The Effect of Cognitive-Task Type and Walking Speed on Dual-Task Gait in Healthy Adults.
Wrightson, James G; Ross, Emma Z; Smeeton, Nicholas J
2016-01-01
In a number of studies in which a dual-task gait paradigm was used, researchers reported a relationship between cognitive function and gait. However, it is not clear to what extent these effects are dependent on the type of cognitive and walking tasks used in the dual-task paradigm. This study examined whether stride-time variability (STV) and trunk range of motion (RoM) are affected by the type of cognitive task and walking speed used during dual-task gait. Participants walked at both their preferred walking speed and at 25% of their preferred walking speed and performed a serial subtraction and a working memory task at both speeds. Although both tasks significantly reduced STV at both walking speeds, there was no difference between the two tasks. Trunk RoM was affected by the walking speed and type of cognitive task used during dual-task gait: Mediolateral trunk RoM was increased at the slow walking speed, and anterior-posterior trunk RoM was higher only when performing the serial subtraction task at the slow walking speed. The reduction of STV, regardless of cognitive-task type, suggests that healthy adults may redirect cognitive processes away from gait toward cognitive-task performance during dual-task gait.
Whited, Matthew C; Wheat, Amanda L; Larkin, Kevin T
2010-08-01
To investigate the relation between forgiveness and apology as they relate to cardiovascular reactivity and recovery, 29 men and 50 women were exposed to an interpersonal transgression (i.e., verbal harassment) while performing a serial subtraction task. Participants were categorized into high and low forgiveness groups based on scores on the forgiving personality scale. Following the task, approximately half of the participants received an apology from the experimenter for his/her comments during the task. Although no group differences in cardiovascular reactivity were observed during the serial subtraction task, persons high in forgiveness displayed more rapid diastolic and mean arterial blood pressure recovery than persons low in forgiveness. In response to the apology, participants displayed greater high frequency heart rate variability recovery compared to those who did not receive an apology. A significant apology x sex interaction was observed for diastolic blood pressure and mean arterial blood pressure. Women who received an apology exhibited faster recovery from the transgression than women who did not receive an apology. In contrast, men who received an apology exhibited delayed recovery from the transgression compared to men who did not receive an apology. These results indicate that there are potentially healthful benefits to forgiveness and apology, but the relation is influenced by situation and by sex.
Biomechanical Analyses of Stair-climbing while Dual-tasking
Vallabhajosula, Srikant; Tan, Chi Wei; Mukherjee, Mukul; Davidson, Austin J.; Stergiou, Nicholas
2015-01-01
Stair-climbing while doing a concurrent task like talking or holding an object is a common activity of daily living which poses high risk for falls. While biomechanical analyses of overground walking during dual-tasking have been studied extensively, little is known on the biomechanics of stair-climbing while dual-tasking. We sought to determine the impact of performing a concurrent cognitive or motor task during stair-climbing. We hypothesized that a concurrent cognitive task will have a greater impact on stair climbing performance compared to a concurrent motor task and that this impact will be greater on a higher-level step. Ten healthy young adults performed 10 trials of stair-climbing each under four conditions: stair ascending only, stair ascending and performing subtraction of serial sevens from a three-digit number, stair ascending and carrying an empty opaque box and stair ascending, performing subtraction of serial sevens from a random three-digit number and carrying an empty opaque box. Kinematics (lower extremity joint angles and minimum toe clearance) and kinetics (ground reaction forces and joint moments and powers) data were collected. We found that a concurrent cognitive task impacted kinetics but not kinematics of stair-climbing. The effect of dual-tasking during stair ascent also seemed to vary based on the different phases of stair ascent stance and seem to have greater impact as one climbs higher. Overall, the results of the current study suggest that the association between the executive functioning and motor task (like gait) becomes stronger as the level of complexity of the motor task increases. PMID:25773590
Reay, Jonathon L; Kennedy, David O; Scholey, Andrew B
2005-07-01
Single doses of the traditional herbal treatment Panax ginseng have recently been shown to elicit cognitive improvements in healthy young volunteers. The mechanisms by which ginseng improves cognitive performance are not known. However, they may be related to the glycaemic properties of some Panax species. Using a double-blind, placebo-controlled, balanced crossover design, 30 healthy young adults completed a 10 min test battery at baseline, and then six times in immediate succession commencing 60 min after the day's treatment (placebo, 200mg G115 or 400mg G115). The 10 min battery comprised a Serial Threes subtraction task (2 min); a Serial Sevens task (2 min); a Rapid Visual Information Processing task (5 min); then a 'mental fatigue' visual analogue scale. Blood glucose was measured prior to each day's treatment, and before, during and after the post-dose completions of the battery. Both the 200mg and 400mg treatments led to significant reductions in blood glucose levels at all three post-treatment measurements (p 0.005 in all cases). The most notable behavioural effects were associated with 200mg of ginseng and included significantly improved Serial Sevens subtraction task performance and significantly reduced subjective mental fatigue throughout all (with the exception of one time point in each case) of the post-dose completions of the 10 min battery (p 0.05). Overall these data suggest that Panax ginseng can improve performance and subjective feelings of mental fatigue during sustained mental activity. This effect may be related to the acute gluco-regulatory properties of the extract.
Shen, Biing-Jiun; Stroud, Laura R; Niaura, Raymond
2004-01-01
Compared to other ethnic groups, Asian Americans show significantly lower rates of cardiovascular disease (CVD). We tested the hypothesis that Asian Americans would show reduced cardiovascular responses to laboratory stressors than Caucasians. Forty-three Asians (18 men, 25 women) and 77 Caucasians (36 men, 41 women) with a mean age of 24 years (SD = 3.93) participated in a stress reactivity protocol consisting of four tasks (speech, serial subtraction, mirror tracing, handgrip) while heart rate (HR), systolic blood pressure (SBP), and diastolic blood pressure (DBP) were measured. Asian Americans demonstrated overall lower reactivity across tasks for SBP F(1,117 = 7.48, p < .01) and a trend toward lower HR response F(1,117 = 3.18, p < .10). A significant ethnicity by task interaction was observed for HR reactivity F(3,351 = 2.94, p < .05) such that Caucasians showed greater responses for the subtraction task.
Gazing into Thin Air: The Dual-Task Costs of Movement Planning and Execution during Adaptive Gait
Ellmers, Toby J.; Cocks, Adam J.; Doumas, Michail; Williams, A. Mark; Young, William R.
2016-01-01
We examined the effect of increased cognitive load on visual search behavior and measures of gait performance during locomotion. Also, we investigated how personality traits, specifically the propensity to consciously control or monitor movements (trait movement ‘reinvestment’), impacted the ability to maintain effective gaze under conditions of cognitive load. Healthy young adults traversed a novel adaptive walking path while performing a secondary serial subtraction task. Performance was assessed using correct responses to the cognitive task, gaze behavior, stepping accuracy, and time to complete the walking task. When walking while simultaneously carrying out the secondary serial subtraction task, participants visually fixated on task-irrelevant areas ‘outside’ the walking path more often and for longer durations of time, and fixated on task-relevant areas ‘inside’ the walkway for shorter durations. These changes were most pronounced in high-trait-reinvesters. We speculate that reinvestment-related processes placed an additional cognitive demand upon working memory. These increased task-irrelevant ‘outside’ fixations were accompanied by slower completion rates on the walking task and greater gross stepping errors. Findings suggest that attention is important for the maintenance of effective gaze behaviors, supporting previous claims that the maladaptive changes in visual search observed in high-risk older adults may be a consequence of inefficiencies in attentional processing. Identifying the underlying attentional processes that disrupt effective gaze behaviour during locomotion is an essential step in the development of rehabilitation, with this information allowing for the emergence of interventions that reduce the risk of falling. PMID:27824937
Sakurai, Ryota; Bartha, Robert; Montero-Odasso, Manuel
2018-05-15
Low dual-task gait performance (the slowing of gait speed while performing a demanding cognitive task) is associated with low cognitive performance and an increased risk of progression to dementia in older adults with mild cognitive impairment. However, the reason for this remains unclear. This study aimed to examine the relationship between dual-task cost and regional brain volume, focusing on the hippocampus, parahippocampal gyrus, entorhinal cortex, and motor and lateral frontal cortices in older adults with mild cognitive impairment. Forty older adults with mild cognitive impairment from the "Gait and Brain Study" were included in this study. Gait velocity was measured during single-task (ie, walking alone) and dual-task (ie, counting backwards, subtracting serial sevens, and naming animals, in addition to walking) conditions, using an electronic walkway. Regional brain volumes were derived by automated segmentation, using 3T magnetic resonance imaging. Partial rank correlation analyses demonstrated that a smaller volume of the left entorhinal cortex was associated with higher dual-task costs in counting backwards and subtracting serial sevens conditions. Subsequent logistic regression analyses demonstrated that a smaller volume of the left entorhinal cortex was independently associated with higher dual-task cost (slowing down >20% when performing cognitive task) in these two conditions. There were no other significant associations. Our results show that lower dual-task gait performance is associated with volume reduction in the entorhinal cortex. Cognitive and motor dysfunction in older adults with mild cognitive impairment may reflect a shared pathogenic mechanism, and dual-task-related gait changes might be a surrogate motor marker for Alzheimer's disease pathology.
Yasuda, Kazuhiro; Iimura, Naoyuki; Iwata, Hiroyasu
2014-01-01
The objective of the present study was to determine whether increased attentional demands influence the assessment of ankle joint proprioceptive ability in young adults. We used a dual-task condition, in which participants performed an ankle ipsilateral position-matching task with and without a secondary serial auditory subtraction task during target angle encoding. Two experiments were performed with two different cohorts: one in which the auditory subtraction task was easy (experiment 1a) and one in which it was difficult (experiment 1b). The results showed that, compared with the single-task condition, participants had higher absolute error under dual-task conditions in experiment 1b. The reduction in position-matching accuracy with an attentionally demanding cognitive task suggests that allocation of attentional resources toward a difficult second task can lead to compromised ankle proprioceptive performance. Therefore, these findings indicate that the difficulty level of the cognitive task might be the possible critical factor that decreased accuracy of position-matching task. We conclude that increased attentional demand with difficult cognitive task does influence the assessment of ankle joint proprioceptive ability in young adults when measured using an ankle ipsilateral position-matching task. PMID:24523966
Zhou, Diange; Zhou, Junhong; Chen, Hu; Manor, Brad; Lin, Jianhao; Zhang, Jue
2015-08-01
Transcranial direct current stimulation (tDCS) targeting the prefrontal cortex reduces the size and speed of standing postural sway in younger adults, particularly when performing a cognitive dual task. Here, we hypothesized that tDCS would alter the complex dynamics of postural sway as quantified by multiscale entropy (MSE). Twenty healthy older adults completed two study visits. Center-of-pressure (COP) fluctuations were recorded during single-task (i.e., quiet standing) and dual-task (i.e., standing while performing serial subtractions) conditions, both before and after a 20-min session of real or sham tDCS. MSE was used to estimate COP complexity within each condition. The percentage change in complexity from single- to dual-task conditions (i.e., dual-task cost) was also calculated. Before tDCS, COP complexity was lower (p = 0.04) in the dual-task condition as compared to the single-task condition. Neither real nor sham tDCS altered complexity in the single-task condition. As compared to sham tDCS, real tDCS increased complexity in the dual-task condition (p = 0.02) and induced a trend toward improved serial subtraction performance (p = 0.09). Moreover, those subjects with lower dual-task COP complexity at baseline exhibited greater percentage increases in complexity following real tDCS (R = -0.39, p = 0.05). Real tDCS also reduced the dual-task cost to complexity (p = 0.02), while sham stimulation had no effect. A single session of tDCS targeting the prefrontal cortex increased standing postural sway complexity with concurrent non-postural cognitive task. This form of noninvasive brain stimulation may be a safe strategy to acutely improve postural control by enhancing the system's capacity to adapt to stressors.
Massee, Laura A; Ried, Karin; Pase, Matthew; Travica, Nikolaj; Yoganathan, Jaesshanth; Scholey, Andrew; Macpherson, Helen; Kennedy, Greg; Sali, Avni; Pipingas, Andrew
2015-01-01
Cocoa supplementation has been associated with benefits to cardiovascular health. However, cocoa's effects on cognition are less clear. A randomized, placebo-controlled, double-blind clinical trial (n = 40, age M = 24.13 years, SD = 4.47 years) was conducted to investigate the effects of both acute (same-day) and sub-chronic (daily for four-weeks) 250 mg cocoa supplementation on mood and mental fatigue, cognitive performance and cardiovascular functioning in young, healthy adults. Assessment involved repeated 10-min cycles of the Cognitive Demand Battery (CDB) encompassing two serial subtraction tasks (Serial Threes and Sevens), a Rapid Visual Information Processing task, and a mental fatigue scale over the course of half an hour. The Swinburne University Computerized Cognitive Assessment Battery (SUCCAB) was also completed to evaluate cognition. Cardiovascular function included measuring both peripheral and central blood pressure and cerebral blood flow. At the acute time point, consumption of cocoa significantly improved self-reported mental fatigue and performance on the Serial Sevens task in cycle one of the CDB. No other significant effects were found. This trial was registered with the Australian and New Zealand Clinical Trial Registry (Trial ID: ACTRN12613000626763). Accessible via http://www.anzctr.org.au/TrialSearch.aspx?searchTxt=ACTRN12613000626763&ddlSearch=Registered.
Hawkins, Keith A; Cromer, Jennifer R; Piotrowski, Andrea S; Pearlson, Godfrey D
2011-11-01
The Mini-Mental State Exam (MMSE) is a clinically ubiquitous yet incompletely standardized instrument. Though the test offers considerable examiner leeway, little data exist on the normative consequences of common administration variations. We sought to: (a) determine the effects of education, age, gender, health status, and a common administration variation (serial 7s subtraction vs. "world" spelled backward) on MMSE score within a minority sample, (b) provide normative data stratified on the most empirically relevant bases, and (c) briefly address item failure rates. African American citizens (N = 298) aged 55-87 living independently in the community were recruited by advertisement, community recruitment, and word of mouth. Total score with "world" spelled backward exceeded total score with serial 7s subtraction across all levels of education, replicating findings in Caucasian samples. Education is the primary source of variance on MMSE score, followed by age. In this cohort, women out-performed men when "world" spelled backward was included, but there was no gender effect when serial 7s subtraction was included in MMSE total score. To ensure an appropriate interpretation of MMSE scores, reports, whether clinical or in publications of research findings, should be explicit regarding the administration method. Stratified normative data are provided.
Massee, Laura A.; Ried, Karin; Pase, Matthew; Travica, Nikolaj; Yoganathan, Jaesshanth; Scholey, Andrew; Macpherson, Helen; Kennedy, Greg; Sali, Avni; Pipingas, Andrew
2015-01-01
Cocoa supplementation has been associated with benefits to cardiovascular health. However, cocoa's effects on cognition are less clear. A randomized, placebo-controlled, double-blind clinical trial (n = 40, age M = 24.13 years, SD = 4.47 years) was conducted to investigate the effects of both acute (same-day) and sub-chronic (daily for four-weeks) 250 mg cocoa supplementation on mood and mental fatigue, cognitive performance and cardiovascular functioning in young, healthy adults. Assessment involved repeated 10-min cycles of the Cognitive Demand Battery (CDB) encompassing two serial subtraction tasks (Serial Threes and Sevens), a Rapid Visual Information Processing task, and a mental fatigue scale over the course of half an hour. The Swinburne University Computerized Cognitive Assessment Battery (SUCCAB) was also completed to evaluate cognition. Cardiovascular function included measuring both peripheral and central blood pressure and cerebral blood flow. At the acute time point, consumption of cocoa significantly improved self-reported mental fatigue and performance on the Serial Sevens task in cycle one of the CDB. No other significant effects were found. This trial was registered with the Australian and New Zealand Clinical Trial Registry (Trial ID: ACTRN12613000626763). Accessible via http://www.anzctr.org.au/TrialSearch.aspx?searchTxt=ACTRN12613000626763&ddlSearch=Registered. PMID:26042037
Wightman, Emma L; Haskell-Ramsay, Crystal F; Reay, Jonathon L; Williamson, Gary; Dew, Tristan; Zhang, Wei; Kennedy, David O
2015-11-14
Single doses of resveratrol have previously been shown to increase cerebral blood flow (CBF) with no clear effect on cognitive function or mood in healthy adults. Chronic resveratrol consumption may increase the poor bioavailability of resveratrol or otherwise potentiate its psychological effects. In this randomised, double-blind, placebo-controlled, parallel-groups study, a total of sixty adults aged between 18 and 30 years received either placebo or resveratrol for 28 d. On the 1st and 28th day of treatment, the performance of cognitively demanding tasks (serial subtractions, rapid visual information processing and 3-Back) (n 41 complete data sets) was assessed, alongside blood pressure (n 26) and acute (near-IR spectroscopy (NIRS)) and chronic (transcranial Doppler) measures of CBF (n 46). Subjective mood, sleep quality and health questionnaires were completed at weekly intervals (n 53/54). The results showed that the cognitive effects of resveratrol on day 1 were restricted to more accurate but slower serial subtraction task performance. The only cognitive finding on day 28 was a beneficial effect of resveratrol on the accuracy of the 3-Back task before treatment consumption. Subjective ratings of 'fatigue' were significantly lower across the entire 28 d in the resveratrol condition. Resveratrol also resulted in modulation of CBF parameters on day 1, as assessed by NIRS, and significantly increased diastolic blood pressure on day 28. Levels of resveratrol metabolites were significantly higher both before and after the day's treatment on day 28, in comparison with day 1. These results confirm the acute CBF effects of resveratrol and the lack of interpretable cognitive effects.
Lin, Keh-chung; Wu, Yi-fang; Chen, I-chen; Tsai, Pei-luen; Wu, Ching-yi; Chen, Chia-ling
2015-01-01
This study investigated separate and concurrent performance on cognitive and hand dexterity tasks and the relationship to daily functioning in 16 people with schizophrenia and 16 healthy control participants. Participants performed the Purdue Pegboard Test and the Serial Seven Subtraction Test under single- and dual-task conditions and completed two daily functioning evaluations. The hand dexterity of all participants declined in the dual-task condition, but the discrepancy between single-task and dual-task hand dexterity was greater in the schizophrenia group than in the control group (p<.03, d>.70, for all). The extent of discrepancy in hand dexterity was negatively correlated with daily functioning in the schizophrenia group (rs=-.3 to -.5, ps=.04-.26). Ability to perform dual tasks may be an indicator of daily functioning in people with schizophrenia. Use of dual-task training may be considered as a therapeutic activity with these clients. Copyright © 2015 by the American Occupational Therapy Association, Inc.
Reay, Jonathon L; Kennedy, David O; Scholey, Andrew B
2006-11-01
Single doses of the traditional herbal treatment Panax ginseng have recently been shown to lower blood glucose levels and elicit cognitive improvements in healthy, overnight-fasted volunteers. The specific mechanisms responsible for these effects are not known. However, cognitive improvements may be related to the glycaemic properties of Panax ginseng. Using a double-blind, placebo-controlled, balanced-crossover design, 27 healthy young adults completed a 10 minute "cognitive demand" test battery at baseline. They then consumed capsules containing either ginseng (extract G115) or a placebo and 30 minutes later a drink containing glucose or placebo. A further 30 minutes later (i.e. 60 minutes post-baseline/capsules) they completed the "cognitive demand" battery six times in immediate succession. Depending on the condition to which the participant was allocated on that particular day, the combination of capsules/drink treatments corresponded to a dose of: 0mg G115/0 mg glucose (placebo); 200mg G115/0 mg glucose (ginseng); 0 mg G115/25 g glucose (glucose) or 200 mg G115/25 g glucose (ginseng/glucose combination). The 10 minute "cognitive demand" battery comprised a Serial Threes subtraction task (2 min); a Serial Sevens subtraction task (2 min); a Rapid Visual Information Processing task (5 min); and a "mental fatigue" visual analogue scale. Blood glucose levels were measured prior to the day's treatment, and before and after the post-dose completions of the battery. The results showed that both Panax ginseng and glucose enhanced performance of a mental arithmetic task and ameliorated the increase in subjective feelings of mental fatigue experienced by participants during the later stages of the sustained, cognitively demanding task performance. Accuracy of performing the Rapid Visual Information Processing task (RVIP) was also improved following the glucose load. There was no evidence of a synergistic relationship between Panax ginseng and exogenous glucose ingestion on any cognitive outcome measure. Panax ginseng caused a reduction in blood glucose levels 1 hour following consumption when ingested without glucose. These results confirm that Panax ginseng may possess glucoregulatory properties and can enhance cognitive performance.
Kennedy, David O; Scholey, Andrew B
2004-06-01
Effects of a combination of caffeine and glucose were assessed in two double-blind, placebo-controlled, cross-over studies during extended performance of cognitively demanding tasks. In the first study, 30 participants received two drinks containing carbohydrate and caffeine (68 g/38 mg; 68 g/46 mg, respectively) and a placebo drink, in counter-balanced order, on separate days. In the second study 26 participants received a drink containing 60 g of carbohydrate and 33 mg of caffeine and a placebo drink. In both studies, participants completed a 10-min battery of tasks comprising 2-min versions of Serial 3s and Serial 7s subtraction tasks and a 5-min version of the Rapid Visual Information Processing task (RVIP), plus a rating of 'mental fatigue', once before the drink and six times in succession commencing 10 min after its consumption. In comparison to placebo, all three active drinks improved the accuracy of RVIP performance and both the drink with the higher level of caffeine in first study and the active drink in the second study resulted in lower ratings of mental fatigue. These results indicate that a combination of caffeine and glucose can ameliorate deficits in cognitive performance and subjective fatigue during extended periods of cognitive demand.
Nieuwhof, Freek; Reelick, Miriam F; Maidan, Inbal; Mirelman, Anat; Hausdorff, Jeffrey M; Olde Rikkert, Marcel G M; Bloem, Bastiaan R; Muthalib, Makii; Claassen, Jurgen A H R
2016-01-01
Many patients with Parkinson's disease (PD) have difficulties in performing a second task during walking (i.e., dual task walking). Functional near-infrared spectroscopy (fNIRS) is a promising approach to study the presumed contribution of dysfunction within the prefrontal cortex (PFC) to such difficulties. In this pilot study, we examined the feasibility of using a new portable and wireless fNIRS device to measure PFC activity during different dual task walking protocols in PD. Specifically, we tested whether PD patients were able to perform the protocol and whether we were able to measure the typical fNIRS signal of neuronal activity. We included 14 PD patients (age 71.2 ± 5.4 years, Hoehn and Yahr stage II/III). The protocol consisted of five repetitions of three conditions: walking while (i) counting forwards, (ii) serially subtracting, and (iii) reciting digit spans. Ability to complete this protocol, perceived exertion, burden of the fNIRS devices, and concentrations of oxygenated (O 2 Hb) and deoxygenated (HHb) hemoglobin from the left and right PFC were measured. Two participants were unable to complete the protocol due to fatigue and mobility safety concerns. The remaining 12 participants experienced no burden from the two fNIRS devices and completed the protocol with ease. Bilateral PFC O 2 Hb concentrations increased during walking while serially subtracting (left PFC 0.46 μmol/L, 95 % confidence interval (CI) 0.12-0.81, right PFC 0.49 μmol/L, 95 % CI 0.14-0.84) and reciting digit spans (left PFC 0.36 μmol/L, 95 % CI 0.03-0.70, right PFC 0.44 μmol/L, 95 % CI 0.09-0.78) when compared to rest. HHb concentrations did not differ between the walking tasks and rest. These findings suggest that a new wireless fNIRS device is a feasible measure of PFC activity in PD during dual task walking. Future studies should reduce the level of noise and inter-individual variability to enable measuring differences in PFC activity between different dual walking conditions and across health states.
The cognitive architecture for chaining of two mental operations.
Sackur, Jérôme; Dehaene, Stanislas
2009-05-01
A simple view, which dates back to Turing, proposes that complex cognitive operations are composed of serially arranged elementary operations, each passing intermediate results to the next. However, whether and how such serial processing is achieved with a brain composed of massively parallel processors, remains an open question. Here, we study the cognitive architecture for chained operations with an elementary arithmetic algorithm: we required participants to add (or subtract) two to a digit, and then compare the result with five. In four experiments, we probed the internal implementation of this task with chronometric analysis, the cued-response method, the priming method, and a subliminal forced-choice procedure. We found evidence for an approximately sequential processing, with an important qualification: the second operation in the algorithm appears to start before completion of the first operation. Furthermore, initially the second operation takes as input the stimulus number rather than the output of the first operation. Thus, operations that should be processed serially are in fact executed partially in parallel. Furthermore, although each elementary operation can proceed subliminally, their chaining does not occur in the absence of conscious perception. Overall, the results suggest that chaining is slow, effortful, imperfect (resulting partly in parallel rather than serial execution) and dependent on conscious control.
Liu, Yan-Ci; Yang, Yea-Ru; Tsai, Yun-An; Wang, Ray-Yau
2017-06-22
This study investigated effects of cognitive and motor dual task gait training on dual task gait performance in stroke. Participants (n = 28) were randomly assigned to cognitive dual task gait training (CDTT), motor dual task gait training (MDTT), or conventional physical therapy (CPT) group. Participants in CDTT or MDTT group practiced the cognitive or motor tasks respectively during walking. Participants in CPT group received strengthening, balance, and gait training. The intervention was 30 min/session, 3 sessions/week for 4 weeks. Three test conditions to evaluate the training effects were single walking, walking while performing cognitive task (serial subtraction), and walking while performing motor task (tray-carrying). Parameters included gait speed, dual task cost of gait speed (DTC-speed), cadence, stride time, and stride length. After CDTT, cognitive-motor dual task gait performance (stride length and DTC-speed) was improved (p = 0.021; p = 0.015). After MDTT, motor dual task gait performance (gait speed, stride length, and DTC-speed) was improved (p = 0.008; p = 0.008; p = 0.008 respectively). It seems that CDTT improved cognitive dual task gait performance and MDTT improved motor dual task gait performance although such improvements did not reach significant group difference. Therefore, different types of dual task gait training can be adopted to enhance different dual task gait performance in stroke.
Ketchum, Myles J; Weyand, Theodore G; Weed, Peter F; Winsauer, Peter J
2016-05-01
Learning is believed to be reflected in the activity of the hippocampus. However, neural correlates of learning have been difficult to characterize because hippocampal activity is integrated with ongoing behavior. To address this issue, male rats (n = 5) implanted with electrodes (n = 14) in the CA1 subfield responded during two tasks within a single test session. In one task, subjects acquired a new 3-response sequence (acquisition), whereas in the other task, subjects completed a well-rehearsed 3-response sequence (performance). Both tasks though could be completed using an identical response topography and used the same sensory stimuli and schedule of reinforcement. More important, comparing neural patterns during sequence acquisition to those during sequence performance allows for a subtractive approach whereby activity associated with learning could potentially be dissociated from the activity associated with ongoing behavior. At sites where CA1 activity was closely associated with behavior, the patterns of activity were differentially modulated by key position and the serial position of a response within the schedule of reinforcement. Temporal shifts between peak activity and responding on particular keys also occurred during sequence acquisition, but not during sequence performance. Ethanol disrupted CA1 activity while producing rate-decreasing effects in both tasks and error-increasing effects that were more selective for sequence acquisition than sequence performance. Ethanol also produced alterations in the magnitude of modulations and temporal pattern of CA1 activity, although these effects were not selective for sequence acquisition. Similar to ethanol, hippocampal micro-stimulation decreased response rate in both tasks and selectively increased the percentage of errors during sequence acquisition, and provided a more direct demonstration of hippocampal involvement during sequence acquisition. Together, these results strongly support the notion that ethanol disrupts sequence acquisition by disrupting hippocampal activity and that the hippocampus is necessary for the conditioned associations required for sequence acquisition. © 2015 Wiley Periodicals, Inc.
Ketchum, Myles J.; Weyand, Theodore G.; Weed, Peter F.; Winsauer, Peter J.
2015-01-01
Learning is believed to be reflected in the activity of the hippocampus. However, neural correlates of learning have been difficult to characterize because hippocampal activity is integrated with ongoing behavior. To address this issue, male rats (n=5) implanted with electrodes (n=14) in the CA1 subfield responded during two tasks within a single test session. In one task, subjects acquired a new 3-response sequence (acquisition), whereas in the other task, subjects completed a well-rehearsed 3-response sequence (performance). Both tasks though could be completed using an identical response topography and used the same sensory stimuli and schedule of reinforcement. More important, comparing neural patterns during sequence acquisition to those during sequence performance allows for a subtractive approach whereby activity associated with learning could potentially be dissociated from the activity associated with ongoing behavior. At sites where CA1 activity was closely associated with behavior, the patterns of activity were differentially modulated by key position and the serial position of a response within the schedule of reinforcement. Temporal shifts between peak activity and responding on particular keys also occurred during sequence acquisition, but not during sequence performance. Ethanol disrupted CA1 activity while producing rate-decreasing effects in both tasks and error-increasing effects that were more selective for sequence acquisition than sequence performance. Ethanol also produced alterations in the magnitude of modulations and temporal pattern of CA1 activity, although these effects were not selective for sequence acquisition. Similar to ethanol, hippocampal micro-stimulation decreased response rate in both tasks and selectively increased the percentage of errors during sequence acquisition, and provided a more direct demonstration of hippocampal involvement during sequence acquisition. Together, these results strongly support the notion that ethanol disrupts sequence acquisition by disrupting hippocampal activity and that the hippocampus is necessary for the conditioned associations required for sequence acquisition. PMID:26482846
Bado, Patricia; Engel, Annerose; de Oliveira-Souza, Ricardo; Bramati, Ivanei E; Paiva, Fernando F; Basilio, Rodrigo; Sato, João R; Tovar-Moll, Fernanda; Moll, Jorge
2014-01-01
Humans spend a substantial share of their lives mind-wandering. This spontaneous thinking activity usually comprises autobiographical recall, emotional, and self-referential components. While neuroimaging studies have demonstrated that a specific brain “default mode network” (DMN) is consistently engaged by the “resting state” of the mind, the relative contribution of key cognitive components to DMN activity is still poorly understood. Here we used fMRI to investigate whether activity in neural components of the DMN can be differentially explained by active recall of relevant emotional autobiographical memories as compared with the resting state. Our study design combined emotional autobiographical memory, neutral memory and resting state conditions, separated by a serial subtraction control task. Shared patterns of activation in the DMN were observed in both emotional autobiographical and resting conditions, when compared with serial subtraction. Directly contrasting autobiographical and resting conditions demonstrated a striking dissociation within the DMN in that emotional autobiographical retrieval led to stronger activation of the dorsomedial core regions (medial prefrontal cortex, posterior cingulate cortex), whereas the resting state condition engaged a ventral frontal network (ventral striatum, subgenual and ventral anterior cingulate cortices) in addition to the IPL. Our results reveal an as yet unreported dissociation within the DMN. Whereas the dorsomedial component can be explained by emotional autobiographical memory, the ventral frontal one is predominantly associated with the resting state proper, possibly underlying fundamental motivational mechanisms engaged during spontaneous unconstrained ideation. Hum Brain Mapp 35:3302–3313, 2014. © 2013 Wiley Periodicals, Inc. PMID:25050426
ERIC Educational Resources Information Center
Robert, Nicole D.; LeFevre, Jo-Anne
2013-01-01
Does solving subtraction problems with negative answers (e.g., 5-14) require different cognitive processes than solving problems with positive answers (e.g., 14-5)? In a dual-task experiment, young adults (N=39) combined subtraction with two working memory tasks, verbal memory and visual-spatial memory. All of the subtraction problems required…
New subtraction algorithms for evaluation of lesions on dynamic contrast-enhanced MR mammography.
Choi, Byung Gil; Kim, Hak Hee; Kim, Euy Neyng; Kim, Bum-soo; Han, Ji-Youn; Yoo, Seung-Schik; Park, Seog Hee
2002-12-01
We report new subtraction algorithms for the detection of lesions in dynamic contrast-enhanced MR mammography(CE MRM). Twenty-five patients with suspicious breast lesions underwent dynamic CE MRM using 3D fast low-angle shot. After the acquisition of the T1-weighted scout images, dynamic images were acquired six times after the bolus injection of contrast media. Serial subtractions, step-by-step subtractions, and reverse subtractions, were performed. Two radiologists attempted to differentiate benign from malignant lesion in consensus. The sensitivity, specificity, and accuracy of the method leading to the differentiation of malignant tumor from benign lesions were 85.7, 100, and 96%, respectively. Subtraction images allowed for better visualization of the enhancement as well as its temporal pattern than visual inspection of dynamic images alone. Our findings suggest that the new subtraction algorithm is adequate for screening malignant breast lesions and can potentially replace the time-intensity profile analysis on user-selected regions of interest.
Patel, P; Lamar, M; Bhatt, T
2014-02-28
We aimed to determine the effect of distinctly different cognitive tasks and walking speed on cognitive-motor interference of dual-task walking. Fifteen healthy adults performed four cognitive tasks: visuomotor reaction time (VMRT) task, word list generation (WLG) task, serial subtraction (SS) task, and the Stroop (STR) task while sitting and during walking at preferred-speed (dual-task normal walking) and slow-speed (dual-task slow-speed walking). Gait speed was recorded to determine effect on walking. Motor and cognitive costs were measured. Dual-task walking had a significant effect on motor and cognitive parameters. At preferred-speed, the motor cost was lowest for the VMRT task and highest for the STR task. In contrast, the cognitive cost was highest for the VMRT task and lowest for the STR task. Dual-task slow walking resulted in increased motor cost and decreased cognitive cost only for the STR task. Results show that the motor and cognitive cost of dual-task walking depends heavily on the type and perceived complexity of the cognitive task being performed. Cognitive cost for the STR task was low irrespective of walking speed, suggesting that at preferred-speed individuals prioritize complex cognitive tasks requiring higher attentional and processing resources over walking. While performing VMRT task, individuals preferred to prioritize more complex walking task over VMRT task resulting in lesser motor cost and increased cognitive cost for VMRT task. Furthermore, slow walking can assist in diverting greater attention towards complex cognitive tasks, improving its performance while walking. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Watson, Silvana Maria R.; Lopes, João; Oliveira, Célia; Judge, Sharon
2018-01-01
Purpose: The purpose of this descriptive study is to investigate why some elementary children have difficulties mastering addition and subtraction calculation tasks. Design/methodology/approach: The researchers have examined error types in addition and subtraction calculation made by 697 Portuguese students in elementary grades. Each student…
Vandierendonck, André
2016-01-01
Working memory researchers do not agree on whether order in serial recall is encoded by dedicated modality-specific systems or by a more general modality-independent system. Although previous research supports the existence of autonomous modality-specific systems, it has been shown that serial recognition memory is prone to cross-modal order interference by concurrent tasks. The present study used a serial recall task, which was performed in a single-task condition and in a dual-task condition with an embedded memory task in the retention interval. The modality of the serial task was either verbal or visuospatial, and the embedded tasks were in the other modality and required either serial or item recall. Care was taken to avoid modality overlaps during presentation and recall. In Experiment 1, visuospatial but not verbal serial recall was more impaired when the embedded task was an order than when it was an item task. Using a more difficult verbal serial recall task, verbal serial recall was also more impaired by another order recall task in Experiment 2. These findings are consistent with the hypothesis of modality-independent order coding. The implications for views on short-term recall and the multicomponent view of working memory are discussed.
Children's mathematical performance: five cognitive tasks across five grades.
Moore, Alex M; Ashcraft, Mark H
2015-07-01
Children in elementary school, along with college adults, were tested on a battery of basic mathematical tasks, including digit naming, number comparison, dot enumeration, and simple addition or subtraction. Beyond cataloguing performance to these standard tasks in Grades 1 to 5, we also examined relationships among the tasks, including previously reported results on a number line estimation task. Accuracy and latency improved across grades for all tasks, and classic interaction patterns were found, for example, a speed-up of subitizing and counting, increasingly shallow slopes in number comparison, and progressive speeding of responses especially to larger addition and subtraction problems. Surprisingly, digit naming was faster than subitizing at all ages, arguing against a pre-attentive processing explanation for subitizing. Estimation accuracy and speed were strong predictors of children's addition and subtraction performance. Children who gave exponential responses on the number line estimation task were slower at counting in the dot enumeration task and had longer latencies on addition and subtraction problems. The results provided further support for the importance of estimation as an indicator of children's current and future mathematical expertise. Copyright © 2015 Elsevier Inc. All rights reserved.
LeMonda, Brittany C.; Mahoney, Jeannette R.; Verghese, Joe; Holtzer, Roee
2016-01-01
The Walking While Talking (WWT) dual-task paradigm is a mobility stress test that predicts major outcomes, including falls, frailty, disability, and mortality in aging. Certain personality traits, such as neuroticism, extraversion, and their combination, have been linked to both cognitive and motor outcomes. We examined whether individual differences in personality dimensions of neuroticism and extraversion predicted dual-task performance decrements (both motor and cognitive) on a WWT task in non-demented older adults. We hypothesized that the combined effect of high neuroticism-low extraversion would be related to greater dual-task costs in gait velocity and cognitive performance in non-demented older adults. Participants (N = 295; age range, = 65–95 years; female = 164) completed the Big Five Inventory and WWT task involving concurrent gait and a serial 7's subtraction task. Gait velocity was obtained using an instrumented walkway. The high neuroticism-low extraversion group incurred greater dual-task costs (i.e., worse performance) in both gait velocity {95% confidence interval (CI) [−17.68 to −3.07]} and cognitive performance (95% CI [−19.34 to −2.44]) compared to the low neuroticism-high extraversion group, suggesting that high neuroticism-low extraversion interferes with the allocation of attentional resources to competing task demands during the WWT task. Older individuals with high neuroticism-low extraversion may be at higher risk for falls, mobility decline and other adverse outcomes in aging. PMID:26527241
Talking while walking: Cognitive loading and injurious falls in Parkinson's disease.
LaPointe, Leonard L; Stierwalt, Julie A G; Maitland, Charles G
2010-10-01
Multitasking has become a way of life, from operating multiple software packages simultaneously on a computer, to carrying on a conversation on a cell phone while driving. Perhaps one of the most common dual tasks performed is talking while walking. In isolation, neither task would be considered difficult to perform, yet when coupled, the relative ease of each task may change. This paper details significant problems that result from injurious falls, and points out the vulnerability of those who have been diagnosed with Parkinson's disease. In addition, it provides an illustrative study that demonstrates the potential danger of talking while walking, especially when the cognitive-linguistic complexity of verbal tasks is manipulated. In this investigation, 25 participants with Parkinson's disease and 13 participants without neurological compromise completed gait tasks while conducting tasks of low (counting by ones), middle (serial subtraction of threes), and high load (alpha-numeric sequencing). The results indicated that cognitive-linguistic demand had an impact on gait, the effects of which were demonstrated in individuals without neurological compromise as well as those with Parkinson's disease. One finding, altered double-support time, distinguished the Parkinson group from the control participants. These results suggest that it might be prudent for healthcare professionals and caregivers to alter expectations and monitor the cognitive-linguistic demands placed on elderly individuals, particularly those with neurological compromise who might be at greater risk for injurious falls.
