Revell, M P; Lewis, M E; Llewellyn-Jones, C G; Wilson, I C; Bonser, R S
2000-12-01
We studied serial lung function in 11 patients with bronchiolitis obliterans syndrome who were treated with tacrolimus conversion following lung or heart-lung transplantation. Our results show that tacrolimus conversion slows the decline of lung function in bronchiolitis obliterans syndrome. The attenuation continues for at least 1 year following conversion.
2015-10-01
sectioned into 5-micron sections. Three serial sections were mounted onto each slide and stained using hematoxylin and eosin (H&E). Five sets of... serial sections were taken from each lung, 100 µm distance between each set. This spacing allows surveillance of metastatic lesions throughout the lung...functions that promote tumor growth may be altered by DEX treatment. For example, IFN- is associated with effector function of natural killer cells
Vossbrinck, Madeline; Zeig-Owens, Rachel; Hall, Charles B; Schwartz, Theresa; Moir, William; Webber, Mayris P; Cohen, Hillel W; Nolan, Anna; Weiden, Michael D; Christodoulou, Vasilios; Kelly, Kerry J; Aldrich, Thomas K; Prezant, David J
2017-03-01
To determine whether lung function trajectories after 9/11/2001 (9/11) differed by sex or race/ethnicity in World Trade Center-exposed Fire Department of the City of New York emergency medical service (EMS) workers. Serial cross-sectional study of pulmonary function tests (PFTs) taken between 9/11 and 9/10/2015. We used data from routine PFTs (forced expiratory volume in 1 s (FEV 1 ) and FEV 1 % predicted), conducted at 12-18 month intervals. FEV 1 and FEV 1 % predicted were assessed over time, stratified by sex, and race/ethnicity. We also assessed FEV 1 and FEV 1 % predicted in current, former and never-smokers. Among 1817 EMS workers, 334 (18.4%) were women, 979 (53.9%) self-identified as white and 939 (51.6%) were never-smokers. The median follow-up was 13.1 years (IQR 10.5-13.6), and the median number of PFTs per person was 11 (IQR 7-13). After large declines associated with 9/11, there was no discernible recovery in lung function. In analyses limited to never-smokers, the trajectory of decline in adjusted FEV 1 and FEV 1 % predicted was relatively parallel for men and women in the 3 racial/ethnic groups. Similarly, small differences in FEV 1 annual decline between groups were not clinically meaningful. Analyses including ever-smokers were essentially the same. 14 years after 9/11, most EMS workers continued to demonstrate a lack of lung function recovery. The trajectories of lung function decline, however, were parallel by sex and by race/ethnicity. These findings support the use of routine, serial measures of lung function over time in first responders and demonstrate no sex or racial sensitivity to exposure-related lung function decline. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Tazi, Abdellatif; de Margerie, Constance; Naccache, Jean Marc; Fry, Stéphanie; Dominique, Stéphane; Jouneau, Stéphane; Lorillon, Gwenaël; Bugnet, Emmanuelle; Chiron, Raphael; Wallaert, Benoit; Valeyre, Dominique; Chevret, Sylvie
2015-03-14
The natural history of pulmonary Langerhans cell histiocytosis (PLCH) has been unclear due to the absence of prospective studies. The rate of patients who experience an early progression of their disease is unknown. Additionally, conflicting effects of smoking cessation on the outcome of PLCH have been reported. In this prospective, multicentre study, 58 consecutive patients with newly diagnosed PLCH were comprehensively evaluated over a two-year period. Our objectives were to estimate the incidence of early progression of the disease and to evaluate the impact of smoking status on lung function outcomes. Lung function deterioration was defined as a decrease of at least 15% in FEV1 and/or FVC and/or DLCO, compared with baseline values. At each visit, smoking status was recorded based on the patients' self-reports and urinary cotinine measurements that were blinded for the patients. The cumulative incidence of lung function outcomes over time was estimated using the non-parametric Kaplan-Meier method. Multivariate Cox models with time-dependent covariates were used to calculate the hazards ratios of the lung function deterioration associated with smoking status with adjustment for potential confounders. The cumulative incidence of lung function deterioration at 24 months was 38% (22% for FEV1 and DLCO, and 9% for FVC). In the multivariate analysis, smoking status and PaO2 at inclusion were the only factors associated with the risk of lung function deterioration. The patients' smoking statuses markedly changed over time. Only 20% of the patients quit using tobacco for the entire study period. Nevertheless, being a non-smoker was associated with a decreased risk of subsequent lung function deterioration, even after adjustment for baseline predictive factors. By serial lung computed tomography, the extent of cystic lesions increased in only 11% of patients. Serial lung function evaluation on a three- to six-month basis is essential for the follow-up of patients with recently diagnosed PLCH to identify those who experience an early progression of their disease. These patients are highly addicted to tobacco, and robust efforts should be undertaken to include them in smoking cessation programs. ClinicalTrials.gov: No: NCT01225601 .
Milburn, H J; Prentice, H G; du Bois, R M
1992-06-01
Lung function often deteriorates after bone marrow transplantation for haematological malignancies. Whether pulmonary function measurements are useful for monitoring patients' progress after transplantation and for alerting clinicians to the development of pneumonitis is uncertain. Serial pulmonary function measurements were made in 39 patients with a haematological malignancy, and the values from 18 recipients of T cell depleted allogeneic (n = 17) or autologous (n = 1) bone marrow transplants who developed interstitial pneumonitis were compared retrospectively with values from 21 recipients of allogeneic (n = 17) or autologous (n = 4) transplants who did not develop pneumonitis. Lung function was measured at the onset of a further 18 episodes of pneumonitis. Measurements made before transplantation showed no difference in forced expiratory volume in one second (FEV1), transfer factor for carbon monoxide (TLCO), or total lung capacity between the two groups, but the forced vital capacity (FVC) was slightly higher in those who developed pneumonitis (mean (SD)% predicted 104 (12)) than in those who did not (93 (17%)). Six weeks and three months after transplantation all pulmonary function measurements had fallen slightly in both groups but TLCO had fallen considerably more in those who later developed pneumonitis, being 71% (SD 11%) and 77% (7%) of pretransplant values in patients who later developed pneumonitis compared with 109% (38%) and 96% (26%) in those who did not. All lung function measurements were significantly lower at the onset of pneumonitis than three months after transplantation, even in patients with no abnormal signs and a normal chest radiograph. Serial measurements of gas transfer before and after bone marrow transplantation may be useful for predicting which patients will be at risk of developing pneumonitis and may help to diagnose pneumonitis in breathless patients with no abnormal signs.
Choi, Jiwoong; Hoffman, Eric A; Lin, Ching-Long; Milhem, Mohammed M; Tessier, Jean; Newell, John D
2017-01-01
Extra-thoracic tumors send out pilot cells that attach to the pulmonary endothelium. We hypothesized that this could alter regional lung mechanics (tissue stiffening or accumulation of fluid and inflammatory cells) through interactions with host cells. We explored this with serial inspiratory computed tomography (CT) and image matching to assess regional changes in lung expansion. We retrospectively assessed 44 pairs of two serial CT scans on 21 sarcoma patients: 12 without lung metastases and 9 with lung metastases. For each subject, two or more serial inspiratory clinically-derived CT scans were retrospectively collected. Two research-derived control groups were included: 7 normal nonsmokers and 12 asymptomatic smokers with two inspiratory scans taken the same day or one year apart respectively. We performed image registration for local-to-local matching scans to baseline, and derived local expansion and density changes at an acinar scale. Welch two sample t test was used for comparison between groups. Statistical significance was determined with a p value < 0.05. Lung regions of metastatic sarcoma patients (but not the normal control group) demonstrated an increased proportion of normalized lung expansion between the first and second CT. These hyper-expanded regions were associated with, but not limited to, visible metastatic lung lesions. Compared with the normal control group, the percent of increased normalized hyper-expanded lung in sarcoma subjects was significantly increased (p < 0.05). There was also evidence of increased lung "tissue" volume (non-air components) in the hyper-expanded regions of the cancer subjects relative to non-hyper-expanded regions. "Tissue" volume increase was present in the hyper-expanded regions of metastatic and non-metastatic sarcoma subjects. This putatively could represent regional inflammation related to the presence of tumor pilot cell-host related interactions. This new quantitative CT (QCT) method for linking serial acquired inspiratory CT images may provide a diagnostic and prognostic means to objectively characterize regional responses in the lung following oncological treatment and monitoring for lung metastases.
Serial analysis of gene expression in a rat lung model of asthma.
Yin, Lei-Miao; Jiang, Gong-Hao; Wang, Yu; Wang, Yan; Liu, Yan-Yan; Jin, Wei-Rong; Zhang, Zen; Xu, Yu-Dong; Yang, Yong-Qing
2008-11-01
The pathogenesis and molecular mechanism underlying asthma remain undetermined. The purpose of this study was to identify genes and pathways involved in the early airway response (EAR) phase of asthma by using serial analysis of gene expression (SAGE). Two SAGE tag libraries of lung tissues derived from a rat model of asthma and controls were generated. Bioinformatic analyses were carried out using the Database for Annotation, Visualization and IntegratedDiscovery Functional Annotation Tool, Gene Ontology (GO) TreeMachine and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. A total of 26 552 SAGE tags of asthmatic rat lung were obtained, of which 12 221 were unique tags. Of the unique tags, 55.5% were matched with known genes. By comparison of the two libraries, 186 differentially expressed tags (P < 0.05) were identified, of which 103 were upregulated and 83 were downregulated. Using the bioinformatic tools these genes were classified into 23 functional groups, 15 KEGG pathways and 37 enriched GO categories. The bioinformatic analyses of gene distribution, enriched categories and the involvement of specific pathways in the SAGE libraries have provided information on regulatory networks of the EAR phase of asthma. Analyses of the regulated genes of interest may inform new hypotheses, increase our understanding of the disease and provide a foundation for future research.
Grothausmann, Roman; Knudsen, Lars; Ochs, Matthias; Mühlfeld, Christian
2017-02-01
Grothausmann R, Knudsen L, Ochs M, Mühlfeld C. Digital 3D reconstructions using histological serial sections of lung tissue including the alveolar capillary network. Am J Physiol Lung Cell Mol Physiol 312: L243-L257, 2017. First published December 2, 2016; doi:10.1152/ajplung.00326.2016-The alveolar capillary network (ACN) provides an enormously large surface area that is necessary for pulmonary gas exchange. Changes of the ACN during normal or pathological development or in pulmonary diseases are of great functional impact and warrant further analysis. Due to the complexity of the three-dimensional (3D) architecture of the ACN, 2D approaches are limited in providing a comprehensive impression of the characteristics of the normal ACN or the nature of its alterations. Stereological methods offer a quantitative way to assess the ACN in 3D in terms of capillary volume, surface area, or number but lack a 3D visualization to interpret the data. Hence, the necessity to visualize the ACN in 3D and to correlate this with data from the same set of data arises. Such an approach requires a large sample volume combined with a high resolution. Here, we present a technically simple and cost-efficient approach to create 3D representations of lung tissue ranging from bronchioles over alveolar ducts and alveoli up to the ACN from more than 1 mm sample extent to a resolution of less than 1 μm. The method is based on automated image acquisition of serially sectioned epoxy resin-embedded lung tissue fixed by vascular perfusion and subsequent automated digital reconstruction and analysis of the 3D data. This efficient method may help to better understand mechanisms of vascular development and pathology of the lung. Copyright © 2017 the American Physiological Society.
Technetium-fibrinogen lung scanning in canine lung contusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geller, E.; Khaw, B.A.; Strauss, H.W.
1984-07-01
To detect experimentally induced acute lung contusion in anesthetized dogs, serial radionuclide images of the lung were recorded following intravenous infusion of 99mTc-labelled human fibrinogen (Tc-HF). The accumulation of Tc-HF in canine lungs was serially quantitated for up to 20 hours after lung contusion. A contusion (number1) was produced in one lung, Tc-HF was injected IV after 15 minutes, and 75 minutes later a contralateral lung contusion (number2) was produced in a series of 14 dogs. At autopsy the excised lungs were scanned, sectioned, and counted for radioactivity. Radiolabelled fibrinogen accumulated within 2-4 minutes of contusion number2 and remained stablemore » over the next 20 hours in 14 dogs; contusion number1 was barely visible in four dogs. Lung Tc-HF activity in the central region of contusion number2 remained sixfold higher than in normal lung tissue. These data suggest that following lung contusion, fibrinogen deposition occurs rapidly and remains stable over a 20-hour interval of observation.« less
ACE and sIL-2R correlate with lung function improvement in sarcoidosis during methotrexate therapy.
Vorselaars, Adriane D M; van Moorsel, Coline H M; Zanen, Pieter; Ruven, Henk J T; Claessen, Anke M E; van Velzen-Blad, Heleen; Grutters, Jan C
2015-02-01
In sarcoidosis, the search for disease activity markers that correlate with treatment response is ongoing. The aim of this study was to investigate the pattern of two proposed markers, serum angiotensin-converting enzyme (ACE) and soluble IL-2 receptor (sIL-2R) during methotrexate (MTX) therapy in sarcoidosis patients. We analysed 114 sarcoidosis patients who used MTX for six months, consisting of a subgroup of 76 patients with a pulmonary indication for treatment and a subgroup of 38 patients with an extra-pulmonary indication. ACE and sIL-2R serum levels were measured at baseline and after six months of treatment. Correlation coefficients (R) and odds ratios (ORs) were calculated to study the correlation and predictive effect of serum ACE and sIL-2R levels for pulmonary improvement. High baseline levels of ACE correlated significantly with lung function improvement after treatment (R = 0.45, p < 0.0001; stronger in the pulmonary subgroup R 0.57, p < 0.0001). ACE baseline levels >90 U/l predicted a 10% improvement in overall lung function (OR 3.55; CI 1.34-9.38), with the highest prediction level for 10% improvement in DLCO (OR 4.63; CI 1.23-17.4). After six months of MTX, mean ACE decreased with 17.2 U/l (p < 0.0001) and sIL-2R with 1850 pg/ml (p < 0.0001). Decreases in both ACE and sIL-2R correlated with an increase in lung function. The strongest correlation was found with change in DLCO in the pulmonary subgroup (ACE R = 0.63, P < 0.0001; sIL-2R R = 0.56, P < 0.0001). Baseline and serial serum ACE and sIL-2R levels correlate well with lung function improvement during MTX treatment. Serial measurements of these biomarkers are helpful in monitoring treatment effects in sarcoidosis patients. Copyright © 2014 Elsevier Ltd. All rights reserved.
Shi, Y; Qi, F; Xue, Z; Chen, L; Ito, K; Matsuo, H; Shen, D
2008-04-01
This paper presents a new deformable model using both population-based and patient-specific shape statistics to segment lung fields from serial chest radiographs. There are two novelties in the proposed deformable model. First, a modified scale invariant feature transform (SIFT) local descriptor, which is more distinctive than the general intensity and gradient features, is used to characterize the image features in the vicinity of each pixel. Second, the deformable contour is constrained by both population-based and patient-specific shape statistics, and it yields more robust and accurate segmentation of lung fields for serial chest radiographs. In particular, for segmenting the initial time-point images, the population-based shape statistics is used to constrain the deformable contour; as more subsequent images of the same patient are acquired, the patient-specific shape statistics online collected from the previous segmentation results gradually takes more roles. Thus, this patient-specific shape statistics is updated each time when a new segmentation result is obtained, and it is further used to refine the segmentation results of all the available time-point images. Experimental results show that the proposed method is more robust and accurate than other active shape models in segmenting the lung fields from serial chest radiographs.
Konrad, H; Schild, H; Weilemann, L S; Lorenz, J
1992-09-01
Serial chest x-rays of 23 ARDS patients, taken in an 24 hour interval, were retrospectively analysed. Radiographic patterns of ARDS were divided into five stages and were related to corresponding parameters of respiratory status. Characteristic findings on chest x-ray films occurred after a short latency period following the clinical onset of ARDS. There was a close relationship between the time of maximum radiographic changes and maximum loss of lung function. The progression through successive radiologic stages was in many cases accompanied by a significant deterioration of functional parameters. Distinction between survivors and non-survivors was achieved while considering maximum radiographic abnormalities. The results suggest significance of serial chest x-rays in diagnosis and course estimation of ARDS.
NASA Astrophysics Data System (ADS)
Chang Chien, Kuang-Che; Fetita, Catalin; Brillet, Pierre-Yves; Prêteux, Françoise; Chang, Ruey-Feng
2009-02-01
Multi-detector computed tomography (MDCT) has high accuracy and specificity on volumetrically capturing serial images of the lung. It increases the capability of computerized classification for lung tissue in medical research. This paper proposes a three-dimensional (3D) automated approach based on mathematical morphology and fuzzy logic for quantifying and classifying interstitial lung diseases (ILDs) and emphysema. The proposed methodology is composed of several stages: (1) an image multi-resolution decomposition scheme based on a 3D morphological filter is used to detect and analyze the different density patterns of the lung texture. Then, (2) for each pattern in the multi-resolution decomposition, six features are computed, for which fuzzy membership functions define a probability of association with a pathology class. Finally, (3) for each pathology class, the probabilities are combined up according to the weight assigned to each membership function and two threshold values are used to decide the final class of the pattern. The proposed approach was tested on 10 MDCT cases and the classification accuracy was: emphysema: 95%, fibrosis/honeycombing: 84% and ground glass: 97%.
Long-term gas exchange characteristics as markers of deterioration in patients with cystic fibrosis
2009-01-01
Background and Aim In patients with cystic fibrosis (CF) the architecture of the developing lungs and the ventilation of lung units are progressively affected, influencing intrapulmonary gas mixing and gas exchange. We examined the long-term course of blood gas measurements in relation to characteristics of lung function and the influence of different CFTR genotype upon this process. Methods Serial annual measurements of PaO2 and PaCO2 assessed in relation to lung function, providing functional residual capacity (FRCpleth), lung clearance index (LCI), trapped gas (VTG), airway resistance (sReff), and forced expiratory indices (FEV1, FEF50), were collected in 178 children (88 males; 90 females) with CF, over an age range of 5 to 18 years. Linear mixed model analysis and binary logistic regression analysis were used to define predominant lung function parameters influencing oxygenation and carbon dioxide elimination. Results PaO2 decreased linearly from age 5 to 18 years, and was mainly associated with FRCpleth, (p < 0.0001), FEV1 (p < 0.001), FEF50 (p < 0.002), and LCI (p < 0.002), indicating that oxygenation was associated with the degree of pulmonary hyperinflation, ventilation inhomogeneities and impeded airway function. PaCO2 showed a transitory phase of low PaCO2 values, mainly during the age range of 5 to 12 years. Both PaO2 and PaCO2 presented with different progression slopes within specific CFTR genotypes. Conclusion In the long-term evaluation of gas exchange characteristics, an association with different lung function patterns was found and was closely related to specific genotypes. Early examination of blood gases may reveal hypocarbia, presumably reflecting compensatory mechanisms to improve oxygenation. PMID:19909502
The problem of the treatment of sarcoidosis: Report of the Subcommittee on Therapy.
Turiaf, J; Johns, C J; Terstein, A S; Tsuji, S; Wurm, K
1976-01-01
Stage I: Hilar Adenopathy With normal lung function observe, as it often resolves. With reduced lung function observe for 6-12 months. Treat if there is progression or persistence. With erythema nodosum use mild anti-inflammatory agents such as salicylates or like drugs. Stage II: Adenopathy + Pulmonar Infiltrates With normal or slightly reduced lung function observe; treat if it worsens. Treat if there is no remission in 6-12 months. With reduced lung function treat, possibly for many years or a lifetime. Stage III: Pulmonary Infiltrates +/- Fibrosis Without Adenopathy There is reduced lung function. Treat, demonstrate improvement, follow patients with serial measurements of vital capacity at least. Other Indications for Treatment Other indications for treatment include myocardial sarcoidosis, cerebral sarcoidosis (although the outcome is less certain), serious hepatic or renal sarcoidosis, hypercalcemia, persistent systemic symptoms, or other serious organ or functional impairment. Assess each patient individually and completely. Use good clinical judgement. It is clear that treatment that is too little or too late is of little benefit. Even the statistical results form a perfectly controlled study cannot provide absolute direction for the individual patient. As clinicians we are frequently called upon to apply considered judgements without hard data to predict the outcome. We also maintain the flexibility to change our therapeutic programs when circumstances change, either in the patient or in our knowledge. We can be grateful we have a treatment as good as corticosteroids and must try to exercise our best judgement as to when it should be instituted.
Sokai, Akihiko; Handa, Tomohiro; Chen, Fengshi; Tanizawa, Kiminobu; Aoyama, Akihiro; Kubo, Takeshi; Ikezoe, Kohei; Nakatsuka, Yoshinari; Oguma, Tsuyoshi; Hirai, Toyohiro; Nagai, Sonoko; Chin, Kazuo; Date, Hiroshi; Mishima, Michiaki
2016-04-01
Lung perfusions after single lung transplantation (SLT) have not been fully clarified in patients with interstitial lung disease (ILD). The present study aimed to investigate temporal changes in native lung perfusion and their associated clinical factors in patients with ILD who have undergone SLT. Eleven patients were enrolled. Perfusion scintigraphy was serially performed up to 12 months after SLT. Correlations between the post-operative perfusion ratio in the native lung and clinical parameters, including pre-operative perfusion ratio and computed tomography (CT) volumetric parameters, were evaluated. On average, the perfusion ratio of the native lung was maintained at approximately 30% until 12 months after SLT. However, the ratio declined more significantly in idiopathic pulmonary fibrosis (IPF) than in other ILDs (p = 0.014). The perfusion ratio before SLT was significantly correlated with that at three months after SLT (ρ = 0.64, p = 0.048). The temporal change of the perfusion ratio in the native lung did not correlate with those of the CT parameters. The pre-operative perfusion ratio may predict the post-operative perfusion ratio of the native lung shortly after SLT in ILD. Perfusion of the native lung may decline faster in IPF compared with other ILDs. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Serial elongation-derotation-flexion casting for children with early-onset scoliosis.
Canavese, Federico; Samba, Antoine; Dimeglio, Alain; Mansour, Mounira; Rousset, Marie
2015-12-18
Various early-onset spinal deformities, particularly infantile and juvenile scoliosis (JS), still pose challenges to pediatric orthopedic surgeons. The ideal treatment of these deformities has yet to emerge, as both clinicians and surgeons still face multiple challenges including preservation of thoracic motion, spine and cage, and protection of cardiac and lung growth and function. Elongation-derotation-flexion (EDF) casting is a technique that uses a custom-made thoracolumbar cast based on a three-dimensional correction concept. EDF can control progression of the deformity and - in some cases-coax the initially-curved spine to grow straighter by acting simultaneously in the frontal, sagittal and coronal planes. Here we provide a comprehensive review of how infantile and JS can affect normal spine and thorax and how serial EDF casting can be used to manage these spinal deformities. A fresh review of the literature helps fully understand the principles of the serial EDF casting technique and the effectiveness of conservative treatment in patients with early-onset spinal deformities, particularly infantile and juvenile scolisois.
Serial elongation-derotation-flexion casting for children with early-onset scoliosis
Canavese, Federico; Samba, Antoine; Dimeglio, Alain; Mansour, Mounira; Rousset, Marie
2015-01-01
Various early-onset spinal deformities, particularly infantile and juvenile scoliosis (JS), still pose challenges to pediatric orthopedic surgeons. The ideal treatment of these deformities has yet to emerge, as both clinicians and surgeons still face multiple challenges including preservation of thoracic motion, spine and cage, and protection of cardiac and lung growth and function. Elongation-derotation-flexion (EDF) casting is a technique that uses a custom-made thoracolumbar cast based on a three-dimensional correction concept. EDF can control progression of the deformity and - in some cases-coax the initially-curved spine to grow straighter by acting simultaneously in the frontal, sagittal and coronal planes. Here we provide a comprehensive review of how infantile and JS can affect normal spine and thorax and how serial EDF casting can be used to manage these spinal deformities. A fresh review of the literature helps fully understand the principles of the serial EDF casting technique and the effectiveness of conservative treatment in patients with early-onset spinal deformities, particularly infantile and juvenile scolisois. PMID:26716089
GERBER, P; LOOSLI, C G; HAMBRE, D
1955-06-01
Antigenically different strains of mouse-adapted PR8 influenza A virus have been produced by 17 serial passages of the virus in the lungs of mice immunized with the homologous agent. Comparative serological tests show that the variant strains share antigenic components with the parent strain but the dominant antigen is different. By means of antibody absorption it was shown that the "new" antigenic component of the variant was already present in minor amounts up to the eighth passage and thereafter gained prominence with continued passage in vaccinated mice. Groups of mice vaccinated with either the PR8-S or T(21) virus and having comparable antibody titers showed no growth of virus in the lungs following aid-borne challenge with homologous strains. On the other hand, following heterologous air-borne challenge no deaths occurred, but virus grew in the lungs of both groups of vaccinated mice. Almost unrestricted virus multiplication took place in the lungs of mice vaccinated with the parent strain and challenged with the PR8-T(21) virus which resulted in extensive consolidation. Less virus grew in the lungs of the mice vaccinated with the variant strains and challenged with the PR8-S virus. In these animals only microscopic evidence of changes due to virus growth in the lungs was observed. The successful serial passage of PR8 influenza A virus in immunized animals was dependent on the initial selection of mice with uniformly low H.I. antibody titers as determined on tail blood, and the intranasal instillation of sufficient virus to favor the survival of those virus particles least related to the antibodies present. The epidemiological implications of these observations are discussed briefly.
Miller, J; Fuller, M; Vinod, S; Suchowerska, N; Holloway, L
2009-06-01
A Clinician's discrimination between radiation therapy treatment plans is traditionally a subjective process, based on experience and existing protocols. A more objective and quantitative approach to distinguish between treatment plans is to use radiobiological or dosimetric objective functions, based on radiobiological or dosimetric models. The efficacy of models is not well understood, nor is the correlation of the rank of plans resulting from the use of models compared to the traditional subjective approach. One such radiobiological model is the Normal Tissue Complication Probability (NTCP). Dosimetric models or indicators are more accepted in clinical practice. In this study, three radiobiological models, Lyman NTCP, critical volume NTCP and relative seriality NTCP, and three dosimetric models, Mean Lung Dose (MLD) and the Lung volumes irradiated at 10Gy (V10) and 20Gy (V20), were used to rank a series of treatment plans using, harm to normal (Lung) tissue as the objective criterion. None of the models considered in this study showed consistent correlation with the Radiation Oncologists plan ranking. If radiobiological or dosimetric models are to be used in objective functions for lung treatments, based on this study it is recommended that the Lyman NTCP model be used because it will provide most consistency with traditional clinician ranking.
Kanwal, Richard; Kullman, Greg; Fedan, Kathleen B.; Kreiss, Kathleen
2011-01-01
Objectives After an outbreak of severe lung disease among workers exposed to butter-flavoring chemicals at a microwave popcorn plant, we determined whether or not lung disease risk declined after implementation of exposure controls. Methods National Institute for Occupational Safety and Health staff performed eight serial cross-sectional medical and industrial hygiene surveys at the plant from November 2000 through August 2003. Medical surveys included standardized questionnaires and spirometry testing. Industrial hygiene surveys measured levels of production-related air contaminants, including butter-flavoring chemicals such as diacetyl. All diacetyl concentrations above detectable limits were corrected for the effects of absolute humidity and days to sample extraction. Results Ventilation and isolation of the production process resulted in one to three orders of magnitude reductions in diacetyl air concentrations in different areas of the plant. Workers with past high exposures had stable chest symptoms over time; nasal, eye, and skin irritation symptoms declined. New workers had lower symptom prevalences and higher lung function than workers with past high exposures, and they did not worsen over time. In workers who had at least three spirometry tests, those with past high exposures were more likely to experience rapid declines in lung function than new workers. Conclusions Implemented controls lowered exposures to butter-flavoring chemicals and decreased lung disease risk for much of the plant workforce. Some workers with continuing potential for intermittent, short-term peak and measurable time-weighted exposures remain at risk and should use respiratory protection and have regularly scheduled spirometry to detect rapid lung function declines that may be work-related. Close follow-up of such workers is likely to yield additional information on risks due to peak and time-weighted exposure levels. PMID:21800743
Kanwal, Richard; Kullman, Greg; Fedan, Kathleen B; Kreiss, Kathleen
2011-01-01
After an outbreak of severe lung disease among workers exposed to butter-flavoring chemicals at a microwave popcorn plant, we determined whether or not lung disease risk declined after implementation of exposure controls. National Institute for Occupational Safety and Health staff performed eight serial cross-sectional medical and industrial hygiene surveys at the plant from November 2000 through August 2003. Medical surveys included standardized questionnaires and spirometry testing. Industrial hygiene surveys measured levels of production-related air contaminants, including butter-flavoring chemicals such as diacetyl. All diacetyl concentrations above detectable limits were corrected for the effects of absolute humidity and days to sample extraction. Ventilation and isolation of the production process resulted in one to three orders of magnitude reductions in diacetyl air concentrations in different areas of the plant. Workers with past high exposures had stable chest symptoms over time; nasal, eye, and skin irritation symptoms declined. New workers had lower symptom prevalences and higher lung function than workers with past high exposures, and they did not worsen over time. In workers who had at least three spirometry tests, those with past high exposures were more likely to experience rapid declines in lung function than new workers. Implemented controls lowered exposures to butter-flavoring chemicals and decreased lung disease risk for much of the plant workforce. Some workers with continuing potential for intermittent, short-term peak and measurable time-weighted exposures remain at risk and should use respiratory protection and have regularly scheduled spirometry to detect rapid lung function declines that may be work-related. Close follow-up of such workers is likely to yield additional information on risks due to peak and time-weighted exposure levels.
Canavese, Federico; Rousset, Marie; Mansour, Mounira; Samba, Antoine; Dimeglio, Alain
2016-02-01
Infantile and juvenile scoliosis, among different types of spinal deformity, is still a challenge for pediatric orthopedic surgeons. The ideal treatment of infantile and juvenile scoliosis has not yet been identified as both clinicians and surgeons still face multiple challenges, including preservation of the thoracic spine, thoracic cage, lung growth and cardiac function without reducing spinal motion. Elongation, derotation, flexion (EDF) casting technique is a custom-made thoracolumbar cast based on a three dimensional correction concept. This cast offers three-dimensional correction and can control the evolution of the deformity in some cases. Spinal growth can be guided by EDF casting as it can influence the initially curved spine to grow straighter. This article aimed to provide a comprehensive review of how infantile and juvenile scoliosis can affect normal spine and thorax and how these deformities can be treated with serial EDF casting technique. A current literature review is mandatory in order to understand the principles of the serial EDF casting technique and the effectiveness of conservative treatment in young and very young patients.
PGE2 contributes to TGF-β induced T regulatory cell function in human non-small cell lung cancer
Baratelli, Felicita; Lee, Jay M; Hazra, Saswati; Lin, Ying; Walser, Tonya C; Schaue, Dorthe; Pak, Peter S; Elashoff, David; Reckamp, Karen; Zhang, Ling; Fishbein, Michael C; Sharma, Sherven; Dubinett, Steven M
2010-01-01
CD4+CD25bright regulatory T cells (Treg) play an important role in cancer-mediated immunosuppression. We and others have previously shown that prostaglandin E2 (PGE2) and transforming growth factor beta (TGF-β) induce CD4+CD25brightFOXP3+Treg. Based on these studies, we investigated the requirement for PGE2 in Treg induction by TGF-β. TGF-β stimulation of human CD4+ T cells induced COX-2-dependent production of PGE2. PGE2-neutralizing antibody treatment significantly reduced the suppressive function of TGF-β-induced Treg (TGF-β-Treg) in vitro. TGF-β concentration measured in the plasma of non-small cell lung cancer (NSCLC) patients directly correlated with the frequency of circulating CD4+CD25brightFOXP3+T cells. Flow cytometry analysis showed increased FOXP3 expression in circulating CD4+CD25+HLA-DR- cells of lung cancer patients compared to control subjects. Immunohistochemical analysis revealed co-expression of TGF-β, COX-2, and FOXP3 in serial sections from resected lung tumor tissues. All together these observations suggest interplay between TGF-β and COX-2 in the induction of Treg activities. Interrupting TGF-β and PGE2 signaling may be important in therapeutic interventions that aim to limit Tregfunction in lung cancer. PMID:20733946
Michiue, Tomomi; Ishikawa, Takaki; Kawamoto, Osamu; Sogawa, Nozomi; Oritani, Shigeki; Maeda, Hitoshi
2013-03-10
Flotation tests on the lungs and gastrointestinal tract to investigate aeration are classic procedures to examine the life of a newborn after birth; however, there are arguments about the reliability. The present study investigated serial forensic autopsy cases of newborn infants without marked decomposition (n=4) with regard to air/gas distribution in the lungs and gastrointestinal tracts by means of postmortem CT (PM-CT) as well as macromorphology and histology, compared with intrauterine and aborted fetuses (n=3). No gas was detected in the lungs or gastrointestinal tracts in all of three intrauterine fetal deaths. Gas was diffusely detected in the lungs of a newborn fatality attributed to smothering after birth; however, two neonatal fatalities had poor lung gas contents due to marked congestion with edema and diffuse atelectasis. In a case of unsuccessful cardiopulmonary resuscitation following possible birth asphyxia, pulmonary aeration was evidently localized on CT morphology, despite a larger amount of bowel gas, and was also uneven in histology, showing a membranous immunostaining pattern of pulmonary surfactant on the intra-alveolar surfaces of expanded alveoli. The combined use of PM-CT is useful to demonstrate air/gas distributions in the lungs and gastrointestinal tract for interpretation of spontaneous breathing after birth in newborn fatalities. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
World Trade Center dyspnea: bronchiolitis obliterans with functional improvement: a case report.
Mann, Jack M; Sha, Kenneth K; Kline, Gary; Breuer, Frank-Uwe; Miller, Albert
2005-09-01
Bronchiolitis obliterans is a severe, often progressive, lung disease characterized by cough, exertional dyspnea, and airflow obstruction. It has been ascribed to specific causes such as lung or bone marrow transplant, medications for rheumatoid disease, and most recently in association with exposure to environmental agents. A 42-year-old, previously healthy New York City Highway Patrol officer who arrived at the World Trade Center (WTC), "ground zero," early on September 11, 2001 was evaluated. He has been followed for over 2 years with serial chest radiographs, CT scans, and pulmonary function studies. He eventually underwent an open lung biopsy. His dyspnea started on September 12, 2001 and progressed despite aggressive therapy with inhaled bronchodilator as well as oral and inhaled corticosteroids. At no time did he have any radiographic evidence of pulmonary disease. His forced vital capacity (FVC) decreased from 5.32 L in October 2001 to 2.86 L in January 2003. He underwent an open lung biopsy because of the persistent exertional dyspnea coupled with the loss of over 2 L of lung volume. The pathological findings were chronic bronchiolitis with focal obliterative bronchiolitis and rare non-necrotizing granuloma. Symptoms and pulmonary function improved after therapy with Azithromycin was added to his treatment. This process is believed to be secondary to his massive exposure to the cloud of dust that followed the collapse of the WTC. It is our conviction that many of those present at the WTC on September 11 who have persistent dyspnea and deterioration of pulmonary function may have a similar pathologic process despite absence of abnormalities on CT of the chest. In view of the many signs and symptoms seen in first responders we feel that these findings provide important information about the pathophysiology and treatment of progressive disease resulting from this exposure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez-Nieto, Beatriz, E-mail: bsanchez@fis.puc.cl; Goset, Karen C.; Caviedes, Ivan
Purpose: To propose multivariate predictive models for changes in pulmonary function tests ({Delta}PFTs) with respect to preradiotherapy (pre-RT) values in patients undergoing RT for breast cancer and lymphoma. Methods and Materials: A prospective study was designed to measure {Delta}PFTs of patients undergoing RT. Sixty-six patients were included. Spirometry, lung capacity (measured by helium dilution), and diffusing capacity of carbon monoxide tests were used to measure lung function. Two lung definitions were considered: paired lung vs. irradiated lung (IL). Correlation analysis of dosimetric parameters (mean lung dose and the percentage of lung volume receiving more than a threshold dose) and {Delta}PFTsmore » was carried out to find the best dosimetric predictor. Chemotherapy, age, smoking, and the selected dose-volume parameter were considered as single and interaction terms in a multivariate analysis. Stability of results was checked by bootstrapping. Results: Both lung definitions proved to be similar. Modeling was carried out for IL. Acute and late damage showed the highest correlations with volumes irradiated above {approx}20 Gy (maximum R{sup 2} = 0.28) and {approx}40 Gy (maximum R{sup 2} = 0.21), respectively. RT alone induced a minor and transitory restrictive defect (p = 0.013). Doxorubicin-cyclophosphamide-paclitaxel (Taxol), when administered pre-RT, induced a late, large restrictive effect, independent of RT (p = 0.031). Bootstrap values confirmed the results. Conclusions: None of the dose-volume parameters was a perfect predictor of outcome. Thus, different predictor models for {Delta}PFTs were derived for the IL, which incorporated other nondosimetric parameters mainly through interaction terms. Late {Delta}PFTs seem to behave more serially than early ones. Large restrictive defects were demonstrated in patients pretreated with doxorubicin-cyclophosphamide-paclitaxel.« less
Quantitative 3D reconstruction of airway and pulmonary vascular trees using HRCT
NASA Astrophysics Data System (ADS)
Wood, Susan A.; Hoford, John D.; Hoffman, Eric A.; Zerhouni, Elias A.; Mitzner, Wayne A.
1993-07-01
Accurate quantitative measurements of airway and vascular dimensions are essential to evaluate function in the normal and diseased lung. In this report, a novel method is described for three-dimensional extraction and analysis of pulmonary tree structures using data from High Resolution Computed Tomography (HRCT). Serially scanned two-dimensional slices of the lower left lobe of isolated dog lungs were stacked to create a volume of data. Airway and vascular trees were three-dimensionally extracted using a three dimensional seeded region growing algorithm based on difference in CT number between wall and lumen. To obtain quantitative data, we reduced each tree to its central axis. From the central axis, branch length is measured as the distance between two successive branch points, branch angle is measured as the angle produced by two daughter branches, and cross sectional area is measured from a plane perpendicular to the central axis point. Data derived from these methods can be used to localize and quantify structural differences both during changing physiologic conditions and in pathologic lungs.
Ruano, Rodrigo; Britto, Ingrid Schwach Werneck; Sananes, Nicolas; Lee, Wesley; Sangi-Haghpeykar, Haleh; Deter, Russell L
2016-06-01
To evaluate fetal lung growth using 3-dimensional sonography in healthy fetuses and those with congenital diaphragmatic hernia (CDH). Right and total lung volumes were serially evaluated by 3-dimensional sonography in 66 healthy fetuses and 52 fetuses with left-sided CDH between 20 and 37 weeks' menstrual age. Functions fitted to these parameters were compared for 2 groups: (1) healthy versus those with CDH; and (2) fetuses with CHD who survived versus those who died. Fetal right and total lung volumes as well as fetal observed-to-expected right and total lung volume ratios were significantly lower in fetuses with CDH than healthy fetuses (P< .001) and in those fetuses with CDH who died (P< .001). The observed-to-expected right and total lung volume ratios did not vary with menstrual age in healthy fetuses or in those with CDH (independent of outcome). Lung volume rates were lower in fetuses with left-sided CDH compared to healthy fetuses, as well as in fetuses with CDH who died compared to those who survived. The observed-to-expected right and total lung volume ratios were relatively constant throughout menstrual age in fetuses with left-sided CDH, suggesting that the origin of their lung growth abnormalities occurred before 20 weeks and did not progress. The observed-to-expected ratios may be useful in predicting the outcome in fetuses with CDH independent of menstrual age. © 2016 by the American Institute of Ultrasound in Medicine.
Simpson, Kathleen E; Esmaeeli, Amir; Khanna, Geetika; White, Francis; Turnmelle, Yumirle; Eghtesady, Pirooz; Boston, Umar; Canter, Charles E
2014-02-01
Liver cirrhosis is recognized with long-term follow-up of patients after the Fontan procedure. The effect of liver cirrhosis on the use of heart transplant (HT) and on post-HT outcomes is unknown. We reviewed Fontan patients evaluated for HT from 2004 to 2012 with hepatic computed tomography (CT) imaging, classified as normal, non-cirrhotic changes, or cirrhosis. The primary outcome was 1-year all-cause mortality, and the secondary outcome was differences in serial post-HT liver evaluation. CT imaging in 32 Fontan patients evaluated for HT revealed 20 (63%) with evidence of liver disease, including 13 (41%) with cirrhosis. Twenty underwent HT, including 5 non-cirrhotic and 7 cirrhosis patients. Characteristics at listing between normal or non-cirrhotic (n = 13) and cirrhosis (n = 7) groups were similar, except cirrhosis patients were older (median 17.6 vs 9.6 years, p = 0.002) and further from Fontan (median 180 vs 50 months, p < 0.05). Serial liver evaluation was similar, including aspartate aminotransferase, alanine aminotransferase, bilirubin, albumin, and tacrolimus dose at 1, 3, 6, 9, and 12 months. Overall patient survival was 80% at 1 year, with no difference between cirrhosis and non-cirrhosis patients (86% vs 77%, p = 0.681). Liver biopsies were performed in 7 patients before HT, and all specimens showed architectural changes with bridging fibrosis. Most patients evaluated for HT had abnormal liver findings by CT, with cirrhosis in 41%. One-year mortality and serial liver evaluation were similar between groups after HT. Liver cirrhosis identified by CT imaging may not be an absolute contraindication to HT alone in this population. © 2014 International Society for Heart and Lung Transplantation Published by International Society for the Heart and Lung Transplantation All rights reserved.
Paffett, Michael L.; Hesterman, Jacob; Candelaria, Gabriel; Lucas, Selita; Anderson, Tamara; Irwin, Daniel; Hoppin, Jack; Norenberg, Jeffrey; Campen, Matthew J.
2012-01-01
Pulmonary arterial hypertension (PAH) has a complex pathogenesis involving both heart and lungs. Animal models can reflect aspects of the human pathology and provide insights into the development and underlying mechanisms of disease. Because of the variability of most animal models of PAH, serial in vivo measurements of cardiopulmonary function, morphology, and markers of pathology can enhance the value of such studies. Therefore, quantitative in vivo SPECT/CT imaging was performed to assess cardiac function, morphology and cardiac perfusion utilizing 201Thallium (201Tl) in control and monocrotaline-treated rats. In addition, lung and heart apoptosis was examined with 99mTc-Annexin V (99mTc-Annexin) in these cohorts. Following baseline imaging, rats were injected with saline or monocrotaline (50 mg/kg, i.p.) and imaged weekly for 6 weeks. To assess a therapeutic response in an established pulmonary hypertensive state, a cohort of rats received resveratrol in drinking water (3 mg/kg/day) on days 28–42 post-monocrotaline injection to monitor regression of cardiopulmonary apoptosis. PAH in monocrotaline-treated rats was verified by conventional hemodynamic techniques on day 42 (right ventricular systolic pressure (RSVP) = 66.2 mmHg in monocrotaline vs 28.8 mmHg in controls) and in terms of right ventricular hypertrophy (RV/LVS = 0.70 in monocrotaline vs 0.32 in controls). Resveratrol partially reversed both RVSP (41.4 mmHg) and RV/LVS (0.46), as well as lung edema and RV contractility +dP/dtmax. Serial 99mTc-Annexin V imaging showed clear increases in pulmonary and cardiac apoptosis when compared to baseline, which regressed following resveratrol treatment. Monocrotaline induced modest changes in whole-heart perfusion as assessed by 201TI imaging and cardiac morphological changes consistent with septal deviation and enlarged RV. This study demonstrates the utility of functional in vivo SPECT/CT imaging in rodent models of PAH and further confirms the efficacy of resveratrol in reversing established monocrotaline-induced PAH presumably by attenuation of cardiopulmonary apoptosis. PMID:22815866
Airway Tree Segmentation in Serial Block-Face Cryomicrotome Images of Rat Lungs
Bauer, Christian; Krueger, Melissa A.; Lamm, Wayne J.; Smith, Brian J.; Glenny, Robb W.; Beichel, Reinhard R.
2014-01-01
A highly-automated method for the segmentation of airways in serial block-face cryomicrotome images of rat lungs is presented. First, a point inside of the trachea is manually specified. Then, a set of candidate airway centerline points is automatically identified. By utilizing a novel path extraction method, a centerline path between the root of the airway tree and each point in the set of candidate centerline points is obtained. Local disturbances are robustly handled by a novel path extraction approach, which avoids the shortcut problem of standard minimum cost path algorithms. The union of all centerline paths is utilized to generate an initial airway tree structure, and a pruning algorithm is applied to automatically remove erroneous subtrees or branches. Finally, a surface segmentation method is used to obtain the airway lumen. The method was validated on five image volumes of Sprague-Dawley rats. Based on an expert-generated independent standard, an assessment of airway identification and lumen segmentation performance was conducted. The average of airway detection sensitivity was 87.4% with a 95% confidence interval (CI) of (84.9, 88.6)%. A plot of sensitivity as a function of airway radius is provided. The combined estimate of airway detection specificity was 100% with a 95% CI of (99.4, 100)%. The average number and diameter of terminal airway branches was 1179 and 159 μm, respectively. Segmentation results include airways up to 31 generations. The regression intercept and slope of airway radius measurements derived from final segmentations were estimated to be 7.22 μm and 1.005, respectively. The developed approach enables quantitative studies of physiology and lung diseases in rats, requiring detailed geometric airway models. PMID:23955692
Grgic, Aleksandar; Lausberg, Henning; Heinrich, Marc; Koenig, Jochem; Uder, Michael; Sybrecht, Gerhard W; Wilkens, Heinrike
2008-01-01
Idiopathic pulmonary fibrosis (IPF) is a progressive disease with a poor prognosis. Usual interstitial pneumonia (UIP) is the histopathological pattern identifying patients with the clinical entity of IPF. Despite aggressive immunosuppressive therapy the clinical course is usually dismal. For selected patients only lung transplantation improves prognosis and quality of life. After lung transplantation patients often receive a potent cyclosporine-based immunosuppressive therapy. Some reports suggest that cyclosporine has the potential to prevent progression of fibrosis. In patients with single lung transplantation (sLTx) for UIP we evaluated the effect of cyclosporine-based immunosuppressive therapy on progression of fibrosis using a high-resolution computed tomography (HRCT) scoring system. This retrospective observational study included 13 patients (24-64 years old) with histologically confirmed UIP who had HRCT scans preceding and following sLTx and who survived at least 6 months after sLTx. All patients were initially treated with cyclosporin A, prednisone and azathioprine. Three radiologists analyzed HRCT scans by setting a score regarding fibrosis [fibrosis score (FS); range 0-5 for each lobe] and ground-glass opacity [ground-glass score (GGS); range 0-5 for each lobe]. A comparison of serial changes (interval: 12-96 months posttransplant, 2-4 HRCT examinations/patient) was performed with the sign test. Mean pretransplant FS and GGS of the nontransplanted lung were 1.80 and 1.61, respectively. Comparing pre- and posttransplant HRCT scans, mean lung FS significantly increased (0.35 +/- 0.15/year; p = 0.00024), while GGS tended to decrease (0.06 +/- 0.26/year; p = 0.5). A cyclosporin A based triple immunosuppressive regimen following sLTx does not seem to prevent progression of the fibrotic changes of the native lung in patients with IPF. Copyright 2007 S. Karger AG, Basel.
Martínez-Balzano, Carlos D; Touray, Sunkaru; Kopec, Scott
2016-09-01
Cystic lung disease (CLD) in Sjögren syndrome (SS) is a condition with unclear prognostic implications. Our objectives in this study are to determine its frequency, progression over time, and associated risk factors and complications. Eighty-four patients with primary or secondary SS and chest imaging, chest radiograph, or CT scan were retrospectively evaluated for CLD. Thirteen patients with cysts were found. Baseline characteristics of all patients were collected. A multivariate logistic regression model was used to look for predictors of CLD in patients with CT scan. Additional imaging, SS activity, and complications from CLD and SS were collected for the patients with cysts. CLD had a frequency of 15.4% for all patients with chest imaging. Not all cysts were evident on radiography, and CLD frequency was 30.9% for the patients with chest CT scan. Six patients had cysts without other radiographic findings. CLD was associated with older age (OR, 1.1; 95% CI, 1.0-1.16), a diagnosis of secondary SS (OR, 12.1; 95% CI, 1.12-130.4), and seropositivity for anti-SS-related antigen A/Ro autoantibodies (OR, 26.9; 95% CI, 1.44-93.61). There was no radiologic progression of CLD for 12 patients after a 4-year median follow-up. Lung function did not exhibit temporal worsening. CLD did not correlate with a specific pattern in pulmonary function testing. Two patients had secondary infectious complications of the cysts. CLD is a relatively common condition in SS that does not progress on serial radiologic and lung function follow-up. CLD, without other radiographic findings, may represent a direct manifestation of SS. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Sleep quality and daytime function in adults with cystic fibrosis and severe lung disease.
Dancey, D R; Tullis, E D; Heslegrave, R; Thornley, K; Hanly, P J
2002-03-01
It was hypothesized that adult cystic fibrosis (CF) patients with severe lung disease have impaired daytime function related to nocturnal hypoxaemia and sleep disruption. Nineteen CF patients (forced expiratory volume in one second 28+/-7% predicted) and 10 healthy subjects completed sleep diaries, overnight polysomnography (PSG), and assessment of daytime sleepiness and neurocognitive function. CF patients tended to report more awakenings (0.7+/-0.5 versus 0.3+/-0.2 x h(-1), p=0.08), and PSG revealed reduced sleep efficiency (71+/-25 versus 93+/-4%, p=0.004) and a higher frequency of awakenings (4.2+/-2.7 versus 2.4+/-1.4 x h(-1), p=0.06). Mean arterial oxygen saturation during sleep was lower in CF patients (84.4+/-6.8 versus 94.3+/-1.5%, p<0.0001) and was associated with reduced sleep efficiency (regression coefficient (r)=0.57, p=0.014). CF patients had short sleep latency on the multiple sleep latency test (6.7+/-3 min). The CF group reported lower levels of activation and happiness and greater levels of fatigue (p<0.01), which correlated with indices of sleep loss, such as sleep efficiency (r=0.47, p=10.05). Objective neurocognitive performance was also impaired in CF patients, reflected by lower throughput for simple addition/subtraction, serial reaction and colour-word conflict. The authors concluded that adult cystic fibrosis patients with severe lung disease have impaired neurocognitive function and daytime sleepiness, which is partly related to chronic sleep loss and nocturnal hypoxaemia.
Serial position functions in general knowledge.
Kelley, Matthew R; Neath, Ian; Surprenant, Aimée M
2015-11-01
Serial position functions with marked primacy and recency effects are ubiquitous in episodic memory tasks. The demonstrations reported here explored whether bow-shaped serial position functions would be observed when people ordered exemplars from various categories along a specified dimension. The categories and dimensions were: actors and age; animals and weight; basketball players and height; countries and area; and planets and diameter. In all cases, a serial position function was observed: People were more accurate to order the youngest and oldest actors, the lightest and heaviest animals, the shortest and tallest basketball players, the smallest and largest countries, and the smallest and largest planets, relative to intermediate items. The results support an explanation of serial position functions based on relative distinctiveness, which predicts that serial position functions will be observed whenever a set of items can be sensibly ordered along a particular dimension. The serial position function arises because the first and last items enjoy a benefit of having no competitors on 1 side and therefore have enhanced distinctiveness relative to mid-dimension items, which suffer by having many competitors on both sides. (c) 2015 APA, all rights reserved).
Airway disease: anatomopathologic patterns and functional correlations.
Mormile, F; Ciappi, G
1997-01-01
Airways represent a serial and parallel branched system, through which the alveoli are connected with the external air. They participate in the mechanical and immune defense against noxious agents, regional flow regulation to optimize the perfusion/ventilation ratio and provide lung mechanical support. Functional exploration of central airways is based on resistance measurement, flow-volume curve or spirometry, while peripheral airways influence parameters as the upstream resistance, the slope of phase III nitrogen washout and the residual volume. Bronchodynamic tests supply important information on airway reversibility and nonspecific reactivity. Anatomopathologic alterations of obstructive chronic bronchitis, pulmonary emphysema and bronchial asthma account for their specific functional and bronchodynamic alterations. There is a growing interest for bronchiolitis in the clinical, radiologic and functional field. This type of lesion, always present in COPD, asthma and interstitial disease, becomes relevant when isolated or predominant. The most useful anatomofunctional classification separates the "constrictive" forms, the cause of obstruction and hyperinflation, from "proliferative" forms where an intraluminal proliferation more or less extended to alveolar air spaces as in BOOP (bronchiolitis obliterans organizing pneumonia) results in restrictive dysfunction. Constrictive bronchiolitis obliterans represents a severe and frequent complication of lung and bone marrow transplantation. Idiopathic BOOP may occur with cough or flue-like symptoms. In other cases, constrictive and proliferative forms may have a toxic (gases or drugs), postinfective or immune etiology (rheumatoid arthritis, LES, etc). Respiratory bronchiolitis or smokers' bronchiolitis, an often asymptomatic lesion, rarely associated to an interstitial lung disease, should be considered separately. The relationships between respiratory bronchiolitis, COPD and initial centriacinar emphysema is still to be elucidated. The diagnostic combination of the more sensitive functional tests with HRCT will allow a better understanding of the natural history of the various forms of bronchiolitis.
Smeltzer, Matthew P.; Rugless, Fedoria E.; Jackson, Bianca M.; Berryman, Courtney L.; Faris, Nicholas R.; Ray, Meredith A.; Meadows, Meghan; Patel, Anita A.; Roark, Kristina S.; Kedia, Satish K.; DeBon, Margaret M.; Crossley, Fayre J.; Oliver, Georgia; McHugh, Laura M.; Hastings, Willeen; Osborne, Orion; Osborne, Jackie; Ill, Toni; Ill, Mark; Jones, Wynett; Lee, Hyo K.; Signore, Raymond S.; Fox, Roy C.; Li, Jingshan; Robbins, Edward T.; Ward, Kenneth D.; Klesges, Lisa M.
2018-01-01
Background Responsible for 25% of all US cancer deaths, lung cancer presents complex care-delivery challenges. Adoption of the highly recommended multidisciplinary care model suffers from a dearth of good quality evidence. Leading up to a prospective comparative-effectiveness study of multidisciplinary vs. serial care, we studied the implementation of a rigorously benchmarked multidisciplinary lung cancer clinic. Methods We used a mixed-methods approach to conduct a patient-centered, combined implementation and effectiveness study of a multidisciplinary model of lung cancer care. We established a co-located multidisciplinary clinic to study the implementation of this care-delivery model. We identified and engaged key stakeholders from the onset, used their input to develop the program structure, processes, performance benchmarks, and study endpoints (outcome-related process measures, patient- and caregiver-reported outcomes, survival). In this report, we describe the study design, process of implementation, comparative populations, and how they contrast with patients within the local and regional healthcare system. Trial Registration: ClinicalTrials.gov Identifier: NCT02123797. Results Implementation: the multidisciplinary clinic obtained an overall treatment concordance rate of 90% (target >85%). Satisfaction scores were high, with >95% of patients and caregivers rating themselves as being “very satisfied” with all aspects of care from the multidisciplinary team (patient/caregiver response rate >90%). The Reach of the multidisciplinary clinic included a higher proportion of minority patients, more women, and younger patients than the regional population. Comparative effectiveness: The comparative effectiveness trial conducted in the last phase of the study met the planned enrollment per statistical design, with 178 patients in the multidisciplinary arm and 348 in the serial care arm. The multidisciplinary cohort had older age and a higher percentage of racial minorities, with a higher proportion of stage IV patients in the serial care arm. Conclusions This study demonstrates a comprehensive implementation of a multidisciplinary model of lung cancer care, which will advance the science behind implementing this much-advocated clinical care model. PMID:29535915
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, D.K.; Higenbottam, T.W.
Despite no radiographic change, a patient with Pneumocystis pneumonia showed increased clearance of inhaled /sup 99m/Tc DTPA from lung to blood. Gas transfer for carbon monoxide was also reduced, but improved with treatment. This was paralleled by serial increase in the t1/2 LB.
Deep-seated intramuscular lipoma penetrates the intercostal muscle
Hwang, Jinwook; Min, Byoung-Ju; Shin, Jae Seung
2015-01-01
Deep-seated intramuscular lipomas are rare, and most exhibit an infiltrating behavior. This study reports serial radiographs of a lipoma in chest wall muscles which penetrated the intercostal muscle for a 6-year period. Although this lipoma did not involve the parietal pleura, it compressed lung. To the authors’ knowledge, the present study is the first report to show the growth of a deep-seated chest wall lipoma into the thoracic cavity through serial radiographs. We consider the surgical treatment is needed before deep-seated intramuscular chest wall lipoma compress intrathoracic structures. PMID:26623127
2016-12-01
reconstruction of the adult model was originally developed by Kepler et al. (1998) from serial Magnetic Resonance Imaging ( MRI ) sections of the right...upper airways and MRI imaging of a lung cast to form a contiguous reconstruction from the nostrils through 19 airway generations of the lung. For this...and Musante, C. J. (2001). A nonhuman primate aerosol deposition model for toxicological and pharmaceutical studies. Inhal. Toxicol. 13:307-324
2016-12-01
reconstruction of the adult model was originally developed by Kepler et al. (1998) from serial Magnetic Resonance Imaging ( MRI ) sections of the right...upper airways and MRI imaging of a lung cast to form a contiguous reconstruction from the nostrils through 19 airway generations of the lung. For this...and Musante, C. J. (2001). A nonhuman primate aerosol deposition model for toxicological and pharmaceutical studies. Inhal. Toxicol. 13:307-324
ANTIGENIC VARIANTS OF INFLUENZA A VIRUS (PR8 STRAIN)
Gerber, Paul; Loosli, Clayton G.; Hamre, Dorothy
1955-01-01
Antigenically different strains of mouse-adapted PR8 influenza A virus have been produced by 17 serial passages of the virus in the lungs of mice immunized with the homologous agent. Comparative serological tests show that the variant strains share antigenic components with the parent strain but the dominant antigen is different. By means of antibody absorption it was shown that the "new" antigenic component of the variant was already present in minor amounts up to the eighth passage and thereafter gained prominence with continued passage in vaccinated mice. Groups of mice vaccinated with either the PR8-S or T21 virus and having comparable antibody titers showed no growth of virus in the lungs following aid-borne challenge with homologous strains. On the other hand, following heterologous air-borne challenge no deaths occurred, but virus grew in the lungs of both groups of vaccinated mice. Almost unrestricted virus multiplication took place in the lungs of mice vaccinated with the parent strain and challenged with the PR8-T21 virus which resulted in extensive consolidation. Less virus grew in the lungs of the mice vaccinated with the variant strains and challenged with the PR8-S virus. In these animals only microscopic evidence of changes due to virus growth in the lungs was observed. The successful serial passage of PR8 influenza A virus in immunized animals was dependent on the initial selection of mice with uniformly low H.I. antibody titers as determined on tail blood, and the intranasal instillation of sufficient virus to favor the survival of those virus particles least related to the antibodies present. The epidemiological implications of these observations are discussed briefly. PMID:14367684
Shino, Michael Y; Weigt, S Samuel; Li, Ning; Palchevskiy, Vyacheslav; Derhovanessian, Ariss; Saggar, Rajan; Sayah, David M; Gregson, Aric L; Fishbein, Michael C; Ardehali, Abbas; Ross, David J; Lynch, Joseph P; Elashoff, Robert M; Belperio, John A
2013-11-01
After lung transplantation, insults to the allograft generally result in one of four histopathologic patterns of injury: (1) acute rejection, (2) lymphocytic bronchiolitis, (3) organizing pneumonia, and (4) diffuse alveolar damage (DAD). We hypothesized that DAD, the most severe form of acute lung injury, would lead to the highest risk of chronic lung allograft dysfunction (CLAD) and that a type I immune response would mediate this process. Determine whether DAD is associated with CLAD and explore the potential role of CXCR3/ligand biology. Transbronchial biopsies from all lung transplant recipients were reviewed. The association between the four injury patterns and subsequent outcomes were evaluated using proportional hazards models with time-dependent covariates. Bronchoalveolar lavage (BAL) concentrations of the CXCR3 ligands (CXCL9/MIG, CXCL10/IP10, and CXCL11/ITAC) were compared between allograft injury patterns and "healthy" biopsies using linear mixed-effects models. The effect of these chemokine alterations on CLAD risk was assessed using Cox models with serial BAL measurements as time-dependent covariates. There were 1,585 biopsies from 441 recipients with 62 episodes of DAD. An episode of DAD was associated with increased risk of CLAD (hazard ratio, 3.0; 95% confidence interval, 1.9-4.7) and death (hazard ratio, 2.3; 95% confidence interval, 1.7-3.0). There were marked elevations in BAL CXCR3 ligand concentrations during DAD. Furthermore, prolonged elevation of these chemokines in serial BAL fluid measurements predicted the development of CLAD. DAD is associated with marked increases in the risk of CLAD and death after lung transplantation. This association may be mediated in part by an aberrant type I immune response involving CXCR3/ligands.
Fields, Ryan C; Bharat, Ankit; Steward, Nancy; Aloush, Aviva; Meyers, Brian F; Trulock, Elbert P; Chapman, William C; Patterson, G Alexander; Mohanakumar, Thalachallour
2006-12-27
The long-term function of lung transplants is limited by chronic rejection (bronchiolitis obliterans syndrome, BOS). Due to lack of specific markers, BOS is diagnosed clinically. Because there is strong evidence that alloimmunity plays a significant role in the pathogenesis of BOS, we investigated whether soluble CD30 (sCD30), a T-cell activation marker, would correlate with BOS. Sera collected serially from BOS+ (n = 20) and matched BOS- (n = 20) lung transplant (LT) patients were analyzed for sCD30 by enzyme-linked immunosorbent assay. Pretransplant sera and sera from normal donors were also analyzed. PreLT levels were comparable to normal subjects. However, posttransplant there was a significant elevation in sCD30 levels during BOS development in all BOS+ patients, compared to BOS- (mean 139.8+/-10.7 vs. 14.8+/-2.7 U/ml, P < 0.001). sCD30 levels declined in the BOS+ patients but were still elevated compared to BOS- (48.52+/-5.04 vs. 7.19+/-2.9, P < 0.0001). We conclude that sCD30 may represent a novel marker to monitor the development of BOS.
NASA Astrophysics Data System (ADS)
Watari, Chinatsu; Matsuhiro, Mikio; Näppi, Janne J.; Nasirudin, Radin A.; Hironaka, Toru; Kawata, Yoshiki; Niki, Noboru; Yoshida, Hiroyuki
2018-03-01
We investigated the effect of radiomic texture-curvature (RTC) features of lung CT images in the prediction of the overall survival of patients with rheumatoid arthritis-associated interstitial lung disease (RA-ILD). We retrospectively collected 70 RA-ILD patients who underwent thin-section lung CT and serial pulmonary function tests. After the extraction of the lung region, we computed hyper-curvature features that included the principal curvatures, curvedness, bright/dark sheets, cylinders, blobs, and curvature scales for the bronchi and the aerated lungs. We also computed gray-level co-occurrence matrix (GLCM) texture features on the segmented lungs. An elastic-net penalty method was used to select and combine these features with a Cox proportional hazards model for predicting the survival of the patient. Evaluation was performed by use of concordance index (C-index) as a measure of prediction performance. The C-index values of the texture features, hyper-curvature features, and the combination thereof (RTC features) in predicting patient survival was estimated by use of bootstrapping with 2,000 replications, and they were compared with an established clinical prognostic biomarker known as the gender, age, and physiology (GAP) index by means of two-sided t-test. Bootstrap evaluation yielded the following C-index values for the clinical and radiomic features: (a) GAP index: 78.3%; (b) GLCM texture features: 79.6%; (c) hypercurvature features: 80.8%; and (d) RTC features: 86.8%. The RTC features significantly outperformed any of the other predictors (P < 0.001). The Kaplan-Meier survival curves of patients stratified to low- and high-risk groups based on the RTC features showed statistically significant (P < 0.0001) difference. Thus, the RTC features can provide an effective imaging biomarker for predicting the overall survival of patients with RA-ILD.
Lung texture in serial thoracic CT scans: Assessment of change introduced by image registration1
Cunliffe, Alexandra R.; Al-Hallaq, Hania A.; Labby, Zacariah E.; Pelizzari, Charles A.; Straus, Christopher; Sensakovic, William F.; Ludwig, Michelle; Armato, Samuel G.
2012-01-01
Purpose: The aim of this study was to quantify the effect of four image registration methods on lung texture features extracted from serial computed tomography (CT) scans obtained from healthy human subjects. Methods: Two chest CT scans acquired at different time points were collected retrospectively for each of 27 patients. Following automated lung segmentation, each follow-up CT scan was registered to the baseline scan using four algorithms: (1) rigid, (2) affine, (3) B-splines deformable, and (4) demons deformable. The registration accuracy for each scan pair was evaluated by measuring the Euclidean distance between 150 identified landmarks. On average, 1432 spatially matched 32 × 32-pixel region-of-interest (ROI) pairs were automatically extracted from each scan pair. First-order, fractal, Fourier, Laws’ filter, and gray-level co-occurrence matrix texture features were calculated in each ROI, for a total of 140 features. Agreement between baseline and follow-up scan ROI feature values was assessed by Bland–Altman analysis for each feature; the range spanned by the 95% limits of agreement of feature value differences was calculated and normalized by the average feature value to obtain the normalized range of agreement (nRoA). Features with small nRoA were considered “registration-stable.” The normalized bias for each feature was calculated from the feature value differences between baseline and follow-up scans averaged across all ROIs in every patient. Because patients had “normal” chest CT scans, minimal change in texture feature values between scan pairs was anticipated, with the expectation of small bias and narrow limits of agreement. Results: Registration with demons reduced the Euclidean distance between landmarks such that only 9% of landmarks were separated by ≥1 mm, compared with rigid (98%), affine (95%), and B-splines (90%). Ninety-nine of the 140 (71%) features analyzed yielded nRoA > 50% for all registration methods, indicating that the majority of feature values were perturbed following registration. Nineteen of the features (14%) had nRoA < 15% following demons registration, indicating relative feature value stability. Student's t-tests showed that the nRoA of these 19 features was significantly larger when rigid, affine, or B-splines registration methods were used compared with demons registration. Demons registration yielded greater normalized bias in feature value change than B-splines registration, though this difference was not significant (p = 0.15). Conclusions: Demons registration provided higher spatial accuracy between matched anatomic landmarks in serial CT scans than rigid, affine, or B-splines algorithms. Texture feature changes calculated in healthy lung tissue from serial CT scans were smaller following demons registration compared with all other algorithms. Though registration altered the values of the majority of texture features, 19 features remained relatively stable after demons registration, indicating their potential for detecting pathologic change in serial CT scans. Combined use of accurate deformable registration using demons and texture analysis may allow for quantitative evaluation of local changes in lung tissue due to disease progression or treatment response. PMID:22894392
Effect of Emphysema Extent on Serial Lung Function in Patients with Idiopathic Pulmonary Fibrosis.
Cottin, Vincent; Hansell, David M; Sverzellati, Nicola; Weycker, Derek; Antoniou, Katerina M; Atwood, Mark; Oster, Gerry; Kirchgaessler, Klaus-Uwe; Collard, Harold R; Wells, Athol U
2017-11-01
Patients with idiopathic pulmonary fibrosis and emphysema may have artificially preserved lung volumes. In this post hoc analysis, we investigated the relationship between baseline emphysema and fibrosis extents, as well as pulmonary function changes, over 48 weeks. Data were pooled from two phase III, randomized, double-blind, placebo-controlled trials of IFN-γ-1b in idiopathic pulmonary fibrosis (GIPF-001 [NCT00047645] and GIPF-007 [NCT00075998]). Patients with Week 48 data, baseline high-resolution computed tomographic images, and FEV 1 /FVC ratios less than 0.8 or greater than 0.9 (<0.7 or >0.9 in GIPF-007), as well as randomly selected patients with ratios of 0.8-0.9 and 0.7-0.8, were included. Changes from baseline in pulmonary function at Week 48 were analyzed by emphysema extent. The relationship between emphysema and fibrosis extents and change in pulmonary function was assessed using multivariate linear regression. Emphysema was identified in 38% of patients. A negative correlation was observed between fibrosis and emphysema extents (r = -0.232; P < 0.001). In quartile analysis, patients with the greatest emphysema extent (28 to 65%) showed the smallest FVC decline, with a difference of 3.32% at Week 48 versus patients with no emphysema (P = 0.047). In multivariate analyses, emphysema extent greater than or equal to 15% was associated with significantly reduced FVC decline over 48 weeks versus no emphysema or emphysema less than 15%. No such association was observed for diffusing capacity of the lung for carbon monoxide or composite physiologic index. FVC measurements may not be appropriate for monitoring disease progression in patients with idiopathic pulmonary fibrosis and emphysema extent greater than or equal to 15%.
Serial Position Functions in General Knowledge
ERIC Educational Resources Information Center
Kelley, Matthew R.; Neath, Ian; Surprenant, Aimée M.
2015-01-01
Serial position functions with marked primacy and recency effects are ubiquitous in episodic memory tasks. The demonstrations reported here explored whether bow-shaped serial position functions would be observed when people ordered exemplars from various categories along a specified dimension. The categories and dimensions were: actors and age;…
Inactivation of LLC1 gene in nonsmall cell lung cancer
Hong, Kyeong-Man; Yang, Sei-Hoon; Chowdhuri, Sinchita R.; Player, Audrey; Hames, Megan; Fukuoka, Junya; Meerzaman, Daoud; Dracheva, Tatiana; Sun, Zhifu; Yang, Ping; Jen, Jin
2007-01-01
Serial analysis of gene expression studies led us to identify a previously unknown gene, c20orf85, that is present in the normal lung epithelium, but absent or downregulated in most primary non-small cell lung cancers and lung cancer cell lines. We named this gene LLC1 for Low in Lung Cancer 1. LLC1 is located on chromosome 20q13.3 and has a 70% GC content in the promoter region. It has 4 exons and encodes a protein containing 137 amino acids. By in situ hybridization, we observed that LLC1 message is localized in normal lung bronchial epithelial cells, but absent in 13 of 14 lung adenocarcinoma and 9 out of 10 lung squamous carcinoma samples. Methylation at CpG sites of the LLC1 promoter was frequently observed in lung cancer cell lines and in a fraction of primary lung cancer tissues. Treatment with 5-aza deoxycytidine resulted in a reduced methylation of the LLC1 promoter concomitant with the increase of LLC1 expression. These results suggest that inactivation of LLC1 by means of promoter methylation is a frequent event in nonsmall cell lung cancer and may play a role in lung tumorigenesis. PMID:17304513
Serial Histopathological Examination of the Lungs of Mice Infected with Influenza A Virus PR8 Strain
Fukushi, Masaya; Ito, Tateki; Oka, Teruaki; Kitazawa, Toshio; Miyoshi-Akiyama, Tohru; Kirikae, Teruo; Yamashita, Makoto; Kudo, Koichiro
2011-01-01
Avian influenza H5N1 and pandemic (H1N1) 2009 viruses are known to induce viral pneumonia and subsequent acute respiratory distress syndrome (ARDS) with diffuse alveolar damage (DAD). The mortality rate of ARDS/DAD is extremely high, at approximately 60%, and no effective treatment for ARDS/DAD has been established. We examined serial pathological changes in the lungs of mice infected with influenza virus to determine the progress from viral pneumonia to ARDS/DAD. Mice were intranasally infected with influenza A/Puerto Rico/8/34 (PR8) virus, and their lungs were examined both macro- and micro-pathologically every 2 days. We also evaluated general condition, survival rate, body weight, viral loads in lung, and surfactant proteins in serum. As a result, all infected mice died within 9 days postinfection. At 2 days postinfection, inflammation in alveolar septa, i.e., interstitial pneumonia, was observed around bronchioles. From 4 to 6 days postinfection, interstitial pneumonia with alveolar collapse expanded throughout the lungs. From 6 to 9 days postinfection, DAD with severe alveolar collapse was observed in the lungs of all of dying and dead mice. In contrast, DAD was not observed in the live infected-mice from 2 to 6 days postinfection, despite their poor general condition. In addition, histopathological analysis was performed in mice infected with a dose of PR8 virus which was 50% of the lethal dose for mice in the 20-day observation period. DAD with alveolar collapse was observed in all dead mice. However, in the surviving mice, instead of DAD, glandular metaplasia was broadly observed in their lungs. The present study indicates that DAD with severe alveolar collapse is associated with death in this mouse infection model of influenza virus. Inhibition of the development of DAD with alveolar collapse may decrease the mortality rate in severe viral pneumonia caused by influenza virus infection. PMID:21701593
DOE Office of Scientific and Technical Information (OSTI.GOV)
Germain, Francois; Beaulieu, Luc; Fortin, Andre
2008-04-01
In conformal radiotherapy planning for lung cancer, respiratory movements are not taken into account when a single computed tomography (CT) scan is performed. This study examines tumor movements to design individualized margins to account for these movements and evaluates their dosimetric impacts on planning volume. Fifteen patients undergoing CT-based planning for radical radiotherapy for localized lung cancer formed the study cohort. A reference plan was constructed based on reference gross, clinical, and planning target volumes (rGTV, rCTV, and rPTV, respectively). The reference plans were compared with individualized plans using individualized margins obtained by using 5 serial CT scans to generatemore » individualized target volumes (iGTV, iCTV, and iPTV). Three-dimensional conformal radiation therapy was used for plan generation using 6- and 23-MV photon beams. Ten plans for each patient were generated and dose-volume histograms (DVHs) were calculated. Comparisons of volumetric and dosimetric parameters were performed using paired Student t-tests. Relative to the rGTV, the total volume occupied by the superimposed GTVs increased progressively with each additional CT scans. With the use of all 5 scans, the average increase in GTV was 52.1%. For the plans with closest dosimetric coverage, target volume was smaller (iPTV/rPTV ratio 0.808) but lung irradiation was only slightly decreased. Reduction in the proportion of lung tissue that received 20 Gy or more outside the PTV (V20) was observed both for 6-MV plans (-0.73%) and 23-MV plans (-0.65%), with p = 0.02 and p = 0.04, respectively. In conformal RT planning for the treatment of lung cancer, the use of serial CT scans to evaluate respiratory motion and to generate individualized margins to account for these motions produced only a limited lung sparing advantage.« less
ERIC Educational Resources Information Center
Hughes, Robert W.; Marsh, John E.
2017-01-01
A functional, perceptual-motor, account of serial short-term memory (STM) is examined by investigating the way in which an irrelevant spoken sequence interferes with verbal serial recall. Even with visual list-presentation, verbal serial recall is particularly susceptible to disruption by irrelevant spoken stimuli that have the same identity…
Three more semantic serial position functions and a SIMPLE explanation.
Kelley, Matthew R; Neath, Ian; Surprenant, Aimée M
2013-05-01
There are innumerable demonstrations of serial position functions-with characteristic primacy and recency effects-in episodic tasks, but there are only a handful of such demonstrations in semantic memory tasks, and those demonstrations have used only two types of stimuli. Here, we provide three more examples of serial position functions when recalling from semantic memory. Participants were asked to reconstruct the order of (1) two cartoon theme song lyrics, (2) the seven Harry Potter books, and (3) two sets of movies, and all three demonstrations yielded conventional-looking serial position functions with primacy and recency effects. The data were well-fit by SIMPLE, a local distinctiveness model of memory that was originally designed to account for serial position effects in short- and long-term episodic memory. According to SIMPLE, serial position functions in both episodic and semantic memory tasks arise from the same type of processing: Items that are more separated from their close neighbors in psychological space at the time of recall will be better remembered. We argue that currently available evidence suggests that serial position functions observed when recalling items that are presumably in semantic memory arise because of the same processes as those observed when recalling items that are presumably in episodic memory.
Changes in breath sound power spectra during experimental oleic acid-induced lung injury in pigs.
Räsänen, Jukka; Nemergut, Michael E; Gavriely, Noam
2014-01-01
To evaluate the effect of acute lung injury on the frequency spectra of breath sounds, we made serial acoustic recordings from nondependent, midlung and dependent regions of both lungs in ten 35- to 45-kg anesthetized, intubated, and mechanically ventilated pigs during development of acute lung injury induced with intravenous oleic acid in prone or supine position. Oleic acid injections rapidly produced severe derangements in the gas exchange and mechanical properties of the lung, with an average increase in venous admixture from 16 ± 12 to 62 ± 16% (P < 0.01), and a reduction in dynamic respiratory system compliance from 25 ± 4 to 14 ± 4 ml/cmH2O (P < 0.01). A concomitant increase in sound power was seen in all lung regions (P < 0.05), predominantly in frequencies 150-800 Hz. The deterioration in gas exchange and lung mechanics correlated best with concurrent spectral changes in the nondependent lung regions. Acute lung injury increases the power of breath sounds likely secondary to redistribution of ventilation from collapsed to aerated parts of the lung and improved sound transmission in dependent, consolidated areas.
Neath, Ian; Saint-Aubin, Jean
2011-06-01
The serial position function, with its characteristic primacy and recency effects, is one of the most ubiquitous findings in episodic memory tasks. In contrast, there are only two demonstrations of such functions in tasks thought to tap semantic memory. Here, we provide a third demonstration, showing that free recall of the prime ministers of Canada also results in a serial position function. Scale Independent Memory, Perception, and Learning (SIMPLE), a local distinctiveness model of memory that was designed to account for serial position effects in episodic memory, fit the data. According to SIMPLE, serial position functions observed in episodic and semantic memory all reflect the relative distinctiveness principle: items will be well remembered to the extent that they are more distinct than competing items at the time of retrieval. (PsycINFO Database Record (c) 2011 APA, all rights reserved).
Cannabis-induced bullous lung disease leading to pneumothorax: Case report and literature review.
Mishra, Rashmi; Patel, Ravi; Khaja, Misbahuddin
2017-05-01
Marijuana use has been increasing in the United States among college students and young adults. Marijuana use has been associated with bullous lung disease which can lead to pneumothorax. There are other recreational drugs like methylphenidate, cocaine and heroin which have been associated with pneumothorax. We present a case of a 30-year-old man with spontaneous pneumothorax associated with marijuana use. The patient had no medical conditions and presented to the emergency room with chest pain. The physical examination revealed decreased breath sound on the right side of the chest. Bed side ultrasound of chest showed stratosphere sign, absent lung sliding; consistent with right-sided pneumothorax. The patient underwent placement of a chest tube. Computed tomography chest scans performed on day two also showed bullous lung disease in the right lung. Serial x-rays of the chest showed re-expansion of the lung. Despite the beneficial effects of Marijuana there are deleterious effects which are emphasized here. This case highlights the need for further studies to establish the relationship between marijuana use and lung diseases in the absence of nicotine use.
Sung, Kyongje
2008-12-01
Participants searched a visual display for a target among distractors. Each of 3 experiments tested a condition proposed to require attention and for which certain models propose a serial search. Serial versus parallel processing was tested by examining effects on response time means and cumulative distribution functions. In 2 conditions, the results suggested parallel rather than serial processing, even though the tasks produced significant set-size effects. Serial processing was produced only in a condition with a difficult discrimination and a very large set-size effect. The results support C. Bundesen's (1990) claim that an extreme set-size effect leads to serial processing. Implications for parallel models of visual selection are discussed.
Asthma due to aluminium soldering flux
Sterling, G. M.
1967-01-01
Two patients have been studied who complained of dyspnoea after the inhalation of fumes from a new soldering flux recently developed for use in jointing aluminium which has been replacing copper as a material for electric cables. A previous survey of respiratory complaints after the use of this particular flux had failed to show any objective change in lung function, and the present cases are the first to be reported. Both subjects have been investigated by means of serial spirometry, peak flow rates, and body plethysmography following inhalation of small amounts of flux fumes; delayed and prolonged bronchoconstriction has been demonstrated. Similar results have been obtained after the inhalation of one of the main constituents of the flux, namely amino-ethyl ethanolamine, which is presumably the active allergic agent. The bronchial response is unusual in being delayed in onset but otherwise resembles pollen-sensitivity asthma rather than the infiltrative process seen in farmer's lung. The type of immune mechanism involved is speculative, but it is possible that some alteration of the amino-ethyl ethanolamine is needed before it can react with reaginic antibody fixed in the bronchial tissues. PMID:6076508
Golocheikine, Anjali .S.; Saini, Deepti; Ramachandran, Sabarinathan; Trulock, Elbert P.; Patterson, Alexander; Mohanakumar, T.
2007-01-01
The long term survival of human lung allograft is hampered by the occurrence of chronic rejection, Bronchiolitis Obliterans Syndrome (BOS). This end-stage disease is normally diagnosed clinically by using the pulmonary function tests. This results in delay of BOS diagnosis and consequently prevents early intervention. It is generally accepted that alloimmunity plays an important role in chronic rejection of the allograft. In this study we analyzed serial serum samples from BOS+ and BOS− patients for sCD30 levels to determine the role of sCD30 to predict the onset of BOS. In contrast to BOS negative patients and normal subjects, 6 out of 9 BOS+ patients (P<0.05) studied had an increase in the sCD30 levels. Significantly, the rise was noted 7.57 ±2.63 months before the clinical diagnosis was evident. Therefore, we propose that the rise in serum sCD30 levels can be used as a marker for the detection of patients who are at risk of development of BOS. PMID:18047935
Golocheikine, Anjali S; Saini, Deepti; Ramachandran, Sabarinathan; Trulock, Elbert P; Patterson, Alexander; Mohanakumar, T
2008-01-01
The long term survival of human lung allograft is hampered by the occurrence of chronic rejection, Bronchiolitis Obliterans Syndrome (BOS). This end-stage disease is normally diagnosed clinically by using the pulmonary function tests. This results in delay of BOS diagnosis and consequently prevents early intervention. It is generally accepted that alloimmunity plays an important role in chronic rejection of the allograft. In this study we analyzed serial serum samples from BOS+ and BOS- patients for sCD30 levels to determine the role of sCD30 to predict the onset of BOS. In contrast to BOS negative patients and normal subjects, 6 out of 9 BOS+ patients (p<0.05) studied had an increase in the sCD30 levels. Significantly, the rise was noted 7.57+/-2.63 months before the clinical diagnosis was evident. Therefore, we propose that the rise in serum sCD30 levels can be used as a marker for the detection of patients who are at risk of development of BOS.
[Effect of intravenous treatment with OK-432 on the bone marrow in patients with lung cancer].
Fujii, M; Ishikawa, M; Toki, H
1984-03-01
We studied effects of OK-432 on the bone marrow and peripheral blood cells of lung cancer patients. The nuclear cell count of bone marrow increased in 5 to 7 patients upon intravenous treatment with OK-432 compared with 3 of 6 patients who were intramuscularly treated with OK-432. Serial neutrophil counts of bone marrow increased in all 7 patients treated intravenously compared with 3 of 6 patients treated intramuscularly. The mean nuclear cell count or the serial neutrophil count of bone marrow in intravenously treated patients was significantly higher than the pretreatment values (p less than 0.001). In the peripheral blood picture, the difference in white blood cells or neutrophils before and after intravenous treatment was also statistically significant (p less than 0.01). There was no change in the erythrocytic series count of bone marrow and the hemoglobin count. Our results support the superiority of intravenous OK-432 treatment over intramuscular treatment in the growth-accelerating effect on bone marrow cells, especially regarding the neutrophil series.
The Contribution of Executive Functions to Naming Digits, Objects, and Words
ERIC Educational Resources Information Center
Altani, Angeliki; Protopapas, Athanassios; Georgiou, George K.
2017-01-01
Although it is established that reading fluency is more strongly related to serial naming of symbols than to naming of isolated items ("serial superiority effect"), the reason for the difference remains unclear. The purpose of this study was to examine the role of executive functions in explaining the serial superiority effect. One…
Dosimetric evaluation of a Monte Carlo IMRT treatment planning system incorporating the MIMiC
NASA Astrophysics Data System (ADS)
Rassiah-Szegedi, P.; Fuss, M.; Sheikh-Bagheri, D.; Szegedi, M.; Stathakis, S.; Lancaster, J.; Papanikolaou, N.; Salter, B.
2007-12-01
The high dose per fraction delivered to lung lesions in stereotactic body radiation therapy (SBRT) demands high dose calculation and delivery accuracy. The inhomogeneous density in the thoracic region along with the small fields used typically in intensity-modulated radiation therapy (IMRT) treatments poses a challenge in the accuracy of dose calculation. In this study we dosimetrically evaluated a pre-release version of a Monte Carlo planning system (PEREGRINE 1.6b, NOMOS Corp., Cranberry Township, PA), which incorporates the modeling of serial tomotherapy IMRT treatments with the binary multileaf intensity modulating collimator (MIMiC). The aim of this study is to show the validation process of PEREGRINE 1.6b since it was used as a benchmark to investigate the accuracy of doses calculated by a finite size pencil beam (FSPB) algorithm for lung lesions treated on the SBRT dose regime via serial tomotherapy in our previous study. Doses calculated by PEREGRINE were compared against measurements in homogeneous and inhomogeneous materials carried out on a Varian 600C with a 6 MV photon beam. Phantom studies simulating various sized lesions were also carried out to explain some of the large dose discrepancies seen in the dose calculations with small lesions. Doses calculated by PEREGRINE agreed to within 2% in water and up to 3% for measurements in an inhomogeneous phantom containing lung, bone and unit density tissue.
Serials Control System Procedures and Policies.
ERIC Educational Resources Information Center
Schlembach, Mary C.
