ray), physical examination and vaginal cytology. In the group of 287 patients, there were 151 cases of disease progression. Serial imaging detected the highest number of progressive disease cases (66 initial and 45 confirmatory diagnoses), but the cost was rather high ($13,454 per patient recurrence), whereas CA-125 testing (74 initial and 20 corroborative diagnoses) was the least expensive ($3,924) per recurrent diagnosis. The total cost of surveillance during the 16-year period was nearly $2,400,000. Ultimately, serial imaging and the CA-125 assay detected the highest number of ovarian cancer and PCC progressive disease cases in comparison to physical examination and vaginal cytology, but nevertheless, all of the procedures were conducted at a considerable financial expense.

  12. Imaging whole mouse brains with a dual resolution serial swept-source optical coherence tomography scanner

    NASA Astrophysics Data System (ADS)

    Lefebvre, Joël.; Castonguay, Alexandre; Lesage, Frédéric

    2018-02-01

    High resolution imaging of whole rodent brains using serial OCT scanners is a promising method to investigate microstructural changes in tissue related to the evolution of neuropathologies. Although micron to sub-micron sampling resolution can be obtained by using high numerical aperture objectives and dynamic focusing, such an imaging system is not adapted to whole brain imaging. This is due to the large amount of data it generates and the significant computational resources required for reconstructing such volumes. To address this limitation, a dual resolution serial OCT scanner was developed. The optical setup consists in a swept-source OCT made of two sample and reference arms, each arm being coupled with different microscope objectives (3X / 40X). Motorized flip mirrors were used to switch between each OCT arm, thus allowing low and high resolution acquisitions within the same sample. The low resolution OCT volumes acquired with the 3X arm were stitched together, providing a 3D map of the whole mouse brain. This brain can be registered to an OCT brain template to enable neurological structures localization. The high resolution volumes acquired with the 40X arm were also stitched together to create local high resolution 3D maps of the tissue microstructure. The 40X data can be acquired at any arbitrary location in the sample, thus limiting storage-heavy high resolution data to application restricted to specific regions of interest. By providing dual-resolution OCT data, this setup can be used to validate diffusion MRI with tissue microstructure derived metrics measured at any location in ex vivo brains.

  13. Robotically assisted small animal MRI-guided mouse biopsy

    NASA Astrophysics Data System (ADS)

    Wilson, Emmanuel; Chiodo, Chris; Wong, Kenneth H.; Fricke, Stanley; Jung, Mira; Cleary, Kevin

    2010-02-01

    Small mammals, namely mice and rats, play an important role in biomedical research. Imaging, in conjunction with accurate therapeutic agent delivery, has tremendous value in small animal research since it enables serial, non-destructive testing of animals and facilitates the study of biomarkers of disease progression. The small size of organs in mice lends some difficulty to accurate biopsies and therapeutic agent delivery. Image guidance with the use of robotic devices should enable more accurate and repeatable targeting for biopsies and delivery of therapeutic agents, as well as the ability to acquire tissue from a pre-specified location based on image anatomy. This paper presents our work in integrating a robotic needle guide device, specialized stereotaxic mouse holder, and magnetic resonance imaging, with a long-term goal of performing accurate and repeatable targeting in anesthetized mice studies.

  14. Imaging of Traumatic Brain Injury.

    PubMed

    Bodanapally, Uttam K; Sours, Chandler; Zhuo, Jiachen; Shanmuganathan, Kathirkamanathan

    2015-07-01

    Imaging plays an important role in the management of patients with traumatic brain injury (TBI). Computed tomography (CT) is the first-line imaging technique allowing rapid detection of primary structural brain lesions that require surgical intervention. CT also detects various deleterious secondary insults allowing early medical and surgical management. Serial imaging is critical to identifying secondary injuries. MR imaging is indicated in patients with acute TBI when CT fails to explain neurologic findings. However, MR imaging is superior in patients with subacute and chronic TBI and also predicts neurocognitive outcome. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. High data volume and transfer rate techniques used at NASA's image processing facility

    NASA Technical Reports Server (NTRS)

    Heffner, P.; Connell, E.; Mccaleb, F.

    1978-01-01

    Data storage and transfer operations at a new image processing facility are described. The equipment includes high density digital magnetic tape drives and specially designed controllers to provide an interface between the tape drives and computerized image processing systems. The controller performs the functions necessary to convert the continuous serial data stream from the tape drive to a word-parallel blocked data stream which then goes to the computer-based system. With regard to the tape packing density, 1.8 times 10 to the tenth data bits are stored on a reel of one-inch tape. System components and their operation are surveyed, and studies on advanced storage techniques are summarized.

  16. Optimized static and video EEG rapid serial visual presentation (RSVP) paradigm based on motion surprise computation

    NASA Astrophysics Data System (ADS)

    Khosla, Deepak; Huber, David J.; Bhattacharyya, Rajan

    2017-05-01

    In this paper, we describe an algorithm and system for optimizing search and detection performance for "items of interest" (IOI) in large-sized images and videos that employ the Rapid Serial Visual Presentation (RSVP) based EEG paradigm and surprise algorithms that incorporate motion processing to determine whether static or video RSVP is used. The system works by first computing a motion surprise map on image sub-regions (chips) of incoming sensor video data and then uses those surprise maps to label the chips as either "static" or "moving". This information tells the system whether to use a static or video RSVP presentation and decoding algorithm in order to optimize EEG based detection of IOI in each chip. Using this method, we are able to demonstrate classification of a series of image regions from video with an azimuth value of 1, indicating perfect classification, over a range of display frequencies and video speeds.

  17. The natural history of West Nile virus infection presenting with West Nile virus meningoencephalitis in a man with a prolonged illness: a case report.

    PubMed

    Mainali, Shraddha; Afshani, Mansoor; Wood, James B; Levin, Michael C

    2011-05-25

    Estimates indicate that West Nile virus infects approximately one and a half million people in the United States of America. Up to 1% may develop West Nile virus neuroinvasive disease, in which infected patients develop any combination of meningitis, encephalitis, or acute paralysis. A 56-year-old African-American man presented to our hospital with headache, restlessness, fever, myalgias, decreased appetite, and progressive confusion. A cerebrospinal fluid examination showed mild leukocytosis and an elevated protein level. Testing for routine infections was negative. Brain T2-weighted magnetic resonance imaging scans showed marked enlargement of caudate nuclei and increased intensity within the basal ganglia and thalami. A West Nile virus titer was positive, and serial brain magnetic resonance imaging scans showed resolving abnormalities that paralleled his neurological examination. This report is unusual as it portrays the natural history and long-term consequences of West Nile virus meningoencephalitis diagnosed on the basis of serial brain images.

  18. Unobtrusive Multi-Static Serial LiDAR Imager (UMSLI) First Generation Shape-Matching Based Classifier for 2D Contours

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Zheng; Ouyang, Bing; Principe, Jose

    A multi-static serial LiDAR system prototype was developed under DE-EE0006787 to detect, classify, and record interactions of marine life with marine hydrokinetic generation equipment. This software implements a shape-matching based classifier algorithm for the underwater automated detection of marine life for that system. In addition to applying shape descriptors, the algorithm also adopts information theoretical learning based affine shape registration, improving point correspondences found by shape descriptors as well as the final similarity measure.

  19. Application specific serial arithmetic arrays

    NASA Technical Reports Server (NTRS)

    Winters, K.; Mathews, D.; Thompson, T.

    1990-01-01

    High performance systolic arrays of serial-parallel multiplier elements may be rapidly constructed for specific applications by applying hardware description language techniques to a library of full-custom CMOS building blocks. Single clock pre-charged circuits have been implemented for these arrays at clock rates in excess of 100 Mhz using economical 2-micron (minimum feature size) CMOS processes, which may be quickly configured for a variety of applications. A number of application-specific arrays are presented, including a 2-D convolver for image processing, an integer polynomial solver, and a finite-field polynomial solver.

  20. Applying microCT and 3D visualization to Jurassic silicified conifer seed cones: A virtual advantage over thin-sectioning1

    PubMed Central

    Gee, Carole T.

    2013-01-01

    • Premise of the study: As an alternative to conventional thin-sectioning, which destroys fossil material, high-resolution X-ray computed tomography (also called microtomography or microCT) integrated with scientific visualization, three-dimensional (3D) image segmentation, size analysis, and computer animation is explored as a nondestructive method of imaging the internal anatomy of 150-million-year-old conifer seed cones from the Late Jurassic Morrison Formation, USA, and of recent and other fossil cones. • Methods: MicroCT was carried out on cones using a General Electric phoenix v|tome|x s 240D, and resulting projections were processed with visualization software to produce image stacks of serial single sections for two-dimensional (2D) visualization, 3D segmented reconstructions with targeted structures in color, and computer animations. • Results: If preserved in differing densities, microCT produced images of internal fossil tissues that showed important characters such as seed phyllotaxy or number of seeds per cone scale. Color segmentation of deeply embedded seeds highlighted the arrangement of seeds in spirals. MicroCT of recent cones was even more effective. • Conclusions: This is the first paper on microCT integrated with 3D segmentation and computer animation applied to silicified seed cones, which resulted in excellent 2D serial sections and segmented 3D reconstructions, revealing features requisite to cone identification and understanding of strobilus construction. PMID:25202495

  1. Parallel and Serial Grouping of Image Elements in Visual Perception

    ERIC Educational Resources Information Center

    Houtkamp, Roos; Roelfsema, Pieter R.

    2010-01-01

    The visual system groups image elements that belong to an object and segregates them from other objects and the background. Important cues for this grouping process are the Gestalt criteria, and most theories propose that these are applied in parallel across the visual scene. Here, we find that Gestalt grouping can indeed occur in parallel in some…

  2. Method for enhancing single-trial P300 detection by introducing the complexity degree of image information in rapid serial visual presentation tasks

    PubMed Central

    Lin, Zhimin; Zeng, Ying; Tong, Li; Zhang, Hangming; Zhang, Chi

    2017-01-01

    The application of electroencephalogram (EEG) generated by human viewing images is a new thrust in image retrieval technology. A P300 component in the EEG is induced when the subjects see their point of interest in a target image under the rapid serial visual presentation (RSVP) experimental paradigm. We detected the single-trial P300 component to determine whether a subject was interested in an image. In practice, the latency and amplitude of the P300 component may vary in relation to different experimental parameters, such as target probability and stimulus semantics. Thus, we proposed a novel method, Target Recognition using Image Complexity Priori (TRICP) algorithm, in which the image information is introduced in the calculation of the interest score in the RSVP paradigm. The method combines information from the image and EEG to enhance the accuracy of single-trial P300 detection on the basis of traditional single-trial P300 detection algorithm. We defined an image complexity parameter based on the features of the different layers of a convolution neural network (CNN). We used the TRICP algorithm to compute for the complexity of an image to quantify the effect of different complexity images on the P300 components and training specialty classifier according to the image complexity. We compared TRICP with the HDCA algorithm. Results show that TRICP is significantly higher than the HDCA algorithm (Wilcoxon Sign Rank Test, p<0.05). Thus, the proposed method can be used in other and visual task-related single-trial event-related potential detection. PMID:29283998

  3. The optical lens coupled X-ray in-line phase contrast imaging system for the characterization of low Z materials

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Lin, Wei; Dai, Fei; Li, Jun; Qi, Xiaobo; Lei, Haile; Liu, Yuanqiong

    2018-05-01

    Due to the high spatial resolution and contrast, the optical lens coupled X-ray in-line phase contrast imaging system with the secondary optical magnification is more suitable for the characterization of the low Z materials. The influence of the source to object distance and the object to scintillator distance on the image resolution and contrast is studied experimentally. A phase correlation algorithm is used for the image mosaic of a serial of X-ray phase contrast images acquired with high resolution, the resulting resolution is less than 1.0 μm, and the whole field of view is larger than 1.4 mm. Finally, the geometric morphology and the inner structure of various weakly absorbing samples and the evaporation of water in the plastic micro-shell are in situ characterized by the optical lens coupled X-ray in-line phase contrast imaging system.

  4. Design and clinical evaluation of a high-capacity digital image archival library and high-speed network for the replacement of cinefilm in the cardiac angiography environment

    NASA Astrophysics Data System (ADS)

    Cusma, Jack T.; Spero, Laurence A.; Groshong, Bennett R.; Cho, Teddy; Bashore, Thomas M.

    1993-09-01

    An economical and practical digital solution for the replacement of 35 mm cine film as the archive media in the cardiac x-ray imaging environment has remained lacking to date due to the demanding requirements of high capacity, high acquisition rate, high transfer rate, and a need for application in a distributed environment. A clinical digital image library and network based on the D2 digital video format has been installed in the Duke University Cardiac Catheterization Laboratory. The system architecture includes a central image library with digital video recorders and robotic tape retrieval, three acquisition stations, and remote review stations connected via a serial image network. The library has a capacity for over 20,000 Gigabytes of uncompressed image data, equivalent to records for approximately 20,000 patients. Image acquisition in the clinical laboratories is via a real-time digital interface between the digital angiography system and a local digital recorder. Images are transferred to the library over the serial network at a rate of 14.3 Mbytes/sec and permanently stored for later review. The image library and network are currently undergoing a clinical comparison with cine film for visual and quantitative assessment of coronary artery disease. At the conclusion of the evaluation, the configuration will be expanded to include four additional catheterization laboratories and remote review stations throughout the hospital.

  5. Quantitative computed tomography determined regional lung mechanics in normal nonsmokers, normal smokers and metastatic sarcoma subjects.

    PubMed

    Choi, Jiwoong; Hoffman, Eric A; Lin, Ching-Long; Milhem, Mohammed M; Tessier, Jean; Newell, John D

    2017-01-01

    Extra-thoracic tumors send out pilot cells that attach to the pulmonary endothelium. We hypothesized that this could alter regional lung mechanics (tissue stiffening or accumulation of fluid and inflammatory cells) through interactions with host cells. We explored this with serial inspiratory computed tomography (CT) and image matching to assess regional changes in lung expansion. We retrospectively assessed 44 pairs of two serial CT scans on 21 sarcoma patients: 12 without lung metastases and 9 with lung metastases. For each subject, two or more serial inspiratory clinically-derived CT scans were retrospectively collected. Two research-derived control groups were included: 7 normal nonsmokers and 12 asymptomatic smokers with two inspiratory scans taken the same day or one year apart respectively. We performed image registration for local-to-local matching scans to baseline, and derived local expansion and density changes at an acinar scale. Welch two sample t test was used for comparison between groups. Statistical significance was determined with a p value < 0.05. Lung regions of metastatic sarcoma patients (but not the normal control group) demonstrated an increased proportion of normalized lung expansion between the first and second CT. These hyper-expanded regions were associated with, but not limited to, visible metastatic lung lesions. Compared with the normal control group, the percent of increased normalized hyper-expanded lung in sarcoma subjects was significantly increased (p < 0.05). There was also evidence of increased lung "tissue" volume (non-air components) in the hyper-expanded regions of the cancer subjects relative to non-hyper-expanded regions. "Tissue" volume increase was present in the hyper-expanded regions of metastatic and non-metastatic sarcoma subjects. This putatively could represent regional inflammation related to the presence of tumor pilot cell-host related interactions. This new quantitative CT (QCT) method for linking serial acquired inspiratory CT images may provide a diagnostic and prognostic means to objectively characterize regional responses in the lung following oncological treatment and monitoring for lung metastases.

  6. In vivo serial MRI-based models and statistical methods to quantify sensitivity and specificity of mechanical predictors for carotid plaque rupture: location and beyond.

    PubMed

    Wu, Zheyang; Yang, Chun; Tang, Dalin

    2011-06-01

    It has been hypothesized that mechanical risk factors may be used to predict future atherosclerotic plaque rupture. Truly predictive methods for plaque rupture and methods to identify the best predictor(s) from all the candidates are lacking in the literature. A novel combination of computational and statistical models based on serial magnetic resonance imaging (MRI) was introduced to quantify sensitivity and specificity of mechanical predictors to identify the best candidate for plaque rupture site prediction. Serial in vivo MRI data of carotid plaque from one patient was acquired with follow-up scan showing ulceration. 3D computational fluid-structure interaction (FSI) models using both baseline and follow-up data were constructed and plaque wall stress (PWS) and strain (PWSn) and flow maximum shear stress (FSS) were extracted from all 600 matched nodal points (100 points per matched slice, baseline matching follow-up) on the lumen surface for analysis. Each of the 600 points was marked "ulcer" or "nonulcer" using follow-up scan. Predictive statistical models for each of the seven combinations of PWS, PWSn, and FSS were trained using the follow-up data and applied to the baseline data to assess their sensitivity and specificity using the 600 data points for ulcer predictions. Sensitivity of prediction is defined as the proportion of the true positive outcomes that are predicted to be positive. Specificity of prediction is defined as the proportion of the true negative outcomes that are correctly predicted to be negative. Using probability 0.3 as a threshold to infer ulcer occurrence at the prediction stage, the combination of PWS and PWSn provided the best predictive accuracy with (sensitivity, specificity) = (0.97, 0.958). Sensitivity and specificity given by PWS, PWSn, and FSS individually were (0.788, 0.968), (0.515, 0.968), and (0.758, 0.928), respectively. The proposed computational-statistical process provides a novel method and a framework to assess the sensitivity and specificity of various risk indicators and offers the potential to identify the optimized predictor for plaque rupture using serial MRI with follow-up scan showing ulceration as the gold standard for method validation. While serial MRI data with actual rupture are hard to acquire, this single-case study suggests that combination of multiple predictors may provide potential improvement to existing plaque assessment schemes. With large-scale patient studies, this predictive modeling process may provide more solid ground for rupture predictor selection strategies and methods for image-based plaque vulnerability assessment.

  7. A Fast Method for the Segmentation of Synaptic Junctions and Mitochondria in Serial Electron Microscopic Images of the Brain.

    PubMed

    Márquez Neila, Pablo; Baumela, Luis; González-Soriano, Juncal; Rodríguez, Jose-Rodrigo; DeFelipe, Javier; Merchán-Pérez, Ángel

    2016-04-01

    Recent electron microscopy (EM) imaging techniques permit the automatic acquisition of a large number of serial sections from brain samples. Manual segmentation of these images is tedious, time-consuming and requires a high degree of user expertise. Therefore, there is considerable interest in developing automatic segmentation methods. However, currently available methods are computationally demanding in terms of computer time and memory usage, and to work properly many of them require image stacks to be isotropic, that is, voxels must have the same size in the X, Y and Z axes. We present a method that works with anisotropic voxels and that is computationally efficient allowing the segmentation of large image stacks. Our approach involves anisotropy-aware regularization via conditional random field inference and surface smoothing techniques to improve the segmentation and visualization. We have focused on the segmentation of mitochondria and synaptic junctions in EM stacks from the cerebral cortex, and have compared the results to those obtained by other methods. Our method is faster than other methods with similar segmentation results. Our image regularization procedure introduces high-level knowledge about the structure of labels. We have also reduced memory requirements with the introduction of energy optimization in overlapping partitions, which permits the regularization of very large image stacks. Finally, the surface smoothing step improves the appearance of three-dimensional renderings of the segmented volumes.

  8. Three-dimensional imaging of adherent cells using FIB/SEM and STEM.

    PubMed

    Villinger, Clarissa; Schauflinger, Martin; Gregorius, Heiko; Kranz, Christine; Höhn, Katharina; Nafeey, Soufi; Walther, Paul

    2014-01-01

    In this chapter we describe three different approaches for three-dimensional imaging of electron microscopic samples: serial sectioning transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) tomography, and focused ion beam/scanning electron microscopy (FIB/SEM) tomography. With these methods, relatively large volumes of resin-embedded biological structures can be analyzed at resolutions of a few nm within a reasonable expenditure of time. The traditional method is serial sectioning and imaging the same area in all sections. Another method is TEM tomography that involves tilting a section in the electron beam and then reconstruction of the volume by back projection of the images. When the scanning transmission (STEM) mode is used, thicker sections (up to 1 μm) can be analyzed. The third approach presented here is focused ion beam/scanning electron microscopy (FIB/SEM) tomography, in which a sample is repeatedly milled with a focused ion beam (FIB) and each newly produced block face is imaged with the scanning electron microscope (SEM). This process can be repeated ad libitum in arbitrary small increments allowing 3D analysis of relatively large volumes such as eukaryotic cells. We show that resolution of this approach is considerably improved when the secondary electron signal is used. However, the most important prerequisite for three-dimensional imaging is good specimen preparation. For all three imaging methods, cryo-fixed (high-pressure frozen) and freeze-substituted samples have been used.

  9. Quantitative analysis of diffusion tensor imaging data in serial assessment of Krabbe disease.

    PubMed

    Provenzale, James M; Escolar, Maria; Kurtzberg, Joanne

    2005-12-01

    Krabbe disease is a rare autosomal recessive pediatric white matter (WM) disorder that is due to deficiency of a specific enzyme, beta-galactocerebrosidase. This report reviews our experience with use of diffusion tensor imaging (DTI) in serial assessment of WM changes in Krabbe disease following stem cell transplantation. DTI appears to be a sensitive means to monitor effects of stem cell transplantation on WM development in Krabbe disease. The group of early transplantation infants was clearly distinguishable from the group of late transplantation infants based on anisotropy measurements. Good correlation also was seen between neurodevelopmental scores and anisotropy measurements. The work described here in Krabbe disease may serve as a model for application of DTI to other therapies in various WM disorders such as multiple sclerosis and dysmyelinating disorders of childhood.

  10. Revealing 3D Ultrastructure and Morphology of Stem Cell Spheroids by Electron Microscopy.

    PubMed

    Jaros, Josef; Petrov, Michal; Tesarova, Marketa; Hampl, Ales

    2017-01-01

    Cell culture methods have been developed in efforts to produce biologically relevant systems for developmental and disease modeling, and appropriate analytical tools are essential. Knowledge of ultrastructural characteristics represents the basis to reveal in situ the cellular morphology, cell-cell interactions, organelle distribution, niches in which cells reside, and many more. The traditional method for 3D visualization of ultrastructural components, serial sectioning using transmission electron microscopy (TEM), is very labor-intensive due to contentious TEM slice preparation and subsequent image processing of the whole collection. In this chapter, we present serial block-face scanning electron microscopy, together with complex methodology for spheroid formation, contrasting of cellular compartments, image processing, and 3D visualization. The described technique is effective for detailed morphological analysis of stem cell spheroids, organoids, as well as organotypic cell cultures.

  11. Optimizing the 3D-reconstruction technique for serial block-face scanning electron microscopy.

    PubMed

    Wernitznig, Stefan; Sele, Mariella; Urschler, Martin; Zankel, Armin; Pölt, Peter; Rind, F Claire; Leitinger, Gerd

    2016-05-01

    Elucidating the anatomy of neuronal circuits and localizing the synaptic connections between neurons, can give us important insights in how the neuronal circuits work. We are using serial block-face scanning electron microscopy (SBEM) to investigate the anatomy of a collision detection circuit including the Lobula Giant Movement Detector (LGMD) neuron in the locust, Locusta migratoria. For this, thousands of serial electron micrographs are produced that allow us to trace the neuronal branching pattern. The reconstruction of neurons was previously done manually by drawing cell outlines of each cell in each image separately. This approach was very time consuming and troublesome. To make the process more efficient a new interactive software was developed. It uses the contrast between the neuron under investigation and its surrounding for semi-automatic segmentation. For segmentation the user sets starting regions manually and the algorithm automatically selects a volume within the neuron until the edges corresponding to the neuronal outline are reached. Internally the algorithm optimizes a 3D active contour segmentation model formulated as a cost function taking the SEM image edges into account. This reduced the reconstruction time, while staying close to the manual reference segmentation result. Our algorithm is easy to use for a fast segmentation process, unlike previous methods it does not require image training nor an extended computing capacity. Our semi-automatic segmentation algorithm led to a dramatic reduction in processing time for the 3D-reconstruction of identified neurons. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Broadband diffractive lens or imaging element

    DOEpatents

    Ceglio, Natale M.; Hawryluk, Andrew M.; London, Richard A.; Seppala, Lynn G.

    1991-01-01

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed.

  13. Mapping the continuous reciprocal space intensity distribution of X-ray serial crystallography.

    PubMed

    Yefanov, Oleksandr; Gati, Cornelius; Bourenkov, Gleb; Kirian, Richard A; White, Thomas A; Spence, John C H; Chapman, Henry N; Barty, Anton

    2014-07-17

    Serial crystallography using X-ray free-electron lasers enables the collection of tens of thousands of measurements from an equal number of individual crystals, each of which can be smaller than 1 µm in size. This manuscript describes an alternative way of handling diffraction data recorded by serial femtosecond crystallography, by mapping the diffracted intensities into three-dimensional reciprocal space rather than integrating each image in two dimensions as in the classical approach. We call this procedure 'three-dimensional merging'. This procedure retains information about asymmetry in Bragg peaks and diffracted intensities between Bragg spots. This intensity distribution can be used to extract reflection intensities for structure determination and opens up novel avenues for post-refinement, while observed intensity between Bragg peaks and peak asymmetry are of potential use in novel direct phasing strategies.

  14. Asymmetry in serial femtosecond crystallography data.

    PubMed

    Sharma, Amit; Johansson, Linda; Dunevall, Elin; Wahlgren, Weixiao Y; Neutze, Richard; Katona, Gergely

    2017-03-01

    Serial crystallography is an increasingly important approach to protein crystallography that exploits both X-ray free-electron laser (XFEL) and synchrotron radiation. Serial crystallography recovers complete X-ray diffraction data by processing and merging diffraction images from thousands of randomly oriented non-uniform microcrystals, of which all observations are partial Bragg reflections. Random fluctuations in the XFEL pulse energy spectrum, variations in the size and shape of microcrystals, integrating over millions of weak partial observations and instabilities in the XFEL beam position lead to new types of experimental errors. The quality of Bragg intensity estimates deriving from serial crystallography is therefore contingent upon assumptions made while modeling these data. Here it is observed that serial femtosecond crystallography (SFX) Bragg reflections do not follow a unimodal Gaussian distribution and it is recommended that an idealized assumption of single Gaussian peak profiles be relaxed to incorporate apparent asymmetries when processing SFX data. The phenomenon is illustrated by re-analyzing data collected from microcrystals of the Blastochloris viridis photosynthetic reaction center and comparing these intensity observations with conventional synchrotron data. The results show that skewness in the SFX observations captures the essence of the Wilson plot and an empirical treatment is suggested that can help to separate the diffraction Bragg intensity from the background.

  15. Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coquelle, Nicolas; CNRS, IBS, 38044 Grenoble; CEA, IBS, 38044 Grenoble

    A raster scanning serial protein crystallography approach is presented, that consumes as low ∼200–700 nl of sedimented crystals. New serial data pre-analysis software, NanoPeakCell, is introduced. High-resolution structural information was obtained from lysozyme microcrystals (20 µm in the largest dimension) using raster-scanning serial protein crystallography on micro- and nano-focused beamlines at the ESRF. Data were collected at room temperature (RT) from crystals sandwiched between two silicon nitride wafers, thereby preventing their drying, while limiting background scattering and sample consumption. In order to identify crystal hits, new multi-processing and GUI-driven Python-based pre-analysis software was developed, named NanoPeakCell, that was able tomore » read data from a variety of crystallographic image formats. Further data processing was carried out using CrystFEL, and the resultant structures were refined to 1.7 Å resolution. The data demonstrate the feasibility of RT raster-scanning serial micro- and nano-protein crystallography at synchrotrons and validate it as an alternative approach for the collection of high-resolution structural data from micro-sized crystals. Advantages of the proposed approach are its thriftiness, its handling-free nature, the reduced amount of sample required, the adjustable hit rate, the high indexing rate and the minimization of background scattering.« less

  16. Mouse fetal whole intestine culture system for ex vivo manipulation of signaling pathways and three-dimensional live imaging of villus development.

    PubMed

    Walton, Katherine D; Kolterud, Asa

    2014-09-04

    Most morphogenetic processes in the fetal intestine have been inferred from thin sections of fixed tissues, providing snapshots of changes over developmental stages. Three-dimensional information from thin serial sections can be challenging to interpret because of the difficulty of reconstructing serial sections perfectly and maintaining proper orientation of the tissue over serial sections. Recent findings by Grosse et al., 2011 highlight the importance of three- dimensional information in understanding morphogenesis of the developing villi of the intestine(1). Three-dimensional reconstruction of singly labeled intestinal cells demonstrated that the majority of the intestinal epithelial cells contact both the apical and basal surfaces. Furthermore, three-dimensional reconstruction of the actin cytoskeleton at the apical surface of the epithelium demonstrated that the intestinal lumen is continuous and that secondary lumens are an artifact of sectioning. Those two points, along with the demonstration of interkinetic nuclear migration in the intestinal epithelium, defined the developing intestinal epithelium as a pseudostratified epithelium and not stratified as previously thought(1). The ability to observe the epithelium three-dimensionally was seminal to demonstrating this point and redefining epithelial morphogenesis in the fetal intestine. With the evolution of multi-photon imaging technology and three-dimensional reconstruction software, the ability to visualize intact, developing organs is rapidly improving. Two-photon excitation allows less damaging penetration deeper into tissues with high resolution. Two-photon imaging and 3D reconstruction of the whole fetal mouse intestines in Walton et al., 2012 helped to define the pattern of villus outgrowth(2). Here we describe a whole organ culture system that allows ex vivo development of villi and extensions of that culture system to allow the intestines to be three-dimensionally imaged during their development.

  17. Correlation of two-photon in vivo imaging and FIB/SEM microscopy

    PubMed Central

    Blazquez-Llorca, L; Hummel, E; Zimmerman, H; Zou, C; Burgold, S; Rietdorf, J; Herms, J

    2015-01-01

    Advances in the understanding of brain functions are closely linked to the technical developments in microscopy. In this study, we describe a correlative microscopy technique that offers a possibility of combining two-photon in vivo imaging with focus ion beam/scanning electron microscope (FIB/SEM) techniques. Long-term two-photon in vivo imaging allows the visualization of functional interactions within the brain of a living organism over the time, and therefore, is emerging as a new tool for studying the dynamics of neurodegenerative diseases, such as Alzheimer’s disease. However, light microscopy has important limitations in revealing alterations occurring at the synaptic level and when this is required, electron microscopy is mandatory. FIB/SEM microscopy is a novel tool for three-dimensional high-resolution reconstructions, since it acquires automated serial images at ultrastructural level. Using FIB/SEM imaging, we observed, at 10 nm isotropic resolution, the same dendrites that were imaged in vivo over 9 days. Thus, we analyzed their ultrastructure and monitored the dynamics of the neuropil around them. We found that stable spines (present during the 9 days of imaging) formed typical asymmetric contacts with axons, whereas transient spines (present only during one day of imaging) did not form a synaptic contact. Our data suggest that the morphological classification that was assigned to a dendritic spine according to the in vivo images did not fit with its ultrastructural morphology. The correlative technique described herein is likely to open opportunities for unravelling the earlier unrecognized complexity of the nervous system. Lay Description Neuroscience and the understanding of brain functions are closely linked to the technical advances in microscopy. In this study we performed a correlative microscopy technique that offers the possibility to combine 2 photon in vivo imaging and FIB/SEM microscopy. Long term 2 photon in vivo imaging allows the visualization of functional interactions within the brain of a living organism over the time, and therefore, is emerging as a new tool to study the dynamics of neurodegenerative diseases, such as Alzheimer’s disease. However, light microscopy has important limitations in revealing synapses that are the connections between neurons, and for this purpose, the electron microscopy is necessary. FIB/SEM microscopy is a novel tool for three-dimensional (3D) high resolution reconstructions since it acquires automated serial images at ultrastructural level. This correlative technique will open up new horizons and opportunities for unravelling the complexity of the nervous system. PMID:25786682

  18. Outcome of Preterm Infants with Transient Cystic Periventricular Leukomalacia on Serial Cranial Imaging Up to Term Equivalent Age.

    PubMed

    Sarkar, Subrata; Shankaran, Seetha; Barks, John; Do, Barbara T; Laptook, Abbot R; Das, Abhik; Ambalavanan, Namasivayam; Van Meurs, Krisa P; Bell, Edward F; Sanchez, Pablo J; Hintz, Susan R; Wyckoff, Myra H; Stoll, Barbara J; Carlo, Waldemar A

    2018-04-01

    To determine the outcome of preterm infants whose cystic periventricular leukomalacia "disappeared" on serial screening cranial imaging studies. Infants ≤26 weeks of gestation born between 2002 and 2012 who had cranial imaging studies at least twice, the most abnormal study at <28 days of age and another closest to 36 weeks, were reviewed. The outcome of late death (after 36 weeks postmenstrual age) or neurodevelopmental impairment (NDI) in surviving infants at 18-26 months corrected age was compared between the infants with no cystic periventricular leukomalacia on both studies and cystic periventricular leukomalacia that disappeared (cystic periventricular leukomalacia at <28 days but not at 36 weeks), persisted (cystic periventricular leukomalacia on both studies), or appeared late (cystic periventricular leukomalacia only at 36 weeks). Predictors of NDI were evaluated by logistic regression. Of 7063 eligible infants, 433 (6.1%) had cystic periventricular leukomalacia. Among the 433 infants with cystic periventricular leukomalacia, cystic periventricular leukomalacia disappeared in 76 (18%), persisted in 87 (20%), and 270 (62%) had late cystic periventricular leukomalacia. Loss to follow-up ranged between 3% and 13%. Death or NDI was more common in infants with disappeared cystic periventricular leukomalacia compared with those with no cystic periventricular leukomalacia (38 of 72 [53%] vs 1776 of 6376 [28%]; OR [95% CI] 2.8 [1.8-4.6]). Disappeared, persistent, and late cystic periventricular leukomalacia were all also independently associated with NDI (OR 1.17, 1.21, and 1.16, respectively). Infants with "disappeared" cystic periventricular leukomalacia are at increased risk of adverse outcome similar to infants with persistent or late cystic periventricular leukomalacia. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Developing 3D SEM in a broad biological context

    PubMed Central

    Kremer, A; Lippens, S; Bartunkova, S; Asselbergh, B; Blanpain, C; Fendrych, M; Goossens, A; Holt, M; Janssens, S; Krols, M; Larsimont, J-C; Mc Guire, C; Nowack, MK; Saelens, X; Schertel, A; Schepens, B; Slezak, M; Timmerman, V; Theunis, C; Van Brempt, R; Visser, Y; GuÉRin, CJ

    2015-01-01

    When electron microscopy (EM) was introduced in the 1930s it gave scientists their first look into the nanoworld of cells. Over the last 80 years EM has vastly increased our understanding of the complex cellular structures that underlie the diverse functions that cells need to maintain life. One drawback that has been difficult to overcome was the inherent lack of volume information, mainly due to the limit on the thickness of sections that could be viewed in a transmission electron microscope (TEM). For many years scientists struggled to achieve three-dimensional (3D) EM using serial section reconstructions, TEM tomography, and scanning EM (SEM) techniques such as freeze-fracture. Although each technique yielded some special information, they required a significant amount of time and specialist expertise to obtain even a very small 3D EM dataset. Almost 20 years ago scientists began to exploit SEMs to image blocks of embedded tissues and perform serial sectioning of these tissues inside the SEM chamber. Using first focused ion beams (FIB) and subsequently robotic ultramicrotomes (serial block-face, SBF-SEM) microscopists were able to collect large volumes of 3D EM information at resolutions that could address many important biological questions, and do so in an efficient manner. We present here some examples of 3D EM taken from the many diverse specimens that have been imaged in our core facility. We propose that the next major step forward will be to efficiently correlate functional information obtained using light microscopy (LM) with 3D EM datasets to more completely investigate the important links between cell structures and their functions. Lay Description Life happens in three dimensions. For many years, first light, and then EM struggled to image the smallest parts of cells in 3D. With recent advances in technology and corresponding improvements in computing, scientists can now see the 3D world of the cell at the nanoscale. In this paper we present the results of high resolution 3D imaging in a number of diverse cells and tissues from multiple species. 3D reconstructions of cell structures often revealed them to be significantly more complex when compared to extrapolations made from 2D studies. Correlating functional 3D LM studies with 3D EM results opens up the possibility of making new strides in our understanding of how cell structure is connected to cell function. PMID:25623622

  20. New semi-quantitative 123I-MIBG estimation method compared with scoring system in follow-up of advanced neuroblastoma: utility of total MIBG retention ratio versus scoring method.

    PubMed

    Sano, Yuko; Okuyama, Chio; Iehara, Tomoko; Matsushima, Shigenori; Yamada, Kei; Hosoi, Hajime; Nishimura, Tsunehiko

    2012-07-01

    The purpose of this study is to evaluate a new semi-quantitative estimation method using (123)I-MIBG retention ratio to assess response to chemotherapy for advanced neuroblastoma. Thirteen children with advanced neuroblastoma (International Neuroblastoma Risk Group Staging System: stage M) were examined for a total of 51 studies with (123)I-MIBG scintigraphy (before and during chemotherapy). We proposed a new semi-quantitative method using MIBG retention ratio (count obtained with delayed image/count obtained with early image with decay correction) to estimate MIBG accumulation. We analyzed total (123)I-MIBG retention ratio (TMRR: total body count obtained with delayed image/total body count obtained with early image with decay correction) and compared with a scoring method in terms of correlation with tumor markers. TMRR showed significantly higher correlations with urinary catecholamine metabolites before chemotherapy (VMA: r(2) = 0.45, P < 0.05, HVA: r(2) = 0.627, P < 0.01) than MIBG score (VMA: r(2) = 0.19, P = 0.082, HVA: r(2) = 0.25, P = 0.137). There were relatively good correlations between serial change of TMRR and those of urinary catecholamine metabolites (VMA: r(2) = 0.274, P < 0.001, HVA: r(2) = 0.448, P < 0.0001) compared with serial change of MIBG score and those of tumor markers (VMA: r(2) = 0.01, P = 0.537, HVA: 0.084, P = 0.697) during chemotherapy for advanced neuroblastoma. TMRR could be a useful semi-quantitative method for estimating early response to chemotherapy of advanced neuroblastoma because of its high correlation with urine catecholamine metabolites.

  1. Role of serial multiparametric magnetic resonance imaging in prostate cancer active surveillance

    PubMed Central

    Vos, Larissa J; Janoski, Michele; Wachowicz, Keith; Yahya, Atiyah; Boychak, Oleksandr; Amanie, John; Pervez, Nadeem; Parliament, Matthew B; Pituskin, Edith; Fallone, B Gino; Usmani, Nawaid

    2016-01-01

    AIM: To examine whether addition of 3T multiparametric magnetic resonance imaging (mpMRI) to an active surveillance protocol could detect aggressive or progressive prostate cancer. METHODS: Twenty-three patients with low risk disease were enrolled on this active surveillance study, all of which had Gleason score 6 or less disease. All patients had clinical assessments, including digital rectal examination and prostate specific antigen (PSA) testing, every 6 mo with annual 3T mpMRI scans with gadolinium contrast and minimum sextant prostate biopsies. The MRI images were anonymized of patient identifiers and clinical information and each scan underwent radiological review without the other results known. Descriptive statistics for demographics and follow-up as well as the sensitivity and specificity of mpMRI to identify prostate cancer and progressive disease were calculated. RESULTS: During follow-up (median 24.8 mo) 11 of 23 patients with low-risk prostate cancer had disease progression and were taken off study to receive definitive treatment. Disease progression was identified through upstaging of Gleason score on subsequent biopsies for all 11 patients with only 2 patients also having a PSA doubling time of less than 2 years. All 23 patients had biopsy confirmed prostate cancer but only 10 had a positive index of suspicion on mpMRI scans at baseline (43.5% sensitivity). Aggressive disease prediction from baseline mpMRI scans had satisfactory specificity (81.8%) but low sensitivity (58.3%). Twenty-two patients had serial mpMRI scans and evidence of disease progression was seen for 3 patients all of whom had upstaging of Gleason score on biopsy (30% specificity and 100% sensitivity). CONCLUSION: Addition of mpMRI imaging in active surveillance decision making may help in identifying aggressive disease amongst men with indolent prostate cancer earlier than traditional methods. PMID:27158428

  2. Clubfoot repair - series (image)

    MedlinePlus

    ... and maintained with a new cast. This serial casting is continued for 3 or more months and is successful in at least 50% of cases. If the casts do not provide enough correction of the clubfoot, surgery is considered.

  3. TU-A-12A-08: Computing Longitudinal Material Changes in Bone Metastases Using Dual Energy Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidtlein, CR; Hwang, S; Veeraraghavan, H

    Purpose: This study demonstrates a methodology for tracking changes in metastatic bone disease using trajectories in material basis space in serial dual energy computed tomography (DECT) studies. Methods: This study includes patients with bone metastases from breast cancer that had clinical surveillance CT scans using a General Electric CT750HD in dual energy mode. A radiologist defined regions-of-interested (ROI) for bone metastasis, normal bone, and marrow across the serial DECT scans. Our approach employs a Radon transform to forward-projection the basis images, namely, water and iodine, into sinogram space. This data is then repartitioned into fat/bone and effective density/Z image pairsmore » using assumed energy spectrums for the x-ray energies. This approach both helps remove negative material densities and avoids adding spectrum-hardening artifacts. These new basis data sets were then reconstructed via filtered back-projection to create new material basis pair images. The trajectories of these pairs were then plotted in the new basis space providing a means to both visualize and quantitatively measure changes in the material properties of the tumors. Results: ROI containing radiologist defined metastatic bone disease showed well-defined trajectories in both fat/bone and effective density/Z space. ROI that contained radiologist defined normal bone and marrow did not exhibit any discernible trajectories and were stable from scan to scan. Conclusions: The preliminary results show that changes in material composition and effective density/Z image pairs were seen primarily in metastasis and not in normal tissue. This study indicates that by using routine clinical DECT it may be possible to monitor therapy response of bone metastases because healing or worsening bone metastases change material composition of bone. Additional studies are needed to further validate these results and to test for their correlation with outcome.« less

  4. Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer's disease: implications for sequence of pathological events in Alzheimer's disease.

    PubMed

    Jack, Clifford R; Lowe, Val J; Weigand, Stephen D; Wiste, Heather J; Senjem, Matthew L; Knopman, David S; Shiung, Maria M; Gunter, Jeffrey L; Boeve, Bradley F; Kemp, Bradley J; Weiner, Michael; Petersen, Ronald C

    2009-05-01

    The purpose of this study was to use serial imaging to gain insight into the sequence of pathologic events in Alzheimer's disease, and the clinical features associated with this sequence. We measured change in amyloid deposition over time using serial (11)C Pittsburgh compound B (PIB) positron emission tomography and progression of neurodegeneration using serial structural magnetic resonance imaging. We studied 21 healthy cognitively normal subjects, 32 with amnestic mild cognitive impairment and 8 with Alzheimer's disease. Subjects were drawn from two sources--ongoing longitudinal registries at Mayo Clinic, and the Alzheimer's disease Neuroimaging Initiative (ADNI). All subjects underwent clinical assessments, MRI and PIB studies at two time points, approximately one year apart. PIB retention was quantified in global cortical to cerebellar ratio units and brain atrophy in units of cm(3) by measuring ventricular expansion. The annual change in global PIB retention did not differ by clinical group (P = 0.90), and although small (median 0.042 ratio units/year overall) was greater than zero among all subjects (P < 0.001). Ventricular expansion rates differed by clinical group (P < 0.001) and increased in the following order: cognitively normal (1.3 cm(3)/year) < amnestic mild cognitive impairment (2.5 cm(3)/year) < Alzheimer's disease (7.7 cm(3)/year). Among all subjects there was no correlation between PIB change and concurrent change on CDR-SB (r = -0.01, P = 0.97) but some evidence of a weak correlation with MMSE (r =-0.22, P = 0.09). In contrast, greater rates of ventricular expansion were clearly correlated with worsening concurrent change on CDR-SB (r = 0.42, P < 0.01) and MMSE (r =-0.52, P < 0.01). Our data are consistent with a model of typical late onset Alzheimer's disease that has two main features: (i) dissociation between the rate of amyloid deposition and the rate of neurodegeneration late in life, with amyloid deposition proceeding at a constant slow rate while neurodegeneration accelerates and (ii) clinical symptoms are coupled to neurodegeneration not amyloid deposition. Significant plaque deposition occurs prior to clinical decline. The presence of brain amyloidosis alone is not sufficient to produce cognitive decline, rather, the neurodegenerative component of Alzheimer's disease pathology is the direct substrate of cognitive impairment and the rate of cognitive decline is driven by the rate of neurodegeneration. Neurodegeneration (atrophy on MRI) both precedes and parallels cognitive decline. This model implies a complimentary role for MRI and PIB imaging in Alzheimer's disease, with each reflecting one of the major pathologies, amyloid dysmetabolism and neurodegeneration.

  5. Serial functional imaging poststroke reveals visual cortex reorganization.

    PubMed

    Brodtmann, Amy; Puce, Aina; Darby, David; Donnan, Geoffrey

    2009-02-01

    Visual cortical reorganization following injury remains poorly understood. The authors performed serial functional magnetic resonance imaging (fMRI) on patients with visual cortex infarction to evaluate early and late striate, ventral, and dorsal extrastriate cortical activation. Patients were studied with fMRI within 10 days and at 6 months. The authors used a high-level visual activation task designed to activate the ventral extrastriate cortex. These data were compared to those of age-appropriate healthy control participants. The results from 24 healthy control individuals (mean age 65.7 +/- SE 3.6 years, range 32-89) were compared to those from 5 stroke patients (mean age 73.8 +/- SE 7 years, range 49-86). Patients had infarcts involving the striate and ventral extrastriate cortex. Patient activation patterns were markedly different to controls. Bilateral striate and ventral extrastriate activation was reduced at both sessions, but dorsal extrastriate activated voxel counts remained comparable to controls. Conversely, mean percent magnetic resonance signal change increased in dorsal sites. These data provide strong evidence of bilateral poststroke functional depression of striate and ventral extrastriate cortices. Possible utilization or surrogacy of the dorsal visual system was demonstrated following stroke. This activity could provide a target for novel visual rehabilitation therapies.

  6. Serials Automation for San Jose State University Library.

    ERIC Educational Resources Information Center

    Liu, Susana J.

    This study (1) examines the university's serials system and identifies its problems; (2) analyzes the current manual operations in the serials department, with emphasis on the serials check-in system; and (3) determines whether or not computerization of some or all of the serials subsystems would improve the department's internal effectiveness and…

  7. Massively Parallel Rogue Cell Detection Using Serial Time-Encoded Amplified Microscopy of Inertially Ordered Cells in High-Throughput Flow

    DTIC Science & Technology

    2012-08-01

    techniques and STEAM imager. It couples the high-speed capability of the STEAM imager and differential phase contrast imaging of DIC / Nomarski microscopy...On 10 TPE chips, we obtained 9 homogenous and strong bonds, the failed bond being due to operator error and presence of air bubbles in the TPE...instruments, structural dynamics, and microelectromechanical systems (MEMS) via laser-scanning surface vibrometry , and observation of biomechanical motility

  8. Automated in-chamber specimen coating for serial block-face electron microscopy.

    PubMed

    Titze, B; Denk, W

    2013-05-01

    When imaging insulating specimens in a scanning electron microscope, negative charge accumulates locally ('sample charging'). The resulting electric fields distort signal amplitude, focus and image geometry, which can be avoided by coating the specimen with a conductive film prior to introducing it into the microscope chamber. This, however, is incompatible with serial block-face electron microscopy (SBEM), where imaging and surface removal cycles (by diamond knife or focused ion beam) alternate, with the sample remaining in place. Here we show that coating the sample after each cutting cycle with a 1-2 nm metallic film, using an electron beam evaporator that is integrated into the microscope chamber, eliminates charging effects for both backscattered (BSE) and secondary electron (SE) imaging. The reduction in signal-to-noise ratio (SNR) caused by the film is smaller than that caused by the widely used low-vacuum method. Sample surfaces as large as 12 mm across were coated and imaged without charging effects at beam currents as high as 25 nA. The coatings also enabled the use of beam deceleration for non-conducting samples, leading to substantial SNR gains for BSE contrast. We modified and automated the evaporator to enable the acquisition of SBEM stacks, and demonstrated the acquisition of stacks of over 1000 successive cut/coat/image cycles and of stacks using beam deceleration or SE contrast. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  9. A home-built digital optical MRI console using high-speed serial links.

    PubMed

    Tang, Weinan; Wang, Weimin; Liu, Wentao; Ma, Yajun; Tang, Xin; Xiao, Liang; Gao, Jia-Hong

    2015-08-01

    To develop a high performance, cost-effective digital optical console for scalable multichannel MRI. The console system was implemented with flexibility and efficiency based on a modular architecture with distributed pulse sequencers. High-speed serial links were optimally utilized to interconnect the system, providing fast digital communication with a multi-gigabit data rate. The conventional analog radio frequency (RF) chain was replaced with a digital RF manipulation. The acquisition electronics were designed in close proximity to RF coils and preamplifiers, using a digital optical link to transmit the MR signal. A prototype of the console was constructed with a broad frequency range from direct current to 100 MHz. A temporal resolution of 1 μs was achieved for both the RF and gradient operations. The MR signal was digitized in the scanner room with an overall dynamic range between 16 and 24 bits and was transmitted to a master controller over a duplex optic fiber with a high data rate of 3.125 gigabits per second. High-quality phantom and human images were obtained using the prototype on both 0.36T and 1.5T clinical MRI scanners. A homemade digital optical MRI console with high-speed serial interconnection has been developed to better serve imaging research and clinical applications. © 2014 Wiley Periodicals, Inc.

  10. In vivo time-serial multi-modality optical imaging in a mouse model of ovarian tumorigenesis

    PubMed Central

    Watson, Jennifer M; Marion, Samuel L; Rice, Photini F; Bentley, David L; Besselsen, David G; Utzinger, Urs; Hoyer, Patricia B; Barton, Jennifer K

    2014-01-01

    Identification of the early microscopic changes associated with ovarian cancer may lead to development of a diagnostic test for high-risk women. In this study we use optical coherence tomography (OCT) and multiphoton microscopy (MPM) (collecting both two photon excited fluorescence [TPEF] and second harmonic generation [SHG]) to image mouse ovaries in vivo at multiple time points. We demonstrate the feasibility of imaging mouse ovaries in vivo during a long-term survival study and identify microscopic changes associated with early tumor development. These changes include alterations in tissue microstructure, as seen by OCT, alterations in cellular fluorescence and morphology, as seen by TPEF, and remodeling of collagen structure, as seen by SHG. These results suggest that a combined OCT-MPM system may be useful for early detection of ovarian cancer. PMID:24145178

  11. Conservatively treated massive prolapsed discs: a 7-year follow-up

    PubMed Central

    Benson, RT; Tavares, SP; Robertson, SC; Sharp, R; Marshall, RW

    2010-01-01

    INTRODUCTION The natural history of a lumbar hernia of the nucleus pulposus (HNP) is not fully known and clear indications for operative intervention cannot be established from the literature. Several studies have shown that the largest discs appear to have the greatest tendency to resolve. The aim of this study was to investigate whether massive prolapsed discs can be safely managed conservatively once clinical improvement has occurred. PATIENTS AND METHODS Thirty-seven patients were studied by clinical assessments and serial magnetic resonance imaging (MRI) over 2 years. Patients had severe sciatica at first, but began to show clinical improvement despite the large disc hernia-tions. Clinical assessment included the Lasegue test and neurological appraisal. The Oswestry Disability Index was used to measure function and changes in function. Serial MRI studies allowed measurement of volume changes of the herniated disc material over a period of time. RESULTS Initial follow-up at an average of 23.2 months revealed that 83% had a complete and sustained recovery at the initial follow-up. Only four patients required a discectomy. The average Oswestry disability index improved from 58% to 15%. Volumetric analysis of serial MRI scans found an average reduction of 64% in disc size. There was a poor correlation between clinical improvement and the extent of disc resolution. CONCLUSIONS A massive disc herniation can pursue a favourable clinical course. If early progress is shown, the long-term prognosis is very good and even massive disc herniations can be treated conservatively. PMID:19887021

  12. From 2D slices to 3D volumes: image based reconstruction and morphological characterization of hippocampal cells on charged and uncharged surfaces using FIB/SEM serial sectioning.