Chong, Raymond K Y; Mills, Bradley; Dailey, Leanna; Lane, Elizabeth; Smith, Sarah; Lee, Kyoung-Hyun
2010-07-01
We tested the hypothesis that a computational overload results when two activities, one motor and the other cognitive that draw on the same neural processing pathways, are performed concurrently. Healthy young adult subjects carried out two seemingly distinct tasks of maintaining standing balance control under conditions of low (eyes closed), normal (eyes open) or high (eyes open, sway-referenced surround) visuospatial processing load while concurrently performing a cognitive task of either subtracting backwards by seven or generating words of the same first letter. A decrease in the performance of the balance control task and a decrement in the speed and accuracy of responses were noted during the subtraction but not the word generation task. The interference in the subtraction task was isolated to the first trial of the high but not normal or low visuospatial conditions. Balance control improvements with repeated exposures were observed only in the low visuospatial conditions while performance in the other conditions remained compromised. These results suggest that sensory organization for balance control appear to draw on similar visuospatial computational resources needed for the subtraction but not the word generation task. In accordance with the theory of modularity in human performance, the contrast in results between the subtraction and word generation tasks suggests that the neural overload is related to competition for similar visuospatial processes rather than limited attentional resources. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
The source of dual-task limitations: Serial or parallel processing of multiple response selections?
Marois, René
2014-01-01
Although it is generally recognized that the concurrent performance of two tasks incurs costs, the sources of these dual-task costs remain controversial. The serial bottleneck model suggests that serial postponement of task performance in dual-task conditions results from a central stage of response selection that can only process one task at a time. Cognitive-control models, by contrast, propose that multiple response selections can proceed in parallel, but that serial processing of task performance is predominantly adopted because its processing efficiency is higher than that of parallel processing. In the present study, we empirically tested this proposition by examining whether parallel processing would occur when it was more efficient and financially rewarded. The results indicated that even when parallel processing was more efficient and was incentivized by financial reward, participants still failed to process tasks in parallel. We conclude that central information processing is limited by a serial bottleneck. PMID:23864266
Prado, Jérôme; Mutreja, Rachna; Zhang, Hongchuan; Mehta, Rucha; Desroches, Amy S.; Minas, Jennifer E.; Booth, James R.
2010-01-01
It has been proposed that recent cultural inventions such as symbolic arithmetic recycle evolutionary older neural mechanisms. A central assumption of this hypothesis is that the degree to which a pre-existing mechanism is recycled depends upon the degree of similarity between its initial function and the novel task. To test this assumption, we investigated whether the brain region involved in magnitude comparison in the intraparietal sulcus (IPS), localized by a numerosity comparison task, is recruited to a greater degree by arithmetic problems that involve number comparison (single-digit subtractions) than by problems that involve retrieving facts from memory (single-digit multiplications). Our results confirmed that subtractions are associated with greater activity in the IPS than multiplications, whereas multiplications elicit greater activity than subtractions in regions involved in verbal processing including the middle temporal gyrus and inferior frontal gyrus that were localized by a phonological processing task. Pattern analyses further indicated that the neural mechanisms more active for subtraction than multiplication in the IPS overlap with those involved in numerosity comparison, and that the strength of this overlap predicts inter-individual performance in the subtraction task. These findings provide novel evidence that elementary arithmetic relies on the co-option of evolutionary older neural circuits. PMID:21246667
Neural correlates of motor-cognitive dual-tasking in young and old adults
Papegaaij, Selma; Hortobágyi, Tibor; Godde, Ben; Kaan, Wim A.; Erhard, Peter; Voelcker-Rehage, Claudia
2017-01-01
When two tasks are performed simultaneously, performance often declines in one or both tasks. These so-called dual-task costs are more pronounced in old than in young adults. One proposed neurological mechanism of the dual-task costs is that old compared with young adults tend to execute single-tasks with higher brain activation. In the brain regions that are needed for both tasks, the reduced residual capacity may interfere with performance of the dual-task. This competition for shared brain regions has been called structural interference. The purpose of the study was to determine whether structural interference indeed plays a role in the age-related decrease in dual-task performance. Functional magnetic resonance imaging (fMRI) was used to investigate 23 young adults (20–29 years) and 32 old adults (66–89 years) performing a calculation (serial subtraction by seven) and balance-simulation (plantar flexion force control) task separately or simultaneously. Behavioral performance decreased during the dual-task compared with the single-tasks in both age groups, with greater dual-task costs in old compared with young adults. Brain activation was significantly higher in old than young adults during all conditions. Region of interest analyses were performed on brain regions that were active in both tasks. Structural interference was apparent in the right insula, as quantified by an age-related reduction in upregulation of brain activity from single- to dual-task. However, the magnitude of upregulation did not correlate with dual-task costs. Therefore, we conclude that the greater dual-task costs in old adults were probably not due to increased structural interference. PMID:29220349
Johnston, Melissa Jane; Clarkson, Andrew N; Gowing, Emma K; Scarf, Damian; Colombo, Mike
2018-06-06
Serial-order behaviour is the ability to complete a sequence of responses in a predetermined order to achieve a reward. In birds, serial-order behaviour is thought to be impaired by damage to the nidopallium caudolaterale (NCL). In the current study, we examined the role of the NCL in serial-order behaviour by training pigeons on a 4-item serial-order task and a go/no-go discrimination task. Following training, pigeons were received infusions of 1μl of either tetrodotoxin (TTX) or saline. Saline infusions had no impact on serial-order behaviour whereas TTX infusions resulted in a significant decrease in performance. The serial-order impairments, however, were not the results of errors of any specific error at any specific list item. With respect to the go/no-go discrimination task, saline infusions also had no impact on performance whereas TTX infusions impaired pigeons' discrimination abilities. Given the impairments on the go/no-go discrimination task, which does not require processing of serial-order information, we tentatively conclude that damage to the NCL does not impair serial-order behaviour per se, but rather results in a more generalised impairment that may impact performance across a range of tasks.
Muir, Susan W; Speechley, Mark; Wells, Jennie; Borrie, Michael; Gopaul, Karen; Montero-Odasso, Manuel
2012-01-01
Gait impairment is a prominent falls risk factor and a prevalent feature among older adults with cognitive impairment. However, there is a lack of comparative studies on gait performance and fall risk covering the continuum from normal cognition through mild cognitive impairment (MCI) to Alzheimer's disease (AD). We evaluated gait performance and the response to dual-task challenges in older adults with AD, MCI and normal cognition without a history of falls. We hypothesized that, in older people without history of falls, gait performance will deteriorate across the cognitive spectrum with changes being more evident under dual-tasking. Gait was assessed using an electronic walkway under single and three dual-tasks conditions. Gait velocity and stride time variability were not significantly different between the three groups under the single-task condition. By contrast, significant differences of decreasing velocity (p<0.0001), increasing stride time (p=0.0057) and increasing stride time variability (p=0.0037) were found under dual-task testing for people with MCI and AD. Less automatic and more complex dual-task tests, such as naming animals and serial subtraction by sevens from 100, created the greatest deterioration of gait performance. Gait changes under dual-tasking for the MCI and AD groups were statistically different from the cognitively normal controls. Dual-task assessment exposed gait impairments not obvious under a single-task test condition and may facilitate falls risk identification in cognitively impaired persons without a history of falls. Copyright © 2011 Elsevier B.V. All rights reserved.
Temporal discounting and heart rate reactivity to stress.
Diller, James W; Patros, Connor H G; Prentice, Paula R
2011-07-01
Temporal discounting is the reduction of the value of a reinforcer as a function of increasing delay to its presentation. Impulsive individuals discount delayed consequences more rapidly than self-controlled individuals, and impulsivity has been related to substance abuse, gambling, and other problem behaviors. A growing body of literature has identified biological correlates of impulsivity, though little research to date has examined relations between delay discounting and markers of poor health (e.g., cardiovascular reactivity to stress). We evaluated the relation between one aspect of impulsivity, measured using a computerized temporal discounting task, and heart rate reactivity, measured as a change in heart rate from rest during a serial subtraction task. A linear regression showed that individuals who were more reactive to stress responded more impulsively (i.e., discounted delayed reinforcers more rapidly). When results were stratified by gender, the effect was observed for females, but not for males. This finding supports previous research on gender differences in cardiovascular reactivity and suggests that this type of reactivity may be an important correlate of impulsive behavior. Copyright © 2011 Elsevier B.V. All rights reserved.
A comparison of serial order short-term memory effects across verbal and musical domains.
Gorin, Simon; Mengal, Pierre; Majerus, Steve
2018-04-01
Recent studies suggest that the mechanisms involved in the short-term retention of serial order information may be shared across short-term memory (STM) domains such as verbal and visuospatial STM. Given the intrinsic sequential organization of musical material, the study of STM for musical information may be particularly informative about serial order retention processes and their domain-generality. The present experiment examined serial order STM for verbal and musical sequences in participants with no advanced musical expertise and experienced musicians. Serial order STM for verbal information was assessed via a serial order reconstruction task for digit sequences. In the musical domain, serial order STM was assessed using a novel melodic sequence reconstruction task maximizing the retention of tone order information. We observed that performance for the verbal and musical tasks was characterized by sequence length as well as primacy and recency effects. Serial order errors in both tasks were characterized by similar transposition gradients and ratios of fill-in:infill errors. These effects were observed for both participant groups, although the transposition gradients and ratios of fill-in:infill errors showed additional specificities for musician participants in the musical task. The data support domain-general serial order STM effects but also suggest the existence of additional domain-specific effects. Implications for models of serial order STM in verbal and musical domains are discussed.
Marsh, John E; Yang, Jingqi; Qualter, Pamela; Richardson, Cassandra; Perham, Nick; Vachon, François; Hughes, Robert W
2018-06-01
Task-irrelevant speech impairs short-term serial recall appreciably. On the interference-by-process account, the processing of physical (i.e., precategorical) changes in speech yields order cues that conflict with the serial-ordering process deployed to perform the serial recall task. In this view, the postcategorical properties (e.g., phonology, meaning) of speech play no role. The present study reassessed the implications of recent demonstrations of auditory postcategorical distraction in serial recall that have been taken as support for an alternative, attentional-diversion, account of the irrelevant speech effect. Focusing on the disruptive effect of emotionally valent compared with neutral words on serial recall, we show that the distracter-valence effect is eliminated under conditions-high task-encoding load-thought to shield against attentional diversion whereas the general effect of speech (neutral words compared with quiet) remains unaffected (Experiment 1). Furthermore, the distracter-valence effect generalizes to a task that does not require the processing of serial order-the missing-item task-whereas the effect of speech per se is attenuated in this task (Experiment 2). We conclude that postcategorical auditory distraction phenomena in serial short-term memory (STM) are incidental: they are observable in such a setting but, unlike the acoustically driven irrelevant speech effect, are not integral to it. As such, the findings support a duplex-mechanism account over a unitary view of auditory distraction. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Baetens, Tina; De Kegel, Alexandra; Palmans, Tanneke; Oostra, Kristine; Vanderstraeten, Guy; Cambier, Dirk
2013-04-01
To evaluate fall risk in stroke patients based on single- and dual-task gait analyses, and to investigate the difference between 2 cognitive tasks in the dual-task paradigm. Prospective cohort study. Rehabilitation hospitals. Subacute stroke patients (N=32), able to walk without physical/manual help with or without walking aids, while performing a verbal task. Not applicable. Functional gait measures were Functional Ambulation Categories (FAC) and use of a walking aid. Gait measures were evaluated by an electronic walkway system under single- and dual-task (DT) conditions. For the single-task, subjects were instructed to walk at their usual speed. One of the DTs was a verbal fluency dual task, whereby subjects had to walk while simultaneously enumerating as many different animals as possible. For the other DT (counting dual task), participants had to walk while performing serial subtractions. After inclusion, participants kept a 6-month falls diary. Eighteen (56.3%) of the 32 included patients fell. Ten (31.3%) were single fallers (SFs), and 8 (25%) were multiple fallers (MFs). Fallers (Fs) more frequently used a walking aid and more frequently needed an observatory person for walking safely (FAC score of 3) than nonfallers (NFs). Two gait decrement parameters in counting dual task could distinguish potential Fs from NFs: decrement in stride length percentage (P=.043) and nonparetic step length percentage (P=.047). Regarding the division in 3 groups (NFs, SFs, and MFs), only MFs had a significantly higher percentage of decrement for paretic step length (P=.023) than SFs. Examining the decrement of spatial gait characteristics (stride length and paretic and nonparetic step length) during a DT addressing working memory can identify fall-prone subacute stroke patients. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Effects of dual task on turning ability in stroke survivors and older adults.
Hollands, K L; Agnihotri, D; Tyson, S F
2014-09-01
Turning is an integral component of independent mobility in which stroke survivors frequently fall. This study sought to measure the effects of competing cognitive demands on the stepping patterns of stroke survivors, compared to healthy age-match adults, during turning as a putative mechanism for falls. Walking and turning (90°) was assessed under single (walking and turning alone) and dual task (subtracting serial 3s while walking and turning) conditions using an electronic, pressure-sensitive walkway. Dependent measures were time to turn, variability in time to turn, step length, step width and single support time during three steps of the turn. Turning ability in single and dual task conditions was compared between stroke survivors (n=17, mean ± SD: 59 ± 113 months post-stroke, 64 ± 10 years of age) and age-matched healthy counterparts (n=15). Both groups took longer, were more variable, tended to widen the second step and, crucially, increased single support time on the inside leg of the turn while turning and distracted. Increased single support time during turning may represent biomechanical mechanism, within stepping patterns of turning under distraction, for increased risk of falls for both stroke survivors and older adults. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Efficient multitasking: parallel versus serial processing of multiple tasks
Fischer, Rico; Plessow, Franziska
2015-01-01
In the context of performance optimizations in multitasking, a central debate has unfolded in multitasking research around whether cognitive processes related to different tasks proceed only sequentially (one at a time), or can operate in parallel (simultaneously). This review features a discussion of theoretical considerations and empirical evidence regarding parallel versus serial task processing in multitasking. In addition, we highlight how methodological differences and theoretical conceptions determine the extent to which parallel processing in multitasking can be detected, to guide their employment in future research. Parallel and serial processing of multiple tasks are not mutually exclusive. Therefore, questions focusing exclusively on either task-processing mode are too simplified. We review empirical evidence and demonstrate that shifting between more parallel and more serial task processing critically depends on the conditions under which multiple tasks are performed. We conclude that efficient multitasking is reflected by the ability of individuals to adjust multitasking performance to environmental demands by flexibly shifting between different processing strategies of multiple task-component scheduling. PMID:26441742
Efficient multitasking: parallel versus serial processing of multiple tasks.
Fischer, Rico; Plessow, Franziska
2015-01-01
In the context of performance optimizations in multitasking, a central debate has unfolded in multitasking research around whether cognitive processes related to different tasks proceed only sequentially (one at a time), or can operate in parallel (simultaneously). This review features a discussion of theoretical considerations and empirical evidence regarding parallel versus serial task processing in multitasking. In addition, we highlight how methodological differences and theoretical conceptions determine the extent to which parallel processing in multitasking can be detected, to guide their employment in future research. Parallel and serial processing of multiple tasks are not mutually exclusive. Therefore, questions focusing exclusively on either task-processing mode are too simplified. We review empirical evidence and demonstrate that shifting between more parallel and more serial task processing critically depends on the conditions under which multiple tasks are performed. We conclude that efficient multitasking is reflected by the ability of individuals to adjust multitasking performance to environmental demands by flexibly shifting between different processing strategies of multiple task-component scheduling.
Howard, Charla L; Wallace, Chris; Abbas, James; Stokic, Dobrivoje S
2017-01-01
We developed and evaluated properties of a new measure of variability in stride length and cadence, termed residual standard deviation (RSD). To calculate RSD, stride length and cadence are regressed against velocity to derive the best fit line from which the variability (SD) of the distance between the actual and predicted data points is calculated. We examined construct, concurrent, and discriminative validity of RSD using dual-task paradigm in 14 below-knee prosthesis users and 13 age- and education-matched controls. Subjects walked first over an electronic walkway while performing separately a serial subtraction and backwards spelling task, and then at self-selected slow, normal, and fast speeds used to derive the best fit line for stride length and cadence against velocity. Construct validity was demonstrated by significantly greater increase in RSD during dual-task gait in prosthesis users than controls (group-by-condition interaction, stride length p=0.0006, cadence p=0.009). Concurrent validity was established against coefficient of variation (CV) by moderate-to-high correlations (r=0.50-0.87) between dual-task cost RSD and dual-task cost CV for both stride length and cadence in prosthesis users and controls. Discriminative validity was documented by the ability of dual-task cost calculated from RSD to effectively differentiate prosthesis users from controls (area under the receiver operating characteristic curve, stride length 0.863, p=0.001, cadence 0.808, p=0.007), which was better than the ability of dual-task cost CV (0.692, 0.648, respectively, not significant). These results validate RSD as a new measure of variability in below-knee prosthesis users. Future studies should include larger cohorts and other populations to ascertain its generalizability. Copyright © 2016 Elsevier B.V. All rights reserved.
Gonzales, Joaquin U; James, C Roger; Yang, Hyung Suk; Jensen, Daniel; Atkins, Lee; Al-Khalil, Kareem; O'Boyle, Michael
2017-05-01
Central arterial hemodynamics is associated with cognitive impairment. Reductions in gait speed during walking while performing concurrent tasks known as dual-tasking (DT) or multi-tasking (MT) is thought to reflect the cognitive cost that exceeds neural capacity to share resources. We hypothesized that central vascular function would associate with decrements in gait speed during DT or MT. Gait speed was measured using a motion capture system in 56 women (30-80y) without mild-cognitive impairment. Dual-tasking was considered walking at a fast-pace while balancing a tray. Multi-tasking was the DT condition plus subtracting by serial 7's. Applanation tonometry was used for measurement of aortic stiffness and central pulse pressure. Doppler-ultrasound was used to measure blood flow velocity and β-stiffness index in the common carotid artery. The percent change in gait speed was larger for MT than DT (14.1±11.2 vs. 8.7±9.6%, p <0.01). Tertiles were formed based on the percent change in gait speed for each condition. No vascular parameters differed across tertiles for DT. In contrast, carotid flow pulsatility (1.85±0.43 vs. 1.47±0.42, p=0.02) and resistance (0.75±0.07 vs. 0.68±0.07, p=0.01) indices were higher in women with more decrement (third tertile) as compared to women with less decrement (first tertile) in gait speed during MT after adjusting for age, gait speed, and task error. Carotid pulse pressure and β-stiffness did not contribute to these tertile differences. Elevated carotid flow pulsatility and resistance are characteristics found in healthy women that show lower cognitive capacity to walk and perform multiple concurrent tasks. Copyright © 2017 Elsevier B.V. All rights reserved.
Working memory encoding delays top-down attention to visual cortex.
Scalf, Paige E; Dux, Paul E; Marois, René
2011-09-01
The encoding of information from one event into working memory can delay high-level, central decision-making processes for subsequent events [e.g., Jolicoeur, P., & Dell'Acqua, R. The demonstration of short-term consolidation. Cognitive Psychology, 36, 138-202, 1998, doi:10.1006/cogp.1998.0684]. Working memory, however, is also believed to interfere with the deployment of top-down attention [de Fockert, J. W., Rees, G., Frith, C. D., & Lavie, N. The role of working memory in visual selective attention. Science, 291, 1803-1806, 2001, doi:10.1126/science.1056496]. It is, therefore, possible that, in addition to delaying central processes, the engagement of working memory encoding (WME) also postpones perceptual processing as well. Here, we tested this hypothesis with time-resolved fMRI by assessing whether WME serially postpones the action of top-down attention on low-level sensory signals. In three experiments, participants viewed a skeletal rapid serial visual presentation sequence that contained two target items (T1 and T2) separated by either a short (550 msec) or long (1450 msec) SOA. During single-target runs, participants attended and responded only to T1, whereas in dual-target runs, participants attended and responded to both targets. To determine whether T1 processing delayed top-down attentional enhancement of T2, we examined T2 BOLD response in visual cortex by subtracting the single-task waveforms from the dual-task waveforms for each SOA. When the WME demands of T1 were high (Experiments 1 and 3), T2 BOLD response was delayed at the short SOA relative to the long SOA. This was not the case when T1 encoding demands were low (Experiment 2). We conclude that encoding of a stimulus into working memory delays the deployment of attention to subsequent target representations in visual cortex.
The Effect of Concurrent Semantic Categorization on Delayed Serial Recall
ERIC Educational Resources Information Center
Acheson, Daniel J.; MacDonald, Maryellen C.; Postle, Bradley R.
2011-01-01
The influence of semantic processing on the serial ordering of items in short-term memory was explored using a novel dual-task paradigm. Participants engaged in 2 picture-judgment tasks while simultaneously performing delayed serial recall. List material varied in the presence of phonological overlap (Experiments 1 and 2) and in semantic content…
Motor cortical encoding of serial order in a context-recall task.
Carpenter, A F; Georgopoulos, A P; Pellizzer, G
1999-03-12
The neural encoding of serial order was studied in the motor cortex of monkeys performing a context-recall memory scanning task. Up to five visual stimuli were presented successively on a circle (list presentation phase), and then one of them (test stimulus) changed color; the monkeys had to make a single motor response toward the stimulus that immediately followed the test stimulus in the list. Correct performance in this task depends on memorization of the serial order of the stimuli during their presentation. It was found that changes in neural activity during the list presentation phase reflected the serial order of the stimuli; the effect on cell activity of the serial order of stimuli during their presentation was at least as strong as the effect of motor direction on cell activity during the execution of the motor response. This establishes the serial order of stimuli in a motor task as an important determinant of motor cortical activity during stimulus presentation and in the absence of changes in peripheral motor events, in contrast to the commonly held view of the motor cortex as just an "upper motor neuron."
How number line estimation skills relate to neural activations in single digit subtraction problems
Berteletti, I.; Man, G.; Booth, J.R.
2014-01-01
The Number Line (NL) task requires judging the relative numerical magnitude of a number and estimating its value spatially on a continuous line. Children's skill on this task has been shown to correlate with and predict future mathematical competence. Neurofunctionally, this task has been shown to rely on brain regions involved in numerical processing. However, there is no direct evidence that performance on the NL task is related to brain areas recruited during arithmetical processing and that these areas are domain-specific to numerical processing. In this study, we test whether 8- to 14-year-old's behavioral performance on the NL task is related to fMRI activation during small and large single-digit subtraction problems. Domain-specific areas for numerical processing were independently localized through a numerosity judgment task. Results show a direct relation between NL estimation performance and the amount of the activation in key areas for arithmetical processing. Better NL estimators showed a larger problem size effect than poorer NL estimators in numerical magnitude (i.e., intraparietal sulcus) and visuospatial areas (i.e., posterior superior parietal lobules), marked by less activation for small problems. In addition, the direction of the activation with problem size within the IPS was associated to differences in accuracies for small subtraction problems. This study is the first to show that performance in the NL task, i.e. estimating the spatial position of a number on an interval, correlates with brain activity observed during single-digit subtraction problem in regions thought to be involved numerical magnitude and spatial processes. PMID:25497398
An Embodiment Perspective on Number-Space Mapping in 3.5-Year-Old Dutch Children.
van 't Noordende, Jaccoline E; Volman, M Chiel J M; Leseman, Paul P M; Kroesbergen, Evelyn H
2017-01-01
Previous research suggests that block adding, subtracting and counting direction are early forms of number-space mapping. In this study, an embodiment perspective on these skills was taken. Embodiment theory assumes that cognition emerges through sensory-motor interaction with the environment. In line with this assumption, it was investigated if counting and adding/subtracting direction in young children is related to the hand they use during task performance. Forty-eight 3.5-year-old children completed a block adding, subtracting and counting task. They had to add and remove a block from a row of three blocks and count a row of five blocks. Adding, subtracting and counting direction were related to the hand the children used for task performance. Most children who used their right hand added, removed and started counting the blocks at the right side of the row. Most children who used their left hand added, removed and started counting the blocks at the left side of the row. It can be concluded that number-space mapping, as measured by direction of adding, subtracting and counting blocks, in young children is embodied: It is not fixed, but is related to the situation. © 2016 The Authors Infant and Child Development Published by John Wiley & Sons, Ltd.
Working memory in children assessed with serial chaining and Simon tasks.
Parrish, Audrey E; Perdue, Bonnie M; Kelly, Andrew J; Beran, Michael J
2018-06-06
In the serial chaining task, participants are required to produce a sequence of responses to stimuli in the correct order, and sometimes must determine the sequence at trial outset if stimuli are masked after the first response is made. Similarly, the Simon memory span task presents a participant with a sequence of colors, and the participant must recreate the sequence after the full series is shown. In efforts to directly link the comparative literature on sequential planning behavior and working memory span with the developmental literature, we presented preschool children with the serial chaining task using masked Arabic numerals (N = 44) and the Simon memory span task (N = 65). Older children outperformed younger children in each task, sequencing a longer string of numbers in the serial chaining task and remembering a greater number of items in the Simon task. Controlling for the role of age, there was a significant positive relationship between task scores. These results highlight the emergence of working memory skills that might underlie planning capacities in children using a task developed for nonhuman animals, and the results indicate that improvement in general executive functions could be measured using either or both of these tasks among human children and nonhuman species. Copyright © 2018 Elsevier B.V. All rights reserved.
Demir, Özlem Ece; Prado, Jérôme; Booth, James R.
2015-01-01
We examined the relation of parental socioeconomic status (SES) to the neural bases of subtraction in school-age children (9- to 12-year-olds). We independently localized brain regions subserving verbal versus visuo-spatial representations to determine whether the parental SES-related differences in children’s reliance on these neural representations vary as a function of math skill. At higher SES levels, higher skill was associated with greater recruitment of the left temporal cortex, identified by the verbal localizer. At lower SES levels, higher skill was associated with greater recruitment of right parietal cortex, identified by the visuo-spatial localizer. This suggests that depending on parental SES, children engage different neural systems to solve subtraction problems. Furthermore, SES was related to the activation in the left temporal and frontal cortex during the independent verbal localizer task, but it was not related to activation during the independent visuo-spatial localizer task. Differences in activation during the verbal localizer task in turn were related to differences in activation during the subtraction task in right parietal cortex. The relation was stronger at lower SES levels. This result suggests that SES-related differences in the visuo-spatial regions during subtraction might be based in SES-related verbal differences. PMID:25664675
Patterns of problem-solving in children's literacy and arithmetic.
Farrington-Flint, Lee; Vanuxem-Cotterill, Sophie; Stiller, James
2009-11-01
Patterns of problem-solving among 5-to-7 year-olds' were examined on a range of literacy (reading and spelling) and arithmetic-based (addition and subtraction) problem-solving tasks using verbal self-reports to monitor strategy choice. The results showed higher levels of variability in the children's strategy choice across Years I and 2 on the arithmetic (addition and subtraction) than literacy-based tasks (reading and spelling). However, across all four tasks, the children showed a tendency to move from less sophisticated procedural-based strategies, which included phonological strategies for reading and spelling and counting-all and finger modellingfor addition and subtraction, to more efficient retrieval methods from Years I to 2. Distinct patterns in children's problem-solving skill were identified on the literacy and arithmetic tasks using two separate cluster analyses. There was a strong association between these two profiles showing that those children with more advanced problem-solving skills on the arithmetic tasks also showed more advanced profiles on the literacy tasks. The results highlight how different-aged children show flexibility in their use of problem-solving strategies across literacy and arithmetical contexts and reinforce the importance of studying variations in children's problem-solving skill across different educational contexts.
Majerus, Steve; Boukebza, Claire
2013-12-01
Although recent studies suggest a strong association between short-term memory (STM) for serial order and lexical development, the precise mechanisms linking the two domains remain to be determined. This study explored the nature of these mechanisms via a microanalysis of performance on serial order STM and novel word learning tasks. In the experiment, 6- and 7-year-old children were administered tasks maximizing STM for either item or serial order information as well as paired-associate learning tasks involving the learning of novel words, visual symbols, or familiar word pair associations. Learning abilities for novel words were specifically predicted by serial order STM abilities. A measure estimating the precision of serial order coding predicted the rate of correct repetitions and the rate of phoneme migration errors during the novel word learning process. In line with recent theoretical accounts, these results suggest that serial order STM supports vocabulary development via ordered and detailed reactivation of the novel phonological sequences that characterize new words. Copyright © 2013 Elsevier Inc. All rights reserved.
Hemispatial neglect and serial order in verbal working memory.
Antoine, Sophie; Ranzini, Mariagrazia; van Dijck, Jean-Philippe; Slama, Hichem; Bonato, Mario; Tousch, Ann; Dewulf, Myrtille; Bier, Jean-Christophe; Gevers, Wim
2018-01-09
Working memory refers to our ability to actively maintain and process a limited amount of information during a brief period of time. Often, not only the information itself but also its serial order is crucial for good task performance. It was recently proposed that serial order is grounded in spatial cognition. Here, we compared performance of a group of right hemisphere-damaged patients with hemispatial neglect to healthy controls in verbal working memory tasks. Participants memorized sequences of consonants at span level and had to judge whether a target consonant belonged to the memorized sequence (item task) or whether a pair of consonants were presented in the same order as in the memorized sequence (order task). In line with this idea that serial order is grounded in spatial cognition, we found that neglect patients made significantly more errors in the order task than in the item task compared to healthy controls. Furthermore, this deficit seemed functionally related to neglect severity and was more frequently observed following right posterior brain damage. Interestingly, this specific impairment for serial order in verbal working memory was not lateralized. We advance the hypotheses of a potential contribution to the deficit of serial order in neglect patients of either or both (1) reduced spatial working memory capacity that enables to keep track of the spatial codes that provide memorized items with a positional context, (2) a spatial compression of these codes in the intact representational space. © 2018 The British Psychological Society.
Logan, Samuel W; Fischman, Mark G
2015-12-01
Two experiments examined the dynamic interaction between cognitive resources in short-term memory and bimanual object manipulation by extending recent research by Logan and Fischman (2011). In Experiment 1, 16 participants completed a bimanual end-state comfort task and a memory task requiring serial recall of 12 words or pictures. The end-state comfort task involved moving two glasses between two shelves. Participants viewed the items, performed the end-state comfort task, and then serially recalled the items. Recall was evaluated by the presence or absence of primacy and recency effects. The end-state comfort effect (ESCE) was assessed by the percentage of initial hand positions that allowed the hands to end comfortably. The main findings indicated that the ESCE was disrupted; the primacy effect remained intact; and the recency effect disappeared regardless of the type of memory item recalled. In Experiment 2, 16 participants viewed six items, performed an end-state comfort task, viewed another six items, and then serially recalled all 12 items. Results were essentially the same as in Experiment 1. Findings suggest that executing a bimanual end-state comfort task, regardless of when it is completed during a memory task, diminishes the recency effect irrespective of the type of memory item. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ikejimba, Lynda; Kiarashi, Nooshin; Lin, Yuan; Chen, Baiyu; Ghate, Sujata V.; Zerhouni, Moustafa; Samei, Ehsan; Lo, Joseph Y.
2012-03-01
Digital breast tomosynthesis (DBT) is a novel x-ray imaging technique that provides 3D structural information of the breast. In contrast to 2D mammography, DBT minimizes tissue overlap potentially improving cancer detection and reducing number of unnecessary recalls. The addition of a contrast agent to DBT and mammography for lesion enhancement has the benefit of providing functional information of a lesion, as lesion contrast uptake and washout patterns may help differentiate between benign and malignant tumors. This study used a task-based method to determine the optimal imaging approach by analyzing six imaging paradigms in terms of their ability to resolve iodine at a given dose: contrast enhanced mammography and tomosynthesis, temporal subtraction mammography and tomosynthesis, and dual energy subtraction mammography and tomosynthesis. Imaging performance was characterized using a detectability index d', derived from the system task transfer function (TTF), an imaging task, iodine contrast, and the noise power spectrum (NPS). The task modeled a 5 mm lesion containing iodine concentrations between 2.1 mg/cc and 8.6 mg/cc. TTF was obtained using an edge phantom, and the NPS was measured over several exposure levels, energies, and target-filter combinations. Using a structured CIRS phantom, d' was generated as a function of dose and iodine concentration. In general, higher dose gave higher d', but for the lowest iodine concentration and lowest dose, dual energy subtraction tomosynthesis and temporal subtraction tomosynthesis demonstrated the highest performance.
U. S. Atlantic Fleet, Task Force 85. Operation Plan Number 3-44
1944-07-27
Potential Targets in Sectors of Responsibility Gril /8thPhib/Al6-3 Serial: 0031(P) DEAN/14- Potential Targets in Se_otors t of Respon- sibility...tags accompany the remains, ANNEX QUEEN MEDICAL PLAN - Page 6 of 8 GrIl /8thPhib/Al6-3 WESTERN NAVAL TASK FORCE, Serial: 0037(P) TASK FORCE EIGHTY-FIVE
Sakamoto, Ryo; Yakami, Masahiro; Fujimoto, Koji; Nakagomi, Keita; Kubo, Takeshi; Emoto, Yutaka; Akasaka, Thai; Aoyama, Gakuto; Yamamoto, Hiroyuki; Miller, Michael I; Mori, Susumu; Togashi, Kaori
2017-11-01
Purpose To determine the improvement of radiologist efficiency and performance in the detection of bone metastases at serial follow-up computed tomography (CT) by using a temporal subtraction (TS) technique based on an advanced nonrigid image registration algorithm. Materials and Methods This retrospective study was approved by the institutional review board, and informed consent was waived. CT image pairs (previous and current scans of the torso) in 60 patients with cancer (primary lesion location: prostate, n = 14; breast, n = 16; lung, n = 20; liver, n = 10) were included. These consisted of 30 positive cases with a total of 65 bone metastases depicted only on current images and confirmed by two radiologists who had access to additional imaging examinations and clinical courses and 30 matched negative control cases (no bone metastases). Previous CT images were semiautomatically registered to current CT images by the algorithm, and TS images were created. Seven radiologists independently interpreted CT image pairs to identify newly developed bone metastases without and with TS images with an interval of at least 30 days. Jackknife free-response receiver operating characteristics (JAFROC) analysis was conducted to assess observer performance. Reading time was recorded, and usefulness was evaluated with subjective scores of 1-5, with 5 being extremely useful and 1 being useless. Significance of these values was tested with the Wilcoxon signed-rank test. Results The subtraction images depicted various types of bone metastases (osteolytic, n = 28; osteoblastic, n = 26; mixed osteolytic and blastic, n = 11) as temporal changes. The average reading time was significantly reduced (384.3 vs 286.8 seconds; Wilcoxon signed rank test, P = .028). The average figure-of-merit value increased from 0.758 to 0.835; however, this difference was not significant (JAFROC analysis, P = .092). The subjective usefulness survey response showed a median score of 5 for use of the technique (range, 3-5). Conclusion TS images obtained from serial CT scans using nonrigid registration successfully depicted newly developed bone metastases and showed promise for their efficient detection. © RSNA, 2017 Online supplemental material is available for this article.
Apolinario, Daniel; Lichtenthaler, Daniel Gomes; Magaldi, Regina Miksian; Soares, Aline Thomaz; Busse, Alexandre Leopold; Amaral, Jose Renato das Gracas; Jacob-Filho, Wilson; Brucki, Sonia Maria Dozzi
2016-01-01
A screening strategy composed of three-item temporal orientation and three-word recall has been increasingly used for detecting cognitive impairment. However, the intervening task administered between presentation and recall has varied. We evaluated six brief tasks that could be useful as intervening distractors and possibly provide incremental accuracy: serial subtraction, clock drawing, category fluency, letter fluency, timed visual detection, and digits backwards. Older adults (n = 230) consecutively referred for suspected cognitive impairment underwent a comprehensive assessment for gold-standard diagnosis, of whom 56 (24%) presented cognitive impairment not dementia and 68 (30%) presented dementia. Among those with dementia, 87% presented very mild or mild stages (Clinical Dementia Rating 0.5 or 1). The incremental value of each candidate intervening task in a model already containing orientation and word recall was assessed. Category fluency (animal naming) presented the highest incremental value among the six candidate intervening tasks. Reclassification analyses revealed a net gain of 12% among cognitively impaired and 17% among normal participants. A four-point scaled score of the animal naming task was added to three-item temporal orientation and three-word recall to compose the 10-point Cognitive Screener. The education-adjusted 10-point Cognitive Screener outperformed the longer Mini-Mental State Examination for detecting both cognitive impairment (area under the curve 0.85 vs 0.77; p = 0.027) and dementia (area under the curve 0.90 vs 0.83; p = 0.015). Based on empirical data, we have developed a brief and easy-to-use screening strategy with higher accuracy and some practical advantages compared with commonly used tools. Copyright © 2015 John Wiley & Sons, Ltd.
Kang, Hyun Gu; Quach, Lien; Li, Wenjun; Lipsitz, Lewis A
2013-09-01
Outdoor fallers differ from indoor fallers substantially in demographics, lifestyle, health condition and physical function. Biomechanical predictors of outdoor falls have not been well characterized. Current validated measures of postural deficits, which describe only the overall postural behavior, are predictive of indoor falls but not outdoor falls. We hypothesized that a model-based description of postural muscle tone and reflexes, particularly during dual tasking, would predict outdoor falls. We tested whether postural stiffness and damping from an inverted pendulum model were predictive of future indoor and outdoor falls among older adults from the MOBILIZE Boston Study. The center of pressure data during standing were obtained from 717 participants aged 77.9±5.3 years. Participants stood barefoot with eyes open for 30s per trial, in two sets of five standing trials. One set included a serial subtractions task. Postural stiffness and damping values were determined from the postural sway data. After the postural measurements, falls were monitored prospectively using a monthly mail-in calendar over 6-36 months. Associations of postural measures with fall rates were determined using negative binomial regressions. After covariate adjustments, postural stiffness (p=0.02-0.05) and damping (p=0.007-0.1) were associated with lower outdoor falls risk, but not with indoor falls. Results were invariant by direction (anteroposterior versus mediolateral) or by condition (quiet standing versus dual task). Outdoor fall risk may be tied to postural control more so than indoor falls. Dual tasking is likely related to fall risk among older and sicker older adults, but not those relatively healthy. Copyright © 2013 Elsevier B.V. All rights reserved.
Kang, Hyun Gu; Quach, Lien; Li, Wenjun; Lipsitz, Lewis A.
2013-01-01
Outdoor fallers differ from indoor fallers substantially in demographics, lifestyle, health condition and physical function. Biomechanical predictors of outdoor falls have not been well characterized. Current validated measures of postural deficits, which describe only the overall postural behavior, are predictive of indoor falls but not outdoor falls. We hypothesized that a model-based description of postural muscle tone and reflexes, particularly during dual tasking, would predict outdoor falls. We tested whether postural stiffness and damping from an inverted pendulum model were predictive of future indoor and outdoor falls among older adults from the MOBILIZE Boston Study. The center of pressure data during standing were obtained from 717 participants aged 77.9±5.3 years. Participants stood barefoot with eyes open for 30 seconds per trial, in two sets of five standing trials. One set included a serial subtractions task. Postural stiffness and damping values were determined from the postural sway data. After the postural measurements, falls were monitored prospectively using a monthly mail-in calendar over 6-36 months. Associations of postural measures with fall rates were determined using negative binomial regressions. After covariate adjustments, postural stiffness (p=0.02-0.05) and damping (p=0.007-0.1) were associated with lower outdoor falls risk, but not with indoor falls. Results were invariant by direction (anteroposterior versus mediolateral) or by condition (quiet standing versus dual task). Outdoor fall risk may be tied to postural control more so than indoor falls. Dual tasking is likely related to fall risk among older and sicker older adults, but not those relatively healthy. PMID:23623606
Paul, Michel A; Gray, Gary W; Love, Ryan J; Lange, Marvin
2007-07-01
Standard aeromedical doctrine dictates that aircrew receiving treatment for depression are grounded during treatment and follow-up observation, generally amounting to at least 1 yr. The Canadian Forces has initiated a program to return selected aircrew being treated for depression to restricted flying duties once stabilized on an approved antidepressant with resolution of depression. The currently approved medications are sertraline (a selective serotonin reuptake inhibitor) and bupropion (noradrenaline and dopamine reuptake inhibitor). This study was undertaken to determine whether or not citalopram or escitalopram affect psychomotor performance. In a double-blind crossover protocol with counter-balanced treatment order, 24 normal volunteer subjects (14 men and 10 women) were assessed for psychomotor performance during placebo, citalopram (40 mg), and escitalopram (20 mg) treatment. Each treatment arm lasted 2 wk, involving a daily morning ingestion of one capsule. There was a 1-wk washout period between medication courses. Subjects completed a drug side-effect questionnaire and were tested on three psychomotor test batteries once per week. Neither citalopram nor escitalopram affected serial reaction time, logical reasoning, serial subtraction, multitask, or MacWorth clock task performance. While we found some of the expected side effects due to citalopram and escitalopram, there was no impact on psychomotor performance. These findings support the possibility of using citalopram and escitalopram for returning aircrew to restricted flight duties (non-tactical flying) under close observation as a maintenance treatment after full resolution of depression.