This document includes procedures and policies for a networked serials control system originally developed at the Grainger Engineering Library Information Center at the University of Illinois at Urbana-Champaign (UIUC). The serials control systems encompass serials processing, public service, and end-user functions. The system employs a…
ERIC Educational Resources Information Center
Sung, Kyongje
2008-01-01
Participants searched a visual display for a target among distractors. Each of 3 experiments tested a condition proposed to require attention and for which certain models propose a serial search. Serial versus parallel processing was tested by examining effects on response time means and cumulative distribution functions. In 2 conditions, the…
2017-01-01
There is a potential for silver nanowires (AgNWs) to be inhaled, but there is little information on their health effects and their chemical transformation inside the lungs in vivo. We studied the effects of short (S-AgNWs; 1.5 μm) and long (L-AgNWs; 10 μm) nanowires instilled into the lungs of Sprague–Dawley rats. S- and L-AgNWs were phagocytosed and degraded by macrophages; there was no frustrated phagocytosis. Interestingly, both AgNWs were internalized in alveolar epithelial cells, with precipitation of Ag2S on their surface as secondary Ag2S nanoparticles. Quantitative serial block face three-dimensional scanning electron microscopy showed a small, but significant, reduction of NW lengths inside alveolar epithelial cells. AgNWs were also present in the lung subpleural space where L-AgNWs exposure resulted in more Ag+ve macrophages situated within the pleura and subpleural alveoli, compared with the S-AgNWs exposure. For both AgNWs, there was lung inflammation at day 1, disappearing by day 21, but in bronchoalveolar lavage fluid (BALF), L-AgNWs caused a delayed neutrophilic and macrophagic inflammation, while S-AgNWs caused only acute transient neutrophilia. Surfactant protein D (SP-D) levels in BALF increased after S- and L-AgNWs exposure at day 7. L-AgNWs induced MIP-1α and S-AgNWs induced IL-18 at day 1. Large airway bronchial responsiveness to acetylcholine increased following L-AgNWs, but not S-AgNWs, exposure. The attenuated response to AgNW instillation may be due to silver inactivation after precipitation of Ag2S with limited dissolution. Our findings have important consequences for the safety of silver-based technologies to human health. PMID:28221763
Impaired Processing of Serial Order Determines Working Memory Impairments in Alzheimer's Disease.
De Belder, Maya; Santens, Patrick; Sieben, Anne; Fias, Wim
2017-01-01
Working memory (WM) problems are commonly observed in Alzheimer's disease (AD), but the affected mechanisms leading to impaired WM are still insufficiently understood. The ability to efficiently process serial order in WM has been demonstrated to be fundamental to fluent daily life functioning. The decreased capability to mentally process serial position in WM has been put forward as the underlying explanation for generally compromised WM performance. Determine which mechanisms, such as order processing, are responsible for deficient WM functioning in AD. A group of AD patients (n = 32) and their partners (n = 25), assigned to the control group, were submitted to an extensive battery of neuropsychological and experimental tasks, assessing general cognitive state and functioning of several aspects related to serial order WM. The results revealed an impaired ability to bind item information to serial position within WM in AD patients compared to controls. It was additionally observed that AD patients experienced specific difficulties with directing spatial attention when searching for item information stored in WM. The processing of serial order and the allocation of attentional resources are both disrupted, explaining the generally reduced WM functioning in AD patients. Further studies should now clarify whether this observation could explain disease-related problems for other cognitive functions such as verbal expression, auditory comprehension, or planning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirsch, David G., E-mail: david.kirsch@duke.ed; Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA; Departments of Radiation Oncology and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC
Purpose: To image a genetically engineered mouse model of non-small-cell lung cancer with micro-computed tomography (micro-CT) to measure tumor response to radiation therapy. Methods and Materials: The Cre-loxP system was used to generate primary lung cancers in mice with mutation in K-ras alone or in combination with p53 mutation. Mice were serially imaged by micro-CT, and tumor volumes were determined. A comparison of tumor volume by micro-CT and tumor histology was performed. Tumor response to radiation therapy (15.5 Gy) was assessed with micro-CT. Results: The tumor volume measured with free-breathing micro-CT scans was greater than the volume calculated by histology.more » Nevertheless, this imaging approach demonstrated that lung cancers with mutant p53 grew more rapidly than lung tumors with wild-type p53 and also showed that radiation therapy increased the doubling time of p53 mutant lung cancers fivefold. Conclusions: Micro-CT is an effective tool to noninvasively measure the growth of primary lung cancers in genetically engineered mice and assess tumor response to radiation therapy. This imaging approach will be useful to study the radiation biology of lung cancer.« less
Accelerating functional verification of an integrated circuit
Deindl, Michael; Ruedinger, Jeffrey Joseph; Zoellin, Christian G.
2015-10-27
Illustrative embodiments include a method, system, and computer program product for accelerating functional verification in simulation testing of an integrated circuit (IC). Using a processor and a memory, a serial operation is replaced with a direct register access operation, wherein the serial operation is configured to perform bit shifting operation using a register in a simulation of the IC. The serial operation is blocked from manipulating the register in the simulation of the IC. Using the register in the simulation of the IC, the direct register access operation is performed in place of the serial operation.
Wu, Xiaohua; Dong, Dawei; Ma, Daqing
2016-08-08
BACKGROUND SARS is not only an acute disease, but also leads to long-term impaired lung diffusing capacity in some survivors. However, there is a paucity of data regarding long-term CT findings in survivors after SARS. The aim of this study was to assess the changes in lung function and lung thin-section computed tomography (CT) features in patients recovering from severe acute respiratory syndrome (SARS), especially the dynamic changes in ground-glass opacity (GGO). MATERIAL AND METHODS Clinical and radiological data from 11 patients with SARS were collected. The serial follow-up thin-section CTs were evaluated at 3, 6, and 84 months after SARS presentation. The distribution and predominant thin-section CT findings of lesions were evaluated. RESULTS The extent of the lesions on the CT scans of the 11 patients decreased at 6 and 84 months compared to 3 months. The number of segments involved on 84-month follow-up CTs was less than those at 6 months (P<0.05). The predominant thin-section CT manifestation at 84 months (intralobular and interlobular septal thickening) was different than that at 6 months, at which GGO was predominant. CONCLUSIONS During convalescence after SARS, GGO and intralobular and interlobular septal thickening were the main thin-section CT manifestation. Intralobular and interlobular septal thickening predominated over GGO at 84 months.
Lee, Geewon; Kim, Ki Uk; Lee, Ji Won; Suh, Young Ju; Jeong, Yeon Joo
2017-05-01
Background Although fibrotic idiopathic interstitial pneumonias (IIPs) alone and those combined with pulmonary emphysema are naturally progressive diseases, the process of deterioration and outcomes are variable. Purpose To evaluate and compare serial changes of computed tomography (CT) abnormalities and prognostic predictive factors in fibrotic IIPs alone and those combined with pulmonary emphysema. Material and Methods A total of 148 patients with fibrotic IIPs alone (82 patients) and those combined with pulmonary emphysema (66 patients) were enrolled. Semi-quantitative CT analysis was used to assess the extents of CT characteristics which were evaluated on initial and follow-up CT images. Univariate and multivariate analyses were performed to assess the effects of clinical and CT variables on survival. Results Significant differences were noted between fibrotic scores, as determined using initial CT scans, in the fibrotic IIPs alone (21.22 ± 9.83) and those combined with pulmonary emphysema groups (14.70 ± 7.28) ( P < 0.001). At follow-up CT scans, changes in the extent of ground glass opacities (GGO) were greater ( P = 0.031) and lung cancer was more prevalent ( P = 0.001) in the fibrotic IIPs combined with pulmonary emphysema group. Multivariate Cox proportional hazards analysis showed changes in the extent of GGO (hazard ratio, 1.056) and the presence of lung cancer (hazard ratio, 4.631) were predictive factors of poor survivals. Conclusion Although patients with fibrotic IIPs alone and those combined with pulmonary emphysema have similar mortalities, lung cancer was more prevalent in patients with fibrotic IIPs combined with pulmonary emphysema. Furthermore, changes in the extent of GGO and the presence of lung cancer were independent prognostic factors of poor survivals.
Serial Sonographic Assessment of Pulmonary Edema in Patients With Hypertensive Acute Heart Failure.
Martindale, Jennifer L; Secko, Michael; Kilpatrick, John F; deSouza, Ian S; Paladino, Lorenzo; Aherne, Andrew; Mehta, Ninfa; Conigiliaro, Alyssa; Sinert, Richard
2018-02-01
Objective measures of clinical improvement in patients with acute heart failure (AHF) are lacking. The aim of this study was to determine whether repeated lung sonography could semiquantitatively capture changes in pulmonary edema (B-lines) in patients with hypertensive AHF early in the course of treatment. We conducted a feasibility study in a cohort of adults with acute onset of dyspnea, severe hypertension in the field or at triage (systolic blood pressure ≥ 180 mm Hg), and a presumptive diagnosis of AHF. Patients underwent repeated dyspnea and lung sonographic assessments using a 10-cm visual analog scale (VAS) and an 8-zone scanning protocol. Lung sonographic assessments were performed at the time of triage, initial VAS improvement, and disposition from the emergency department. Sonographic pulmonary edema was independently scored offline in a randomized and blinded fashion by using a scoring method that accounted for both the sum of discrete B-lines and degree of B-line fusion. Sonographic pulmonary edema scores decreased significantly from initial to final sonographic assessments (P < .001). The median percentage decrease among the 20 included patient encounters was 81% (interquartile range, 55%-91%). Although sonographic pulmonary edema scores correlated with VAS scores (ρ = 0.64; P < .001), the magnitude of the change in these scores did not correlate with each other (ρ = -0.04; P = .89). Changes in sonographic pulmonary edema can be semiquantitatively measured by serial 8-zone lung sonography using a scoring method that accounts for B-line fusion. Sonographic pulmonary edema improves in patients with hypertensive AHF during the initial hours of treatment. © 2017 by the American Institute of Ultrasound in Medicine.
Kendall, Marilyn; Boyd, Kirsty; Grant, Liz; Highet, Gill; Sheikh, Aziz
2010-01-01
Objective To assess if family care givers of patients with lung cancer experience the patterns of social, psychological, and spiritual wellbeing and distress typical of the patient, from diagnosis to death. Design Secondary analysis of serial qualitative interviews carried out every three months for up to a year or to bereavement. Setting South east Scotland. Participants 19 patients with lung cancer and their 19 family carers, totalling 88 interviews (42 with patients and 46 with carers). Results Carers followed clear patterns of social, psychological, and spiritual wellbeing and distress that mirrored the experiences of those for whom they were caring, with some carers also experiencing deterioration in physical health that impacted on their ability to care. Psychological and spiritual distress were particularly dynamic and commonly experienced. In addition to the “Why us?” response, witnessing suffering triggered personal reflections in carers on the meaning and purpose of life. Certain key time points in the illness tended to be particularly problematic for both carers and patients: at diagnosis, at home after initial treatment, at recurrence, and during the terminal stage. Conclusions Family carers witness and share much of the illness experience of the dying patient. The multidimensional experience of distress suffered by patients with lung cancer was reflected in the suffering of their carers in the social, psychological, and spiritual domains, with psychological and spiritual distress being most pronounced. Carers may need to be supported throughout the period of illness not just in the terminal phase and during bereavement, as currently tends to be the case. PMID:20538635
Development of A Novel Murine Model of Combined Radiation and Peripheral Tissue Trauma Injuries
Antonic, Vlado; Jackson, Isabel L.; Ganga, Gurung; Shea-Donohue, Terez; Vujaskovic, Zeljko
2017-01-01
Detonation of a 10-kiloton nuclear bomb in an urban setting would result in >1 million casualties, the majority of which would present with combined injuries. Combined injuries, such as peripheral tissue trauma and radiation exposure, trigger inflammatory events that lead to multiple organ dysfunction (MOD) and death, with gastrointestinal (GI) and pulmonary involvement playing crucial roles. The objective of this study was to develop an animal model of combined injuries, peripheral tissue trauma (TBX animal model) combined with total body irradiation with 5% bone marrow shielding (TBI/BM5) to investigate if peripheral tissue trauma contributes to reduced survival. Male C57BL/6J mice were exposed to TBX10%, irradiation (TBI/BM5), or combined injuries (TBX10% + TBI/BM5). Experiments were conducted to evaluate mortality at day 7 after TBI/BM5. Serial euthanasia was performed at day 1, 3 and 6 or 7 after TBI/BM5 to evaluate the time course of pathophysiologic processes in combined injuries. Functional tests were performed to assess pulmonary function and GI motility. Postmortem samples of lungs and jejunum were collected to assess tissue damage. Results indicated higher lethality and shorter survival in the TBX10% +T BI/BM5 group than in the TBX10% or TBI/BM5 groups (day 1 vs. day 7 and 6, respectively). TBI/BM5 alone had no effects on the lungs but significantly impaired GI function at day 6. As expected, in the animals that received severe trauma (TBX10%), we observed impairment in lung function and delay in GI transit in the first 3 days, effects that decreased at later time points. Trauma combined with radiation (TBX10% + TBI/BM5) significantly augmented impairment of the lung and GI function in comparison to TBX10% and TBI/BM5 groups at 24 h. Histologic evaluation indicated that combined injuries caused greater tissue damage in the intestines in TBX10% + TBI/BM5 group when compared to other groups. We describe here the first combined tissue trauma/radiation injury model that will allow conduction of mechanistic studies to identify new therapeutic targets and serve as a platform for testing novel therapeutic interventions. PMID:28118112
The OCLC Serials Sub-System: A First Evaluation.
ERIC Educational Resources Information Center
Edgar, Neal L.; And Others
This examination of the OCLC serials control sub-system points to positive and negative aspects of the OCLC system as they relate to serials, and evaluates the system's serials cataloging capabilities. While this report assumes a knowledge of the basic operations of OCLC, it describes the system in general, its function in cataloging, and its…
Gkika, Eleni; Vach, Werner; Adebahr, Sonja; Schimek-Jasch, Tanja; Brenner, Anton; Brunner, Thomas Baptist; Kaier, Klaus; Prasse, Antje; Müller-Quernheim, Joachim; Grosu, Anca-Ligia; Zissel, Gernot; Nestle, Ursula
2017-01-01
The CC chemokine ligand 18 (CCL18) is produced by alveolar macrophages in patients with fibrosing lung disease and its concentration is increased in various fibrotic lung diseases. Furthermore CCL18 is elevated in several malignancies as it is produced by tumor associated macrophages. In this study we aimed to analyze the role of CCL18 as a prognostic biomarker for the development of early radiation induced lung toxicity (RILT), i.e. radiation pneumonitis after thoracic irradiation and its significance in the course of the disease. Sixty seven patients were enrolled prospectively in the study. Patients were treated with irradiation for several thoracic malignancies (lung cancer, esophageal cancer, thymoma), either with conventionally fractionated or hypo-fractionated radiotherapy. The CCL18 serum levels were quantified with ELISA (enzyme-linked immunosorbent assay) at predefined time points: before, during and at the end of treatment as well as in the first and second follow-up. Treatment parameters and functional tests were also correlated with the development of RILT.Fifty three patients were evaluable for this study. Twenty one patients (39%) developed radiologic signs of RILT Grade >1 but only three of them (5.6%) developed clinical symptoms (Grade 2). We could not find any association between the different CCL18 concentrations and a higher incidence of RILT. Statistical significant factors were the planning target volume (odds ratio OR: 1.003, p = 0.010), the volume of the lung receiving > 20 Gy (OR: 1.132 p = 0.004) and age (OR: 0.917, p = 0.008). There was no association between serial CCL18 concentrations with tumor response and overall survival.In our study the dosimetric parameters remained the most potent predictors of RILT. Further studies are needed in order to estimate the role of CCL18 in the development of early RILT.
Vach, Werner; Adebahr, Sonja; Schimeck-Jasch, Tanja; Brenner, Anton; Brunner, Thomas Baptist; Kaier, Klaus; Prasse, Antje; Müller-Quernheim, Joachim; Grosu, Anca-Ligia; Zissel, Gernot; Nestle, Ursula
2017-01-01
The CC chemokine ligand 18 (CCL18) is produced by alveolar macrophages in patients with fibrosing lung disease and its concentration is increased in various fibrotic lung diseases. Furthermore CCL18 is elevated in several malignancies as it is produced by tumor associated macrophages. In this study we aimed to analyze the role of CCL18 as a prognostic biomarker for the development of early radiation induced lung toxicity (RILT), i.e. radiation pneumonitis after thoracic irradiation and its significance in the course of the disease. Sixty seven patients were enrolled prospectively in the study. Patients were treated with irradiation for several thoracic malignancies (lung cancer, esophageal cancer, thymoma), either with conventionally fractionated or hypo-fractionated radiotherapy. The CCL18 serum levels were quantified with ELISA (enzyme-linked immunosorbent assay) at predefined time points: before, during and at the end of treatment as well as in the first and second follow-up. Treatment parameters and functional tests were also correlated with the development of RILT.Fifty three patients were evaluable for this study. Twenty one patients (39%) developed radiologic signs of RILT Grade >1 but only three of them (5.6%) developed clinical symptoms (Grade 2). We could not find any association between the different CCL18 concentrations and a higher incidence of RILT. Statistical significant factors were the planning target volume (odds ratio OR: 1.003, p = 0.010), the volume of the lung receiving > 20 Gy (OR: 1.132 p = 0.004) and age (OR: 0.917, p = 0.008). There was no association between serial CCL18 concentrations with tumor response and overall survival.In our study the dosimetric parameters remained the most potent predictors of RILT. Further studies are needed in order to estimate the role of CCL18 in the development of early RILT. PMID:28957436
Kelsey, Chris R; Jackson, Lauren; Langdon, Scott; Owzar, Kouros; Hubbs, Jessica; Vujaskovic, Zeljko; Das, Shiva; Marks, Lawrence B
2012-02-01
To evaluate whether single nucleotide polymorphisms (SNPs) in the transforming growth factor-β1 (TGFβ1) gene are associated with radiation sensitivity using an objective radiologic endpoint. Preradiation therapy and serial postradiation therapy single photon emission computed tomography (SPECT) lung perfusion scans were obtained in patients undergoing treatment for lung cancer. Serial blood samples were obtained to measure circulating levels of TGFβ1. Changes in regional perfusion were related to regional radiation dose yielding a patient-specific dose-response curve, reflecting the patient's inherent sensitivity to radiation therapy. Six TGFβ1 SNPs (-988, -800, -509, 869, 941, and 1655) were assessed using high-resolution melting assays and DNA sequencing. The association between genotype and slope of the dose-response curve, and genotype and TGFβ1 ratio (4-week/preradiation therapy), was analyzed using the Kruskal-Wallis test. 39 white patients with preradiation therapy and ≥ 6-month postradiation therapy SPECT scans and blood samples were identified. Increasing slope of the dose-response curve was associated with the C(-509)T SNP (p = 0.035), but not the other analyzed SNPs. This SNP was also associated with higher TGFβ1 ratios. This study suggests that a polymorphism within the promoter of the TGFβ1 gene is associated with increased radiation sensitivity (defined objectively by dose-dependent changes in SPECT lung perfusion). Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelsey, Chris R., E-mail: kelse003@mc.duke.edu; Jackson, Lauren; Langdon, Scott
2012-02-01
Purpose: To evaluate whether single nucleotide polymorphisms (SNPs) in the transforming growth factor-{beta}1 (TGF{beta}1) gene are associated with radiation sensitivity using an objective radiologic endpoint. Methods and Materials: Preradiation therapy and serial postradiation therapy single photon emission computed tomography (SPECT) lung perfusion scans were obtained in patients undergoing treatment for lung cancer. Serial blood samples were obtained to measure circulating levels of TGF{beta}1. Changes in regional perfusion were related to regional radiation dose yielding a patient-specific dose-response curve, reflecting the patient's inherent sensitivity to radiation therapy. Six TGF{beta}1 SNPs (-988, -800, -509, 869, 941, and 1655) were assessed using high-resolutionmore » melting assays and DNA sequencing. The association between genotype and slope of the dose-response curve, and genotype and TGF{beta}1 ratio (4-week/preradiation therapy), was analyzed using the Kruskal-Wallis test. Results: 39 white patients with preradiation therapy and {>=}6-month postradiation therapy SPECT scans and blood samples were identified. Increasing slope of the dose-response curve was associated with the C(-509)T SNP (p = 0.035), but not the other analyzed SNPs. This SNP was also associated with higher TGF{beta}1 ratios. Conclusions: This study suggests that a polymorphism within the promoter of the TGF{beta}1 gene is associated with increased radiation sensitivity (defined objectively by dose-dependent changes in SPECT lung perfusion).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, B.; Packard, B.S.; Read, E.J.
Lymphoid cells infiltrating into human tumors can be expanded in vitro in medium containing interleukin-2 (IL-2). Adoptive transfer of these tumor-infiltrating lymphocytes (TIL) mediates potent antitumor effects in murine tumor models. Clinical trials to evaluate the efficacy of these cells in patients with advanced cancer are underway. We have investigated whether infused TIL labeled with indium 111 (111In) oxine can traffic and localize to metastatic deposits of tumor. Six patients with metastatic malignant melanoma who had multiple sites of subcutaneous, nodal, and/or visceral disease were the subjects of the study. The patients received cyclophosphamide 36 hours before receiving the intravenousmore » (IV) infusion of TIL followed by IL-2 IV every eight hours. The distribution and localization of the TIL were evaluated using serial whole body gamma camera imaging, serial blood and urine samplings, and serial biopsies of tumor and normal tissue. 111In-labeled TIL localized to lung, liver, and spleen within two hours after the infusion of activity. Activity in the lung diminished within 24 hours. As early as 24 hours after injection of 111In-labeled TIL, localization of TIL to sites of metastatic deposits was demonstrated in all six patients using either imaging studies or biopsy specimens or both. 111In activity in tumor tissue biopsies ranged from three to 40 times greater than activity in normal tissue. A progressive increase in the radioactive counts at sites of tumor deposit was seen. This study shows that labeled TIL can localize preferentially to tumor, and provides information concerning the possible mechanism of the therapeutic effects of TIL.« less
Allergic Bronchopulmonary Aspergillosis in Patient with Cystic Fibrosis - a Case Report
IONESCU, Marcela Daniela; BALGRADEAN, Mihaela; MARCU, Veronica
2014-01-01
Asthma with allergic bronchopulmonary aspergillosis (ABPA), a hypersensitivity disease of the lungs due to an immune response to Aspergillus fumigattus (Af) antigens, is rarely seen in children, other than complicating cystic fibrosis. We present the case of a 14 – year- old female teenager with cystic fibrosis (CF), admitted in our hospital with respiratory failure and persistent cyanosis. Chest X-ray showed perihilar and upper lobes pulmonary infiltrates. Her airway cultures were positive for methicillin resistant staphilococcus aureus (MRSA) and non-mucoid Pseudomonas aeruginosa. She was prescribed intravenous antibiotherapy with ceftazidime and vancomycine (to which MRSA and Pseudomonas aeruginosa were susceptible). Pulmonary function testing (PFT) revealed severe obstructive lung disease. After ten days of intravenous antibiotics and first five days of corticosteroid, the patient's FEV1 was 68% of predicted. Total serum IgE and IgE antibodies to Aspergillus fumigatus were elevated. These results raised the possibility of allergic bronchopulmonary aspergillosis (ABPA). The possibility of ABPA should be considered in all pulmonary exacerbation and in order to determine if ABPA is developing or if an exacerbation is occurring, a serial monitoring of IgE levels should be performed. PMID:25705310
Role of epithelial cells in idiopathic pulmonary fibrosis: from innocent targets to serial killers.
Selman, Moisés; Pardo, Annie
2006-06-01
Idiopathic pulmonary fibrosis (IPF), a progressive and relentless lung scarring of unknown etiology, has been recognized as the most lethal interstitial lung disease. Despite the growing interest in IPF, the precise molecular mechanisms underlying the development of fibrosis and leading to the irreversible destruction of the lung are still unknown. Recently, it has been proposed that IPF, instead of being a chronic inflammatory disorder, results from multiple cycles of epithelial cell injury and activation. In turn, active alveolar epithelial cells provoke the migration, proliferation, and activation of mesenchymal cells with the formation of fibroblastic/myofibroblastic foci and the exaggerated accumulation of extracellular matrix, mirroring abnormal wound repair. In this article, some characteristics of the alveolar epithelium are briefly outlined, and the fibrogenic mechanisms specifically operated by active abnormal epithelial cells are examined.
Child serial murder-psychodynamics: closely watched shadows.
Turco, R
2001-01-01
There is a malignant transformation in object relations resulting in an identification with an omnipotent and cruel object resulting in an identity transformation. If the tension, desperation, and dissociation increase, serial murder becomes spree murder. The presence of pathological narcissism and psychopathic tendencies are of diagnostic significance in understanding the murderer's personality functioning and motivation to kill. Meloy (1988) considered the degree of sadism and aggression combined with narcissistic qualities to reflect the "malignancy" of the psychopathic disturbance where gratification (of aggression) occurs in the service of narcissistic functioning--that is, cruelty toward others in the form of a triumphant victory over a rejecting object. Meloy also believes that dissociation is ubiquitious in the psychopath. The initial murder of the serial murderer may reflect a "new identity." The pathological object-relations of narcissism and the malignant narcissism are important diagnostic indicators in the personality functioning of serial killers and the occurrence of these phenomena is a significant factor in the formation of the personalities of serial killers, their inner motivations, and their pattern of commission.
Pulmonary tuberculosis and disease-related pulmonary apical fibrosis in ankylosing spondylitis.
Ho, Huei-Huang; Lin, Meng-Chih; Yu, Kuang-Hui; Wang, Chin-Man; Wu, Yeong-Jian Jan; Chen, Ji-Yih
2009-02-01
We investigated the etiological association and clinical characteristics of apical pulmonary fibrosis in ankylosing spondylitis (AS). We reviewed medical records of 2136 consecutive patients diagnosed with AS at a tertiary medical center. Clinical and radiographic characteristics were analyzed for evidence of apical lung fibrosis on chest radiographs. Of 2136 patients with AS, 63 (2.9%) developed apical lung fibrosis, of which chronic infections were the cause in 41 and AS inflammation predisposed the fibrosis in 22 patients. Tuberculosis (TB) infection was considered to be the cause of apical lung fibrosis in 40 patients (63.5%) including 19 with bacteriologically-proven TB and 21 with chest radiographs suggestive of TB. Two were identified as having non-TB mycobacterial infection and one as Aspergillus infection. Lung cavity lesion appeared to be a crucial differentiator (p = 0.009, odds ratio 7.4, 95% CI 1.5-36.0) between TB infection and AS inflammation-induced apical fibrosis. Our study suggests that TB, instead of Aspergillus, is the most common pulmonary infection in patients with AS presenting with apical lung fibrosis. AS-associated apical lung fibrosis may mimic pulmonary TB infection. Thus, bacteriological survey and serial radiological followup of lung fibrocavitary lesions are critical for accurate diagnosis and treatment.
Evaluation of Serial Casting for Boys with Duchenne Muscular Dystrophy: A Case Report.
Carroll, Kate; de Valle, Katy; Kornberg, Andrew; Ryan, Monique; Kennedy, Rachel
2018-02-01
To report the effects of below-knee serial casting in two boys with Duchenne muscular dystrophy who presented with well-preserved strength and calf shortening. Bilateral below-knee serial casts were applied over two weeks with follow-up of daily stretching and wearing of customized night splints. Outcome measures were performed at baseline, 1, 3, 6, and 12 months post-casting. These included measures of calf length, leg strength, motor function, endurance, and spatio-temporal gait parameters. Both boys completed serial casting with gains in muscle length. No adverse effects on strength or motor function were observed over a 12-month follow-up period.
Roach, David J.; Crémillieux, Yannick; Fleck, Robert J.; Brody, Alan S.; Serai, Suraj D.; Szczesniak, Rhonda D.; Kerlakian, Stephanie; Clancy, John P.
2016-01-01
Rationale: Recent advancements that have been made in magnetic resonance imaging (MRI) improve our ability to assess pulmonary structure and function in patients with cystic fibrosis (CF). A nonionizing imaging modality that can be used as a serial monitoring tool throughout life can positively affect patient care and outcomes. Objectives: To compare an ultrashort echo-time MRI method with computed tomography (CT) as a biomarker of lung structure abnormalities in young children with early CF lung disease. Methods: Eleven patients with CF (mean age, 31.8 ± 5.7 mo; median age, 33 mo; 7 male and 4 female) were imaged via CT and ultrashort echo-time MRI. Eleven healthy age-matched patients (mean age, 22.5 ± 10.2 mo; median age, 23 mo; 5 male and 6 female) were imaged via ultrashort echo-time MRI. CT scans of 13 additional patients obtained for clinical indications not affecting the heart or lungs and interpreted as normal provided a CT control group (mean age, 24.1 ± 11.7 mo; median age, 24 mo; 6 male and 7 female). Studies were scored by two experienced radiologists using a well-validated CF-specific scoring system for CF lung disease. Measurements and Main Results: Correlations between CT and ultrashort echo-time MRI scores of patients with CF were very strong, with P values ≤0.001 for bronchiectasis (r = 0.96) and overall score (r = 0.90), and moderately strong for bronchial wall thickening (r = 0.62, P = 0.043). MRI easily differentiated CF and control groups via a reader CF-specific scoring system. Conclusions: Ultrashort echo-time MRI detected structural lung disease in very young patients with CF and provided imaging data that correlated well with CT. By quantifying early CF lung disease without using ionizing radiation, ultrashort echo-time MRI appears well suited for pediatric patients requiring longitudinal imaging for clinical care or research studies. Clinical Trial registered with www.clinicaltrials.gov (NCT01832519). PMID:27551814
Ozone, air pollution, and respiratory health.
Beckett, W. S.
1991-01-01
Of the outdoor air pollutants regulated by the Clean Air Act of 1970 (and recently revised in 1990), ozone has been the one pollutant most difficult to control within the federal standards. The known human health effects are all on the respiratory system. At concentrations of ozone which occur during summer air-pollution episodes in many urban metropolitan areas of the United States, a portion of the healthy population is likely to experience symptoms and reversible effects on lung function, particularly if exercising heavily outdoors. More prolonged increase in airway responsiveness and the presence of inflammatory cells and mediators in the airway lining fluid may also result from these naturally occurring exposures. Serial exposures to peak levels of ozone on several consecutive days are more characteristic of pollution episodes in the Northeast United States and may be associated with recurrent symptoms. No "high-risk" or more sensitive group has been found, in contrast to the case of sulfur dioxide, to which asthmatics are more susceptible than normals. The occurrence of multiple exposure episodes within a single year over many years in some areas of California has led to studies looking for chronic effects of ozone exposure on the lung. To date, no conclusive studies have been reported, although further work is under way. Much of what we know about the effects of this gas on the lung are based on controlled exposures to pure gas within an environmental exposure laboratory. Interactions between substances which commonly co-occur in air-pollution episodes are also under investigation. PMID:1750227
Raman, Pavithra; Raman, Raghav; Newman, Beverley; Venkatraman, Raman; Raman, Bhargav; Robinson, Terry E
2010-12-01
To address potential concern for cumulative radiation exposure with serial spiral chest computed tomography (CT) scans in children with chronic lung disease, we developed an approach to match bronchial airways on low-dose spiral and low-dose high-resolution CT (HRCT) chest images to allow serial comparisons. An automated algorithm matches the position and orientation of bronchial airways obtained from HRCT slices with those in the spiral CT scan. To validate this algorithm, we compared manual matching vs automatic matching of bronchial airways in three pediatric patients. The mean absolute percentage difference between the manually matched spiral CT airway and the index HRCT airways were 9.4 ± 8.5% for the internal diameter measurements, 6.0 ± 4.1% for the outer diameter measurements, and 10.1 ± 9.3% for the wall thickness measurements. The mean absolute percentage difference between the automatically matched spiral CT airway measurements and index HRCT airway measurements were 9.2 ± 8.6% for the inner diameter, 5.8 ± 4.5% for the outer diameter, and 9.9 ± 9.5% for the wall thickness. The overall difference between manual and automated methods was 2.1 ± 1.2%, which was significantly less than the interuser variability of 5.1 ± 4.6% (p<0.05). Tests of equivalence had p<0.05, demonstrating no significant difference between the two methods. The time required for matching was significantly reduced in the automated method (p<0.01) and was as accurate as manual matching, allowing efficient comparison of airways obtained on low-dose spiral CT imaging with low-dose HRCT scans.
Andreasson, Anders S.I.; Karamanou, Danai M.; Gillespie, Colin S.; Özalp, Faruk; Butt, Tanveer; Hill, Paul; Jiwa, Kasim; Walden, Hannah R.; Green, Nicola J.; Borthwick, Lee A.; Clark, Stephen C.; Pauli, Henning; Gould, Kate F.; Corris, Paul A.; Ali, Simi; Dark, John H.
2017-01-01
Abstract OBJECTIVES: Availability of donor lungs suitable for transplant falls short of current demand and contributes to waiting list mortality. Ex vivo lung perfusion (EVLP) offers the opportunity to objectively assess and recondition organs unsuitable for immediate transplant. Identifying robust biomarkers that can stratify donor lungs during EVLP to use or non-use or for specific interventions could further improve its clinical impact. METHODS: In this pilot study, 16 consecutive donor lungs unsuitable for immediate transplant were assessed by EVLP. Key inflammatory mediators and tissue injury markers were measured in serial perfusate samples collected hourly and in bronchoalveolar lavage fluid (BALF) collected before and after EVLP. Levels were compared between donor lungs that met criteria for transplant and those that did not. RESULTS: Seven of the 16 donor lungs (44%) improved during EVLP and were transplanted with uniformly good outcomes. Tissue and vascular injury markers lactate dehydrogenase, HMGB-1 and Syndecan-1 were significantly lower in perfusate from transplanted lungs. A model combining IL-1β and IL-8 concentrations in perfusate could predict final EVLP outcome after 2 h assessment. In addition, perfusate IL-1β concentrations showed an inverse correlation to recipient oxygenation 24 h post-transplant. CONCLUSIONS: This study confirms the feasibility of using inflammation and tissue injury markers in perfusate and BALF to identify donor lungs most likely to improve for successful transplant during clinical EVLP. These results support examining this issue in a larger study. PMID:28082471
USDA-ARS?s Scientific Manuscript database
While pandemic 2009 H1N1 influenza A viruses were responsible for numerous severe infections in humans, these viruses do not typically cause corresponding severe disease in mammalian models. However, the generation of a virulent 2009 H1N1 virus following serial lung passage in mice has allowed for...
Phase 0 Trial of Itraconazole for Early-Stage Non-Small Cell Lung Cancer
2016-10-01
tissue and blood sampling in addition to magnetic resonance imaging ( MRI ) scans for biomarker analysis. At the time of surgery, resected tissue will...original proposal, these subjects underwent study-related MRI scans, skin biopsies, blood tests, treatment with itraconazole, and surgical resection...not complete serial MRIs scans. Task 2: Determine anti-angiogenic effects of itraconazole Subtask 2a: Blood-based PD studies As described in the
Long-term Outcome of Short Metallic Stents for Lobar Airway Stenosis.
Fruchter, Oren; Abed El Raouf, Bayya; Rosengarten, Dror; Kramer, Mordechai R
2017-07-01
Whereas stents are considered an excellent treatment for proximal central major airway stenosis, the value of stenting for distal lobar airway stenosis is still controversial. Our aim was to explore the short-term and long-term outcome of metallic stents placed for benign and malignant lobar airway stenosis. Between July 2007 and July 2014, 14 patients underwent small airway stent insertion. The clinical follow-up included serial semiannual physical examinations, pulmonary function tests, imaging, and bronchoscopy. The etiologies for airway stenosis were: early post-lung transplantation bronchial stenosis (N=5), sarcoidosis (N=1), amyloidosis (N=1), anthracofibrosis (N=1), right middle lobe syndrome due to external lymph node compression (N=1), lung cancer (N=4), and stenosis of the left upper lobe of unknown etiology (N=1). Stents were placed in the right upper lobe bronchus (N=2), right middle lobe bronchus (N=6), left upper lobe bronchus (N=4), linguar bronchus (N=1), and left lower lobe bronchus (N=1). The median follow-up period ranged from 2 to 72 months (median 18 mo). Immediate relief of symptoms was achieved in the vast majority of patients (13/14, 92%). Out of 10 patients with benign etiology for stenosis, 9 (90%) experienced sustained and progressive improvement in pulmonary function tests and clinical condition. We describe our positive experience with small stents for lobar airway stenosis; further prospective trials are required to evaluate the value of this novel modality of treatment.
Altered Exosomal RNA Profiles in Bronchoalveolar Lavage from Lung Transplants with Acute Rejection.
Gregson, Aric L; Hoji, Aki; Injean, Patil; Poynter, Steven T; Briones, Claudia; Palchevskiy, Vyacheslav; Weigt, S Sam; Shino, Michael Y; Derhovanessian, Ariss; Sayah, David; Saggar, Rajan; Ross, David; Ardehali, Abbas; Lynch, Joseph P; Belperio, John A
2015-12-15
The mechanism by which acute allograft rejection leads to chronic rejection remains poorly understood despite its common occurrence. Exosomes, membrane vesicles released from cells within the lung allograft, contain a diverse array of biomolecules that closely reflect the biologic state of the cell and tissue from which they are released. Exosome transcriptomes may provide a better understanding of the rejection process. Furthermore, biomarkers originating from this transcriptome could provide timely and sensitive detection of acute cellular rejection (AR), reducing the incidence of severe AR and chronic lung allograft dysfunction and improving outcomes. To provide an in-depth analysis of the bronchoalveolar lavage fluid exosomal shuttle RNA population after lung transplantation and evaluate for differential expression between acute AR and quiescence. Serial bronchoalveolar lavage specimens were ultracentrifuged to obtain the exosomal pellet for RNA extraction, on which RNA-Seq was performed. AR demonstrates an intense inflammatory environment, skewed toward both innate and adaptive immune responses. Novel, potential upstream regulators identified offer potential therapeutic targets. Our findings validate bronchoalveolar lavage fluid exosomal shuttle RNA as a source for understanding the pathophysiology of AR and for biomarker discovery in lung transplantation.
Altered Exosomal RNA Profiles in Bronchoalveolar Lavage from Lung Transplants with Acute Rejection
Hoji, Aki; Injean, Patil; Poynter, Steven T.; Briones, Claudia; Palchevskiy, Vyacheslav; Sam Weigt, S.; Shino, Michael Y.; Derhovanessian, Ariss; Saggar, Rajan; Ross, David; Ardehali, Abbas; Lynch, Joseph P.; Belperio, John A.
2015-01-01
Rationale: The mechanism by which acute allograft rejection leads to chronic rejection remains poorly understood despite its common occurrence. Exosomes, membrane vesicles released from cells within the lung allograft, contain a diverse array of biomolecules that closely reflect the biologic state of the cell and tissue from which they are released. Exosome transcriptomes may provide a better understanding of the rejection process. Furthermore, biomarkers originating from this transcriptome could provide timely and sensitive detection of acute cellular rejection (AR), reducing the incidence of severe AR and chronic lung allograft dysfunction and improving outcomes. Objectives: To provide an in-depth analysis of the bronchoalveolar lavage fluid exosomal shuttle RNA population after lung transplantation and evaluate for differential expression between acute AR and quiescence. Methods: Serial bronchoalveolar lavage specimens were ultracentrifuged to obtain the exosomal pellet for RNA extraction, on which RNA-Seq was performed. Measurements and Main Results: AR demonstrates an intense inflammatory environment, skewed toward both innate and adaptive immune responses. Novel, potential upstream regulators identified offer potential therapeutic targets. Conclusions: Our findings validate bronchoalveolar lavage fluid exosomal shuttle RNA as a source for understanding the pathophysiology of AR and for biomarker discovery in lung transplantation. PMID:26308930
MMP-13 In-Vivo Molecular Imaging Reveals Early Expression in Lung Adenocarcinoma
Salaün, Mathieu; Peng, Jing; Hensley, Harvey H.; Roder, Navid; Flieder, Douglas B.; Houlle-Crépin, Solène; Abramovici-Roels, Olivia; Sabourin, Jean-Christophe; Thiberville, Luc; Clapper, Margie L.
2015-01-01
Introduction Several matrix metalloproteinases (MMPs) are overexpressed in lung cancer and may serve as potential targets for the development of bioactivable probes for molecular imaging. Objective To characterize and monitor the activity of MMPs during the progression of lung adenocarcinoma. Methods K-rasLSL-G12D mice were imaged serially during the development of adenocarcinomas using fluorescence molecular tomography (FMT) and a probe specific for MMP-2, -3, -9 and -13. Lung tumors were identified using FMT and MRI co-registration, and the probe concentration in each tumor was assessed at each time-point. The expression of Mmp2, -3, -9, -13 was quantified by qRT-PCR using RNA isolated from microdissected tumor cells. Immunohistochemical staining of overexpressed MMPs in animals was assessed on human lung tumors. Results In mice, 7 adenomas and 5 adenocarcinomas showed an increase in fluorescent signal on successive FMT scans, starting between weeks 4 and 8. qRT-PCR assays revealed significant overexpression of only Mmp-13 in mice lung tumors. In human tumors, a high MMP-13 immunostaining index was found in tumor cells from invasive lesions (24/27), but in none of the non-invasive (0/4) (p=0.001). Conclusion MMP-13 is detected in early pulmonary invasive adenocarcinomas and may be a potential target for molecular imaging of lung cancer. PMID:26193700
Peca, Donatella; Petrini, Stefania; Tzialla, Chryssoula; Boldrini, Renata; Morini, Francesco; Stronati, Mauro; Carnielli, Virgilio P; Cogo, Paola E; Danhaive, Olivier
2011-08-25
Mutations of genes affecting surfactant homeostasis, such as SFTPB, SFTPC and ABCA3, lead to diffuse lung disease in neonates and children. Haploinsufficiency of NKX2.1, the gene encoding the thyroid transcription factor-1 (TTF-1)--critical for lung, thyroid and central nervous system morphogenesis and function--causes a rare form of progressive respiratory failure designated brain-lung-thyroid syndrome. Molecular mechanisms involved in this syndrome are heterogeneous and poorly explored. We report a novel TTF-1 molecular defect causing recurrent respiratory failure episodes in an infant. The subject was an infant with severe neonatal respiratory distress syndrome followed by recurrent respiratory failure episodes, hypopituitarism and neurological abnormalities. Lung histology and ultrastructure were assessed by surgical biopsy. Surfactant-related genes were studied by direct genomic DNA sequencing and array chromatine genomic hybridization (aCGH). Surfactant protein expression in lung tissue was analyzed by confocal immunofluorescence microscopy. For kinetics studies, surfactant protein B and disaturated phosphatidylcholine (DSPC) were isolated from serial tracheal aspirates after intravenous administration of stable isotope-labeled (2)H(2)O and (13)C-leucine; fractional synthetic rate was derived from gas chromatography/mass spectrometry (2)H and (13)C enrichment curves. Six intubated infants with no primary lung disease were used as controls. Lung biopsy showed desquamative interstitial pneumonitis and lamellar body abnormalities suggestive of genetic surfactant deficiency. Genetic studies identified a heterozygous ABCA3 mutation, L941P, previously unreported. No SFTPB, SFTPC or NKX2.1 mutations or deletions were found. However, immunofluorescence studies showed TTF-1 prevalently expressed in type II cell cytoplasm instead of nucleus, indicating defective nuclear targeting. This pattern has not been reported in human and was not found in two healthy controls and in five ABCA3 mutation carriers. Kinetic studies demonstrated a marked reduction of SP-B synthesis (43.2 vs. 76.5 ± 24.8%/day); conversely, DSPC synthesis was higher (12.4 vs. 6.3 ± 0.5%/day) compared to controls, although there was a marked reduction of DSPC content in tracheal aspirates (29.8 vs. 56.1 ± 12.4% of total phospholipid content). Defective TTF-1 signaling may result in profound surfactant homeostasis disruption and neonatal/pediatric diffuse lung disease. Heterozygous ABCA3 missense mutations may act as disease modifiers in other genetic surfactant defects.
2011-01-01
Background Mutations of genes affecting surfactant homeostasis, such as SFTPB, SFTPC and ABCA3, lead to diffuse lung disease in neonates and children. Haploinsufficiency of NKX2.1, the gene encoding the thyroid transcription factor-1 (TTF-1) - critical for lung, thyroid and central nervous system morphogenesis and function - causes a rare form of progressive respiratory failure designated brain-lung-thyroid syndrome. Molecular mechanisms involved in this syndrome are heterogeneous and poorly explored. We report a novel TTF-1 molecular defect causing recurrent respiratory failure episodes in an infant. Methods The subject was an infant with severe neonatal respiratory distress syndrome followed by recurrent respiratory failure episodes, hypopituitarism and neurological abnormalities. Lung histology and ultrastructure were assessed by surgical biopsy. Surfactant-related genes were studied by direct genomic DNA sequencing and array chromatine genomic hybridization (aCGH). Surfactant protein expression in lung tissue was analyzed by confocal immunofluorescence microscopy. For kinetics studies, surfactant protein B and disaturated phosphatidylcholine (DSPC) were isolated from serial tracheal aspirates after intravenous administration of stable isotope-labeled 2H2O and 13C-leucine; fractional synthetic rate was derived from gas chromatography/mass spectrometry 2H and 13C enrichment curves. Six intubated infants with no primary lung disease were used as controls. Results Lung biopsy showed desquamative interstitial pneumonitis and lamellar body abnormalities suggestive of genetic surfactant deficiency. Genetic studies identified a heterozygous ABCA3 mutation, L941P, previously unreported. No SFTPB, SFTPC or NKX2.1 mutations or deletions were found. However, immunofluorescence studies showed TTF-1 prevalently expressed in type II cell cytoplasm instead of nucleus, indicating defective nuclear targeting. This pattern has not been reported in human and was not found in two healthy controls and in five ABCA3 mutation carriers. Kinetic studies demonstrated a marked reduction of SP-B synthesis (43.2 vs. 76.5 ± 24.8%/day); conversely, DSPC synthesis was higher (12.4 vs. 6.3 ± 0.5%/day) compared to controls, although there was a marked reduction of DSPC content in tracheal aspirates (29.8 vs. 56.1 ± 12.4% of total phospholipid content). Conclusion Defective TTF-1 signaling may result in profound surfactant homeostasis disruption and neonatal/pediatric diffuse lung disease. Heterozygous ABCA3 missense mutations may act as disease modifiers in other genetic surfactant defects. PMID:21867529
Automated Serials Control at the Indian Institutes of Technology: An Overview
ERIC Educational Resources Information Center
Ghosh, Tapas Kumar; Panda, K. C.
2011-01-01
Purpose: The purpose of this paper is to highlight the functional attributes of the automated serials control systems of the libraries in seven Indian Institutes of Technology (IITs) and provide a comparative analysis. Design/methodology/approach: Features of the serials control modules of the library management systems (LMSs) in use in the…
Serial Position Effects in the Identification of Letters, Digits, and Symbols
ERIC Educational Resources Information Center
Tydgat, Ilse; Grainger, Jonathan
2009-01-01
In 6 experiments, the authors investigated the form of serial position functions for identification of letters, digits, and symbols presented in strings. The results replicated findings obtained with the target search paradigm, showing an interaction between the effects of serial position and type of stimulus, with symbols generating a distinct…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Einstein, Daniel R.; Kuprat, Andrew P.; Jiao, Xiangmin
2013-01-01
Geometries for organ scale and multiscale simulations of organ function are now routinely derived from imaging data. However, medical images may also contain spatially heterogeneous information other than geometry that are relevant to such simulations either as initial conditions or in the form of model parameters. In this manuscript, we present an algorithm for the efficient and robust mapping of such data to imaging based unstructured polyhedral grids in parallel. We then illustrate the application of our mapping algorithm to three different mapping problems: 1) the mapping of MRI diffusion tensor data to an unstuctured ventricular grid; 2) the mappingmore » of serial cyro-section histology data to an unstructured mouse brain grid; and 3) the mapping of CT-derived volumetric strain data to an unstructured multiscale lung grid. Execution times and parallel performance are reported for each case.« less
Clearance of polonium-210-enriched cigarette smoke from the rat trachea and lung
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, B.S.; Harley, N.H.; Tso, T.C.
The distribution and clearance of alpha radioactivity in the lungs of rats were measured after inhalation of smoke from cigarettes highly enriched in /sup 210/Po. Female Fischer rats were exposed daily for 6 months to smoke from cigarettes with 500 times the normal content of /sup 210/Po. Control rats were exposed to standard cigarette smoke. Animals were serially withdrawn and killed. After necropsy the trachea, major bronchi, larynx, and nasopharynx were examined for surface alpha activity by an etched track technique utilizing cellulose nitrate detectors. Areas of accumulated activity were seen on samples of larynx from rats exposed to themore » /sup 210/Po-enriched cigarettes. No other local accumulations were seen on the airways. The lower lungs were analyzed radiochemically for /sup 210/Po. Both radiochemical analysis and track measurements showed highly elevated activity concentrations in rats exposed to the /sup 210/Po-enriched cigarettes. Following withdrawal from smoking, both short- and long-term clearance components were seen. The parameters which fit the postexposure data for clearance of the lung burden cannot fit the buildup during the exposure period.« less
Clearance of polonium-210-enriched cigarette smoke from the rat trachea and lung.
Cohen, B S; Harley, N H; Tso, T C
1985-06-30
The distribution and clearance of alpha radioactivity in the lungs of rats were measured after inhalation of smoke from cigarettes highly enriched in 210Po. Female Fischer rats were exposed daily for 6 months to smoke from cigarettes with 500 times the normal content of 210Po. Control rats were exposed to standard cigarette smoke. Animals were serially withdrawn and killed. After necropsy the trachea, major bronchi, larynx, and nasopharynx were examined for surface alpha activity by an etched track technique utilizing cellulose nitrate detectors. Areas of accumulated activity were seen on samples of larynx from rats exposed to the 210Po-enriched cigarettes. No other local accumulations were seen on the airways. The lower lungs were analyzed radiochemically for 210Po. Both radiochemical analysis and track measurements showed highly elevated activity concentrations in rats exposed to the 210Po-enriched cigarettes. Following withdrawal from smoking, both short- and long-term clearance components were seen. The parameters which fit the postexposure data for clearance of the lung burden cannot fit the buildup during the exposure period.
The potential diagnostic power of circulating tumor cell analysis for non-small-cell lung cancer.
Ross, Kirsty; Pailler, Emma; Faugeroux, Vincent; Taylor, Melissa; Oulhen, Marianne; Auger, Nathalie; Planchard, David; Soria, Jean-Charles; Lindsay, Colin R; Besse, Benjamin; Vielh, Philippe; Farace, Françoise
2015-01-01
In non-small-cell lung cancer (NSCLC), genotyping tumor biopsies for targetable somatic alterations has become routine practice. However, serial biopsies have limitations: they may be technically difficult or impossible and could incur serious risks to patients. Circulating tumor cells (CTCs) offer an alternative source for tumor analysis that is easily accessible and presents the potential to identify predictive biomarkers to tailor therapies on a personalized basis. Examined here is our current knowledge of CTC detection and characterization in NSCLC and their potential role in EGFR-mutant, ALK-rearranged and ROS1-rearranged patients. This is followed by discussion of the ongoing issues such as the question of CTC partnership as diagnostic tools in NSCLC.
Andreasson, Anders S I; Karamanou, Danai M; Gillespie, Colin S; Özalp, Faruk; Butt, Tanveer; Hill, Paul; Jiwa, Kasim; Walden, Hannah R; Green, Nicola J; Borthwick, Lee A; Clark, Stephen C; Pauli, Henning; Gould, Kate F; Corris, Paul A; Ali, Simi; Dark, John H; Fisher, Andrew J
2017-03-01
Availability of donor lungs suitable for transplant falls short of current demand and contributes to waiting list mortality. Ex vivo lung perfusion (EVLP) offers the opportunity to objectively assess and recondition organs unsuitable for immediate transplant. Identifying robust biomarkers that can stratify donor lungs during EVLP to use or non-use or for specific interventions could further improve its clinical impact. In this pilot study, 16 consecutive donor lungs unsuitable for immediate transplant were assessed by EVLP. Key inflammatory mediators and tissue injury markers were measured in serial perfusate samples collected hourly and in bronchoalveolar lavage fluid (BALF) collected before and after EVLP. Levels were compared between donor lungs that met criteria for transplant and those that did not. Seven of the 16 donor lungs (44%) improved during EVLP and were transplanted with uniformly good outcomes. Tissue and vascular injury markers lactate dehydrogenase, HMGB-1 and Syndecan-1 were significantly lower in perfusate from transplanted lungs. A model combining IL-1β and IL-8 concentrations in perfusate could predict final EVLP outcome after 2 h assessment. In addition, perfusate IL-1β concentrations showed an inverse correlation to recipient oxygenation 24 h post-transplant. This study confirms the feasibility of using inflammation and tissue injury markers in perfusate and BALF to identify donor lungs most likely to improve for successful transplant during clinical EVLP. These results support examining this issue in a larger study. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery.
Zhou, Yanli; Faber, Tracy L.; Patel, Zenic; Folks, Russell D.; Cheung, Alice A.; Garcia, Ernest V.; Soman, Prem; Li, Dianfu; Cao, Kejiang; Chen, Ji
2013-01-01
Objective Left ventricular (LV) function and dyssynchrony parameters measured from serial gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) using blinded processing had a poorer repeatability than when manual side-by-side processing was used. The objective of this study was to validate whether an automatic alignment tool can reduce the variability of LV function and dyssynchrony parameters in serial gated SPECT MPI. Methods Thirty patients who had undergone serial gated SPECT MPI were prospectively enrolled in this study. Thirty minutes after the first acquisition, each patient was repositioned and a gated SPECT MPI image was reacquired. The two data sets were first processed blinded from each other by the same technologist in different weeks. These processed data were then realigned by the automatic tool, and manual side-by-side processing was carried out. All processing methods used standard iterative reconstruction and Butterworth filtering. The Emory Cardiac Toolbox was used to measure the LV function and dyssynchrony parameters. Results The automatic tool failed in one patient, who had a large, severe scar in the inferobasal wall. In the remaining 29 patients, the repeatability of the LV function and dyssynchrony parameters after automatic alignment was significantly improved from blinded processing and was comparable to manual side-by-side processing. Conclusion The automatic alignment tool can be an alternative method to manual side-by-side processing to improve the repeatability of LV function and dyssynchrony measurements by serial gated SPECT MPI. PMID:23211996
The lower airway microbiota in early cystic fibrosis lung disease: a longitudinal analysis.
Frayman, Katherine B; Armstrong, David S; Carzino, Rosemary; Ferkol, Thomas W; Grimwood, Keith; Storch, Gregory A; Teo, Shu Mei; Wylie, Kristine M; Ranganathan, Sarath C
2017-12-01
In infants and young children with cystic fibrosis, lower airway infection and inflammation are associated with adverse respiratory outcomes. However, the role of lower airway microbiota in the pathogenesis of early cystic fibrosis lung disease remains uncertain. To assess the development of the lower airway microbiota over time in infants and young children with cystic fibrosis, and to explore its association with airway inflammation and pulmonary function at age 6 years. Serial, semi-annual bronchoscopies and bronchoalveolar lavage (BAL) procedures were performed in infants newly diagnosed with cystic fibrosis following newborn screening. Quantitative microbiological cultures and inflammatory marker (interleukin 8 and neutrophil elastase) measurements were undertaken contemporaneously. 16S ribosomal RNA gene sequencing was conducted on stored BAL samples. Spirometry results recorded at 6 years of age were extracted from medical records. Ninety-five BAL samples provided 16S ribosomal RNA gene data. These were collected from 48 subjects aged 1.2-78.3 months, including longitudinal samples from 27 subjects and 13 before age 6 months. The lower airway microbiota varied, but diversity decreased with advancing age. Detection of recognised cystic fibrosis bacterial pathogens was associated with reduced microbial diversity and greater lower airway inflammation. There was no association between the lower airway microbiota and pulmonary function at age 6 years. In infants with cystic fibrosis, the lower airway microbiota is dynamic. Dominance of the microbiota by recognised cystic fibrosis bacterial pathogens is associated with increased lower airway inflammation, however early microbial diversity is not associated with pulmonary function at 6 years of age. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Daniel, Vincent C.; Marchionni, Luigi; Hierman, Jared S.; Rhodes, Jonathan T.; Devereux, Wendy L.; Rudin, Charles M.; Yung, Rex; Parmigani, Giovanni; Dorsch, Marion; Peacock, Craig D.; Watkins, D. Neil
2009-01-01
Traditional approaches to the preclinical investigation of cancer therapies rely on the use of established cell lines maintained in serum-based growth media. This is particularly true of small cell lung cancer (SCLC), where surgically resected tissue is rarely available. Recent attention has focused on the need for better models that preserve the integrity of cancer stem cell populations, as well as three-dimensional tumor-stromal interactions. Here we describe a primary xenograft model of SCLC in which endobronchial tumor specimens obtained from chemo-naive patients are serially propagated in vivo in immunodeficient mice. In parallel, cell lines grown in conventional tissue culture conditions were derived from each xenograft line, passaged for 6 months, and then re-implanted to generate secondary xenografts. Using the Affymetrix platform, we analyzed gene expression in primary xenograft, xenograft-derived cell line, and secondary xenograft, and compared these data to similar analyses of unrelated primary SCLC samples and laboratory models. When compared to normal lung, primary tumors, xenografts and cell lines displayed a gene expression signature specific for SCLC. Comparison of gene expression within the xenograft model identified a group of tumor-specific genes expressed in primary SCLC and xenografts that was lost during the transition to tissue culture, and that was not regained when the tumors were re-established as secondary xenografts. Such changes in gene expression may be a common feature of many cancer cell culture systems, with functional implications for the use of such models for preclinical drug development. PMID:19351829
Effect of serial pig passages on the adaptation of an avian H9N2 influenza virus to swine.
Mancera Gracia, Jose Carlos; Van den Hoecke, Silvie; Saelens, Xavier; Van Reeth, Kristien
2017-01-01
H9N2 avian influenza viruses are endemic in poultry in Asia and the Middle East. These viruses sporadically cause dead-end infections in pigs and humans raising concerns about their potential to adapt to mammals or reassort with human or swine influenza viruses. We performed ten serial passages with an avian H9N2 virus (A/quail/Hong Kong/G1/1997) in influenza naïve pigs to assess the potential of this virus to adapt to swine. Virus replication in the entire respiratory tract and nasal virus excretion were examined after each passage and we deep sequenced viral genomic RNA of the parental and passage four H9N2 virus isolated from the nasal mucosa and lung. The parental H9N2 virus caused a productive infection in pigs with a predominant tropism for the nasal mucosa, whereas only 50% lung samples were virus-positive. In contrast, inoculation of pigs with passage four virus resulted in viral replication in the entire respiratory tract. Subsequent passages were associated with reduced virus replication in the lungs and infectious virus was no longer detectable in the upper and lower respiratory tract of inoculated pigs at passage ten. The broader tissue tropism after four passages was associated with an amino acid residue substitution at position 225, within the receptor-binding site of the hemagglutinin. We also compared the parental H9N2, passage four H9N2 and the 2009 pandemic H1N1 (pH1N1) virus in a direct contact transmission experiment. Whereas only one out of six contact pigs showed nasal virus excretion of the wild-type H9N2 for more than four days, all six contact animals shed the passage four H9N2 virus. Nevertheless, the amount of excreted virus was significantly lower when compared to that of the pH1N1, which readily transmitted and replicated in all six contact animals. Our data demonstrate that serial passaging of H9N2 virus in pigs enhances its replication and transmissibility. However, full adaptation of an avian H9N2 virus to pigs likely requires an extensive set of mutations.
Effect of serial pig passages on the adaptation of an avian H9N2 influenza virus to swine
Van den Hoecke, Silvie; Saelens, Xavier; Van Reeth, Kristien
2017-01-01
H9N2 avian influenza viruses are endemic in poultry in Asia and the Middle East. These viruses sporadically cause dead-end infections in pigs and humans raising concerns about their potential to adapt to mammals or reassort with human or swine influenza viruses. We performed ten serial passages with an avian H9N2 virus (A/quail/Hong Kong/G1/1997) in influenza naïve pigs to assess the potential of this virus to adapt to swine. Virus replication in the entire respiratory tract and nasal virus excretion were examined after each passage and we deep sequenced viral genomic RNA of the parental and passage four H9N2 virus isolated from the nasal mucosa and lung. The parental H9N2 virus caused a productive infection in pigs with a predominant tropism for the nasal mucosa, whereas only 50% lung samples were virus-positive. In contrast, inoculation of pigs with passage four virus resulted in viral replication in the entire respiratory tract. Subsequent passages were associated with reduced virus replication in the lungs and infectious virus was no longer detectable in the upper and lower respiratory tract of inoculated pigs at passage ten. The broader tissue tropism after four passages was associated with an amino acid residue substitution at position 225, within the receptor-binding site of the hemagglutinin. We also compared the parental H9N2, passage four H9N2 and the 2009 pandemic H1N1 (pH1N1) virus in a direct contact transmission experiment. Whereas only one out of six contact pigs showed nasal virus excretion of the wild-type H9N2 for more than four days, all six contact animals shed the passage four H9N2 virus. Nevertheless, the amount of excreted virus was significantly lower when compared to that of the pH1N1, which readily transmitted and replicated in all six contact animals. Our data demonstrate that serial passaging of H9N2 virus in pigs enhances its replication and transmissibility. However, full adaptation of an avian H9N2 virus to pigs likely requires an extensive set of mutations. PMID:28384328
Nieto-Torres, Jose L.; DeDiego, Marta L.; Verdiá-Báguena, Carmina; Jimenez-Guardeño, Jose M.; Regla-Nava, Jose A.; Fernandez-Delgado, Raul; Castaño-Rodriguez, Carlos; Alcaraz, Antonio; Torres, Jaume; Aguilella, Vicente M.; Enjuanes, Luis
2014-01-01
Deletion of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) envelope (E) gene attenuates the virus. E gene encodes a small multifunctional protein that possesses ion channel (IC) activity, an important function in virus-host interaction. To test the contribution of E protein IC activity in virus pathogenesis, two recombinant mouse-adapted SARS-CoVs, each containing one single amino acid mutation that suppressed ion conductivity, were engineered. After serial infections, mutant viruses, in general, incorporated compensatory mutations within E gene that rendered active ion channels. Furthermore, IC activity conferred better fitness in competition assays, suggesting that ion conductivity represents an advantage for the virus. Interestingly, mice infected with viruses displaying E protein IC activity, either with the wild-type E protein sequence or with the revertants that restored ion transport, rapidly lost weight and died. In contrast, mice infected with mutants lacking IC activity, which did not incorporate mutations within E gene during the experiment, recovered from disease and most survived. Knocking down E protein IC activity did not significantly affect virus growth in infected mice but decreased edema accumulation, the major determinant of acute respiratory distress syndrome (ARDS) leading to death. Reduced edema correlated with lung epithelia integrity and proper localization of Na+/K+ ATPase, which participates in edema resolution. Levels of inflammasome-activated IL-1β were reduced in the lung airways of the animals infected with viruses lacking E protein IC activity, indicating that E protein IC function is required for inflammasome activation. Reduction of IL-1β was accompanied by diminished amounts of TNF and IL-6 in the absence of E protein ion conductivity. All these key cytokines promote the progression of lung damage and ARDS pathology. In conclusion, E protein IC activity represents a new determinant for SARS-CoV virulence. PMID:24788150
Tong, Xiaoling; Bear, Ashley; Liew, Seng Fatt; Bhardwaj, Shivam; Wasik, Bethany R.; Dinwiddie, April; Bastianelli, Carole; Cheong, Wei Fun; Wenk, Markus R.; Cao, Hui
2015-01-01
Bodies are often made of repeated units, or serial homologs, that develop using the same core gene regulatory network. Local inputs and modifications to this network allow serial homologs to evolve different morphologies, but currently we do not understand which modifications allow these repeated traits to evolve different levels of phenotypic plasticity. Here we describe variation in phenotypic plasticity across serial homologous eyespots of the butterfly Bicyclus anynana, hypothesized to be under selection for similar or different functions in the wet and dry seasonal forms. Specifically, we document the presence of eyespot size and scale brightness plasticity in hindwing eyespots hypothesized to vary in function across seasons, and reduced size plasticity and absence of brightness plasticity in forewing eyespots hypothesized to have the same function across seasons. By exploring the molecular and physiological causes of this variation in plasticity across fore and hindwing serial homologs we discover that: 1) temperature experienced during the wandering stages of larval development alters titers of an ecdysteroid hormone, 20-hydroxyecdysone (20E), in the hemolymph of wet and dry seasonal forms at that stage; 2) the 20E receptor (EcR) is differentially expressed in the forewing and hindwing eyespot centers of both seasonal forms during this critical developmental stage; and 3) manipulations of EcR signaling disproportionately affected hindwing eyespots relative to forewing eyespots. We propose that differential EcR expression across forewing and hindwing eyespots at a critical stage of development explains the variation in levels of phenotypic plasticity across these serial homologues. This finding provides a novel signaling pathway, 20E, and a novel molecular candidate, EcR, for the regulation of levels of phenotypic plasticity across body parts or serial homologs. PMID:26405828
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Q; Zhang, M; Chen, T
Purpose: Variation in function of different lung regions has been ignored so far for conventional lung cancer treatment planning, which may lead to higher risk of radiation induced lung disease. 4DCT based lung ventilation imaging provides a novel yet convenient approach for lung functional imaging as 4DCT is taken as routine for lung cancer treatment. Our work aims to evaluate the impact of accounting for spatial heterogeneity in lung function using 4DCT based lung ventilation imaging for proton and IMRT plans. Methods: Six patients with advanced stage lung cancer of various tumor locations were retrospectively evaluated for the study. Protonmore » and IMRT plans were designed following identical planning objective and constrains for each patient. Ventilation images were calculated from patients’ 4DCT using deformable image registration implemented by Velocity AI software based on Jacobian-metrics. Lung was delineated into two function level regions based on ventilation (low and high functional area). High functional region was defined as lung ventilation greater than 30%. Dose distribution and statistics in different lung function area was calculated for patients. Results: Variation in dosimetric statistics of different function lung region was observed between proton and IMRT plans. In all proton plans, high function lung regions receive lower maximum dose (100.2%–108.9%), compared with IMRT plans (106.4%–119.7%). Interestingly, three out of six proton plans gave higher mean dose by up to 2.2% than IMRT to high function lung region. Lower mean dose (lower by up to 14.1%) and maximum dose (lower by up to 9%) were observed in low function lung for proton plans. Conclusion: A systematic approach was developed to generate function lung ventilation imaging and use it to evaluate plans. This method hold great promise in function analysis of lung during planning. We are currently studying more subjects to evaluate this tool.« less
Behzad, A R; Chu, F; Walker, D C
1996-05-01
Previous findings have shown that pulmonary fibroblasts are associated with preexisting holes in the endothelial and epithelial basal laminae through which neutrophils appear to enter and leave the interstitium as they migrate from capillaries to alveoli. To determine their role in neutrophil migration, fibroblast organization within the interstitium was assessed by transmission electron microscope observations of serial-sectioned rabbit lung tissue. Interstitial fibroblasts were found to physically interconnect the endothelial basal lamina holes to epithelial basal lamina holes. Morphometric assessment of rabbit lung tissue instilled with Streptococcus pneumoniae revealed that approximately 70% of the surface area density of migrating neutrophils is in close contact (15 nm or less) with interstitial fibroblasts and extracellular matrix elements (30 and 40%, respectively). Although migrating neutrophils were close enough to adhere to both fibroblasts and extracellular elements, the interstitial fibroblasts are organized in a manner that would allow them to provide directional information to the neutrophils. A model illustrating this process is proposed.
Osteosarcoma development following single inhalation exposure to americium-241 in beagle dogs.
Gillett, N A; Hahn, F F; Mewhinney, J A; Muggenberg, B A
1985-10-01
Young, mature Beagle dogs underwent single inhalation exposure to respirable aerosols of 241AmO2 to determine the radiation dose distribution to tissues. The dogs were serially sacrificed to assess the clearance of 241Am from the lung, the rate of translocation to internal organs, the pattern of retention in the organs, and the rates and modes of excretion. Americium dioxide was relatively soluble in the lung, leading to the translocation of significant quantities of 241Am to bone and liver, thus delivering radiation doses to these tissues nearly equal to that received by the lung. Osteoblastic osteosarcomas developed in four dogs surviving more than 1000 days after exposure. Histologically, all of the osteosarcomas were associated with areas of radiation osteodystrophy characterized by bone infarction, peritrabecular new bone formation, marrow fibrosis, and microresorptive cavities. The retention and translocation of inhaled 241Am in dogs is similar to that of man, indicating that 241Am inhaled by humans may potentially result in significant risk of bone tumor development.
NASA Technical Reports Server (NTRS)
Whalen, Robert T.; Napel, Sandy; Yan, Chye H.
1996-01-01
Progress in development of the methods required to study bone remodeling as a function of time is reported. The following topics are presented: 'A New Methodology for Registration Accuracy Evaluation', 'Registration of Serial Skeletal Images for Accurately Measuring Changes in Bone Density', and 'Precise and Accurate Gold Standard for Multimodality and Serial Registration Method Evaluations.'
Siker, Malika L; Tomé, Wolfgang A; Mehta, Minesh P
2006-09-01
Adaptive radiotherapy allows treatment plan modification based on data obtained during treatment. Assessing volume changes during treatment is now possible with intratreatment imaging capabilities on radiotherapy devices. This study assesses non-small-cell lung cancer (NSCLC) volume changes during treatment with conformal intensity-modulated radiotherapy by evaluating serial megavoltage computed tomography (MVCT) scans, with a specific emphasis on the frequency, reliability, and meaningfulness of these changes. Megavoltage CTs were retrospectively reviewed for 25 patients treated with the TomoTherapy Hi-Art system at the University of Wisconsin. Twenty-one patients received definitive radiotherapy, 4 with extracranial stereotactic radioablation (60 Gy in five fractions) and 17 on a dose-per-fraction escalation protocol (57-80.5 Gy in 25 fractions). Four patients were treated palliatively (22-30 Gy in 8 to 10 fractions). Gross tumor volumes were contoured on serial MVCTs at weekly intervals. Each patient had 4 to 25 scans, including at least one at the beginning, midway, and one at the end of treatment. At completion of treatment, no patient demonstrated a complete response. Partial response occurred in 3 (12%) and marginal response was noted in 5 (20%). The remaining 17 patients (68%) showed stable disease. The minimum "scorable threshold" for volume discrepancy between scans to account for interscan assessment variability was set at >25% volume change; 10 patients (40%) had >25% tumor regression. None of the patients treated ablatively or palliatively showed tumor regression during treatment. Although gross tumor regression during treatment may be objectively measured using MVCTs, substantial volumetric decrease occurs only in a minority. The clinical significance of this regression is questionable, because there is no way to document histologic tumor clearance, and therefore field reductions during radiotherapy cannot be recommended.
Castonguay, Alexandre; Lefebvre, Joël; Pouliot, Philippe; Avti, Pramod; Moeini, Mohammad; Lesage, Frédéric
2017-01-01
Normal aging is accompanied by structural changes in the heart architecture. To explore this remodeling, we used a serial optical coherence tomography scanner to image entire mouse hearts at micron scale resolution. Ex vivo hearts of 7 young (4 months) and 5 old (24 months) C57BL/6 mice were acquired with the imaging platform. OCT of the myocardium revealed myofiber orientation changing linearly from the endocardium to the epicardium. In old mice, this rate of change was lower when compared to young mice while the average volume of old mice hearts was significantly larger (p<0.05). Myocardial wall thickening was also accompanied by extracellular spacing in the endocardium, resulting in a lower OCT attenuation coefficient in old mice endocardium (p<0.05). Prior to serial sectioning, cardiac function of the same hearts was imaged in vivo using MRI and revealed a reduced ejection fraction with aging. The use of a serial optical coherence tomography scanner allows new insight into fine age-related changes of the heart associated with changes in heart function. PMID:29188099
Spatial attention interacts with serial-order retrieval from verbal working memory.
van Dijck, Jean-Philippe; Abrahamse, Elger L; Majerus, Steve; Fias, Wim
2013-09-01
The ability to maintain the serial order of events is recognized as a major function of working memory. Although general models of working memory postulate a close link between working memory and attention, such a link has so far not been proposed specifically for serial-order working memory. The present study provided the first empirical demonstration of a direct link between serial order in verbal working memory and spatial selective attention. We show that the retrieval of later items of a sequence stored in working memory-compared with that of earlier items-produces covert attentional shifts toward the right. This observation suggests the conceptually surprising notion that serial-order working memory, even for nonspatially defined verbal items, draws on spatial attention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Ward, S; Kim, A; McCann, C
2016-06-15
Purpose: To simulate tumor tracking in an Elekta MRI-linac (MRL) and to compare this tracking method with our current ITV approach in terms of OAR sparing for lung cancer patients. Methods: Five SABR-NSCLC patients with central lung tumors were selected for reasons of potential enhancement of tumor-tissue delineation using MRI. The Monaco TPS was used to compare the current clinical ITV approach to a simulated, novel tracking method which used a 7MV MRL beam in the presence of an orthogonal 1.5 T magnetic field (4D-MRL method). In the simulated tracking scenario, achieved using the virtual couch shift (VCS), the PTVmore » was defined using an isotropic 5mm margin applied to the GTV of each phase, as acquired from an 8-phase amplitude-binned 4DCT. These VCS plans were optimized and weighted on each phase. The dose weighting was performed using the patient-specific breathing traces. The doses were accumulated on the inhale phase. The two methods were compared by assessing the OAR DVHs. Results: The 4D-MRL method resulted in a reduced target volume (by an average of 29% over all patients). The benefits of using an MRL tracking system depended on the tumor motion amplitude and the relative OAR motion (ROM) to the target. The reduction in mean doses to parallel organs was up to 3 Gy for the heart and 2.1 Gy for the lung. The reductions in maximum doses to serial organs were up to 9.4 Gy, 5.6 Gy, and 8.7 Gy for the esophagus, spinal cord, and the trachea, respectively. Serial organs benefited from MRL tracking when the ROM was ≥ 0.3 cm despite small tumor motion amplitude in some cases. Conclusions: This work demonstrated the potential benefit for an MRL tracking system to spare OARs in SABR-NSCLC patients with central tumors. The benefits are embodied in the target volume reduction. This project was made possible with the financial support of Elekta.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modiri, A; Gu, X; Sawant, A
2014-06-15
Purpose: We present a particle swarm optimization (PSO)-based 4D IMRT planning technique designed for dynamic MLC tracking delivery to lung tumors. The key idea is to utilize the temporal dimension as an additional degree of freedom rather than a constraint in order to achieve improved sparing of organs at risk (OARs). Methods: The target and normal structures were manually contoured on each of the ten phases of a 4DCT scan acquired from a lung SBRT patient who exhibited 1.5cm tumor motion despite the use of abdominal compression. Corresponding ten IMRT plans were generated using the Eclipse treatment planning system. Thesemore » plans served as initial guess solutions for the PSO algorithm. Fluence weights were optimized over the entire solution space i.e., 10 phases × 12 beams × 166 control points. The size of the solution space motivated our choice of PSO, which is a highly parallelizable stochastic global optimization technique that is well-suited for such large problems. A summed fluence map was created using an in-house B-spline deformable image registration. Each plan was compared with a corresponding, internal target volume (ITV)-based IMRT plan. Results: The PSO 4D IMRT plan yielded comparable PTV coverage and significantly higher dose—sparing for parallel and serial OARs compared to the ITV-based plan. The dose-sparing achieved via PSO-4DIMRT was: lung Dmean = 28%; lung V20 = 90%; spinal cord Dmax = 23%; esophagus Dmax = 31%; heart Dmax = 51%; heart Dmean = 64%. Conclusion: Truly 4D IMRT that uses the temporal dimension as an additional degree of freedom can achieve significant dose sparing of serial and parallel OARs. Given the large solution space, PSO represents an attractive, parallelizable tool to achieve globally optimal solutions for such problems. This work was supported through funding from the National Institutes of Health and Varian Medical Systems. Amit Sawant has research funding from Varian Medical Systems, VisionRT Ltd. and Elekta.« less
Pulmonary response to polyurethane dust.
Stemmer, K L; Bingham, E; Barkley, W
1975-06-01
Weanling and 9 months or older rats were exposed to particles of an aged (PUF I) or freshly prepared (PUF II) rigid polyurethane foam by intratracheal intubation. The dose was 5 mg of particles. The response of the lung tissue was examined morphologically by serial sacrifices. Inflammation and macrophage activity were the initial responses. Fibrosis developed after 6 months. Nodular scars and perifocal emphysema were seen after 12 months. Four rats had a papillary adenoma in a major bronchus after 18 months exposure to PUF II.
Ye, Fen; Hall, Charles B.; Webber, Mayris P.; Cohen, Hillel W.; Dinkels, Michael; Cosenza, Kaitlyn; Weiden, Michael D.; Nolan, Anna; Christodoulou, Vasilios; Kelly, Kerry J.; Prezant, David J.
2013-01-01
Background: Few longitudinal studies characterize firefighters’ pulmonary function. We sought to determine whether firefighters have excessive FEV1 decline rates compared with control subjects. Methods: We examined serial measurements of FEV1 from about 6 months prehire to about 5 years posthire in newly hired male, never smoking, non-Hispanic black and white firefighters, hired between 2003 and 2006, without prior respiratory disease or World Trade Center exposure. Similarly defined Emergency Medical Service (EMS) workers served as control subjects. Results: Through June 30, 2011, 940 firefighters (82%) and 97 EMS workers (72%) who met study criteria had four or more acceptable posthire spirometries. Prehire FEV1% averaged higher for firefighters than EMS workers (99% vs 95%), reflecting more stringent job entry criteria. FEV1 (adjusted for baseline age and height) declined by an average of 45 mL/y both for firefighters and EMS workers, with Fire − EMS decline rate differences averaging 0.2 mL/y (CI, −9.2 to 9.6). Four percent of each group had FEV1 less than the lower limit of normal before hire, increasing to 7% for firefighters and 17.5% for EMS workers, but similar percentages of both groups had adjusted FEV1 decline rates ≥ 10%. Mixed effects modeling showed a significant influence of weight gain but not baseline weight: FEV1 declined by about 8 mL/kg gained for both groups. Adjusting for weight change, FEV1 decline averaged 38 mL/y for firefighters and 34 mL/y for EMS workers. Conclusions: During the first 5 years of duty, firefighters do not show greater longitudinal FEV1 decline than EMS control subjects, and fewer of them develop abnormal lung function. Weight gain is associated with a small loss of lung function, of questionable clinical relevance in this fit and active population. PMID:23188136
The disruption of the epithelial mesenchymal trophic unit in COPD.
Behzad, Ali R; McDonough, John E; Seyednejad, Nazgol; Hogg, James C; Walker, David C
2009-12-01
Progression of COPD is associated with a measurable increase in small airway wall thickness resulting from a repair and remodeling process that involves fibroblasts of the epithelial mesenchymal trophic unit (EMTU). The present study was designed to examine the organization of fibroblasts within the lamina propria of small airways with respect to their contacts with the epithelium and with each other in persons with COPD. Transmission electron microcopy (TEM) and three-dimensional (3D) reconstructions of serial TEM sections were used to estimate the frequency and determine the nature of the contacts between the epithelium and fibroblasts within the EMTU in small airways from 5 controls (smokers with normal lung function), from 6 persons with mild (GOLD-1) and 5 with moderate (GOLD-2) COPD. In airways from control lungs fibroblasts make frequent contact with cytoplasmic extensions of epithelial cells through apertures in the epithelial basal lamina, but the frequency of these fibroblast-epithelial contacts is reduced in both mild and moderate COPD compared to controls (p < 0.01). The 3D reconstructions showed that the cytoplasmic extensions of lamina propria fibroblasts form a reticulum with fibroblast-fibroblast contacts in an airway from a control subject but this reticulum may be reorganized in airways of COPD patients. Development of COPD is associated with significant disruption of the EMTU due to a reduction of contacts between fibroblasts and the epithelium.
A mouse model for MERS coronavirus-induced acute respiratory distress syndrome.
Cockrell, Adam S; Yount, Boyd L; Scobey, Trevor; Jensen, Kara; Douglas, Madeline; Beall, Anne; Tang, Xian-Chun; Marasco, Wayne A; Heise, Mark T; Baric, Ralph S
2016-11-28
Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel virus that emerged in 2012, causing acute respiratory distress syndrome (ARDS), severe pneumonia-like symptoms and multi-organ failure, with a case fatality rate of ∼36%. Limited clinical studies indicate that humans infected with MERS-CoV exhibit pathology consistent with the late stages of ARDS, which is reminiscent of the disease observed in patients infected with severe acute respiratory syndrome coronavirus. Models of MERS-CoV-induced severe respiratory disease have been difficult to achieve, and small-animal models traditionally used to investigate viral pathogenesis (mouse, hamster, guinea-pig and ferret) are naturally resistant to MERS-CoV. Therefore, we used CRISPR-Cas9 gene editing to modify the mouse genome to encode two amino acids (positions 288 and 330) that match the human sequence in the dipeptidyl peptidase 4 receptor, making mice susceptible to MERS-CoV infection and replication. Serial MERS-CoV passage in these engineered mice was then used to generate a mouse-adapted virus that replicated efficiently within the lungs and evoked symptoms indicative of severe ARDS, including decreased survival, extreme weight loss, decreased pulmonary function, pulmonary haemorrhage and pathological signs indicative of end-stage lung disease. Importantly, therapeutic countermeasures comprising MERS-CoV neutralizing antibody treatment or a MERS-CoV spike protein vaccine protected the engineered mice against MERS-CoV-induced ARDS.
Ex Vivo Lung Perfusion Rehabilitates Sepsis-Induced Lung Injury
Mehaffey, J. Hunter; Charles, Eric J.; Sharma, Ashish K.; Salmon, Morgan; Money, Dustin; Schubert, Sarah; Stoler, Mark H; Tribble, Curtis G.; Laubach, Victor E.; Roeser, Mark E.; Kron, Irving L.
2017-01-01
Objective Sepsis is the number one cause of lung injury in adults. Ex vivo lung perfusion (EVLP) is gaining clinical acceptance for donor lung evaluation and rehabilitation, and may expand the use of marginal organs for transplantation. We hypothesized that four hours of normothermic EVLP would improve compliance and oxygenation in a porcine model of sepsis-induced lung injury. Methods We utilized a porcine lung injury model using intravenous lipopolysaccharide (LPS) to induce a systemic inflammatory response. Two groups (n=4 animals/group) received a 2-hour infusion of LPS via the external jugular vein. Serial blood gases were performed every 30 min until the PO2/FiO2 ratio dropped below 150 on two consecutive readings. Lungs were then randomized to treatment with 4 hours of normothermic EVLP with Steen solution or 4 additional hours of in vivo perfusion (Control). Airway pressures and blood gases were recorded for calculation of dynamic lung compliance and PO2/FiO2 ratios. EVLP was performed according to the NOVEL trial protocol with hourly recruitment maneuvers and oxygen challenge. Results All animals reached a PO2/FiO2 ratio < 150 mmHg within 3 hours after start of LPS infusion. Animals in the Control group had continued decline of oxygenation and compliance during the 4-hour in vivo perfusion period with three of the four animals dying within 4 hours due to severe hypoxia. The EVLP group demonstrated significant improvements in oxygenation and dynamic compliance from hour 1 to hour 4 (365.8±53.0 vs 584.4±21.0 mmHg, p=0.02; 9.0±2.8 vs 15.0±3.6, p=0.02 mL/cmH2O). Conclusions EVLP can successfully rehabilitate LPS-induced lung injury in this preclinical porcine model. Thus EVLP may provide a means to rehabilitate many types of acute lung injury. PMID:28434548
Hassan, Khaled A.; Wang, Luo; Korkaya, Hasan; Chen, Guoan; Maillard, Ivan; Beer, David G.; Kalemkerian, Gregory P.; Wicha, Max S.
2013-01-01
Purpose The cancer stem cell theory postulates that tumors contain a subset of cells with stem cell properties of self-renewal, differentiation and tumor-initiation. The purpose of this study is to determine the role of Notch activity in identifying lung cancer stem cells. Experimental Design We investigated the role of Notch activity in lung adenocarcinoma utilizing a Notch GFP-reporter construct and a gamma-secretase inhibitor (GSI), which inhibits Notch pathway activity. Results Transduction of lung cancer cells with Notch GFP-reporter construct identified a subset of cells with high Notch activity (GFP-bright). GFP-bright cells had the ability to form more tumor spheres in serum-free media, and were able to generate both GFP-bright and GFP-dim (lower Notch activity) cell populations. GFP-bright cells were resistant to chemotherapy and were tumorigenic in serial xenotransplantation assays. Tumor xenografts of mice treated with GSI had decreased expression of downstream effectors of Notch pathway and failed to regenerate tumors upon reimplantation in NOD/SCID mice. Using multivariate analysis, we detected a statistically significant correlation between poor clinical outcome and Notch activity (reflected in increased Notch ligand expression or decreased expression of the negative modulators), in a group of 441 lung adenocarcinoma patients. This correlation was further confirmed in an independent group of 89 adenocarcinoma patients where Hes-1 overexpression correlated with poor overall survival. Conclusions Notch activity can identify lung cancer stem cell-like population and its inhibition may be an appropriate target for treating lung adenocarcinoma. PMID:23444212
Comparative investigations of the biodurability of mineral fibers in the rat lung.