    PubMed

    Schmidt, Franziska; Kühbacher, Markus; Gross, Ulrich; Kyriakopoulos, Antonius; Schubert, Helmut; Zehbe, Rolf

    2011-03-01

    3D imaging at a subcellular resolution is a powerful tool in the life sciences to investigate cells and their interactions with native tissues or artificial objects. While a tomographic experimental setup achieving a sufficient structural resolution can be established with either X-rays or electrons, the use of electrons is usually limited to very thin samples in transmission electron microscopy due to the poor penetration depths of electrons. The combination of a serial sectioning approach and scanning electron microscopy in state of the art dual beam experimental setups therefore offers a means to image highly resolved spatial details using a focused ion beam for slicing and an electron beam for imaging. The advantage of this technique over X-ray μCT or X-ray microscopy attributes to the fact that absorption is not a limiting factor in imaging and therefore even strong absorbing structures can be spatially reconstructed with a much higher possible resolution. This approach was used in this study to elucidate the effect of an electric potential on the morphology of cells from a hippocampal cell line (HT22) deposited on gold microelectrodes. While cells cultivated on two different controls (gold and polymer substrates) did show the expected stretched morphology, cells on both the anode and the cathode differed significantly. Cells deposited on the anode part of the electrode exhibited the most extreme deviation, being almost spherical and showed signs of chromatin condensation possibly indicating cell death. Furthermore, EDX was used as supplemental methodology for combined chemical and structural analyses. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Se-SAD serial femtosecond crystallography datasets from selenobiotinyl-streptavidin

    PubMed Central

    Yoon, Chun Hong; DeMirci, Hasan; Sierra, Raymond G.; Dao, E. Han; Ahmadi, Radman; Aksit, Fulya; Aquila, Andrew L.; Batyuk, Alexander; Ciftci, Halilibrahim; Guillet, Serge; Hayes, Matt J.; Hayes, Brandon; Lane, Thomas J.; Liang, Meng; Lundström, Ulf; Koglin, Jason E.; Mgbam, Paul; Rao, Yashas; Rendahl, Theodore; Rodriguez, Evan; Zhang, Lindsey; Wakatsuki, Soichi; Boutet, Sébastien; Holton, James M.; Hunter, Mark S.

    2017-01-01

    We provide a detailed description of selenobiotinyl-streptavidin (Se-B SA) co-crystal datasets recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS) for selenium single-wavelength anomalous diffraction (Se-SAD) structure determination. Se-B SA was chosen as the model system for its high affinity between biotin and streptavidin where the sulfur atom in the biotin molecule (C10H16N2O3S) is substituted with selenium. The dataset was collected at three different transmissions (100, 50, and 10%) using a serial sample chamber setup which allows for two sample chambers, a front chamber and a back chamber, to operate simultaneously. Diffraction patterns from Se-B SA were recorded to a resolution of 1.9 Å. The dataset is publicly available through the Coherent X-ray Imaging Data Bank (CXIDB) and also on LCLS compute nodes as a resource for research and algorithm development. PMID:28440794

  14. Se-SAD serial femtosecond crystallography datasets from selenobiotinyl-streptavidin

    NASA Astrophysics Data System (ADS)

    Yoon, Chun Hong; Demirci, Hasan; Sierra, Raymond G.; Dao, E. Han; Ahmadi, Radman; Aksit, Fulya; Aquila, Andrew L.; Batyuk, Alexander; Ciftci, Halilibrahim; Guillet, Serge; Hayes, Matt J.; Hayes, Brandon; Lane, Thomas J.; Liang, Meng; Lundström, Ulf; Koglin, Jason E.; Mgbam, Paul; Rao, Yashas; Rendahl, Theodore; Rodriguez, Evan; Zhang, Lindsey; Wakatsuki, Soichi; Boutet, Sébastien; Holton, James M.; Hunter, Mark S.

    2017-04-01

    We provide a detailed description of selenobiotinyl-streptavidin (Se-B SA) co-crystal datasets recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS) for selenium single-wavelength anomalous diffraction (Se-SAD) structure determination. Se-B SA was chosen as the model system for its high affinity between biotin and streptavidin where the sulfur atom in the biotin molecule (C10H16N2O3S) is substituted with selenium. The dataset was collected at three different transmissions (100, 50, and 10%) using a serial sample chamber setup which allows for two sample chambers, a front chamber and a back chamber, to operate simultaneously. Diffraction patterns from Se-B SA were recorded to a resolution of 1.9 Å. The dataset is publicly available through the Coherent X-ray Imaging Data Bank (CXIDB) and also on LCLS compute nodes as a resource for research and algorithm development.

  15. Instagram Unfiltered: Exploring Associations of Body Image Satisfaction, Instagram #Selfie Posting, and Negative Romantic Relationship Outcomes.

    PubMed

    Ridgway, Jessica L; Clayton, Russell B

    2016-01-01

    The purpose of this study was to examine the predictors and consequences associated with Instagram selfie posting. Thus, this study explored whether body image satisfaction predicts Instagram selfie posting and whether Instagram selfie posting is then associated with Instagram-related conflict and negative romantic relationship outcomes. A total of 420 Instagram users aged 18 to 62 years (M = 29.3, SD = 8.12) completed an online survey questionnaire. Analysis of a serial multiple mediator model using bootstrapping methods indicated that body image satisfaction was sequentially associated with increased Instagram selfie posting and Instagram-related conflict, which related to increased negative romantic relationship outcomes. These findings suggest that when Instagram users promote their body image satisfaction in the form of Instagram selfie posts, risk of Instagram-related conflict and negative romantic relationship outcomes might ensue. Findings from the current study provide a baseline understanding to potential and timely trends regarding Instagram selfie posting.

  16. Monitoring peripheral nerve degeneration in ALS by label-free stimulated Raman scattering imaging

    NASA Astrophysics Data System (ADS)

    Tian, Feng; Yang, Wenlong; Mordes, Daniel A.; Wang, Jin-Yuan; Salameh, Johnny S.; Mok, Joanie; Chew, Jeannie; Sharma, Aarti; Leno-Duran, Ester; Suzuki-Uematsu, Satomi; Suzuki, Naoki; Han, Steve S.; Lu, Fa-Ke; Ji, Minbiao; Zhang, Rosanna; Liu, Yue; Strominger, Jack; Shneider, Neil A.; Petrucelli, Leonard; Xie, X. Sunney; Eggan, Kevin

    2016-10-01

    The study of amyotrophic lateral sclerosis (ALS) and potential interventions would be facilitated if motor axon degeneration could be more readily visualized. Here we demonstrate that stimulated Raman scattering (SRS) microscopy could be used to sensitively monitor peripheral nerve degeneration in ALS mouse models and ALS autopsy materials. Three-dimensional imaging of pre-symptomatic SOD1 mouse models and data processing by a correlation-based algorithm revealed that significant degeneration of peripheral nerves could be detected coincidentally with the earliest detectable signs of muscle denervation and preceded physiologically measurable motor function decline. We also found that peripheral degeneration was an early event in FUS as well as C9ORF72 repeat expansion models of ALS, and that serial imaging allowed long-term observation of disease progression and drug effects in living animals. Our study demonstrates that SRS imaging is a sensitive and quantitative means of measuring disease progression, greatly facilitating future studies of disease mechanisms and candidate therapeutics.

  17. Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography

    PubMed Central

    Mueller, C.; Marx, A.; Epp, S. W.; Zhong, Y.; Kuo, A.; Balo, A. R.; Soman, J.; Schotte, F.; Lemke, H. T.; Owen, R. L.; Pai, E. F.; Pearson, A. R.; Olson, J. S.; Anfinrud, P. A.; Ernst, O. P.; Dwayne Miller, R. J.

    2015-01-01

    We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linac Coherent Light Source (LCLS, Menlo Park, California, USA). The chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs. PMID:26798825

  18. Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography.

    PubMed

    Mueller, C; Marx, A; Epp, S W; Zhong, Y; Kuo, A; Balo, A R; Soman, J; Schotte, F; Lemke, H T; Owen, R L; Pai, E F; Pearson, A R; Olson, J S; Anfinrud, P A; Ernst, O P; Dwayne Miller, R J

    2015-09-01

    We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linac Coherent Light Source (LCLS, Menlo Park, California, USA). The chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs.

  19. ImmunoPET of tissue factor expression in triple-negative breast cancer with a radiolabeled antibody Fab fragment.

    PubMed

    Shi, Sixiang; Hong, Hao; Orbay, Hakan; Graves, Stephen A; Yang, Yunan; Ohman, Jakob D; Liu, Bai; Nickles, Robert J; Wong, Hing C; Cai, Weibo

    2015-07-01

    To date, there is no effective therapy for triple-negative breast cancer (TNBC), which has a dismal clinical outcome. Upregulation of tissue factor (TF) expression leads to increased patient morbidity and mortality in many solid tumor types, including TNBC. Our goal was to employ the Fab fragment of ALT-836, a chimeric anti-human TF mAb, for PET imaging of TNBC, which can be used to guide future TNBC therapy. ALT-836-Fab was generated by enzymatic papain digestion. SDS-PAGE and FACS studies were performed to evaluate the integrity and TF binding affinity of ALT-836-Fab before NOTA conjugation and (64)Cu-labeling. Serial PET imaging and biodistribution studies were carried out to evaluate the tumor targeting efficacy and pharmacokinetics in the MDA-MB-231 TNBC model, which expresses high levels of TF on the tumor cells. Blocking studies, histological assessment, as well as RT-PCR were performed to confirm TF specificity of (64)Cu-NOTA-ALT-836-Fab. ALT-836-Fab was produced with high purity, which exhibited superb TF binding affinity and specificity. Serial PET imaging revealed rapid and persistent tumor uptake of (64)Cu-NOTA-ALT-836-Fab (5.1 ± 0.5 %ID/g at 24 h post-injection; n = 4) and high tumor/muscle ratio (7.0 ± 1.2 at 24 h post-injection; n = 4), several-fold higher than that of the blocking group and tumor models that do not express significant level of TF, which was confirmed by biodistribution studies. TF specificity of the tracer was also validated by histology and RT-PCR. (64)Cu-NOTA-ALT-836-Fab exhibited prominent tissue factor targeting efficiency in MDA-MB-231 TNBC model. The use of a Fab fragment led to fast tumor uptake and good tissue/muscle ratio, which may be translated into same-day immunoPET imaging in the clinical setting to improve TNBC patient management.

  20. From animal cruelty to serial murder: applying the graduation hypothesis.

    PubMed

    Wright, Jeremy; Hensley, Christopher

    2003-02-01

    Although serial murder has been recorded for centuries, limited academic attention has been given to this important topic. Scholars have attempted to examine the causality and motivations behind the rare phenomenon of serial murder. However, scant research exists which delves into the childhood characteristics of serial murderers. Using social learning theory, some of these studies present supporting evidence for a link between childhood animal cruelty and adult aggression toward humans. Based on five case studies of serial murderers, we contribute to the existing literature by exploring the possible link between childhood cruelty toward animals and serial murder with the application of the graduation hypothesis.

  1. The Nature of Verbal Short-Term Impairment in Dyslexia: The Importance of Serial Order

    PubMed Central

    Majerus, Steve; Cowan, Nelson

    2016-01-01

    Verbal short-term memory (STM) impairment is one of the most consistent associated deficits observed in developmental reading disorders such as dyslexia. Few studies have addressed the nature of this STM impairment, especially as regards the ability to temporarily store serial order information. This question is important as studies in typically developing children have shown that serial order STM abilities are predictors of oral and written language development. Associated serial order STM deficits in dyslexia may therefore further increase the learning difficulties in these populations. In this mini review, we show that specific serial order STM impairment is frequently reported in both dyslexic children and adults with a history of dyslexia. Serial order STM impairment appears to occur for the retention of both verbal and visuo-spatial sequence information. Serial order STM impairment is, however, not a characteristic of every individual dyslexic subject and is not specific to dyslexia. Future studies need to determine whether serial order STM impairment is a risk factor which, in association with phonological processing deficits, can lead to dyslexia or whether serial order STM impairment reflects associated deficits causally unrelated to dyslexia. PMID:27752247

  2. CNS cavernous haemangioma: "popcorn" in the brain and spinal cord.

    PubMed

    Hegde, A N; Mohan, S; Lim, C C T

    2012-04-01

    Cavernous haemangiomas (CH) are relatively uncommon non-shunting vascular malformations of the central nervous system and can present with seizures or with neurological deficits due to haemorrhage. Radiologists can often suggest the diagnosis of CH based on characteristic magnetic resonance imaging (MRI) features, thus avoiding further invasive procedures such as digital subtraction angiography or surgical biopsy. Although typical MRI appearance combined with the presence of multiple focal low signal lesions on T2*-weighted images or the presence of one or more developmental venous anomaly within the brain can improve the diagnostic confidence, serial imaging studies are often required if a solitary CH presents at a time when the imaging appearances had not yet matured to the typical "popcorn" appearance. Copyright © 2011 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  3. A computational approach to real-time image processing for serial time-encoded amplified microscopy

    NASA Astrophysics Data System (ADS)

    Oikawa, Minoru; Hiyama, Daisuke; Hirayama, Ryuji; Hasegawa, Satoki; Endo, Yutaka; Sugie, Takahisa; Tsumura, Norimichi; Kuroshima, Mai; Maki, Masanori; Okada, Genki; Lei, Cheng; Ozeki, Yasuyuki; Goda, Keisuke; Shimobaba, Tomoyoshi

    2016-03-01

    High-speed imaging is an indispensable technique, particularly for identifying or analyzing fast-moving objects. The serial time-encoded amplified microscopy (STEAM) technique was proposed to enable us to capture images with a frame rate 1,000 times faster than using conventional methods such as CCD (charge-coupled device) cameras. The application of this high-speed STEAM imaging technique to a real-time system, such as flow cytometry for a cell-sorting system, requires successively processing a large number of captured images with high throughput in real time. We are now developing a high-speed flow cytometer system including a STEAM camera. In this paper, we describe our approach to processing these large amounts of image data in real time. We use an analog-to-digital converter that has up to 7.0G samples/s and 8-bit resolution for capturing the output voltage signal that involves grayscale images from the STEAM camera. Therefore the direct data output from the STEAM camera generates 7.0G byte/s continuously. We provided a field-programmable gate array (FPGA) device as a digital signal pre-processor for image reconstruction and finding objects in a microfluidic channel with high data rates in real time. We also utilized graphics processing unit (GPU) devices for accelerating the calculation speed of identification of the reconstructed images. We built our prototype system, which including a STEAM camera, a FPGA device and a GPU device, and evaluated its performance in real-time identification of small particles (beads), as virtual biological cells, owing through a microfluidic channel.

  4. Who is afraid of the invisible snake? Subjective visual awareness modulates posterior brain activity for evolutionarily threatening stimuli.

    PubMed

    Grassini, Simone; Holm, Suvi K; Railo, Henry; Koivisto, Mika

    2016-12-01

    Snakes were probably one of the earliest predators of primates, and snake images produce specific behavioral and electrophysiological reactions in humans. Pictures of snakes evoke enhanced activity over the occipital cortex, indexed by the "early posterior negativity" (EPN), as compared with pictures of other dangerous or non-dangerous animals. The present study investigated the possibility that the response to snake images is independent from visual awareness. The observers watched images of threatening and non-threatening animals presented in random order during rapid serial visual presentation. Four different masking conditions were used to manipulate awareness of the images. Electrophysiological results showed that the EPN was larger for snake images than for the other images employed in the unmasked condition. However, the difference disappeared when awareness of the stimuli decreased. Behavioral results on the effects of awareness did not show any advantage for snake images. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Broadband diffractive lens or imaging element

    DOEpatents

    Ceglio, Natale M.; Hawryluk, Andrew M.; London, Richard A.; Seppala, Lynn G.

    1993-01-01

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed. Thin film embodiments are described.

  6. Broadband diffractive lens or imaging element

    DOEpatents

    Ceglio, N.M.; Hawryluk, A.M.; London, R.A.; Seppala, L.G.

    1993-10-26

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed. Thin film embodiments are described. 21 figures.

  7. Multispectral near-infrared reflectance and transillumination imaging of occlusal carious lesions: variations in lesion contrast with lesion depth

    NASA Astrophysics Data System (ADS)

    Simon, Jacob C.; Curtis, Donald A.; Darling, Cynthia L.; Fried, Daniel

    2018-02-01

    In vivo and in vitro studies have demonstrated that near-infrared (NIR) light at λ=1300-1700-nm can be used to acquire high contrast images of enamel demineralization without interference of stains. The objective of this study was to determine if a relationship exists between the NIR image contrast of occlusal lesions and the depth of the lesion. Extracted teeth with varying amounts of natural occlusal decay were measured using a multispectral-multimodal NIR imaging system which captures λ=1300-nm occlusal transillumination, and λ=1500-1700-nm cross-polarized reflectance images. Image analysis software was used to calculate the lesion contrast detected in both images from matched positions of each imaging modality. Samples were serially sectioned across the lesion with a precision saw, and polarized light microscopy was used to measure the respective lesion depth relative to the dentinoenamel junction. Lesion contrast measured from NIR crosspolarized reflectance images positively correlated (p<0.05) with increasing lesion depth and a statistically significant difference between inner enamel and dentin lesions was observed. The lateral width of pit and fissures lesions measured in both NIR cross-polarized reflectance and NIR transillumination positively correlated with lesion depth.

  8. Three-dimensional reconstruction of root cells and interdental cells in the rat inner ear by serial section scanning electron microscopy.

    PubMed

    Shodo, Ryusuke; Hayatsu, Manabu; Koga, Daisuke; Horii, Arata; Ushiki, Tatsuo

    2017-01-01

    In the cochlea, a high K + environment in the endolymph is essential for the maintenance of normal hearing function, and the transport of K + ions through gap junctions of the cochlear epithelium is thought to play an important role in endolymphatic homeostasis. The aim of the present study was to demonstrate the three-dimensional (3D) ultrastructure of spiral ligament root cells and interdental cells, which are located at both ends of the gap junction system of the cochlea epithelium. Serial semi-thin sections of plastic-embedded rat cochlea were mounted on glass slides, stained with uranyl acetate and lead citrate, and observed by scanning electron microscopy (SEM) using the backscattered electron (BSE) mode. 3D reconstruction of BSE images of serial sections revealed that the root cells were linked together to form a branched structure like an elaborate "tree root" in the spiral ligament. The interdental cells were also connected to each other, forming a comb-shaped cellular network with a number of cellular strands in the spiral limbus. Furthermore, TEM studies of ultra-thin sections revealed the rich presence of gap junctions in both root cells and interdental cells. These findings suggest the possibility that both root cells and interdental cells contribute to K + circulation as the end portion of the epithelial cell gap junction system of the cochlea.

  9. Histomorphology of the penis bone (Baculum) in the gray long-eared bat Plecotus austriacus (Chiroptera, Vespertilionidae).

    PubMed

    Herdina, Anna Nele; Herzig-Straschil, Barbara; Hilgers, Helge; Metscher, Brian D; Plenk, Hanns

    2010-07-01

    For the first time, the histomorphology of the penis bone of a bat (Plecotus austriacus) was examined in detail. From Plecotus austriacus, 14 whole penes and 11 isolated bacula were studied and compared to bacula of Plecotus auritus and Plecotus macrobullaris. The baculum was located on specimen microradiographs and in micro-CT images in the tip of the penis. Using serial semithin sections and surface-stained, undecalcified ground sections, the types of bone and other tissues constituting the baculum were examined by light microscopy. 3D reconstructions were generated from the serial semithin sections and from micro-CT images. The shaft and the proximal branches of the Y-shaped baculum form a tubular bone around a medullary cavity. Since the small diameter of this channel and the main lamellar bone around it resemble a Haversian canal, the baculum is equivalent to a single-osteon bone. Several oblique nutrient canals enter this medullary cavity in the shaft and branches. All ends of the baculum consist predominantly of woven bone. The collagen fiber bundles of the tunica albuginea of both corpora cavernosa insert via fibrocartilage into the woven bone of the branches. Thus, the microscopic structures support the hypothesis that the baculum functions as a stiffening element in the erect penis. In this study, several microscopic imaging techniques were evaluated for displaying the microscopic structures of the baculum. Specimen microradiography, but especially micro-CT proved to be suitable nondestructive methods for accurate and reproducible demonstration and comparison of the three-dimensional structures of the baculum in different bat species.

  10. Longitudinal In Vivo SPECT/CT Imaging Reveals Morphological Changes and Cardiopulmonary Apoptosis in a Rodent Model of Pulmonary Arterial Hypertension

    PubMed Central

    Paffett, Michael L.; Hesterman, Jacob; Candelaria, Gabriel; Lucas, Selita; Anderson, Tamara; Irwin, Daniel; Hoppin, Jack; Norenberg, Jeffrey; Campen, Matthew J.

    2012-01-01

    Pulmonary arterial hypertension (PAH) has a complex pathogenesis involving both heart and lungs. Animal models can reflect aspects of the human pathology and provide insights into the development and underlying mechanisms of disease. Because of the variability of most animal models of PAH, serial in vivo measurements of cardiopulmonary function, morphology, and markers of pathology can enhance the value of such studies. Therefore, quantitative in vivo SPECT/CT imaging was performed to assess cardiac function, morphology and cardiac perfusion utilizing 201Thallium (201Tl) in control and monocrotaline-treated rats. In addition, lung and heart apoptosis was examined with 99mTc-Annexin V (99mTc-Annexin) in these cohorts. Following baseline imaging, rats were injected with saline or monocrotaline (50 mg/kg, i.p.) and imaged weekly for 6 weeks. To assess a therapeutic response in an established pulmonary hypertensive state, a cohort of rats received resveratrol in drinking water (3 mg/kg/day) on days 28–42 post-monocrotaline injection to monitor regression of cardiopulmonary apoptosis. PAH in monocrotaline-treated rats was verified by conventional hemodynamic techniques on day 42 (right ventricular systolic pressure (RSVP) = 66.2 mmHg in monocrotaline vs 28.8 mmHg in controls) and in terms of right ventricular hypertrophy (RV/LVS = 0.70 in monocrotaline vs 0.32 in controls). Resveratrol partially reversed both RVSP (41.4 mmHg) and RV/LVS (0.46), as well as lung edema and RV contractility +dP/dtmax. Serial 99mTc-Annexin V imaging showed clear increases in pulmonary and cardiac apoptosis when compared to baseline, which regressed following resveratrol treatment. Monocrotaline induced modest changes in whole-heart perfusion as assessed by 201TI imaging and cardiac morphological changes consistent with septal deviation and enlarged RV. This study demonstrates the utility of functional in vivo SPECT/CT imaging in rodent models of PAH and further confirms the efficacy of resveratrol in reversing established monocrotaline-induced PAH presumably by attenuation of cardiopulmonary apoptosis. PMID:22815866

  11. A correlative approach for combining microCT, light and transmission electron microscopy in a single 3D scenario

    PubMed Central

    2013-01-01

    Background In biomedical research, a huge variety of different techniques is currently available for the structural examination of small specimens, including conventional light microscopy (LM), transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM), microscopic X-ray computed tomography (microCT), and many others. Since every imaging method is physically limited by certain parameters, a correlative use of complementary methods often yields a significant broader range of information. Here we demonstrate the advantages of the correlative use of microCT, light microscopy, and transmission electron microscopy for the analysis of small biological samples. Results We used a small juvenile bivalve mollusc (Mytilus galloprovincialis, approximately 0.8 mm length) to demonstrate the workflow of a correlative examination by microCT, LM serial section analysis, and TEM-re-sectioning. Initially these three datasets were analyzed separately, and subsequently they were fused in one 3D scene. This workflow is very straightforward. The specimen was processed as usual for transmission electron microscopy including post-fixation in osmium tetroxide and embedding in epoxy resin. Subsequently it was imaged with microCT. Post-fixation in osmium tetroxide yielded sufficient X-ray contrast for microCT imaging, since the X-ray absorption of epoxy resin is low. Thereafter, the same specimen was serially sectioned for LM investigation. The serial section images were aligned and specific organ systems were reconstructed based on manual segmentation and surface rendering. According to the region of interest (ROI), specific LM sections were detached from the slides, re-mounted on resin blocks and re-sectioned (ultrathin) for TEM. For analysis, image data from the three different modalities was co-registered into a single 3D scene using the software AMIRA®. We were able to register both the LM section series volume and TEM slices neatly to the microCT dataset, with small geometric deviations occurring only in the peripheral areas of the specimen. Based on co-registered datasets the excretory organs, which were chosen as ROI for this study, could be investigated regarding both their ultrastructure as well as their position in the organism and their spatial relationship to adjacent tissues. We found structures typical for mollusc excretory systems, including ultrafiltration sites at the pericardial wall, and ducts leading from the pericardium towards the kidneys, which exhibit a typical basal infolding system. Conclusions The presented approach allows a comprehensive analysis and presentation of small objects regarding both the overall organization as well as cellular and subcellular details. Although our protocol involves a variety of different equipment and procedures, we maintain that it offers savings in both effort and cost. Co-registration of datasets from different imaging modalities can be accomplished with high-end desktop computers and offers new opportunities for understanding and communicating structural relationships within organisms and tissues. In general, the correlative use of different microscopic imaging techniques will continue to become more widespread in morphological and structural research in zoology. Classical TEM serial section investigations are extremely time consuming, and modern methods for 3D analysis of ultrastructure such as SBF-SEM and FIB-SEM are limited to very small volumes for examination. Thus the re-sectioning of LM sections is suitable for speeding up TEM examination substantially, while microCT could become a key-method for complementing ultrastructural examinations. PMID:23915384

  12. Evaluation of the Effect of Fingolimod Treatment on Microglial Activation Using Serial PET Imaging in Multiple Sclerosis.

    PubMed

    Sucksdorff, Marcus; Rissanen, Eero; Tuisku, Jouni; Nuutinen, Salla; Paavilainen, Teemu; Rokka, Johanna; Rinne, Juha; Airas, Laura

    2017-10-01

    Traditionally, multiple sclerosis (MS) has been considered a white matter disease with focal inflammatory lesions. It is, however, becoming clear that significant pathology, such as microglial activation, also takes place outside the plaque areas, that is, in areas of normal-appearing white matter (NAWM) and gray matter (GM). Microglial activation can be detected in vivo using 18-kDa translocator protein (TSPO)-binding radioligands and PET. It is unknown whether fingolimod affects microglial activation in MS. The aim of this study was to investigate whether serial PET can be used to evaluate the effect of fingolimod treatment on microglial activation. Methods: Ten relapsing-remitting MS patients were studied using the TSPO radioligand 11 C-( R )-PK11195. Imaging was performed at baseline and after 8 and 24 wk of fingolimod treatment. Eight healthy individuals were imaged for comparison. Microglial activation was evaluated as distribution volume ratio of 11 C-( R )-PK11195. Results: The patients had MS for an average of 7.9 ± 4.3 y (mean ± SD), their total relapses averaged 4 ± 2.4, and their Expanded Disability Status Scale was 2.7 ± 0.5. The patients were switched to fingolimod because of safety reasons or therapy escalation. The mean washout period before the initiation of fingolimod was 2.3 ± 1.1 mo. The patients were clinically stable on fingolimod. At baseline, microglial activation was significantly higher in the combined NAWM and GM areas of MS patients than in healthy controls ( P = 0.021). 11 C-( R )-PK11195 binding was reduced (-12.31%) within the combined T2 lesion area after 6 mo of fingolimod treatment ( P = 0.040) but not in the areas of NAWM or GM. Conclusion: Fingolimod treatment reduced microglial/macrophage activation at the site of focal inflammatory lesions, presumably by preventing leukocyte trafficking from the periphery. It did not affect the widespread, diffuse microglial activation in the NAWM and GM. The study opens new vistas for designing future therapeutic studies in MS that use the evaluation of microglial activation as an imaging outcome measure. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  13. Change detection of medical images using dictionary learning techniques and principal component analysis.

    PubMed

    Nika, Varvara; Babyn, Paul; Zhu, Hongmei

    2014-07-01

    Automatic change detection methods for identifying the changes of serial MR images taken at different times are of great interest to radiologists. The majority of existing change detection methods in medical imaging, and those of brain images in particular, include many preprocessing steps and rely mostly on statistical analysis of magnetic resonance imaging (MRI) scans. Although most methods utilize registration software, tissue classification remains a difficult and overwhelming task. Recently, dictionary learning techniques are being used in many areas of image processing, such as image surveillance, face recognition, remote sensing, and medical imaging. We present an improved version of the EigenBlockCD algorithm, named the EigenBlockCD-2. The EigenBlockCD-2 algorithm performs an initial global registration and identifies the changes between serial MR images of the brain. Blocks of pixels from a baseline scan are used to train local dictionaries to detect changes in the follow-up scan. We use PCA to reduce the dimensionality of the local dictionaries and the redundancy of data. Choosing the appropriate distance measure significantly affects the performance of our algorithm. We examine the differences between [Formula: see text] and [Formula: see text] norms as two possible similarity measures in the improved EigenBlockCD-2 algorithm. We show the advantages of the [Formula: see text] norm over the [Formula: see text] norm both theoretically and numerically. We also demonstrate the performance of the new EigenBlockCD-2 algorithm for detecting changes of MR images and compare our results with those provided in the recent literature. Experimental results with both simulated and real MRI scans show that our improved EigenBlockCD-2 algorithm outperforms the previous methods. It detects clinical changes while ignoring the changes due to the patient's position and other acquisition artifacts.

  14. Selective laser ablation of carious lesions using simultaneous scanned near-IR diode and CO2 lasers

    NASA Astrophysics Data System (ADS)

    Chan, Kenneth H.; Fried, Daniel

    2017-02-01

    Previous studies have established that carious lesions can be imaged with high contrast using near-IR wavelengths coincident with high water absorption, namely 1450-nm, without the interference of stains. It has been demonstrated that computer-controlled laser scanning systems utilizing IR lasers operating at high pulse repetition rates can be used for serial imaging and selective removal of caries lesions. In this study, a point-to-point scanning system was developed integrating a 1450-nm diode laser with the CO2 ablation laser. This approach is advantageous since it does not require an expensive near-IR camera. In this pilot study, we demonstrate the feasibility of a combined NIR and IR laser system for the selective removal of carious lesions.

  15. Selective Laser Ablation of Carious Lesions using Simultaneous Scanned Near-IR Diode and CO2 Lasers.

    PubMed

    Chan, Kenneth H; Fried, Daniel

    2017-01-28

    Previous studies have established that carious lesions can be imaged with high contrast using near-IR wavelengths coincident with high water absorption, namely 1450-nm, without the interference of stains. It has been demonstrated that computer-controlled laser scanning systems utilizing IR lasers operating at high pulse repetition rates can be used for serial imaging and selective removal of caries lesions. In this study, a point-to-point scanning system was developed integrating a 1450-nm diode laser with the CO 2 ablation laser. This approach is advantageous since it does not require an expensive near-IR camera. In this pilot study, we demonstrate the feasibility of a combined NIR and IR laser system for the selective removal of carious lesions.

  16. Yoga and positive body image: A test of the Embodiment Model.

    PubMed

    Mahlo, Leeann; Tiggemann, Marika

    2016-09-01

    The study aimed to test the Embodiment Model of Positive Body Image (Menzel & Levine, 2011) within the context of yoga. Participants were 193 yoga practitioners (124 Iyengar, 69 Bikram) and 127 university students (non-yoga participants) from Adelaide, South Australia. Participants completed questionnaire measures of positive body image, embodiment, self-objectification, and desire for thinness. Results showed yoga practitioners scored higher on positive body image and embodiment, and lower on self-objectification than non-yoga participants. In support of the embodiment model, the relationship between yoga participation and positive body image was serially mediated by embodiment and reduced self-objectification. Although Bikram practitioners endorsed appearance-related reasons for participating in yoga more than Iyengar practitioners, there were no significant differences between Iyengar and Bikram yoga practitioners on body image variables. It was concluded that yoga is an embodying activity that can provide women with the opportunity to cultivate a favourable relationship with their body. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Acoustic neuromas in the elderly.

    PubMed

    Perry, B P; Gantz, B J; Rubinstein, J T

    2001-05-01

    To determine if an "observation" protocol with serial scanning is a safe and effective management paradigm for acoustic neuromas in the elderly. A retrospective case review was performed. This study was performed in an academic, tertiary care center. Forty-one patients over the age of 65 years were identified with the primary diagnosis of unilateral acoustic neuroma, without prior treatment or observation. The patients were followed with serial, gadolinium-enhanced magnetic resonance imaging (MRI) scans performed at 6 months and then yearly, if no significant growth occurred. The patients were monitored for tumor growth, cranial nerve deficits, and hydrocephalus. The patients were followed for an average of 3.5 years (range, 6 months to 9 years). The average tumor size at presentation was 1.14 cm, with a range of growth rates from 0 to 1.2 cm per year. Twenty-one patients demonstrated tumor growth at an average rate of 0.322 cm per year. Only five patients (12%) required further intervention. Three patients underwent translabyrinthine excision, and two patients were treated with radiation. No patients developed significant complications during the observation period. Acoustic neuromas in the older population can be managed safely using serial MRI scanning. No correlation could be made between initial tumor size and subsequent growth rate.

  18. English Literature: A Student's Guide to Serial Bibliographies.

    ERIC Educational Resources Information Center

    McGill Univ., Montreal (Quebec). McLennan Library.

    This selected guide to serial bibliographies covering English language literature is based on an essay bibliography by David E. Pownall. Other bibliographies of serial bibliographies which were consulted include "A Reference Guide to English Studies,""Periodicals Containing Reviews and Bibliographies,""Serial Bibliographies in the Humanities and…

  19. Parallel asynchronous systems and image processing algorithms

    NASA Technical Reports Server (NTRS)

    Coon, D. D.; Perera, A. G. U.

    1989-01-01

    A new hardware approach to implementation of image processing algorithms is described. The approach is based on silicon devices which would permit an independent analog processing channel to be dedicated to evey pixel. A laminar architecture consisting of a stack of planar arrays of the device would form a two-dimensional array processor with a 2-D array of inputs located directly behind a focal plane detector array. A 2-D image data stream would propagate in neuronlike asynchronous pulse coded form through the laminar processor. Such systems would integrate image acquisition and image processing. Acquisition and processing would be performed concurrently as in natural vision systems. The research is aimed at implementation of algorithms, such as the intensity dependent summation algorithm and pyramid processing structures, which are motivated by the operation of natural vision systems. Implementation of natural vision algorithms would benefit from the use of neuronlike information coding and the laminar, 2-D parallel, vision system type architecture. Besides providing a neural network framework for implementation of natural vision algorithms, a 2-D parallel approach could eliminate the serial bottleneck of conventional processing systems. Conversion to serial format would occur only after raw intensity data has been substantially processed. An interesting challenge arises from the fact that the mathematical formulation of natural vision algorithms does not specify the means of implementation, so that hardware implementation poses intriguing questions involving vision science.

  20. SU-F-R-17: Advancing Glioblastoma Multiforme (GBM) Recurrence Detection with MRI Image Texture Feature Extraction and Machine Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, V; Ruan, D; Nguyen, D

    Purpose: To test the potential of early Glioblastoma Multiforme (GBM) recurrence detection utilizing image texture pattern analysis in serial MR images post primary treatment intervention. Methods: MR image-sets of six time points prior to the confirmed recurrence diagnosis of a GBM patient were included in this study, with each time point containing T1 pre-contrast, T1 post-contrast, T2-Flair, and T2-TSE images. Eight Gray-level co-occurrence matrix (GLCM) texture features including Contrast, Correlation, Dissimilarity, Energy, Entropy, Homogeneity, Sum-Average, and Variance were calculated from all images, resulting in a total of 32 features at each time point. A confirmed recurrent volume was contoured, alongmore » with an adjacent non-recurrent region-of-interest (ROI) and both volumes were propagated to all prior time points via deformable image registration. A support vector machine (SVM) with radial-basis-function kernels was trained on the latest time point prior to the confirmed recurrence to construct a model for recurrence classification. The SVM model was then applied to all prior time points and the volumes classified as recurrence were obtained. Results: An increase in classified volume was observed over time as expected. The size of classified recurrence maintained at a stable level of approximately 0.1 cm{sup 3} up to 272 days prior to confirmation. Noticeable volume increase to 0.44 cm{sup 3} was demonstrated at 96 days prior, followed by significant increase to 1.57 cm{sup 3} at 42 days prior. Visualization of the classified volume shows the merging of recurrence-susceptible region as the volume change became noticeable. Conclusion: Image texture pattern analysis in serial MR images appears to be sensitive to detecting the recurrent GBM a long time before the recurrence is confirmed by a radiologist. The early detection may improve the efficacy of targeted intervention including radiosurgery. More patient cases will be included to create a generalizable classification model applicable to a larger patient cohort. NIH R43CA183390 and R01CA188300.NSF Graduate Research Fellowship DGE-1144087.« less

  1. Proposal for future diagnosis and management of vascular tumors by using automatic software for image processing and statistic prediction.

    PubMed

    Popescu, M D; Draghici, L; Secheli, I; Secheli, M; Codrescu, M; Draghici, I

    2015-01-01

    Infantile Hemangiomas (IH) are the most frequent tumors of vascular origin, and the differential diagnosis from vascular malformations is difficult to establish. Specific types of IH due to the location, dimensions and fast evolution, can determine important functional and esthetic sequels. To avoid these unfortunate consequences it is necessary to establish the exact appropriate moment to begin the treatment and decide which the most adequate therapeutic procedure is. Based on clinical data collected by a serial clinical observations correlated with imaging data, and processed by a computer-aided diagnosis system (CAD), the study intended to develop a treatment algorithm to accurately predict the best final results, from the esthetical and functional point of view, for a certain type of lesion. The preliminary database was composed of 75 patients divided into 4 groups according to the treatment management they received: medical therapy, sclerotherapy, surgical excision and no treatment. The serial clinical observation was performed each month and all the data was processed by using CAD. The project goal was to create a software that incorporated advanced methods to accurately measure the specific IH lesions, integrated medical information, statistical methods and computational methods to correlate this information with that obtained from the processing of images. Based on these correlations, a prediction mechanism of the evolution of hemangioma, which helped determine the best method of therapeutic intervention to minimize further complications, was established.

  2. sfDM: Open-Source Software for Temporal Analysis and Visualization of Brain Tumor Diffusion MR Using Serial Functional Diffusion Mapping.

    PubMed

    Ceschin, Rafael; Panigrahy, Ashok; Gopalakrishnan, Vanathi

    2015-01-01

    A major challenge in the diagnosis and treatment of brain tumors is tissue heterogeneity leading to mixed treatment response. Additionally, they are often difficult or at very high risk for biopsy, further hindering the clinical management process. To overcome this, novel advanced imaging methods are increasingly being adapted clinically to identify useful noninvasive biomarkers capable of disease stage characterization and treatment response prediction. One promising technique is called functional diffusion mapping (fDM), which uses diffusion-weighted imaging (DWI) to generate parametric maps between two imaging time points in order to identify significant voxel-wise changes in water diffusion within the tumor tissue. Here we introduce serial functional diffusion mapping (sfDM), an extension of existing fDM methods, to analyze the entire tumor diffusion profile along the temporal course of the disease. sfDM provides the tools necessary to analyze a tumor data set in the context of spatiotemporal parametric mapping: the image registration pipeline, biomarker extraction, and visualization tools. We present the general workflow of the pipeline, along with a typical use case for the software. sfDM is written in Python and is freely available as an open-source package under the Berkley Software Distribution (BSD) license to promote transparency and reproducibility.

  3. Serial block-face scanning electron microscopy applied to study the trafficking of 8D3-coated gold nanoparticles at the blood-brain barrier.

    PubMed

    Cabezón, Itsaso; Augé, Elisabet; Bosch, Manel; Beckett, Alison J; Prior, Ian A; Pelegrí, Carme; Vilaplana, Jordi

    2017-07-01

    Due to the physical and physiological properties of the blood-brain barrier (BBB), the transport of neurotherapeutics from blood to brain is still a pharmaceutical challenge. We previously conducted a series of experiments to explore the potential of the anti-transferrin receptor 8D3 monoclonal antibody (mAb) to transport neurotherapeutics across the BBB. In that study, gold nanoparticles (AuNPs) were coated with the 8D3 antibody and administered intravenously to mice. Transmission electron microscopy was used and a two-dimensional (2D) image analysis was performed to detect the AuNPs in the brain capillary endothelial cells (BCECs) and brain parenchyma. In the present work, we determined that serial block-face scanning electron microscopy (SBF-SEM) is a useful tool to study the transcytosis of these AuNPs across the BBB in three dimensions and we, therefore, applied it to gain more knowledge of their transcellular trafficking. The resulting 3D reconstructions provided additional information on the endocytic vesicles containing AuNPs and the endosomal processing that occurs inside BCECs. The passage from 2D to 3D analysis reinforced the trafficking model proposed in the 2D study, and revealed that the vesicles containing AuNPs are significantly larger and more complex than described in our 2D study. We also discuss tradeoffs of using this technique for our application, and conclude that together with other volume electron microscopy imaging techniques, SBF-SEM is a powerful approach that is worth of considering for studies of drug transport across the BBB.

  4. Visualization of Monocytic Cells in Regressing Atherosclerotic Plaques by Intravital 2-Photon and Positron Emission Tomography-Based Imaging-Brief Report.

    PubMed

    Li, Wenjun; Luehmann, Hannah P; Hsiao, Hsi-Min; Tanaka, Satona; Higashikubo, Ryuji; Gauthier, Jason M; Sultan, Deborah; Lavine, Kory J; Brody, Steven L; Gelman, Andrew E; Gropler, Robert J; Liu, Yongjian; Kreisel, Daniel

    2018-05-01

    Aortic arch transplants have advanced our understanding of processes that contribute to progression and regression of atherosclerotic plaques. To characterize the dynamic behavior of monocytes and macrophages in atherosclerotic plaques over time, we developed a new model of cervical aortic arch transplantation in mice that is amenable to intravital imaging. Vascularized aortic arch grafts were transplanted heterotropically to the right carotid arteries of recipient mice using microsurgical suture techniques. To image immune cells in atherosclerotic lesions during regression, plaque-bearing aortic arch grafts from B6 ApoE-deficient donors were transplanted into syngeneic CX 3 CR1 GFP reporter mice. Grafts were evaluated histologically, and monocytic cells in atherosclerotic plaques in ApoE-deficient grafts were imaged intravitally by 2-photon microscopy in serial fashion. In complementary experiments, CCR2 + cells in plaques were serially imaged by positron emission tomography using specific molecular probes. Plaques in ApoE-deficient grafts underwent regression after transplantation into normolipidemic hosts. Intravital imaging revealed clusters of largely immotile CX 3 CR1 + monocytes/macrophages in regressing plaques that had been recruited from the periphery. We observed a progressive decrease in CX 3 CR1 + monocytic cells in regressing plaques and a decrease in CCR2 + positron emission tomography signal during 4 months. Cervical transplantation of atherosclerotic mouse aortic arches represents a novel experimental tool to investigate cellular mechanisms that contribute to the remodeling of atherosclerotic plaques. © 2018 American Heart Association, Inc.

  5. Serial block face-scanning electron microscopy: a tool for studying embryonic development at the cell-matrix interface.

    PubMed

    Starborg, Tobias; Kadler, Karl E

    2015-03-01

    Studies of gene regulation, signaling pathways, and stem cell biology are contributing greatly to our understanding of early embryonic vertebrate development. However, much less is known about the events during the latter half of embryonic development, when tissues comprising mostly extracellular matrix (ECM) are formed. The matrix extends far beyond the boundaries of individual cells and is refractory to study by conventional biochemical and molecular techniques; thus major gaps exist in our knowledge of the formation and three-dimensional (3D) organization of the dense tissues that form the bulk of adult vertebrates. Serial block face-scanning electron microscopy (SBF-SEM) has the ability to image volumes of tissue containing numerous cells at a resolution sufficient to study the organization of the ECM. Furthermore, whereas light microscopy was once relatively straightforward and electron microscopy was performed in specialist laboratories, the tables are turned; SBF-SEM is relatively straightforward and is becoming routine in high-end resolution studies of embryonic structures in vivo. In this review, we discuss the emergence of SBF-SEM as a tool for studying embryonic vertebrate development. © 2015 Wiley Periodicals, Inc.

  6. A Simple Instrument Designed to Provide Consistent Digital Facial Images in Dermatology

    PubMed Central

    Nirmal, Balakrishnan; Pai, Sathish B; Sripathi, Handattu

    2013-01-01

    Photography has proven to be a valuable tool in the field of dermatology. The major reason for poor photographs is the inability to produce comparable images in the subsequent follow ups. Combining digital photography with image processing software analysis brings consistency in tracking serial images. Digital photographs were taken with the aid of an instrument which we designed in our workshop to ensure that photographs were taken with identical patient positioning, camera angles and distance. It is of paramount importance in aesthetic dermatology to appreciate even subtle changes after each treatment session which can be achieved by taking consistent digital images. PMID:23723469

  7. A simple instrument designed to provide consistent digital facial images in dermatology.

    PubMed

    Nirmal, Balakrishnan; Pai, Sathish B; Sripathi, Handattu

    2013-05-01

    Photography has proven to be a valuable tool in the field of dermatology. The major reason for poor photographs is the inability to produce comparable images in the subsequent follow ups. Combining digital photography with image processing software analysis brings consistency in tracking serial images. Digital photographs were taken with the aid of an instrument which we designed in our workshop to ensure that photographs were taken with identical patient positioning, camera angles and distance. It is of paramount importance in aesthetic dermatology to appreciate even subtle changes after each treatment session which can be achieved by taking consistent digital images.

  8. Ceftriaxone-associated pancreatitis captured on serial computed tomography scans.

    PubMed

    Nakagawa, Nozomu; Ochi, Nobuaki; Yamane, Hiromichi; Honda, Yoshihiro; Nagasaki, Yasunari; Urata, Noriyo; Nakanishi, Hidekazu; Kawamoto, Hirofumi; Takigawa, Nagio

    2018-02-01

    A 74-year-old man was treated with ceftriaxone for 5 days and subsequently experienced epigastric pain. Computed tomography (CT) was performed 7 and 3 days before epigastralgia. Although the first CT image revealed no radiographic signs in his biliary system, the second CT image revealed dense radiopaque material in the gallbladder lumen. The third CT image, taken at symptom onset, showed high density in the common bile duct and enlargement of the pancreatic head. This is a very rare case of pseudolithiasis involving the common bile duct, as captured on a series of CT images.

  9. The microcomputer in cell and neurobiology research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mize, R.R.

    1985-01-01

    This book contains 21 chapters. They are divided into the following sections: The Microcomputer as a Research Tool, Microcomputer Uses in Light and Electron Microscopy, Microcomputer Uses in Morphometry, Serial Section Reconstruction, Microcomputer Uses in Imaging and Densitometry, and Microcomputer Uses in Electrophysiology.

  10. Liver cirrhosis in Fontan patients does not affect 1-year post-heart transplant mortality or markers of liver function.

    PubMed

    Simpson, Kathleen E; Esmaeeli, Amir; Khanna, Geetika; White, Francis; Turnmelle, Yumirle; Eghtesady, Pirooz; Boston, Umar; Canter, Charles E

    2014-02-01

    Liver cirrhosis is recognized with long-term follow-up of patients after the Fontan procedure. The effect of liver cirrhosis on the use of heart transplant (HT) and on post-HT outcomes is unknown. We reviewed Fontan patients evaluated for HT from 2004 to 2012 with hepatic computed tomography (CT) imaging, classified as normal, non-cirrhotic changes, or cirrhosis. The primary outcome was 1-year all-cause mortality, and the secondary outcome was differences in serial post-HT liver evaluation. CT imaging in 32 Fontan patients evaluated for HT revealed 20 (63%) with evidence of liver disease, including 13 (41%) with cirrhosis. Twenty underwent HT, including 5 non-cirrhotic and 7 cirrhosis patients. Characteristics at listing between normal or non-cirrhotic (n = 13) and cirrhosis (n = 7) groups were similar, except cirrhosis patients were older (median 17.6 vs 9.6 years, p = 0.002) and further from Fontan (median 180 vs 50 months, p < 0.05). Serial liver evaluation was similar, including aspartate aminotransferase, alanine aminotransferase, bilirubin, albumin, and tacrolimus dose at 1, 3, 6, 9, and 12 months. Overall patient survival was 80% at 1 year, with no difference between cirrhosis and non-cirrhosis patients (86% vs 77%, p = 0.681). Liver biopsies were performed in 7 patients before HT, and all specimens showed architectural changes with bridging fibrosis. Most patients evaluated for HT had abnormal liver findings by CT, with cirrhosis in 41%. One-year mortality and serial liver evaluation were similar between groups after HT. Liver cirrhosis identified by CT imaging may not be an absolute contraindication to HT alone in this population. © 2014 International Society for Heart and Lung Transplantation Published by International Society for the Heart and Lung Transplantation All rights reserved.

  11. The Influence of Changes in Tumor Hypoxia on Dose-Painting Treatment Plans Based on {sup 18}F-FMISO Positron Emission Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin Zhixiong; Mechalakos, James; Nehmeh, Sadek

    2008-03-15

    Purpose: To evaluate how changes in tumor hypoxia, according to serial fluorine-18-labeled fluoro-misonidazole ({sup 18}F-FMISO) positron emission tomography (PET) imaging, affect the efficacy of intensity-modulated radiotherapy (IMRT) dose painting. Methods and Materials: Seven patients with head and neck cancers were imaged twice with FMISO PET, separated by 3 days, before radiotherapy. Intensity-modulated radiotherapy plans were designed, on the basis of the first FMISO scan, to deliver a boost dose of 14 Gy to the hypoxic volume, in addition to the 70-Gy prescription dose. The same plans were then applied to hypoxic volumes from the second FMISO scan, and the efficacymore » of dose painting evaluated by assessing coverage of the hypoxic volumes using D{sub max}, D{sub min}, D{sub mean}, D{sub 95}, and equivalent uniform dose (EUD). Results: Similar hypoxic volumes were observed in the serial scans for 3 patients but dissimilar ones for the other 4. There was reduced coverage of hypoxic volumes of the second FMISO scan relative to that of the first scan (e.g., the average EUD decreased from 87 Gy to 80 Gy). The decrease was dependent on the similarity of the hypoxic volumes of the two scans (e.g., the average EUD decrease was approximately 4 Gy for patients with similar hypoxic volumes and approximately 12 Gy for patients with dissimilar ones). Conclusions: The changes in spatial distribution of tumor hypoxia, as detected in serial FMISO PET imaging, compromised the coverage of hypoxic tumor volumes achievable by dose-painting IMRT. However, dose painting always increased the EUD of the hypoxic volumes.« less

  12. Impact of Serials Management, Access and Use on Publication Output of Lecturers in Nigerian Universities

    ERIC Educational Resources Information Center

    Akinbode, Rahmon O. Onaolapo; Nwalo, Kenneth Ivo Ngozi

    2017-01-01

    This study investigates serials management in university libraries, determines the extent to which serials are accessed and used and appraises the influence of availability, accessibility and use of serials on publications output of lecturers in federal universities in Nigeria. Questionnaire administration method was adopted to accumulate data for…

  13. Preliminary embryological study of the radiological concept of retroperitoneal interfascial planes: what are the interfascial planes?