Yasuda, Kazuhiro; Saichi, Kenta; Iwata, Hiroyasu
2018-01-01
Falls and fall-induced injuries are major global public health problems, and sensory input impairment in older adults results in significant limitations in feedback-type postural control. A haptic-based biofeedback (BF) system can be used for augmenting somatosensory input in older adults, and the application of this BF system can increase the objectivity of the feedback and encourage comparison with that provided by a trainer. Nevertheless, an optimal BF system that focuses on interpersonal feedback for balance training in older adults has not been proposed. Thus, we proposed a haptic-based perception-empathy BF system that provides information regarding the older adult's center-of-foot pressure pattern to the trainee and trainer for refining the motor learning effect. The first objective of this study was to examine the effect of this balance training regimen in healthy older adults performing a postural learning task. Second, this study aimed to determine whether BF training required high cognitive load to clarify its practicability in real-life settings. Twenty older adults were assigned to two groups: BF and control groups. Participants in both groups tried balance training in the single-leg stance while performing a cognitive task (i.e., serial subtraction task). Retention was tested 24 h later. Testing comprised balance performance measures (i.e., 95% confidence ellipse area and mean velocity of sway) and dual-task performance (number of responses and correct answers). Measurements of postural control using a force plate revealed that the stability of the single-leg stance was significantly lower in the BF group than in the control group during the balance task. The BF group retained the improvement in the 95% confidence ellipse area 24 h after the retention test. Results of dual-task performance during the balance task were not different between the two groups. These results confirmed the potential benefit of the proposed balance training regimen in designing successful motor learning programs for preventing falls in older adults. PMID:29868597
Yasuda, Kazuhiro; Saichi, Kenta; Iwata, Hiroyasu
2018-01-01
Falls and fall-induced injuries are major global public health problems, and sensory input impairment in older adults results in significant limitations in feedback-type postural control. A haptic-based biofeedback (BF) system can be used for augmenting somatosensory input in older adults, and the application of this BF system can increase the objectivity of the feedback and encourage comparison with that provided by a trainer. Nevertheless, an optimal BF system that focuses on interpersonal feedback for balance training in older adults has not been proposed. Thus, we proposed a haptic-based perception-empathy BF system that provides information regarding the older adult's center-of-foot pressure pattern to the trainee and trainer for refining the motor learning effect. The first objective of this study was to examine the effect of this balance training regimen in healthy older adults performing a postural learning task. Second, this study aimed to determine whether BF training required high cognitive load to clarify its practicability in real-life settings. Twenty older adults were assigned to two groups: BF and control groups. Participants in both groups tried balance training in the single-leg stance while performing a cognitive task (i.e., serial subtraction task). Retention was tested 24 h later. Testing comprised balance performance measures (i.e., 95% confidence ellipse area and mean velocity of sway) and dual-task performance (number of responses and correct answers). Measurements of postural control using a force plate revealed that the stability of the single-leg stance was significantly lower in the BF group than in the control group during the balance task. The BF group retained the improvement in the 95% confidence ellipse area 24 h after the retention test. Results of dual-task performance during the balance task were not different between the two groups. These results confirmed the potential benefit of the proposed balance training regimen in designing successful motor learning programs for preventing falls in older adults.
Hodyl, Nicolette A; Schneider, Luke; Vallence, Ann-Maree; Clow, Angela; Ridding, Michael C; Pitcher, Julia B
2016-02-01
There is emerging evidence of a relationship between the cortisol awakening response (CAR) and the neural mechanisms underlying learning and memory. The aim of this study was to determine whether the CAR is associated with acquisition, retention and overnight consolidation or improvement of a serial sequence reaction time task. Salivary samples were collected at 0, 15, 30 and 45 min after awakening in 39 healthy adults on 2 consecutive days. The serial sequence reaction time task was repeated each afternoon. Participants completed the perceived stress scale and provided salivary samples prior to testing for cortisol assessment. While the magnitude of the CAR (Z score) was not associated with either baseline performance or the timed improvement during task acquisition of the serial sequence task, a positive correlation was observed with reaction times during the stable performance phase on day 1 (r=0.373, p=0.019). Residuals derived from the relationship between baseline and stable phase reaction times on day 1 were used as a surrogate for the degree of learning: these residuals were also correlated with the CAR mean increase on day 1 (r=0.357, p=0.048). Task performance on day 2 was not associated with the CAR obtained on this same day. No association was observed between the perceived stress score, cortisol at testing or task performance. These data indicate that a smaller CAR in healthy adults is associated with a greater degree of learning and faster performance of a serial sequence reaction time task. These results support recognition of the CAR as an important factor contributing to cognitive performance throughout the day. Copyright © 2015 Elsevier B.V. All rights reserved.
Three more semantic serial position functions and a SIMPLE explanation.
Kelley, Matthew R; Neath, Ian; Surprenant, Aimée M
2013-05-01
There are innumerable demonstrations of serial position functions-with characteristic primacy and recency effects-in episodic tasks, but there are only a handful of such demonstrations in semantic memory tasks, and those demonstrations have used only two types of stimuli. Here, we provide three more examples of serial position functions when recalling from semantic memory. Participants were asked to reconstruct the order of (1) two cartoon theme song lyrics, (2) the seven Harry Potter books, and (3) two sets of movies, and all three demonstrations yielded conventional-looking serial position functions with primacy and recency effects. The data were well-fit by SIMPLE, a local distinctiveness model of memory that was originally designed to account for serial position effects in short- and long-term episodic memory. According to SIMPLE, serial position functions in both episodic and semantic memory tasks arise from the same type of processing: Items that are more separated from their close neighbors in psychological space at the time of recall will be better remembered. We argue that currently available evidence suggests that serial position functions observed when recalling items that are presumably in semantic memory arise because of the same processes as those observed when recalling items that are presumably in episodic memory.
Altani, Angeliki; Georgiou, George K; Deng, Ciping; Cho, Jeung-Ryeul; Katopodi, Katerina; Wei, Wei; Protopapas, Athanassios
2017-12-01
We examined cross-linguistic effects in the relationship between serial and discrete versions of digit naming and word reading. In total, 113 Mandarin-speaking Chinese children, 100 Korean children, 112 English-speaking Canadian children, and 108 Greek children in Grade 3 were administered tasks of serial and discrete naming of words and digits. Interrelations among tasks indicated that the link between rapid naming and reading is largely determined by the format of the tasks across orthographies. Multigroup path analyses with discrete and serial word reading as dependent variables revealed commonalities as well as significant differences between writing systems. The path coefficient from discrete digits to discrete words was greater for the more transparent orthographies, consistent with more efficient sight-word processing. The effect of discrete word reading on serial word reading was stronger in alphabetic languages, where there was also a suppressive effect of discrete digit naming. However, the effect of serial digit naming on serial word reading did not differ among the four language groups. This pattern of relationships challenges a universal account of reading fluency acquisition while upholding a universal role of rapid serial naming, further distinguishing between multi-element interword and intraword processing. Copyright © 2017 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Rao, Shaila; Kane, Martha T.
2009-01-01
This study assessed effectiveness of simultaneous prompting procedure in teaching two middle school students with cognitive impairment decimal subtraction using regrouping. A multiple baseline, multiple probe design replicated across subjects successfully taught two students with cognitive impairment at middle school level decimal subtraction…
Developing Prospective Teachers' Understanding of Addition and Subtraction with Whole Numbers
ERIC Educational Resources Information Center
Roy, George J.
2014-01-01
This study was situated in a semester-long classroom teaching experiment examining prospective teachers' understanding of number concepts and operations. The purpose of this paper is to describe the learning goals, tasks, and tools used to cultivate prospective teachers' understanding of addition and subtraction with whole numbers. Research…
Functional neuroanatomy of arithmetic and word reading and its relationship to age
Evans, Tanya M.; Flowers, D. Lynn; Luetje, Megan M.; Napoliello, Eileen; Eden, Guinevere F.
2016-01-01
Arithmetic and written language are uniquely human skills acquired during early schooling and used daily. While prior studies have independently characterized the neural bases for arithmetic and reading, here we examine both skills in a single study to capture their shared and unique cognitive mechanisms, as well as the role of age/experience in modulating their neural representations. We used functional MRI in 7- to 29-year-olds who performed single-digit subtraction, single-digit addition, and single-word reading. Using a factorial design, we examined the main effects of Task (subtraction, addition, reading) and Age (as a continuous variable), and their interactions. A main effect of Task revealed preferential activation for subtraction in bilateral intraparietal sulci and supramarginal gyri, right insula, inferior frontal gyrus, and cingulate. The right middle temporal gyrus and left superior temporal gyrus were preferentially active for both addition and reading, and left fusiform gyrus was preferentially active for reading. A main effect of Age revealed increased activity in older participants in right angular gyrus, superior temporal sulcus, and putamen, and less activity in left supplementary motor area, suggesting a left frontal to right temporo-parietal shift of activity with increasing age/experience across all tasks. Interactions for Task by Age were found in right hippocampus and left middle frontal gyrus, with older age invoking greater activity for addition and at the same time less activity for subtraction and reading. Together, in a study conducted in the same participants using similar task and acquisition parameters, the results reveal the neural substrates of these educationally relevant cognitive skills in typical participants in the context of age/experience. PMID:27566261
Rehearsal in serial memory for visual-spatial information: evidence from eye movements.
Tremblay, Sébastien; Saint-Aubin, Jean; Jalbert, Annie
2006-06-01
It is well established that rote rehearsal plays a key role in serial memory for lists of verbal items. Although a great deal of research has informed us about the nature of verbal rehearsal, much less attention has been devoted to rehearsal in serial memory for visual-spatial information. By using the dot task--a visual-spatial analogue of the classical verbal serial recall task--with delayed recall, performance and eyetracking data were recorded in order to establish whether visual-spatial rehearsal could be evidenced by eye movement. The use of eye movement as a form of rehearsal is detectable (Experiment 1), and it seems to contribute to serial memory performance over and above rehearsal based on shifts of spatial attention (Experiments 1 and 2).
Age and sex differences in steadiness of elbow flexor muscles with imposed cognitive demand
Pereira, Hugo M.; Spears, Vincent C.; Schlinder-Delap, Bonnie; Yoon, Tejin; Nielson, Kristy A.; Hunter, Sandra K.
2015-01-01
Purpose These studies determined (1) age and sex-related differences in steadiness of isometric contractions when high cognitive demand was imposed across a range of forces with the elbow flexor muscles (study 1) and, (2) sex differences in steadiness among older adults when low cognitive demand was imposed (study 2). Methods 36 young adults (18–25 years; 18 women) and 30 older adults (60–82 years; 17 women) performed isometric contractions at 5%, 30% and 40% of maximum voluntary contraction (MVC). Study 1 involved a high-cognitive demand session (serial subtractions by 13 during the contraction) and a control session (no mental math). Study 2 (older adults only) involved a low-cognitive demand session (subtracting by 1s). Results Older individuals exhibited greater increases in force fluctuations (coefficient of variation of force, CV) with high cognitive demand than young adults, with the largest age difference at 5% MVC (P = 0.01). Older adults had greater agonist EMG activity with high-cognitive demand and women had greater coactivation than men (P<0.05). In study 2, CV of force increased with low cognitive demand for the older women but not for the older men (P = 0.03). Conclusion Older adults had reduced steadiness and increased muscle activation when high cognitive demand was imposed while low cognitive demand induced increased force fluctuations in older women but not older men. These findings have implications for daily and work-related tasks that involve cognitive demand performed simultaneously during submaximal isometric contractions in an aging workforce. PMID:25633070
Influence of acute stress on decision outcomes and heuristics.
Hepler, Teri J; Kovacs, Attila J
2017-03-01
The purpose of this study was to examine the take-the-first (TTF) heuristic and decision outcomes in sports under conditions of no, mental, and physical stress. Participants (N.=68) performed 8 video decision-making trials under each of 3 stress conditions: no stress (counting backwards), mental stress (mental serial subtraction), and physical stress (running on treadmill at 13 RPE). Prior to each decision-making trial, participants were exposed to 30 seconds of stress. The decision-making task required participants to watch a video depicting an offensive situation in basketball and then decide what the player with the ball should do next. No differences were found between the 3 stress conditions on TTF frequency, number of options generated, quality of first generated option, or final decision quality. However, participants performing under conditions of no stress and physical stress generated their first option and made their final decision faster than they did when making decisions under mental stress. Overall, results suggest that mental stress impairs decision speed and that TTF is an ecologically rationale heuristic in dynamic, time-pressured situations.
Serial-position effects on a free-recall task in bilinguals.
Yoo, Jeewon; Kaushanskaya, Margarita
2016-01-01
In this study, we examined mechanisms that underlie free-recall performance in bilinguals' first language (L1) and second language (L2) through the prism of serial-position effects. On free-recall tasks, a typical pattern of performance follows a U-shaped serial-position curve, where items from the beginning of the list (the primacy effect) and items from the end of the list (the recency effect) are recalled with higher accuracy than items from the middle of the list. The present study contrasted serial-position effects on the free-recall task in Korean-English bilinguals' L1 vs. L2 and examined the relationship between an independent working memory (WM) measure and serial-position effects in bilinguals' two languages. Results revealed stronger pre-recency (primacy and middle) effects in L1 than in L2, but similar recency effects in the two languages. A close association was observed between WM and recall performance in the pre-recency region in the L1 but not in the L2. Together, these findings suggest that linguistic knowledge constrains free-recall performance in bilinguals, but only in the pre-recency region.
Category Induction via Distributional Analysis: Evidence from a Serial Reaction Time Task
ERIC Educational Resources Information Center
Hunt, Ruskin H.; Aslin, Richard N.
2010-01-01
Category formation lies at the heart of a number of higher-order behaviors, including language. We assessed the ability of human adults to learn, from distributional information alone, categories embedded in a sequence of input stimuli using a serial reaction time task. Artificial grammars generated corpora of input strings containing a…
The effect of concurrent semantic categorization on delayed serial recall.
Acheson, Daniel J; MacDonald, Maryellen C; Postle, Bradley R
2011-01-01
The influence of semantic processing on the serial ordering of items in short-term memory was explored using a novel dual-task paradigm. Participants engaged in 2 picture-judgment tasks while simultaneously performing delayed serial recall. List material varied in the presence of phonological overlap (Experiments 1 and 2) and in semantic content (concrete words in Experiment 1 and 3; nonwords in Experiments 2 and 3). Picture judgments varied in the extent to which they required accessing visual semantic information (i.e., semantic categorization and line orientation judgments). Results showed that, relative to line-orientation judgments, engaging in semantic categorization judgments increased the proportion of item-ordering errors for concrete lists but did not affect error proportions for nonword lists. Furthermore, although more ordering errors were observed for phonologically similar relative to dissimilar lists, no interactions were observed between the phonological overlap and picture-judgment task manipulations. These results demonstrate that lexical-semantic representations can affect the serial ordering of items in short-term memory. Furthermore, the dual-task paradigm provides a new method for examining when and how semantic representations affect memory performance.
The Effect of Concurrent Semantic Categorization on Delayed Serial Recall
Acheson, Daniel J.; MacDonald, Maryellen C.; Postle, Bradley R.
2010-01-01
The influence of semantic processing on the serial ordering of items in short-term memory was explored using a novel dual-task paradigm. Subjects engaged in two picture judgment tasks while simultaneously performing delayed serial recall. List material varied in the presence of phonological overlap (Experiments 1 and 2) and in semantic content (concrete words in Experiment 1 and 3; nonwords in Experiments 2 and 3). Picture judgments varied in the extent to which they required accessing visual semantic information (i.e., semantic categorization and line orientation judgments). Results showed that, relative to line orientation judgments, engaging in semantic categorization judgments increased the proportion of item ordering errors for concrete lists but did not affect error proportions for nonword lists. Furthermore, although more ordering errors were observed for phonologically similar relative to dissimilar lists, no interactions were observed between the phonological overlap and picture judgment task manipulations. These results thus demonstrate that lexical-semantic representations can affect the serial ordering of items in short-term memory. Furthermore, the dual-task paradigm provides a new method for examining when and how semantic representations affect memory performance. PMID:21058880
Changes in Predictive Task Switching with Age and with Cognitive Load.
Levy-Tzedek, Shelly
2017-01-01
Predictive control of movement is more efficient than feedback-based control, and is an important skill in everyday life. We tested whether the ability to predictively control movements of the upper arm is affected by age and by cognitive load. A total of 63 participants were tested in two experiments. In both experiments participants were seated, and controlled a cursor on a computer screen by flexing and extending their dominant arm. In Experiment 1, 20 young adults and 20 older adults were asked to continuously change the frequency of their horizontal arm movements, with the goal of inducing an abrupt switch between discrete movements (at low frequencies) and rhythmic movements (at high frequencies). We tested whether that change was performed based on a feed-forward (predictive) or on a feedback (reactive) control. In Experiment 2, 23 young adults performed the same task, while being exposed to a cognitive load half of the time via a serial subtraction task. We found that both aging and cognitive load diminished, on average, the ability of participants to predictively control their movements. Five older adults and one young adult under a cognitive load were not able to perform the switch between rhythmic and discrete movement (or vice versa). In Experiment 1, 40% of the older participants were able to predictively control their movements, compared with 70% in the young group. In Experiment 2, 48% of the participants were able to predictively control their movements with a cognitively loading task, compared with 70% in the no-load condition. The ability to predictively change a motor plan in anticipation of upcoming changes may be an important component in performing everyday functions, such as safe driving and avoiding falls.
Chen, Hui-Ya; Tang, Pei-Fang
2016-03-01
Dual-task Timed "Up & Go" (TUG) tests are likely to have applications different from those of a single-task TUG test and may have different contributing factors. The purpose of this study was to compare factors contributing to performance on single- and dual-task TUG tests. This investigation was a cross-sectional study. Sixty-four adults who were more than 50 years of age and dwelled in the community were recruited. Interviews and physical examinations were performed to identify potential contributors to TUG test performance. The time to complete the single-task TUG test (TUGsingle) or the dual-task TUG test, which consisted of completing the TUG test while performing a serial subtraction task (TUGcognitive) or while carrying water (TUGmanual), was measured. Age, hip extensor strength, walking speed, general mental function, and Stroop scores for word and color were significantly associated with performance on all TUG tests. Hierarchical multiple regression models, without the input of walking speed, revealed different independent factors contributing to TUGsingle performance (Mini-Mental Status Examination score, β=-0.32), TUGmanual performance (age, β=0.35), and TUGcognitive performance (Stroop word score, β=-0.40; Mini-Mental Status Examination score, β=-0.31). At least 40% of the variance in the performance on the 3 TUG tests was not explained by common clinical measures, even when the factor of walking speed was considered. However, this study successfully identified some important factors contributing to performance on different TUG tests, and other studies have reported similar findings for single-task TUG test and dual-task gait performance. Although the TUGsingle and the TUGcognitive shared general mental function as a common factor, the TUGmanual was uniquely influenced by age and the TUGcognitive was uniquely influenced by focused attention. These results suggest that both common and unique factors contribute to performance on single- and dual-task TUG tests and suggest important applications of the combined use of the 3 TUG tests. © 2016 American Physical Therapy Association.
Children's understanding of the addition/subtraction complement principle.
Torbeyns, Joke; Peters, Greet; De Smedt, Bert; Ghesquière, Pol; Verschaffel, Lieven
2016-09-01
In the last decades, children's understanding of mathematical principles has become an important research topic. Different from the commutativity and inversion principles, only few studies have focused on children's understanding of the addition/subtraction complement principle (if a - b = c, then c + b = a), mainly relying on verbal techniques. This contribution aimed at deepening our understanding of children's knowledge of the addition/subtraction complement principle, combining verbal and non-verbal techniques. Participants were 67 third and fourth graders (9- to 10-year-olds). Children solved two tasks in which verbal reports as well as accuracy and speed data were collected. These two tasks differed only in the order of the problems and the instructions. In the looking-back task, children were told that sometimes the preceding problem might help to answer the next problem. In the baseline task, no helpful preceding items were offered. The looking-back task included 10 trigger-target problem pairs on the complement relation. Children verbally reported looking back on about 40% of all target problems in the looking-back task; the target problems were also solved faster and more accurately than in the baseline task. These results suggest that children used their understanding of the complement principle. The verbal and non-verbal data were highly correlated. This study complements previous work on children's understanding of mathematical principles by highlighting interindividual differences in 9- to 10-year-olds' understanding of the complement principle and indicating the potential of combining verbal and non-verbal techniques to investigate (the acquisition of) this understanding. © 2016 The British Psychological Society.
Effects of Aging on Arm Swing during Gait: The Role of Gait Speed and Dual Tasking.
Mirelman, Anat; Bernad-Elazari, Hagar; Nobel, Tomer; Thaler, Avner; Peruzzi, Agnese; Plotnik, Meir; Giladi, Nir; Hausdorff, Jeffrey M
2015-01-01
Healthy walking is characterized by pronounced arm swing and axial rotation. Aging effects on gait speed, stride length and stride time variability have been previously reported, however, less is known about aging effects on arm swing and axial rotation and their relationship to age-associated gait changes during usual walking and during more challenging conditions like dual tasking. Sixty healthy adults between the ages of 30-77 were included in this study designed to address this gap. Lightweight body fixed sensors were placed on each wrist and lower back. Participants walked under 3 walking conditions each of 1 minute: 1) comfortable speed, 2) walking while serially subtracting 3's (Dual Task), 3) walking at fast speed. Aging effects on arm swing amplitude, range, symmetry, jerk and axial rotation amplitude and jerk were compared between decades of age (30-40; 41-50; 51-60; 61-77 years). As expected, older adults walked slower (p = 0.03) and with increased stride variability (p = 0.02). Arm swing amplitude decreased with age under all conditions (p = 0.04). In the oldest group, arm swing decreased during dual task and increased during the fast walking condition (p<0.0001). Similarly, arm swing asymmetry increased during the dual task in the older groups (p<0.004), but not in the younger groups (p = 0.67). Significant differences between groups and within conditions were observed in arm swing jerk (p<0.02), axial rotation amplitude (p<0.02) and axial jerk (p<0.001). Gait speed, arm swing amplitude of the dominant arm, arm swing asymmetry and axial rotation jerk were all independent predictors of age in a multivariate model. These findings suggest that the effects of gait speed and dual tasking on arm swing and axial rotation during walking are altered among healthy older adults. Follow-up work is needed to examine if these effects contribute to reduced stability in aging.
Effects of Aging on Arm Swing during Gait: The Role of Gait Speed and Dual Tasking
Mirelman, Anat; Bernad-Elazari, Hagar; Nobel, Tomer; Thaler, Avner; Peruzzi, Agnese; Plotnik, Meir; Giladi, Nir; Hausdorff, Jeffrey M.
2015-01-01
Healthy walking is characterized by pronounced arm swing and axial rotation. Aging effects on gait speed, stride length and stride time variability have been previously reported, however, less is known about aging effects on arm swing and axial rotation and their relationship to age-associated gait changes during usual walking and during more challenging conditions like dual tasking. Sixty healthy adults between the ages of 30–77 were included in this study designed to address this gap. Lightweight body fixed sensors were placed on each wrist and lower back. Participants walked under 3 walking conditions each of 1 minute: 1) comfortable speed, 2) walking while serially subtracting 3’s (Dual Task), 3) walking at fast speed. Aging effects on arm swing amplitude, range, symmetry, jerk and axial rotation amplitude and jerk were compared between decades of age (30–40; 41–50; 51–60; 61–77 years). As expected, older adults walked slower (p = 0.03) and with increased stride variability (p = 0.02). Arm swing amplitude decreased with age under all conditions (p = 0.04). In the oldest group, arm swing decreased during dual task and increased during the fast walking condition (p<0.0001). Similarly, arm swing asymmetry increased during the dual task in the older groups (p<0.004), but not in the younger groups (p = 0.67). Significant differences between groups and within conditions were observed in arm swing jerk (p<0.02), axial rotation amplitude (p<0.02) and axial jerk (p<0.001). Gait speed, arm swing amplitude of the dominant arm, arm swing asymmetry and axial rotation jerk were all independent predictors of age in a multivariate model. These findings suggest that the effects of gait speed and dual tasking on arm swing and axial rotation during walking are altered among healthy older adults. Follow-up work is needed to examine if these effects contribute to reduced stability in aging. PMID:26305896
Multivariate Spatial Condition Mapping Using Subtractive Fuzzy Cluster Means
Sabit, Hakilo; Al-Anbuky, Adnan
2014-01-01
Wireless sensor networks are usually deployed for monitoring given physical phenomena taking place in a specific space and over a specific duration of time. The spatio-temporal distribution of these phenomena often correlates to certain physical events. To appropriately characterise these events-phenomena relationships over a given space for a given time frame, we require continuous monitoring of the conditions. WSNs are perfectly suited for these tasks, due to their inherent robustness. This paper presents a subtractive fuzzy cluster means algorithm and its application in data stream mining for wireless sensor systems over a cloud-computing-like architecture, which we call sensor cloud data stream mining. Benchmarking on standard mining algorithms, the k-means and the FCM algorithms, we have demonstrated that the subtractive fuzzy cluster means model can perform high quality distributed data stream mining tasks comparable to centralised data stream mining. PMID:25313495
Sensory-guided motor tasks benefit from mental training based on serial prediction
Binder, Ellen; Hagelweide, Klara; Wang, Ling E.; Kornysheva, Katja; Grefkes, Christian; Fink, Gereon R.; Schubotz, Ricarda I.
2017-01-01
Mental strategies have been suggested to constitute a promising approach to improve motor abilities in both healthy subjects and patients. This behavioural effect has been shown to be associated with changes of neural activity in premotor areas, not only during movement execution, but also while performing motor imagery or action observation. However, how well such mental tasks are performed is often difficult to assess, especially in patients. We here used a novel mental training paradigm based on the serial prediction task (SPT) in order to activate premotor circuits in the absence of a motor task. We then tested whether this intervention improves motor-related performance such as sensorimotor transformation. Two groups of healthy young participants underwent a single-blinded five-day cognitive training schedule and were tested in four different motor tests on the day before and after training. One group (N = 22) received the SPT-training and the other one (N = 21) received a control training based on a serial match-to-sample task. The results revealed significant improvements of the SPT-group in a sensorimotor timing task, i.e. synchronization of finger tapping to a visually presented rhythm, as well as improved visuomotor coordination in a sensory-guided pointing task compared to the group that received the control training. However, mental training did not show transfer effects on motor abilities in healthy subjects beyond the trained modalities as evident by non-significant changes in the Jebsen–Taylor handfunctiontest. In summary, the data suggest that mental training based on the serial prediction task effectively engages sensorimotor circuits and thereby improves motor behaviour. PMID:24321273
Probabilistic motor sequence learning in a virtual reality serial reaction time task.
Sense, Florian; van Rijn, Hedderik
2018-01-01
The serial reaction time task is widely used to study learning and memory. The task is traditionally administered by showing target positions on a computer screen and collecting responses using a button box or keyboard. By comparing response times to random or sequenced items or by using different transition probabilities, various forms of learning can be studied. However, this traditional laboratory setting limits the number of possible experimental manipulations. Here, we present a virtual reality version of the serial reaction time task and show that learning effects emerge as expected despite the novel way in which responses are collected. We also show that response times are distributed as expected. The current experiment was conducted in a blank virtual reality room to verify these basic principles. For future applications, the technology can be used to modify the virtual reality environment in any conceivable way, permitting a wide range of previously impossible experimental manipulations.
Reliability and Validity of Dual-Task Mobility Assessments in People with Chronic Stroke
Yang, Lei; He, Chengqi; Pang, Marco Yiu Chung
2016-01-01
Background The ability to perform a cognitive task while walking simultaneously (dual-tasking) is important in real life. However, the psychometric properties of dual-task walking tests have not been well established in stroke. Objective To assess the test-retest reliability, concurrent and known-groups validity of various dual-task walking tests in people with chronic stroke. Design Observational measurement study with a test-retest design. Methods Eighty-eight individuals with chronic stroke participated. The testing protocol involved four walking tasks (walking forward at self-selected and maximal speed, walking backward at self-selected speed, and crossing over obstacles) performed simultaneously with each of the three attention-demanding tasks (verbal fluency, serial 3 subtractions or carrying a cup of water). For each dual-task condition, the time taken to complete the walking task, the correct response rate (CRR) of the cognitive task, and the dual-task effect (DTE) for the walking time and CRR were calculated. Forty-six of the participants were tested twice within 3–4 days to establish test-retest reliability. Results The walking time in various dual-task assessments demonstrated good to excellent reliability [Intraclass correlation coefficient (ICC2,1) = 0.70–0.93; relative minimal detectable change at 95% confidence level (MDC95%) = 29%-45%]. The reliability of the CRR (ICC2,1 = 0.58–0.81) and the DTE in walking time (ICC2,1 = 0.11–0.80) was more varied. The reliability of the DTE in CRR (ICC2,1 = -0.31–0.40) was poor to fair. The walking time and CRR obtained in various dual-task walking tests were moderately to strongly correlated with those of the dual-task Timed-up-and-Go test, thus demonstrating good concurrent validity. None of the tests could discriminate fallers (those who had sustained at least one fall in the past year) from non-fallers. Limitation The results are generalizable to community-dwelling individuals with chronic stroke only. Conclusions The walking time derived from the various dual-task assessments generally demonstrated good to excellent reliability, making them potentially useful in clinical practice and future research endeavors. However, the usefulness of these measurements in predicting falls needs to be further explored. Relatively low reliability was shown in the cognitive outcomes and DTE, which may not be preferred measurements for assessing dual-task performance. PMID:26808662
Serial Position Functions in General Knowledge
ERIC Educational Resources Information Center
Kelley, Matthew R.; Neath, Ian; Surprenant, Aimée M.
2015-01-01
Serial position functions with marked primacy and recency effects are ubiquitous in episodic memory tasks. The demonstrations reported here explored whether bow-shaped serial position functions would be observed when people ordered exemplars from various categories along a specified dimension. The categories and dimensions were: actors and age;…
Attractive Serial Dependence in the Absence of an Explicit Task.
Fornaciai, Michele; Park, Joonkoo
2018-03-01
Attractive serial dependence refers to an adaptive change in the representation of sensory information, whereby a current stimulus appears to be similar to a previous one. The nature of this phenomenon is controversial, however, as serial dependence could arise from biased perceptual representations or from biased traces of working memory representation at a decisional stage. Here, we demonstrated a neural signature of serial dependence in numerosity perception emerging early in the visual processing stream even in the absence of an explicit task. Furthermore, a psychophysical experiment revealed that numerosity perception is biased by a previously presented stimulus in an attractive way, not by repulsive adaptation. These results suggest that serial dependence is a perceptual phenomenon starting from early levels of visual processing and occurring independently from a decision process, which is consistent with the view that these biases smooth out noise from neural signals to establish perceptual continuity.
Neath, Ian; Saint-Aubin, Jean
2011-06-01
The serial position function, with its characteristic primacy and recency effects, is one of the most ubiquitous findings in episodic memory tasks. In contrast, there are only two demonstrations of such functions in tasks thought to tap semantic memory. Here, we provide a third demonstration, showing that free recall of the prime ministers of Canada also results in a serial position function. Scale Independent Memory, Perception, and Learning (SIMPLE), a local distinctiveness model of memory that was designed to account for serial position effects in episodic memory, fit the data. According to SIMPLE, serial position functions observed in episodic and semantic memory all reflect the relative distinctiveness principle: items will be well remembered to the extent that they are more distinct than competing items at the time of retrieval. (PsycINFO Database Record (c) 2011 APA, all rights reserved).
Impact of auditory selective attention on verbal short-term memory and vocabulary development.
Majerus, Steve; Heiligenstein, Lucie; Gautherot, Nathalie; Poncelet, Martine; Van der Linden, Martial
2009-05-01
This study investigated the role of auditory selective attention capacities as a possible mediator of the well-established association between verbal short-term memory (STM) and vocabulary development. A total of 47 6- and 7-year-olds were administered verbal immediate serial recall and auditory attention tasks. Both task types probed processing of item and serial order information because recent studies have shown this distinction to be critical when exploring relations between STM and lexical development. Multiple regression and variance partitioning analyses highlighted two variables as determinants of vocabulary development: (a) a serial order processing variable shared by STM order recall and a selective attention task for sequence information and (b) an attentional variable shared by selective attention measures targeting item or sequence information. The current study highlights the need for integrative STM models, accounting for conjoined influences of attentional capacities and serial order processing capacities on STM performance and the establishment of the lexical language network.
Short-Term Memory Stages in Sign vs. Speech: The Source of the Serial Span Discrepancy
Hall, Matthew L.
2011-01-01
Speakers generally outperform signers when asked to recall a list of unrelated verbal items. This phenomenon is well established, but its source has remained unclear. In this study, we evaluate the relative contribution of the three main processing stages of short-term memory – perception, encoding, and recall – in this effect. The present study factorially manipulates whether American Sign Language (ASL) or English was used for perception, memory encoding, and recall in hearing ASL-English bilinguals. Results indicate that using ASL during both perception and encoding contributes to the serial span discrepancy. Interestingly, performing recall in ASL slightly increased span, ruling out the view that signing is in general a poor choice for short-term memory. These results suggest that despite the general equivalence of sign and speech in other memory domains, speech-based representations are better suited for the specific task of perception and memory encoding of a series of unrelated verbal items in serial order through the phonological loop. This work suggests that interpretation of performance on serial recall tasks in English may not translate straightforwardly to serial tasks in sign language. PMID:21450284
Serial-Position Effects on a Free-Recall Task in Bilinguals
Yoo, Jeewon; Kaushanskaya, Margarita
2015-01-01
In this study, we examined mechanisms that underlie free-recall performance in bilinguals’ first language (L1) and second language (L2) through the prism of serial-position effects. On free-recall tasks, a typical pattern of performance follows a U-shaped serial-position curve, where items from the beginning of the list (the primacy effect) and items from the end of the list (the recency effect) are recalled with higher accuracy than items from the middle of the list. The present study contrasted serial-position effects on the free-recall task in Korean-English bilinguals’ L1 vs. L2 and examined the relationship between an independent working memory (WM) measure and serial-position effects in bilinguals’ two languages. Results revealed stronger pre-recency (primacy and middle) effects in L1 than in L2, but similar recency effects in the two languages. A close association was observed between WM and recall performance in the pre-recency region in the L1 but not in the L2. Together, these findings suggest that linguistic knowledge constrains free-recall performance in bilinguals, but only in the pre-recency region. PMID:25730660
Hunter, Susan W; Frengopoulos, Courtney; Holmes, Jeff; Viana, Ricardo; Payne, Michael W
2018-04-01
To determine the relative and absolute reliability of a dual-task functional mobility assessment. Cross-sectional study. Academic rehabilitation hospital. Individuals (N=60) with lower extremity amputation attending an outpatient amputee clinic (mean age, 58.21±12.59y; 18, 80% male) who were stratified into 3 groups: (1) transtibial amputation of vascular etiology (n=20); (2) transtibial amputation of nonvascular etiology (n=20); and (3) transfemoral or bilateral amputation of any etiology (n=20). Not applicable. Time to complete the L Test measured functional mobility under single- and dual-task conditions. The addition of a cognitive task (serial subtractions by 3's) created dual-task conditions. Single-task performance on the cognitive task was also reported. Intraclass correlation coefficients (ICCs) measured relative reliability; SEM and minimal detectable change with a 95% confidence interval (MDC 95 ) measured absolute reliability. Bland-Altman plots measured agreement between assessments. Relative reliability results were excellent for all 3 groups. Values for the dual-task L Test for those with transtibial amputation of vascular etiology (n=20; mean age, 60.36±7.84y; 19, 90% men) were ICC=.98 (95% confidence interval [CI], .94-.99), SEM=1.36 seconds, and MDC 95 =3.76 seconds; for those with transtibial amputation of nonvascular etiology (n=20; mean age, 55.85±14.08y; 17, 85% men), values were ICC=.93 (95% CI, .80-.98), SEM=1.34 seconds, and MDC 95 =3.71 seconds; and for those with transfemoral or bilateral amputation (n=20; mean age, 58.21±14.88y; 13, 65% men), values were ICC=.998 (95% CI, .996-.999), SEM=1.03 seconds, and MDC 95 =2.85 seconds. Bland-Altman plots indicated that assessments did not vary systematically for each group. This dual-task assessment protocol achieved approved levels of relative reliability values for the 3 groups tested. This protocol may be used clinically or in research settings to assess the interaction between cognition and functional mobility in the population with lower extremity amputation. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Effects of Single Compared to Dual Task Practice on Learning a Dynamic Balance Task in Young Adults
Kiss, Rainer; Brueckner, Dennis; Muehlbauer, Thomas
2018-01-01
Background: In everyday life, people engage in situations involving the concurrent processing of motor (balance) and cognitive tasks (i.e., “dual task situations”) that result in performance declines in at least one of the given tasks. The concurrent practice of both the motor and cognitive task may counteract these performance decrements. The purpose of this study was to examine the effects of single task (ST) compared to dual task (DT) practice on learning a dynamic balance task. Methods: Forty-eight young adults were randomly assigned to either a ST (i.e., motor or cognitive task training only) or a DT (i.e., motor-cognitive training) practice condition. The motor task required participants to stand on a platform and keeping the platform as close to horizontal as possible. In the cognitive task, participants were asked to recite serial subtractions of three. For 2 days, participants of the ST groups practiced the motor or cognitive task only, while the participants of the DT group concurrently performed both. Root-mean-square error (RMSE) for the motor and total number of correct calculations for the cognitive task were computed. Results: During practice, all groups improved their respective balance and/or cognitive task performance. With regard to the assessment of learning on day 3, we found significantly smaller RMSE values for the ST motor (d = 1.31) and the DT motor-cognitive (d = 0.76) practice group compared to the ST cognitive practice group but not between the ST motor and the DT motor-cognitive practice group under DT test condition. Further, we detected significantly larger total numbers of correct calculations under DT test condition for the ST cognitive (d = 2.19) and the DT motor-cognitive (d = 1.55) practice group compared to the ST motor practice group but not between the ST cognitive and the DT motor-cognitive practice group. Conclusion: We conclude that ST practice resulted in an effective modulation of the trained domain (i.e., motor or cognitive) while only DT practice resulted in an effective modulation of both domains (i.e., motor and cognitive). Thus, particularly DT practice frees up central resources that were used for an effective modulation of motor and cognitive processing mechanisms. PMID:29593614
Rats' Anticipation of Current and Future Trial Outcomes in the Ordered RNR/RNN Serial Pattern Task
ERIC Educational Resources Information Center
Cohen, Jerome; Mohamoud, Sirad; Szelest, Izabela; Kani, Tammy
2008-01-01
In the ordered RNR/RNN serial pattern task, rats often reduce their running speeds on trial 2 less within the RNR than within the RNN series. Initially, investigators (Capaldi, 1985; Capaldi et al., 1983) considered this trial 2 differential speed effect evidence for rats' anticipation of inter-trial outcomes within each series. Later findings,…
ERIC Educational Resources Information Center
Bhatarah, Parveen; Ward, Geoff; Tan, Lydia
2006-01-01
In 3 experiments, participants saw lists of 16 words for free recall with or without a 6-digit immediate serial recall (ISR) task after each word. Free recall was performed under standard visual silent and spoken-aloud conditions (Experiment 1), overt rehearsal conditions (Experiment 2), and fixed rehearsal conditions (Experiment 3). The authors…
What Discrete and Serial Rapid Automatized Naming Can Reveal about Reading
ERIC Educational Resources Information Center
de Jong, Peter F.