Muhle, H; Bellmann, B; Pott, F
1994-01-01
The biodurability of various glass fibers, rockwool, and ceramic fibers was examined in rat lungs and compared with natural mineral fibers. Experiments were based on studies that have shown that the biodurability of fibers is one of the essential factors of the carcinogenic potency of these materials. Sized fractions of fibers were instilled intratracheally into Wistar rats. The evenness of distribution of fibers in the lung was checked by scanning electron microscopy (SEM) or careful examination of the fiber suspension before treatment. After serial sacrifices up to 24 months after treatment, the fibers were analyzed by SEM following low temperature ashing of the lungs. Parameters measured included number of fibers, diameter, and length distribution at the various sacrifice dates, so that analyses could be made of the elimination kinetics of fibers from the lung in relation to fiber length (FL). Size selective plots of the fiber elimination correlated with fiber diameters enables the mechanism of the fiber elimination (dissolution, fiber breakage, physical clearance) to be interpreted. The half-time of fiber elimination from the lung ranges from about 10 days for wollastonite to more than 300 days for crocidolite. The biodurability of man-made vitreous fibers (MMVF) is between these values and is dependent on the chemical composition of the fibers and the diameter and length distribution. Results indicate that the in vivo durability of glass fibers is considerably longer than expected from extrapolation of published data on their in vitro dissolution rates. PMID:7882923
De Giacomi, Federica; Raghunath, Sushravya; Karwoski, Ronald; Bartholmai, Brian J; Moua, Teng
2018-03-01
Fibrotic interstitial lung diseases presenting with nonspecific and overlapping radiologic findings may be difficult to diagnose without surgical biopsy. We hypothesized that baseline quantifiable radiologic features and their short-term interval change may be predictive of underlying histologic diagnosis as well as long-term survival in idiopathic pulmonary fibrosis (IPF) presenting without honeycombing versus nonspecific interstitial pneumonia (NSIP). Forty biopsy-confirmed IPF and 20 biopsy-confirmed NSIP patients with available high-resolution chest computed tomography 4 to 24 months apart were studied. CALIPER software was used for the automated characterization and quantification of radiologic findings. IPF subjects were older (66 vs. 48; P<0.0001) with lower diffusion capacity for carbon monoxide and higher volumes of baseline reticulation (193 vs. 83 mL; P<0.0001). Over the interval period, compared with NSIP, IPF patients experienced greater functional decline (forced vital capacity, -6.3% vs. -1.7%; P=0.02) and radiologic progression, as noted by greater increase in reticulation volume (24 vs. 1.74 mL; P=0.048), and decrease in normal (-220 vs. -37.7 mL; P=0.045) and total lung volumes (-198 vs. 58.1 mL; P=0.03). Older age, male gender, higher reticulation volumes at baseline, and greater interval decrease in normal lung volumes were predictive of IPF. Both baseline and short-term changes in quantitative radiologic findings were predictive of mortality. Baseline quantitative radiologic findings and assessment of short-term disease progression may help characterize underlying IPF versus NSIP in those with difficult to differentiate clinicoradiologic presentations. Our study supports the possible utility of assessing serial quantifiable high-resolution chest computed tomographic findings for disease differentiation in these 2 entities.
Lung Cancers Associated with Cystic Airspaces: Underrecognized Features of Early Disease.
Sheard, Sarah; Moser, Joanna; Sayer, Charlie; Stefanidis, Konstantinos; Devaraj, Anand; Vlahos, Ioannis
2018-01-01
Early lung cancers associated with cystic airspaces are increasingly being recognized as a cause of delayed diagnoses-owing to data gathered from screening trials and encounters in routine clinical practice as more patients undergo serial imaging. Several morphologic subtypes of cancers associated with cystic airspaces exist and can exhibit variable patterns of progression as the solid elements of the tumor grow. Current understanding of the pathogenesis of these malignancies is limited, and the numbers of cases reported in the literature are small. However, several tumor cell types are represented in these lesions, with adenocarcinoma predominating. The features of cystic airspaces differ among cases and include emphysematous bullae, congenital or fibrotic cysts, subpleural blebs, bronchiectatic airways, and distended distal airspaces. Once identified, these cystic lesions pose management challenges to radiologists in terms of distinguishing them from benign mimics of cancer that are commonly seen in patients who also are at increased risk of lung cancer. Rendering a definitive tissue-based diagnosis can be difficult when the lesions are small, and affected patients tend to be in groups that are at higher risk of requiring biopsy or resection. In addition, the decision to monitor these cases can add to patient anxiety and cause the additional burden of strained departmental resources. The authors have drawn from their experience, emerging evidence from international lung cancer screening trials, and large databases of lung cancer cases from other groups to analyze the prevalence and evolution of lung cancers associated with cystic airspaces and provide guidance for managing these lesions. Although there are insufficient data to support specific management guidelines similar to those for managing small solid and ground-glass lung nodules, these data and guidelines should be the direction for ongoing research on early detection of lung cancer. © RSNA, 2018.
Feasibility of cell-free circulating tumor DNA testing for lung cancer.
Santarpia, Mariacarmela; Karachaliou, Niki; González-Cao, Maria; Altavilla, Giuseppe; Giovannetti, Elisa; Rosell, Rafael
2016-01-01
Tumor tissue genotyping is used routinely for lung cancer to identify specific targetable oncogenic alterations, including EGFR mutations and ALK rearrangements. However, tumor tissue from a single biopsy is often insufficient for molecular testing, may offer a limited evaluation because of tumor heterogeneity and can be difficult to obtain. Cell-free circulating tumor DNA has been widely investigated as a potential surrogate for tissue biopsy for noninvasive assessment of tumor-related genomic alterations. New techniques have improved EGFR mutations detection in ctDNA, thus supporting the use of this liquid biopsy for predicting response to EGFR tyrosine kinase inhibitors (TKIs) and monitoring the emergence of resistance. The serial evaluation of ctDNA during treatment is feasible and can be used to track tumor changes in real time and for a wide range of clinically useful applications.
Wu, J; Kreis, I; Griffiths, D; Darling, C
2002-01-01
Aims: To determine the association between lung function of coke oven workers and exposure to coke oven emissions. Methods: Lung function data and detailed work histories for workers in recovery coke ovens of a steelworks were extracted from a lung function surveillance system. Multiple regressions were employed to determine significant predictors for lung function indices. The first sets of lung function tests for 613 new starters were pooled to assess the selection bias. The last sets of lung function tests for 834 subjects with one or more year of coke oven history were pooled to assess determinants of lung function. Results: Selection bias associated with the recruitment process was not observed among the exposure groups. For subjects with a history of one or more years of coke oven work, each year of working in the most exposed "operation" position was associated with reductions in FEV1 of around 9 ml (p = 0.006, 95% CI: 3 ml to 16 ml) and in FVC of around 12 ml (p = 0.002, 95% CI: 4 ml to 19 ml). Negative effects of smoking on lung function were also observed. Conclusions: Exposure to coke oven emissions was found to be associated with lower FEV1 and FVC. Effects of work exposure on lung function are similar to those found in other studies. PMID:12468747
Shi, Ju-Hong; Feng, Rui-E; Tian, Xin-Lun; Xu, Wen-Bing; Xu, Zuo-Jun; Liu, Hong-Rui; Zhu, Yuan-Jue
2009-12-01
The purpose of this paper was to investigate the clinical and radiological features of pulmonary tuberculosis presenting as interstitial lung diseases (ILD). We analyzed the data of cases suspected of diffuse parenchyma lung diseases at this hospital between October 2003 and October 2007. The diagnosis of active pulmonary tuberculosis was based on epithelioid granuloma or positive acid-fast bacilli in lung biopsy and changes on serial radiographs obtained during treatment. The data of a series of 230 consecutive patients with suspected ILD were retrospectively analyzed. The diagnosis was confirmed by lung biopsy. Twelve patients were confirmed to have pulmonary tuberculosis. There were 5 males and 7 females with a mean age of 38 +/- 11 years (range, 17 - 68). The median course of disease in these patients was 3 months (range, 0.5 - 18 months). Patients with pulmonary tuberculosis presented with fever (11/12), cough (9/12), weight loss (7/12), dyspnea (7/12), lymphadenopathy (4/12), and splenohepatomegaly (2/12). On chest CT scan, ground-glass attenuation was identified in 4, bilateral patchy infiltration in 5, tree-in-bud appearance 1, and centrilobular lesions in 2 of the 12 patients. During the follow-up period (median, 9 month, range from 3 to 12 month), 11 patients improved, but 1 died of diabetic ketoacidosis. The diagnosis of pulmonary tuberculosis should be considered in suspected ILD patients presenting with fever, splenohepatomegaly and lymphadenopathy.
[Registration and 3D rendering of serial tissue section images].
Liu, Zhexing; Jiang, Guiping; Dong, Wu; Zhang, Yu; Xie, Xiaomian; Hao, Liwei; Wang, Zhiyuan; Li, Shuxiang
2002-12-01
It is an important morphological research method to reconstruct the 3D imaging from serial section tissue images. Registration of serial images is a key step to 3D reconstruction. Firstly, an introduction to the segmentation-counting registration algorithm is presented, which is based on the joint histogram. After thresholding of the two images to be registered, the criterion function is defined as counting in a specific region of the joint histogram, which greatly speeds up the alignment process. Then, the method is used to conduct the serial tissue image matching task, and lies a solid foundation for 3D rendering. Finally, preliminary surface rendering results are presented.
Hughes, Robert W; Marsh, John E
2017-04-01
A functional, perceptual-motor, account of serial short-term memory (STM) is examined by investigating the way in which an irrelevant spoken sequence interferes with verbal serial recall. Even with visual list-presentation, verbal serial recall is particularly susceptible to disruption by irrelevant spoken stimuli that have the same identity as-but that are order-incongruent with-the to-be-remembered items. We test the view that such interference is because of the obligatory perceptual organization of the spoken stimuli yielding a sequence that competes with a subvocal motor-plan assembled to support the reproduction of the to-be-remembered list. In support of this view, the interference can be eliminated without changing either the identities or objective serial order of the spoken stimuli but merely by promoting a subjective perceptual organization that strips them of their order-incongruent relation to the to-be-remembered list (Experiment 1). The interference is also eliminated if subvocal motor sequence-planning is impeded via articulatory suppression (Experiment 2). The results are in line with the view that performance-limits in verbal serial STM are because of having to exploit perceptual and motor processes for purposes for which they did not evolve, not the inherently limited capacity of structures or mechanisms dedicated to storage. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Boon, Kathy; Bailey, Nathaniel W.; Yang, Jun; Steel, Mark P.; Groshong, Steve; Kervitsky, Dolly; Brown, Kevin K.; Schwarz, Marvin I.; Schwartz, David A.
2009-01-01
Background Idiopathic pulmonary fibrosis (IPF) is a progressive, chronic interstitial lung disease that is unresponsive to current therapy and often leads to death. However, the rate of disease progression differs among patients. We hypothesized that comparing the gene expression profiles between patients with stable disease and those in which the disease progressed rapidly will lead to biomarker discovery and contribute to the understanding of disease pathogenesis. Methodology and Principal Findings To begin to address this hypothesis, we applied Serial Analysis of Gene Expression (SAGE) to generate lung expression profiles from diagnostic surgical lung biopsies in 6 individuals with relatively stable (or slowly progressive) IPF and 6 individuals with progressive IPF (based on changes in DLCO and FVC over 12 months). Our results indicate that this comprehensive lung IPF SAGE transcriptome is distinct from normal lung tissue and other chronic lung diseases. To identify candidate markers of disease progression, we compared the IPF SAGE profiles in stable and progressive disease, and identified a set of 102 transcripts that were at least 5-fold up regulated and a set of 89 transcripts that were at least 5-fold down regulated in the progressive group (P-value≤0.05). The over expressed genes included surfactant protein A1, two members of the MAPK-EGR-1-HSP70 pathway that regulate cigarette-smoke induced inflammation, and Plunc (palate, lung and nasal epithelium associated), a gene not previously implicated in IPF. Interestingly, 26 of the up regulated genes are also increased in lung adenocarcinomas and have low or no expression in normal lung tissue. More importantly, we defined a SAGE molecular expression signature of 134 transcripts that sufficiently distinguished relatively stable from progressive IPF. Conclusions These findings indicate that molecular signatures from lung parenchyma at the time of diagnosis could prove helpful in predicting the likelihood of disease progression or possibly understanding the biological activity of IPF. PMID:19347046
Zhu, Gefei A; Li, Angela S; Chang, Anne Lynn S
2014-08-01
Basal cell carcinomas (BCCs) in patients with Gorlin syndrome have been reported to be extremely sensitive to Smoothened (SMO) inhibitors, a novel targeted therapy against the Hedgehog pathway, because of characteristic mutations in these patients. A few cases of disease refractory to oral therapy with SMO inhibitors have been reported in patients with Gorlin syndrome and nonmetastatic BCCs, but refractory disease in distantly metastatic tumors has not been documented in this high-risk group. A man with Gorlin syndrome and innumerable cutaneous BCCs presented with biopsy-proven BCC in his lungs. After SMO inhibitor therapy, almost all of his cutaneous tumors shrank, but his lung metastases did not. These lung metastases remained refractory to treatment despite institution of a second SMO inhibitor. We report a case of Gorlin syndrome in a patient with metastatic BCC refractory to SMO inhibitors. Furthermore, clinical responses in this patient's cutaneous tumors did not parallel the responses in the distant site. However, serial imaging after diagnosis of metastatic disease can be critical to monitor for response to therapy.
Subsolid pulmonary nodules: imaging evaluation and strategic management.
Godoy, Myrna C B; Sabloff, Bradley; Naidich, David P
2012-07-01
Given the higher rate of malignancy of subsolid pulmonary nodules and the considerably lower growth rate of ground-glass nodules (GGNs), dedicated standardized guidelines for management of these nodules have been proposed, including long-term low-dose computed tomography (CT) follow-up (≥3 years). Physicians must be familiar with the strategic management of subsolid pulmonary nodules, and should be able to identify imaging features that suggest invasive adenocarcinoma requiring a more aggressive management. Low-dose CT screening studies for early detection of lung cancer have increased our knowledge of pulmonary nodules, and in particular our understanding of the strong although imperfect correlation of the subsolid pulmonary nodules, including pure GGNs and part-solid nodules, with the spectrum of preinvasive to invasive lung adenocarcinoma. Serial CT imaging has shown stepwise progression in a subset of these nodules, characterized by increase in size and density of pure GGNs and development of a solid component, the latter usually indicating invasive adenocarcinoma. There is close correlation between the CT features of subsolid nodules (SSNs) and the spectrum of lung adenocarcinoma. Standardized guidelines are suggested for management of SSNs.
Linearized Programming of Memristors for Artificial Neuro-Sensor Signal Processing
Yang, Changju; Kim, Hyongsuk
2016-01-01
A linearized programming method of memristor-based neural weights is proposed. Memristor is known as an ideal element to implement a neural synapse due to its embedded functions of analog memory and analog multiplication. Its resistance variation with a voltage input is generally a nonlinear function of time. Linearization of memristance variation about time is very important for the easiness of memristor programming. In this paper, a method utilizing an anti-serial architecture for linear programming is proposed. The anti-serial architecture is composed of two memristors with opposite polarities. It linearizes the variation of memristance due to complimentary actions of two memristors. For programming a memristor, additional memristor with opposite polarity is employed. The linearization effect of weight programming of an anti-serial architecture is investigated and memristor bridge synapse which is built with two sets of anti-serial memristor architecture is taken as an application example of the proposed method. Simulations are performed with memristors of both linear drift model and nonlinear model. PMID:27548186
Linearized Programming of Memristors for Artificial Neuro-Sensor Signal Processing.
Yang, Changju; Kim, Hyongsuk
2016-08-19
A linearized programming method of memristor-based neural weights is proposed. Memristor is known as an ideal element to implement a neural synapse due to its embedded functions of analog memory and analog multiplication. Its resistance variation with a voltage input is generally a nonlinear function of time. Linearization of memristance variation about time is very important for the easiness of memristor programming. In this paper, a method utilizing an anti-serial architecture for linear programming is proposed. The anti-serial architecture is composed of two memristors with opposite polarities. It linearizes the variation of memristance due to complimentary actions of two memristors. For programming a memristor, additional memristor with opposite polarity is employed. The linearization effect of weight programming of an anti-serial architecture is investigated and memristor bridge synapse which is built with two sets of anti-serial memristor architecture is taken as an application example of the proposed method. Simulations are performed with memristors of both linear drift model and nonlinear model.
Pleural plaques and their effect on lung function in Libby vermiculite miners.
Clark, Kathleen A; Flynn, J Jay; Goodman, Julie E; Zu, Ke; Karmaus, Wilfried J J; Mohr, Lawrence C
2014-09-01
Multiple studies have investigated the relationship between asbestos-related pleural plaques (PPs) and lung function, with disparate and inconsistent results. Most use chest radiographs to identify PPs and simple spirometry to measure lung function. High-resolution CT (HRCT) scanning improves the accuracy of PP identification. Complete pulmonary function tests (PFTs), including spirometry, lung volumes, and diffusing capacity of the lung for carbon monoxide, provide a more definitive assessment of lung function. The goal of this study was to determine, using HRCT scanning and complete PFTs, the effect of PPs on lung function in Libby vermiculite miners. The results of HRCT scanning and complete PFTs performed between January 2000 and August 2012 were obtained from the medical records of 166 Libby vermiculite miners. Multivariate regression analyses with Tukey multivariate adjustment were used to assess statistical associations between the presence of PPs and lung function. Adjustments were made for age, BMI, smoking history, duration of employment, and years since last occupational asbestos exposure. Nearly 90% of miners (n = 149) had evidence of PPs on HRCT scan. No significant differences in spirometry results, lung volumes, or diffusing capacity of the lung for carbon monoxide were found between miners with PPs alone and miners with normal HRCT scans. Miners with both interstitial fibrosis and the presence of PPs had a significantly decreased total lung capacity in comparison with miners with normal HRCT scans (P = .02). Age, cumulative smoking history, and BMI were significant covariates that contributed to abnormal lung function. Asbestos-related PPs alone have no significant effect on lung function in Libby vermiculite miners.
Fibroblast growth factor 10 haploinsufficiency causes chronic obstructive pulmonary disease.
Klar, Joakim; Blomstrand, Peter; Brunmark, Charlott; Badhai, Jitendra; Håkansson, Hanna Falk; Brange, Charlotte Sollie; Bergendal, Birgitta; Dahl, Niklas
2011-10-01
Genetic factors influencing lung function may predispose to chronic obstructive pulmonary disease (COPD). The fibroblast growth factor 10 (FGF10) signalling pathway is critical for lung development and lung epithelial renewal. The hypothesis behind this study was that constitutive FGF10 insufficiency may lead to pulmonary disorder. Therefore investigation of the pulmonary functions of patients heterozygous for loss of function mutations in the FGF10 gene was performed. The spirometric measures of lung function from patients and non-carrier siblings were compared and both groups were related to matched reference data for normal human lung function. The patients show a significant decrease in lung function parameters when compared to control values. The average FEV1/IVC quota (FEV1%) for the patients is 0.65 (80% of predicted) and reversibility test using Terbutalin resulted in a 3.7% increase in FEV1. Patients with FGF10 haploinsufficiency have lung function parameters indicating COPD. A modest response to Terbutalin confirms an irreversible obstructive lung disease. These findings support the idea that genetic variants affecting the FGF10 signalling pathway are important determinants of lung function that may ultimately contribute to COPD. Specifically, the results show that FGF10 haploinsufficiency affects lung function measures providing a model for a dosage sensitive effect of FGF10 in the development of COPD.
Zhang, Zhuo; Shiratsuchi, Hiroe; Palanisamy, Nallasivam; Nagrath, Sunitha; Ramnath, Nithya
2017-02-01
The emergence of liquid biopsy using circulating tumor cells (CTCs) as a resource to identify genomic alterations in cancer presents new opportunities for diagnosis, therapy, and surveillance. We identified EML4-ALK gene rearrangement in expanded CTCs from a patient with ALK-positive lung adenocarcinoma. At the time of radiographic progression, CTCs obtained from the patient revealed a drug resistance mutation (i.e., L1196M on the ALK gene). CTCs were expanded ex vivo and drug sensitivity testing was performed using two ALK inhibitors, crizotinib and ceritinib. The half maximal inhibitory concentration of ceritinib was 1664 nM compared with crizotinib (2268 nM), showing that ceritinib was a more potent ALK inhibitor. We show that it is feasible to detect serial genetic alterations in expanded CTCs and perform in vitro drug screening. These findings support the clinical utility of CTCs not only for diagnosis, but also a potential tool for drug sensitivity testing in distinct subsets of lung cancer and for personalized precision medicine. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
Yoneda, Ken Y; Mathur, Praveen N; Gasparini, Stefano
2007-11-01
The diagnosis and management of a malignant pleural effusion can be one of the most vexing problems faced by physicians and their patients. Lung cancer is the most common primary tumor of origin with a prognosis that is limited, but variable and correlated with performance status (PS). Therefore, with a poor PS and known advanced lung cancer, establishing whether or not an effusion is malignant might not be necessary. Conversely, identifiable subsets of patients will have a much better survival, and establishing a definitive diagnosis could be of critical importance. In the great majority of cases, a diagnosis can be determined by serial thoracenteses with or without closed pleural biopsy. However, thoracoscopy is increasingly being utilized and can expedite the workup by obviating the need for repeated thoracenteses and/or closed pleural biopsy, while in the same setting providing definitive palliative treatment. Although studies comparing diagnostic and treatment strategies are limited, we will present the available data with the intention of providing the practicing oncologist with a practical strategy for the diagnosis and management of malignant pleural effusions due to lung cancer. The interventional pulmonologist can play an important role from diagnosis to palliation, greatly facilitating the care of patients with malignant pleural effusions.
Novel method to detect microRNAs using chip-based QuantStudio 3D digital PCR.
Conte, Davide; Verri, Carla; Borzi, Cristina; Suatoni, Paola; Pastorino, Ugo; Sozzi, Gabriella; Fortunato, Orazio
2015-10-23
Research efforts for the management of cancer, in particular for lung cancer, are directed to identify new strategies for its early detection. MicroRNAs (miRNAs) are a new promising class of circulating biomarkers for cancer detection, but lack of consensus on data normalization methods has affected the diagnostic potential of circulating miRNAs. There is a growing interest in techniques that allow an absolute quantification of miRNAs which could be useful for early diagnosis. Recently, digital PCR, mainly based on droplets generation, emerged as an affordable technology for precise and absolute quantification of nucleic acids. In this work, we described a new interesting approach for profiling circulating miRNAs in plasma samples using a chip-based platform, the QuantStudio 3D digital PCR. The proposed method was validated using synthethic oligonucleotide at serial dilutions in plasma samples of lung cancer patients and in lung tissues and cell lines. Given its reproducibility and reliability, our approach could be potentially applied for the identification and quantification of miRNAs in other biological samples such as circulating exosomes or protein complexes. As chip-digital PCR becomes more established, it would be a robust tool for quantitative assessment of miRNA copy number for diagnosis of lung cancer and other diseases.
Serial agonistic attacks by greylag goose families, Anser anser, against the same opponent
Scheiber, Isabella B.R.; Kotrschal, Kurt; Weiß, Brigitte M.
2011-01-01
It is known from primates that alliance partners may support each other’s interests in competition with others, for example, through repeated agonistic attacks against a particular individual. We examined serial aggressive interactions between greylag goose families and other flock members. We found that repeated attacks towards the same individual were common and that up to five serial attacks by family members followed an initial attack. Family size did not affect the frequency of such serial attacks. Juvenile geese evidently benefited most from active social support through serial attacks. About 60% of the juveniles’ lost primary interactions were subsequently reversed by another family member. This may be one of the reasons why juveniles rank higher in the social hierarchy than would be expected from their age and size alone. Losses in serial attacks predominantly occurred against other, presumably higher-ranking, family geese and ganders. We propose three major functions/consequences of serial attacks. Analogous to primates, serial attacks in greylag geese may serve to reinforce a losing experience of an opponent defeated in a preceding attack. On the side of the winning family, serial attacks may reinforce the experience of winning. Both winning and losing experiences are linked with physiological consequences in higher vertebrates, affecting the future social performance of winners or losers. Finally, serial attacks may signal the agonistic potential of a family to other flock members. This is supported by heart rate data, which indicate that greylags are competent to interpret third-party relationships. PMID:21984838
Sonoda, Nao; Morimoto, Akiko; Tatsumi, Yukako; Asayama, Kei; Ohkubo, Takayoshi; Izawa, Satoshi; Ohno, Yuko
2018-05-01
To assess the impact of diabetes on restrictive and obstructive lung function impairment. This 5-year prospective study included 7524 participants aged 40-69years without lung function impairment at baseline who underwent a comprehensive medical check-up between April 2008 and March 2009 at Saku Central Hospital. Diabetes was defined by fasting plasma glucose ≥7.0mmol/l (126mg/dl), HbA1c≥6.5% (48mmol/mol), or a history of diabetes, as determined by interviews conducted by the physicians. Restrictive and obstructive lung function impairment were defined as forced vital capacity (FVC) <80% predicted and forced expiratory volume in 1s (FEV 1 ) to FVC ratio (FEV 1 /FVC) <0.70, respectively. Participants were screened until they developed restrictive or obstructive lung function impairment or until March 2014. During the follow-up period, 171 and 639 individuals developed restrictive and obstructive lung function impairment, respectively. Individuals with diabetes had a 1.6-fold higher risk of restrictive lung function impairment than those without diabetes after adjusting for sex, age, height, abdominal obesity, smoking status, exercise habits, systolic blood pressure, HDL-cholesterol, log-transformed high-sensitivity C-reactive protein, and baseline lung function [multivariable-adjusted HR and 95% CI; 1.57 (1.04-2.36)]. In contrast, individuals with diabetes did not have a significantly higher risk of obstructive lung function impairment [multivariable-adjusted HR and 95% CI; 0.93 (0.72-1.21)]. Diabetes was associated with restrictive lung function impairment but not obstructive lung function impairment. Copyright © 2017. Published by Elsevier Inc.
Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers
Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.; Aftab, Blake T.; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M.; Wong, John; Rudin, Charles M.; Tran, Phuoc T.; Hales, Russell K.
2012-01-01
Purpose Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of KrasG12D-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radio-sensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer. PMID:23182391
Hedgehog pathway inhibition radiosensitizes non-small cell lung cancers.
Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T; Aftab, Blake T; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M; Wong, John; Rudin, Charles M; Tran, Phuoc T; Hales, Russell K
2013-05-01
Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of Kras(G12D)-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer. Copyright © 2013 Elsevier Inc. All rights reserved.
Osman, Onur; Ucan, Osman N.
2008-01-01
Objective The purpose of this study was to develop a new method for automated lung nodule detection in serial section CT images with using the characteristics of the 3D appearance of the nodules that distinguish themselves from the vessels. Materials and Methods Lung nodules were detected in four steps. First, to reduce the number of region of interests (ROIs) and the computation time, the lung regions of the CTs were segmented using Genetic Cellular Neural Networks (G-CNN). Then, for each lung region, ROIs were specified with using the 8 directional search; +1 or -1 values were assigned to each voxel. The 3D ROI image was obtained by combining all the 2-Dimensional (2D) ROI images. A 3D template was created to find the nodule-like structures on the 3D ROI image. Convolution of the 3D ROI image with the proposed template strengthens the shapes that are similar to those of the template and it weakens the other ones. Finally, fuzzy rule based thresholding was applied and the ROI's were found. To test the system's efficiency, we used 16 cases with a total of 425 slices, which were taken from the Lung Image Database Consortium (LIDC) dataset. Results The computer aided diagnosis (CAD) system achieved 100% sensitivity with 13.375 FPs per case when the nodule thickness was greater than or equal to 5.625 mm. Conclusion Our results indicate that the detection performance of our algorithm is satisfactory, and this may well improve the performance of computer-aided detection of lung nodules. PMID:18253070
Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.
2013-05-01
Purpose: Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials: We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntagmore » and radiation. In a transgenic mouse model of Kras{sup G12D}-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results: In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions: Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer.« less
Proteasome function is not impaired in healthy aging of the lung.
Caniard, Anne; Ballweg, Korbinian; Lukas, Christina; Yildirim, Ali Ö; Eickelberg, Oliver; Meiners, Silke
2015-10-01
Aging is the progressive loss of cellular function which inevitably leads to death. Failure of proteostasis including the decrease in proteasome function is one hallmark of aging. In the lung, proteasome activity was shown to be impaired in age-related diseases such as chronic obstructive pulmonary disease. However, little is known on proteasome function during healthy aging. Here, we comprehensively analyzed healthy lung aging and proteasome function in wildtype, proteasome reporter and immunoproteasome knockout mice. Wildtype mice spontaneously developed senile lung emphysema while expression and activity of proteasome complexes and turnover of ubiquitinated substrates was not grossly altered in lungs of aged mice. Immunoproteasome subunits were specifically upregulated in the aged lung and the caspase-like proteasome activity concomitantly decreased. Aged knockout mice for the LMP2 or LMP7 immunoproteasome subunits showed no alteration in proteasome activities but exhibited typical lung aging phenotypes suggesting that immunoproteasome function is dispensable for physiological lung aging in mice. Our results indicate that healthy aging of the lung does not involve impairment of proteasome function. Apparently, the reserve capacity of the proteostasis systems in the lung is sufficient to avoid severe proteostasis imbalance during healthy aging.
Aoki, Kana; Sakuma, Mayumi; Ogisho, Noriyuki; Nakamura, Kozo; Chosa, Etsuo; Endo, Naoto
2015-01-01
Exercise is essential for maintaining quality of life (QOL) in elderly individuals. However, adherence to exercise programs is low. Here, we assessed the effectiveness of a self-directed home exercise program with serial telephone contacts to encourage exercise adherence among elderly individuals at high risk of locomotor dysfunction. We recruited community-dwelling adults (ァ65 years) in Niigata, Japan, who were targets of the long-term care prevention project for locomotor dysfunction but did not participate in the government-sponsored prevention programs. The study was conducted from November 2011 to October 2012. Participants received exercise instruction and performed exercises independently for 3 months with serial telephone contacts. The single-leg stance and five-times sit-to-stand tests were used to assess physical function. The SF-8 was used to measure health-related QOL. Ninety-seven participants were enrolled in the study, representing 2.5% of eligible people;87 completed the intervention. Scores from physical function tests were significantly improved by the intervention, as were 7 of eight SF-8 subscales. Adherence was 85.4% for the single-leg standing exercise and 82.1% for squatting. Thus, self-directed home exercise with serial telephone contacts improved physical function and health-related QOL, representing a promising model for preventing the need for long-term care due to locomotor dysfunction.
Regulatory Role of the NF-kB Pathway in Lymphangiogenesis and Breast Cancer Metastasis
2010-07-01
with anti - LYVE-1 and anti -VEGFR-3 or anti -Prox1 antibodies in serial sections of p50 KO and WT lungs, showing reduced lymphatic vessel density...3 protein as determined by MFI analysis of slides double-stained with anti -VEGFR-3 and anti -LYVE-1 antibodies (Figure 2). These data indicate that...expression of VEGFR-3 and LYVE-1 on liver endothelial cells compared with WT. (A) Livers of p50 KO and WT mice were double immunostained with anti -VEGFR
CANINE DISTEMPER IN A VACCINATED SNOW LEOPARD ( PANTHERA UNCIA).
Chinnadurai, Sathya K; Kinsel, Michael J; Adkesson, Michael J; Terio, Karen
2017-12-01
A 6-yr-old male snow leopard ( Panthera uncia) presented with acute seizures, hyperthermia, and tachypnea. Because of a diagnosis of anuric renal failure, the animal was euthanized. On histopathologic examination, numerous intralesional intracytoplasmic and intranuclear inclusions were found in the lungs, lymph nodes, and stomach. Positive immunohistochemical staining for canine distemper virus (CDV) was found in the lungs and, to a lesser extent, in the lymph nodes and brain. Molecular testing yielded a CDV H gene sequence that was closely related to CDV isolates concurrently found in wild raccoons from adjacent forested areas. The leopard had been vaccinated once against CDV with the use of a recombinant canarypox-vectored live vaccine during a routine wellness examination 12 wk prior to death. Serial serum neutralization titers performed on banked serum collected between vaccination and death showed poor serologic response to the vaccine. This case demonstrates a probable failure of protection against naturally occurring CDV.
Dramatic response to high-dose icotinib in a lung adenocarcinoma patient after erlotinib failure.
Guan, Yin; Zhao, Hong; Meng, Jing; Yan, Xiang; Jiao, ShunChang
2014-02-01
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) retreatment is rarely administered for non-small cell lung cancer (NSCLC) patients who did not respond to previous TKI treatment. A high dose of TKI may overcome resistance to the standard dose of TKI and have different effectiveness toward cancer compared with the standard dose of TKI. This manuscript describes a dramatic and durable response to high-dose icotinib in a NSCLC patient who did not respond to a previous standard dose of erlotinib. The treatment extended the life of the patient for one additional year. A higher dose of icotinib deserves further study not only for patients whose therapy failed with the standard dose of TKI but also for newly diagnosed NSCLC patients with a sensitive mutation. Serial mutation testing during disease development is necessary for analysis and evaluation of EGFR TKI treatment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Yeung, Jonathan C; Wagnetz, Dirk; Cypel, Marcelo; Rubacha, Matthew; Koike, Terumoto; Chun, Yi-Min; Hu, Jim; Waddell, Thomas K; Hwang, David M; Liu, Mingyao; Keshavjee, Shaf
2012-01-01
Acellular normothermic ex vivo lung perfusion (EVLP) is a novel method of donor lung preservation for transplantation. As cellular metabolism is preserved during perfusion, it represents a potential platform for effective gene transduction in donor lungs. We hypothesized that vector-associated inflammation would be reduced during ex vivo delivery due to isolation from the host immune system response. We compared ex vivo with in vivo intratracheal delivery of an E1-, E3-deleted adenoviral vector encoding either green fluorescent protein (GFP) or interleukin-10 (IL-10) to porcine lungs. Twelve hours after delivery, the lung was transplanted and the post-transplant function assessed. We identified significant transgene expression by 12 hours in both in vivo and ex vivo delivered groups. Lung function remained excellent in all ex vivo groups after viral vector delivery; however, as expected, lung function decreased in the in vivo delivered adenovirus vector encoding GFP (AdGFP) group with corresponding increases in IL-1β levels. Transplanted lung function was excellent in the ex vivo transduced lungs and inferior lung function was seen in the in vivo group after transplantation. In summary, ex vivo delivery of adenoviral gene therapy to the donor lung is superior to in vivo delivery in that it leads to less vector-associated inflammation and provides superior post-transplant lung function. PMID:22453765
Takai, Daiya
2014-12-01
The symposium consisted of four parts: history of lung function tests, nitric oxide for diagnosis and monitoring of bronchial asthma, radiological and functional changes of the lung in COPD, and combined pulmonary fibrosis and emphysema (CPFE) occasionally showing almost normal results in lung function tests. The history of lung function tests was presented by Dr. Naoko Tojo of the Tokyo Medical and Dental University. Nitric oxide tests in clinical use for diagnosis and monitoring of bronchial asthma were presented by Dr. Hiroyuki Nagase of Teikyo University. Radiological and functional changes of the lung in COPD were presented by Dr. Shigeo Muro of Kyoto University. Clinical features of combined pulmonary fibrosis and emphysema and their associated lung function were presented by Dr. Daiya Takai of the University of Tokyo. I hope that discussing the history of lung function tests until the present was useful for many medical technologists. (Review).
Quantification of heterogeneity in lung disease with image-based pulmonary function testing.
Stahr, Charlene S; Samarage, Chaminda R; Donnelley, Martin; Farrow, Nigel; Morgan, Kaye S; Zosky, Graeme; Boucher, Richard C; Siu, Karen K W; Mall, Marcus A; Parsons, David W; Dubsky, Stephen; Fouras, Andreas
2016-07-27
Computed tomography (CT) and spirometry are the mainstays of clinical pulmonary assessment. Spirometry is effort dependent and only provides a single global measure that is insensitive for regional disease, and as such, poor for capturing the early onset of lung disease, especially patchy disease such as cystic fibrosis lung disease. CT sensitively measures change in structure associated with advanced lung disease. However, obstructions in the peripheral airways and early onset of lung stiffening are often difficult to detect. Furthermore, CT imaging poses a radiation risk, particularly for young children, and dose reduction tends to result in reduced resolution. Here, we apply a series of lung tissue motion analyses, to achieve regional pulmonary function assessment in β-ENaC-overexpressing mice, a well-established model of lung disease. The expiratory time constants of regional airflows in the segmented airway tree were quantified as a measure of regional lung function. Our results showed marked heterogeneous lung function in β-ENaC-Tg mice compared to wild-type littermate controls; identified locations of airway obstruction, and quantified regions of bimodal airway resistance demonstrating lung compensation. These results demonstrate the applicability of regional lung function derived from lung motion as an effective alternative respiratory diagnostic tool.
Goodwin, Renee D; Chuang, Shirley; Simuro, Nicole; Davies, Mark; Pine, Daniel S
2007-02-15
The objective of this study was to determine the association between lung function and mental health problems among adults in the United States. Data were drawn from the First National Health and Nutrition Examination Survey (1971-1975), with available information on a representative sample of US adults aged 25-74 years. Lung function was assessed by spirometry, and provisional diagnoses of restrictive and obstructive airway disease were assigned based on percentage of expected forced expiratory volume. Mental health problems were assessed with the General Well-Being scales. Restrictive lung function and obstructive lung function, compared with normal lung function, were each associated with a significantly increased likelihood of mental health problems. After adjustment for differences in demographic characteristics, obstructive lung function was associated with significantly lower overall well-being (p = 0.025), and restrictive lung function was associated with significantly lower overall well-being (p < 0.001), general health (p < 0.0001), vitality (p < 0.0001), and self-control (p = 0.001) and with higher depression (p = 0.002) subscale scores compared with no lung function problems. Consistent with previous findings from clinical and community-based studies, these results extend available data by providing evidence of a link between objectively measured lung function and self-reported mental health problems in a representative sample of community adults. Future studies are needed to determine the mechanisms of these associations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cunliffe, A; Contee, C; White, B
Purpose: To characterize the effect of deformable registration of serial computed tomography (CT) scans on the radiation dose calculated from a treatment planning scan. Methods: Eighteen patients who received curative doses (≥60Gy, 2Gy/fraction) of photon radiation therapy for lung cancer treatment were retrospectively identified. For each patient, a diagnostic-quality pre-therapy (4–75 days) CT scan and a treatment planning scan with an associated dose map calculated in Pinnacle were collected. To establish baseline correspondence between scan pairs, a researcher manually identified anatomically corresponding landmark point pairs between the two scans. Pre-therapy scans were co-registered with planning scans (and associated dose maps)more » using the Plastimatch demons and Fraunhofer MEVIS deformable registration algorithms. Landmark points in each pretherapy scan were automatically mapped to the planning scan using the displacement vector field output from both registration algorithms. The absolute difference in planned dose (|ΔD|) between manually and automatically mapped landmark points was calculated. Using regression modeling, |ΔD| was modeled as a function of the distance between manually and automatically matched points (registration error, E), the dose standard deviation (SD-dose) in the eight-pixel neighborhood, and the registration algorithm used. Results: 52–92 landmark point pairs (median: 82) were identified in each patient's scans. Average |ΔD| across patients was 3.66Gy (range: 1.2–7.2Gy). |ΔD| was significantly reduced by 0.53Gy using Plastimatch demons compared with Fraunhofer MEVIS. |ΔD| increased significantly as a function of E (0.39Gy/mm) and SD-dose (2.23Gy/Gy). Conclusion: An average error of <4Gy in radiation dose was introduced when points were mapped between CT scan pairs using deformable registration. Dose differences following registration were significantly increased when the Fraunhofer MEVIS registration algorithm was used, spatial registration errors were larger, and dose gradient was higher (i.e., higher SD-dose). To our knowledge, this is the first study to directly compute dose errors following deformable registration of lung CT scans.« less
Mujovic, Natasa; Mujovic, Nebojsa; Subotic, Dragan; Ercegovac, Maja; Milovanovic, Andjela; Nikcevic, Ljubica; Zugic, Vladimir; Nikolic, Dejan
2015-11-01
Influence of physiotherapy on the outcome of the lung resection is still controversial. Study aim was to assess the influence of physiotherapy program on postoperative lung function and effort tolerance in lung cancer patients with chronic obstructive pulmonary disease (COPD) that are undergoing lobectomy or pneumonectomy. The prospective study included 56 COPD patients who underwent lung resection for primary non small-cell lung cancer after previous physiotherapy (Group A) and 47 COPD patients (Group B) without physiotherapy before lung cancer surgery. In Group A, lung function and effort tolerance on admission were compared with the same parameters after preoperative physiotherapy. Both groups were compared in relation to lung function, effort tolerance and symptoms change after resection. In patients with tumors requiring a lobectomy, after preoperative physiotherapy, a highly significant increase in FEV1, VC, FEF50 and FEF25 of 20%, 17%, 18% and 16% respectively was registered with respect to baseline values. After physiotherapy, a significant improvement in 6-minute walking distance was achieved. After lung resection, the significant loss of FEV1 and VC occurred, together with significant worsening of the small airways function, effort tolerance and symptomatic status. After the surgery, a clear tendency existed towards smaller FEV1 loss in patients with moderate to severe, when compared to patients with mild baseline lung function impairment. A better FEV1 improvement was associated with more significant loss in FEV1. Physiotherapy represents an important part of preoperative and postoperative treatment in COPD patients undergoing a lung resection for primary lung cancer.
Variation in Cilia Protein Genes and Progression of Lung Disease in Cystic Fibrosis.
Blue, Elizabeth; Louie, Tin L; Chong, Jessica X; Hebbring, Scott J; Barnes, Kathleen C; Rafaels, Nicholas M; Knowles, Michael R; Gibson, Ronald L; Bamshad, Michael J; Emond, Mary J
2018-04-01
Cystic fibrosis, like primary ciliary dyskinesia, is an autosomal recessive disorder characterized by abnormal mucociliary clearance and obstructive lung disease. We hypothesized that genes underlying the development or function of cilia may modify lung disease severity in persons with cystic fibrosis. To test this hypothesis, we compared variants in 93 candidate genes in both upper and lower tertiles of lung function in a large cohort of children and adults with cystic fibrosis with those of a population control dataset. Variants within candidate genes were tested for association using the SKAT-O test, comparing cystic fibrosis cases defined by poor (n = 127) or preserved (n = 127) lung function with population controls (n = 3,269 or 3,148, respectively). Associated variants were then tested for association with related phenotypes in independent datasets. Variants in DNAH14 and DNAAF3 were associated with poor lung function in cystic fibrosis, whereas variants in DNAH14 and DNAH6 were associated with preserved lung function in cystic fibrosis. Associations between DNAH14 and lung function were replicated in disease-related phenotypes characterized by obstructive lung disease in adults. Genetic variants within DNAH6, DNAH14, and DNAAF3 are associated with variation in lung function among persons with cystic fibrosis.
Comparative analysis of the mechanical signals in lung development and compensatory growth.
Hsia, Connie C W
2017-03-01
This review compares the manner in which physical stress imposed on the parenchyma, vasculature and thorax and the thoraco-pulmonary interactions, drive both developmental and compensatory lung growth. Re-initiation of anatomical lung growth in the mature lung is possible when the loss of functioning lung units renders the existing physiologic-structural reserves insufficient for maintaining adequate function and physical stress on the remaining units exceeds a critical threshold. The appropriate spatial and temporal mechanical interrelationships and the availability of intra-thoracic space, are crucial to growth initiation, follow-on remodeling and physiological outcome. While the endogenous potential for compensatory lung growth is retained and may be pharmacologically augmented, supra-optimal mechanical stimulation, unbalanced structural growth, or inadequate remodeling may limit functional gain. Finding ways to optimize the signal-response relationships and resolve structure-function discrepancies are major challenges that must be overcome before the innate compensatory ability could be fully realized. Partial pneumonectomy reproducibly removes a known fraction of functioning lung units and remains the most robust model for examining the adaptive mechanisms, structure-function consequences and plasticity of the remaining functioning lung units capable of regeneration. Fundamental mechanical stimulus-response relationships established in the pneumonectomy model directly inform the exploration of effective approaches to maximize compensatory growth and function in chronic destructive lung diseases, transplantation and bioengineered lungs.
Comparative Analysis of the Mechanical Signals in Lung Development and Compensatory Growth
Hsia, Connie C.W.
2017-01-01
This review compares the manner in which physical stress imposed on the parenchyma, vasculature and thorax, and the thoraco-pulmonary interactions, drive both developmental and compensatory lung growth. Re-initiation of anatomical lung growth in the mature lung is possible when the loss of functioning lung units renders the existing physiologic-structural reserves insufficient for maintaining adequate function and physical stress on the remaining units exceeds a critical threshold. The appropriate spatial and temporal mechanical interrelationships, and the availability of intra-thoracic space, are crucial to growth initiation, follow-on remodeling and physiological outcome. While the endogenous potential for compensatory lung growth is retained and may be pharmacologically augmented, supra-optimal mechanical stimulation, unbalanced structural growth, or inadequate remodeling, may limit functional gain. Finding ways to optimize the signal-response relationships and resolve structure-function discrepancies are major challenges that must be overcome before the innate compensatory ability could be fully realized. Partial pneumonectomy reproducibly removes a known fraction of functioning lung units and remains the most robust model for examining the adaptive mechanisms, structure-function consequences, and plasticity of the remaining functioning lung units capable of regeneration. Fundamental mechanical stimulus-response relationships established in the pneumonectomy model directly inform the exploration of effective approaches to maximize compensatory growth and function in chronic destructive lung diseases, transplantation and bioengineered lungs. PMID:28084523
Mondragón, Esther; Gray, Jonathan; Alonso, Eduardo; Bonardi, Charlotte; Jennings, Dómhnall J.
2014-01-01
This paper presents a novel representational framework for the Temporal Difference (TD) model of learning, which allows the computation of configural stimuli – cumulative compounds of stimuli that generate perceptual emergents known as configural cues. This Simultaneous and Serial Configural-cue Compound Stimuli Temporal Difference model (SSCC TD) can model both simultaneous and serial stimulus compounds, as well as compounds including the experimental context. This modification significantly broadens the range of phenomena which the TD paradigm can explain, and allows it to predict phenomena which traditional TD solutions cannot, particularly effects that depend on compound stimuli functioning as a whole, such as pattern learning and serial structural discriminations, and context-related effects. PMID:25054799
STUDIES ON PNEUMONIA VIRUS OF MICE (PVM) IN CELL CULTURE
Harter, Donald H.; Choppin, Purnell W.
1967-01-01
Pneumonia virus of mice (PVM) has been serially propagated in a line of baby hamster kidney (BHK21) cells. A maximum titer of 6.3 x 106 TCID50 per ml was obtained, and there was little variation in yield on serial passage. PVM grown in BHK21 cells was antigenically similar to virus obtained from the mouse lung, but was somewhat less virulent for the mouse after 10 serial passages in these cells. Virus produced by BHK21 cells agglutinated mouse erythrocytes without prior heating or other treatment. Sedimentation of PVM in the ultracentrifuge or precipitation by ammonium sulfate resulted in a loss in infectivity but an increase in hemagglutinating activity, presumably due to disruption of the virus particle. In a potassium tartrate density gradient, the major portion of infective virus sedimented at a density of approximately 1.15, and noninfective hemagglutinin, at a density of approximately 1.13. Stock virus preparations appear to contain a large amount of noninfective hemagglutinin. The replication of PVM was not inhibited by 5-fluoro-2'-deoxyuridine, 5-bromo-2'-deoxyuridine, or 5-iodo-2'-deoxyuridine. Infected cells contained eosinophilic cytoplasmic inclusions which showed the acridine orange staining characteristic of single-stranded RNA. Foci of viral antigen were observed in the cytoplasm of infected cells by fluorescent antibody staining. The results suggest that PVM is an RNA virus that replicates in the cytoplasm. PMID:4165740
Ueda, Kazuhiro; Tanaka, Toshiki; Li, Tao-Sheng; Tanaka, Nobuyuki; Hamano, Kimikazu
2009-03-01
The prediction of pulmonary functional reserve is mandatory in therapeutic decision-making for patients with resectable lung cancer, especially those with underlying lung disease. Volumetric analysis in combination with densitometric analysis of the affected lung lobe or segment with quantitative computed tomography (CT) helps to identify residual pulmonary function, although the utility of this modality needs investigation. The subjects of this prospective study were 30 patients with resectable lung cancer. A three-dimensional CT lung model was created with voxels representing normal lung attenuation (-600 to -910 Hounsfield units). Residual pulmonary function was predicted by drawing a boundary line between the lung to be preserved and that to be resected, directly on the lung model. The predicted values were correlated with the postoperative measured values. The predicted and measured values corresponded well (r=0.89, p<0.001). Although the predicted values corresponded with values predicted by simple calculation using a segment-counting method (r=0.98), there were two outliers whose pulmonary functional reserves were predicted more accurately by CT than by segment counting. The measured pulmonary functional reserves were significantly higher than the predicted values in patients with extensive emphysematous areas (<-910 Hounsfield units), but not in patients with chronic obstructive pulmonary disease. Quantitative CT yielded accurate prediction of functional reserve after lung cancer surgery and helped to identify patients whose functional reserves are likely to be underestimated. Hence, this modality should be utilized for patients with marginal pulmonary function.
Proposal for a National Serials Data System.
ERIC Educational Resources Information Center
Adams, Scott
A hypothetical model is given for a National Serials Data System based on the best educated guesses of what the system should do and how, therefore, it should function. The model focuses attention on the ultimate goal rather than on the decision-making processes relating to choice of data elements, unique identification codes, etc. This conceptual…
Park, Si-Woon; Butler, Andrew J.; Cavalheiro, Vanessa; Alberts, Jay L.; Wolf, Steven L.
2013-01-01
The authors examined serial changes in optical topography in a stroke patient performing a functional task, as well as clinical and physiologic measures while undergoing constraint-induced therapy (CIT). A 73-year-old right hemiparetic patient, who had a subcortical stroke 4 months previously, received 2 weeks of CIT. During the therapy, daily optical topography imaging using near-infrared light was measured serially while the participant performed a functional key-turning task. Clinical outcome measures included the Wolf Motor Function Test (WMFT), Motor Activity Log (MAL), and functional key grip test. Transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) were also used to map cortical areas and hemodynamic brain responses, respectively. Optical topography measurement showed an overall decrease in oxy-hemoglobin concentration in both hemispheres as therapy progressed and the laterality index increased toward the contralateral hemisphere. An increased TMS motor map area was observed in the contralateral cortex following treatment. Posttreatment fMRI showed bilateral primary motor cortex activation, although slightly greater in the contralateral hemisphere, during affected hand movement. Clinical scores revealed marked improvement in functional activities. In one patient who suffered a stroke, 2 weeks of CIT led to improved function and cortical reorganization in the hemisphere contralateral to the affected hand. PMID:15228805
Serial position effects in the identification of letters, digits, and symbols.
Tydgat, Ilse; Grainger, Jonathan
2009-04-01
In 6 experiments, the authors investigated the form of serial position functions for identification of letters, digits, and symbols presented in strings. The results replicated findings obtained with the target search paradigm, showing an interaction between the effects of serial position and type of stimulus, with symbols generating a distinct serial position function compared with letters and digits. When the task was 2-alternative forced choice, this interaction was driven almost exclusively by performance at the first position in the string, with letters and digits showing much higher levels of accuracy than symbols at this position. A final-position advantage was reinstated in Experiment 6 by placing the two alternative responses below the target string. The end-position (first and last positions) advantage for letters and digits compared with symbol stimuli was further confirmed with the bar-probe technique (postcued partial report) in Experiments 5 and 6. Overall, the results further support the existence of a specialized mechanism designed to optimize processing of strings of letters and digits by modifying the size and shape of retinotopic character detectors' receptive fields. (c) 2009 APA, all rights reserved.
Lawrence, Melanie L.; Chang, C-Hong; Davies, Jamie A.
2015-01-01
Recent advances in renal tissue engineering have shown that dissociated, early renogenic tissue from the developing embryo can self-assemble into morphologically accurate kidney-like organs arranged around a central collecting duct tree. In order for such self-assembled kidneys to be useful therapeutically or as models for drug screening, it is necessary to demonstrate that they are functional. One of the main functional characteristics of mature kidneys is transport of organic anions and cations into and out of the proximal tubule. Here, we show that the transport function of embryonic kidneys allowed to develop in culture follows a developmental time-course that is comparable to embryonic kidney development in vivo. We also demonstrate that serially-reaggregated engineered kidneys can transport organic anions and cations through specific uptake and efflux channels. These results support the physiological relevance of kidneys grown in culture, a commonly used model for kidney development and research, and suggest that serially-reaggregated kidneys self-assembled from separated cells have some functional characteristics of intact kidneys. PMID:25766625
Mehmood, Qurrat; Sun, Alexander; Becker, Nathan; Higgins, Jane; Marshall, Andrea; Le, Lisa W; Vines, Douglass C; McCloskey, Paula; Ford, Victoria; Clarke, Katy; Yap, Mei; Bezjak, Andrea; Bissonnette, Jean-Pierre
2016-02-01
Treatment of locally advanced non-small cell lung cancer with chemoradiotherapy (CRT) is limited by development of toxicity in normal tissue, including radiation esophagitis (RE). Increasingly, (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is being used for adaptive planning. Our aim was to assess changes in esophageal FDG uptake during CRT and relate the changes to the onset and severity of RE. This prospective study in patients with stage II-III non-small cell lung cancer involved serial four-dimensional computed tomography and PET scans during CRT (60-74Gy). RE was recorded weekly using the Common Terminology Criteria for Adverse Events (v4.0), and imaging was performed at weeks 0, 2, 4, and 7. Changes in the esophagus's peak standard uptake value (SUVpeak) were analyzed for each time point and correlated with grade of RE using the Wilcoxon rank-sum test. The volume of esophagus receiving 50 Gy (V50) and volume of esophagus receiving 60 Gy (V60) were correlated with the development of RE, and the C-statistic (area under the curve [AUC]) was calculated to measure predictivity of grade 3 RE. RE developed in 20 of 27 patients (74%), with grade 3 reached in 6 (22%). A significant percentage increase in SUVpeak in the patients with RE was noted at week 4 (p = 0.01) and week 7 (p = 0.03). For grade 3 RE, a significant percentage increase in SUVpeak was noted at week 2 (p = 0.01) and week 7 (p = 0.03) compared with that for less than grade 3 RE. Median V50 (46.3%) and V60 (33.4%) were significantly higher in patients with RE (p = 0.04). The AUC measurements suggested that the percentage change in SUVpeak at week 2 (AUC = 0.69) and V50 (AUC = 0.67) and V60 (AUC = 0.66) were similarly predictive of grade 3 RE. Serial FDG-PET images during CRT show significant increases in SUVpeak for patients in whom RE develops. The changes at week 2 may predict those at risk for the development of grade 3 RE and may be informative for adaptive planning and early intervention. Copyright © 2015 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
A remember-know analysis of the semantic serial position function.
Kelley, Matthew R; Neath, Ian; Surprenant, Aimée M
2014-01-01
Did the serial position functions observed in certain semantic memory tasks (e.g., remembering the order of books or films) arise because they really tapped episodic memory? To address this issue, participants were asked to make "remember-know" judgments as they reconstructed the release order of the 7 Harry Potter books and 2 sets of movies. For both classes of stimuli, the "remember" and "know" serial position functions were indistinguishable, and all showed the characteristic U-shape with marked primacy and recency effects. These results are inconsistent with a multiple memory systems view, which predicts recency effects only for "remember" responses and no recency effects for "know" responses. However, the data were consistent with a general memory principle account: the relative distinctiveness principle. According to this view, performance on both episodic and semantic memory tasks arises from the same type of processing: Items that are more separated from their close neighbors in psychological space at the time of recall will be better remembered.
Structural basis for pulmonary functional imaging.
Itoh, H; Nakatsu, M; Yoxtheimer, L M; Uematsu, H; Ohno, Y; Hatabu, H
2001-03-01
An understanding of fine normal lung morphology is important for effective pulmonary functional imaging. The lung specimens must be inflated. These include (a) unfixed, inflated lung specimen, (b) formaldehyde fixed lung specimen, (c) fixed, inflated dry lung specimen, and (d) histology specimen. Photography, magnified view, radiograph, computed tomography, and histology of these specimens are demonstrated. From a standpoint of diagnostic imaging, the main normal lung structures consist of airways (bronchi and bronchioles), alveoli, pulmonary vessels, secondary pulmonary lobules, and subpleural pulmonary lymphatic channels. This review summarizes fine radiologic normal lung morphology as an aid to effective pulmonary functional imaging.
Huang, Qijie; Jabbour, Salma K; Xiao, Zhiyan; Yue, Ning; Wang, Xiao; Cao, Hongbin; Kuang, Yu; Zhang, Yin; Nie, Ke
2018-04-25
The principle aim of this study is to incorporate 4DCT ventilation imaging into functional treatment planning that preserves high-functioning lung with both double scattering and scanning beam techniques in proton therapy. Eight patients with locally advanced non-small-cell lung cancer were included in this study. Deformable image registration was performed for each patient on their planning 4DCTs and the resultant displacement vector field with Jacobian analysis was used to identify the high-, medium- and low-functional lung regions. Five plans were designed for each patient: a regular photon IMRT vs. anatomic proton plans without consideration of functional ventilation information using double scattering proton therapy (DSPT) and intensity modulated proton therapy (IMPT) vs. functional proton plans with avoidance of high-functional lung using both DSPT and IMPT. Dosimetric parameters were compared in terms of tumor coverage, plan heterogeneity, and avoidance of normal tissues. Our results showed that both DSPT and IMPT plans gave superior dose advantage to photon IMRTs in sparing low dose regions of the total lung in terms of V5 (volume receiving 5Gy). The functional DSPT only showed marginal benefit in sparing high-functioning lung in terms of V5 or V20 (volume receiving 20Gy) compared to anatomical plans. Yet, the functional planning in IMPT delivery, can further reduce the low dose in high-functioning lung without degrading the PTV dosimetric coverages, compared to anatomical proton planning. Although the doses to some critical organs might increase during functional planning, the necessary constraints were all met. Incorporating 4DCT ventilation imaging into functional proton therapy is feasible. The functional proton plans, in intensity modulated proton delivery, are effective to further preserve high-functioning lung regions without degrading the PTV coverage.
NASA Astrophysics Data System (ADS)
Lederman, Dror; Leader, Joseph K.; Zheng, Bin; Sciurba, Frank C.; Tan, Jun; Gur, David
2011-03-01
Quantitative computed tomography (CT) has been widely used to detect and evaluate the presence (or absence) of emphysema applying the density masks at specific thresholds, e.g., -910 or -950 Hounsfield Unit (HU). However, it has also been observed that subjects with similar density-mask based emphysema scores could have varying lung function, possibly indicating differences of disease severity. To assess this possible discrepancy, we investigated whether density distribution of "viable" lung parenchyma regions with pixel values > -910 HU correlates with lung function. A dataset of 38 subjects, who underwent both pulmonary function testing and CT examinations in a COPD SCCOR study, was assembled. After the lung regions depicted on CT images were automatically segmented by a computerized scheme, we systematically divided the lung parenchyma into different density groups (bins) and computed a number of statistical features (i.e., mean, standard deviation (STD), skewness of the pixel value distributions) in these density bins. We then analyzed the correlations between each feature and lung function. The correlation between diffusion lung capacity (DLCO) and STD of pixel values in the bin of -910HU <= PV < -750HU was -0.43, as compared with a correlation of -0.49 obtained between the post-bronchodilator ratio (FEV1/FVC) measured by the forced expiratory volume in 1 second (FEV1) dividing the forced vital capacity (FVC) and the STD of pixel values in the bin of -1024HU <= PV < -910HU. The results showed an association between the distribution of pixel values in "viable" lung parenchyma and lung function, which indicates that similar to the conventional density mask method, the pixel value distribution features in "viable" lung parenchyma areas may also provide clinically useful information to improve assessments of lung disease severity as measured by lung functional tests.
Nagata, Yasushi; Wulf, Joern; Lax, Ingmar; Timmerman, Robert; Zimmermann, Frank; Stojkovski, Igor; Jeremic, Branislav
2011-03-01
To evaluate the current status of stereotactic body radiotherapy (SBRT) and identify both advantages and disadvantages of its use in developing countries, a meeting composed of consultants of the International Atomic Energy Agency was held in Vienna in November 2006. Owing to continuous developments in the field, the meeting was extended by subsequent discussions and correspondence (2007-2010), which led to the summary presented here. The advantages and disadvantages of SBRT expected to be encountered in developing countries were identified. The definitions, typical treatment courses, and clinical results were presented. Thereafter, minimal methodology/technology requirements for SBRT were evaluated. Finally, characteristics of SBRT for developing countries were recommended. Patients for SBRT should be carefully selected, because single high-dose radiotherapy may cause serious complications in some serial organs at risk. Clinical experiences have been reported in some populations of lung cancer, lung oligometastases, liver cancer, pancreas cancer, and kidney cancer. Despite the disadvantages expected to be experienced in developing countries, SBRT using fewer fractions may be useful in selected patients with various extracranial cancers with favorable outcome and low toxicity. Copyright © 2011 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Rusch, Dana; Reyes, Karina
2013-01-01
This study examined the role of parent-child separations during serial migration to the United States in predicting individual- and family-level outcomes in Mexican immigrant families. We assessed parents' subjective appraisals of their family's separation and reunion experiences to explore associations with self-reported acculturative stress,…
Belmaati, Esther Okeke; Iversen, Martin; Kofoed, Klaus F; Nielsen, Michael B; Mortensen, Jann
2012-06-01
Scintigraphy has been used as a tool to detect dysfunction of the lung before and after transplantation. The aims of this study were to evaluate the development of the ventilation-perfusion relationships in single lung transplant recipients in the first year, at 3 months after transplantation, and to investigate whether scintigraphic findings at 3 months were predictive for the outcome at 12 months in relation to primary graft dysfunction (PGD) and lung function. A retrospective study was carried out on all patients who prospectively and consecutively were referred for a routine lung scintigraphy procedure 3 months after single lung transplantation (SLTX). A total of 41 patients were included in the study: 20 women and 21 men with the age span of patients at transplantation being 38-66 years (mean ± SD: 54.2 ± 6.0). Patient records also included lung function tests and chest X-ray images. We found no significant correlation between lung function distribution at 3 months and PGD at 72 h. There was also no significant correlation between PGD scores at 72 h and lung function at 6 and 12 months. The same applied to scintigraphic scores for heterogeneity at 3 months compared with lung function at 6 and 12 months. Fifty-five percent of all patients had decreased ventilation function measured in the period from 6 to 12 months. Forty-nine percent of the patients had normal perfusion evaluations, and 51% had abnormal perfusion evaluations at 3 months. For ventilation evaluations, 72% were normal and 28% were abnormal. There was a significant difference in the normal versus abnormal perfusion and ventilation scintigraphic images evaluated from the same patients. Ventilation was distributed more homogenously in the transplanted lung than perfusion in the same lung. The relative distribution of perfusion and ventilation to the transplanted lung of patients with and without a primary diagnosis of fibrosis did not differ significantly from each other. We conclude that PGD defined at 72 h does not lead to recognizable changes in ventilation-perfusion scintigrapy at 3 months, and scintigraphic findings do not correlate with development in lung function in the first 12 months.
Visual distraction and visuo-spatial memory: a sandwich effect.
Tremblay, Sébastien; Nicholls, Alastair P; Parmentier, Fabrice B R; Jones, Dylan M
2005-01-01
The functional characteristics of visuo-spatial serial memory and its sensitivity to irrelevant visual information are examined in the present study, through the investigation of the sandwich effect (e.g., Hitch, 1975). The memory task was one of serial recall for the position of a sequence of seven spatially and temporally separated dots. The presence of irrelevant dots interpolated with to-be-remembered dots affected performance over most serial positions (Experiment 1) but that effect was significantly reduced when the interpolated dots were distinct from the to-be-remembered dots by colour and shape (Experiment 2). Parallels are made between verbal and spatial serial memory, and the reduction of the sandwich effect is discussed in terms of the contribution of perceptual organisation and attentional factors in short-term memory.
Mahavadi, Poornima; Sasikumar, Satish; Cushing, Leah; Hyland, Tessa; Rosser, Ann E.; Riccardi, Daniela; Lu, Jining; Kalin, Tanya V.; Kalinichenko, Vladimir V.; Guenther, Andreas; Ramirez, Maria I.; Pardo, Annie; Selman, Moisés; Warburton, David
2013-01-01
Chronic injury of alveolar lung epithelium leads to epithelial disintegrity in idiopathic pulmonary fibrosis (IPF). We had reported earlier that Grhl2, a transcriptional factor, maintains alveolar epithelial cell integrity by directly regulating components of adherens and tight junctions and thus hypothesized an important role of GRHL2 in pathogenesis of IPF. Comparison of GRHL2 distribution at different stages of human lung development showed its abundance in developing lung epithelium and in adult lung epithelium. However, GRHL2 is detected in normal human lung mesenchyme only at early fetal stage (week 9). Similar mesenchymal reexpression of GRHL2 was also observed in IPF. Immunofluorescence analysis in serial sections from three IPF patients revealed at least two subsets of alveolar epithelial cells (AEC), based on differential GRHL2 expression and the converse fluorescence intensities for epithelial vs. mesenchymal markers. Grhl2 was not detected in mesenchyme in intraperitoneal bleomycin-induced injury as well as in spontaneously occurring fibrosis in double-mutant HPS1 and HPS2 mice, whereas in contrast in a radiation-induced fibrosis model, with forced Forkhead box M1 (Foxm1) expression, an overlap of Grhl2 with a mesenchymal marker was observed in fibrotic regions. Grhl2's role in alveolar epithelial cell plasticity was confirmed by altered Grhl2 gene expression analysis in IPF and further validated by in vitro manipulation of its expression in alveolar epithelial cell lines. Our findings reveal important pathophysiological differences between human IPF and specific mouse models of fibrosis and support a crucial role of GRHL2 in epithelial activation in lung fibrosis and perhaps also in epithelial plasticity. PMID:24375798
Liu, Jing; Xiao, Zhijie; Wong, Sunny Kit-Man; Tin, Vicky Pui-Chi; Ho, Ka-Yan; Wang, Junwen; Sham, Mai-Har; Wong, Maria Pik
2013-10-01
Limited improvement in long term survival of lung cancer patients has been achieved by conventional chemotherapy or targeted therapy. To explore the potentials of tumor initiating cells (TIC)-directed therapy, it is essential to identify the cell targets and understand their maintenance mechanisms. We have analyzed the performance of ALDH/CD44 co-expression as TIC markers and treatment targets of lung cancer using well-validated in vitro and in vivo analyses in multiple established and patient-derived lung cancer cells. The ALDH(hi)CD44(hi) subset showed the highest enhancement of stem cell phenotypic properties compared to ALDH(hi)CD44(lo), ALDH(lo)CD44(hi), ALDH(lo)CD44(lo) cells and unsorted controls. They showed higher invasion capacities, pluripotency genes and epithelial-mesenchymal transition transcription factors expression, lower intercellular adhesion protein expression and higher G2/M phase cell cycle fraction. In immunosuppressed mice, the ALDH(hi)CD44(hi)xenografts showed the highest tumor induction frequency, serial transplantability, shortest latency, largest volume and highest growth rates. Inhibition of sonic Hedgehog and Notch developmental pathways reduced ALDH+CD44+ compartment. Chemotherapy and targeted therapy resulted in higher AALDH(hi)CD44(hi) subset viability and ALDH(lo)CD44(lo) subset apoptosis fraction. ALDH inhibition and CD44 knockdown led to reduced stemness gene expression and sensitization to drug treatment. In accordance, clinical lung cancers containing a higher abundance of ALDH and CD44-coexpressing cells was associated with lower recurrence-free survival. Together, results suggested theALDH(hi)CD44(hi)compartment was the cellular mediator of tumorigenicity and drug resistance. Further investigation of the regulatory mechanisms underlying ALDH(hi)CD44(hi)TIC maintenance would be beneficial for the development of long term lung cancer control.
A Mutation in TTF1/NKX2.1 Is Associated With Familial Neuroendocrine Cell Hyperplasia of Infancy
Young, Lisa R.; Deutsch, Gail H.; Bokulic, Ronald E.; Brody, Alan S.
2013-01-01
Background: Neuroendocrine cell hyperplasia of infancy (NEHI) is a childhood diffuse lung disease of unknown etiology. We investigated the mechanism for lung disease in a subject whose clinical, imaging, and lung biopsy specimen findings were consistent with NEHI; the subject’s extended family and eight other unrelated patients with NEHI were also investigated. Methods: The proband’s lung biopsy specimen (at age 7 months) and serial CT scans were diagnostic of NEHI. Her mother, an aunt, an uncle, and two first cousins had failure to thrive in infancy and chronic respiratory symptoms that improved with age. Genes associated with autosomal-dominant forms of childhood interstitial lung disease were sequenced. Results: A heterozygous NKX2.1 mutation was identified in the proband and the four other adult family members with histories of childhood lung disease. The mutation results in a nonconservative amino acid substitution in the homeodomain in a codon extensively conserved through evolution. None of these individuals have thyroid disease or movement disorders. NKX2.1 mutations were not identified by sequence analysis in eight other unrelated subjects with NEHI. Conclusions: The nature of the mutation and its segregation with disease support that it is disease-causing. Previously reported NKX2.1 mutations have been associated with “brain-thyroid-lung” syndrome and a spectrum of more severe pulmonary phenotypes. We conclude that genetic mechanisms may cause NEHI and that NKX2.1 mutations may result in, but are not the predominant cause of, this phenotype. We speculate that altered expression of NKX2.1 target genes other than those in the surfactant system may be responsible for the pulmonary pathophysiology of NEHI. PMID:23787483
Qiao, Xiaojuan; Zhai, Xiaoran; Wang, Jinghui; Zhao, Xiaoting; Yang, Xinjie; Lv, Jialin; Ma, Li; Zhang, Lina; Wang, Yue; Zhang, Shucai; Yue, Wentao
2016-01-01
Matrix metalloproteinase 9 (MMP-9) plays an important role in tumor invasion and metastasis, including lung cancer. However, whether variations in serum MMP-9 levels can serve as a biomarker for monitoring chemotherapy curative effect remains unclear. This study was designed to investigate the association between variations in serum MMP-9 levels and chemotherapy curative effect in patients with lung cancer. A total of 82 patients with advanced lung cancer were included. All newly diagnosed patients were treated with platinum-based doublet chemotherapy. Serial measurements of serum MMP-9 levels were performed by enzyme-linked immunosorbent assay. In this manner, we chose four time points to examine the association, including before chemotherapy, and 3 weeks after the beginning of the first, second, and fourth cycles of chemotherapy. Compared with the serum level of MMP-9 before progressive disease, patients with progressive disease had elevated serum levels of MMP-9. Compared with the previous time point of collecting specimens, the serum levels of MMP-9 in the patients with a complete response/partial response/stable disease decreased or were maintained stable. The differences of variation in serum MMP-9 levels in patients with different chemotherapy curative effects were all statistically significant after one cycle, two cycles, and four cycles (after one cycle: P<0.001; after two cycles: P<0.001; after four cycles: P=0.01). However, patients with small-cell lung cancer did not exhibit similar test results. The variation in serum MMP-9 levels in patients with non-small-cell lung cancer during chemotherapy was closely related to chemotherapy curative effect and could be useful to monitor chemotherapy curative effect for a small portion of patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinogradskiy, Yevgeniy, E-mail: yevgeniy.vinogradskiy@ucdenver.edu; Schubert, Leah; Diot, Quentin
2016-07-15
Purpose: The development of clinical trials is underway to use 4-dimensional computed tomography (4DCT) ventilation imaging to preferentially spare functional lung in patients undergoing radiation therapy. The purpose of this work was to generate data to aide with clinical trial design by retrospectively characterizing dosimetric and functional profiles for patients with different stages of lung cancer. Methods and Materials: A total of 118 lung cancer patients (36% stage I and 64% stage III) from 2 institutions were used for the study. A 4DCT-ventilation map was calculated using the patient's 4DCT imaging, deformable image registration, and a density-change–based algorithm. To assessmore » each patient's spatial ventilation profile both quantitative and qualitative metrics were developed, including an observer-based defect observation and metrics based on the ventilation in each lung third. For each patient we used the clinical doses to calculate functionally weighted mean lung doses and metrics that assessed the interplay between the spatial location of the dose and high-functioning lung. Results: Both qualitative and quantitative metrics revealed a significant difference in functional profiles between the 2 stage groups (P<.01). We determined that 65% of stage III and 28% of stage I patients had ventilation defects. Average functionally weighted mean lung dose was 19.6 Gy and 5.4 Gy for stage III and I patients, respectively, with both groups containing patients with large spatial overlap between dose and high-function regions. Conclusion: Our 118-patient retrospective study found that 65% of stage III patients have regionally variant ventilation profiles that are suitable for functional avoidance. Our results suggest that regardless of disease stage, it is possible to have unique spatial interplay between dose and high-functional lung, highlighting the importance of evaluating the function of each patient and developing a personalized functional avoidance treatment approach.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundar, Isaac K.; Hwang, Jae-Woong; Wu, Shaoping
Research highlights: {yields} Vitamin D deficiency is linked to accelerated decline in lung function. {yields} Levels of vitamin D receptor (VDR) are decreased in lungs of patients with COPD. {yields} VDR knock-out mouse showed increased lung inflammation and emphysema. {yields} This was associated with decline in lung function and increased MMPs. {yields} VDR knock-out mouse model is useful for studying the mechanisms of lung diseases. -- Abstract: Deficiency of vitamin D is associated with accelerated decline in lung function. Vitamin D is a ligand for nuclear hormone vitamin D receptor (VDR), and upon binding it modulates various cellular functions. Themore » level of VDR is reduced in lungs of patients with chronic obstructive pulmonary disease (COPD) which led us to hypothesize that deficiency of VDR leads to significant alterations in lung phenotype that are characteristics of COPD/emphysema associated with increased inflammatory response. We found that VDR knock-out (VDR{sup -/-}) mice had increased influx of inflammatory cells, phospho-acetylation of nuclear factor-kappaB (NF-{kappa}B) associated with increased proinflammatory mediators, and up-regulation of matrix metalloproteinases (MMPs) MMP-2, MMP-9, and MMP-12 in the lung. This was associated with emphysema and decline in lung function associated with lymphoid aggregates formation compared to WT mice. These findings suggest that deficiency of VDR in mouse lung can lead to an early onset of emphysema/COPD because of chronic inflammation, immune dysregulation, and lung destruction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp; Nishibuchi, Ikuno; Murakami, Yuji
2012-03-15
Purpose: To investigate the incorporation of functional lung image-derived low attenuation area (LAA) based on four-dimensional computed tomography (4D-CT) into respiratory-gated intensity-modulated radiotherapy (IMRT) or volumetric modulated arc therapy (VMAT) in treatment planning for lung cancer patients with chronic obstructive pulmonary disease (COPD). Methods and Materials: Eight lung cancer patients with COPD were the subjects of this study. LAA was generated from 4D-CT data sets according to CT values of less than than -860 Hounsfield units (HU) as a threshold. The functional lung image was defined as the area where LAA was excluded from the image of the total lung.more » Two respiratory-gated radiotherapy plans (70 Gy/35 fractions) were designed and compared in each patient as follows: Plan A was an anatomical IMRT or VMAT plan based on the total lung; Plan F was a functional IMRT or VMAT plan based on the functional lung. Dosimetric parameters (percentage of total lung volume irradiated with {>=}20 Gy [V20], and mean dose of total lung [MLD]) of the two plans were compared. Results: V20 was lower in Plan F than in Plan A (mean 1.5%, p = 0.025 in IMRT, mean 1.6%, p = 0.044 in VMAT) achieved by a reduction in MLD (mean 0.23 Gy, p = 0.083 in IMRT, mean 0.5 Gy, p = 0.042 in VMAT). No differences were noted in target volume coverage and organ-at-risk doses. Conclusions: Functional IGRT planning based on LAA in respiratory-guided IMRT or VMAT appears to be effective in preserving a functional lung in lung cancer patients with COPD.« less
Cukic, Vesna
2012-01-01
Introduction: Nowadays an increasing number of lung resections are being done because of the rising prevalence of lung cancer that occurs mainly in patients with limited lung function, what is caused by common etiologic factor - smoking cigarettes. Loss of lung tissue in such patients can worsen much the postoperative pulmonary function. So it is necessary to asses the postoperative pulmonary function especially after maximal resection, i.e. pneumonectomy. Objective: To check over the accuracy of preoperative prognosis of postoperative lung function after pneumonectomy using spirometry and lung perfusion scinigraphy. Material and methods: The study was done on 17 patients operated at the Clinic for thoracic surgery, who were treated previously at the Clinic for Pulmonary Diseases “Podhrastovi” in the period from 01. 12. 2008. to 01. 06. 2011. Postoperative pulmonary function expressed as ppoFEV1 (predicted postoperative forced expiratory volume in one second) was prognosticated preoperatively using spirometry, i.e.. simple calculation according to the number of the pulmonary segments to be removed and perfusion lung scintigraphy. Results: There is no significant deviation of postoperative achieved values of FEV1 from predicted ones obtained by both methods, and there is no significant differences between predicted values (ppoFEV1) obtained by spirometry and perfusion scintigraphy. Conclusion: It is necessary to asses the postoperative pulmonary function before lung resection to avoid postoperative respiratory failure and other cardiopulmonary complications. It is absolutely necessary for pneumonectomy, i.e.. maximal pulmonary resection. It can be done with great possibility using spirometry or perfusion lung scintigraphy. PMID:23378687
Bonk, William J; Healy, Alice F
2010-01-01
A serial reproduction of order with distractors task was developed to make it possible to observe successive snapshots of the learning process at each serial position. The new task was used to explore the effect of several variables on serial memory performance: stimulus content (words, blanks, and pictures), presentation condition (spatial information vs. none), semantically categorized item clustering (grouped vs. ungrouped), and number of distractors relative to targets (none, equal, double). These encoding and retrieval variables, along with learning attempt number, affected both overall performance levels and the shape of the serial position function, although a large and extensive primacy advantage and a small 1-item recency advantage were found in each case. These results were explained well by a version of the scale-independent memory, perception, and learning model that accounted for improved performance by increasing the value of only a single parameter that reflects reduced interference from distant items.
Kliner, Dustin; Wang, Li; Winger, Daniel; Follansbee, William P; Soman, Prem
2015-12-01
Gated single-photon emission computed tomography (SPECT) is widely used for myocardial perfusion imaging and provides an automated assessment of left ventricular ejection fraction (LVEF). We prospectively tested the repeatability of serial SPECT-derived LVEF. This information is essential in order to inform the interpretation of a change in LV function on serial testing. Consenting patients (n = 50) from among those referred for clinically indicated gated myocardial perfusion SPECT (MPs) were recruited. Following the clinical rest-stress study, patients were repositioned on the camera table for a second acquisition using identical parameters. Patient positioning, image acquisition and processing for the second scan were independently performed by a technologist blinded to the clinical scan. Quantitative LVEF was generated by Quantitative Gated SPECT and recorded as EF1 and EF2, respectively. Repeatability of serial results was assessed using the Bland-Altman method. The limits of repeatability and repeatability coefficients were generated to determine the maximum variation in LVEF that can be expected to result from test variability. Repeatability was tested across a broad range of LV systolic function and myocardial perfusion. The mean difference between EF1 and EF2 was 1.6% (EF units), with 95% limits of repeatability of +9.1% to -6.0% (repeatability coefficient 7.5%). Correlation between serial EF measurements was excellent (r = 0.9809). Similar results were obtained in subgroups based on normal or abnormal EF and myocardial perfusion. The largest repeatability coefficient of 8.1% was seen in patients with abnormal LV systolic function. When test protocol and acquisition parameters are kept constant, a difference of >8% EF units on serial MPs is indicative of a true change 95% of the time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moss, R.B.; Hsu, Y.P.; Lewiston, N.J.
1981-08-01
We studied the incidence and levels of circulating immune complexes by the /sup 125/I-Clq-binding assay in patients with cystic fibrosis in relation to clinical respiratory status and specific IgG and IgE antibodies to Pseudomonas aeruginosa. Staphylococcus aureus, Aspergillus fumigatus, and Candida albicans. Overall prevalence of CIC was 43%, but 86% of serially studied patients had evidence of CIC at some time. Patients with acute respiratory exacerbations and deteriorating pulmonary function had a higher incidence of CIC (76%) as compared to stable patients (36%, P less than 0.01), as well as significantly higher levels of CIC. Acute exacerbations were also associatedmore » with significant increases in IgG antibody to Pseudomonas (P less than 0.005) but not in other antibodies. CIC did not correlate with Pseudomonas-specific IgG nor with any other specific antibody studied. A variety of age-related differences in specific antibody levels were seen. The episodic appearance of CIC is common in CF and is usually associated with exacerbation of lung disease.« less
Alonso-Gonzalez, Rafael; Borgia, Francesco; Diller, Gerhard-Paul; Inuzuka, Ryo; Kempny, Aleksander; Martinez-Naharro, Ana; Tutarel, Oktay; Marino, Philip; Wustmann, Kerstin; Charalambides, Menelaos; Silva, Margarida; Swan, Lorna; Dimopoulos, Konstantinos; Gatzoulis, Michael A
2013-02-26
Restrictive lung defects are associated with higher mortality in patients with acquired chronic heart failure. We investigated the prevalence of abnormal lung function, its relation to severity of underlying cardiac defect, its surgical history, and its impact on outcome across the spectrum of adult congenital heart disease. A total of 1188 patients with adult congenital heart disease (age, 33.1±13.1 years) undergoing lung function testing between 2000 and 2009 were included. Patients were classified according to the severity of lung dysfunction based on predicted values of forced vital capacity. Lung function was normal in 53% of patients with adult congenital heart disease, mildly impaired in 17%, and moderately to severely impaired in the remainder (30%). Moderate to severe impairment of lung function related to complexity of underlying cardiac defect, enlarged cardiothoracic ratio, previous thoracotomy/ies, body mass index, scoliosis, and diaphragm palsy. Over a median follow-up period of 6.7 years, 106 patients died. Moderate to severe impairment of lung function was an independent predictor of survival in this cohort. Patients with reduced force vital capacity of at least moderate severity had a 1.6-fold increased risk of death compared with patients with normal lung function (P=0.04). A reduced forced vital capacity is prevalent in patients with adult congenital heart disease; its severity relates to the complexity of the underlying heart defect, surgical history, and scoliosis. Moderate to severe impairment of lung function is an independent predictor of mortality in contemporary patients with adult congenital heart disease.
Kundra, Pankaj; Vitheeswaran, Madhurima; Nagappa, Mahesh; Sistla, Sarath
2010-06-01
This study was designed to compare the effects of preoperative and postoperative incentive spirometry on lung functions after laparoscopic cholecystectomy in 50 otherwise normal healthy adults. Patients were randomized into a control group (group PO, n=25) and a study group (group PR, n=25). Patients in group PR were instructed to carry out incentive spirometry before the surgery 15 times, every fourth hourly, for 1 week whereas in group PO, incentive spirometry was carried out during the postoperative period. Lung functions were recorded at the time of preanesthetic evaluation, on the day before the surgery, postoperatively at 6, 24, and 48 hours, and at discharge. Significant improvement in the lung functions was seen after preoperative incentive spirometry (group PR), P<0.05. The lung functions were significantly reduced till the time of discharge in both the groups. However, lung functions were better preserved in group PR at all times when compared with group PO; P<0.05. To conclude, lung functions are better preserved with preoperative than postoperative incentive spirometry.
Pulmonary response to polyurethane dust.
Stemmer, K L; Bingham, E; Barkley, W
1975-01-01
Weanling and 9 months or older rats were exposed to particles of an aged (PUF I) or freshly prepared (PUF II) rigid polyurethane foam by intratracheal intubation. The dose was 5 mg of particles. The response of the lung tissue was examined morphologically by serial sacrifices. Inflammation and macrophage activity were the initial responses. Fibrosis developed after 6 months. Nodular scars and perifocal emphysema were seen after 12 months. Four rats had a papillary adenoma in a major bronchus after 18 months exposure to PUF II. Images FIGURE 1. FIGURE 2. FIGURE 3. FIGURE 4. FIGURE 5. FIGURE 6. FIGURE 7. PMID:1175548
Hetzel, Juergen; Spengler, Werner; Horger, Marius; Boeckeler, Michael
2015-06-01
Endoscopic lung volume reduction is an emerging technique meant to improve lung function parameters, quality of life, and exercise tolerance in patients with severe lung emphysema. This is the first report of lung volume reduction by autologous blood in a patient with non-bullous lung emphysema. A 74-year-old woman with heterogeneous lung emphysema developed accidentally diffuse lobar bleeding immediately after valve placement. Due to persistent hemorrhage, the valves had to be removed shortly thereafter. Despite extraction of the valves, respiratory function of the patient improved rapidly indicated also by a drop in the COPD assessment test questionnaire, 3 months later. This was consistent with both improvement of lung function tests and six-minute walking test.
LINKING LUNG AIRWAY STRUCTURE TO PULMONARY FUNCTION VIA COMPOSITE BRIDGE REGRESSION
Chen, Kun; Hoffman, Eric A.; Seetharaman, Indu; Jiao, Feiran; Lin, Ching-Long; Chan, Kung-Sik
2017-01-01
The human lung airway is a complex inverted tree-like structure. Detailed airway measurements can be extracted from MDCT-scanned lung images, such as segmental wall thickness, airway diameter, parent-child branch angles, etc. The wealth of lung airway data provides a unique opportunity for advancing our understanding of the fundamental structure-function relationships within the lung. An important problem is to construct and identify important lung airway features in normal subjects and connect these to standardized pulmonary function test results such as FEV1%. Among other things, the problem is complicated by the fact that a particular airway feature may be an important (relevant) predictor only when it pertains to segments of certain generations. Thus, the key is an efficient, consistent method for simultaneously conducting group selection (lung airway feature types) and within-group variable selection (airway generations), i.e., bi-level selection. Here we streamline a comprehensive procedure to process the lung airway data via imputation, normalization, transformation and groupwise principal component analysis, and then adopt a new composite penalized regression approach for conducting bi-level feature selection. As a prototype of composite penalization, the proposed composite bridge regression method is shown to admit an efficient algorithm, enjoy bi-level oracle properties, and outperform several existing methods. We analyze the MDCT lung image data from a cohort of 132 subjects with normal lung function. Our results show that, lung function in terms of FEV1% is promoted by having a less dense and more homogeneous lung comprising an airway whose segments enjoy more heterogeneity in wall thicknesses, larger mean diameters, lumen areas and branch angles. These data hold the potential of defining more accurately the “normal” subject population with borderline atypical lung functions that are clearly influenced by many genetic and environmental factors. PMID:28280520
Bleecker, Eugene R.; Lötvall, Jan; O’Byrne, Paul M.; Bateman, Eric D.; Medley, Hilary; Ellsworth, Anna; Jacques, Loretta; Busse, William W.