    PubMed

    Ishikawa, Kazuo; Nakao, Shota; Murakami, Gen; Rodríguez-Vázquez, Jose Francisco; Matsuoka, Tetsuya; Nakamuro, Makoto; Shimazu, Takeshi

    2014-12-01

    Recently, the radiological concept of retroperitoneal interfascial planes has been widely accepted to explain the extension of retroperitoneal pathologies. This study aimed to explore embryologically based corroborative evidence, which remains to be elucidated, for this concept. Using serial or semi-serial transverse sections from 29 human fetuses at the 5th-25th week of fetal age, we microscopically observed the development of the retroperitoneal fasciae and other structures in the retroperitoneal connective tissue. A hypothesis for the formation of the interfascial planes was generated from the developmental study and analysis of retroperitoneal fasciae in computed tomography images from 224 patients. Whereas the loose connective tissue was uniformly distributed in the retroperitoneum by the 9th week, the primitive renal and transversalis fasciae appeared at the 10th-12th week, as previous research has noted. By the 23rd week, the renal fascia, transversalis fascia, and primitive adipose tissue of the flank pad emerged. In addition, the primitive lateroconal fascia, which runs parallel to and close to the posterior renal fascia, emerged between the renal fascia and the adipose tissue of the flank pad. Conversely, pre-existing loose connective tissue was sandwiched between the opposing fasciae and was compressed and narrowed by the developing organs and fatty tissues. Through this developmental study, we provided the hypothesis that the compressed loose connective tissue and both opposed fasciae compose the interfascial planes. Analysis of the thickened retroperitoneal fasciae in computed tomography images supported this hypothesis. Further developmental or histological studies are required to verify our hypothesis.

  14. Clinical Experience With Radiation Therapy in the Management of Neurofibromatosis-Associated Central Nervous System Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wentworth, Stacy; Pinn, Melva; Bourland, J. Daniel

    Purpose: Patients with neurofibromatosis (NF) develop tumors of the central nervous system (CNS). Radiation therapy (RT) is used to treat these lesions. To better define the efficacy of RT in these patients, we reviewed our 20-year experience. Methods and Materials: Eighteen patients with NF with CNS tumors were treated from 1986 to 2007. Median follow-up was 48 months. Progression was defined as growth or recurrence of an irradiated tumor on serial imaging. Progression-free survival (PFS) was measured from the date of RT completion to the date of last follow-up imaging study. Actuarial rates of overall survival (OS) and PFS weremore » calculated according to the Kaplan-Meier method. Results: Eighty-two tumors in 18 patients were irradiated, with an average of five tumors/patient. Median age at treatment was 25 years (range, 4.3-64 years). Tumor types included acoustic neuroma (16%), ependymoma (6%), low-grade glioma (11%), meningioma (60%), and schwanomma/neurofibroma (7%). The most common indication for treatment was growth on serial imaging. Most patients (67%) received stereotactic radiosurgery (median dose, 1,200 cGy; range, 1,000-2,400 cGy). The OS rate at 5 years was 94%. Five-year PFS rates were 75% (acoustic neuroma), 100% (ependymoma), 75% (low-grade glioma), 86% (meningioma), and 100% (schwanomma/neurofibroma). Thirteen acoustic neuromas had a local control rate of 94% with a 50% hearing preservation rate. Conclusions: RT provided local control, OS, and PFS rates similar to or better than published data for tumors in non-NF patients. Radiation therapy should be considered in NF patients with imaging progression of CNS tumors.« less

  15. A comparison of serial order short-term memory effects across verbal and musical domains.

    PubMed

    Gorin, Simon; Mengal, Pierre; Majerus, Steve

    2018-04-01

    Recent studies suggest that the mechanisms involved in the short-term retention of serial order information may be shared across short-term memory (STM) domains such as verbal and visuospatial STM. Given the intrinsic sequential organization of musical material, the study of STM for musical information may be particularly informative about serial order retention processes and their domain-generality. The present experiment examined serial order STM for verbal and musical sequences in participants with no advanced musical expertise and experienced musicians. Serial order STM for verbal information was assessed via a serial order reconstruction task for digit sequences. In the musical domain, serial order STM was assessed using a novel melodic sequence reconstruction task maximizing the retention of tone order information. We observed that performance for the verbal and musical tasks was characterized by sequence length as well as primacy and recency effects. Serial order errors in both tasks were characterized by similar transposition gradients and ratios of fill-in:infill errors. These effects were observed for both participant groups, although the transposition gradients and ratios of fill-in:infill errors showed additional specificities for musician participants in the musical task. The data support domain-general serial order STM effects but also suggest the existence of additional domain-specific effects. Implications for models of serial order STM in verbal and musical domains are discussed.

  16. On the representation of cells in bone marrow pathology by a scalar field: propagation through serial sections, co-localization and spatial interaction analysis.

    PubMed

    Weis, Cleo-Aron; Grießmann, Benedict Walter; Scharff, Christoph; Detzner, Caecilia; Pfister, Eva; Marx, Alexander; Zoellner, Frank Gerrit

    2015-09-02

    Immunohistochemical analysis of cellular interactions in the bone marrow in situ is demanding, due to its heterogeneous cellular composition, the poor delineation and overlap of functional compartments and highly complex immunophenotypes of several cell populations (e.g. regulatory T-cells) that require immunohistochemical marker sets for unambiguous characterization. To overcome these difficulties, we herein present an approach to describe objects (e.g. cells, bone trabeculae) by a scalar field that can be propagated through registered images of serial histological sections. The transformation of objects within images (e.g. cells) to a scalar field was performed by convolution of the object's centroids with differently formed radial basis function (e.g. for direct or indirect spatial interaction). On the basis of such a scalar field, a summation field described distributed objects within an image. After image registration i) colocalization analysis could be performed on basis scalar field, which is propagated through registered images, and - due to the shape of the field - were barely prone to matching errors and morphological changes by different cutting levels; ii) furthermore, depending on the field shape the colocalization measurements could also quantify spatial interaction (e.g. direct or paracrine cellular contact); ii) the field-overlap, which represents the spatial distance, of different objects (e.g. two cells) could be calculated by the histogram intersection. The description of objects (e.g. cells, cell clusters, bone trabeculae etc.) as a field offers several possibilities: First, co-localization of different markers (e.g. by immunohistochemical staining) in serial sections can be performed in an automatic, objective and quantifiable way. In contrast to multicolour staining (e.g. 10-colour immunofluorescence) the financial and technical requirements are fairly minor. Second, the approach allows searching for different types of spatial interactions (e.g. direct and indirect cellular interaction) between objects by taking field shape into account (e.g. thin vs. broad). Third, by describing spatially distributed groups of objects as summation field, it gives cluster definition that relies rather on the bare object distance than on the modelled spatial cellular interaction.

  17. A guide to analysis and reconstruction of serial block face scanning electron microscopy data

    PubMed Central

    TAGGART, M.; RIND, F.C.; WHITE, K.

    2018-01-01

    Summary Serial block face scanning electron microscopy (SBF‐SEM) is a relatively new technique that allows the acquisition of serially sectioned, imaged and digitally aligned ultrastructural data. There is a wealth of information that can be obtained from the resulting image stacks but this presents a new challenge for researchers – how to computationally analyse and make best use of the large datasets produced. One approach is to reconstruct structures and features of interest in 3D. However, the software programmes can appear overwhelming, time‐consuming and not intuitive for those new to image analysis. There are a limited number of published articles that provide sufficient detail on how to do this type of reconstruction. Therefore, the aim of this paper is to provide a detailed step‐by‐step protocol, accompanied by tutorial videos, for several types of analysis programmes that can be used on raw SBF‐SEM data, although there are more options available than can be covered here. To showcase the programmes, datasets of skeletal muscle from foetal and adult guinea pigs are initially used with procedures subsequently applied to guinea pig cardiac tissue and locust brain. The tissue is processed using the heavy metal protocol developed specifically for SBF‐SEM. Trimmed resin blocks are placed into a Zeiss Sigma SEM incorporating the Gatan 3View and the resulting image stacks are analysed in three different programmes, Fiji, Amira and MIB, using a range of tools available for segmentation. The results from the image analysis comparison show that the analysis tools are often more suited to a particular type of structure. For example, larger structures, such as nuclei and cells, can be segmented using interpolation, which speeds up analysis; single contrast structures, such as the nucleolus, can be segmented using the contrast‐based thresholding tools. Knowing the nature of the tissue and its specific structures (complexity, contrast, if there are distinct membranes, size) will help to determine the best method for reconstruction and thus maximize informative output from valuable tissue. PMID:29333754

  18. A guide to analysis and reconstruction of serial block face scanning electron microscopy data.

    PubMed

    Cocks, E; Taggart, M; Rind, F C; White, K

    2018-05-01

    Serial block face scanning electron microscopy (SBF-SEM) is a relatively new technique that allows the acquisition of serially sectioned, imaged and digitally aligned ultrastructural data. There is a wealth of information that can be obtained from the resulting image stacks but this presents a new challenge for researchers - how to computationally analyse and make best use of the large datasets produced. One approach is to reconstruct structures and features of interest in 3D. However, the software programmes can appear overwhelming, time-consuming and not intuitive for those new to image analysis. There are a limited number of published articles that provide sufficient detail on how to do this type of reconstruction. Therefore, the aim of this paper is to provide a detailed step-by-step protocol, accompanied by tutorial videos, for several types of analysis programmes that can be used on raw SBF-SEM data, although there are more options available than can be covered here. To showcase the programmes, datasets of skeletal muscle from foetal and adult guinea pigs are initially used with procedures subsequently applied to guinea pig cardiac tissue and locust brain. The tissue is processed using the heavy metal protocol developed specifically for SBF-SEM. Trimmed resin blocks are placed into a Zeiss Sigma SEM incorporating the Gatan 3View and the resulting image stacks are analysed in three different programmes, Fiji, Amira and MIB, using a range of tools available for segmentation. The results from the image analysis comparison show that the analysis tools are often more suited to a particular type of structure. For example, larger structures, such as nuclei and cells, can be segmented using interpolation, which speeds up analysis; single contrast structures, such as the nucleolus, can be segmented using the contrast-based thresholding tools. Knowing the nature of the tissue and its specific structures (complexity, contrast, if there are distinct membranes, size) will help to determine the best method for reconstruction and thus maximize informative output from valuable tissue. © 2018 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.

  19. Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, C.; Marx, A.; Epp, S. W.

    We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linacmore » Coherent Light Source (LCLS, Menlo Park, California, USA). As a result, the chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs.« less

  20. Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography

    DOE PAGES

    Mueller, C.; Marx, A.; Epp, S. W.; ...

    2015-08-18

    We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linacmore » Coherent Light Source (LCLS, Menlo Park, California, USA). As a result, the chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs.« less

  1. Acquisition of thin coronal sectional dataset of cadaveric liver.

    PubMed

    Lou, Li; Liu, Shu Wei; Zhao, Zhen Mei; Tang, Yu Chun; Lin, Xiang Tao

    2014-04-01

    To obtain the thin coronal sectional anatomic dataset of the liver by using digital freezing milling technique. The upper abdomen of one Chinese adult cadaver was selected as the specimen. After CT and MRI examinations verification of absent liver lesions, the specimen was embedded with gelatin in stand erect position and frozen under profound hypothermia, and the specimen was then serially sectioned from anterior to posterior layer by layer with digital milling machine in the freezing chamber. The sequential images were captured by means of a digital camera and the dataset was imported to imaging workstation. The thin serial section of the liver added up to 699 layers with each layer being 0.2 mm in thickness. The shape, location, structure, intrahepatic vessels and adjacent structures of the liver was displayed clearly on each layer of the coronal sectional slice. CT and MR images through the body were obtained at 1.0 and 3.0 mm intervals, respectively. The methodology reported here is an adaptation of the milling methods previously described, which is a new data acquisition method for sectional anatomy. The thin coronal sectional anatomic dataset of the liver obtained by this technique is of high precision and good quality.

  2. Ham Video Commissioning in Columbus

    NASA Image and Video Library

    2014-04-13

    Documentation of the Ham Video unit installed in the Columbus European Laboratory. Part number (P/N) is HAM-11000-0F, serial number (S/N) is 01, barcode is HAMV0001E. Image was taken during Expedition 39 Ham Video commissioning activities and released by astronaut on Twitter.

  3. Imaging in children with unilateral ureteropelvic junction obstruction: time to reduce investigations?

    PubMed

    Abadir, Nadin; Schmidt, Maria; Laube, Guido F; Weitz, Marcus

    2017-09-01

    The objective of the study was the development of an abridged risk-stratified imaging algorithm for the management of children with unilateral ureteropelvic junction obstruction (UPJO). Data on timing, frequency and duration of diagnostic imaging in children with unilateral UPJO was extracted retrospectively. Based on these findings, an abridged imaging algorithm was developed without changing the intended management by the clinicians and the outcome of the individual patient. The potential reduction of imaging studies was analysed and stratified by risk and management groups. The reduction in imaging studies, seen for ultrasound (US) and functional imaging (FI), was 45% each. On average, this is equivalent to 3 US and 1 FI studies less for every patient within the study period. The change was more pronounced in the low-risk groups. Progression of UPJO never occurred after 2 years of age and all secondary surgeries were carried out until the age of 3. Although our findings need to be validated by further prospective research, the developed imaging algorithm represents a risk-stratified approach towards less imaging studies in children with unilateral UPJO, and a follow-up beyond 3 years of age should be considered only in selected cases at the discretion of the clinician. What is Known: • ultrasound and functional imaging represent an integral part of therapeutic decision-making in children with unilateral ureteropelvic junction obstruction • imaging studies cannot accurately assess which patients are in need of surgical intervention, therefore close, serial imaging is preferred What is New: • a new, risk-stratified imaging algorithm was developed for the first 3 years of life • applying this algorithm could lead to a considerable reduction of imaging studies, and also the associated risks and health-care costs.

  4. Serial single molecule electron diffraction imaging: diffraction background of superfluid helium droplets

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; He, Yunteng; Lei, Lei; Alghamdi, Maha; Oswalt, Andrew; Kong, Wei

    2017-08-01

    In an effort to solve the crystallization problem in crystallography, we have been engaged in developing a method termed "serial single molecule electron diffraction imaging" (SS-EDI). The unique features of SS-EDI are superfluid helium droplet cooling and field-induced orientation: together the two features constitute a molecular goniometer. Unfortunately, the helium atoms surrounding the sample molecule also contribute to a diffraction background. In this report, we analyze the properties of a superfluid helium droplet beam and its doping statistics, and demonstrate the feasibility of overcoming the background issue by using the velocity slip phenomenon of a pulsed droplet beam. Electron diffraction profiles and pair correlation functions of ferrocene-monomer-doped droplets and iodine-nanocluster-doped droplets are presented. The timing of the pulsed electron gun and the effective doping efficiency under different dopant pressures can both be controlled for size selection. This work clears any doubt of the effectiveness of superfluid helium droplets in SS-EDI, thereby advancing the effort in demonstrating the "proof-of-concept" one step further.

  5. Visual attention distracter insertion for improved EEG rapid serial visual presentation (RSVP) target stimuli detection

    NASA Astrophysics Data System (ADS)

    Khosla, Deepak; Huber, David J.; Martin, Kevin

    2017-05-01

    This paper† describes a technique in which we improve upon the prior performance of the Rapid Serial Visual Presentation (RSVP) EEG paradigm for image classification though the insertion of visual attention distracters and overall sequence reordering based upon the expected ratio of rare to common "events" in the environment and operational context. Inserting distracter images maintains the ratio of common events to rare events at an ideal level, maximizing the rare event detection via P300 EEG response to the RSVP stimuli. The method has two steps: first, we compute the optimal number of distracters needed for an RSVP stimuli based on the desired sequence length and expected number of targets and insert the distracters into the RSVP sequence, and then we reorder the RSVP sequence to maximize P300 detection. We show that by reducing the ratio of target events to nontarget events using this method, we can allow RSVP sequences with more targets without sacrificing area under the ROC curve (azimuth).

  6. Se-SAD serial femtosecond crystallography datasets from selenobiotinyl-streptavidin

    DOE PAGES

    Yoon, Chun Hong; DeMirci, Hasan; Sierra, Raymond G.; ...

    2017-04-25

    We provide a detailed description of selenobiotinyl-streptavidin (Se-B SA) co-crystal datasets recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS) for selenium single-wavelength anomalous diffraction (Se-SAD) structure determination. Se-B SA was chosen as the model system for its high affinity between biotin and streptavidin where the sulfur atom in the biotin molecule (C 10H 16N 2O 3S) is substituted with selenium. The dataset was collected at three different transmissions (100, 50, and 10%) using a serial sample chamber setup which allows for two sample chambers, a front chamber and a back chamber, to operatemore » simultaneously. Diffraction patterns from Se-B SA were recorded to a resolution of 1.9 Å. The dataset is publicly available through the Coherent X-ray Imaging Data Bank (CXIDB) and also on LCLS compute nodes as a resource for research and algorithm development.« less

  7. Se-SAD serial femtosecond crystallography datasets from selenobiotinyl-streptavidin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Chun Hong; DeMirci, Hasan; Sierra, Raymond G.

    We provide a detailed description of selenobiotinyl-streptavidin (Se-B SA) co-crystal datasets recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS) for selenium single-wavelength anomalous diffraction (Se-SAD) structure determination. Se-B SA was chosen as the model system for its high affinity between biotin and streptavidin where the sulfur atom in the biotin molecule (C 10H 16N 2O 3S) is substituted with selenium. The dataset was collected at three different transmissions (100, 50, and 10%) using a serial sample chamber setup which allows for two sample chambers, a front chamber and a back chamber, to operatemore » simultaneously. Diffraction patterns from Se-B SA were recorded to a resolution of 1.9 Å. The dataset is publicly available through the Coherent X-ray Imaging Data Bank (CXIDB) and also on LCLS compute nodes as a resource for research and algorithm development.« less

  8. Responses of the Human Brain to Mild Dehydration and Rehydration Explored In Vivo by 1H-MR Imaging and Spectroscopy.

    PubMed

    Biller, A; Reuter, M; Patenaude, B; Homola, G A; Breuer, F; Bendszus, M; Bartsch, A J

    2015-12-01

    As yet, there are no in vivo data on tissue water changes and associated morphometric changes involved in the osmo-adaptation of normal brains. Our aim was to evaluate osmoadaptive responses of the healthy human brain to osmotic challenges of de- and rehydration by serial measurements of brain volume, tissue fluid, and metabolites. Serial T1-weighted and (1)H-MR spectroscopy data were acquired in 15 healthy individuals at normohydration, on 12 hours of dehydration, and during 1 hour of oral rehydration. Osmotic challenges were monitored by serum measures, including osmolality and hematocrit. MR imaging data were analyzed by using FreeSurfer and LCModel. On dehydration, serum osmolality increased by 0.67% and brain tissue fluid decreased by 1.63%, on average. MR imaging morphometry demonstrated corresponding decreases of cortical thickness and volumes of the whole brain, cortex, white matter, and hypothalamus/thalamus. These changes reversed during rehydration. Continuous fluid ingestion of 1 L of water for 1 hour within the scanner lowered serum osmolality by 0.96% and increased brain tissue fluid by 0.43%, on average. Concomitantly, cortical thickness and volumes of the whole brain, cortex, white matter, and hypothalamus/thalamus increased. Changes in brain tissue fluid were related to volume changes of the whole brain, the white matter, and hypothalamus/thalamus. Only volume changes of the hypothalamus/thalamus significantly correlated with serum osmolality. This is the first study simultaneously evaluating changes in brain tissue fluid, metabolites, volume, and cortical thickness. Our results reflect cellular volume regulatory mechanisms at a macroscopic level and emphasize that it is essential to control for hydration levels in studies on brain morphometry and metabolism in order to avoid confounding the findings. © 2015 by American Journal of Neuroradiology.

  9. Specific Radiological Imaging Findings in Patients With Hereditary Pancreatitis During a Long Follow-up of Disease.

    PubMed

    van Esch, Aura A J; Drenth, Joost P H; Hermans, John J

    2017-03-01

    Hereditary pancreatitis (HP) is characterized by recurrent episodes of inflammation of the pancreas. Radiological imaging is used to diagnose HP and to monitor complications. The aim of this study was to describe specific imaging findings in HP. We retrospectively collected data of HP patients with serial imaging and reviewed all radiological imaging studies (transabdominal ultrasonography, computed tomography, and magnetic resonance imaging). We included 15 HP patients, with a mean age of 32.5 years (range, 9-61 years) and mean disease duration of 24.1 years (range, 6-42 years). In total, 152 imaging studies were reviewed. Seventy-three percent of patients had a dilated main pancreatic duct (MPD) (width 3.5-18 mm). The MPD varied in size during disease course, with temporary reduction in diameter after drainage procedures. A severe dilated MPD (>10 mm) often coincided with presence of intraductal calcifications (size, 1-12 mm). In 73% of patients, pancreatic parenchyma atrophy occurred, which did not correlate with presence of exocrine or endocrine insufficiency. In HP, the MPD diameter increases with time, mostly without dilated side branches, and is often accompanied by large intraductal calcifications. The size of the MPD is independent of disease state. Atrophy of pancreatic parenchyma is not correlated with exocrine or endocrine insufficiency.

  10. Initial evaluation of the use of USPIO cell labeling and noninvasive MR monitoring of human tissue-engineered vascular grafts in vivo.

    PubMed

    Nelson, G N; Roh, J D; Mirensky, T L; Wang, Y; Yi, T; Tellides, G; Pober, J S; Shkarin, P; Shapiro, E M; Saltzman, W M; Papademetris, X; Fahmy, T M; Breuer, C K

    2008-11-01

    This pilot study examines noninvasive MR monitoring of tissue-engineered vascular grafts (TEVGs) in vivo using cells labeled with iron oxide nanoparticles. Human aortic smooth muscle cells (hASMCs) were labeled with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. The labeled hASMCs, along with human aortic endothelial cells, were incorporated into eight TEVGs and were then surgically implanted as aortic interposition grafts in a C.B-17 SCID/bg mouse host. USPIO-labeled hASMCs persisted in the grafts throughout a 3 wk observation period and allowed noninvasive MR imaging of the human TEVGs for real-time, serial monitoring of hASMC retention. This study demonstrates the feasibility of applying noninvasive imaging techniques for evaluation of in vivo TEVG performance.

  11. Cortical Gray and Adjacent White Matter Demonstrate Synchronous Maturation in Very Preterm Infants.

    PubMed

    Smyser, Tara A; Smyser, Christopher D; Rogers, Cynthia E; Gillespie, Sarah K; Inder, Terrie E; Neil, Jeffrey J

    2016-08-01

    Spatial and functional gradients of development have been described for the maturation of cerebral gray and white matter using histological and radiological approaches. We evaluated these patterns in very preterm (VPT) infants using diffusion tensor imaging. Data were obtained from 3 groups: 1) 22 VPT infants without white matter injury (WMI), of whom all had serial MRI studies during the neonatal period, 2) 19 VPT infants with WMI, of whom 3 had serial MRI studies and 3) 12 healthy, term-born infants. Regions of interest were placed in the cortical gray and adjacent white matter in primary motor, primary visual, visual association, and prefrontal regions. From the MRI data at term-equivalent postmenstrual age, differences in mean diffusivity were found in all areas between VPT infants with WMI and the other 2 groups. In contrast, minimal differences in fractional anisotropy were found between the 3 groups. These findings suggest that cortical maturation is delayed in VPT infants with WMI when compared with term control infants and VPT infants without WMI. From the serial MRI data from VPT infants, synchronous development between gray and white matter was evident in all areas and all groups, with maturation in primary motor and sensory regions preceding that of association areas. This finding highlights the regionally varying but locally synchronous nature of the development of cortical gray matter and its adjacent white matter. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Preclinical evaluation of isostructural Tc-99m- and Re-188-folate-Gly-Gly-Cys-Glu for folate receptor-positive tumor targeting.

    PubMed

    Kim, Woo Hyoung; Kim, Chang Guhn; Kim, Myoung Hyoun; Kim, Dae-Weung; Park, Cho Rong; Park, Ji Yong; Lee, Yun-Sang; Youn, Hyewon; Kang, Keon Wook; Jeong, Jae Min; Chung, June-Key

    2016-06-01

    The purpose of the present study was to prepare isostructural Tc-99m- and Re-188-folate-Gly-Gly-Cys-Glu (folate-GGCE), and to evaluate the feasibility of their use for folate receptor (FR)-targeted molecular imaging and as theranostic agents in a mouse tumor model. Folate-GGCE was synthesized using solid-phase peptide synthesis and radiolabeled with Tc-99m or Re-188. Radiochemical characterization was performed by radio-high-performance liquid chromatography. The biodistribution of Tc-99m-folate-GGCE was studied, with or without co-injection of excess free folate, in mice bearing both FR-positive (KB cell) and FR-negative (HT1080 cell) tumors. Biodistribution of Re-188-folate-GGCE was studied in mice bearing KB tumors. Serial planar scintigraphy was performed in the dual tumor mouse model after intravenous injection of Tc-99m-folate-GGCE. Serial micro-single photon emission computed tomography/computed tomography (SPECT/CT) studies were performed, with or without co-injection of excess free folate, in the mouse tumor model after injection of Tc-99m-folate-GGCE or Re-188-folate-GGCE. The radiolabeling efficiency and radiochemical stability of Tc-99m- and Re-188-folate-GGCE were more than 95 % for up to 4 h after radiolabeling. Uptake of Tc-99m-folate-GGCE at 1, 2, and 4 h after injection in KB tumor was 16.4, 23.2, and 17.6 % injected dose per gram (%ID/g), respectively. This uptake was suppressed by 97.4 % when excess free folate was co-administered. Tumor:normal organ ratios at 4 h for blood, liver, lung, muscle, and kidney were 54.3, 25.2, 38.3, 97.8, and 0.3, respectively. Tumor uptake of Re-188-folate-GGCE at 2, 4, 8, and 16 h after injection was 17.4, 21.7, 24.1, and 15.6 %ID/g, respectively. Tumor:normal organ ratios at 8 h for blood, liver, lung, muscle, and kidney were 126.8, 21.9, 54.8, 80.3, and 0.4, respectively. KB tumors were clearly visualized at a high intensity using serial scintigraphy and micro-SPECT/CT in mice injected with Tc-99m- or Re-188-folate-GGCE. The tumor uptake of these molecules was completely suppressed when excess free folate was co-administered. Isostructural Tc-99m- and Re-188-folate-GGCE showed high and FR-specific uptake by tumors and generally favorable tumor:normal organ ratios. The tumor targeting capabilities of Tc-99m- and Re-188-folate-GGCE were clearly evident on serial imaging studies. This isostructural pair may have potential diagnostic and theranostic applications for FR-positive tumors.

  13. Localized cerebral energy failure in DNA polymerase gamma-associated encephalopathy syndromes.

    PubMed

    Tzoulis, Charalampos; Neckelmann, Gesche; Mørk, Sverre J; Engelsen, Bernt E; Viscomi, Carlo; Moen, Gunnar; Ersland, Lars; Zeviani, Massimo; Bindoff, Laurence A

    2010-05-01

    Mutations in the catalytic subunit of the mitochondrial DNA-polymerase gamma cause a wide spectrum of clinical disease ranging from infantile hepato-encephalopathy to juvenile/adult-onset spinocerebellar ataxia and late onset progressive external ophthalmoplegia. Several of these syndromes are associated with an encephalopathy that characteristically shows episodes of rapid neurological deterioration and the development of acute cerebral lesions. The purpose of this study was to investigate the nature, distribution and natural evolution of central nervous system lesions in polymerase gamma associated encephalopathy focusing particularly on lesions identified by magnetic resonance imaging. We compared radiological, electrophysiological and pathological findings where available to study potential mechanisms underlying the episodes of exacerbation and acute cerebral lesions. We studied a total of 112 magnetic resonance tomographies and 11 computed tomographies in 32 patients with polymerase gamma-encephalopathy, including multiple serial examinations performed during both the chronic and acute phases of the disease and, in several cases, magnetic resonance spectroscopy and serial diffusion weighted studies. Data from imaging, electroencephalography and post-mortem examination were compared in order to study the underlying disease process. Our findings show that magnetic resonance imaging in polymerase gamma-related encephalopathies has high sensitivity and can identify patterns that are specific for individual syndromes. One form of chronic polymerase gamma-encephalopathy, that is associated with the c.1399G > A and c.2243G > C mutations, is characterized by progressive cerebral and cerebellar atrophy and focal lesions of the thalamus, deep cerebellar structures and medulla oblongata. Acute encephalopathies, both infantile and later onset, show similar pictures with cortical stroke-like lesions occurring during episodes of exacerbation. These lesions can occur both with and without electroencephalographic evidence of concurrent epileptic activity, and have diffusion, spectroscopic and histological profiles strongly suggestive of neuronal energy failure. We suggest therefore that both infantile and later onset polymerase gamma related encephalopathies are part of a continuum.

  14. Quantitative image analysis of WE43-T6 cracking behavior

    NASA Astrophysics Data System (ADS)

    Ahmad, A.; Yahya, Z.

    2013-06-01

    Environment-assisted cracking of WE43 cast magnesium (4.2 wt.% Yt, 2.3 wt.% Nd, 0.7% Zr, 0.8% HRE) in the T6 peak-aged condition was induced in ambient air in notched specimens. The mechanism of fracture was studied using electron backscatter diffraction, serial sectioning and in situ observations of crack propagation. The intermetallic (rare earthed-enriched divorced intermetallic retained at grain boundaries and predominantly at triple points) material was found to play a significant role in initiating cracks which leads to failure of this material. Quantitative measurements were required for this project. The populations of the intermetallic and clusters of intermetallic particles were analyzed using image analysis of metallographic images. This is part of the work to generate a theoretical model of the effect of notch geometry on the static fatigue strength of this material.

  15. Three Dimensional Characterization of Tin Crystallography and Cu6Sn5 Intermetallics in Solder Joints by Multiscale Tomography

    NASA Astrophysics Data System (ADS)

    Kirubanandham, A.; Lujan-Regalado, I.; Vallabhaneni, R.; Chawla, N.

    2016-11-01

    Decreasing pitch size in electronic packaging has resulted in a drastic decrease in solder volumes. The Sn grain crystallography and fraction of intermetallic compounds (IMCs) in small-scale solder joints evolve much differently at the smaller length scales. A cross-sectional study limits the morphological analysis of microstructural features to two dimensions. This study utilizes serial sectioning technique in conjunction with electron backscatter diffraction to investigate the crystallographic orientation of both Sn grains and Cu6Sn5 IMCs in Cu/Pure Sn/Cu solder joints in three dimensional (3D). Quantification of grain aspect ratio is affected by local cooling rate differences within the solder volume. Backscatter electron imaging and focused ion beam serial sectioning enabled the visualization of morphology of both nanosized Cu6Sn5 IMCs and the hollow hexagonal morphology type Cu6Sn5 IMCs in 3D. Quantification and visualization of microstructural features in 3D thus enable us to better understand the microstructure and deformation mechanics within these small scale solder joints.

  16. Imaging Biomarker Dynamics in an Intracranial Murine Glioma Study of Radiation and Antiangiogenic Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Caroline, E-mail: caroline.chung@rmp.uhn.on.ca; Jalali, Shahrzad; Foltz, Warren

    2013-03-01

    Purpose: There is a growing need for noninvasive biomarkers to guide individualized spatiotemporal delivery of radiation therapy (RT) and antiangiogenic (AA) therapy for brain tumors. This study explored early biomarkers of response to RT and the AA agent sunitinib (SU), in a murine intracranial glioma model, using serial magnetic resonance imaging (MRI). Methods and Materials: Mice with MRI-visible tumors were stratified by tumor size into 4 therapy arms: control, RT, SU, and SU plus RT (SURT). Single-fraction conformal RT was delivered using MRI and on-line cone beam computed tomography (CT) guidance. Serial MR images (T2-weighted, diffusion, dynamic contrast-enhanced and gadolinium-enhancedmore » T1-weighted scans) were acquired biweekly to evaluate tumor volume, apparent diffusion coefficient (ADC), and tumor perfusion and permeability responses (K{sub trans}, K{sub ep}). Results: Mice in all treatment arms survived longer than those in control, with a median survival of 35 days for SURT (P<.0001) and 30 days for RT (P=.009) and SU (P=.01) mice vs 26 days for control mice. At Day 3, ADC rise was greater with RT than without (P=.002). Sunitinib treatment reduced tumor perfusion/permeability values with mean K{sub trans} reduction of 27.6% for SU (P=.04) and 26.3% for SURT (P=.04) mice and mean K{sub ep} reduction of 38.1% for SU (P=.01) and 27.3% for SURT (P=.02) mice. The magnitude of individual mouse ADC responses at Days 3 and 7 correlated with subsequent tumor growth rate R values of −0.878 (P=.002) and −0.80 (P=.01), respectively. Conclusions: Early quantitative changes in diffusion and perfusion MRI measures reflect treatment responses soon after starting therapy and thereby raise the potential for these imaging biomarkers to guide adaptive and potentially individualized therapy approaches in the future.« less

  17. 3D Topography of the Young Adult Anal Sphincter Complex Reconstructed from Undeformed Serial Anatomical Sections

    PubMed Central

    Wu, Yi; Dabhoiwala, Noshir F.; Hagoort, Jaco; Shan, Jin-Lu; Tan, Li-Wen; Fang, Bin-Ji; Zhang, Shao-Xiang; Lamers, Wouter H.

    2015-01-01

    Background Pelvic-floor anatomy is usually studied by artifact-prone dissection or imaging, which requires prior anatomical knowledge. We used the serial-section approach to settle contentious issues and an interactive 3D-pdf to make the results widely accessible. Method 3D reconstructions of undeformed thin serial anatomical sections of 4 females and 2 males (21–35y) of the Chinese Visible Human database. Findings Based on tendinous septa and muscle-fiber orientation as segmentation guides, the anal-sphincter complex (ASC) comprised the subcutaneous external anal sphincter (EAS) and the U-shaped puborectal muscle, a part of the levator ani muscle (LAM). The anococcygeal ligament fixed the EAS to the coccygeal bone. The puborectal-muscle loops, which define the levator hiatus, passed around the anorectal junction and inserted anteriorly on the perineal body and pubic bone. The LAM had a common anterior attachment to the pubic bone, but separated posteriorly into puborectal and “pubovisceral” muscles. This pubovisceral muscle was bilayered: its internal layer attached to the conjoint longitudinal muscle of the rectum and the rectococcygeal fascia, while its outer, patchy layer reinforced the inner layer. ASC contraction makes the ano-rectal bend more acute and lifts the pelvic floor. Extensions of the rectal longitudinal smooth muscle to the coccygeal bone (rectococcygeal muscle), perineal body (rectoperineal muscle), and endopelvic fascia (conjoint longitudinal and pubovisceral muscles) formed a “diaphragm” at the inferior boundary of the mesorectum that suspended the anorectal junction. Its contraction should straighten the anorectal bend. Conclusion The serial-section approach settled contentious topographic issues of the pelvic floor. We propose that the ASC is involved in continence and the rectal diaphragm in defecation. PMID:26305117

  18. Motion tracking in MR-guided liver therapy by using navigator echoes and projection profile matching.

    PubMed

    Tokuda, Junichi; Morikawa, Shigehiro; Dohi, Takeyoshi; Hata, Nobuhiko

    2004-01-01

    Image registration in magnetic resonance (MR) image-guided liver therapy enhances surgical guidance by fusing preoperative multimodality images with intraoperative images, or by fusing intramodality images to correlate serial intraoperative images to monitor the effect of therapy. The objective of this paper is to describe the application of navigator echo and projection profile matching to fast two-dimensional image registration for MR-guided liver therapy. We obtain navigator echoes along the read-out and phase-encoding directions by using modified gradient echo imaging. This registration is made possible by masking out the liver profile from the image and performing profile matching with cross-correlation or mutual information as similarity measures. The set of experiments include a phantom study with a 2.0-T experimental MR scanner, and a volunteer and a clinical study with a 0.5-T open-configuration MR scanner, and these evaluate the accuracy and effectiveness of this method for liver therapy. Both the phantom and volunteer study indicate that this method can perform registration in 34 ms with root-mean-square error of 1.6 mm when the given misalignment of a liver is 30 mm. The clinical studies demonstrate that the method can track liver motion of up to approximately 40 mm. Matching profiles with cross-correlation information perform better than with mutual information in terms of robustness and speed. The proposed image registration method has potential clinical impact on and advantages for MR-guided liver therapy.

  19. MAMMALIAN APOPTOSIS IN WHOLE NEONATAL OVARIES, EMBRYOS AND FETAL LIMBS USING CONFOCAL MICROSCOPY

    EPA Science Inventory

    The emergence of confocal laser scanning microscopy (CLSM) as a technique capable of optically generating serial sections of whole-mount tissue and then reassembling the computer-stored images as a virtual 3-dimensional structure offers a viable alternative to traditional section...

  20. The Television Generation, Television Literacy, and Television Trends.

    ERIC Educational Resources Information Center

    Cohen, Jodi R.

    Unlike the linear, serial process of reading books, learning to "read" television is a parallel process in which multiple pieces of information are simultaneously received. Perceiving images, only one aspect of understanding television, requires the concurrent processing of information that is compounded within a symbol system. The…

  1. Confocal microscopy of thick tissue sections: 3D visualizaiton of rat kidney glomeruli

    EPA Science Inventory

    Confocal laser scanning microscopy (CLSM) as a technique capable of generating serial sections of whole-mount tissue and then reassembling the computer-acquired images as a virtual 3-dimentional structure. In many ways CLSM offers an alternative to traditional sectioning approac...

  2. Confocal Microscopy of thick tissue sections: 3D Visualization of rat kidney glomeruli

    EPA Science Inventory

    Confocal laser scanning microscopy (CLSM) as a technique capable of generating serial sections of whole-mount tissue and then reassembling the computer-acquired images as a virtual 3-dimentional structure. In many ways CLSM offers an alternative to traditional sectioning approac...

  3. Psychological profiling of offender characteristics from crime behaviors in serial rape offences.

    PubMed

    Kocsis, Richard N; Cooksey, Ray W; Irwin, Harvey J

    2002-04-01

    Criminal psychological profiling has progressively been incorporated into police procedures despite a dearth of empirical research. Indeed, in the study of serial violent crimes for the purpose of psychological profiling, very few original, quantitative, academically reviewed studies actually exist. This article reports on the analysis of 62 incidents of serial sexual assault. The statistical procedure of multidimensional scaling was employed in the analysis of this data, which in turn produced a five-cluster model of serial rapist behavior. First, a central cluster of behaviors were identified that represent common behaviors to all patterns of serial rape. Second, four distinct outlying patterns were identified as demonstrating distinct offence styles, these being assigned the following descriptive labels brutality, intercourse, chaotic, and ritual. Furthermore, analysis of these patterns also identified distinct offender characteristics that allow for the use of empirically robust offender profiles in future serial rape investigations.

  4. Dual-modality imaging of function and physiology

    NASA Astrophysics Data System (ADS)

    Hasegawa, Bruce H.; Iwata, Koji; Wong, Kenneth H.; Wu, Max C.; Da Silva, Angela; Tang, Hamilton R.; Barber, William C.; Hwang, Andrew B.; Sakdinawat, Anne E.

    2002-04-01

    Dual-modality imaging is a technique where computed tomography or magnetic resonance imaging is combined with positron emission tomography or single-photon computed tomography to acquire structural and functional images with an integrated system. The data are acquired during a single procedure with the patient on a table viewed by both detectors to facilitate correlation between the structural and function images. The resulting data can be useful for localization for more specific diagnosis of disease. In addition, the anatomical information can be used to compensate the correlated radionuclide data for physical perturbations such as photon attenuation, scatter radiation, and partial volume errors. Thus, dual-modality imaging provides a priori information that can be used to improve both the visual quality and the quantitative accuracy of the radionuclide images. Dual-modality imaging systems also are being developed for biological research that involves small animals. The small-animal dual-modality systems offer advantages for measurements that currently are performed invasively using autoradiography and tissue sampling. By acquiring the required data noninvasively, dual-modality imaging has the potential to allow serial studies in a single animal, to perform measurements with fewer animals, and to improve the statistical quality of the data.

  5. Animals Do Not Induce or Reduce Attentional Blinking, But They Are Reported More Accurately in a Rapid Serial Visual Presentation Task

    PubMed Central

    2017-01-01

    Evolutionary psychologists have suggested that modern humans have evolved to automatically direct their attention toward animal stimuli. Although this suggestion has found support in several attentional paradigms, it is not without controversy. Recently, a study employing methods customary to studying the attentional blink has shown inconclusive support for the prioritization of animals in attention. This showed an advantage for reporting animals as second targets within the typical window of the attentional blink, but it remained unclear whether this advantage was really due to a reduction of the attentional blink. We reassessed for the presence of a reduced attentional blink for animals compared with artifacts by using three disparate stimuli sets. A general advantage for animals was found but no indication of a reduction of the attentional blink for animals. There was no support for the prediction that animal distractors should lead to spontaneous inductions of attentional blinks when presented as critical distractors before single targets. Another experiment with single targets still showed that animals were reported more accurately than artifacts. A final experiment showed that when animals were first target, they did not generate stronger attentional blinks. In summary, we did find a general advantage for animal images in the rapid serial visual presentation task, but animal images did not either induce or reduce attentional blinks. This set of results is in line with conclusions from previous research showing no evidence for a special role of animals in attention. PMID:29085619

  6. Pediatric digital chest imaging.

    PubMed

    Tarver, R D; Cohen, M; Broderick, N J; Conces, D J

    1990-01-01

    The Philips Computed Radiography system performs well with pediatric portable chest radiographs, handling the throughout of a busy intensive care service 24 hours a day. Images are excellent and routinely provide a conventional (unenhanced) image and an edge-enhanced image. Radiation dose is decreased by the lowered frequency of repeat examinations and the ability of the plates to respond to a much lower dose and still provide an adequate image. The high quality and uniform density of serial PCR portable radiographs greatly enhances diagnostic content of the films. Decreased resolution has not been a problem clinically. Image manipulation and electronic transfer to remote viewing stations appear to be helpful and are currently being evaluated further. The PCR system provides a marked improvement in pediatric portable chest radiology.

  7. The pathogenesis of pediatric cerebral malaria: eye exams, autopsies and neuro-imaging

    PubMed Central

    Taylor, Terrie E.; Molyneux, Malcolm E.

    2015-01-01

    Several advances in our understanding of pediatric cerebral malaria (CM) have been made over the past 25 years. Accurate clinical diagnosis is enhanced by the identification of a characteristic retinopathy, visible by direct or indirect ophthalmoscopy, the retinal changes (retinal whitening, vessel color changes, white-centered hemorrhages) being consistently associated with intracerebral sequestration of parasites in autopsy studies. Autopsies have yielded information at tissue levels in fatal CM, but new insights into critical pathogenetic processes have emerged from neuro-imaging studies which, unlike autopsy-based studies, permit serial observations over time and allow comparisons between fatal cases and survivors. Brain swelling has emerged as the major risk factor for death, and, among survivors, brain volume diminishes spontaneously over 24-48 hours. Studies of life-threatening and fatal malaria are suggesting new approaches to identifying and caring for those at highest risk; potential adjuvants should be evaluated and implemented where they are most needed. PMID:25708306

  8. Serial magnetic resonance imaging of metal-on-metal total hip replacements. Follow-up of a cohort of 28 mm Ultima TPS THRs.

    PubMed

    Ebreo, D; Bell, P J; Arshad, H; Donell, S T; Toms, A; Nolan, J F

    2013-08-01

    Metal artefact reduction (MAR) MRI is now widely considered to be the standard for imaging metal-on-metal (MoM) hip implants. The Medicines and Healthcare Products Regulatory Agency (MHRA) has recommended cross-sectional imaging for all patients with symptomatic MoM bearings. This paper describes the natural history of MoM disease in a 28 mm MoM total hip replacement (THR) using MAR MRI. Inclusion criteria were patients with MoM THRs who had not been revised and had at least two serial MAR MRI scans. All examinations were reported by an experienced observer and classified as A (normal), B (infection) or C1-C3 (mild, moderate, severe MoM-related abnormalities). Between 2002 and 2011 a total of 239 MRIs were performed on 80 patients (two to four scans per THR); 63 initial MRIs (61%) were normal. On subsequent MRIs, six initially normal scans (9.5%) showed progression to a disease state; 15 (15%) of 103 THRs with sequential scans demonstrated worsening disease on subsequent imaging. Most patients with a MoM THR who do not undergo early revision have normal MRI scans. Late progression (from normal to abnormal, or from mild to more severe MoM disease) is not common and takes place over several years.

  9. Deep learning and shapes similarity for joint segmentation and tracing single neurons in SEM images

    NASA Astrophysics Data System (ADS)

    Rao, Qiang; Xiao, Chi; Han, Hua; Chen, Xi; Shen, Lijun; Xie, Qiwei

    2017-02-01

    Extracting the structure of single neurons is critical for understanding how they function within the neural circuits. Recent developments in microscopy techniques, and the widely recognized need for openness and standardization provide a community resource for automated reconstruction of dendritic and axonal morphology of single neurons. In order to look into the fine structure of neurons, we use the Automated Tape-collecting Ultra Microtome Scanning Electron Microscopy (ATUM-SEM) to get images sequence of serial sections of animal brain tissue that densely packed with neurons. Different from other neuron reconstruction method, we propose a method that enhances the SEM images by detecting the neuronal membranes with deep convolutional neural network (DCNN) and segments single neurons by active contour with group shape similarity. We joint the segmentation and tracing together and they interact with each other by alternate iteration that tracing aids the selection of candidate region patch for active contour segmentation while the segmentation provides the neuron geometrical features which improve the robustness of tracing. The tracing model mainly relies on the neuron geometrical features and is updated after neuron being segmented on the every next section. Our method enables the reconstruction of neurons of the drosophila mushroom body which is cut to serial sections and imaged under SEM. Our method provides an elementary step for the whole reconstruction of neuronal networks.

  10. Applying microCT and 3D visualization to Jurassic silicified conifer seed cones: A virtual advantage over thin-sectioning.

    PubMed

    Gee, Carole T

    2013-11-01

    As an alternative to conventional thin-sectioning, which destroys fossil material, high-resolution X-ray computed tomography (also called microtomography or microCT) integrated with scientific visualization, three-dimensional (3D) image segmentation, size analysis, and computer animation is explored as a nondestructive method of imaging the internal anatomy of 150-million-year-old conifer seed cones from the Late Jurassic Morrison Formation, USA, and of recent and other fossil cones. • MicroCT was carried out on cones using a General Electric phoenix v|tome|x s 240D, and resulting projections were processed with visualization software to produce image stacks of serial single sections for two-dimensional (2D) visualization, 3D segmented reconstructions with targeted structures in color, and computer animations. • If preserved in differing densities, microCT produced images of internal fossil tissues that showed important characters such as seed phyllotaxy or number of seeds per cone scale. Color segmentation of deeply embedded seeds highlighted the arrangement of seeds in spirals. MicroCT of recent cones was even more effective. • This is the first paper on microCT integrated with 3D segmentation and computer animation applied to silicified seed cones, which resulted in excellent 2D serial sections and segmented 3D reconstructions, revealing features requisite to cone identification and understanding of strobilus construction.

  11. Longitudinal Regional Brain Development and Clinical Risk Factors in Extremely Preterm Infants.

    PubMed

    Kersbergen, Karina J; Makropoulos, Antonios; Aljabar, Paul; Groenendaal, Floris; de Vries, Linda S; Counsell, Serena J; Benders, Manon J N L

    2016-11-01

    To investigate third-trimester extrauterine brain growth and correlate this with clinical risk factors in the neonatal period, using serially acquired brain tissue volumes in a large, unselected cohort of extremely preterm born infants. Preterm infants (gestational age <28 weeks) underwent brain magnetic resonance imaging (MRI) at around 30 weeks postmenstrual age and again around term equivalent age. MRIs were segmented in 50 different regions covering the entire brain. Multivariable regression analysis was used to determine the influence of clinical variables on volumes at both scans, as well as on volumetric growth. MRIs at term equivalent age were available for 210 infants and serial data were available for 131 infants. Growth over these 10 weeks was greatest for the cerebellum, with an increase of 258%. Sex, birth weight z-score, and prolonged mechanical ventilation showed global effects on brain volumes on both scans. The effect of brain injury on ventricular size was already visible at 30 weeks, whereas growth data and volumes at term-equivalent age revealed the effect of brain injury on the cerebellum. This study provides data about third-trimester extrauterine volumetric brain growth in preterm infants. Both global and local effects of several common clinical risk factors were found to influence serial volumetric measurements, highlighting the vulnerability of the human brain, especially in the presence of brain injury, during this period. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Serial transmission in rodents of neurodegeneration from transgenic mice expressing mutant prion protein.

    PubMed Central

    Hsiao, K K; Groth, D; Scott, M; Yang, S L; Serban, H; Rapp, D; Foster, D; Torchia, M; Dearmond, S J; Prusiner, S B

    1994-01-01

    Two lines of transgenic (Tg) mice expressing high (H) levels of the mutant P101L prion protein (PrP) developed a neurologic illness and central nervous system pathology indistinguishable from experimental murine scrapie; these mice were designated Tg(MoPrP-P101L)H. Brain homogenates from Tg(MoPrP-P101L)H mice were inoculated intracerebrally into CD-1 Swiss mice, Syrian hamsters, and Tg196 mice, Tg mice expressing the MoPrP-P101L transgene at low levels. None of the CD-1 mice developed central nervous system dysfunction, whereas approximately 10% of hamsters and approximately 40% of the Tg196 mice manifested neurologic signs between 117 and 639 days after inoculation. Serial transmission of neurodegeneration in Tg196 mice and Syrian hamsters was initiated with brain extracts, producing incubation times of approximately 400 and approximately 75 days, respectively. Although the Tg(MoPrP-P101L)H mice appear to accumulate only low levels of infections prions in their brains, the serial transmission of disease to inoculated recipients argues that prion formation occurs de novo in the brains of these uninoculated animals. These Tg mouse studies, taken together with similar findings in humans dying of inherited prion diseases, provide additional evidence that prions lack a foreign nucleic acid. Images PMID:7916462

  13. A dual function fusion protein of Herpes simplex virus type 1 thymidine kinase and firefly luciferase for noninvasive in vivo imaging of gene therapy in malignant glioma.