2011-01-01
Serial rapid automized naming (RAN) has been often found to correlate more strongly with reading than discrete RAN. This study aimed to demonstrate that the strength of the RAN-reading fluency relationship is dependent on the format of both RAN and the reading task if the reading task consists of sight words. Seventy-one first-grade, 74…
Geary, D C; Frensch, P A; Wiley, J G
1993-06-01
Thirty-six younger adults (10 male, 26 female; ages 18 to 38 years) and 36 older adults (14 male, 22 female; ages 61 to 80 years) completed simple and complex paper-and-pencil subtraction tests and solved a series of simple and complex computer-presented subtraction problems. For the computer task, strategies and solution times were recorded on a trial-by-trial basis. Older Ss used a developmentally more mature mix of problem-solving strategies to solve both simple and complex subtraction problems. Analyses of component scores derived from the solution times suggest that the older Ss are slower at number encoding and number production but faster at executing the borrow procedure. In contrast, groups did not appear to differ in the speed of subtraction fact retrieval. Results from a computational simulation are consistent with the interpretation that older adults' advantage for strategy choices and for the speed of executing the borrow procedure might result from more practice solving subtraction problems.
Computer-based training for improving mental calculation in third- and fifth-graders.
Caviola, Sara; Gerotto, Giulia; Mammarella, Irene C
2016-11-01
The literature on intervention programs to improve arithmetical abilities is fragmentary and few studies have examined training on the symbolic representation of numbers (i.e. Arabic digits). In the present research, three groups of 3rd- and 5th-grade schoolchildren were given training on mental additions: 76 were assigned to a computer-based strategic training (ST) group, 73 to a process-based training (PBT) group, and 71 to a passive control (PC) group. Before and after the training, the children were given a criterion task involving complex addition problems, a nearest transfer task on complex subtraction problems, two near transfer tasks on math fluency, and a far transfer task on numerical reasoning. Our results showed developmental differences: 3rd-graders benefited more from the ST, with transfer effects on subtraction problems and math fluency, while 5th-graders benefited more from the PBT, improving their response times in the criterion task. Developmental, clinical and educational implications of these findings are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Berger, Carole; Valdois, Sylviane; Lallier, Marie; Donnadieu, Sophie
2015-01-01
The present study explored the temporal allocation of attention in groups of 8-year-old children, 10-year-old children, and adults performing a rapid serial visual presentation task. In a dual-condition task, participants had to detect a briefly presented target (T2) after identifying an initial target (T1) embedded in a random series of…
Retrospective Revaluation Effects Following Serial Compound Training and Target Extinction
ERIC Educational Resources Information Center
Effting, Marieke; Vervliet, Bram; Kindt, Merel
2010-01-01
Using a conditioned suppression task, two experiments examined retrospective revaluation effects after serial compound training in a release from overshadowing design. In Experiment 1, serial X [right arrow] A+ training produced suppression to target A, which was enhanced when preceded by feature X, whereas X by itself elicited no suppression.…
Kowialiewski, Benjamin; Majerus, Steve
2016-01-01
Several models in the verbal domain of short-term memory (STM) consider a dissociation between item and order processing. This view is supported by data demonstrating that different types of time-based interference have a greater effect on memory for the order of to-be-remembered items than on memory for the items themselves. The present study investigated the domain-generality of the item versus serial order dissociation by comparing the differential effects of time-based interfering tasks, such as rhythmic interference and articulatory suppression, on item and order processing in verbal and musical STM domains. In Experiment 1, participants had to maintain sequences of verbal or musical information in STM, followed by a probe sequence, this under different conditions of interference (no-interference, rhythmic interference, articulatory suppression). They were required to decide whether all items of the probe list matched those of the memory list (item condition) or whether the order of the items in the probe sequence matched the order in the memory list (order condition). In Experiment 2, participants performed a serial order probe recognition task for verbal and musical sequences ensuring sequential maintenance processes, under no-interference or rhythmic interference conditions. For Experiment 1, serial order recognition was not significantly more impacted by interfering tasks than was item recognition, this for both verbal and musical domains. For Experiment 2, we observed selective interference of the rhythmic interference condition on both musical and verbal order STM tasks. Overall, the results suggest a similar and selective sensitivity to time-based interference for serial order STM in verbal and musical domains, but only when the STM tasks ensure sequential maintenance processes. PMID:27992565
Gorin, Simon; Kowialiewski, Benjamin; Majerus, Steve
2016-01-01
Several models in the verbal domain of short-term memory (STM) consider a dissociation between item and order processing. This view is supported by data demonstrating that different types of time-based interference have a greater effect on memory for the order of to-be-remembered items than on memory for the items themselves. The present study investigated the domain-generality of the item versus serial order dissociation by comparing the differential effects of time-based interfering tasks, such as rhythmic interference and articulatory suppression, on item and order processing in verbal and musical STM domains. In Experiment 1, participants had to maintain sequences of verbal or musical information in STM, followed by a probe sequence, this under different conditions of interference (no-interference, rhythmic interference, articulatory suppression). They were required to decide whether all items of the probe list matched those of the memory list (item condition) or whether the order of the items in the probe sequence matched the order in the memory list (order condition). In Experiment 2, participants performed a serial order probe recognition task for verbal and musical sequences ensuring sequential maintenance processes, under no-interference or rhythmic interference conditions. For Experiment 1, serial order recognition was not significantly more impacted by interfering tasks than was item recognition, this for both verbal and musical domains. For Experiment 2, we observed selective interference of the rhythmic interference condition on both musical and verbal order STM tasks. Overall, the results suggest a similar and selective sensitivity to time-based interference for serial order STM in verbal and musical domains, but only when the STM tasks ensure sequential maintenance processes.
Evaluation of induced and evoked changes in EEG during selective attention to verbal stimuli.
Horki, P; Bauernfeind, G; Schippinger, W; Pichler, G; Müller-Putz, G R
2016-09-01
Two challenges need to be addressed before bringing non-motor mental tasks for brain-computer interface (BCI) control to persons in a minimally conscious state (MCS), who can be behaviorally unresponsive even when proven to be consciously aware: first, keeping the cognitive demands as low as possible so that they could be fulfilled by persons with MCS. Second, increasing the control of experimental protocol (i.e. type and timing of the task performance). The goal of this study is twofold: first goal is to develop an experimental paradigm that can facilitate the performance of brain-teasers (e.g. mental subtraction and word generation) on the one hand, and can increase the control of experimental protocol on the other hand. The second goal of this study is to exploit the similar findings for mentally attending to someone else's verbal performance of brain-teaser tasks and self-performing the same tasks to setup an online BCI, and to compare it in healthy participants to the current "state-of-the-art" motor imagery (MI, sports). The response accuracies for the best performing healthy participants indicate that selective attention to verbal performance of mental subtraction (SUB) is a viable alternative to the MI. Time-frequency analysis of the SUB task in one participant with MCS did not reveal any significant (p<0.05) EEG changes, whereas imagined performance of one sport of participants' choice (SPORT) revealed task-related EEG changes over neurophysiological plausible cortical areas. We found that mentally attending to someone else's verbal performance of brain-teaser tasks leads to similar results as in self-performing the same tasks. In this work we demonstrated that a single auditory selective attention task (i.e. mentally attending to someone else's verbal performance of mental subtraction) can modulate both induced and evoked changes in EEG, and be used for yes/no communication in an auditory scanning paradigm. Copyright © 2016 Elsevier B.V. All rights reserved.
van Dijck, Jean-Philippe; Fias, Wim; Andres, Michael
2015-10-01
It has been proposed that the metrics of space, time and other magnitudes relevant for action are coupled through a generalized magnitude system that also contribute to number representation. Several studies capitalized on stimulus-response compatibility effects to show that numbers map onto left-right representations and grasp representations as a function of their magnitude. However, the tasks typically used do not allow disentangling magnitude from serial order processing. Here, we devised a working memory (WM) task where participants had to remember random sequences of numbers and perform a precision/whole-hand grip (Experiment 1) or a uni-manual left/right button press (Experiment 2) in response to numbers presented during the retention interval. This task does allow differentiating the interference of number magnitude and serial order with each set of responses. Experiment 1 showed that precision grips were initiated faster than whole-hand grips in response to small numbers, irrespective of their serial position in WM. In contrast, Experiment 2 revealed an advantage of right over left button presses as serial position increased, without any influence of number magnitude. These findings demonstrate that grasping and left-right movements overlap with distinct dimensions of number processing. These findings are discussed in the light of different theories explaining the interactions between numbers, space and action.
Syntactic Recursion Facilitates and Working Memory Predicts Recursive Theory of Mind
Arslan, Burcu; Hohenberger, Annette; Verbrugge, Rineke
2017-01-01
In this study, we focus on the possible roles of second-order syntactic recursion and working memory in terms of simple and complex span tasks in the development of second-order false belief reasoning. We tested 89 Turkish children in two age groups, one younger (4;6–6;5 years) and one older (6;7–8;10 years). Although second-order syntactic recursion is significantly correlated with the second-order false belief task, results of ordinal logistic regressions revealed that the main predictor of second-order false belief reasoning is complex working memory span. Unlike simple working memory and second-order syntactic recursion tasks, the complex working memory task required processing information serially with additional reasoning demands that require complex working memory strategies. Based on our results, we propose that children’s second-order theory of mind develops when they have efficient reasoning rules to process embedded beliefs serially, thus overcoming a possible serial processing bottleneck. PMID:28072823
Bonk, William J; Healy, Alice F
2010-01-01
A serial reproduction of order with distractors task was developed to make it possible to observe successive snapshots of the learning process at each serial position. The new task was used to explore the effect of several variables on serial memory performance: stimulus content (words, blanks, and pictures), presentation condition (spatial information vs. none), semantically categorized item clustering (grouped vs. ungrouped), and number of distractors relative to targets (none, equal, double). These encoding and retrieval variables, along with learning attempt number, affected both overall performance levels and the shape of the serial position function, although a large and extensive primacy advantage and a small 1-item recency advantage were found in each case. These results were explained well by a version of the scale-independent memory, perception, and learning model that accounted for improved performance by increasing the value of only a single parameter that reflects reduced interference from distant items.
Ward, Geoff; Tan, Lydia; Grenfell-Essam, Rachel
2010-09-01
In 4 experiments, participants were presented with lists of between 1 and 15 words for tests of immediate memory. For all tasks, participants tended to initiate recall with the first word on the list for short lists. As the list length was increased, so there was a decreased tendency to start with the first list item; and, when free to do so, participants showed an increased tendency to start with one of the last 4 list items. In all tasks, the start position strongly influenced the shape of the resultant serial position curves: When recall started at Serial Position 1, elevated recall of early list items was observed; when recall started toward the end of the list, there were extended recency effects. These results occurred under immediate free recall (IFR) and different variants of immediate serial recall (ISR) and reconstruction of order (RoO) tasks. We argue that these findings have implications for the relationship between IFR and ISR and between rehearsal and recall. (c) 2010 APA, all rights reserved).
ERIC Educational Resources Information Center
Christie, Michael A.; Hersch, Steven M.
2004-01-01
In this paper, we demonstrate nondeclarative sequence learning in mice using an animal analog of the human serial reaction time task (SRT) that uses a within-group comparison of behavior in response to a repeating sequence versus a random sequence. Ten female B6CBA mice performed eleven 96-trial sessions containing 24 repetitions of a 4-trial…
The relation between working memory and language comprehension in signers and speakers.
Emmorey, Karen; Giezen, Marcel R; Petrich, Jennifer A F; Spurgeon, Erin; O'Grady Farnady, Lucinda
2017-06-01
This study investigated the relation between linguistic and spatial working memory (WM) resources and language comprehension for signed compared to spoken language. Sign languages are both linguistic and visual-spatial, and therefore provide a unique window on modality-specific versus modality-independent contributions of WM resources to language processing. Deaf users of American Sign Language (ASL), hearing monolingual English speakers, and hearing ASL-English bilinguals completed several spatial and linguistic serial recall tasks. Additionally, their comprehension of spatial and non-spatial information in ASL and spoken English narratives was assessed. Results from the linguistic serial recall tasks revealed that the often reported advantage for speakers on linguistic short-term memory tasks does not extend to complex WM tasks with a serial recall component. For English, linguistic WM predicted retention of non-spatial information, and both linguistic and spatial WM predicted retention of spatial information. For ASL, spatial WM predicted retention of spatial (but not non-spatial) information, and linguistic WM did not predict retention of either spatial or non-spatial information. Overall, our findings argue against strong assumptions of independent domain-specific subsystems for the storage and processing of linguistic and spatial information and furthermore suggest a less important role for serial encoding in signed than spoken language comprehension. Copyright © 2017 Elsevier B.V. All rights reserved.
Reissland, Jessika; Manzey, Dietrich
2016-07-01
Understanding the mechanisms and performance consequences of multitasking has long been in focus of scientific interest, but has been investigated by three research lines more or less isolated from each other. Studies in the fields of the psychological refractory period, task switching, and interruptions have scored with a high experimental control, but usually do not give participants many degrees of freedom to self-organize the processing of two concurrent tasks. Individual strategies as well as their impact on efficiency have mainly been neglected. Self-organized multitasking has been investigated in the field of human factors, but primarily with respect to overall performance without detailed investigation of how the tasks are processed. The current work attempts to link aspects of these research lines. All of them, explicitly or implicitly, provide hints about an individually preferred type of task organization, either more cautious trying to work strictly serially on only one task at a time or more daring with a focus on task interleaving and, if possible, also partially overlapping (parallel) processing. In two experiments we investigated different strategies of task organization and their impact on efficiency using a new measure of overall multitasking efficiency. Experiment 1 was based on a classical task switching paradigm with two classification tasks, but provided one group of participants with a stimulus preview of the task to switch to next, enabling at least partial overlapping processing. Indeed, this preview led to a reduction of switch costs and to an increase of dual-task efficiency, but only for a subgroup of participants. They obviously exploited the possibility of overlapping processing, while the others worked mainly serially. While task-sequence was externally guided in the first experiment, Experiment 2 extended the approach by giving the participants full freedom of task organization in concurrent performance of the same tasks. Fine-grained analyses of response scheduling again revealed individual differences regarding the preference for strictly serial processing vs. some sort of task interleaving and overlapping processing. However, neither group showed a striking benefit in dual-task efficiency, although the results show that the costs of multitasking can partly be compensated by overlapping processing. Copyright © 2016 Elsevier B.V. All rights reserved.
Mills, Travis; Lalancette, Marc; Moses, Sandra N; Taylor, Margot J; Quraan, Maher A
2012-07-01
Magnetoencephalography provides precise information about the temporal dynamics of brain activation and is an ideal tool for investigating rapid cognitive processing. However, in many cognitive paradigms visual stimuli are used, which evoke strong brain responses (typically 40-100 nAm in V1) that may impede the detection of weaker activations of interest. This is particularly a concern when beamformer algorithms are used for source analysis, due to artefacts such as "leakage" of activation from the primary visual sources into other regions. We have previously shown (Quraan et al. 2011) that we can effectively reduce leakage patterns and detect weak hippocampal sources by subtracting the functional images derived from the experimental task and a control task with similar stimulus parameters. In this study we assess the performance of three different subtraction techniques. In the first technique we follow the same post-localization subtraction procedures as in our previous work. In the second and third techniques, we subtract the sensor data obtained from the experimental and control paradigms prior to source localization. Using simulated signals embedded in real data, we show that when beamformers are used, subtraction prior to source localization allows for the detection of weaker sources and higher localization accuracy. The improvement in localization accuracy exceeded 10 mm at low signal-to-noise ratios, and sources down to below 5 nAm were detected. We applied our techniques to empirical data acquired with two different paradigms designed to evoke hippocampal and frontal activations, and demonstrated our ability to detect robust activations in both regions with substantial improvements over image subtraction. We conclude that removal of the common-mode dominant sources through data subtraction prior to localization further improves the beamformer's ability to project the n-channel sensor-space data to reveal weak sources of interest and allows more accurate localization.
Collaborative memory in a serial combination procedure.
Ditta, Annie Stanfield; Steyvers, Mark
2013-01-01
This article describes a new approach for studying collaborative memory that examines people's editing processes for naturally occurring memory errors. In this approach, memories of individuals are combined via a chaining method in which each participant indirectly receives information from the previous participant. Participants were asked to individually study word lists and recall as many words as possible in an online setting. Once a participant completed the recall task, his/her answers were provided for the next participant as suggested answers for their own recall. However, that participant was allowed to add or subtract words from the provided list of suggested answers. The final answer of the group was an aggregate of recalled words based on the answer given by the last participant in the chain. Results showed that participants displayed a very high accuracy of recall throughout the chain, although they were not able to replicate the entire study list or eliminate all errors by the end of the chain. This procedure has the advantage that it allows examination of the memory-editing processes individuals utilise when they communicate information indirectly, independent from social factors that arise in face-to-face group memory settings.
1985-09-01
FILL. MOVE ALPHA-RESPONSE TO RESPONSE. 221C-RUN-TASKS-EXIT. EXIT. 2220-DISPLAY-TASK-MENU. PERFORM 5000- OETER -NISC-TASK-VALS. MOVE 1 TO ANSWER-FILE-KEY...INDEX-FIELD-2 ELSE MOVE 4 TO ANSWER-FILE-KEY SUBTRACT 200 FROM INDEX-FIELD-2. 5000- OETER -MISC-TASK-VALS. IF AREA-NUMBER a ŕ" MOVE 1 TO TASK-FILE-REC-NUM
Connaughton, Veronica M; Amiruddin, Azhani; Clunies-Ross, Karen L; French, Noel; Fox, Allison M
2017-05-01
A major model of the cerebral circuits that underpin arithmetic calculation is the triple-code model of numerical processing. This model proposes that the lateralization of mathematical operations is organized across three circuits: a left-hemispheric dominant verbal code; a bilateral magnitude representation of numbers and a bilateral Arabic number code. This study simultaneously measured the blood flow of both middle cerebral arteries using functional transcranial Doppler ultrasonography to assess hemispheric specialization during the performance of both language and arithmetic tasks. The propositions of the triple-code model were assessed in a non-clinical adult group by measuring cerebral blood flow during the performance of multiplication and subtraction problems. Participants were 17 adults aged between 18-27 years. We obtained laterality indices for each type of mathematical operation and compared these in participants with left-hemispheric language dominance. It was hypothesized that blood flow would lateralize to the left hemisphere during the performance of multiplication operations, but would not lateralize during the performance of subtraction operations. Hemispheric blood flow was significantly left lateralized during the multiplication task, but was not lateralized during the subtraction task. Compared to high spatial resolution neuroimaging techniques previously used to measure cerebral lateralization, functional transcranial Doppler ultrasonography is a cost-effective measure that provides a superior temporal representation of arithmetic cognition. These results provide support for the triple-code model of arithmetic processing and offer complementary evidence that multiplication operations are processed differently in the adult brain compared to subtraction operations. Copyright © 2017 Elsevier B.V. All rights reserved.
Montefinese, Maria; Semenza, Carlo
2018-05-17
It is widely accepted that different number-related tasks, including solving simple addition and subtraction, may induce attentional shifts on the so-called mental number line, which represents larger numbers on the right and smaller numbers on the left. Recently, it has been shown that different number-related tasks also employ spatial attention shifts along with general cognitive processes. Here we investigated for the first time whether number line estimation and complex mental arithmetic recruit a common mechanism in healthy adults. Participants' performance in two-digit mental additions and subtractions using visual stimuli was compared with their performance in a mental bisection task using auditory numerical intervals. Results showed significant correlations between participants' performance in number line bisection and that in two-digit mental arithmetic operations, especially in additions, providing a first proof of a shared cognitive mechanism (or multiple shared cognitive mechanisms) between auditory number bisection and complex mental calculation.
Howard, Christina J; Wilding, Robert; Guest, Duncan
2017-02-01
There is mixed evidence that video game players (VGPs) may demonstrate better performance in perceptual and attentional tasks than non-VGPs (NVGPs). The rapid serial visual presentation task is one such case, where observers respond to two successive targets embedded within a stream of serially presented items. We tested light VGPs (LVGPs) and NVGPs on this task. LVGPs were better at correct identification of second targets whether they were also attempting to respond to the first target. This performance benefit seen for LVGPs suggests enhanced visual processing for briefly presented stimuli even with only very moderate game play. Observers were less accurate at discriminating the orientation of a second target within the stream if it occurred shortly after presentation of the first target, that is to say, they were subject to the attentional blink (AB). We find no evidence for any reduction in AB in LVGPs compared with NVGPs.
Sticky Plans: Inhibition and Binding during Serial-Task Control
ERIC Educational Resources Information Center
Mayr, Ulrich
2009-01-01
Recent evidence suggests substantial response-time costs associated with lag-2 repetitions of tasks within explicitly controlled task sequences [Koch, I., Philipp, A. M., Gade, M. (2006). Chunking in task sequences modulates task inhibition. "Psychological Science," 17, 346-350; Schneider, D. W. (2007). Task-set inhibition in chunked task…
ERIC Educational Resources Information Center
Helms-Park, Rena
2003-01-01
This paper presents a study that attributes verb serialization in the interlanguage of Vietnamese-speaking ESL learners to language transfer and, furthermore, puts forward the view that such transfer bears a resemblance to substrate influence in creoles with serial verb constructions (SVCs). In a task that elicited English causatives through…
Meli, Leonardo; Pacchierotti, Claudio; Prattichizzo, Domenico
2014-04-01
This study presents a novel approach to force feedback in robot-assisted surgery. It consists of substituting haptic stimuli, composed of a kinesthetic component and a skin deformation, with cutaneous stimuli only. The force generated can then be thought as a subtraction between the complete haptic interaction, cutaneous, and kinesthetic, and the kinesthetic part of it. For this reason, we refer to this approach as sensory subtraction. Sensory subtraction aims at outperforming other nonkinesthetic feedback techniques in teleoperation (e.g., sensory substitution) while guaranteeing the stability and safety of the system. We tested the proposed approach in a challenging 7-DoF bimanual teleoperation task, similar to the Pegboard experiment of the da Vinci Skills Simulator. Sensory subtraction showed improved performance in terms of completion time, force exerted, and total displacement of the rings with respect to two popular sensory substitution techniques. Moreover, it guaranteed a stable interaction in the presence of a communication delay in the haptic loop.
Effect of display size on visual attention.
Chen, I-Ping; Liao, Chia-Ning; Yeh, Shih-Hao
2011-06-01
Attention plays an important role in the design of human-machine interfaces. However, current knowledge about attention is largely based on data obtained when using devices of moderate display size. With advancement in display technology comes the need for understanding attention behavior over a wider range of viewing sizes. The effect of display size on test participants' visual search performance was studied. The participants (N = 12) performed two types of visual search tasks, that is, parallel and serial search, under three display-size conditions (16 degrees, 32 degrees, and 60 degrees). Serial, but not parallel, search was affected by display size. In the serial task, mean reaction time for detecting a target increased with the display size.
Schmithorst, Vincent J; Brown, Rhonda Douglas
2004-07-01
The suitability of a previously hypothesized triple-code model of numerical processing, involving analog magnitude, auditory verbal, and visual Arabic codes of representation, was investigated for the complex mathematical task of the mental addition and subtraction of fractions. Functional magnetic resonance imaging (fMRI) data from 15 normal adult subjects were processed using exploratory group Independent Component Analysis (ICA). Separate task-related components were found with activation in bilateral inferior parietal, left perisylvian, and ventral occipitotemporal areas. These results support the hypothesized triple-code model corresponding to the activated regions found in the individual components and indicate that the triple-code model may be a suitable framework for analyzing the neuropsychological bases of the performance of complex mathematical tasks. Copyright 2004 Elsevier Inc.
Evidence for modality-independent order coding in working memory.
Depoorter, Ann; Vandierendonck, André
2009-03-01
The aim of the present study was to investigate the representation of serial order in working memory, more specifically whether serial order is coded by means of a modality-dependent or a modality-independent order code. This was investigated by means of a series of four experiments based on a dual-task methodology in which one short-term memory task was embedded between the presentation and recall of another short-term memory task. Two aspects were varied in these memory tasks--namely, the modality of the stimulus materials (verbal or visuo-spatial) and the presence of an order component in the task (an order or an item memory task). The results of this study showed impaired primary-task recognition performance when both the primary and the embedded task included an order component, irrespective of the modality of the stimulus materials. If one or both of the tasks did not contain an order component, less interference was found. The results of this study support the existence of a modality-independent order code.
Sung, Kyongje
2008-12-01
Participants searched a visual display for a target among distractors. Each of 3 experiments tested a condition proposed to require attention and for which certain models propose a serial search. Serial versus parallel processing was tested by examining effects on response time means and cumulative distribution functions. In 2 conditions, the results suggested parallel rather than serial processing, even though the tasks produced significant set-size effects. Serial processing was produced only in a condition with a difficult discrimination and a very large set-size effect. The results support C. Bundesen's (1990) claim that an extreme set-size effect leads to serial processing. Implications for parallel models of visual selection are discussed.
Francis, Wendy S; Baca, Yuzeth
2014-01-01
Spanish-English bilinguals (N = 144) performed free recall, serial recall and order reconstruction tasks in both English and Spanish. Long-term memory for both item and order information was worse in the less fluent language (L2) than in the more fluent language (L1). Item scores exhibited a stronger disadvantage for the L2 in serial recall than in free recall. Relative order scores were lower in the L2 for all three tasks, but adjusted scores for free and serial recall were equivalent across languages. Performance of English-speaking monolinguals (N = 72) was comparable to bilingual performance in the L1, except that monolinguals had higher adjusted order scores in free recall. Bilingual performance patterns in the L2 were consistent with the established effects of concurrent task performance on these memory tests, suggesting that the cognitive resources required for processing words in the L2 encroach on resources needed to commit item and order information to memory. These findings are also consistent with a model in which item memory is connected to the language system, order information is processed by separate mechanisms and attention can be allocated differentially to these two systems.
Janczyk, Markus; Pfister, Roland; Hommel, Bernhard; Kunde, Wilfried
2014-07-01
Responses in the second of two subsequently performed tasks can speed up compatible responses in the temporally preceding first task. Such backward crosstalk effects (BCEs) represent a challenge to the assumption of serial processing in stage models of human information processing, because they indicate that certain features of the second response have to be represented before the first response is emitted. Which of these features are actually relevant for BCEs is an open question, even though identifying these features is important for understanding the nature of parallel and serial response selection processes in dual-task performance. Motivated by effect-based models of action control, we show in three experiments that the BCE to a considerable degree reflects features of intended action effects, although features of the response proper (or response-associated kinesthetic feedback) also seem to play a role. These findings suggest that the codes of action effects (or action goals) can become activated simultaneously rather than serially, thereby creating BCEs. Copyright © 2014 Elsevier B.V. All rights reserved.
Disentangling perceptual from motor implicit sequence learning with a serial color-matching task.
Gheysen, Freja; Gevers, Wim; De Schutter, Erik; Van Waelvelde, Hilde; Fias, Wim
2009-08-01
This paper contributes to the domain of implicit sequence learning by presenting a new version of the serial reaction time (SRT) task that allows unambiguously separating perceptual from motor learning. Participants matched the colors of three small squares with the color of a subsequently presented large target square. An identical sequential structure was tied to the colors of the target square (perceptual version, Experiment 1) or to the manual responses (motor version, Experiment 2). Short blocks of sequenced and randomized trials alternated and hence provided a continuous monitoring of the learning process. Reaction time measurements demonstrated clear evidence of independently learning perceptual and motor serial information, though revealed different time courses between both learning processes. No explicit awareness of the serial structure was needed for either of the two types of learning to occur. The paradigm introduced in this paper evidenced that perceptual learning can occur with SRT measurements and opens important perspectives for future imaging studies to answer the ongoing question, which brain areas are involved in the implicit learning of modality specific (motor vs. perceptual) or general serial order.
Differential Effects of Paced and Unpaced Responding on delayed Serial Order Recall in Schizophrenia
Hill, S. Kristian; Griffin, Ginny B.; Houk, James C.; Sweeney, John A.
2011-01-01
Working memory for temporal order is a component of working memory that is especially dependent on striatal systems, but has not been extensively studied in schizophrenia. This study was designed to characterize serial order reproduction by adapting a spatial serial order task developed for nonhuman primate studies, while controlling for working memory load and whether responses were initiated freely (unpaced) or in an externally paced format. Clinically stable schizophrenia patients (n=27) and psychiatrically healthy individuals (n=25) were comparable on demographic variables and performance on standardized tests of immediate serial order recall (Digit Span, Spatial Span). No group differences were observed for serial order recall when read sequence reproduction was unpaced. However, schizophrenia patients exhibited significant impairments when responding was paced, regardless of sequence length or retention delay. Intact performance by schizophrenia patients during the unpaced condition indicates that prefrontal storage and striatal output systems are sufficiently intact to learn novel response sequences and hold them in working memory to perform serial order tasks. However, retention for newly learned response sequences was disrupted in schizophrenia patients by paced responding, when read-out of each element in the response sequence was externally controlled. The disruption of memory for serial order in paced read-out condition indicates a deficit in frontostriatal interaction characterized by an inability to update working memory stores and deconstruct ‘chunked’ information. PMID:21705197
Tindle, Richard; Longstaff, Mitchell G
2016-02-01
The time-based resource-sharing (TBRS) model of working memory indicates that secondary tasks that capture attention for relatively long periods can result in the interference of working memory processing and maintenance. The current study investigates if discrete and continuous movements have differing effects on a concurrent, verbal serial recall task. In the listening condition, participants were asked to recall spoken words presented in lists of six. In the drawing conditions, participants performed the same task while producing discrete (star) or continuous (circle) movements. As hypothesised, participants recalled more words overall in the listening condition compared to the combined drawing conditions. The prediction that the continuous movement condition would reduce recall compared to listening was also supported. Fine-grained analysis at each serial position revealed significantly more words were recalled at mid serial positions in the listening condition, with worst recall for the continuous condition at position 5 compared to the listening and discrete conditions. Kinematic analysis showed that participants increased the size and speed of the continuous movements resulting in a similar duration and number of strokes for each condition. The duration of brief pauses in the discrete condition was associated with the number of words recalled. The results indicate that fine motor movements reduced working memory performance; however, it was not merely performing a movement but the type of the movement that determined how resources were diverted. In the context of the TBRS, continuous movements could be capturing attention for longer periods relative to discrete movements, reducing verbal serial recall. Copyright © 2016 Elsevier B.V. All rights reserved.
Single-digit arithmetic processing—anatomical evidence from statistical voxel-based lesion analysis
Mihulowicz, Urszula; Willmes, Klaus; Karnath, Hans-Otto; Klein, Elise
2014-01-01
Different specific mechanisms have been suggested for solving single-digit arithmetic operations. However, the neural correlates underlying basic arithmetic (multiplication, addition, subtraction) are still under debate. In the present study, we systematically assessed single-digit arithmetic in a group of acute stroke patients (n = 45) with circumscribed left- or right-hemispheric brain lesions. Lesion sites significantly related to impaired performance were found only in the left-hemisphere damaged (LHD) group. Deficits in multiplication and addition were related to subcortical/white matter brain regions differing from those for subtraction tasks, corroborating the notion of distinct processing pathways for different arithmetic tasks. Additionally, our results further point to the importance of investigating fiber pathways in numerical cognition. PMID:24847238
Raza, Meher; Ivry, Richard B.
2016-01-01
In standard taxonomies, motor skills are typically treated as representative of implicit or procedural memory. We examined two emblematic tasks of implicit motor learning, sensorimotor adaptation and sequence learning, asking whether individual differences in learning are correlated between these tasks, as well as how individual differences within each task are related to different performance variables. As a prerequisite, it was essential to establish the reliability of learning measures for each task. Participants were tested twice on a visuomotor adaptation task and on a sequence learning task, either the serial reaction time task or the alternating reaction time task. Learning was evident in all tasks at the group level and reliable at the individual level in visuomotor adaptation and the alternating reaction time task but not in the serial reaction time task. Performance variability was predictive of learning in both domains, yet the relationship was in the opposite direction for adaptation and sequence learning. For the former, faster learning was associated with lower variability, consistent with models of sensorimotor adaptation in which learning rates are sensitive to noise. For the latter, greater learning was associated with higher variability and slower reaction times, factors that may facilitate the spread of activation required to form predictive, sequential associations. Interestingly, learning measures of the different tasks were not correlated. Together, these results oppose a shared process for implicit learning in sensorimotor adaptation and sequence learning and provide insight into the factors that account for individual differences in learning within each task domain. NEW & NOTEWORTHY We investigated individual differences in the ability to implicitly learn motor skills. As a prerequisite, we assessed whether individual differences were reliable across test sessions. We found that two commonly used tasks of implicit learning, visuomotor adaptation and the alternating serial reaction time task, exhibited good test-retest reliability in measures of learning and performance. However, the learning measures did not correlate between the two tasks, arguing against a shared process for implicit motor learning. PMID:27832611
Working Memory Capacity and Resistance to Interference
ERIC Educational Resources Information Center
Oberauer, Klaus; Lange, Elke; Engle, Randall W.
2004-01-01
Single-task and dual-task versions of verbal and spatial serial order memory tasks were administered to 120 students tested for working memory capacity with four previously validated measures. In the dual-task versions, similarity between the memory material and the material of the secondary processing task was varied. With verbal material, three…
Humans do not have direct access to retinal flow during walking
Souman, Jan L.; Freeman, Tom C.A.; Eikmeier, Verena; Ernst, Marc O.
2013-01-01
Perceived visual speed has been reported to be reduced during walking. This reduction has been attributed to a partial subtraction of walking speed from visual speed (Durgin & Gigone, 2007; Durgin, Gigone, & Scott, 2005). We tested whether observers still have access to the retinal flow before subtraction takes place. Observers performed a 2IFC visual speed discrimination task while walking on a treadmill. In one condition, walking speed was identical in the two intervals, while in a second condition walking speed differed between intervals. If observers have access to the retinal flow before subtraction, any changes in walking speed across intervals should not affect their ability to discriminate retinal flow speed. Contrary to this “direct-access hypothesis”, we found that observers were worse at discrimination when walking speed differed between intervals. The results therefore suggest that observers do not have access to retinal flow before subtraction. We also found that the amount of subtraction depended on the visual speed presented, suggesting that the interaction between the processing of visual input and of self-motion is more complex than previously proposed. PMID:20884509
The impact of reward and punishment on skill learning depends on task demands
Steel, Adam; Silson, Edward H.; Stagg, Charlotte J.; Baker, Chris I.
2016-01-01
Reward and punishment motivate behavior, but it is unclear exactly how they impact skill performance and whether the effect varies across skills. The present study investigated the effect of reward and punishment in both a sequencing skill and a motor skill context. Participants trained on either a sequencing skill (serial reaction time task) or a motor skill (force-tracking task). Skill knowledge was tested immediately after training, and again 1 hour, 24–48 hours, and 30 days after training. We found a dissociation of the effects of reward and punishment on the tasks, primarily reflecting the impact of punishment. While punishment improved serial reaction time task performance, it impaired force-tracking task performance. In contrast to prior literature, neither reward nor punishment benefitted memory retention, arguing against the common assumption that reward ubiquitously benefits skill retention. Collectively, these results suggest that punishment impacts skilled behavior more than reward in a complex, task dependent fashion. PMID:27786302
The impact of reward and punishment on skill learning depends on task demands.
Steel, Adam; Silson, Edward H; Stagg, Charlotte J; Baker, Chris I
2016-10-27
Reward and punishment motivate behavior, but it is unclear exactly how they impact skill performance and whether the effect varies across skills. The present study investigated the effect of reward and punishment in both a sequencing skill and a motor skill context. Participants trained on either a sequencing skill (serial reaction time task) or a motor skill (force-tracking task). Skill knowledge was tested immediately after training, and again 1 hour, 24-48 hours, and 30 days after training. We found a dissociation of the effects of reward and punishment on the tasks, primarily reflecting the impact of punishment. While punishment improved serial reaction time task performance, it impaired force-tracking task performance. In contrast to prior literature, neither reward nor punishment benefitted memory retention, arguing against the common assumption that reward ubiquitously benefits skill retention. Collectively, these results suggest that punishment impacts skilled behavior more than reward in a complex, task dependent fashion.
Autistic traits and attention to speech: Evidence from typically developing individuals.
Korhonen, Vesa; Werner, Stefan
2017-04-01
Individuals with autism spectrum disorder have a preference for attending to non-speech stimuli over speech stimuli. We are interested in whether non-speech preference is only a feature of diagnosed individuals, and whether we can we test implicit preference experimentally. In typically developed individuals, serial recall is disrupted more by speech stimuli than by non-speech stimuli. Since behaviour of individuals with autistic traits resembles that of individuals with autism, we have used serial recall to test whether autistic traits influence task performance during irrelevant speech sounds. The errors made on the serial recall task during speech or non-speech sounds were counted as a measure of speech or non-speech preference in relation to no sound condition. We replicated the serial order effect and found the speech to be more disruptive than the non-speech sounds, but were unable to find any associations between the autism quotient scores and the non-speech sounds. Our results may indicate a learnt behavioural response to speech sounds.
Brain Activation during Addition and Subtraction Tasks In-Noise and In-Quiet
Abd Hamid, Aini Ismafairus; Yusoff, Ahmad Nazlim; Mukari, Siti Zamratol-Mai Sarah; Mohamad, Mazlyfarina
2011-01-01
Background: In spite of extensive research conducted to study how human brain works, little is known about a special function of the brain that stores and manipulates information—the working memory—and how noise influences this special ability. In this study, Functional magnetic resonance imaging (fMRI) was used to investigate brain responses to arithmetic problems solved in noisy and quiet backgrounds. Methods: Eighteen healthy young males performed simple arithmetic operations of addition and subtraction with in-quiet and in-noise backgrounds. The MATLAB-based Statistical Parametric Mapping (SPM8) was implemented on the fMRI datasets to generate and analyse the activated brain regions. Results: Group results showed that addition and subtraction operations evoked extended activation in the left inferior parietal lobe, left precentral gyrus, left superior parietal lobe, left supramarginal gyrus, and left middle temporal gyrus. This supported the hypothesis that the human brain relatively activates its left hemisphere more compared with the right hemisphere when solving arithmetic problems. The insula, middle cingulate cortex, and middle frontal gyrus, however, showed more extended right hemispheric activation, potentially due to the involvement of attention, executive processes, and working memory. For addition operations, there was extensive left hemispheric activation in the superior temporal gyrus, inferior frontal gyrus, and thalamus. In contrast, subtraction tasks evoked a greater activation of similar brain structures in the right hemisphere. For both addition and subtraction operations, the total number of activated voxels was higher for in-noise than in-quiet conditions. Conclusion: These findings suggest that when arithmetic operations were delivered auditorily, the auditory, attention, and working memory functions were required to accomplish the executive processing of the mathematical calculation. The respective brain activation patterns appear to be modulated by the noisy background condition. PMID:22135581
ERIC Educational Resources Information Center
Miller, Jeff; Ulrich, Rolf; Rolke, Bettina
2009-01-01
Within the context of the psychological refractory period (PRP) paradigm, we developed a general theoretical framework for deciding when it is more efficient to process two tasks in serial and when it is more efficient to process them in parallel. This analysis suggests that a serial mode is more efficient than a parallel mode under a wide variety…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jansen, D.E.; Corbett, J.R.; Wolfe, C.L.