2013-01-01
Background: The combination of fluticasone furoate (FF), a novel inhaled corticosteroid (ICS), and vilanterol (VI), a long-acting β2 agonist, is under development as a once-daily treatment of asthma and COPD. The aim of this study was to compare the efficacy of FF/VI with fluticasone propionate (FP)/salmeterol (SAL) in patients with persistent asthma uncontrolled on a medium dose of ICS. Methods: In a randomized, double-blind, double-dummy, parallel group study, 806 patients received FF/VI (100/25 μg, n = 403) once daily in the evening delivered through ELLIPTA (GlaxoSmithKline) dry powder inhaler, or FP/SAL (250/50 μg, n = 403) bid through DISKUS/ACCUHALER (GlaxoSmithKline). The primary efficacy measure was 0- to 24-h serial weighted mean (wm) FEV1 after 24 weeks of treatment. Results: Improvements from baseline in 0- to 24-h wmFEV1 were observed with both FF/VI (341 mL) and FP/SAL (377 mL); the adjusted mean treatment difference was not statistically significant (−37 mL; 95% CI, −88 to 15, P = 0.162). There were no differences between 0- to 4-h serial wmFEV1, trough FEV1, and asthma control and quality-of-life questionnaire scores. There was no difference in reported exacerbations between treatments. Both treatments were well tolerated, with no clinically relevant effect on urinary cortisol excretion or vital signs and no treatment-related serious adverse events. Conclusions: The efficacy of once-daily FF/VI was similar to bid FP/SAL in improving lung function in patients with persistent asthma. No safety issues were identified. Trial registry: ClinicalTrials.gov; No.: NCT01147848; URL: www.clinicaltrials.gov PMID:23846316
Benza, Raymond L; Miller, Dave P; Foreman, Aimee J; Frost, Adaani E; Badesch, David B; Benton, Wade W; McGoon, Michael D
2015-03-01
Data from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL) were used previously to develop a risk score calculator to predict 1-year survival. We evaluated prognostic implications of changes in the risk score and individual risk-score parameters over 12 months. Patients were grouped by decreased, unchanged, or increased risk score from enrollment to 12 months. Kaplan-Meier estimates of subsequent 1-year survival were made based on change in the risk score during the initial 12 months of follow-up. Cox regression was used for multivariable analysis. Of 2,529 patients in the analysis cohort, the risk score was decreased in 800, unchanged in 959, and increased in 770 at 12 months post-enrollment. Six parameters (functional class, systolic blood pressure, heart rate, 6-minute walk distance, brain natriuretic peptide levels, and pericardial effusion) each changed sufficiently over time to improve or worsen risk scores in ≥5% of patients. One-year survival estimates in the subsequent year were 93.7%, 90.3%, and 84.6% in patients with a decreased, unchanged, and increased risk score at 12 months, respectively. Change in risk score significantly predicted future survival, adjusting for risk at enrollment. Considering follow-up risk concurrently with risk at enrollment, follow-up risk was a much stronger predictor, although risk at enrollment maintained a significant effect on future survival. Changes in REVEAL risk scores occur in most patients with pulmonary arterial hypertension over a 12-month period and are predictive of survival. Thus, serial risk score assessments can identify changes in disease trajectory that may warrant treatment modifications. Copyright © 2015 International Society for Heart and Lung Transplantation. All rights reserved.
Impact of childhood anthropometry trends on adult lung function.
Suresh, Sadasivam; O'Callaghan, Michael; Sly, Peter D; Mamun, Abdullah A
2015-04-01
Poor fetal growth rate is associated with lower respiratory function; however, there is limited understanding of the impact of growth trends and BMI during childhood on adult respiratory function. The current study data are from the Mater-University of Queensland Study of Pregnancy birth cohort. Prospective data were available from 1,740 young adults who performed standard spirometry at 21 years of age and whose birth weight and weight, height, and BMI at 5, 14, and 21 years of age were available. Catch-up growth was defined as an increase of 0.67 Z score in weight between measurements. The impact of catch-up growth on adult lung function and the relationship between childhood BMI trends and adult lung function were assessed using regression analyses. Lung function was higher at 21 years in those demonstrating catch-up growth from birth to 5 years (FVC, men: 5.33 L vs 5.54 L; women: 3.78 L vs 4.03 L; and FEV1, men: 4.52 L/s vs 4.64 L/s; women: 3.31 L/s vs 3.45 L/s). Subjects in the lowest quintile of birth (intrauterine growth retardation) also showed improved lung function if they had catch-up growth in the first 5 years of life. There was a positive correlation between increasing BMI and lung function at 5 years of age. However, in the later measurements when BMI increased into the obese category, a drop in lung function was observed. These data show evidence for a positive contribution of catch-up growth in early life to adult lung function. However, if weight gain or onset of obesity occurs after 5 years of age, an adverse impact on adult lung function is noted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Xue; Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jinan; Frey, Kirk
2014-05-01
Purpose: To study changes in functional activity on ventilation (V)/perfusion (Q) single-photon emission computed tomography (SPECT) during radiation therapy (RT) and explore the impact of such changes on lung dosimetry in patients with non-small cell lung cancer (NSCLC). Methods and Materials: Fifteen NSCLC patients with centrally located tumors were enrolled. All patients were treated with definitive RT dose of ≥60 Gy. V/Q SPECT-CT scans were performed prior to and after delivery of 45 Gy of fractionated RT. SPECT images were used to define temporarily dysfunctional regions of lung caused by tumor or other potentially reversible conditions as B3. The functional lung (FL)more » was defined on SPECT by 2 separate approaches: FL1, a threshold of 30% of the maximum uptake of the patient's lung; and FL2, FL1 plus B3 region. The impact of changes in FL between initiation of RT and delivery of 45 Gy on lung dosimetry were analyzed. Results: Fourteen patients (93%) had larger FL2 volumes than FL1 pre-RT (P<.001). Dysfunctional lung became functional in 11 patients (73%) on V SPECT and in 10 patients (67%) on Q SPECT. The dosimetric parameters generated from CT-based anatomical lung had significantly lower values in FL1 than FL2, with a median reduction in the volume of lung receiving a dose of at least 20 Gy (V{sub 20}) of 3%, 5.6%, and mean lung dose of 0.95 and 1.55 on V and Q SPECT respectively. Conclusions: Regional ventilation and perfusion function improve significantly during RT in centrally located NSCLC. Lung dosimetry values vary notably between different definitions of functional lung.« less
Dai, Alper I; Demiryürek, Abdullah T
2017-06-01
The purpose of this study was to examine whether combination therapy of serial casting and botulinum toxin type A injection can further enhance the effects of botulinum toxin type A in children with cerebral palsy with scissoring of both legs. This study was a prospective and randomized trial. The children were divided into 2 groups, one of which received serial casting after botulinum toxin type A (n = 40), and the other which only received botulinum toxin type A (n = 40). Serial casting started 3 weeks after the botulinum toxin type A. Both groups received physiotherapy. Groups were assessed at baseline then compared at 6 and 12 weeks following the intervention. Significant improvements in Gross Motor Function Measure-66 and Caregiver Health Questionnaire were recorded in both groups ( P < .001). The modified Ashworth scale improved significantly following botulinum toxin type A in the serial casting group ( P < .05), but not in botulinum toxin type A only group. These results suggest that serial casting after botulinum toxin type A can enhance the benefits of botulinum toxin type A in children with cerebral palsy.
Nakhaee, Maede; Rezaee, Abdolrahim; Basiri, Reza; Soleimanpour, Saman; Ghazvini, Kiarash
2018-05-01
In this study, the interaction between the microbiota of the lower respiratory tract and the type of immune response against Mycobacterium tuberculosis were studied. Bronchoalveolar lavage (BAL) samples of 10 tuberculosis (TB) patients and 5 cases suspected of lung cancer as control were obtained. Clinical symptoms were recorded for the TB patients. Serial dilutions of samples were prepared and cultured on a selective medium in order to count Streptococcus spp., Neisseria spp., Haemophilus spp. and Veillonella in the lung. To determine the type of immune response of Th1/Th2, Real Time-PCR method was used. The prevalence of Streptococcus spp. in the lungs of patients with TB increased when compared with the control group and the Th1-response in this group may be influenced by Neisseria and Haemophilus. However, reducing the number of Streptococcus and Neisseria can be involved in the development of Th1-response in the control group. Prevalence of Neisseria and Veillonella of the lung microbiota in this group may be associated with fever. The chest x-ray influenced both Th1 and Th2-responses in the lung, but only Th1-response was involved in reducing the weight of patients. The relationship between each of the clinical symptoms with immune response and with each genus of microbiota were reviewed separately, and these data are the new information on TB disease and can be the beginning of the study on the impact of genus, different species and strains of microbiota on the clinical signs of disease. Copyright © 2018 Elsevier Ltd. All rights reserved.
CT-guided automated detection of lung tumors on PET images
NASA Astrophysics Data System (ADS)
Cui, Yunfeng; Zhao, Binsheng; Akhurst, Timothy J.; Yan, Jiayong; Schwartz, Lawrence H.
2008-03-01
The calculation of standardized uptake values (SUVs) in tumors on serial [ 18F]2-fluoro-2-deoxy-D-glucose ( 18F-FDG) positron emission tomography (PET) images is often used for the assessment of therapy response. We present a computerized method that automatically detects lung tumors on 18F-FDG PET/Computed Tomography (CT) images using both anatomic and metabolic information. First, on CT images, relevant organs, including lung, bone, liver and spleen, are automatically identified and segmented based on their locations and intensity distributions. Hot spots (SUV >= 1.5) on 18F-FDG PET images are then labeled using the connected component analysis. The resultant "hot objects" (geometrically connected hot spots in three dimensions) that fall into, reside at the edges or are in the vicinity of the lungs are considered as tumor candidates. To determine true lesions, further analyses are conducted, including reduction of tumor candidates by the masking out of hot objects within CT-determined normal organs, and analysis of candidate tumors' locations, intensity distributions and shapes on both CT and PET. The method was applied to 18F-FDG-PET/CT scans from 9 patients, on which 31 target lesions had been identified by a nuclear medicine radiologist during a Phase II lung cancer clinical trial. Out of 31 target lesions, 30 (97%) were detected by the computer method. However, sensitivity and specificity were not estimated because not all lesions had been marked up in the clinical trial. The method effectively excluded the hot spots caused by mediastinum, liver, spleen, skeletal muscle and bone metastasis.
Kempker, Russell R; Heinrichs, M Tobias; Nikolaishvili, Ketino; Sabulua, Irina; Bablishvili, Nino; Gogishvili, Shota; Avaliani, Zaza; Tukvadze, Nestani; Little, Brent; Bernheim, Adam; Read, Timothy D; Guarner, Jeannette; Derendorf, Hartmut; Peloquin, Charles A; Blumberg, Henry M; Vashakidze, Sergo
2017-06-01
Improved knowledge regarding the tissue penetration of antituberculosis drugs may help optimize drug management. Patients with drug-resistant pulmonary tuberculosis undergoing adjunctive surgery were enrolled. Serial serum samples were collected, and microdialysis was performed using ex vivo lung tissue to measure pyrazinamide concentrations. Among 10 patients, the median pyrazinamide dose was 24.7 mg/kg of body weight. Imaging revealed predominant lung lesions as cavitary ( n = 6 patients), mass-like ( n = 3 patients), or consolidative ( n = 1 patient). On histopathology examination, all tissue samples had necrosis; eight had a pH of ≤5.5. Tissue samples from two patients were positive for Mycobacterium tuberculosis by culture (pH 5.5 and 7.2). All 10 patients had maximal serum pyrazinamide concentrations within the recommended range of 20 to 60 μg/ml. The median lung tissue free pyrazinamide concentration was 20.96 μg/ml. The median tissue-to-serum pyrazinamide concentration ratio was 0.77 (range, 0.54 to 0.93). There was a significant inverse correlation between tissue pyrazinamide concentrations and the amounts of necrosis ( R = -0.66, P = 0.04) and acid-fast bacilli ( R = -0.75, P = 0.01) identified by histopathology. We found good penetration of pyrazinamide into lung tissue among patients with pulmonary tuberculosis with a variety of radiological lesion types. Our tissue pH results revealed that most lesions had a pH conducive to pyrazinamide activity. The tissue penetration of pyrazinamide highlights its importance in both drug-susceptible and drug-resistant antituberculosis treatment regimens. Copyright © 2017 American Society for Microbiology.
Lung Tissue Concentrations of Pyrazinamide among Patients with Drug-Resistant Pulmonary Tuberculosis
Heinrichs, M. Tobias; Nikolaishvili, Ketino; Sabulua, Irina; Bablishvili, Nino; Gogishvili, Shota; Avaliani, Zaza; Tukvadze, Nestani; Little, Brent; Bernheim, Adam; Read, Timothy D.; Guarner, Jeannette; Derendorf, Hartmut; Peloquin, Charles A.; Blumberg, Henry M.; Vashakidze, Sergo
2017-01-01
ABSTRACT Improved knowledge regarding the tissue penetration of antituberculosis drugs may help optimize drug management. Patients with drug-resistant pulmonary tuberculosis undergoing adjunctive surgery were enrolled. Serial serum samples were collected, and microdialysis was performed using ex vivo lung tissue to measure pyrazinamide concentrations. Among 10 patients, the median pyrazinamide dose was 24.7 mg/kg of body weight. Imaging revealed predominant lung lesions as cavitary (n = 6 patients), mass-like (n = 3 patients), or consolidative (n = 1 patient). On histopathology examination, all tissue samples had necrosis; eight had a pH of ≤5.5. Tissue samples from two patients were positive for Mycobacterium tuberculosis by culture (pH 5.5 and 7.2). All 10 patients had maximal serum pyrazinamide concentrations within the recommended range of 20 to 60 μg/ml. The median lung tissue free pyrazinamide concentration was 20.96 μg/ml. The median tissue-to-serum pyrazinamide concentration ratio was 0.77 (range, 0.54 to 0.93). There was a significant inverse correlation between tissue pyrazinamide concentrations and the amounts of necrosis (R = −0.66, P = 0.04) and acid-fast bacilli (R = −0.75, P = 0.01) identified by histopathology. We found good penetration of pyrazinamide into lung tissue among patients with pulmonary tuberculosis with a variety of radiological lesion types. Our tissue pH results revealed that most lesions had a pH conducive to pyrazinamide activity. The tissue penetration of pyrazinamide highlights its importance in both drug-susceptible and drug-resistant antituberculosis treatment regimens. PMID:28373198
Tome, Yasunori; Kimura, Hiroaki; Maehara, Hiroki; Sugimoto, Naotoshi; Bouvet, Michael; Tsuchiya, Hiroyuki; Kanaya, Fuminori; Hoffman, Robert M
2013-09-01
Altered expression of αvβ3 integrin is associated with tumor progression and metastasis in several types of cancer, including metastatic osteosarcoma. In this study, we demonstrate that in vivo passaging of lung metastasis in nude mice can generate an aggressive variant of human osteosarcoma cells. Experimental metastases were established by injecting 143B human osteosarcoma cells, expressing green fluorescent protein (GFP) in the nucleus and red fluorescent protein (RFP) in the cytoplasm, in the tail vein of nude mice. Lung metastases were harvested under fluorescence microscopy from nude mice to establish cell lines which were then injected via the tail vein of additional nude mice. This procedure was repeated for four passages in order to isolate highly metastatic variant sublines. When the parental and metastatic variants were transplanted orthotopically into the tibia of nude mice, the 143B-LM4 variant had the highest metastatic rate, approximately 18-fold higher than the parent (p<0.01). αvβ3 integrin expression was increased approximately 5.6-fold in 143B-LM4 compared to parental cells (p<0.05). Thus, serial passage of lung metastases created a highly metastatic variant of human osteosarcoma cells which had increased expression of αvβ3 integrin, suggesting that αvβ3 integrin plays an essential role in osteosarcoma metastasis. With this highly metastatic variant overexpressing αvβ3 integrin, it will now be possible to further investigate the mechanism by which αvβ3 integrin facilitates metastasis.
Serial Dependence across Perception, Attention, and Memory.
Kiyonaga, Anastasia; Scimeca, Jason M; Bliss, Daniel P; Whitney, David
2017-07-01
Information that has been recently perceived or remembered can bias current processing. This has been viewed as both a corrupting (e.g., proactive interference in short-term memory) and stabilizing (e.g., serial dependence in perception) phenomenon. We hypothesize that this bias is a generally adaptive aspect of brain function that leads to occasionally maladaptive outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Boucher, Victor J.
2006-01-01
Language learning requires a capacity to recall novel series of speech sounds. Research shows that prosodic marks create grouping effects enhancing serial recall. However, any restriction on memory affecting the reproduction of prosody would limit the set of patterns that could be learned and subsequently used in speech. By implication, grouping…
Jeyaraj, Pamela; Sio, Terence T.; Iott, Matthew J.
2013-01-01
In the English literature, only 9 cases of adenocarcinoma of the gallbladder with cutaneous metastasis have been reported so far. One case of multiple cutaneous metastases along with deposits in the breast tissue has been reported. We present a case of incidental metastatic gallbladder carcinoma with no intra-abdominal disease presenting as a series of four isolated cutaneous right chest wall, axillary nodal, breast, and pulmonary metastases following resection and adjuvant chemoradiation for her primary tumor. In spite of the metastatic disease coupled with the aggressive nature of the cancer, this patient reported that her energy level had returned to baseline with a good appetite and a stable weight indicating a good performance status and now is alive at 25 months since diagnosis. Her serially-presented, oligometastatic diseases were well-controlled by concurrent chemoradiotherapy and stereotactic radiation therapy. We report this case study because of its rarity and for the purpose of complementing current literature with an additional example of cutaneous metastasis from adenocarcinoma of the gallbladder. PMID:23772306
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinogradskiy, Y; Waxweiler, T; Diot, Q
Purpose: 4DCT-ventilation is an exciting new imaging modality that uses 4DCTs to calculate lung ventilation. Because 4DCTs are acquired as part of routine care, calculating 4DCT-ventilation allows for lung function evaluation without additional cost or inconvenience to the patient. Development of a clinical trial is underway at our institution to use 4DCT-ventilation for thoracic functional avoidance with the idea that preferential sparing of functional lung regions can decrease pulmonary toxicity. The purpose of our work was to develop the practical aspects of a 4DCT-ventilation functional avoidance clinical trial including: 1.assessing patient eligibility 2.developing trial inclusion criteria and 3.developing treatment planningmore » and dose-function evaluation strategies. Methods: 96 stage III lung cancer patients from 2 institutions were retrospectively reviewed. 4DCT-ventilation maps were calculated using the patient’s 4DCTs, deformable image registrations, and a density-change-based algorithm. To assess patient eligibility and develop trial inclusion criteria we used an observer-based binary end point noting the presence or absence of a ventilation defect and developed an algorithm based on the percent ventilation in each lung third. Functional avoidance planning integrating 4DCT-ventilation was performed using rapid-arc and compared to the patient’s clinically used plan. Results: Investigator-determined clinical ventilation defects were present in 69% of patients. Our regional/lung-thirds ventilation algorithm identified that 59% of patients have lung functional profiles suitable for functional avoidance. Compared to the clinical plan, functional avoidance planning was able to reduce the mean dose to functional lung by 2 Gy while delivering comparable target coverage and cord/heart doses. Conclusions: 4DCT-ventilation functional avoidance clinical trials have great potential to reduce toxicity, and our data suggest that 59% of lung cancer patients have lung function profiles suitable for functional avoidance. Our study used a retrospective evaluation of a large lung cancer patient database to develop the practical aspects of a 4DCT-ventilation functional avoidance clinical trial. (R.C., E.C., T.G.), NIH Research Scientist Development Award K01-CA181292 (R.C.), and State of Colorado Advanced Industries Accelerator Grant (Y.V.)« less
Tibboel, Jeroen; Keijzer, Richard; Reiss, Irwin; de Jongste, Johan C; Post, Martin
2014-06-01
The aim of this study was to characterize the evolution of lung function and -structure in elastase-induced emphysema in adult mice and the effect of mesenchymal stromal cell (MSC) administration on these parameters. Adult mice were treated with intratracheal (4.8 units/100 g bodyweight) elastase to induce emphysema. MSCs were administered intratracheally or intravenously, before or after elastase injection. Lung function measurements, histological and morphometric analysis of lung tissue were performed at 3 weeks, 5 and 10 months after elastase and at 19, 20 and 21 days following MSC administration. Elastase-treated mice showed increased dynamic compliance and total lung capacity, and reduced tissue-specific elastance and forced expiratory flows at 3 weeks after elastase, which persisted during 10 months follow-up. Histology showed heterogeneous alveolar destruction which also persisted during long-term follow-up. Jugular vein injection of MSCs before elastase inhibited deterioration of lung function but had no effects on histology. Intratracheal MSC treatment did not modify lung function or histology. In conclusion, elastase-treated mice displayed persistent characteristics of pulmonary emphysema. Jugular vein injection of MSCs prior to elastase reduced deterioration of lung function. Intratracheal MSC treatment had no effect on lung function or histology.
Potential Role of Lung Ventilation Scintigraphy in the Assessment of COPD
Cukic, Vesna; Begic, Amela
2014-01-01
Objective: To highlight the importance of the lung ventilation scintigraphy (LVS) to study the regional distribution of lung ventilation and to describe most frequent abnormal patterns of lung ventilation distribution obtained by this technique in COPD and to compare the information obtained by LVS with the that obtained by traditional lung function tests. Material and methods: The research was done in 20 patients with previously diagnosed COPD who were treated in Intensive care unit of Clinic for pulmonary diseases and TB “Podhrastovi” Clinical Center, University of Sarajevo in exacerbation of COPD during first three months of 2014. Each patient was undergone to testing of pulmonary function by body plethysmography and ventilation/perfusion lung scintigraphy with radio pharmaceutics Technegas, 111 MBq Tc -99m-MAA. We compared the results obtained by these two methods. Results: All patients with COPD have a damaged lung function tests examined by body plethysmography implying airflow obstruction, but LVS indicates not only airflow obstruction and reduced ventilation, but also indicates the disorders in distribution in lung ventilation. Conclusion: LVS may add further information to the functional evaluation of COPD to that provided by traditional lung function tests and may contribute to characterizing the different phenotypes of COPD. PMID:25132709
Molecular mechanisms underlying variations in lung function: a systems genetics analysis
Obeidat, Ma’en; Hao, Ke; Bossé, Yohan; Nickle, David C; Nie, Yunlong; Postma, Dirkje S; Laviolette, Michel; Sandford, Andrew J; Daley, Denise D; Hogg, James C; Elliott, W Mark; Fishbane, Nick; Timens, Wim; Hysi, Pirro G; Kaprio, Jaakko; Wilson, James F; Hui, Jennie; Rawal, Rajesh; Schulz, Holger; Stubbe, Beate; Hayward, Caroline; Polasek, Ozren; Järvelin, Marjo-Riitta; Zhao, Jing Hua; Jarvis, Deborah; Kähönen, Mika; Franceschini, Nora; North, Kari E; Loth, Daan W; Brusselle, Guy G; Smith, Albert Vernon; Gudnason, Vilmundur; Bartz, Traci M; Wilk, Jemma B; O’Connor, George T; Cassano, Patricia A; Tang, Wenbo; Wain, Louise V; Artigas, María Soler; Gharib, Sina A; Strachan, David P; Sin, Don D; Tobin, Martin D; London, Stephanie J; Hall, Ian P; Paré, Peter D
2016-01-01
Summary Background Lung function measures reflect the physiological state of the lung, and are essential to the diagnosis of chronic obstructive pulmonary disease (COPD). The SpiroMeta-CHARGE consortium undertook the largest genome-wide association study (GWAS) so far (n=48 201) for forced expiratory volume in 1 s (FEV1) and the ratio of FEV1 to forced vital capacity (FEV1/FVC) in the general population. The lung expression quantitative trait loci (eQTLs) study mapped the genetic architecture of gene expression in lung tissue from 1111 individuals. We used a systems genetics approach to identify single nucleotide polymorphisms (SNPs) associated with lung function that act as eQTLs and change the level of expression of their target genes in lung tissue; termed eSNPs. Methods The SpiroMeta-CHARGE GWAS results were integrated with lung eQTLs to map eSNPs and the genes and pathways underlying the associations in lung tissue. For comparison, a similar analysis was done in peripheral blood. The lung mRNA expression levels of the eSNP-regulated genes were tested for associations with lung function measures in 727 individuals. Additional analyses identified the pleiotropic effects of eSNPs from the published GWAS catalogue, and mapped enrichment in regulatory regions from the ENCODE project. Finally, the Connectivity Map database was used to identify potential therapeutics in silico that could reverse the COPD lung tissue gene signature. Findings SNPs associated with lung function measures were more likely to be eQTLs and vice versa. The integration mapped the specific genes underlying the GWAS signals in lung tissue. The eSNP-regulated genes were enriched for developmental and inflammatory pathways; by comparison, SNPs associated with lung function that were eQTLs in blood, but not in lung, were only involved in inflammatory pathways. Lung function eSNPs were enriched for regulatory elements and were over-represented among genes showing differential expression during fetal lung development. An mRNA gene expression signature for COPD was identified in lung tissue and compared with the Connectivity Map. This in-silico drug repurposing approach suggested several compounds that reverse the COPD gene expression signature, including a nicotine receptor antagonist. These findings represent novel therapeutic pathways for COPD. Interpretation The system genetics approach identified lung tissue genes driving the variation in lung function and susceptibility to COPD. The identification of these genes and the pathways in which they are enriched is essential to understand the pathophysiology of airway obstruction and to identify novel therapeutic targets and biomarkers for COPD, including drugs that reverse the COPD gene signature in silico. Funding The research reported in this article was not specifically funded by any agency. See Acknowledgments for a full list of funders of the lung eQTL study and the Spiro-Meta CHARGE GWAS. PMID:26404118
Assessment of lung function in a large cohort of patients with acromegaly.
Störmann, Sylvère; Gutt, Bodo; Roemmler-Zehrer, Josefine; Bidlingmaier, Martin; Huber, Rudolf M; Schopohl, Jochen; Angstwurm, Matthias W
2017-07-01
Acromegaly is associated with increased mortality due to respiratory disease. To date, lung function in patients with acromegaly has only been assessed in small studies, with contradicting results. We assessed lung function parameters in a large cohort of patients with acromegaly. Lung function of acromegaly patients was prospectively assessed using spirometry, blood gas analysis and body plethysmography. Biochemical indicators of acromegaly were assessed through measurement of growth hormone and IGF-I levels. This study was performed at the endocrinology outpatient clinic of a tertiary referral center in Germany. We prospectively tested lung function of 109 acromegaly patients (53 male, 56 female; aged 24-82 years; 80 with active acromegaly) without severe acute or chronic pulmonary disease. We compared lung volume, air flow, airway resistance and blood gases to normative data. Acromegaly patients had greater lung volumes (maximal vital capacity, intra-thoracic gas volume and residual volume: P < 0.001, total lung capacity: P = 0.006) and showed signs of small airway obstruction (reduced maximum expiratory flow when 75% of the forced vital capacity (FVC) has been exhaled: P < 0.001, lesser peak expiratory flow: P = 0.01). There was no significant difference between active and inactive acromegaly. Female patients had significantly altered lung function in terms of subclinical airway obstruction. In our cross-sectional analysis of lung function in 109 patients with acromegaly, lung volumes were increased compared to healthy controls. Additionally, female patients showed signs of subclinical airway obstruction. There was no difference between patients with active acromegaly compared with patients biochemically in remission. © 2017 European Society of Endocrinology.
Fan, Shengxian; Li, Yousheng; Zhang, Shaoyi; Wang, Jian; Li, Jieshou
2015-04-01
Since its introduction as an alternative intestinal lengthening technique, serial transverse enteroplasty has been increasingly used as the surgical treatment of choice for children with refractory short bowel syndrome, but there have been few reports about the adult patients. This report describes the case of a 71-year-old man with a short bowel after distal gastrectomy with Billroth II reconstruction for gastric cancer, followed by extensive intestinal resection. The serial transverse enteroplasty operation was performed and lengthened the small intestine from 49 to 67 cm. The patient tolerated the procedure well and weaned off total parenteral nutrition. Liver function also improved. This case shows that the serial transverse enteroplasty procedure increases intestinal length. This procedure should be considered a surgical option for adult patients with extreme short bowel syndrome.
Lee, Kiju; Wang, Yunfeng; Chirikjian, Gregory S
2007-11-01
Over the past several decades a number of O(n) methods for forward and inverse dynamics computations have been developed in the multi-body dynamics and robotics literature. A method was developed in 1974 by Fixman for O(n) computation of the mass-matrix determinant for a serial polymer chain consisting of point masses. In other recent papers, we extended this method in order to compute the inverse of the mass matrix for serial chains consisting of point masses. In the present paper, we extend these ideas further and address the case of serial chains composed of rigid-bodies. This requires the use of relatively deep mathematics associated with the rotation group, SO(3), and the special Euclidean group, SE(3), and specifically, it requires that one differentiates functions of Lie-group-valued argument.
Lung transplantation in adults and children: putting lung function into perspective.
Thompson, Bruce Robert; Westall, Glen Philip; Paraskeva, Miranda; Snell, Gregory Ian
2014-11-01
The number of lung transplants performed globally continues to increase year after year. Despite this growing experience, long-term outcomes following lung transplantation continue to fall far short of that described in other solid-organ transplant settings. Chronic lung allograft dysfunction (CLAD) remains common and is the end result of exposure to a multitude of potentially injurious insults that include alloreactivity and infection among others. Central to any description of the clinical performance of the transplanted lung is an assessment of its physiology by pulmonary function testing. Spirometry and the evaluation of forced expiratory volume in 1 s and forced vital capacity, remain core indices that are measured as part of routine clinical follow-up. Spirometry, while reproducible in detecting lung allograft dysfunction, lacks specificity in differentiating the different complications of lung transplantation such as rejection, infection and bronchiolitis obliterans. However, interpretation of spirometry is central to defining the different 'chronic rejection' phenotypes. It is becoming apparent that the maximal lung function achieved following transplantation, as measured by spirometry, is influenced by a number of donor and recipient factors as well as the type of surgery performed (single vs double vs lobar lung transplant). In this review, we discuss the wide range of variables that need to be considered when interpreting lung function testing in lung transplant recipients. Finally, we review a number of novel measurements of pulmonary function that may in the future serve as better biomarkers to detect and diagnose the cause of the failing lung allograft. © 2014 Asian Pacific Society of Respirology.
Oshima, Yoshiaki; Sakamoto, Seiji; Yamasaki, Kazumasa; Mochida, Shinsuke; Funaki, Kazumi; Moriyama, Naoki; Otsuki, Akihiro; Endo, Ryo; Nakasone, Masato; Takahashi, Shunsaku; Harada, Tomomi; Minami, Yukari; Inagaki, Yoshimi
2016-01-01
Isoflurane and sevoflurane protect lungs with ischemia-reperfusion (IR) injury. We examined the influence of desflurane on IR lung injury using isolated rabbit lungs perfused with a physiological salt solution. The isolated lungs were divided into three groups: IR, desflurane-treated ischemia-reperfusion (DES-IR), and ventilation/perfusion-continued control (Cont) groups (n = 6 per group). In the DES-IR group, inhalation of desflurane at 1 minimum alveolar concentration (MAC) was conducted in a stable 30-min phase. In the IR and DES-IR groups, ventilation/perfusion was stopped for 75 min after the stable phase. Subsequently, they were resumed. Each lung was placed on a balance, and weighed. Weight changes were measured serially throughout this experiment. The coefficient of filtration (K fc ) was determined immediately before ischemia and 60 min after reperfusion. Furthermore, bronchoalveolar lavage fluid (BALF) was collected from the right bronchus at the completion of the experiment. After the completion of the experiment, the left lung was dried, and the lung wet-to-dry weight ratio (W/D) was calculated. The K fc values at 60 min after perfusion were 0.40 ± 0.13 ml/min/mmHg/100 g in the DES-IR group, 0.26 ± 0.07 ml/min/mmHg/100 g in the IR group, and 0.22 ± 0.08 (mean ± SD) ml/mmHg/100 g in the Cont group. In the DES-IR group, the K fc at 60 min after the start of reperfusion was significantly higher than in the other groups. In the DES-IR group, W/D was significantly higher than in the Cont group. In the DES-IR group, the BALF concentrations of nitric oxide metabolites were significantly higher than in the other groups. In the DES-IR group, the total amount of vascular endothelial growth factor in BALF was significantly higher than in the Cont group. The pre-inhalation of desflurane at 1 MAC exacerbates pulmonary IR injury in isolated/perfused rabbit lungs.
Muller, David C; Johansson, Mattias; Brennan, Paul
2017-03-10
Purpose Several lung cancer risk prediction models have been developed, but none to date have assessed the predictive ability of lung function in a population-based cohort. We sought to develop and internally validate a model incorporating lung function using data from the UK Biobank prospective cohort study. Methods This analysis included 502,321 participants without a previous diagnosis of lung cancer, predominantly between 40 and 70 years of age. We used flexible parametric survival models to estimate the 2-year probability of lung cancer, accounting for the competing risk of death. Models included predictors previously shown to be associated with lung cancer risk, including sex, variables related to smoking history and nicotine addiction, medical history, family history of lung cancer, and lung function (forced expiratory volume in 1 second [FEV1]). Results During accumulated follow-up of 1,469,518 person-years, there were 738 lung cancer diagnoses. A model incorporating all predictors had excellent discrimination (concordance (c)-statistic [95% CI] = 0.85 [0.82 to 0.87]). Internal validation suggested that the model will discriminate well when applied to new data (optimism-corrected c-statistic = 0.84). The full model, including FEV1, also had modestly superior discriminatory power than one that was designed solely on the basis of questionnaire variables (c-statistic = 0.84 [0.82 to 0.86]; optimism-corrected c-statistic = 0.83; p FEV1 = 3.4 × 10 -13 ). The full model had better discrimination than standard lung cancer screening eligibility criteria (c-statistic = 0.66 [0.64 to 0.69]). Conclusion A risk prediction model that includes lung function has strong predictive ability, which could improve eligibility criteria for lung cancer screening programs.
Gupta, C K; Mishra, G; Mehta, S C; Prasad, J
1993-01-01
Lung volumes, capacities, diffusion and alveolar volumes with physical characteristics (age, height and weight) were recorded for 186 healthy school children (96 boys and 90 girls) of 10-17 years age group. The objective was to study the relative importance of physical characteristics as regressor variables in regression models to estimate lung functions. We observed that height is best correlated with all the lung functions. Inclusion of all physical characteristics in the models have little gain compared to the ones having just height as regressor variable. We also find that exponential models were not only statistically valid but fared better compared to the linear ones. We conclude that lung functions covary with height and other physical characteristics but do not depend upon them. The rate of increase in the functions depend upon initial lung functions. Further, we propose models and provide ready reckoners to give estimates of lung functions with 95 per cent confidence limits based on heights from 125 to 170 cm for the age group of 10 to 17 years.
Estimation of Lung Ventilation
NASA Astrophysics Data System (ADS)
Ding, Kai; Cao, Kunlin; Du, Kaifang; Amelon, Ryan; Christensen, Gary E.; Raghavan, Madhavan; Reinhardt, Joseph M.
Since the primary function of the lung is gas exchange, ventilation can be interpreted as an index of lung function in addition to perfusion. Injury and disease processes can alter lung function on a global and/or a local level. MDCT can be used to acquire multiple static breath-hold CT images of the lung taken at different lung volumes, or with proper respiratory control, 4DCT images of the lung reconstructed at different respiratory phases. Image registration can be applied to this data to estimate a deformation field that transforms the lung from one volume configuration to the other. This deformation field can be analyzed to estimate local lung tissue expansion, calculate voxel-by-voxel intensity change, and make biomechanical measurements. The physiologic significance of the registration-based measures of respiratory function can be established by comparing to more conventional measurements, such as nuclear medicine or contrast wash-in/wash-out studies with CT or MR. An important emerging application of these methods is the detection of pulmonary function change in subjects undergoing radiation therapy (RT) for lung cancer. During RT, treatment is commonly limited to sub-therapeutic doses due to unintended toxicity to normal lung tissue. Measurement of pulmonary function may be useful as a planning tool during RT planning, may be useful for tracking the progression of toxicity to nearby normal tissue during RT, and can be used to evaluate the effectiveness of a treatment post-therapy. This chapter reviews the basic measures to estimate regional ventilation from image registration of CT images, the comparison of them to the existing golden standard and the application in radiation therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cunliffe, Alexandra R.; Armato, Samuel G.; White, Bradley
2015-01-15
Purpose: To characterize the effects of deformable image registration of serial computed tomography (CT) scans on the radiation dose calculated from a treatment planning scan. Methods: Eighteen patients who received curative doses (≥60 Gy, 2 Gy/fraction) of photon radiation therapy for lung cancer treatment were retrospectively identified. For each patient, a diagnostic-quality pretherapy (4–75 days) CT scan and a treatment planning scan with an associated dose map were collected. To establish correspondence between scan pairs, a researcher manually identified anatomically corresponding landmark point pairs between the two scans. Pretherapy scans then were coregistered with planning scans (and associated dose maps)more » using the demons deformable registration algorithm and two variants of the Fraunhofer MEVIS algorithm (“Fast” and “EMPIRE10”). Landmark points in each pretherapy scan were automatically mapped to the planning scan using the displacement vector field output from each of the three algorithms. The Euclidean distance between manually and automatically mapped landmark points (d{sub E}) and the absolute difference in planned dose (|ΔD|) were calculated. Using regression modeling, |ΔD| was modeled as a function of d{sub E}, dose (D), dose standard deviation (SD{sub dose}) in an eight-pixel neighborhood, and the registration algorithm used. Results: Over 1400 landmark point pairs were identified, with 58–93 (median: 84) points identified per patient. Average |ΔD| across patients was 3.5 Gy (range: 0.9–10.6 Gy). Registration accuracy was highest using the Fraunhofer MEVIS EMPIRE10 algorithm, with an average d{sub E} across patients of 5.2 mm (compared with >7 mm for the other two algorithms). Consequently, average |ΔD| was also lowest using the Fraunhofer MEVIS EMPIRE10 algorithm. |ΔD| increased significantly as a function of d{sub E} (0.42 Gy/mm), D (0.05 Gy/Gy), SD{sub dose} (1.4 Gy/Gy), and the algorithm used (≤1 Gy). Conclusions: An average error of <4 Gy in radiation dose was introduced when points were mapped between CT scan pairs using deformable registration, with the majority of points yielding dose-mapping error <2 Gy (approximately 3% of the total prescribed dose). Registration accuracy was highest using the Fraunhofer MEVIS EMPIRE10 algorithm, resulting in the smallest errors in mapped dose. Dose differences following registration increased significantly with increasing spatial registration errors, dose, and dose gradient (i.e., SD{sub dose}). This model provides a measurement of the uncertainty in the radiation dose when points are mapped between serial CT scans through deformable registration.« less
Improved Software to Browse the Serial Medical Images for Learning
2017-01-01
The thousands of serial images used for medical pedagogy cannot be included in a printed book; they also cannot be efficiently handled by ordinary image viewer software. The purpose of this study was to provide browsing software to grasp serial medical images efficiently. The primary function of the newly programmed software was to select images using 3 types of interfaces: buttons or a horizontal scroll bar, a vertical scroll bar, and a checkbox. The secondary function was to show the names of the structures that had been outlined on the images. To confirm the functions of the software, 3 different types of image data of cadavers (sectioned and outlined images, volume models of the stomach, and photos of the dissected knees) were inputted. The browsing software was downloadable for free from the homepage (anatomy.co.kr) and available off-line. The data sets provided could be replaced by any developers for their educational achievements. We anticipate that the software will contribute to medical education by allowing users to browse a variety of images. PMID:28581279
Improved Software to Browse the Serial Medical Images for Learning.
Kwon, Koojoo; Chung, Min Suk; Park, Jin Seo; Shin, Byeong Seok; Chung, Beom Sun
2017-07-01
The thousands of serial images used for medical pedagogy cannot be included in a printed book; they also cannot be efficiently handled by ordinary image viewer software. The purpose of this study was to provide browsing software to grasp serial medical images efficiently. The primary function of the newly programmed software was to select images using 3 types of interfaces: buttons or a horizontal scroll bar, a vertical scroll bar, and a checkbox. The secondary function was to show the names of the structures that had been outlined on the images. To confirm the functions of the software, 3 different types of image data of cadavers (sectioned and outlined images, volume models of the stomach, and photos of the dissected knees) were inputted. The browsing software was downloadable for free from the homepage (anatomy.co.kr) and available off-line. The data sets provided could be replaced by any developers for their educational achievements. We anticipate that the software will contribute to medical education by allowing users to browse a variety of images. © 2017 The Korean Academy of Medical Sciences.
Reduction of Pulmonary Function After Surgical Lung Resections of Different Volume
Cukic, Vesna
2014-01-01
Introduction: In recent years an increasing number of lung resections are being done because of the rising prevalence of lung cancer that occurs mainly in patients with limited lung function, what is caused with common etiologic factor - smoking cigarettes. Objective: To determine how big the loss of lung function is after surgical resection of lung of different range. Methods: The study was done on 58 patients operated at the Clinic for thoracic surgery KCU Sarajevo, previously treated at the Clinic for pulmonary diseases “Podhrastovi” in the period from 01.06.2012. to 01.06.2014. The following resections were done: pulmectomy (left, right), lobectomy (upper, lower: left and right). The values of postoperative pulmonary function were compared with preoperative ones. As a parameter of lung function we used FEV1 (forced expiratory volume in one second), and changes in FEV1 are expressed in liters and in percentage of the recorded preoperative and normal values of FEV1. Measurements of lung function were performed seven days before and 2 months after surgery. Results: Postoperative FEV1 was decreased compared to preoperative values. After pulmectomy the maximum reduction of FEV1 was 44%, and after lobectomy it was 22% of the preoperative values. Conclusion: Patients with airway obstruction are limited in their daily life before the surgery, and an additional loss of lung tissue after resection contributes to their inability. Potential benefits of lung resection surgery should be balanced in relation to postoperative morbidity and mortality. PMID:25568542
Li, Nan; Weng, Dong; Wang, Shan-Mei; Zhang, Yuan; Chen, Shan-Shan; Yin, Zhao-Fang; Zhai, Jiali; Scoble, Judy; Williams, Charlotte C; Chen, Tao; Qiu, Hui; Wu, Qin; Zhao, Meng-Meng; Lu, Li-Qin; Mulet, Xavier; Li, Hui-Ping
2017-11-01
The advent of nanomedicine requires novel delivery vehicles to actively target their site of action. Here, we demonstrate the development of lung-targeting drug-loaded liposomes and their efficacy, specificity and safety. Our study focuses on glucocorticoids methylprednisolone (MPS), a commonly used drug to treat lung injuries. The steroidal molecule was loaded into functionalized nano-sterically stabilized unilamellar liposomes (NSSLs). Targeting functionality was performed through conjugation of surfactant protein A (SPANb) nanobodies to form MPS-NSSLs-SPANb. MPS-NSSLs-SPANb exhibited good size distribution, morphology, and encapsulation efficiency. Animal experiments demonstrated the high specificity of MPS-NSSLs-SPANb to the lung. Treatment with MPS-NSSLs-SPANb reduced the levels of TNF-α, IL-8, and TGF-β1 in rat bronchoalveolar lavage fluid and the expression of NK-κB in the lung tissues, thereby alleviating lung injuries and increasing rat survival. The nanobody functionalized nanoparticles demonstrate superior performance to treat lung injury when compared to that of antibody functionalized systems.
Campbell Jenkins, Brenda W.; Sarpong, Daniel F.; Addison, Clifton; White, Monique S.; Hickson, DeMarc A.; White, Wendy; Burchfiel, Cecil
2014-01-01
This study examined: (a) differences in lung function between current and non current smokers who had sedentary lifestyles and non sedentary lifestyles and (b) the mediating effect of sedentary lifestyle on the association between smoking and lung function in African Americans. Sedentary lifestyle was defined as the lowest quartile of the total physical activity score. The results of linear and logistic regression analyses revealed that non smokers with non sedentary lifestyles had the highest level of lung function, and smokers with sedentary lifestyles had the lowest level. The female non-smokers with sedentary lifestyles had a significantly higher FEV1% predicted and FVC% predicted than smokers with non sedentary lifestyles (93.3% vs. 88.6%; p = 0.0102 and 92.1% vs. 86.9%; p = 0.0055 respectively). FEV1/FVC ratio for men was higher in non smokers with sedentary lifestyles than in smokers with non sedentary lifestyles (80.9 vs. 78.1; p = 0.0048). Though smoking is inversely associated with lung function, it seems to have a more deleterious effect than sedentary lifestyle on lung function. Physically active smokers had higher lung function than their non physically active counterparts. PMID:24477212
Campbell Jenkins, Brenda W; Sarpong, Daniel F; Addison, Clifton; White, Monique S; Hickson, Demarc A; White, Wendy; Burchfiel, Cecil
2014-01-28
This study examined: (a) differences in lung function between current and non current smokers who had sedentary lifestyles and non sedentary lifestyles and (b) the mediating effect of sedentary lifestyle on the association between smoking and lung function in African Americans. Sedentary lifestyle was defined as the lowest quartile of the total physical activity score. The results of linear and logistic regression analyses revealed that non smokers with non sedentary lifestyles had the highest level of lung function, and smokers with sedentary lifestyles had the lowest level. The female non-smokers with sedentary lifestyles had a significantly higher FEV1% predicted and FVC% predicted than smokers with non sedentary lifestyles (93.3% vs. 88.6%; p = 0.0102 and 92.1% vs. 86.9%; p = 0.0055 respectively). FEV1/FVC ratio for men was higher in non smokers with sedentary lifestyles than in smokers with non sedentary lifestyles (80.9 vs. 78.1; p = 0.0048). Though smoking is inversely associated with lung function, it seems to have a more deleterious effect than sedentary lifestyle on lung function. Physically active smokers had higher lung function than their non physically active counterparts.
Zeng, Xiang; Xu, Xijin; Zhang, Yuling; Li, Weiqiu; Huo, Xia
2017-10-01
The purpose of this study was to investigate the associations between birth weight, chest circumference, and lung function in preschool children from e-waste exposure area. A total of 206 preschool children from Guiyu (an e-waste recycling area) and Haojiang and Xiashan (the reference areas) in China were recruited and required to undergo physical examination, blood tests, and lung function tests during the study period. Birth outcome such as birth weight and birth height were obtained by questionnaire. Children living in the e-waste-exposed area have a lower birth weight, chest circumference, height, and lung function when compare to their peers from the reference areas (all p value <0.05). Both Spearman and partial correlation analyses showed that birth weight and chest circumference were positively correlated with lung function levels including forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV 1 ). After adjustment for the potential confounders in further linear regression analyses, birth weight, and chest circumference were positively associated with lung function levels, respectively. Taken together, birth weight and chest circumference may be good predictors for lung function levels in preschool children.
Quantitative Pulmonary Imaging Using Computed Tomography and Magnetic Resonance Imaging
Washko, George R.; Parraga, Grace; Coxson, Harvey O.
2011-01-01
Measurements of lung function, including spirometry and body plethesmography, are easy to perform and are the current clinical standard for assessing disease severity. However, these lung functional techniques do not adequately explain the observed variability in clinical manifestations of disease and offer little insight into the relationship of lung structure and function. Lung imaging and the image based assessment of lung disease has matured to the extent that it is common for clinical, epidemiologic, and genetic investigation to have a component dedicated to image analysis. There are several exciting imaging modalities currently being used for the non-invasive study of lung anatomy and function. In this review we will focus on two of them, x-ray computed tomography and magnetic resonance imaging. Following a brief introduction of each method we detail some of the most recent work being done to characterize smoking-related lung disease and the clinical applications of such knowledge. PMID:22142490
Rowe, A; Hernandez, P; Kuhle, S; Kirkland, S
2017-10-01
Decreased lung function has health impacts beyond diagnosable lung disease. It is therefore important to understand the factors that may influence even small changes in lung function including obesity, physical fitness and physical activity. The aim of this study was to determine the anthropometric measure most useful in examining the association with lung function and to determine how physical activity and physical fitness influence this association. The current study used cross-sectional data on 4662 adults aged 40-79 years from the Canadian Health Measures Survey Cycles 1 and 2. Linear regression models were used to examine the association between the anthropometric and lung function measures (forced expiratory volume in 1 s [FEV 1 ] and forced vital capacity [FVC]); R 2 values were compared among models. Physical fitness and physical activity terms were added to the models and potential confounding was assessed. Models using sum of 5 skinfolds and waist circumference consistently had the highest R 2 values for FEV 1 and FVC, while models using body mass index consistently had among the lowest R 2 values for FEV 1 and FVC and for men and women. Physical activity and physical fitness were confounders of the relationships between waist circumference and the lung function measures. Waist circumference remained a significant predictor of FVC but not FEV 1 after adjustment for physical activity or physical fitness. Waist circumference is an important predictor of lung function. Physical activity and physical fitness should be considered as potential confounders of the relationship between anthropometric measures and lung function. Copyright © 2017. Published by Elsevier Ltd.
[Testing and analyzing the lung functions in the normal population in Hebei province].
Chen, Li; Zhao, Ming; Han, Shao-mei; Li, Zhong-ming; Zhu, Guang-jin
2004-08-01
To investigate the lung function of the normal subjects living in Hebei province and its correlative factors such as living circumstance, age, height, and body weight. The lung volumes and breath capacities of 1,587 normal subjects were tested by portable spirometers (Scope Rotry) from August to October in 2002. The influences of living circumstance, age, gender, height, and body weight on lung functions were observed and analyzed. No significant difference was found between urban and rural areas in all indexes (P > 0.05); however, significant difference existed between male and female subjects (P = 0.000). The change trends of lung function in male and female subjects were similar. Growth spurt appeared at the age of 12-16 years in male subjects and 12-14 years in female subjects. Vital capacity (VC), forced vital capacity (FVC), and forced expiratory volume in one second (FEV1) reached their peaks at the age of 26-34 years and then decreased with age. Peak expiratory flow (PEF), 25% forced expiratory flow (FEF50%), and 75% forced expiratory flow (FEF75%) appeared at the age of 18 and then went down with age. Both height and weight had a correlation with all the indexes of lung functions, although the influence of height is stronger than weight. All the indexes of lung function have correlations with age, height, and weight. Lung function changes with aging, therefore different expected values shall be available for the adolescence, young adults, and middle-aged and old people. This study provides reference values of lung function for normal population.
Oscillating in synchrony with a metronome: serial dependence, limit cycle dynamics, and modeling.
Torre, Kjerstin; Balasubramaniam, Ramesh; Delignières, Didier
2010-07-01
We analyzed serial dependencies in periods and asynchronies collected during oscillations performed in synchrony with a metronome. Results showed that asynchronies contain 1/f fluctuations, and the series of periods contain antipersistent dependence. The analysis of the phase portrait revealed a specific asymmetry induced by synchronization. We propose a hybrid limit cycle model including a cycle-dependent stiffness parameter provided with fractal properties, and a parametric driving function based on velocity. This model accounts for most experimentally evidenced statistical features, including serial dependence and limit cycle dynamics. We discuss the results and modeling choices within the framework of event-based and emergent timing.
Cumulative Incidence of False-Positive Results in Repeated, Multimodal Cancer Screening
Croswell, Jennifer Miller; Kramer, Barnett S.; Kreimer, Aimee R.; Prorok, Phil C.; Xu, Jian-Lun; Baker, Stuart G.; Fagerstrom, Richard; Riley, Thomas L.; Clapp, Jonathan D.; Berg, Christine D.; Gohagan, John K.; Andriole, Gerald L.; Chia, David; Church, Timothy R.; Crawford, E. David; Fouad, Mona N.; Gelmann, Edward P.; Lamerato, Lois; Reding, Douglas J.; Schoen, Robert E.
2009-01-01
PURPOSE Multiple cancer screening tests have been advocated for the general population; however, clinicians and patients are not always well-informed of screening burdens. We sought to determine the cumulative risk of a false-positive screening result and the resulting risk of a diagnostic procedure for an individual participating in a multimodal cancer screening program. METHODS Data were analyzed from the intervention arm of the ongoing Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial, a randomized controlled trial to determine the effects of prostate, lung, colorectal, and ovarian cancer screening on disease-specific mortality. The 68,436 participants, aged 55 to 74 years, were randomized to screening or usual care. Women received serial serum tests to detect cancer antigen 125 (CA-125), transvaginal sonograms, posteroanterior-view chest radiographs, and flexible sigmoidoscopies. Men received serial chest radiographs, flexible sigmoidoscopies, digital rectal examinations, and serum prostate-specific antigen tests. Fourteen screening examinations for each sex were possible during the 3-year screening period. RESULTS After 14 tests, the cumulative risk of having at least 1 false-positive screening test is 60.4% (95% CI, 59.8%–61.0%) for men, and 48.8% (95% CI, 48.1%–49.4%) for women. The cumulative risk after 14 tests of undergoing an invasive diagnostic procedure prompted by a false-positive test is 28.5% (CI, 27.8%–29.3%) for men and 22.1% (95% CI, 21.4%–22.7%) for women. CONCLUSIONS For an individual in a multimodal cancer screening trial, the risk of a false-positive finding is about 50% or greater by the 14th test. Physicians should educate patients about the likelihood of false positives and resulting diagnostic interventions when counseling about cancer screening. PMID:19433838
Brady, Jacob S.; Romano-Keeler, Joann; Drake, Wonder P.; Norris, Patrick R.; Jenkins, Judith M.; Isaacs, Richard J.; Boczko, Erik M.
2015-01-01
BACKGROUND: Ventilator-associated pneumonia (VAP) remains a common complication in critically ill surgical patients, and its diagnosis remains problematic. Exhaled breath contains aerosolized droplets that reflect the lung microbiota. We hypothesized that exhaled breath condensate fluid (EBCF) in hygroscopic condenser humidifier/heat and moisture exchanger (HCH/HME) filters would contain bacterial DNA that qualitatively and quantitatively correlate with pathogens isolated from quantitative BAL samples obtained for clinical suspicion of pneumonia. METHODS: Forty-eight adult patients who were mechanically ventilated and undergoing quantitative BAL (n = 51) for suspected pneumonia in the surgical ICU were enrolled. Per protocol, patients fulfilling VAP clinical criteria undergo quantitative BAL bacterial culture. Immediately prior to BAL, time-matched HCH/HME filters were collected for study of EBCF by real-time polymerase chain reaction. Additionally, convenience samples of serially collected filters in patients with BAL-diagnosed VAP were analyzed. RESULTS: Forty-nine of 51 time-matched EBCF/BAL fluid samples were fully concordant (concordance > 95% by κ statistic) relative to identified pathogens and strongly correlated with clinical cultures. Regression analysis of quantitative bacterial DNA in paired samples revealed a statistically significant positive correlation (r = 0.85). In a convenience sample, qualitative and quantitative polymerase chain reaction analysis of serial HCH/HME samples for bacterial DNA demonstrated an increase in load that preceded the suspicion of pneumonia. CONCLUSIONS: Bacterial DNA within EBCF demonstrates a high correlation with BAL fluid and clinical cultures. Bacterial DNA within EBCF increases prior to the suspicion of pneumonia. Further study of this novel approach may allow development of a noninvasive tool for the early diagnosis of VAP. PMID:25474571
Kim, Woo Hyoung; Kim, Chang Guhn; Kim, Myoung Hyoun; Kim, Dae-Weung; Park, Cho Rong; Park, Ji Yong; Lee, Yun-Sang; Youn, Hyewon; Kang, Keon Wook; Jeong, Jae Min; Chung, June-Key
2016-06-01
The purpose of the present study was to prepare isostructural Tc-99m- and Re-188-folate-Gly-Gly-Cys-Glu (folate-GGCE), and to evaluate the feasibility of their use for folate receptor (FR)-targeted molecular imaging and as theranostic agents in a mouse tumor model. Folate-GGCE was synthesized using solid-phase peptide synthesis and radiolabeled with Tc-99m or Re-188. Radiochemical characterization was performed by radio-high-performance liquid chromatography. The biodistribution of Tc-99m-folate-GGCE was studied, with or without co-injection of excess free folate, in mice bearing both FR-positive (KB cell) and FR-negative (HT1080 cell) tumors. Biodistribution of Re-188-folate-GGCE was studied in mice bearing KB tumors. Serial planar scintigraphy was performed in the dual tumor mouse model after intravenous injection of Tc-99m-folate-GGCE. Serial micro-single photon emission computed tomography/computed tomography (SPECT/CT) studies were performed, with or without co-injection of excess free folate, in the mouse tumor model after injection of Tc-99m-folate-GGCE or Re-188-folate-GGCE. The radiolabeling efficiency and radiochemical stability of Tc-99m- and Re-188-folate-GGCE were more than 95 % for up to 4 h after radiolabeling. Uptake of Tc-99m-folate-GGCE at 1, 2, and 4 h after injection in KB tumor was 16.4, 23.2, and 17.6 % injected dose per gram (%ID/g), respectively. This uptake was suppressed by 97.4 % when excess free folate was co-administered. Tumor:normal organ ratios at 4 h for blood, liver, lung, muscle, and kidney were 54.3, 25.2, 38.3, 97.8, and 0.3, respectively. Tumor uptake of Re-188-folate-GGCE at 2, 4, 8, and 16 h after injection was 17.4, 21.7, 24.1, and 15.6 %ID/g, respectively. Tumor:normal organ ratios at 8 h for blood, liver, lung, muscle, and kidney were 126.8, 21.9, 54.8, 80.3, and 0.4, respectively. KB tumors were clearly visualized at a high intensity using serial scintigraphy and micro-SPECT/CT in mice injected with Tc-99m- or Re-188-folate-GGCE. The tumor uptake of these molecules was completely suppressed when excess free folate was co-administered. Isostructural Tc-99m- and Re-188-folate-GGCE showed high and FR-specific uptake by tumors and generally favorable tumor:normal organ ratios. The tumor targeting capabilities of Tc-99m- and Re-188-folate-GGCE were clearly evident on serial imaging studies. This isostructural pair may have potential diagnostic and theranostic applications for FR-positive tumors.
Target engagement imaging of PARP inhibitors in small-cell lung cancer.
Carney, Brandon; Kossatz, Susanne; Lok, Benjamin H; Schneeberger, Valentina; Gangangari, Kishore K; Pillarsetty, Naga Vara Kishore; Weber, Wolfgang A; Rudin, Charles M; Poirier, John T; Reiner, Thomas
2018-01-12
Insufficient chemotherapy response and rapid disease progression remain concerns for small-cell lung cancer (SCLC). Oncologists rely on serial CT scanning to guide treatment decisions, but this cannot assess in vivo target engagement of therapeutic agents. Biomarker assessments in biopsy material do not assess contemporaneous target expression, intratumoral drug exposure, or drug-target engagement. Here, we report the use of PARP1/2-targeted imaging to measure target engagement of PARP inhibitors in vivo. Using a panel of clinical PARP inhibitors, we show that PARP imaging can quantify target engagement of chemically diverse small molecule inhibitors in vitro and in vivo. We measure PARP1/2 inhibition over time to calculate effective doses for individual drugs. Using patient-derived xenografts, we demonstrate that different therapeutics achieve similar integrated inhibition efficiencies under different dosing regimens. This imaging approach to non-invasive, quantitative assessment of dynamic intratumoral target inhibition may improve patient care through real-time monitoring of drug delivery.
Lu, Y.; Aguirre, A.A.; Work, Thierry M.; Balazs, G.H.; Nerurkar, V.R.; Yanagihara, R.
2000-01-01
Serial cultivation of cell lines derived from lung, testis, periorbital and tumor tissues of a green turtle (Chelonia mydas) with fibropapillomas resulted in the in vitro formation of tumor-like cell aggregates, ranging in size from 0.5 to 2.0 mm in diameter. Successful induction of tumor-like aggregates was achieved in a cell line derived from lung tissue of healthy green turtles, following inoculation with cell-free media from these tumor-bearing cell lines, suggesting the presence of a transmissible agent. Thin-section electron microscopy of the cell aggregates revealed massive collagen deposits and intranuclear naked viral particles, measuring 5095 nm in diameter. These findings, together with the morphological similarity between these tumor-like cell aggregates and the naturally occurring tumor, suggest a possible association between this novel virus and the disease. Further characterization of this small naked virus will clarify its role in etiology of green turtle fibropapilloma, a life-threatening disease of this endangered marine species.
Nye, Russell T; Mercincavage, Melissa; Branstetter, Steven A
2017-08-01
How addiction severity relates to physical activity (PA), and if PA moderates the relation between PA and lung function among smokers, is unknown. This study explored the independent and interactive associations of nicotine addiction severity and PA with lung function. The study used cross-sectional data from 343 adult smokers aged 40 to 79 participating in the 2009-10 and 2011-12 National Health and Nutrition Examination Survey. Assessed were the independent relations of nicotine addiction severity, as measured by the time to first cigarette (TTFC), and average daily minutes of moderate and vigorous PA with lung function ratio (FEV1/FVC). Additional analysis examined whether PA moderated the relationship between addiction severity and lung function. Greater lung function was independently associated with moderate PA and later TTFC, but not vigorous PA, when controlling for cigarettes per day (CPD), past month smoking, ethnicity, years smoked, and gender (P-values < .05). PA did not moderate the association between addiction severity (TTFC) and lung function (P = .441). Among middle-aged to older smokers, increased PA and lower addiction severity were associated with greater lung function, independent of CPD. This may inform research into the protective role of PA and identification of risk factors for interventions.
Comprehensive outcomes after lung retransplantation: a single center review.
Halloran, Kieran; Aversa, Meghan; Tinckam, Kathryn; Martinu, Tereza; Binnie, Matthew; Chaparro, Cecilia; Chow, Chung-Wai; Waddell, Tom; McRae, Karen; Pierre, Andrew; de Perrot, Marc; Yasufuku, Kazuhiro; Cypel, Marcelo; Keshavjee, Shaf; Singer, Lianne G
2018-05-13
Lung retransplantation is an important therapy for a growing population of lung transplant recipients with graft failure, but detailed outcome data are lacking. We conducted a retrospective cohort study of adult lung retransplant in the Toronto Lung Transplant Program from 2001 to 2013 (n=38). We analyzed the post-operative course, graft function, renal function, microbiology, donor specific antibodies (DSA), quality of life and survival compared to a control cohort of primary transplant recipients matched for age and era. Indication for retransplant was chronic lung allograft dysfunction in most retransplant recipients (35/38, 82%). The post-operative course was more complex after retransplant than primary (ventilation time, 8 vs. 2 days, p<0.01; ICU stay 14 vs. 4 days, 0<0.01) and peak lung function was lower (FEV1 2.2L vs. 3L, p<0.01). Quality of life scores were comparable, as were renal function, microbiology and donor specific antibody formation. Median survival was 1988 days after primary and 1475 days after retransplant (p=0.39). Lung retransplantation is associated with a more complex post-operative course and lower peak lung function, but the long term medical profile is similar to primary transplant. Lung retransplantation can be beneficial for carefully selected candidates with allograft failure. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Vriens, Dennis; de Geus-Oei, Lioe-Fee; Oyen, Wim J G; Visser, Eric P
2009-12-01
For the quantification of dynamic (18)F-FDG PET studies, the arterial plasma time-activity concentration curve (APTAC) needs to be available. This can be obtained using serial sampling of arterial blood or an image-derived input function (IDIF). Arterial sampling is invasive and often not feasible in practice; IDIFs are biased because of partial-volume effects and cannot be used when no large arterial blood pool is in the field of view. We propose a mathematic function, consisting of an initial linear rising activity concentration followed by a triexponential decay, to describe the APTAC. This function was fitted to 80 oncologic patients and verified for 40 different oncologic patients by area-under-the-curve (AUC) comparison, Patlak glucose metabolic rate (MR(glc)) estimation, and therapy response monitoring (Delta MR(glc)). The proposed function was compared with the gold standard (serial arterial sampling) and the IDIF. To determine the free parameters of the function, plasma time-activity curves based on arterial samples in 80 patients were fitted after normalization for administered activity (AA) and initial distribution volume (iDV) of (18)F-FDG. The medians of these free parameters were used for the model. In 40 other patients (20 baseline and 20 follow-up dynamic (18)F-FDG PET scans), this model was validated. The population-based curve, individually calibrated by AA and iDV (APTAC(AA/iDV)), by 1 late arterial sample (APTAC(1 sample)), and by the individual IDIF (APTAC(IDIF)), was compared with the gold standard of serial arterial sampling (APTAC(sampled)) using the AUC. Additionally, these 3 methods of APTAC determination were evaluated with Patlak MR(glc) estimation and with Delta MR(glc) for therapy effects using serial sampling as the gold standard. Excellent individual fits to the function were derived with significantly different decay constants (P < 0.001). Correlations between AUC from APTAC(AA/iDV), APTAC(1 sample), and APTAC(IDIF) with the gold standard (APTAC(sampled)) were 0.880, 0.994, and 0.856, respectively. For MR(glc), these correlations were 0.963, 0.994, and 0.966, respectively. In response monitoring, these correlations were 0.947, 0.982, and 0.949, respectively. Additional scaling by 1 late arterial sample showed a significant improvement (P < 0.001). The fitted input function calibrated for AA and iDV performed similarly to IDIF. Performance improved significantly using 1 late arterial sample. The proposed model can be used when an IDIF is not available or when serial arterial sampling is not feasible.
2014-01-01
Background The pattern and factors influencing the lung function recovery in the first postoperative days are still not fully elucidated, especially in patients at increased risk. Methods Prospective study on 60 patients at increased risk, who underwent a lung resection for primary lung cancer. Inclusion criteria: complete resection and one or more known risk factors in form of COPD, cardiovascular disorders, advanced age or other comorbidities. Previous myocardial infarction, myocardial revascularization or stenting, cardiac rhythm disorders, arterial hypertension and myocardiopathy determined the increased cardiac risk. The severity of COPD was graded according to GOLD criteria. The trend of the postoperative lung function recovery was assessed by performing spirometry with a portable spirometer. Results Cardiac comorbidity existed in 55%, mild and moderate COPD in 20% and 35% of patients respectively. Measured values of FVC% and FEV1% on postoperative days one, three and seven, showed continuous improvement, with significant difference between the days of measurement, especially between days three and seven. There was no difference in the trend of the lung function recovery between patients with and without postoperative complications. Whilst pO2 was decreasing during the first three days in a roughly parallel fashion in patients with respiratory, surgical complications and in patients without complications, a slight hypercapnia registered on the first postoperative day was gradually abolished in all groups except in patients with cardiac complications. Conclusion Extent of the lung resection and postoperative complications do not significantly influence the trend of the lung function recovery after lung resection for lung cancer. PMID:24884793
Ercegovac, Maja; Subotic, Dragan; Zugic, Vladimir; Jakovic, Radoslav; Moskovljevic, Dejan; Bascarevic, Slavisa; Mujovic, Natasa
2014-05-19
The pattern and factors influencing the lung function recovery in the first postoperative days are still not fully elucidated, especially in patients at increased risk. Prospective study on 60 patients at increased risk, who underwent a lung resection for primary lung cancer. complete resection and one or more known risk factors in form of COPD, cardiovascular disorders, advanced age or other comorbidities. Previous myocardial infarction, myocardial revascularization or stenting, cardiac rhythm disorders, arterial hypertension and myocardiopathy determined the increased cardiac risk. The severity of COPD was graded according to GOLD criteria. The trend of the postoperative lung function recovery was assessed by performing spirometry with a portable spirometer. Cardiac comorbidity existed in 55%, mild and moderate COPD in 20% and 35% of patients respectively. Measured values of FVC% and FEV1% on postoperative days one, three and seven, showed continuous improvement, with significant difference between the days of measurement, especially between days three and seven. There was no difference in the trend of the lung function recovery between patients with and without postoperative complications. Whilst pO2 was decreasing during the first three days in a roughly parallel fashion in patients with respiratory, surgical complications and in patients without complications, a slight hypercapnia registered on the first postoperative day was gradually abolished in all groups except in patients with cardiac complications. Extent of the lung resection and postoperative complications do not significantly influence the trend of the lung function recovery after lung resection for lung cancer.
Effects of cannabis on lung function: a population-based cohort study.
Hancox, R J; Poulton, R; Ely, M; Welch, D; Taylor, D R; McLachlan, C R; Greene, J M; Moffitt, T E; Caspi, A; Sears, M R
2010-01-01
The effects of cannabis on lung function remain unclear and may be different from those of tobacco. We compared the associations between use of these substances and lung function in a population-based cohort (n = 1,037). Cannabis and tobacco use were reported at ages 18, 21, 26 and 32 yrs. Spirometry, plethysmography and carbon monoxide transfer factor were measured at 32 yrs. Associations between lung function and exposure to each substance were adjusted for exposure to the other substance. Cumulative cannabis use was associated with higher forced vital capacity, total lung capacity, functional residual capacity and residual volume. Cannabis was also associated with higher airway resistance but not with forced expiratory volume in 1 s, forced expiratory ratio or transfer factor. These findings were similar among those who did not smoke tobacco. In contrast, tobacco use was associated with lower forced expiratory volume in 1 s, lower forced expiratory ratio, lower transfer factor and higher static lung volumes, but not with airway resistance. Cannabis appears to have different effects on lung function from those of tobacco. Cannabis use was associated with higher lung volumes, suggesting hyperinflation and increased large-airways resistance, but there was little evidence for airflow obstruction or impairment of gas transfer.
Mechanobiology in Lung Epithelial Cells: Measurements, Perturbations, and Responses
Waters, Christopher M.; Roan, Esra; Navajas, Daniel
2015-01-01
Epithelial cells of the lung are located at the interface between the environment and the organism and serve many important functions including barrier protection, fluid balance, clearance of particulate, initiation of immune responses, mucus and surfactant production, and repair following injury. Because of the complex structure of the lung and its cyclic deformation during the respiratory cycle, epithelial cells are exposed to continuously varying levels of mechanical stresses. While normal lung function is maintained under these conditions, changes in mechanical stresses can have profound effects on the function of epithelial cells and therefore the function of the organ. In this review, we will describe the types of stresses and strains in the lungs, how these are transmitted, and how these may vary in human disease or animal models. Many approaches have been developed to better understand how cells sense and respond to mechanical stresses, and we will discuss these approaches and how they have been used to study lung epithelial cells in culture. Understanding how cells sense and respond to changes in mechanical stresses will contribute to our understanding of the role of lung epithelial cells during normal function and development and how their function may change in diseases such as acute lung injury, asthma, emphysema, and fibrosis. PMID:23728969
Lung function not affected by asbestos exposure in workers with normal Computed Tomography scan.
Schikowsky, Christian; Felten, Michael K; Eisenhawer, Christian; Das, Marco; Kraus, Thomas
2017-05-01
It has been suggested that asbestos exposure affects lung function, even in the absence of asbestos-related pulmonary interstitial or pleural changes or emphysema. We analyzed associations between well-known asbestos-related risk factors, such as individual cumulative asbestos exposure, and key lung function parameters in formerly asbestos-exposed power industry workers (N = 207) with normal CT scans. For this, we excluded participants with emphysema, fibrosis, pleural changes, or any combination of these. The lung function parameters of FVC, FEV1, DLCO/VA, and airway resistance were significantly associated with the burden of smoking, BMI and years since end of exposure (only DLCO/VA). However, they were not affected by factors directly related to amount (eg, cumulative exposure) or duration of asbestos exposure. Our results confirm the well-known correlation between lung function, smoking habits, and BMI. However, we found no significant association between lung function and asbestos exposure. © 2017 Wiley Periodicals, Inc.
Tawhai, M. H.; Clark, A. R.; Donovan, G. M.; Burrowes, K. S.
2011-01-01
Computational models of lung structure and function necessarily span multiple spatial and temporal scales, i.e., dynamic molecular interactions give rise to whole organ function, and the link between these scales cannot be fully understood if only molecular or organ-level function is considered. Here, we review progress in constructing multiscale finite element models of lung structure and function that are aimed at providing a computational framework for bridging the spatial scales from molecular to whole organ. These include structural models of the intact lung, embedded models of the pulmonary airways that couple to model lung tissue, and models of the pulmonary vasculature that account for distinct structural differences at the extra- and intra-acinar levels. Biophysically based functional models for tissue deformation, pulmonary blood flow, and airway bronchoconstriction are also described. The development of these advanced multiscale models has led to a better understanding of complex physiological mechanisms that govern regional lung perfusion and emergent heterogeneity during bronchoconstriction. PMID:22011236
Danielsbacka, Jenny S; Olsén, Monika Fagevik; Hansson, Per-Olof; Mannerkorpi, Kaisa
2018-03-01
Acute pulmonary embolism (PE) is a cardiovascular disease with symptoms including respiratory associated chest pain (RACP) and dyspnea. No previous studies exist focusing on lung function, functional capacity, and respiratory symptoms at discharge after PE. The aim was to examine and describe lung function, functional capacity, and respiratory symptoms at discharge in patients with PE and compare to reference values. Fifty consecutive patients with PE admitted to the Acute Medical Unit, Sahlgrenska University Hospital, were included. Size of PE was calculated by Qanadli score (QS) percentage (mean QS 33.4% (17.6)). FVC and FEV 1 were registered and 6-minute walk test (6MWT) performed at the day of discharge. RACP was rated before and after spirometry/6MWT with the Visual Analogue Scale. Perceived exertion was rated with Borg CR-10 scale. Spirometry and 6MWT results were compared with reference values. This study shows that patients with PE have significantly reduced lung function (p < 0.05) and functional capacity (p < 0.001) at discharge compared with reference values. Patients with higher QS percentage were more dyspneic after 6MWT, no other significant differences in lung function or functional capacity were found between the groups. The patients still suffer from RACP (30%) and dyspnea (60%) at discharge. This study indicates that patients with PE have a reduced lung function, reduced functional capacity, and experience respiratory symptoms as pain and dyspnea at discharge. Further studies are needed concerning long-term follow-up of lung function, functional capacity, and symptoms after PE.
Infection, inflammation, and lung function decline in infants with cystic fibrosis.
Pillarisetti, Naveen; Williamson, Elizabeth; Linnane, Barry; Skoric, Billy; Robertson, Colin F; Robinson, Phil; Massie, John; Hall, Graham L; Sly, Peter; Stick, Stephen; Ranganathan, Sarath
2011-07-01
Better understanding of evolution of lung function in infants with cystic fibrosis (CF) and its association with pulmonary inflammation and infection is crucial in informing both early intervention studies aimed at limiting lung damage and the role of lung function as outcomes in such studies. To describe longitudinal change in lung function in infants with CF and its association with pulmonary infection and inflammation. Infants diagnosed after newborn screening or clinical presentation were recruited prospectively. FVC, forced expiratory volume in 0.5 seconds (FEV(0.5)), and forced expiratory flows at 75% of exhaled vital capacity (FEF(75)) were measured using the raised-volume technique, and z-scores were calculated from published reference equations. Pulmonary infection and inflammation were measured in bronchoalveolar lavage within 48 hours of lung function testing. Thirty-seven infants had at least two successful repeat lung function measurements. Mean (SD) z-scores for FVC were -0.8 (1.0), -0.9 (1.1), and -1.7 (1.2) when measured at the first visit, 1-year visit, or 2-year visit, respectively. Mean (SD) z-scores for FEV(0.5) were -1.4 (1.2), -2.4 (1.1), and -4.3 (1.6), respectively. In those infants in whom free neutrophil elastase was detected, FVC z-scores were 0.81 lower (P=0.003), and FEV(0.5) z-scores 0.96 lower (P=0.001), respectively. Significantly greater decline in FEV(0.5) z-scores occurred in those infected with Staphylococcus aureus (P=0.018) or Pseudomonas aeruginosa (P=0.021). In infants with CF, pulmonary inflammation is associated with lower lung function, whereas pulmonary infection is associated with a greater rate of decline in lung function. Strategies targeting pulmonary inflammation and infection are required to prevent early decline in lung function in infants with CF.
NFE2L2 pathway polymorphisms and lung function decline in chronic obstructive pulmonary disease
Malhotra, Deepti; Boezen, H. Marike; Siedlinski, Mateusz; Postma, Dirkje S.; Wong, Vivien; Akhabir, Loubna; He, Jian-Qing; Connett, John E.; Anthonisen, Nicholas R.; Paré, Peter D.; Biswal, Shyam
2012-01-01
An oxidant-antioxidant imbalance in the lung contributes to the development of chronic obstructive pulmonary disease (COPD) that is caused by a complex interaction of genetic and environmental risk factors. Nuclear erythroid 2-related factor 2 (NFE2L2 or NRF2) is a critical molecule in the lung's defense mechanism against oxidants. We investigated whether polymorphisms in the NFE2L2 pathway affected the rate of decline of lung function in smokers from the Lung Health Study (LHS)(n = 547) and in a replication set, the Vlagtwedde-Vlaardingen cohort (n = 533). We selected polymorphisms in NFE2L2 in genes that positively or negatively regulate NFE2L2 transcriptional activity and in genes that are regulated by NFE2L2. Polymorphisms in 11 genes were significantly associated with rate of lung function decline in the LHS. One of these polymorphisms, rs11085735 in the KEAP1 gene, was previously shown to be associated with the level of lung function in the Vlagtwedde-Vlaardingen cohort but not with decline of lung function. Of the 23 associated polymorphisms in the LHS, only rs634534 in the FOSL1 gene showed a significant association in the Vlagtwedde-Vlaardingen cohort with rate of lung function decline, but the direction of the association was not consistent with that in the LHS. In summary, despite finding several nominally significant polymorphisms in the LHS, none of these associations were replicated in the Vlagtwedde-Vlaardingen cohort, indicating lack of effect of polymorphisms in the NFE2L2 pathway on the rate of decline of lung function. PMID:22693272
NFE2L2 pathway polymorphisms and lung function decline in chronic obstructive pulmonary disease.
Sandford, Andrew J; Malhotra, Deepti; Boezen, H Marike; Siedlinski, Mateusz; Postma, Dirkje S; Wong, Vivien; Akhabir, Loubna; He, Jian-Qing; Connett, John E; Anthonisen, Nicholas R; Paré, Peter D; Biswal, Shyam
2012-08-01
An oxidant-antioxidant imbalance in the lung contributes to the development of chronic obstructive pulmonary disease (COPD) that is caused by a complex interaction of genetic and environmental risk factors. Nuclear erythroid 2-related factor 2 (NFE2L2 or NRF2) is a critical molecule in the lung's defense mechanism against oxidants. We investigated whether polymorphisms in the NFE2L2 pathway affected the rate of decline of lung function in smokers from the Lung Health Study (LHS)(n = 547) and in a replication set, the Vlagtwedde-Vlaardingen cohort (n = 533). We selected polymorphisms in NFE2L2 in genes that positively or negatively regulate NFE2L2 transcriptional activity and in genes that are regulated by NFE2L2. Polymorphisms in 11 genes were significantly associated with rate of lung function decline in the LHS. One of these polymorphisms, rs11085735 in the KEAP1 gene, was previously shown to be associated with the level of lung function in the Vlagtwedde-Vlaardingen cohort but not with decline of lung function. Of the 23 associated polymorphisms in the LHS, only rs634534 in the FOSL1 gene showed a significant association in the Vlagtwedde-Vlaardingen cohort with rate of lung function decline, but the direction of the association was not consistent with that in the LHS. In summary, despite finding several nominally significant polymorphisms in the LHS, none of these associations were replicated in the Vlagtwedde-Vlaardingen cohort, indicating lack of effect of polymorphisms in the NFE2L2 pathway on the rate of decline of lung function.
Cvijetić, Selma; Pipinić, Ivana Sabolić; Varnai, Veda Maria; Macan, Jelena
2017-03-01
Low bone mineral density has been reported in paediatric and adult patients with different lung diseases, but limited data are available on the association between lung function and bone density in a healthy young population. We explored the predictors of association between bone mass and pulmonary function in healthy first-year university students, focusing on body mass index (BMI). In this cross-sectional study we measured bone density with ultrasound and lung function with spirometry in 370 university students (271 girls and 99 boys). Information on lifestyle habits, such as physical activity, smoking, and alcohol consumption were obtained with a questionnaire. All lung function and bone parameters were significantly higher in boys than in girls (P<0.001). Underweight students had a significantly lower forced vital capacity (FVC%) (P=0.001 girls; P=0.012 boys), while overweight students had a significantly higher FVC% than normal weight students (P=0.024 girls; P=0.001 boys). BMI significantly correlated with FVC% (P=0.001) and forced expiratory volume in 1 second (FEV1 %) in both genders (P=0.001 girls; P=0.018 boys) and with broadband ultrasound attenuation (BUA) in boys. There were no significant associations between any of the bone and lung function parameters either in boys or girls. The most important determinant of lung function and ultrasound bone parameters in our study population was body mass index, with no direct association between bone density and lung function.
Lower lung function associates with cessation of menstruation: UK Biobank data.
Amaral, André F S; Strachan, David P; Gómez Real, Francisco; Burney, Peter G J; Jarvis, Deborah L
2016-11-01
Little is known about the effect of cessation of menstruation on lung function. The aims of the study were to examine the association of lung function with natural and surgical cessation of menstruation, and assess whether lower lung function is associated with earlier age at cessation of menstruation.The study was performed in 141 076 women from the UK Biobank, who had provided acceptable and reproducible spirometry measurements and information on menstrual status. The associations of lung function (forced vital capacity (FVC), forced expiratory volume in 1 s (FEV 1 ), spirometric restriction (FVC < lower limit of normal (LLN)), airflow obstruction (FEV 1 /FVC
Hayes, Don; Naguib, Aymen; Kirkby, Stephen; Galantowicz, Mark; McConnell, Patrick I; Baker, Peter B; Kopp, Benjamin T; Lloyd, Eric A; Astor, Todd L
2014-05-01
Limited data exist on methods to evaluate allograft function in infant recipients of lung and heart-lung transplants. At our institution, we developed a procedural protocol in coordination with pediatric anesthesia where infants were sedated to perform infant pulmonary function testing, computed tomography imaging of the chest, and flexible fiberoptic bronchoscopy with transbronchial biopsies. A retrospective review was performed of children aged younger than 1 year who underwent lung or heart-lung transplantation at our institution to assess the effect of this procedural protocol in the evaluation of infant lung allografts. Since 2005, 5 infants have undergone thoracic transplantation (3 heart-lung, 2 lung). At time of transplant, the mean ± standard deviation age was 7.2 ± 2.8 months (range, 3-11 months). Of 24 procedural sessions performed to evaluate lung allografts, 83% (20 of 24) were considered surveillance where the patients were completely asymptomatic. Of the surveillance procedures, 80% were performed as an outpatient, whereas 20% were done as inpatients during the lung or heart-lung transplant post-operative period before discharge home. Sedation was performed with propofol alone (23 of 24) or in addition to ketamine (1 of 24) infusion; mean sedation time was 141 ± 39 minutes (range, 70-214) minutes. Of the 16 outpatient procedures, patients were discharged after 14 (88%) on the same day, and after 2 (12%) were admitted for observation, with 1 being due to transportation issues and the other due to fever during the observation period. A comprehensive procedural protocol to evaluate allograft function in infant lung and heart-lung transplant recipients was performed safely as an outpatient. Copyright © 2014 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Saint-Aubin, Jean; Tremblay, Sébastien; Jalbert, Annie
2007-01-01
This research investigated the nature of encoding and its contribution to serial recall for visual-spatial information. In order to do so, we examined the relationship between fixation duration and recall performance. Using the dot task--a series of seven dots spatially distributed on a monitor screen is presented sequentially for immediate recall--performance and eye-tracking data were recorded during the presentation of the to-be-remembered items. When participants were free to move their eyes at their will, both fixation durations and probability of correct recall decreased as a function of serial position. Furthermore, imposing constant durations of fixation across all serial positions had a beneficial impact (though relatively small) on item but not order recall. Great care was taken to isolate the effect of fixation duration from that of presentation duration. Although eye movement at encoding contributes to immediate memory, it is not decisive in shaping serial recall performance. Our results also provide further evidence that the distinction between item and order information, well-established in the verbal domain, extends to visual-spatial information.
What serial homologs can tell us about the origin of insect wings
2017-01-01
Although the insect wing is a textbook example of morphological novelty, the origin of insect wings remains a mystery and is regarded as a chief conundrum in biology. Centuries of debates have culminated into two prominent hypotheses: the tergal origin hypothesis and the pleural origin hypothesis. However, between these two hypotheses, there is little consensus in regard to the origin tissue of the wing as well as the evolutionary route from the origin tissue to the functional flight device. Recent evolutionary developmental (evo-devo) studies have shed new light on the origin of insect wings. A key concept in these studies is “serial homology”. In this review, we discuss how the wing serial homologs identified in recent evo-devo studies have provided a new angle through which this century-old conundrum can be explored. We also review what we have learned so far from wing serial homologs and discuss what we can do to go beyond simply identifying wing serial homologs and delve further into the developmental and genetic mechanisms that have facilitated the evolution of insect wings. PMID:28357056
Stochastic modeling of a serial killer
Simkin, M.V.; Roychowdhury, V.P.
2014-01-01
We analyze the time pattern of the activity of a serial killer, who during twelve years had murdered 53 people. The plot of the cumulative number of murders as a function of time is of “Devil’s staircase” type. The distribution of the intervals between murders (step length) follows a power law with the exponent of 1.4. We propose a model according to which the serial killer commits murders when neuronal excitation in his brain exceeds certain threshold. We model this neural activity as a branching process, which in turn is approximated by a random walk. As the distribution of the random walk return times is a power law with the exponent 1.5, the distribution of the inter-murder intervals is thus explained. We illustrate analytical results by numerical simulation. Time pattern activity data from two other serial killers further substantiate our analysis. PMID:24721476
Stochastic modeling of a serial killer.