    PubMed

    Söling, Ariane; Theiss, Christian; Jungmichel, Stephanie; Rainov, Nikolai G

    2004-08-04

    BACKGROUND: Suicide gene therapy employing the prodrug activating system Herpes simplex virus type 1 thymidine kinase (HSV-TK)/ ganciclovir (GCV) has proven to be effective in killing experimental brain tumors. In contrast, glioma patients treated with HSV-TK/ GCV did not show significant treatment benefit, most likely due to insufficient transgene delivery to tumor cells. Therefore, this study aimed at developing a strategy for real-time noninvasive in vivo monitoring of the activity of a therapeutic gene in brain tumor cells. METHODS: The HSV-TK gene was fused to the firefly luciferase (Luc) gene and the fusion construct HSV-TK-Luc was expressed in U87MG human malignant glioma cells. Nude mice with subcutaneous gliomas stably expressing HSV-TK-Luc were subjected to GCV treatment and tumor response to therapy was monitored in vivo by serial bioluminescence imaging. Bioluminescent signals over time were compared with tumor volumes determined by caliper. RESULTS: Transient and stable expression of the HSV-TK-Luc fusion protein in U87MG glioma cells demonstrated close correlation of both enzyme activities. Serial optical imaging of tumor bearing mice detected in all cases GCV induced death of tumor cells expressing the fusion protein and proved that bioluminescence can be reliably used for repetitive and noninvasive quantification of HSV-TK/ GCV mediated cell kill in vivo. CONCLUSION: This approach may represent a valuable tool for the in vivo evaluation of gene therapy strategies for treatment of malignant disease.

  14. Simultaneous experimental determination of labile proton fraction ratio and exchange rate with irradiation radio frequency power-dependent quantitative CEST MRI analysis.

    PubMed

    Sun, Phillip Zhe; Wang, Yu; Xiao, Gang; Wu, Renhua

    2013-01-01

    Chemical exchange saturation transfer (CEST) imaging is sensitive to dilute proteins/peptides and microenvironmental properties, and has been increasingly evaluated for molecular imaging and in vivo applications. However, the experimentally measured CEST effect depends on the CEST agent concentration, exchange rate and relaxation time. In addition, there may be non-negligible direct radio-frequency (RF) saturation effects, particularly severe for diamagnetic CEST (DIACEST) agents owing to their relatively small chemical shift difference from that of the bulk water resonance. As such, the commonly used asymmetry analysis only provides CEST-weighted information. Recently, it has been shown with numerical simulation that both labile proton concentration and exchange rate can be determined by evaluating the RF power dependence of DIACEST effect. To validate the simulation results, we prepared and imaged two CEST phantoms: a pH phantom of serially titrated pH at a fixed creatine concentration and a concentration phantom of serially varied creatine concentration titrated to the same pH, and solved the labile proton fraction ratio and exchange rate per-pixel. For the concentration phantom, we showed that the labile proton fraction ratio is proportional to the CEST agent concentration with negligible change in the exchange rate. Additionally, we found the exchange rate of the pH phantom is dominantly base-catalyzed with little difference in the labile proton fraction ratio. In summary, our study demonstrated quantitative DIACEST MRI, which remains promising to augment the conventional CEST-weighted MRI analysis. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Comparing single and serial homicide offenses.

    PubMed

    Kraemer, Gretchen W; Lord, Wayne D; Heilbrun, Kirk

    2004-01-01

    Serial homicide has attracted much attention, but little empirical scientific investigation. This exploratory study reports demographic information on a large sample of serial homicide offenders (157 offenders, 608 victims), and compares a subsample of serial homicide offenses with a control group of single homicide offenses. Results show that serial homicide offenders target more women than men, and kill more strangers than family or friends. Single homicide offenders kill men and women in equal frequency, but kill family and friends more often than strangers. Serial homicide offenders kill for apparent sexual motivation more often than for any other reason, while single homicide offenders kill most often out of anger. Copyright 2004 John Wiley & Sons, Ltd.

  16. Infrared Fiber Imager

    DTIC Science & Technology

    1999-05-12

    to an infrared television camera AVTO TVS-2100. The detector in the camera was an InSb crystal having sensitivity in the wavelength region between 3.0...Serial Number: Navy Case: 79,823 camera AVTO TVS-2100, with a detector of the In Sb crystal, having peak sensitivity in the wavelength region between

  17. Shared Focal Plane Investigation for Serial Frame Cameras.

    DTIC Science & Technology

    1980-03-01

    capability will be restored. 41. -.. TrABLE 1-1 SYSTEM LEADING P) ARTICULARS Lens Focal Length (inches) Range (ft) Contrast 12 18 24 Coverage 22.1...can be expected that signature bands will be apparent in the imagery. Such bands are at best distracting and at worst hindrances to image interpretation

  18. Short-term memory for serial order supports vocabulary development: new evidence from a novel word learning paradigm.

    PubMed

    Majerus, Steve; Boukebza, Claire

    2013-12-01

    Although recent studies suggest a strong association between short-term memory (STM) for serial order and lexical development, the precise mechanisms linking the two domains remain to be determined. This study explored the nature of these mechanisms via a microanalysis of performance on serial order STM and novel word learning tasks. In the experiment, 6- and 7-year-old children were administered tasks maximizing STM for either item or serial order information as well as paired-associate learning tasks involving the learning of novel words, visual symbols, or familiar word pair associations. Learning abilities for novel words were specifically predicted by serial order STM abilities. A measure estimating the precision of serial order coding predicted the rate of correct repetitions and the rate of phoneme migration errors during the novel word learning process. In line with recent theoretical accounts, these results suggest that serial order STM supports vocabulary development via ordered and detailed reactivation of the novel phonological sequences that characterize new words. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Semantic contribution to verbal short-term memory: are pleasant words easier to remember than neutral words in serial recall and serial recognition?

    PubMed

    Monnier, Catherine; Syssau, Arielle

    2008-01-01

    In the four experiments reported here, we examined the role of word pleasantness on immediate serial recall and immediate serial recognition. In Experiment 1, we compared verbal serial recall of pleasant and neutral words, using a limited set of items. In Experiment 2, we replicated Experiment 1 with an open set of words (i.e., new items were used on every trial). In Experiments 3 and 4, we assessed immediate serial recognition of pleasant and neutral words, using item sets from Experiments 1 and 2. Pleasantness was found to have a facilitation effect on both immediate serial recall and immediate serial recognition. This study supplies some new supporting arguments in favor of a semantic contribution to verbal short-term memory performance. The pleasantness effect observed in immediate serial recognition showed that, contrary to a number of earlier findings, performance on this task can also turn out to be dependent on semantic factors. The results are discussed in relation to nonlinguistic and psycholinguistic models of short-term memory.

  20. End-of-treatment and serial PET imaging in primary mediastinal B-cell lymphoma following dose-adjusted-EPOCH-R: A paradigm shift in clinical decision making.

    PubMed

    Melani, Christopher; Advani, Ranjana; Roschewski, Mark; Walters, Kelsey M; Chen, Clara C; Baratto, Lucia; Ahlman, Mark A; Miljkovic, Milos D; Steinberg, Seth M; Lam, Jessica; Shovlin, Margaret; Dunleavy, Kieron; Pittaluga, Stefania; Jaffe, Elaine S; Wilson, Wyndham H

    2018-05-10

    Dose-adjusted-EPOCH-R obviates the need for radiotherapy in most patients with primary mediastinal B-cell lymphoma. End-of-treatment PET, however, does not accurately identify patients at risk of treatment failure, thereby confounding clinical decision making. To define the role of PET in primary mediastinal B-cell lymphoma following dose-adjusted-EPOCH-R, we extended enrollment and follow-up on our published phase II trial and independent series. Ninety-three patients received dose-adjusted-EPOCH-R without radiotherapy. End-of-treatment PET was performed in 80 patients, of whom 57 received 144 serial scans. One nuclear medicine physician from each institution blindly reviewed all scans from their respective institution. End-of-treatment PET was negative (Deauville 1-3) in 55 (69%) patients with one treatment failure (8-year event-free and overall survival of 96.0% and 97.7%). Among 25 (31%) patients with a positive (Deauville 4-5) end-of-treatment PET, there were 5 (20%) treatment failures (8-year event-free and overall survival of 71.1% and 84.3%). Linear regression analysis of serial scans showed a significant decrease in SUVmax in positive end-of-treatment PET non-progressors compared to an increase in treatment failures. Among 6 treatment failures, the median end-of-treatment SUVmax was 15.4 (range, 1.9-21.3) and 4 achieved long-term remission with salvage therapy. Virtually all patients with a negative end-of-treatment PET following dose-adjusted-EPOCH-R achieved durable remissions and should not receive radiotherapy. Among patients with a positive end-of-treatment PET, only 5/25 (20%) had treatment-failure. Serial PET imaging distinguished end-of-treatment PET positive patients without treatment failure, thereby reducing unnecessary radiotherapy by 80%, and should be considered in all patients with an initial positive PET following dose-adjusted-EPOCH-R (NCT00001337). Copyright © 2018, Ferrata Storti Foundation.

  1. Accounting for partiality in serial crystallography using ray-tracing principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroon-Batenburg, Loes M. J., E-mail: l.m.j.kroon-batenburg@uu.nl; Schreurs, Antoine M. M.; Ravelli, Raimond B. G.

    Serial crystallography generates partial reflections from still diffraction images. Partialities are estimated with EVAL ray-tracing simulations, thereby improving merged reflection data to a similar quality as conventional rotation data. Serial crystallography generates ‘still’ diffraction data sets that are composed of single diffraction images obtained from a large number of crystals arbitrarily oriented in the X-ray beam. Estimation of the reflection partialities, which accounts for the expected observed fractions of diffraction intensities, has so far been problematic. In this paper, a method is derived for modelling the partialities by making use of the ray-tracing diffraction-integration method EVAL. The method estimates partialitiesmore » based on crystal mosaicity, beam divergence, wavelength dispersion, crystal size and the interference function, accounting for crystallite size. It is shown that modelling of each reflection by a distribution of interference-function weighted rays yields a ‘still’ Lorentz factor. Still data are compared with a conventional rotation data set collected from a single lysozyme crystal. Overall, the presented still integration method improves the data quality markedly. The R factor of the still data compared with the rotation data decreases from 26% using a Monte Carlo approach to 12% after applying the Lorentz correction, to 5.3% when estimating partialities by EVAL and finally to 4.7% after post-refinement. The merging R{sub int} factor of the still data improves from 105 to 56% but remains high. This suggests that the accuracy of the model parameters could be further improved. However, with a multiplicity of around 40 and an R{sub int} of ∼50% the merged still data approximate the quality of the rotation data. The presented integration method suitably accounts for the partiality of the observed intensities in still diffraction data, which is a critical step to improve data quality in serial crystallography.« less

  2. Natural born killers?: the development of the sexually sadistic serial killer.

    PubMed

    Johnson, B R; Becker, J V

    1997-01-01

    Today's society seems enthralled with serial killers in the news and the media. Forensic psychiatrists often interview serial killers after they have been caught. There are retrospective studies and case reports of individuals who have committed sexually sadistic serial murders. However, there exists a dearth of case reports on adolescents who have expressed serious fantasies about becoming serial killer prior to actualizing their fantasy. This article presents nine clinical cases of 14- to 18-year-olds who have clinically significant fantasies of becoming a serial killer. Similarities exist in these adolescent cases when compared with retrospective studies and case reports of serial killers on the role of sexually sadistic fantasies and actual killings. Since it has been established that sexual paraphilias may develop at a young age, one can surmise that sadistic paraphilias may also develop in some adolescents. The question is posed, can we predict which of these adolescents may go on to actually become serial killers? This article focuses on how the sexually sadistic fantasy can eventually be acted out and possible motives for the act to be repeated multiple times. Finally, recommendations are made about assessing and treating a youngster who expresses violent sexually sadistic killing fantasies so that attempts can be made to interrupt the progression to actual killing.

  3. A protocol for preparing, characterizing and using three RNA-specific, live cell imaging probes: E36, E144 and F22.

    PubMed

    Li, Qian; Chang, Young-Tae

    2006-01-01

    This protocol outlines a methodology for the preparation and characterization of three RNA-specific fluorescent probes (E36, E144 and F22) and their use in live cell imaging. It describes a detailed procedure for their chemical synthesis and purification; serial product characterization and quality control tests, including measurements of their fluorescence properties in solution, measurement of RNA specificity and analysis of cellular toxicity; and live cell staining and counterstaining with Hoechst or DAPI. Preparation and application of these RNA imaging probes takes 1 week.

  4. Arctic sea-ice variations from time-lapse passive microwave imagery

    USGS Publications Warehouse

    Campbell, W.J.; Ramseier, R.O.; Zwally, H.J.; Gloersen, P.

    1980-01-01

    This paper presents: (1) a short historical review of the passive microwave research on sea ice which established the observational and theoretical base permitting the interpretation of the first passive microwave images of Earth obtained by the Nimbus-5 ESMR; (2) the construction of a time-lapse motion picture film of a 16-month set of serial ESMR images to aid in the formidable data analysis task; and (3) a few of the most significant findings resulting from an early analysis of these data, using selected ESMR images to illustrate these findings. ?? 1980 D. Reidel Publishing Co.

  5. Fine alignment of a large segmented mirror

    NASA Technical Reports Server (NTRS)

    Dey, Thomas William (Inventor)

    2010-01-01

    A system for aligning a segmented mirror includes a source of radiation directed along a first axis to the segmented mirror and a beamsplitter removably inserted along the first axis for redirecting radiation from the first axis to a second axis, substantially perpendicular to the first axis. An imaging array is positioned along the second axis for imaging the redirected radiation, and a knife-edge configured for cutting the redirected radiation is serially positioned to occlude and not occlude the redirected radiation, effectively providing a variable radiation pattern detected by the imaging array for aligning the segmented mirror.

  6. Status of systemic to pulmonary arterial collateral flow after the fontan procedure.

    PubMed

    Whitehead, Kevin K; Harris, Matthew A; Glatz, Andrew C; Gillespie, Matthew J; DiMaria, Michael V; Harrison, Neil E; Dori, Yoav; Keller, Marc S; Rome, Jonathan J; Fogel, Mark A

    2015-06-15

    The investigators recently validated a method of quantifying systemic-to-pulmonary arterial collateral flow using phase-contrast magnetic resonance imaging velocity mapping. Cross-sectional data suggest decreased collateral flow in patients with total cavopulmonary connections (TCPCs) compared with those with superior cavopulmonary connections (SCPCs). However, no studies have examined serial changes in collateral flow from SCPCs to TCPCs in the same patients. The aim of this study was to examine differences in collateral flow between patients with SCPCs and those with TCPCs. Collateral flow was quantified by 2 independent measures from 250 single-ventricle studies in 219 different patients (115 SCPC and 135 TCPC studies, 31 patients with both) and 18 controls, during routine studies using through-plane phase-contrast magnetic resonance imaging. Collateral flow was indexed to body surface area, aortic flow, and pulmonary venous flow. Regardless of indexing method, SCPC patients had significantly higher collateral flow than TCPC patients (1.64 ± 0.8 vs 1.03 ± 0.8 L/min/m(2), p <0.001). In 31 patients who underwent serial examinations, collateral flow as a fraction of aortic flow increased early after TCPC completion. In TCPC patients, indexed collateral flow demonstrated a significant negative correlation with time from TCPC. In conclusion, SCPC and TCPC patients demonstrate substantial collateral flow, with SCPC patients having higher collateral flow than TCPC patients overall. On the basis of the paired subset analysis, collateral flow does not decrease in the short term after TCPC completion and trends toward an increase. In the long term, however, collateral flow decreases over time after TCPC completion. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Murine chronic lymph node window for longitudinal intravital lymph node imaging.

    PubMed

    Meijer, Eelco F J; Jeong, Han-Sin; Pereira, Ethel R; Ruggieri, Thomas A; Blatter, Cedric; Vakoc, Benjamin J; Padera, Timothy P

    2017-08-01

    Chronic imaging windows in mice have been developed to allow intravital microscopy of many different organs and have proven to be of paramount importance in advancing our knowledge of normal and disease processes. A model system that allows long-term intravital imaging of lymph nodes would facilitate the study of cell behavior in lymph nodes during the generation of immune responses in a variety of disease settings and during the formation of metastatic lesions in cancer-bearing mice. We describe a chronic lymph node window (CLNW) surgical preparation that allows intravital imaging of the inguinal lymph node in mice. The CLNW is custom-made from titanium and incorporates a standard coverslip. It allows stable longitudinal imaging without the need for serial surgeries while preserving lymph node blood and lymph flow. We also describe how to build and use an imaging stage specifically designed for the CLNW to prevent (large) rotational changes as well as respiratory movement during imaging. The entire procedure takes approximately half an hour per mouse, and subsequently allows for longitudinal intravital imaging of the murine lymph node and surrounding structures for up to 14 d. Small-animal surgery experience is required to successfully carry out the protocol.

  8. Neuropsychological profile and social cognition in congenital central hypoventilation syndrome (CCHS): Correlation with neuroimaging in a clinical case.

    PubMed

    Esteso Orduña, Borja; Seijas Gómez, Raquel; García Esparza, Elena; Briceño, Emily M; Melero Llorente, Javier; Fournier Del Castillo, María de la Concepción

    2018-02-01

    Congenital central hypoventilation syndrome (CCHS) is a rare genetic disorder due to paired-like homeobox gene (PHOX2B) mutations. CCHS patients suffer from dysregulation of the autonomic nervous system characterized by the absence of or extremely reduced response to hypercapnia and hypoxia, with neuropsychological deficits. The aim of this exploratory study is to describe the longitudinal neuropsychological profile and its correlations with magnetic resonance imaging (MRI) of a child with CCHS with a PHOX2B mutation. A comprehensive neuropsychological evaluation was conducted serially at age 7 years 4 months and 10 years 3 months, including assessment of intellectual functioning (IQ), motor functioning, perception, attention, executive functions, language, memory, social cognition, academic skills, and psychopathology. Reliable change index (RCI) scores were used to assess changes between assessments. We collected spin lattice relaxation time (T1)-weighted, fluid-attenuated inversion recovery (FLAIR), and spin spin lattice relaxation time (T2)-weighted images from the child at age 10 years 3 months using a 1.5-tesla MRI scanner. IQ, processing speed index (PSI), social cognition (theory of mind and facial emotion recognition), selective attention, naming, academic skills (reading/comprehension), and manual speed with right hand declined in the second evaluation relative to the initial evaluation, while visuoconstructional praxis, receptive vocabulary, working memory, and arithmetic skill improved. The patient showed a remarkable global deterioration in executive functions (planning, task flexibility, behavioral regulation, and metacognition) as revealed by parental report and clinical evaluation. MRI revealed gliosis from the head to tail of the hippocampus and thinning of parahippocampal gyri. In a clinical case of CCHS, serial evaluation revealed deterioration of executive functions and social cognition over a 3-year interval. These changes corresponded to hippocampal damage as revealed in MRI, which may have affected social cognition through its role in the default mode network. Serial neuropsychological assessment is clinically useful in managing the needs of these patients.

  9. Three-dimensional characterization of ODS ferritic steel using by FIB-SEM serial sectioning method.

    PubMed

    Endo, T; Sugino, Y; Ohono, N; Ukai, S; Miyazaki, N; Wang, Y; Ohnuki, S

    2014-11-01

    Considerable attention has been paid to the research of the electron tomography due to determine the three-dimensional (3D) structure of materials [1]. One of the electron tomography techniques, focused ion beam/scanning electron microscopy (FIB-SEM) imaging has advantages of high resolutions (10 nm), large area observation (μm order) and simultaneous energy dispersive x- ray microanalysis (EDS)/ electron backscatter diffraction (EBSD) analysis. The purpose of this study, three-dimensional EBSD analysis of ODS ferritic steel which carried out cold work using FIB-SEM equipment was conducted, and it aimed at analyzing the microstructure obtained there. The zone annealing tests were conducted for ferritic steel [2,3], which were produced through mechanical alloying and hot-extrusion. After zone annealing, specimens were mechanically polished with #400∼4000 emery paper, 1 µm diamond paste and alumina colloidal silica. The serial sectioning and the 3D-electron backscattering diffraction (3D-EBSD) analysis were carried out. We made the micro pillar (30 x 30 x 15 µm). The EBSD measurements were carried out in each layer after serial sectioning at a step size and milling depth was 80 nm with 30 slices. After EBSD analysis, the series of cross-sectional images were aligned according to arbitrarily specified areas and then stacked up to form a volume. Consequently, we obtained the 3D-IPF maps for ODS ferritic steel. In this specimen, the {111} and {001} grains are layered by turns. In addition, the volume fraction value of both plane are similar. The aspect ratio increases with specimen depth. The 3D-EBSD mapping is useful to analysis of the bulk material since this method obtain many microstructure information, such a shape, volume and orientation of the crystal, grain boundary. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Tumor volume changes on serial imaging with megavoltage CT for non-small-cell lung cancer during intensity-modulated radiotherapy: how reliable, consistent, and meaningful is the effect?

    PubMed

    Siker, Malika L; Tomé, Wolfgang A; Mehta, Minesh P

    2006-09-01

    Adaptive radiotherapy allows treatment plan modification based on data obtained during treatment. Assessing volume changes during treatment is now possible with intratreatment imaging capabilities on radiotherapy devices. This study assesses non-small-cell lung cancer (NSCLC) volume changes during treatment with conformal intensity-modulated radiotherapy by evaluating serial megavoltage computed tomography (MVCT) scans, with a specific emphasis on the frequency, reliability, and meaningfulness of these changes. Megavoltage CTs were retrospectively reviewed for 25 patients treated with the TomoTherapy Hi-Art system at the University of Wisconsin. Twenty-one patients received definitive radiotherapy, 4 with extracranial stereotactic radioablation (60 Gy in five fractions) and 17 on a dose-per-fraction escalation protocol (57-80.5 Gy in 25 fractions). Four patients were treated palliatively (22-30 Gy in 8 to 10 fractions). Gross tumor volumes were contoured on serial MVCTs at weekly intervals. Each patient had 4 to 25 scans, including at least one at the beginning, midway, and one at the end of treatment. At completion of treatment, no patient demonstrated a complete response. Partial response occurred in 3 (12%) and marginal response was noted in 5 (20%). The remaining 17 patients (68%) showed stable disease. The minimum "scorable threshold" for volume discrepancy between scans to account for interscan assessment variability was set at >25% volume change; 10 patients (40%) had >25% tumor regression. None of the patients treated ablatively or palliatively showed tumor regression during treatment. Although gross tumor regression during treatment may be objectively measured using MVCTs, substantial volumetric decrease occurs only in a minority. The clinical significance of this regression is questionable, because there is no way to document histologic tumor clearance, and therefore field reductions during radiotherapy cannot be recommended.

  11. The effect of manufacturing conditions on discontinuity population and fatigue fracture behavior in carbon/epoxy composites

    NASA Astrophysics Data System (ADS)

    Hakim, Issa; Laquai, Rene; Walter, David; Mueller, Bernd; Graja, Paul; Meyendorf, Norbert; Donaldson, Steven

    2017-02-01

    Carbon fiber composites have been increasingly used in aerospace, military, sports, automotive and other fields due to their excellent properties, including high specific strength, high specific modulus, corrosion resistance, fatigue resistance, and low thermal expansion coefficient. Interlaminar fracture is a serious failure mode leading to a loss in composite stiffness and strength. Discontinuities formed during manufacturing process degrade the fatigue life and interlaminar fracture resistance of the composite. In his study, three approaches were implemented and their results were correlated to quantify discontinuities effecting static and fatigue interlaminar fracture behavior of carbon fiber composites. Samples were fabricated by hand layup vacuum bagging manufacturing process under three different vacuum levels, indicated High (-686 mmHg), Moderate (-330 mmHg) and Poor (0 mmHg). Discontinuity content was quantified through-thickness by destructive and nondestructive techniques. Eight different NDE methods were conducted including imaging NDE methods: X-Ray laminography, ultrasonic, high frequency eddy current, pulse thermography, pulse phase thermography and lock-in-thermography, and averaging NDE techniques: X-Ray refraction and thermal conductivity measurements. Samples were subsequently destructively serial sectioned through-thickness into several layers. Both static and fatigue interlaminar fracture behavior under Mode I were conducted. The results of several imaging NDE methods revealed the trend in percentages of discontinuity. However, the results of averaging NDE methods showed a clear correlation since they gave specific values of discontinuity through-thickness. Serial sectioning exposed the composite's internal structure and provided a very clear idea about the type, shape, size, distribution and location of most discontinuities included. The results of mechanical testing showed that discontinuities lead to a decrease in Mode I static interlaminar fracture toughness and a decrease in Mode I cyclic strain energy release rates fatigue life. Finally, all approaches were correlated: the resulted NDE percentages and parameters were correlated with the features revealed by the destructive test of serial sectioning and static and fatigue values in order to quantify discontinuities such as delamination and voids.

  12. Ultra-sensitive chemiluminescence imaging DNA hybridization method in the detection of mosquito-borne viruses and parasites.

    PubMed

    Zhang, Yingjie; Liu, Qiqi; Zhou, Biao; Wang, Xiaobo; Chen, Suhong; Wang, Shengqi

    2017-01-25

    Mosquito-borne viruses (MBVs) and parasites (MBPs) are transmitted through hematophagous arthropods-mosquitoes to homoiothermous vertebrates. This study aims at developing a detection method to monitor the spread of mosquito-borne diseases to new areas and diagnose the infections caused by MBVs and MBPs. In this assay, an ultra-sensitive chemiluminescence (CL) detection method was developed and used to simultaneously detect 19 common MBVs and MBPs. In vitro transcript RNA, virus-like particles (VLPs), and plasmids were established as positive or limit of detection (LOD) reference materials. MBVs and MBPs could be genotyped with high sensitivity and specificity. The cut-off values of probes were calculated. The absolute LODs of this strategy to detect serially diluted in vitro transcribed RNAs of MBVs and serially diluted plasmids of MBPs were 10 2 -10 3 copies/μl and 10 1 -10 2 copies/μl, respectively. Further, the LOD of detecting a strain of pre-quantified JEV was 10 1.8 -10 0.8 PFU/ml, fitted well in a linear regression model (coefficient of determination = 0.9678). Ultra-sensitive CL imaging DNA hybridization was developed and could simultaneously detect various MBVs and MBPs. The method described here has the potential to provide considerable labor savings due to its ability to screen for 19 mosquito-borne pathogens simultaneously.

  13. Bioengineering anembryonic human trophoblast vesicles.

    PubMed

    Robins, Jared C; Morgan, Jeffrey R; Krueger, Paula; Carson, Sandra A

    2011-02-01

    Trophoblast cells in vivo form a 3-dimensional structure that promotes complex cell-to-cell interactions that cannot be studied with traditional monolayer culture. We describe a 3-dimensional trophoblast bioreactor to study cellular interactions. Nonadhesive agarose hydrogels were cast from molds using computer-assisted prototyping. Trophoblast cells were seeded into the gels for 10 days. Morphology, viability, and vesicle behavior were assessed. Trophoblast cells formed uniform spheroids. Serial sectioning on days 3, 7, and 10 revealed central vacuolization with a consistent outer rim 12.3-μ thick. The vesicle configuration has been confirmed with confocal imaging. Electron Microscopic (EM) imaging revealed its ultrastructure. The vesicles migrate across a fibronectin-coated surface and invaded basement membrane. Trophoblast cells cultured in a novel substrate-free 3-dimensional system form trophoblast vesicles. This new cell culture technique allows us to better study placental cell-to-cell interactions with the potential of forming microtissues.

  14. Acute radiation nephritis. Its evolution on sequential bone imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palestro, C.; Fineman, D.; Goldsmith, S.J.

    1988-11-01

    Acute radiation nephritis typically affects the kidneys 3-12 months after radiation exposure and may occur with doses as low as 2500 rads. After an initial latent period, the affected portions of the kidneys become swollen and edematous, and develop multiple petechiae. Necrotizing vasculitis and interstitial hemorrhage occur, and the end stage is that of scarring. Two patients are presented in whom localized acute radiation nephritis developed, and whose kidneys demonstrated the characteristic sequential changes of this entity on serial bone imaging.

  15. An Automated Acquisition System for Media Exploitation

    DTIC Science & Technology

    2008-06-01

    on the acquisition station, AcqMan will pull out the SHA256 image hash, and the device’s model, serial number, and manufacturer. 2. Query the ADOMEX...Repository Using the data collected above, AcqMan will query the ADOMEX repository. The ADOMEX repository will respond to the query with the SHA256 ’s of...whose SHA256s do not match. The last category will be a list of images that the ADOMEX repository already has and that the acquisition station can

  16. Classification of Non-Time-Locked Rapid Serial Visual Presentation Events for Brain-Computer Interaction Using Deep Learning

    DTIC Science & Technology

    2014-07-08

    internction ( BCI ) system allows h uman subjects to communicate with or control an extemal device with their brain signals [1], or to use those brain...signals to interact with computers, environments, or even other humans [2]. One application of BCI is to use brnin signals to distinguish target...images within a large collection of non-target images [2]. Such BCI -based systems can drastically increase the speed of target identification in

  17. One mouse, one pharmacokinetic profile: quantitative whole blood serial sampling for biotherapeutics.

    PubMed

    Joyce, Alison P; Wang, Mengmeng; Lawrence-Henderson, Rosemary; Filliettaz, Cynthia; Leung, Sheldon S; Xu, Xin; O'Hara, Denise M

    2014-07-01

    The purpose of this study was to validate the approach of serial sampling from one mouse through ligand binding assay (LBA) quantification of dosed biotherapeutic in diluted whole blood to derive a pharmacokinetic (PK) profile. This investigation compared PK parameters obtained using serial and composite sampling methods following administration of human IgG monoclonal antibody. The serial sampling technique was established by collecting 10 μL of blood via tail vein at each time point following drug administration. Blood was immediately diluted into buffer followed by analyte quantitation using Gyrolab to derive plasma concentrations. Additional studies were conducted to understand matrix and sampling site effects on drug concentrations. The drug concentration profiles, irrespective of biological matrix, and PK parameters using both sampling methods were not significantly different. There were no sampling site effects on drug concentration measurements except that concentrations were slightly lower in sodium citrated plasma than other matrices. We recommend the application of mouse serial sampling, particularly with limiting drug supply or specialized animal models. Overall the efficiencies gained by serial sampling were 40-80% savings in study cost, animal usage, study length and drug conservation while inter-subject variability across PK parameters was less than 30%.

  18. A Novel Application for the Cavalieri Principle: A Stereological and Methodological Study

    PubMed Central

    Altunkaynak, Berrin Zuhal; Altunkaynak, Eyup; Unal, Deniz; Unal, Bunyamin

    2009-01-01

    Objective The Cavalieri principle was applied to consecutive pathology sections that were photographed at the same magnification and used to estimate tissue volumes via superimposing a point counting grid on these images. The goal of this study was to perform the Cavalieri method quickly and practically. Materials and Methods In this study, 10 adult female Sprague Dawley rats were used. Brain tissue was removed and sampled both systematically and randomly. Brain volumes were estimated using two different methods. First, all brain slices were scanned with an HP ScanJet 3400C scanner, and their images were shown on a PC monitor. Brain volume was then calculated based on these images. Second, all brain slices were photographed in 10× magnification with a microscope camera, and brain volumes were estimated based on these micrographs. Results There was no statistically significant difference between the volume measurements of the two techniques (P>0.05; Paired Samples t Test). Conclusion This study demonstrates that personal computer scanning of serial tissue sections allows for easy and reliable volume determination based on the Cavalieri method. PMID:25610077

  19. A novel application for the cavalieri principle: a stereological and methodological study.

    PubMed

    Altunkaynak, Berrin Zuhal; Altunkaynak, Eyup; Unal, Deniz; Unal, Bunyamin

    2009-08-01

    The Cavalieri principle was applied to consecutive pathology sections that were photographed at the same magnification and used to estimate tissue volumes via superimposing a point counting grid on these images. The goal of this study was to perform the Cavalieri method quickly and practically. In this study, 10 adult female Sprague Dawley rats were used. Brain tissue was removed and sampled both systematically and randomly. Brain volumes were estimated using two different methods. First, all brain slices were scanned with an HP ScanJet 3400C scanner, and their images were shown on a PC monitor. Brain volume was then calculated based on these images. Second, all brain slices were photographed in 10× magnification with a microscope camera, and brain volumes were estimated based on these micrographs. There was no statistically significant difference between the volume measurements of the two techniques (P>0.05; Paired Samples t Test). This study demonstrates that personal computer scanning of serial tissue sections allows for easy and reliable volume determination based on the Cavalieri method.

  20. Scanning transmission electron microscopy and its application to the study of nanoparticles and nanoparticle systems.

    PubMed

    Liu, Jingyue

    2005-06-01

    Scanning transmission electron microscopy (STEM) techniques can provide imaging, diffraction and spectroscopic information, either simultaneously or in a serial manner, of the specimen with an atomic or a sub-nanometer spatial resolution. High-resolution STEM imaging, when combined with nanodiffraction, atomic resolution electron energy-loss spectroscopy and nanometer resolution X-ray energy dispersive spectroscopy techniques, is critical to the fundamental studies of importance to nanoscience and nanotechnology. The availability of sub-nanometer or sub-angstrom electron probes in a STEM instrument, due to the use of a field emission gun and aberration correctors, ensures the greatest capabilities for studies of sizes, shapes, defects, crystal and surface structures, and compositions and electronic states of nanometer-size regions of thin films, nanoparticles and nanoparticle systems. The various imaging, diffraction and spectroscopy modes available in a dedicated STEM or a field emission TEM/STEM instrument are reviewed and the application of these techniques to the study of nanoparticles and nanostructured catalysts is used as an example to illustrate the critical role of the various STEM techniques in nanotechnology and nanoscience research.

  1. Correlation of live-cell imaging with volume scanning electron microscopy.

    PubMed

    Lucas, Miriam S; Günthert, Maja; Bittermann, Anne Greet; de Marco, Alex; Wepf, Roger

    2017-01-01

    Live-cell imaging is one of the most widely applied methods in live science. Here we describe two setups for live-cell imaging, which can easily be combined with volume SEM for correlative studies. The first procedure applies cell culture dishes with a gridded glass support, which can be used for any light microscopy modality. The second approach is a flow-chamber setup based on Ibidi μ-slides. Both live-cell imaging strategies can be followed up with serial blockface- or focused ion beam-scanning electron microscopy. Two types of resin embedding after heavy metal staining and dehydration are presented making best use of the particular advantages of each imaging modality: classical en-bloc embedding and thin-layer plastification. The latter can be used only for focused ion beam-scanning electron microscopy, but is advantageous for studying cell-interactions with specific substrates, or when the substrate cannot be removed. En-bloc embedding has diverse applications and can be applied for both described volume scanning electron microscopy techniques. Finally, strategies for relocating the cell of interest are discussed for both embedding approaches and in respect to the applied light and scanning electron microscopy methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Surgical transposition of the ovaries: imaging findings in 14 patients.

    PubMed

    Kier, R; Chambers, S K

    1989-11-01

    Pelvic radiation therapy for cervical or vaginal cancer often leads to ovarian failure. To remove the ovaries from the radiation portal and preserve their function, they can be transposed to the lateral abdomen. Serial imaging studies in 14 patients who had undergone ovarian transposition (five bilateral, nine unilateral) were reviewed. Images obtained included 32 CT scans, 20 sonograms, and one MR image. Most transposed ovaries were located along the paracolic gutters near the iliac crests, creating an extrinsic mass effect on adjacent bowel. Detection of surgical clips on the ovary on CT scans allowed confident recognition of all 19 transposed ovaries. Cysts in the transposed ovaries, noted on most imaging studies, did not correlate with complications of pain or hormonal dysfunction. In one case, a large physiologic cyst in a transposed ovary distorted the cecum and was mistaken for a mucocele of the appendix. In another case, a large ovarian cyst was thought to be tumor recurrence or a lymphocele. These findings indicate that although the transposed ovaries can be recognized on CT scans by the surgical clips attached to the ovaries, the appearance of the ovary does not predict reliably the development of complications.

  3. A USB 2.0 computer interface for the UCO/Lick CCD cameras

    NASA Astrophysics Data System (ADS)

    Wei, Mingzhi; Stover, Richard J.

    2004-09-01

    The new UCO/Lick Observatory CCD camera uses a 200 MHz fiber optic cable to transmit image data and an RS232 serial line for low speed bidirectional command and control. Increasingly RS232 is a legacy interface supported on fewer computers. The fiber optic cable requires either a custom interface board that is plugged into the mainboard of the image acquisition computer to accept the fiber directly or an interface converter that translates the fiber data onto a widely used standard interface. We present here a simple USB 2.0 interface for the UCO/Lick camera. A single USB cable connects to the image acquisition computer and the camera's RS232 serial and fiber optic cables plug into the USB interface. Since most computers now support USB 2.0 the Lick interface makes it possible to use the camera on essentially any modern computer that has the supporting software. No hardware modifications or additions to the computer are needed. The necessary device driver software has been written for the Linux operating system which is now widely used at Lick Observatory. The complete data acquisition software for the Lick CCD camera is running on a variety of PC style computers as well as an HP laptop.

  4. Radiolabeled, Antibody-Conjugated Manganese Oxide Nanoparticles for Tumor Vasculature Targeted Positron Emission Tomography and Magnetic Resonance Imaging.

    PubMed

    Zhan, Yonghua; Shi, Sixiang; Ehlerding, Emily B; Graves, Stephen A; Goel, Shreya; Engle, Jonathan W; Liang, Jimin; Tian, Jie; Cai, Weibo

    2017-11-08

    Manganese oxide nanoparticles (Mn 3 O 4 NPs) have attracted a great deal of attention in the field of biomedical imaging because of their ability to create an enhanced imaging signal in MRI as novel potent T 1 contrast agents. In this study, we present tumor vasculature-targeted imaging in mice using Mn 3 O 4 NPs through conjugation to the anti-CD105 antibody TRC105 and radionuclide copper-64 ( 64 Cu, t 1/2 : 12.7 h). The Mn 3 O 4 conjugated NPs, 64 Cu-NOTA-Mn 3 O 4 @PEG-TRC105, exhibited sufficient stability in vitro and in vivo. Serial positron emission tomography (PET) and magnetic resonance imaging (MRI) studies evaluated the pharmacokinetics and demonstrated targeting of 64 Cu-NOTA-Mn 3 O 4 @PEG-TRC105 to 4T1 murine breast tumors in vivo, compared to 64 Cu-NOTA-Mn 3 O 4 @PEG. The specificity of 64 Cu-NOTA-Mn 3 O 4 @PEG-TRC105 for the vascular marker CD105 was confirmed through in vivo, in vitro, and ex vivo experiments. Since Mn 3 O 4 conjugated NPs exhibited desirable properties for T 1 enhanced imaging and low toxicity, the tumor-specific Mn 3 O 4 conjugated NPs reported in this study may serve as promising multifunctional nanoplatforms for precise cancer imaging and diagnosis.

  5. Antisocial personality disorder, sexual sadism, malignant narcissism, and serial murder.

    PubMed

    Geberth, V J; Turco, R N

    1997-01-01

    This paper examines the research on serial murder and its relationship to antisocial personality disorder and sexual sadism. The concept of malignant narcissism is also discussed. Case studies of serial killers are examined regarding the nature of sexual violation and crime scene behavior.

  6. Serial sectioning methods for 3D investigations in materials science.

    PubMed

    Zankel, Armin; Wagner, Julian; Poelt, Peter

    2014-07-01

    A variety of methods for the investigation and 3D representation of the inner structure of materials has been developed. In this paper, techniques based on slice and view using scanning microscopy for imaging are presented and compared. Three different methods of serial sectioning combined with either scanning electron or scanning ion microscopy or atomic force microscopy (AFM) were placed under scrutiny: serial block-face scanning electron microscopy, which facilitates an ultramicrotome built into the chamber of a variable pressure scanning electron microscope; three-dimensional (3D) AFM, which combines an (cryo-) ultramicrotome with an atomic force microscope, and 3D FIB, which delivers results by slicing with a focused ion beam. These three methods complement one another in many respects, e.g., in the type of materials that can be investigated, the resolution that can be obtained and the information that can be extracted from 3D reconstructions. A detailed review is given about preparation, the slice and view process itself, and the limitations of the methods and possible artifacts. Applications for each technique are also provided. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams

    PubMed Central

    Coquelle, Nicolas; Brewster, Aaron S.; Kapp, Ulrike; Shilova, Anastasya; Weinhausen, Britta; Burghammer, Manfred; Colletier, Jacques-Philippe

    2015-01-01

    High-resolution structural information was obtained from lysozyme microcrystals (20 µm in the largest dimension) using raster-scanning serial protein crystallography on micro- and nano-focused beamlines at the ESRF. Data were collected at room temperature (RT) from crystals sandwiched between two silicon nitride wafers, thereby preventing their drying, while limiting background scattering and sample consumption. In order to identify crystal hits, new multi-processing and GUI-driven Python-based pre-analysis software was developed, named NanoPeakCell, that was able to read data from a variety of crystallographic image formats. Further data processing was carried out using CrystFEL, and the resultant structures were refined to 1.7 Å resolution. The data demonstrate the feasibility of RT raster-scanning serial micro- and nano-protein crystallography at synchrotrons and validate it as an alternative approach for the collection of high-resolution structural data from micro-sized crystals. Advantages of the proposed approach are its thriftiness, its handling-free nature, the reduced amount of sample required, the adjustable hit rate, the high indexing rate and the minimization of background scattering. PMID:25945583

  8. Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coquelle, Nicolas; Brewster, Aaron S.; Kapp, Ulrike

    High-resolution structural information was obtained from lysozyme microcrystals (20 µm in the largest dimension) using raster-scanning serial protein crystallography on micro- and nano-focused beamlines at the ESRF. Data were collected at room temperature (RT) from crystals sandwiched between two silicon nitride wafers, thereby preventing their drying, while limiting background scattering and sample consumption. In order to identify crystal hits, new multi-processing and GUI-driven Python-based pre-analysis software was developed, named NanoPeakCell, that was able to read data from a variety of crystallographic image formats. Further data processing was carried out using CrystFEL, and the resultant structures were refined to 1.7 Åmore » resolution. The data demonstrate the feasibility of RT raster-scanning serial micro- and nano-protein crystallography at synchrotrons and validate it as an alternative approach for the collection of high-resolution structural data from micro-sized crystals. Advantages of the proposed approach are its thriftiness, its handling-free nature, the reduced amount of sample required, the adjustable hit rate, the high indexing rate and the minimization of background scattering.« less

  9. Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams.

    PubMed

    Coquelle, Nicolas; Brewster, Aaron S; Kapp, Ulrike; Shilova, Anastasya; Weinhausen, Britta; Burghammer, Manfred; Colletier, Jacques Philippe

    2015-05-01

    High-resolution structural information was obtained from lysozyme microcrystals (20 µm in the largest dimension) using raster-scanning serial protein crystallography on micro- and nano-focused beamlines at the ESRF. Data were collected at room temperature (RT) from crystals sandwiched between two silicon nitride wafers, thereby preventing their drying, while limiting background scattering and sample consumption. In order to identify crystal hits, new multi-processing and GUI-driven Python-based pre-analysis software was developed, named NanoPeakCell, that was able to read data from a variety of crystallographic image formats. Further data processing was carried out using CrystFEL, and the resultant structures were refined to 1.7 Å resolution. The data demonstrate the feasibility of RT raster-scanning serial micro- and nano-protein crystallography at synchrotrons and validate it as an alternative approach for the collection of high-resolution structural data from micro-sized crystals. Advantages of the proposed approach are its thriftiness, its handling-free nature, the reduced amount of sample required, the adjustable hit rate, the high indexing rate and the minimization of background scattering.

  10. Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams

    DOE PAGES

    Coquelle, Nicolas; Brewster, Aaron S.; Kapp, Ulrike; ...

    2015-04-25

    High-resolution structural information was obtained from lysozyme microcrystals (20 µm in the largest dimension) using raster-scanning serial protein crystallography on micro- and nano-focused beamlines at the ESRF. Data were collected at room temperature (RT) from crystals sandwiched between two silicon nitride wafers, thereby preventing their drying, while limiting background scattering and sample consumption. In order to identify crystal hits, new multi-processing and GUI-driven Python-based pre-analysis software was developed, named NanoPeakCell, that was able to read data from a variety of crystallographic image formats. Further data processing was carried out using CrystFEL, and the resultant structures were refined to 1.7 Åmore » resolution. The data demonstrate the feasibility of RT raster-scanning serial micro- and nano-protein crystallography at synchrotrons and validate it as an alternative approach for the collection of high-resolution structural data from micro-sized crystals. Advantages of the proposed approach are its thriftiness, its handling-free nature, the reduced amount of sample required, the adjustable hit rate, the high indexing rate and the minimization of background scattering.« less

  11. Multimodal Hierarchical Imaging of Serial Sections for Finding Specific Cellular Targets within Large Volumes

    PubMed Central

    Wacker, Irene U.; Veith, Lisa; Spomer, Waldemar; Hofmann, Andreas; Thaler, Marlene; Hillmer, Stefan; Gengenbach, Ulrich; Schröder, Rasmus R.

    2018-01-01

    Targeting specific cells at ultrastructural resolution within a mixed cell population or a tissue can be achieved by hierarchical imaging using a combination of light and electron microscopy. Samples embedded in resin are sectioned into arrays consisting of ribbons of hundreds of ultrathin sections and deposited on pieces of silicon wafer or conductively coated coverslips. Arrays are imaged at low resolution using a digital consumer like smartphone camera or light microscope (LM) for a rapid large area overview, or a wide field fluorescence microscope (fluorescence light microscopy (FLM)) after labeling with fluorophores. After post-staining with heavy metals, arrays are imaged in a scanning electron microscope (SEM). Selection of targets is possible from 3D reconstructions generated by FLM or from 3D reconstructions made from the SEM image stacks at intermediate resolution if no fluorescent markers are available. For ultrastructural analysis, selected targets are finally recorded in the SEM at high-resolution (a few nanometer image pixels). A ribbon-handling tool that can be retrofitted to any ultramicrotome is demonstrated. It helps with array production and substrate removal from the sectioning knife boat. A software platform that allows automated imaging of arrays in the SEM is discussed. Compared to other methods generating large volume EM data, such as serial block-face SEM (SBF-SEM) or focused ion beam SEM (FIB-SEM), this approach has two major advantages: (1) The resin-embedded sample is conserved, albeit in a sliced-up version. It can be stained in different ways and imaged with different resolutions. (2) As the sections can be post-stained, it is not necessary to use samples strongly block-stained with heavy metals to introduce contrast for SEM imaging or render the tissue blocks conductive. This makes the method applicable to a wide variety of materials and biological questions. Particularly prefixed materials e.g., from biopsy banks and pathology labs, can directly be embedded and reconstructed in 3D. PMID:29630046

  12. Detection of restriction fragment length polymorphisms in clinical isolates and serially passaged Pseudomonas aeruginosa strains.

    PubMed Central

    Hjelm, L N; Branstrom, A A; Warren, R L

    1990-01-01

    An 800-base-pair HindIII-PstI fragment that flanks a hot spot for Tn7 insertion was isolated from the chromosome of Pseudomonas aeruginosa and cloned into pUC12. The fragment was used to probe XhoI digests of genomic DNA from 18 P. aeruginosa isolates collected from sputum samples of seven cystic fibrosis patients. Only two XhoI restriction fragment length polymorphisms (RFLPs), of 3.7 and 7.7 kilobases (kb), were detected. Isolate WSU3531-1 (3.7-kb XhoI fragment) and WSU3860 (7.7-kb XhoI fragment), while isolated from the same patient, showed different RFLPs. Serial passages of isolate WSU3531-1 demonstrated that this strain was phenotypically stable. In contrast, colony and pigment variants were readily isolated at a frequency of 1% from serial passages of isolate WSU3860. When XhoI-digested genomic DNA from phenotypic variants of serially passaged WSU3860 were probed with the 800-base-pair HindIII-PstI fragment, the probe hybridized to a 10.4-kb XhoI fragment from three isolates. Restriction analysis of the genomic DNA digested with a variety of restriction enzymes showed that a 2.7-kb insertion occurred in the same region for all three isolates. There appeared to be no correlation between changes in the RFLP and changes in colony morphology. Images PMID:1977762

  13. The effects of nidopallium caudolaterale inactivation on serial-order behaviour in pigeons (Columba livia).

    PubMed

    Johnston, Melissa Jane; Clarkson, Andrew N; Gowing, Emma K; Scarf, Damian; Colombo, Mike

    2018-06-06

    Serial-order behaviour is the ability to complete a sequence of responses in a predetermined order to achieve a reward. In birds, serial-order behaviour is thought to be impaired by damage to the nidopallium caudolaterale (NCL). In the current study, we examined the role of the NCL in serial-order behaviour by training pigeons on a 4-item serial-order task and a go/no-go discrimination task. Following training, pigeons were received infusions of 1μl of either tetrodotoxin (TTX) or saline. Saline infusions had no impact on serial-order behaviour whereas TTX infusions resulted in a significant decrease in performance. The serial-order impairments, however, were not the results of errors of any specific error at any specific list item. With respect to the go/no-go discrimination task, saline infusions also had no impact on performance whereas TTX infusions impaired pigeons' discrimination abilities. Given the impairments on the go/no-go discrimination task, which does not require processing of serial-order information, we tentatively conclude that damage to the NCL does not impair serial-order behaviour per se, but rather results in a more generalised impairment that may impact performance across a range of tasks.

  14. Serial electrophysiological studies in a Guillain-Barré subtype with bilateral facial neuropathy.

    PubMed

    Chan, Yee-Cheun; Therimadasamy, Aravind-Kannan; Sainuddin, Nurul M; Wilder-Smith, Einar; Yuki, Nobuhiro

    2016-02-01

    Bifacial weakness with paraesthesias subtype of Guillain-Barré syndrome (GBS) is thought to be demyelinating in nature but the evolution of serial nerve conduction study (NCS) findings has not been studied. We retrospectively analyzed the changes on serial NCS of patients with bilateral facial neuropathy. We described the clinical features, serial blink reflex, facial nerve and limb NCS of such patients. Five patients fulfilled our study criteria. Patients 1 and 2 were diagnosed clinically to have bilateral Bell's palsy, patients 3 and 4 as bifacial GBS subtype and patient 5 as facial palsy associated with acute HIV infection. In all, the initial neurophysiological tests showed absent blink response and normal facial NCS. Patient 1's repeat tests were normal. Patient 2's repeat blink reflex showed mildly prolonged latency. Repeat blink reflex latency of patients 3, 4 and 5 were in the demyelinating range. Patient 3 also had prolonged facial nerve latency. Patients 3 and 4 had serial limb NCS showing progressively prolonged latency. Serial NCS suggests that the bifacial GBS subtype is demyelinating in nature. This study provides further evidence for a bifacial subtype of GBS with a demyelinating pathophysiology. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Three-dimensional segmentation of luminal and adventitial borders in serial intravascular ultrasound images

    NASA Technical Reports Server (NTRS)

    Shekhar, R.; Cothren, R. M.; Vince, D. G.; Chandra, S.; Thomas, J. D.; Cornhill, J. F.

    1999-01-01

    Intravascular ultrasound (IVUS) provides exact anatomy of arteries, allowing accurate quantitative analysis. Automated segmentation of IVUS images is a prerequisite for routine quantitative analyses. We present a new three-dimensional (3D) segmentation technique, called active surface segmentation, which detects luminal and adventitial borders in IVUS pullback examinations of coronary arteries. The technique was validated against expert tracings by computing correlation coefficients (range 0.83-0.97) and William's index values (range 0.37-0.66). The technique was statistically accurate, robust to image artifacts, and capable of segmenting a large number of images rapidly. Active surface segmentation enabled geometrically accurate 3D reconstruction and visualization of coronary arteries and volumetric measurements.