1985-08-01
Single photon-emission computed tomography (SPECT) with /sup 99m/Tc-pyrophosphate (PPi) has been shown to estimate size of myocardial infarction accurately in animals. The authors tested the hypothesis that SPECT with /sup /sup 99m//Tc-PPi and blood pool subtraction can provide prompt and accurate estimates of size of myocardial infarction in patients. SPECT estimates are potentially available early after the onset of infarction and should correlate with estimates of infarct size calculated from serial measurements of plasma MB-creatine kinase (CK) activity. Thirty-three patients with acute myocardial infarction and 16 control patients without acute myocardial infarction were studied. Eleven of the patients had transmuralmore » anterior myocardial infarction, 16 had transmural inferior myocardial infarction, and six had nontransmural myocardial infarction. SPECT was performed with a commercially available rotating gamma camera. Identical projection images of the distribution of 99mTc-PPi and the ungated cardiac blood pool were acquired sequentially over 180 degrees. Reconstructed sections were color coded and superimposed for purposes of localization of infarct. Areas of increased PPi uptake within myocardial infarcts were thresholded at 65% of peak activity. The blood pool was thresholded at 50% and subtracted to determine the endocardial border for the left ventricle. Myocardial infarcts ranged in size from 1 to 126 gram equivalents (geq) MB-CK. The correlation of MB-CK estimates of size of infarct with size determined by SPECT (both in geq) was good (r = .89 with a regression line of y = 13.1 + 1.5x).« less
Memory monitoring by animals and humans
NASA Technical Reports Server (NTRS)
Smith, J. D.; Shields, W. E.; Allendoerfer, K. R.; Washburn, D. A.; Rumbaugh, D. M. (Principal Investigator)
1998-01-01
The authors asked whether animals and humans would use similarly an uncertain response to escape indeterminate memories. Monkeys and humans performed serial probe recognition tasks that produced differential memory difficulty across serial positions (e.g., primacy and recency effects). Participants were given an escape option that let them avoid any trials they wished and receive a hint to the trial's answer. Across species, across tasks, and even across conspecifics with sharper or duller memories, monkeys and humans used the escape option selectively when more indeterminate memory traces were probed. Their pattern of escaping always mirrored the pattern of their primary memory performance across serial positions. Signal-detection analyses confirm the similarity of the animals' and humans' performances. Optimality analyses assess their efficiency. Several aspects of monkeys' performance suggest the cognitive sophistication of their decisions to escape.
A constrained rasch model of trace redintegration in serial recall.
Roodenrys, Steven; Miller, Leonie M
2008-04-01
The notion that verbal short-term memory tasks, such as serial recall, make use of information in long-term as well as in short-term memory is instantiated in many models of these tasks. Such models incorporate a process in which degraded traces retrieved from a short-term store are reconstructed, or redintegrated (Schweickert, 1993), through the use of information in long-term memory. This article presents a conceptual and mathematical model of this process based on a class of item-response theory models. It is demonstrated that this model provides a better fit to three sets of data than does the multinomial processing tree model of redintegration (Schweickert, 1993) and that a number of conceptual accounts of serial recall can be related to the parameters of the model.
Background instrumental music and serial recall.
Nittono, H
1997-06-01
Although speech and vocal music are consistently shown to impair serial recall for visually presented items, instrumental music does not always produce a significant disruption. This study investigated the features of instrumental music that would modulate the disruption in serial recall. 24 students were presented sequences of nine digits and required to recall the digits in order of presentation. Instrumental music as played either forward or backward during the task. Forward music caused significantly more disruption than did silence, whereas the reversed music did not. Some higher-order factor may be at work in the effect of background music on serial recall.
ERIC Educational Resources Information Center
Wunderlich, Kara L.; Vollmer, Timothy R.
2017-01-01
The current study compared the use of serial and concurrent methods to train multiple exemplars when teaching receptive language skills, providing a systematic replication of Wunderlich, Vollmer, Donaldson, and Phillips (2014). Five preschoolers diagnosed with developmental delays or autism spectrum disorders were taught to receptively identify…
Auditory Word Serial Recall Benefits from Orthographic Dissimilarity
ERIC Educational Resources Information Center
Pattamadilok, Chotiga; Lafontaine, Helene; Morais, Jose; Kolinsky, Regine
2010-01-01
The influence of orthographic knowledge has been consistently observed in speech recognition and metaphonological tasks. The present study provides data suggesting that such influence also pervades other cognitive domains related to language abilities, such as verbal working memory. Using serial recall of auditory seven-word lists, we observed…
Word Reading Fluency as a Serial Naming Task
ERIC Educational Resources Information Center
Protopapas, Athanassios; Katopodi, Katerina; Altani, Angeliki; Georgiou, George K.
2018-01-01
Word list reading fluency is theoretically expected to depend on single word reading speed. Yet the correlation between the two diminishes with increasing fluency, while fluency remains strongly correlated to serial digit naming. We hypothesized that multi-element sequence processing is an important component of fluency. We used confirmatory…
Young Filipino Students Making Sense of Arithmetic Word Problems in English
ERIC Educational Resources Information Center
Bautista, Debbie; Mulligan, Joanne; Mitchelmore, Michael
2009-01-01
Young Filipino children are expected to solve mathematical word problems in English, a task which they typically encounter only in schools. In this exploratory study, task-based interviews were conducted with seven Filipino children from a public school. The children were asked to read and solve addition and subtraction word problems in English or…
A Unified Framework for Bounded and Unbounded Numerical Estimation
ERIC Educational Resources Information Center
Kim, Dan; Opfer, John E.
2017-01-01
Representations of numerical value have been assessed by using bounded (e.g., 0-1,000) and unbounded (e.g., 0-?) number-line tasks, with considerable debate regarding whether 1 or both tasks elicit unique cognitive strategies (e.g., addition or subtraction) and require unique cognitive models. To test this, we examined how well a mixed log-linear…
Dissociating functional brain networks by decoding the between-subject variability
Seghier, Mohamed L.; Price, Cathy J.
2009-01-01
In this study we illustrate how the functional networks involved in a single task (e.g. the sensory, cognitive and motor components) can be segregated without cognitive subtractions at the second-level. The method used is based on meaningful variability in the patterns of activation between subjects with the assumption that regions belonging to the same network will have comparable variations from subject to subject. fMRI data were collected from thirty nine healthy volunteers who were asked to indicate with a button press if visually presented words were semantically related or not. Voxels were classified according to the similarity in their patterns of between-subject variance using a second-level unsupervised fuzzy clustering algorithm. The results were compared to those identified by cognitive subtractions of multiple conditions tested in the same set of subjects. This illustrated that the second-level clustering approach (on activation for a single task) was able to identify the functional networks observed using cognitive subtractions (e.g. those associated with vision, semantic associations or motor processing). In addition the fuzzy clustering approach revealed other networks that were not dissociated by the cognitive subtraction approach (e.g. those associated with high- and low-level visual processing and oculomotor movements). We discuss the potential applications of our method which include the identification of “hidden” or unpredicted networks as well as the identification of systems level signatures for different subgroupings of clinical and healthy populations. PMID:19150501
Garavan, H; Morgan, R E; Mactutus, C F; Levitsky, D A; Booze, R M; Strupp, B J
2000-08-01
This study assessed the effects of prenatal cocaine exposure on cognitive functioning, using an intravenous (IV) rodent model that closely mimics the pharmacokinetics seen in humans after smoking or IV injection and that avoids maternal stress and undernutrition. Cocaine-exposed males were significantly impaired on a 3-choice, but not 2-choice, olfactory serial reversal learning task. Both male and female cocaine-exposed rats were significantly impaired on extradimensional shift tasks that required shifting from olfactory to spatial cues; however, they showed no impairment when required to shift from spatial to olfactory cues. In-depth analyses of discrete learning phases implicated deficient selective attention as the basis of impairment in both tasks. These data provide clear evidence that prenatal cocaine exposure produces long-lasting cognitive dysfunction, but they also underscore the specificity of the impairment.
Stark-Inbar, Alit; Raza, Meher; Taylor, Jordan A; Ivry, Richard B
2017-01-01
In standard taxonomies, motor skills are typically treated as representative of implicit or procedural memory. We examined two emblematic tasks of implicit motor learning, sensorimotor adaptation and sequence learning, asking whether individual differences in learning are correlated between these tasks, as well as how individual differences within each task are related to different performance variables. As a prerequisite, it was essential to establish the reliability of learning measures for each task. Participants were tested twice on a visuomotor adaptation task and on a sequence learning task, either the serial reaction time task or the alternating reaction time task. Learning was evident in all tasks at the group level and reliable at the individual level in visuomotor adaptation and the alternating reaction time task but not in the serial reaction time task. Performance variability was predictive of learning in both domains, yet the relationship was in the opposite direction for adaptation and sequence learning. For the former, faster learning was associated with lower variability, consistent with models of sensorimotor adaptation in which learning rates are sensitive to noise. For the latter, greater learning was associated with higher variability and slower reaction times, factors that may facilitate the spread of activation required to form predictive, sequential associations. Interestingly, learning measures of the different tasks were not correlated. Together, these results oppose a shared process for implicit learning in sensorimotor adaptation and sequence learning and provide insight into the factors that account for individual differences in learning within each task domain. We investigated individual differences in the ability to implicitly learn motor skills. As a prerequisite, we assessed whether individual differences were reliable across test sessions. We found that two commonly used tasks of implicit learning, visuomotor adaptation and the alternating serial reaction time task, exhibited good test-retest reliability in measures of learning and performance. However, the learning measures did not correlate between the two tasks, arguing against a shared process for implicit motor learning. Copyright © 2017 the American Physiological Society.
Reward Sensitivity and Waiting Impulsivity: Shift towards Reward Valuation away from Action Control
Mechelmans, Daisy J; Strelchuk, Daniela; Doñamayor, Nuria; Banca, Paula; Robbins, Trevor W; Baek, Kwangyeol
2017-01-01
Abstract Background Impulsivity and reward expectancy are commonly interrelated. Waiting impulsivity, measured using the rodent 5-Choice Serial Reaction Time task, predicts compulsive cocaine seeking and sign (or cue) tracking. Here, we assess human waiting impulsivity using a novel translational task, the 4-Choice Serial Reaction Time task, and the relationship with reward cues. Methods Healthy volunteers (n=29) performed the monetary incentive delay task as a functional MRI study where subjects observe a cue predicting reward (cue) and wait to respond for high (£5), low (£1), or no reward. Waiting impulsivity was tested with the 4-Choice Serial Reaction Time task. Results For high reward prospects (£5, no reward), greater waiting impulsivity on the 4-CSRT correlated with greater medial orbitofrontal cortex and lower supplementary motor area activity to cues. In response to high reward cues, greater waiting impulsivity was associated with greater subthalamic nucleus connectivity with orbitofrontal cortex and greater subgenual cingulate connectivity with anterior insula, but decreased connectivity with regions implicated in action selection and preparation. Conclusion These findings highlight a shift towards regions implicated in reward valuation and a shift towards compulsivity away from higher level motor preparation and action selection and response. We highlight the role of reward sensitivity and impulsivity, mechanisms potentially linking human waiting impulsivity with incentive approach and compulsivity, theories highly relevant to disorders of addiction. PMID:29020291
Beneventi, Harald; Tønnessen, Finn Egil; Ersland, Lars
2009-01-01
Dyslexia is primarily associated with a phonological processing deficit. However, the clinical manifestation also includes a reduced verbal working memory (WM) span. It is unclear whether this WM impairment is caused by the phonological deficit or a distinct WM deficit. The main aim of this study was to investigate neuronal activation related to phonological storage and rehearsal of serial order in WM in a sample of 13-year-old dyslexic children compared with age-matched nondyslexic children. A sequential verbal WM task with two tasks was used. In the Letter Probe task, the probe consisted of a single letter and the judgment was for the presence or absence of that letter in the prior sequence of six letters. In the Sequence Probe (SP) task, the probe consisted of all six letters and the judgment was for a match of their serial order with the temporal order in the prior sequence. Group analyses as well as single-subject analysis were performed with the statistical parametric mapping software SPM2. In the Letter Probe task, the dyslexic readers showed reduced activation in the left precentral gyrus (BA6) compared to control group. In the Sequence Probe task, the dyslexic readers showed reduced activation in the prefrontal cortex and the superior parietal cortex (BA7) compared to the control subjects. Our findings suggest that a verbal WM impairment in dyslexia involves an extended neural network including the prefrontal cortex and the superior parietal cortex. Reduced activation in the left BA6 in both the Letter Probe and Sequence Probe tasks may be caused by a deficit in phonological processing. However, reduced bilateral activation in the BA7 in the Sequence Probe task only could indicate a distinct working memory deficit in dyslexia associated with temporal order processing.
Bit-serial neuroprocessor architecture
NASA Technical Reports Server (NTRS)
Tawel, Raoul (Inventor)
2001-01-01
A neuroprocessor architecture employs a combination of bit-serial and serial-parallel techniques for implementing the neurons of the neuroprocessor. The neuroprocessor architecture includes a neural module containing a pool of neurons, a global controller, a sigmoid activation ROM look-up-table, a plurality of neuron state registers, and a synaptic weight RAM. The neuroprocessor reduces the number of neurons required to perform the task by time multiplexing groups of neurons from a fixed pool of neurons to achieve the successive hidden layers of a recurrent network topology.
Monnier, Catherine; Syssau, Arielle
2008-01-01
In the four experiments reported here, we examined the role of word pleasantness on immediate serial recall and immediate serial recognition. In Experiment 1, we compared verbal serial recall of pleasant and neutral words, using a limited set of items. In Experiment 2, we replicated Experiment 1 with an open set of words (i.e., new items were used on every trial). In Experiments 3 and 4, we assessed immediate serial recognition of pleasant and neutral words, using item sets from Experiments 1 and 2. Pleasantness was found to have a facilitation effect on both immediate serial recall and immediate serial recognition. This study supplies some new supporting arguments in favor of a semantic contribution to verbal short-term memory performance. The pleasantness effect observed in immediate serial recognition showed that, contrary to a number of earlier findings, performance on this task can also turn out to be dependent on semantic factors. The results are discussed in relation to nonlinguistic and psycholinguistic models of short-term memory.
[Registration and 3D rendering of serial tissue section images].
Liu, Zhexing; Jiang, Guiping; Dong, Wu; Zhang, Yu; Xie, Xiaomian; Hao, Liwei; Wang, Zhiyuan; Li, Shuxiang
2002-12-01
It is an important morphological research method to reconstruct the 3D imaging from serial section tissue images. Registration of serial images is a key step to 3D reconstruction. Firstly, an introduction to the segmentation-counting registration algorithm is presented, which is based on the joint histogram. After thresholding of the two images to be registered, the criterion function is defined as counting in a specific region of the joint histogram, which greatly speeds up the alignment process. Then, the method is used to conduct the serial tissue image matching task, and lies a solid foundation for 3D rendering. Finally, preliminary surface rendering results are presented.
Cross-Linguistic Differences in the Immediate Serial Recall of Consonants versus Vowels
ERIC Educational Resources Information Center
Kissling, Elizabeth M.
2012-01-01
The current study investigated native English and native Arabic speakers' phonological short-term memory for sequences of consonants and vowels. Phonological short-term memory was assessed in immediate serial recall tasks conducted in Arabic and English for both groups. Participants (n = 39) heard series of six consonant-vowel syllables and wrote…
Repetition Blindness: Out of Sight or Out of Mind?
ERIC Educational Resources Information Center
Morris, Alison L.; Harris, Catherine L.
2004-01-01
Does repetition blindness represent a failure of perception or of memory? In Experiment 1, participants viewed rapid serial visual presentation (RSVP) sentences. When critical words (C1 and C2) were orthographically similar, C2 was frequently omitted from serial report; however, repetition priming for C2 on a postsentence lexical decision task was…
Verbal Labeling and Serial Position Recall.
ERIC Educational Resources Information Center
Hagen, John W.; Mesibov, Gary
The effect of verbal labeling in a serial position short term memory task was investigated. Forty female college students were given 16 trials each. Eight trials involved only central items which had to be recalled. The other eight trials involved both central and incidental items. Half of the subjects verbalized the names of the central items as…
Serial Reaction Time Learning in Preschool- and School-Age Children.
ERIC Educational Resources Information Center
Thomas, Kathleen M.; Nelson, Charles A.
2001-01-01
Two experiments assessed visuomotor sequence learning in 4- to 10-year-olds using a serial reaction time (SRT) task with random and sequenced trials. Found that children demonstrated sequence-specific decreases in RT. Participants with explicit awareness of the sequence at the session's end showed larger sequence-specific RT decrements than…
Phonological memory and vocabulary learning in children with focal lesions
Gupta, Prahlad; MacWhinney, Brian; Feldman, Heidi M.; Sacco, Kelley
2014-01-01
Eleven children with early focal lesions were compared with 70 age-matched controls to assess their performance in repeating non-words, in learning new words, and in immediate serial recall, a triad of abilities that are believed to share a dependence on serial ordering mechanisms (e.g., Baddeley, Gathercole, & Papagno, 1998; Gupta, in press-a). Results for the experimental group were also compared with other assessments previously reported for the same children by MacWhinney, Feldman, Sacco, and Valdés-Pérez (2000). The children with brain injury showed substantial impairment relative to controls in the experimental tasks, in contrast with relatively unimpaired performance on measures of vocabulary and non-verbal intelligence. The relationships between word learning, non-word repetition, and immediate serial recall were similar to those observed in several other populations. These results support previous reports that there are persistent processing impairments following early brain injury, despite developmental plasticity. They also suggest that word learning, non-word repetition, and immediate serial recall may be relatively demanding tasks, and that their relationship is a fundamental aspect of the cognitive system. PMID:14585293
Superior serial memory in the blind: a case of cognitive compensatory adjustment.
Raz, Noa; Striem, Ella; Pundak, Golan; Orlov, Tanya; Zohary, Ehud
2007-07-03
In the absence of vision, perception of space is likely to be highly dependent on memory. As previously stated, the blind tend to code spatial information in the form of "route-like" sequential representations [1-3]. Thus, serial memory, indicating the order in which items are encountered, may be especially important for the blind to generate a mental picture of the world. In accordance, we find that the congenitally blind are remarkably superior to sighted peers in serial memory tasks. Specifically, subjects heard a list of 20 words and were instructed to recall the words according to their original order in the list. The blind recalled more words than the sighted (indicating better item memory), but their greatest advantage was in recalling longer word sequences (according to their original order). We further show that the serial memory superiority of the blind is not merely a result of their advantage in item recall per se (as we additionally confirm via a separate recognition memory task). These results suggest the refinement of a specific cognitive ability to compensate for blindness in humans.
Control of Task Sequences: What Is the Role of Language?
ERIC Educational Resources Information Center
Mayr, Ulrich; Kleffner-Canucci, Killian; Kikumoto, Atsushi; Redford, Melissa A.
2014-01-01
It is almost a truism that language aids serial-order control through self-cuing of upcoming sequential elements. We measured speech onset latencies as subjects performed hierarchically organized task sequences while "thinking aloud" each task label. Surprisingly, speech onset latencies and response times (RTs) were highly synchronized,…
Never forget a name: white matter connectivity predicts person memory
Metoki, Athanasia; Alm, Kylie H.; Wang, Yin; Ngo, Chi T.; Olson, Ingrid R.
2018-01-01
Through learning and practice, we can acquire numerous skills, ranging from the simple (whistling) to the complex (memorizing operettas in a foreign language). It has been proposed that complex learning requires a network of brain regions that interact with one another via white matter pathways. One candidate white matter pathway, the uncinate fasciculus (UF), has exhibited mixed results for this hypothesis: some studies have shown UF involvement across a range of memory tasks, while other studies report null results. Here, we tested the hypothesis that the UF supports associative memory processes and that this tract can be parcellated into subtracts that support specific types of memory. Healthy young adults performed behavioral tasks (two face-name learning tasks, one word pair memory task) and underwent a diffusion-weighted imaging scan. Our results revealed that variation in UF microstructure was significantly associated with individual differences in performance on both face-name tasks, as well as the word association memory task. A UF sub-tract, functionally defined by its connectivity between face-selective regions in the anterior temporal lobe and orbitofrontal cortex, selectively predicted face-name learning. In contrast, connectivity between the fusiform face patch and both anterior face patches had no predictive validity. These findings suggest that there is a robust and replicable relationship between the UF and associative learning and memory. Moreover, this large white matter pathway can be subdivided to reveal discrete functional profiles. PMID:28646241
Guérard, Katherine; Tremblay, Sébastien; Saint-Aubin, Jean
2009-10-01
Serial memory for spatial locations increases as the distance between successive stimuli locations decreases. This effect, known as the path length effect [Parmentier, F. B. R., Elford, G., & Maybery, M. T. (2005). Transitional information in spatial serial memory: Path characteristics affect recall performance. Journal of Experimental Psychology: Learning, Memory & Cognition, 31, 412-427], was investigated in a systematic manner using eye tracking and interference procedures to explore the mechanisms responsible for the processing of spatial information. In Experiment 1, eye movements were monitored during a spatial serial recall task--in which the participants have to remember the location of spatially and temporally separated dots on the screen. In the experimental conditions, eye movements were suppressed by requiring participants to incessantly move their eyes between irrelevant locations. Ocular suppression abolished the path length effect whether eye movements were prevented during item presentation or during a 7s retention interval. In Experiment 2, articulatory suppression was combined with a spatial serial recall task. Although articulatory suppression impaired performance, it did not alter the path length effect. Our results suggest that rehearsal plays a key role in serial memory for spatial information, though the effect of path length seems to involve other processes located at encoding, such as the time spent fixating each location and perceptual organization.
Mixed pro and antisaccade performance in children and adults.
Irving, Elizabeth L; Tajik-Parvinchi, Diana J; Lillakas, Linda; González, Esther G; Steinbach, Martin J
2009-02-19
Pro and antisaccades are usually presented in blocks of similar type but they can also be presented such that prosaccade and antisaccade eye movements are mixed and a cue, usually the shape/colour of the fixation target or the peripheral target, determines which type of eye movement is required in a particular trial. A mixed-saccade task theoretically equalizes the inhibitory requirements for pro and antisaccades. Using a mixed-saccade task paradigm the aims of the study were to: 1) compare pro and antisaccades of children, 2) compare performance of children and adults and 3) explore the effect of increased working memory load in adults. The eye movements of 22 children (5-12 years) and 22 adults (20-51 years) were examined using a video-based eye tracking system (El-Mar Series 2020 Eye Tracker, Toronto, Canada). The task was a mixed-saccade task of pro and antisaccades and the colour of the peripheral target was the cue for whether the required saccade was to be a pro or an antisaccade. The children performed the mixed-saccade task and 11 adults performed the same mixed-saccade task alone and in a dual-task paradigm (together with mental subtraction or number repetition). A second group of 11 adults performed the mixed-saccade task alone. Children made mainly antisaccade errors. The adults' error rates increased in the mental subtraction dual-task condition but both antisaccade and prosaccade errors were made. It was concluded that the increased error rates of these two groups are reflective of different processing dynamics.
Davis, Lynne C; Rane, Shruti; Hiscock, Merrill
2013-01-01
A longstanding question in working memory (WM) research concerns the fractionation of verbal and nonverbal processing. Although some contemporary models include both domain-specific and general-purpose mechanisms, the necessity to postulate differential processing of verbal and nonverbal material remains unclear. In the present two-experiment series we revisit the order reconstruction paradigm that Jones, Farrand, Stuart, and Morris (1995) used to support a unitary model of WM. Goals were to assess (1) whether serial position curves for dot positions differ from curves for letter names; and (2) whether selective interference can be demonstrated. Although we replicated Jones et al.'s finding of similar serial position curves for the two tasks, this similarity could reflect the demands of the order reconstruction paradigm rather than undifferentiated processing of verbal and nonverbal stimuli. Both generalised and material-specific interference was found, which can be attributed to competition between primary and secondary tasks for attentional resources. As performance levels for the combined primary and secondary tasks exceed active WM capacity limits, primary task items apparently are removed from active memory during processing of the secondary list and held temporarily in maintenance storage. We conclude that active WM is multimodal but maintenance stores may be domain specific.
Perceptual learning in visual search: fast, enduring, but non-specific.
Sireteanu, R; Rettenbach, R
1995-07-01
Visual search has been suggested as a tool for isolating visual primitives. Elementary "features" were proposed to involve parallel search, while serial search is necessary for items without a "feature" status, or, in some cases, for conjunctions of "features". In this study, we investigated the role of practice in visual search tasks. We found that, under some circumstances, initially serial tasks can become parallel after a few hundred trials. Learning in visual search is far less specific than learning of visual discriminations and hyperacuity, suggesting that it takes place at another level in the central visual pathway, involving different neural circuits.
3D temporal subtraction on multislice CT images using nonlinear warping technique
NASA Astrophysics Data System (ADS)
Ishida, Takayuki; Katsuragawa, Shigehiko; Kawashita, Ikuo; Kim, Hyounseop; Itai, Yoshinori; Awai, Kazuo; Li, Qiang; Doi, Kunio
2007-03-01
The detection of very subtle lesions and/or lesions overlapped with vessels on CT images is a time consuming and difficult task for radiologists. In this study, we have developed a 3D temporal subtraction method to enhance interval changes between previous and current multislice CT images based on a nonlinear image warping technique. Our method provides a subtraction CT image which is obtained by subtraction of a previous CT image from a current CT image. Reduction of misregistration artifacts is important in the temporal subtraction method. Therefore, our computerized method includes global and local image matching techniques for accurate registration of current and previous CT images. For global image matching, we selected the corresponding previous section image for each current section image by using 2D cross-correlation between a blurred low-resolution current CT image and a blurred previous CT image. For local image matching, we applied the 3D template matching technique with translation and rotation of volumes of interests (VOIs) which were selected in the current and the previous CT images. The local shift vector for each VOI pair was determined when the cross-correlation value became the maximum in the 3D template matching. The local shift vectors at all voxels were determined by interpolation of shift vectors of VOIs, and then the previous CT image was nonlinearly warped according to the shift vector for each voxel. Finally, the warped previous CT image was subtracted from the current CT image. The 3D temporal subtraction method was applied to 19 clinical cases. The normal background structures such as vessels, ribs, and heart were removed without large misregistration artifacts. Thus, interval changes due to lung diseases were clearly enhanced as white shadows on subtraction CT images.
Control of Task Sequences: What is the Role of Language?
Mayr, Ulrich; Kleffner, Killian; Kikumoto, Atsushi; Redford, Melissa A.
2015-01-01
It is almost a truism that language aids serial-order control through self-cuing of upcoming sequential elements. We measured speech onset latencies as subjects performed hierarchically organized task sequences while "thinking aloud" each task label. Surprisingly, speech onset latencies and response times (RTs) were highly synchronized, a pattern that is not consistent with the hypothesis that speaking aids proactive retrieval of upcoming sequential elements during serial-order control. We also found that when instructed to do so, participants were able to speak task labels prior to presentation of response-relevant stimuli and that this substantially reduced RT signatures of retrieval—however at the cost of more sequencing errors. Thus, while proactive retrieval is possible in principle, in natural situations it seems to be prevented through a strong, "gestalt-like" tendency to synchronize speech and action. We suggest that this tendency may support context updating rather than proactive control. PMID:24274386
Serial position effects in semantic memory: reconstructing the order of verses of hymns.
Maylor, Elizabeth A
2002-12-01
Serial position effects (primacy and recency) have been consistently demonstrated in both short- and long-term episodic memory tasks. The search for corresponding effects in semantic memory tasks (e.g., reconstructing the order of U.S. presidents) has been confounded by factors such as differential exposure to stimuli. In the present study, the stimuli were six-verse hymns that would have been sung from the first to the last verse by churchgoers on numerous occasions. Participants were presented with the verses of each hymn in random order and were required to reconstruct the correct order. Primacy and recency effects were significantly more evident for churchgoers than for nonchurchgoers. Moreover, error gradients were steeper than chance for churchgoers but not for nonchurchgoers; in other words, churchgoers' errors were more likely to be close to the correct position than further away. These findings provide the first unequivocal demonstration of serial position effects in semantic memory.
Generalized lessons about sequence learning from the study of the serial reaction time task
Schwarb, Hillary; Schumacher, Eric H.
2012-01-01
Over the last 20 years researchers have used the serial reaction time (SRT) task to investigate the nature of spatial sequence learning. They have used the task to identify the locus of spatial sequence learning, identify situations that enhance and those that impair learning, and identify the important cognitive processes that facilitate this type of learning. Although controversies remain, the SRT task has been integral in enhancing our understanding of implicit sequence learning. It is important, however, to ask what, if anything, the discoveries made using the SRT task tell us about implicit learning more generally. This review analyzes the state of the current spatial SRT sequence learning literature highlighting the stimulus-response rule hypothesis of sequence learning which we believe provides a unifying account of discrepant SRT data. It also challenges researchers to use the vast body of knowledge acquired with the SRT task to understand other implicit learning literatures too often ignored in the context of this particular task. This broad perspective will make it possible to identify congruences among data acquired using various different tasks that will allow us to generalize about the nature of implicit learning. PMID:22723815
Representation of Item Position in Immediate Serial Recall: Evidence from Intrusion Errors
ERIC Educational Resources Information Center
Fischer-Baum, Simon; McCloskey, Michael
2015-01-01
In immediate serial recall, participants are asked to recall novel sequences of items in the correct order. Theories of the representations and processes required for this task differ in how order information is maintained; some have argued that order is represented through item-to-item associations, while others have argued that each item is…
Shifting Priorities: Print and Electronic Serials at the University of Montana
ERIC Educational Resources Information Center
Millet, Michelle S.; Mueller, Susan
2005-01-01
Following a library-wide brainstorming session and retreat, the Dean of the Maureen and Mike Mansfield Library tasked an ad-hoc committee to discuss implications for the library and its users if certain processes were implemented or eliminated in order to streamline the processing of serials. As the library's collection continues to shift from…
Common Modality Effects in Immediate Free Recall and Immediate Serial Recall
ERIC Educational Resources Information Center
Grenfell-Essam, Rachel; Ward, Geoff; Tan, Lydia
2017-01-01
In 2 experiments, participants were presented with lists of between 2 and 12 words for either immediate free recall (IFR) or immediate serial recall (ISR). Auditory recall advantages at the end of the list (modality effects) and visual recall advantages early in the list (inverse modality effects) were observed in both tasks and the extent and…
ERIC Educational Resources Information Center
Acheson, Daniel J.; MacDonald, Maryellen C.
2009-01-01
Verbal working memory (WM) tasks typically involve the language production architecture for recall; however, language production processes have had a minimal role in theorizing about WM. A framework for understanding verbal WM results is presented here. In this framework, domain-specific mechanisms for serial ordering in verbal WM are provided by…
Age-related slowing of response selection and production in a visual choice reaction time task
Woods, David L.; Wyma, John M.; Yund, E. William; Herron, Timothy J.; Reed, Bruce
2015-01-01
Aging is associated with delayed processing in choice reaction time (CRT) tasks, but the processing stages most impacted by aging have not been clearly identified. Here, we analyzed CRT latencies in a computerized serial visual feature-conjunction task. Participants responded to a target letter (probability 40%) by pressing one mouse button, and responded to distractor letters differing either in color, shape, or both features from the target (probabilities 20% each) by pressing the other mouse button. Stimuli were presented randomly to the left and right visual fields and stimulus onset asynchronies (SOAs) were adaptively reduced following correct responses using a staircase procedure. In Experiment 1, we tested 1466 participants who ranged in age from 18 to 65 years. CRT latencies increased significantly with age (r = 0.47, 2.80 ms/year). Central processing time (CPT), isolated by subtracting simple reaction times (SRT) (obtained in a companion experiment performed on the same day) from CRT latencies, accounted for more than 80% of age-related CRT slowing, with most of the remaining increase in latency due to slowed motor responses. Participants were faster and more accurate when the stimulus location was spatially compatible with the mouse button used for responding, and this effect increased slightly with age. Participants took longer to respond to distractors with target color or shape than to distractors with no target features. However, the additional time needed to discriminate the more target-like distractors did not increase with age. In Experiment 2, we replicated the findings of Experiment 1 in a second population of 178 participants (ages 18–82 years). CRT latencies did not differ significantly in the two experiments, and similar effects of age, distractor similarity, and stimulus-response spatial compatibility were found. The results suggest that the age-related slowing in visual CRT latencies is largely due to delays in response selection and production. PMID:25954175
Zhu, Yongsheng; Wang, Yunpeng; Wei, Shuguang; Zhang, Hongbo; Yan, Peng; Li, Yunxiao; Qiao, Xiaomeng; Yin, Fangyuan
2017-01-01
Abstract Background: Chronic abuse of heroin leads to long-lasting and complicated cognitive impairment. Dopamine receptors are critically involved in the impulsive drug-driven behavior and the altered attention, processing speed, and mental flexibility that are associated with higher relapse rates. However, the effects of the different dopamine receptors and their possible involvement in heroin-induced cognitive impairment remain unclear. Methods: The 5-choice serial reaction time task was used to investigate the profiles of heroin-induced cognitive impairment in mice. The expression levels of dopamine D1- and D2-like receptors in the prefrontal cortex, nucleus accumbens, and caudate-putamen were determined. The effects of dopamine receptors on heroin-induced impulsivity in the 5-choice serial reaction time task were examined by agonist/antagonist treatment on D1 or D3 receptor mutant mice. Results: Systemic heroin administration influences several variables in the 5-choice serial reaction time task, most notably premature responses, a measure of motor impulsivity. These behavioral impairments are associated with increased D1 receptor and decreased D3 receptor mRNA and protein levels in 3 observed brain areas. The heroin-evoked increase in premature responses is mimicked by a D1 agonist and prevented by a D1 antagonist or genetic ablation of the D1 receptor gene. In contrast, a D3 agonist decreases both basal and heroin-evoked premature responses, while genetic ablation of the D3 receptor gene results in increased basal and heroin-evoked premature responses. Conclusions: Heroin-induced impulsive behavior in the 5-choice serial reaction time task is oppositely modulated by D1 and D3 receptor activation. The D1 receptors in the cortical-mesolimbic region play an indispensable role in modulating such behaviors. PMID:27815417
Emotion Word Processing: Effects of Word Type and Valence in Spanish-English Bilinguals
ERIC Educational Resources Information Center
Kazanas, Stephanie A.; Altarriba, Jeanette
2016-01-01
Previous studies comparing emotion and emotion-laden word processing have used various cognitive tasks, including an Affective Simon Task (Altarriba and Basnight-Brown in "Int J Billing" 15(3):310-328, 2011), lexical decision task (LDT; Kazanas and Altarriba in "Am J Psychol", in press), and rapid serial visual processing…
Bhatarah, Parveen; Ward, Geoff; Tan, Lydia
2006-03-01
In 3 experiments, participants saw lists of 16 words for free recall with or without a 6-digit immediate serial recall (ISR) task after each word. Free recall was performed under standard visual silent and spoken-aloud conditions (Experiment 1), overt rehearsal conditions (Experiment 2), and fixed rehearsal conditions (Experiment 3). The authors found that in each experiment, there was no effect of ISR on the magnitude of the recency effect, but interleaved ISR disrupted free recall of those words that would otherwise be rehearsed. The authors conclude that ISR and recency cannot both be outputs from a unitary limited-capacity short-term memory store and discuss the possibility that the process of rehearsal may be common to both tasks.
Gaschler, Robert; Marewski, Julian N.; Wenke, Dorit; Frensch, Peter A.
2014-01-01
After incidentally learning about a hidden regularity, participants can either continue to solve the task as instructed or, alternatively, apply a shortcut. Past research suggests that the amount of conflict implied by adopting a shortcut seems to bias the decision for vs. against continuing instruction-coherent task processing. We explored whether this decision might transfer from one incidental learning task to the next. Theories that conceptualize strategy change in incidental learning as a learning-plus-decision phenomenon suggest that high demands to adhere to instruction-coherent task processing in Task 1 will impede shortcut usage in Task 2, whereas low control demands will foster it. We sequentially applied two established incidental learning tasks differing in stimuli, responses and hidden regularity (the alphabet verification task followed by the serial reaction task, SRT). While some participants experienced a complete redundancy in the task material of the alphabet verification task (low demands to adhere to instructions), for others the redundancy was only partial. Thus, shortcut application would have led to errors (high demands to follow instructions). The low control demand condition showed the strongest usage of the fixed and repeating sequence of responses in the SRT. The transfer results are in line with the learning-plus-decision view of strategy change in incidental learning, rather than with resource theories of self-control. PMID:25506336
Dharmaraj, Christopher D; Thadikonda, Kishan; Fletcher, Anthony R; Doan, Phuc N; Devasahayam, Nallathamby; Matsumoto, Shingo; Johnson, Calvin A; Cook, John A; Mitchell, James B; Subramanian, Sankaran; Krishna, Murali C
2009-01-01
Three-dimensional Oximetric Electron Paramagnetic Resonance Imaging using the Single Point Imaging modality generates unpaired spin density and oxygen images that can readily distinguish between normal and tumor tissues in small animals. It is also possible with fast imaging to track the changes in tissue oxygenation in response to the oxygen content in the breathing air. However, this involves dealing with gigabytes of data for each 3D oximetric imaging experiment involving digital band pass filtering and background noise subtraction, followed by 3D Fourier reconstruction. This process is rather slow in a conventional uniprocessor system. This paper presents a parallelization framework using OpenMP runtime support and parallel MATLAB to execute such computationally intensive programs. The Intel compiler is used to develop a parallel C++ code based on OpenMP. The code is executed on four Dual-Core AMD Opteron shared memory processors, to reduce the computational burden of the filtration task significantly. The results show that the parallel code for filtration has achieved a speed up factor of 46.66 as against the equivalent serial MATLAB code. In addition, a parallel MATLAB code has been developed to perform 3D Fourier reconstruction. Speedup factors of 4.57 and 4.25 have been achieved during the reconstruction process and oximetry computation, for a data set with 23 x 23 x 23 gradient steps. The execution time has been computed for both the serial and parallel implementations using different dimensions of the data and presented for comparison. The reported system has been designed to be easily accessible even from low-cost personal computers through local internet (NIHnet). The experimental results demonstrate that the parallel computing provides a source of high computational power to obtain biophysical parameters from 3D EPR oximetric imaging, almost in real-time.
A Novel Technique to Detect Code for SAC-OCDMA System
NASA Astrophysics Data System (ADS)
Bharti, Manisha; Kumar, Manoj; Sharma, Ajay K.
2018-04-01
The main task of optical code division multiple access (OCDMA) system is the detection of code used by a user in presence of multiple access interference (MAI). In this paper, new method of detection known as XOR subtraction detection for spectral amplitude coding OCDMA (SAC-OCDMA) based on double weight codes has been proposed and presented. As MAI is the main source of performance deterioration in OCDMA system, therefore, SAC technique is used in this paper to eliminate the effect of MAI up to a large extent. A comparative analysis is then made between the proposed scheme and other conventional detection schemes used like complimentary subtraction detection, AND subtraction detection and NAND subtraction detection. The system performance is characterized by Q-factor, BER and received optical power (ROP) with respect to input laser power and fiber length. The theoretical and simulation investigations reveal that the proposed detection technique provides better quality factor, security and received power in comparison to other conventional techniques. The wide opening of eye in case of proposed technique also proves its robustness.
Retention-error patterns in complex alphanumeric serial-recall tasks.