Simkin, M V; Roychowdhury, V P
2014-08-21
We analyze the time pattern of the activity of a serial killer, who during 12 years had murdered 53 people. The plot of the cumulative number of murders as a function of time is of "Devil's staircase" type. The distribution of the intervals between murders (step length) follows a power law with the exponent of 1.4. We propose a model according to which the serial killer commits murders when neuronal excitation in his brain exceeds certain threshold. We model this neural activity as a branching process, which in turn is approximated by a random walk. As the distribution of the random walk return times is a power law with the exponent 1.5, the distribution of the inter-murder intervals is thus explained. We illustrate analytical results by numerical simulation. Time pattern activity data from two other serial killers further substantiate our analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Karatekin, C; Asarnow, R F
1998-10-01
This study tested the hypotheses that visual search impairments in schizophrenia are due to a delay in initiation of search or a slow rate of serial search. We determined the specificity of these impairments by comparing children with schizophrenia to children with attention-deficit hyperactivity disorder (ADHD) and age-matched normal children. The hypotheses were tested within the framework of feature integration theory by administering children tasks tapping parallel and serial search. Search rate was estimated from the slope of the search functions, and duration of the initial stages of search from time to make the first saccade on each trial. As expected, manual response times were elevated in both clinical groups. Contrary to expectation, ADHD, but not schizophrenic, children were delayed in initiation of serial search. Finally, both groups showed a clear dissociation between intact parallel search rates and slowed serial search rates.
Lee, Kiju; Wang, Yunfeng; Chirikjian, Gregory S.
2010-01-01
Over the past several decades a number of O(n) methods for forward and inverse dynamics computations have been developed in the multi-body dynamics and robotics literature. A method was developed in 1974 by Fixman for O(n) computation of the mass-matrix determinant for a serial polymer chain consisting of point masses. In other recent papers, we extended this method in order to compute the inverse of the mass matrix for serial chains consisting of point masses. In the present paper, we extend these ideas further and address the case of serial chains composed of rigid-bodies. This requires the use of relatively deep mathematics associated with the rotation group, SO(3), and the special Euclidean group, SE(3), and specifically, it requires that one differentiates functions of Lie-group-valued argument. PMID:20165563
Experimental evidence of age-related adaptive changes in human acinar airways
Quirk, James D.; Sukstanskii, Alexander L.; Woods, Jason C.; Lutey, Barbara A.; Conradi, Mark S.; Gierada, David S.; Yusen, Roger D.; Castro, Mario
2015-01-01
The progressive decline of lung function with aging is associated with changes in lung structure at all levels, from conducting airways to acinar airways (alveolar ducts and sacs). While information on conducting airways is becoming available from computed tomography, in vivo information on the acinar airways is not conventionally available, even though acini occupy 95% of lung volume and serve as major gas exchange units of the lung. The objectives of this study are to measure morphometric parameters of lung acinar airways in living adult humans over a broad range of ages by using an innovative MRI-based technique, in vivo lung morphometry with hyperpolarized 3He gas, and to determine the influence of age-related differences in acinar airway morphometry on lung function. Pulmonary function tests and MRI with hyperpolarized 3He gas were performed on 24 healthy nonsmokers aged 19-71 years. The most significant age-related difference across this population was a 27% loss of alveolar depth, h, leading to a 46% increased acinar airway lumen radius, hence, decreased resistance to acinar air transport. Importantly, the data show a negative correlation between h and the pulmonary function measures forced expiratory volume in 1 s and forced vital capacity. In vivo lung morphometry provides unique information on age-related changes in lung microstructure and their influence on lung function. We hypothesize that the observed reduction of alveolar depth in subjects with advanced aging represents a remodeling process that might be a compensatory mechanism, without which the pulmonary functional decline due to other biological factors with advancing age would be significantly larger. PMID:26542518
Microbial colonization and lung function in adolescents with cystic fibrosis.
Hector, Andreas; Kirn, Tobias; Ralhan, Anjali; Graepler-Mainka, Ute; Berenbrinker, Sina; Riethmueller, Joachim; Hogardt, Michael; Wagner, Marlies; Pfleger, Andreas; Autenrieth, Ingo; Kappler, Matthias; Griese, Matthias; Eber, Ernst; Martus, Peter; Hartl, Dominik
2016-05-01
With intensified antibiotic therapy and longer survival, patients with cystic fibrosis (CF) are colonized with a more complex pattern of bacteria and fungi. However, the clinical relevance of these emerging pathogens for lung function remains poorly defined. The aim of this study was to assess the association of bacterial and fungal colonization patterns with lung function in adolescent patients with CF. Microbial colonization patterns and lung function parameters were assessed in 770 adolescent European (German/Austrian) CF patients in a retrospective study (median follow-up time: 10years). Colonization with Pseudomonas aeruginosa and MRSA were most strongly associated with loss of lung function, while mainly colonization with Haemophilus influenzae was associated with preserved lung function. Aspergillus fumigatus was the only species that was associated with an increased risk for infection with P. aeruginosa. Microbial interaction analysis revealed three distinct microbial clusters within the longitudinal course of CF lung disease. Collectively, this study identified potentially protective and harmful microbial colonization patterns in adolescent CF patients. Further studies in different patient cohorts are required to evaluate these microbial patterns and to assess their clinical relevance. Copyright © 2016 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
Patterns of Growth and Decline in Lung Function in Persistent Childhood Asthma.
McGeachie, M J; Yates, K P; Zhou, X; Guo, F; Sternberg, A L; Van Natta, M L; Wise, R A; Szefler, S J; Sharma, S; Kho, A T; Cho, M H; Croteau-Chonka, D C; Castaldi, P J; Jain, G; Sanyal, A; Zhan, Y; Lajoie, B R; Dekker, J; Stamatoyannopoulos, J; Covar, R A; Zeiger, R S; Adkinson, N F; Williams, P V; Kelly, H W; Grasemann, H; Vonk, J M; Koppelman, G H; Postma, D S; Raby, B A; Houston, I; Lu, Q; Fuhlbrigge, A L; Tantisira, K G; Silverman, E K; Tonascia, J; Weiss, S T; Strunk, R C
2016-05-12
Tracking longitudinal measurements of growth and decline in lung function in patients with persistent childhood asthma may reveal links between asthma and subsequent chronic airflow obstruction. We classified children with asthma according to four characteristic patterns of lung-function growth and decline on the basis of graphs showing forced expiratory volume in 1 second (FEV1), representing spirometric measurements performed from childhood into adulthood. Risk factors associated with abnormal patterns were also examined. To define normal values, we used FEV1 values from participants in the National Health and Nutrition Examination Survey who did not have asthma. Of the 684 study participants, 170 (25%) had a normal pattern of lung-function growth without early decline, and 514 (75%) had abnormal patterns: 176 (26%) had reduced growth and an early decline, 160 (23%) had reduced growth only, and 178 (26%) had normal growth and an early decline. Lower baseline values for FEV1, smaller bronchodilator response, airway hyperresponsiveness at baseline, and male sex were associated with reduced growth (P<0.001 for all comparisons). At the last spirometric measurement (mean [±SD] age, 26.0±1.8 years), 73 participants (11%) met Global Initiative for Chronic Obstructive Lung Disease spirometric criteria for lung-function impairment that was consistent with chronic obstructive pulmonary disease (COPD); these participants were more likely to have a reduced pattern of growth than a normal pattern (18% vs. 3%, P<0.001). Childhood impairment of lung function and male sex were the most significant predictors of abnormal longitudinal patterns of lung-function growth and decline. Children with persistent asthma and reduced growth of lung function are at increased risk for fixed airflow obstruction and possibly COPD in early adulthood. (Funded by the Parker B. Francis Foundation and others; ClinicalTrials.gov number, NCT00000575.).
Aspergillus fumigatus colonization in cystic fibrosis: implications for lung function?
de Vrankrijker, A M M; van der Ent, C K; van Berkhout, F T; Stellato, R K; Willems, R J L; Bonten, M J M; Wolfs, T F W
2011-09-01
Aspergillus fumigatus is commonly found in the respiratory secretions of patients with cystic fibrosis (CF). Although allergic bronchopulmonary aspergillosis (ABPA) is associated with deterioration of lung function, the effects of A. fumigatus colonization on lung function in the absence of ABPA are not clear. This study was performed in 259 adults and children with CF, without ABPA. A. fumigatus colonization was defined as positivity of >50% of respiratory cultures in a given year. A cross-sectional analysis was performed to study clinical characteristics associated with A. fumigatus colonization. A retrospective cohort analysis was performed to study the effect of A. fumigatus colonization on lung function observed between 2002 and 2007. Longitudinal data were analysed with a linear mixed model. Sixty-one of 259 patients were at least intermittently colonized with A. fumigatus. An association was found between A. fumigatus colonization and increased age and use of inhaled antibiotics. In the longitudinal analysis, 163 patients were grouped according to duration of colonization. After adjustment for confounders, there was no significant difference in lung function between patients colonized for 0 or 1 year and patients with 2-3 or more than 3 years of colonization (p 0.40 and p 0.64) throughout the study. There was no significant difference in lung function decline between groups. Although colonization with A. fumigatus is more commonly found in patients with more severe lung disease and increased treatment burden, it is not independently associated with lower lung function or more severe lung function decline over a 5-year period. © 2010 The Authors. Clinical Microbiology and Infection © 2010 European Society of Clinical Microbiology and Infectious Diseases.
FIB-SEM imaging of carbon nanotubes in mouse lung tissue.
Købler, Carsten; Saber, Anne Thoustrup; Jacobsen, Nicklas Raun; Wallin, Håkan; Vogel, Ulla; Qvortrup, Klaus; Mølhave, Kristian
2014-06-01
Ultrastructural characterisation is important for understanding carbon nanotube (CNT) toxicity and how the CNTs interact with cells and tissues. The standard method for this involves using transmission electron microscopy (TEM). However, in particular, the sample preparation, using a microtome to cut thin sample sections for TEM, can be challenging for investigation of regions with agglomerations of large and stiff CNTs because the CNTs cut with difficulty. As a consequence, the sectioning diamond knife may be damaged and the uncut CNTs are left protruding from the embedded block surface excluding them from TEM analysis. To provide an alternative to ultramicrotomy and subsequent TEM imaging, we studied focused ion beam scanning electron microscopy (FIB-SEM) of CNTs in the lungs of mice, and we evaluated the applicability of the method compared to TEM. FIB-SEM can provide serial section volume imaging not easily obtained with TEM, but it is time-consuming to locate CNTs in the tissue. We demonstrate that protruding CNTs after ultramicrotomy can be used to locate the region of interest, and we present FIB-SEM images of CNTs in lung tissue. FIB-SEM imaging was applied to lung tissue from mice which had been intratracheally instilled with two different multiwalled CNTs; one being short and thin, and the other longer and thicker. FIB-SEM was found to be most suitable for detection of the large CNTs (Ø ca. 70 nm), and to be well suited for studying CNT agglomerates in biological samples which is challenging using standard TEM techniques.
Lung cancer in Yorkshire chrome platers, 1972-97.
Sorahan, T; Harrington, J M
2000-06-01
To investigate mortality from lung cancer in chrome platers, a group exposed to chromic acid. The mortality of a cohort of 1087 chrome platers (920 men, 167 women) from 54 plants situated in the West Riding of Yorkshire, United Kingdom, was investigated for the period 1972-97. All subjects were employed as chrome platers for >/=3 months and all were alive on 31 May 1972. Mortality data were also available for a cohort of 1163 comparison workers with no known occupational exposure to chrome compounds (989 men, 174 women). Information on duration of chrome work and smoking habits collected for a cross sectional survey carried out in 1969-72 were available for 916 (84.3%) of the chrome platers; smoking habits were available for 1004 (86.3%) comparison workers. Two analytical approaches were used, indirect standardisation and Poisson regression. Based on serial mortality rates for the general population of England and Wales, significantly increased mortality from lung cancer was observed (obs) in male chrome platers (obs 60, expected (exp) 32.5, standardised mortality ratio (SMR) 185, p<0. 001) but not in male comparison workers (obs 47, exp 36.9, SMR 127). Positive trends were not shown for duration of employment exposed to chrome, although data on working after 1972 were not available. Confident interpretation is not possible but occupational exposures to hexavalent chromium may well have been involved in the increased mortality from lung cancer found in this cohort of chrome platers.
The motivation behind serial sexual homicide: is it sex, power, and control, or anger?
Myers, Wade C; Husted, David S; Safarik, Mark E; O'Toole, Mary Ellen
2006-07-01
Controversy exists in the literature and society regarding what motivates serial sexual killers to commit their crimes. Hypotheses range from the seeking of sexual gratification to the achievement of power and control to the expression of anger. The authors provide theoretical, empirical, evolutionary, and physiological support for the argument that serial sexual murderers above all commit their crimes in pursuit of sadistic pleasure. The seeking of power and control over victims is believed to serve the two secondary purposes of heightening sexual arousal and ensuring victim presence for the crime. Anger is not considered a key component of these offenders' motivation due to its inhibitory physiological effect on sexual functioning. On the contrary, criminal investigations into serial sexual killings consistently reveal erotically charged crimes, with sexual motivation expressed either overtly or symbolically. Although anger may be correlated with serial sexual homicide offenders, as it is with criminal offenders in general, it is not causative. The authors further believe serial sexual murderers should be considered sex offenders. A significant proportion of them appear to have paraphilic disorders within the spectrum of sexual sadism. "sexual sadism, homicidal type" is proposed as a diagnostic subtype of sexual sadism applicable to many of these offenders, and a suggested modification of DSM criteria is presented.
Wall, M A; Olson, D; Bonn, B A; Creelman, T; Buist, A S
1982-02-01
Reference standards of lung function was determined in 176 healthy North American Indian children (94 girls, 82 boys) 7 to 18 yr of age. Spirometry, maximal expiratory flow volume curves, and peak expiratory flow rate were measured using techniques and equipment recommended by the American Thoracic Society. Standing height was found to be an accurate predictor of lung function, and prediction equations for each lung function variable are presented using standing height as the independent variable. Lung volumes and expiratory flow rates in North American Indian children were similar to those previously reported for white and Mexican-American children but were greater than those in black children. In both boys and girls, lung function increased in a curvilinear fashion. Volume-adjusted maximal expiratory flow rates after expiring 50 or 75% of FVC tended to decrease in both sexes as age and height increased. Our maximal expiratory flow volume curve data suggest that as North American Indian children grow, lung volume increases at a slightly faster rate than airway size does.
Physiologic Basis for Improved Pulmonary Function after Lung Volume Reduction
Fessler, Henry E.; Scharf, Steven M.; Ingenito, Edward P.; McKenna, Robert J.; Sharafkhaneh, Amir
2008-01-01
It is not readily apparent how pulmonary function could be improved by resecting portions of the lung in patients with emphysema. In emphysema, elevation in residual volume relative to total lung capacity reduces forced expiratory volumes, increases inspiratory effort, and impairs inspiratory muscle mechanics. Lung volume reduction surgery (LVRS) better matches the size of the lungs to the size of the thorax containing them. This restores forced expiratory volumes and the mechanical advantage of the inspiratory muscles. In patients with heterogeneous emphysema, LVRS may also allow space occupied by cysts to be reclaimed by more normal lung. Newer, bronchoscopic methods for lung volume reduction seek to achieve similar ends by causing localized atelectasis, but may be hindered by the low collateral resistance of emphysematous lung. Understanding of the mechanisms of improved function after LVRS can help select patients more likely to benefit from this approach. PMID:18453348
Effects of Body Mass Index on Lung Function Index of Chinese Population
NASA Astrophysics Data System (ADS)
Guo, Qiao; Ye, Jun; Yang, Jian; Zhu, Changan; Sheng, Lei; Zhang, Yongliang
2018-01-01
To study the effect of body mass index (BMI) on lung function indexes in Chinese population. A cross-sectional study was performed on 10, 592 participants. The linear relationship between lung function and BMI was evaluated by multivariate linear regression analysis, and the correlation between BMI and lung function was assessed by Pearson correlation analysis. Correlation analysis showed that BMI was positively related with the decreasing of forced vital capacity (FVC), forced expiratory volume in one second (FEV1) and FEV1/FVC (P <0.05), the increasing of FVC% predicted value (FVC%pre) and FEV1% predicted value (FEV1%pre). These suggested that Chinese people can restrain the decline of lung function to prevent the occurrence and development of COPD by the control of BMI.
Lung function in type 2 diabetes: the Normative Aging Study.
Litonjua, Augusto A; Lazarus, Ross; Sparrow, David; Demolles, Debbie; Weiss, Scott T
2005-12-01
Cross-sectional studies have noted that subjects with diabetes have lower lung function than non-diabetic subjects. We conducted this analysis to determine whether diabetic subjects have different rates of lung function change compared with non-diabetic subjects. We conducted a nested case-control analysis in 352 men who developed diabetes and 352 non-diabetic subjects in a longitudinal observational study of aging in men. We assessed lung function among cases and controls at three time points: Time0, prior to meeting the definition of diabetes; Time1, the point when the definition of diabetes was met; and Time2, the most recent follow-up exam. Cases had lower forced expiratory volume in 1s (FEV1) and forced vital capacity (FVC) at all time points, even with adjustment for age, height, weight, and smoking. In multiple linear regression models adjusting for relevant covariates, there were no differences in rates of FEV1 or FVC change over time between cases and controls. Men who are predisposed to develop diabetes have decreased lung function many years prior to the diagnosis, compared with men who do not develop diabetes. This decrement in lung function remains after the development of diabetes. We postulate that mechanisms involved in the insulin resistant state contribute to the diminished lung function observed in our subjects.
MRI and CT lung biomarkers: Towards an in vivo understanding of lung biomechanics.
Young, Heather M; Eddy, Rachel L; Parraga, Grace
2017-09-29
The biomechanical properties of the lung are necessarily dependent on its structure and function, both of which are complex and change over time and space. This makes in vivo evaluation of lung biomechanics and a deep understanding of lung biomarkers, very challenging. In patients and animal models of lung disease, in vivo evaluations of lung structure and function are typically made at the mouth and include spirometry, multiple-breath gas washout tests and the forced oscillation technique. These techniques, and the biomarkers they provide, incorporate the properties of the whole organ system including the parenchyma, large and small airways, mouth, diaphragm and intercostal muscles. Unfortunately, these well-established measurements mask regional differences, limiting their ability to probe the lung's gross and micro-biomechanical properties which vary widely throughout the organ and its subcompartments. Pulmonary imaging has the advantage in providing regional, non-invasive measurements of healthy and diseased lung, in vivo. Here we summarize well-established and emerging lung imaging tools and biomarkers and how they may be used to generate lung biomechanical measurements. We review well-established and emerging lung anatomical, microstructural and functional imaging biomarkers generated using synchrotron x-ray tomographic-microscopy (SRXTM), micro-x-ray computed-tomography (micro-CT), clinical CT as well as magnetic resonance imaging (MRI). Pulmonary imaging provides measurements of lung structure, function and biomechanics with high spatial and temporal resolution. Imaging biomarkers that reflect the biomechanical properties of the lung are now being validated to provide a deeper understanding of the lung that cannot be achieved using measurements made at the mouth. Copyright © 2017 Elsevier Ltd. All rights reserved.
Muramatsu, Yoko; Sugino, Keishi; Ishida, Fumiaki; Tatebe, Junko; Morita, Toshisuke; Homma, Sakae
2016-05-01
An oxidant-antioxidant imbalance is considered to be involved in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Therefore, administration of antioxidants, such as N-acetylcysteine (NAC), may represent a potential treatment option for IPF patients. The aim of this study was to evaluate the effect of inhaled NAC monotherapy on lung function and redox balance in patients with IPF. A retrospective observational study was done, involving 22 patients with untreated early IPF (19 men; mean [±S.D.] age, 71.8 [±6.3]y). At baseline and at 6 and 12 months after initiating inhaled NAC monotherapy, we assessed forced vital capacity (FVC) and measured the levels of total glutathione, oxidized glutathione (GSSG), and the ratio of reduced to oxidized glutathione in whole blood (hereafter referred to as the ratio), and of 8-hydroxy-2'-deoxyguanosine in urine. To evaluate response to treatment, we defined disease progression as a decrease in FVC of ≥5% from baseline and stable disease as a decrease in FVC of <5%, over a period of 6 months. Change in FVC in the stable group at 6 and 12 months were 95±170mL and -70±120mL, while those in the progressive group at 6 and 12 months were -210±80mL, -320±350mL, respectively. The serial mean change in GSSG from baseline decreased as the ratio of reduced to oxidized glutathione increased in patients with stable disease, while it increased as this ratio decreased in patients with progressive disease. Receiver operating characteristic curve analysis revealed that a baseline GSSG level of ≥1.579μM was optimal for identifying treatment responders. Inhaled NAC monotherapy was associated with improved redox imbalance in patients with early IPF. Copyright © 2015 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.
Adaptation of influenza A(H1N1)pdm09 virus in experimental mouse models.
Prokopyeva, E A; Sobolev, I A; Prokopyev, M V; Shestopalov, A M
2016-04-01
In the present study, three mouse-adapted variants of influenza A(H1N1)pdm09 virus were obtained by lung-to-lung passages of BALB/c, C57BL/6z and CD1 mice. The significantly increased virulence and pathogenicity of all of the mouse-adapted variants induced 100% mortality in the adapted mice. Genetic analysis indicated that the increased virulence of all of the mouse-adapted variants reflected the incremental acquisition of several mutations in PB2, PB1, HA, NP, NA, and NS2 proteins. Identical amino acid substitutions were also detected in all of the mouse-adapted variants of A(H1N1)pdm09 virus, including PB2 (K251R), PB1 (V652A), NP (I353V), NA (I106V, N248D) and NS1 (G159E). Apparently, influenza A(H1N1)pdm09 virus easily adapted to the host after serial passages in the lungs, inducing 100% lethality in the last experimental group. However, cross-challenge revealed that not all adapted variants are pathogenic for different laboratory mice. Such important results should be considered when using the influenza mice model. Copyright © 2016 Elsevier B.V. All rights reserved.
Structure of a human pulmonary acinus.
Berend, N; Rynell, A C; Ward, H E
1991-02-01
The structure of the human pulmonary acinus has been described infrequently. The aim of the study was to determine the branching pattern of respiratory bronchioles and alveolar ducts in a human acinus from the peripheral part of the lung, where space constraints may have affected airway branching patterns. The lungs were obtained from an 18 year old victim of a motor vehicle accident and fixed in inflation under a pressure of 25 cm H2O. A block was cut from the lower edge of the right lower lobe and embedded in plastic. Serial sections were cut and the branching pattern of airways subtended by a terminal bronchiole were followed. The acinus was bounded on two sides by pleura and on the remaining sides by connective tissue septa. The terminal bronchiole divided into two respiratory bronchioles, each of which gave rise to four systems of alveolar ducts. Between successive systems of alveolar ducts the respiratory bronchioles continued as single airways, becoming progressively more alveolated towards the periphery but not subtending further branches of respiratory bronchioles. The duct systems became less complex towards the periphery, near to the edge of the lung. The total volume of the acinus was similar to that found in previous studies. This branching pattern has not been described previously in a human acinus.
1993-12-31
effect of Ritalin on attention and traumatically brain injured adults and the issues concerning repeated measures using computer based testing with...heat, cold and fatigue on neurological functions, as well as, the interactive and independent effects of chemical agents and pharmaceuticals. 5) A...serial manner was becoming an increasingly important task in neuropsychology. Serial assessment was important for monitoring medication effects
Spatial processing in the auditory cortex of the macaque monkey
NASA Astrophysics Data System (ADS)
Recanzone, Gregg H.
2000-10-01
The patterns of cortico-cortical and cortico-thalamic connections of auditory cortical areas in the rhesus monkey have led to the hypothesis that acoustic information is processed in series and in parallel in the primate auditory cortex. Recent physiological experiments in the behaving monkey indicate that the response properties of neurons in different cortical areas are both functionally distinct from each other, which is indicative of parallel processing, and functionally similar to each other, which is indicative of serial processing. Thus, auditory cortical processing may be similar to the serial and parallel "what" and "where" processing by the primate visual cortex. If "where" information is serially processed in the primate auditory cortex, neurons in cortical areas along this pathway should have progressively better spatial tuning properties. This prediction is supported by recent experiments that have shown that neurons in the caudomedial field have better spatial tuning properties than neurons in the primary auditory cortex. Neurons in the caudomedial field are also better than primary auditory cortex neurons at predicting the sound localization ability across different stimulus frequencies and bandwidths in both azimuth and elevation. These data support the hypothesis that the primate auditory cortex processes acoustic information in a serial and parallel manner and suggest that this may be a general cortical mechanism for sensory perception.
Yamamoto, Tokihiro; Kabus, Sven; Bal, Matthieu; Bzdusek, Karl; Keall, Paul J; Wright, Cari; Benedict, Stanley H; Daly, Megan E
2018-05-04
Lung functional image guided radiation therapy (RT) that avoids irradiating highly functional regions has potential to reduce pulmonary toxicity following RT. Tumor regression during RT is common, leading to recovery of lung function. We hypothesized that computed tomography (CT) ventilation image-guided treatment planning reduces the functional lung dose compared to standard anatomic image-guided planning in 2 different scenarios with or without plan adaptation. CT scans were acquired before RT and during RT at 2 time points (16-20 Gy and 30-34 Gy) for 14 patients with locally advanced lung cancer. Ventilation images were calculated by deformable image registration of four-dimensional CT image data sets and image analysis. We created 4 treatment plans at each time point for each patient: functional adapted, anatomic adapted, functional unadapted, and anatomic unadapted plans. Adaptation was performed at 2 time points. Deformable image registration was used for accumulating dose and calculating a composite of dose-weighted ventilation used to quantify the lung accumulated dose-function metrics. The functional plans were compared with the anatomic plans for each scenario separately to investigate the hypothesis at a significance level of 0.05. Tumor volume was significantly reduced by 20% after 16 to 20 Gy (P = .02) and by 32% after 30 to 34 Gy (P < .01) on average. In both scenarios, the lung accumulated dose-function metrics were significantly lower in the functional plans than in the anatomic plans without compromising target volume coverage and adherence to constraints to critical structures. For example, functional planning significantly reduced the functional mean lung dose by 5.0% (P < .01) compared to anatomic planning in the adapted scenario and by 3.6% (P = .03) in the unadapted scenario. This study demonstrated significant reductions in the accumulated dose to the functional lung with CT ventilation image-guided planning compared to anatomic image-guided planning for patients showing tumor regression and changes in regional ventilation during RT. Copyright © 2018 Elsevier Inc. All rights reserved.
A Case of Pulmonary Mycobacterium kansasii Disease Complicated with Tension Pneumothorax.
Boo, Ki Yung; Lee, Jong Hoo
2015-10-01
Pneumothorax is an extremely rare complication of non-tuberculous mycobacterial infection. A 52-year-old man presenting with difficulty breathing and chest pain was admitted to our hospital. A right-sided pneumothorax was observed on chest radiography and chest computed tomography showed multiple cavitating and non-cavitating nodules with consolidation in the upper to middle lung zones bilaterally. Serial sputum cultures were positive for Mycobacterium kansasii, and he was diagnosed with pulmonary M. kansasii disease complicated by tension pneumothorax. After initiation of treatment including decortications and pleurodesis, the patient made a full recovery. We herein describe this patient's course in detail and review the current relevant literature.
Obstructive lung disease as a complication in post pulmonary TB
NASA Astrophysics Data System (ADS)
Tarigan, A. P.; Pandia, P.; Eyanoer, P.; Tina, D.; Pratama, R.; Fresia, A.; Tamara; Silvanna
2018-03-01
The case of post TB is a problem that arises in the community. Pulmonary tuberculosis (TB) can affect lung function. Therefore, we evaluated impaired pulmonary function in subjects with diagnosed prior pulmonary TB. A Case Series study, pulmonary function test was performed in subjects with a history of pulmonary tuberculosis; aged ≥18 years were included. Exclusion criteria was a subject who had asthma, obesity, abnormal thorax and smoking history. We measured FEV1 and FVC to evaluate pulmonary function. Airflow obstruction was FEV1/FVC%<75 and restriction was FVC<80% according to Indonesia’s pneumomobile project. This study was obtained from 23 patients with post pulmonary TB, 5 subjects (23%) had airflow obstruction with FEV1/FVC% value <75%, 15 subjects (71.4%) had abnormalities restriction with FVC value <80% and 3 subjects (5.6%) had normal lung function. Obstructive lung disease is one of the complications of impaired lung function in post pulmonary TB.
Laporta, Rosalía; Ussetti, Piedad; Mora, Gema; López, Cristina; Gómez, David; de Pablo, Alicia; Lázaro, M Teresa; Carreño, M Cruz; Ferreiro, M José
2008-08-01
The time at which lung transplantation is indicated is determined by clinical and functional criteria that vary according to the particular disease. The aim of our study was to present the criteria according to which patients were placed on waiting lists for lung transplantation in our hospital. We analyzed retrospectively the clinical characteristics, lung function, heart function, and 6-minute walk test results of patients who had received a lung transplant in our hospital from January 2002 through September 2005. During the study period 100 lung transplants were performed. The mean age of the patients was 45 years (range, 15-67 years) and 57% were men. The diseases that most often led to a lung transplant were chronic obstructive pulmonary disease (COPD) (35%), pulmonary fibrosis (29%), and bronchiectasis (21%). Lung function values differed by disease: mean (SD) forced expiratory volume in 1 second (FEV1) was 20% (11%) and forced vital capacity (FVC) was 37% (15%) in patients with COPD; FEV1 was 41% (15%) and FVC, 40% (17%) in patients with pulmonary fibrosis; and FEV1 was 23% (7%) and FVC, 37% (10%) in patients with bronchiectasis. The patients who received lung transplants in our hospital were in advanced phases of their disease and met the inclusion criteria accepted by the various medical associations when they were placed on the waiting list.
Estimation of gas and tissue lung volumes by MRI: functional approach of lung imaging.
Qanadli, S D; Orvoen-Frija, E; Lacombe, P; Di Paola, R; Bittoun, J; Frija, G
1999-01-01
The purpose of this work was to assess the accuracy of MRI for the determination of lung gas and tissue volumes. Fifteen healthy subjects underwent MRI of the thorax and pulmonary function tests [vital capacity (VC) and total lung capacity (TLC)] in the supine position. MR examinations were performed at inspiration and expiration. Lung volumes were measured by a previously validated technique on phantoms. Both individual and total lung volumes and capacities were calculated. MRI total vital capacity (VC(MRI)) was compared with spirometric vital capacity (VC(SP)). Capacities were correlated to lung volumes. Tissue volume (V(T)) was estimated as the difference between the total lung volume at full inspiration and the TLC. No significant difference was seen between VC(MRI) and VC(SP). Individual capacities were well correlated (r = 0.9) to static volume at full inspiration. The V(T) was estimated to be 836+/-393 ml. This preliminary study demonstrates that MRI can accurately estimate lung gas and tissue volumes. The proposed approach appears well suited for functional imaging of the lung.
Fong, Youyi; Yu, Xuesong
2016-01-01
Many modern serial dilution assays are based on fluorescence intensity (FI) readouts. We study optimal transformation model choice for fitting five parameter logistic curves (5PL) to FI-based serial dilution assay data. We first develop a generalized least squares-pseudolikelihood type algorithm for fitting heteroscedastic logistic models. Next we show that the 5PL and log 5PL functions can approximate each other well. We then compare four 5PL models with different choices of log transformation and variance modeling through a Monte Carlo study and real data. Our findings are that the optimal choice depends on the intended use of the fitted curves. PMID:27642502
Effective record length for the T-year event
Tasker, Gary D.
1983-01-01
The effect of serial dependence on the reliability of an estimate of the T-yr. event is of importance in hydrology because design decisions are based upon the estimate. In this paper the reliability of estimates of the T-yr. event from two common distributions is given as a function of number of observations and lag-one serial correlation coefficient for T = 2, 10, 20, 50, and 100 yr. A lag-one autoregressive model is assumed with either a normal or Pearson Type-III disturbance term. Results indicate that, if observations are serially correlated, the effective record length should be used to estimate the discharge associated with the expected exceedance probability. ?? 1983.
More than Memory Impairment in Voltage-Gated Potassium Channel Complex Encephalopathy
Bettcher, Brianne M.; Gelfand, Jeffrey M.; Irani, Sarosh R.; Neuhaus, John; Forner, Sven; Hess, Christopher P.; Geschwind, Michael D.
2014-01-01
Objective Autoimmune encephalopathies (AE) are a heterogeneous group of neurological disorders that affect cognition. Although memory difficulties are commonly endorsed, few reports of AE inclusively assess all cognitive domains in detail. Our aim was to perform an unbiased cognitive evaluation of AE patients with voltage-gated potassium channel complex antibodies (VGKCC-Abs) in order to delineate cognitive strengths and weaknesses. Methods We assessed serial VGKCC-Abs AE subjects (n=12) with a comprehensive evaluation of memory, executive functions, visuospatial skills, and language. Clinical MRI (n=10/12) was evaluated. Five subjects had serial cognitive testing available, permitting descriptive analysis of change. Results Subjects demonstrated mild to moderate impairment in memory (mean Z=−1.9) and executive functions (mean Z=−1.5), with variable impairments in language and sparing of visuospatial skills. MRI findings showed T2 hyperintensities in medial temporal lobe (10/10) and basal ganglia (2/10). Serial cognitive examination revealed heterogeneity in cognitive function; whereas most patients improved in one or more domains, residual impairments were observed in some patients. Conclusions This study augments prior neuropsychological analyses in VGKCC-Ab AE by identifying not only memory and executive function deficits, but also language impairments, with preservation of visuospatial functioning. This study further highlights the importance of domain-specific testing to parse out the complex cognitive phenotypes of VGKCC-Ab AE. PMID:24981998
Yang, Wen Jie; Yan, Fu Hua; Liu, Bo; Pang, Li Fang; Hou, Liang; Zhang, Huan; Pan, Zi Lai; Chen, Ke Min
2013-01-01
To evaluate the performance of sinogram-affirmed iterative (SAFIRE) reconstruction on image quality of low-dose lung computed tomographic (CT) screening compared with filtered back projection (FBP). Three hundred four patients for annual low-dose lung CT screening were examined by a dual-source CT system at 120 kilovolt (peak) with reference tube current of 40 mA·s. Six image serials were reconstructed, including one data set of FBP and 5 data sets of SAFIRE with different reconstruction strengths from 1 to 5. Image noise was recorded; and subjective scores of image noise, images artifacts, and the overall image quality were also assessed by 2 radiologists. The mean ± SD weight for all patients was 66.3 ± 12.8 kg, and the body mass index was 23.4 ± 3.2. The mean ± SD dose-length product was 95.2 ± 30.6 mGy cm, and the mean ± SD effective dose was 1.6 ± 0.5 mSv. The observation agreements for image noise grade, artifact grade, and the overall image quality were 0.785, 0.595 and 0.512, respectively. Among the overall 6 data sets, both the measured mean objective image noise and the subjective image noise of FBP was the highest, and the image noise decreased with the increasing of SAFIRE reconstruction strength. The data sets of S3 obtained the best image quality scores. Sinogram-affirmed iterative reconstruction can significantly improve image quality of low-dose lung CT screening compared with FBP, and SAFIRE with reconstruction strength 3 was a pertinent choice for low-dose lung CT.
Sack, Coralynn; Vedal, Sverre; Sheppard, Lianne; Raghu, Ganesh; Barr, R Graham; Podolanczuk, Anna; Doney, Brent; Hoffman, Eric A; Gassett, Amanda; Hinckley-Stukovsky, Karen; Williams, Kayleen; Kawut, Steve; Lederer, David J; Kaufman, Joel D
2017-12-01
We studied whether ambient air pollution is associated with interstitial lung abnormalities (ILAs) and high attenuation areas (HAAs), which are qualitative and quantitative measurements of subclinical interstitial lung disease (ILD) on computed tomography (CT).We performed analyses of community-based dwellers enrolled in the Multi-Ethnic Study of Atherosclerosis (MESA) study. We used cohort-specific spatio-temporal models to estimate ambient pollution (fine particulate matter (PM 2.5 ), nitrogen oxides (NO x ), nitrogen dioxide (NO 2 ) and ozone (O 3 )) at each home. A total of 5495 participants underwent serial assessment of HAAs by cardiac CT; 2671 participants were assessed for ILAs using full lung CT at the 10-year follow-up. We used multivariable logistic regression and linear mixed models adjusted for age, sex, ethnicity, education, tobacco use, scanner technology and study site.The odds of ILAs increased 1.77-fold per 40 ppb increment in NO x (95% CI 1.06 to 2.95, p = 0.03). There was an overall trend towards an association between higher exposure to NO x and greater progression of HAAs (0.45% annual increase in HAAs per 40 ppb increment in NO x ; 95% CI -0.02 to 0.92, p = 0.06). Associations of ambient fine particulate matter (PM 2.5 ), NO x and NO 2 concentrations with progression of HAAs varied by race/ethnicity (p = 0.002, 0.007, 0.04, respectively, for interaction) and were strongest among non-Hispanic white people.We conclude that ambient air pollution exposures were associated with subclinical ILD. The content of this work is not subject to copyright. Design and branding are copyright ©ERS 2017.
Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice.
Li, Kun; Wohlford-Lenane, Christine L; Channappanavar, Rudragouda; Park, Jung-Eun; Earnest, James T; Bair, Thomas B; Bates, Amber M; Brogden, Kim A; Flaherty, Heather A; Gallagher, Tom; Meyerholz, David K; Perlman, Stanley; McCray, Paul B
2017-04-11
The Middle East respiratory syndrome (MERS) emerged in Saudi Arabia in 2012, caused by a zoonotically transmitted coronavirus (CoV). Over 1,900 cases have been reported to date, with ∼36% fatality rate. Lack of autopsies from MERS cases has hindered understanding of MERS-CoV pathogenesis. A small animal model that develops progressive pulmonary manifestations when infected with MERS-CoV would advance the field. As mice are restricted to infection at the level of DPP4, the MERS-CoV receptor, we generated mice with humanized exons 10-12 of the mouse Dpp4 locus. Upon inoculation with MERS-CoV, human DPP4 knockin (KI) mice supported virus replication in the lungs, but developed no illness. After 30 serial passages through the lungs of KI mice, a mouse-adapted virus emerged (MERS MA ) that grew in lungs to over 100 times higher titers than the starting virus. A plaque-purified MERS MA clone caused weight loss and fatal infection. Virus antigen was observed in airway epithelia, pneumocytes, and macrophages. Pathologic findings included diffuse alveolar damage with pulmonary edema and hyaline membrane formation associated with accumulation of activated inflammatory monocyte-macrophages and neutrophils in the lungs. Relative to the parental MERS-CoV, MERS MA viruses contained 13-22 mutations, including several within the spike (S) glycoprotein gene. S-protein mutations sensitized viruses to entry-activating serine proteases and conferred more rapid entry kinetics. Recombinant MERS MA bearing mutant S proteins were more virulent than the parental virus in hDPP4 KI mice. The hDPP4 KI mouse and the MERS MA provide tools to investigate disease causes and develop new therapies.
Sack, Coralynn S; Doney, Brent C; Podolanczuk, Anna J; Hooper, Laura G; Seixas, Noah S; Hoffman, Eric A; Kawut, Steven M; Vedal, Sverre; Raghu, Ganesh; Barr, R Graham; Lederer, David J; Kaufman, Joel D
2017-10-15
The impact of a broad range of occupational exposures on subclinical interstitial lung disease (ILD) has not been studied. To determine whether occupational exposures to vapors, gas, dust, and fumes (VGDF) are associated with high-attenuation areas (HAA) and interstitial lung abnormalities (ILA), which are quantitative and qualitative computed tomography (CT)-based measurements of subclinical ILD, respectively. We performed analyses of participants enrolled in MESA (Multi-Ethnic Study of Atherosclerosis), a population-based cohort aged 45-84 years at recruitment. HAA was measured at baseline and on serial cardiac CT scans in 5,702 participants. ILA was ascertained in a subset of 2,312 participants who underwent full-lung CT scanning at 10-year follow-up. Occupational exposures were assessed by self-reported VGDF exposure and by job-exposure matrix (JEM). Linear mixed models and logistic regression were used to determine whether occupational exposures were associated with log-transformed HAA and ILA. Models were adjusted for age, sex, race/ethnicity, education, employment status, tobacco use, and scanner technology. Each JEM score increment in VGDF exposure was associated with 2.64% greater HAA (95% confidence interval [CI], 1.23-4.19%). Self-reported vapors/gas exposure was associated with an increased odds of ILA among those currently employed (1.76-fold; 95% CI, 1.09-2.84) and those less than 65 years old (1.97-fold; 95% CI, 1.16-3.35). There was no consistent evidence that occupational exposures were associated with progression of HAA over the follow-up period. JEM-assigned and self-reported exposures to VGDF were associated with measurements of subclinical ILD in community-dwelling adults.
Lung cancer in Yorkshire chrome platers, 1972-97
Sorahan, T.; Harrington, J
2000-01-01
OBJECTIVES—To investigate mortality from lung cancer in chrome platers, a group exposed to chromic acid. METHODS—The mortality of a cohort of 1087 chrome platers (920 men, 167 women) from 54 plants situated in the West Riding of Yorkshire, United Kingdom, was investigated for the period 1972-97. All subjects were employed as chrome platers for ⩾3 months and all were alive on 31 May 1972. Mortality data were also available for a cohort of 1163 comparison workers with no known occupational exposure to chrome compounds (989 men, 174 women). Information on duration of chrome work and smoking habits collected for a cross sectional survey carried out in 1969-72 were available for 916 (84.3%) of the chrome platers; smoking habits were available for 1004 (86.3%) comparison workers. Two analytical approaches were used, indirect standardisation and Poisson regression. RESULTS—Based on serial mortality rates for the general population of England and Wales, significantly increased mortality from lung cancer was observed (obs) in male chrome platers (obs 60, expected (exp) 32.5, standardised mortality ratio (SMR) 185, p<0.001) but not in male comparison workers (obs 47, exp 36.9, SMR 127). Positive trends were not shown for duration of employment exposed to chrome, although data on working after 1972 were not available. CONCLUSIONS—Confident interpretation is not possible but occupational exposures to hexavalent chromium may well have been involved in the increased mortality from lung cancer found in this cohort of chrome platers. Keywords: chromium plating; lung cancer PMID:10810127
Hou, Jian; Sun, Huizhen; Xiao, Lili; Zhou, Yun; Yin, Wenjun; Xu, Tian; Cheng, Juan; Chen, Weihong; Yuan, Jing
2016-07-01
Associations of type 2 diabetes with exposure to polycyclic aromatic hydrocarbons and reduced lung function have been reported. The aim of the present study was to investigate effect of reduced lung function and exposure to background PAHs on diabetes. A total of 2730 individuals were drawn from the Wuhan-Zhuhai (WHZH) Cohort Study (n=3053). Participants completed physical examination, measurement of lung function and urinary monohydroxylated polycyclic aromatic hydrocarbons (OH-PAHs). Risk factors for type 2 diabetes were identified by multiple logistic regression analysis, and the presence of additive interaction between levels of urinary OH-PAHs and lower lung function was evaluated by calculation of the relative excess risk due to interaction (RERI) and attributable proportion due to interaction (AP). Urinary OH-PAHs levels was positively associated with type 2 diabetes among individuals with impaired lung function (p<0.05). Forced expiratory volume in one second (FEV1, odd ratio (OR): 0.664, 95% confidence interval (CI): 0.491-0.900) and forced vital capacity (FVC, OR: 0.693, 95% CI: 0.537-0.893) were negatively associated with diabetes among individuals. Additive interaction of higher urinary levels of OH-PAHs and lower FVC (RERI: 0.679, 95% CI: 0.120-1.238); AP: 0.427, 95% CI: 0.072-0.782) was associated with diabetes. Exposure to background PAHs was related to diabetes among individuals with lower lung function. Urinary levels of OH-PAHs and reduced lung function had an additive effect on diabetes. Copyright © 2016 Elsevier Inc. All rights reserved.
Wagner, Darcy E.; Bonvillain, Ryan W.; Jensen, Todd J.; Girard, Eric D.; Bunnell, Bruce A.; Finck, Christine M.; Hoffman, Andrew M.; Weiss, Daniel J.
2013-01-01
For patients with end-stage lung diseases, lung transplantation is the only available therapeutic option. However, the number of suitable donor lungs is insufficient and lung transplants are complicated by significant graft failure and complications of immunosuppressive regimens. An alternative to classic organ replacement is desperately needed. Engineering of bioartificial organs using either natural or synthetic scaffolds is an exciting new potential option for generation of functional pulmonary tissue for human clinical application. Natural organ scaffolds can be generated by decellularization of native tissues; these acellular scaffolds retain the native organ ultrastructure and can be seeded with autologous cells toward the goal of regenerating functional tissues. Several decellularization strategies have been employed for lung, however, there is no consensus on the optimal approach. A variety of cell types have been investigated as potential candidates for effective recellularization of acellular lung scaffolds. Candidate cells that might be best utilized are those which can be easily and reproducibly isolated, expanded in vitro, seeded onto decellularized matrices, induced to differentiate into pulmonary lineage cells, and which survive to functional maturity. Whole lung cell suspensions, endogenous progenitor cells, embryonic and adult stem cells, and induced pluripotent stem (iPS) cells have been investigated for their applicability to repopulate acellular lung matrices. Ideally, patient-derived autologous cells would be used for lung recellularization as they have the potential to reduce the need for post-transplant immunosuppression. Several studies have performed transplantation of rudimentary bioengineered lung scaffolds in animal models with limited, short-term functionality but much further study is needed. PMID:23614471
Development of a front end controller/heap manager for PHENIX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ericson, M.N.; Allen, M.D.; Musrock, M.S.
1996-12-31
A controller/heap manager has been designed for applicability to all detector subsystem types of PHENIX. the heap manager performs all functions associated with front end electronics control including ADC and analog memory control, data collection, command interpretation and execution, and data packet forming and communication. Interfaces to the unit consist of a timing and control bus, a serial bus, a parallel data bus, and a trigger interface. The topology developed is modular so that many functional blocks are identical for a number of subsystem types. Programmability is maximized through the use of flexible modular functions and implementation using field programmablemore » gate arrays (FPGAs). Details of unit design and functionality will be discussed with particular detail given to subsystems having analog memory-based front end electronics. In addition, mode control, serial functions, and FPGA implementation details will be presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinogradskiy, Y; Miyasaka, Y; Kadoya, N
Purpose: CT-ventilation is an exciting new imaging modality that uses 4DCTs to calculate lung ventilation. Studies have proposed to use 4DCT-ventilation imaging for functional avoidance radiotherapy which implies designing treatment plans to spare functional portions of the lung. Although retrospective studies have been performed to evaluate the dosimetric gains to functional lung; no work has been done to translate the dosimetric gains to an improvement in pulmonary toxicity. The purpose of our work was to evaluate the potential reduction in toxicity for 4DCT-ventilation based functional avoidance. Methods: 70 lung cancer patients with 4DCT imaging were used for the study. CT-ventilationmore » maps were calculated using the patient’s 4DCT, deformable image registrations, and a density-change-based algorithm. Radiation pneumonitis was graded using imaging and clinical information. Log-likelihood methods were used to fit a normal-tissue-complication-probability (NTCP) model predicting grade 2+ radiation pneumonitis as a function of doses (mean and V20) to functional lung (>15% ventilation). For 20 patients a functional plan was generated that reduced dose to functional lung while meeting RTOG 0617-based constraints. The NTCP model was applied to the functional plan to determine the reduction in toxicity with functional planning Results: The mean dose to functional lung was 16.8 and 17.7 Gy with the functional and clinical plans respectively. The corresponding grade 2+ pneumonitis probability was 26.9% with the clinically-used plan and 24.6% with the functional plan (8.5% reduction). The V20-based grade 2+ pneumonitis probability was 23.7% with the clinically-used plan and reduced to 19.6% with the functional plan (20.9% reduction). Conclusion: Our results revealed a reduction of 9–20% in complication probability with functional planning. To our knowledge this is the first study to apply complication probability to convert dosimetric results to toxicity improvement. The results presented in the current work provide seminal data for prospective clinical trials in functional avoidance. YV discloses funding from State of Colorado. TY discloses National Lung Cancer Partnership; Young Investigator Research grant.« less
Collaco, Joseph M; Raraigh, Karen S; Appel, Lawrence J; Cutting, Garry R
2016-11-01
Mean annual ambient temperature is a replicated environmental modifier of cystic fibrosis (CF) lung disease with warmer temperatures being associated with lower lung function. The mechanism of this relationship is not completely understood. However, Pseudomonas aeruginosa, a pathogen that infects the lungs of CF individuals and decreases lung function, also has a higher prevalence in individuals living in warmer climates. We therefore investigated the extent to which respiratory pathogens mediated the association between temperature and lung function. Thirteen respiratory pathogens observed on CF respiratory cultures were assessed in multistep fashion using clustered linear and logistic regression to determine if any mediated the association between temperature and lung function. Analysis was performed in the CF Twin-Sibling Study (n=1730; primary population); key findings were then evaluated in the U.S. CF Foundation Data Registry (n=15,174; replication population). In the primary population, three respiratory pathogens (P. aeruginosa, mucoid P. aeruginosa, and methicillin-resistant Staphylococcus aureus) mediated the association between temperature and lung function. P. aeruginosa accounted for 19% of the association (p=0.003), mucoid P. aeruginosa for 31% (p=0.001), and MRSA for 13% (p=0.023). The same three pathogens mediated association in the replication population (7%, p<0.001; 7%, p=0.002; and 4%, (p=0.002), respectively). Three important respiratory pathogens in CF mediate the association between lower lung function and warmer temperatures. These findings have implications for understanding regional variations in clinical outcomes, and interpreting results of epidemiologic studies and clinical trials that encompass regions with different ambient temperatures. Copyright © 2016 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
Lung function gain in preterm infants with and without bronchopulmonary dysplasia.
Sanchez-Solis, Manuel; Perez-Fernandez, Virginia; Bosch-Gimenez, Vicente; Quesada, Juan J; Garcia-Marcos, Luis
2016-09-01
The aim of our study was to determine whether the development of lung function, during the first 2 years of life, is different in preterm infants who suffered or did not suffer from Bronchopulmonary dysplasia (BPD). We also assessed the role of nutritional status and growth in that development. Lung function tests were performed in 71 preterm infants at two time points: 6 months of corrected age and 1 year after. FVC, FEV0.5, FEF75 , and FEF25-75 were obtained from maximal expiratory volume curves by means of the raised volume rapid thoraco-abdominal compression technique. When comparing lung function measurements, we found that FVC (P = 0.033) FEV0.5 (P = 0.044), FEF75 (P = 0.014), and FEF25-75 (P = 0.036) were significantly lower in BPD infants. We did not find any catch-up of lung function during the study time, in neither the whole group of children nor within the BPD or non-BPD groups. The increase in lung function was directly proportional to the increase in weight and length. The multivariate analysis showed that the increase in z-score of FVC (P = 0.043), FEV0.5 (P = 0.015), and FEF75 (P = 0.042), was related with the height velocity during the study period. Infants who suffered from BPD have lower lung function (FVC, FEV0.5 , FEF75 , and FEF25-75 ), than those non-BPD, at two different time points 1 year apart. During the study period, there was no lung function catch-up in either BPD or non-BPD infants. The increase in length is closely associated to the increase in lung function. Pediatr Pulmonol. 2016; 51:936-942. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Bunyavanich, S; Boyce, J A; Raby, B A; Weiss, S T
2012-02-01
Distinct receptors likely exist for leukotriene (LT)E(4), a potent mediator of airway inflammation. Purinergic receptor P2Y12 is needed for LTE(4)-induced airways inflammation, and P2Y12 antagonism attenuates house dust mite-induced pulmonary eosinophilia in mice. Although experimental data support a role for P2Y12 in airway inflammation, its role in human asthma has never been studied. To test for association between variants in the P2Y12 gene (P2RY12) and lung function in human subjects with asthma, and to examine for gene-by-environment interaction with house dust mite exposure. Nineteen single nucleotide polymorphisms (SNPs) in P2RY12 were genotyped in 422 children with asthma and their parents (n = 1266). Using family based methods, we tested for associations between these SNPs and five lung function measures. We performed haplotype association analyses and tested for gene-by-environment interactions using house dust mite exposure. We used the false discovery rate to account for multiple comparisons. Five SNPs in P2RY12 were associated with multiple lung function measures (P-values 0.006–0.025). Haplotypes in P2RY12 were also associated with lung function (P-values 0.0055–0.046). House dust mite exposure modulated associations between P2RY12 and lung function, with minor allele homozygotes exposed to house dust mite demonstrating worse lung function than those unexposed (significant interaction P-values 0.0028–0.040). The P2RY12 variants were associated with lung function in a large family-based asthma cohort. House dust mite exposure caused significant gene-by-environment effects. Our findings add the first human evidence to experimental data supporting a role for P2Y12 in lung function. P2Y12 could represent a novel target for asthma treatment.
Mandryk, J; Alwis, K U; Hocking, A D
1999-05-01
Four sawmills, a wood chipping mill, and five joineries in New South Wales, Australia, were studied for the effects of personal exposure to wood dust, endotoxins. (1-->3)-beta-D-glucans, Gram-negative bacteria, and fungi on lung function among woodworkers. Personal inhalable and respirable dust sampling was carried out. The lung function tests of workers were conducted before and after a workshift. The mean percentage cross-shift decrease in lung function was markedly high for woodworkers compared with the controls. Dose-response relationships among personal exposures and percentage cross-shift decrease in lung function and percentage predicted lung function were more pronounced among joinery workers compared with sawmill and chip mill workers. Woodworkers had markedly high prevalence of regular cough, phlegm, and chronic bronchitis compared with controls. Significant associations were found between percentage cross-shift decrease in FVC and regular phlegm and blocked nose among sawmill and chip mill workers. Both joinery workers and sawmill and chip mill workers showed significant relationships between percentage predicted lung function (FVC, FEV1, FEV1/FVC, FEF25-75%) and respiratory symptoms. Wood dust and biohazards associated with wood dust are potential health hazards and should be controlled.
A parallel Jacobson-Oksman optimization algorithm. [parallel processing (computers)
NASA Technical Reports Server (NTRS)
Straeter, T. A.; Markos, A. T.
1975-01-01
A gradient-dependent optimization technique which exploits the vector-streaming or parallel-computing capabilities of some modern computers is presented. The algorithm, derived by assuming that the function to be minimized is homogeneous, is a modification of the Jacobson-Oksman serial minimization method. In addition to describing the algorithm, conditions insuring the convergence of the iterates of the algorithm and the results of numerical experiments on a group of sample test functions are presented. The results of these experiments indicate that this algorithm will solve optimization problems in less computing time than conventional serial methods on machines having vector-streaming or parallel-computing capabilities.
Manji, Mohamed; Shayo, Grace; Mamuya, Simon; Mpembeni, Rose; Jusabani, Ahmed; Mugusi, Ferdinand
2016-04-23
Approximately 40-60 % of patients remain sufferers of sequela of obstructive, restrictive or mixed patterns of lung disease despite treatment for pulmonary tuberculosis (PTB). The prevalence of these abnormalities in Tanzania remains unknown. A descriptive cross-sectional study was carried out among 501 patients with PTB who had completed at least 20 weeks of treatment. These underwent spirometry and their lung functions were classified as normal or abnormal (obstructive, restrictive or mixed). Logistic regression models were used to explore factors associated with abnormal lung functions. Abnormal lung functions were present in 371 (74 %) patients. There were 210 (42 %) patients with obstructive, 65 (13 %) patients with restrictive and 96 (19 %) patients with mixed patterns respectively. Significant factors associated with abnormal lung functions included recurrent PTB (Adj OR 2.8, CI 1.274 - 6.106), Human Immunodeficiency Virus (HIV) negative status (Adj OR 1.7, CI 1.055 - 2.583), age more than 40 years (Adj OR 1.7, CI 1.080 - 2.804) and male sex (Adj OR 1.7, CI 1.123 - 2.614). The prevalence of abnormal lung functions is high and it is associated with male sex, age older than 40 years, recurrent PTB and HIV negative status.
Lung vital capacity and oxygen saturation in adults with cerebral palsy
Lampe, Renée; Blumenstein, Tobias; Turova, Varvara; Alves-Pinto, Ana
2014-01-01
Background Individuals with infantile cerebral palsy have multiple disabilities. The most conspicuous syndrome being investigated from many aspects is motor movement disorder with a spastic gait pattern. The lung function of adults with spasticity attracts less attention in the literature. This is surprising because decreased thoracic mobility and longstanding scoliosis should have an impact on lung function. With increasing age and the level of disability, individuals become susceptible to lung infections and reflux illness, and these are accompanied by increased aspiration risk. This study examined, with different methods, to what extent adults with congenital cerebral palsy and acquired spastic paresis – following traumatic brain injury – showed restriction of lung function. It also assessed the contribution of disability level on this restriction. Methods The oxygen saturation of 46 adults with a diagnosis of cerebral palsy was measured with an oximeter. Lung vital capacity was measured with a mobile spirometer and excursion of the thorax was clinically registered. The gross motor function levels and the presence or absence of scoliosis were determined. Results A significantly positive correlation between lung vital capacity and chest expansion was established. Both the lung vital capacity and the thorax excursion decreased with increases in gross motor function level. Oxygen saturation remained within the normal range in all persons, in spite of reduced values of the measured lung parameters. No statistically significant dependency between lung vital capacity and oxygen saturation, and between chest expansion and oxygen saturation was found. The scoliotic deformities of the spine were associated with an additional decrease in the vital capacity, but this did not affect blood oxygen supply. Conclusion Despite the decreased chest expansion and the significantly reduced lung volume in adults with cerebral palsy, sufficient oxygen supply was registered. PMID:25525345
Abnormal lung function at preschool age asthma in adolescence?
Lajunen, Katariina; Kalliola, Satu; Kotaniemi-Syrjänen, Anne; Sarna, Seppo; Malmberg, L Pekka; Pelkonen, Anna S; Mäkelä, Mika J
2018-05-01
Asthma often begins early in childhood. However, the risk for persistence is challenging to evaluate. This longitudinal study relates lung function assessed with impulse oscillometry (IOS) in preschool children to asthma in adolescence. Lung function was measured with IOS in 255 children with asthma-like symptoms aged 4-7 years. Baseline measurements were followed by exercise challenge and bronchodilation tests. At age 12-16 years, 121 children participated in the follow-up visit, when lung function was assessed with spirometry, followed by a bronchodilation test. Asthma symptoms and medication were recorded by a questionnaire and atopy defined by skin prick tests. Abnormal baseline values in preschool IOS were significantly associated with low lung function, the need for asthma medication, and asthma symptoms in adolescence. Preschool abnormal R5 at baseline (z-score ≥1.645 SD) showed 9.2 odds ratio (95%CI 2.7;31.7) for abnormal FEV1/FVC, use of asthma medication in adolescence, and 9.9 odds ratio (95%CI 2.9;34.4) for asthma symptoms. Positive exercise challenge and modified asthma-predictive index at preschool age predicted asthma symptoms and the need for asthma medication, but not abnormal lung function at teenage. Abnormal preschool IOS is associated with asthma and poor lung function in adolescence and might be utilised for identification of asthma persistence. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Müller-Redetzky, Holger Christian; Kummer, Wolfgang; Pfeil, Uwe; Hellwig, Katharina; Will, Daniel; Paddenberg, Renate; Tabeling, Christoph; Hippenstiel, Stefan; Suttorp, Norbert; Witzenrath, Martin
2012-01-01
Background Even protective ventilation may aggravate or induce lung failure, particularly in preinjured lungs. Thus, new adjuvant pharmacologic strategies are needed to minimize ventilator-induced lung injury (VILI). Intermedin/Adrenomedullin-2 (IMD) stabilized pulmonary endothelial barrier function in vitro. We hypothesized that IMD may attenuate VILI-associated lung permeability in vivo. Methodology/Principal Findings Human pulmonary microvascular endothelial cell (HPMVEC) monolayers were incubated with IMD, and transcellular electrical resistance was measured to quantify endothelial barrier function. Expression and localization of endogenous pulmonary IMD, and its receptor complexes composed of calcitonin receptor-like receptor (CRLR) and receptor activity-modifying proteins (RAMPs) 1–3 were analyzed by qRT-PCR and immunofluorescence in non ventilated mouse lungs and in lungs ventilated for 6 h. In untreated and IMD treated mice, lung permeability, pulmonary leukocyte recruitment and cytokine levels were assessed after mechanical ventilation. Further, the impact of IMD on pulmonary vasoconstriction was investigated in precision cut lung slices (PCLS) and in isolated perfused and ventilated mouse lungs. IMD stabilized endothelial barrier function in HPMVECs. Mechanical ventilation reduced the expression of RAMP3, but not of IMD, CRLR, and RAMP1 and 2. Mechanical ventilation induced lung hyperpermeability, which was ameliorated by IMD treatment. Oxygenation was not improved by IMD, which may be attributed to impaired hypoxic vasoconstriction due to IMD treatment. IMD had minor impact on pulmonary leukocyte recruitment and did not reduce cytokine levels in VILI. Conclusions/Significance IMD may possibly provide a new approach to attenuate VILI. PMID:22563471
Puskas, J D; Winton, T L; Miller, J D; Scavuzzo, M; Patterson, G A
1992-05-01
Single lung transplantation remains limited by a severe shortage of suitable donor lungs. Potential lung donors are often deemed unsuitable because accepted criteria (both lungs clear on the chest roentgenogram, arterial oxygen tension greater than 300 mm Hg with an inspired oxygen fraction of 1.0, a positive end-expiratory pressure of 5 cm H2O, and no purulent secretions) do not distinguish between unilateral and bilateral pulmonary disease. Many adequate single lung grafts may be discarded as a result of contralateral aspiration or pulmonary trauma. We have recently used intraoperative unilateral ventilation and perfusion to assess single lung function in potential donors with contralateral lung disease. In the 11-month period ending October 1, 1990, we performed 18 single lung transplants. In four of these cases (22%), the donor chest roentgenogram or bronchoscopic examination demonstrated significant unilateral lung injury. Donor arterial oxygen tension, (inspired oxygen fraction 1.0; positive end-expiratory pressure 5 cm H2O) was below the accepted level in each case (246 +/- 47 mm Hg, mean +/- standard deviation). Through the sternotomy used for multiple organ harvest, the pulmonary artery to the injured lung was clamped. A double-lumen endotracheal tube or endobronchial balloon occlusion catheter was used to permit ventilation of the uninjured lung alone. A second measurement of arterial oxygen tension (inspired oxygen fraction 1.0; positive end-expiratory pressure 5 cm H2O) revealed excellent unilateral lung function in all four cases (499.5 +/- 43 mm Hg; p less than 0.0004). These single lung grafts (three right, one left) were transplanted uneventfully into four recipients (three with pulmonary fibrosis and one with primary pulmonary hypertension). Lung function early after transplantation was adequate in all patients. Two patients were extubated within 24 hours. There were two late deaths, one caused by rejection and Aspergillus infection and the other caused by cytomegalovirus 6 months after transplantation. Two patients are alive and doing well. We conclude that assessment of unilateral lung function in potential lung donors is indicated in selected cases, may be quickly and easily performed, and may significantly increase the availability of single lung grafts.
Sustained Effects of Sirolimus on Lung Function and Cystic Lung Lesions in Lymphangioleiomyomatosis
Yao, Jianhua; Jones, Amanda M.; Julien-Williams, Patricia; Stylianou, Mario; Moss, Joel
2014-01-01
Rationale: Sirolimus therapy stabilizes lung function and reduces the size of chylous effusions and lymphangioleiomyomas in patients with lymphangioleiomyomatosis. Objectives: To determine whether sirolimus has beneficial effects on lung function, cystic areas, and adjacent lung parenchyma; whether these effects are sustained; and whether sirolimus is well tolerated by patients. Methods: Lung function decline over time, lung volume occupied by cysts (cyst score), and lung tissue texture in the vicinity of the cysts were quantified with a computer-aided diagnosis system in 38 patients. Then we compared cyst scores from the last study on sirolimus with studies done on sirolimus therapy. In 12 patients, we evaluated rates of change in lung function and cyst scores off and on sirolimus. Measurements and Main Results: Sirolimus reduced yearly declines in FEV1 (−2.3 ± 0.1 vs. 1.0 ± 0.3% predicted; P < 0.001) and diffusing capacity of carbon monoxide (−2.6 ± 0.1 vs. 0.9 ± 0.2% predicted; P < 0.001). Cyst scores 1.2 ± 0.8 years (30.5 ± 11.9%) and 2.5 ± 2 years (29.7 ± 12.1%) after initiating sirolimus were not significantly different from pretreatment values (28.4 ± 12.5%). In 12 patients followed for 5 years, a significant reduction in rates of yearly decline in FEV1 (−1.4 ± 0.2 vs. 0.3 ± 0.4% predicted; P = 0.025) was observed. Analyses of 104 computed tomography scans showed a nonsignificant (P = 0.23) reduction in yearly rates of change of cyst scores (1.8 ± 0.2 vs. 0.3 ± 0.3%; P = 0.23) and lung texture features. Despite adverse events, most patients were able to continue sirolimus therapy. Conclusions: Sirolimus therapy slowed down lung function decline and increase in cystic lesions. Most patients were able to tolerate sirolimus therapy. PMID:25329516
Serum Methylarginines and Spirometry-Measured Lung Function in Older Adults
McEvoy, Mark A.; Schofield, Peter W.; Smith, Wayne T.; Agho, Kingsley; Mangoni, Arduino A.; Soiza, Roy L.; Peel, Roseanne; Hancock, Stephen J.; Carru, Ciriaco; Zinellu, Angelo; Attia, John R.
2013-01-01
Rationale Methylarginines are endogenous nitric oxide synthase inhibitors that have been implicated in animal models of lung disease but have not previously been examined for their association with spirometric measures of lung function in humans. Objectives This study measured serum concentrations of asymmetric and symmetric dimethylarginine in a representative sample of older community-dwelling adults and determined their association with spirometric lung function measures. Methods Data on clinical, lifestyle, and demographic characteristics, methylated arginines, and L-arginine (measured using LC-MS/MS) were collected from a population-based sample of older Australian adults from the Hunter Community Study. The five key lung function measures included as outcomes were Forced Expiratory Volume in 1 second, Forced Vital Capacity, Forced Expiratory Volume in 1 second to Forced Vital Capacity ratio, Percent Predicted Forced Expiratory Volume in 1 second, and Percent Predicted Forced Vital Capacity. Measurements and Main Results In adjusted analyses there were statistically significant independent associations between a) higher asymmetric dimethylarginine, lower Forced Expiratory Volume in 1 second and lower Forced Vital Capacity; and b) lower L-arginine/asymmetric dimethylarginine ratio, lower Forced Expiratory Volume in 1 second, lower Percent Predicted Forced Expiratory Volume in 1 second and lower Percent Predicted Forced Vital Capacity. By contrast, no significant associations were observed between symmetric dimethylarginine and lung function. Conclusions After adjusting for clinical, demographic, biochemical, and pharmacological confounders, higher serum asymmetric dimethylarginine was independently associated with a reduction in key measures of lung function. Further research is needed to determine if methylarginines predict the decline in lung function. PMID:23690915
DOE Office of Scientific and Technical Information (OSTI.GOV)
MCClay, Joseph L.; Adkins, Daniel E.; Isern, Nancy G.
2010-06-04
Chronic obstructive pulmonary disease (COPD), characterized by chronic airflow limitation, is a serious and growing public health concern. The major environmental risk factor for COPD is tobacco smoking, but the biological mechanisms underlying COPD are not well understood. In this study, we used proton nuclear magnetic resonance (1H-NMR) spectroscopy to identify and quantify metabolites associated with lung function in COPD. Plasma and urine were collected from 197 adults with COPD and from 195 adults without COPD. Samples were assayed using a 600 MHz NMR spectrometer, and the resulting spectra were analyzed against quantitative spirometric measures of lung function. After correctingmore » for false discoveries and adjusting for covariates (sex, age, smoking) several spectral regions in urine were found to be significantly associated with baseline lung function. These regions correspond to the metabolites trigonelline, hippurate and formate. Concentrations of each metabolite, standardized to urinary creatinine, were associated with baseline lung function (minimum p-value = 0.0002 for trigonelline). No significant associations were found with plasma metabolites. Two of the three urinary metabolites positively associated with baseline lung function, i.e. hippurate and formate, are often related to gut microflora. This suggests that the microbiome composition is variable between individuals with different lung function. Alternatively, the nature and origins of all three associated metabolites may reflect lifestyle differences affecting overall health. Our results will require replication and validation, but demonstrate the utility of NMR metabolomics as a screening tool for identifying novel biomarkers of lung disease or disease risk.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, R.F.; Pickrell, J.A.; Jones, R.K.
1988-10-01
The effect of long-term (24 months) inhalation of diesel exhaust on the bronchoalveolar region of the respiratory tract of rodents was assessed by serial (every 6 months) analysis of bronchoalveolar lavage fluid (BALF) and of lung tissue from F344/Crl rats and CD-1 mice (both sexes) exposed to diesel exhaust diluted to contain 0, 0.35, 3.5, or 7.0 mg soot/m3. The purpose of the study was twofold. One was to assess the potential health effects of inhaling diluted exhaust from light-duty diesel engines. The second was to determine the usefulness of BALF analysis in detecting the early stages in the developmentmore » of nononcogenic lung disease and differentiating them from the normal repair processes. No biochemical or cytological changes in BALF or in lung tissue were noted in either species exposed to the lowest, and most environmentally relevant, concentration of diesel exhaust. In the two higher levels of exposure, a chronic inflammatory response was measured in both species by dose-dependent increases in inflammatory cells, cytoplasmic and lysosomal enzymes, and protein in BALF. Histologically, after 1 year of exposure, the rats had developed focal areas of fibrosis associated with the deposits of soot, while the mice, despite a higher lung burden of soot than the rats, had only a fine fibrillar thickening of an occasional alveolar septa in the high-level exposure group. Higher increases in BALF beta-glucuronidase activity and in hydroxyproline content accompanied the greater degree of fibrosis in the rat. BALF levels of glutathione (GSH) and glutathione reductase activity increased in a dose-dependent fashion and were higher in mice than in rats. Lung tissue GSH was depleted in a dose-dependent fashion in rats but was slightly increased in mice.« less
NASA Astrophysics Data System (ADS)
Shimizu, Kenji; Ikura, Hirohiko; Ikezoe, Junpei; Nagareda, Tomofumi; Yagi, Naoto; Umetani, Keiji; Imai, Yutaka
2004-04-01
We have previously reported a synchrotron radiation (SR) microtomography system constructed at the bending magnet beamline at the SPring-8. This system has been applied to the lungs obtained at autopsy and inflated and fixed by Heitzman"s method. Normal lung and lung specimens with two different types of pathologic processes (fibrosis and emphysema) were included. Serial SR microtomographic images were stacked to yield the isotropic volumetric data with high-resolution (12 μm3 in voxel size). Within the air spaces of a subdivision of the acinus, each voxel is segmented three-dimensionally using a region growing algorithm ("rolling ball algorithm"). For each voxel within the segmented air spaces, two types of voxel coding have been performed: single-seeded (SS) coding and boundary-seeded (BS) coding, in which the minimum distance from an initial point as the only seed point and all object boundary voxels as a seed set were calculated and assigned as the code values to each voxel, respectively. With these two codes, combinations of surface rendering and volume rendering techniques were applied to visualize three-dimensional morphology of a subdivision of the acinus. Furthermore, sequentially filling process of air into a subdivision of the acinus was simulated under several conditions to visualize the ventilation procedure (air flow and diffusion). A subdivision of the acinus was reconstructed three-dimensionally, demonstrating the normal architecture of the human lung. Significant differences in appearance of ventilation procedure were observed between normal and two pathologic processes due to the alteration of the lung architecture. Three-dimensional reconstruction of the microstructure of a subdivision of the acinus and visualization of the ventilation procedure (air flow and diffusion) with SR microtomography would offer a new approach to study the morphology, physiology, and pathophysiology of the human respiratory system.
Secreted Phosphoprotein 1 Is a Determinant of Lung Function Development in Mice
Martin, Timothy M.; Concel, Vincent J.; Upadhyay, Swapna; Bein, Kiflai; Brant, Kelly A.; George, Leema; Mitra, Ankita; Thimraj, Tania A.; Fabisiak, James P.; Vuga, Louis J.; Fattman, Cheryl; Kaminski, Naftali; Schulz, Holger; Leikauf, George D.
2014-01-01
Secreted phosphoprotein 1 (Spp1) is located within quantitative trait loci associated with lung function that was previously identified by contrasting C3H/HeJ and JF1/Msf mouse strains that have extremely divergent lung function. JF1/Msf mice with diminished lung function had reduced lung SPP1 transcript and protein during the peak stage of alveologenesis (postnatal day [P]14–P28) as compared with C3H/HeJ mice. In addition to a previously identified genetic variant that altered runt-related transcription factor 2 (RUNX2) binding in the Spp1 promoter, we identified another promoter variant in a putative RUNX2 binding site that increased the DNA protein binding. SPP1 induced dose-dependent mouse lung epithelial-15 cell proliferation. Spp1(−/−) mice have decreased specific total lung capacity/body weight, higher specific compliance, and increased mean airspace chord length (Lm) compared with Spp1(+/+) mice. Microarray analysis revealed enriched gene ontogeny categories, with numerous genes associated with lung development and/or respiratory disease. Insulin-like growth factor 1, Hedgehog-interacting protein, wingless-related mouse mammary tumor virus integration site 5A, and NOTCH1 transcripts decreased in the lung of P14 Spp1(−/−) mice as determined by quantitative RT-PCR analysis. SPP1 promotes pneumocyte growth, and mice lacking SPP1 have smaller, more compliant lungs with enlarged airspace (i.e., increased Lm). Microarray analysis suggests a dysregulation of key lung developmental transcripts in gene-targeted Spp1(−/−) mice, particularly during the peak phase of alveologenesis. In addition to its known roles in lung disease, this study supports SPP1 as a determinant of lung development in mice. PMID:24816281
Xu, Dandan; Zhang, Yi; Zhou, Lian; Li, Tiantian
2018-03-17
The association between exposure to ambient particulate matter (PM) and reduced lung function parameters has been reported in many works. However, few studies have been conducted in developing countries with high levels of air pollution like China, and little attention has been paid to the acute effects of short-term exposure to air pollution on lung function. The study design consisted of a panel comprising 86 children from the same school in Nanjing, China. Four measurements of lung function were performed. A mixed-effects regression model with study participant as a random effect was used to investigate the relationship between PM 2.5 and lung function. An increase in the current day, 1-day and 2-day moving average PM 2.5 concentration was associated with decreases in lung function indicators. The greatest effect of PM 2.5 on lung function was detected at 1-day moving average PM 2.5 exposure. An increase of 10 μg/m 3 in the 1-day moving average PM 2.5 concentration was associated with a 23.22 mL decrease (95% CI: 13.19, 33.25) in Forced Vital Capacity (FVC), a 18.93 mL decrease (95% CI: 9.34, 28.52) in 1-s Forced Expiratory Volume (FEV 1 ), a 29.38 mL/s decrease (95% CI: -0.40, 59.15) in Peak Expiratory Flow (PEF), and a 27.21 mL/s decrease (95% CI: 8.38, 46.04) in forced expiratory flow 25-75% (FEF 25-75% ). The effects of PM 2.5 on lung function had significant lag effects. After an air pollution event, the health effects last for several days and we still need to pay attention to health protection.
Zarogoulidis, Paul; Kerenidi, Theodora; Huang, Haidong; Kontakiotis, Theodoros; Tremma, Ourania; Porpodis, Konstantinos; Kalianos, Anastasios; Rapti, Ageliki; Foroulis, Christoforos; Zissimopoulos, Athanasios; Courcoutsakis, Nikolaos; Zarogoulidis, Konstantinos
2012-12-01
Several studies have demonstrated that reduced lung function is a significant risk factor for lung cancer and increased surgical risk in patients with operable stages of lung cancer. The aim of the study was to perform pulmonary function tests and investigate which is a favorable respiratory function test for overall survival between lung cancer stages. Lung function tests were performed to lung cancer patients with non-small cell lung cancer of stage I, II, III and IV (241 patients in total). They had the last follow-up consecutively between December 2006 and July 2008. The staging was decided according to the sixth edition of TNM classification of NSCLC. The Forced Expiratory Volume in 1sec (FEV1), Forced Vital Capacity (FVC) and Carbon Monoxide Diffusing Capacity (DLCO) were measured according to American Thoracic Society/European Respiratory Society guidelines. The 6 Minute Walking Test (6MWT) was measured according to the American Thoracic Society. There was a significant association of the DLCO upon diagnosis and overall survival for stage II (P<0.007) and IV (P<0.003). Furthermore, there was a significant association between 6MWT and overall survival for stage III (P<0.001) and stage IV (P<0.010). The significance for each lung function test is different among the stages of NSCLC. DLCO and 6MWT upon admission are the most valuable prognostic factors for overall survival of NSCLC.
Singh, Brijendra; Kasam, Rajesh K; Sontake, Vishwaraj; Wynn, Thomas A; Madala, Satish K
2017-11-01
IL-4 and IL-13 are major T-helper cell (Th) 2 cytokines implicated in the pathogenesis of several lung diseases, including pulmonary fibrosis. In this study, using a novel repetitive intradermal bleomycin model in which mice develop extensive lung fibrosis and a progressive decline in lung function compared with saline-treated control mice, we investigated profibrotic functions of Th2 cytokines. To determine the role of IL-13 signaling in the pathogenesis of bleomycin-induced pulmonary fibrosis, wild-type, IL-13, and IL-4Rα-deficient mice were treated with bleomycin, and lungs were assessed for changes in lung function and pulmonary fibrosis. Histological staining and lung function measurements demonstrated that collagen deposition and lung function decline were attenuated in mice deficient in either IL-13 or IL-4Rα-driven signaling compared with wild-type mice treated with bleomycin. Furthermore, our results demonstrated that IL-13 and IL-4Rα-driven signaling are involved in excessive migration of macrophages and fibroblasts. Notably, our findings demonstrated that IL-13-driven migration involves increased phospho-focal adhesion kinase signaling and F-actin polymerization. Importantly, in vivo findings demonstrated that IL-13 augments matrix metalloproteinase (MMP)-2 and MMP9 activity that has also been shown to increase migration and invasiveness of fibroblasts in the lungs during bleomycin-induced pulmonary fibrosis. Together, our findings demonstrate a pathogenic role for Th2-cytokine signaling that includes excessive migration and protease activity involved in severe fibrotic lung disease.
2017-04-12
Cachexia; Fatigue; Pulmonary Complications; Radiation Toxicity; Recurrent Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer
Das, Banibrata
2016-07-03
Brick manufacturing process releases large amounts of silica dust into the work environment due to the use of silica-containing materials. The main aim of the study was to investigate the impairment of lung function and prevalence of respiratory symptoms among the different groups of brick field workers in comparison with control subjects. A total of 250 brick field workers and 130 unexposed control subjects were randomly selected in which demographic characteristics, respiratory symptoms, and lung function values were recorded. The result showed significantly lower p value (<.001) in lung function and respiratory symptoms among brick field workers when compared with control group. The prevalence of respiratory symptoms was dyspnea (46.8%), phlegm (39.2%), and chest tightness (27.6%). Dust exposure in working environment affected the lung function values and increased the respiratory symptoms among the brick field workers.
D’Esposito, Mark
2017-01-01
Recent work has established that visual working memory is subject to serial dependence: current information in memory blends with that from the recent past as a function of their similarity. This tuned temporal smoothing likely promotes the stability of memory in the face of noise and occlusion. Serial dependence accumulates over several seconds in memory and deteriorates with increased separation between trials. While this phenomenon has been extensively characterized in behavior, its neural mechanism is unknown. In the present study, we investigate the circuit-level origins of serial dependence in a biophysical model of cortex. We explore two distinct kinds of mechanisms: stable persistent activity during the memory delay period and dynamic “activity-silent” synaptic plasticity. We find that networks endowed with both strong reverberation to support persistent activity and dynamic synapses can closely reproduce behavioral serial dependence. Specifically, elevated activity drives synaptic augmentation, which biases activity on the subsequent trial, giving rise to a spatiotemporally tuned shift in the population response. Our hybrid neural model is a theoretical advance beyond abstract mathematical characterizations, offers testable hypotheses for physiological research, and demonstrates the power of biological insights to provide a quantitative explanation of human behavior. PMID:29244810
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welzel, Grit; Fleckenstein, Katharina; Department of Radiation Oncology, Duke University Medical Center, Durham, NC
2008-12-01
Purpose: To prospectively compare the effect of prophylactic and therapeutic whole brain radiotherapy (WBRT) on memory function in patients with and without brain metastases. Methods and Materials: Adult patients with and without brain metastases (n = 44) were prospectively evaluated with serial cognitive testing, before RT (T0), after starting RT (T1), at the end of RT (T2), and 6-8 weeks (T3) after RT completion. Data were obtained from small-cell lung cancer patients treated with prophylactic cranial irradiation, patients with brain metastases treated with therapeutic cranial irradiation (TCI), and breast cancer patients treated with RT to the breast. Results: Before therapy,more » prophylactic cranial irradiation patients performed worse than TCI patients or than controls on most test scores. During and after WBRT, verbal memory function was influenced by pretreatment cognitive status (p < 0.001) and to a lesser extent by WBRT. Acute (T1) radiation effects on verbal memory function were only observed in TCI patients (p = 0.031). Subacute (T3) radiation effects on verbal memory function were observed in both TCI and prophylactic cranial irradiation patients (p = 0.006). These effects were more pronounced in patients with above-average performance at baseline. Visual memory and attention were not influenced by WBRT. Conclusions: The results of our study have shown that WBRT causes cognitive dysfunction immediately after the beginning of RT in patients with brain metastases only. At 6-8 weeks after the end of WBRT, cognitive dysfunction was seen in patients with and without brain metastases. Because cognitive dysfunction after WBRT is restricted to verbal memory, patients should not avoid WBRT because of a fear of neurocognitive side effects.« less
Variable tidal volumes improve lung protective ventilation strategies in experimental lung injury.
Spieth, Peter M; Carvalho, Alysson R; Pelosi, Paolo; Hoehn, Catharina; Meissner, Christoph; Kasper, Michael; Hübler, Matthias; von Neindorff, Matthias; Dassow, Constanze; Barrenschee, Martina; Uhlig, Stefan; Koch, Thea; de Abreu, Marcelo Gama
2009-04-15
Noisy ventilation with variable Vt may improve respiratory function in acute lung injury. To determine the impact of noisy ventilation on respiratory function and its biological effects on lung parenchyma compared with conventional protective mechanical ventilation strategies. In a porcine surfactant depletion model of lung injury, we randomly combined noisy ventilation with the ARDS Network protocol or the open lung approach (n = 9 per group). Respiratory mechanics, gas exchange, and distribution of pulmonary blood flow were measured at intervals over a 6-hour period. Postmortem, lung tissue was analyzed to determine histological damage, mechanical stress, and inflammation. We found that, at comparable minute ventilation, noisy ventilation (1) improved arterial oxygenation and reduced mean inspiratory peak airway pressure and elastance of the respiratory system compared with the ARDS Network protocol and the open lung approach, (2) redistributed pulmonary blood flow to caudal zones compared with the ARDS Network protocol and to peripheral ones compared with the open lung approach, (3) reduced histological damage in comparison to both protective ventilation strategies, and (4) did not increase lung inflammation or mechanical stress. Noisy ventilation with variable Vt and fixed respiratory frequency improves respiratory function and reduces histological damage compared with standard protective ventilation strategies.
Effects of Aspergillus fumigatus colonization on lung function in cystic fibrosis.