  16. Serial casting versus stretching technique to treat knee flexion contracture in children with spina bifida: a comparative study.

    PubMed

    Al-Oraibi, S; Tariah, Hashem Abu; Alanazi, Abdullah

    2013-01-01

    Severe knee contractures that develop soon after muscle imbalance may not improve with stretching exercises and splinting. An alternative treatment is serial casting, which has been used to promote increased range of motion. The purpose of this study was to compare the effectiveness of using serial casting and passive stretching approaches to treat knee flexion contracture in children with spina bifida. In a pre/post randomized controlled study, ten participants were included in the serial casting group, while eight participants were included in the passive stretching intervention group. The degree of knee extension was measured at baseline, immediately after intervention, and at a one-year follow-up using a standard goniometer. Both groups showed significant improvements in the degree of flexion contracture at the post-treatment evaluation and the follow-up evaluation. The serial casting group showed significant improvements in knee flexion contracture at the post-treatment evaluation, t (9)=13.4, p < 0.001, and the one-year follow-up evaluation, t (9) = 7.46, p < 0.001. The passive stretching group also showed significant improvements in knee flexion contracture at the post-treatment evaluation, t (7) =2.6, p < 0.05, and the one-year follow-up evaluation, t (7) = 3.6, p < 0.05. However, statistically significant improvements in the serial casting group compared with passive stretching group in relation to the degree of flexion contracture were found at the immediate post-treatment evaluation, F(1, 15)=246, p=0.0001, and the one-year follow-up evaluation, F (1, 15)=51.5, p=0.0001. The outcomes of this study provide the first evidence that serial casting may be a useful intervention in treating knee flexion contracture in children with spina bifida. However, further investigations into serial casting, as well as investigations into the use of serial casting with other interventions, are warranted.

  17. Spontaneous extracranial decompression of epidural hematoma.

    PubMed

    Neely, John C; Jones, Blaise V; Crone, Kerry R

    2008-03-01

    Epidural hematoma (EDH) is a common sequela of head trauma in children. An increasing number are managed nonsurgically, with close clinical and imaging observation. We report the case of a traumatic EDH that spontaneously decompressed into the subgaleal space, demonstrated on serial CT scans that showed resolution of the EDH and concurrent enlargement of the subgaleal hematoma.

  18. Beyond the Genteel Tradition? Images of Women in the 1919 Volume of Century.

    ERIC Educational Resources Information Center

    Mills, Eva B.

    An analysis of "Century" magazine from November 1919 to April 1920 reveals that women were most likely to be characters in a short story or serialized novels. The stereotypic portrayal of the American female in the nonfiction pieces as "schoolmarm,""silly school girl," or "wife/mother" seems strange when one…

  19. Proteus: a reconfigurable computational network for computer vision

    NASA Astrophysics Data System (ADS)

    Haralick, Robert M.; Somani, Arun K.; Wittenbrink, Craig M.; Johnson, Robert; Cooper, Kenneth; Shapiro, Linda G.; Phillips, Ihsin T.; Hwang, Jenq N.; Cheung, William; Yao, Yung H.; Chen, Chung-Ho; Yang, Larry; Daugherty, Brian; Lorbeski, Bob; Loving, Kent; Miller, Tom; Parkins, Larye; Soos, Steven L.

    1992-04-01

    The Proteus architecture is a highly parallel MIMD, multiple instruction, multiple-data machine, optimized for large granularity tasks such as machine vision and image processing The system can achieve 20 Giga-flops (80 Giga-flops peak). It accepts data via multiple serial links at a rate of up to 640 megabytes/second. The system employs a hierarchical reconfigurable interconnection network with the highest level being a circuit switched Enhanced Hypercube serial interconnection network for internal data transfers. The system is designed to use 256 to 1,024 RISC processors. The processors use one megabyte external Read/Write Allocating Caches for reduced multiprocessor contention. The system detects, locates, and replaces faulty subsystems using redundant hardware to facilitate fault tolerance. The parallelism is directly controllable through an advanced software system for partitioning, scheduling, and development. System software includes a translator for the INSIGHT language, a parallel debugger, low and high level simulators, and a message passing system for all control needs. Image processing application software includes a variety of point operators neighborhood, operators, convolution, and the mathematical morphology operations of binary and gray scale dilation, erosion, opening, and closing.

  20. Different coding strategies for the perception of stable and changeable facial attributes.

    PubMed

    Taubert, Jessica; Alais, David; Burr, David

    2016-09-01

    Perceptual systems face competing requirements: improving signal-to-noise ratios of noisy images, by integration; and maximising sensitivity to change, by differentiation. Both processes occur in human vision, under different circumstances: they have been termed priming, or serial dependencies, leading to positive sequential effects; and adaptation or habituation, which leads to negative sequential effects. We reasoned that for stable attributes, such as the identity and gender of faces, the system should integrate: while for changeable attributes like facial expression, it should also engage contrast mechanisms to maximise sensitivity to change. Subjects viewed a sequence of images varying simultaneously in gender and expression, and scored each as male or female, and happy or sad. We found strong and consistent positive serial dependencies for gender, and negative dependency for expression, showing that both processes can operate at the same time, on the same stimuli, depending on the attribute being judged. The results point to highly sophisticated mechanisms for optimizing use of past information, either by integration or differentiation, depending on the permanence of that attribute.

  1. WebMedSA: a web-based framework for segmenting and annotating medical images using biomedical ontologies

    NASA Astrophysics Data System (ADS)

    Vega, Francisco; Pérez, Wilson; Tello, Andrés.; Saquicela, Victor; Espinoza, Mauricio; Solano-Quinde, Lizandro; Vidal, Maria-Esther; La Cruz, Alexandra

    2015-12-01

    Advances in medical imaging have fostered medical diagnosis based on digital images. Consequently, the number of studies by medical images diagnosis increases, thus, collaborative work and tele-radiology systems are required to effectively scale up to this diagnosis trend. We tackle the problem of the collaborative access of medical images, and present WebMedSA, a framework to manage large datasets of medical images. WebMedSA relies on a PACS and supports the ontological annotation, as well as segmentation and visualization of the images based on their semantic description. Ontological annotations can be performed directly on the volumetric image or at different image planes (e.g., axial, coronal, or sagittal); furthermore, annotations can be complemented after applying a segmentation technique. WebMedSA is based on three main steps: (1) RDF-ization process for extracting, anonymizing, and serializing metadata comprised in DICOM medical images into RDF/XML; (2) Integration of different biomedical ontologies (using L-MOM library), making this approach ontology independent; and (3) segmentation and visualization of annotated data which is further used to generate new annotations according to expert knowledge, and validation. Initial user evaluations suggest that WebMedSA facilitates the exchange of knowledge between radiologists, and provides the basis for collaborative work among them.

  2. Optical Imaging of Targeted β-Galactosidase in Brain Tumors to Detect EGFR Levels

    PubMed Central

    Broome, Ann-Marie; Ramamurthy, Gopal; Lavik, Kari; Liggett, Alexander; Kinstlinger, Ian; Basilion, James

    2015-01-01

    A current limitation in molecular imaging is that it often requires genetic manipulation of cancer cells for noninvasive imaging. Other methods to detect tumor cells in vivo using exogenously delivered and functionally active reporters, such as β-gal, are required. We report the development of a platform system for linking β-gal to any number of different ligands or antibodies for in vivo targeting to tissue or cells, without the requirement for genetic engineering of the target cells prior to imaging. Our studies demonstrate significant uptake in vitro and in vivo of an EGFR-targeted β-gal complex. We were then able to image orthotopic brain tumor accumulation and localization of the targeted enzyme when a fluorophore was added to the complex, as well as validate the internalization of the intravenously administered β-gal reporter complex ex vivo. After fluorescence imaging localized the β-gal complexes to the brain tumor, we topically applied a bioluminescent β-gal substrate to serial sections of the brain to evaluate the delivery and integrity of the enzyme. Finally, robust bioluminescence of the EGFR-targeted β-gal complex was captured within the tumor during noninvasive in vivo imaging. PMID:25775241

  3. Optical imaging of targeted β-galactosidase in brain tumors to detect EGFR levels.

    PubMed

    Broome, Ann-Marie; Ramamurthy, Gopal; Lavik, Kari; Liggett, Alexander; Kinstlinger, Ian; Basilion, James

    2015-04-15

    A current limitation in molecular imaging is that it often requires genetic manipulation of cancer cells for noninvasive imaging. Other methods to detect tumor cells in vivo using exogenously delivered and functionally active reporters, such as β-gal, are required. We report the development of a platform system for linking β-gal to any number of different ligands or antibodies for in vivo targeting to tissue or cells, without the requirement for genetic engineering of the target cells prior to imaging. Our studies demonstrate significant uptake in vitro and in vivo of an EGFR-targeted β-gal complex. We were then able to image orthotopic brain tumor accumulation and localization of the targeted enzyme when a fluorophore was added to the complex, as well as validate the internalization of the intravenously administered β-gal reporter complex ex vivo. After fluorescence imaging localized the β-gal complexes to the brain tumor, we topically applied a bioluminescent β-gal substrate to serial sections of the brain to evaluate the delivery and integrity of the enzyme. Finally, robust bioluminescence of the EGFR-targeted β-gal complex was captured within the tumor during noninvasive in vivo imaging.

  4. Accuracy of indexing coverage information as reported by serials sources.

    PubMed Central

    Eldredge, J D

    1993-01-01

    This article reports on the accuracy of indexing service coverage information listed in three serials sources: Ulrich's International Periodicals Directory, SERLINE, and The Serials Directory. The titles studied were randomly selected journals that began publication in either 1981 or 1986. Aggregate results reveal that these serials sources perform at 92%, 97%, and 95% levels of accuracy respectively. When the results are analyzed by specific indexing services by year, the performance scores ranged from 80% to 100%. All three serials sources tend to underreport index coverage. The author advances five recommendations for improving index coverage accuracy and four specific proposals for future research. The results suggest that, for the immediate future, librarians should treat index coverage information reported in these three serials sources with some skepticism. PMID:8251971

  5. Representation of the serial killer on the Italian Internet.

    PubMed

    Villano, P; Bastianoni, P; Melotti, G

    2001-10-01

    The representation of serial killers was examined from the analysis of 317 Web pages in the Italian language to study how the psychological profiles of serial killers are described on the Italian Internet. The correspondence analysis of the content of these Web pages shows that in Italy the serial killer is associated with words such as "monster" and "horror," which suggest and imply psychological perversion and aberrant acts. These traits are peculiar for the Italian scenario.

  6. Using Serial and Discrete Digit Naming to Unravel Word Reading Processes

    PubMed Central

    Altani, Angeliki; Protopapas, Athanassios; Georgiou, George K.

    2018-01-01

    During reading acquisition, word recognition is assumed to undergo a developmental shift from slow serial/sublexical processing of letter strings to fast parallel processing of whole word forms. This shift has been proposed to be detected by examining the size of the relationship between serial- and discrete-trial versions of word reading and rapid naming tasks. Specifically, a strong association between serial naming of symbols and single word reading suggests that words are processed serially, whereas a strong association between discrete naming of symbols and single word reading suggests that words are processed in parallel as wholes. In this study, 429 Grade 1, 3, and 5 English-speaking Canadian children were tested on serial and discrete digit naming and word reading. Across grades, single word reading was more strongly associated with discrete naming than with serial naming of digits, indicating that short high-frequency words are processed as whole units early in the development of reading ability in English. In contrast, serial naming was not a unique predictor of single word reading across grades, suggesting that within-word sequential processing was not required for the successful recognition for this set of words. Factor mixture analysis revealed that our participants could be clustered into two classes, namely beginning and more advanced readers. Serial naming uniquely predicted single word reading only among the first class of readers, indicating that novice readers rely on a serial strategy to decode words. Yet, a considerable proportion of Grade 1 students were assigned to the second class, evidently being able to process short high-frequency words as unitized symbols. We consider these findings together with those from previous studies to challenge the hypothesis of a binary distinction between serial/sublexical and parallel/lexical processing in word reading. We argue instead that sequential processing in word reading operates on a continuum, depending on the level of reading proficiency, the degree of orthographic transparency, and word-specific characteristics. PMID:29706918

  7. Using Serial and Discrete Digit Naming to Unravel Word Reading Processes.

    PubMed

    Altani, Angeliki; Protopapas, Athanassios; Georgiou, George K

    2018-01-01

    During reading acquisition, word recognition is assumed to undergo a developmental shift from slow serial/sublexical processing of letter strings to fast parallel processing of whole word forms. This shift has been proposed to be detected by examining the size of the relationship between serial- and discrete-trial versions of word reading and rapid naming tasks. Specifically, a strong association between serial naming of symbols and single word reading suggests that words are processed serially, whereas a strong association between discrete naming of symbols and single word reading suggests that words are processed in parallel as wholes. In this study, 429 Grade 1, 3, and 5 English-speaking Canadian children were tested on serial and discrete digit naming and word reading. Across grades, single word reading was more strongly associated with discrete naming than with serial naming of digits, indicating that short high-frequency words are processed as whole units early in the development of reading ability in English. In contrast, serial naming was not a unique predictor of single word reading across grades, suggesting that within-word sequential processing was not required for the successful recognition for this set of words. Factor mixture analysis revealed that our participants could be clustered into two classes, namely beginning and more advanced readers. Serial naming uniquely predicted single word reading only among the first class of readers, indicating that novice readers rely on a serial strategy to decode words. Yet, a considerable proportion of Grade 1 students were assigned to the second class, evidently being able to process short high-frequency words as unitized symbols. We consider these findings together with those from previous studies to challenge the hypothesis of a binary distinction between serial/sublexical and parallel/lexical processing in word reading. We argue instead that sequential processing in word reading operates on a continuum, depending on the level of reading proficiency, the degree of orthographic transparency, and word-specific characteristics.

  8. A psychological profile of a serial killer: a case report.

    PubMed

    Dogra, T D; Leenaars, Antoon A; Chadha, R K; Manju, Mehta; Lalwani, Sanjeev; Sood, Mamta; Lester, David; Raina, Anupuma; Behera, C

    2012-01-01

    Serial killers have always fascinated society. A serial killer is typically defined as a perpetrator who murders three or more people over a period of time. Most reported cases of serial killers come from the United States and Canada. In India, there are few reported cases. We present, to the best of our knowledge, the first Indian case in the literature. The present case is of a 28-year-old man, Surinder Koli. The Department of Forensic Medicine & Toxicology, All India Institute of Medical Sciences, New Delphi handled the forensic study. We present a most unique psychological investigation into the mind of a serial killer.

  9. Criminal psychological profiling of serial arson crimes.

    PubMed

    Kocsis, Richard N; Cooksey, Ray W

    2002-12-01

    The practice of criminal psychological profiling is frequently cited as being applicable to serial arson crimes. Despite this claim, there does not appear to be any empirical research that examines serial arson offence behaviors in the context of profiling. This study seeks to develop an empirical model of serial arsonist behaviors that can be systematically associated with probable offender characteristics. Analysis has produced a model of offence behaviors that identify four discrete behavior patterns, all of which share a constellation of common nondiscriminatory behaviors. The inherent behavioral themes of each of these patterns are explored with discussion of their broader implications for our understanding of serial arson and directions for future research.

  10. Single photon emission computed tomography/positron emission tomography imaging and targeted radionuclide therapy of melanoma: new multimodal fluorinated and iodinated radiotracers.

    PubMed

    Maisonial, Aurélie; Kuhnast, Bertrand; Papon, Janine; Boisgard, Raphaël; Bayle, Martine; Vidal, Aurélien; Auzeloux, Philippe; Rbah, Latifa; Bonnet-Duquennoy, Mathilde; Miot-Noirault, Elisabeth; Galmier, Marie-Josèphe; Borel, Michèle; Askienazy, Serge; Dollé, Frédéric; Tavitian, Bertrand; Madelmont, Jean-Claude; Moins, Nicole; Chezal, Jean-Michel

    2011-04-28

    This study reports a series of 14 new iodinated and fluorinated compounds offering both early imaging ((123)I, (124)I, (18)F) and systemic treatment ((131)I) of melanoma potentialities. The biodistribution of each (125)I-labeled tracer was evaluated in a model of melanoma B16F0-bearing mice, using in vivo serial γ scintigraphic imaging. Among this series, [(125)I]56 emerged as the most promising compound in terms of specific tumoral uptake and in vivo kinetic profile. To validate our multimodality concept, the radiosynthesis of [(18)F]56 was then optimized and this radiotracer has been successfully investigated for in vivo PET imaging of melanoma in B16F0- and B16F10-bearing mouse model. The therapeutic efficacy of [(131)I]56 was then evaluated in mice bearing subcutaneous B16F0 melanoma, and a significant slow down in tumoral growth was demonstrated. These data support further development of 56 for PET imaging ((18)F, (124)I) and targeted radionuclide therapy ((131)I) of melanoma using a single chemical structure.

  11. Decidualized endometrioma during pregnancy: recognizing an imaging mimic of ovarian malignancy.

    PubMed

    Poder, Liina; Coakley, Fergus V; Rabban, Joseph T; Goldstein, Ruth B; Aziz, Seerat; Chen, Lee-may

    2008-01-01

    To present the ultrasound and magnetic resonance imaging findings that may allow for a prospective diagnosis and expectant management of decidualized endometriomas because the rare occurrence of decidualization in the ectopic endometrial stroma of an endometrioma during pregnancy can mimic ovarian cancer at imaging. Smooth lobulated mural nodules with prominent internal vascularity were noted in an apparent right ovarian endometrioma on serial ultrasound studies in a 34-year-old woman at 12, 21, 27, and 30 weeks of gestation. Magnetic resonance imaging demonstrated the nodules to be strikingly similar in intensity and texture to the decidualized endometrium in the uterus on T2-weighted sequences. A provisional diagnosis of decidualized endometrioma allowed for expectant management with immediate postpartum resection and confirmation of the diagnosis. Decidualized endometrioma can mimic ovarian malignancy during pregnancy, but a prospective diagnosis may be possible when solid smoothly lobulated nodules with prominent internal vascularity within an endometrioma are seen from early in pregnancy, and the nodules demonstrate marked similarity in signal intensity and texture with the decidualized endometrium in the uterus at magnetic resonance imaging.

  12. Differential Effects of Paced and Unpaced Responding on delayed Serial Order Recall in Schizophrenia

    PubMed Central

    Hill, S. Kristian; Griffin, Ginny B.; Houk, James C.; Sweeney, John A.

    2011-01-01

    Working memory for temporal order is a component of working memory that is especially dependent on striatal systems, but has not been extensively studied in schizophrenia. This study was designed to characterize serial order reproduction by adapting a spatial serial order task developed for nonhuman primate studies, while controlling for working memory load and whether responses were initiated freely (unpaced) or in an externally paced format. Clinically stable schizophrenia patients (n=27) and psychiatrically healthy individuals (n=25) were comparable on demographic variables and performance on standardized tests of immediate serial order recall (Digit Span, Spatial Span). No group differences were observed for serial order recall when read sequence reproduction was unpaced. However, schizophrenia patients exhibited significant impairments when responding was paced, regardless of sequence length or retention delay. Intact performance by schizophrenia patients during the unpaced condition indicates that prefrontal storage and striatal output systems are sufficiently intact to learn novel response sequences and hold them in working memory to perform serial order tasks. However, retention for newly learned response sequences was disrupted in schizophrenia patients by paced responding, when read-out of each element in the response sequence was externally controlled. The disruption of memory for serial order in paced read-out condition indicates a deficit in frontostriatal interaction characterized by an inability to update working memory stores and deconstruct ‘chunked’ information. PMID:21705197

  13. Three-dimensional image analysis as a tool for embryology

    NASA Astrophysics Data System (ADS)

    Verweij, Andre

    1992-06-01

    In the study of cell fate, cell lineage, and morphogenetic transformation it is necessary to obtain 3-D data. Serial sections of glutaraldehyde fixed and glycol methacrylate embedded material provide high resolution data. Clonal spread during germ layer formation in the mouse embryo has been followed by labeling a progenitor epiblast cell with horseradish peroxidase and staining its descendants one or two days later, followed by histological processing. Reconstruction of a 3-D image from histological sections must provide a solution for the alignment problem. As we want to study images at different magnification levels, we have chosen a method in which the sections are aligned under the microscope. Positioning is possible through a translation and a rotation stage. The first step for reconstruction is a coarse alignment on the basis of the moments in a binary, low magnification image of the embedding block. Thereafter, images of higher magnification levels are aligned by optimizing a similarity measure between the images. To analyze, first a global 3-D second order surface is fitted on the image to obtain the orientation of the embryo. The coefficients of this fit are used to normalize the size of the different embryos. Thereafter, the image is resampled with respect to the surface to create a 2-D mapping of the embryo and to guide the segmentation of the different cell layers which make up the embryo.

  14. A Survey on Banknote Recognition Methods by Various Sensors

    PubMed Central

    Lee, Ji Woo; Hong, Hyung Gil; Kim, Ki Wan; Park, Kang Ryoung

    2017-01-01

    Despite a decrease in the use of currency due to the recent growth in the use of electronic financial transactions, real money transactions remain very important in the global market. While performing transactions with real money, touching and counting notes by hand, is still a common practice in daily life, various types of automated machines, such as ATMs and banknote counters, are essential for large-scale and safe transactions. This paper presents studies that have been conducted in four major areas of research (banknote recognition, counterfeit banknote detection, serial number recognition, and fitness classification) in the accurate banknote recognition field by various sensors in such automated machines, and describes the advantages and drawbacks of the methods presented in those studies. While to a limited extent some surveys have been presented in previous studies in the areas of banknote recognition or counterfeit banknote recognition, this paper is the first of its kind to review all four areas. Techniques used in each of the four areas recognize banknote information (denomination, serial number, authenticity, and physical condition) based on image or sensor data, and are actually applied to banknote processing machines across the world. This study also describes the technological challenges faced by such banknote recognition techniques and presents future directions of research to overcome them. PMID:28208733

  15. Ischemia-Reperfusion Injury in Stroke

    PubMed Central

    Nour, May; Scalzo, Fabien; Liebeskind, David S.

    2013-01-01

    Despite ongoing advances in stroke imaging and treatment, ischemic and hemorrhagic stroke continue to debilitate patients with devastating outcomes at both the personal and societal levels. While the ultimate goal of therapy in ischemic stroke is geared towards restoration of blood flow, even when mitigation of initial tissue hypoxia is successful, exacerbation of tissue injury may occur in the form of cell death, or alternatively, hemorrhagic transformation of reperfused tissue. Animal models have extensively demonstrated the concept of reperfusion injury at the molecular and cellular levels, yet no study has quantified this effect in stroke patients. These preclinical models have also demonstrated the success of a wide array of neuroprotective strategies at lessening the deleterious effects of reperfusion injury. Serial multimodal imaging may provide a framework for developing therapies for reperfusion injury. PMID:25187778

  16. Update on radionuclide imaging in hepatobiliary disease. [/sup 99m/Tc-labelled acetanilide iminodracetic acid analogues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenthall, L.

    1981-05-01

    The recent introduction of technetium Tc 99m-labeled acetanilide iminodiacetic acid (/sup 99m/Tc-IDA) analogues has facilitated the clincal study of the bile flow pathways. A variety of /sup 99m/Tc-IDA derivaties are under investigation. Basically all are metabolized by the hepatocyte and immediately thereafter excreted unconjugated into the biliary tract. Of the various derivatives tested, e.g., dimethyl (lidofenin), diethyl, paraisopropyl (iprofenin), parabutyl (butilfenin), and diisopropyl (disofenin), the last named is the best universal agent at this time. By serial liver imaging the patency of the cystic duct and the integrity of altered cholangiointestinal anatomy can be assessed, leakage of bile and gastricmore » reflux can be disclosed, and medical and surgical jaundice can be distinguished.« less

  17. Airway Tree Segmentation in Serial Block-Face Cryomicrotome Images of Rat Lungs

    PubMed Central

    Bauer, Christian; Krueger, Melissa A.; Lamm, Wayne J.; Smith, Brian J.; Glenny, Robb W.; Beichel, Reinhard R.

    2014-01-01

    A highly-automated method for the segmentation of airways in serial block-face cryomicrotome images of rat lungs is presented. First, a point inside of the trachea is manually specified. Then, a set of candidate airway centerline points is automatically identified. By utilizing a novel path extraction method, a centerline path between the root of the airway tree and each point in the set of candidate centerline points is obtained. Local disturbances are robustly handled by a novel path extraction approach, which avoids the shortcut problem of standard minimum cost path algorithms. The union of all centerline paths is utilized to generate an initial airway tree structure, and a pruning algorithm is applied to automatically remove erroneous subtrees or branches. Finally, a surface segmentation method is used to obtain the airway lumen. The method was validated on five image volumes of Sprague-Dawley rats. Based on an expert-generated independent standard, an assessment of airway identification and lumen segmentation performance was conducted. The average of airway detection sensitivity was 87.4% with a 95% confidence interval (CI) of (84.9, 88.6)%. A plot of sensitivity as a function of airway radius is provided. The combined estimate of airway detection specificity was 100% with a 95% CI of (99.4, 100)%. The average number and diameter of terminal airway branches was 1179 and 159 μm, respectively. Segmentation results include airways up to 31 generations. The regression intercept and slope of airway radius measurements derived from final segmentations were estimated to be 7.22 μm and 1.005, respectively. The developed approach enables quantitative studies of physiology and lung diseases in rats, requiring detailed geometric airway models. PMID:23955692

  18. Segmented swept source optical coherence tomography angiography assessment of the perifoveal vasculature in patients with X-linked juvenile retinoschisis: a serial case report.

    PubMed

    Stringa, Francesco; Tsamis, Emmanouli; Papayannis, Alessandro; Chwiejczak, Katarzyna; Jalil, Assad; Biswas, Susmito; Ahmad, Hassan; Stanga, Paulo Eduardo

    2017-01-01

    To describe perifoveal microvascular changes occurring in X-linked juvenile retinoschisis (XLRS) using swept source optical coherence tomography angiography (SS OCTA). This is a serial case report of three patients. Retrospective data of patients affected by XLRS were collected. Structural optical coherence tomography (OCT) and color fundus photography (CFPh) were carried out with Topcon ® OCT 2000 3D OCT as part of the standard care. Two patients were imaged on Topcon Atlantis ® SS OCTA and one on Topcon Triton ® SS OCTA. SS OCTA images were acquired using the 3 × 3 mm fovea-centered cubes scanning protocol. Analysis of both perifoveal superficial vascular plexus (pSVP) and perifoveal deep vascular plexus (pDVP) was performed by two observers after automated segmentation. Four eyes of three males (mean age 14 ± 3.8 years) were analyzed. All eyes showed foveoschisis on CFPh images. OCT B-scans of three eyes showed schistic cysts in the ganglion cell layer, inner nuclear layer (INL) and outer nuclear layer (ONL); in one eye, cysts were depicted in INL and ONL only. In two eyes, SS OCTA showed abnormal foveal avascular zone (FAZ) shape in the pSVP, and in the other two, FAZ shape was abnormal in both plexuses. In all eyes, retinal vascular abnormalities (ie, microvascular protrusions) were present in pDVP. SS OCTA can depict perifoveal microvascular changes in young patients affected by XLRS. In this study, the structural and vascular changes seem to be more evident in the pDVP and may represent a useful biomarker of prognosis.

  19. Statistical organelle dissection of Arabidopsis guard cells using image database LIPS.

    PubMed

    Higaki, Takumi; Kutsuna, Natsumaro; Hosokawa, Yoichiroh; Akita, Kae; Ebine, Kazuo; Ueda, Takashi; Kondo, Noriaki; Hasezawa, Seiichiro

    2012-01-01

    To comprehensively grasp cell biological events in plant stomatal movement, we have captured microscopic images of guard cells with various organelles markers. The 28,530 serial optical sections of 930 pairs of Arabidopsis guard cells have been released as a new image database, named Live Images of Plant Stomata (LIPS). We visualized the average organellar distributions in guard cells using probabilistic mapping and image clustering techniques. The results indicated that actin microfilaments and endoplasmic reticulum (ER) are mainly localized to the dorsal side and connection regions of guard cells. Subtractive images of open and closed stomata showed distribution changes in intracellular structures, including the ER, during stomatal movement. Time-lapse imaging showed that similar ER distribution changes occurred during stomatal opening induced by light irradiation or femtosecond laser shots on neighboring epidermal cells, indicating that our image analysis approach has identified a novel ER relocation in stomatal opening.

  20. The development of a virtual 3D model of the renal corpuscle from serial histological sections for E-learning environments.

    PubMed

    Roth, Jeremy A; Wilson, Timothy D; Sandig, Martin

    2015-01-01

    Histology is a core subject in the anatomical sciences where learners are challenged to interpret two-dimensional (2D) information (gained from histological sections) to extrapolate and understand the three-dimensional (3D) morphology of cells, tissues, and organs. In gross anatomical education 3D models and learning tools have been associated with improved learning outcomes, but similar tools have not been created for histology education to visualize complex cellular structure-function relationships. This study outlines steps in creating a virtual 3D model of the renal corpuscle from serial, semi-thin, histological sections obtained from epoxy resin-embedded kidney tissue. The virtual renal corpuscle model was generated by digital segmentation to identify: Bowman's capsule, nuclei of epithelial cells in the parietal capsule, afferent arteriole, efferent arteriole, proximal convoluted tubule, distal convoluted tubule, glomerular capillaries, podocyte nuclei, nuclei of extraglomerular mesangial cells, nuclei of epithelial cells of the macula densa in the distal convoluted tubule. In addition to the imported images of the original sections the software generates, and allows for visualization of, images of virtual sections generated in any desired orientation, thus serving as a "virtual microtome". These sections can be viewed separately or with the 3D model in transparency. This approach allows for the development of interactive e-learning tools designed to enhance histology education of microscopic structures with complex cellular interrelationships. Future studies will focus on testing the efficacy of interactive virtual 3D models for histology education. © 2015 American Association of Anatomists.

  1. Microbleed and microinfarct detection in amyloid angiopathy: a high-resolution MRI-histopathology study

    PubMed Central

    van Veluw, Susanne J.; Charidimou, Andreas; van der Kouwe, Andre J.; Lauer, Arne; Reijmer, Yael D.; Costantino, Isabel; Gurol, M. Edip; Biessels, Geert Jan; Frosch, Matthew P.; Viswanathan, Anand; Greenberg, Steven M.

    2016-01-01

    Cerebral amyloid angiopathy is a common neuropathological finding in the ageing human brain, associated with cognitive impairment. Neuroimaging markers of severe cerebral amyloid angiopathy are cortical microbleeds and microinfarcts. These parenchymal brain lesions are considered key contributors to cognitive impairment. Therefore, they are important targets for therapeutic strategies and may serve as surrogate neuroimaging markers in clinical trials. We aimed to gain more insight into the pathological basis of magnetic resonance imaging-defined microbleeds and microinfarcts in cerebral amyloid angiopathy, and to explore the pathological burden that remains undetected, by using high and ultra-high resolution ex vivo magnetic resonance imaging, as well as detailed histological sampling. Brain samples from five cases (mean age 85 ± 6 years) with pathology-proven cerebral amyloid angiopathy and multiple microbleeds on in vivo clinical magnetic resonance imaging were subjected to high-resolution ex vivo 7 T magnetic resonance imaging. On the obtained high-resolution (200 μm isotropic voxels) ex vivo magnetic resonance images, 171 microbleeds were detected compared to 66 microbleeds on the corresponding in vivo magnetic resonance images. Of 13 sampled microbleeds that were matched on histology, five proved to be acute and eight old microhaemorrhages. The iron-positive old microhaemorrhages appeared approximately four times larger on magnetic resonance imaging compared to their size on histology. In addition, 48 microinfarcts were observed on ex vivo magnetic resonance imaging in three out of five cases (two cases exhibited no microinfarcts). None of them were visible on in vivo 1.5 T magnetic resonance imaging after a retrospective analysis. Of nine sampled microinfarcts that were matched on histology, five were confirmed as acute and four as old microinfarcts. Finally, we explored the proportion of microhaemorrhage and microinfarct burden that is beyond the detection limits of ex vivo magnetic resonance imaging, by scanning a smaller sample at ultra-high resolution, followed by serial sectioning. At ultra-high resolution (75 μm isotropic voxels) magnetic resonance imaging we observed an additional 48 microbleeds (compared to high resolution), which proved to correspond to vasculopathic changes (i.e. morphological changes to the small vessels) instead of frank haemorrhages on histology. After assessing the serial sections of this particular sample, no additional haemorrhages were observed that were missed on magnetic resonance imaging. In contrast, nine microinfarcts were found in these sections, of which six were only retrospectively visible at ultra-high resolution. In conclusion, these findings suggest that microbleeds on in vivo magnetic resonance imaging are specific for microhaemorrhages in cerebral amyloid angiopathy, and that increasing the resolution of magnetic resonance images results in the detection of more ‘non-haemorrhagic’ pathology. In contrast, the vast majority of microinfarcts currently remain under the detection limits of clinical in vivo magnetic resonance imaging. PMID:27645801

  2. Serial computed tomography and magnetic resonance imaging findings of biphasic acute hemorrhagic leukoencephalitis localized to the brain stem and cerebellum.

    PubMed

    Lee, Nyoung Keun; Lee, Byung Hoon; Hwang, Yoon Joon; Kim, Su Young; Lee, Ji Young; Joo, Mee

    2011-04-01

    Acute hemorrhagic leukoencephalitis (AHL) is a rare and usually fatal disease characterized by an acute onset of neurological abnormalities. We describe the case of a 37-year-old man with biphasic AHL with a focus on the rare involvement of the brain stem and cerebellum. Initial computed tomography (CT) and magnetic resonance imaging revealed two hemorrhagic foci in the left middle cerebellar peduncle. After 15 days multifocal hematomas in the contralateral cerebellar hemisphere were imaged using CT. The pathological diagnosis was AHL. Following high-dose steroid treatment, the patient recovered with minor neurological sequelae.

  3. Linking Associative and Serial List Memory: Pairs Versus Triples

    ERIC Educational Resources Information Center

    Caplan, Jeremy B.; Glaholt, Mackenzie G.; McIntosh, Anthony R.

    2006-01-01

    Paired associates and serial list memory are typically investigated separately. An "isolation principle" (J. B. Caplan, 2005) was proposed to explain behavior in both paradigms by using a single model, in which serial list and paired associates memory differ only in how isolated pairs of items are from interference from other studied items. In…

  4. The Contribution of Executive Functions to Naming Digits, Objects, and Words

    ERIC Educational Resources Information Center

    Altani, Angeliki; Protopapas, Athanassios; Georgiou, George K.

    2017-01-01

    Although it is established that reading fluency is more strongly related to serial naming of symbols than to naming of isolated items ("serial superiority effect"), the reason for the difference remains unclear. The purpose of this study was to examine the role of executive functions in explaining the serial superiority effect. One…

  5. The utilization of forensic science and criminal profiling for capturing serial killers.

    PubMed

    White, John H; Lester, David; Gentile, Matthew; Rosenbleeth, Juliana

    2011-06-15

    Movies and nightly television shows appear to emphasize highly efficient regimens in forensic science and criminal investigative analysis (profiling) that result in capturing serial killers and other perpetrators of homicide. Although some of the shows are apocryphal and unrealistic, they reflect major advancements that have been made in the fields of forensic science and criminal psychology during the past two decades that have helped police capture serial killers. Some of the advancements are outlined in this paper. In a study of 200 serial killers, we examined the variables that led to police focusing their attention on specific suspects. We developed 12 categories that describe how serial killers come to the attention of the police. The results of the present study indicate that most serial killers are captured as a result of citizens and surviving victims contributing information that resulted in police investigations that led to an arrest. The role of forensic science appears to be important in convicting the perpetrator, but not necessarily in identifying the perpetrator. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. A preliminary study into the sensitivity of disease activity detection by serial weekly magnetic resonance imaging in multiple sclerosis.

    PubMed Central

    Lai, M; Hodgson, T; Gawne-Cain, M; Webb, S; MacManus, D; McDonald, W I; Thompson, A J; Miller, D H

    1996-01-01

    Long TR and gadolinium enhanced spin echo brain MRI was performed weekly for three months in three patients with relapsing-remitting or secondary progressive multiple sclerosis. During the study, 38 new enhancing lesions were seen; 11 showed enhancement for less than four weeks, and two enhanced on only one scan. All 16 new lesions seen on long TR scans showed initial enhancement. When only every fourth (monthly) scan was analysed, a total of 33 new enhancing lesions were seen. Subject to confirmation in a larger cohort, the results suggest: (a) that blood brain barrier leakage is an invariable event in new lesion development in relapsing-remitting and secondary progressive multiple sclerosis; (b) the small increase in sensitivity of weekly scanning does not justify its use in preference to monthly scanning when monitoring treatments. Images PMID:8609517

  7. HDRK-Woman: whole-body voxel model based on high-resolution color slice images of Korean adult female cadaver

    NASA Astrophysics Data System (ADS)

    Yeom, Yeon Soo; Jeong, Jong Hwi; Kim, Chan Hyeong; Han, Min Cheol; Ham, Bo Kyoung; Cho, Kun Woo; Hwang, Sung Bae

    2014-07-01

    In a previous study, we constructed a male reference Korean phantom; HDRK-Man (High-Definition Reference Korean-Man), to represent Korean adult males for radiation protection purposes. In the present study, a female phantom; HDRK-Woman (High-Definition Reference Korean-Woman), was constructed to represent Korean adult females. High-resolution color photographic images obtained by serial sectioning of a 26 year-old Korean adult female cadaver were utilized. The body height and weight, the skeletal mass, and the dimensions of the individual organs and tissues were adjusted to the reference Korean data. The phantom was then compared with the International Commission on Radiological Protection (ICRP) female reference phantom in terms of calculated organ doses and organ-depth distributions. Additionally, the effective doses were calculated using both the HDRK-Man and HDRK-Woman phantoms, and the values were compared with those of the ICRP reference phantoms.

  8. HDRK-Woman: whole-body voxel model based on high-resolution color slice images of Korean adult female cadaver.

    PubMed

    Yeom, Yeon Soo; Jeong, Jong Hwi; Kim, Chan Hyeong; Han, Min Cheol; Ham, Bo Kyoung; Cho, Kun Woo; Hwang, Sung Bae

    2014-07-21

    In a previous study, we constructed a male reference Korean phantom; HDRK-Man (High-Definition Reference Korean-Man), to represent Korean adult males for radiation protection purposes. In the present study, a female phantom; HDRK-Woman (High-Definition Reference Korean-Woman), was constructed to represent Korean adult females. High-resolution color photographic images obtained by serial sectioning of a 26 year-old Korean adult female cadaver were utilized. The body height and weight, the skeletal mass, and the dimensions of the individual organs and tissues were adjusted to the reference Korean data. The phantom was then compared with the International Commission on Radiological Protection (ICRP) female reference phantom in terms of calculated organ doses and organ-depth distributions. Additionally, the effective doses were calculated using both the HDRK-Man and HDRK-Woman phantoms, and the values were compared with those of the ICRP reference phantoms.

  9. Feasibility Study for a Computerized Serials Control System in the Defense Communications Agency Technical and Management Information Center.

    DTIC Science & Technology

    1984-06-20

    AD-A162 ±88 FEASIBILITY STUDY FOR A COMPUTERIZED SERIALS CONTROL 1/1 SYSTEM IN THE DEFENS (U) DEFENSE COMMUNICATIONS AGENCY WASHINGTON DC TECHNICAL...NATIONAL BUREAU OF STANDARDS- 1963-A 0FEASIBILITY STUDY FOR A COMPUTERIZED SERIALS CONTROL SYSTEM IN THE DEFENSE COMMUNICATIONS 0AGENCY TECHNICAL AND...ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED R1 SAME AS RPT. 0 DTIC USERS 0 UNCLASSIFIED 22&. NAME OF RESPONSIBLE INDIVIDUAL 22b

  10. Neonatal Magnetic Resonance Imaging Without Sedation Correlates With Injury Severity in Brachial Plexus Birth Palsy.

    PubMed

    Bauer, Andrea S; Shen, Peter Y; Nidecker, Anna E; Lee, Paul S; James, Michelle A

    2017-05-01

    Which infants with brachial plexus birth palsy (BPBP) should undergo microsurgical plexus reconstruction remains controversial. The current gold standard for the decision for plexus reconstruction is serial clinical examinations, but this approach obviates the possibility of early surgical treatment. We hypothesize that a new technique using 3-dimensional volumetric proton density magnetic resonance imaging (MRI) without sedation can evaluate the severity of BPBP injury earlier than serial clinical examinations. Infants were prospectively enrolled prior to 12 weeks of age and imaged using 3 Tesla MRI without sedation. Clinical scores were collected at all visits. The imaging findings were graded based on the number of injured levels and the severity of each injury, and a radiological score was calculated. All infants were followed at least until the decision for surgery was made based on clinical examination. Nine infants completed the MRI scan and clinical follow-up. The average Toronto score at presentation was 4.4 out of 10 (range, 0-8.2); the average Active Movement Scale score was 50 out of 105 (range, 0-86). Four infants required surgery: 2 because of a flail limb and Horner syndrome and 2 owing to failure to recover antigravity elbow flexion by age 6 months. Radiological scores ranged from 0 to 18 out of a maximum score of 25. The average radiological score for those infants who required surgery was 12 (range, 6.5-18), whereas the average score for infants who did not require surgery was 3.5 (range, 0-8). Three-dimensional proton density MRI can evaluate spinal nerve roots in infants without the need for radiation, contrast agents, or sedation. These data suggest that MRI can help determine the severity of injury earlier than clinical examination in infants with BPBP, although further study of a larger sample of infants with varying severity of disease is necessary. Diagnostic II. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  11. Nonverbal Short-Term Serial Order Memory in Autism Spectrum Disorder

    PubMed Central

    2016-01-01

    To clarify the role of item and order memory in the serial recall of adults with autism spectrum disorder (ASD), we carried out 2 experiments in which adults with ASD and comparison participants matched on chronological age and verbal IQ saw sequences of 7 dots appear sequentially in a 3 × 4 grid. In Experiment 1 (serial recall), they had to recall the locations and the presentation order of the dots by tapping locations on an empty grid. In Experiment 2, (order reconstruction) the studied dots were provided at test and participants had to touch them in their order of appearance at study. Experiment 1 revealed diminished item and order recall in the ASD group; Experiment 2 revealed diminished order recall only when verbal IQ was controlled. The results support the view that people with ASD have particular difficulty with serial order recall but may use their language ability to achieve better serial recall performance. PMID:27732024

  12. Serial MR Spectroscopy Reveals a Direct Metabolic Effect of Cediranib in Glioblastoma

    PubMed Central

    Kim, Heisoog; Catana, Ciprian; Ratai, Eva-Maria; Andronesi, Ovidiu C.; Jennings, D.; Batchelor, Tracy T.; Jain, Rakesh K.; Sorensen, A. Gregory

    2011-01-01

    Proton magnetic resonance spectroscopy (1H-MRS) is increasingly used in clinical studies of brain tumor to provide information about tissue metabolic profiles. In this study, we evaluated changes in the levels of metabolites predominant in recurrent glioblastoma (rGBM), to characterize the response of rGBM to anti-angiogenic therapy. We examined thirty-one rGBM patients treated with daily doses of cediranib, acquiring serial chemical shift imaging data at specific time points during the treatment regimen. We defined spectra from three regions of interest (ROIs)—enhancing tumor (ET), peritumoral tissue (PT), and normal tissue on the contralateral side (cNT)—in post-contrast T1-weighted images, and normalized the concentrations of N-acetylaspartate (NAA) and choline (Cho) in each ROI to the concentration of creatine in cNT (norCre). We analyzed the ratios of these normalized metabolites (i.e., NAA/Cho, NAA/norCre, and Cho/norCre) by averaging all patients and categorizing two different survival groups. Relative to pre-treatment values, NAA/Cho in ET was unchanged through day 28. However, after day 28, NAA/Cho significantly increased in relation to a significant increase in NAA/norCre and a decrease in Cho/norCre; interestingly, the observed trend was reversed after day 56, consistent with the clinical course of GBM recurrence. Notably, ROC analysis indicated that NAA/Cho in tumor shows a high prediction to 6-month overall survival. These metabolic changes in these rGBM patients strongly suggest a direct metabolic effect of cediranib, and might also reflect an anti-tumor response to anti-angiogenic treatment during the first two months of treatment. Further study is needed to confirm these findings. PMID:21507932

  13. Measuring the Mutual Effects of a CZT Detector and a 3T MRI for the Development of a Simultaneous MBI/MRI Insert

    NASA Astrophysics Data System (ADS)

    Tao, Ashley T.; Noseworthy, Michael D.; Farncombe, Troy H.

    2016-10-01

    A cadmium zinc telluride (CZT) based detector system has been developed with the goal of combining molecular breast imaging (MBI) and magnetic resonance imaging (MRI) to address shortcomings of each modality. The CZT detector system is comprised of four CZT modules tiled in a 2×2 array. Each module consists of 256 pixels (16×16, 2.4 mm pixels) and features a built-in ASIC and FPGA. A custom digital readout circuit board was designed to interface the four modules with a microcontroller to a data acquisition PC. The system was placed within the bore of a 3 T GE Discovery MR750 and imaging performance of each modality evaluated using both sequential and simultaneous imaging protocols. The mean energy resolution of the gamma camera both inside and outside the MRI is 7.3% at 140 keV. The maximum increase in the integral uniformity was 3% when using a gradient echo MRI sequence while the mean differential uniformity when inside the MRI increased by 1%. Spatial resolution varied in a predictable manner from 2.4 mm FWHM at the collimator face to 6.9 mm at 10 cm from the collimator. Performance of the 3 T GE Discovery MR750 using a 16-channel breast RF coil array was measured with and without the gamma camera present using a gradient echo and spoiled gradient echo imaging sequence. A realistic 99mTc-filled breast-like phantom containing two lesions (30:1 lesion to background ratio) was used to assess the feasibility of both serial and simultaneous hybrid imaging. Sequential imaging resulted in a reduction in MRI SNR of 70-80% and a further decrease of 93-98% was observed when performing simultaneous MR/scintigraphy imaging, likely a result of RF interference originating from the CZT detector modules and associated analog electronics. Co-registered scintigraphic and MRI images display negligible geometric distortion when imaged with both simultaneous and serial imaging modes, thus indicating the feasibility of combining MBI with breast MRI.

  14. The Mariner Venus Mercury flight data subsystem.

    NASA Technical Reports Server (NTRS)

    Whitehead, P. B.

    1972-01-01

    The flight data subsystem (FDS) discussed handles both the engineering and scientific measurements performed on the MVM'73. It formats the data into serial data streams, and sends it to the modulation/demodulation subsystem for transmission to earth or to the data storage subsystem for storage on a digital tape recorder. The FDS is controlled by serial digital words, called coded commands, received from the central computer sequencer of from the ground via the modulation/demodulation subsystem. The eight major blocks of the FDS are: power converter, timing and control, engineering data, memory, memory input/output and control, nonimaging data, imaging data, and data output. The FDS incorporates some 4000 components, weighs 17 kg, and uses 35 W of power. General data on the mission and spacecraft are given.

  15. [Differential diagnosis of papillary carcinomas of the thyroid, using image analysis and three dimensional reconstruction from serial sections].

    PubMed

    Holschbach, A; Kriete, A; Schäffer, R

    1990-01-01

    Papillae with fibrovascular cores are characteristic of papillary carcinoma of the thyroid. Papillae may be found in diffuse hyperplasia, nodular hyperplasia, Hashimoto's disease and follicular adenoma. Tissues from ten benign hyperplasias and ten papillary carcinomas were reconstructed from serial sections with three dimensional reconstruction programs. Significant qualitative and quantitative differences were found between the hyperplasia and the carcinoma. The principal differences between papillae of papillary carcinoma and hyperplasia were more clearly seen in the three dimensional reconstruction, than by means of morphometric methods. Certain criteria, e.g. the volume of papillae, were useful only with regard to the third dimension. Nevertheless, three dimensional reconstruction of biological tissue is a time consuming procedure which is not yet suitable for routine examination.

  16. A convolutional neural network-based screening tool for X-ray serial crystallography

    PubMed Central

    Ke, Tsung-Wei; Brewster, Aaron S.; Yu, Stella X.; Ushizima, Daniela; Yang, Chao; Sauter, Nicholas K.

    2018-01-01

    A new tool is introduced for screening macromolecular X-ray crystallography diffraction images produced at an X-ray free-electron laser light source. Based on a data-driven deep learning approach, the proposed tool executes a convolutional neural network to detect Bragg spots. Automatic image processing algorithms described can enable the classification of large data sets, acquired under realistic conditions consisting of noisy data with experimental artifacts. Outcomes are compared for different data regimes, including samples from multiple instruments and differing amounts of training data for neural network optimization. PMID:29714177

  17. Supercomputer algorithms for efficient linear octree encoding of three-dimensional brain images.

    PubMed

    Berger, S B; Reis, D J

    1995-02-01

    We designed and implemented algorithms for three-dimensional (3-D) reconstruction of brain images from serial sections using two important supercomputer architectures, vector and parallel. These architectures were represented by the Cray YMP and Connection Machine CM-2, respectively. The programs operated on linear octree representations of the brain data sets, and achieved 500-800 times acceleration when compared with a conventional laboratory workstation. As the need for higher resolution data sets increases, supercomputer algorithms may offer a means of performing 3-D reconstruction well above current experimental limits.

  18. A convolutional neural network-based screening tool for X-ray serial crystallography.

    PubMed

    Ke, Tsung Wei; Brewster, Aaron S; Yu, Stella X; Ushizima, Daniela; Yang, Chao; Sauter, Nicholas K

    2018-05-01

    A new tool is introduced for screening macromolecular X-ray crystallography diffraction images produced at an X-ray free-electron laser light source. Based on a data-driven deep learning approach, the proposed tool executes a convolutional neural network to detect Bragg spots. Automatic image processing algorithms described can enable the classification of large data sets, acquired under realistic conditions consisting of noisy data with experimental artifacts. Outcomes are compared for different data regimes, including samples from multiple instruments and differing amounts of training data for neural network optimization. open access.

  19. A convolutional neural network-based screening tool for X-ray serial crystallography

    DOE PAGES

    Ke, Tsung-Wei; Brewster, Aaron S.; Yu, Stella X.; ...

    2018-04-24

    A new tool is introduced for screening macromolecular X-ray crystallography diffraction images produced at an X-ray free-electron laser light source. Based on a data-driven deep learning approach, the proposed tool executes a convolutional neural network to detect Bragg spots. Automatic image processing algorithms described can enable the classification of large data sets, acquired under realistic conditions consisting of noisy data with experimental artifacts. Outcomes are compared for different data regimes, including samples from multiple instruments and differing amounts of training data for neural network optimization.

  20. A convolutional neural network-based screening tool for X-ray serial crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke, Tsung-Wei; Brewster, Aaron S.; Yu, Stella X.

    A new tool is introduced for screening macromolecular X-ray crystallography diffraction images produced at an X-ray free-electron laser light source. Based on a data-driven deep learning approach, the proposed tool executes a convolutional neural network to detect Bragg spots. Automatic image processing algorithms described can enable the classification of large data sets, acquired under realistic conditions consisting of noisy data with experimental artifacts. Outcomes are compared for different data regimes, including samples from multiple instruments and differing amounts of training data for neural network optimization.