Mathy, Fabien; Varré, Jean-Stéphane
2013-01-01
We propose a new method based on an algorithm usually dedicated to DNA sequence alignment in order to both reliably score short-term memory performance on immediate serial-recall tasks and analyse retention-error patterns. There can be considerable confusion on how performance on immediate serial list recall tasks is scored, especially when the to-be-remembered items are sampled with replacement. We discuss the utility of sequence-alignment algorithms to compare the stimuli to the participants' responses. The idea is that deletion, substitution, translocation, and insertion errors, which are typical in DNA, are also typical putative errors in short-term memory (respectively omission, confusion, permutation, and intrusion errors). We analyse four data sets in which alphanumeric lists included a few (or many) repetitions. After examining the method on two simple data sets, we show that sequence alignment offers 1) a compelling method for measuring capacity in terms of chunks when many regularities are introduced in the material (third data set) and 2) a reliable estimator of individual differences in short-term memory capacity. This study illustrates the difficulty of arriving at a good measure of short-term memory performance, and also attempts to characterise the primary factors underpinning remembering and forgetting.
NASA Astrophysics Data System (ADS)
Wang, Li-Qun; Saito, Masao
We used 1.5T functional magnetic resonance imaging (fMRI) to explore that which brain areas contribute uniquely to numeric computation. The BOLD effect activation pattern of metal arithmetic task (successive subtraction: actual calculation task) was compared with multiplication tables repetition task (rote verbal arithmetic memory task) response. The activation found in right parietal lobule during metal arithmetic task suggested that quantitative cognition or numeric computation may need the assistance of sensuous convert, such as spatial imagination and spatial sensuous convert. In addition, this mechanism may be an ’analog algorithm’ in the simple mental arithmetic processing.
de Vreede, Gert-Jan; Briggs, Robert O; Reiter-Palmon, Roni
2010-04-01
The aim of this study was to compare the results of two different modes of using multiple groups (instead of one large group) to identify problems and develop solutions. Many of the complex problems facing organizations today require the use of very large groups or collaborations of groups from multiple organizations. There are many logistical problems associated with the use of such large groups, including the ability to bring everyone together at the same time and location. A field study involved two different organizations and compared productivity and satisfaction of group. The approaches included (a) multiple small groups, each completing the entire process from start to end and combining the results at the end (parallel mode); and (b) multiple subgroups, each building on the work provided by previous subgroups (serial mode). Groups using the serial mode produced more elaborations compared with parallel groups, whereas parallel groups produced more unique ideas compared with serial groups. No significant differences were found related to satisfaction with process and outcomes between the two modes. Preferred mode depends on the type of task facing the group. Parallel groups are more suited for tasks for which a variety of new ideas are needed, whereas serial groups are best suited when elaboration and in-depth thinking on the solution are required. Results of this research can guide the development of facilitated sessions of large groups or "teams of teams."
Short-term Memory in Childhood Dyslexia: Deficient Serial Order in Multiple Modalities.
Cowan, Nelson; Hogan, Tiffany P; Alt, Mary; Green, Samuel; Cabbage, Kathryn L; Brinkley, Shara; Gray, Shelley
2017-08-01
In children with dyslexia, deficits in working memory have not been well-specified. We assessed second-grade children with dyslexia, with and without concomitant specific language impairment, and children with typical development. Immediate serial recall of lists of phonological (non-word), lexical (digit), spatial (location) and visual (shape) items were included. For the latter three modalities, we used not only standard span but also running span tasks, in which the list length was unpredictable to limit mnemonic strategies. Non-word repetition tests indicated a phonological memory deficit in children with dyslexia alone compared with those with typical development, but this difference vanished when these groups were matched for non-verbal intelligence and language. Theoretically important deficits in serial order memory in dyslexic children, however, persisted relative to matched typically developing children. The deficits were in recall of (1) spoken digits in both standard and running span tasks and (2) spatial locations, in running span only. Children with dyslexia with versus without language impairment, when matched on non-verbal intelligence, had comparable serial order memory, but differed in phonology. Because serial orderings of verbal and spatial elements occur in reading, the careful examination of order memory may allow a deeper understanding of dyslexia and its relation to language impairment. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
ERIC Educational Resources Information Center
Hughes, Robert W.; Vachon, Francois; Jones, Dylan M.
2005-01-01
A novel attentional capture effect is reported in which visual-verbal serial recall was disrupted if a single deviation in the interstimulus interval occurred within otherwise regularly presented task-irrelevant spoken items. The degree of disruption was the same whether the temporal deviant was embedded in a sequence made up of a repeating item…
Concreteness effects in short-term memory: a test of the item-order hypothesis.
Roche, Jaclynn; Tolan, G Anne; Tehan, Gerald
2011-12-01
The following experiments explore word length and concreteness effects in short-term memory within an item-order processing framework. This framework asserts order memory is better for those items that are relatively easy to process at the item level. However, words that are difficult to process benefit at the item level for increased attention/resources being applied. The prediction of the model is that differential item and order processing can be detected in episodic tasks that differ in the degree to which item or order memory are required by the task. The item-order account has been applied to the word length effect such that there is a short word advantage in serial recall but a long word advantage in item recognition. The current experiment considered the possibility that concreteness effects might be explained within the same framework. In two experiments, word length (Experiment 1) and concreteness (Experiment 2) are examined using forward serial recall, backward serial recall, and item recognition. These results for word length replicate previous studies showing the dissociation in item and order tasks. The same was not true for the concreteness effect. In all three tasks concrete words were better remembered than abstract words. The concreteness effect cannot be explained in terms of an item-order trade off. PsycINFO Database Record (c) 2011 APA, all rights reserved.
Wang, Li; Sun, Yuhua; Zhou, Xinlin
2016-01-01
Previous studies have observed inconsistent relations between the acuity of the Approximate Number System (ANS) and mathematical achievement. In this paper, we hypothesize that the relation between ANS acuity and mathematical achievement is influenced by fluency; that is, the mathematical achievement test covering a greater expanse of mathematical fluency may better reflect the relation between ANS acuity and mathematics skills. We explored three types of mathematical achievement tests utilized in this study: Subtraction, graded, and semester-final examination. The subtraction test was designed to measure the mathematical fluency. The graded test was more fluency-based than the semester-final examination, but both involved the same mathematical knowledge from the class curriculum. A total of 219 fifth graders from primary schools were asked to perform all three tests, then given a numerosity comparison task, a visual form perception task (figure matching), and a series of other tasks to assess general cognitive processes (mental rotation, non-verbal matrix reasoning, and choice reaction time). The findings were consistent with our expectations. The relation between ANS acuity and mathematical achievement was particularly clearly reflected in the participants’ performance on the visual form perception task, which supports the domain-general explanations for the underlying mechanisms of the relation between ANS acuity and math achievement. PMID:28066291
Park, Andres E; Huynh, Pauline; Schell, Anne M; Baker, Laura A
2015-08-01
Reduced cardiovascular responses to psychological stressors have been found to be associated with both obesity and negative affect in adults, but have been less well studied in children and adolescent populations. These findings have most often been interpreted as reflecting reduced sympathetic nervous system response, perhaps associated with heightened baseline sympathetic activation among the obese and those manifesting negative affect. However, obesity and negative affect may themselves be correlated, raising the question of whether they both independently affect cardiovascular reactivity. The present study thus examined the separate effects of obesity and negative affect on both cardiovascular and skin conductance responses to stress (e.g., during a serial subtraction math task) in adolescents, while controlling for baseline levels of autonomic activity during rest. Both obesity and negative affect had independent and negative associations with cardiovascular reactivity, such that reduced stress responses were apparent for obese adolescents and those with high levels of negative affect. In contrast, neither obesity nor negative affect was related to skin conductance responses to stress, implicating specifically noradrenergic mechanisms rather than sympathetic mechanisms generally as being deficient. Moreover, baseline heart rate was unrelated to obesity in this sample, which suggests that heightened baseline of sympathetic activity is not necessary for the reduced cardiovascular reactivity to stress. Copyright © 2015 Elsevier B.V. All rights reserved.
Serial position functions in general knowledge.
Kelley, Matthew R; Neath, Ian; Surprenant, Aimée M
2015-11-01
Serial position functions with marked primacy and recency effects are ubiquitous in episodic memory tasks. The demonstrations reported here explored whether bow-shaped serial position functions would be observed when people ordered exemplars from various categories along a specified dimension. The categories and dimensions were: actors and age; animals and weight; basketball players and height; countries and area; and planets and diameter. In all cases, a serial position function was observed: People were more accurate to order the youngest and oldest actors, the lightest and heaviest animals, the shortest and tallest basketball players, the smallest and largest countries, and the smallest and largest planets, relative to intermediate items. The results support an explanation of serial position functions based on relative distinctiveness, which predicts that serial position functions will be observed whenever a set of items can be sensibly ordered along a particular dimension. The serial position function arises because the first and last items enjoy a benefit of having no competitors on 1 side and therefore have enhanced distinctiveness relative to mid-dimension items, which suffer by having many competitors on both sides. (c) 2015 APA, all rights reserved).
Gasperini, Filippo; Brizzolara, Daniela; Cristofani, Paola; Casalini, Claudia; Chilosi, Anna Maria
2014-01-01
Children with Developmental Dyslexia (DD) are impaired in Rapid Automatized Naming (RAN) tasks, where subjects are asked to name arrays of high frequency items as quickly as possible. However the reasons why RAN speed discriminates DD from typical readers are not yet fully understood. Our study was aimed to identify some of the cognitive mechanisms underlying RAN-reading relationship by comparing one group of 32 children with DD with an age-matched control group of typical readers on a naming and a visual recognition task both using a discrete-trial methodology, in addition to a serial RAN task, all using the same stimuli (digits and colors). Results showed a significant slowness of DD children in both serial and discrete-trial naming (DN) tasks regardless of type of stimulus, but no difference between the two groups on the discrete-trial recognition task. Significant differences between DD and control participants in the RAN task disappeared when performance in the DN task was partialled out by covariance analysis for colors, but not for digits. The same pattern held in a subgroup of DD subjects with a history of early language delay (LD). By contrast, in a subsample of DD children without LD the RAN deficit was specific for digits and disappeared after slowness in DN was partialled out. Slowness in DN was more evident for LD than for noLD DD children. Overall, our results confirm previous evidence indicating a name-retrieval deficit as a cognitive impairment underlying RAN slowness in DD children. This deficit seems to be more marked in DD children with previous LD. Moreover, additional cognitive deficits specifically associated with serial RAN tasks have to be taken into account when explaining deficient RAN speed of these latter children. We suggest that partially different cognitive dysfunctions underpin superficially similar RAN impairments in different subgroups of DD subjects. PMID:25237301
Bhatarah, Parveen; Ward, Geoff; Tan, Lydia
2008-01-01
In two experiments, we examined the relationship between free recall and immediate serial recall (ISR), using a within-subjects (Experiment 1) and a between-subjects (Experiment 2) design. In both experiments, participants read aloud lists of eight words and were precued or postcued to respond using free recall or ISR. The serial position curves were U-shaped for free recall and showed extended primacy effects with little or no recency for ISR, and there was little or no difference between recall for the precued and the postcued conditions. Critically, analyses of the output order showed that although the participants started their recall from different list positions in the two tasks, the degree to which subsequent recall was serial in a forward order was strikingly similar. We argue that recalling in a serial forward order is a general characteristic of memory and that performance on ISR and free recall is underpinned by common memory mechanisms.
Koffarnus, Mikhail N; Katz, Jonathan L
2011-02-01
Increased signal-detection accuracy on the 5-choice serial reaction time (5-CSRT) task has been shown with drugs that are useful clinically in treating attention deficit hyperactivity disorder (ADHD), but these increases are often small and/or unreliable. By reducing the reinforcer frequency, it may be possible to increase the sensitivity of this task to pharmacologically induced improvements in accuracy. Rats were trained to respond on the 5-CSRT task on a fixed ratio (FR) 1, FR 3, or FR 10 schedule of reinforcement. Drugs that were and were not expected to enhance performance were then administered before experimental sessions. Significant increases in accuracy of signal detection were not typically obtained under the FR 1 schedule with any drug. However, d-amphetamine, methylphenidate, and nicotine typically increased accuracy under the FR 3 and FR 10 schedules. Increasing the FR requirement in the 5-CSRT task increases the likelihood of a positive result with clinically effective drugs, and may more closely resemble conditions in children with attention deficits.
Response Times to Stimuli of Increasing Complexity as a Function of Aging
ERIC Educational Resources Information Center
Jordan, T. C.; Rabbitt, P. M. A.
1977-01-01
These experiments consider the effects of aging on response times to stimuli of increasing complexity in serial choice RT tasks, whether age differences were reduced or abolished on such tasks, and examines repetition effects of a particular coding rule. (Author/RK)
Wunderlich, Kara L; Vollmer, Timothy R
2017-07-01
The current study compared the use of serial and concurrent methods to train multiple exemplars when teaching receptive language skills, providing a systematic replication of Wunderlich, Vollmer, Donaldson, and Phillips (2014). Five preschoolers diagnosed with developmental delays or autism spectrum disorders were taught to receptively identify letters or letter sounds. Subjects learned the target stimuli slightly faster in concurrent training and a high degree of generalization was obtained following both methods of training, indicating that both the serial and concurrent methods of training are efficient and effective instructional procedures. © 2017 Society for the Experimental Analysis of Behavior.
The Brain's Router: A Cortical Network Model of Serial Processing in the Primate Brain
Zylberberg, Ariel; Fernández Slezak, Diego; Roelfsema, Pieter R.; Dehaene, Stanislas; Sigman, Mariano
2010-01-01
The human brain efficiently solves certain operations such as object recognition and categorization through a massively parallel network of dedicated processors. However, human cognition also relies on the ability to perform an arbitrarily large set of tasks by flexibly recombining different processors into a novel chain. This flexibility comes at the cost of a severe slowing down and a seriality of operations (100–500 ms per step). A limit on parallel processing is demonstrated in experimental setups such as the psychological refractory period (PRP) and the attentional blink (AB) in which the processing of an element either significantly delays (PRP) or impedes conscious access (AB) of a second, rapidly presented element. Here we present a spiking-neuron implementation of a cognitive architecture where a large number of local parallel processors assemble together to produce goal-driven behavior. The precise mapping of incoming sensory stimuli onto motor representations relies on a “router” network capable of flexibly interconnecting processors and rapidly changing its configuration from one task to another. Simulations show that, when presented with dual-task stimuli, the network exhibits parallel processing at peripheral sensory levels, a memory buffer capable of keeping the result of sensory processing on hold, and a slow serial performance at the router stage, resulting in a performance bottleneck. The network captures the detailed dynamics of human behavior during dual-task-performance, including both mean RTs and RT distributions, and establishes concrete predictions on neuronal dynamics during dual-task experiments in humans and non-human primates. PMID:20442869
Save the last dance for me: unwanted serial position effects in jury evaluations.
Bruine de Bruin, Wändi
2005-03-01
Whenever competing options are considered in sequence, their evaluations may be affected by order of appearance. Such serial position effects would threaten the fairness of competitions using jury evaluations. Randomization cannot reduce potential order effects, but it does give candidates an equal chance of being assigned to preferred serial positions. Whether, or what, serial position effects emerge may depend on the cognitive demands of the judgment task. In end-of-sequence procedures, final scores are not given until all candidates have performed, possibly burdening judges' memory. If judges' evaluations are based on how well they remember performances, serial position effects may resemble those found with free recall. Candidates may also be evaluated step-by-step, immediately after each performance. This procedure should not burden memory, though it may produce different serial position effects. Yet, this paper reports similar serial position effects with end-of-sequence and step-by-step procedures used for the Eurovision Song Contest: Ratings increased with serial position. The linear order effect was replicated in the step-by-step judgments of World and European Figure Skating Contests. It is proposed that, independent of the evaluation procedure, judges' initial impressions of sequentially appearing candidates may be formed step-by-step, yielding serial position effects.
NASA Technical Reports Server (NTRS)
Doxley, Charles A.
2016-01-01
In the current world of applications that use reconfigurable technology implemented on field programmable gate arrays (FPGAs), there is a need for flexible architectures that can grow as the systems evolve. A project has limited resources and a fixed set of requirements that development efforts are tasked to meet. Designers must develop robust solutions that practically meet the current customer demands and also have the ability to grow for future performance. This paper describes the development of a high speed serial data streaming algorithm that allows for transmission of multiple data channels over a single serial link. The technique has the ability to change to meet new applications developed for future design considerations. This approach uses the Xilinx Serial RapidIO LOGICORE Solution to implement a flexible infrastructure to meet the current project requirements with the ability to adapt future system designs.
Detecting and Remembering Simultaneous Pictures in a Rapid Serial Visual Presentation
ERIC Educational Resources Information Center
Potter, Mary C.; Fox, Laura F.
2009-01-01
Viewers can easily spot a target picture in a rapid serial visual presentation (RSVP), but can they do so if more than 1 picture is presented simultaneously? Up to 4 pictures were presented on each RSVP frame, for 240 to 720 ms/frame. In a detection task, the target was verbally specified before each trial (e.g., "man with violin"); in a…
Serial Recall, Word Frequency, and Mixed Lists: The Influence of Item Arrangement
ERIC Educational Resources Information Center
Miller, Leonie M.; Roodenrys, Steven
2012-01-01
Studies of the effect of word frequency in the serial recall task show that lists of high-frequency words are better recalled than lists of low-frequency words; however, when high- and low-frequency words are alternated within a list, there is no difference in the level of recall for the two types of words, and recall is intermediate between lists…
A remember-know analysis of the semantic serial position function.
Kelley, Matthew R; Neath, Ian; Surprenant, Aimée M
2014-01-01
Did the serial position functions observed in certain semantic memory tasks (e.g., remembering the order of books or films) arise because they really tapped episodic memory? To address this issue, participants were asked to make "remember-know" judgments as they reconstructed the release order of the 7 Harry Potter books and 2 sets of movies. For both classes of stimuli, the "remember" and "know" serial position functions were indistinguishable, and all showed the characteristic U-shape with marked primacy and recency effects. These results are inconsistent with a multiple memory systems view, which predicts recency effects only for "remember" responses and no recency effects for "know" responses. However, the data were consistent with a general memory principle account: the relative distinctiveness principle. According to this view, performance on both episodic and semantic memory tasks arises from the same type of processing: Items that are more separated from their close neighbors in psychological space at the time of recall will be better remembered.
Spurgeon, Jessica; Ward, Geoff; Matthews, William J; Farrell, Simon
2015-04-01
Temporal grouping can provide a principled explanation for changes in the serial position curves and output orders that occur with increasing list length in immediate free recall (IFR) and immediate serial recall (ISR). To test these claims, we examined the effects of temporal grouping on the order of recall in IFR and ISR of lists of between one and 12 words. Consistent with prior research, there were significant effects of temporal grouping in the ISR task with mid-length lists using serial recall scoring, and no overall grouping advantage in the IFR task with longer list lengths using free recall scoring. In all conditions, there was a general tendency to initiate recall with either the first list item or with one of the last four items, and then to recall in a forward serial order. In the grouped IFR conditions, when participants started with one of the last four words, there were particularly heightened tendencies to initiate recall with the first item of the most recent group. Moreover, there was an increased degree of forward-ordered transitions within groups than across groups in IFR. These findings are broadly consistent with Farrell's model, in which lists of items in immediate memory are parsed into distinct groups and participants initiate recall with the first item of a chosen cluster, but also highlight shortcomings of that model. The data support the claim that grouping may offer an important element in the theoretical integration of IFR and ISR.
Redintegration, task difficulty, and immediate serial recall tasks.
Ritchie, Gabrielle; Tolan, Georgina Anne; Tehan, Gerald
2015-03-01
While current theoretical models remain somewhat inconclusive in their explanation of short-term memory (STM), many theories suggest at least a contribution of long-term memory (LTM) to the short-term system. A number of researchers refer to this process as redintegration (e.g., Schweickert, 1993). Under short-term recall conditions, the current study investigated the effects of redintegration and task difficulty in order to extend research conducted by Neale and Tehan (2007). Thirty participants in Experiment 1 and 26 participants in Experiment 2 completed a serial recall task in which retention interval, presentation rate, and articulatory suppression were used to modify task difficulty. Redintegration was examined by manipulating the characteristics of the to-be-remembered items; lexicality in Experiment 1 and wordlikeness in Experiment 2. Responses were scored based on correct-in-position recall, item scoring, and order accuracy scoring. In line with the Neale and Tehan results, as the difficulty of the task increased so did the effects of redintegration. This was evident in that the advantage for words in Experiment 1 and wordlikeness in Experiment 2 decreased as task difficulty increased. This relationship was observed for item but not order memory, and findings were discussed in relation to the theory of redintegration. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
Bhatarah, Parveen; Ward, Geoff; Smith, Jessica; Hayes, Louise
2009-07-01
In five experiments, rehearsal and recall phenomena were examined using the free recall and immediate serial recall (ISR) tasks. In Experiment 1, participants were presented with lists of eight words, were precued or postcued to respond using free recall or ISR, and rehearsed out loud during presentation. The patterns of rehearsal were similar in all the conditions, and there was little difference between recall in the precued and postcued conditions. In Experiment 2, both free recall and ISR were sensitive to word length and presentation rate and showed similar patterns of rehearsal. In Experiment 3, both tasks were sensitive to word length and articulatory suppression. The word length effects generalized to 6-item (Experiment 4) and 12-item (Experiment 5) lists. These findings suggest that the two tasks are underpinned by highly similar rehearsal and recall processes.
Vulnerability to the Irrelevant Sound Effect in Adult ADHD.
Pelletier, Marie-France; Hodgetts, Helen M; Lafleur, Martin F; Vincent, Annick; Tremblay, Sébastien
2016-04-01
An ecologically valid adaptation of the irrelevant sound effect paradigm was employed to examine the relative roles of short-term memory, selective attention, and sustained attention in ADHD. In all, 32 adults with ADHD and 32 control participants completed a serial recall task in silence or while ignoring irrelevant background sound. Serial recall performance in adults with ADHD was reduced relative to controls in both conditions. The degree of interference due to irrelevant sound was greater for adults with ADHD. Furthermore, a positive correlation was observed between task performance under conditions of irrelevant sound and the extent of attentional problems reported by patients on a clinical symptom scale. The results demonstrate that adults with ADHD exhibit impaired short-term memory and a low resistance to distraction; however, their capacity for sustained attention is preserved as the impact of irrelevant sound diminished over the course of the task. © The Author(s) 2013.
Rosenberg-Lee, Miriam; Ashkenazi, Sarit; Chen, Tianwen; Young, Christina B.; Geary, David C.; Menon, Vinod
2014-01-01
Developmental dyscalculia (DD) is marked by specific deficits in processing numerical and mathematical information despite normal intelligence (IQ) and reading ability. We examined how brain circuits used by young children with DD to solve simple addition and subtraction problems differ from those used by typically developing (TD) children who were matched on age, IQ, reading ability, and working memory. Children with DD were slower and less accurate during problem solving than TD children, and were especially impaired on their ability to solve subtraction problems. Children with DD showed significantly greater activity in multiple parietal, occipito-temporal and prefrontal cortex regions while solving addition and subtraction problems. Despite poorer performance during subtraction, children with DD showed greater activity in multiple intra-parietal sulcus (IPS) and superior parietal lobule subdivisions in the dorsal posterior parietal cortex as well as fusiform gyrus in the ventral occipito-temporal cortex. Critically, effective connectivity analyses revealed hyper-connectivity, rather than reduced connectivity, between the IPS and multiple brain systems including the lateral fronto-parietal and default mode networks in children with DD during both addition and subtraction. These findings suggest the IPS and its functional circuits are a major locus of dysfunction during both addition and subtraction problem solving in DD, and that inappropriate task modulation and hyper-connectivity, rather than under-engagement and under-connectivity, are the neural mechanisms underlying problem solving difficulties in children with DD. We discuss our findings in the broader context of multiple levels of analysis and performance issues inherent in neuroimaging studies of typical and atypical development. PMID:25098903
Rosenberg-Lee, Miriam; Ashkenazi, Sarit; Chen, Tianwen; Young, Christina B; Geary, David C; Menon, Vinod
2015-05-01
Developmental dyscalculia (DD) is marked by specific deficits in processing numerical and mathematical information despite normal intelligence (IQ) and reading ability. We examined how brain circuits used by young children with DD to solve simple addition and subtraction problems differ from those used by typically developing (TD) children who were matched on age, IQ, reading ability, and working memory. Children with DD were slower and less accurate during problem solving than TD children, and were especially impaired on their ability to solve subtraction problems. Children with DD showed significantly greater activity in multiple parietal, occipito-temporal and prefrontal cortex regions while solving addition and subtraction problems. Despite poorer performance during subtraction, children with DD showed greater activity in multiple intra-parietal sulcus (IPS) and superior parietal lobule subdivisions in the dorsal posterior parietal cortex as well as fusiform gyrus in the ventral occipito-temporal cortex. Critically, effective connectivity analyses revealed hyper-connectivity, rather than reduced connectivity, between the IPS and multiple brain systems including the lateral fronto-parietal and default mode networks in children with DD during both addition and subtraction. These findings suggest the IPS and its functional circuits are a major locus of dysfunction during both addition and subtraction problem solving in DD, and that inappropriate task modulation and hyper-connectivity, rather than under-engagement and under-connectivity, are the neural mechanisms underlying problem solving difficulties in children with DD. We discuss our findings in the broader context of multiple levels of analysis and performance issues inherent in neuroimaging studies of typical and atypical development. © 2014 John Wiley & Sons Ltd.
FIEStool: Automated data reduction for FIber-fed Echelle Spectrograph (FIES)
NASA Astrophysics Data System (ADS)
Stempels, Eric; Telting, John
2017-08-01
FIEStool automatically reduces data obtained with the FIber-fed Echelle Spectrograph (FIES) at the Nordic Optical Telescope, a high-resolution spectrograph available on a stand-by basis, while also allowing the basic properties of the reduction to be controlled in real time by the user. It provides a Graphical User Interface and offers bias subtraction, flat-fielding, scattered-light subtraction, and specialized reduction tasks from the external packages IRAF (ascl:9911.002) and NumArray. The core of FIEStool is instrument-independent; the software, written in Python, could with minor modifications also be used for automatic reduction of data from other instruments.
Attentional bias induced by solving simple and complex addition and subtraction problems.
Masson, Nicolas; Pesenti, Mauro
2014-01-01
The processing of numbers has been shown to induce shifts of spatial attention in simple probe detection tasks, with small numbers orienting attention to the left and large numbers to the right side of space. Recently, the investigation of this spatial-numerical association has been extended to mental arithmetic with the hypothesis that solving addition or subtraction problems may induce attentional displacements (to the right and to the left, respectively) along a mental number line onto which the magnitude of the numbers would range from left to right, from small to large numbers. Here we investigated such attentional shifts using a target detection task primed by arithmetic problems in healthy participants. The constituents of the addition and subtraction problems (first operand; operator; second operand) were flashed sequentially in the centre of a screen, then followed by a target on the left or the right side of the screen, which the participants had to detect. This paradigm was employed with arithmetic facts (Experiment 1) and with more complex arithmetic problems (Experiment 2) in order to assess the effects of the operation, the magnitude of the operands, the magnitude of the results, and the presence or absence of a requirement for the participants to carry or borrow numbers. The results showed that arithmetic operations induce some spatial shifts of attention, possibly through a semantic link between the operation and space.
Visual distraction and visuo-spatial memory: a sandwich effect.
Tremblay, Sébastien; Nicholls, Alastair P; Parmentier, Fabrice B R; Jones, Dylan M
2005-01-01
The functional characteristics of visuo-spatial serial memory and its sensitivity to irrelevant visual information are examined in the present study, through the investigation of the sandwich effect (e.g., Hitch, 1975). The memory task was one of serial recall for the position of a sequence of seven spatially and temporally separated dots. The presence of irrelevant dots interpolated with to-be-remembered dots affected performance over most serial positions (Experiment 1) but that effect was significantly reduced when the interpolated dots were distinct from the to-be-remembered dots by colour and shape (Experiment 2). Parallels are made between verbal and spatial serial memory, and the reduction of the sandwich effect is discussed in terms of the contribution of perceptual organisation and attentional factors in short-term memory.
Park, Si-Woon; Butler, Andrew J.; Cavalheiro, Vanessa; Alberts, Jay L.; Wolf, Steven L.
2013-01-01
The authors examined serial changes in optical topography in a stroke patient performing a functional task, as well as clinical and physiologic measures while undergoing constraint-induced therapy (CIT). A 73-year-old right hemiparetic patient, who had a subcortical stroke 4 months previously, received 2 weeks of CIT. During the therapy, daily optical topography imaging using near-infrared light was measured serially while the participant performed a functional key-turning task. Clinical outcome measures included the Wolf Motor Function Test (WMFT), Motor Activity Log (MAL), and functional key grip test. Transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) were also used to map cortical areas and hemodynamic brain responses, respectively. Optical topography measurement showed an overall decrease in oxy-hemoglobin concentration in both hemispheres as therapy progressed and the laterality index increased toward the contralateral hemisphere. An increased TMS motor map area was observed in the contralateral cortex following treatment. Posttreatment fMRI showed bilateral primary motor cortex activation, although slightly greater in the contralateral hemisphere, during affected hand movement. Clinical scores revealed marked improvement in functional activities. In one patient who suffered a stroke, 2 weeks of CIT led to improved function and cortical reorganization in the hemisphere contralateral to the affected hand. PMID:15228805
Mouse-tracking evidence for parallel anticipatory option evaluation.
Cranford, Edward A; Moss, Jarrod
2017-12-23
In fast-paced, dynamic tasks, the ability to anticipate the future outcome of a sequence of events is crucial to quickly selecting an appropriate course of action among multiple alternative options. There are two classes of theories that describe how anticipation occurs. Serial theories assume options are generated and evaluated one at a time, in order of quality, whereas parallel theories assume simultaneous generation and evaluation. The present research examined the option evaluation process during a task designed to be analogous to prior anticipation tasks, but within the domain of narrative text comprehension. Prior research has relied on indirect, off-line measurement of the option evaluation process during anticipation tasks. Because the movement of the hand can provide a window into underlying cognitive processes, online metrics such as continuous mouse tracking provide more fine-grained measurements of cognitive processing as it occurs in real time. In this study, participants listened to three-sentence stories and predicted the protagonists' final action by moving a mouse toward one of three possible options. Each story was presented with either one (control condition) or two (distractor condition) plausible ending options. Results seem most consistent with a parallel option evaluation process because initial mouse trajectories deviated further from the best option in the distractor condition compared to the control condition. It is difficult to completely rule out all possible serial processing accounts, although the results do place constraints on the time frame in which a serial processing explanation must operate.
ERIC Educational Resources Information Center
Alduais, Ahmed Mohammed Saleh; Almukhaizeem, Yasir Saad
2015-01-01
Purpose: To see if there is a correlation between interference and short-term memory recall and to examine interference as a factor affecting memory recalling of Arabic and abstract words through free, cued, and serial recall tasks. Method: Four groups of undergraduates in King Saud University, Saudi Arabia participated in this study. The first…
1993-12-31
effect of Ritalin on attention and traumatically brain injured adults and the issues concerning repeated measures using computer based testing with...heat, cold and fatigue on neurological functions, as well as, the interactive and independent effects of chemical agents and pharmaceuticals. 5) A...serial manner was becoming an increasingly important task in neuropsychology. Serial assessment was important for monitoring medication effects
Common Bibliographic Standards for Baylor University Libraries. Revised.
ERIC Educational Resources Information Center
Scott, Sharon; And Others
Developed by a Baylor University (Texas) Task Force, the revised policies of bibliographic standards for the university libraries provide formats for: (1) archives and manuscript control; (2) audiovisual media; (3) books; (4) machine-readable data files; (5) maps; (6) music scores; (7) serials; and (8) sound recordings. The task force assumptions…
Sequence Learning and Selection Difficulty
ERIC Educational Resources Information Center
Rowland, Lee A.; Shanks, David R.
2006-01-01
The authors studied the role of attention as a selection mechanism in implicit learning by examining the effect on primary sequence learning of performing a demanding target-selection task. Participants were trained on probabilistic sequences in a novel version of the serial reaction time (SRT) task, with dual- and triple-stimulus participants…
Part-Set Cuing Facilitation for Spatial Information
ERIC Educational Resources Information Center
Cole, Sydni M.; Reysen, Matthew B.; Kelley, Matthew R.
2013-01-01
Part-set cuing "inhibition" refers to the counterintuitive finding that hints--specifically, part of the set of to-be-remembered information--often impair memory performance in free recall tasks. Although inhibition is the most commonly reported result, part-set cuing "facilitation" has been shown with serial order tasks. The…
Zhu, Yongsheng; Wang, Yunpeng; Lai, Jianghua; Wei, Shuguang; Zhang, Hongbo; Yan, Peng; Li, Yunxiao; Qiao, Xiaomeng; Yin, Fangyuan
2017-03-01
Chronic abuse of heroin leads to long-lasting and complicated cognitive impairment. Dopamine receptors are critically involved in the impulsive drug-driven behavior and the altered attention, processing speed, and mental flexibility that are associated with higher relapse rates. However, the effects of the different dopamine receptors and their possible involvement in heroin-induced cognitive impairment remain unclear. The 5-choice serial reaction time task was used to investigate the profiles of heroin-induced cognitive impairment in mice. The expression levels of dopamine D1- and D2-like receptors in the prefrontal cortex, nucleus accumbens, and caudate-putamen were determined. The effects of dopamine receptors on heroin-induced impulsivity in the 5-choice serial reaction time task were examined by agonist/antagonist treatment on D1 or D3 receptor mutant mice. Systemic heroin administration influences several variables in the 5-choice serial reaction time task, most notably premature responses, a measure of motor impulsivity. These behavioral impairments are associated with increased D1 receptor and decreased D3 receptor mRNA and protein levels in 3 observed brain areas. The heroin-evoked increase in premature responses is mimicked by a D1 agonist and prevented by a D1 antagonist or genetic ablation of the D1 receptor gene. In contrast, a D3 agonist decreases both basal and heroin-evoked premature responses, while genetic ablation of the D3 receptor gene results in increased basal and heroin-evoked premature responses. Heroin-induced impulsive behavior in the 5-choice serial reaction time task is oppositely modulated by D1 and D3 receptor activation. The D1 receptors in the cortical-mesolimbic region play an indispensable role in modulating such behaviors. © The Author 2016. Published by Oxford University Press on behalf of CINP.
Tay, Laura; Lim, Wee Shiong; Chan, Mark; Ali, Noorhazlina; Chong, Mei Sian
2016-01-01
Gait disorders are common in early dementia, with particularly pronounced dual-task deficits, contributing to the increased fall risk and mobility decline associated with cognitive impairment. This study examines the effects of a combined cognitive stimulation and physical exercise programme (MINDVital) on gait performance under single- and dual-task conditions in older adults with mild dementia. Thirty-nine patients with early dementia participated in a multi-disciplinary rehabilitation programme comprising both physical exercise and cognitive stimulation. The programme was conducted in 8-week cycles with participants attending once weekly, and all participants completed 2 successive cycles. Cognitive, functional performance and behavioural symptoms were assessed at baseline and at the end of each 8-week cycle. Gait speed was examined under both single- (Timed Up and Go and 6-metre walk tests) and dual-task (animal category and serial counting) conditions. A random effects model was performed for the independent effect of MINDVital on the primary outcome variable of gait speed under dual-task conditions. The mean age of patients enroled in the rehabilitation programme was 79 ± 6.2 years; 25 (64.1%) had a diagnosis of Alzheimer's dementia, and 26 (66.7%) were receiving a cognitive enhancer therapy. There was a significant improvement in cognitive performance [random effects coefficient (standard error) = 0.90 (0.31), p = 0.003] and gait speed under both dual-task situations [animal category: random effects coefficient = 0.04 (0.02), p = 0.039; serial counting: random effects coefficient = 0.05 (0.02), p = 0.013], with reduced dual-task cost for gait speed [serial counting: random effects coefficient = -4.05 (2.35), p = 0.086] following successive MINDVital cycles. No significant improvement in single-task gait speed was observed. Improved cognitive performance over time was a significant determinant of changes in dual-task gait speed [random effects coefficients = 0.01 (0.005), p = 0.048, and 0.02 (0.005), p = 0.003 for category fluency and counting backwards, respectively]. A combined physical and cognitive rehabilitation programme leads to significant improvements in dual-task walking in early dementia, which may be contributed by improvement in cognitive performance, as single-task gait performance remained stable. © 2016 S. Karger AG, Basel.
Dissociation of verbal working memory system components using a delayed serial recall task.
Chein, J M; Fiez, J A
2001-11-01
Functional magnetic resonance imaging (fMRI) was used to investigate the neural substrates of component processes in verbal working memory. Based on behavioral research using manipulations of verbal stimulus type to dissociate storage, rehearsal, and executive components of verbal working memory, we designed a delayed serial recall task requiring subjects to encode, maintain, and overtly recall sets of verbal items for which phonological similarity, articulatory length, and lexical status were manipulated. By using a task with temporally extended trials, we were able to exploit the temporal resolution afforded by fMRI to partially isolate neural contributions to encoding, maintenance, and retrieval stages of task performance. Several regions commonly associated with maintenance, including supplementary motor, premotor, and inferior frontal areas, were found to be active across all three trial stages. Additionally, we found that left inferior frontal and supplementary motor regions showed patterns of stimulus and temporal sensitivity implicating them in distinct aspects of articulatory rehearsal, while no regions showed a pattern of sensitivity consistent with a role in phonological storage. Regional modulation by task difficulty was further investigated as a measure of executive processing. We interpret our findings as they relate to notions about the cognitive architecture underlying verbal working memory performance.
The Integrated Library System Design Concepts for a Complete Serials Control Subsystem.
1984-08-20
7AD-fl149 379 THE INTEGRTED LIBRARY SYSTEM DESIGN CONCEPTS FOR A 1/COMPLETE SERIALS CONTROL UBSYSTEM(U) ONLINE COMPUTER SYSTEMS INC GERMANTOWN MD 28...CONTROL SUBSYSTEM Presented to: The Pentagon Library The Pentagon Washington, DC 20310 Prepared by: Online Computer Systems, Inc. 20251 Century Blvd...MDA903-82-C-0535 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Online Computer Systems, Inc
Yang, Hongyu; Wang, Ying; Zhou, Zhenyu; Gong, Hui; Luo, Qingming; Wang, Yiwen; Lu, Zuhong
2009-12-01
Sex differences in cognitive tasks have been widely investigated. With brain-imaging techniques, the functions of the brain during the performance of tasks can be examined. Mental arithmetic and near-infrared spectroscopy (NIRS) were used to assess sex differences in prefrontal area activation in a functional brain study. Healthy college students were recruited to perform 2 mental arithmetic tasks. In the first (easy) task, students had to subtract a 1-digit number from a 3-digit number. In the second (difficult) task, they had to subtract a 2-digit number from a 3-digit number. Changes in the concentration of oxygenated hemoglobin (oxy-Hgb) in the prefrontal area during the tasks were measured with NIRS. Thirty students (15 men, 15 women; mean [SD] age: 24.9 [2.2] and 24.3 [2.6] years, respectively) were recruited from Southeast University, Nanjing, China, to participate in the study. The concentration of oxy-Hgb increased during both mental arithmetic tasks (difficult task vs easy task, mean [SD] % arbitrary units: 4.36 [4.38] vs 2.26 [2.82]; F(1,28) = 222.80; P < 0.01). Significant interactions of task x sex (F(1,28) = 82.95), time x sex (F(1,28) = 34.48), task x time (F(1,28) = 222.57), and task x time x sex (F(1,28) = 83.09) were obtained (all, P < 0.01). However, for the 2 tasks, no significant differences between men and women were observed in the mean (SD) response time (men vs women, sec: 3.60 [0.74] vs 3.56 [0.49] for the easy task, 6.55 [0.77] vs 6.44 [0.75] for the difficult task; F(1,28) = 0.67; P = NS) or accuracy rate (men vs women, %: 95.33 [7.40] vs 92.77 [8.80] for the easy task, 62.67 [28.56] vs 54.67 [18.75] for the difficult task; F(1,28) = 0.54; P = NS). Male students showed neural efficiency (less prefrontal activation in subjects with better performance) during the difficult task. In these subjects, sex differences in prefrontal response when performing mental arithmetic were associated with the intensity of the task. Compared with men, women had greater efficiency in task performance (ie, less activation or oxygen consumption for equal performance). Copyright 2009 Excerpta Medica Inc. All rights reserved.