Speirs, Jennifer J; van der Ent, Cornelis K; Beekman, Jeffrey M
2012-11-01
Aspergillus fumigatus is frequently isolated from cystic fibrosis (CF) patients and is notorious for its role in the debilitating condition of allergic bronchopulmonary aspergillosis (ABPA). Although CF patients suffer from perpetual microorganism-related lung disease, it is unclear whether A. fumigatus colonization has a role in causing accelerated lung function decline and whether intervention is necessary. A. fumigatus morbidity appears to be related to cystic fibrosis transmembrane conductance regulator-dependant function of the innate immune system. A. fumigatus-colonized patients have a lower lung capacity, more frequent hospitalizations and more prominent radiological abnormalities than noncolonized patients. Treatment with antifungal agents can be of value but has several drawbacks and a direct effect on lung function is yet to be shown. A. fumigatus appears to have an important role in CF lung disease, not exclusive to the context of ABPA. However, a causal relationship still needs to be confirmed. Study observations and trends indicate a need to further elucidate the mechanisms of A. fumigatus interactions with the host innate immune system and its role in CF lung morbidity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp; Doi, Yoshiko; Nakashima, Takeo
2015-11-15
Purpose: The purpose of this study was to prospectively investigate clinical correlations between dosimetric parameters associated with radiation pneumonitis (RP) and functional lung imaging. Methods and Materials: Functional lung imaging was performed using four-dimensional computed tomography (4D-CT) for ventilation imaging, single-photon emission computed tomography (SPECT) for perfusion imaging, or both (V/Q-matched region). Using 4D-CT, ventilation imaging was derived from a low attenuation area according to CT numbers below different thresholds (vent-860 and -910). Perfusion imaging at the 10th, 30th, 50th, and 70th percentile perfusion levels (F10-F70) were defined as the top 10%, 30%, 50%, and 70% hyperperfused normal lung, respectively.more » All imaging data were incorporated into a 3D planning system to evaluate correlations between RP dosimetric parameters (where fV20 is the percentage of functional lung volume irradiated with >20 Gy, or fMLD, the mean dose administered to functional lung) and the percentage of functional lung volume. Radiation pneumonitis was evaluated using Common Terminology Criteria for Adverse Events version 4.0. Statistical significance was defined as a P value of <.05. Results: Sixty patients who underwent curative radiation therapy were enrolled (48 patients for non-small cell lung cancer, and 12 patients for small cell lung cancer). Grades 1, 2, and ≥3 RP were observed in 16, 44, and 6 patients, respectively. Significant correlations were observed between the percentage of functional lung volume and fV20 (r=0.4475 in vent-860 and 0.3508 in F30) or fMLD (r=0.4701 in vent-860 and 0.3128 in F30) in patients with grade ≥2 RP. F30∩vent-860 results exhibited stronger correlations with fV20 and fMLD in patients with grade ≥2 (r=0.5509 in fV20 and 0.5320 in fMLD) and grade ≥3 RP (r=0.8770 in fV20 and 0.8518 in fMLD). Conclusions: RP dosimetric parameters correlated significantly with functional lung imaging.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brennan, Douglas; Schubert, Leah; Diot, Quentin
Purpose: A new form of functional imaging has been proposed in the form of 4-dimensional computed tomography (4DCT) ventilation. Because 4DCTs are acquired as part of routine care for lung cancer patients, calculating ventilation maps from 4DCTs provides spatial lung function information without added dosimetric or monetary cost to the patient. Before 4DCT-ventilation is implemented it needs to be clinically validated. Pulmonary function tests (PFTs) provide a clinically established way of evaluating lung function. The purpose of our work was to perform a clinical validation by comparing 4DCT-ventilation metrics with PFT data. Methods and Materials: Ninety-eight lung cancer patients withmore » pretreatment 4DCT and PFT data were included in the study. Pulmonary function test metrics used to diagnose obstructive lung disease were recorded: forced expiratory volume in 1 second (FEV1) and FEV1/forced vital capacity. Four-dimensional CT data sets and spatial registration were used to compute 4DCT-ventilation images using a density change–based and a Jacobian-based model. The ventilation maps were reduced to single metrics intended to reflect the degree of ventilation obstruction. Specifically, we computed the coefficient of variation (SD/mean), ventilation V20 (volume of lung ≤20% ventilation), and correlated the ventilation metrics with PFT data. Regression analysis was used to determine whether 4DCT ventilation data could predict for normal versus abnormal lung function using PFT thresholds. Results: Correlation coefficients comparing 4DCT-ventilation with PFT data ranged from 0.63 to 0.72, with the best agreement between FEV1 and coefficient of variation. Four-dimensional CT ventilation metrics were able to significantly delineate between clinically normal versus abnormal PFT results. Conclusions: Validation of 4DCT ventilation with clinically relevant metrics is essential. We demonstrate good global agreement between PFTs and 4DCT-ventilation, indicating that 4DCT-ventilation provides a reliable assessment of lung function. Four-dimensional CT ventilation enables exciting opportunities to assess lung function and create functional avoidance radiation therapy plans. The present work provides supporting evidence for the integration of 4DCT-ventilation into clinical trials.« less
NASA Astrophysics Data System (ADS)
Zeng, Xiao-Wen; Vivian, Elaina; Mohammed, Kahee A.; Jakhar, Shailja; Vaughn, Michael; Huang, Jin; Zelicoff, Alan; Xaverius, Pamela; Bai, Zhipeng; Lin, Shao; Hao, Yuan-Tao; Paul, Gunther; Morawska, Lidia; Wang, Si-Quan; Qian, Zhengmin; Dong, Guang-Hui
2016-08-01
Epidemiological studies have reported inconsistent and inconclusive associations between long-term exposure to ambient air pollution and lung function in children from Europe and America, where air pollution levels were typically low. The aim of the present study is to examine the relationship between air pollutants and lung function in children selected from heavily industrialized and polluted cities in northeastern China. During 2012, 6740 boys and girls aged 7-14 years were recruited in 24 districts of seven northeastern cities. Portable electronic spirometers were used to measure lung function. Four-year average concentrations of particulate matter with an aerodynamic diameter ≤10 μm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3) were measured at monitoring stations in the 24 districts. Two-staged regression models were used in the data analysis, controlling for covariates. Overall, for all subjects, the increased odds of lung function impairment associated with exposure to air pollutants, ranged from 5% (adjusted odds ratio [aOR] = 1.05; 95% confidence interval [CI] = 1.01, 1.10) for FVC < 85% predicted per 46.3 μg/m3 for O3 to 81% (aOR = 1.81; 95%CI = 1.44, 2.28) for FEV1 < 85% predicted per 30.6 μg/m3 for PM10. The linear regression models consistently showed a negative relationship between all air pollutants and lung function measures across subjects. There were significant interaction terms indicating gender differences for lung function impairment and pulmonary function from exposure to some pollutants (P < 0.10). In conclusion, long term exposure to high concentrations of ambient air pollution is associated with decreased pulmonary function and lung function impairment, and females appear to be more susceptible than males.
Cheng, Hang; Jin, Chengyan; Wu, Jing; Zhu, Shan; Liu, Yong-Jun; Chen, Jingtao
2017-12-01
The lung is an important open organ and the primary site of respiration. Many life-threatening diseases develop in the lung, e.g., pneumonia, asthma, chronic obstructive pulmonary diseases (COPDs), pulmonary fibrosis, and lung cancer. In the lung, innate immunity serves as the frontline in both anti-irritant response and anti-tumor defense and is also critical for mucosal homeostasis; thus, it plays an important role in containing these pulmonary diseases. Innate lymphoid cells (ILCs), characterized by their strict tissue residence and distinct function in the mucosa, are attracting increased attention in innate immunity. Upon sensing the danger signals from damaged epithelium, ILCs activate, proliferate, and release numerous cytokines with specific local functions; they also participate in mucosal immune-surveillance, immune-regulation, and homeostasis. However, when their functions become uncontrolled, ILCs can enhance pathological states and induce diseases. In this review, we discuss the physiological and pathological functions of ILC subsets 1 to 3 in the lung, and how the pathogenic environment affects the function and plasticity of ILCs.
Involvement of MicroRNAs in Lung Cancer Biology and Therapy
Liu, Xi; Sempere, Lorenzo F.; Guo, Yongli; Korc, Murray; Kauppinen, Sakari; Freemantle, Sarah J.; Dmitrovsky, Ethan
2011-01-01
MicroRNAs (miRNAs) are a class of small RNAs that regulate gene expression. Expression profiles of specific miRNAs have improved cancer diagnosis and classification and even provided prognostic information in many human cancers, including lung cancer. Tumor suppressive and oncogenic miRNAs were uncovered in lung carcinogenesis. The biological functions of these miRNAs in lung cancer were recently validated in well characterized cellular, murine transgenic as well as transplantable lung cancer models and in human paired normal-malignant lung tissue banks and tissue arrays. Tumor suppressive and oncogenic miRNAs that were identified in lung cancer will be reviewed here. Emphasis is placed on highlighting those functionally validated miRNAs that are not only biomarkers of lung carcinogenesis, but also candidate pharmacologic targets. How these miRNA findings advance an understanding of lung cancer biology and could improve lung cancer therapy are discussed in this article. PMID:21420030
A prospective study of decline in lung function in relation to welding emissions.
Christensen, Sigve W; Bonde, Jens Peter; Omland, Oyvind
2008-02-26
Numerous cross-sectional studies have reported reduced lung function among welders but limitations of exposure assessment and design preclude causal inference. The aim of this study was to investigate if long-term exposure to welding fume particulates accelerates the age-related decline in lung function. Lung function was measured by spirometry in 1987 and 2004 among 68 steel welders and 32 non-welding production workers. The decline in forced expiratory volume (FEV1) was analysed in relation to cumulated exposure to fume particulates among welders during the follow-up period. Among smokers the decline in FEV1 through follow-up period was in average 150 ml larger among welders than non-welders while the difference was negligible among non-smokers. The results did not reach statistical significance and within welders the decline in lung function was not related to the cumulated welding particulate exposure during follow-up period Long-term exposure to welding emissions may accelerate the age-related decline of lung function but at exposure levels in the range of 1.5 to 6.5 mg/m3 the average annual excess loss of FEV1 is unlikely to exceed 25 ml in smokers and 10 ml in non-smokers.
Lung function and exhaled nitric oxide in healthy unsedated African infants
Gray, Diane; Willemse, Lauren; Visagie, Ane; Smith, Emilee; Czövek, Dorottya; Sly, Peter D; Hantos, Zoltán; Hall, Graham L; Zar, Heather J
2015-01-01
Background and objective Population-appropriate lung function reference data are essential to accurately identify respiratory disease and measure response to interventions. There are currently no reference data in African infants. The aim was to describe normal lung function in healthy African infants. Methods Lung function was performed on healthy South African infants enrolled in a birth cohort study, the Drakenstein child health study. Infants were excluded if they were born preterm or had a history of neonatal respiratory distress or prior respiratory tract infection. Measurements, made during natural sleep, included the forced oscillation technique, tidal breathing, exhaled nitric oxide and multiple breath washout measures. Results Three hundred sixty-three infants were tested. Acceptable and repeatable measurements were obtained in 356 (98%) and 352 (97%) infants for tidal breathing analysis and exhaled nitric oxide outcomes, 345 (95%) infants for multiple breath washout and 293 of the 333 (88%) infants for the forced oscillation technique. Age, sex and weight-for-age z score were significantly associated with lung function measures. Conclusions This study provides reference data for unsedated infant lung function in African infants and highlights the importance of using population-specific data. PMID:26134556
Interactions Between Secondhand Smoke and Genes That Affect Cystic Fibrosis Lung Disease
Collaco, J. Michael; Vanscoy, Lori; Bremer, Lindsay; McDougal, Kathryn; Blackman, Scott M.; Bowers, Amanda; Naughton, Kathleen; Jennings, Jacky; Ellen, Jonathan; Cutting, Garry R.
2011-01-01
Context Disease variation can be substantial even in conditions with a single gene etiology such as cystic fibrosis (CF). Simultaneously studying the effects of genes and environment may provide insight into the causes of variation. Objective To determine whether secondhand smoke exposure is associated with lung function and other outcomes in individuals with CF, whether socioeconomic status affects the relationship between secondhand smoke exposure and lung disease severity, and whether specific gene-environment interactions influence the effect of secondhand smoke exposure on lung function. Design, Setting, and Participants Retrospective assessment of lung function, stratified by environmental and genetic factors. Data were collected by the US Cystic Fibrosis Twin and Sibling Study with missing data supplemented by the Cystic Fibrosis Foundation Data Registry. All participants were diagnosed with CF, were recruited between October 2000 and October 2006, and were primarily from the United States. Main Outcome Measures Disease-specific cross-sectional and longitudinal measures of lung function. Results Of 812 participants with data on secondhand smoke in the home, 188 (23.2%) were exposed. Of 780 participants with data on active maternal smoking during gestation, 129 (16.5%) were exposed. Secondhand smoke exposure in the home was associated with significantly lower cross-sectional (9.8 percentile point decrease; P<.001) and longitudinal lung function (6.1 percentile point decrease; P=.007) compared with those not exposed. Regression analysis demonstrated that socioeconomic status did not confound the adverse effect of secondhand smoke exposure on lung function. Interaction between gene variants and secondhand smoke exposure resulted in significant percentile point decreases in lung function, namely in CFTR non-ΔF508 homozygotes (12.8 percentile point decrease; P=.001), TGFβ1-509 TT homozygotes (22.7 percentile point decrease; P=.006), and TGFβ1 codon 10 CC homozygotes (20.3 percentile point decrease; P=.005). Conclusions Any exposure to secondhand smoke adversely affects both cross-sectional and longitudinal measures of lung function in individuals with CF. Variations in the gene that causes CF (CFTR) and a CF-modifier gene (TGFβ1) amplify the negative effects of secondhand smoke exposure. PMID:18230779
Early respiratory infection is associated with reduced spirometry in children with cystic fibrosis.
Ramsey, Kathryn A; Ranganathan, Sarath; Park, Judy; Skoric, Billy; Adams, Anne-Marie; Simpson, Shannon J; Robins-Browne, Roy M; Franklin, Peter J; de Klerk, Nick H; Sly, Peter D; Stick, Steve M; Hall, Graham L
2014-11-15
Pulmonary inflammation, infection, and structural lung disease occur early in life in children with cystic fibrosis. We hypothesized that the presence of these markers of cystic fibrosis lung disease in the first 2 years of life would be associated with reduced lung function in childhood. Lung function (forced expiratory volume in the first three-quarters of a second [FEV0.75], FVC) was assessed in individuals with cystic fibrosis diagnosed after newborn screening and healthy subjects during infancy (0-2 yr) and again at early school age (4-8 yr). Individuals with cystic fibrosis underwent annual bronchoalveolar lavage fluid examination, and chest computed tomography. We examined which clinical outcomes (pulmonary inflammation, infection, structural lung disease, respiratory hospitalizations, antibiotic prophylaxis) measured in the first 2 years of life were associated with reduced lung function in infants and young children with cystic fibrosis, using a mixed effects model. Children with cystic fibrosis (n = 56) had 8.3% (95% confidence interval [CI], -15.9 to -6.6; P = 0.04) lower FEV0.75 compared with healthy subjects (n = 18). Detection of proinflammatory bacterial pathogens (Pseudomonas aeruginosa, Staphylococcus aureus, Haemophilus influenzae, Aspergillus species, Streptococcus pneumoniae) in bronchoalveolar lavage fluid was associated with clinically significant reductions in FEV0.75 (ranging between 11.3 and 15.6%). The onset of lung disease in infancy, specifically the occurrence of lower respiratory tract infection, is associated with low lung function in young children with cystic fibrosis. Deficits in lung function measured in infancy persist into childhood, emphasizing the need for targeted therapeutic interventions in infancy to maximize functional outcomes later in life.
The neural signature of emotional memories in serial crimes.
Chassy, Philippe
2017-10-01
Neural plasticity is the process whereby semantic information and emotional responses are stored in neural networks. It is hypothesized that the neural networks built over time to encode the sexual fantasies that motivate serial killers to act should display a unique, detectable activation pattern. The pathological neural watermark hypothesis posits that such networks comprise activation of brain sites that reflect four cognitive components: autobiographical memory, sexual arousal, aggression, and control over aggression. The neural sites performing these cognitive functions have been successfully identified by previous research. The key findings are reviewed to hypothesise the typical pattern of activity that serial killers should display. Through the integration of biological findings into one framework, the neural approach proposed in this paper is in stark contrast with the many theories accounting for serial killers that offer non-medical taxonomies. The pathological neural watermark hypothesis offers a new framework to understand and detect deviant individuals. The technical and legal issues are briefly discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Egli, Simone C; Beck, Irene R; Berres, Manfred; Foldi, Nancy S; Monsch, Andreas U; Sollberger, Marc
2014-10-01
It is unclear whether the predictive strength of established cognitive variables for progression to Alzheimer's disease (AD) dementia from mild cognitive impairment (MCI) varies depending on time to conversion. We investigated which cognitive variables were best predictors, and which of these variables remained predictive for patients with longer times to conversion. Seventy-five participants with MCI were assessed on measures of learning, memory, language, and executive function. Relative predictive strengths of these measures were analyzed using Cox regression models. Measures of word-list position-namely, serial position scores-together with Short Delay Free Recall of word-list learning best predicted conversion to AD dementia. However, only serial position scores predicted those participants with longer time to conversion. Results emphasize that the predictive strength of cognitive variables varies depending on time to conversion to dementia. Moreover, finer measures of learning captured by serial position scores were the most sensitive predictors of AD dementia. Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
Central attention is serial, but midlevel and peripheral attention are parallel-A hypothesis.
Tamber-Rosenau, Benjamin J; Marois, René
2016-10-01
In this brief review, we argue that attention operates along a hierarchy from peripheral through central mechanisms. We further argue that these mechanisms are distinguished not just by their functional roles in cognition, but also by a distinction between serial mechanisms (associated with central attention) and parallel mechanisms (associated with midlevel and peripheral attention). In particular, we suggest that peripheral attentional deployments in distinct representational systems may be maintained simultaneously with little or no interference, but that the serial nature of central attention means that even tasks that largely rely on distinct representational systems will come into conflict when central attention is demanded. We go on to review both the behavioral and neural evidence for this prediction. We conclude that even though the existing evidence mostly favors our account of serial central and parallel noncentral attention, we know of no experiment that has conclusively borne out these claims. As such, this article offers a framework of attentional mechanisms that will aid in guiding future research on this topic.
Mokra, D; Kosutova, P; Balentova, S; Adamkov, M; Mikolka, P; Mokry, J; Antosova, M; Calkovska, A
2016-12-01
Diffuse alveolar injury, edema, and inflammation are fundamental signs of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Whereas the systemic administration of corticosteroids previously led to controversial results, this study evaluated if corticosteroids given intratracheally may improve lung functions and reduce edema formation, migration of cells into the lung and their activation in experimentally-induced ALI. In oxygen-ventilated rabbits, ALI was induced by repetitive saline lung lavage, until PaO2 decreased to < 26.7 kPa in FiO 2 1.0. Then, one group of animals was treated with corticosteroid budesonide (Pulmicort susp inh, AstraZeneca; 0.25 mg/kg) given intratracheally by means of inpulsion regime of high-frequency jet ventilation, while another group was non-treated, and both groups were oxygen-ventilated for following 5 hours. Another group of animals served as healthy controls. After sacrifice of animals, left lung was saline-lavaged and protein content was measured and cells in the lavage fluid were determined microscopically. Right lung tissue was used for estimation of edema formation (expressed as wet/dry weight ratio), for histomorphological investigation, immunohistochemical determination of apoptosis of lung cells, and for determination of markers of inflammation and lung injury (IL-1β, IL-6, IL-8, TNF-α, IFNγ, esRAGE, caspase-3) by ELISA methods. Levels of several cytokines were estimated also in plasma. Repetitive lung lavage worsened gas exchange, induced lung injury, inflammation and lung edema and increased apoptosis of lung epithelial cells. Budesonide reduced lung edema, cell infiltration into the lung and apoptosis of epithelial cells and decreased concentrations of proinflammatory markers in the lung and blood. These changes resulted in improved ventilation. Concluding, curative intratracheal treatment with budesonide alleviated lung injury, inflammation, apoptosis of lung epithelial cells and lung edema and improved lung functions in a lavage model of ALI. These findings suggest a potential of therapy with inhaled budesonide also for patients with ARDS.
Quist, Morten; Langer, Seppo W; Rørth, Mikael; Christensen, Karl Bang; Adamsen, Lis
2013-10-14
Lung cancer is the leading cause of cancer death in North America and Western Europe. Patients with lung cancer in general have reduced physical capacity, functional capacity, poor quality of life and increased levels of anxiety and depression. Intervention studies indicate that physical training can address these issues. However, there is a lack of decisive evidence regarding the effect of physical exercise in patients with advanced lung cancer. The aim of this study is to evaluate the effects of a twelve weeks, twice weekly program consisting of: supervised, structured training in a group of advanced lung cancer patients (cardiovascular and strength training, relaxation). A randomized controlled trial will test the effects of the exercise intervention in 216 patients with advanced lung cancer (non-small cell lung cancer (NSCLC) stage IIIb-IV and small cell lung cancer (SCLC) extensive disease (ED)). Primary outcome is maximal oxygen uptake (VO₂peak). Secondary outcomes are muscle strength (1RM), functional capacity (6MWD), lung capacity (Fev1) and patient reported outcome (including anxiety, depression (HADS) and quality of life (HRQOL)). The present randomized controlled study will provide data on the effectiveness of a supervised exercise intervention in patients receiving systemic therapy for advanced lung cancer. It is hoped that the intervention can improve physical capacity and functional level, during rehabilitation of cancer patients with complex symptom burden and help them to maintain independent function for as long as possible. http://ClinicalTrials.gov, NCT01881906.
Zeng, Xiang; Xu, Xijin; Boezen, H Marike; Vonk, Judith M; Wu, Weidong; Huo, Xia
2017-11-01
Blood lead (Pb) and cadmium (Cd) levels have been associated with lower lung function in adults and smokers, but whether this also holds for children from electronic waste (e-waste) recycling areas is still unknown. To investigate the contribution of blood heavy metals and lung function levels, and the relationship among living area, the blood parameter levels, and the lung function levels, a total of 206 preschool children from Guiyu (exposed area), and Haojiang and Xiashan (reference areas) were recruited and required to undergo blood tests and lung function tests during the study period. Preschool children living in e-waste exposed areas were found to have a 1.37 μg/dL increase in blood Pb, 1.18 μg/L increase in blood Cd, and a 41.00 × 10 9 /L increase in platelet counts, while having a 2.82 g/L decrease in hemoglobin, 92 mL decrease in FVC and 86 mL decrease in FEV 1 . Each unit of hemoglobin (1 g/L) decline was associated with 5 mL decrease in FVC and 4 mL decrease in FEV 1 . We conclude that children living in e-waste exposed area have higher levels of blood Pb, Cd and platelets, and lower levels of hemoglobin and lung function. Hemoglobin can be a good predictor for lung function levels. Copyright © 2017 Elsevier Ltd. All rights reserved.
Benmerad, Meriem; Slama, Rémy; Botturi, Karine; Claustre, Johanna; Roux, Antoine; Sage, Edouard; Reynaud-Gaubert, Martine; Gomez, Carine; Kessler, Romain; Brugière, Olivier; Mornex, Jean-François; Mussot, Sacha; Dahan, Marcel; Boussaud, Véronique; Danner-Boucher, Isabelle; Dromer, Claire; Knoop, Christiane; Auffray, Annick; Lepeule, Johanna; Malherbe, Laure; Meleux, Frederik; Nicod, Laurent; Magnan, Antoine; Pison, Christophe; Siroux, Valérie
2017-01-01
An irreversible loss in lung function limits the long-term success in lung transplantation. We evaluated the role of chronic exposure to ambient air pollution on lung function levels in lung transplant recipients (LTRs).The lung function of 520 LTRs from the Cohort in Lung Transplantation (COLT) study was measured every 6 months. The levels of air pollutants (nitrogen dioxide (NO 2 ), particulate matter with an aerodynamic cut-off diameter of x µm (PM x ) and ozone (O 3 )) at the patients' home address were averaged in the 12 months before each spirometry test. The effects of air pollutants on forced expiratory volume in 1 s (FEV 1 ) and forced vital capacity (FVC) in % predicted were estimated using mixed linear regressions. We assessed the effect modification of macrolide antibiotics in this relationship.Increased 12-month levels of pollutants were associated with lower levels of FVC % pred (-2.56%, 95% CI -3.86--1.25 for 5 µg·m -3 of PM 10 ; -0.75%, 95% CI -1.38--0.12 for 2 µg·m -3 of PM 2.5 and -2.58%, 95% CI -4.63--0.53 for 10 µg·m -3 of NO 2 ). In patients not taking macrolides, the deleterious association between PM and FVC tended to be stronger and PM 10 was associated with lower FEV 1 Our study suggests a deleterious effect of chronic exposure to air pollutants on lung function levels in LTRs, which might be modified with macrolides. Copyright ©ERS 2017.
Perinatal stress and early life programming of lung structure and function
Wright, Rosalind J.
2010-01-01
Exposure to environmental toxins during critical periods of prenatal and/or postnatal development may alter the normal course of lung morphogenesis and maturation, potentially resulting in changes that affect both structure and function of the respiratory system. Moreover, these early effects may persist into adult life magnifying the potential public health impact. Aberrant or excessive pro-inflammatory immune responses, occurring both locally and systemically, that result in inflammatory damage to the airway are a central determinant of lung structure-function changes throughout life. Disruption of neuroendocrine function in early development, specifically the hypothalamic-pituitary-adrenal (HPA) axis, may alter functional status of the immune system. Autonomic nervous system (ANS) function (sympathovagal imbalance) is another integral component of airway function and immunity in childhood. This overview discusses the evidence linking psychological factors to alterations in these interrelated physiological processes that may, in turn, influence childhood lung function and identifies gaps in our understanding. PMID:20080145
Retinoic acid-induced alveolar cellular growth does not improve function after right pneumonectomy.
Dane, D Merrill; Yan, Xiao; Tamhane, Rahul M; Johnson, Robert L; Estrera, Aaron S; Hogg, Deborah C; Hogg, Richard T; Hsia, Connie C W
2004-03-01
To determine whether all-trans retinoic acid (RA) treatment enhances lung function during compensatory lung growth in fully mature animals, adult male dogs (n = 4) received 2 mg x kg(-1) x day(-1) po RA 4 days/wk beginning the day after right pneumonectomy (R-PNX, 55-58% resection). Litter-matched male R-PNX controls (n = 4) received placebo. After 3 mo, transpulmonary pressure (TPP)-lung volume relationship, diffusing capacities for carbon monoxide and nitric oxide, cardiac output, and septal volume (V(tiss-RB)) were measured under anesthesia by a rebreathing technique at two lung volumes. Lung air and tissue volumes (V(air-CT) and V(tiss-CT)) were also measured from high-resolution computerized tomographic (CT) scans at a constant TPP. In RA-treated dogs compared with controls, TPP-lung volume relationships were similar. Diffusing capacities for carbon monoxide and nitric oxide were significantly impaired at a lower lung volume but similar at a high lung volume. Whereas V(tiss-RB) was significantly lower at both lung volumes in RA-treated animals, V(air-CT) and V(tiss-CT) were not different between groups; results suggest uneven distribution of ventilation consistent with distortion of alveolar geometry and/or altered small airway function induced by RA. We conclude that RA does not improve resting pulmonary function during the early months after R-PNX despite histological evidence of its action in enhancing alveolar cellular growth in the remaining lung.
The remote controlling technique based on the serial port for SR-620 universal counter
NASA Astrophysics Data System (ADS)
Su, Jian-Feng; Chen, Shu-Fang; Li, Xiao-Hui; Wu, Hai-Tao; Bian, Yu-Jing
2004-12-01
The function of SR-620 universal counter and the remote work mode are introduced, and the remote controlling technique for the counter is analysed. A method to realize the remote controlling via the serial port for the counter is demonstrated, in which an ActiveX control is used. Besides, some points for attention in debugging are discussed based on the experience, and a case of program running for measuring time-delay is presented.
Language repetition and short-term memory: an integrative framework.
Majerus, Steve
2013-01-01
Short-term maintenance of verbal information is a core factor of language repetition, especially when reproducing multiple or unfamiliar stimuli. Many models of language processing locate the verbal short-term maintenance function in the left posterior superior temporo-parietal area and its connections with the inferior frontal gyrus. However, research in the field of short-term memory has implicated bilateral fronto-parietal networks, involved in attention and serial order processing, as being critical for the maintenance and reproduction of verbal sequences. We present here an integrative framework aimed at bridging research in the language processing and short-term memory fields. This framework considers verbal short-term maintenance as an emergent function resulting from synchronized and integrated activation in dorsal and ventral language processing networks as well as fronto-parietal attention and serial order processing networks. To-be-maintained item representations are temporarily activated in the dorsal and ventral language processing networks, novel phoneme and word serial order information is proposed to be maintained via a right fronto-parietal serial order processing network, and activation in these different networks is proposed to be coordinated and maintained via a left fronto-parietal attention processing network. This framework provides new perspectives for our understanding of information maintenance at the non-word-, word- and sentence-level as well as of verbal maintenance deficits in case of brain injury.
Language repetition and short-term memory: an integrative framework
Majerus, Steve
2013-01-01
Short-term maintenance of verbal information is a core factor of language repetition, especially when reproducing multiple or unfamiliar stimuli. Many models of language processing locate the verbal short-term maintenance function in the left posterior superior temporo-parietal area and its connections with the inferior frontal gyrus. However, research in the field of short-term memory has implicated bilateral fronto-parietal networks, involved in attention and serial order processing, as being critical for the maintenance and reproduction of verbal sequences. We present here an integrative framework aimed at bridging research in the language processing and short-term memory fields. This framework considers verbal short-term maintenance as an emergent function resulting from synchronized and integrated activation in dorsal and ventral language processing networks as well as fronto-parietal attention and serial order processing networks. To-be-maintained item representations are temporarily activated in the dorsal and ventral language processing networks, novel phoneme and word serial order information is proposed to be maintained via a right fronto-parietal serial order processing network, and activation in these different networks is proposed to be coordinated and maintained via a left fronto-parietal attention processing network. This framework provides new perspectives for our understanding of information maintenance at the non-word-, word- and sentence-level as well as of verbal maintenance deficits in case of brain injury. PMID:23874280
Assessment of volume reduction effect after lung lobectomy for cancer.
Ueda, Kazuhiro; Murakami, Junichi; Sano, Fumiho; Hayashi, Masataro; Kobayashi, Taiga; Kunihiro, Yoshie; Hamano, Kimikazu
2015-07-01
Lung lobectomy results in an unexpected improvement of the remaining lung function in some patients with moderate-to-severe emphysema. Because the lung function is the main limiting factor for therapeutic decision making in patients with lung cancer, it may be advantageous to identify patients who may benefit from the volume reduction effect, particularly those with a poor functional reserve. We measured the regional distribution of the emphysematous lung and normal lung using quantitative computed tomography in 84 patients undergoing lung lobectomy for cancer between January 2010 and December 2012. The volume reduction effect was diagnosed using a combination of radiologic and spirometric parameters. Eight patients (10%) were favorably affected by the volume reduction effect. The forced expiratory volume in one second increased postoperatively in these eight patients, whereas the forced vital capacity was unchanged, thus resulting in an improvement of the airflow obstruction postoperatively. This improvement was not due to a compensatory expansion of the remaining lung but was associated with a relative decrease in the forced end-expiratory lung volume. According to a multivariate analysis, airflow obstruction and the forced end-expiratory lung volume were independent predictors of the volume reduction effect. A combined assessment using spirometry and quantitative computed tomography helped to characterize the respiratory dynamics underlying the volume reduction effect, thus leading to the identification of novel predictors of a volume reduction effect after lobectomy for cancer. Verification of our results by a large-scale prospective study may help to extend the indications for lobectomy in patients with oncologically resectable lung cancer who have a marginal pulmonary function. Copyright © 2015 Elsevier Inc. All rights reserved.
Hwang, Jae-Woong; Sundar, Isaac K.; Yao, Hongwei; Sellix, Michael T.; Rahman, Irfan
2014-01-01
Patients with obstructive lung diseases display abnormal circadian rhythms in lung function. We determined the mechanism whereby environmental tobacco/cigarette smoke (CS) modulates expression of the core clock gene BMAL1, through Sirtuin1 (SIRT1) deacetylase during lung inflammatory and injurious responses. Adult C57BL6/J and various mice mutant for SIRT1 and BMAL1 were exposed to both chronic (6 mo) and acute (3 and 10 d) CS, and we measured the rhythmic expression of clock genes, circadian rhythms of locomotor activity, lung function, and inflammatory and emphysematous responses in the lungs. CS exposure (100–300 mg/m3 particulates) altered clock gene expression and reduced locomotor activity by disrupting the central and peripheral clocks and increased lung inflammation, causing emphysema in mice. BMAL1 was acetylated and degraded in the lungs of mice exposed to CS and in patients with chronic obstructive pulmonary disease (COPD), compared with lungs of the nonsmoking controls, linking it mechanistically to CS-induced reduction of SIRT1. Targeted deletion of Bmal1 in lung epithelium augmented inflammation in response to CS, which was not attenuated by the selective SIRT1 activator SRT1720 (EC50=0.16 μM) in these mice. Thus, the circadian clock, specifically the enhancer BMAL1 in epithelium, plays a pivotal role, mediated by SIRT1-dependent BMAL1, in the regulation of CS-induced lung inflammatory and injurious responses.— Hwang, J.-W., Sundar, I. K., Yao, H., Sellix, M. T., Rahman, I. Circadian clock function is disrupted by environmental tobacco/cigarette smoke, leading to lung inflammation and injury via a SIRT1-BMAL1 pathway. PMID:24025728
Yu, Dongjun; Wu, Xiaowei; Shen, Hongbin; Yang, Jian; Tang, Zhenmin; Qi, Yong; Yang, Jingyu
2012-12-01
Membrane proteins are encoded by ~ 30% in the genome and function importantly in the living organisms. Previous studies have revealed that membrane proteins' structures and functions show obvious cell organelle-specific properties. Hence, it is highly desired to predict membrane protein's subcellular location from the primary sequence considering the extreme difficulties of membrane protein wet-lab studies. Although many models have been developed for predicting protein subcellular locations, only a few are specific to membrane proteins. Existing prediction approaches were constructed based on statistical machine learning algorithms with serial combination of multi-view features, i.e., different feature vectors are simply serially combined to form a super feature vector. However, such simple combination of features will simultaneously increase the information redundancy that could, in turn, deteriorate the final prediction accuracy. That's why it was often found that prediction success rates in the serial super space were even lower than those in a single-view space. The purpose of this paper is investigation of a proper method for fusing multiple multi-view protein sequential features for subcellular location predictions. Instead of serial strategy, we propose a novel parallel framework for fusing multiple membrane protein multi-view attributes that will represent protein samples in complex spaces. We also proposed generalized principle component analysis (GPCA) for feature reduction purpose in the complex geometry. All the experimental results through different machine learning algorithms on benchmark membrane protein subcellular localization datasets demonstrate that the newly proposed parallel strategy outperforms the traditional serial approach. We also demonstrate the efficacy of the parallel strategy on a soluble protein subcellular localization dataset indicating the parallel technique is flexible to suite for other computational biology problems. The software and datasets are available at: http://www.csbio.sjtu.edu.cn/bioinf/mpsp.
NASA Astrophysics Data System (ADS)
Croke, B. F.
2008-12-01
The role of performance indicators is to give an accurate indication of the fit between a model and the system being modelled. As all measurements have an associated uncertainty (determining the significance that should be given to the measurement), performance indicators should take into account uncertainties in the observed quantities being modelled as well as in the model predictions (due to uncertainties in inputs, model parameters and model structure). In the presence of significant uncertainty in observed and modelled output of a system, failure to adequately account for variations in the uncertainties means that the objective function only gives a measure of how well the model fits the observations, not how well the model fits the system being modelled. Since in most cases, the interest lies in fitting the system response, it is vital that the objective function(s) be designed to account for these uncertainties. Most objective functions (e.g. those based on the sum of squared residuals) assume homoscedastic uncertainties. If model contribution to the variations in residuals can be ignored, then transformations (e.g. Box-Cox) can be used to remove (or at least significantly reduce) heteroscedasticity. An alternative which is more generally applicable is to explicitly represent the uncertainties in the observed and modelled values in the objective function. Previous work on this topic addressed the modifications to standard objective functions (Nash-Sutcliffe efficiency, RMSE, chi- squared, coefficient of determination) using the optimal weighted averaging approach. This paper extends this previous work; addressing the issue of serial correlation. A form for an objective function that includes serial correlation will be presented, and the impact on model fit discussed.
Shan, Changting; Fei, Fan; Li, Fengzhu; Zhuang, Bo; Zheng, Yulong; Wan, Yufeng; Chen, Jianhui
2017-05-01
MicroRNA-448 (miR-448) has been showed to be low-expressed and function as tumor suppressor in most human cancers. However, there are limited reports on the clinical significance and biological function of miR-448 in lung squamous cell carcinoma. In this study, we observed that miR-448 expression was decreased in lung squamous cell carcinoma tissues and cell lines. Meanwhile, miR-448 expression associated with differentiated degree, T classification (tumor size), N classification (lymph node metastasis), M classification (distant metastasis), clinical stage and prognosis of lung squamous cell carcinoma patients. In survival analysis, low expression of miR-448 was a poor independent prognostic factor for lung squamous cell carcinoma patients. Moreover, gain-of-function and loss-of-function studies showed miR-448 acted as a tumor suppressor regulating lung squamous cell carcinoma cells growth and metastasis. Furthermore, DCLK1 has been identified as a potential target for miR-448 to regulate lung squamous cell carcinoma cells growth and metastasis. In conclusion, miR-448 low-expression was a poor prognostic factor for lung squamous cell carcinoma patients, and miR-448 served as a tumor suppressor in lung squamous cell carcinoma cells via targeting DCLK1. Copyright © 2017. Published by Elsevier Masson SAS.
Jiménez, Julio; Richter, Jute; Nagatomo, Taro; Salaets, Thomas; Quarck, Rozenn; Wagennar, Allard; Wang, Hongmei; Vanoirbeek, Jeroen; Deprest, Jan; Toelen, Jaan
2016-10-24
Bronchopulmonary dysplasia (BPD) is caused by preterm neonatal lung injury and results in oxygen dependency and pulmonary hypertension. Current clinical management fails to reduce the incidence of BPD, which calls for novel therapies. Fetal rabbits have a lung development that mimics humans and can be used as a translational model to test novel treatment options. In preterm rabbits, exposure to hyperoxia leads to parenchymal changes, yet vascular damage has not been studied in this model. In this study we document the early functional and structural changes of the lung vasculature in preterm rabbits that are induced by hyperoxia after birth. Pulmonary artery Doppler measurements, micro-CT barium angiograms and media thickness of peripheral pulmonary arteries were affected after seven days of hyperoxia when compared to controls. The parenchyma was also affected both at the functional and structural level. Lung function testing showed higher tissue resistance and elastance, with a decreased lung compliance and lung capacity. Histologically hyperoxia leads to fewer and larger alveoli with thicker walls, less developed distal airways and more inflammation than normoxia. In conclusion, we show that the rabbit model develops pulmonary hypertension and developmental lung arrest after preterm lung injury, which parallel the early changes in human BPD. Thus it enables the testing of pharmaceutical agents that target the cardiovascular compartment of the lung for further translation towards the clinic.
Jiménez, Julio; Richter, Jute; Nagatomo, Taro; Salaets, Thomas; Quarck, Rozenn; Wagennar, Allard; Wang, Hongmei; Vanoirbeek, Jeroen; Deprest, Jan; Toelen, Jaan
2016-01-01
Bronchopulmonary dysplasia (BPD) is caused by preterm neonatal lung injury and results in oxygen dependency and pulmonary hypertension. Current clinical management fails to reduce the incidence of BPD, which calls for novel therapies. Fetal rabbits have a lung development that mimics humans and can be used as a translational model to test novel treatment options. In preterm rabbits, exposure to hyperoxia leads to parenchymal changes, yet vascular damage has not been studied in this model. In this study we document the early functional and structural changes of the lung vasculature in preterm rabbits that are induced by hyperoxia after birth. Pulmonary artery Doppler measurements, micro-CT barium angiograms and media thickness of peripheral pulmonary arteries were affected after seven days of hyperoxia when compared to controls. The parenchyma was also affected both at the functional and structural level. Lung function testing showed higher tissue resistance and elastance, with a decreased lung compliance and lung capacity. Histologically hyperoxia leads to fewer and larger alveoli with thicker walls, less developed distal airways and more inflammation than normoxia. In conclusion, we show that the rabbit model develops pulmonary hypertension and developmental lung arrest after preterm lung injury, which parallel the early changes in human BPD. Thus it enables the testing of pharmaceutical agents that target the cardiovascular compartment of the lung for further translation towards the clinic. PMID:27783043
The structure and function of serially homologous leg motor neurons in the locust. I. Anatomy.
Wilson, J A
1979-01-01
Twenty-one prothoracic and 17 mesothoracic motor neurons innervating leg muscles have been identified physiologically and subsequently injected with dye from a microelectrode. A tract containing the primary neurites of motor neurons innervating the retractor unquis, levator and depressor tarsus, flexor tibiae, and reductor femora is described. All motor neurons studied have regions in which their dendritic branches overlap with those of other leg motor neurons. Identified, serially homologous motor neurons in the three thoracic ganglia were found to have: (1) cell bodies at similar locations and morphologically similar primary neurites (e.g., flexor tibiae motor neurons), (2) cell bodies at different locations in each ganglion and morphologically different primary neurites in each ganglion (e.g., fast retractor unguis motor neurons), or (3) cell bodies at similar locations and morphologically similar primary neurites but with a functional switch in one ganglion relative to the function of the neurons in the other two ganglia. As an example of the latter, the morphology of the metathoracic slow extensor tibiae (SETi) motor neurons was similar to that of pro- and mesothoracic fast extensor tibiae (FETi) motor neurons. Similarly the metathoracic FETi bears a striking resemblance to the pro- and the mesothoracic SETi. It is proposed that in the metathoracic ganglion the two extensor tibiae motor neurons have switched functions while retaining similar morphologies relative to the structure and function of their pro- and mesothoracic serial homologues.
Relation between lung function, exercise capacity, and exposure to asbestos cement.
Wollmer, P; Eriksson, L; Jonson, B; Jakobsson, K; Albin, M; Skerfving, S; Welinder, H
1987-01-01
A group of 137 male workers with known exposure (mean 20 fibre years per millilitre) to asbestos cement who had symptoms or signs of pulmonary disease was studied together with a reference group of 49 healthy industrial workers with no exposure to asbestos. Lung function measurements were made at rest and during exercise. Evidence of lung fibrosis was found as well as of obstructive airways disease in the exposed group compared with the reference group. Asbestos cement exposure was related to variables reflecting lung fibrosis but not to variables reflecting airflow obstruction. Smoking was related to variables reflecting obstructive lung disease. Exercise capacity was reduced in the exposed workers and was related to smoking and to lung function variables, reflecting obstructive airways disease. There was no significant correlation between exercise capacity and exposure to asbestos cement. PMID:3651353
Bokov, P; Delclaux, C
2016-02-01
Resting pulmonary function tests (PFT) include the assessment of ventilatory capacity: spirometry (forced expiratory flows and mobilisable volumes) and static volume assessment, notably using body plethysmography. Spirometry allows the potential definition of obstructive defect, while static volume assessment allows the potential definition of restrictive defect (decrease in total lung capacity) and thoracic hyperinflation (increase in static volumes). It must be kept in mind that this evaluation is incomplete and that an assessment of ventilatory demand is often warranted, especially when facing dyspnoea: evaluation of arterial blood gas (searching for respiratory insufficiency) and measurement of the transfer coefficient of the lung, allowing with the measurement of alveolar volume to calculate the diffusing capacity of the lung for CO (DLCO: assessment of alveolar-capillary wall and capillary blood volume). All these pulmonary function tests have been the subject of an Americano-European Task force (standardisation of lung function testing) published in 2005, and translated in French in 2007. Interpretative strategies for lung function tests have been recommended, which define abnormal lung function tests using the 5th and 95th percentiles of predicted values (lower and upper limits of normal values). Thus, these recommendations need to be implemented in all pulmonary function test units. A methacholine challenge test will only be performed in the presence of an intermediate pre-test probability for asthma (diagnostic uncertainty), which is an infrequent setting. The most convenient exertional test is the 6-minute walk test that allows the assessment of walking performance, the search for arterial desaturation and the quantification of dyspnoea complaint. Copyright © 2015 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.
Common cold decreases lung function in infants with recurrent wheezing.
Mallol, J; Aguirre, V; Wandalsen, G
2010-01-01
Common acute viral respiratory infections (colds) are the most frequent cause of exacerbations in infants with recurrent wheezing (RW). However, there is no quantitative information about the effect of colds on the lung function of infants with RW. This study was undertaken to determine the effect of common cold on forced expiratory parameters measured from raised lung volume in infants with RW. Spirometric lung function (expiratory flows from raised lung volume) was randomly assessed in 28 infants with RW while they had a common cold and when asymptomatic. It was found that during colds there was a significant decrease in all forced expiratory parameters and this was much more evident for flows (FEF(50%), FEF(75%) and FEF(25-75%)) which were definitively abnormal (less than -1.65 z-score) in the majority of infants. There was not association between family asthma, tobacco exposure, and other factors, with the extent of lung function decrease during colds. Tobacco during pregnancy but not a history of family asthma was significantly associated to lower expiratory flows; however, the association was significant only when infants were asymptomatic. This study shows that common colds cause a marked reduction of lung function in infants with RW. 2009 SEICAP. Published by Elsevier Espana. All rights reserved.
Stabbert, Regina
2013-01-01
Cigarette smoking is the leading cause of lung cancer and chronic obstructive pulmonary disease, yet there is little mechanistic information available in the literature. To improve this, laboratory models for cigarette mainstream smoke (MS) inhalation–induced chronic disease development are needed. The current study investigated the effects of exposing male A/J mice to MS (6h/day, 5 days/week at 150 and 300mg total particulate matter per cubic meter) for 2.5, 5, 10, and 18 months in selected combinations with postinhalation periods of 0, 4, 8, and 13 months. Histopathological examination of step-serial sections of the lungs revealed nodular hyperplasia of the alveolar epithelium and bronchioloalveolar adenoma and adenocarcinoma. At 18 months, lung tumors were found to be enhanced concentration dependently (up to threefold beyond sham exposure), irrespective of whether MS inhalation had been performed for the complete study duration or was interrupted after 5 or 10 months and followed by postinhalation periods. Morphometric analysis revealed an increase in the extent of emphysematous changes after 5 months of MS inhalation, which did not significantly change over the following 13 months of study duration, irrespective of whether MS exposure was continued or not. These changes were found to be accompanied by a complex pattern of transient and sustained pulmonary inflammatory changes that may contribute to the observed pathogeneses. Data from this study suggest that the A/J mouse model holds considerable promise as a relevant model for investigating smoking-related emphysema and adenocarcinoma development. PMID:23104432
Beckett, Travis; Bonneau, Laura; Howard, Alan; Blanchard, James; Borda, Juan; Weiner, Daniel J.; Wang, Lili; Gao, Guang Ping; Kolls, Jay K.; Bohm, Rudolf; Liggitt, Denny
2012-01-01
Abstract Use of perfluorochemical liquids during intratracheal vector administration enhances recombinant adenovirus and adeno-associated virus (AAV)-mediated lung epithelial gene expression. We hypothesized that inhalation of nebulized perfluorochemical vapor would also enhance epithelial gene expression after subsequent intratracheal vector administration. Freely breathing adult C57BL/6 mice were exposed for selected times to nebulized perflubron or sterile saline in a sealed Plexiglas chamber. Recombinant adenoviral vector was administered by transtracheal puncture at selected times afterward and mice were killed 3 days after vector administration to assess transgene expression. Mice tolerated the nebulized perflubron without obvious ill effects. Vector administration 6 hr after nebulized perflubron exposure resulted in an average 540% increase in gene expression in airway and alveolar epithelium, compared with that with vector alone or saline plus vector control (p<0.05). However, vector administration 1 hr, 1 day, or 3 days after perflubron exposure was not different from either nebulized saline with vector or vector alone and a 60-min exposure to nebulized perflubron is required. In parallel pilot studies in macaques, inhalation of nebulized perflubron enhanced recombinant AAV2/5 vector expression throughout the lung. Serial chest radiographs, bronchoalveolar lavages, and results of complete blood counts and serum biochemistries demonstrated no obvious adverse effects of nebulized perflubron. Further, one macaque receiving nebulized perflubron only was monitored for 1 year with no obvious adverse effects of exposure. These results demonstrate that inhalation of nebulized perflubron, a simple, clinically more feasible technique than intratracheal administration of liquid perflubron, safely enhances lung gene expression. PMID:22568624
Johnson, B E; Becker, B; Goff, W B; Petronas, N; Krehbiel, M A; Makuch, R W; McKenna, G; Glatstein, E; Ihde, D C
1985-12-01
In order to evaluate the relationship between neurologic function and cranial irradiation, 20 patients treated on National Cancer Institute (NCI) small-cell lung cancer (SCLC) trials who were alive and free of cancer 2.4 to 10.6 years (median, 6.2) from the start of therapy were studied. All were tested with a neurologic history and examination, mental status examination, neuropsychologic testing, and review of serial computed cranial tomography (CCT) scans. Fifteen patients had been treated with prophylactic cranial irradiation (PCI), two patients with therapeutic cranial irradiation, and three received no cranial irradiation. All patients but one were ambulatory and none were institutionalized. Fifteen patients (75%) had neurologic complaints, 13 (65%) had abnormal neurologic examinations, 12 (60%) had abnormal mental status examinations, 13 (65%) had abnormal neuropsychologic testing, and 15 (75%) had abnormal CCT scans. Compared with those given low-dose maintenance chemotherapy during PCI using 200 to 300 rad per fraction, patients who were given high-dose induction chemotherapy during the time of cranial irradiation or large radiotherapy fractions (400 rad) were more likely to have abnormal mental status examinations (6/6 v 4/9) and abnormal neuropsychologic tests (6/6 v 4/9), but no major difference in CCT findings was present. CCT scans in the majority of cases (11/18) showed progressive ventricular dilatation or cerebral atrophy up to 8 years after stopping therapy. We conclude neurologic abnormalities are common in long-term survivors of SCLC, and may be more prominent in patients given high-dose chemotherapy during cranial irradiation or treated with large radiotherapy fractions. The CCT scan abnormalities are common and progressive years after prophylactic cranial irradiation and chemotherapy are stopped.
Ferreira, Ana S.; Silva, Inês N.; Oliveira, Vítor H.; Cunha, Raquel; Moreira, Leonilde M.
2011-01-01
The genus Burkholderia comprises more than 60 species able to adapt to a wide range of environments such as soil and water, and also colonize and infect plants and animals. They have large genomes with multiple replicons and high gene number, allowing these bacteria to thrive in very different niches. Among the properties of bacteria from the genus Burkholderia is the ability to produce several types of exopolysaccharides (EPSs). The most common one, cepacian, is produced by the majority of the strains examined irrespective of whether or not they belong to the Burkholderia cepacia complex (Bcc). Cepacian biosynthesis proceeds by a Wzy-dependent mechanism, and some of the B. cepacia exopolysaccharide (Bce) proteins have been functionally characterized. In vitro studies showed that cepacian protects bacterial cells challenged with external stresses. Regarding virulence, bacterial cells with the ability to produce EPS are more virulent in several animal models of infection than their isogenic non-producing mutants. Although the production of EPS within the lungs of cystic fibrosis (CF) patients has not been demonstrated, the in vitro assessment of the mucoid phenotype in serial Bcc isolates from CF patients colonized for several years showed that mucoid to non-mucoid transitions are relatively frequent. This morphotype variation can be induced under laboratory conditions by exposing cells to stress such as high antibiotic concentration. Clonal isolates where mucoid to non-mucoid transition had occurred showed that during lung infection, genomic rearrangements, and mutations had taken place. Other phenotypic changes include variations in motility, chemotaxis, biofilm formation, bacterial survival rate under nutrient starvation and virulence. In this review, we summarize major findings related to EPS biosynthesis by Burkholderia and the implications in broader regulatory mechanisms important for cell adaptation to the different niches colonized by these bacteria. PMID:22919582
Kim, Bu-Yeo; Jin, Hee; Lee, Yoon-Jin; Kang, Ga-Young; Cho, Jaeho; Lee, Yun-Sil
2016-01-27
Despite the emergence of stereotactic body radiotherapy (SBRT) for treatment of medically inoperable early-stage non-small-cell lung cancer patients, the molecular effects of focal exposure of limited lung volumes to high-dose radiation have not been fully characterized. This study was designed to identify molecular changes induced by focal high-dose irradiation using a mouse model of SBRT. Central areas of the mouse left lung were focally-irradiated (3 mm in diameter) with a single high-dose of radiation (90 Gy). Temporal changes in gene expression in the irradiated and non-irradiated neighboring lung regions were analyzed by microarray. For comparison, the long-term effect (12 months) of 20 Gy radiation on a diffuse region of lung was also measured. The majority of genes were down-regulated in the focally-irradiated lung areas at 2 to 3 weeks after irradiation. This pattern of gene expression was clearly different than gene expression in the diffuse region of lungs exposed to low-dose radiation. Ontological and pathway analyses indicated these down-regulated genes were mainly associated with organ development. Although the number was small, genes that were up-regulated after focal irradiation were associated with immune-related functions. The temporal patterns of gene expression and the associated biological functions were also similar in non-irradiated neighboring lung regions, although statistical significance was greatly reduced when compared with those from focally-irradiated areas of the lung. From network analysis of temporally regulated genes, we identified inter-related modules associated with diverse functions, including organ development and the immune response, in both the focally-irradiated regions and non-irradiated neighboring lung regions. Focal exposure of lung tissue to high-dose radiation induced expression of genes associated with organ development and the immune response. This pattern of gene expression was also observed in non-irradiated neighboring areas of lung tissue, indicating a global lung response to focal high-dose irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eslick, E; Kipritidis, J; Keall, P
2014-06-01
Purpose: The purpose of this study was to quantify the lobar lung function using the novel PET Galligas ([68Ga]-carbon nanoparticle) ventilation imaging and the investigational CT ventilation imaging in lung cancer patients pre-treatment. Methods: We present results on our first three lung cancer patients (2 male, mean age 78 years) as part of an ongoing ethics approved study. For each patient a PET Galligas ventilation (PET-V) image and a pair of breath hold CT images (end-exhale and end-inhale tidal volumes) were acquired using a Siemens Biograph PET CT. CT-ventilation (CT-V) images were created from the pair of CT images usingmore » deformable image registration (DIR) algorithms and the Hounsfield Unit (HU) ventilation metric. A comparison of ventilation quantification from each modality was done on the lobar level and the voxel level. A Bland-Altman plot was used to assess the difference in mean percentage contribution of each lobe to the total lung function between the two modalities. For each patient, a voxel-wise Spearmans correlation was calculated for the whole lungs between the two modalities. Results: The Bland-Altman plot demonstrated strong agreement between PET-V and CT-V for assessment of lobar function (r=0.99, p<0.001; range mean difference: −5.5 to 3.0). The correlation between PET-V and CT-V at the voxel level was moderate(r=0.60, p<0.001). Conclusion: This preliminary study on the three patients data sets demonstrated strong agreement between PET and CT ventilation imaging for the assessment of pre-treatment lung function at the lobar level. Agreement was only moderate at the level of voxel correlations. These results indicate that CT ventilation imaging has potential for assessing pre-treatment lobar lung function in lung cancer patients.« less
Al-Ward, Shahad M; Kim, Anthony; McCann, Claire; Ruschin, Mark; Cheung, Patrick; Sahgal, Arjun; Keller, Brian M
2018-01-01
Targeting and tracking of central lung tumors may be feasible on the Elekta MRI-linac (MRL) due to the soft-tissue visualization capabilities of MRI. The purpose of this work is to develop a novel treatment planning methodology to simulate tracking of central lung tumors with the MRL and to quantify the benefits in OAR sparing compared with the ITV approach. Full 4D-CT datasets for five central lung cancer patients were selected to simulate the condition of having 4D-pseudo-CTs derived from 4D-MRI data available on the MRL with real-time tracking capabilities. We used the MRL treatment planning system to generate two plans: (a) with a set of MLC-defined apertures around the target at each phase of the breathing ("4D-MRL" method); (b) with a fixed set of fields encompassing the maximum inhale and exhale of the breathing cycle ("ITV" method). For both plans, dose accumulation was performed onto a reference phase. To further study the potential benefits of a 4D-MRL method, the results were stratified by tumor motion amplitude, OAR-to-tumor proximity, and the relative OAR motion (ROM). With the 4D-MRL method, the reduction in mean doses was up to 3.0 Gy and 1.9 Gy for the heart and the lung. Moreover, the lung's V12.5 Gy was spared by a maximum of 300 cc. Maximum doses to serial organs were reduced by up to 6.1 Gy, 1.5 Gy, and 9.0 Gy for the esophagus, spinal cord, and the trachea, respectively. OAR dose reduction with our method depended on the tumor motion amplitude and the ROM. Some OARs with large ROMs and in close proximity to the tumor benefited from tracking despite small tumor amplitudes. We developed a novel 4D tracking methodology for the MRL for central lung tumors and quantified the potential dosimetric benefits compared with our current ITV approach. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Post-tuberculous lung function impairment in a tuberculosis reference clinic in Cameroon.
Mbatchou Ngahane, Bertrand Hugo; Nouyep, Junior; Nganda Motto, Malea; Mapoure Njankouo, Yacouba; Wandji, Adeline; Endale, Mireille; Afane Ze, Emmanuel
2016-05-01
After completion of treatment, a proportion of pulmonary TB (pTB) patients experience lung function impairment which can influence their quality of life. This study aimed to determine the prevalence of lung function impairment in patients treated for pTB and investigate its associated factors. A cross-sectional study was conducted in TB clinic of the Douala Laquintinie Hospital in Cameroon. Patients aged 15 and above who were treated for pTB between 2008 and 2012 were included in the study. Demographic data, respiratory symptoms prior TB diagnosis, comorbidities and chest radiography findings prior to TB treatment were collected. All participants underwent spirometric measurements. Airflow obstruction was defined as a post-bronchodilation FEV1/FVC <70% with FVC >80%, restrictive defects as an FEV1/FVC ratio of ≥70% with an FVC <80% predicted, and mixed defects as FVC of <80% predicted and an FEV1/FVC ratio of <70%. Lung function impairment was defined by the presence of at least one of these three abnormalities. Logistic regression analysis was employed to investigate risk factors of lung function impairment. Of a total of 269 participants included in the study, 146 (54.3%) were male. The median age of participants was 33 years. The median duration of symptoms before diagnosis of TB was 4 weeks [interquartile range (IQR) 3-8]. The prevalence of lung function impairment was 45.4% (95% CI 39-51). The multivariate analysis identified duration of symptoms [OR 1.08; 95% CI (1.01-1.15)] and fibrotic pattern [OR 3.54; 95% CI (1.40-8.95)] as independent risk factors for lung function impairment. Post-tuberculous pulmonary function impairment is frequent in Douala. Sensitization of patient with symptoms of pulmonary TB for an earlier visit to healthcare facilities could reduce the impact of pTB on lung function of patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Towards a virtual lung: multi-scale, multi-physics modelling of the pulmonary system.
Burrowes, K S; Swan, A J; Warren, N J; Tawhai, M H
2008-09-28
The essential function of the lung, gas exchange, is dependent on adequate matching of ventilation and perfusion, where air and blood are delivered through complex branching systems exposed to regionally varying transpulmonary and transmural pressures. Structure and function in the lung are intimately related, yet computational models in pulmonary physiology usually simplify or neglect structure. The geometries of the airway and vascular systems and their interaction with parenchymal tissue have an important bearing on regional distributions of air and blood, and therefore on whole lung gas exchange, but this has not yet been addressed by modelling studies. Models for gas exchange have typically incorporated considerable detail at the level of chemical reactions, with little thought for the influence of structure. To date, relatively little attention has been paid to modelling at the cellular or subcellular level in the lung, or to linking information from the protein structure/interaction and cellular levels to the operation of the whole lung. We review previous work in developing anatomically based models of the lung, airways, parenchyma and pulmonary vasculature, and some functional studies in which these models have been used. Models for gas exchange at several spatial scales are briefly reviewed, and the challenges and benefits from modelling cellular function in the lung are discussed.
Jedrychowski, Wieslaw A; Perera, Frederica P; Maugeri, Umberto; Majewska, Renata; Spengler, Jack; Mroz, Elzbieta; Flak, Elzbieta; Klimaszewska-Rembiasz, Maria; Camman, David
2015-05-01
The main purpose of the present study was to test the hypothesis that the depressed lung growth attributable to prenatal exposure to polycyclic aromatic hydrocarbons (PAH) may be modified by the intake of antihistamine medications. Individual prenatal PAH exposure was assessed by personal air monitoring in 176 children who were followed over nine years, in the course of which outdoor residential air monitoring, allergic skin tests for indoor allergens, lung function tests (FVC, FEV(1), FEV(05), and FEF(25-75)) were performed. The analysis with the General Estimated Equation (GEE) showed no association between prenatal PAH exposure and lung function in the group of children who were reported to be antihistamine users. However, in the group of antihistamine non-users all lung function tests except for FEF(25-75) were significantly and inversely associated with prenatal airborne PAH exposure. The results of the study suggest that the intake of antihistamine medications in early childhood may inhibit the negative effect of fetal PAH exposure on lung growth and provides additional indirect evidence for the hypothesis that lung alterations in young children resulting from PAH exposure may be caused by the allergic inflammation within lung. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Saupe, Florian; Knoblach, Andreas
2015-02-01
Two different approaches for the determination of frequency response functions (FRFs) are used for the non-parametric closed loop identification of a flexible joint industrial manipulator with serial kinematics. The two applied experiment designs are based on low power multisine and high power chirp excitations. The main challenge is to eliminate disturbances of the FRF estimates caused by the numerous nonlinearities of the robot. For the experiment design based on chirp excitations, a simple iterative procedure is proposed which allows exploiting the good crest factor of chirp signals in a closed loop setup. An interesting synergy of the two approaches, beyond validation purposes, is pointed out.
Chang, Rui; You, Jiacong; Zhou, Qinghua
2013-04-01
Lung cancer is one of the most common diseases that endanger health and life of people domestically. A number of recurrence and death of lung cancer originated from metastasis. As a key step in metastasis of lung cancer, epithelial to mesenchymal transition involved down-regulation of E-cadherin, as well as regulated by EMT transcription factors. HATs and HDACs is a protein family that catalyzes acetylation and deacetylation of histones. Not only they have vital functions in tumor pathogenesis, but also participate in the EMT of lung cancer. HATs and HDACs interact with certain EMT transcription factors. Moreover, the function of these EMT transcription factors may be regulated by acetylation, which has influence on EMT program in lung cancer. Therefore, this review introduces the event of HATs and HDACs function in EMT of lung cancer, and investigate the molecular mechanism of their interaction. Then, the potential of HDAC inhibitor utilization in the inhibition of EMT and lung cancer therapy were discussed, as to pave the way for the related basic research and clinical practice.
Matalon, Sadis
2014-01-01
CFTR is a cAMP-activated chloride and bicarbonate channel that is critical for lung homeostasis. Decreases in CFTR expression have dire consequences in cystic fibrosis (CF) and have been suggested to be a component of the lung pathology in chronic obstructive pulmonary disease. Decreases or loss of channel function often lead to mucus stasis, chronic bacterial infections, and the accompanying chronic inflammatory responses that promote progressive lung destruction, and, eventually in CF, lung failure. Here we discuss CFTR's functional role airway surface liquid hydration and pH, in regulation of other channels such as the epithelial sodium channel, and in regulating inflammatory responses in the lung. PMID:25381027
Fernandez, Isis E; Heinzelmann, Katharina; Verleden, Stijn; Eickelberg, Oliver
2015-03-01
Tissue fibrosis, a major cause of death worldwide, leads to significant organ dysfunction in any organ of the human body. In the lung, fibrosis critically impairs gas exchange, tissue oxygenation, and immune function. Idiopathic pulmonary fibrosis (IPF) is the most detrimental and lethal fibrotic disease of the lung, with an estimated median survival of 50% after 3-5 years. Lung transplantation currently remains the only therapeutic alternative for IPF and other end-stage pulmonary disorders. Posttransplant lung function, however, is compromised by short- and long-term complications, most importantly chronic lung allograft dysfunction (CLAD). CLAD affects up to 50% of all transplanted lungs after 5 years, and is characterized by small airway obstruction with pronounced epithelial injury, aberrant wound healing, and subepithelial and interstitial fibrosis. Intriguingly, the mechanisms leading to the fibrotic processes in the engrafted lung exhibit striking similarities to those in IPF; therefore, antifibrotic therapies may contribute to increased graft function and survival in CLAD. In this review, we focus on these common fibrosis-related mechanisms in IPF and CLAD, comparing and contrasting clinical phenotypes, the mechanisms of fibrogenesis, and biomarkers to monitor, predict, or prognosticate disease status.
Mondoñedo, Jarred R; Suki, Béla
2017-02-01
Lung volume reduction surgery (LVRS) and bronchoscopic lung volume reduction (bLVR) are palliative treatments aimed at reducing hyperinflation in advanced emphysema. Previous work has evaluated functional improvements and survival advantage for these techniques, although their effects on the micromechanical environment in the lung have yet to be determined. Here, we introduce a computational model to simulate a force-based destruction of elastic networks representing emphysema progression, which we use to track the response to lung volume reduction via LVRS and bLVR. We find that (1) LVRS efficacy can be predicted based on pre-surgical network structure; (2) macroscopic functional improvements following bLVR are related to microscopic changes in mechanical force heterogeneity; and (3) both techniques improve aspects of survival and quality of life influenced by lung compliance, albeit while accelerating disease progression. Our model predictions yield unique insights into the microscopic origins underlying emphysema progression before and after lung volume reduction.
Mondoñedo, Jarred R.
2017-01-01
Lung volume reduction surgery (LVRS) and bronchoscopic lung volume reduction (bLVR) are palliative treatments aimed at reducing hyperinflation in advanced emphysema. Previous work has evaluated functional improvements and survival advantage for these techniques, although their effects on the micromechanical environment in the lung have yet to be determined. Here, we introduce a computational model to simulate a force-based destruction of elastic networks representing emphysema progression, which we use to track the response to lung volume reduction via LVRS and bLVR. We find that (1) LVRS efficacy can be predicted based on pre-surgical network structure; (2) macroscopic functional improvements following bLVR are related to microscopic changes in mechanical force heterogeneity; and (3) both techniques improve aspects of survival and quality of life influenced by lung compliance, albeit while accelerating disease progression. Our model predictions yield unique insights into the microscopic origins underlying emphysema progression before and after lung volume reduction. PMID:28182686
A Demons algorithm for image registration with locally adaptive regularization.
Cahill, Nathan D; Noble, J Alison; Hawkes, David J
2009-01-01
Thirion's Demons is a popular algorithm for nonrigid image registration because of its linear computational complexity and ease of implementation. It approximately solves the diffusion registration problem by successively estimating force vectors that drive the deformation toward alignment and smoothing the force vectors by Gaussian convolution. In this article, we show how the Demons algorithm can be generalized to allow image-driven locally adaptive regularization in a manner that preserves both the linear complexity and ease of implementation of the original Demons algorithm. We show that the proposed algorithm exhibits lower target registration error and requires less computational effort than the original Demons algorithm on the registration of serial chest CT scans of patients with lung nodules.
USDA-ARS?s Scientific Manuscript database
Pulmonary neuroendocrine cells (PNECs) are proposed to be the first specialized cell type to appear in the lung, but their ontogeny remains obscure. Although studies of PNECs have suggested their involvement in a number of lung functions, neither their in vivo significance nor the molecular mechanis...
Imaging Lung Function in Mice Using SPECT/CT and Per-Voxel Analysis
Jobse, Brian N.; Rhem, Rod G.; McCurry, Cory A. J. R.; Wang, Iris Q.; Labiris, N. Renée
2012-01-01
Chronic lung disease is a major worldwide health concern but better tools are required to understand the underlying pathologies. Ventilation/perfusion (V/Q) single photon emission computed tomography (SPECT) with per-voxel analysis allows for non-invasive measurement of regional lung function. A clinically adapted V/Q methodology was used in healthy mice to investigate V/Q relationships. Twelve week-old mice were imaged to describe normal lung function while 36 week-old mice were imaged to determine how age affects V/Q. Mice were ventilated with Technegas™ and injected with 99mTc-macroaggregated albumin to trace ventilation and perfusion, respectively. For both processes, SPECT and CT images were acquired, co-registered, and quantitatively analyzed. On a per-voxel basis, ventilation and perfusion were moderately correlated (R = 0.58±0.03) in 12 week old animals and a mean log(V/Q) ratio of −0.07±0.01 and standard deviation of 0.36±0.02 were found, defining the extent of V/Q matching. In contrast, 36 week old animals had significantly increased levels of V/Q mismatching throughout the periphery of the lung. Measures of V/Q were consistent across healthy animals and differences were observed with age demonstrating the capability of this technique in quantifying lung function. Per-voxel analysis and the ability to non-invasively assess lung function will aid in the investigation of chronic lung disease models and drug efficacy studies. PMID:22870297
High resolution multidetector CT aided tissue analysis and quantification of lung fibrosis
NASA Astrophysics Data System (ADS)
Zavaletta, Vanessa A.; Karwoski, Ronald A.; Bartholmai, Brian; Robb, Richard A.
2006-03-01
Idiopathic pulmonary fibrosis (IPF, also known as Idiopathic Usual Interstitial Pneumontis, pathologically) is a progressive diffuse lung disease which has a median survival rate of less than four years with a prevalence of 15-20/100,000 in the United States. Global function changes are measured by pulmonary function tests and the diagnosis and extent of pulmonary structural changes are typically assessed by acquiring two-dimensional high resolution CT (HRCT) images. The acquisition and analysis of volumetric high resolution Multi-Detector CT (MDCT) images with nearly isotropic pixels offers the potential to measure both lung function and structure. This paper presents a new approach to three dimensional lung image analysis and classification of normal and abnormal structures in lungs with IPF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Changhoon; Hong, Beom-Ju; Bok, Seoyeon
Purpose: To investigate the serial changes of tumor hypoxia in response to single high-dose irradiation by various clinical and preclinical methods to propose an optimal fractionation schedule for stereotactic ablative radiation therapy. Methods and Materials: Syngeneic Lewis lung carcinomas were grown either orthotopically or subcutaneously in C57BL/6 mice and irradiated with a single dose of 15 Gy to mimic stereotactic ablative radiation therapy used in the clinic. Serial [{sup 18}F]-misonidazole (F-MISO) positron emission tomography (PET) imaging, pimonidazole fluorescence-activated cell sorting analyses, hypoxia-responsive element-driven bioluminescence, and Hoechst 33342 perfusion were performed before irradiation (day −1), at 6 hours (day 0), and 2 (daymore » 2) and 6 (day 6) days after irradiation for both subcutaneous and orthotopic lung tumors. For F-MISO, the tumor/brain ratio was analyzed. Results: Hypoxic signals were too low to quantitate for orthotopic tumors using F-MISO PET or hypoxia-responsive element-driven bioluminescence imaging. In subcutaneous tumors, the maximum tumor/brain ratio was 2.87 ± 0.483 at day −1, 1.67 ± 0.116 at day 0, 2.92 ± 0.334 at day 2, and 2.13 ± 0.385 at day 6, indicating that tumor hypoxia was decreased immediately after irradiation and had returned to the pretreatment levels at day 2, followed by a slight decrease by day 6 after radiation. Pimonidazole analysis also revealed similar patterns. Using Hoechst 33342 vascular perfusion dye, CD31, and cleaved caspase 3 co-immunostaining, we found a rapid and transient vascular collapse, which might have resulted in poor intratumor perfusion of F-MISO PET tracer or pimonidazole delivered at day 0, leading to decreased hypoxic signals at day 0 by PET or pimonidazole analyses. Conclusions: We found tumor hypoxia levels decreased immediately after delivery of a single dose of 15 Gy and had returned to the pretreatment levels 2 days after irradiation and had decreased slightly by day 6. Our results indicate that single high-dose irradiation can produce a rapid, but reversible, vascular collapse in tumors.« less
Jones, Christina V; Alikhan, Maliha A; O'Reilly, Megan; Sozo, Foula; Williams, Timothy M; Harding, Richard; Jenkin, Graham; Ricardo, Sharon D
2014-09-06
Lung immaturity due to preterm birth is a significant complication affecting neonatal health. Despite the detrimental effects of supplemental oxygen on alveolar formation, it remains an important treatment for infants with respiratory distress. Macrophages are traditionally associated with the propagation of inflammatory insults, however increased appreciation of their diversity has revealed essential functions in development and regeneration. Macrophage regulatory cytokine Colony-Stimulating Factor-1 (CSF-1) was investigated in a model of neonatal hyperoxia exposure, with the aim of promoting macrophages associated with alveologenesis to protect/rescue lung development and function. Neonatal mice were exposed to normoxia (21% oxygen) or hyperoxia (Hyp; 65% oxygen); and administered CSF-1 (0.5 μg/g, daily × 5) or vehicle (PBS) in two treatment regimes; 1) after hyperoxia from postnatal day (P)7-11, or 2) concurrently with five days of hyperoxia from P1-5. Lung structure, function and macrophages were assessed using alveolar morphometry, barometric whole-body plethysmography and flow cytometry. Seven days of hyperoxia resulted in an 18% decrease in body weight and perturbation of lung structure and function. In regime 1, growth restriction persisted in the Hyp + PBS and Hyp + CSF-1 groups, although perturbations in respiratory function were resolved by P35. CSF-1 increased CSF-1R+/F4/80+ macrophage number by 34% at P11 compared to Hyp + PBS, but was not associated with growth or lung structural rescue. In regime 2, five days of hyperoxia did not cause initial growth restriction in the Hyp + PBS and Hyp + CSF-1 groups, although body weight was decreased at P35 with CSF-1. CSF-1 was not associated with increased macrophages, or with functional perturbation in the adult. Overall, CSF-1 did not rescue the growth and lung defects associated with hyperoxia in this model; however, an increase in CSF-1R+ macrophages was not associated with an exacerbation of lung injury. The trophic functions of macrophages in lung development requires further elucidation in order to explore macrophage modulation as a strategy for promoting lung maturation.
Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Muroyama, Masanori
2018-01-15
For installing many sensors in a limited space with a limited computing resource, the digitization of the sensor output at the site of sensation has advantages such as a small amount of wiring, low signal interference and high scalability. For this purpose, we have developed a dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) (referred to as "sensor platform LSI") for bus-networked Micro-Electro-Mechanical-Systems (MEMS)-LSI integrated sensors. In this LSI, collision avoidance, adaptation and event-driven functions are simply implemented to relieve data collision and congestion in asynchronous serial bus communication. In this study, we developed a network system with 48 sensor platform LSIs based on Printed Circuit Board (PCB) in a backbone bus topology with the bus length being 2.4 m. We evaluated the serial communication performance when 48 LSIs operated simultaneously with the adaptation function. The number of data packets received from each LSI was almost identical, and the average sampling frequency of 384 capacitance channels (eight for each LSI) was 73.66 Hz.
Hopkins, Susan R; Prisk, G Kim
2010-12-01
Since the lung receives the entire cardiac output, sophisticated imaging techniques are not required in order to measure total organ perfusion. However, for many years studying lung function has required physiologists to consider the lung as a single entity: in imaging terms as a single voxel. Since imaging, and in particular functional imaging, allows the acquisition of spatial information important for studying lung function, these techniques provide considerable promise and are of great interest for pulmonary physiologists. In particular, despite the challenges of low proton density and short T2* in the lung, noncontrast MRI techniques to measure pulmonary perfusion have several advantages including high reliability and the ability to make repeated measurements under a number of physiologic conditions. This brief review focuses on the application of a particular arterial spin labeling (ASL) technique, ASL-FAIRER (flow sensitive inversion recovery with an extra radiofrequency pulse), to answer physiologic questions related to pulmonary function in health and disease. The associated measurement of regional proton density to correct for gravitational-based lung deformation (the "Slinky" effect (Slinky is a registered trademark of Pauf-Slinky incorporated)) and issues related to absolute quantification are also discussed. Copyright © 2010 Wiley-Liss, Inc.
Invited commentary: on population subgroups, mathematics, and interventions.
Jacobs, David R; Meyer, Katie A
2011-02-15
New sex-specific equations, each with race/ethnic-specific intercept, for predicted lung function illustrate a methodological point, that complex differences between groups may not imply interactions with other predictors, such as age and height. The new equations find that race/ethnic identity does not interact with either age or height in the prediction equations, although there are race/ethnic-specific offsets. Further study is warranted of the effect of possible small race/ethnic interactions on disease classification. Additional study of repeated measures of lung function is warranted, given that the new equations were developed in cross-sectional designs. Predicting lung function is more than a methodological exercise. Predicted values are important in disease diagnosis and monitoring. It is suggested that measurement and tracking of lung function throughout young adulthood could be used to provide an early warning of potential long-term lung function losses to encourage improvement of risky behaviors including smoking and failure to maintain normal body weight in the general population.
Partridge, Emily A; Peranteau, William H; Herkert, Lisa; Rintoul, Natalie E; Flake, Alan W; Adzick, N Scott; Hedrick, Holly L
2016-05-01
Congenital diaphragmatic hernia (CDH) is associated with high postnatal mortality because of pulmonary hypoplasia. The prognostic utility of serial lung-to-head circumference measurements as a marker of lung growth has not been described. Our objective was to examine the relationship between the rate of interval increase of LHR and postnatal survival in left-sided CDH. We retrospectively reviewed charts of all left-sided CDH patients from January 2004 to July 2014. All ultrasound studies performed at our institution (n=473) were reviewed. Categorical and continuous data were analyzed by chi-square and Mann-Whitney t-test, respectively, and slope analysis was performed by linear regression analysis (p<0.05). A total of 226 patients were studied, with 154 long-term survivors and 72 non-survivors. Established markers of CDH severity, including intrathoracic liver position and requirement for patch repair, were significantly increased in non-survivors (p<0.0001). The rate of LHR increase as measured by linear regression and slope analysis was significantly increased in long-term survivors (p=0.0175). Our findings indicate that the interval increase in LHR levels over the course of gestation correlate with survival in left-sided CDH patients. Regular ultrasonographic re-evaluation of LHR throughout gestation following diagnosis of CDH may provide prognostic insight and help guide patient management. Copyright © 2016. Published by Elsevier Inc.
Pancreas transplants: Evaluation using perfusion scintigraphy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuni, C.C.; du Cret, R.P.; Boudreau, R.J.
1989-07-01
To determine the value of scintigraphic perfusion studies in evaluating pancreas transplant patients, we reviewed 56 of these studies in 22 patients who had 27 transplants. Seventeen patients underwent two or more studies. The perfusion studies were performed with 20 mCi (740 MBq) of 99mTc-DTPA injected as a bolus followed by eight to 16 serial 2-sec images and a 500,000-count immediate static image. Images were evaluated for (1) the time and intensity of pancreatic peak radioactivity relative to the time and intensity of the iliac arterial peak; (2) relative pancreatic to iliac arterial intensity on the static image; and (3)more » size, homogeneity, and definition of the pancreas. Clinical diagnoses at the time of scintigraphy of normal function (n = 36), rejection (n = 13), pancreatitis (n = 6), or arterial thrombosis (n = 1) were based on insulin requirement, urine amylase, serum glucose, serum amylase, response to therapy, cultures, CT, MR, sonography, scintigraphy with 67Ga or 111In-WBCs, percutaneous drainage results, angiography, surgery, and pathologic examination of resected transplants. Three 99mTc-DTPA perfusion studies showed no pancreatic perfusion, four showed decreasing perfusion on serial studies, and five showed progressive loss of definition of the pancreas on serial studies. Of the three patients with no detectable perfusion, one had a normally functioning transplant, one had arterial thrombosis with transplant infarction, and one had severe rejection with minimal function. Decreasing perfusion was associated with rejection in three patients and pancreatitis in one. Decreasing definition was seen in four patients with rejection and one with pancreatitis. We conclude that perfusion scintigraphy is useful, primarily when performed serially, although nonspecific for evaluating pancreas transplants.« less
Nutritional state and lung disease in cystic fibrosis.
Bakker, W
1992-10-01
The life expectancy of patients with cystic fibrosis (CF) is largely dependent on the severity and progress of the pulmonary involvement associated with the disease. Many data support the view that malnutrition and deterioration of lung function are closely interrelated and interdependent, with each affecting the other, leading to a spiral decline in both. The occurrence of malnutrition appears to be associated with poor lung function and poor survival, and conversely prevention of malnutrition appears to be associated with better lung function and improved survival. Nutritional intervention may lead to an improvement in body weight, lung function and exercise tolerance, provided that the intervention is combined with exercise training in order to increase both respiratory and other muscle mass. These improvements can be preserved when patients have the stamina to continue with a high-energy, high-fat diet and daily exercise training at home.
The biology, function and clinical implications of exosomes in lung cancer.
Zhou, Li; Lv, Tangfeng; Zhang, Qun; Zhu, Qingqing; Zhan, Ping; Zhu, Suhua; Zhang, Jianya; Song, Yong
2017-10-28
Exosomes are 30-100 nm small membrane vesicles of endocytic origin that are secreted by all types of cells, and can also be found in various body fluids. Increasing evidence implicates that exosomes confer stability and can deliver their cargos such as proteins and nucleic acids to specific cell types, which subsequently serve as important messengers and carriers in lung carcinogenesis. Here, we describe the biogenesis and components of exosomes mainly in lung cancer, we summarize their function in lung carcinogenesis (epithelial mesenchymal transition, oncogenic cell transformation, angiogenesis, metastasis and immune response in tumor microenvironment), and importantly we focus on the clinical potential of exosomes as biomarkers and therapeutics in lung cancer. In addition, we also discuss current challenges that might impede the clinical use of exosomes. Further studies on the functional roles of exosomes in lung cancer requires thorough research. Copyright © 2017 Elsevier B.V. All rights reserved.
Feasibility Study for a Dual Field of View-Single Detector Array Infrared System.
1974-06-01
for 525 TV. Per Channelt C. DC. Ainlog& Dgitl Tretrs b~ td ~Secial multipleaed. Organ- 500 li1 cani be organized CAC nlg Dgia eprtr.Untdt 80 lioal...coupled transport phenomenon: charge coupled device (CCD) and bucket brigade device U ( BBD ). These devices are basically dynamic shift registers that...can be connected to form the serial in-serial uut memory. Both the CCD and BBD function by wanipulating char-e along a series of electrodes without
Association between the Type of Workplace and Lung Function in Copper Miners
Gruszczyński, Leszek; Wojakowska, Anna; Ścieszka, Marek; Turczyn, Barbara; Schmidt, Edward
2016-01-01
The aim of the analysis was to retrospectively assess changes in lung function in copper miners depending on the type of workplace. In the groups of 225 operators, 188 welders, and 475 representatives of other jobs, spirometry was performed at the start of employment and subsequently after 10, 20, and 25 years of work. Spirometry Longitudinal Data Analysis software was used to estimate changes in group means for FEV1 and FVC. Multiple linear regression analysis was used to assess an association between workplace and lung function. Lung function assessed on the basis of calculation of longitudinal FEV1 (FVC) decline was similar in all studied groups. However, multiple linear regression model used in cross-sectional analysis revealed an association between workplace and lung function. In the group of welders, FEF75 was lower in comparison to operators and other miners as early as after 10 years of work. Simultaneously, in smoking welders, the FEV1/FVC ratio was lower than in nonsmokers (p < 0,05). The interactions between type of workplace and smoking (p < 0,05) in their effect on FVC, FEV1, PEF, and FEF50 were shown. Among underground working copper miners, the group of smoking welders is especially threatened by impairment of lung ventilatory function. PMID:27274987
Association of area socioeconomic status with lung function in children.
Wu, Yi-Fan; Wu, Cho-Kai; Chen, Duan-Rung; Chie, Wei-Chu; Lee, Yungling Leo
2012-12-01
The study investigates the association between area-level socioeconomic status (SES) and children's lung function. Participants were 3994 seventh grade students from the Taiwan Children Health Study living in 14 communities in Taiwan and were recruited in 2007. Area-level SES predictors were population size, occupation type, income and education level. Hierarchical linear models (HLM) were used to examine the effects of area-level SES on lung function, after accounting for area air pollution and individual SES (parental education and family income). Areas with high income were independently associated with lower child lung function. The coefficients for log transformation of area tax per person in HLM were -47.8 (95% confidence interval (CI): -80.9, -14.8) in FEV(1), -43.8 (95% CI: -75.2, -12.5) in FVC, -93.4 (95% CI: -179.3, -7.5) in FEF(25-75) and -203.2 (95% CI: -349.1, -57.2) in PEF. All SES predictors influenced in the same direction and affected males more. The interaction of area tax per person with parental educational level was significant on PEF, suggesting significant association of greater parental education with lower lung function in children. High area SES was inversely associated with lung function in Taiwanese children. Copyright © 2012 Elsevier Inc. All rights reserved.
Wong, Suzy L; Coates, Allan L; To, Teresa
2016-02-01
Long-term exposure to ambient air pollution has been associated with adverse effects on children's lung function. Few studies have examined lung function in relation to industrial emissions of air pollutants. This cross-sectional study was based on 2,833 respondents aged 6 to 18 for whom spirometry data were collected by the Canadian Health Measures Survey, 2007 to 2011. The weighted sum of industrial air emissions of nitrogen oxides (NOₓ) and fine particulate matter (PM2.5) within 25 km of the respondent's residence was derived using National Pollutant Release Inventory data. Multivariate linear regression was used to examine the relationship between NOₓ and PM2.5 emissions and forced vital capacity (FVC), the forced expiratory volume in 1 sec (FEV₁), and the ratio of the two (FEV₁/FVC). Industrial air emissions of NOₓ were not significantly associated with lung function among males or females. Emissions of PM2.5 were negatively associated with FEV₁ and FEV₁/FVC, but not FVC, among males. PM2.5 was not significantly related to lung function among females. The associations that emerged between lung function and industrial emissions of PM2.5 among males were consistent with airway obstruction. Further research is warranted to investigate the gender differences observed in this study.
Lung function imaging methods in Cystic Fibrosis pulmonary disease.
Kołodziej, Magdalena; de Veer, Michael J; Cholewa, Marian; Egan, Gary F; Thompson, Bruce R
2017-05-17
Monitoring of pulmonary physiology is fundamental to the clinical management of patients with Cystic Fibrosis. The current standard clinical practise uses spirometry to assess lung function which delivers a clinically relevant functional readout of total lung function, however does not supply any visible or localised information. High Resolution Computed Tomography (HRCT) is a well-established current 'gold standard' method for monitoring lung anatomical changes in Cystic Fibrosis patients. HRCT provides excellent morphological information, however, the X-ray radiation dose can become significant if multiple scans are required to monitor chronic diseases such as cystic fibrosis. X-ray phase-contrast imaging is another emerging X-ray based methodology for Cystic Fibrosis lung assessment which provides dynamic morphological and functional information, albeit with even higher X-ray doses than HRCT. Magnetic Resonance Imaging (MRI) is a non-ionising radiation imaging method that is garnering growing interest among researchers and clinicians working with Cystic Fibrosis patients. Recent advances in MRI have opened up the possibilities to observe lung function in real time to potentially allow sensitive and accurate assessment of disease progression. The use of hyperpolarized gas or non-contrast enhanced MRI can be tailored to clinical needs. While MRI offers significant promise it still suffers from poor spatial resolution and the development of an objective scoring system especially for ventilation assessment.
Hemispatial neglect and serial order in verbal working memory.
Antoine, Sophie; Ranzini, Mariagrazia; van Dijck, Jean-Philippe; Slama, Hichem; Bonato, Mario; Tousch, Ann; Dewulf, Myrtille; Bier, Jean-Christophe; Gevers, Wim
2018-01-09
Working memory refers to our ability to actively maintain and process a limited amount of information during a brief period of time. Often, not only the information itself but also its serial order is crucial for good task performance. It was recently proposed that serial order is grounded in spatial cognition. Here, we compared performance of a group of right hemisphere-damaged patients with hemispatial neglect to healthy controls in verbal working memory tasks. Participants memorized sequences of consonants at span level and had to judge whether a target consonant belonged to the memorized sequence (item task) or whether a pair of consonants were presented in the same order as in the memorized sequence (order task). In line with this idea that serial order is grounded in spatial cognition, we found that neglect patients made significantly more errors in the order task than in the item task compared to healthy controls. Furthermore, this deficit seemed functionally related to neglect severity and was more frequently observed following right posterior brain damage. Interestingly, this specific impairment for serial order in verbal working memory was not lateralized. We advance the hypotheses of a potential contribution to the deficit of serial order in neglect patients of either or both (1) reduced spatial working memory capacity that enables to keep track of the spatial codes that provide memorized items with a positional context, (2) a spatial compression of these codes in the intact representational space. © 2018 The British Psychological Society.