  1. Simultaneous immersion Mirau interferometry.

    PubMed

    Lyulko, Oleksandra V; Randers-Pehrson, Gerhard; Brenner, David J

    2013-05-01

    A novel technique for label-free imaging of live biological cells in aqueous medium that is insensitive to ambient vibrations is presented. This technique is a spin-off from previously developed immersion Mirau interferometry. Both approaches utilize a modified Mirau interferometric attachment for a microscope objective that can be used both in air and in immersion mode, when the device is submerged in cell medium and has its internal space filled with liquid. While immersion Mirau interferometry involves first capturing a series of images, the resulting images are potentially distorted by ambient vibrations. Overcoming these serial-acquisition challenges, simultaneous immersion Mirau interferometry incorporates polarizing elements into the optics to allow simultaneous acquisition of two interferograms. The system design and production are described and images produced with the developed techniques are presented.

  2. Current applications of molecular imaging and luminescence-based techniques in traditional Chinese medicine.

    PubMed

    Li, Jinhui; Wan, Haitong; Zhang, Hong; Tian, Mei

    2011-09-01

    Traditional Chinese medicine (TCM), which is fundamentally different from Western medicine, has been widely investigated using various approaches. Cellular- or molecular-based imaging has been used to investigate and illuminate the various challenges identified and progress made using therapeutic methods in TCM. Insight into the processes of TCM at the cellular and molecular changes and the ability to image these processes will enhance our understanding of various diseases of TCM and will provide new tools to diagnose and treat patients. Various TCM therapies including herbs and formulations, acupuncture and moxibustion, massage, Gua Sha, and diet therapy have been analyzed using positron emission tomography, single photon emission computed tomography, functional magnetic resonance imaging and ultrasound and optical imaging. These imaging tools have kept pace with developments in molecular biology, nuclear medicine, and computer technology. We provide an overview of recent developments in demystifying ancient knowledge - like the power of energy flow and blood flow meridians, and serial naturopathies - which are essential to visually and vividly recognize the body using modern technology. In TCM, treatment can be individualized in a holistic or systematic view that is consistent with molecular imaging technologies. Future studies might include using molecular imaging in conjunction with TCM to easily diagnose or monitor patients naturally and noninvasively. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Reframing Serial Murder Within Empirical Research.

    PubMed

    Gurian, Elizabeth A

    2017-04-01

    Empirical research on serial murder is limited due to the lack of consensus on a definition, the continued use of primarily descriptive statistics, and linkage to popular culture depictions. These limitations also inhibit our understanding of these offenders and affect credibility in the field of research. Therefore, this comprehensive overview of a sample of 508 cases (738 total offenders, including partnered groups of two or more offenders) provides analyses of solo male, solo female, and partnered serial killers to elucidate statistical differences and similarities in offending and adjudication patterns among the three groups. This analysis of serial homicide offenders not only supports previous research on offending patterns present in the serial homicide literature but also reveals that empirically based analyses can enhance our understanding beyond traditional case studies and descriptive statistics. Further research based on these empirical analyses can aid in the development of more accurate classifications and definitions of serial murderers.

  4. Serial post-surgical stimulated and unstimulated highly sensitive thyroglobulin measurements in low- and intermediate-risk papillary thyroid carcinoma patients not receiving radioactive iodine.

    PubMed

    Kashat, Lawrence; Orlov, Steven; Orlov, David; Assi, Jasmeet; Salari, Farnaz; Walfish, Paul G

    2016-11-01

    The purpose of this study was to determine the natural temporal trends of serial thyroglobulin (Tg) among low/intermediate-risk PTC patients not receiving radioactive iodine (RAI) using TSH-stimulated Tg (Stim-Tg) and unstimulated highly sensitive Tg (u-hsTg). We prospectively analyzed serial Stim-Tg measurements after total thyroidectomy ± therapeutic central neck dissection among 121 consecutive low/intermediate-risk PTC patients who did not receive RAI, of whom 104 also had serial u-hsTg measurements available. Median follow-up was 6.5 years with Stim-Tg measurements commencing 3 months after surgery and u-hsTg commencing 1.8 years after surgery (when the assay became available). TSH stimulation was performed with 9-day T3 withdrawal, 22-day T4 withdrawal, or using recombinant human TSH (rhTSH). To account for within-patient correlations of repeated Tg measurements, temporal trends in Stim-Tg and u-hsTg were assessed using Generalized Estimating Equations. Stim-Tg models were adjusted for the method of TSH stimulation, whereas the u-hsTg models were adjusted for concurrent TSH level. Linear regression modeling was used to assess the trend in serial Stim-Tg and u-hsTg measurements as a function time from time of surgery throughout the duration of follow-up. The main outcome measured was the change in u-hsTg and Stim-Tg measurements over time. A total of 337 Stim-Tg (2.8/patient) and 602 u-hsTg (5.8/patient) measurements were analyzed. Among the 337 Stim-Tg measurements, Stim-Tg was assessed using rhTSH in 202 (60 %), T4 withdrawal in 41 (12 %), and T3 withdrawal in 94 (28 %) measurements. The overall mean ± 1SD for Stim-Tg and u-hsTg measured was 1.0 ± 1.2 and 0.2 ± 0.1 μg/L, respectively. When adjusted for method of TSH stimulation, serial Stim-Tg measurements did not significantly change over time (all p = NS). The estimated changes in Stim-Tg per year for rhTSH, T4 withdrawal, and T3 withdrawal were 0.01, -0.08, and 0.04 μg/L, respectively. Upon exclusion of 73 patients with an initial undetectable Stim-Tg (n = 48), serial Stim-Tg measurements did not change significantly over time (all p = NS). For these patients, the estimated changes in Stim-Tg per year for rhTSH, T4 withdrawal, and T3 withdrawal were -0.09, -0.10, and 0.01 μg/L, respectively. Serial u-hsTg measurements did not significantly change over time after adjusting for TSH level (p = NS). The estimated change in u-hsTg per year was -0.003 μg/L. No patients had any clinical or imaging evidence of a recurrence during the duration of their follow-up. Among low/intermediate-risk PTC patients not treated with RAI, serial post-surgical Stim-Tg and u-hsTg measurements do not change significantly over a median follow-up of 6.5 years.

  5. Dynamic Binding of Identity and Location Information: A Serial Model of Multiple Identity Tracking

    ERIC Educational Resources Information Center

    Oksama, Lauri; Hyona, Jukka

    2008-01-01

    Tracking of multiple moving objects is commonly assumed to be carried out by a fixed-capacity parallel mechanism. The present study proposes a serial model (MOMIT) to explain performance accuracy in the maintenance of multiple moving objects with distinct identities. A serial refresh mechanism is postulated, which makes recourse to continuous…

  6. A 3D reconstruction of pancreas development in the human embryos during embryonic period (Carnegie stages 15-23).

    PubMed

    Radi, M; Gaubert, J; Cristol-Gaubert, R; Baecker, V; Travo, P; Prudhomme, M; Godlewski, G; Prat-Pradal, D

    2010-01-01

    The goal in this paper was to rebuild a three dimensional (3D) reconstruction of the dorsal and ventral pancreatic buds, in the human embryos, at Carnegie stages 15-23. The early development of the pancreas is studied by tissue observation and reconstruction by a computer-assisted method, using a light micrograph images from consecutive serial sagittal sections (diameter 7 microm) of ten human embryos ranging from Carnegie stages 15-23, CRL 7-27 mm, fixed, dehydrated and embedded in paraffin, were stained alternately with haematoxylin-eosin or Heindenhain'Azan. The images were digitalized by Canon Camera 350 EOS D. The serial views were aligned automatically by software, manual alignment was performed, the data were analysed following segmentation and threshold. The two buds were clearly identified at stage 15. In stage 16, both pancreatic buds were in final position, and begin to merge in stage 17. From stage 18 to the stage 23, surrounding connective tissue differentiated. In the stage 23, the morphology of the pancreas was definitive. The superior portion of the anterior face of the pancreas's head was arising from the dorsal bud. The rest of the head including the uncinate process emanated from the ventral bud. The 3D computer-assisted reconstruction of the human pancreas visualized the relationships between the two pancreatic buds. This explains the disposition and the modality of the components fusion. This embryologic development permits a better understanding of congenital abnormalities.

  7. Axillary lymph node uptake of technetium-99m-MDP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ongseng, F.; Goldfarb, C.R.; Finestone, H.

    We sought to determine the frequency and significance of axillary lymph node visualization on bone scans performed with diphosphonates. Consecutive {sup 99m}Tc-methylene diphosphonate ({sup 99m}Tc-MDP) bone scans (2435) were inspected for axillary soft-tissue uptake. In positive cases, the results of physical examination, correlative imaging studies and serial bone scans were recorded, as was the site of venipuncture. Forty-eight studies (2%) showed axillary uptake ipsilateral to the injection site. Extravasation of tracer, documented by focal activity near the injection site, was present in every case. There was no association with axillary adenopathy, mass, induration of radiographically visible calcification. On some images,more » foci adjacent to the axilla were superimposed on the rib, scapula, or humerus. The bone-to-background ratio was frequently reduced; repeat imaging after 1-2 hr usually improved osseous detail. Ipsilateral axillary lymph node visualization due to extravasation of {sup 99m}Tc-MDP is frequently associated with additional foci superimposed on osseous structures simulating pathology. Delayed skeletal uptake is common in such cases and necessitates a greater time interval between injection and imaging. 7 refs., 3 figs.« less

  8. Test-Retest Repeatability of Myocardial Blood Flow Measurements using Rubidium-82 Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Efseaff, Matthew

    Rubidium-82 positron emission tomography (PET) imaging has been proposed for routine myocardial blood flow (MBF) quantification. Few studies have investigated the test-retest repeatability of this method. Same-day repeatability of rest MBF imaging was optimized with a highly automated analysis program using image-derived input functions and a dual spillover correction (SOC). The effects of heterogeneous tracer infusion profiles and subject hemodynamics on test-retest repeatability were investigated at rest and during hyperemic stress. Factors affecting rest MBF repeatability included gender, suspected coronary artery disease, and dual SOC (p < 0.001). The best repeatability coefficient for same-day rest MBF was 0.20 mL/min/g using a six-minute scan-time, iterative reconstruction, dual SOC, resting rate-pressure-product (RPP) adjustment, and a left atrium image-derived input function. The serial study repeatabilities of the optimized protocol in subjects with homogeneous RPPs and tracer infusion profiles was 0.19 and 0.53 mL/min/g at rest and stress, and 0.95 for stress / rest myocardial flow reserve (MFR). Subjects with heterogeneous tracer infusion profiles and hemodynamic conditions had significantly less repeatable MBF measurements at rest, stress, and stress/rest flow reserve (p < 0.05).

  9. Packet based serial link realized in FPGA dedicated for high resolution infrared image transmission

    NASA Astrophysics Data System (ADS)

    Bieszczad, Grzegorz

    2015-05-01

    In article the external digital interface specially designed for thermographic camera built in Military University of Technology is described. The aim of article is to illustrate challenges encountered during design process of thermal vision camera especially related to infrared data processing and transmission. Article explains main requirements for interface to transfer Infra-Red or Video digital data and describes the solution which we elaborated based on Low Voltage Differential Signaling (LVDS) physical layer and signaling scheme. Elaborated link for image transmission is built using FPGA integrated circuit with built-in high speed serial transceivers achieving up to 2500Gbps throughput. Image transmission is realized using proprietary packet protocol. Transmission protocol engine was described in VHDL language and tested in FPGA hardware. The link is able to transmit 1280x1024@60Hz 24bit video data using one signal pair. Link was tested to transmit thermal-vision camera picture to remote monitor. Construction of dedicated video link allows to reduce power consumption compared to solutions with ASIC based encoders and decoders realizing video links like DVI or packed based Display Port, with simultaneous reduction of wires needed to establish link to one pair. Article describes functions of modules integrated in FPGA design realizing several functions like: synchronization to video source, video stream packeting, interfacing transceiver module and dynamic clock generation for video standard conversion.

  10. Spatial attention interacts with serial-order retrieval from verbal working memory.

    PubMed

    van Dijck, Jean-Philippe; Abrahamse, Elger L; Majerus, Steve; Fias, Wim

    2013-09-01

    The ability to maintain the serial order of events is recognized as a major function of working memory. Although general models of working memory postulate a close link between working memory and attention, such a link has so far not been proposed specifically for serial-order working memory. The present study provided the first empirical demonstration of a direct link between serial order in verbal working memory and spatial selective attention. We show that the retrieval of later items of a sequence stored in working memory-compared with that of earlier items-produces covert attentional shifts toward the right. This observation suggests the conceptually surprising notion that serial-order working memory, even for nonspatially defined verbal items, draws on spatial attention.

  11. Automated Transmission-Mode Scanning Electron Microscopy (tSEM) for Large Volume Analysis at Nanoscale Resolution

    PubMed Central

    Kuwajima, Masaaki; Mendenhall, John M.; Lindsey, Laurence F.; Harris, Kristen M.

    2013-01-01

    Transmission-mode scanning electron microscopy (tSEM) on a field emission SEM platform was developed for efficient and cost-effective imaging of circuit-scale volumes from brain at nanoscale resolution. Image area was maximized while optimizing the resolution and dynamic range necessary for discriminating key subcellular structures, such as small axonal, dendritic and glial processes, synapses, smooth endoplasmic reticulum, vesicles, microtubules, polyribosomes, and endosomes which are critical for neuronal function. Individual image fields from the tSEM system were up to 4,295 µm2 (65.54 µm per side) at 2 nm pixel size, contrasting with image fields from a modern transmission electron microscope (TEM) system, which were only 66.59 µm2 (8.160 µm per side) at the same pixel size. The tSEM produced outstanding images and had reduced distortion and drift relative to TEM. Automated stage and scan control in tSEM easily provided unattended serial section imaging and montaging. Lens and scan properties on both TEM and SEM platforms revealed no significant nonlinear distortions within a central field of ∼100 µm2 and produced near-perfect image registration across serial sections using the computational elastic alignment tool in Fiji/TrakEM2 software, and reliable geometric measurements from RECONSTRUCT™ or Fiji/TrakEM2 software. Axial resolution limits the analysis of small structures contained within a section (∼45 nm). Since this new tSEM is non-destructive, objects within a section can be explored at finer axial resolution in TEM tomography with current methods. Future development of tSEM tomography promises thinner axial resolution producing nearly isotropic voxels and should provide within-section analyses of structures without changing platforms. Brain was the test system given our interest in synaptic connectivity and plasticity; however, the new tSEM system is readily applicable to other biological systems. PMID:23555711

  12. Reconstruction for time-domain in vivo EPR 3D multigradient oximetric imaging--a parallel processing perspective.

    PubMed

    Dharmaraj, Christopher D; Thadikonda, Kishan; Fletcher, Anthony R; Doan, Phuc N; Devasahayam, Nallathamby; Matsumoto, Shingo; Johnson, Calvin A; Cook, John A; Mitchell, James B; Subramanian, Sankaran; Krishna, Murali C

    2009-01-01

    Three-dimensional Oximetric Electron Paramagnetic Resonance Imaging using the Single Point Imaging modality generates unpaired spin density and oxygen images that can readily distinguish between normal and tumor tissues in small animals. It is also possible with fast imaging to track the changes in tissue oxygenation in response to the oxygen content in the breathing air. However, this involves dealing with gigabytes of data for each 3D oximetric imaging experiment involving digital band pass filtering and background noise subtraction, followed by 3D Fourier reconstruction. This process is rather slow in a conventional uniprocessor system. This paper presents a parallelization framework using OpenMP runtime support and parallel MATLAB to execute such computationally intensive programs. The Intel compiler is used to develop a parallel C++ code based on OpenMP. The code is executed on four Dual-Core AMD Opteron shared memory processors, to reduce the computational burden of the filtration task significantly. The results show that the parallel code for filtration has achieved a speed up factor of 46.66 as against the equivalent serial MATLAB code. In addition, a parallel MATLAB code has been developed to perform 3D Fourier reconstruction. Speedup factors of 4.57 and 4.25 have been achieved during the reconstruction process and oximetry computation, for a data set with 23 x 23 x 23 gradient steps. The execution time has been computed for both the serial and parallel implementations using different dimensions of the data and presented for comparison. The reported system has been designed to be easily accessible even from low-cost personal computers through local internet (NIHnet). The experimental results demonstrate that the parallel computing provides a source of high computational power to obtain biophysical parameters from 3D EPR oximetric imaging, almost in real-time.

  13. Attention mechanisms in visual search -- an fMRI study.

    PubMed

    Leonards, U; Sunaert, S; Van Hecke, P; Orban, G A

    2000-01-01

    The human visual system is usually confronted with many different objects at a time, with only some of them reaching consciousness. Reaction-time studies have revealed two different strategies by which objects are selected for further processing: an automatic, efficient search process, and a conscious, so-called inefficient search [Treisman, A. (1991). Search, similarity, and integration of features between and within dimensions. Journal of Experimental Psychology: Human Perception and Performance, 17, 652--676; Treisman, A., & Gelade, G. (1980). A feature integration theory of attention. Cognitive Psychology, 12, 97--136; Wolfe, J. M. (1996). Visual search. In H. Pashler (Ed.), Attention. London: University College London Press]. Two different theories have been proposed to account for these search processes. Parallel theories presume that both types of search are treated by a single mechanism that is modulated by attentional and computational demands. Serial theories, in contrast, propose that parallel processing may underlie efficient search, but inefficient searching requires an additional serial mechanism, an attentional "spotlight" (Treisman, A., 1991) that successively shifts attention to different locations in the visual field. Using functional magnetic resonance imaging (fMRI), we show that the cerebral networks involved in efficient and inefficient search overlap almost completely. Only the superior frontal region, known to be involved in working memory [Courtney, S. M., Petit, L., Maisog, J. M., Ungerleider, L. G., & Haxby, J. V. (1998). An area specialized for spatial working memory in human frontal cortex. Science, 279, 1347--1351], and distinct from the frontal eye fields, that control spatial shifts of attention, was specifically involved in inefficient search. Activity modulations correlated with subjects' behavior best in the extrastriate cortical areas, where the amount of activity depended on the number of distracting elements in the display. Such a correlation was not observed in the parietal and frontal regions, usually assumed as being involved in spatial attention processing. These results can be interpreted in two ways: the most likely is that visual search does not require serial processing, otherwise we must assume the existence of a serial searchlight that operates in the extrastriate cortex but differs from the visuospatial shifts of attention involving the parietal and frontal regions.

  14. An algorithm for longitudinal registration of PET/CT images acquired during neoadjuvant chemotherapy in breast cancer: preliminary results.

    PubMed

    Li, Xia; Abramson, Richard G; Arlinghaus, Lori R; Chakravarthy, Anuradha Bapsi; Abramson, Vandana; Mayer, Ingrid; Farley, Jaime; Delbeke, Dominique; Yankeelov, Thomas E

    2012-11-16

    By providing estimates of tumor glucose metabolism, 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) can potentially characterize the response of breast tumors to treatment. To assess therapy response, serial measurements of FDG-PET parameters (derived from static and/or dynamic images) can be obtained at different time points during the course of treatment. However, most studies track the changes in average parameter values obtained from the whole tumor, thereby discarding all spatial information manifested in tumor heterogeneity. Here, we propose a method whereby serially acquired FDG-PET breast data sets can be spatially co-registered to enable the spatial comparison of parameter maps at the voxel level. The goal is to optimally register normal tissues while simultaneously preventing tumor distortion. In order to accomplish this, we constructed a PET support device to enable PET/CT imaging of the breasts of ten patients in the prone position and applied a mutual information-based rigid body registration followed by a non-rigid registration. The non-rigid registration algorithm extended the adaptive bases algorithm (ABA) by incorporating a tumor volume-preserving constraint, which computed the Jacobian determinant over the tumor regions as outlined on the PET/CT images, into the cost function. We tested this approach on ten breast cancer patients undergoing neoadjuvant chemotherapy. By both qualitative and quantitative evaluation, our constrained algorithm yielded significantly less tumor distortion than the unconstrained algorithm: considering the tumor volume determined from standard uptake value maps, the post-registration median tumor volume changes, and the 25th and 75th quantiles were 3.42% (0%, 13.39%) and 16.93% (9.21%, 49.93%) for the constrained and unconstrained algorithms, respectively (p = 0.002), while the bending energy (a measure of the smoothness of the deformation) was 0.0015 (0.0005, 0.012) and 0.017 (0.005, 0.044), respectively (p = 0.005). The results indicate that the constrained ABA algorithm can accurately align prone breast FDG-PET images acquired at different time points while keeping the tumor from being substantially compressed or distorted. NCT00474604.

  15. Cheetah: software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data

    PubMed Central

    Barty, Anton; Kirian, Richard A.; Maia, Filipe R. N. C.; Hantke, Max; Yoon, Chun Hong; White, Thomas A.; Chapman, Henry

    2014-01-01

    The emerging technique of serial X-ray diffraction, in which diffraction data are collected from samples flowing across a pulsed X-ray source at repetition rates of 100 Hz or higher, has necessitated the development of new software in order to handle the large data volumes produced. Sorting of data according to different criteria and rapid filtering of events to retain only diffraction patterns of interest results in significant reductions in data volume, thereby simplifying subsequent data analysis and management tasks. Meanwhile the generation of reduced data in the form of virtual powder patterns, radial stacks, histograms and other meta data creates data set summaries for analysis and overall experiment evaluation. Rapid data reduction early in the analysis pipeline is proving to be an essential first step in serial imaging experiments, prompting the authors to make the tool described in this article available to the general community. Originally developed for experiments at X-ray free-electron lasers, the software is based on a modular facility-independent library to promote portability between different experiments and is available under version 3 or later of the GNU General Public License. PMID:24904246

  16. Rationale and design of a randomized controlled trial of allogeneic mesenchymal stem cells in patients with nonischemic cardiomyopathy.

    PubMed

    Greene, Stephen J; Epstein, Stephen E; Kim, Raymond J; Quyyumi, Arshed A; Cole, Robert T; Anderson, Allen S; Wilcox, Jane E; Skopicki, Hal A; Sikora, Sergey; Verkh, Lev; Tankovich, Nikolai I; Gheorghiade, Mihai; Butler, Javed

    2017-04-01

    This article describes an ongoing study investigating the safety and efficacy of ischemia-tolerant mesenchymal stem cell (MSC) therapy in patients with nonischemic heart failure and dysfunctional viable myocardium without scarring. This study will follow principles of the previously described mechanistic translational-phase concept whereby the effect of the study agent on laboratory and imaging markers of cardiac structure and function will be tested in a small homogenous cohort with the goal to enhance the understanding of the effect of interventions on cardiac remodeling and performance. This single-blind, placebo-controlled, crossover, multicenter, randomized study will assess the safety, tolerability, and preliminary efficacy of a single intravenous (i.v.) dose of allogeneic ischemia-tolerant MSCs in individuals with heart failure of nonischemic cause, ejection fraction 40% or less, and dysfunctional viable myocardium who have been receiving guideline-directed medical therapy. Eligible patients will have no evidence of baseline replacement scarring on delayed-enhancement cardiac magnetic resonance (CMR). Approximately 20 patients will be randomized in a 1 : 1 ratio to receive an i.v. infusion of ischemia-tolerant MSCs or placebo. At 90 days, the two groups will undergo crossover and received the alternative treatment. The primary endpoint is safety, as evaluated through at least 1-year post-MSC infusion. Additional efficacy endpoints will include measures of cardiac structure and function, as evaluated by serial cine-CMR and transthoracic echocardiography at 90 and 180 days post-initial infusion. This pilot study will explore the safety and effects on cardiac structure and function of i.v. injection of ischemia-tolerant MSCs in a small homogenous cohort of nonischemic heart failure patients with reduced ejection fraction and absent replacement scarring on CMR. This study also represents a prospective mechanistic translational-phase study using baseline and serial CMR imaging in heart failure patients and serves as a potential model for design of future heart failure trials (ClinicalTrials.gov identifier: NCT02467387).

  17. Self-illuminating in vivo lymphatic imaging using a bioluminescence resonance energy transfer quantum dot nano-particle.

    PubMed

    Kosaka, Nobuyuki; Mitsunaga, Makoto; Bhattacharyya, Sukanta; Miller, Steven C; Choyke, Peter L; Kobayashi, Hisataka

    2011-01-01

    Autofluorescence arising from normal tissues can compromise the sensitivity and specificity of in vivo fluorescence imaging by lowering the target-to-background signal ratio. Since bioluminescence resonance energy transfer quantum dot (BRET-QDot) nano-particles can self-illuminate in near-infrared in the presence of the substrate, coelenterazine, without irradiating excitation lights, imaging using BRET-QDots does not produce any autofluorescence. In this study, we applied this BRET-QDot nano-particle to the in vivo lymphatic imaging in mice in order to compare with BRET, fluorescence or bioluminescence lymphatic imaging. BRET-QDot655, in which QDot655 is contained as a core, was injected at different sites (e.g. chin, ear, forepaws and hind paws) in mice followed by the intravenous coelenterazine injection, and then bioluminescence and fluorescence imaging were serially performed. In all mice, each lymphatic basin was clearly visualized in the BRET imaging with minimal background signals. The BRET signal in the lymph nodes lasted at least 30 min after coelenterazine injections. Furthermore, the BRET signal demonstrated better quantification than the fluorescence signal emitting from QDot655, the core of this BRET particle. These advantages of BRET-QDot allowed us to perform real-time, quantitative lymphatic imaging without image processing. BRET-Qdots have the potential to be a robust nano-material platform for developing optical molecular imaging probes. Copyright © 2010 John Wiley & Sons, Ltd.

  18. Self-illuminating in vivo lymphatic imaging using a bioluminescence resonance energy transfer quantum dot nano-particle

    PubMed Central

    Kosaka, Nobuyuki; Mitsunaga, Makoto; Bhattacharyya, Sukanta; Miller, Steven C.; Choyke, Peter L.; Kobayashi, Hisataka

    2012-01-01

    Autofluorescence arising from normal tissues can compromise the sensitivity and specificity of in vivo fluorescence imaging by lowering the target-to-background signal ratio. Since bioluminescence resonance energy transfer quantum dot (BRET-QDot) nano-particles can self-illuminate in near-infrared in the presence of the substrate, coelenterazine, without irradiating excitation lights, imaging using BRET-QDots does not produce any autofluorescence. In this study, we applied this BRET-QDot nano-particle to the in vivo lymphatic imaging in mice in order to compare with BRET, fluorescence or bioluminescence lymphatic imaging. BRET-QDot655, in which QDot655 is contained as a core, was injected at different sites (e.g. chin, ear, forepaws and hind paws) in mice followed by the intravenous coelenterazine injection, and then bioluminescence and fluorescence imaging were serially performed. In all mice, each lymphatic basin was clearly visualized in the BRET imaging with minimal background signals. The BRETsignal in the lymph nodes lasted at least 30 min after coelenterazine injections. Furthermore, the BRETsignal demonstrated better quantification than the fluorescence signal emitting from QDot655, the core of this BRET particle. These advantages of BRET-QDot allowed us to perform real-time, quantitative lymphatic imaging without image processing. BRET-Qdots have the potential to be a robust nano-material platform for developing optical molecular imaging probes. PMID:21351373

  19. Imaging Cellular Proliferation During Chemo-Radiotherapy: A Pilot Study of Serial {sup 18}F-FLT Positron Emission Tomography/Computed Tomography Imaging for Non-Small-Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Everitt, Sarah, E-mail: Sarah.Everitt@petermac.or; Department of Medical Imaging and Radiation Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria; Hicks, Rodney J.

    2009-11-15

    Purpose: To establish whether {sup 18}F-3'-deoxy-3'-fluoro-L-thymidine ({sup 18}F-FLT) can monitor changes in cellular proliferation of non-small-cell lung cancer (NSCLC) during radical chemo-radiotherapy (chemo-RT). Methods and Materials: As part of a prospective pilot study, 5 patients with locally advanced NSCLC underwent serial {sup 18}F-FLT positron emission tomography (PET)/computed tomography (CT) scans during treatment. Baseline {sup 18}F-FLT PET/CT scans were compared with routine staging {sup 18}F-FDG PET/CT scans. Two on-treatment {sup 18}F-FLT scans were performed for each patient on Days 2, 8, 15 or 29, providing a range of time points for response assessment. Results: In all 5 patients, baseline lesional uptakemore » of {sup 18}F-FLT on PET/CT corresponded to staging {sup 18}F-FDG PET/CT abnormalities. {sup 18}F-FLT uptake in tumor was observed on five of nine (55%) on-treatment scans, on Days 2, 8 and 29, but not Day 15. A 'flare' of {sup 18}F-FLT uptake in the primary tumor of one case was observed after 2 Gy of radiation (1.22 x baseline). The remaining eight on-treatment scans demonstrated a mean reduction in {sup 18}F-FLT tumor uptake of 0.58 x baseline. A marked reduction of {sup 18}F-FLT uptake in irradiated bone marrow was observed for all cases. This reduction was observed even after only 2 Gy, and all patients demonstrated a complete absence of proliferating marrow after 10 Gy. Conclusions: This proof of concept study indicates that {sup 18}F-FLT uptake can monitor the distinctive biologic responses of epithelial cancers and highly radiosensitive normal tissue changes during radical chemo-RT. Further studies of {sup 18}F-FLT PET/CT imaging during therapy may suggest that this tracer is useful in developing response-adapted RT for NSCLC.« less

  20. An entirely automated method to score DSS-induced colitis in mice by digital image analysis of pathology slides

    PubMed Central

    Kozlowski, Cleopatra; Jeet, Surinder; Beyer, Joseph; Guerrero, Steve; Lesch, Justin; Wang, Xiaoting; DeVoss, Jason; Diehl, Lauri

    2013-01-01

    SUMMARY The DSS (dextran sulfate sodium) model of colitis is a mouse model of inflammatory bowel disease. Microscopic symptoms include loss of crypt cells from the gut lining and infiltration of inflammatory cells into the colon. An experienced pathologist requires several hours per study to score histological changes in selected regions of the mouse gut. In order to increase the efficiency of scoring, Definiens Developer software was used to devise an entirely automated method to quantify histological changes in the whole H&E slide. When the algorithm was applied to slides from historical drug-discovery studies, automated scores classified 88% of drug candidates in the same way as pathologists’ scores. In addition, another automated image analysis method was developed to quantify colon-infiltrating macrophages, neutrophils, B cells and T cells in immunohistochemical stains of serial sections of the H&E slides. The timing of neutrophil and macrophage infiltration had the highest correlation to pathological changes, whereas T and B cell infiltration occurred later. Thus, automated image analysis enables quantitative comparisons between tissue morphology changes and cell-infiltration dynamics. PMID:23580198

  1. High-throughput 3D whole-brain quantitative histopathology in rodents

    PubMed Central

    Vandenberghe, Michel E.; Hérard, Anne-Sophie; Souedet, Nicolas; Sadouni, Elmahdi; Santin, Mathieu D.; Briet, Dominique; Carré, Denis; Schulz, Jocelyne; Hantraye, Philippe; Chabrier, Pierre-Etienne; Rooney, Thomas; Debeir, Thomas; Blanchard, Véronique; Pradier, Laurent; Dhenain, Marc; Delzescaux, Thierry

    2016-01-01

    Histology is the gold standard to unveil microscopic brain structures and pathological alterations in humans and animal models of disease. However, due to tedious manual interventions, quantification of histopathological markers is classically performed on a few tissue sections, thus restricting measurements to limited portions of the brain. Recently developed 3D microscopic imaging techniques have allowed in-depth study of neuroanatomy. However, quantitative methods are still lacking for whole-brain analysis of cellular and pathological markers. Here, we propose a ready-to-use, automated, and scalable method to thoroughly quantify histopathological markers in 3D in rodent whole brains. It relies on block-face photography, serial histology and 3D-HAPi (Three Dimensional Histology Analysis Pipeline), an open source image analysis software. We illustrate our method in studies involving mouse models of Alzheimer’s disease and show that it can be broadly applied to characterize animal models of brain diseases, to evaluate therapeutic interventions, to anatomically correlate cellular and pathological markers throughout the entire brain and to validate in vivo imaging techniques. PMID:26876372

  2. Comparison of CT-derived Ventilation Maps with Deposition Patterns of Inhaled Microspheres in Rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacob, Rick E.; Lamm, W. J.; Einstein, Daniel R.

    2015-04-01

    Purpose: Computer models for inhalation toxicology and drug-aerosol delivery studies rely on ventilation pattern inputs for predictions of particle deposition and vapor uptake. However, changes in lung mechanics due to disease can impact airflow dynamics and model results. It has been demonstrated that non-invasive, in vivo, 4DCT imaging (3D imaging at multiple time points in the breathing cycle) can be used to map heterogeneities in ventilation patterns under healthy and disease conditions. The purpose of this study was to validate ventilation patterns measured from CT imaging by exposing the same rats to an aerosol of fluorescent microspheres (FMS) and examiningmore » particle deposition patterns using cryomicrotome imaging. Materials and Methods: Six male Sprague-Dawley rats were intratracheally instilled with elastase to a single lobe to induce a heterogeneous disease. After four weeks, rats were imaged over the breathing cycle by CT then immediately exposed to an aerosol of ~1µm FMS for ~5 minutes. After the exposure, the lungs were excised and prepared for cryomicrotome imaging, where a 3D image of FMS deposition was acquired using serial sectioning. Cryomicrotome images were spatially registered to match the live CT images to facilitate direct quantitative comparisons of FMS signal intensity with the CT-based ventilation maps. Results: Comparisons of fractional ventilation in contiguous, non-overlapping, 3D regions between CT-based ventilation maps and FMS images showed strong correlations in fractional ventilation (r=0.888, p<0.0001). Conclusion: We conclude that ventilation maps derived from CT imaging are predictive of the 1µm aerosol deposition used in ventilation-perfusion heterogeneity inhalation studies.« less

  3. The Effect of Rate of Presentation on Digit Serial Recall in Reading Retarded Children.

    ERIC Educational Resources Information Center

    Gan, Jennifer; Tymchuk, Alexander J.

    This study examined the effect of presentation rate on accuracy of digit serial recall and on serial position curves of digit strings of different lengths with 18 boys classified as reading retarded and a comparison group of children (ages for both groups averaged 11 years) who read at grade level. The results indicated that normal children…

  4. Transfer in SLA and Creoles: The Implications of Causative Serial Verbs in the Interlanguage of Vietnamese ESL Learners

    ERIC Educational Resources Information Center

    Helms-Park, Rena

    2003-01-01

    This paper presents a study that attributes verb serialization in the interlanguage of Vietnamese-speaking ESL learners to language transfer and, furthermore, puts forward the view that such transfer bears a resemblance to substrate influence in creoles with serial verb constructions (SVCs). In a task that elicited English causatives through…

  5. Serial Casting as an Adjunct to Botulinum Toxin Type A Treatment in Children With Cerebral Palsy and Spastic Paraparesis With Scissoring of the Lower Extremities.

    PubMed

    Dai, Alper I; Demiryürek, Abdullah T

    2017-06-01

    The purpose of this study was to examine whether combination therapy of serial casting and botulinum toxin type A injection can further enhance the effects of botulinum toxin type A in children with cerebral palsy with scissoring of both legs. This study was a prospective and randomized trial. The children were divided into 2 groups, one of which received serial casting after botulinum toxin type A (n = 40), and the other which only received botulinum toxin type A (n = 40). Serial casting started 3 weeks after the botulinum toxin type A. Both groups received physiotherapy. Groups were assessed at baseline then compared at 6 and 12 weeks following the intervention. Significant improvements in Gross Motor Function Measure-66 and Caregiver Health Questionnaire were recorded in both groups ( P < .001). The modified Ashworth scale improved significantly following botulinum toxin type A in the serial casting group ( P < .05), but not in botulinum toxin type A only group. These results suggest that serial casting after botulinum toxin type A can enhance the benefits of botulinum toxin type A in children with cerebral palsy.

  6. What serial homologs can tell us about the origin of insect wings

    PubMed Central

    2017-01-01

    Although the insect wing is a textbook example of morphological novelty, the origin of insect wings remains a mystery and is regarded as a chief conundrum in biology. Centuries of debates have culminated into two prominent hypotheses: the tergal origin hypothesis and the pleural origin hypothesis. However, between these two hypotheses, there is little consensus in regard to the origin tissue of the wing as well as the evolutionary route from the origin tissue to the functional flight device. Recent evolutionary developmental (evo-devo) studies have shed new light on the origin of insect wings. A key concept in these studies is “serial homology”. In this review, we discuss how the wing serial homologs identified in recent evo-devo studies have provided a new angle through which this century-old conundrum can be explored. We also review what we have learned so far from wing serial homologs and discuss what we can do to go beyond simply identifying wing serial homologs and delve further into the developmental and genetic mechanisms that have facilitated the evolution of insect wings. PMID:28357056

  7. Modality independence of order coding in working memory: Evidence from cross-modal order interference at recall.

    PubMed

    Vandierendonck, André

    2016-01-01

    Working memory researchers do not agree on whether order in serial recall is encoded by dedicated modality-specific systems or by a more general modality-independent system. Although previous research supports the existence of autonomous modality-specific systems, it has been shown that serial recognition memory is prone to cross-modal order interference by concurrent tasks. The present study used a serial recall task, which was performed in a single-task condition and in a dual-task condition with an embedded memory task in the retention interval. The modality of the serial task was either verbal or visuospatial, and the embedded tasks were in the other modality and required either serial or item recall. Care was taken to avoid modality overlaps during presentation and recall. In Experiment 1, visuospatial but not verbal serial recall was more impaired when the embedded task was an order than when it was an item task. Using a more difficult verbal serial recall task, verbal serial recall was also more impaired by another order recall task in Experiment 2. These findings are consistent with the hypothesis of modality-independent order coding. The implications for views on short-term recall and the multicomponent view of working memory are discussed.

  8. MRI Features in a Canine Model of Ischemic Stroke: Correlation between Lesion Volume and Neurobehavioral Status during the Subacute Stage

    PubMed Central

    Kang, Byeong-Teck; Jang, Dong-Pyo; Gu, Su-Hyun; Lee, Jong-Hwan; Jung, Dong-In; Lim, Chae-Young; Kim, Ha-Jung; Kim, Young-Bo; Kim, Hyung-Joong; Woo, Eung-Je; Cho, Zang-Hee; Park, Hee-Myung

    2009-01-01

    The purpose of this study was to evaluate the diagnostic value of magnetic resonance imaging (MRI) and assess the correlation between the volume of the ischemic lesion and neurobehavioral status during the subacute stage of ischemic stroke. Ischemic stroke was induced in 6 healthy laboratory beagles through permanent occlusion of the middle cerebral artery (MCAO). T2-weighted and fluid-attenuated inversion recovery (FLAIR) imaging, diffusion-weighted imaging (DWI), measurement of the apparent diffusion coefficient (ADC) ratio, and neurobehavioral evaluation were performed 3 times serially by using a 1.5-T MR system: before and 3 and 10 d after MCAO. Ischemic lesions demonstrated T2 hyperintensity, FLAIR hyperintensity, and DWI hyperintensity. The ADC ratio was decreased initially but then was increased at 10 d after MCAO. Ischemic lesion volumes on T2-weighted and FLAIR imaging were not significantly different from those on DWI. The lesion volume and neurobehavioral score showed strong correlation. Our results suggest that conventional MRI may be a reliable diagnostic tool during the subacute stage of canine ischemic stroke. PMID:19887030

  9. Slice-to-Volume Nonrigid Registration of Histological Sections to MR Images of the Human Brain

    PubMed Central

    Osechinskiy, Sergey; Kruggel, Frithjof

    2011-01-01

    Registration of histological images to three-dimensional imaging modalities is an important step in quantitative analysis of brain structure, in architectonic mapping of the brain, and in investigation of the pathology of a brain disease. Reconstruction of histology volume from serial sections is a well-established procedure, but it does not address registration of individual slices from sparse sections, which is the aim of the slice-to-volume approach. This study presents a flexible framework for intensity-based slice-to-volume nonrigid registration algorithms with a geometric transformation deformation field parametrized by various classes of spline functions: thin-plate splines (TPS), Gaussian elastic body splines (GEBS), or cubic B-splines. Algorithms are applied to cross-modality registration of histological and magnetic resonance images of the human brain. Registration performance is evaluated across a range of optimization algorithms and intensity-based cost functions. For a particular case of histological data, best results are obtained with a TPS three-dimensional (3D) warp, a new unconstrained optimization algorithm (NEWUOA), and a correlation-coefficient-based cost function. PMID:22567290

  10. A computational pipeline for quantification of pulmonary infections in small animal models using serial PET-CT imaging.

    PubMed

    Bagci, Ulas; Foster, Brent; Miller-Jaster, Kirsten; Luna, Brian; Dey, Bappaditya; Bishai, William R; Jonsson, Colleen B; Jain, Sanjay; Mollura, Daniel J

    2013-07-23

    Infectious diseases are the second leading cause of death worldwide. In order to better understand and treat them, an accurate evaluation using multi-modal imaging techniques for anatomical and functional characterizations is needed. For non-invasive imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), there have been many engineering improvements that have significantly enhanced the resolution and contrast of the images, but there are still insufficient computational algorithms available for researchers to use when accurately quantifying imaging data from anatomical structures and functional biological processes. Since the development of such tools may potentially translate basic research into the clinic, this study focuses on the development of a quantitative and qualitative image analysis platform that provides a computational radiology perspective for pulmonary infections in small animal models. Specifically, we designed (a) a fast and robust automated and semi-automated image analysis platform and a quantification tool that can facilitate accurate diagnostic measurements of pulmonary lesions as well as volumetric measurements of anatomical structures, and incorporated (b) an image registration pipeline to our proposed framework for volumetric comparison of serial scans. This is an important investigational tool for small animal infectious disease models that can help advance researchers' understanding of infectious diseases. We tested the utility of our proposed methodology by using sequentially acquired CT and PET images of rabbit, ferret, and mouse models with respiratory infections of Mycobacterium tuberculosis (TB), H1N1 flu virus, and an aerosolized respiratory pathogen (necrotic TB) for a total of 92, 44, and 24 scans for the respective studies with half of the scans from CT and the other half from PET. Institutional Administrative Panel on Laboratory Animal Care approvals were obtained prior to conducting this research. First, the proposed computational framework registered PET and CT images to provide spatial correspondences between images. Second, the lungs from the CT scans were segmented using an interactive region growing (IRG) segmentation algorithm with mathematical morphology operations to avoid false positive (FP) uptake in PET images. Finally, we segmented significant radiotracer uptake from the PET images in lung regions determined from CT and computed metabolic volumes of the significant uptake. All segmentation processes were compared with expert radiologists' delineations (ground truths). Metabolic and gross volume of lesions were automatically computed with the segmentation processes using PET and CT images, and percentage changes in those volumes over time were calculated. (Continued on next page)(Continued from previous page) Standardized uptake value (SUV) analysis from PET images was conducted as a complementary quantitative metric for disease severity assessment. Thus, severity and extent of pulmonary lesions were examined through both PET and CT images using the aforementioned quantification metrics outputted from the proposed framework. Each animal study was evaluated within the same subject class, and all steps of the proposed methodology were evaluated separately. We quantified the accuracy of the proposed algorithm with respect to the state-of-the-art segmentation algorithms. For evaluation of the segmentation results, dice similarity coefficient (DSC) as an overlap measure and Haussdorf distance as a shape dissimilarity measure were used. Significant correlations regarding the estimated lesion volumes were obtained both in CT and PET images with respect to the ground truths (R2=0.8922,p<0.01 and R2=0.8664,p<0.01, respectively). The segmentation accuracy (DSC (%)) was 93.4±4.5% for normal lung CT scans and 86.0±7.1% for pathological lung CT scans. Experiments showed excellent agreements (all above 85%) with expert evaluations for both structural and functional imaging modalities. Apart from quantitative analysis of each animal, we also qualitatively showed how metabolic volumes were changing over time by examining serial PET/CT scans. Evaluation of the registration processes was based on precisely defined anatomical landmark points by expert clinicians. An average of 2.66, 3.93, and 2.52 mm errors was found in rabbit, ferret, and mouse data (all within the resolution limits), respectively. Quantitative results obtained from the proposed methodology were visually related to the progress and severity of the pulmonary infections as verified by the participating radiologists. Moreover, we demonstrated that lesions due to the infections were metabolically active and appeared multi-focal in nature, and we observed similar patterns in the CT images as well. Consolidation and ground glass opacity were the main abnormal imaging patterns and consistently appeared in all CT images. We also found that the gross and metabolic lesion volume percentage follow the same trend as the SUV-based evaluation in the longitudinal analysis. We explored the feasibility of using PET and CT imaging modalities in three distinct small animal models for two diverse pulmonary infections. We concluded from the clinical findings, derived from the proposed computational pipeline, that PET-CT imaging is an invaluable hybrid modality for tracking pulmonary infections longitudinally in small animals and has great potential to become routinely used in clinics. Our proposed methodology showed that automated computed-aided lesion detection and quantification of pulmonary infections in small animal models are efficient and accurate as compared to the clinical standard of manual and semi-automated approaches. Automated analysis of images in pre-clinical applications can increase the efficiency and quality of pre-clinical findings that ultimately inform downstream experimental design in human clinical studies; this innovation will allow researchers and clinicians to more effectively allocate study resources with respect to research demands without compromising accuracy.

  11. Computerized Doppler Tomography and Spectrum Analysis of Carotid Artery Flow

    PubMed Central

    Morton, Paul; Goldman, Dave; Nichols, W. Kirt

    1981-01-01

    Contrast angiography remains the definitive study in the evaluation of atherosclerotic occlusive vascular disease. However, a safer technique for serial screening of symptomatic patients and for routine follow up is necessary. Computerized pulsed Doppler ultrasonic arteriography is a noninvasive technique developed by Miles6 for imaging lateral, antero-posterior and transverse sections of the carotid artery. We [ill] this system with new software and hardware to analyze the three-dimensional blood flow data. The system now provides information about the location of the occlusive process in the artery and a semi-quantitative evaluation of the degree of obstruction. In addition, we interfaced a digital signal analyzer to the system which permits spectrum analysis of the pulsed Doppler signal. This addition has allowed us to identify lesions which are not yet hemodynamically significant. ImagesFig. 2bFig. 2c

  12. A New Serial-direction Trail Effect in CCD Images of the Lunar-based Ultraviolet Telescope

    NASA Astrophysics Data System (ADS)

    Wu, C.; Deng, J. S.; Guyonnet, A.; Antilogus, P.; Cao, L.; Cai, H. B.; Meng, X. M.; Han, X. H.; Qiu, Y. L.; Wang, J.; Wang, S.; Wei, J. Y.; Xin, L. P.; Li, G. W.

    2016-10-01

    Unexpected trails have been seen subsequent to relative bright sources in astronomical images taken with the CCD camera of the Lunar-based Ultraviolet Telescope (LUT) since its first light on the Moon’s surface. The trails can only be found in the serial-direction of CCD readout, differing themselves from image trails of radiation-damaged space-borne CCDs, which usually appear in the parallel-readout direction. After analyzing the same trail defects following warm pixels (WPs) in dark frames, we found that the relative intensity profile of the LUT CCD trails can be expressed as an exponential function of the distance i (in number of pixels) of the trailing pixel to the original source (or WP), i.e., {\\mathtt{\\exp }}(α {\\mathtt{i}}+β ). The parameters α and β seem to be independent of the CCD temperature, intensity of the source (or WP), and its position in the CCD frame. The main trail characteristics show evolution occurring at an increase rate of ˜(7.3 ± 3.6) × 10-4 in the first two operation years. The trails affect the consistency of the profiles of different brightness sources, which make smaller aperture photometry have larger extra systematic error. The astrometric uncertainty caused by the trails is too small to be acceptable based on LUT requirements for astrometry accuracy. Based on the empirical profile model, a correction method has been developed for LUT images that works well for restoring the fluxes of astronomical sources that are lost in trailing pixels.

  13. Hardware implementation of hierarchical volume subdivision-based elastic registration.

    PubMed

    Dandekar, Omkar; Walimbe, Vivek; Shekhar, Raj

    2006-01-01

    Real-time, elastic and fully automated 3D image registration is critical to the efficiency and effectiveness of many image-guided diagnostic and treatment procedures relying on multimodality image fusion or serial image comparison. True, real-time performance will make many 3D image registration-based techniques clinically viable. Hierarchical volume subdivision-based image registration techniques are inherently faster than most elastic registration techniques, e.g. free-form deformation (FFD)-based techniques, and are more amenable for achieving real-time performance through hardware acceleration. Our group has previously reported an FPGA-based architecture for accelerating FFD-based image registration. In this article we show how our existing architecture can be adapted to support hierarchical volume subdivision-based image registration. A proof-of-concept implementation of the architecture achieved speedups of 100 for elastic registration against an optimized software implementation on a 3.2 GHz Pentium III Xeon workstation. Due to inherent parallel nature of the hierarchical volume subdivision-based image registration techniques further speedup can be achieved by using several computing modules in parallel.

  14. Development and validation of automated 2D-3D bronchial airway matching to track changes in regional bronchial morphology using serial low-dose chest CT scans in children with chronic lung disease.

    PubMed

    Raman, Pavithra; Raman, Raghav; Newman, Beverley; Venkatraman, Raman; Raman, Bhargav; Robinson, Terry E

    2010-12-01

    To address potential concern for cumulative radiation exposure with serial spiral chest computed tomography (CT) scans in children with chronic lung disease, we developed an approach to match bronchial airways on low-dose spiral and low-dose high-resolution CT (HRCT) chest images to allow serial comparisons. An automated algorithm matches the position and orientation of bronchial airways obtained from HRCT slices with those in the spiral CT scan. To validate this algorithm, we compared manual matching vs automatic matching of bronchial airways in three pediatric patients. The mean absolute percentage difference between the manually matched spiral CT airway and the index HRCT airways were 9.4 ± 8.5% for the internal diameter measurements, 6.0 ± 4.1% for the outer diameter measurements, and 10.1 ± 9.3% for the wall thickness measurements. The mean absolute percentage difference between the automatically matched spiral CT airway measurements and index HRCT airway measurements were 9.2 ± 8.6% for the inner diameter, 5.8 ± 4.5% for the outer diameter, and 9.9 ± 9.5% for the wall thickness. The overall difference between manual and automated methods was 2.1 ± 1.2%, which was significantly less than the interuser variability of 5.1 ± 4.6% (p<0.05). Tests of equivalence had p<0.05, demonstrating no significant difference between the two methods. The time required for matching was significantly reduced in the automated method (p<0.01) and was as accurate as manual matching, allowing efficient comparison of airways obtained on low-dose spiral CT imaging with low-dose HRCT scans.

  15. Polarization Sensitive QWIP Thermal Imager

    DTIC Science & Technology

    2000-03-01

    array (FPA) with peak responsivity in the long-wave infrared ( LWIR ) spectral band near 9 µm. Polarization-dependent responsivity is achieved by...demonstrated in various combinations: MWIR/ LWIR (using rectangular grid gratings), MWIR/MWIR, and LWIR / LWIR . The FPA described here was fabricated with a...CCA supports the nonuniformity correction, global gain and level control, failed pixel substitution, dynamic range reduction, BIT status and serial

  16. Women in Radio Soap Operas: A Historical Perspective of the Image of Women's "Sphere" in the "Golden Age."

    ERIC Educational Resources Information Center

    St John, Jacqueline

    Radio's "Golden Age," the 1930s and 1940s produced numerous successful and profitable daytime serials, called "soap operas" because they were most often sponsored by firms selling laundry products. Among the most popular of these series were those produced by the team of Anne and Frank Hummert. Working through the…

  17. Quantitative scintigraphy in diagnosis and management of plantar fasciitis (Calcaneal periostitis): concise communication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sewell, J.R.; Black, C.M.; Chapman, A.H.