Bokde, Arun L W; Cavedo, Enrica; Lopez-Bayo, Patricia; Lista, Simone; Meindl, Thomas; Born, Christine; Galluzzi, Samantha; Faltraco, Frank; Dubois, Bruno; Teipel, Stefan J; Reiser, Maximilian; Möller, Hans-Jürgen; Hampel, Harald
2016-03-30
A pilot study to investigate the effects of rivastigmine on the brain activation pattern due to visual attention tasks in a group of amnestic Mild Cognitive Impaired patients (aMCI). The design was an initial three-month double blind period with a rivastigmine and placebo arms, followed by a nine-month open-label period. All patients underwent serial functional magnetic resonance imaging (fMRI) at baseline, and after three and six months of follow-up. Primary endpoint was the effect of rivastigmine on functional brain changes during visual attention (face and location matching) tasks. There were five in the rivastigmine arm and two in the placebo arm. The face matching task showed higher activation of visual areas after three months of treatment but no differences compared to baseline at six months. The location matching task showed a higher activation along the dorsal visual pathway at both three and six months follow ups. Treatment with rivastigmine demonstrates a significant effect on brain activation of the dorsal visual pathway during a location matching task in patients with aMCI. Our data support the potential use of task fMRI to map specific treatment effects of cholinergic drugs during prodromal stages of Alzheimer's disease (AD). Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Majerus, Steve; Van der Linden, Martial; Braissand, Vérane; Eliez, Stephan
2007-03-01
Many researchers have recently explored the cognitive profile of velocardiofacial syndrome (VCFS), a neurodevelopmental disorder linked to a 22q11.2 deletion. However, verbal short-term memory has not yet been systematically investigated. We explored verbal short-term memory abilities in a group of 11 children and adults presenting with VCFS and two control groups, matched on either CA or vocabulary knowledge, by distinguishing short-term memory for serial order and item information. The VCFS group showed impaired performance on the serial order short-term memory tasks compared to both control groups. Relative to the vocabulary-matched control group, item short-term memory was preserved. The implication of serial order short-term memory deficits on other aspects of cognitive development in VCFS (e.g., language development, numerical cognition) is discussed.
Serial reconstruction of order and serial recall in verbal short-term memory.
Quinlan, Philip T; Roodenrys, Steven; Miller, Leonie M
2017-10-01
We carried out a series of experiments on verbal short-term memory for lists of words. In the first experiment, participants were tested via immediate serial recall, and word frequency and list set size were manipulated. With closed lists, the same set of items was repeatedly sampled, and with open lists, no item was presented more than once. In serial recall, effects of word frequency and set size were found. When a serial reconstruction-of-order task was used, in a second experiment, robust effects of word frequency emerged, but set size failed to show an effect. The effects of word frequency in order reconstruction were further examined in two final experiments. The data from these experiments revealed that the effects of word frequency are robust and apparently are not exclusively indicative of output processes. In light of these findings, we propose a multiple-mechanisms account in which word frequency can influence both retrieval and preretrieval processes.
The Development of the Picture-Superiority Effect
ERIC Educational Resources Information Center
Whitehouse, Andrew J. O.; Maybery, Murray T.; Durkin, Kevin
2006-01-01
When pictures and words are presented serially in an explicit memory task, recall of the pictures is superior. While this effect is well established in the adult population, little is known of the development of this picture-superiority effect in typical development. This task was administered to 80 participants from middle childhood to…
Effects of Hearing Status and Sign Language Use on Working Memory
ERIC Educational Resources Information Center
Marschark, Marc; Sarchet, Thomastine; Trani, Alexandra
2016-01-01
Deaf individuals have been found to score lower than hearing individuals across a variety of memory tasks involving both verbal and nonverbal stimuli, particularly those requiring retention of serial order. Deaf individuals who are native signers, meanwhile, have been found to score higher on visual-spatial memory tasks than on verbal-sequential…
ERIC Educational Resources Information Center
Ram-Tsur, Ronit; Faust, Miriam; Zivotofsky, Ari Z.
2008-01-01
The present study investigates the performance of persons with reading disabilities (PRD) on a variety of sequential visual-comparison tasks that have different working-memory requirements. In addition, mediating relationships between the sequential comparison process and attention and memory skills were looked for. Our findings suggest that PRD…
Integrated and Independent Learning of Hand-Related Constituent Sequences
ERIC Educational Resources Information Center
Berner, Michael P.; Hoffmann, Joachim
2009-01-01
In almost all daily activities fingers of both hands are used in coordinated succession. The present experiments explored whether learning in such tasks pertains not only to the overall sequence spanning both hands but also to the constituent sequences of each hand. In a serial reaction time task, 2 repeating hand-related sequences were…
The involvement of central attention in visual search is determined by task demands.
Han, Suk Won
2017-04-01
Attention, the mechanism by which a subset of sensory inputs is prioritized over others, operates at multiple processing stages. Specifically, attention enhances weak sensory signal at the perceptual stage, while it serves to select appropriate responses or consolidate sensory representations into short-term memory at the central stage. This study investigated the independence and interaction between perceptual and central attention. To do so, I used a dual-task paradigm, pairing a four-alternative choice task with a visual search task. The results showed that central attention for response selection was engaged in perceptual processing for visual search when the number of search items increased, thereby increasing the demand for serial allocation of focal attention. By contrast, central attention and perceptual attention remained independent as far as the demand for serial shifting of focal attention remained constant; decreasing stimulus contrast or increasing the set size of a parallel search did not evoke the involvement of central attention in visual search. These results suggest that the nature of concurrent visual search process plays a crucial role in the functional interaction between two different types of attention.
Studying Different Tasks of Implicit Learning across Multiple Test Sessions Conducted on the Web
Sævland, Werner; Norman, Elisabeth
2016-01-01
Implicit learning is usually studied through individual performance on a single task, with the most common tasks being the Serial Reaction Time (SRT) task, the Dynamic System Control (DSC) task, and Artificial Grammar Learning (AGL). Few attempts have been made to compare performance across different implicit learning tasks within the same study. The current study was designed to explore the relationship between performance on the DSC Sugar factory task and the Alternating Serial Reaction Time (ASRT) task. We also addressed another limitation of traditional implicit learning experiments, namely that implicit learning is usually studied in laboratory settings over a restricted time span lasting for less than an hour. In everyday situations, implicit learning is assumed to involve a gradual accumulation of knowledge across several learning episodes over a longer time span. One way to increase the ecological validity of implicit learning experiments could be to present the learning material repeatedly across shorter test sessions. This can most easily be done by using a web-based setup in which participants can access the material from home. We therefore created an online web-based system for measuring implicit learning that could be administered in either single or multiple sessions. Participants (n = 66) were assigned to either a single session or a multiple session condition. Learning occurred on both tasks, and awareness measures suggested that acquired knowledge was not fully conscious on either of the tasks. Learning and the degree of conscious awareness of the learned regularities were compared across conditions and tasks. On the DSC task, performance was not affected by whether learning had taken place in one or over multiple sessions. On the ASRT task, RT improvement across blocks was larger in the multiple-session condition. Learning in the two tasks was not related. PMID:27375512
The Speed of Serial Attention Shifts in Visual Search: Evidence from the N2pc Component.
Grubert, Anna; Eimer, Martin
2016-02-01
Finding target objects among distractors in visual search display is often assumed to be based on sequential movements of attention between different objects. However, the speed of such serial attention shifts is still under dispute. We employed a search task that encouraged the successive allocation of attention to two target objects in the same search display and measured N2pc components to determine how fast attention moved between these objects. Each display contained one digit in a known color (fixed-color target) and another digit whose color changed unpredictably across trials (variable-color target) together with two gray distractor digits. Participants' task was to find the fixed-color digit and compare its numerical value with that of the variable-color digit. N2pc components to fixed-color targets preceded N2pc components to variable-color digits, demonstrating that these two targets were indeed selected in a fixed serial order. The N2pc to variable-color digits emerged approximately 60 msec after the N2pc to fixed-color digits, which shows that attention can be reallocated very rapidly between different target objects in the visual field. When search display durations were increased, thereby relaxing the temporal demands on serial selection, the two N2pc components to fixed-color and variable-color targets were elicited within 90 msec of each other. Results demonstrate that sequential shifts of attention between different target locations can operate very rapidly at speeds that are in line with the assumptions of serial selection models of visual search.
Attentional load inhibits vection.
Seno, Takeharu; Ito, Hiroyuki; Sunaga, Shoji
2011-07-01
In this study, we examined the effects of cognitive task performance on the induction of vection. We hypothesized that, if vection requires attentional resources, performing cognitive tasks requiring attention should inhibit or weaken it. Experiment 1 tested the effects on vection of simultaneously performing a rapid serial visual presentation (RSVP) task. The results revealed that the RSVP task affected the subjective strength of vection. Experiment 2 tested the effects of a multiple-object-tracking (MOT) task on vection. Simultaneous performance of the MOT task decreased the duration and subjective strength of vection. Taken together, these findings suggest that vection induction requires attentional resources.
From Sailing Ships to Subtraction Symbols: Multiple Representations to Support Abstraction
ERIC Educational Resources Information Center
Jao, Limin
2013-01-01
Teachers are tasked with supporting students' learning of abstract mathematical concepts. Students can represent their mathematical understanding in a variety of modes, for example: manipulatives, pictures, diagrams, spoken languages, and written symbols. Although most students easily pick up rudimentary knowledge through the use of concrete…
Gathmann, Bettina; Schulte, Frank P; Maderwald, Stefan; Pawlikowski, Mirko; Starcke, Katrin; Schäfer, Lena C; Schöler, Tobias; Wolf, Oliver T; Brand, Matthias
2014-03-01
Stress and additional load on the executive system, produced by a parallel working memory task, impair decision making under risk. However, the combination of stress and a parallel task seems to preserve the decision-making performance [e.g., operationalized by the Game of Dice Task (GDT)] from decreasing, probably by a switch from serial to parallel processing. The question remains how the brain manages such demanding decision-making situations. The current study used a 7-tesla magnetic resonance imaging (MRI) system in order to investigate the underlying neural correlates of the interaction between stress (induced by the Trier Social Stress Test), risky decision making (GDT), and a parallel executive task (2-back task) to get a better understanding of those behavioral findings. The results show that on a behavioral level, stressed participants did not show significant differences in task performance. Interestingly, when comparing the stress group (SG) with the control group, the SG showed a greater increase in neural activation in the anterior prefrontal cortex when performing the 2-back task simultaneously with the GDT than when performing each task alone. This brain area is associated with parallel processing. Thus, the results may suggest that in stressful dual-tasking situations, where a decision has to be made when in parallel working memory is demanded, a stronger activation of a brain area associated with parallel processing takes place. The findings are in line with the idea that stress seems to trigger a switch from serial to parallel processing in demanding dual-tasking situations.
Yao, Guangle; Lei, Tao; Zhong, Jiandan; Jiang, Ping; Jia, Wenwu
2017-01-01
Background subtraction (BS) is one of the most commonly encountered tasks in video analysis and tracking systems. It distinguishes the foreground (moving objects) from the video sequences captured by static imaging sensors. Background subtraction in remote scene infrared (IR) video is important and common to lots of fields. This paper provides a Remote Scene IR Dataset captured by our designed medium-wave infrared (MWIR) sensor. Each video sequence in this dataset is identified with specific BS challenges and the pixel-wise ground truth of foreground (FG) for each frame is also provided. A series of experiments were conducted to evaluate BS algorithms on this proposed dataset. The overall performance of BS algorithms and the processor/memory requirements were compared. Proper evaluation metrics or criteria were employed to evaluate the capability of each BS algorithm to handle different kinds of BS challenges represented in this dataset. The results and conclusions in this paper provide valid references to develop new BS algorithm for remote scene IR video sequence, and some of them are not only limited to remote scene or IR video sequence but also generic for background subtraction. The Remote Scene IR dataset and the foreground masks detected by each evaluated BS algorithm are available online: https://github.com/JerryYaoGl/BSEvaluationRemoteSceneIR. PMID:28837112
The Hebb repetition effect in simple and complex memory span.
Oberauer, Klaus; Jones, Timothy; Lewandowsky, Stephan
2015-08-01
The Hebb repetition effect refers to the finding that immediate serial recall is improved over trials for memory lists that are surreptitiously repeated across trials, relative to new lists. We show in four experiments that the Hebb repetition effect is also observed with a complex-span task, in which encoding or retrieval of list items alternates with an unrelated processing task. The interruption of encoding or retrieval by the processing task did not reduce the size of the Hebb effect, demonstrating that incidental long-term learning forms integrated representations of lists, excluding the interleaved processing events. Contrary to the assumption that complex-span performance relies more on long-term memory than standard immediate serial recall (simple span), the Hebb effect was not larger in complex-span than in simple-span performance. The Hebb effect in complex span was also not modulated by the opportunity for refreshing list items, questioning a role of refreshing for the acquisition of the long-term memory representations underlying the effect.
Lee, Hyunyoung; Cheon, Byungsik; Hwang, Minho; Kang, Donghoon; Kwon, Dong-Soo
2018-02-01
In robotic surgical systems, commercial master devices have limitations owing to insufficient workspace and lack of intuitiveness. To overcome these limitations, a remote-center-of-motion (RCM) master manipulator was proposed. The feasibility of the proposed RCM structure was evaluated through kinematic analysis using a conventional serial structure. Two performance comparison experiments (peg transfer task and objective transfer task) were conducted for the developed master and Phantom Omni. The kinematic analysis results showed that compared with the serial structure, the proposed RCM structure has better performance in terms of design efficiency (19%) and workspace quality (59.08%). Further, in comparison with Phantom Omni, the developed master significantly increased task efficiency and significantly decreased workload in both experiments. The comparatively better performance in terms of intuitiveness, design efficiency, and operability of the proposed master for a robotic system for minimally invasive surgery was confirmed through kinematic and experimental analysis. Copyright © 2017 John Wiley & Sons, Ltd.
Too little or too much? Parafoveal preview benefits and parafoveal load costs in dyslexic adults.
Silva, Susana; Faísca, Luís; Araújo, Susana; Casaca, Luis; Carvalho, Loide; Petersson, Karl Magnus; Reis, Alexandra
2016-07-01
Two different forms of parafoveal dysfunction have been hypothesized as core deficits of dyslexic individuals: reduced parafoveal preview benefits ("too little parafovea") and increased costs of parafoveal load ("too much parafovea"). We tested both hypotheses in a single eye-tracking experiment using a modified serial rapid automatized naming (RAN) task. Comparisons between dyslexic and non-dyslexic adults showed reduced parafoveal preview benefits in dyslexics, without increased costs of parafoveal load. Reduced parafoveal preview benefits were observed in a naming task, but not in a silent letter-finding task, indicating that the parafoveal dysfunction may be consequent to the overload with extracting phonological information from orthographic input. Our results suggest that dyslexics' parafoveal dysfunction is not based on strict visuo-attentional factors, but nevertheless they stress the importance of extra-phonological processing. Furthermore, evidence of reduced parafoveal preview benefits in dyslexia may help understand why serial RAN is an important reading predictor in adulthood.
Memory Asymmetry of Forward and Backward Associations in Recognition Tasks
ERIC Educational Resources Information Center
Yang, Jiongjiong; Zhao, Peng; Zhu, Zijian; Mecklinger, Axel; Fang, Zhiyong; Li, Han
2013-01-01
There is an intensive debate on whether memory for serial order is symmetric. The objective of this study was to explore whether associative asymmetry is modulated by memory task (recognition vs. cued recall). Participants were asked to memorize word triples (Experiments 1-2) or pairs (Experiments 3-6) during the study phase. They then recalled…
Implicit Sequence Learning and Contextual Cueing Do Not Compete for Central Cognitive Resources
ERIC Educational Resources Information Center
Jimenez, Luis; Vazquez, Gustavo A.
2011-01-01
Sequence learning and contextual cueing explore different forms of implicit learning, arising from practice with a structured serial task, or with a search task with informative contexts. We assess whether these two learning effects arise simultaneously when both remain implicit. Experiments 1 and 2 confirm that a cueing effect can be observed…
Free Classification as a Window on Executive Functioning in Autism Spectrum Disorders
ERIC Educational Resources Information Center
McGonigle-Chalmers, Margaret; Alderson-Day, Ben
2010-01-01
Spontaneous classification was assessed using a free serial search task in 18 school-aged children at the high functioning end of the autistic spectrum and compared with results from age-matched typically developing controls. The task required participants to touch shapes in an exhaustive non-repetitive sequence. The positions of the items varied…
Visuo-Motor and Cognitive Procedural Learning in Children with Basal Ganglia Pathology
ERIC Educational Resources Information Center
Mayor-Dubois, C.; Maeder, P.; Zesiger, P.; Roulet-Perez, E.
2010-01-01
We investigated procedural learning in 18 children with basal ganglia (BG) lesions or dysfunctions of various aetiologies, using a visuo-motor learning test, the Serial Reaction Time (SRT) task, and a cognitive learning test, the Probabilistic Classification Learning (PCL) task. We compared patients with early (less than 1 year old, n=9), later…
Impact of Auditory Selective Attention on Verbal Short-Term Memory and Vocabulary Development
ERIC Educational Resources Information Center
Majerus, Steve; Heiligenstein, Lucie; Gautherot, Nathalie; Poncelet, Martine; Van der Linden, Martial
2009-01-01
This study investigated the role of auditory selective attention capacities as a possible mediator of the well-established association between verbal short-term memory (STM) and vocabulary development. A total of 47 6- and 7-year-olds were administered verbal immediate serial recall and auditory attention tasks. Both task types probed processing…
ERIC Educational Resources Information Center
Hadlington, Lee J.; Bridges, Andrew M.; Beaman, C. Philip
2006-01-01
Three experiments attempted to clarify the effect of altering the spatial presentation of irrelevant auditory information. Previous research using serial recall tasks demonstrated a left-ear disadvantage for the presentation of irrelevant sounds (Hadlington, Bridges, & Darby, 2004). Experiments 1 and 2 examined the effects of manipulating the…
Predictive Movements and Human Reinforcement Learning of Sequential Action
ERIC Educational Resources Information Center
de Kleijn, Roy; Kachergis, George; Hommel, Bernhard
2018-01-01
Sequential action makes up the bulk of human daily activity, and yet much remains unknown about how people learn such actions. In one motor learning paradigm, the serial reaction time (SRT) task, people are taught a consistent sequence of button presses by cueing them with the next target response. However, the SRT task only records keypress…
Visual Search Deficits Are Independent of Magnocellular Deficits in Dyslexia
ERIC Educational Resources Information Center
Wright, Craig M.; Conlon, Elizabeth G.; Dyck, Murray
2012-01-01
The aim of this study was to investigate the theory that visual magnocellular deficits seen in groups with dyslexia are linked to reading via the mechanisms of visual attention. Visual attention was measured with a serial search task and magnocellular function with a coherent motion task. A large group of children with dyslexia (n = 70) had slower…
ERIC Educational Resources Information Center
Howard, James H., Jr.; Howard, Darlene V.; Dennis, Nancy A.; Kelly, Andrew J.
2008-01-01
Knowledge of sequential relationships enables future events to be anticipated and processed efficiently. Research with the serial reaction time task (SRTT) has shown that sequence learning often occurs implicitly without effort or awareness. Here, the authors report 4 experiments that use a triplet-learning task (TLT) to investigate sequence…
Lateralized Implicit Sequence Learning in Uni- and Bi-Manual Conditions
ERIC Educational Resources Information Center
Schmitz, Remy; Pasquali, Antoine; Cleeremans, Axel; Peigneux, Philippe
2013-01-01
It has been proposed that the right hemisphere (RH) is better suited to acquire novel material whereas the left hemisphere (LH) is more able to process well-routinized information. Here, we ask whether this potential dissociation also manifests itself in an implicit learning task. Using a lateralized version of the serial reaction time task (SRT),…
A matter of emphasis: Linguistic stress habits modulate serial recall.
Taylor, John C; Macken, Bill; Jones, Dylan M
2015-04-01
Models of short-term memory for sequential information rely on item-level, feature-based descriptions to account for errors in serial recall. Transposition errors within alternating similar/dissimilar letter sequences derive from interactions between overlapping features. However, in two experiments, we demonstrated that the characteristics of the sequence are what determine the fates of items, rather than the properties ascribed to the items themselves. Performance in alternating sequences is determined by the way that the sequences themselves induce particular prosodic rehearsal patterns, and not by the nature of the items per se. In a serial recall task, the shapes of the canonical "saw-tooth" serial position curves and transposition error probabilities at successive input-output distances were modulated by subvocal rehearsal strategies, despite all item-based parameters being held constant. We replicated this finding using nonalternating lists, thus demonstrating that transpositions are substantially influenced by prosodic features-such as stress-that emerge during subvocal rehearsal.
Karatekin, C; Asarnow, R F
1998-10-01
This study tested the hypotheses that visual search impairments in schizophrenia are due to a delay in initiation of search or a slow rate of serial search. We determined the specificity of these impairments by comparing children with schizophrenia to children with attention-deficit hyperactivity disorder (ADHD) and age-matched normal children. The hypotheses were tested within the framework of feature integration theory by administering children tasks tapping parallel and serial search. Search rate was estimated from the slope of the search functions, and duration of the initial stages of search from time to make the first saccade on each trial. As expected, manual response times were elevated in both clinical groups. Contrary to expectation, ADHD, but not schizophrenic, children were delayed in initiation of serial search. Finally, both groups showed a clear dissociation between intact parallel search rates and slowed serial search rates.
Does pointing facilitate the recall of serial positions in visuospatial working memory?
Spataro, Pietro; Marques, Valeria R S; Longobardi, Emiddia; Rossi-Arnaud, Clelia
2015-09-01
The present study examined the question of whether pointing enhances the serial recall of visuospatial positions. Thirty-six participants were presented with 40 target arrays varying in length from five to eight items, with each position appearing sequentially in red for 1 s. The task was to reproduce the order of presentation of the positions on a blank matrix. Results showed that, for five-, six-, and seven-item arrays, order memory was significantly better in the passive view than in the pointing condition, and the serial position curves displayed both recency and priority effects. Interestingly, the advantage of the passive-view condition was more pronounced in the early than in the late positions. For eight-item arrays, no significant differences were found between the passive view and the pointing conditions. Overall, the present data provide no evidence in support of the view that pointing facilitates the recall of serial positions.
Visuospatial and verbal memory in mental arithmetic.
Clearman, Jack; Klinger, Vojtěch; Szűcs, Dénes
2017-09-01
Working memory allows complex information to be remembered and manipulated over short periods of time. Correlations between working memory and mathematics achievement have been shown across the lifespan. However, only a few studies have examined the potentially distinct contributions of domain-specific visuospatial and verbal working memory resources in mental arithmetic computation. Here we aimed to fill this gap in a series of six experiments pairing addition and subtraction tasks with verbal and visuospatial working memory and interference tasks. In general, we found higher levels of interference between mental arithmetic and visuospatial working memory tasks than between mental arithmetic and verbal working memory tasks. Additionally, we found that interference that matched the working memory domain of the task (e.g., verbal task with verbal interference) lowered working memory performance more than mismatched interference (verbal task with visuospatial interference). Findings suggest that mental arithmetic relies on domain-specific working memory resources.
Wilson, Anna J; Revkin, Susannah K; Cohen, David; Cohen, Laurent; Dehaene, Stanislas
2006-01-01
Background In a companion article [1], we described the development and evaluation of software designed to remediate dyscalculia. This software is based on the hypothesis that dyscalculia is due to a "core deficit" in number sense or in its access via symbolic information. Here we review the evidence for this hypothesis, and present results from an initial open-trial test of the software in a sample of nine 7–9 year old children with mathematical difficulties. Methods Children completed adaptive training on numerical comparison for half an hour a day, four days a week over a period of five-weeks. They were tested before and after intervention on their performance in core numerical tasks: counting, transcoding, base-10 comprehension, enumeration, addition, subtraction, and symbolic and non-symbolic numerical comparison. Results Children showed specific increases in performance on core number sense tasks. Speed of subitizing and numerical comparison increased by several hundred msec. Subtraction accuracy increased by an average of 23%. Performance on addition and base-10 comprehension tasks did not improve over the period of the study. Conclusion Initial open-trial testing showed promising results, and suggested that the software was successful in increasing number sense over the short period of the study. However these results need to be followed up with larger, controlled studies. The issues of transfer to higher-level tasks, and of the best developmental time window for intervention also need to be addressed. PMID:16734906
The Role of Task-Related Learned Representations in Explaining Asymmetries in Task Switching
Barutchu, Ayla; Becker, Stefanie I.; Carter, Olivia; Hester, Robert; Levy, Neil L.
2013-01-01
Task switch costs often show an asymmetry, with switch costs being larger when switching from a difficult task to an easier task. This asymmetry has been explained by difficult tasks being represented more strongly and consequently requiring more inhibition prior to switching to the easier task. The present study shows that switch cost asymmetries observed in arithmetic tasks (addition vs. subtraction) do not depend on task difficulty: Switch costs of similar magnitudes were obtained when participants were presented with unsolvable pseudo-equations that did not differ in task difficulty. Further experiments showed that neither task switch costs nor switch cost asymmetries were due to perceptual factors (e.g., perceptual priming effects). These findings suggest that asymmetrical switch costs can be brought about by the association of some tasks with greater difficulty than others. Moreover, the finding that asymmetrical switch costs were observed (1) in the absence of a task switch proper and (2) without differences in task difficulty, suggests that present theories of task switch costs and switch cost asymmetries are in important ways incomplete and need to be modified. PMID:23613919
Manor, Brad; Yu, Wanting; Zhu, Hao; Harrison, Rachel; Lo, On-Yee; Lipsitz, Lewis; Travison, Thomas; Pascual-Leone, Alvaro; Zhou, Junhong
2018-01-30
Walking is a complex cognitive motor task that is commonly completed while performing another task such as talking or making decisions. Gait assessments performed under normal and "dual-task" walking conditions thus provide important insights into health. Such assessments, however, are limited primarily to laboratory-based settings. The objective of our study was to create and test a smartphone-based assessment of normal and dual-task walking for use in nonlaboratory settings. We created an iPhone app that used the phone's motion sensors to record movements during walking under normal conditions and while performing a serial-subtraction dual task, with the phone placed in the user's pants pocket. The app provided the user with multimedia instructions before and during the assessment. Acquired data were automatically uploaded to a cloud-based server for offline analyses. A total of 14 healthy adults completed 2 laboratory visits separated by 1 week. On each visit, they used the app to complete three 45-second trials each of normal and dual-task walking. Kinematic data were collected with the app and a gold-standard-instrumented GAITRite mat. Participants also used the app to complete normal and dual-task walking trials within their homes on 3 separate days. Within laboratory-based trials, GAITRite-derived heel strikes and toe-offs of the phone-side leg aligned with smartphone acceleration extrema, following filtering and rotation to the earth coordinate system. We derived stride times-a clinically meaningful metric of locomotor control-from GAITRite and app data, for all strides occurring over the GAITRite mat. We calculated stride times and the dual-task cost to the average stride time (ie, percentage change from normal to dual-task conditions) from both measurement devices. We calculated similar metrics from home-based app data. For these trials, periods of potential turning were identified via custom-developed algorithms and omitted from stride-time analyses. Across all detected strides in the laboratory, stride times derived from the app and GAITRite mat were highly correlated (P<.001, r 2 =.98). These correlations were independent of walking condition and pocket tightness. App- and GAITRite-derived stride-time dual-task costs were also highly correlated (P<.001, r 2 =.95). The error of app-derived stride times (mean 16.9, SD 9.0 ms) was unaffected by the magnitude of stride time, walking condition, or pocket tightness. For both normal and dual-task trials, average stride times derived from app walking trials demonstrated excellent test-retest reliability within and between both laboratory and home-based assessments (intraclass correlation coefficient range .82-.94). The iPhone app we created enabled valid and reliable assessment of stride timing-with the smartphone in the pocket-during both normal and dual-task walking and within both laboratory and nonlaboratory environments. Additional work is warranted to expand the functionality of this tool to older adults and other patient populations. ©Brad Manor, Wanting Yu, Hao Zhu, Rachel Harrison, On-Yee Lo, Lewis Lipsitz, Thomas Travison, Alvaro Pascual-Leone, Junhong Zhou. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 30.01.2018.
Saint-Aubin, Jean; Tremblay, Sébastien; Jalbert, Annie
2007-01-01
This research investigated the nature of encoding and its contribution to serial recall for visual-spatial information. In order to do so, we examined the relationship between fixation duration and recall performance. Using the dot task--a series of seven dots spatially distributed on a monitor screen is presented sequentially for immediate recall--performance and eye-tracking data were recorded during the presentation of the to-be-remembered items. When participants were free to move their eyes at their will, both fixation durations and probability of correct recall decreased as a function of serial position. Furthermore, imposing constant durations of fixation across all serial positions had a beneficial impact (though relatively small) on item but not order recall. Great care was taken to isolate the effect of fixation duration from that of presentation duration. Although eye movement at encoding contributes to immediate memory, it is not decisive in shaping serial recall performance. Our results also provide further evidence that the distinction between item and order information, well-established in the verbal domain, extends to visual-spatial information.
The NEWMEDS rodent touchscreen test battery for cognition relevant to schizophrenia.
Hvoslef-Eide, M; Mar, A C; Nilsson, S R O; Alsiö, J; Heath, C J; Saksida, L M; Robbins, T W; Bussey, T J
2015-11-01
The NEWMEDS initiative (Novel Methods leading to New Medications in Depression and Schizophrenia, http://www.newmeds-europe.com ) is a large industrial-academic collaborative project aimed at developing new methods for drug discovery for schizophrenia. As part of this project, Work package 2 (WP02) has developed and validated a comprehensive battery of novel touchscreen tasks for rats and mice for assessing cognitive domains relevant to schizophrenia. This article provides a review of the touchscreen battery of tasks for rats and mice for assessing cognitive domains relevant to schizophrenia and highlights validation data presented in several primary articles in this issue and elsewhere. The battery consists of the five-choice serial reaction time task and a novel rodent continuous performance task for measuring attention, a three-stimulus visual reversal and the serial visual reversal task for measuring cognitive flexibility, novel non-matching to sample-based tasks for measuring spatial working memory and paired-associates learning for measuring long-term memory. The rodent (i.e. both rats and mice) touchscreen operant chamber and battery has high translational value across species due to its emphasis on construct as well as face validity. In addition, it offers cognitive profiling of models of diseases with cognitive symptoms (not limited to schizophrenia) through a battery approach, whereby multiple cognitive constructs can be measured using the same apparatus, enabling comparisons of performance across tasks. This battery of tests constitutes an extensive tool package for both model characterisation and pre-clinical drug discovery.
ERIC Educational Resources Information Center
de Avila, Edward A.; Havassy, Barbara
Approximately 1,225 Mexican American and Anglo American children in grades 1-6 (ages 6-14) from California, Colorado, New Mexico, and Texas were tested using school achievement and IQ standardized tests and four Piagetian-derived measures (Cartoon Conservation Scales, Water Level Task, Figural Intersection Test, and Serial Task). The field study's…
The phonological neighbourhood effect on short-term memory for order.
Clarkson, L; Roodenrys, S; Miller, L M; Hulme, C
2017-03-01
There is a growing body of literature that suggests that long-term memory (LTM) and short-term memory (STM) structures that were once thought to be distinct are actually co-dependent, and that LTM can aid retrieval from STM. The mechanism behind this effect is commonly argued to act on item memory but not on order memory. The aim of the current study was to examine whether LTM could exert an influence on STM for order by examining an effect attributed to LTM, the phonological neighbourhood effect, in a task that reduced the requirement to retain item information. In Experiment 1, 18 participants completed a serial reconstruction task where neighbourhood density alternated within the lists. In Experiment 2, 22 participants completed a serial reconstruction task using pure lists of dense and sparse neighbourhood words. In Experiment 3, 22 participants completed a reconstruction task with both mixed and pure lists. There was a significant effect of neighbourhood density with better recall for dense than sparse neighbourhood words in pure lists but not in mixed lists. Results suggest that LTM exerts an influence prior to that proposed by many models of memory for order.
Lum, Jarrad A.G.; Ullman, Michael T.; Conti-Ramsden, Gina
2013-01-01
A number of studies have investigated procedural learning in dyslexia using serial reaction time (SRT) tasks. Overall, the results have been mixed, with evidence of both impaired and intact learning reported. We undertook a systematic search of studies that examined procedural learning using SRT tasks, and synthesized the data using meta-analysis. A total of 14 studies were identified, representing data from 314 individuals with dyslexia and 317 typically developing control participants. The results indicate that, on average, individuals with dyslexia have worse procedural learning abilities than controls, as indexed by sequence learning on the SRT task. The average weighted standardized mean difference (the effect size) was found to be 0.449 (CI95: .204, .693), and was significant (p < .001). However, moderate levels of heterogeneity were found between study-level effect sizes. Meta-regression analyses indicated that studies with older participants that used SRT tasks with second order conditional sequences, or with older participants that used sequences that were presented a large number of times, were associated with smaller effect sizes. These associations are discussed with respect to compensatory and delayed memory systems in dyslexia. PMID:23920029
Haskell, Crystal F; Kennedy, David O; Wesnes, Keith A; Scholey, Andrew B
2005-06-01
The cognitive and mood effects of caffeine are well documented. However, the majority of studies in this area involve caffeine-deprived, habitual caffeine users. It is therefore unclear whether any beneficial findings are due to the positive effects of caffeine or to the alleviation of caffeine withdrawal. The present placebo-controlled, double-blind, balanced crossover study investigated the acute cognitive and mood effects of caffeine in habitual users and habitual non-users of caffeine. Following overnight caffeine withdrawal, 24 habitual caffeine consumers (mean=217 mg/day) and 24 habitual non-consumers (20 mg/day) received a 150 ml drink containing either 75 or 150 mg of caffeine or a matching placebo, at intervals of > or =48 h. Cognitive and mood assessments were undertaken at baseline and 30 min post-drink. These included the Cognitive Drug Research computerised test battery, two serial subtraction tasks, a sentence verification task and subjective visual analogue mood scales. There were no baseline differences between the groups' mood or performance. Following caffeine, there were significant improvements in simple reaction time, digit vigilance reaction time, numeric working memory reaction time and sentence verification accuracy, irrespective of group. Self-rated mental fatigue was reduced and ratings of alertness were significantly improved by caffeine independent of group. There were also group effects for rapid visual information processing false alarms and spatial memory accuracy with habitual consumers outperforming non-consumers. There was a single significant interaction of group and treatment effects on jittery ratings. Separate analyses of each groups' responses to caffeine revealed overlapping but differential responses to caffeine. Caffeine tended to benefit consumers' mood more while improving performance more in the non-consumers. These results do not support a withdrawal alleviation model. Differences in the patterns of responses to caffeine by habitual consumers and habitual non-consumers may go some way to explaining why some individuals become caffeine consumers.
A working memory account of the interaction between numbers and spatial attention.
van Dijck, Jean-Philippe; Abrahamse, Elger L; Acar, Freya; Ketels, Boris; Fias, Wim
2014-01-01
Rather than reflecting the long-term memory construct of a mental number line, it has been proposed that the relation between numbers and space is of a more temporary nature and constructed in working memory during task execution. In three experiments we further explored the viability of this working memory account. Participants performed a speeded dot detection task with dots appearing left or right, while maintaining digits or letters in working memory. Just before presentation of the dot, these digits or letters were used as central cues. These experiments show that the "attentional SNARC-effect" (where SNARC is the spatial-numerical association of response codes) is not observed when only the lastly perceived number cue--and no serially ordered sequence of cues--is maintained in working memory (Experiment 1). It is only when multiple items (numbers in Experiment 2; letters in Experiment 3) are stored in working memory in a serially organized way that the attentional cueing effect is observed as a function of serial working memory position. These observations suggest that the "attentional SNARC-effect" is strongly working memory based. Implications for theories on the mental representation of numbers are discussed.
Primacy Performance of Normal and Retarded Children: Stimulus Familiarity or Spatial Memory?
ERIC Educational Resources Information Center
Swanson, Lee
1978-01-01
Explores the effect of stimulus familiarity on the spatial primacy performance of normal and retarded children. Assumes that serial recall tasks reflect spatial memory rather than verbal rehearsal. (BD)
Lange, Nicholas D.; Thomas, Rick P.; Davelaar, Eddy J.
2012-01-01
The pre-decisional process of hypothesis generation is a ubiquitous cognitive faculty that we continually employ in an effort to understand our environment and thereby support appropriate judgments and decisions. Although we are beginning to understand the fundamental processes underlying hypothesis generation, little is known about how various temporal dynamics, inherent in real world generation tasks, influence the retrieval of hypotheses from long-term memory. This paper presents two experiments investigating three data acquisition dynamics in a simulated medical diagnosis task. The results indicate that the mere serial order of data, data consistency (with previously generated hypotheses), and mode of responding influence the hypothesis generation process. An extension of the HyGene computational model endowed with dynamic data acquisition processes is forwarded and explored to provide an account of the present data. PMID:22754547
Free recall of word lists under total sleep deprivation and after recovery sleep.
de Almeida Valverde Zanini, Gislaine; Tufik, Sérgio; Andersen, Monica Levy; da Silva, Raquel Cristina Martins; Bueno, Orlando Francisco Amodeo; Rodrigues, Camila Cruz; Pompéia, Sabine
2012-02-01
One task that has been used to assess memory effects of prior total sleep deprivation (TSD) is the immediate free recall of word lists; however, results have been mixed. A possible explanation for this is task impurity, since recall of words from different serial positions reflects use of distinct types of memory (last words: short-term memory; first and intermediate words: episodic memory). Here we studied the effects of 2 nights of TSD on immediate free recall of semantically unrelated word lists considering the serial position curve. Random allocation to a 2-night TSD protocol followed by one night of recovery sleep or to a control group. Study conducted under continuous behavioral monitoring. 24 young, healthy male volunteers. 2 nights of total sleep deprivation (TSD) and one night of recovery sleep. Participants were shown five 15 unrelated word-lists at baseline, after one and 2 nights of TSD, and after one night of recovery sleep. We also investigated the development of recall strategies (learning) and susceptibility to interference from previous lists. No free recall impairment occurred during TSD, irrespective of serial position. Interference was unchanged. Both groups developed recall strategies, but task learning occurred earlier in controls and was evident in the TSD group only after sleep recovery. Prior TSD spared episodic memory, short-term phonological memory, and interference, allowed the development of recall strategies, but may have decreased the advantage of using these strategies, which returned to normal after recovery sleep.
Serial vs. parallel models of attention in visual search: accounting for benchmark RT-distributions.
Moran, Rani; Zehetleitner, Michael; Liesefeld, Heinrich René; Müller, Hermann J; Usher, Marius
2016-10-01
Visual search is central to the investigation of selective visual attention. Classical theories propose that items are identified by serially deploying focal attention to their locations. While this accounts for set-size effects over a continuum of task difficulties, it has been suggested that parallel models can account for such effects equally well. We compared the serial Competitive Guided Search model with a parallel model in their ability to account for RT distributions and error rates from a large visual search data-set featuring three classical search tasks: 1) a spatial configuration search (2 vs. 5); 2) a feature-conjunction search; and 3) a unique feature search (Wolfe, Palmer & Horowitz Vision Research, 50(14), 1304-1311, 2010). In the parallel model, each item is represented by a diffusion to two boundaries (target-present/absent); the search corresponds to a parallel race between these diffusors. The parallel model was highly flexible in that it allowed both for a parametric range of capacity-limitation and for set-size adjustments of identification boundaries. Furthermore, a quit unit allowed for a continuum of search-quitting policies when the target is not found, with "single-item inspection" and exhaustive searches comprising its extremes. The serial model was found to be superior to the parallel model, even before penalizing the parallel model for its increased complexity. We discuss the implications of the results and the need for future studies to resolve the debate.