Johari, Hanapi M; Zainudin, Hakimi A; Knight, Victor F; Lumley, Steven A; Subramanium, Ananthan S; Caszo, Brinnell A; Gnanou, Justin V
2017-04-01
Anthropometric and lung function characteristics of triathletes are important for the implementation of individual specific training and recovery recommendations. However, limited data are available for these parameters in triathletes. Hence, the aim of this study was to characterize and examine the gender differences of lung function and anthropometry parameters in competitive triathletes from Malaysia. Body composition assessment and lung function tests were performed on sixteen competitive triathletes (nine male and seven female). The subject's body composition profile including muscle mass (kg), fat free mass (kg), and percent body fat was measured using a bio-impedance segmental body composition analyzer. Forced vital capacity (FVC) and forced expiratory volume in one second (FEV1) were measured by Quark PFT2 spirometer. The anthropometric measurements revealed that male triathletes were significantly taller than female triathletes and had significantly more protein and skeletal muscle mass. The female triathletes, however, had significantly higher percent body fat. Male triathletes had statistically significant higher FVC and FEV1 than female triathletes. Both the male and female triathletes showed a positive correlation between height, fat free mass and the lung function markers FVC and FEV1. This association was not seen with Body Mass Index (BMI) in female triathletes. The data from our study shows that anthropometric parameters are directly linked to lung function of a triathlete. We also found the relationship between BMI and lung function to be gender specific in triathletes and is dependent on the body protein and fat content. Hence, body composition characterization is essential and provides valuable information for developing individual specific training modules.
Botelho, Danielle J; Leo, Bey Fen; Massa, Christopher B; Sarkar, Srijata; Tetley, Terry D; Chung, Kian Fan; Chen, Shu; Ryan, Mary P; Porter, Alexandra E; Zhang, Junfeng; Schwander, Stephan K; Gow, Andrew J
2016-01-01
Multiple studies have examined the direct cellular toxicity of silver nanoparticles (AgNPs). However, the lung is a complex biological system with multiple cell types and a lipid-rich surface fluid; therefore, organ level responses may not depend on direct cellular toxicity. We hypothesized that interaction with the lung lining is a critical determinant of organ level responses. Here, we have examined the effects of low dose intratracheal instillation of AgNPs (0.05 μg/g body weight) 20 and 110 nm diameter in size, and functionalized with citrate or polyvinylpyrrolidone. Both size and functionalization were significant factors in particle aggregation and lipid interaction in vitro. One day post-intratracheal instillation lung function was assessed, and bronchoalveolar lavage (BAL) and lung tissue collected. There were no signs of overt inflammation. There was no change in surfactant protein-B content in the BAL but there was loss of surfactant protein-D with polyvinylpyrrolidone (PVP)-stabilized particles. Mechanical impedance data demonstrated a significant increase in pulmonary elastance as compared to control, greatest with 110 nm PVP-stabilized particles. Seven days post-instillation of PVP-stabilized particles increased BAL cell counts, and reduced lung function was observed. These changes resolved by 21 days. Hence, AgNP-mediated alterations in the lung lining and mechanical function resolve by 21 days. Larger particles and PVP stabilization produce the largest disruptions. These studies demonstrate that low dose AgNPs elicit deficits in both mechanical and innate immune defense function, suggesting that organ level toxicity should be considered.
Menopause Is Associated with Accelerated Lung Function Decline.
Triebner, Kai; Matulonga, Bobette; Johannessen, Ane; Suske, Sandra; Benediktsdóttir, Bryndís; Demoly, Pascal; Dharmage, Shyamali C; Franklin, Karl A; Garcia-Aymerich, Judith; Gullón Blanco, José Antonio; Heinrich, Joachim; Holm, Mathias; Jarvis, Debbie; Jõgi, Rain; Lindberg, Eva; Moratalla Rovira, Jesús Martínez; Muniozguren Agirre, Nerea; Pin, Isabelle; Probst-Hensch, Nicole; Puggini, Luca; Raherison, Chantal; Sánchez-Ramos, José Luis; Schlünssen, Vivi; Sunyer, Jordi; Svanes, Cecilie; Hustad, Steinar; Leynaert, Bénédicte; Gómez Real, Francisco
2017-04-15
Menopause is associated with changes in sex hormones, which affect immunity, inflammation, and osteoporosis and may impair lung function. Lung function decline has not previously been investigated in relation to menopause. To study whether lung function decline, assessed by FVC and FEV 1 , is accelerated in women who undergo menopause. The population-based longitudinal European Community Respiratory Health Survey provided serum samples, spirometry, and questionnaire data about respiratory and reproductive health from three study waves (n = 1,438). We measured follicle-stimulating hormone and luteinizing hormone and added information on menstrual patterns to determine menopausal status using latent class analysis. Associations with lung function decline were investigated using linear mixed effects models, adjusting for age, height, weight, pack-years, current smoking, age at completed full-time education, spirometer, and including study center as random effect. Menopausal status was associated with accelerated lung function decline. The adjusted mean FVC decline was increased by -10.2 ml/yr (95% confidence interval [CI], -13.1 to -7.2) in transitional women and -12.5 ml/yr (95% CI, -16.2 to -8.9) in post-menopausal women, compared with women menstruating regularly. The adjusted mean FEV 1 decline increased by -3.8 ml/yr (95% CI, -6.3 to -2.9) in transitional women and -5.2 ml/yr (95% CI, -8.3 to -2.0) in post-menopausal women. Lung function declined more rapidly among transitional and post-menopausal women, in particular for FVC, beyond the expected age change. Clinicians should be aware that respiratory health often deteriorates during reproductive aging.
Maniatis, Nikolaos A.; Chernaya, Olga; Shinin, Vasily; Minshall, Richard D.
2012-01-01
The primary function of the mammalian lung is to facilitate diffusion of oxygen to venous blood and to ventilate carbon dioxide produced by catabolic reactions within cells. However, it is also responsible for a variety of other important functions, including host defense and production of vasoactive agents to regulate not only systemic blood pressure, but also water, electrolyte and acid-base balance. Caveolin-1 is highly expressed in the majority of cell types in the lung, including epithelial, endothelial, smooth muscle, connective tissue cells, and alveolar macrophages. Deletion of caveolin-1 in these cells results in major functional aberrations, suggesting that caveolin-1 may be crucial to lung homeostasis and development. Furthermore, generation of mutant mice that under-express caveolin-1 results in severe functional distortion with phenotypes covering practically the entire spectrum of known lung diseases, including pulmonary hypertension, fibrosis, increased endothelial permeability, and immune defects. In this Chapter, we outline the current state of knowledge regarding caveolin-1-dependent regulation of pulmonary cell functions and discuss recent research findings on the role of caveolin-1 in various pulmonary disease states, including obstructive and fibrotic pulmonary vascular and inflammatory diseases. PMID:22411320
Washko, George R; Criner, Gerald J; Mohsenifar, Zab; Sciurba, Frank C; Sharafkhaneh, Amir; Make, Barry J; Hoffman, Eric A; Reilly, John J
2008-06-01
Computed tomographic based indices of emphysematous lung destruction may highlight differences in disease pathogenesis and further enable the classification of subjects with Chronic Obstructive Pulmonary Disease. While there are multiple techniques that can be utilized for such radiographic analysis, there is very little published information comparing the performance of these methods in a clinical case series. Our objective was to examine several quantitative and semi-quantitative methods for the assessment of the burden of emphysema apparent on computed tomographic scans and compare their ability to predict lung mechanics and function. Automated densitometric analysis was performed on 1094 computed tomographic scans collected upon enrollment into the National Emphysema Treatment Trial. Trained radiologists performed an additional visual grading of emphysema on high resolution CT scans. Full pulmonary function test results were available for correlation, with a subset of subjects having additional measurements of lung static recoil. There was a wide range of emphysematous lung destruction apparent on the CT scans and univariate correlations to measures of lung function were of modest strength. No single method of CT scan analysis clearly outperformed the rest of the group. Quantification of the burden of emphysematous lung destruction apparent on CT scan is a weak predictor of lung function and mechanics in severe COPD with no uniformly superior method found to perform this analysis. The CT based quantification of emphysema may augment pulmonary function testing in the characterization of COPD by providing complementary phenotypic information.
Extracellular matrix in lung development, homeostasis and disease
Zhou, Yong; Horowitz, Jeffrey C.; Naba, Alexandra; ...
2018-03-08
Here, the lung's unique extracellular matrix (ECM), while providing structural support for cells, is critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and phenotype. The composition and function of lung ECM become markedly deranged in pathological tissue remodeling. ECM-based therapeutics and bioengineering approaches represent promising novel strategies for regeneration/repair of the lung and treatment of chronic lung diseases. In this review, we assess the current state of lung ECM biology, including fundamental advances in ECM composition, dynamics, topography, and biomechanics; the role of the ECMmore » in normal and aberrant lung development, adult lung diseases and autoimmunity; and ECM in the regulation of the stem cell niche. We identify opportunities to advance the field of lung ECM biology and provide a set recommendations for research priorities to advance knowledge that would inform novel approaches to the pathogenesis, diagnosis, and treatment of chronic lung diseases.« less
Extracellular matrix in lung development, homeostasis and disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yong; Horowitz, Jeffrey C.; Naba, Alexandra
Here, the lung's unique extracellular matrix (ECM), while providing structural support for cells, is critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and phenotype. The composition and function of lung ECM become markedly deranged in pathological tissue remodeling. ECM-based therapeutics and bioengineering approaches represent promising novel strategies for regeneration/repair of the lung and treatment of chronic lung diseases. In this review, we assess the current state of lung ECM biology, including fundamental advances in ECM composition, dynamics, topography, and biomechanics; the role of the ECMmore » in normal and aberrant lung development, adult lung diseases and autoimmunity; and ECM in the regulation of the stem cell niche. We identify opportunities to advance the field of lung ECM biology and provide a set recommendations for research priorities to advance knowledge that would inform novel approaches to the pathogenesis, diagnosis, and treatment of chronic lung diseases.« less
Extracellular matrix in lung development, homeostasis and disease
Zhou, Yong; Horowitz, Jeffrey C.; Naba, Alexandra; ...
2018-03-08
The lung's unique extracellular matrix (ECM), while providing structural support for cells, is critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and phenotype. The composition and function of lung ECM become markedly deranged in pathological tissue remodeling. ECM-based therapeutics and bioengineering approaches represent promising novel strategies for regeneration/repair of the lung and treatment of chronic lung diseases. In this paper, we assess the current state of lung ECM biology, including fundamental advances in ECM composition, dynamics, topography, and biomechanics; the role of the ECM inmore » normal and aberrant lung development, adult lung diseases and autoimmunity; and ECM in the regulation of the stem cell niche. Finally, we identify opportunities to advance the field of lung ECM biology and provide a set recommendations for research priorities to advance knowledge that would inform novel approaches to the pathogenesis, diagnosis, and treatment of chronic lung diseases.« less
Short-term memory loss over time without retroactive stimulus interference.
Cowan, Nelson; AuBuchon, Angela M
2008-02-01
A key question in cognitive psychology is whether information in short-term memory is lost as a function of time. Lewandowsky, Duncan, and Brown (2004) argued against that memory loss because forgetting in serial recall occurred to the same extent across serial positions regardless of the rate of recall. However, we believe Lewandowsky et al. (2004) only prevented one of two types of rehearsal; they did not prevent nonarticulatory rehearsal via attention. To prevent articulatory and nonarticulatory rehearsal without introducing interference, we presented unevenly timed stimuli for serial recall and, on some trials, required that the timing of stimuli be reproduced in the response. In those trials only, evidence of memory loss over time emerged. Further research is needed to identify whether this memory loss is decay or lost distinctiveness.
Hebb learning, verbal short-term memory, and the acquisition of phonological forms in children.
Mosse, Emma K; Jarrold, Christopher
2008-04-01
Recent work using the Hebb effect as a marker for implicit long-term acquisition of serial order has demonstrated a functional equivalence across verbal and visuospatial short-term memory. The current study extends this observation to a sample of five- to six-year-olds using verbal and spatial immediate serial recall and also correlates the magnitude of Hebb learning with explicit measures of word and nonword paired-associate learning. Comparable Hebb effects were observed in both domains, but only nonword learning was significantly related to the magnitude of Hebb learning. Nonword learning was also independently related to individuals' general level of verbal serial recall. This suggests that vocabulary acquisition depends on both a domain-specific short-term memory system and a domain-general process of learning through repetition.
Elevated airway liquid volumes at birth: a potential cause of transient tachypnea of the newborn.
McGillick, Erin V; Lee, Katie; Yamaoka, Shigeo; Te Pas, Arjan B; Crossley, Kelly J; Wallace, Megan J; Kitchen, Marcus J; Lewis, Robert A; Kerr, Lauren T; DeKoninck, Philip; Dekker, Janneke; Thio, Marta; McDougall, Annie R A; Hooper, Stuart B
2017-11-01
Excessive liquid in airways and/or distal lung tissue may underpin the respiratory morbidity associated with transient tachypnea of the newborn (TTN). However, its effects on lung aeration and respiratory function following birth are unknown. We investigated the effect of elevated airway liquid volumes on newborn respiratory function. Near-term rabbit kittens (30 days gestation; term ~32 days) were delivered, had their lung liquid-drained, and either had no liquid replaced (control; n = 7) or 30 ml/kg of liquid re-added to the airways [liquid added (LA); n = 7]. Kittens were mechanically ventilated in a plethysmograph. Measures of chest and lung parameters, uniformity of lung aeration, and airway size were analyzed using phase contrast X-ray imaging. The maximum peak inflation pressure required to recruit a tidal volume of 8 ml/kg was significantly greater in LA compared with control kittens (35.0 ± 0.7 vs. 26.8 ± 0.4 cmH 2 O, P < 0.001). LA kittens required greater time to achieve lung aeration (106 ± 14 vs. 60 ± 6 inflations, P = 0.03) and had expanded chest walls, as evidenced by an increased total chest area (32 ± 9%, P < 0.0001), lung height (17 ± 6%, P = 0.02), and curvature of the diaphragm (19 ± 8%, P = 0.04). LA kittens had lower functional residual capacity during stepwise changes in positive end-expiratory pressures (5, 3, 0, and 5 cmH 2 0). Elevated lung liquid volumes had marked adverse effects on lung structure and function in the immediate neonatal period and reduced the ability of the lung to aerate efficiently. We speculate that elevated airway liquid volumes may underlie the initial morbidity in near-term babies with TTN after birth. NEW & NOTEWORTHY Transient tachypnea of the newborn reduces respiratory function in newborns and is thought to result due to elevated airway liquid volumes following birth. However, the effect of elevated airway liquid volumes on neonatal respiratory function is unknown. Using phase contrast X-ray imaging, we show that elevated airway liquid volumes have adverse effects on lung structure and function in the immediate newborn period, which may underlie the pathology of TTN in near-term babies after birth. Copyright © 2017 the American Physiological Society.
Overweight, Obesity, and Lung Function in Children and Adults-A Meta-analysis.
Forno, Erick; Han, Yueh-Ying; Mullen, James; Celedón, Juan C
There is conflicting evidence on the effect of obesity on lung function in adults and children with and without asthma. We aimed to evaluate the relation between overweight or obesity and lung function, and whether such relationship varies by age, sex, or asthma status. We searched PubMed, Scopus, CINAHL, Cochrane, and EMBASE for all studies (in English) reporting on obesity status (by body mass index) and lung function, from 2005 to 2017. Main outcomes were forced expiratory volume in 1 second (FEV 1 ), forced vital capacity (FVC), FEV 1 /FVC, forced expiratory flow between 25th and 75th percentile of the forced vital capacity (FEF 25-75 ), total lung capacity (TLC), residual volume (RV), and functional residual capacity (FRC). Random-effects models were used to calculate the pooled risk estimates; each study was weighed by the inverse effect size variance. For each outcome, we compared overweight or obese ("obese") subjects with those of normal weight. All measures of lung function were decreased among obese subjects. Obese adults showed a pattern (lower FEV 1 , FVC, TLC, and RV) different from obese children (more pronounced FEV 1 /FVC deficit with unchanged FEV 1 or FVC). There were also seemingly different patterns by asthma status, in that subjects without asthma had more marked decreases in FEV 1 , TLC, RV, and FRC than subjects with asthma. Subjects who were obese (as compared with overweight) had even further decreased FEV 1 , FVC, TLC, RV, and FRC. Obesity is detrimental to lung function, but specific patterns differ between children and adults. Physicians should be aware of adverse effects of obesity on lung function, and weight control should be considered in the management of airway disease among the obese. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Byberg, Kristine Kjer; Mikalsen, Ingvild Bruun; Eide, Geir Egil; Forman, Michele R; Júlíusson, Pétur Benedikt; Øymar, Knut
2018-01-19
An association between body weight in childhood and subsequent lung function and asthma has been suggested, but few longitudinal studies exist. Our aim was to explore whether weight-related anthropometric measurements through childhood were associated with lung function in late childhood. From an original nested case-control study, a cohort study was conducted, where lung function was measured in 463 children aged 12.8 years, and anthropometry was measured at several ages from birth through 12.8 years of age. Associations between anthropometrics and lung function were analysed using multiple linear and fractional polynomial regression analysis. Birthweight and body mass index (BMI; kg/m 2 ) at different ages through childhood were positively associated with forced vital capacity in percent of predicted (FVC %) and forced expiratory volume in the first second in percent of predicted (FEV 1 %) at 12.8 years of age. BMI, waist circumference, waist-to-height ratio and skinfolds at 12.8 years of age and the change in BMI from early to late childhood were positively associated with FVC % and FEV 1 % and negatively associated with FEV 1 /FVC and forced expiratory flow at 25-75% of FVC/FVC. Interaction analyses showed that positive associations between anthropometrics other than BMI and lung function were mainly found in girls. Inverse U-shaped associations were found between BMI at the ages of 10.8/11.8 (girls/boys) and 12.8 years (both genders) and FVC % and FEV 1 % at 12.8 years of age. Weight-related anthropometrics through childhood may influence lung function in late childhood. These findings may be physiological or associated with air flow limitation. Inverse U-shaped associations suggest a differential impact on lung function in normal-weight and overweight children. This study was observational without any health care intervention for the participants. Therefore, no trial registration number is available.
Mordukhovich, Irina; Lepeule, Johanna; Coull, Brent A; Sparrow, David; Vokonas, Pantel; Schwartz, Joel
2015-02-01
Black carbon (BC) is a pro-oxidant, traffic-related pollutant linked with lung function decline. We evaluated the influence of genetic variation in the oxidative stress pathway on the association between long-term BC exposure and lung function decline. Lung function parameters (FVC and FEV1) were measured during one or more study visits between 1995 and 2011 (n=651 participants) among an elderly cohort: the Normative Aging Study. Residential BC exposure levels were estimated using a spatiotemporal land use regression model. We evaluated whether oxidative stress variants, combined into a genetic score, modify the association between 1-year and 5-year moving averages of BC exposure and lung function levels and rates of decline, using linear mixed models. We report stronger associations between long-term BC exposure and increased rate of lung function decline, but not baseline lung function level, among participants with higher oxidative stress allelic risk profiles compared with participants with lower risk profiles. Associations were strongest when evaluating 5-year moving averages of BC exposure. A 0.5 µg/m(3) increase in 5-year BC exposure was associated with a 0.1% yearly increase in FVC (95% CI -0.5 to 0.7) among participants with low genetic risk scores and a 1.3% yearly decrease (95% CI -1.8 to -0.8) among those with high scores (p-interaction=0.0003). Our results suggest that elderly men with high oxidative stress genetic scores may be more susceptible to the effects of BC on lung function decline. The results, if confirmed, should inform air-quality recommendations in light of a potentially susceptible subgroup. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Morales, Eva; Garcia-Esteban, Raquel; de la Cruz, Oscar Asensio; Basterrechea, Mikel; Lertxundi, Aitana; de Dicastillo, Maria D Martinez López; Zabaleta, Carlos; Sunyer, Jordi
2015-01-01
Effects of prenatal and postnatal exposure to air pollution on lung function at preschool age remain unexplored. We examined the association of exposure to air pollution during specific trimesters of pregnancy and postnatal life with lung function in preschoolers. Lung function was assessed with spirometry in preschoolers aged 4.5 years (n=620) participating in the INfancia y Medio Ambiente (INMA) cohort. Temporally adjusted land use regression (LUR) models were applied to estimate individual residential exposures to benzene and nitrogen dioxide (NO₂) during specific trimesters of pregnancy and early postnatal life (the first year of life). Recent and current (1 year and 1 week before lung function testing, respectively) exposures to NO₂ and nitrogen oxides (NOx) were also assessed. Exposure to higher levels of benzene and NO₂ during pregnancy was associated with reduced lung function. FEV1 estimates for an IQR increase in exposures during the second trimester of pregnancy were -18.4 mL, 95% CI -34.8 to -2.1 for benzene and -28.0 mL, 95% CI -52.9 to -3.2 for NO₂. Relative risk (RR) of low lung function (<80% of predicted FEV1) for an IQR increase in benzene and NO₂ during the second trimester of pregnancy were 1.22, 95% CI 1.02 to 1.46 and 1.30, 95% CI 0.97 to 1.76, respectively. Associations for early postnatal, recent and current exposures were not statistically significant. Stronger associations appeared among allergic children and those of lower social class. Prenatal exposure to residential traffic-related air pollution may result in long-term lung function deficits at preschool age. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Influenza A virus-dependent remodeling of pulmonary clock function in a mouse model of COPD
Sundar, Isaac K.; Ahmad, Tanveer; Yao, Hongwei; Hwang, Jae-woong; Gerloff, Janice; Lawrence, B. Paige; Sellix, Michael T.; Rahman, Irfan
2015-01-01
Daily oscillations of pulmonary function depend on the rhythmic activity of the circadian timing system. Environmental tobacco/cigarette smoke (CS) disrupts circadian clock leading to enhanced inflammatory responses. Infection with influenza A virus (IAV) increases hospitalization rates and death in susceptible individuals, including patients with Chronic Obstructive Pulmonary Disease (COPD). We hypothesized that molecular clock disruption is enhanced by IAV infection, altering cellular and lung function, leading to severity in airway disease phenotypes. C57BL/6J mice exposed to chronic CS, BMAL1 knockout (KO) mice and wild-type littermates were infected with IAV. Following infection, we measured diurnal rhythms of clock gene expression in the lung, locomotor activity, pulmonary function, inflammatory, pro-fibrotic and emphysematous responses. Chronic CS exposure combined with IAV infection altered the timing of clock gene expression and reduced locomotor activity in parallel with increased lung inflammation, disrupted rhythms of pulmonary function, and emphysema. BMAL1 KO mice infected with IAV showed pronounced detriments in behavior and survival, and increased lung inflammatory and pro-fibrotic responses. This suggests that remodeling of lung clock function following IAV infection alters clock-dependent gene expression and normal rhythms of lung function, enhanced emphysematous and injurious responses. This may have implications for the pathobiology of respiratory virus-induced airway disease severity and exacerbations. PMID:25923474
NASA Astrophysics Data System (ADS)
Xiong, Guoming; Cumming, Paul; Todica, Andrei; Hacker, Marcus; Bartenstein, Peter; Böning, Guido
2012-12-01
Absolute quantitation of the cerebral metabolic rate for glucose (CMRglc) can be obtained in positron emission tomography (PET) studies when serial measurements of the arterial [18F]-fluoro-deoxyglucose (FDG) input are available. Since this is not always practical in PET studies of rodents, there has been considerable interest in defining an image-derived input function (IDIF) by placing a volume of interest (VOI) within the left ventricle of the heart. However, spill-in arising from trapping of FDG in the myocardium often leads to progressive contamination of the IDIF, which propagates to underestimation of the magnitude of CMRglc. We therefore developed a novel, non-invasive method for correcting the IDIF without scaling to a blood sample. To this end, we first obtained serial arterial samples and dynamic FDG-PET data of the head and heart in a group of eight anaesthetized rats. We fitted a bi-exponential function to the serial measurements of the IDIF, and then used the linear graphical Gjedde-Patlak method to describe the accumulation in myocardium. We next estimated the magnitude of myocardial spill-in reaching the left ventricle VOI by assuming a Gaussian point-spread function, and corrected the measured IDIF for this estimated spill-in. Finally, we calculated parametric maps of CMRglc using the corrected IDIF, and for the sake of comparison, relative to serial blood sampling from the femoral artery. The uncorrected IDIF resulted in 20% underestimation of the magnitude of CMRglc relative to the gold standard arterial input method. However, there was no bias with the corrected IDIF, which was robust to the variable extent of myocardial tracer uptake, such that there was a very high correlation between individual CMRglc measurements using the corrected IDIF with gold-standard arterial input results. Based on simulation, we furthermore find that electrocardiogram-gating, i.e. ECG-gating is not necessary for IDIF quantitation using our approach.
van Dijck, Jean-Philippe; Fias, Wim; Andres, Michael
2015-10-01
It has been proposed that the metrics of space, time and other magnitudes relevant for action are coupled through a generalized magnitude system that also contribute to number representation. Several studies capitalized on stimulus-response compatibility effects to show that numbers map onto left-right representations and grasp representations as a function of their magnitude. However, the tasks typically used do not allow disentangling magnitude from serial order processing. Here, we devised a working memory (WM) task where participants had to remember random sequences of numbers and perform a precision/whole-hand grip (Experiment 1) or a uni-manual left/right button press (Experiment 2) in response to numbers presented during the retention interval. This task does allow differentiating the interference of number magnitude and serial order with each set of responses. Experiment 1 showed that precision grips were initiated faster than whole-hand grips in response to small numbers, irrespective of their serial position in WM. In contrast, Experiment 2 revealed an advantage of right over left button presses as serial position increased, without any influence of number magnitude. These findings demonstrate that grasping and left-right movements overlap with distinct dimensions of number processing. These findings are discussed in the light of different theories explaining the interactions between numbers, space and action.
Reoma, Junewai L; Rojas, Alvaro; Krause, Eric M; Obeid, Nabeel R; Lafayette, Nathan G; Pohlmann, Joshua R; Padiyar, Niru P; Punch, Jeffery D; Cook, Keith E; Bartlett, Robert H
2009-01-01
Extracorporeal cardiopulmonary support (ECS) of donors after cardiac death (DCD) has been shown to improve abdominal organs for transplantation. This study assesses whether pulmonary congestion occurs during ECS with the heart arrested and describes an in vivo method to assess if lungs are suitable for transplantation from DCD donors after ECS resuscitation. Cardiac arrest was induced in 30 kg pigs, followed by 10 min of warm ischemia. Cannulae were placed into the right atrium (RA) and iliac artery, and veno-arterial ECS was initiated for 90 min with lungs inflated, group 1 (n = 5) or deflated, group 2 (n = 3). Left atrial pressures were measured as a marker for pulmonary congestion. After 90 min of ECS, lung function was evaluated. Cannulae were placed into the pulmonary artery (PA) and left ventricle (LV). A second pump was included, and ECS was converted to a bi-ventricular (bi-VAD) system. The RVAD drained from the RA and pumped into the PA, and the LVAD drained the LV and pumped into the iliac. This brought the lungs back into circulation for a 1-hr assessment period. The oxygenator was turned off, and ventilation was restarted. Flows, blood gases, PA and left atrial pressures, and compliance were recorded. In both the groups, LA pressure was <15 mm Hg during ECS. During the lung assessment period, PA flows were 1.4-2.2 L/min. PO2 was >300 mm Hg, with normal PCO2. Extracorporeal cardiopulmonary support resuscitation of DCD donors is feasible and allows for assessment of function before procurement. Extracorporeal cardiopulmonary support does not cause pulmonary congestion, and the lungs retain adequate function for transplantation. Compliance correlated with lung function.
Reoma, Junewai L.; Rojas, Alvaro; Krause, Eric M.; Obeid, Nabeel R.; Lafayette, Nathan G.; Pohlmann, Joshua R.; Padiyar, Niru P.; Punch, Jeffery D; Cook, Keith E.; Bartlett, Robert H
2009-01-01
Extracorporeal cardiopulmonary support(ECS) of donors following cardiac death(DCD) has been shown to improve abdominal organs for transplantation. This study assesses whether pulmonary congestion occurs during ECS with the heart arrested and describes an in-vivo method to assess if lungs are suitable for transplantation from DCD donors following ECS resuscitation. Cardiac arrest was induced in 30 kg pigs, followed by 10min. of warm ischemia. Cannulas were placed into right atrium (RA) and iliac artery, and veno-arterial ECS was initiated for 90min with lungs inflated, Group 1 (n=5) or deflated Group 2 (n=3). Left atrial pressures were measured as a marker for pulmonary congestion. After 90 min of ECS, lung function was evaluated. Cannulae were placed into the pulmonary artery (PA) and left ventricle (LV). A second pump was included, and ECS was converted to a bi-VAD system. The RVAD drained from the RA and pumped into the PA, and the LVAD drained the LV and pumped into the iliac. This brought the lungs back into circulation for a 1hr assessment period. The oxygenator was turned off, and ventilation restarted. Flows, blood gases, pulmonary artery and left atrial pressures, and compliance were recorded. In both groups: LA pressure was <15mmHg during ECS. During the lung assessment period, PA flows were 1.4−2.2 liter/min. PO2 was >300mmHg, with normal PCO2. ECS resuscitation of DCD donors is feasible and allows for assessment of function prior to procurement. ECS does not cause pulmonary congestion, and lungs retain adequate function for transplantation. Compliance correlated with lung function. PMID:19506464
Groves, Angela M.; Gow, Andrew J.; Massa, Christopher B.; Laskin, Jeffrey D.
2012-01-01
Surfactant protein–D (Sftpd) is a pulmonary collectin important in down-regulating macrophage inflammatory responses. In these experiments, we analyzed the effects of chronic macrophage inflammation attributable to loss of Sftpd on the persistence of ozone-induced injury, macrophage activation, and altered functioning in the lung. Wild-type (Sftpd+/+) and Sftpd−/− mice (aged 8 wk) were exposed to air or ozone (0.8 parts per million, 3 h). Bronchoalveolar lavage (BAL) fluid and tissue were collected 72 hours later. In Sftpd−/− mice, but not Sftpd+/+ mice, increased BAL protein and nitrogen oxides were observed after ozone inhalation, indicating prolonged lung injury and oxidative stress. Increased numbers of macrophages were also present in BAL fluid and in histologic sections from Sftpd−/− mice. These cells were enlarged and foamy, suggesting that they were activated. This conclusion was supported by findings of increased BAL chemotactic activity, and increased expression of inducible nitric oxide synthase in lung macrophages. In both Sftpd+/+ and Sftpd−/− mice, inhalation of ozone was associated with functional alterations in the lung. Although these alterations were limited to central airway mechanics in Sftpd+/+ mice, both central airway and parenchymal mechanics were modified by ozone exposure in Sftpd−/− mice. The most notable changes were evident in resistance and elastance spectra and baseline lung function, and in lung responsiveness to changes in positive end-expiratory pressure. These data demonstrate that a loss of Sftpd is associated with prolonged lung injury, oxidative stress, and macrophage accumulation and activation in response to ozone, and with more extensive functional changes consistent with the loss of parenchymal integrity. PMID:22878412
Heritability of Lung Disease Severity in Cystic Fibrosis
Vanscoy, Lori L.; Blackman, Scott M.; Collaco, Joseph M.; Bowers, Amanda; Lai, Teresa; Naughton, Kathleen; Algire, Marilyn; McWilliams, Rita; Beck, Suzanne; Hoover-Fong, Julie; Hamosh, Ada; Cutler, Dave; Cutting, Garry R.
2007-01-01
Rationale: Obstructive lung disease, the major cause of mortality in cystic fibrosis (CF), is poorly correlated with mutations in the disease-causing gene, indicating that other factors determine severity of lung disease. Objectives: To quantify the contribution of modifier genes to variation in CF lung disease severity. Methods: Pulmonary function data from patients with CF living with their affected twin or sibling were converted into reference values based on both healthy and CF populations. The best measure of FEV1 within the last year was used for cross-sectional analysis. FEV1 measures collected over at least 4 years were used for longitudinal analysis. Genetic contribution to disease variation (i.e., heritability) was estimated in two ways: by comparing similarity of lung function in monozygous (MZ) twins (∼ 100% gene sharing) with that of dizygous (DZ) twins/siblings (∼ 50% gene sharing), and by comparing similarity of lung function measures for related siblings to similarity for all study subjects. Measurements and Main Results: Forty-seven MZ twin pairs, 10 DZ twin pairs, and 231 sibling pairs (of a total of 526 patients) with CF were studied. Correlations for all measures of lung function for MZ twins (0.82–0.91, p < 0.0001) were higher than for DZ twins and siblings (0.50–0.64, p < 0.001). Heritability estimates from both methods were consistent for each measure of lung function and ranged from 0.54 to 1.0. Heritability estimates generally increased after adjustment for differences in nutritional status (measured as body mass index z-score). Conclusions: Our heritability estimates indicate substantial genetic control of variation in CF lung disease severity, independent of CFTR genotype. PMID:17332481
Kim, Joohae; Yoon, Ho Il; Oh, Yeon-Mok; Lim, Seong Yong; Lee, Ji-Hyun; Kim, Tae-Hyung; Lee, Sang Yeub; Lee, Jin Hwa; Lee, Sang-Do; Lee, Chang-Hoon
2015-01-01
Background Since the Global Initiative for Chronic Obstructive Lung Disease (GOLD) groups A–D were introduced, the lung function changes according to group have been evaluated rarely. Objective We investigated the rate of decline in annual lung function in patients categorized according to the 2014 GOLD guidelines. Methods Patients with COPD included in the Korean Obstructive Lung Disease (KOLD) prospective study, who underwent yearly postbronchodilator spirometry at least three times, were included. The main outcome was the annual decline in postbronchodilator forced expiratory volume in 1 second (FEV1), which was analyzed by random-slope and random-intercept mixed linear regression. Results A total 175 participants were included. No significant postbronchodilator FEV1 decline was observed between the groups (−34.4±7.9 [group A]; −26.2±9.4 [group B]; −22.7±16.0 [group C]; and −24.0±8.7 mL/year [group D]) (P=0.79). The group with less symptoms (−32.3±7.2 vs −25.0±6.5 mL/year) (P=0.44) and the low risk group (−31.0±6.1 vs −23.6±7.7 mL/year) (P=0.44) at baseline showed a more rapid decline in the postbronchodilator FEV1, but the trends were not statistically significant. However, GOLD stages classified by FEV1 were significantly related to the annual lung function decline. Conclusion There was no significant difference in lung function decline rates according to the GOLD groups. Prior classification using postbronchodilator FEV1 predicts decline in lung function better than does the new classification. PMID:26379432
Alamo, Ines G.; Kannan, Kolenkode B.; Ramos, Harry; Loftus, Tyler J.; Efron, Philip A.; Mohr, Alicia M.
2016-01-01
Background Propranolol has been shown previously to restore bone marrow function and improve anemia after lung contusion/hemorrhagic shock. We hypothesized that daily clonidine administration would inhibit central sympathetic outflow and restore bone marrow function in our rodent model of lung contusion/hemorrhagic shock with chronic stress. Methods Male Sprague-Dawley rats underwent six days of restraint stress after lung contusion/hemorrhagic shock during which the animals received clonidine (75μg/kg) after the restraint stress. On post-injury day seven, we assessed urine norepinephrine, blood hemoglobin, plasma granulocyte colony stimulating factor (G-CSF), and peripheral blood mobilization of hematopoietic progenitor cells (HPC), as well as bone marrow cellularity and erythroid progenitor cell growth. Results The addition of clonidine to lung contusion/hemorrhagic shock with chronic restraint stress, significantly decreased urine norepinephrine levels, improved bone marrow cellularity, restored erythroid progenitor colony growth, and improved hemoglobin (14.1±0.6 vs. 10.8±0.6 g/dL). The addition of clonidine to lung contusion/hemorrhagic shock with chronic restraint stress significantly decreased HPC mobilization and restored G-CSF levels. Conclusions After lung contusion/hemorrhagic shock with chronic restraint stress, daily administration of clonidine restored bone marrow function and improved anemia. Alleviating chronic stress and decreasing norepinephrine is a key therapeutic target to improve bone marrow function after severe injury. PMID:27742030
Spieth, Peter M; Güldner, Andreas; Uhlig, Christopher; Bluth, Thomas; Kiss, Thomas; Schultz, Marcus J; Pelosi, Paolo; Koch, Thea; Gama de Abreu, Marcelo
2014-05-02
General anesthesia usually requires mechanical ventilation, which is traditionally accomplished with constant tidal volumes in volume- or pressure-controlled modes. Experimental studies suggest that the use of variable tidal volumes (variable ventilation) recruits lung tissue, improves pulmonary function and reduces systemic inflammatory response. However, it is currently not known whether patients undergoing open abdominal surgery might benefit from intraoperative variable ventilation. The PROtective VARiable ventilation trial ('PROVAR') is a single center, randomized controlled trial enrolling 50 patients who are planning for open abdominal surgery expected to last longer than 3 hours. PROVAR compares conventional (non-variable) lung protective ventilation (CV) with variable lung protective ventilation (VV) regarding pulmonary function and inflammatory response. The primary endpoint of the study is the forced vital capacity on the first postoperative day. Secondary endpoints include further lung function tests, plasma cytokine levels, spatial distribution of ventilation assessed by means of electrical impedance tomography and postoperative pulmonary complications. We hypothesize that VV improves lung function and reduces systemic inflammatory response compared to CV in patients receiving mechanical ventilation during general anesthesia for open abdominal surgery longer than 3 hours. PROVAR is the first randomized controlled trial aiming at intra- and postoperative effects of VV on lung function. This study may help to define the role of VV during general anesthesia requiring mechanical ventilation. Clinicaltrials.gov NCT01683578 (registered on September 3 3012).
Kaul, Anne; Gläser, Sven; Hannemann, Anke; Stubbe, Beate; Felix, Stefan B; Nauck, Matthias; Ewert, Ralf; Friedrich, Nele
2017-04-01
Vitamin D deficiency is discussed to be associated with lung health. While former studies focused on subjects suffering from pulmonary diseases, we aimed to investigate the association of 25-hydroxy vitamin D [25(OH)D] with lung function in the general population and examined whether mediating effects of inflammation, glycemic control or renal function exist. 1404 participants from the Study of Health in Pomerania with pulmonary function testing assessed by expiratory volume in 1 s (FEV 1 ), forced vital capacity (FVC), total lung capacity and Krogh index were used. Adjusted analysis of variance, linear regression models and mediation analyses were performed. Significant positive associations between 25(OH)D levels and FEV 1 , FVC and Krogh index were found. Mediator analyses revealed no mediating effect of inflammation (fibrinogen), glycemic control (HbA1c) or renal function (eGFR) on associations with FEV 1 or FVC. With respect to Krogh-Index, the association to 25(OH)D was slightly mediated by fibrinogen with a proportion mediated of 9.7%. Significant positive associations of 25(OH)D with lung function were revealed in a general population. The proposed mediating effects of inflammation, glycemic control and renal function on these relations were not confirmed. Further studies examining the causality of the association between 25(OH)D and lung function are necessary. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shim, Eunhee; Lee, Eun; Yang, Song-I; Jung, Young-Ho; Park, Geun Mi; Kim, Hyung Young; Seo, Ju-Hee
2015-01-01
Purpose Although many previous studies have attempted to identify differences between atopic asthma (AA) and non-atopic asthma (NAA), they have mainly focused on the difference of each variable of lung function and airway inflammation. The aim of this study was to evaluate relationships between lung function, bronchial hyperresponsiveness (BHR), and the exhaled nitric oxide (eNO) levels in children with AA and NAA. Methods One hundred and thirty six asthmatic children aged 5-15 years and 40 normal controls were recruited. Asthma cases were classified as AA (n=100) or NAA (n=36) from skin prick test results. Lung function, BHR to methacholine and adenosine-5'-monophosphate (AMP), eNO, blood eosinophils, and serum total IgE were measured. Results The AA and NAA cases shared common features including a reduced small airway function and increased BHR to methacholine. However, children with AA showed higher BHR to AMP and eNO levels than those with NAA. When the relationships among these variables in the AA and NAA cases were evaluated, the AA group showed significant relationships between lung function, BHR to AMP or methacholine and eNO levels. However, the children in the NAA group showed an association between small airway function and BHR to methacholine only. Conclusions These findings suggest that the pathogenesis of NAA may differ from that of AA during childhood in terms of the relationship between lung function, airway inflammation and BHR. PMID:25749776
Inspiratory and expiratory computed tomographic volumetry for lung volume reduction surgery.
Morimura, Yuki; Chen, Fengshi; Sonobe, Makoto; Date, Hiroshi
2013-06-01
Three-dimensional (3D) computed tomographic (CT) volumetry has been introduced into the field of thoracic surgery, and a combination of inspiratory and expiratory 3D-CT volumetry provides useful data on regional pulmonary function as well as the volume of individual lung lobes. We report herein a case of a 62-year-old man with severe emphysema who had undergone lung volume reduction surgery (LVRS) to assess this technique as a tool for the evaluation of regional lung function and volume before and after LVRS. His postoperative pulmonary function was maintained in good condition despite a gradual slight decrease 2 years after LVRS. This trend was also confirmed by a combination of inspiratory and expiratory 3D-CT volumetry. We confirm that a combination of inspiratory and expiratory 3D-CT volumetry might be effective for the preoperative assessment of LVRS in order to determine the amount of lung tissue to be resected as well as for postoperative evaluation. This novel technique could, therefore, be used more widely to assess local lung function.
Inspiratory and expiratory computed tomographic volumetry for lung volume reduction surgery
Morimura, Yuki; Chen, Fengshi; Sonobe, Makoto; Date, Hiroshi
2013-01-01
Three-dimensional (3D) computed tomographic (CT) volumetry has been introduced into the field of thoracic surgery, and a combination of inspiratory and expiratory 3D-CT volumetry provides useful data on regional pulmonary function as well as the volume of individual lung lobes. We report herein a case of a 62-year-old man with severe emphysema who had undergone lung volume reduction surgery (LVRS) to assess this technique as a tool for the evaluation of regional lung function and volume before and after LVRS. His postoperative pulmonary function was maintained in good condition despite a gradual slight decrease 2 years after LVRS. This trend was also confirmed by a combination of inspiratory and expiratory 3D-CT volumetry. We confirm that a combination of inspiratory and expiratory 3D-CT volumetry might be effective for the preoperative assessment of LVRS in order to determine the amount of lung tissue to be resected as well as for postoperative evaluation. This novel technique could, therefore, be used more widely to assess local lung function. PMID:23460599
PPAR-γ in innate and adaptive lung immunity.
Nobs, Samuel Philip; Kopf, Manfred
2018-05-16
The transcription factor PPAR-γ (peroxisome proliferator-activated receptor-γ) is a key regulator of lung immunity exhibiting multiple cell type specific roles in controlling development and function of the lung immune system. It is strictly required for the generation of alveolar macrophages by controlling differentiation of fetal lung monocyte precursors. Furthermore, it plays an important role in lung allergic inflammation by licensing lung dendritic cell t helper 2 (Th2) priming capacity as well as acting as a master transcription factor for pathogenic Th2 cells. Due to this plethora of functions and its involvement in multiple pulmonary diseases including asthma and pulmonary alveolar proteinosis, understanding the role of PPAR-γ in lung immunity is an important subject of ongoing research. ©2018 Society for Leukocyte Biology.
Importance of the lung perfusion scintigraphy in single lung transplantation.
Rodríguez Mesa, N V; Guerrero Cancio, M C; Cordero Jiménez, M D; Alvarez Velázquez, I K
2012-01-01
Lung perfusion scintigraphy (LPS) with (99m)Tc-MAA gives valuable information about patients who will undergo a single lung transplantation. This technique makes it possible to evaluate and quantify the relative function of both lungs to select the organ to be transplanted. Once the surgery has been performed, the LPS represents a diagnostic method to study the status of the transplanted organ. Two patients who underwent single lung transplantation were studied in our hospital. In both cases, a pre-operative LPS was performed before surgery for selection of the organ to be transplanted and the scintigraphy study was performed a few months after transplantation to establish the perfusion function of the transplanted lung. Copyright © 2011 Elsevier España, S.L. y SEMNIM. All rights reserved.
Sun, Jiawei; Zhang, Ping; Zhang, Bin; Li, Kang; Li, Zhu; Li, Junhong; Zhang, Yongjian; Sun, Wuzhuang
2015-01-01
Objectives: This study was conducted to investigate an effect of inhaled budesonide on cigarette smoke-exposed lungs with a possible mechanism involved in the event. Methods: Rats were exposed to air (control) and cigarette smoke (smoking) in presence and absence of budesonide. Inflammatory cell count in bronchoalveolar lavage fluid (BALF), lung function testing, mean liner intercept (MLI) in lung tissue, mean alveolar number (MAN) and a ratio of bronchial wall thickness and external diameter (BWT/D) were determined in the grouped rats, respectively. Contents of matrix metalloproteinase (MMP)-1, MMP-2 and tissue inhibitor of metalloproteinase (TIMP)-2 productions in BALF were examined as well. Results: There were significant changes in the above assessments in the smoking rats as compared to those in the control rats (all P < 0.01 and 0.05). Budesonide inhalation significantly decreased the numbers of the BALF cells and partly reversed lung function decline in the challenged rats (P < 0.01 and 0.05). However, this corticosteroid did not influence pathological changes in fine structures of the tobacco smoke-exposed lungs. Treatment with budesonide resulted in an obvious decrease in the MMP-1 but not MMP-2 and TIMP-2 productions (P < 0.05). Conclusion: Inhaled budesonide mitigates the ongoing inflammatory process in the smoked lungs and ameliorates declining lung function through reducing MMP-1 content. PMID:26191209
Sun, Jiawei; Zhang, Ping; Zhang, Bin; Li, Kang; Li, Zhu; Li, Junhong; Zhang, Yongjian; Sun, Wuzhuang
2015-01-01
This study was conducted to investigate an effect of inhaled budesonide on cigarette smoke-exposed lungs with a possible mechanism involved in the event. Rats were exposed to air (control) and cigarette smoke (smoking) in presence and absence of budesonide. Inflammatory cell count in bronchoalveolar lavage fluid (BALF), lung function testing, mean liner intercept (MLI) in lung tissue, mean alveolar number (MAN) and a ratio of bronchial wall thickness and external diameter (BWT/D) were determined in the grouped rats, respectively. Contents of matrix metalloproteinase (MMP)-1, MMP-2 and tissue inhibitor of metalloproteinase (TIMP)-2 productions in BALF were examined as well. There were significant changes in the above assessments in the smoking rats as compared to those in the control rats (all P<0.01 and 0.05). Budesonide inhalation significantly decreased the numbers of the BALF cells and partly reversed lung function decline in the challenged rats (P<0.01 and 0.05). However, this corticosteroid did not influence pathological changes in fine structures of the tobacco smoke-exposed lungs. Treatment with budesonide resulted in an obvious decrease in the MMP-1 but not MMP-2 and TIMP-2 productions (P<0.05). Inhaled budesonide mitigates the ongoing inflammatory process in the smoked lungs and ameliorates declining lung function through reducing MMP-1 content.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keogh, B.A.; Hunninghake, G.W.; Line, B.R.
1983-08-01
Current concepts of the pathogenesis of pulmonary sarcoidosis suggest that a mononuclear cell alveolitis, comprised of activated T-lymphocytes and activated alveolar macrophages, precedes and modulates the formation of granuloma and fibrosis. To evaluate the natural history of this alveolitis and determine the relationship it has to subsequent changes in lung function, 19 untreated patients with pulmonary sarcoidosis without extrapulmonary manifestations were studied with bronchoalveolar lavage, /sup 67/Ga scanning, and pulmonary function tests to evaluate lung T-cells, lung alveolar macrophages, and lung function, respectively. In patients with sarcoidosis, low intensity alveolitis (lung T-cells less than or equal to 28% of allmore » lung effector cells and/or /sup 67/Ga scan negative) was much more common (80% of all observations) than high intensity alveolitis (lung T-cells greater than 28% and /sup 67/Ga scan positive, 20% of all observations). Conventional clinical, roentgenographic, or physiologic studies could not predict the alveolitis status. Interestingly, of the 51 alveolitis evaluations in the 19 patients, there were 24 occurrences (47%) where the alveolitis was ''split,'' i.e., /sup 67/Ga scans positive and T-cells low (39%) or /sup 67/Ga negative and T-cells high (8%). Most untreated patients with sarcoidosis without extrapulmonary symptoms may have some inflammatory processes ongoing in their alveolar structures. Overall, whenever a high intensity alveolitis episode occurred, it was followed by deterioration over the next 6 months in at least one lung function parameter. A low intensity alveolitis episode was followed by functional deterioration only 8% of the time. The alveolitis parameters (lavage and /sup 67/Ga scanning) clearly predicted prognosis. These observations should prove useful in understanding the natural history of pulmonary sarcoidosis, in staging patients with this disease, and in making rational therapy decisions.« less
Taveira-DaSilva, Angelo M.; Hathaway, Olanda; Stylianou, Mario; Moss, Joel
2011-01-01
Background Lymphangioleiomyomatosis (LAM) is a disorder that affects women and is characterized by cystic lung destruction, chylous effusions, lymphangioleiomyomas, and angiomyolipomas. It is caused by proliferation of abnormal smooth muscle–like cells. Sirolimus is a mammalian target of rapamycin inhibitor that has been reported to decrease the size of neoplastic growths in animal models of tuberous sclerosis complex and to reduce the size of angiomyolipomas and stabilize lung function in humans. Objective To assess whether sirolimus therapy is associated with improvement in lung function and a decrease in the size of chylous effusions and lymphangioleiomyomas in patients with LAM. Design Observational study. Setting The National Institutes of Health Clinical Center. Patients 19 patients with rapidly progressing LAM or chylous effusions. Intervention Treatment with sirolimus. Measurements Lung function and the size of chylous effusions and lymphangioleiomyomas before and during sirolimus therapy. Results Over a mean of 2.5 years before beginning sirolimus therapy, the mean (±SE) FEV1 decreased by 2.8% ± 0.8% predicted and diffusing capacity of the lung for carbon monoxide (DLCO) decreased by 4.8% ± 0.9% predicted per year. In contrast, over a mean of 2.6 years of sirolimus therapy, the mean (± SE) FEV1 increased by 1.8% ± 0.5% predicted and DLCO increased by 0.8% ± 0.5% predicted per year (P < 0.001). After beginning sirolimus therapy, 12 patients with chylous effusions and 11 patients with lymphangioleiomyomas experienced almost complete resolution of these conditions. In 2 of the 12 patients, sirolimus therapy enabled discontinuation of pleural fluid drainage. Limitations This was an observational study. The resolution of effusions may have affected improvements in lung function. Conclusion Sirolimus therapy is associated with improvement or stabilization of lung function and reduction in the size of chylous effusions and lymphangioleiomyomas in patients with LAM. Primary Funding Source Intramural Research Program, National Heart, Lung, and Blood Institute, National Institutes of Health. PMID:21690594
Rubin, Adalberto Sperb; Nascimento, Douglas Zaione; Sanchez, Letícia; Watte, Guilherme; Holand, Arthur Rodrigo Ronconi; Fassbind, Derrick Alexandre; Camargo, José Jesus
2015-01-01
Abstract Objective: To evaluate the changes in lung function in the first year after single lung transplantation in patients with idiopathic pulmonary fibrosis (IPF). Methods: We retrospectively evaluated patients with IPF who underwent single lung transplantation between January of 2006 and December of 2012, reviewing the changes in the lung function occurring during the first year after the procedure. Results: Of the 218 patients undergoing lung transplantation during the study period, 79 (36.2%) had IPF. Of those 79 patients, 24 (30%) died, and 11 (14%) did not undergo spirometry at the end of the first year. Of the 44 patients included in the study, 29 (66%) were men. The mean age of the patients was 57 years. Before transplantation, mean FVC, FEV1, and FEV1/FVC ratio were 1.78 L (50% of predicted), 1.48 L (52% of predicted), and 83%, respectively. In the first month after transplantation, there was a mean increase of 12% in FVC (400 mL) and FEV1 (350 mL). In the third month after transplantation, there were additional increases, of 5% (170 mL) in FVC and 1% (50 mL) in FEV1. At the end of the first year, the functional improvement persisted, with a mean gain of 19% (620 mL) in FVC and 16% (430 mL) in FEV1. Conclusions: Single lung transplantation in IPF patients who survive for at least one year provides significant and progressive benefits in lung function during the first year. This procedure is an important therapeutic alternative in the management of IPF. PMID:26398749
NASA Astrophysics Data System (ADS)
Wormanns, Dag; Beyer, Florian; Hoffknecht, Petra; Dicken, Volker; Kuhnigk, Jan-Martin; Lange, Tobias; Thomas, Michael; Heindel, Walter
2005-04-01
This study was aimed to evaluate a morphology-based approach for prediction of postoperative forced expiratory volume in one second (FEV1) after lung resection from preoperative CT scans. Fifteen Patients with surgically treated (lobectomy or pneumonectomy) bronchogenic carcinoma were enrolled in the study. A preoperative chest CT and pulmonary function tests before and after surgery were performed. CT scans were analyzed by prototype software: automated segmentation and volumetry of lung lobes was performed with minimal user interaction. Determined volumes of different lung lobes were used to predict postoperative FEV1 as percentage of the preoperative values. Predicted FEV1 values were compared to the observed postoperative values as standard of reference. Patients underwent lobectomy in twelve cases (6 upper lobes; 1 middle lobe; 5 lower lobes; 6 right side; 6 left side) and pneumonectomy in three cases. Automated calculation of predicted postoperative lung function was successful in all cases. Predicted FEV1 ranged from 54% to 95% (mean 75% +/- 11%) of the preoperative values. Two cases with obviously erroneous LFT were excluded from analysis. Mean error of predicted FEV1 was 20 +/- 160 ml, indicating absence of systematic error; mean absolute error was 7.4 +/- 3.3% respective 137 +/- 77 ml/s. The 200 ml reproducibility criterion for FEV1 was met in 11 of 13 cases (85%). In conclusion, software-assisted prediction of postoperative lung function yielded a clinically acceptable agreement with the observed postoperative values. This method might add useful information for evaluation of functional operability of patients with lung cancer.
Hofhuis, Ward; Hanekamp, Manon N; Ijsselstijn, Hanneke; Nieuwhof, Eveline M; Hop, Wim C J; Tibboel, Dick; de Jongste, Johan C; Merkus, Peter J F M
2011-03-01
To collect longitudinal data on lung function in the first year of life after extracorporeal membrane oxygenation and to evaluate relationships between lung function and perinatal factors. Longitudinal data on lung function in the first year of life after extracorporeal membrane oxygenation are lacking. Prospective longitudinal cohort study. Outpatient clinic of a tertiary level pediatric hospital. The cohort consisted of 64 infants; 33 received extracorporeal membrane oxygenation for meconium aspiration syndrome, 14 for congenital diaphragmatic hernia, four for sepsis, six for persistent pulmonary hypertension of the neonate, and seven for respiratory distress syndrome of infancy. Evaluation was at 6 mos and 12 mos; 39 infants were evaluated at both time points . None. Functional residual capacity and forced expiratory flow at functional residual capacity were measured and expressed as z score. Mean (sem) functional residual capacities in z score were 0.0 (0.2) and 0.2 (0.2) at 6 mos and 12 mos, respectively. Mean (sem) forced expiratory flow was significantly below average (z score = 0) (p < .001) at 6 mos and 12 mos: -1.1 (0.1) and -1.2 (0.1), respectively. At 12 mos, infants with diaphragmatic hernia had a functional residual capacity significantly above normal: mean (sem) z score = 1.2 (0.5). Infants treated with extracorporeal membrane oxygenation have normal lung volumes and stable forced expiratory flows within normal range, although below average, within the first year of life. There is reason to believe, therefore, that extracorporeal membrane oxygenation either ameliorates the harmful effects of mechanical ventilation or somehow preserves lung function in the very ill neonate.
Abnormal lung sounds in patients with asthma during episodes with normal lung function.
Schreur, H J; Vanderschoot, J; Zwinderman, A H; Dijkman, J H; Sterk, P J
1994-07-01
Even in patients with clinically stable asthma with normal lung function, the airways are characterized by inflammatory changes, including mucosal swelling. In order to investigate whether lung sounds can distinguish these subjects from normal subjects, we compared lung sound characteristics between eight normal and nine symptom-free subjects with mild asthma. All subjects underwent simultaneous recordings of airflow, lung volume changes, and lung sounds during standardized quiet breathing, and during forced maneuvers. Flow-dependent power spectra were computed using fast Fourier transform. For each spectrum we determined lung sound intensity (LSI), frequencies (Q25%, Q50%, Q75%) wheezing (W), and W%. The results were analyzed by ANOVA. During expiration, LSI was lower in patients with asthma than in healthy controls, in particular at relatively low airflow values. During quiet expiration, Q25% to Q75% were higher in asthmatics than in healthy controls, while the change of Q25% to Q75% with flow was greater in asthmatic than in normal subjects. The W and W% were not different between the subject groups. The results indicate that at given airflows, lung sounds are lower in intensity and higher in pitch in asthmatics as compared with controls. This suggests that the generation and/or transmission of lung sounds in symptom-free patients with stable asthma differ from that in normal subjects, even when lung function is within the normal range. Therefore, airflow standardized phonopneumography might reflect morphologic changes in airways of patients with asthma.
Yanagita, Masahiko; Redig, Amanda J; Paweletz, Cloud P; Dahlberg, Suzanne E; O'Connell, Allison; Feeney, Nora; Taibi, Myriam; Boucher, David; Oxnard, Geoffrey R; Johnson, Bruce E; Costa, Daniel B; Jackman, David M; Jänne, Pasi A
2016-12-15
Genotype-directed therapy is the standard of care for advanced non-small cell lung cancer (NSCLC), but obtaining tumor tissue for genotyping remains a challenge. Circulating tumor cell (CTC) or cell-free DNA (cfDNA) analysis may allow for noninvasive evaluation. This prospective trial evaluated CTCs and cfDNA in EGFR-mutant NSCLC patients treated with erlotinib until progression. EGFR-mutant NSCLC patients were enrolled in a phase II trial of erlotinib. Blood was collected at baseline, every 2 months on study, and at disease progression. Plasma genotyping was performed by droplet digital PCR for EGFR19del, L858R, and T790M. CTCs were isolated by CellSave, enumerated, and analyzed by immunofluorescence for CD45 and pan-cytokeratin and EGFR and MET FISH were also performed. Rebiopsy was performed at disease progression. Sixty patients were enrolled; 44 patients discontinued therapy for disease progression. Rebiopsy occurred in 35 of 44 patients (80%), with paired CTC/cfDNA analysis in 41 of 44 samples at baseline and 36 of 44 samples at progression. T790M was identified in 23 of 35 (66%) tissue biopsies and 9 of 39 (23%) cfDNA samples. CTC analysis at progression identified MET amplification in 3 samples in which tissue analysis could not be performed. cfDNA analysis identified T790M in 2 samples in which rebiopsy was not possible. At diagnosis, high levels of cfDNA but not high levels of CTCs correlated with progression-free survival. cfDNA and CTCs are complementary, noninvasive assays for evaluation of acquired resistance to first-line EGFR TKIs and may expand the number of patients in whom actionable genetic information can be obtained at acquired resistance. Serial cfDNA monitoring may offer greater clinical utility than serial monitoring of CTCs. Clin Cancer Res; 22(24); 6010-20. ©2016 AACR. ©2016 American Association for Cancer Research.
Yu, Qian; Huang, Fei; Zhang, Meilin; Ji, Haiying; Wu, Shenchao; Zhao, Ying; Zhang, Chunyan; Wu, Jiong; Wang, Beili; Pan, Baisheng; Zhang, Xin; Guo, Wei
2017-08-01
To explore the possible diagnostic value of liquid biopsy, two multiplex panels using picoliter-droplet digital polymerase chain reaction (ddPCR) were established to quantitatively assess the epidermal growth factor receptor (EGFR) mutations in cell‑free DNA (cfDNA) extracted from the plasma of advanced non‑small cell lung cancer (NSCLC) patients. Plasma samples derived from 22 patients with stage IIIB/IV NSCLC harboring EGFR mutations in matched tumor tissues confirmed by amplification refractory mutation system (ARMS) analysis were subjected to two multiplex ddPCR panels to assess the abundance of tyrosine kinase inhibitor (TKI) ‑sensitive (19DEL, L858R) and TKI‑resistant (T790 M) mutations. Fluctuations in EGFR mutant abundance were monitored by either of the multiplex ddPCR panels for three patients undergoing EGFR‑TKI treatment, with serial plasma sample collections over 2 months. The multiplex ddPCR panels applied to plasma cfDNA from advanced NSCLC patients achieved a total concordance rate of 80% with the EGFR mutation profiles obtained by ARMS from matched biopsy tumor specimens (90% for 19DEL, 95% for L858R, 95% for T790M, respectively) and revealed additional mutant alleles in two subjects. The respective sensitivity and specificity were 90.9 and 88.9% for 19DEL, 87.5 and 100% for L858R, 100 and 93.8% for T790M. The fluctuations of EGFR mutant abundance in serial plasma cfDNA were in accordance with the changes in tumor size as assessed by imaging scans. The authors demonstrated the utility of multiplex ddPCR panels with ultra‑sensitivity for quantitative analysis of EGFR mutations in plasma cfDNA and obtained promising usefulness in EGFR‑TKI decision‑making for advanced NSCLC patients.
Yu, Qian; Huang, Fei; Zhang, Meilin; Ji, Haiying; Wu, Shenchao; Zhao, Ying; Zhang, Chunyan; Wu, Jiong; Wang, Beili; Pan, Baisheng; Zhang, Xin; Guo, Wei
2017-01-01
To explore the possible diagnostic value of liquid biopsy, two multiplex panels using picoliter-droplet digital polymerase chain reaction (ddPCR) were established to quantitatively assess the epidermal growth factor receptor (EGFR) mutations in cell-free DNA (cfDNA) extracted from the plasma of advanced non-small cell lung cancer (NSCLC) patients. Plasma samples derived from 22 patients with stage IIIB/IV NSCLC harboring EGFR mutations in matched tumor tissues confirmed by amplification refractory mutation system (ARMS) analysis were subjected to two multiplex ddPCR panels to assess the abundance of tyrosine kinase inhibitor (TKI) -sensitive (19DEL, L858R) and TKI-resistant (T790 M) mutations. Fluctuations in EGFR mutant abundance were monitored by either of the multiplex ddPCR panels for three patients undergoing EGFR-TKI treatment, with serial plasma sample collections over 2 months. The multiplex ddPCR panels applied to plasma cfDNA from advanced NSCLC patients achieved a total concordance rate of 80% with the EGFR mutation profiles obtained by ARMS from matched biopsy tumor specimens (90% for 19DEL, 95% for L858R, 95% for T790M, respectively) and revealed additional mutant alleles in two subjects. The respective sensitivity and specificity were 90.9 and 88.9% for 19DEL, 87.5 and 100% for L858R, 100 and 93.8% for T790M. The fluctuations of EGFR mutant abundance in serial plasma cfDNA were in accordance with the changes in tumor size as assessed by imaging scans. The authors demonstrated the utility of multiplex ddPCR panels with ultra-sensitivity for quantitative analysis of EGFR mutations in plasma cfDNA and obtained promising usefulness in EGFR-TKI decision-making for advanced NSCLC patients. PMID:29067441
Mazzuco, Adriana; Medeiros, Wladimir Musetti; Sperling, Milena Pelosi Rizk; de Souza, Aline Soares; Alencar, Maria Clara Noman; Arbex, Flávio Ferlin; Neder, José Alberto; Arena, Ross; Borghi-Silva, Audrey
2015-01-01
In chronic obstructive pulmonary disease (COPD), functional and structural impairment of lung function can negatively impact heart rate variability (HRV); however, it is unknown if static lung volumes and lung diffusion capacity negatively impacts HRV responses. We investigated whether impairment of static lung volumes and lung diffusion capacity could be related to HRV indices in patients with moderate to severe COPD. Sixteen sedentary males with COPD were enrolled in this study. Resting blood gases, static lung volumes, and lung diffusion capacity for carbon monoxide (DLCO) were measured. The RR interval (RRi) was registered in the supine, standing, and seated positions (10 minutes each) and during 4 minutes of a respiratory sinus arrhythmia maneuver (M-RSA). Delta changes (Δsupine-standing and Δsupine-M-RSA) of the standard deviation of normal RRi, low frequency (LF, normalized units [nu]) and high frequency (HF [nu]), SD1, SD2, alpha1, alpha2, and approximate entropy (ApEn) indices were calculated. HF, LF, SD1, SD2, and alpha1 deltas significantly correlated with forced expiratory volume in 1 second, DLCO, airway resistance, residual volume, inspiratory capacity/total lung capacity ratio, and residual volume/total lung capacity ratio. Significant and moderate associations were also observed between LF/HF ratio versus total gas volume (%), r=0.53; LF/HF ratio versus residual volume, %, r=0.52; and HF versus total gas volume (%), r=-0.53 (P<0.05). Linear regression analysis revealed that ΔRRi supine-M-RSA was independently related to DLCO (r=-0.77, r (2)=0.43, P<0.05). Responses of HRV indices were more prominent during M-RSA in moderate to severe COPD. Moreover, greater lung function impairment was related to poorer heart rate dynamics. Finally, impaired lung diffusion capacity was related to an altered parasympathetic response in these patients.
Central attention is serial but mid-level and peripheral attention are parallel—a hypothesis
Marois, Rene
2016-01-01
In this brief review, we will argue that attention falls along a hierarchy from peripheral through central mechanisms. We further argue that these mechanisms are distinguished not just by their functional roles in cognition, but also by a distinction between serial mechanisms (associated with central attention) and parallel mechanisms (associated with mid-level and peripheral attention). In particular, we suggest that peripheral attentional deployments in distinct representational systems may be maintained simultaneously with little or no interference, but that the serial nature of central attention means that even tasks that largely rely on distinct representational systems will come into conflict when central attention is demanded. We go on to review both behavioral and neural evidence for this prediction. We conclude that even though the existing evidence mostly favors our account of serial central and parallel non-central attention, we know of no experiment that has conclusively borne out these claims. As such, this paper offers a framework of attentional mechanisms that will aid in guiding future research on this topic. PMID:27388496
Ceramides: a potential therapeutic target in pulmonary emphysema.
Tibboel, Jeroen; Reiss, Irwin; de Jongste, Johan C; Post, Martin
2013-10-01
The aim of this manuscript was to characterize airway ceramide profiles in a rodent model of elastase-induced emphysema and to examine the effect of pharmacological intervention directed towards ceramide metabolism. Adult mice were anesthetized and treated with an intratracheal instillation of elastase. Lung function was measured, broncho-alveolar lavage fluid collected and histological and morphometrical analysis of lung tissue performed within 3 weeks after elastase injection, with and without sphingomyelinase inhibitors or serine palmitoyltransferase inhibitor. Ceramides in broncho-alveolar lavage (BAL) fluid were quantified by tandem mass spectrometry. BAL fluid showed a transient increase in total protein and IgM, and activated macrophages and neutrophils. Ceramides were transiently upregulated at day 2 after elastase treatment. Histology showed persistent patchy alveolar destruction at day 2 after elastase installation. Acid and neutral sphingomyelinase inhibitors had no effect on BAL ceramide levels, lung function or histology. Addition of a serine palmitoyltransferase inhibitor ameliorated lung function changes and reduced ceramides in BAL. Ceramides were increased during the acute inflammatory phase of elastase-induced lung injury. Since addition of a serine palmitoyltransferase inhibitor diminished the rise in ceramides and ameliorated lung function, ceramides likely contributed to the early phase of alveolar destruction and are a potential therapeutic target in the elastase model of lung emphysema.
Patel, Amee; Weismann, Constance; Weiss, Pnina; Russell, Kerry; Bazzy-Asaad, Alia; Kadan-Lottick, Nina S
2014-11-01
Restrictive lung disease is a complication in childhood cancer survivors who received lung-toxic chemotherapy and/or thoracic radiation. Left ventricular dysfunction is documented in these survivors, but less is known about right ventricular (RV) function. Quantitative echocardiography may help detect subclinical RV dysfunction. The aim of this study was to assess RV function quantitatively in childhood cancer survivors after lung-toxic therapy. We identified records of 33 childhood cancer survivors who (1) were treated with lung-toxic therapy and/or radiation, (2) were cancer-free for ≥ one year after therapy, and (3) had pulmonary function tests and echocardiograms from their most recent follow-up visit. Participants' mean age was 11.6 ± 4.5 years at cancer diagnosis and 23 ± 8.6 years at evaluation. The most common diagnosis was lymphoma/leukemia (n = 27). Twenty-nine subjects had anthracycline exposure. Eleven of the 33 subjects demonstrated restrictive pulmonary impairment (total lung capacity 3.69 ± 1.5 L [69.3 ± 22.4% predicted]). Among quantitative measures of RV function, isovolumetric acceleration (IVA), a measure of contractility, was significantly lower in the group with restrictive lung disease (2.42 ± 0.56 vs. 1.83 ± 0.78 m/sec(2); P < 0.05). There was a trend towards lower tissue Doppler derived S' and tricuspid annular plane systolic excursion in the group with restrictive lung disease. Subjects with restrictive lung disease were found to have ≥ 2 abnormal parameters (P < 0.01). IVA may detect early RV dysfunction in childhood cancer survivors with restrictive lung disease. Our findings require confirmation in a larger study population and validation by cardiac MRI. © 2014 Wiley Periodicals, Inc.
Ex vivo administration of trimetazidine improves post-transplant lung function in pig model.
Cosgun, Tugba; Iskender, Ilker; Yamada, Yoshito; Arni, Stephan; Lipiski, Miriam; van Tilburg, Koen; Weder, Walter; Inci, Ilhan
2017-07-01
Ex vivo lung perfusion (EVLP) is not only used to assess marginal donor lungs but is also used as a platform to deliver therapeutic agents outside the body. We previously showed the beneficial effects of trimetazidine (TMZ) on ischaemia reperfusion (IR) injury in a rat model. This study evaluated the effects of TMZ in a pig EVLP transplant model. Pig lungs were retrieved and stored for 24 h at 4°C, followed by 4 h of EVLP. Allografts were randomly allocated to 2 groups ( n = 5 each). TMZ (5 mg/kg) was added to the prime solution prior to EVLP. After EVLP, left lungs were transplanted and recipients were observed for 4 h. Allograft gas exchange function and lung mechanics were recorded hourly throughout reperfusion. Microscopic lung injury and inflammatory and biochemical parameters were assessed. There was a trend towards better oxygenation during EVLP in the TMZ group ( P = 0.06). After transplantation, pulmonary gas exchange was significantly better during the 4-h reperfusion period and after isolation of the allografts for 10 min ( P < 0.05). Tissue thiobarbituric acid levels, myeloperoxidase activity and protein concentrations in bronchoalveolar lavage samples were significantly lower in the TMZ group at the end of EVLP ( P < 0.05). Ex vivo treatment of donor lungs with TMZ significantly improved immediate post-transplant lung function. Further studies are warranted to understand the effect of this strategy on long-term lung function. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Cotton worker's lung; Cotton bract disease; Mill fever; Brown lung disease; Monday fever ... to reduced lung function. In the United States, worker's compensation may be available to people with byssinosis.
ERIC Educational Resources Information Center
Matthews, Claire
1991-01-01
A patient with chronic agrammatic Broca's aphasia exhibited deep dyslexia and was treated with functional reorganization of the phonetic route of reading, with the patient learning consciously to control formerly automatic behaviors. The patient's responses indicated that the phonetic route encompasses at least two dissociable functions:…
Whitehead, Gregory S; Grasman, Keith A; Kimmel, Edgar C
2003-02-01
Pulmonary function and inflammation in the lungs of rodents exposed by inhalation to carbon/graphite/epoxy advanced composite material (ACM) combustion products were compared to that of a rodent model of acute lung injury (ALI) produced by pneumotoxic paraquat dichloride. This investigation was undertaken to determine if short-term exposure to ACM smoke induces ALI; and to determine if smoke-related responses were similar to the pathogenic mechanisms of a model of lung vascular injury. We examined the time-course for mechanical lung function, infiltration of inflammatory cells into the lung, and the expression of three inflammatory cytokines, tumor necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-2 (MIP-2) and interferon-gamma (IFN-gamma). Male Fischer-344 rats were either exposed to 26.8-29.8 g/m(3) nominal concentrations of smoke or were given i.p. injections of paraquat dichloride. Measurements were determined at 1, 2, 3, and 7 days post exposure. In the smoke-challenged rats, there were no changes in lung function indicative of ALI throughout the 7-day observation period, despite the acute lethality of the smoke atmosphere. However, the animals showed signs of pulmonary inflammation. The expression of TNF-alpha was significantly increased in the lavage fluid 1 day following exposure, which preceded the maximum leukocyte infiltration. MIP-2 levels were significantly increased in lavage fluid at days 2, 3, and 7. This followed the leukocyte infiltration. IFN-gamma was significantly increased in the lung tissue at day 7, which occurred during the resolution of the inflammatory response. The paraquat, which was also lethal to a small percentage of the animals, caused several physiologic changes characteristic of ALI, including significant decreases in lung compliance, lung volumes/capacities, distribution of ventilation, and gas exchange capacity. The expression of TNF-alpha and MIP-2 increased significantly in the lung tissue as well as in the lavage fluid. Increased MIP-2 levels also preceded the maximum neutrophil infiltration. The differences in the time-course and primary site of TNF-alpha, MIP-2, and IFN-gamma expression; and the differences in the temporal relationship between their expression and infiltration of inflammatory cells may have accounted for the differences in lung function between paraquat treated and ACM smoke exposed animals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verbanck, Sylvia, E-mail: sylvia.verbanck@uzbrussel.be; Hanon, Shane; Schuermans, Daniel
Purpose: To assess the effect of radiation therapy on lung function over the course of 3 years. Methods and Materials: Evolution of restrictive and obstructive lung function parameters was investigated in 108 breast cancer participants in a randomized, controlled trial comparing conventional radiation therapy (CR) and hypofractionated tomotherapy (TT) (age at inclusion ranging 32-81 years). Spirometry, plethysmography, and hemoglobin-corrected diffusing capacity were assessed at baseline and after 3 months and 1, 2, and 3 years. Natural aging was accounted for by considering all lung function parameters in terms of percent predicted values using the most recent reference values for women aged up to 80 years. Results:more » In the patients with negligible history of respiratory disease or smoking (n=77), the greatest rate of functional decline was observed during the initial 3 months, this acute decrease being more marked in the CR versus the TT arm. During the remainder of the 3-year follow-up period, values (in terms of percent predicted) were maintained (diffusing capacity) or continued to decline at a slower rate (forced vital capacity). However, the average decline of the restrictive lung function parameters over a 3-year period did not exceed 9% predicted in either the TT or the CR arm. Obstructive lung function parameters remained unaffected throughout. Including also the 31 patients with a history of respiratory disease or more than 10 pack-years showed a very similar restrictive pattern. Conclusions: In women with breast cancer, both conventional radiation therapy and hypofractionated tomotherapy induce small but consistent restrictive lung patterns over the course of a 3-year period, irrespective of baseline respiratory status or smoking history. The fastest rate of lung function decline generally occurred in the first 3 months.« less
Hanson, Corrine; Lyden, Elizabeth; Furtado, Jeremy; Campos, Hannia; Sparrow, David; Vokonas, Pantel; Litonjua, Augusto A.
2015-01-01
Background and Aims The results of studies assessing relationships between vitamin E intake and status and lung function are conflicting. This study aimed to evaluate the effect of vitamin E intake and serum levels of tocopherol isoforms on lung function in a cross-sectional sample of 580 men from the Normative Aging Study, a longitudinal aging study. Methods Regression models were used to look at associations of serum tocopherol isoform levels and vitamin E intake with lung function parameters after adjustment for confounders. Vitamin E intake was measured using a food frequency questionnaire and serum levels of γ, α, and δ-tocopherol levels were measured using high-performance liquid chromatography. Results After adjustment for potential confounders, serum γ-tocopherol had a significant inverse association with forced vital capacity (β=-0.10, p=0.05). Alpha and δ-tocopherol were not associated with any lung function parameter. After classifying COPD status according to Global Initiative for Obstructive Lung Disease (GOLD) stage criteria, serum levels of δ-tocopherol were lower in participants with more severe COPD (p=0.01). Serum levels of δ-tocopherol were also lower in participants with greater levels of smoking (p=0.02). Both vitamin E intake (β=0.03, p=0.02; β=0.03, p=0.01) and use of vitamin E supplements (β=0.05, p=0.03; β=0.06. p=0.02) were positively associated with FEV1 and FVC, after adjusting for confounders. Subjects who took vitamin E supplements had significantly higher α-tocopherol levels (p<0.0001) and lower γ-tocopherol levels (p<0.0001) than non-users. Conclusion In this study, there is a positive association between dietary vitamin E intake and lung function, and evidence of an inverse relationship between serum levels of γ-tocopherol and lung function. PMID:25715694
van Erp, Nicole; Little, Paul; Stuart, Beth; Moore, Michael; Thomas, Mike; Butler, Chris C; Hood, Kerenza; Coenen, Samuel; Goossens, Herman; Leven, Margareta; Verheij, Theo J M
2014-09-25
In acute cough patients, impaired lung function as present in chronic lung conditions like asthma and chronic obstructive pulmonary disease (COPD) are often thought to negatively influence course of disease, but clear evidence is lacking. To investigate the influence of lung function abnormalities on course of disease and response to antibiotic therapy in primary care patients with acute cough. A total of 3,104 patients with acute cough (⩽28 days) were included in a prospective observational study with a within-nested trial, of which 2,427 underwent spirometry 28-35 days after inclusion. Influence of the lung function abnormalities fixed obstruction (forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) ratio <0.7) and bronchodilator responsiveness (FEV1 increase of ⩾12% or 200 ml after 400 μg salbutamol) on symptom severity, duration and worsening were evaluated using uni- and multivariable regression models. Antibiotic use was defined as the reported use of antibiotics ⩾5 days in the first week. Interaction terms were calculated to investigate modifying effects of lung function on antibiotic effect. The only significant association was the effect of severe airway obstruction on symptom severity on days 2-4 (difference=0.31, 95% confidence interval (CI)=0.03-0.60, P=0.03). No evidence of a differential effect of lung function on the effect of antibiotics was found. Prior use of inhaled steroids was associated with a 30% slower resolution of symptoms rated 'moderately bad' or worse (hazard ratio=0.75, 95% CI=0.63-0.90, P=0.00). In adult patients with acute cough, lung function abnormalities were neither significantly associated with course of disease nor did they modify the effect of antibiotics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurosawa, T; Moriya, S; Sato, M
2015-06-15
Purpose: To evaluate the functional planning using CT-pulmonary ventilation imaging for conformal SBRT. Methods: The CT-pulmonary ventilation image was generated using the Jacobian metric in the in-house program with the NiftyReg software package. Using the ventilation image, the normal lung was split into three lung regions for functionality (high, moderate and low). The anatomical plan (AP) and functional plan (FP) were made for ten lung SBRT patients. For the AP, the beam angles were optimized with the dose-volume constraints for the normal lung sparing and the PTV coverage. For the FP, the gantry angles were also optimized with the additionalmore » constraint for high functional lung. The MLC aperture shapes were adjusted to the PTV with the additional 5 mm margin. The dosimetric parameters for PTV, the functional volumes, spinal cord and so on were compared in both plans. Results: Compared to the AP, the FP showed better dose sparing for high- and moderate-functional lungs with similar PTV coverage while not taking care of the low functional lung (High:−12.9±9.26% Moderate: −2.0±7.09%, Low: +4.1±12.2%). For the other normal organs, the FP and AP showed similar dose sparing in the eight patients. However, the FP showed that the maximum doses for spinal cord were increased with the significant increment of 16.4Gy and 21.0Gy in other two patients, respectively. Because the beam direction optimizer chose the unexpected directions passing through the spinal cord. Conclusion: Even the functional conformal SBRT can selectively reduce high- and moderatefunctional lung while keeping the PTV coverage. However, it would be careful that the optimizer would choose unexpected beam angles and the dose sparing for the other normal organs can be worse. Therefore, the planner needs to control the dose-volume constraints and also limit the beam angles in order to achieve the expected dose sparing and coverage.« less
Neophytou, Andreas M; White, Marquitta J; Oh, Sam S; Thakur, Neeta; Galanter, Joshua M; Nishimura, Katherine K; Pino-Yanes, Maria; Torgerson, Dara G; Gignoux, Christopher R; Eng, Celeste; Nguyen, Elizabeth A; Hu, Donglei; Mak, Angel C; Kumar, Rajesh; Seibold, Max A; Davis, Adam; Farber, Harold J; Meade, Kelley; Avila, Pedro C; Serebrisky, Denise; Lenoir, Michael A; Brigino-Buenaventura, Emerita; Rodriguez-Cintron, William; Bibbins-Domingo, Kirsten; Thyne, Shannon M; Williams, L Keoki; Sen, Saunak; Gilliland, Frank D; Gauderman, W James; Rodriguez-Santana, Jose R; Lurmann, Fred; Balmes, John R; Eisen, Ellen A; Burchard, Esteban G
2016-06-01
Adverse effects of exposures to ambient air pollution on lung function are well documented, but evidence in racial/ethnic minority children is lacking. To assess the relationship between air pollution and lung function in minority children with asthma and possible modification by global genetic ancestry. The study population consisted of 1,449 Latino and 519 African American children with asthma from five different geographical regions in the mainland United States and Puerto Rico. We examined five pollutants (particulate matter ≤10 μm and ≤2.5 μm in diameter, ozone, nitrogen dioxide, and sulfur dioxide), derived from participant residential history and ambient air monitoring data, and assessed over several time windows. We fit generalized additive models for associations between pollutant exposures and lung function parameters and tested for interaction terms between exposures and genetic ancestry. A 5 μg/m(3) increase in average lifetime particulate matter less than or equal to 2.5 μm in diameter exposure was associated with a 7.7% decrease in FEV1 (95% confidence interval = -11.8 to -3.5%) in the overall study population. Global genetic ancestry did not appear to significantly modify these associations, but percent African ancestry was a significant predictor of lung function. Early-life particulate exposures were associated with reduced lung function in Latino and African American children with asthma. This is the first study to report an association between exposure to particulates and reduced lung function in minority children in which racial/ethnic status was measured by ancestry-informative markers.
Noni, M; Katelari, A; Dimopoulos, G; Doudounakis, S-E; Tzoumaka-Bakoula, C; Spoulou, V
2015-11-01
Aspergillus fumigatus is commonly found in cystic fibrosis (CF) airways. Our aim was to assess the relationship between A. fumigatus chronic colonization and lung function in CF patients. A case-control study of CF patients born from 1989 to 2002 was performed. Medical records were reviewed from the time of initial diagnosis until December 2013. Chronic colonization was defined as two or more positive sputum cultures in a given year. Each patient chronically colonized with A. fumigatus was matched with three control patients (never colonized by A. fumigatus) for age, sex, and year of birth (±3 years). A number of parameters were recorded and analyzed prospectively. The primary outcome measure was the difference in forced expiratory volume in 1 s (FEV1) in percent predicted between groups. Linear mixed models were used for longitudinal analyses to evaluate the relationship between A. fumigatus chronic colonization and lung function during a 7-year period and study the lung function 4 years before the time of enrollment (t0). Twenty patients had chronic colonization and were matched with 60 controls. A significant difference in lung function was detected throughout the 7-year period after adjustment for confounders (est = 8.66, p = 0.020). Four years before t0, FEV1 baseline was the only factor associated with the course of lung function (est = 0.64, p < 0.001) and was significantly different between groups (p = 0.001). In conclusion, a decreased FEV1 baseline appears to be a risk factor for chronic colonization by A. fumigatus, which, in turn, may cause a faster deterioration of lung function.
Barone-Adesi, Francesco; Dent, Jennifer E; Dajnak, David; Beevers, Sean; Anderson, H Ross; Kelly, Frank J; Cook, Derek G; Whincup, Peter H
2015-01-01
There is widespread concern about the possible health effects of traffic-related air pollution. Nitrogen dioxide (NO2) is a convenient marker of primary pollution. We investigated the associations between lung function and current residential exposure to a range of air pollutants (particularly NO2, NO, NOx and particulate matter) in London children. Moreover, we placed the results for NO2 in context with a meta-analysis of published estimates of the association. Associations between primary traffic pollutants and lung function were investigated in 4884 children aged 9-10 years who participated in the Child Heart and Health Study in England (CHASE). A systematic literature search identified 13 studies eligible for inclusion in a meta-analysis. We combined results from the meta-analysis with the distribution of the values of FEV1 in CHASE to estimate the prevalence of children with abnormal lung function (FEV1<80% of predicted value) expected under different scenarios of NO2 exposure. In CHASE, there were non-significant inverse associations between all pollutants except ozone and both FEV1 and FVC. In the meta-analysis, a 10 μg/m3 increase in NO2 was associated with an 8 ml lower FEV1 (95% CI: -14 to -1 ml; p: 0.016). The observed effect was not modified by a reported asthma diagnosis. On the basis of these results, a 10 μg/m3 increase in NO2 level would translate into a 7% (95% CI: 4% to 12%) increase of the prevalence of children with abnormal lung function. Exposure to traffic pollution may cause a small overall reduction in lung function and increase the prevalence of children with clinically relevant declines in lung function.
Clinical measures, smoking, radon exposure, and risk of lung cancer in uranium miners.