    1980-07-01

    We have found that Tc-99m methylene diphosphonate imaging of the heel is of diagnostic value in the painful heel syndrome, permitting positive identification of the site of inflammation in cases where radiography is unhelpful. With this technique, tracer uptake in the heel is susceptible to quantification, allowing a serial and objective assessment of response to therapy.

  18. Clinical value of selective serial sectioning of laryngectomy specimens.

    PubMed Central

    Browning, G. G.

    1976-01-01

    A simple routine pathology method for examining laryngectomy specimens has been presented which (1) gives the clinician information regarding the probability of total excision of the tumour; (2) allows more accurate staging of laryngeal tumours; (3) will act as a basis for evaluation of preoperative investigations and future clinical trials of treatment. Images Fig 1 Fig 2 PMID:785476

  19. Changes over Time in Intracranial Air in Patients with Cerebral Air Embolism: Radiological Study in Two Cases

    PubMed Central

    Kaichi, Yoko; Kakeda, Shingo; Korogi, Yukunori; Nezu, Tomohisa; Aoki, Shiro; Matsumoto, Masayasu; Iida, Makoto; Awai, Kazuo

    2015-01-01

    Cerebral air embolism can be easily identified on computed tomography (CT) scans. However, changes in the distribution and amount of intracranial air are not well known. We report two patients with cerebral air embolism and present imaging findings on the serial changes in the intracranial air. We thought that the embolic source was venous in one patient because CT showed air inflow in cortical veins in the bilateral frontal areas, reflecting air buoyancy. In the other patient, CT showed air inflow into not only the cortical veins but also the bilateral cerebral hemispheres and we thought this to be a paradoxical cerebral air embolism. We found that intracranial air can be promptly absorbed and while cerebral infarcts due to air are clearly visualized on diffusion-weighted images (DWI), the air may rapidly disappear from images. In patients with suspected cerebral air embolism whose CT findings show no intracranial air, DWI should be performed because it may reveal cerebral infarction due to cerebral air embolism. PMID:26640730

  20. LabVIEW Serial Driver Software for an Electronic Load

    NASA Technical Reports Server (NTRS)

    Scullin, Vincent; Garcia, Christopher

    2003-01-01

    A LabVIEW-language computer program enables monitoring and control of a Transistor Devices, Inc., Dynaload WCL232 (or equivalent) electronic load via an RS-232 serial communication link between the electronic load and a remote personal computer. (The electronic load can operate at constant voltage, current, power consumption, or resistance.) The program generates a graphical user interface (GUI) at the computer that looks and acts like the front panel of the electronic load. Once the electronic load has been placed in remote-control mode, this program first queries the electronic load for the present values of all its operational and limit settings, and then drops into a cycle in which it reports the instantaneous voltage, current, and power values in displays that resemble those on the electronic load while monitoring the GUI images of pushbuttons for control actions by the user. By means of the pushbutton images and associated prompts, the user can perform such operations as changing limit values, the operating mode, or the set point. The benefit of this software is that it relieves the user of the need to learn one method for operating the electronic load locally and another method for operating it remotely via a personal computer.

  1. A resource from 3D electron microscopy of hippocampal neuropil for user training and tool development

    PubMed Central

    Harris, Kristen M.; Spacek, Josef; Bell, Maria Elizabeth; Parker, Patrick H.; Lindsey, Laurence F.; Baden, Alexander D.; Vogelstein, Joshua T.; Burns, Randal

    2015-01-01

    Resurgent interest in synaptic circuitry and plasticity has emphasized the importance of 3D reconstruction from serial section electron microscopy (3DEM). Three volumes of hippocampal CA1 neuropil from adult rat were imaged at X-Y resolution of ~2 nm on serial sections of ~50–60 nm thickness. These are the first densely reconstructed hippocampal volumes. All axons, dendrites, glia, and synapses were reconstructed in a cube (~10 μm3) surrounding a large dendritic spine, a cylinder (~43 μm3) surrounding an oblique dendritic segment (3.4 μm long), and a parallelepiped (~178 μm3) surrounding an apical dendritic segment (4.9 μm long). The data provide standards for identifying ultrastructural objects in 3DEM, realistic reconstructions for modeling biophysical properties of synaptic transmission, and a test bed for enhancing reconstruction tools. Representative synapses are quantified from varying section planes, and microtubules, polyribosomes, smooth endoplasmic reticulum, and endosomes are identified and reconstructed in a subset of dendrites. The original images, traces, and Reconstruct software and files are freely available and visualized at the Open Connectome Project (Data Citation 1). PMID:26347348

  2. Nonverbal short-term serial order memory in autism spectrum disorder.

    PubMed

    Bowler, Dermot M; Poirier, Marie; Martin, Jonathan S; Gaigg, Sebastian B

    2016-10-01

    To clarify the role of item and order memory in the serial recall of adults with autism spectrum disorder (ASD), we carried out 2 experiments in which adults with ASD and comparison participants matched on chronological age and verbal IQ saw sequences of 7 dots appear sequentially in a 3 × 4 grid. In Experiment 1 (serial recall), they had to recall the locations and the presentation order of the dots by tapping locations on an empty grid. In Experiment 2, (order reconstruction) the studied dots were provided at test and participants had to touch them in their order of appearance at study. Experiment 1 revealed diminished item and order recall in the ASD group; Experiment 2 revealed diminished order recall only when verbal IQ was controlled. The results support the view that people with ASD have particular difficulty with serial order recall but may use their language ability to achieve better serial recall performance. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  3. A Demons algorithm for image registration with locally adaptive regularization.

    PubMed

    Cahill, Nathan D; Noble, J Alison; Hawkes, David J

    2009-01-01

    Thirion's Demons is a popular algorithm for nonrigid image registration because of its linear computational complexity and ease of implementation. It approximately solves the diffusion registration problem by successively estimating force vectors that drive the deformation toward alignment and smoothing the force vectors by Gaussian convolution. In this article, we show how the Demons algorithm can be generalized to allow image-driven locally adaptive regularization in a manner that preserves both the linear complexity and ease of implementation of the original Demons algorithm. We show that the proposed algorithm exhibits lower target registration error and requires less computational effort than the original Demons algorithm on the registration of serial chest CT scans of patients with lung nodules.

  4. Intraoperative 3-Dimensional Computed Tomography and Navigation in Foot and Ankle Surgery.

    PubMed

    Chowdhary, Ashwin; Drittenbass, Lisca; Dubois-Ferrière, Victor; Stern, Richard; Assal, Mathieu

    2016-09-01

    Computer-assisted orthopedic surgery has developed dramatically during the past 2 decades. This article describes the use of intraoperative 3-dimensional computed tomography and navigation in foot and ankle surgery. Traditional imaging based on serial radiography or C-arm-based fluoroscopy does not provide simultaneous real-time 3-dimensional imaging, and thus leads to suboptimal visualization and guidance. Three-dimensional computed tomography allows for accurate intraoperative visualization of the position of bones and/or navigation implants. Such imaging and navigation helps to further reduce intraoperative complications, leads to improved surgical outcomes, and may become the gold standard in foot and ankle surgery. [Orthopedics.2016; 39(5):e1005-e1010.]. Copyright 2016, SLACK Incorporated.

  5. Serial magnetic resonance imaging findings in subarachnoid hemorrhage due to an initially angiographically occult type II spinal aneurysm: Case report.

    PubMed

    Kogan, Michael; Morr, Simon; Siddiqui, Adnan H

    2017-04-28

    Spinal aneurysms are rare causes of spontaneous subarachnoid hemorrhage. We present an unusual, initially occult, case of an upper thoracic intradural extramedullary isolated aneurysm arising from the T2 intercostal-radicular circulation that was initially angiographically occult but was discovered due to unique, albeit nonspecific, magnetic resonance imaging findings of spinal cord T2 hyperintensity and contrast enhancement that were noted to progress with a clinical picture of ictal rehemorrhage. Repeat spinal angiography revealed a spinal aneurysm that was treated surgically. In cases of sufficient clinical suspicion and nonspecific imaging findings, continued vigilance is advised in seeking an underlying pathoanatomic etiology.

  6. Two-Photon Imaging with Diffractive Optical Elements

    PubMed Central

    Watson, Brendon O.; Nikolenko, Volodymyr; Yuste, Rafael

    2009-01-01

    Two-photon imaging has become a useful tool for optical monitoring of neural circuits, but it requires high laser power and serial scanning of each pixel in a sample. This results in slow imaging rates, limiting the measurements of fast signals such as neuronal activity. To improve the speed and signal-to-noise ratio of two-photon imaging, we introduce a simple modification of a two-photon microscope, using a diffractive optical element (DOE) which splits the laser beam into several beamlets that can simultaneously scan the sample. We demonstrate the advantages of DOE scanning by enhancing the speed and sensitivity of two-photon calcium imaging of action potentials in neurons from neocortical brain slices. DOE scanning can easily improve the detection of time-varying signals in two-photon and other non-linear microscopic techniques. PMID:19636390

  7. Fiber Optic Communication System For Medical Images

    NASA Astrophysics Data System (ADS)

    Arenson, Ronald L.; Morton, Dan E.; London, Jack W.

    1982-01-01

    This paper discusses a fiber optic communication system linking ultrasound devices, Computerized tomography scanners, Nuclear Medicine computer system, and a digital fluoro-graphic system to a central radiology research computer. These centrally archived images are available for near instantaneous recall at various display consoles. When a suitable laser optical disk is available for mass storage, more extensive image archiving will be added to the network including digitized images of standard radiographs for comparison purposes and for remote display in such areas as the intensive care units, the operating room, and selected outpatient departments. This fiber optic system allows for a transfer of high resolution images in less than a second over distances exceeding 2,000 feet. The advantages of using fiber optic cables instead of typical parallel or serial communication techniques will be described. The switching methodology and communication protocols will also be discussed.

  8. The Real Time Correction of Stereoscopic Images: From the Serial to a Parallel Treatment

    NASA Astrophysics Data System (ADS)

    Irki, Zohir; Devy, Michel; Achour, Karim; Azzaz, Mohamed Salah

    2008-06-01

    The correction of the stereoscopic images is a task which consists in replacing acquired images by other images having the same properties but which are simpler to use in the other stages of stereovision. The use of the pre-calculated tables, built during an off line calibration step, made it possible to carry out the off line stereoscopic images rectification. An improvement of the built tables made it possible to carry out the real time rectification. In this paper, we describe an improvement of the real time correction approach so it can be exploited for a possible implementation on an FPGA component. This improvement holds in account the real time aspect of the correction and the available resources that can offer the FPGA Type Stratix 1S40F780C5.

  9. TLD assessment of mouse dosimetry during microCT imaging

    PubMed Central

    Figueroa, Said Daibes; Winkelmann, Christopher T.; Miller, William H.; Volkert, Wynn A.; Hoffman, Timothy J.

    2008-01-01

    Advances in laboratory animal imaging have provided new resources for noninvasive biomedical research. Among these technologies is microcomputed tomography (microCT) which is widely used to obtain high resolution anatomic images of small animals. Because microCT utilizes ionizing radiation for image formation, radiation exposure during imaging is a concern. The objective of this study was to quantify the radiation dose delivered during a standard microCT scan. Radiation dose was measured using thermoluminescent dosimeters (TLDs), which were irradiated employing an 80 kVp x-ray source, with 0.5 mm Al filtration and a total of 54 mA s for a full 360 deg rotation of the unit. The TLD data were validated using a 3.2 cm3 CT ion chamber probe. TLD results showed a single microCT scan air kerma of 78.0±5.0 mGy when using a poly(methylmethacrylate) (PMMA) anesthesia support module and an air kerma of 92.0±6.0 mGy without the use of the anesthesia module. The validation CT ion chamber study provided a measured radiation air kerma of 81.0±4.0 mGy and 97.0±5.0 mGy with and without the PMMA anesthesia module, respectively. Internal TLD analysis demonstrated an average mouse organ radiation absorbed dose of 76.0±5.0 mGy. The author’s results have defined x-ray exposure for a routine microCT study which must be taken into consideration when performing serial molecular imaging studies involving the microCT imaging modality. PMID:18841837

  10. Efficient processing of two-dimensional arrays with C or C++

    USGS Publications Warehouse

    Donato, David I.

    2017-07-20

    Because fast and efficient serial processing of raster-graphic images and other two-dimensional arrays is a requirement in land-change modeling and other applications, the effects of 10 factors on the runtimes for processing two-dimensional arrays with C and C++ are evaluated in a comparative factorial study. This study’s factors include the choice among three C or C++ source-code techniques for array processing; the choice of Microsoft Windows 7 or a Linux operating system; the choice of 4-byte or 8-byte array elements and indexes; and the choice of 32-bit or 64-bit memory addressing. This study demonstrates how programmer choices can reduce runtimes by 75 percent or more, even after compiler optimizations. Ten points of practical advice for faster processing of two-dimensional arrays are offered to C and C++ programmers. Further study and the development of a C and C++ software test suite are recommended.Key words: array processing, C, C++, compiler, computational speed, land-change modeling, raster-graphic image, two-dimensional array, software efficiency

  11. Background instrumental music and serial recall.

    PubMed

    Nittono, H

    1997-06-01

    Although speech and vocal music are consistently shown to impair serial recall for visually presented items, instrumental music does not always produce a significant disruption. This study investigated the features of instrumental music that would modulate the disruption in serial recall. 24 students were presented sequences of nine digits and required to recall the digits in order of presentation. Instrumental music as played either forward or backward during the task. Forward music caused significantly more disruption than did silence, whereas the reversed music did not. Some higher-order factor may be at work in the effect of background music on serial recall.

  12. Biceps Tendon Lengthening Surgery for Failed Serial Casting Patients With Elbow Flexion Contractures Following Brachial Plexus Birth Injury.

    PubMed

    Nath, Rahul K; Somasundaram, Chandra

    2016-01-01

    Assessment of surgical outcomes of biceps tendon lengthening (BTL) surgery in obstetric brachial plexus injury (OBPI) patients with elbow flexion contractures, who had unsuccessful serial casting. Serial casting and splinting have been shown to be effective in correcting elbow flexion contractures in OBPI. However, the possibilities of radial head dislocations and other complications have been reported in serial casting and splinting. Literature indicates surgical intervention when such nonoperative techniques and range-of-motion exercises fail. Here, we demonstrated a significant reduction of the contractures of the affected elbow and improvement in arm length to more normal after BTL in these patients, who had unsuccessful serial casting. Ten OBPI patients (6 girls and 4 boys) with an average age of 11.2 years (4-17.7 years) had BTL surgery after unsuccessful serial casting. Mean elbow flexion contracture was 40° before and 37° (average) after serial casting. Mean elbow flexion contracture was reduced to 8° (0°-20°) post-BTL surgical procedure with an average follow-up of 11 months. This was 75% improvement and statistically significant (P < .001) when compared to 7% insignificant (P = .08) improvement after serial casting. These OBPI patients in our study had 75% significant reduction in elbow flexion contractures and achieved an improved and more normal length of the affected arm after the BTL surgery when compared to only 7% insignificant reduction and no improvement in arm length after serial casting.

  13. 3D ultrasound Nakagami imaging for radiation-induced vaginal fibrosis

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Rossi, Peter; Shelton, Joseph; Bruner, Debrorah; Tridandapani, Srini; Liu, Tian

    2014-03-01

    Radiation-induced vaginal fibrosis is a debilitating side-effect affecting up to 80% of women receiving radiotherapy for their gynecological (GYN) malignancies. Despite the significant incidence and severity, little research has been conducted to identify the pathophysiologic changes of vaginal toxicity. In a previous study, we have demonstrated that ultrasound Nakagami shape and PDF parameters can be used to quantify radiation-induced vaginal toxicity. These Nakagami parameters are derived from the statistics of ultrasound backscattered signals to capture the physical properties (e.g., arrangement and distribution) of the biological tissues. In this paper, we propose to expand this Nakagami imaging concept from 2D to 3D to fully characterize radiation-induced changes to the vaginal wall within the radiation treatment field. A pilot study with 5 post-radiotherapy GYN patients was conducted using a clinical ultrasound scanner (6 MHz) with a mechanical stepper. A serial of 2D ultrasound images, with radio-frequency (RF) signals, were acquired at 1 mm step size. The 2D Nakagami shape and PDF parameters were calculated from the RF signal envelope with a sliding window, and then 3D Nakagami parameter images were generated from the parallel 2D images. This imaging method may be useful as we try to monitor radiation-induced vaginal injury, and address vaginal toxicities and sexual dysfunction in women after radiotherapy for GYN malignancies.

  14. Sensory nerves are frequently involved in the spectrum of fisher syndrome.

    PubMed

    Shahrizaila, Nortina; Goh, Khean J; Kokubun, Norito; Tan, Ai H; Tan, Cheng Y; Yuki, Nobuhiro

    2014-04-01

    Differing patterns of neurophysiological abnormalities have been reported in patients with Fisher syndrome. Fisher syndrome is rare, and few series have incorporated prospective serial studies to define the natural history of nerve conduction studies in Guillain-Barré syndrome. In an ongoing prospective study of Guillain-Barré syndrome patients, patients who presented with Fisher syndrome and its spectrum of illness were assessed through serial neurological examinations, nerve conduction studies, and serological testing of IgG against gangliosides and ganglioside complexes. Of the 36 Guillain-Barré syndrome patients identified within 2 years, 17 had features of Fisher syndrome. Serial nerve conduction studies detected significant abnormalities in sensory nerve action potential amplitude in 94% of patients associated with 2 patterns of recovery-non-demyelinating reversible distal conduction failure and axonal regeneration. Similar changes were seen in motor nerves of 5 patients. Patients with the Fisher syndrome spectrum of illness have significant sensory involvement, which may only be evident with serial neurophysiological studies. Copyright © 2013 Wiley Periodicals, Inc.

  15. Modeling Efficient Serial Visual Search

    DTIC Science & Technology

    2012-08-01

    parafovea size) to explore the parameter space associated with serial search efficiency. Visual search as a paradigm has been studied meticulously for...continues (Over, Hooge , Vlaskamp, & Erkelens, 2007). Over et al. (2007) found that participants initially attended to general properties of the search environ...the efficiency of human serial visual search. There were three parameters that were manipulated in the modeling of the visual search process in this

  16. Integral Images: Efficient Algorithms for Their Computation and Storage in Resource-Constrained Embedded Vision Systems

    PubMed Central

    Ehsan, Shoaib; Clark, Adrian F.; ur Rehman, Naveed; McDonald-Maier, Klaus D.

    2015-01-01

    The integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF), allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data. Recursive equations allow substantial decrease in the number of operations but require calculation in a serial fashion. This paper presents two new hardware algorithms that are based on the decomposition of these recursive equations, allowing calculation of up to four integral image values in a row-parallel way without significantly increasing the number of operations. An efficient design strategy is also proposed for a parallel integral image computation unit to reduce the size of the required internal memory (nearly 35% for common HD video). Addressing the storage problem of integral image in embedded vision systems, the paper presents two algorithms which allow substantial decrease (at least 44.44%) in the memory requirements. Finally, the paper provides a case study that highlights the utility of the proposed architectures in embedded vision systems. PMID:26184211

  17. Integral Images: Efficient Algorithms for Their Computation and Storage in Resource-Constrained Embedded Vision Systems.

    PubMed

    Ehsan, Shoaib; Clark, Adrian F; Naveed ur Rehman; McDonald-Maier, Klaus D

    2015-07-10

    The integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF), allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data. Recursive equations allow substantial decrease in the number of operations but require calculation in a serial fashion. This paper presents two new hardware algorithms that are based on the decomposition of these recursive equations, allowing calculation of up to four integral image values in a row-parallel way without significantly increasing the number of operations. An efficient design strategy is also proposed for a parallel integral image computation unit to reduce the size of the required internal memory (nearly 35% for common HD video). Addressing the storage problem of integral image in embedded vision systems, the paper presents two algorithms which allow substantial decrease (at least 44.44%) in the memory requirements. Finally, the paper provides a case study that highlights the utility of the proposed architectures in embedded vision systems.

  18. Three-dimensional image study on the vascular structure after angiopoietin-1 transduction in isolated mouse pancreatic islets

    NASA Astrophysics Data System (ADS)

    He, Jing; Su, Dongming; Trucco, Massimo

    2008-02-01

    Angiopoietin-1 (Ang-1) is essential for remodeling the primitive vascular plexus during embryonic development and for reducing plasma leakage in inflammation of adult vasculature. However, the role for Ang-1 in maintenance of vascular stability in isolated pancreatic islets is not fully understood. In this study, we compared the difference of vascular morphology between Ang-1 treated (n=5) and control mouse islets (n=5) using both two- and three-dimensional optical image analysis. Isolated mouse islets were transduced with Ang-1 or Lac Z (control) vector at 37°C for 16 hours. Islets were incubated with both rat anti-CD31 antibody and rabbit anti-insulin antibody followed by incubation with Rhodamine-conjugated goat anti-rat IgG and Alexa-488 conjugated goat anti-rabbit IgG. Islets were viewed under a Nikon confocal microscope. Serial optical section images were captured and reconstructed using Nikon EZ-C1 software. Individual two-D and reconstructed three-D images were analyzed using MetaMorph Image Analysis software. Islet vascular density was determined. In two-D images, there was no significant difference of vascular density between the two groups. The vascular morphology didn't show any obvious differences in two-D images either. However, in the three-D images, we found higher vascular density and more vascular branches in the Ang-1 transducted islets and vascular dilation in control group. In conclusion, using three-D image analysis, Ang-1 displayed functions in maintenance of vascular stability and in stimulating growth of vascular branches in isolated mouse pancreatic islets. In order to study further the regeneration of different cell contents in the spherical pancreatic islet, three-D image analysis is an effective method to approach this goal.

  19. A JOINT FRAMEWORK FOR 4D SEGMENTATION AND ESTIMATION OF SMOOTH TEMPORAL APPEARANCE CHANGES.

    PubMed

    Gao, Yang; Prastawa, Marcel; Styner, Martin; Piven, Joseph; Gerig, Guido

    2014-04-01

    Medical imaging studies increasingly use longitudinal images of individual subjects in order to follow-up changes due to development, degeneration, disease progression or efficacy of therapeutic intervention. Repeated image data of individuals are highly correlated, and the strong causality of information over time lead to the development of procedures for joint segmentation of the series of scans, called 4D segmentation. A main aim was improved consistency of quantitative analysis, most often solved via patient-specific atlases. Challenging open problems are contrast changes and occurance of subclasses within tissue as observed in multimodal MRI of infant development, neurodegeneration and disease. This paper proposes a new 4D segmentation framework that enforces continuous dynamic changes of tissue contrast patterns over time as observed in such data. Moreover, our model includes the capability to segment different contrast patterns within a specific tissue class, for example as seen in myelinated and unmyelinated white matter regions in early brain development. Proof of concept is shown with validation on synthetic image data and with 4D segmentation of longitudinal, multimodal pediatric MRI taken at 6, 12 and 24 months of age, but the methodology is generic w.r.t. different application domains using serial imaging.

  20. Imaging system design and image interpolation based on CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Li, Yu-feng; Liang, Fei; Guo, Rui

    2009-11-01

    An image acquisition system is introduced, which consists of a color CMOS image sensor (OV9620), SRAM (CY62148), CPLD (EPM7128AE) and DSP (TMS320VC5509A). The CPLD implements the logic and timing control to the system. SRAM stores the image data, and DSP controls the image acquisition system through the SCCB (Omni Vision Serial Camera Control Bus). The timing sequence of the CMOS image sensor OV9620 is analyzed. The imaging part and the high speed image data memory unit are designed. The hardware and software design of the image acquisition and processing system is given. CMOS digital cameras use color filter arrays to sample different spectral components, such as red, green, and blue. At the location of each pixel only one color sample is taken, and the other colors must be interpolated from neighboring samples. We use the edge-oriented adaptive interpolation algorithm for the edge pixels and bilinear interpolation algorithm for the non-edge pixels to improve the visual quality of the interpolated images. This method can get high processing speed, decrease the computational complexity, and effectively preserve the image edges.

  1. Exclusion and diagnosis of pulmonary embolism by a rapid ELISA D-dimer test and noninvasive imaging techniques within the context of a clinical model.

    PubMed

    Michiels, J J; Pattynama, P M

    2000-01-01

    A negative rapid ELISA D-dimer test alone in out-patients with a low to moderate clinical probability (CP) on pulmonary embolism (PE) is predicted to safely exclude pulmonary embolism. The combination of a negative rapid ELISA D-dimer test and a low to moderate CP on PE followed by compression ultrasonography (CUS) for the detection of deep vein thrombosis (DVT) is safe and cost-effective as it reduces the need for noninvasive imaging techniques to about 50% to 60% of outpatients with suspected PE. A high probability ventilation-perfusion (VP) scan or a positive spiral CT consistent with PE and the detection of DVT by CUS are currently considered to be clear indications for anticoagulant treatment. Subsequent pulmonary angiography (PA) is the gold standard diagnostic strategy to exclude or diagnose PE in suspected outpatients with a negative CUS, a positive rapid ELISA D-dimer test, and a nondiagnostic VP scan or negative spiral CT to prevent overtreatment with anticoagulants. However, the willingness of clinicians and the availability of resources to perform PA is restricted, a fact that has provided an impetus for clinical investigators to search for alternative noninvasive strategies to exclude or detect venous thromboembolism (VTE). Serial CUS testing for the detection of DVT in patients with a low to moderate CP on PE and a nondiagnostic VP scan or negative spiral CT is predicted to be safe and will reduce the need for PA to less than 10% or even less than 5%. This noninvasive serial CUS strategy restricts the need for invasive PA to a minor group of patients (< 5%) with the combination of a low CP on PE and high probability VP scan or the combination of a nondiagnostic VP scan or negative spiral CT and a high CP on PE. Prospective evaluations are warranted to implement and to validate the advantages and the disadvantages of the various combinations of noninvasive strategies and to compare serial CUS testing versus PA in randomized clinical management studies of outpatients with suspected pulmonary embolism.

  2. Effects of cannabis on cognition in patients with MS: a psychometric and MRI study.

    PubMed

    Pavisian, Bennis; MacIntosh, Bradley J; Szilagyi, Greg; Staines, Richard W; O'Connor, Paul; Feinstein, Anthony

    2014-05-27

    To determine functional and structural neuroimaging correlates of cognitive dysfunction associated with cannabis use in multiple sclerosis (MS). In a cross-sectional study, 20 subjects with MS who smoked cannabis and 19 noncannabis users with MS, matched on demographic and neurologic variables, underwent fMRI while completing a test of working memory, the N-Back. Resting-state fMRI and structural MRI data (lesion and normal-appearing brain tissue volumes, diffusion tensor imaging metrics) were also collected. Neuropsychological data pertaining to verbal (Selective Reminding Test Revised) and visual (10/36 Spatial Recall Test) memory, information processing speed (Paced Auditory Serial Addition Test [2- and 3-second versions] and Symbol Digit Modalities Test), and attention (Word List Generation) were obtained. The cannabis group performed more poorly on the more demanding of the Paced Auditory Serial Addition Test tasks (i.e., 2-second version) (p < 0.02) and the 10/36 Spatial Recall Test (p < 0.03). Cannabis users had more diffuse cerebral activation across all N-Back trials and made more errors on the 2-Back task (p < 0.006), during which they displayed increased activation relative to nonusers in parietal (p < 0.007) and anterior cingulate (p < 0.001) regions implicated in working memory. No group differences in resting-state networks or structural MRI variables were found. Patients with MS who smoke cannabis are more cognitively impaired than nonusers. Cannabis further compromises cerebral compensatory mechanisms, already faulty in MS. These imaging data boost the construct validity of the neuropsychological findings and act as a cautionary note to cannabis users and prescribers. © 2014 American Academy of Neurology.

  3. Changes in globus pallidus with (pre)term kernicterus.

    PubMed

    Govaert, Paul; Lequin, Maarten; Swarte, Renate; Robben, Simon; De Coo, René; Weisglas-Kuperus, Nynke; De Rijke, Yolanda; Sinaasappel, Maarten; Barkovich, James

    2003-12-01

    We report serial magnetic resonance (MR) and sonographic behavior of globus pallidus in 5 preterm and 3 term infants with kernicterus and describe the clinical context in very low birth weight preterm infants. On the basis of this information, we suggest means of diagnosis and prevention. Charts and MR and ultrasound images of 5 preterm infants and 3 term infants with suspected bilirubin-associated brain damage were reviewed. Included were preterm infants with severe hearing loss, quadriplegic hypertonia, and abnormal hypersignal of globus pallidus on T2-weighted MR imaging (MRI). In 1 infant who died on day 150, the diagnosis was confirmed during the neonatal period. The others were picked up as outpatients and scanned at 12 or 22 months' corrected age. Three instances of term kernicterus were included for comparison of serial MRI in the neonatal period and early infancy: they were caused by glucose-6-phosphate dehydrogenase deficiency, urosepsis, and dehydration plus fructose 1-6 biphosphatase deficiency. Five preterm infants of 25 to 29 weeks' gestational age presented with total serum bilirubin (TSB) levels below exchange transfusion thresholds commonly advised. Mixed acidosis was present in 3 infants around the TSB peak. The bilirubin/albumin molar ratio was >0.5 in all, in the absence of displacing drugs. All failed to pass bedside hearing screen tests and had severe hearing loss on auditory brain response testing. Symmetrical homogeneous hyperechogenicity of globus pallidus was the alerting feature in 1 infant. Globus pallidus was hyperintense on T1-weighted MR images in this child. The other infants presented with severe developmental delay as a result of dyskinetic quadriplegia and hearing loss. Globus pallidus was normal on T1- but hyperintense on T2-weighted MR images at 12 or 22 months' corrected age. Subthalamic involvement was documented in coronal fluid attenuated inversion recovery MRI in 2 infants. The term infants with classical clinical presentation in the neonatal period had MR behavior similar to the preterms, but pallidal injury was not recognized with targeted sonographic examination. Their neonatal MR images demonstrated pallidal T1 hyperintensity and mild T2 hyperintensity. Acidotic very low birth weight preterm infants with low serum albumin levels develop MR-confirmed pallidal injury and hearing loss facing "accepted" TSB levels. Serial MRI documents a shift from acute mainly T1 hypersignal to permanent T2 hypersignal in globus pallidus within the late neonatal period. Subthalamic and not thalamic involvement helps to differentiate from ischemic or metabolic disorder. As newborns, these infants are rigid and have severe apnea, before developing hypertonic quadriplegia in infancy.

  4. Simultaneous immersion Mirau interferometry

    PubMed Central

    Lyulko, Oleksandra V.; Randers-Pehrson, Gerhard; Brenner, David J.

    2013-01-01

    A novel technique for label-free imaging of live biological cells in aqueous medium that is insensitive to ambient vibrations is presented. This technique is a spin-off from previously developed immersion Mirau interferometry. Both approaches utilize a modified Mirau interferometric attachment for a microscope objective that can be used both in air and in immersion mode, when the device is submerged in cell medium and has its internal space filled with liquid. While immersion Mirau interferometry involves first capturing a series of images, the resulting images are potentially distorted by ambient vibrations. Overcoming these serial-acquisition challenges, simultaneous immersion Mirau interferometry incorporates polarizing elements into the optics to allow simultaneous acquisition of two interferograms. The system design and production are described and images produced with the developed techniques are presented. PMID:23742552

  5. Molecular imaging in stem cell-based therapies of cardiac diseases.

    PubMed

    Li, Xiang; Hacker, Marcus

    2017-10-01

    In the past 15years, despite that regenerative medicine has shown great potential for cardiovascular diseases, the outcome and safety of stem cell transplantation has shown controversial results in the published literature. Medical imaging might be useful for monitoring and quantifying transplanted cells within the heart and to serially characterize the effects of stem cell therapy of the myocardium. From the multiple available noninvasive imaging techniques, magnetic resonance imaging and nuclear imaging by positron (PET) or single photon emission computer tomography (SPECT) are the most used clinical approaches to follow the fate of transplanted stem cells in vivo. In this article, we provide a review on the role of different noninvasive imaging modalities and discuss their advantages and disadvantages. We focus on the different in-vivo labeling and reporter gene imaging strategies for stem cell tracking as well as the concept and reliability to use imaging parameters as noninvasive surrogate endpoints for the evaluation of the post-therapeutic outcome. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effects of rivastigmine on visual attention in subjects with amnestic mild cognitive impairment: A serial functional MRI activation pilot-study.

    PubMed

    Bokde, Arun L W; Cavedo, Enrica; Lopez-Bayo, Patricia; Lista, Simone; Meindl, Thomas; Born, Christine; Galluzzi, Samantha; Faltraco, Frank; Dubois, Bruno; Teipel, Stefan J; Reiser, Maximilian; Möller, Hans-Jürgen; Hampel, Harald

    2016-03-30

    A pilot study to investigate the effects of rivastigmine on the brain activation pattern due to visual attention tasks in a group of amnestic Mild Cognitive Impaired patients (aMCI). The design was an initial three-month double blind period with a rivastigmine and placebo arms, followed by a nine-month open-label period. All patients underwent serial functional magnetic resonance imaging (fMRI) at baseline, and after three and six months of follow-up. Primary endpoint was the effect of rivastigmine on functional brain changes during visual attention (face and location matching) tasks. There were five in the rivastigmine arm and two in the placebo arm. The face matching task showed higher activation of visual areas after three months of treatment but no differences compared to baseline at six months. The location matching task showed a higher activation along the dorsal visual pathway at both three and six months follow ups. Treatment with rivastigmine demonstrates a significant effect on brain activation of the dorsal visual pathway during a location matching task in patients with aMCI. Our data support the potential use of task fMRI to map specific treatment effects of cholinergic drugs during prodromal stages of Alzheimer's disease (AD). Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Morphology of the Vestibular Utricule in Toadfish, Opsanus Tau

    NASA Technical Reports Server (NTRS)

    Bass, L.; Smith, J.; Twombly, A.; Boyle, Richard; Varelas, Ehsanian J.; Johanson, C.

    2003-01-01

    The uticle is an otolith organ in the vertebrate inner ear that provides gravitoinertial acceleration information into the vestibular reflex pathways. The aim of the present study was to provide an anatomical description of this structure in the adult oyster toadfish, and establish a morphological basis for interpretation of subsequent functional studies. Light, scanning electron and transmission electron microscopy were applied to visualize the sensory epithelium and its neural innervation. Electrophysiological techniques were used to identify utricular afferents by their response to translation stimuli. Similar to nerve afferents supplying the semicircular canals and lagena, utricular afferents commonly exhibit a short-latency increase of firing rate in response to electrical activation of the central efferent pathway. Afferents were labeled with biocytin either intraaxonally or with extracellular bulk deposits. Light microscope images of serial thick sections were used to make three-dimensional reconstructions of individual labeled afferents to identify the dendritic morphology with respect to epithelial location. Scanning electron microscopy was used to visualize the surface of the otolith mass facing the otolith membrane, and the hair cell polarization patterns of strioler and extrastriolar regions. Transmission electron micrographs of serial thin sections were compiled to create a three-dimensional reconstruction of the labeled afferent over a segment of its dendritic field and to examine the hair cell-afferent synaptic contacts.

  8. Echocardiographic measurements of left ventricular mass by a non-geometric method

    NASA Technical Reports Server (NTRS)

    Parra, Beatriz; Buckey, Jay; Degraff, David; Gaffney, F. Andrew; Blomqvist, C. Gunnar

    1987-01-01

    The accuracy of a new nongeometric method for calculating left ventricular myocardial volumes from two-dimensional echocardiographic images was assessed in vitro using 20 formalin-fixed normal human hearts. Serial oblique short-axis images were acquired from one point at 5-deg intervals, for a total of 10-12 cross sections. Echocardiographic myocardial volumes were calculated as the difference between the volumes defined by the epi- and endocardial surfaces. Actual myocardial volumes were determined by water displacement. Volumes ranged from 80 to 174 ml (mean 130.8 ml). Linear regression analysis demonstrated excellent agreement between the echocardiographic and direct measurements.

  9. Second Chance.

    PubMed

    Torrey, E Fuller

    2017-01-30

    My second career as a schizophrenia researcher will focus on infectious agents as a cause. It will include the collection of serial sera, cerebrospinal fluid, functional magnetic resonance imaging, and diffusion tensor imaging on a cohort of affected individuals over 20 years. Since I believe that the initial transmission of these agents occurs in childhood, I will also follow a cohort of children from birth to age 20. Additional projects will focus on rheumatoid arthritis, geographic case clusters, immigrants, and epidemiology. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. The relationship between serial sexual murder and autoerotic asphyxiation.

    PubMed

    Myers, Wade C; Bukhanovskiy, Alexandr; Justen, Elle; Morton, Robert J; Tilley, John; Adams, Kenneth; Vandagriff, Virgil L; Hazelwood, Robert R

    2008-04-07

    This case series documents and examines the association between autoerotic asphyxiation, sadomasochism, and serial sexual murderers. Autoerotic asphyxiation, along with other paraphilias found in this population, is reviewed. Five cases of serial sexual killers who engaged in autoerotic asphyxiation were identified worldwide: four from the United States and one from Russia. Case reports for each are provided. All (100%) were found to have sexual sadism in addition to autoerotic asphyxiation. Furthermore, two (40%) had bondage fetishism, and two (40%) had transvestic fetishism, consistent with these paraphilias co-occurring in those with autoerotic asphyxiation. Overall the group averaged 4.0 lifetime paraphilias. Some possible relationships were observed between the offenders' paraphilic orientation and their modus operandi, e.g., all of these serial killers strangled victims-suggesting an association between their sadistic and asphyxiative paraphilic interests. The overlap of seemingly polar opposite paraphilias in this sample--sexual sadism and autoerotic asphyxiation--is explored from a historical and clinical perspective. Multiple commonalities shared between these five offenders and serial sexual murderers in general are addressed. A primary limitation of this study is its small sample size and empirical basis; the results may not be generalizable beyond the sample. The findings from this study support the supposition that crime scene behaviors often reflect paraphilic disturbances in those who commit serial sexual homicides.

  11. Biceps Tendon Lengthening Surgery for Failed Serial Casting Patients With Elbow Flexion Contractures Following Brachial Plexus Birth Injury

    PubMed Central

    Somasundaram, Chandra

    2016-01-01

    Objective: Assessment of surgical outcomes of biceps tendon lengthening (BTL) surgery in obstetric brachial plexus injury (OBPI) patients with elbow flexion contractures, who had unsuccessful serial casting. Background: Serial casting and splinting have been shown to be effective in correcting elbow flexion contractures in OBPI. However, the possibilities of radial head dislocations and other complications have been reported in serial casting and splinting. Literature indicates surgical intervention when such nonoperative techniques and range-of-motion exercises fail. Here, we demonstrated a significant reduction of the contractures of the affected elbow and improvement in arm length to more normal after BTL in these patients, who had unsuccessful serial casting. Methods and Patients: Ten OBPI patients (6 girls and 4 boys) with an average age of 11.2 years (4-17.7 years) had BTL surgery after unsuccessful serial casting. Results: Mean elbow flexion contracture was 40° before and 37° (average) after serial casting. Mean elbow flexion contracture was reduced to 8° (0°-20°) post-BTL surgical procedure with an average follow-up of 11 months. This was 75% improvement and statistically significant (P < .001) when compared to 7% insignificant (P = .08) improvement after serial casting. Conclusion: These OBPI patients in our study had 75% significant reduction in elbow flexion contractures and achieved an improved and more normal length of the affected arm after the BTL surgery when compared to only 7% insignificant reduction and no improvement in arm length after serial casting. PMID:27648115

  12. The effect and complication of botulinum toxin type a injection with serial casting for the treatment of spastic equinus foot.

    PubMed

    Lee, Sook Joung; Sung, In Young; Jang, Dae Hyun; Yi, Jin Hwa; Lee, Jin Ho; Ryu, Ju Seok

    2011-06-01

    To identify the effect of serial casting combined with Botulinum toxin type A (BTX-A) injection on spastic equinus foot. Twenty-nine children with cerebral palsy who had equinus foot were recruited from the outpatient clinic of Rehabilitation Medicine. The children were divided into 2 groups, one of which received serial casting after BTX-A injection, and the other which only received BTX-A injection. Serial casting started 3 weeks after the BTX-A injection, and was changed weekly for 3 times. Spasticity of the ankle joint was evaluated using the modified Ashworth scale (MAS), and the modified Tardieu scale (MTS). Gait pattern was measured using the physician's rating scale (PRS). The degree of ankle dorsiflexion and the MAS improved significantly until 12 weeks following the BTX-A injection in the serial casting group (p<0.001), while the BTX-A injection-only group improved until 6 weeks following injection (p<0.05). The combined group showed a significantly greater increase in the degree of dorsiflexion compared to the BTX-A injection-only group at post-injection weeks 6 and 12 (p<0.05). Three children (11.5%) suffered from foot ulcers as a complication caused by the serial casting. Our study demonstrated that the effect of BTX-A injection with serial casting was superior and lasted longer than the effect of BTX-A injection only in patients with spastic equinus foot. We therefore recommend BTX-A injection with serial casting for the treatment of equinus foot. However, physicians must also consider the possible complications associated with serial casting.

  13. Study on high power ultraviolet laser oil detection system

    NASA Astrophysics Data System (ADS)

    Jin, Qi; Cui, Zihao; Bi, Zongjie; Zhang, Yanchao; Tian, Zhaoshuo; Fu, Shiyou

    2018-03-01

    Laser Induce Fluorescence (LIF) is a widely used new telemetry technology. It obtains information about oil spill and oil film thickness by analyzing the characteristics of stimulated fluorescence and has an important application in the field of rapid analysis of water composition. A set of LIF detection system for marine oil pollution is designed in this paper, which uses 355nm high-energy pulsed laser as the excitation light source. A high-sensitivity image intensifier is used in the detector. The upper machine sends a digital signal through a serial port to achieve nanoseconds range-gated width control for image intensifier. The target fluorescence spectrum image is displayed on the image intensifier by adjusting the delay time and the width of the pulse signal. The spectral image is coupled to CCD by lens imaging to achieve spectral display and data analysis function by computer. The system is used to detect the surface of the floating oil film in the distance of 25m to obtain the fluorescence spectra of different oil products respectively. The fluorescence spectra of oil products are obvious. The experimental results show that the system can realize high-precision long-range fluorescence detection and reflect the fluorescence characteristics of the target accurately, with broad application prospects in marine oil pollution identification and oil film thickness detection.

  14. Robotics research projects report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsia, T.C.

    The research results of the Robotics Research Laboratory are summarized. Areas of research include robotic control, a stand-alone vision system for industrial robots, and sensors other than vision that would be useful for image ranging, including ultrasonic and infra-red devices. One particular project involves RHINO, a 6-axis robotic arm that can be manipulated by serial transmission of ASCII command strings to its interfaced controller. (LEW)

  15. Thoughts on treatment of strawberry naevi.

    PubMed Central

    Illingworth, R S

    1976-01-01

    Published reports on the treatment of large strawberry naevi have been reviewed. It is suggested that they should normally be left untreated, and that corticosteroids, given for a short period only, should be reserved for massive naevi close to the eye, or interfering with respiration or suckling, or associated with thrombocytopenia. Serial colour photographs of one child illustrate the good result of inactivity. Images p139-a PMID:769700

  16. MRI predictors of treatment response for perianal fistulizing Crohn disease in children and young adults.

    PubMed

    Shenoy-Bhangle, Anuradha; Nimkin, Katherine; Goldner, Dana; Bradley, William F; Israel, Esther J; Gee, Michael S

    2014-01-01

    Magnetic resonance imaging (MRI) is considered the imaging standard for diagnosis and characterization of perianal complications associated with Crohn disease in children and adults. To define MRI criteria that could act as potential predictors of treatment response in fistulizing Crohn disease in children, in order to guide more informed study interpretation. We performed a retrospective database query to identify all children and young adults with Crohn disease who underwent serial MRI studies for assessment of perianal symptoms between 2003 and 2010. We examined imaging features of perianal disease including fistula number, type and length, presence and size of associated abscess, and disease response/progression on follow-up MRI. We reviewed imaging studies and electronic medical records. Statistical analysis, including logistic regression, was performed to associate MR imaging features with treatment response and disease progression. We included 36 patients (22 male, 14 female; age range 8-21 years). Of these, 32 had a second MRI exam and 4 had clinical evidence of complete response, obviating the need for repeat imaging. Of the parameters analyzed, presence of abscess, type of fistula according to the Parks classification, and multiplicity were not predictors of treatment outcome. Maximum length of the dominant fistula and aggregate fistula length in the case of multiple fistulae were the best predictors of treatment outcome. Maximum fistula length <2.5 cm was a predictor of treatment response, while aggregate fistula length ≥2.5 cm was a predictor of disease progression. Perianal fistula length is an important imaging feature to assess on MRI of fistulizing Crohn disease.

  17. Antimicrobial blue light therapy for Candida albicans burn infection in mice

    NASA Astrophysics Data System (ADS)

    Zhang, Yunsong; Wang, Yucheng; Murray, Clinton K.; Hamblin, Michael R.; Gu, Ying; Dai, Tianhong

    2015-05-01

    In this preclinical study, we investigated the utility of antimicrobial blue light therapy for Candida albicans infection in acutely burned mice. A bioluminescent strain of C. albicans was used. The susceptibilities to blue light inactivation were compared between C. albicans and human keratinocyte. In vitro serial passaging of C. albicans on blue light exposure was performed to evaluate the potential development of resistance to blue light inactivation. A mouse model of acute thermal burn injury infected with the bioluminescent strain of C. albicans was developed. Blue light (415 nm) was delivered to mouse burns for decolonization of C. albicans. Bioluminescence imaging was used to monitor in real time the extent of fungal infection in mouse burns. Experimental results showed that C. albicans was approximately 42-fold more susceptible to blue light inactivation in vitro than human keratinocyte (P=0.0022). Serial passaging of C. albicans on blue light exposure implied a tendency for the fungal susceptibility to blue light inactivation to decrease with the numbers of passages. Blue light reduced fungal burden by over 4-log10 (99.99%) in acute mouse burns infected with C. albicans in comparison to infected mouse burns without blue light therapy (P=0.015).

  18. Using transmission electron microscopy and 3View® to determine collagen fibril size and three-dimensional organization

    PubMed Central

    Mironov, Aleksandr; Cootes, Timothy F.; Holmes, David F.; Kadler, Karl E.

    2017-01-01

    Collagen fibrils are the major tensile element in vertebrate tissues where they occur as ordered bundles in the extracellular matrix. Abnormal fibril assembly and organization results in scarring, fibrosis, poor wound healing and connective tissue diseases. Transmission electron microscopy (TEM) is used to assess formation of the fibrils, predominantly by measuring fibril diameter. Here we describe an enhanced protocol for measuring fibril diameter as well as fibril-volume-fraction, mean fibril length, fibril cross-sectional shape, and fibril 3D organization that are also major determinants of tissue function. Serial section TEM (ssTEM) has been used to visualize fibril 3D-organization in vivo. However, serial block face-scanning electron microscopy (SBF-SEM) has emerged as a time-efficient alternative to ssTEM. The protocol described below is suitable for preparing tissues for TEM and SBF-SEM (by 3View®). We demonstrate the power of 3View® for studying collagen fibril organization in vivo and show how to find and track individual fibrils. Time scale: ~8 days from isolating the tissue to having a 3D image stack. PMID:23807286

  19. IOTA: integration optimization, triage and analysis tool for the processing of XFEL diffraction images.

    PubMed

    Lyubimov, Artem Y; Uervirojnangkoorn, Monarin; Zeldin, Oliver B; Brewster, Aaron S; Murray, Thomas D; Sauter, Nicholas K; Berger, James M; Weis, William I; Brunger, Axel T

    2016-06-01

    Serial femtosecond crystallography (SFX) uses an X-ray free-electron laser to extract diffraction data from crystals not amenable to conventional X-ray light sources owing to their small size or radiation sensitivity. However, a limitation of SFX is the high variability of the diffraction images that are obtained. As a result, it is often difficult to determine optimal indexing and integration parameters for the individual diffraction images. Presented here is a software package, called IOTA , which uses a grid-search technique to determine optimal spot-finding parameters that can in turn affect the success of indexing and the quality of integration on an image-by-image basis. Integration results can be filtered using a priori information about the Bravais lattice and unit-cell dimensions and analyzed for unit-cell isomorphism, facilitating an improvement in subsequent data-processing steps.

  20. Inferring Biological Structures from Super-Resolution Single Molecule Images Using Generative Models

    PubMed Central

    Maji, Suvrajit; Bruchez, Marcel P.

    2012-01-01

    Localization-based super resolution imaging is presently limited by sampling requirements for dynamic measurements of biological structures. Generating an image requires serial acquisition of individual molecular positions at sufficient density to define a biological structure, increasing the acquisition time. Efficient analysis of biological structures from sparse localization data could substantially improve the dynamic imaging capabilities of these methods. Using a feature extraction technique called the Hough Transform simple biological structures are identified from both simulated and real localization data. We demonstrate that these generative models can efficiently infer biological structures in the data from far fewer localizations than are required for complete spatial sampling. Analysis at partial data densities revealed efficient recovery of clathrin vesicle size distributions and microtubule orientation angles with as little as 10% of the localization data. This approach significantly increases the temporal resolution for dynamic imaging and provides quantitatively useful biological information. PMID:22629348

  1. Serial-position effects on a free-recall task in bilinguals.

    PubMed

    Yoo, Jeewon; Kaushanskaya, Margarita

    2016-01-01

    In this study, we examined mechanisms that underlie free-recall performance in bilinguals' first language (L1) and second language (L2) through the prism of serial-position effects. On free-recall tasks, a typical pattern of performance follows a U-shaped serial-position curve, where items from the beginning of the list (the primacy effect) and items from the end of the list (the recency effect) are recalled with higher accuracy than items from the middle of the list. The present study contrasted serial-position effects on the free-recall task in Korean-English bilinguals' L1 vs. L2 and examined the relationship between an independent working memory (WM) measure and serial-position effects in bilinguals' two languages. Results revealed stronger pre-recency (primacy and middle) effects in L1 than in L2, but similar recency effects in the two languages. A close association was observed between WM and recall performance in the pre-recency region in the L1 but not in the L2. Together, these findings suggest that linguistic knowledge constrains free-recall performance in bilinguals, but only in the pre-recency region.

  2. Implementing An Image Understanding System Architecture Using Pipe

    NASA Astrophysics Data System (ADS)

    Luck, Randall L.

    1988-03-01

    This paper will describe PIPE and how it can be used to implement an image understanding system. Image understanding is the process of developing a description of an image in order to make decisions about its contents. The tasks of image understanding are generally split into low level vision and high level vision. Low level vision is performed by PIPE -a high performance parallel processor with an architecture specifically designed for processing video images at up to 60 fields per second. High level vision is performed by one of several types of serial or parallel computers - depending on the application. An additional processor called ISMAP performs the conversion from iconic image space to symbolic feature space. ISMAP plugs into one of PIPE's slots and is memory mapped into the high level processor. Thus it forms the high speed link between the low and high level vision processors. The mechanisms for bottom-up, data driven processing and top-down, model driven processing are discussed.

  3. Multimodal imaging of ischemic wounds

    NASA Astrophysics Data System (ADS)

    Zhang, Shiwu; Gnyawali, Surya; Huang, Jiwei; Liu, Peng; Gordillo, Gayle; Sen, Chandan K.; Xu, Ronald

    2012-12-01

    The wound healing process involves the reparative phases of inflammation, proliferation, and remodeling. Interrupting any of these phases may result in chronically unhealed wounds, amputation, or even patient death. Quantitative assessment of wound tissue ischemia, perfusion, and inflammation provides critical information for appropriate detection, staging, and treatment of chronic wounds. However, no method is available for noninvasive, simultaneous, and quantitative imaging of these tissue parameters. We integrated hyperspectral, laser speckle, and thermographic imaging modalities into a single setup for multimodal assessment of tissue oxygenation, perfusion, and inflammation characteristics. Advanced algorithms were developed for accurate reconstruction of wound oxygenation and appropriate co-registration between different imaging modalities. The multimodal wound imaging system was validated by an ongoing clinical trials approved by OSU IRB. In the clinical trial, a wound of 3mm in diameter was introduced on a healthy subject's lower extremity and the healing process was serially monitored by the multimodal imaging setup. Our experiments demonstrated the clinical usability of multimodal wound imaging.

  4. Concussion-Mild Traumatic Brain Injury: Recoverable Injury with Potential for Serious Sequelae.

    PubMed

    Kamins, Joshua; Giza, Christopher C

    2016-10-01

    Concussion is increasingly recognized as a major public health issue. Most patients will return to baseline and experience full recovery, although a subset experiences persistent symptoms. Newer animal models and imaging studies are beginning to demonstrate that metabolic and neurovascular resolution may actually take longer than symptomatic recovery. Repeat traumatic brain injury within the metabolic window of dysfunction may result in worsened symptoms and prolonged recovery. The true risk for second impact syndrome appears to be small, and development of cerebral edema after a mild impact may be related to genetic risks rather than serial impacts. Published by Elsevier Inc.

  5. World Biomedical Journals, 1951-60: A Study of the Relative Significance of 1,388 Titles Indexed in Current List of Medical Literature*

    PubMed Central

    Raisig, L. Miles

    1966-01-01

    This study is an application of the relationship of serial articles published to serial articles cited, developed in theory in the author's “Statistical Bibliography in the Health Sciences” (Bulletin 50: 450-461, July 1962). A ranked list of the indexes of significance of most of the serials indexed in Current List of Medical Literature was derived and erected from 21,000 citations secured in a random sampling of 1962 and 1961 biomedical journals regularly received in the Yale Medical Library. The author measures the gross indexing effectiveness of Current List against his indexes of significance, offers his method and results as means to reach objective standards for indexing and abstracting, and projects his results as measures of general value of the serials analyzed. PMID:5952248

  6. Imaging plasmodesmata with high-resolution scanning electron microscopy.

    PubMed

    Barton, Deborah A; Overall, Robyn L

    2015-01-01

    High-resolution scanning electron microscopy (HRSEM) is an effective tool to investigate the distribution of plasmodesmata within plant cell walls as well as to probe their complex, three-dimensional architecture. It is a useful alternative to traditional transmission electron microscopy (TEM) in which plasmodesmata are sectioned to reveal their internal substructures. Benefits of adopting an HRSEM approach to studies of plasmodesmata are that the specimen preparation methods are less complex and time consuming than for TEM, many plasmodesmata within a large region of tissue can be imaged in a single session, and three-dimensional information is readily available without the need for reconstructing TEM serial sections or employing transmission electron tomography, both of which are lengthy processes. Here we describe methods to prepare plant samples for HRSEM using pre- or postfixation extraction of cellular material in order to visualize plasmodesmata embedded within plant cell walls.

  7. Multi-brain fusion and applications to intelligence analysis

    NASA Astrophysics Data System (ADS)

    Stoica, A.; Matran-Fernandez, A.; Andreou, D.; Poli, R.; Cinel, C.; Iwashita, Y.; Padgett, C.

    2013-05-01

    In a rapid serial visual presentation (RSVP) images are shown at an extremely rapid pace. Yet, the images can still be parsed by the visual system to some extent. In fact, the detection of specific targets in a stream of pictures triggers a characteristic electroencephalography (EEG) response that can be recognized by a brain-computer interface (BCI) and exploited for automatic target detection. Research funded by DARPA's Neurotechnology for Intelligence Analysts program has achieved speed-ups in sifting through satellite images when adopting this approach. This paper extends the use of BCI technology from individual analysts to collaborative BCIs. We show that the integration of information in EEGs collected from multiple operators results in performance improvements compared to the single-operator case.

  8. Distributed nuclear medicine applications using World Wide Web and Java technology.

    PubMed

    Knoll, P; Höll, K; Mirzaei, S; Koriska, K; Köhn, H

    2000-01-01

    At present, medical applications applying World Wide Web (WWW) technology are mainly used to view static images and to retrieve some information. The Java platform is a relative new way of computing, especially designed for network computing and distributed applications which enables interactive connection between user and information via the WWW. The Java 2 Software Development Kit (SDK) including Java2D API, Java Remote Method Invocation (RMI) technology, Object Serialization and the Java Advanced Imaging (JAI) extension was used to achieve a robust, platform independent and network centric solution. Medical image processing software based on this technology is presented and adequate performance capability of Java is demonstrated by an iterative reconstruction algorithm for single photon emission computerized tomography (SPECT).

  9. Temporal grouping effects in musical short-term memory.

    PubMed

    Gorin, Simon; Mengal, Pierre; Majerus, Steve

    2018-07-01

    Recent theoretical accounts of verbal and visuo-spatial short-term memory (STM) have proposed the existence of domain-general mechanisms for the maintenance of serial order information. These accounts are based on the observation of similar behavioural effects across several modalities, such as temporal grouping effects. Across two experiments, the present study aimed at extending these findings, by exploring a STM modality that has received little interest so far, STM for musical information. Given its inherent rhythmic, temporal and serial organisation, the musical domain is of interest for investigating serial order STM processes such as temporal grouping. In Experiment 1, the data did not allow to determine the presence or the absence of temporal grouping effects. In Experiment 2, we observed that temporal grouping of tone sequences during encoding improves short-term recognition for serially presented probe tones. Furthermore, the serial position curves included micro-primacy and micro-recency effects, which are the hallmark characteristic of temporal grouping. Our results suggest that the encoding of serial order information in musical STM may be supported by temporal positional coding mechanisms similar to those reported in the verbal domain.

  10. Motor cortical encoding of serial order in a context-recall task.

    PubMed

    Carpenter, A F; Georgopoulos, A P; Pellizzer, G

    1999-03-12

    The neural encoding of serial order was studied in the motor cortex of monkeys performing a context-recall memory scanning task. Up to five visual stimuli were presented successively on a circle (list presentation phase), and then one of them (test stimulus) changed color; the monkeys had to make a single motor response toward the stimulus that immediately followed the test stimulus in the list. Correct performance in this task depends on memorization of the serial order of the stimuli during their presentation. It was found that changes in neural activity during the list presentation phase reflected the serial order of the stimuli; the effect on cell activity of the serial order of stimuli during their presentation was at least as strong as the effect of motor direction on cell activity during the execution of the motor response. This establishes the serial order of stimuli in a motor task as an important determinant of motor cortical activity during stimulus presentation and in the absence of changes in peripheral motor events, in contrast to the commonly held view of the motor cortex as just an "upper motor neuron."

  11. Linking memory and language: Evidence for a serial-order learning impairment in dyslexia.

    PubMed

    Bogaerts, Louisa; Szmalec, Arnaud; Hachmann, Wibke M; Page, Mike P A; Duyck, Wouter

    2015-01-01

    The present study investigated long-term serial-order learning impairments, operationalized as reduced Hebb repetition learning (HRL), in people with dyslexia. In a first multi-session experiment, we investigated both the persistence of a serial-order learning impairment as well as the long-term retention of serial-order representations, both in a group of Dutch-speaking adults with developmental dyslexia and in a matched control group. In a second experiment, we relied on the assumption that HRL mimics naturalistic word-form acquisition and we investigated the lexicalization of novel word-forms acquired through HRL. First, our results demonstrate that adults with dyslexia are fundamentally impaired in the long-term acquisition of serial-order information. Second, dyslexic and control participants show comparable retention of the long-term serial-order representations in memory over a period of 1 month. Third, the data suggest weaker lexicalization of newly acquired word-forms in the dyslexic group. We discuss the integration of these findings into current theoretical views of dyslexia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Nine, seven, five, or three: how many figures do we need for assessing body image?

    PubMed

    Ambrosi-Randić, Neala; Pokrajac-Bulian, Alessandra; Taksić, Vladimir

    2005-04-01

    320 Croatian female students (M=20.4 yr.) were recruited to examine the validity and reliability of figural scales using different numbers of stimuli (3, 5, 7, and 9) and different serial presentation (serial and nonserial order). A two-way analysis of variance (4 numbers x 2 orders of stimuli) was performed on ratings of current self-size and ideal size as dependent variables. Analysis indicated a significant main effect of number of stimuli. This, together with post hoc tests indicated that ratings were significantly different for a scale of three figures from scales of more figures, which in turn did not differ among themselves. Main effects of order of stimuli, as well as the interaction, were not significant. The results support the hypothesis that the optimal number of figures on a scale is seven plus (or minus) two.

  13. Characterization and use of the spent beam for serial operation of LCLS

    DOE PAGES

    Boutet, Sébastien; Foucar, Lutz; Barends, Thomas R. M.; ...

    2015-04-11

    X-ray free-electron laser sources such as the Linac Coherent Light Source offer very exciting possibilities for unique research. However, beam time at such facilities is very limited and in high demand. This has led to significant efforts towards beam multiplexing of various forms. One such effort involves re-using the so-called spent beam that passes through the hole in an area detector after a weak interaction with a primary sample. This beam can be refocused into a secondary interaction region and used for a second, independent experiment operating in series. The beam profile of this refocused beam was characterized for amore » particular experimental geometry at the Coherent X-ray Imaging instrument at LCLS. A demonstration of this multiplexing capability was performed with two simultaneous serial femtosecond crystallography experiments, both yielding interpretable data of sufficient quality to produce electron density maps.« less

  14. Serial femtosecond crystallography datasets from G protein-coupled receptors

    PubMed Central

    White, Thomas A.; Barty, Anton; Liu, Wei; Ishchenko, Andrii; Zhang, Haitao; Gati, Cornelius; Zatsepin, Nadia A.; Basu, Shibom; Oberthür, Dominik; Metz, Markus; Beyerlein, Kenneth R.; Yoon, Chun Hong; Yefanov, Oleksandr M.; James, Daniel; Wang, Dingjie; Messerschmidt, Marc; Koglin, Jason E.; Boutet, Sébastien; Weierstall, Uwe; Cherezov, Vadim

    2016-01-01

    We describe the deposition of four datasets consisting of X-ray diffraction images acquired using serial femtosecond crystallography experiments on microcrystals of human G protein-coupled receptors, grown and delivered in lipidic cubic phase, at the Linac Coherent Light Source. The receptors are: the human serotonin receptor 2B in complex with an agonist ergotamine, the human δ-opioid receptor in complex with a bi-functional peptide ligand DIPP-NH2, the human smoothened receptor in complex with an antagonist cyclopamine, and finally the human angiotensin II type 1 receptor in complex with the selective antagonist ZD7155. All four datasets have been deposited, with minimal processing, in an HDF5-based file format, which can be used directly for crystallographic processing with CrystFEL or other software. We have provided processing scripts and supporting files for recent versions of CrystFEL, which can be used to validate the data. PMID:27479354

  15. Characterization and use of the spent beam for serial operation of LCLS

    PubMed Central

    Boutet, Sébastien; Foucar, Lutz; Barends, Thomas R. M.; Botha, Sabine; Doak, R. Bruce; Koglin, Jason E.; Messerschmidt, Marc; Nass, Karol; Schlichting, Ilme; Seibert, M. Marvin; Shoeman, Robert L.; Williams, Garth J.

    2015-01-01

    X-ray free-electron laser sources such as the Linac Coherent Light Source offer very exciting possibilities for unique research. However, beam time at such facilities is very limited and in high demand. This has led to significant efforts towards beam multiplexing of various forms. One such effort involves re-using the so-called spent beam that passes through the hole in an area detector after a weak interaction with a primary sample. This beam can be refocused into a secondary interaction region and used for a second, independent experiment operating in series. The beam profile of this refocused beam was characterized for a particular experimental geometry at the Coherent X-ray Imaging instrument at LCLS. A demonstration of this multiplexing capability was performed with two simultaneous serial femtosecond crystallography experiments, both yielding interpretable data of sufficient quality to produce electron density maps. PMID:25931079

  16. Systemic lupus erythematosus with organic brain syndrome: serial electroencephalograms accurately evaluate therapeutic efficacy.

    PubMed

    Kato, Takashi; Shiratori, Kyoji; Kobashigawa, Tsuyoshi; Hidaka, Yuji

    2006-01-01

    A 48-year-old man with systemic lupus erythematosus developed organic brain syndrome. High-dose prednisolone was ineffective, and somnolence without focal signs rapidly developed. Electroencephalogram (EEG) demonstrated a slow basic rhythm (3 Hz), but brain magnetic resonance imaging was normal. Somnolence resolved soon after performing plasma exchange (two sessions). However, memory dysfunction persisted, with EEG demonstrating mild abnormalities (7-8 Hz basic rhythm). Double-filtration plasmapheresis (three sessions) was done, followed by intravenous cyclophosphamide. Immediately after the first plasmapheresis session, memory dysfunction began to improve. After the second dose of cyclophosphamide, intellectual function resolved completely and EEG findings also normalized (basic rhythm of 10 Hz waves). Serial EEG findings precisely reflected the neurological condition and therapeutic efficacy in this patient. In contrast, protein levels in cerebrospinal fluid remained high and did not seem to appropriately reflect the neurological condition in this patient.

  17. Serial femtosecond crystallography datasets from G protein-coupled receptors.

    PubMed

    White, Thomas A; Barty, Anton; Liu, Wei; Ishchenko, Andrii; Zhang, Haitao; Gati, Cornelius; Zatsepin, Nadia A; Basu, Shibom; Oberthür, Dominik; Metz, Markus; Beyerlein, Kenneth R; Yoon, Chun Hong; Yefanov, Oleksandr M; James, Daniel; Wang, Dingjie; Messerschmidt, Marc; Koglin, Jason E; Boutet, Sébastien; Weierstall, Uwe; Cherezov, Vadim

    2016-08-01

    We describe the deposition of four datasets consisting of X-ray diffraction images acquired using serial femtosecond crystallography experiments on microcrystals of human G protein-coupled receptors, grown and delivered in lipidic cubic phase, at the Linac Coherent Light Source. The receptors are: the human serotonin receptor 2B in complex with an agonist ergotamine, the human δ-opioid receptor in complex with a bi-functional peptide ligand DIPP-NH2, the human smoothened receptor in complex with an antagonist cyclopamine, and finally the human angiotensin II type 1 receptor in complex with the selective antagonist ZD7155. All four datasets have been deposited, with minimal processing, in an HDF5-based file format, which can be used directly for crystallographic processing with CrystFEL or other software. We have provided processing scripts and supporting files for recent versions of CrystFEL, which can be used to validate the data.

  18. A novel ultrasonic phased array inspection system to NDT for offshore platform structures

    NASA Astrophysics Data System (ADS)

    Wang, Hua; Shan, Baohua; Wang, Xin; Ou, Jinping

    2007-01-01

    A novel ultrasonic phased array detection system is developed for nondestructive testing (NDT). The purpose of the system is to make acquisition of data in real-time from 64-element ultrasonic phased array transducer, and to enable real- time processing of the acquired data. The system is composed of five main parts: master unit, main board, eight transmit/receive units, a 64-element transducer and an external PC. The system can be used with 64 element transducers, excite 32 elements, receive and sample echo signals form 32 elements simultaneously at 62.5MHz with 8 bit precision. The external PC is used as the user interface showing the real time images and controls overall operation of the system through USB serial link. The use of Universal Serial Bus (USB) improves the transform speed and reduces hardware interface complexity. The program of the system is written in Visual C++.NET and is platform independent.

  19. Data Exploration Toolkit for serial diffraction experiments

    DOE PAGES

    Zeldin, Oliver B.; Brewster, Aaron S.; Hattne, Johan; ...

    2015-01-23

    Ultrafast diffraction at X-ray free-electron lasers (XFELs) has the potential to yield new insights into important biological systems that produce radiation-sensitive crystals. An unavoidable feature of the 'diffraction before destruction' nature of these experiments is that images are obtained from many distinct crystals and/or different regions of the same crystal. Combined with other sources of XFEL shot-to-shot variation, this introduces significant heterogeneity into the diffraction data, complicating processing and interpretation. To enable researchers to get the most from their collected data, a toolkit is presented that provides insights into the quality of, and the variation present in, serial crystallography datamore » sets. These tools operate on the unmerged, partial intensity integration results from many individual crystals, and can be used on two levels: firstly to guide the experimental strategy during data collection, and secondly to help users make informed choices during data processing.« less

  20. Accessible and informative sectioned images, color-coded images, and surface models of the ear.

    PubMed

    Park, Hyo Seok; Chung, Min Suk; Shin, Dong Sun; Jung, Yong Wook; Park, Jin Seo

    2013-08-01

    In our previous research, we created state-of-the-art sectioned images, color-coded images, and surface models of the human ear. Our ear data would be more beneficial and informative if they were more easily accessible. Therefore, the purpose of this study was to distribute the browsing software and the PDF file in which ear images are to be readily obtainable and freely explored. Another goal was to inform other researchers of our methods for establishing the browsing software and the PDF file. To achieve this, sectioned images and color-coded images of ear were prepared (voxel size 0.1 mm). In the color-coded images, structures related to hearing, equilibrium, and structures originated from the first and second pharyngeal arches were segmented supplementarily. The sectioned and color-coded images of right ear were added to the browsing software, which displayed the images serially along with structure names. The surface models were reconstructed to be combined into the PDF file where they could be freely manipulated. Using the browsing software and PDF file, sectional and three-dimensional shapes of ear structures could be comprehended in detail. Furthermore, using the PDF file, clinical knowledge could be identified through virtual otoscopy. Therefore, the presented educational tools will be helpful to medical students and otologists by improving their knowledge of ear anatomy. The browsing software and PDF file can be downloaded without charge and registration at our homepage (http://anatomy.dongguk.ac.kr/ear/). Copyright © 2013 Wiley Periodicals, Inc.

  1. Lung texture in serial thoracic CT scans: Assessment of change introduced by image registration1

    PubMed Central

    Cunliffe, Alexandra R.; Al-Hallaq, Hania A.; Labby, Zacariah E.; Pelizzari, Charles A.; Straus, Christopher; Sensakovic, William F.; Ludwig, Michelle; Armato, Samuel G.

    2012-01-01

    Purpose: The aim of this study was to quantify the effect of four image registration methods on lung texture features extracted from serial computed tomography (CT) scans obtained from healthy human subjects. Methods: Two chest CT scans acquired at different time points were collected retrospectively for each of 27 patients. Following automated lung segmentation, each follow-up CT scan was registered to the baseline scan using four algorithms: (1) rigid, (2) affine, (3) B-splines deformable, and (4) demons deformable. The registration accuracy for each scan pair was evaluated by measuring the Euclidean distance between 150 identified landmarks. On average, 1432 spatially matched 32 × 32-pixel region-of-interest (ROI) pairs were automatically extracted from each scan pair. First-order, fractal, Fourier, Laws’ filter, and gray-level co-occurrence matrix texture features were calculated in each ROI, for a total of 140 features. Agreement between baseline and follow-up scan ROI feature values was assessed by Bland–Altman analysis for each feature; the range spanned by the 95% limits of agreement of feature value differences was calculated and normalized by the average feature value to obtain the normalized range of agreement (nRoA). Features with small nRoA were considered “registration-stable.” The normalized bias for each feature was calculated from the feature value differences between baseline and follow-up scans averaged across all ROIs in every patient. Because patients had “normal” chest CT scans, minimal change in texture feature values between scan pairs was anticipated, with the expectation of small bias and narrow limits of agreement. Results: Registration with demons reduced the Euclidean distance between landmarks such that only 9% of landmarks were separated by ≥1 mm, compared with rigid (98%), affine (95%), and B-splines (90%). Ninety-nine of the 140 (71%) features analyzed yielded nRoA > 50% for all registration methods, indicating that the majority of feature values were perturbed following registration. Nineteen of the features (14%) had nRoA < 15% following demons registration, indicating relative feature value stability. Student's t-tests showed that the nRoA of these 19 features was significantly larger when rigid, affine, or B-splines registration methods were used compared with demons registration. Demons registration yielded greater normalized bias in feature value change than B-splines registration, though this difference was not significant (p = 0.15). Conclusions: Demons registration provided higher spatial accuracy between matched anatomic landmarks in serial CT scans than rigid, affine, or B-splines algorithms. Texture feature changes calculated in healthy lung tissue from serial CT scans were smaller following demons registration compared with all other algorithms. Though registration altered the values of the majority of texture features, 19 features remained relatively stable after demons registration, indicating their potential for detecting pathologic change in serial CT scans. Combined use of accurate deformable registration using demons and texture analysis may allow for quantitative evaluation of local changes in lung tissue due to disease progression or treatment response. PMID:22894392

  2. A Real-Time Non-invasive Auto-bioluminescent Urinary Bladder Cancer Xenograft Model.

    PubMed

    John, Bincy Anu; Xu, Tingting; Ripp, Steven; Wang, Hwa-Chain Robert

    2017-02-01

    The study was to develop an auto-bioluminescent urinary bladder cancer (UBC) xenograft animal model for pre-clinical research. The study used a humanized, bacteria-originated lux reporter system consisting of six (luxCDABEfrp) genes to express components required for producing bioluminescent signals in human UBC J82, J82-Ras, and SW780 cells without exogenous substrates. Immune-deficient nude mice were inoculated with Lux-expressing UBC cells to develop auto-bioluminescent xenograft tumors that were monitored by imaging and physical examination. Lux-expressing auto-bioluminescent J82-Lux, J82-Ras-Lux, and SW780-Lux cell lines were established. Xenograft tumors derived from tumorigenic Lux-expressing auto-bioluminescent J82-Ras-Lux cells allowed a serial, non-invasive, real-time monitoring by imaging of tumor development prior to the presence of palpable tumors in animals. Using Lux-expressing auto-bioluminescent tumorigenic cells enabled us to monitor the entire course of xenograft tumor development through tumor cell implantation, adaptation, and growth to visible/palpable tumors in animals.

  3. In vivo targeting and imaging of tumor vasculature with radiolabeled, antibody-conjugated nanographene.

    PubMed

    Hong, Hao; Yang, Kai; Zhang, Yin; Engle, Jonathan W; Feng, Liangzhu; Yang, Yunan; Nayak, Tapas R; Goel, Shreya; Bean, Jero; Theuer, Charles P; Barnhart, Todd E; Liu, Zhuang; Cai, Weibo

    2012-03-27

    Herein we demonstrate that nanographene can be specifically directed to the tumor neovasculature in vivo through targeting of CD105 (i.e., endoglin), a vascular marker for tumor angiogenesis. The covalently functionalized nanographene oxide (GO) exhibited excellent stability and target specificity. Pharmacokinetics and tumor targeting efficacy of the GO conjugates were investigated with serial noninvasive positron emission tomography imaging and biodistribution studies, which were validated by in vitro, in vivo, and ex vivo experiments. The incorporation of an active targeting ligand (TRC105, a monoclonal antibody that binds to CD105) led to significantly improved tumor uptake of functionalized GO, which was specific for the neovasculature with little extravasation, warranting future investigation of these GO conjugates for cancer-targeted drug delivery and/or photothermal therapy to enhance therapeutic efficacy. Since poor extravasation is a major hurdle for nanomaterial-based tumor targeting in vivo, this study also establishes CD105 as a promising vascular target for future cancer nanomedicine. © 2012 American Chemical Society

  4. Loss of Neuronal Integrity During Progressive HIV-1 Infection of Humanized Mice

    PubMed Central

    Dash, Prasanta K.; Gorantla, Santhi; Gendelman, Howard E; Knibbe, Jaclyn; Casale, George P; Makarov, Edward; Epstein, Adrian A; Gelbard, Harris A; Boska, Michael D; Poluektova, Larisa Y

    2011-01-01

    Neuronal damage induced by ongoing HIV-1 infection was investigated in humanized NOD/scid-IL-2Rgcnull mice transplanted at birth with human CD34-positive hematopoietic stem cells. Mice infected at 5 months of age and followed for up to 15 weeks maintained significant plasma viral loads and showed reduced numbers of CD4+ T cells. Prospective serial proton magnetic resonance spectroscopy tests showed selective reductions in cortical N-acetyl aspartate in infected animals. Diffusion tensor imaging revealed structural changes in cortical gray matter. Postmortem immunofluorescence brain tissue examinations for neuronal and glial markers, captured by multispectral imaging microscopy and quantified by morphometric and fluorescence emission, showed regional reduction of neuronal soma and synaptic architectures. This was evidenced by loss of microtubule-associated protein 2, synaptophysin and neurofilament antigens. This study is the first, to our knowledge, demonstrating lost neuronal integrity following HIV-1 infection in humanized mice. As such, the model permits studies of the relationships between ongoing viral replication and virus-associated neurodegeneration. PMID:21368026

  5. Dynamic cardiac PET imaging: extraction of time-activity curves using ICA and a generalized Gaussian distribution model.

    PubMed

    Mabrouk, Rostom; Dubeau, François; Bentabet, Layachi

    2013-01-01

    Kinetic modeling of metabolic and physiologic cardiac processes in small animals requires an input function (IF) and a tissue time-activity curves (TACs). In this paper, we present a mathematical method based on independent component analysis (ICA) to extract the IF and the myocardium's TACs directly from dynamic positron emission tomography (PET) images. The method assumes a super-Gaussian distribution model for the blood activity, and a sub-Gaussian distribution model for the tissue activity. Our appreach was applied on 22 PET measurement sets of small animals, which were obtained from the three most frequently used cardiac radiotracers, namely: desoxy-fluoro-glucose ((18)F-FDG), [(13)N]-ammonia, and [(11)C]-acetate. Our study was extended to PET human measurements obtained with the Rubidium-82 ((82) Rb) radiotracer. The resolved mathematical IF values compare favorably to those derived from curves extracted from regions of interest (ROI), suggesting that the procedure presents a reliable alternative to serial blood sampling for small-animal cardiac PET studies.

  6. Reaction kinetics in open reactors and serial transfers between closed reactors

    NASA Astrophysics Data System (ADS)

    Blokhuis, Alex; Lacoste, David; Gaspard, Pierre

    2018-04-01

    Kinetic theory and thermodynamics of reaction networks are extended to the out-of-equilibrium dynamics of continuous-flow stirred tank reactors (CSTR) and serial transfers. On the basis of their stoichiometry matrix, the conservation laws and the cycles of the network are determined for both dynamics. It is shown that the CSTR and serial transfer dynamics are equivalent in the limit where the time interval between the transfers tends to zero proportionally to the ratio of the fractions of fresh to transferred solutions. These results are illustrated with a finite cross-catalytic reaction network and an infinite reaction network describing mass exchange between polymers. Serial transfer dynamics is typically used in molecular evolution experiments in the context of research on the origins of life. The present study is shedding a new light on the role played by serial transfer parameters in these experiments.

  7. The source of dual-task limitations: Serial or parallel processing of multiple response selections?

    PubMed Central

    Marois, René

    2014-01-01

    Although it is generally recognized that the concurrent performance of two tasks incurs costs, the sources of these dual-task costs remain controversial. The serial bottleneck model suggests that serial postponement of task performance in dual-task conditions results from a central stage of response selection that can only process one task at a time. Cognitive-control models, by contrast, propose that multiple response selections can proceed in parallel, but that serial processing of task performance is predominantly adopted because its processing efficiency is higher than that of parallel processing. In the present study, we empirically tested this proposition by examining whether parallel processing would occur when it was more efficient and financially rewarded. The results indicated that even when parallel processing was more efficient and was incentivized by financial reward, participants still failed to process tasks in parallel. We conclude that central information processing is limited by a serial bottleneck. PMID:23864266

  8. Quantitative magnetic resonance imaging assessments of autosomal recessive polycystic kidney disease progression and response to therapy in an animal model.

    PubMed

    Erokwu, Bernadette O; Anderson, Christian E; Flask, Chris A; Dell, Katherine M

    2018-05-01

    BackgroundAutosomal recessive polycystic kidney disease (ARPKD) is associated with significant mortality and morbidity, and currently, there are no disease-specific treatments available for ARPKD patients. One major limitation in establishing new therapies for ARPKD is a lack of sensitive measures of kidney disease progression. Magnetic resonance imaging (MRI) can provide multiple quantitative assessments of the disease.MethodsWe applied quantitative image analysis of high-resolution (noncontrast) T2-weighted MRI techniques to study cystic kidney disease progression and response to therapy in the PCK rat model of ARPKD.ResultsSerial imaging over a 2-month period demonstrated that renal cystic burden (RCB, %)=[total cyst volume (TCV)/total kidney volume (TKV) × 100], TCV, and, to a lesser extent, TKV detected cystic kidney disease progression, as well as the therapeutic effect of octreotide, a clinically available medication shown previously to slow both kidney and liver disease progression in this model. All three MRI measures correlated significantly with histologic measures of renal cystic area, although the correlation of RCB and TCV was stronger than that of TKV.ConclusionThese preclinical MRI results provide a basis for applying these quantitative MRI techniques in clinical studies, to stage and measure progression in human ARPKD kidney disease.

  9. Multi-Angle Snowflake Camera Value-Added Product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shkurko, Konstantin; Garrett, T.; Gaustad, K

    The Multi-Angle Snowflake Camera (MASC) addresses a need for high-resolution multi-angle imaging of hydrometeors in freefall with simultaneous measurement of fallspeed. As illustrated in Figure 1, the MASC consists of three cameras, separated by 36°, each pointing at an identical focal point approximately 10 cm away. Located immediately above each camera, a light aims directly at the center of depth of field for its corresponding camera. The focal point at which the cameras are aimed lies within a ring through which hydrometeors fall. The ring houses a system of near-infrared emitter-detector pairs, arranged in two arrays separated vertically by 32more » mm. When hydrometeors pass through the lower array, they simultaneously trigger all cameras and lights. Fallspeed is calculated from the time it takes to traverse the distance between the upper and lower triggering arrays. The trigger electronics filter out ambient light fluctuations associated with varying sunlight and shadows. The microprocessor onboard the MASC controls the camera system and communicates with the personal computer (PC). The image data is sent via FireWire 800 line, and fallspeed (and camera control) is sent via a Universal Serial Bus (USB) line that relies on RS232-over-USB serial conversion. See Table 1 for specific details on the MASC located at the Oliktok Point Mobile Facility on the North Slope of Alaska. The value-added product (VAP) detailed in this documentation analyzes the raw data (Section 2.0) using Python: images rely on OpenCV image processing library and derived aggregated statistics rely on some clever averaging. See Sections 4.1 and 4.2 for more details on what variables are computed.« less

  10. Tracing Cadmium from Culture to Spikelet: Noninvasive Imaging and Quantitative Characterization of Absorption, Transport, and Accumulation of Cadmium in an Intact Rice Plant1[W][OA

    PubMed Central

    Fujimaki, Shu; Suzui, Nobuo; Ishioka, Noriko S.; Kawachi, Naoki; Ito, Sayuri; Chino, Mitsuo; Nakamura, Shin-ichi

    2010-01-01

    We characterized the absorption and short-term translocation of cadmium (Cd) in rice (Oryza sativa ‘Nipponbare’) quantitatively using serial images observed with a positron-emitting tracer imaging system. We fed a positron-emitting 107Cd (half-life of 6.5 h) tracer to the hydroponic culture solution and noninvasively obtained serial images of Cd distribution in intact rice plants at the vegetative stage and at the grain-filling stage every 4 min for 36 h. The rates of absorption of Cd by the root were proportional to Cd concentrations in the culture solution within the tested range of 0.05 to 100 nm. It was estimated that the radial transport from the culture to the xylem in the root tissue was completed in less than 10 min. Cd moved up through the shoot organs with velocities of a few centimeters per hour at both stages, which was obviously slower than the bulk flow in the xylem. Finally, Cd arrived at the panicles 7 h after feeding and accumulated there constantly, although no Cd was observed in the leaf blades within the initial 36 h. The nodes exhibited the most intensive Cd accumulation in the shoot at both stages, and Cd transport from the basal nodes to crown root tips was observed at the vegetative stage. We conclude that the nodes are the central organ where xylem-to-phloem transfer takes place and play a pivotal role in the half-day travel of Cd from the soil to the grains at the grain-filling stage. PMID:20172965

  11. Zooming in: high resolution 3D reconstruction of differently stained histological whole slide images

    NASA Astrophysics Data System (ADS)

    Lotz, Johannes; Berger, Judith; Müller, Benedikt; Breuhahn, Kai; Grabe, Niels; Heldmann, Stefan; Homeyer, André; Lahrmann, Bernd; Laue, Hendrik; Olesch, Janine; Schwier, Michael; Sedlaczek, Oliver; Warth, Arne

    2014-03-01

    Much insight into metabolic interactions, tissue growth, and tissue organization can be gained by analyzing differently stained histological serial sections. One opportunity unavailable to classic histology is three-dimensional (3D) examination and computer aided analysis of tissue samples. In this case, registration is needed to reestablish spatial correspondence between adjacent slides that is lost during the sectioning process. Furthermore, the sectioning introduces various distortions like cuts, folding, tearing, and local deformations to the tissue, which need to be corrected in order to exploit the additional information arising from the analysis of neighboring slide images. In this paper we present a novel image registration based method for reconstructing a 3D tissue block implementing a zooming strategy around a user-defined point of interest. We efficiently align consecutive slides at increasingly fine resolution up to cell level. We use a two-step approach, where after a macroscopic, coarse alignment of the slides as preprocessing, a nonlinear, elastic registration is performed to correct local, non-uniform deformations. Being driven by the optimization of the normalized gradient field (NGF) distance measure, our method is suitable for differently stained and thus multi-modal slides. We applied our method to ultra thin serial sections (2 μm) of a human lung tumor. In total 170 slides, stained alternately with four different stains, have been registered. Thorough visual inspection of virtual cuts through the reconstructed block perpendicular to the cutting plane shows accurate alignment of vessels and other tissue structures. This observation is confirmed by a quantitative analysis. Using nonlinear image registration, our method is able to correct locally varying deformations in tissue structures and exceeds the limitations of globally linear transformations.

  12. Right ventricular volumes assessed by echocardiographic three-dimensional knowledge-based reconstruction compared with magnetic resonance imaging in a clinical setting.

    PubMed

    Neukamm, Christian; Try, Kirsti; Norgård, Gunnar; Brun, Henrik

    2014-01-01

    A technique that uses two-dimensional images to create a knowledge-based, three-dimensional model was tested and compared to magnetic resonance imaging. Measurement of right ventricular volumes and function is important in the follow-up of patients after pulmonary valve replacement. Magnetic resonance imaging is the gold standard for volumetric assessment. Echocardiographic methods have been validated and are attractive alternatives. Thirty patients with tetralogy of Fallot (25 ± 14 years) after pulmonary valve replacement were examined. Magnetic resonance imaging volumetric measurements and echocardiography-based three-dimensional reconstruction were performed. End-diastolic volume, end-systolic volume, and ejection fraction were measured, and the results were compared. Magnetic resonance imaging measurements gave coefficient of variation in the intraobserver study of 3.5, 4.6, and 5.3 and in the interobserver study of 3.6, 5.9, and 6.7 for end-diastolic volume, end-systolic volume, and ejection fraction, respectively. Echocardiographic three-dimensional reconstruction was highly feasible (97%). In the intraobserver study, the corresponding values were 6.0, 7.0, and 8.9 and in the interobserver study 7.4, 10.8, and 13.4. In comparison of the methods, correlations with magnetic resonance imaging were r = 0.91, 0.91, and 0.38, and the corresponding coefficient of variations were 9.4, 10.8, and 14.7. Echocardiography derived volumes (mL/m(2)) were significantly higher than magnetic resonance imaging volumes in end-diastolic volume 13.7 ± 25.6 and in end-systolic volume 9.1 ± 17.0 (both P < .05). The knowledge-based three-dimensional right ventricular volume method was highly feasible. Intra and interobserver variabilities were satisfactory. Agreement with magnetic resonance imaging measurements for volumes was reasonable but unsatisfactory for ejection fraction. Knowledge-based reconstruction may replace magnetic resonance imaging measurements for serial follow-up, whereas magnetic resonance imaging should be used for surgical decision making.

  13. Mapping the Complex Morphology of Cell Interactions with Nanowire Substrates Using FIB-SEM

    PubMed Central

    Jensen, Mikkel R. B.; Łopacińska, Joanna; Schmidt, Michael S.; Skolimowski, Maciej; Abeille, Fabien; Qvortrup, Klaus; Mølhave, Kristian

    2013-01-01

    Using high resolution focused ion beam scanning electron microscopy (FIB-SEM) we study the details of cell-nanostructure interactions using serial block face imaging. 3T3 Fibroblast cellular monolayers are cultured on flat glass as a control surface and on two types of nanostructured scaffold substrates made from silicon black (Nanograss) with low- and high nanowire density. After culturing for 72 hours the cells were fixed, heavy metal stained, embedded in resin, and processed with FIB-SEM block face imaging without removing the substrate. The sample preparation procedure, image acquisition and image post-processing were specifically optimised for cellular monolayers cultured on nanostructured substrates. Cells display a wide range of interactions with the nanostructures depending on the surface morphology, but also greatly varying from one cell to another on the same substrate, illustrating a wide phenotypic variability. Depending on the substrate and cell, we observe that cells could for instance: break the nanowires and engulf them, flatten the nanowires or simply reside on top of them. Given the complexity of interactions, we have categorised our observations and created an overview map. The results demonstrate that detailed nanoscale resolution images are required to begin understanding the wide variety of individual cells’ interactions with a structured substrate. The map will provide a framework for light microscopy studies of such interactions indicating what modes of interactions must be considered. PMID:23326412

  14. The Effect and Complication of Botulinum Toxin Type A Injection with Serial Casting for the Treatment of Spastic Equinus Foot

    PubMed Central

    Lee, Sook Joung; Jang, Dae Hyun; Yi, Jin Hwa; Lee, Jin Ho; Ryu, Ju Seok

    2011-01-01

    Objective To identify the effect of serial casting combined with Botulinum toxin type A (BTX-A) injection on spastic equinus foot. Method Twenty-nine children with cerebral palsy who had equinus foot were recruited from the outpatient clinic of Rehabilitation Medicine. The children were divided into 2 groups, one of which received serial casting after BTX-A injection, and the other which only received BTX-A injection. Serial casting started 3 weeks after the BTX-A injection, and was changed weekly for 3 times. Spasticity of the ankle joint was evaluated using the modified Ashworth scale (MAS), and the modified Tardieu scale (MTS). Gait pattern was measured using the physician's rating scale (PRS). Results The degree of ankle dorsiflexion and the MAS improved significantly until 12 weeks following the BTX-A injection in the serial casting group (p<0.001), while the BTX-A injection-only group improved until 6 weeks following injection (p<0.05). The combined group showed a significantly greater increase in the degree of dorsiflexion compared to the BTX-A injection-only group at post-injection weeks 6 and 12 (p<0.05). Three children (11.5%) suffered from foot ulcers as a complication caused by the serial casting. Conclusion Our study demonstrated that the effect of BTX-A injection with serial casting was superior and lasted longer than the effect of BTX-A injection only in patients with spastic equinus foot. We therefore recommend BTX-A injection with serial casting for the treatment of equinus foot. However, physicians must also consider the possible complications associated with serial casting. PMID:22506143

  15. CNS imaging findings associated with Parry-Romberg syndrome and en coup de sabre: correlation to dermatologic and neurologic abnormalities.

    PubMed

    Doolittle, Derrick A; Lehman, Vance T; Schwartz, Kara M; Wong-Kisiel, Lily C; Lehman, Julia S; Tollefson, Megha M

    2015-01-01

    Parry-Romberg syndrome (PRS) and en coup de sabre (ECS) are variants of morphea. Although numerous findings on central nervous system (CNS) imaging of PRS and ECS have been reported, the spectrum and frequency of CNS imaging findings and relation to cutaneous and neurologic abnormalities have not been fully characterized. We retrospectively reviewed patients younger than 50 years at our institution over a 16-year interval who had clinical diagnosis of PRS and ECS by a skin or facial subspecialist. Two neuroradiologists evaluated available imaging and characterized CNS imaging findings. Eighty-eight patients with PRS or ECS were identified (62 women [70.4 %]; mean age 28.8 years). Of the 43 patients with CNS imaging, 19 (44 %) had abnormal findings. The only finding in 1 of these 19 patients was lateral ventricle asymmetry; of the other 18, findings were bilateral in 11 (61 %), ipsilateral to the side of facial involvement in 6 (33 %), and contralateral in 1 (6 %). Sixteen patients had serial imaging examinations over an average of 632 days; 13 (81 %) had stable imaging findings, and 3 (19 %) had change over time. Of six patients with progressive cutaneous findings, five (83 %) had stable imaging findings over time. Among the 23 patients with clinical neurologic abnormality and imaging, 12 (52 %) had abnormal imaging findings. All seven patients with seizures (100 %) had abnormal imaging studies. In PRS and ECS, imaging findings often are bilateral and often do not progress, regardless of cutaneous disease activity. Findings are inconsistently associated with clinical abnormalities.

  16. Quantitative optical imaging and sensing by joint design of point spread functions and estimation algorithms

    NASA Astrophysics Data System (ADS)

    Quirin, Sean Albert

    The joint application of tailored optical Point Spread Functions (PSF) and estimation methods is an important tool for designing quantitative imaging and sensing solutions. By enhancing the information transfer encoded by the optical waves into an image, matched post-processing algorithms are able to complete tasks with improved performance relative to conventional designs. In this thesis, new engineered PSF solutions with image processing algorithms are introduced and demonstrated for quantitative imaging using information-efficient signal processing tools and/or optical-efficient experimental implementations. The use of a 3D engineered PSF, the Double-Helix (DH-PSF), is applied as one solution for three-dimensional, super-resolution fluorescence microscopy. The DH-PSF is a tailored PSF which was engineered to have enhanced information transfer for the task of localizing point sources in three dimensions. Both an information- and optical-efficient implementation of the DH-PSF microscope are demonstrated here for the first time. This microscope is applied to image single-molecules and micro-tubules located within a biological sample. A joint imaging/axial-ranging modality is demonstrated for application to quantifying sources of extended transverse and axial extent. The proposed implementation has improved optical-efficiency relative to prior designs due to the use of serialized cycling through select engineered PSFs. This system is demonstrated for passive-ranging, extended Depth-of-Field imaging and digital refocusing of random objects under broadband illumination. Although the serialized engineered PSF solution is an improvement over prior designs for the joint imaging/passive-ranging modality, it requires the use of multiple PSFs---a potentially significant constraint. Therefore an alternative design is proposed, the Single-Helix PSF, where only one engineered PSF is necessary and the chromatic behavior of objects under broadband illumination provides the necessary information transfer. The matched estimation algorithms are introduced along with an optically-efficient experimental system to image and passively estimate the distance to a test object. An engineered PSF solution is proposed for improving the sensitivity of optical wave-front sensing using a Shack-Hartmann Wave-front Sensor (SHWFS). The performance limits of the classical SHWFS design are evaluated and the engineered PSF system design is demonstrated to enhance performance. This system is fabricated and the mechanism for additional information transfer is identified.

  17. A phase II study of radioimmunotherapy with intraventricular 131 I-3F8 for medulloblastoma.

    PubMed

    Kramer, Kim; Pandit-Taskar, Neeta; Humm, John L; Zanzonico, Pat B; Haque, Sofia; Dunkel, Ira J; Wolden, Suzanne L; Donzelli, Maria; Goldman, Debra A; Lewis, Jason S; Lyashchenko, Serge K; Khakoo, Yasmin; Carrasquillo, Jorge A; Souweidane, Mark M; Greenfield, Jeffrey P; Lyden, David; De Braganca, Kevin D; Gilheeney, Stephen W; Larson, Steven M; Cheung, Nai-Kong V

    2018-01-01

    High-risk and recurrent medulloblastoma (MB) is associated with significant mortality. The murine monoclonal antibody 3F8 targets the cell-surface disialoganglioside GD2 on MB. We tested the efficacy, toxicity, and dosimetry of compartmental radioimmunotherapy (cRIT) with intraventricular 131 I-labeled 3F8 in patients with MB on a phase II clinical trial. Patients with histopathologically confirmed high-risk or recurrent MB were eligible for cRIT. After determining adequate cerebrospinal fluid (CSF) flow, patients received 2 mCi (where Ci is Curie) 124 I-3F8 or 131 I-3F8 with nuclear imaging for dosimetry, followed by up to four therapeutic (10 mCi/dose) 131 I-3F8 injections. Dosimetry estimates were based on serial CSF and blood samplings over 48 hr plus region-of-interest analyses on serial imaging scans. Disease evaluation included pre- and posttherapy brain/spine magnetic resonance imaging approximately every 3 months for the first year after treatment, and every 6-12 months thereafter. Forty-three patients received a total of 167 injections; 42 patients were evaluable for outcome. No treatment-related deaths occurred. Toxicities related to drug administration included acute bradycardia with somnolence, headache, fatigue, and CSF pleocytosis consistent with chemical meningitis and dystonic reaction. Total CSF absorbed dose was 1,453 cGy (where Gy is Gray; 350.0-2,784). Median overall survival from first dose of cRIT was 24.9 months (95% confidence interval [CI]:16.3-55.8). Patients treated in radiographic and cytologic remission were at a lower risk of death compared to patients with radiographically measurable disease (hazard ratio: 0.40, 95% CI: 0.18-0.88, P = 0.024). cRIT with 131 I-3F8 is safe, has favorable dosimetry to CSF, and when added to salvage therapy using conventional modalities, may have clinical utility in maintaining remission in high-risk or recurrent MB. © 2017 Wiley Periodicals, Inc.

  18. Serial MRI evaluation following arthroscopic rotator cuff repair in double-row technique.

    PubMed

    Stahnke, Katharina; Nikulka, Constanze; Diederichs, Gerd; Haneveld, Hendrik; Scheibel, Markus; Gerhardt, Christian

    2016-05-01

    So far, recurrent rotator cuff defects are described to occur in the early postoperative period after arthroscopic repair. The aim of this study was to evaluate the musculotendinous structure of the supraspinatus, as well as bone marrow edema or osteolysis after arthroscopic double-row repair. Therefore, magnetic resonance (MR) images were performed at defined intervals up to 2 years postoperatively. Case series; Level of evidence, 3. MR imaging was performed within 7 days, 3, 6, 12, 26, 52 and 108 weeks after surgery. All patients were operated using an arthroscopic modified suture bridge technique. Tendon integrity, tendon retraction ["foot-print-coverage" (FPC)], muscular atrophy and fatty infiltration (signal intensity analysis) were measured at all time points. Furthermore, postoperative bone marrow edema and signs of osteolysis were assessed. MR images of 13 non-consecutive patients (6f/7m, ∅ age 61.05 ± 7.7 years) could be evaluated at all time points until ∅ 108 weeks postoperatively. 5/6 patients with recurrent defect at final follow-up displayed a time of failure between 12 and 24 months after surgery. Predominant mode of failure was medial cuff failures in 4/6 cases. The initial FPC increased significantly up to 2 years follow-up (p = 0.004). Evaluations of muscular atrophy or fatty infiltration were not significant different comparing the results of all time points (p > 0.05). Postoperative bone marrow edema disappeared completely at 6 months after surgery, whereas signs of osteolysis appeared at 3 months follow-up and increased to final follow-up. Recurrent defects after arthroscopic reconstruction of supraspinatus tears in modified suture bridge technique seem to occur between 12 and 24 months after surgery. Serial MRI evaluation shows good muscle structure at all time points. Postoperative bone marrow edema disappears completely several months after surgery. Signs of osteolysis seem to appear caused by bio-absorbable anchor implantations.

  19. Effect of malaria in pregnancy on foetal cortical brain development: a longitudinal observational study.

    PubMed

    Rijken, Marcus J; de Wit, Merel Charlotte; Mulder, Eduard J H; Kiricharoen, Suporn; Karunkonkowit, Noaeni; Paw, Tamalar; Visser, Gerard H A; McGready, Rose; Nosten, François H; Pistorius, Lourens R

    2012-07-02

    Malaria in pregnancy has a negative impact on foetal growth, but it is not known whether this also affects the foetal nervous system. The aim of this study was to examine the effects of malaria on foetal cortex development by three-dimensional ultrasound. Brain images were acquired using a portable ultrasound machine and a 3D ultrasound transducer. All recordings were analysed, blinded to clinical data, using the 4D view software package. The foetal supra-tentorial brain volume was determined and cortical development was qualitatively followed by scoring the appearance and development of six sulci. Multilevel analysis was used to study brain volume and cortical development in individual foetuses. Cortical grading was possible in 161 out of 223 (72%) serial foetal brain images in pregnant women living in a malaria endemic area. There was no difference between foetal cortical development or brain volumes at any time in pregnancy between women with immediately treated malaria infections and non-infected pregnancies. The percentage of images that could be graded was similar to other neuro-sonographic studies. Maternal malaria does not have a gross effect on foetal brain development, at least in this population, which had access to early detection and effective treatment of malaria.

  20. Study of the development of fetal baboon brain using magnetic resonance imaging at 3 Tesla

    PubMed Central

    Liu, Feng; Garland, Marianne; Duan, Yunsuo; Stark, Raymond I.; Xu, Dongrong; Dong, Zhengchao; Bansal, Ravi; Peterson, Bradley S.; Kangarlu, Alayar

    2008-01-01

    Direct observational data on the development of the brains of human and nonhuman primates is on remarkably scant, and most of our understanding of primate brain development is extrapolated from findings in rodent models. Magnetic resonance imaging (MRI) is a promising tool for the noninvasive, longitudinal study of the developing primate brain. We devised a protocol to scan pregnant baboons serially at 3 T for up to 3 h per session. Seven baboons were scanned 1–6 times, beginning as early as 56 days post-conceptional age, and as late as 185 days (term ~185 days). Successful scanning of the fetal baboon required careful animal preparation and anesthesia, in addition to optimization of the scanning protocol. We successfully acquired maps of relaxation times (T1 and T2) and high-resolution anatomical images of the brains of fetal baboons at multiple time points during the course of gestation. These images demonstrated the convergence of gray and white matter contrast near term, and furthermore demonstrated that the loss of contrast at that age is a consequence of the continuous change in relaxation times during fetal brain development. These data furthermore demonstrate that maps of relaxation times have clear advantages over the relaxation time weighted images for the tracking of the changes in brain structure during fetal development. This protocol for in utero MRI of fetal baboon brains will help to advance the use of nonhuman primate models to study fetal brain development longitudinally. PMID:18155925

Top