Finkelstein, M M
1996-01-01
OBJECTIVES: Exposure to the radioactive daughters of radon is associated with increased risk of lung cancer in mining populations. An investigation of incidence of lung cancer following a clinical survey of Ontario uranium miners was undertaken to explore whether risk associated with radon is modified by factors including smoking, radiographic silicosis, clinical symptoms, the results of lung function testing, and the temporal pattern of radon exposure. METHODS: Miners were examined in 1974 by a respiratory questionnaire, tests of lung function, and chest radiography. A random selection of 733 (75%) of the original 973 participants was followed up by linkage to the Ontario Mortality and Cancer Registries. RESULTS: Incidence of lung cancer was increased threefold. Risk of lung cancer among miners who had stopped smoking was half that of men who continued to smoke. There was no interaction between smoking and radon exposure. Men with lung function test results consistent with airways obstruction had an increased risk of lung cancer, even after adjustment for cigarette smoking. There was no association between radiographic silicosis and risk of lung cancer. Lung cancer was associated with exposures to radon daughters accumulated in a time window four to 14 years before diagnosis, but there was little association with exposures incurred earlier than 14 years before diagnosis. Among the men diagnosed with lung cancer, the mean and median dose rates were 2.6 working level months (WLM) a year and 1.8 WLM/year in the four to 14 year exposure window. CONCLUSIONS: Risk of lung cancer associated with radon is modified by dose and time from exposure. Risk can be substantially decreased by stopping smoking. PMID:8943835
Hamzah, Nurul Ainun; Mohd Tamrin, Shamsul Bahri; Ismail, Noor Hassim
2016-07-01
Metallic dust is a heterogeneous substance with respiratory sensitizing properties. Its long term exposure adversely affected lung function, thus may cause acute or chronic respiratory diseases. A cross-sectional study was conducted in a steel factory in Terengganu, Malaysia to assess the metal dust exposure and its relationship to lung function values among 184 workers. Metal dust concentrations values (Co, Cr, and Ni) for each worker were collected using air personal sampling. Lung function values (FEV 1 , FVC, and %FEV 1 /FVC) were determined using spirometer. Exposure to cobalt and chromium were 1-3 times higher than permissible exposure limit (PEL) while nickel was not exceeding the PEL. Cumulative of chromium was the predictor to all lung function values (FEV 1 , FVC, and %FEV 1 /FVC). Frequency of using mask was positively associated with FVC (Adj b = 0.263, P = 0.011) while past respiratory illnesses were negatively associated with %FEV 1 /FVC (Adj b = -1.452, P = 0.026). Only few workers (36.4%) were found to wear their masks all times during the working hours. There was an exposure-response relationship of cumulative metal dust exposure with the deterioration of lung function values. Improvement of control measures as well as proper and efficient use or personal protection equipment while at work could help to protect the respiratory health of workers.
Respiratory muscle strength is not decreased in patients undergoing cardiac surgery.
Urell, Charlotte; Emtner, Margareta; Hedenstrom, Hans; Westerdahl, Elisabeth
2016-03-31
Postoperative pulmonary impairments are significant complications after cardiac surgery. Decreased respiratory muscle strength could be one reason for impaired lung function in the postoperative period. The primary aim of this study was to describe respiratory muscle strength before and two months after cardiac surgery. A secondary aim was to describe possible associations between respiratory muscle strength and lung function. In this prospective observational study 36 adult cardiac surgery patients (67 ± 10 years) were studied. Respiratory muscle strength and lung function were measured before and two months after surgery. Pre- and postoperative respiratory muscle strength was in accordance with predicted values; MIP was 78 ± 24 cmH2O preoperatively and 73 ± 22 cmH2O at two months follow-up (p = 0.19). MEP was 122 ± 33 cmH2O preoperatively and 115 ± 38 cmH2O at two months follow-up (p = 0.18). Preoperative lung function was in accordance with predicted values, but was significantly decreased postoperatively. At two-months follow-up there was a moderate correlation between MIP and FEV1 (r = 0.43, p = 0.009). Respiratory muscle strength was not impaired, either before or two months after cardiac surgery. The reason for postoperative lung function alteration is not yet known. Interventions aimed at restore an optimal postoperative lung function should focus on other interventions then respiratory muscle strength training.
Peradzyńska, Joanna; Krenke, Katarzyna; Szylling, Anna; Kołodziejczyk, Beata; Gazda, Agnieszka; Rutkowska-Sak, Lidia; Kulus, Marek
2016-01-01
Connective tissue diseases (CTDs) of childhood are rare inflammatory disorders, involving various organs and tissues including respiratory system. Pulmonary involvement in patients with CTDs is uncommon but may cause functional impairment. Data on prevalence and type of lung function abnormalities in children with CTDs are scarce. Thus, the aim of this study was to asses pulmonary functional status in children with newly diagnosed CTD and follow the results after two years of the disease course. There were 98 children (mean age: 13 ± 3; 76 girls), treated in Department of Pediatric Rheumatology, Institute of Rheumatology, Warsaw and 80 aged-matched, healthy controls (mean age 12.7 ± 2.4; 50 girls) included into the study. Study procedures included medical history, physical examination, chest radiograph and PFT (spirometry and whole body-plethysmography). Then, the assessment of PFT was performed after 24 months. FEV₁, FEV₁/FVC and MEF50 were significantly lower in CTD as compared to control group, there was no difference in FVC and TLC. The proportion of patients with abnormal lung function was significantly higher in the study group, 41 (42%) vs 9 (11%). 24-months observation didn't reveal progression in lung function impairment. Lung function impairment is relatively common in children with CTDs. Although restrictive ventilatory pattern is considered typical feature of lung involvement in CTDs, airflow limitation could also be an initial abnormality.
Yangzong; Berntsen, Sveinung; Bjertness, Espen; Stigum, Hein; Gonggalanzi; Bianba; Nafstad, Per
2013-03-01
Tibetans have lived at high altitude longer than any other high-altitude population. Still little is known about their lung function and especially among children. This study compared lung function values of forced vital capacity (FVC), forced expiratory volume in one second (FEV1), and forced expiratory flow at 50% of FVC (FEF50) in children living at various altitudes in Tibet and with different ancestries. A cross-sectional study of lung function was performed among 9-10-year-old native Tibetan and Han Chinese children living at 3700 meters above sea level, and among native Tibetan children living at 4300 meters above sea level. The adjusted FVC and FEV1 were significantly higher in Tibetan children living at 4300 m above sea level as compared to Tibetans living at 3700 m. Tibetans living at 3700 m had higher FVC and FEV1 than Han Chinese living at the same altitude. All Tibetan children had on average higher FEF50 than Han Chinese. Tibetan children living at an altitude of 4300 m had relatively higher lung function than those living at 3700 m, and there were differences in lung function between Tibetans and Han Chinese who live at the same altitude. It seems likely that genetic factors involved in long-term adaptation to high altitude and cultural attributes could have contributed to the study findings.
Jonsson, Marcus; Urell, Charlotte; Emtner, Margareta; Westerdahl, Elisabeth
2014-03-28
Physical activity has well-established positive health-related effects. Sedentary behaviour has been associated with postoperative complications and mortality after cardiac surgery. Patients undergoing cardiac surgery often suffer from impaired lung function postoperatively. The association between physical activity and lung function in cardiac surgery patients has not previously been reported. Patients undergoing cardiac surgery were followed up two months postoperatively. Physical activity was assessed on a four-category scale (sedentary, moderate activity, moderate regular exercise, and regular activity and exercise), modified from the Swedish National Institute of Public Health's national survey. Formal lung function testing was performed preoperatively and two months postoperatively. The sample included 283 patients (82% male). Two months after surgery, the level of physical activity had increased (p < 0.001) in the whole sample. Patients who remained active or increased their level of physical activity had significantly better recovery of lung function than patients who remained sedentary or had decreased their level of activity postoperatively in terms of vital capacity (94 ± 11% of preoperative value vs. 91 ± 9%; p = 0.03), inspiratory capacity (94 ± 14% vs. 88 ± 19%; p = 0.008), and total lung capacity (96 ± 11% vs. 90 ± 11%; p = 0.01). An increased level of physical activity, compared to preoperative level, was reported as early as two months after surgery. Our data shows that there could be a significant association between physical activity and recovery of lung function after cardiac surgery. The relationship between objectively measured physical activity and postoperative pulmonary recovery needs to be further examined to verify these results.
INTERPRETATIONS AND LIMITATION OF PULMONARY FUNCTION TESTING IN SMALL LABORATORY ANIMALS
Pulmonary function tests are tools available to the researcher and clinician to evaluate the ability of the lung to perform its essential function of gas exchange. o meet this principal function, the lung needs to operate efficiently with minimal mechanical work as well as provid...
Determination of right ventricular ejection fraction in children with cystic fibrosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piepsz, A.; Ham, H.R.; Millet, E.
1987-01-01
The radionuclide right ventricular ejection fraction (RVEF) determined by means of Krypton-81m represents a simple, noninvasive, and accurate procedure to quantify the right ventricular contractility. This procedure was applied to 25 young patients with cystic fibrosis. The RVEF tended to decrease with the progression of the lung disease, as assessed by the clinical S-K score, the degree of the defects on lung scintigraphy, the PaO/sub 2/, and the lung function tests. However, the decrease of RVEF in patients with marked lung function tests. However, the decrease of RVEF in patients with marked lung involvement was moderate, and terminal lung diseasemore » was sometimes associated with normal right heart contractility.« less
MO-C-17A-10: Comparison of Dose Deformable Accumulation by Using Parallel and Serial Approaches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Z; Li, M; Wong, J
Purpose: The uncertainty of dose accumulation over multiple CT datasets with deformable fusion may have significant impact on clinical decisions. In this study, we investigate the difference of two dose summation approaches involving deformable fusion. Methods: Five patients, four external beam and one brachytherapy(BT), were chosen for the study. The BT patient was treated with CT-based HDR. The CT image sets acquired in the imageguidance process (8-11 CTs/patient) were used to determine the dose delivered to the four external beam patients. (prostate, pelvis, lung and head and neck). For the HDR patient (cervix), five CT image sets and the correspondingmore » BT plans were used. In total 44 CT datasets and RT dose/plans were imported into the image fusion software MiM (6.0.4) for analysis.For each of the five clinical cases, the dose from each fraction was accumulated into the primary CT dataset by using both Parallel and Serial approaches. The dose-volume histogram (DVH) for CTV and selected organs-at-risks (OAR) were generated. The D95(CTV), OAR(mean) and OAR(max) for the four external beam cases the D90(CTV), and the max dose to bladder and rectum for the BT case were compared. Results: For the four external beam patients, the difference in D95(CTV) were <1.2% PD between the parallel and the serial approaches. The differences of the OAR(mean) and the OAR(max ) range from 0 to 3.7% and <1% PD respectively. For the HDR patient, the dose difference for D90 is 11% PD while that of the max dose to bladder and rectum were 11.5% and 23.3% respectively. Conclusion: For external beam treatments, the parallel and serial approaches have <5% difference probably because tumor volume and OAR have less changes from fraction to fraction. For the brachytherapy case, >10% dose difference between the two approaches was observed as significant volume changes of tumor and OAR were observed among treatment fractions.« less
Lung volumes: measurement, clinical use, and coding.
Flesch, Judd D; Dine, C Jessica
2012-08-01
Measurement of lung volumes is an integral part of complete pulmonary function testing. Some lung volumes can be measured during spirometry; however, measurement of the residual volume (RV), functional residual capacity (FRC), and total lung capacity (TLC) requires special techniques. FRC is typically measured by one of three methods. Body plethysmography uses Boyle's Law to determine lung volumes, whereas inert gas dilution and nitrogen washout use dilution properties of gases. After determination of FRC, expiratory reserve volume and inspiratory vital capacity are measured, which allows the calculation of the RV and TLC. Lung volumes are commonly used for the diagnosis of restriction. In obstructive lung disease, they are used to assess for hyperinflation. Changes in lung volumes can also be seen in a number of other clinical conditions. Reimbursement for measurement of lung volumes requires knowledge of current procedural terminology (CPT) codes, relevant indications, and an appropriate level of physician supervision. Because of recent efforts to eliminate payment inefficiencies, the 10 previous CPT codes for lung volumes, airway resistance, and diffusing capacity have been bundled into four new CPT codes.
NASA Astrophysics Data System (ADS)
Dullin, C.; Markus, M. A.; Larsson, E.; Tromba, G.; Hülsmann, S.; Alves, F.
2016-11-01
In mice, along with the assessment of eosinophils, lung function measurements, most commonly carried out by plethysmography, are essential to monitor the course of allergic airway inflammation, to examine therapy efficacy and to correlate animal with patient data. To date, plethysmography techniques either use intubation and/or restraining of the mice and are thus invasive, or are limited in their sensitivity. We present a novel unrestrained lung function method based on low-dose planar cinematic x-ray imaging (X-Ray Lung Function, XLF) and demonstrate its performance in monitoring OVA induced experimental allergic airway inflammation in mice and an improved assessment of the efficacy of the common treatment dexamethasone. We further show that XLF is more sensitive than unrestrained whole body plethysmography (UWBP) and that conventional broncho-alveolar lavage and histology provide only limited information of the efficacy of a treatment when compared to XLF. Our results highlight the fact that a multi-parametric imaging approach as delivered by XLF is needed to address the combined cellular, anatomical and functional effects that occur during the course of asthma and in response to therapy.
Serial-position effects for items and relations in short-term memory.
Jones, Tim; Oberauer, Klaus
2013-04-01
Two experiments used immediate probed recall of words to investigate serial-position effects. Item memory was tested through probing with a semantic category. Relation memory was tested through probing with the word's spatial location of presentation. Input order and output order were deconfounded by presenting and probing items in different orders. Primacy and recency effects over input position were found for both item memory and relation memory. Both item and relation memory declined over output position. The finding of a U-shaped input position function for item memory rules out an explanation purely in terms of positional confusions (e.g., edge effects). Either these serial-position effects arise from variations in the intrinsic memory strength of the items, or they arise from variations in the strength of item-position bindings, together with retrieval by scanning.
Hsu, Sze-Bi; Yang, Ya-Tang
2016-04-01
We present the theory of a microfluidic bioreactor with a two-compartment growth chamber and periodic serial dilution. In the model, coexisting planktonic and biofilm populations exchange by adsorption and detachment. The criteria for coexistence and global extinction are determined by stability analysis of the global extinction state. Stability analysis yields the operating diagram in terms of the dilution and removal ratios, constrained by the plumbing action of the bioreactor. The special case of equal uptake function and logistic growth is analytically solved and explicit growth curves are plotted. The presented theory is applicable to generic microfluidic bioreactors with discrete growth chambers and periodic dilution at discrete time points. Therefore, the theory is expected to assist the design of microfluidic devices for investigating microbial competition and microbial biofilm growth under serial dilution conditions.
Functional genomics of chlorine-induced acute lung injury in mice.
Leikauf, George D; Pope-Varsalona, Hannah; Concel, Vincent J; Liu, Pengyuan; Bein, Kiflai; Brant, Kelly A; Dopico, Richard A; Di, Y Peter; Jang, An-Soo; Dietsch, Maggie; Medvedovic, Mario; Li, Qian; Vuga, Louis J; Kaminski, Naftali; You, Ming; Prows, Daniel R
2010-07-01
Acute lung injury can be induced indirectly (e.g., sepsis) or directly (e.g., chlorine inhalation). Because treatment is still limited to supportive measures, mortality remains high ( approximately 74,500 deaths/yr). In the past, accidental (railroad derailments) and intentional (Iraq terrorism) chlorine exposures have led to deaths and hospitalizations from acute lung injury. To better understand the molecular events controlling chlorine-induced acute lung injury, we have developed a functional genomics approach using inbred mice strains. Various mouse strains were exposed to chlorine (45 ppm x 24 h) and survival was monitored. The most divergent strains varied by more than threefold in mean survival time, supporting the likelihood of an underlying genetic basis of susceptibility. These divergent strains are excellent models for additional genetic analysis to identify critical candidate genes controlling chlorine-induced acute lung injury. Gene-targeted mice then could be used to test the functional significance of susceptibility candidate genes, which could be valuable in revealing novel insights into the biology of acute lung injury.
NASA Astrophysics Data System (ADS)
Gurzau, Eugen S.; Gurzau, Anca; Muresan, Marius; Bodor, Ecaterina; Zehan, Zoe; Radulescu, Nicolae
1993-03-01
The question of a causative interrelation between air pollution and respiratory status has received considerable attention by the mass media in our country. Schoolchildren aged 7 to 11 living in two communities with different levels of air pollution were studied. The parents of these children filled out a health questionnaire. The prevalence of respiratory symptoms and pulmonary diseases was found to be significantly higher among children growing up in the polluted area (Tirnaveni) as compared with the low-pollution area (Dej). Lung function tests point out FEF25-75 disorders (and other lung disorders) at higher frequencies in schoolchildren living in the polluted area. Over 90% of schoolchildren living in the polluted area. Over 90% of schoolchildren with lung function disorders had a positive response to bronchodilatation. Of the schoolchildren with lung function disorders, 75.47% (p < 0,001) were atopic all of whom were sensitized to the down and house-dust.
Social integration and age-related decline in lung function.
Crittenden, Crista N; Murphy, Michael L M; Cohen, Sheldon
2018-05-01
We tested the hypothesis that social integration, measured as number of social roles, is associated with less age-related loss of lung function, an important marker of health and longevity. We also investigated possible psychological factors through which social integration might influence lung health. Data were analyzed from the Health and Retirement Study (ages 52-94, n = 4,224). Each additional social role reported at baseline was associated with less of a decline in lung function between baseline and the follow-up assessment four years later. The association withstood controls for demographics, weight, and height and was mediated by more positive and less negative affect and lower rates of cigarette smoking and more physical activity. Roles were mostly substitutable, with both high (spouse, parent, friends, relatives) and low (employee, religious service attendee, volunteer, members of other groups) intimacy roles independently contributing to less age-related decline in lung function. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
IL4R alpha mutations are associated with asthma exacerbations and mast cell/IgE expression.
Wenzel, Sally E; Balzar, Silvana; Ampleford, Elizabeth; Hawkins, Gregory A; Busse, William W; Calhoun, William J; Castro, Mario; Chung, K Fan; Erzurum, Serpil; Gaston, Benjamin; Israel, Elliot; Teague, W Gerald; Curran-Everett, Douglas; Meyers, Deborah A; Bleecker, Eugene R
2007-03-15
Severe asthma has been associated with severe exacerbations, lower lung function and greater tissue inflammation. Previous studies have suggested that mutations in interleukin-4 receptor alpha (IL4Ralpha) are associated with lower lung function, higher IgE, and a gain in receptor function. However, an effect on exacerbations and tissue inflammation has not been shown. Allelic substitutions in IL4Ralpha are associated with asthma exacerbations, lower lung function, and tissue inflammation, in particular to mast cells and IgE. Two well-characterized cohorts of subjects with severe asthma were analyzed for five single nucleotide polymorphisms (SNPs) in IL4Ralpha. These polymorphisms were compared with the history of severe asthma exacerbations and lung function. In the primary (National Jewish) cohort, these polymorphisms were also compared with endobronchial tissue inflammatory cells and local IgE. In both cohorts, the presence of the minor alleles at E375A and Q551R, which were more common in African Americans, was associated with a history of severe exacerbations and lower lung function. In the National Jewish cohort, the C allele at E375A was associated with higher tissue mast cells and higher levels of IgE bound to mast cells. The significance for most of these associations remained when whites (the larger racial subgroup) were analyzed separately. SNPs in IL4Ralpha, which are more common in African Americans, are associated with severe asthma exacerbations, lower lung function, and increased mast cell-related tissue inflammation. Further studies of the impact of these mutations in African Americans and on receptor function are indicated.
Alamo, Ines G; Kannan, Kolenkode B; Ramos, Harry; Loftus, Tyler J; Efron, Philip A; Mohr, Alicia M
2017-03-01
Propranolol has been shown previously to restore bone marrow function and improve anemia after lung contusion/hemorrhagic shock. We hypothesized that daily clonidine administration would inhibit central sympathetic outflow and restore bone marrow function in our rodent model of lung contusion/hemorrhagic shock with chronic stress. Male Sprague-Dawley rats underwent 6 days of restraint stress after lung contusion/hemorrhagic shock during which the animals received clonidine (75 μg/kg) after the restraint stress. On postinjury day 7, we assessed urine norepinephrine, blood hemoglobin, plasma granulocyte colony stimulating factor, and peripheral blood mobilization of hematopoietic progenitor cells, as well as bone marrow cellularity and erythroid progenitor cell growth. The addition of clonidine to lung contusion/hemorrhagic shock with chronic restraint stress significantly decreased urine norepinephrine levels, improved bone marrow cellularity, restored erythroid progenitor colony growth, and improved hemoglobin (14.1 ± 0.6 vs 10.8 ± 0.6 g/dL). The addition of clonidine to lung contusion/hemorrhagic shock with chronic restraint stress significantly decreased hematopoietic progenitor cells mobilization and restored granulocyte colony stimulating factor levels. After lung contusion/hemorrhagic shock with chronic restraint stress, daily administration of clonidine restored bone marrow function and improved anemia. Alleviating chronic stress and decreasing norepinephrine is a key therapeutic target to improve bone marrow function after severe injury. Copyright © 2016 Elsevier Inc. All rights reserved.
Pulmonary functions in plastic factory workers: a preliminary study.
Khaliq, Farah; Singh, Pawan; Chandra, Prakash; Gupta, Keshav; Vaney, Neelam
2011-01-01
Exposure to long term air pollution in the work environment may result in decreased lung functions and various other health problems. A significant occupational hazard to lung functions is experienced by plastic factory workers. The present study is planned to assess the pulmonary functions of workers in the plastic factory where recycling of pastic material was done. These workers were constantly exposed to fumes of various chemicals throughout the day. Thirty one workers of plastic factory were assessed for their pulmonary functions. Parameters were compared with 31 age and sex matched controls not exposed to the same environment. The pulmonary function tests were done using Sibelmed Datospir 120 B portable spirometer. A significant decrease in most of the flow rates (MEF 25%, MEF 50%, MEF 75% and FEF 25-75%) and most of the lung volumes and capacities (FVC, FEV1, VC, TV, ERV, MVV) were observed in the workers. Smoking and duration of exposure were not affecting the lung functions as the non smokers also showed a similar decrement in pulmonary functions. Similarly the workers working for less than 5 years also had decrement in pulmonary functions indicating that their lungs are being affected even if they have worked for one year. Exposure to the organic dust in the work environment should be controlled by adequate engineering measures, complemented by effective personal respiratory protection.
NASA Astrophysics Data System (ADS)
Cunliffe, Alexandra R.; Armato, Samuel G., III; Straus, Christopher; Malik, Renuka; Al-Hallaq, Hania A.
2014-09-01
This study examines the correlation between the radiologist-defined severity of normal tissue damage following radiation therapy (RT) for lung cancer treatment and a set of mathematical descriptors of computed tomography (CT) scan texture (‘texture features’). A pre-therapy CT scan and a post-therapy CT scan were retrospectively collected under IRB approval for each of the 25 patients who underwent definitive RT (median dose: 66 Gy). Sixty regions of interest (ROIs) were automatically identified in the non-cancerous lung tissue of each post-therapy scan. A radiologist compared post-therapy scan ROIs with pre-therapy scans and categorized each as containing no abnormality, mild abnormality, moderate abnormality, or severe abnormality. Twenty texture features that characterize gray-level intensity, region morphology, and gray-level distribution were calculated in post-therapy scan ROIs and compared with anatomically matched ROIs in the pre-therapy scan. Linear regression and receiver operating characteristic (ROC) analysis were used to compare the percent feature value change (ΔFV) between ROIs at each category of visible radiation damage. Most ROIs contained no (65%) or mild abnormality (30%). ROIs with moderate (3%) or severe (2%) abnormalities were observed in 9 patients. For 19 of 20 features, ΔFV was significantly different among severity levels. For 12 features, significant differences were observed at every level. Compared with regions with no abnormalities, ΔFV for these 12 features increased, on average, by 1.5%, 12%, and 30%, respectively, for mild, moderate, and severe abnormalitites. Area under the ROC curve was largest when comparing ΔFV in the highest severity level with the remaining three categories (mean AUC across features: 0.84). In conclusion, 19 features that characterized the severity of radiologic changes from pre-therapy scans were identified. These features may be used in future studies to quantify acute normal lung tissue damage following RT. Presented, in part at the IASLC 15th World Conference on Lung Conference, Sydney, AUS (2013).
Copur, Mehmet Sitki; Wurdeman, Julie Marie; Nelson, Debra; Ramaekers, Ryan; Gauchan, Dron; Crockett, David
2017-12-11
Solid tumors involving glandular organs express mucin glycoprotein which is eventually shed into the circulation. As aresult these proteins can easily be measured in the serum and be used as potential tumor markers. The most commonly used tumor markers for breast cancer are CA 27-29 and CA 15-3, which both measure the glycoprotein product of the mucin-1 (MUC1) gene. CA 27-29 has been approved by the US Food and Drug Administration for monitoring disease activity in breast cancer patients. Most oncology clinical practice guidelines do not recommend the use of tumor markers for routine surveillance of early stage disease but recognize their utility in the metastatic setting. Herein, we present a patient with stage III-A breast cancer and pre-existing hypersensitivity pneumonitis who is found to have an elevated serum tumor marker CA 27-29. After successful curative intent treatment of her early stage breast cancer, she developed gradual and progressive worsening of her lung disease with eventual development of severe pulmonary fibrosis requiring bilateral lung transplantation. As part of the pre-transplant evaluation, she was found to have an elevation of serum tumor marker CA 27-29. While the diagnostic evaluation, including imaging studies was negative for the presence of recurrent disease, the serial serum tumor marker CA 27-29 levels remained persistently elevated. The decision was made for her to undergo bilateral lung transplantation. Shortly after surgery her CA27-29 tumor marker level returned to normal range, and it has continued to remain in the normal range with no evidence of breast cancer recurrence.
Lehmann, Jason S.; Corey, Victoria C.; Ricaldi, Jessica N.; Vinetz, Joseph M.; Winzeler, Elizabeth A.; Matthias, Michael A.
2016-01-01
Leptospirosis is the most common zoonotic disease worldwide with an estimated 500,000 severe cases reported annually, and case fatality rates of 12–25%, due primarily to acute kidney and lung injuries. Despite its prevalence, the molecular mechanisms underlying leptospirosis pathogenesis remain poorly understood. To identify virulence-related genes in Leptospira interrogans, we delineated cumulative genome changes that occurred during serial in vitro passage of a highly virulent strain of L. interrogans serovar Lai into a nearly avirulent isogenic derivative. Comparison of protein coding and computationally predicted noncoding RNA (ncRNA) genes between these two polyclonal strains identified 15 nonsynonymous single nucleotide variant (nsSNV) alleles that increased in frequency and 19 that decreased, whereas no changes in allelic frequency were observed among the ncRNA genes. Some of the nsSNV alleles were in six genes shown previously to be transcriptionally upregulated during exposure to in vivo-like conditions. Five of these nsSNVs were in evolutionarily conserved positions in genes related to signal transduction and metabolism. Frequency changes of minor nsSNV alleles identified in this study likely contributed to the loss of virulence during serial in vitro culture. The identification of new virulence-associated genes should spur additional experimental inquiry into their potential role in Leptospira pathogenesis. PMID:26711524
Slaine, Patrick D; MacRae, Cara; Kleer, Mariel; Lamoureux, Emily; McAlpine, Sarah; Warhuus, Michelle; Comeau, André M; McCormick, Craig; Hatchette, Todd; Khaperskyy, Denys A
2018-05-18
Mice are not natural hosts for influenza A viruses (IAVs), but they are useful models for studying antiviral immune responses and pathogenesis. Serial passage of IAV in mice invariably causes the emergence of adaptive mutations and increased virulence. Here, we report the adaptation of IAV reference strain A/California/07/2009(H1N1) (also known as CA/07) in outbred Swiss Webster mice. Serial passage led to increased virulence and lung titers, and dissemination of the virus to brains. We adapted a deep-sequencing protocol to identify and enumerate adaptive mutations across all genome segments. Among mutations that emerged during mouse-adaptation, we focused on amino acid substitutions in polymerase subunits: polymerase basic-1 (PB1) T156A and F740L and polymerase acidic (PA) E349G. These mutations were evaluated singly and in combination in minigenome replicon assays, which revealed that PA E349G increased polymerase activity. By selectively engineering three PB1 and PA mutations into the parental CA/07 strain, we demonstrated that these mutations in polymerase subunits decreased the production of defective viral genome segments with internal deletions and dramatically increased the release of infectious virions from mouse cells. Together, these findings increase our understanding of the contribution of polymerase subunits to successful host adaptation.
A normal tissue dose response model of dynamic repair processes.
Alber, Markus; Belka, Claus
2006-01-07
A model is presented for serial, critical element complication mechanisms for irradiated volumes from length scales of a few millimetres up to the entire organ. The central element of the model is the description of radiation complication as the failure of a dynamic repair process. The nature of the repair process is seen as reestablishing the structural organization of the tissue, rather than mere replenishment of lost cells. The interactions between the cells, such as migration, involved in the repair process are assumed to have finite ranges, which limits the repair capacity and is the defining property of a finite-sized reconstruction unit. Since the details of the repair processes are largely unknown, the development aims to make the most general assumptions about them. The model employs analogies and methods from thermodynamics and statistical physics. An explicit analytical form of the dose response of the reconstruction unit for total, partial and inhomogeneous irradiation is derived. The use of the model is demonstrated with data from animal spinal cord experiments and clinical data about heart, lung and rectum. The three-parameter model lends a new perspective to the equivalent uniform dose formalism and the established serial and parallel complication models. Its implications for dose optimization are discussed.
Bagci, Ulas; Foster, Brent; Miller-Jaster, Kirsten; Luna, Brian; Dey, Bappaditya; Bishai, William R; Jonsson, Colleen B; Jain, Sanjay; Mollura, Daniel J
2013-07-23
Infectious diseases are the second leading cause of death worldwide. In order to better understand and treat them, an accurate evaluation using multi-modal imaging techniques for anatomical and functional characterizations is needed. For non-invasive imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), there have been many engineering improvements that have significantly enhanced the resolution and contrast of the images, but there are still insufficient computational algorithms available for researchers to use when accurately quantifying imaging data from anatomical structures and functional biological processes. Since the development of such tools may potentially translate basic research into the clinic, this study focuses on the development of a quantitative and qualitative image analysis platform that provides a computational radiology perspective for pulmonary infections in small animal models. Specifically, we designed (a) a fast and robust automated and semi-automated image analysis platform and a quantification tool that can facilitate accurate diagnostic measurements of pulmonary lesions as well as volumetric measurements of anatomical structures, and incorporated (b) an image registration pipeline to our proposed framework for volumetric comparison of serial scans. This is an important investigational tool for small animal infectious disease models that can help advance researchers' understanding of infectious diseases. We tested the utility of our proposed methodology by using sequentially acquired CT and PET images of rabbit, ferret, and mouse models with respiratory infections of Mycobacterium tuberculosis (TB), H1N1 flu virus, and an aerosolized respiratory pathogen (necrotic TB) for a total of 92, 44, and 24 scans for the respective studies with half of the scans from CT and the other half from PET. Institutional Administrative Panel on Laboratory Animal Care approvals were obtained prior to conducting this research. First, the proposed computational framework registered PET and CT images to provide spatial correspondences between images. Second, the lungs from the CT scans were segmented using an interactive region growing (IRG) segmentation algorithm with mathematical morphology operations to avoid false positive (FP) uptake in PET images. Finally, we segmented significant radiotracer uptake from the PET images in lung regions determined from CT and computed metabolic volumes of the significant uptake. All segmentation processes were compared with expert radiologists' delineations (ground truths). Metabolic and gross volume of lesions were automatically computed with the segmentation processes using PET and CT images, and percentage changes in those volumes over time were calculated. (Continued on next page)(Continued from previous page) Standardized uptake value (SUV) analysis from PET images was conducted as a complementary quantitative metric for disease severity assessment. Thus, severity and extent of pulmonary lesions were examined through both PET and CT images using the aforementioned quantification metrics outputted from the proposed framework. Each animal study was evaluated within the same subject class, and all steps of the proposed methodology were evaluated separately. We quantified the accuracy of the proposed algorithm with respect to the state-of-the-art segmentation algorithms. For evaluation of the segmentation results, dice similarity coefficient (DSC) as an overlap measure and Haussdorf distance as a shape dissimilarity measure were used. Significant correlations regarding the estimated lesion volumes were obtained both in CT and PET images with respect to the ground truths (R2=0.8922,p<0.01 and R2=0.8664,p<0.01, respectively). The segmentation accuracy (DSC (%)) was 93.4±4.5% for normal lung CT scans and 86.0±7.1% for pathological lung CT scans. Experiments showed excellent agreements (all above 85%) with expert evaluations for both structural and functional imaging modalities. Apart from quantitative analysis of each animal, we also qualitatively showed how metabolic volumes were changing over time by examining serial PET/CT scans. Evaluation of the registration processes was based on precisely defined anatomical landmark points by expert clinicians. An average of 2.66, 3.93, and 2.52 mm errors was found in rabbit, ferret, and mouse data (all within the resolution limits), respectively. Quantitative results obtained from the proposed methodology were visually related to the progress and severity of the pulmonary infections as verified by the participating radiologists. Moreover, we demonstrated that lesions due to the infections were metabolically active and appeared multi-focal in nature, and we observed similar patterns in the CT images as well. Consolidation and ground glass opacity were the main abnormal imaging patterns and consistently appeared in all CT images. We also found that the gross and metabolic lesion volume percentage follow the same trend as the SUV-based evaluation in the longitudinal analysis. We explored the feasibility of using PET and CT imaging modalities in three distinct small animal models for two diverse pulmonary infections. We concluded from the clinical findings, derived from the proposed computational pipeline, that PET-CT imaging is an invaluable hybrid modality for tracking pulmonary infections longitudinally in small animals and has great potential to become routinely used in clinics. Our proposed methodology showed that automated computed-aided lesion detection and quantification of pulmonary infections in small animal models are efficient and accurate as compared to the clinical standard of manual and semi-automated approaches. Automated analysis of images in pre-clinical applications can increase the efficiency and quality of pre-clinical findings that ultimately inform downstream experimental design in human clinical studies; this innovation will allow researchers and clinicians to more effectively allocate study resources with respect to research demands without compromising accuracy.
Topical negative pressure for the treatment of neonatal post-sternotomy wound dehiscence.
Hardwicke, J; Richards, H; Jagadeesan, J; Jones, T; Lester, R
2012-01-01
The use of topical negative pressure (TNP) dressings for sternal wound dehiscence or mediastinitis in the neonatal population is rare. The majority of case reports have focused on wound healing as an endpoint and have not discussed the physiological advantage that TNP dressings may impart with regard to sternal stabilisation, improved respiratory function and early weaning from mechanical ventilation. We present a case of the use of TNP in neonatal post-sternotomy wound dehiscence and mediastinitis, from a UK perspective, with an emphasis on wound healing and physiological optimisation. As well as an improvement in sternal wound healing due to the local effects of the TNP system, serial arterial blood gas analysis revealed a significant improvement in systemic physiological parameters, including a reduction in pCO(2) in the period (days 20-31) after application of TNP (p<0.0001) compared to the period before where simple occlusive dressings were applied. Hydrogen ion concentration also significantly reduced in this period (p=0.0058). The use of the TNP system in association with systemic antibiotics successfully treated the mediastinitis. A sealed, controlled wound environment also allowed ease of nursing and an expedited return to care by the parents. We would recommend the consideration of TNP dressings in similar cases of neonatal and paediatric sternal wound dehiscence. Not only do we observe the local effects of improved wound healing, the systemic effects of improved lung function are also valuable in the early management of such complex cases.
Vinnikov, Denis; Blanc, Paul D; Brimkulov, Nurlan; Redding-Jones, Rupert
2013-12-01
To assess the annual lung function decline associated with the reduction of secondhand smoke exposure in a high-altitude industrial workforce. We performed pulmonary function tests annually among 109 high-altitude gold-mine workers over 5 years of follow-up. The first 3 years included greater likelihood of exposure to secondhand smoke exposure before the initiation of extensive smoking restrictions that came into force in the last 2 years of observation. In repeated measures modeling, taking into account the time elapsed in relation to the smoking ban, there was a 115 ± 9 (standard error) mL per annum decline in lung function before the ban, but a 178 ± 20 (standard error) mL per annum increase afterward (P < 0.001, both slopes). Institution of a workplace smoking ban at high altitude may be beneficial in terms of lung function decline.
Wu, Nan-Chun; Liao, Fan-Ting; Cheng, Hao-Min; Sung, Shih-Hsien; Yang, Yu-Chun; Wang, Jiun-Jr
2017-07-26
Positive-pressure mechanical ventilation is essential in assisting patients with respiratory failure in the intensive care unit and facilitating oxygenation in the operating room. However, it was also recognized as a primary factor leading to hospital-acquired pulmonary dysfunction, in which pulmonary oxidative stress and lung inflammation had been known to play important roles. Cu/Zn superoxide dismutase (SOD) is an important antioxidant, and possesses anti-inflammatory capacity. In this study, we aimed to study the efficacy of Cu/Zn SOD, administered intravenously during high tidal volume (HTV) ventilation, to prevent impairment of lung function. Thirty-eight male Sprague-Dawley rats were divided into 3 groups: 5 h ventilation with (A) low tidal volume (LTV; 8 mL/kg; n = 10), (B) high tidal volume (HTV; 18 mL/kg; n = 14), or (C) HTV and intravenous treatment of Cu/Zn SOD at a dose of 1000 U/kg/h (HTV + SOD; n = 14). Lung function was evaluated both at baseline and after 5-h ventilation. Lung injury was assessed by histological examination, lung water and protein contents in the bronchoalveolar lavage fluid (BALF). Pulmonary oxidative stress was examined by concentrations of methylguanidine (MG) and malondialdehyde (MDA) in BALF, and antioxidative activity by protein expression of glutathione peroxidase-1 (GPx-1) in the lung. Severity of lung inflammation was evaluated by white blood cell and differential count in BALF, and protein expression of inducible nitric oxide synthase (iNOS), intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor-α (TNF-α), matrix metalloproteinase-9 (MMP-9), and mRNA expression of nuclear factor-κB (NF-κB) in the lung. We also examined protein expression of surfactant protein (SP)-A and D and we measured hourly changes in serum nitric oxide (NO) level. Five hours of LTV ventilation did not induce a major change in lung function, whereas 5 h of HTV ventilation induced apparent combined restrictive and obstructive lung disorder, together with increased pulmonary oxidative stress, decreased anti-oxidative activity and increased lung inflammation (P < 0.05). HTV ventilation also decreased SP-A and SP-D expression and suppressed serum NO level during the time course of ventilation. Cu/Zn SOD administered intravenously during HTV ventilation effectively reversed associated pulmonary oxidative stress and lung inflammation (P < 0.05); moreover, it preserved SP-A and SP-D expressions in the lung and increased serum nitric oxide (NO) level, enhancing vascular NO bioavailability. HTV ventilation can induce combined restrictive and obstructive lung disorders. Intravenous administration of Cu/Zn SOD during HTV ventilation can prevent lung function impairment and lung injury via reducing pulmonary oxidative stress and lung inflammation, preserving pulmonary surfactant expression, and enhancing vascular NO bioavailability.
Kotaki, Kenji; Senjyu, Hideaki; Tanaka, Takako; Yano, Yudai; Miyamoto, Naomi; Nishinakagawa, Tsuyoshi; Yanagita, Yorihide; Asai, Masaharu; Kozu, Ryo; Tabusadani, Mitsuru; Sawai, Terumitsu; Honda, Sumihisa
2014-01-01
Objectives We sought to elucidate the long-term association of tobacco use and respiratory health in designated pollution victims with and without obstructive pulmonary defects. Design A retrospective cross-sectional study. Setting The register of pollution victims in Kurashiki, Japan. Participants 730 individuals over 65 years of age previously diagnosed with pollution-related respiratory disease. Patients were classified into four groups according to their smoking status and whether they had obstructive pulmonary disease. We then compared the prevalence of respiratory symptoms and lung function over time between groups. Primary outcome measures Spirometry was performed and a respiratory health questionnaire completed in the same season each year for up to 30 years. Results Rates of smoking and respiratory disease were high in our sample. Although respiratory function in non-smoking patients did not completely recover, the annual rate of change in lung function was within the normal range (p<0.01). However, smokers had worse lung function and were more likely to report more severe pulmonary symptoms (p<0.01). Conclusions Patients’ respiratory function did not fully recover despite improved air quality. Our results suggest that, in the context of exposure to air pollution, tobacco use causes additional loss of lung function and exacerbates respiratory symptoms. PMID:25082419
Acute Viral Respiratory Infection Rapidly Induces a CD8+ T Cell Exhaustion-like Phenotype.
Erickson, John J; Lu, Pengcheng; Wen, Sherry; Hastings, Andrew K; Gilchuk, Pavlo; Joyce, Sebastian; Shyr, Yu; Williams, John V
2015-11-01
Acute viral infections typically generate functional effector CD8(+) T cells (TCD8) that aid in pathogen clearance. However, during acute viral lower respiratory infection, lung TCD8 are functionally impaired and do not optimally control viral replication. T cells also become unresponsive to Ag during chronic infections and cancer via signaling by inhibitory receptors such as programmed cell death-1 (PD-1). PD-1 also contributes to TCD8 impairment during viral lower respiratory infection, but how it regulates TCD8 impairment and the connection between this state and T cell exhaustion during chronic infections are unknown. In this study, we show that PD-1 operates in a cell-intrinsic manner to impair lung TCD8. In light of this, we compared global gene expression profiles of impaired epitope-specific lung TCD8 to functional spleen TCD8 in the same human metapneumovirus-infected mice. These two populations differentially regulate hundreds of genes, including the upregulation of numerous inhibitory receptors by lung TCD8. We then compared the gene expression of TCD8 during human metapneumovirus infection to those in acute or chronic lymphocytic choriomeningitis virus infection. We find that the immunophenotype of lung TCD8 more closely resembles T cell exhaustion late into chronic infection than do functional effector T cells arising early in acute infection. Finally, we demonstrate that trafficking to the infected lung alone is insufficient for TCD8 impairment or inhibitory receptor upregulation, but that viral Ag-induced TCR signaling is also required. Our results indicate that viral Ag in infected lungs rapidly induces an exhaustion-like state in lung TCD8 characterized by progressive functional impairment and upregulation of numerous inhibitory receptors. Copyright © 2015 by The American Association of Immunologists, Inc.
Kuti, Bankole Peter; Oladimeji, Oluwatoyin Ibukun; Kuti, Demilade Kehinde; Adeniyi, Adewuyi Temidayo; Adeniji, Emmanuel Oluwatosin; Osundare, Yetunde Justinah
2017-01-01
Introduction The effect of socio-demographic and nutritional factors on lung functions of African children is poorly studied. This study set out to determine the effects of these factors on lung functions of Nigerian school children. Methods Rural and urban secondary schools students in Ilesa, Nigeria were selected by multistage sampling. The socio-demographic, nutritional status as well as lung function parameters measured using incentive Spirometry (MIR Spirolab III srl, Italy) of the children were obtained and compared among the rural and urban children. Results A total of 250 children (128 rural and 122 urban) aged 9 to 17 years participated in the study over a 12 month period. Mean (SD) age was 12.6 (1.9) years and Male: Female 1:1.1. The urban children were heavier, taller and have larger lung volumes than their age and sex matched rural counterpart. Stunted rural males [Mean (SD) FVC 1.8 (0.3) L vs. 2.2 (0.6) L t-test = 2.360; p = 0.022], underweight females [Mean (SD) FVC 1.8 (0.4) L vs. 2.2 (0.6) L; t-test = 2.855; p = 0.006] and those exposed to unclean fuel [Mean (SD) FVC 2.1 (0.6) L vs. 2.4 (0.5) L; t-test = 2.079; p = 0.041] had significantly lower lung volumes compared to their counterparts without these conditions. Conclusion Undernutrition, low socio-economic class and use of unclean fuels adversely affect the lung functions of Nigerian children. Improved standard of living, use of clean fuel and adequate nutrition may ensure better lung health among these children. PMID:29629016
Ohno, Yoshiharu; Koyama, Hisanobu; Nogami, Munenobu; Takenaka, Daisuke; Onishi, Yumiko; Matsumoto, Keiko; Matsumoto, Sumiaki; Maniwa, Yoshimasa; Yoshimura, Masahiro; Nishimura, Yoshihiro; Sugimura, Kazuro
2011-01-01
The purpose of this study was to compare predictive capabilities for postoperative lung function in non-small cell lung cancer (NSCLC) patients of the state-of-the-art radiological methods including perfusion MRI, quantitative CT and SPECT/CT with that of anatomical method (i.e. qualitative CT) and traditional nuclear medicine methods such as planar imaging and SPECT. Perfusion MRI, CT, nuclear medicine study and measurements of %FEV(1) before and after lung resection were performed for 229 NSCLC patients (125 men and 104 women). For perfusion MRI, postoperative %FEV(1) (po%FEV(1)) was predicted from semi-quantitatively assessed blood volumes within total and resected lungs, for quantitative CT, it was predicted from the functional lung volumes within total and resected lungs, for qualitative CT, from the number of segments of total and resected lungs, and for nuclear medicine studies, from uptakes within total and resected lungs. All SPECTs were automatically co-registered with CTs for preparation of SPECT/CTs. Predicted po%FEV(1)s were then correlated with actual po%FEV(1)s, which were measured %FEV(1)s after operation. The limits of agreement were also evaluated. All predicted po%FEV(1)s showed good correlation with actual po%FEV(1)s (0.83≤r≤0.88, p<0.0001). Perfusion MRI, quantitative CT and SPECT/CT demonstrated better correlation than other methods. The limits of agreement of perfusion MRI (4.4±14.2%), quantitative CT (4.7±14.2%) and SPECT/CT (5.1±14.7%) were less than those of qualitative CT (6.0±17.4%), planar imaging (5.8±18.2%), and SPECT (5.5±16.8%). State-of-the-art radiological methods can predict postoperative lung function in NSCLC patients more accurately than traditional methods. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tanaka, Rie; Matsuda, Hiroaki; Sanada, Shigeru
2017-03-01
The density of lung tissue changes as demonstrated on imagery is dependent on the relative increases and decreases in the volume of air and lung vessels per unit volume of lung. Therefore, a time-series analysis of lung texture can be used to evaluate relative pulmonary function. This study was performed to assess a time-series analysis of lung texture on dynamic chest radiographs during respiration, and to demonstrate its usefulness in the diagnosis of pulmonary impairments. Sequential chest radiographs of 30 patients were obtained using a dynamic flat-panel detector (FPD; 100 kV, 0.2 mAs/pulse, 15 frames/s, SID = 2.0 m; Prototype, Konica Minolta). Imaging was performed during respiration, and 210 images were obtained over 14 seconds. Commercial bone suppression image-processing software (Clear Read Bone Suppression; Riverain Technologies, Miamisburg, Ohio, USA) was applied to the sequential chest radiographs to create corresponding bone suppression images. Average pixel values, standard deviation (SD), kurtosis, and skewness were calculated based on a density histogram analysis in lung regions. Regions of interest (ROIs) were manually located in the lungs, and the same ROIs were traced by the template matching technique during respiration. Average pixel value effectively differentiated regions with ventilatory defects and normal lung tissue. The average pixel values in normal areas changed dynamically in synchronization with the respiratory phase, whereas those in regions of ventilatory defects indicated reduced variations in pixel value. There were no significant differences between ventilatory defects and normal lung tissue in the other parameters. We confirmed that time-series analysis of lung texture was useful for the evaluation of pulmonary function in dynamic chest radiography during respiration. Pulmonary impairments were detected as reduced changes in pixel value. This technique is a simple, cost-effective diagnostic tool for the evaluation of regional pulmonary function.
Wang, Hui; Yang, Lei; Deng, Jieqiong; Wang, Bo; Yang, Xiaorong; Yang, Rongrong; Cheng, Mei; Fang, Wenxiang; Qiu, Fuman; Zhang, Xin; Ji, Weidong; Ran, Pixin; Zhou, Yifeng; Lu, Jiachun
2014-09-01
Lung inflammation and epithelial to mesenchymal transition (EMT) are two pathogenic features for the two contextual diseases: chronic obstructive pulmonary disease (COPD) and lung cancer. VEGFR1 (or FLT1) plays a certain role in promoting tumour growth, inflammation and EMT. To simultaneously test the association between the single nucleotide polymorphisms (SNPs) in VEGFR1 and risk of COPD and lung cancer would reveal genetic mechanisms shared by these two diseases and joint aetiology. We conducted a two-population hospital-based case-control study. Three potential functional SNPs (rs664393, rs7326277 and rs9554314) were genotyped in southern Chinese and validated in eastern Chinese to explore their associations with COPD risk in 1511 COPD patients and 1677 normal lung function controls, and with lung cancer risk in 1559 lung cancer cases and 1679 cancer-free controls. We also detected the function of the promising SNP. Individuals carrying the rs7326277C (CT+CC) variant genotypes of VEGFR1 had a significant decrease in risk of both COPD (OR = 0.78; 95% CI = 0.68-0.90) and lung cancer (OR = 0.79; 95% CI = 0.64-0.98), compared with those carrying the rs7326277TT genotype. Functional assays further showed that the rs7326277C genotypes had lower transcriptional activity and caused decreased VEGFR expression, compared with the rs7326277TT genotype. However, no significant association was observed for the other two SNPs (rs664393 and rs9554314) and either COPD or lung cancer risk. Our data suggested that the rs7326277C variant of VEGFR1 could reduce both COPD and lung cancer risk by lowering VEGFR1 mRNA expression; the SNP might be a common susceptible locus for both COPD and lung cancer. © The Author 2014. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Liu, Shing-Hwa; Su, Chin-Chuan; Lee, Kuan-I; Chen, Ya-Wen
2016-01-01
Bisphenol A (BPA) is recognized as a major pollutant worldwide. 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP) is a major active metabolite of BPA. The epidemiological and animal studies have reported that BPA is harmful to lung function. The role of MBP in lung dysfunction after BPA exposure still remains unclear. This study investigated whether MBP would induce lung alveolar cell damage and evaluated the role of MBP in the BPA exposure-induced lung dysfunction. An in vitro type 2 alveolar epithelial cell (L2) model and an ex vivo isolated reperfused rat lung model were used to determine the effects of BPA or MBP on cell growth and lung function. MBP, but not BPA, dose-dependently increased the mean artery pressure (Pa), pulmonary capillary pressure (Pc), pulmonary capillary filtration coefficient (Kfc), and wet/dry weight ratio in isolated reperfused rat lungs. MBP significantly reduced cell viability and induced caspases-3/7 cleavage and apoptosis and increased AMP-activated protein kinas (AMPK) phosphorylation and endoplasmic reticulum (ER) stress-related molecules expression in L2 cells, which could be reversed by AMPK-siRNA transfection. These findings demonstrated for the first time that MBP exposure induced type 2 alveolar cell apoptosis and lung dysfunction through an AMPK-regulated ER stress signaling pathway. PMID:27982077
Liu, Shing-Hwa; Su, Chin-Chuan; Lee, Kuan-I; Chen, Ya-Wen
2016-12-16
Bisphenol A (BPA) is recognized as a major pollutant worldwide. 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP) is a major active metabolite of BPA. The epidemiological and animal studies have reported that BPA is harmful to lung function. The role of MBP in lung dysfunction after BPA exposure still remains unclear. This study investigated whether MBP would induce lung alveolar cell damage and evaluated the role of MBP in the BPA exposure-induced lung dysfunction. An in vitro type 2 alveolar epithelial cell (L2) model and an ex vivo isolated reperfused rat lung model were used to determine the effects of BPA or MBP on cell growth and lung function. MBP, but not BPA, dose-dependently increased the mean artery pressure (Pa), pulmonary capillary pressure (Pc), pulmonary capillary filtration coefficient (K fc ), and wet/dry weight ratio in isolated reperfused rat lungs. MBP significantly reduced cell viability and induced caspases-3/7 cleavage and apoptosis and increased AMP-activated protein kinas (AMPK) phosphorylation and endoplasmic reticulum (ER) stress-related molecules expression in L2 cells, which could be reversed by AMPK-siRNA transfection. These findings demonstrated for the first time that MBP exposure induced type 2 alveolar cell apoptosis and lung dysfunction through an AMPK-regulated ER stress signaling pathway.
Quantification of atopy, lung function and airway hypersensitivity in adults
2011-01-01
Background Studies in children have shown that concentration of specific serum IgE (sIgE) and size of skin tests to inhalant allergens better predict wheezing and reduced lung function than the information on presence or absence of atopy. However, very few studies in adults have investigated the relationship of quantitative atopy with lung function and airway hyperresponsiveness (AHR). Objective To determine the association between lung function and AHR and quantitative atopy in a large sample of adults from the UK. Methods FEV1 and FVC (% predicted) were measured using spirometry and airway responsiveness by methacholine challenge (5-breath dosimeter protocol) in 983 subjects (random sample of 800 parents of children enrolled in a population-based birth cohort enriched with 183 patients with physician-diagnosed asthma). Atopic status was assessed by skin prick tests (SPT) and measurement of sIgE (common inhalant allergens). We also measured indoor allergen exposure in subjects' homes. Results Spirometry was completed by 792 subjects and 626 underwent methacholine challenge, with 100 (16.0%) having AHR (dose-response slope>25). Using sIgE as a continuous variable in a multiple linear regression analysis, we found that increasing levels of sIgE to mite, cat and dog were significantly associated with lower FEV1 (mite p = 0.001, cat p = 0.0001, dog p = 2.95 × 10-8). Similar findings were observed when using the size of wheal on skin testing as a continuous variable, with significantly poorer lung function with increasing skin test size (mite p = 8.23 × 10-8, cat p = 3.93 × 10-10, dog p = 3.03 × 10-15, grass p = 2.95 × 10-9). The association between quantitative atopy with lung function and AHR remained unchanged when we repeated the analyses amongst subjects defined as sensitised using standard definitions (sIgE>0.35 kUa/l, SPT-3 mm>negative control). Conclusions In the studied population, lung function decreased and AHR increased with increasing sIgE levels or SPT wheal diameter to inhalant allergens, suggesting that atopy may not be a dichotomous outcome influencing lung function and AHR. PMID:22410099
Bates, Michael N.; Crane, Julian; Balmes, John R.; Garrett, Nick
2015-01-01
Background Results have been conflicting whether long-term ambient hydrogen sulfide (H2S) affects lung function or is a risk factor for asthma or chronic obstructive pulmonary disease (COPD). Rotorua city, New Zealand, has the world’s largest population exposed to ambient H2S—from geothermal sources. Objectives We investigated associations of H2S with lung function, COPD and asthma in this population. Methods 1,204 of 1,639 study participants, aged 18–65 years during 2008–2010, provided satisfactory spirometry results. Residences, workplaces and schools over the last 30 years were geocoded. Exposures were estimated from data collected by summer and winter H2S monitoring networks across Rotorua. Four metrics for H2S exposure, representing both current and long-term (last 30 years) exposure, and also time-weighted average and peak exposures, were calculated. Departures from expected values for pre-bronchodilator lung function, calculated from prediction equations, were outcomes for linear regression models using quartiles of the H2S exposure metrics. Separate models examined participants with and without evidence of asthma or COPD, and never- and ever-smokers. Logistic regression was used to investigate associations of COPD (a post-bronchodilator FEV1/FVC < 70% of expected) and asthma (doctor-diagnosed or by FEV1 response to bronchodilator) with H2S exposure quartiles. Results None of the exposure metrics produced evidence of lung function decrement. The logistic regression analysis showed no evidence that long-term H2S exposure at Rotorua levels was associated with either increased COPD or asthma risk. Some results suggested that recent ambient H2S exposures were beneficially associated with lung function parameters. Conclusions The study found no evidence of reductions in lung function, or increased risk of COPD or asthma, from recent or long-term H2S exposure at the relatively high ambient concentrations found in Rotorua. Suggestions of improved lung function associated with recent ambient H2S exposures require confirmation in other studies. PMID:25822819
Bates, Michael N; Crane, Julian; Balmes, John R; Garrett, Nick
2015-01-01
Results have been conflicting whether long-term ambient hydrogen sulfide (H2S) affects lung function or is a risk factor for asthma or chronic obstructive pulmonary disease (COPD). Rotorua city, New Zealand, has the world's largest population exposed to ambient H2S-from geothermal sources. We investigated associations of H2S with lung function, COPD and asthma in this population. 1,204 of 1,639 study participants, aged 18-65 years during 2008-2010, provided satisfactory spirometry results. Residences, workplaces and schools over the last 30 years were geocoded. Exposures were estimated from data collected by summer and winter H2S monitoring networks across Rotorua. Four metrics for H2S exposure, representing both current and long-term (last 30 years) exposure, and also time-weighted average and peak exposures, were calculated. Departures from expected values for pre-bronchodilator lung function, calculated from prediction equations, were outcomes for linear regression models using quartiles of the H2S exposure metrics. Separate models examined participants with and without evidence of asthma or COPD, and never- and ever-smokers. Logistic regression was used to investigate associations of COPD (a post-bronchodilator FEV1/FVC < 70% of expected) and asthma (doctor-diagnosed or by FEV1 response to bronchodilator) with H2S exposure quartiles. None of the exposure metrics produced evidence of lung function decrement. The logistic regression analysis showed no evidence that long-term H2S exposure at Rotorua levels was associated with either increased COPD or asthma risk. Some results suggested that recent ambient H2S exposures were beneficially associated with lung function parameters. The study found no evidence of reductions in lung function, or increased risk of COPD or asthma, from recent or long-term H2S exposure at the relatively high ambient concentrations found in Rotorua. Suggestions of improved lung function associated with recent ambient H2S exposures require confirmation in other studies.
Mondrinos, Mark J.; Knight, Linda C.; Kennedy, Paul A.; Wu, Jichuan; Kauffman, Matthew; Baker, Sandy T.; Wolfson, Marla R.
2015-01-01
Sepsis and sepsis-induced lung injury remain a leading cause of death in intensive care units. We identified protein kinase C-δ (PKCδ) as a critical regulator of the acute inflammatory response and demonstrated that PKCδ inhibition was lung-protective in a rodent sepsis model, suggesting that targeting PKCδ is a potential strategy for preserving pulmonary function in the setting of indirect lung injury. In this study, whole-body organ biodistribution and pulmonary cellular distribution of a transactivator of transcription (TAT)–conjugated PKCδ inhibitory peptide (PKCδ-TAT) was determined following intratracheal (IT) delivery in control and septic [cecal ligation and puncture (CLP)] rats to ascertain the impact of disease pathology on biodistribution and efficacy. There was negligible lung uptake of radiolabeled peptide upon intravenous delivery [<1% initial dose (ID)], whereas IT administration resulted in lung retention of >65% ID with minimal uptake in liver or kidney (<2% ID). IT delivery of a fluorescent-tagged (tetramethylrhodamine-PKCδ-TAT) peptide demonstrated uniform spatial distribution and cellular uptake throughout the peripheral lung. IT delivery of PKCδ-TAT at the time of CLP surgery significantly reduced PKCδ activation (tyrosine phosphorylation, nuclear translocation and cleavage) and acute lung inflammation, resulting in improved lung function and gas exchange. Importantly, peptide efficacy was similar when delivered at 4 hours post-CLP, demonstrating therapeutic relevance. Conversely, spatial lung distribution and efficacy were significantly impaired at 8 hours post-CLP, which corresponded to marked histopathological progression of lung injury. These studies establish a functional connection between peptide spatial distribution, inflammatory histopathology in the lung, and efficacy of this anti-inflammatory peptide. PMID:26243739
Pulmonary preservation studies: effects on endothelial function and pulmonary adenine nucleotides.
Paik, Hyo Chae; Hoffmann, Steven C; Egan, Thomas M
2003-02-27
Lung transplantation is an effective therapy plagued by a high incidence of early graft dysfunction, in part because of reperfusion injury. The optimal preservation solution for lung transplantation is unknown. We performed experiments using an isolated perfused rat lung model to test the effect of lung preservation with three solutions commonly used in clinical practice. Lungs were retrieved from Sprague-Dawley rats and flushed with one of three solutions: modified Euro-Collins (MEC), University of Wisconsin (UW), or low potassium dextran and glucose (LPDG), then stored cold for varying periods before reperfusion with Earle's balanced salt solution using the isolated perfused rat lung model. Outcome measures were capillary filtration coefficient (Kfc), wet-to-dry weight ratio, and lung tissue levels of adenine nucleotides and cyclic AMP. All lungs functioned well after 4 hr of storage. By 6 hr, UW-flushed lungs had a lower Kfc than LPDG-flushed lungs. After 8 hr of storage, only UW-flushed lungs had a measurable Kfc. Adenine nucleotide levels were higher in UW-flushed lungs after prolonged storage. Cyclic AMP levels correlated with Kfc in all groups. Early changes in endothelial permeability seemed to be better attenuated in lungs flushed with UW compared with LPDG or MEC; this was associated with higher amounts of adenine nucleotides. MEC-flushed lungs failed earlier than LPDG-flushed or UW-flushed lungs. The content of the solution may be more important for lung preservation than whether the ionic composition is intracellular or extracellular.
Inhibition of the CXCL12/CXCR4-Axis as Preventive Therapy for Radiation-Induced Pulmonary Fibrosis
Shu, Hui-Kuo G.; Yoon, Younghyoun; Hong, Samuel; Xu, Kaiming; Gao, Huiying; Hao, Chunhai; Torres-Gonzalez, Edilson; Nayra, Cardenes; Rojas, Mauricio; Shim, Hyunsuk
2013-01-01
Background A devastating late injury caused by radiation is pulmonary fibrosis. This risk may limit the volume of irradiation and compromise potentially curative therapy. Therefore, development of a therapy to prevent this toxicity can be of great benefit for this patient population. Activation of the chemokine receptor CXCR4 by its ligand stromal cell-derived factor 1 (SDF-1/CXCL12) may be important in the development of radiation-induced pulmonary fibrosis. Here, we tested whether MSX-122, a novel small molecule and partial CXCR4 antagonist, can block development of this fibrotic process. Methodology/Principal Findings The radiation-induced lung fibrosis model used was C57BL/6 mice irradiated to the entire thorax or right hemithorax to 20 Gy. Our parabiotic model involved joining a transgenic C57BL/6 mouse expressing GFP with a wild-type mouse that was subsequently irradiated to assess for migration of GFP+ bone marrow-derived progenitor cells to the irradiated lung. CXCL12 levels in the bronchoalveolar lavage fluid (BALF) and serum after irradiation were determined by ELISA. CXCR4 and CXCL12 mRNA in the irradiated lung was determined by RNase protection assay. Irradiated mice were treated daily with AMD3100, an established CXCR4 antagonist; MSX-122; and their corresponding vehicles to determine impact of drug treatment on fibrosis development. Fibrosis was assessed by serial CTs and histology. After irradiation, CXCL12 levels increased in BALF and serum with a corresponding rise in CXCR4 mRNA within irradiated lungs consistent with recruitment of a CXCR4+ cell population. Using our parabiotic model, we demonstrated recruitment of CXCR4+ bone marrow-derived mesenchymal stem cells, identified based on marker expression, to irradiated lungs. Finally, irradiated mice that received MSX-122 had significant reductions in development of pulmonary fibrosis while AMD3100 did not significantly suppress this fibrotic process. Conclusions/Significance CXCR4 inhibition by drugs such as MSX-122 may alleviate potential radiation-induced lung injury, presenting future therapeutic opportunities for patients requiring chest irradiation. PMID:24244561
Inhibition of the CXCL12/CXCR4-axis as preventive therapy for radiation-induced pulmonary fibrosis.
Shu, Hui-Kuo G; Yoon, Younghyoun; Hong, Samuel; Xu, Kaiming; Gao, Huiying; Hao, Chunhai; Torres-Gonzalez, Edilson; Nayra, Cardenes; Rojas, Mauricio; Shim, Hyunsuk
2013-01-01
A devastating late injury caused by radiation is pulmonary fibrosis. This risk may limit the volume of irradiation and compromise potentially curative therapy. Therefore, development of a therapy to prevent this toxicity can be of great benefit for this patient population. Activation of the chemokine receptor CXCR4 by its ligand stromal cell-derived factor 1 (SDF-1/CXCL12) may be important in the development of radiation-induced pulmonary fibrosis. Here, we tested whether MSX-122, a novel small molecule and partial CXCR4 antagonist, can block development of this fibrotic process. The radiation-induced lung fibrosis model used was C57BL/6 mice irradiated to the entire thorax or right hemithorax to 20 Gy. Our parabiotic model involved joining a transgenic C57BL/6 mouse expressing GFP with a wild-type mouse that was subsequently irradiated to assess for migration of GFP+ bone marrow-derived progenitor cells to the irradiated lung. CXCL12 levels in the bronchoalveolar lavage fluid (BALF) and serum after irradiation were determined by ELISA. CXCR4 and CXCL12 mRNA in the irradiated lung was determined by RNase protection assay. Irradiated mice were treated daily with AMD3100, an established CXCR4 antagonist; MSX-122; and their corresponding vehicles to determine impact of drug treatment on fibrosis development. Fibrosis was assessed by serial CTs and histology. After irradiation, CXCL12 levels increased in BALF and serum with a corresponding rise in CXCR4 mRNA within irradiated lungs consistent with recruitment of a CXCR4+ cell population. Using our parabiotic model, we demonstrated recruitment of CXCR4+ bone marrow-derived mesenchymal stem cells, identified based on marker expression, to irradiated lungs. Finally, irradiated mice that received MSX-122 had significant reductions in development of pulmonary fibrosis while AMD3100 did not significantly suppress this fibrotic process. CXCR4 inhibition by drugs such as MSX-122 may alleviate potential radiation-induced lung injury, presenting future therapeutic opportunities for patients requiring chest irradiation.
Non-Small Cell Lung Cancer Cells Expressing CD44 Are Enriched for Stem Cell-Like Properties
Leung, Elaine Lai-Han; Fiscus, Ronald R.; Tung, James W.; Tin, Vicky Pui-Chi; Cheng, Lik Cheung; Sihoe, Alan Dart-Loon; Fink, Louis M.; Ma, Yupo; Wong, Maria Pik
2010-01-01
Background The cancer stem cell theory hypothesizes that cancers are perpetuated by cancer stem cells (CSC) or tumor initiating cells (TIC) possessing self-renewal and other stem cell-like properties while differentiated non-stem/initiating cells have a finite life span. To investigate whether the hypothesis is applicable to lung cancer, identification of lung CSC and demonstration of these capacities is essential. Methodology/Principal Finding The expression profiles of five stem cell markers (CD34, CD44, CD133, BMI1 and OCT4) were screened by flow cytometry in 10 lung cancer cell lines. CD44 was further investigated by testing for in vitro and in vivo tumorigenecity. Formation of spheroid bodies and in vivo tumor initiation ability were demonstrated in CD44+ cells of 4 cell lines. Serial in vivo tumor transplantability in nude mice was demonstrated using H1299 cell line. The primary xenografts initiated from CD44+ cells consisted of mixed CD44+ and CD44− cells in similar ratio as the parental H1299 cell line, supporting in vivo differentiation. Semi-quantitative Real-Time PCR (RT-PCR) showed that both freshly sorted CD44+ and CD44+ cells derived from CD44+-initiated tumors expressed the pluripotency genes OCT4/POU5F1, NANOG, SOX2. These stemness markers were not expressed by CD44− cells. Furthermore, freshly sorted CD44+ cells were more resistant to cisplatin treatment with lower apoptosis levels than CD44− cells. Immunohistochemical analysis of 141 resected non-small cell lung cancers showed tumor cell expression of CD44 in 50.4% of tumors while no CD34, and CD133 expression was observed in tumor cells. CD44 expression was associated with squamous cell carcinoma but unexpectedly, a longer survival was observed in CD44-expressing adenocarcinomas. Conclusion/Significance Overall, our results demonstrated that stem cell-like properties are enriched in CD44-expressing subpopulations of some lung cancer cell lines. Further investigation is required to clarify the role of CD44 in tumor cell renewal and cancer propagation in the in vivo environment. PMID:21124918
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modiri, A; Gu, X; Hagan, A
2015-06-15
Purpose: Patients presenting with large and/or centrally-located lung tumors are currently considered ineligible for highly potent regimens such as SBRT due to concerns of toxicity to normal tissues and organs-at-risk (OARs). We present a particle swarm optimization (PSO)-based 4D planning technique, designed for MLC tracking delivery, that exploits the temporal dimension as an additional degree of freedom to significantly improve OAR-sparing and reduce toxicity to levels clinically considered as acceptable for SBRT administration. Methods: Two early-stage SBRT-ineligible NSCLC patients were considered, presenting with tumors of maximum dimensions of 7.4cm (central-right lobe; 1.5cm motion) and 11.9cm (upper-right lobe; 1cm motion). Inmore » each case, the target and normal structures were manually contoured on each of the ten 4DCT phases. Corresponding ten initial 3D-conformal plans (Pt#1: 7-beams; Pt#2: 9-beams) were generated using the Eclipse planning system. Using 4D-PSO, fluence weights were optimized over all beams and all phases (70 and 90 apertures for Pt1&2, respectively). Doses to normal tissues and OARs were compared with clinicallyestablished lung SBRT guidelines based on RTOG-0236. Results: The PSO-based 4D SBRT plan yielded tumor coverage and dose—sparing for parallel and serial OARs within the SBRT guidelines for both patients. The dose-sparing compared to the clinically-delivered conventionallyfractionated plan for Patient 1 (Patient 2) was: heart Dmean = 11% (33%); lung V20 = 16% (21%); lung Dmean = 7% (20%); spinal cord Dmax = 5% (16%); spinal cord Dmean = 7% (33%); esophagus Dmax = 0% (18%). Conclusion: Truly 4D planning can significantly reduce dose to normal tissues and OARs. Such sparing opens up the possibility of using highly potent and effective regimens such as lung SBRT for patients who were conventionally considered SBRT non-eligible. Given the large, non-convex solution space, PSO represents an attractive, parallelizable tool to successfully achieve a globally optimal solution for this problem. This work was supported through funding from the National Institutes of Health and Varian Medical Systems.« less
Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki
2018-01-01
For installing many sensors in a limited space with a limited computing resource, the digitization of the sensor output at the site of sensation has advantages such as a small amount of wiring, low signal interference and high scalability. For this purpose, we have developed a dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) (referred to as “sensor platform LSI”) for bus-networked Micro-Electro-Mechanical-Systems (MEMS)-LSI integrated sensors. In this LSI, collision avoidance, adaptation and event-driven functions are simply implemented to relieve data collision and congestion in asynchronous serial bus communication. In this study, we developed a network system with 48 sensor platform LSIs based on Printed Circuit Board (PCB) in a backbone bus topology with the bus length being 2.4 m. We evaluated the serial communication performance when 48 LSIs operated simultaneously with the adaptation function. The number of data packets received from each LSI was almost identical, and the average sampling frequency of 384 capacitance channels (eight for each LSI) was 73.66 Hz. PMID:29342923
Shen, Qin; Jiang, Yongjie
2018-05-29
Lung cancer is the leading cause of cancer related-deaths worldwide. Long non-coding RNAs (lncRNAs) are identified as important therapeutic targets in treatment of lung cancer. However, the roles of NNT-AS1 in lung cancer remain unclear. In the present study, we showed that the expression of NNT-AS1 was upregulated in non-small cell lung cancer (NSCLC) tissues and cell lines. High NNT-AS1 expression was associated with advanced tumor stage, and lymph node metastasis of NSCLC patients. In vitro function assays showed that NNT-AS1 inhibition could significantly reduce lung cancer cells proliferation and invasion ability. Then, we identified that NNT-AS1 could function as a competing endogenous RNA (ceRNA) by sponging miR-129-5p in lung cancer. In addition, we showed that alteration in cell proliferation and invasion caused by NNT-AS1 downregulation could be rescued by miR-129-5p inhibitors. Thus, our study indicated that lncRNA NNT-AS1 exerted functions in NSCLC via altering NNT-AS1/miR-129-5p axis which provided a novel therapeutic target for lung cancer treatment. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Adetiba, Emmanuel; Olugbara, Oludayo O
2015-01-01
Lung cancer is one of the diseases responsible for a large number of cancer related death cases worldwide. The recommended standard for screening and early detection of lung cancer is the low dose computed tomography. However, many patients diagnosed die within one year, which makes it essential to find alternative approaches for screening and early detection of lung cancer. We present computational methods that can be implemented in a functional multi-genomic system for classification, screening and early detection of lung cancer victims. Samples of top ten biomarker genes previously reported to have the highest frequency of lung cancer mutations and sequences of normal biomarker genes were respectively collected from the COSMIC and NCBI databases to validate the computational methods. Experiments were performed based on the combinations of Z-curve and tetrahedron affine transforms, Histogram of Oriented Gradient (HOG), Multilayer perceptron and Gaussian Radial Basis Function (RBF) neural networks to obtain an appropriate combination of computational methods to achieve improved classification of lung cancer biomarker genes. Results show that a combination of affine transforms of Voss representation, HOG genomic features and Gaussian RBF neural network perceptibly improves classification accuracy, specificity and sensitivity of lung cancer biomarker genes as well as achieving low mean square error.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demirag, N
Purpose: To verify the benefits of the biological cost functions. Methods: TG166 patients were used for the test case scenarios. Patients were planned using Monaco V5.0 (CMS/Elekta, St.Louis, MO) Monaco has 3 biological and 8 physical CFs. In this study the plans were optimized using 3 different scenarios. 1- Biological CFs only 2-Physical CFs only 3- Combination of Physical and Biological CFsMonaco has 3 biological CFs. Target EUD used for the targets, derived from the poisson cell kill model, has an α value that controls the cold spots inside the target. α values used in the optimization were 0.5 andmore » 0.8. if cold spots needs to be penalized α value increased. Serial CF: it's called serial to mimic the behaviour of the serial organs, if a high k value like 12 or 14 is used it controls the maximum dose. Serial CF has a k parameter that is used to shape the whole dvh curve. K value ranges between 1–20. k:1 is used to control the mean dose, lower k value controls the mean dose, higher k value controls the higher dose, using 2 serial CFs with different k values controls the whole DVH. Paralel CF controls the percentage of the volume that tolerates higher doses than the reference dose to mimic the behaviour of the paralel organs. Results: It was possible to achive clinically accepted plans in all 3 scenarios. The benefit of the biological cost functions were to control the mean dose for target and OAR, to shape the DVH curve using one EUD value and one k value simplifies the optimization process. Using the biological CFs alone, it was hard to control the dose at a point. Conclusion: Biological CFs in Monaco doesn't require the ntcp/tcp values from the labs and useful to shape the whole dvh curve. I work as an applications support specialist for Elekta and I am a Ph.D. Student in Istanbul University for radiation therapy physics.« less
Functional Relationships for Investigating Cognitive Processes
Wright, Anthony A.
2013-01-01
Functional relationships (from systematic manipulation of critical variables) are advocated for revealing fundamental processes of (comparative) cognition—through examples from my work in psychophysics, learning, and memory. Functional relationships for pigeon wavelength (hue) discrimination revealed best discrimination at the spectral points of hue transition for pigeons—a correspondence (i.e., functional relationship) similar to that for humans. Functional relationships for learning revealed: Item-specific or relational learning in matching to sample as a function of the pigeons’ sample-response requirement, and same/different abstract-concept learning as a function of the training set size for rhesus monkeys, capuchin monkeys, and pigeons. Functional relationships for visual memory revealed serial position functions (a 1st order functional relationship) that changed systematically with retention delay (a 2nd order relationship) for pigeons, capuchin monkeys, rhesus monkeys, and humans. Functional relationships for rhesus-monkey auditory memory also revealed systematic changes in serial position functions with delay, but these changes were opposite to those for visual memory. Functional relationships for proactive interference revealed interference that varied as a function of a ratio of delay times. Functional relationships for change detection memory revealed (qualitative) similarities and (quantitative) differences in human and monkey visual short term memory as a function of the number of memory items. It is concluded that these findings were made possible by varying critical variables over a substantial portion of the manipulable range to generate functions and derive relationships. PMID:23174335
Luzak, Agnes; Karrasch, Stefan; Wacker, Margarethe; Thorand, Barbara; Nowak, Dennis; Peters, Annette; Schulz, Holger
2018-03-01
Among patients with lung disease, decreased lung function is associated with lower health-related quality of life. However, whether this association is detectable within the physiological variability of respiratory function in lung-healthy populations is unknown. We analyzed the association of each EQ-5D-3L dimension (mobility, self-care, usual activities, pain/discomfort, anxiety/depression) and self-reported physical inactivity with spirometric indices in lung-healthy adults. Modulating effects between inactivity and EQ-5D dimensions were considered. 1132 non-smoking, apparently lung-healthy participants (48% male, aged 64 ± 12 years) from the population-based KORA F4L and Age surveys in Southern Germany were analyzed. Associations of each EQ-5D dimension and inactivity with spirometric indices serving as outcomes (forced expiratory volume in 1 s (FEV 1 ), forced vital capacity (FVC), FEV 1 /FVC, and mid-expiratory flow) were examined by linear regression, considering possible confounders. Interactions between EQ-5D dimensions (no problems/any problems) and inactivity (four categories of time spent engaging in exercise: inactive to most active) were assessed. Among all participants 42% reported no problems in any EQ-5D dimension, 24% were inactive and 32% exercised > 2 h/week. After adjustment, FEV 1 was - 99 ml (95% CI - 166; - 32) and FVC was - 109 ml (95% CI - 195; - 24) lower among subjects with mobility problems. Comparable estimates were observed for usual activities. Inactivity was negatively associated with FVC (β-coefficient: - 83 ml, 95% CI - 166; 0), but showed no interactions with EQ-5D. Problems with mobility or usual activities, and inactivity were associated with slightly lower spirometric parameters in lung-healthy adults, suggesting a relationship between perceived physical functioning and volumetric lung function.
Todd, Emily M; Biswas Roy, Sreeja; Hashimi, A Samad; Serrone, Rosemarie; Panchanathan, Roshan; Kang, Paul; Varsch, Katherine E; Steinbock, Barry E; Huang, Jasmine; Omar, Ashraf; Patel, Vipul; Walia, Rajat; Smith, Michael A; Bremner, Ross M
2017-11-01
Extracorporeal membrane oxygenation has been used as a bridge to lung transplantation in patients with rapid pulmonary function deterioration. The reported success of this modality and perioperative and functional outcomes are varied. We retrospectively reviewed all patients who underwent lung transplantation at our institution over 1 year (January 1, 2015, to December 31, 2015). Patients were divided into 2 groups depending on whether they required extracorporeal membrane oxygenation support as a bridge to transplant; preoperative characteristics, lung transplantation outcomes, and survival were compared between groups. Of the 93 patients, 12 (13%) received bridge to transplant, and 81 (87%) did not. Patients receiving bridge to transplant were younger, had higher lung allocation scores, had lower functional status, and were more often on mechanical ventilation at listing. Most patients who received bridge to transplant (n = 10, 83.3%) had pulmonary fibrosis. Mean pretransplant extracorporeal membrane oxygenation support was 103.6 hours in duration (range, 16-395 hours). All patients who received bridge to transplant were decannulated immediately after lung transplantation but were more likely to return to the operating room for secondary chest closure or rethoracotomy. Grade 3 primary graft dysfunction within 72 hours was similar between groups. Lung transplantation success and hospital discharge were 100% in the bridge to transplant group; however, these patients experienced longer hospital stays and higher rates of discharge to acute rehabilitation. The 1-year survival was 100% in the bridge to transplant group and 91% in the non-bridge to transplant group (log-rank, P = .24). The 1-year functional status was excellent in both groups. Extracorporeal membrane oxygenation can be used to safely bridge high-acuity patients with end-stage lung disease to lung transplantation with good 30-day, 90-day, and 1-year survival and excellent 1-year functional status. Long-term outcomes are being studied. Copyright © 2017. Published by Elsevier Inc.
Luzak, Agnes; Fuertes, Elaine; Flexeder, Claudia; Standl, Marie; von Berg, Andrea; Berdel, Dietrich; Koletzko, Sibylle; Heinrich, Joachim; Nowak, Dennis; Schulz, Holger
2017-07-12
Various factors may affect lung function at different stages in life. Since investigations that simultaneously consider several factors are rare, we examined the relative importance of early life, current environmental/lifestyle factors and allergic diseases on lung function in 15-year-olds. Best subset selection was performed for linear regression models to investigate associations between 21 diverse early life events and current factors with spirometric parameters (forced vital capacity, forced expiratory volume in 1 s and maximal mid-expiratory flow (FEF 25-75 )) in 1326 participants of the German GINIplus and LISAplus birth cohorts. To reduce model complexity, one model for each spirometric parameter was replicated 1000 times in random subpopulations (N = 884). Only those factors that were included in >70% of the replication models were retained in the final analysis. A higher peak weight velocity and early lung infections were the early life events prevalently associated with airflow limitation and FEF 25-75 . Current environmental/lifestyle factors at age 15 years and allergic diseases that were associated with lung function were: indoor second-hand smoke exposure, vitamin D concentration, body mass index (BMI) and asthma status. Sex and height captured the majority of the explained variance (>75%), followed by BMI (≤23.7%). The variance explained by early life events was comparatively low (median: 4.8%; range: 0.2-22.4%), but these events were consistently negatively associated with airway function. Although the explained variance was mainly captured by well-known factors included in lung function prediction equations, our findings indicate early life and current factors that should be considered in studies on lung health among adolescents.
2014-01-01
Background Physical activity has well-established positive health-related effects. Sedentary behaviour has been associated with postoperative complications and mortality after cardiac surgery. Patients undergoing cardiac surgery often suffer from impaired lung function postoperatively. The association between physical activity and lung function in cardiac surgery patients has not previously been reported. Methods Patients undergoing cardiac surgery were followed up two months postoperatively. Physical activity was assessed on a four-category scale (sedentary, moderate activity, moderate regular exercise, and regular activity and exercise), modified from the Swedish National Institute of Public Health’s national survey. Formal lung function testing was performed preoperatively and two months postoperatively. Results The sample included 283 patients (82% male). Two months after surgery, the level of physical activity had increased (p < 0.001) in the whole sample. Patients who remained active or increased their level of physical activity had significantly better recovery of lung function than patients who remained sedentary or had decreased their level of activity postoperatively in terms of vital capacity (94 ± 11% of preoperative value vs. 91 ± 9%; p = 0.03), inspiratory capacity (94 ± 14% vs. 88 ± 19%; p = 0.008), and total lung capacity (96 ± 11% vs. 90 ± 11%; p = 0.01). Conclusions An increased level of physical activity, compared to preoperative level, was reported as early as two months after surgery. Our data shows that there could be a significant association between physical activity and recovery of lung function after cardiac surgery. The relationship between objectively measured physical activity and postoperative pulmonary recovery needs to be further examined to verify these results. PMID:24678691
Larcombe, Alexander N.; Foong, Rachel E.; Boylen, Catherine E.; Zosky, Graeme R.
2012-01-01
Please cite this paper as: Larcombe et al. (2012) Acute diesel exhaust particle exposure increases viral titre and inflammation associated with existing influenza infection, but does not exacerbate deficits in lung function. Influenza and Other Respiratory Viruses DOI:10.1111/irv.12012. Background Exposure to diesel exhaust particles (DEP) is thought to exacerbate many pre‐existing respiratory diseases, including asthma, bronchitis and chronic obstructive pulmonary disease, however, there is a paucity of data on whether DEP exacerbates illness due to respiratory viral infection. Objectives To assess the physiological consequences of an acute DEP exposure during the peak of influenza‐induced illness. Methods We exposed adult female BALB/c mice to 100 μg DEP (or control) 3·75 days after infection with 104·5 plaque forming units of influenza A/Mem71 (or control). Six hours, 24 hours and 7 days after DEP exposure we measured thoracic gas volume and lung function at functional residual capacity. Bronchoalveolar lavage fluid was taken for analyses of cellular inflammation and cytokines, and whole lungs were taken for measurement of viral titre. Results Influenza infection resulted in significantly increased inflammation, cytokine influx and impairment to lung function. DEP exposure alone resulted in less inflammation and cytokine influx, and no impairment to lung function. Mice infected with influenza and exposed to DEP had higher viral titres and neutrophilia compared with infected mice, yet they did not have more impaired lung mechanics than mice infected with influenza alone. Conclusions A single dose of DEP is not sufficient to physiologically exacerbate pre‐existing respiratory disease caused by influenza infection in mice. PMID:22994877
The assessment and impact of sarcopenia in lung cancer: a systematic literature review.
Collins, Jemima; Noble, Simon; Chester, John; Coles, Bernadette; Byrne, Anthony
2014-01-02
There is growing awareness of the relationship between sarcopenia (loss of muscle mass and function), and outcomes in cancer, making it a potential target for future therapies. In order to inform future research and practice, we undertook a systematic review of factors associated with loss of muscle mass, and the relationship between muscle function and muscle mass in lung cancer, a common condition associated with poor outcomes. We conducted a computerised systematic literature search on five databases. Studies were included if they explored muscle mass as an outcome measure in patients with lung cancer, and were published in English. Secondary care. Patients with lung cancer. Factors associated with loss of muscle mass and muscle function, or sarcopenia, and the clinical impact thereof in patients with lung cancer. We reviewed 5726 citations, and 35 articles were selected for analysis. Sarcopenia, as defined by reduced muscle mass alone, was found to be very prevalent in patients with lung cancer, regardless of body mass index, and where present was associated with poorer functional status and overall survival. There were diverse studies exploring molecular and metabolic factors in the development of loss of muscle mass; however, the precise mechanisms that contribute to sarcopenia and cachexia remain uncertain. The effect of nutritional supplements and ATP infusions on muscle mass showed conflicting results. There are very limited data on the correlation between degree of sarcopenia and muscle function, which has a non-linear relationship in older non-cancer populations. Loss of muscle mass is a significant contributor to morbidity in patients with lung cancer. Loss of muscle mass and function may predate clinically overt cachexia, underlining the importance of evaluating sarcopenia, rather than weight loss alone. Understanding this relationship and its associated factors will provide opportunities for focused intervention to improve clinical outcomes.