Soylu, Firat; Newman, Sharlene D
2016-02-01
Fingers are used as canonical representations for numbers across cultures. In previous imaging studies, it was shown that arithmetic processing activates neural resources that are known to participate in finger movements. Additionally, in one dual-task study, it was shown that anatomically ordered finger tapping disrupts addition and subtraction more than multiplication, possibly due to a long-lasting effect of early finger counting experiences on the neural correlates and organization of addition and subtraction processes. How arithmetic task difficulty and tapping complexity affect the concurrent performance is still unclear. If early finger counting experiences have bearing on the neural correlates of arithmetic in adults, then one would expect anatomically and non-anatomically ordered tapping to have different interference effects, given that finger counting is usually anatomically ordered. To unravel these issues, we studied how (1) arithmetic task difficulty and (2) the complexity of the finger tapping sequence (anatomical vs. non-anatomical ordering) affect concurrent performance and use of key neural circuits using a mixed block/event-related dual-task fMRI design with adult participants. The results suggest that complexity of the tapping sequence modulates interference on addition, and that one-digit addition (fact retrieval), compared to two-digit addition (calculation), is more affected from anatomically ordered tapping. The region-of-interest analysis showed higher left angular gyrus BOLD response for one-digit compared to two-digit addition, and in no-tapping conditions than dual tapping conditions. The results support a specific association between addition fact retrieval and anatomically ordered finger movements in adults, possibly due to finger counting strategies that deploy anatomically ordered finger movements early in the development.
Yu, Wanting; Zhu, Hao; Harrison, Rachel; Lo, On-Yee; Lipsitz, Lewis; Travison, Thomas; Pascual-Leone, Alvaro; Zhou, Junhong
2018-01-01
Background Walking is a complex cognitive motor task that is commonly completed while performing another task such as talking or making decisions. Gait assessments performed under normal and “dual-task” walking conditions thus provide important insights into health. Such assessments, however, are limited primarily to laboratory-based settings. Objective The objective of our study was to create and test a smartphone-based assessment of normal and dual-task walking for use in nonlaboratory settings. Methods We created an iPhone app that used the phone’s motion sensors to record movements during walking under normal conditions and while performing a serial-subtraction dual task, with the phone placed in the user’s pants pocket. The app provided the user with multimedia instructions before and during the assessment. Acquired data were automatically uploaded to a cloud-based server for offline analyses. A total of 14 healthy adults completed 2 laboratory visits separated by 1 week. On each visit, they used the app to complete three 45-second trials each of normal and dual-task walking. Kinematic data were collected with the app and a gold-standard–instrumented GAITRite mat. Participants also used the app to complete normal and dual-task walking trials within their homes on 3 separate days. Within laboratory-based trials, GAITRite-derived heel strikes and toe-offs of the phone-side leg aligned with smartphone acceleration extrema, following filtering and rotation to the earth coordinate system. We derived stride times—a clinically meaningful metric of locomotor control—from GAITRite and app data, for all strides occurring over the GAITRite mat. We calculated stride times and the dual-task cost to the average stride time (ie, percentage change from normal to dual-task conditions) from both measurement devices. We calculated similar metrics from home-based app data. For these trials, periods of potential turning were identified via custom-developed algorithms and omitted from stride-time analyses. Results Across all detected strides in the laboratory, stride times derived from the app and GAITRite mat were highly correlated (P<.001, r2=.98). These correlations were independent of walking condition and pocket tightness. App- and GAITRite-derived stride-time dual-task costs were also highly correlated (P<.001, r2=.95). The error of app-derived stride times (mean 16.9, SD 9.0 ms) was unaffected by the magnitude of stride time, walking condition, or pocket tightness. For both normal and dual-task trials, average stride times derived from app walking trials demonstrated excellent test-retest reliability within and between both laboratory and home-based assessments (intraclass correlation coefficient range .82-.94). Conclusions The iPhone app we created enabled valid and reliable assessment of stride timing—with the smartphone in the pocket—during both normal and dual-task walking and within both laboratory and nonlaboratory environments. Additional work is warranted to expand the functionality of this tool to older adults and other patient populations. PMID:29382625
Heekin, Andrew M; Guerrero, Felix D; Bendele, Kylie G; Saldivar, Leo; Scoles, Glen A; Dowd, Scot E; Gondro, Cedric; Nene, Vishvanath; Djikeng, Appolinaire; Brayton, Kelly A
2013-09-23
Cattle babesiosis is a tick-borne disease of cattle with the most severe form of the disease caused by the apicomplexan, Babesia bovis. Babesiosis is transmitted to cattle through the bite of infected cattle ticks of the genus Rhipicephalus. The most prevalent species is Rhipicephalus (Boophilus) microplus, which is distributed throughout the tropical and subtropical countries of the world. The transmission of B. bovis is transovarian and a previous study of the R. microplus ovarian proteome identified several R. microplus proteins that were differentially expressed in response to infection. Through various approaches, we studied the reaction of the R. microplus ovarian transcriptome in response to infection by B. bovis. A group of ticks were allowed to feed on a B. bovis-infected splenectomized calf while a second group fed on an uninfected splenectomized control calf. RNA was purified from dissected adult female ovaries of both infected and uninfected ticks and a subtracted B. bovis-infected cDNA library was synthesized, subtracting with the uninfected ovarian RNA. Four thousand ESTs were sequenced from the ovary subtracted library and annotated. The subtracted library dataset assembled into 727 unique contigs and 2,161 singletons for a total of 2,888 unigenes, Microarray experiments designed to detect B. bovis-induced gene expression changes indicated at least 15 transcripts were expressed at a higher level in ovaries from ticks feeding upon the B. bovis-infected calf as compared with ovaries from ticks feeding on an uninfected calf. We did not detect any transcripts from these microarray experiments that were expressed at a lower level in the infected ovaries compared with the uninfected ovaries. Using the technique called serial analysis of gene expression, 41 ovarian transcripts from infected ticks were differentially expressed when compared with transcripts of controls. Collectively, our experimental approaches provide the first comprehensive profile of the R. microplus ovarian transcriptome responding to infection by B. bovis. This dataset should prove useful in molecular studies of host-pathogen interactions between this tick and its apicomplexan parasite.
2013-01-01
Background Cattle babesiosis is a tick-borne disease of cattle with the most severe form of the disease caused by the apicomplexan, Babesia bovis. Babesiosis is transmitted to cattle through the bite of infected cattle ticks of the genus Rhipicephalus. The most prevalent species is Rhipicephalus (Boophilus) microplus, which is distributed throughout the tropical and subtropical countries of the world. The transmission of B. bovis is transovarian and a previous study of the R. microplus ovarian proteome identified several R. microplus proteins that were differentially expressed in response to infection. Through various approaches, we studied the reaction of the R. microplus ovarian transcriptome in response to infection by B. bovis. Methods A group of ticks were allowed to feed on a B. bovis-infected splenectomized calf while a second group fed on an uninfected splenectomized control calf. RNA was purified from dissected adult female ovaries of both infected and uninfected ticks and a subtracted B. bovis-infected cDNA library was synthesized, subtracting with the uninfected ovarian RNA. Four thousand ESTs were sequenced from the ovary subtracted library and annotated. Results The subtracted library dataset assembled into 727 unique contigs and 2,161 singletons for a total of 2,888 unigenes, Microarray experiments designed to detect B. bovis-induced gene expression changes indicated at least 15 transcripts were expressed at a higher level in ovaries from ticks feeding upon the B. bovis-infected calf as compared with ovaries from ticks feeding on an uninfected calf. We did not detect any transcripts from these microarray experiments that were expressed at a lower level in the infected ovaries compared with the uninfected ovaries. Using the technique called serial analysis of gene expression, 41 ovarian transcripts from infected ticks were differentially expressed when compared with transcripts of controls. Conclusion Collectively, our experimental approaches provide the first comprehensive profile of the R. microplus ovarian transcriptome responding to infection by B. bovis. This dataset should prove useful in molecular studies of host-pathogen interactions between this tick and its apicomplexan parasite. PMID:24330595
ERIC Educational Resources Information Center
De Corte, Erik; Verschaffel, Lieven
Design and results of an investigation attempting to analyze and improve children's solution processes in elementary addition and subtraction problems are described. As background for the study, a conceptual model was developed based on previous research. One dimension of the model relates to the characteristics of the tasks (numerical versus word…
ERIC Educational Resources Information Center
Barnes, Marcia A.; Wilkinson, Margaret; Khemani, Ekta; Boudesquie, Amy; Dennis, Maureen; Fletcher, Jack M.
2006-01-01
Three studies compared 98 children with spina bifida myelomeningocele (SBM)--a disorder associated with high rates of math disability and spatial deficits--to 94 typically developing children on multidigit subtraction and cognitive addition tasks. Children with SBM were classified into those with reading decoding and math disability, only math…
Patterns of Problem-Solving in Children's Literacy and Arithmetic
ERIC Educational Resources Information Center
Farrington-Flint, Lee; Vanuxem-Cotterill, Sophie; Stiller, James
2009-01-01
Patterns of problem-solving among 5-to-7 year-olds' were examined on a range of literacy (reading and spelling) and arithmetic-based (addition and subtraction) problem-solving tasks using verbal self-reports to monitor strategy choice. The results showed higher levels of variability in the children's strategy choice across Years 1 and 2 on the…
Activity Approach to the Formation of the Method of Addition and Subtraction in Elementary Students
ERIC Educational Resources Information Center
Maksimov, L. K.; Maksimova, L. V.
2013-01-01
One of the main tasks in teaching mathematics to elementary students is to form calculating methods and techniques. The efforts of teachers and methodologists are aimed at solving this problem. Educational and psychological research is devoted to it. At the same time school teaching experience demonstrates some difficulties in learning methods of…
ERIC Educational Resources Information Center
Beaudin, Bart P.; And Others
This teacher's guide is intended for use in helping Kodak Corporation employees develop the basic mathematics skills required to perform the manufacturing and quality control tasks expected of them. The following topics are covered in the first five modules: the four basic functions (adding, subtracting, multiplying, and dividing), calculations…
ERIC Educational Resources Information Center
Weaver, J. Fred
Refinements of work with calculator algorithms previously conducted by the author are reported. Work with "chaining" and the doing/undoing property in addition and subtraction was tested with 24 third-grade students. Results indicated the need for further instruction with both ideas. Students were able to manipulate the calculator keyboard, but…
Children's Additive Concepts: Promoting Understanding and the Role of Inhibition
ERIC Educational Resources Information Center
Robinson, Katherine M.; Dube, Adam K.
2013-01-01
This study investigated the promotion of children's understanding and acquisition of arithmetic concepts and the effects of inhibitory skills. Children in Grades 3, 4, and 5 solved two sets of three-term addition and subtraction problems (e.g., 3 + 24 - 24, 3 + 24 - 22) and completed an inhibition task. Half of the participants received a…
Genetic programming and serial processing for time series classification.
Alfaro-Cid, Eva; Sharman, Ken; Esparcia-Alcázar, Anna I
2014-01-01
This work describes an approach devised by the authors for time series classification. In our approach genetic programming is used in combination with a serial processing of data, where the last output is the result of the classification. The use of genetic programming for classification, although still a field where more research in needed, is not new. However, the application of genetic programming to classification tasks is normally done by considering the input data as a feature vector. That is, to the best of our knowledge, there are not examples in the genetic programming literature of approaches where the time series data are processed serially and the last output is considered as the classification result. The serial processing approach presented here fills a gap in the existing literature. This approach was tested in three different problems. Two of them are real world problems whose data were gathered for online or conference competitions. As there are published results of these two problems this gives us the chance to compare the performance of our approach against top performing methods. The serial processing of data in combination with genetic programming obtained competitive results in both competitions, showing its potential for solving time series classification problems. The main advantage of our serial processing approach is that it can easily handle very large datasets.
Impaired Processing of Serial Order Determines Working Memory Impairments in Alzheimer's Disease.
De Belder, Maya; Santens, Patrick; Sieben, Anne; Fias, Wim
2017-01-01
Working memory (WM) problems are commonly observed in Alzheimer's disease (AD), but the affected mechanisms leading to impaired WM are still insufficiently understood. The ability to efficiently process serial order in WM has been demonstrated to be fundamental to fluent daily life functioning. The decreased capability to mentally process serial position in WM has been put forward as the underlying explanation for generally compromised WM performance. Determine which mechanisms, such as order processing, are responsible for deficient WM functioning in AD. A group of AD patients (n = 32) and their partners (n = 25), assigned to the control group, were submitted to an extensive battery of neuropsychological and experimental tasks, assessing general cognitive state and functioning of several aspects related to serial order WM. The results revealed an impaired ability to bind item information to serial position within WM in AD patients compared to controls. It was additionally observed that AD patients experienced specific difficulties with directing spatial attention when searching for item information stored in WM. The processing of serial order and the allocation of attentional resources are both disrupted, explaining the generally reduced WM functioning in AD patients. Further studies should now clarify whether this observation could explain disease-related problems for other cognitive functions such as verbal expression, auditory comprehension, or planning.
Thinking in Pictures as a cognitive account of autism.
Kunda, Maithilee; Goel, Ashok K
2011-09-01
We analyze the hypothesis that some individuals on the autism spectrum may use visual mental representations and processes to perform certain tasks that typically developing individuals perform verbally. We present a framework for interpreting empirical evidence related to this "Thinking in Pictures" hypothesis and then provide comprehensive reviews of data from several different cognitive tasks, including the n-back task, serial recall, dual task studies, Raven's Progressive Matrices, semantic processing, false belief tasks, visual search, spatial recall, and visual recall. We also discuss the relationships between the Thinking in Pictures hypothesis and other cognitive theories of autism including Mindblindness, Executive Dysfunction, Weak Central Coherence, and Enhanced Perceptual Functioning.
Fehr, Thorsten; Code, Chris; Herrmann, Manfred
2007-10-03
The issue of how and where arithmetic operations are represented in the brain has been addressed in numerous studies. Lesion studies suggest that a network of different brain areas are involved in mental calculation. Neuroimaging studies have reported inferior parietal and lateral frontal activations during mental arithmetic using tasks of different complexities and using different operators (addition, subtraction, etc.). Indeed, it has been difficult to compare brain activation across studies because of the variety of different operators and different presentation modalities used. The present experiment examined fMRI-BOLD activity in participants during calculation tasks entailing different arithmetic operations -- addition, subtraction, multiplication and division -- of different complexities. Functional imaging data revealed a common activation pattern comprising right precuneus, left and right middle and superior frontal regions during all arithmetic operations. All other regional activations were operation specific and distributed in prominently frontal, parietal and central regions when contrasting complex and simple calculation tasks. The present results largely confirm former studies suggesting that activation patterns due to mental arithmetic appear to reflect a basic anatomical substrate of working memory, numerical knowledge and processing based on finger counting, and derived from a network originally related to finger movement. We emphasize that in mental arithmetic research different arithmetic operations should always be examined and discussed independently of each other in order to avoid invalid generalizations on arithmetics and involved brain areas.
Maclean, Linda M; Brown, Laura J E; Khadra, H; Astell, Arlene J
2017-03-01
Previous studies exploring the effects of attention-prioritization on cognitively healthy older adults' gait and cognitive dual task (DT) performance have shown DT cost in gait outcomes but inconsistent effects on cognitive performance, which may reflect task difficulty (the cognitive load). This study aimed to identify whether changing the cognitive load during a walking and counting DT improved the challenge/sensitivity of the cognitive task to observe prioritization effects on concurrent gait and cognitive performance outcomes. Seventy-two cognitively healthy older adults (Mean=73years) walked 15m, counted backwards in 3s and 7s as single tasks (ST), and concurrently walked and counted backwards as DTs. Attention-prioritization was examined in Prioritizing Walking (PW) and Prioritizing Counting (PC) DT conditions. Dual-task performance costs (DTC) were calculated for number of correct cognitive responses (CCR) in the counting tasks, and step-time variability and velocity in the gait task. All DT conditions showed a benefit (DTB) for cognitive outcomes with trade-off cost to gait. In the Serial 3s task, the cognitive DTBs increased in PC over the PW condition (p<0.05), with a greater cost to walking velocity (p<0.05). DT effects were more pronounced in the Serial 7s with a lower cognitive DTB when PC than when PW, (p<0.05) with no trade-off increase in cost to gait outcomes (p<0.05). The findings suggest that increased cognitive load during a gait and cognitive DT produces more pronounced gait measures of attention-prioritization in cognitively healthy older adults. A cognitive load effect was also observed in the cognitive outcomes, with unexpected results. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Fezzani, K.; Albinet, C.; Thon, B.; Marquie, J. -C.
2010-01-01
The present study investigated the extent to which the impact of motor difficulty on the acquisition of a computer task varies as a function of age. Fourteen young and 14 older participants performed 352 sequences of 10 serial pointing movements with a wireless pen on a digitiser tablet. A conditional probabilistic structure governed the…
ERIC Educational Resources Information Center
Kingsley, Phillip R.; Hagen, John W.
Eighty nursery school children were randomly divided into four groups of 20 and given a serial short-term memory task in which difficult-to-label stimuli were used. Three experimental groups were provided with labels for the stimuli. Of these, one group overtly pronounced the labels and rehearsed them during the task, one group merely pronounced…
Working Memory in Children with Cochlear Implants: Problems are in Storage, not Processing
Nittrouer, Susan; Caldwell-Tarr, Amanda; Lowenstein, Joanna H
2013-01-01
Background There is growing consensus that hearing loss and consequent amplification likely interact with cognitive systems. A phenomenon often examined in regards to these potential interactions is working memory, modeled as consisting of one component responsible for storage of information and another component responsible for processing of that information. Signal degradation associated with cochlear implants should selectively inhibit storage without affecting processing. This study examined two hypotheses: (1) A single task can be used to measure storage and processing in working memory, with recall accuracy indexing storage and rate of recall indexing processing; (2) Storage is negatively impacted for children with CIs, but not processing. Method Two experiments were conducted. Experiment 1 included adults and children, 8 and 6 years of age, with NH. Procedures tested the prediction that accuracy of recall could index storage and rate of recall could index processing. Both measures were obtained during a serial-recall task using word lists designed to manipulate storage and processing demands independently: non-rhyming nouns were the standard condition; rhyming nouns were predicted to diminish storage capacity; and non-rhyming adjectives were predicted to increase processing load. Experiment 2 included 98 8-year-olds, 48 with NH and 50 with CIs, in the same serial-recall task using the non-rhyming and rhyming nouns. Results Experiment 1 showed that recall accuracy was poorest for the rhyming nouns and rate of recall was slowest for the non-rhyming adjectives, demonstrating that storage and processing can be indexed separately within a single task. In Experiment 2, children with CIs showed less accurate recall of serial order than children with NH, but rate of recall did not differ. Recall accuracy and rate of recall were not correlated in either experiment, reflecting independence of these mechanisms. Conclusions It is possible to measure the operations of storage and processing mechanisms in working memory in a single task, and only storage is impaired for children with CIs. These findings suggest that research and clinical efforts should focus on enhancing the saliency of representation for children with CIs. Direct instruction of syntax and semantics could facilitate storage in real-world working memory tasks. PMID:24090697
Working memory in children with cochlear implants: problems are in storage, not processing.
Nittrouer, Susan; Caldwell-Tarr, Amanda; Lowenstein, Joanna H
2013-11-01
There is growing consensus that hearing loss and consequent amplification likely interact with cognitive systems. A phenomenon often examined in regards to these potential interactions is working memory, modeled as consisting of one component responsible for storage of information and another component responsible for processing of that information. Signal degradation associated with cochlear implants should selectively inhibit storage without affecting processing. This study examined two hypotheses: (1) A single task can be used to measure storage and processing in working memory, with recall accuracy indexing storage and rate of recall indexing processing; (2) Storage is negatively impacted for children with CIs, but not processing. Two experiments were conducted. Experiment 1 included adults and children, 8 and 6 years of age, with NH. Procedures tested the prediction that accuracy of recall could index storage and rate of recall could index processing. Both measures were obtained during a serial-recall task using word lists designed to manipulate storage and processing demands independently: non-rhyming nouns were the standard condition; rhyming nouns were predicted to diminish storage capacity; and non-rhyming adjectives were predicted to increase processing load. Experiment 2 included 98 8-year-olds, 48 with NH and 50 with CIs, in the same serial-recall task using the non-rhyming and rhyming nouns. Experiment 1 showed that recall accuracy was poorest for the rhyming nouns and rate of recall was slowest for the non-rhyming adjectives, demonstrating that storage and processing can be indexed separately within a single task. In Experiment 2, children with CIs showed less accurate recall of serial order than children with NH, but rate of recall did not differ. Recall accuracy and rate of recall were not correlated in either experiment, reflecting independence of these mechanisms. It is possible to measure the operations of storage and processing mechanisms in working memory in a single task, and only storage is impaired for children with CIs. These findings suggest that research and clinical efforts should focus on enhancing the saliency of representation for children with CIs. Direct instruction of syntax and semantics could facilitate storage in real-world working memory tasks. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Using Serial and Discrete Digit Naming to Unravel Word Reading Processes
Altani, Angeliki; Protopapas, Athanassios; Georgiou, George K.
2018-01-01
During reading acquisition, word recognition is assumed to undergo a developmental shift from slow serial/sublexical processing of letter strings to fast parallel processing of whole word forms. This shift has been proposed to be detected by examining the size of the relationship between serial- and discrete-trial versions of word reading and rapid naming tasks. Specifically, a strong association between serial naming of symbols and single word reading suggests that words are processed serially, whereas a strong association between discrete naming of symbols and single word reading suggests that words are processed in parallel as wholes. In this study, 429 Grade 1, 3, and 5 English-speaking Canadian children were tested on serial and discrete digit naming and word reading. Across grades, single word reading was more strongly associated with discrete naming than with serial naming of digits, indicating that short high-frequency words are processed as whole units early in the development of reading ability in English. In contrast, serial naming was not a unique predictor of single word reading across grades, suggesting that within-word sequential processing was not required for the successful recognition for this set of words. Factor mixture analysis revealed that our participants could be clustered into two classes, namely beginning and more advanced readers. Serial naming uniquely predicted single word reading only among the first class of readers, indicating that novice readers rely on a serial strategy to decode words. Yet, a considerable proportion of Grade 1 students were assigned to the second class, evidently being able to process short high-frequency words as unitized symbols. We consider these findings together with those from previous studies to challenge the hypothesis of a binary distinction between serial/sublexical and parallel/lexical processing in word reading. We argue instead that sequential processing in word reading operates on a continuum, depending on the level of reading proficiency, the degree of orthographic transparency, and word-specific characteristics. PMID:29706918
Using Serial and Discrete Digit Naming to Unravel Word Reading Processes.
Altani, Angeliki; Protopapas, Athanassios; Georgiou, George K
2018-01-01
During reading acquisition, word recognition is assumed to undergo a developmental shift from slow serial/sublexical processing of letter strings to fast parallel processing of whole word forms. This shift has been proposed to be detected by examining the size of the relationship between serial- and discrete-trial versions of word reading and rapid naming tasks. Specifically, a strong association between serial naming of symbols and single word reading suggests that words are processed serially, whereas a strong association between discrete naming of symbols and single word reading suggests that words are processed in parallel as wholes. In this study, 429 Grade 1, 3, and 5 English-speaking Canadian children were tested on serial and discrete digit naming and word reading. Across grades, single word reading was more strongly associated with discrete naming than with serial naming of digits, indicating that short high-frequency words are processed as whole units early in the development of reading ability in English. In contrast, serial naming was not a unique predictor of single word reading across grades, suggesting that within-word sequential processing was not required for the successful recognition for this set of words. Factor mixture analysis revealed that our participants could be clustered into two classes, namely beginning and more advanced readers. Serial naming uniquely predicted single word reading only among the first class of readers, indicating that novice readers rely on a serial strategy to decode words. Yet, a considerable proportion of Grade 1 students were assigned to the second class, evidently being able to process short high-frequency words as unitized symbols. We consider these findings together with those from previous studies to challenge the hypothesis of a binary distinction between serial/sublexical and parallel/lexical processing in word reading. We argue instead that sequential processing in word reading operates on a continuum, depending on the level of reading proficiency, the degree of orthographic transparency, and word-specific characteristics.
Central attention is serial, but midlevel and peripheral attention are parallel-A hypothesis.
Tamber-Rosenau, Benjamin J; Marois, René
2016-10-01
In this brief review, we argue that attention operates along a hierarchy from peripheral through central mechanisms. We further argue that these mechanisms are distinguished not just by their functional roles in cognition, but also by a distinction between serial mechanisms (associated with central attention) and parallel mechanisms (associated with midlevel and peripheral attention). In particular, we suggest that peripheral attentional deployments in distinct representational systems may be maintained simultaneously with little or no interference, but that the serial nature of central attention means that even tasks that largely rely on distinct representational systems will come into conflict when central attention is demanded. We go on to review both the behavioral and neural evidence for this prediction. We conclude that even though the existing evidence mostly favors our account of serial central and parallel noncentral attention, we know of no experiment that has conclusively borne out these claims. As such, this article offers a framework of attentional mechanisms that will aid in guiding future research on this topic.
Asanowicz, Dariusz; Kruse, Lena; Śmigasiewicz, Kamila; Verleger, Rolf
2017-11-01
In bilateral rapid serial visual presentation (RSVP), the second of two targets, T1 and T2, is better identified in the left visual field (LVF) than in the right visual field (RVF). This LVF advantage may reflect hemispheric asymmetry in temporal attention or/and in spatial orienting of attention. Participants performed two tasks: the "standard" bilateral RSVP task (Exp.1) and its unilateral variant (Exp.1 & 2). In the bilateral task, spatial location was uncertain, thus target identification involved stimulus-driven spatial orienting. In the unilateral task, the targets were presented block-wise in the LVF or RVF only, such that no spatial orienting was needed for target identification. Temporal attention was manipulated in both tasks by varying the T1-T2 lag. The results showed that the LVF advantage disappeared when involvement of stimulus-driven spatial orienting was eliminated, whereas the manipulation of temporal attention had no effect on the asymmetry. In conclusion, the results do not support the hypothesis of hemispheric asymmetry in temporal attention, and provide further evidence that the LVF advantage reflects right hemisphere predominance in stimulus-driven orienting of spatial attention. These conclusions fit evidence that temporal attention is implemented by bilateral parietal areas and spatial attention by the right-lateralized ventral frontoparietal network. Copyright © 2017 Elsevier Inc. All rights reserved.
Bhandari, Jayant; Daya, Ritesh; Mishra, Ram K
2016-09-01
The 5-choice serial reaction time task (5-CSRTT) is an automated operant conditioning task that measures rodent attention. The task allows the measurement of several parameters such as response accuracy, speed of processing, motivation, and impulsivity. The task has been widely used to investigate attentional processes in rodents for attention deficit and hyperactivity disorder and has expanded to other illnesses such as Alzheimer's disease, depression, and schizophrenia. The 5-CSRTT is accompanied with two significant caveats: a time intensive training period and largely varied individual rat capability to learn and perform the task. Here we provide a regimented acquisition protocol to enhance training for the 5-CSRTT and discuss important considerations for researchers using the 5-CSRTT. We offer guidelines to ensure that inferences on performance in the 5-CSRTT are in fact a result of experimental manipulation rather than training differences, or individual animal capability. According to our findings only rats that have been trained successfully within a limited time frame should be used for the remainder of the study. Currently the 5-CSRTT employs a training period of variable duration and procedure, and its inferences on attention must overcome heterogeneous innate animal differences. The 5-CSRTT offers valuable and valid insights on various rodent attentional processes and their translation to the underpinnings of illnesses such as schizophrenia. The recommendations made here provide important criteria to ensure inferences made from this task are in fact relevant to the attentional processes being measured. Copyright © 2016 Elsevier B.V. All rights reserved.
Vakil, Eli; Bloch, Ayala; Cohen, Haggar
2017-03-01
The serial reaction time (SRT) task has generated a very large amount of research. Nevertheless the debate continues as to the exact cognitive processes underlying implicit sequence learning. Thus, the first goal of this study is to elucidate the underlying cognitive processes enabling sequence acquisition. We therefore compared reaction time (RT) in sequence learning in a standard manual activated (MA) to that in an ocular activated (OA) version of the task, within a single experimental setting. The second goal is to use eye movement measures to compare anticipation, as an additional indication of sequence learning, between the two versions of the SRT. Performance of the group given the MA version of the task (n = 29) was compared with that of the group given the OA version (n = 30). The results showed that although overall, RT was faster for the OA group, the rate of sequence learning was similar to that of the MA group performing the standard version of the SRT. Because the stimulus-response association is automatic and exists prior to training in the OA task, the decreased reaction time in this version of the task reflects a purer measure of the sequence learning that occurs in the SRT task. The results of this study show that eye tracking anticipation can be measured directly and can serve as a direct measure of sequence learning. Finally, using the OA version of the SRT to study sequence learning presents a significant methodological contribution by making sequence learning studies possible among populations that struggle to perform manual responses.
Page, M. P. A.; Norris, D.
2009-01-01
We briefly review the considerable evidence for a common ordering mechanism underlying both immediate serial recall (ISR) tasks (e.g. digit span, non-word repetition) and the learning of phonological word forms. In addition, we discuss how recent work on the Hebb repetition effect is consistent with the idea that learning in this task is itself a laboratory analogue of the sequence-learning component of phonological word-form learning. In this light, we present a unifying modelling framework that seeks to account for ISR and Hebb repetition effects, while being extensible to word-form learning. Because word-form learning is performed in the service of later word recognition, our modelling framework also subsumes a mechanism for word recognition from continuous speech. Simulations of a computational implementation of the modelling framework are presented and are shown to be in accordance with data from the Hebb repetition paradigm. PMID:19933143
Potts, Geoffrey F; Wood, Susan M; Kothmann, Delia; Martin, Laura E
2008-10-21
Attention directs limited-capacity information processing resources to a subset of available perceptual representations. The mechanisms by which attention selects task-relevant representations for preferential processing are not fully known. Triesman and Gelade's [Triesman, A., Gelade, G., 1980. A feature integration theory of attention. Cognit. Psychol. 12, 97-136.] influential attention model posits that simple features are processed preattentively, in parallel, but that attention is required to serially conjoin multiple features into an object representation. Event-related potentials have provided evidence for this model showing parallel processing of perceptual features in the posterior Selection Negativity (SN) and serial, hierarchic processing of feature conjunctions in the Frontal Selection Positivity (FSP). Most prior studies have been done on conjunctions within one sensory modality while many real-world objects have multimodal features. It is not known if the same neural systems of posterior parallel processing of simple features and frontal serial processing of feature conjunctions seen within a sensory modality also operate on conjunctions between modalities. The current study used ERPs and simultaneously presented auditory and visual stimuli in three task conditions: Attend Auditory (auditory feature determines the target, visual features are irrelevant), Attend Visual (visual features relevant, auditory irrelevant), and Attend Conjunction (target defined by the co-occurrence of an auditory and a visual feature). In the Attend Conjunction condition when the auditory but not the visual feature was a target there was an SN over auditory cortex, when the visual but not auditory stimulus was a target there was an SN over visual cortex, and when both auditory and visual stimuli were targets (i.e. conjunction target) there were SNs over both auditory and visual cortex, indicating parallel processing of the simple features within each modality. In contrast, an FSP was present when either the visual only or both auditory and visual features were targets, but not when only the auditory stimulus was a target, indicating that the conjunction target determination was evaluated serially and hierarchically with visual information taking precedence. This indicates that the detection of a target defined by audio-visual conjunction is achieved via the same mechanism as within a single perceptual modality, through separate, parallel processing of the auditory and visual features and serial processing of the feature conjunction elements, rather than by evaluation of a fused multimodal percept.
Brustio, Paolo Riccardo; Magistro, Daniele; Zecca, Massimiliano; Rabaglietti, Emanuela; Liubicich, Monica Emma
2017-01-01
This cross-sectional study investigated the age-related differences in dual-task performance both in mobility and cognitive tasks and the additive dual-task costs in a sample of older, middle-aged and young adults. 74 older adults (M = 72.63±5.57 years), 58 middle-aged adults (M = 46.69±4.68 years) and 63 young adults (M = 25.34±3.00 years) participated in the study. Participants performed different mobility and subtraction tasks under both single- and dual-task conditions. Linear regressions, repeated-measures and one-way analyses of covariance were used, The results showed: significant effects of the age on the dual and mobility tasks (p<0.05) and differences among the age-groups in the combined dual-task costs (p<0.05); significant decreases in mobility performance under dual-task conditions in all groups (p<0.05) and a decrease in cognitive performance in the older group (p<0.05). Dual-task activity affected mobility and cognitive performance, especially in older adults who showed a higher dual-task cost, suggesting that dual-tasks activities are affected by the age and consequently also mobility and cognitive tasks are negatively influenced.
Language proficiency and metacognition as predictors of spontaneous rehearsal in children.
Bebko, James M; McMorris, Carly A; Metcalfe, Alisa; Ricciuti, Christina; Goldstein, Gayle
2014-03-01
Despite decades of research on fundamental memory strategies such as verbal rehearsal, the potential underlying skills associated with the emergence of rehearsal are still not fully understood. Two studies examined the relative roles of language proficiency and metamemory in predicting rehearsal use, as well as the prediction of metamemory performance by language proficiency. In Study 1, 59 children, 5 to 8 years old, were administered a serial recall task, 2 language measures, a nonverbal cognitive measure, and a rapid automatized naming (RAN) task. Language proficiency, RAN, and age were significant individual predictors of rehearsal use. In hierarchical regression analyses, language proficiency mediated almost completely the age → rehearsal use relation. In addition, automatized naming was a strong but partial mediator of the contribution of language proficiency to rehearsal use. In Study 2, 54 children were administered a metamemory test, a language measure, and a serial recall task. Metamemory skills and, again, language proficiency significantly predicted rehearsal use in the task. The predictive strength of metamemory skills was mediated by the children's language proficiency. The mutually supportive roles of automatized naming, language, and metamemory in the emergence of spontaneous cumulative verbal rehearsal are discussed in the context of the resulting model, along with the minimal roles of age and aspects of intelligence.
Age and the elderly internal clock - Further evidence for a fundamentally slowed CNS
NASA Technical Reports Server (NTRS)
Cann, Michael T.; Vercruyssen, Max; Hancock, P. A.
1990-01-01
Age-related differences in accuracy of time estimation have been studied. It is found that compared to the younger subjects (mean age 25 years), the older adults (mean age 70 years) consistently overestimated the target 10-sec interval when they had to simultaneously perform an interpolating task (i.e., count backwards by subtractions of three).
Feedback-related potentials in a gambling task with randomised reward.
Mushtaq, Faisal; Guillen, Pablo Puente; Wilkie, Richard M; Mon-Williams, Mark A; Schaefer, Alexandre
2016-03-01
Event-related potentials (ERPs) time-locked to decision outcomes are reported. Participants engaged in a gambling task (see [1] for details) in which they decided between a risky and a safe option (presented as different coloured shapes) on each trial (416 in total). Each decision was associated with (fully randomised) feedback about the reward outcome (Win/Loss) and its magnitude (varying as a function of decision response; 5-9 points for Risky decisions and 1-4 points for Safe decisions). Here, we show data demonstrating: (a) the influence of Win feedback in the preceding outcome (Outcome t-1) on activity related to the current outcome (Outcome t ); (b) difference wave analysis for outcome expectancy- separating Expected Outcomes (consecutive Loss trials subtracted from consecutive reward) from Unexpected Outcomes (subtracting Loss t-1Win t trials from Win t-1Loss t trials); (c) difference waves separating Switch and Stay responses for Outcome Expectancy; (d) the effect of magnitude induced by decisions (Risk t vs. Safe t ) on Outcome Expectancy; and finally, (e) expectations reflected by response switch direction (Risk to Safe responses vs. Safe to Risk t ) on the FRN at Outcome t .
Cognitive precursors of arithmetic development in primary school children with cerebral palsy.
Van Rooijen, M; Verhoeven, L; Smits, D W; Dallmeijer, A J; Becher, J G; Steenbergen, B
2014-04-01
The aim of this study was to examine the development of arithmetic performance and its cognitive precursors in children with CP from 7 till 9 years of age. Previous research has shown that children with CP are generally delayed in arithmetic performance compared to their typically developing peers. In children with CP, the developmental trajectory of the ability to solve addition- and subtraction tasks has, however, rarely been studied, as well as the cognitive factors affecting this trajectory. Sixty children (M=7.2 years, SD=.23 months at study entry) with CP participated in this study. Standardized tests were administered to assess arithmetic performance, word decoding skills, non-verbal intelligence, and working memory. The results showed that the ability to solve addition- and subtraction tasks increased over a two year period. Word decoding skills were positively related to the initial status of arithmetic performance. In addition, non-verbal intelligence and working memory were associated with the initial status and growth rate of arithmetic performance from 7 till 9 years of age. The current study highlights the importance of non-verbal intelligence and working memory to the development of arithmetic performance of children with CP. Copyright © 2014 Elsevier Ltd. All rights reserved.
A design study to develop young children's understanding of multiplication and division
NASA Astrophysics Data System (ADS)
Bicknell, Brenda; Young-Loveridge, Jenny; Nguyen, Nhung
2016-12-01
This design study investigated the use of multiplication and division problems to help 5-year-old children develop an early understanding of multiplication and division. One teacher and her class of 15 5-year-old children were involved in a collaborative partnership with the researchers. The design study was conducted over two 4-week periods in May-June and October-November. The focus in this article is on three key aspects of classroom teaching: instructional tasks, the use of representations, and discourse, including the mathematics register. Results from selected pre- and post-assessment tasks within a diagnostic interview showed that there were improvements in addition and subtraction as well as multiplication and division, even though the teaching had used multiplication and division problems. Students made progress on all four operational domains, with effect sizes ranging from approximately two thirds of a standard deviation to 2 standard deviations. Most of the improvement in students' number strategies was in moving from `counting all' to `counting on' and `skip counting'. The findings challenge the idea that learning experiences in addition and subtraction should precede those in multiplication and division as suggested in some curriculum documents.
Jenkins, Nathaniel D M; Housh, Terry J; Miramonti, Amelia A; McKay, Brianna D; Yeo, Noelle M; Smith, Cory M; Hill, Ethan C; Cochrane, Kristen C; Cramer, Joel T
2016-11-01
The purpose of this study was to investigate the effects of 8weeks at 6g per day of RAR CLA versus placebo on cognitive function and handgrip performance in older men and women. Sixty-five (43 women, 22 men) participants (mean±SD; age=72.4±5.9yrs; BMI=26.6±4.2kg·m -2 ) were randomly assigned to a RAR CLA (n=30: 10 men, 20 women) or placebo (PLA; high oleic sunflower oil; n=35: 12 men, 23 women) group in double-blind fashion and consumed 6g·d -1 of their allocated supplement for 8weeks. Before (Visit 1) and after supplementation (Visit 2), subjects completed the Serial Sevens Subtraction Test (S 7 ), Trail Making Test Part A (TM A ) and Part B (TM B ), and Rey's Auditory Verbal Learning Test (RAVLT) to measure cognitive function. The RAVLT included 5, 15-item auditory word recalls (R 1-5 ), an interference word recall (R B ), a 6th word recall (R 6 ), and a 15-item visual word recognition trial (R R ). For handgrip performance, subjects completed maximal voluntary isometric handgrip strength (MVIC) testing before (MVIC PRE ) and after (MVIC POST ) a handgrip fatigue test at 50% MVIC PRE . Hand joint discomfort was measured during MVIC PRE , MVIC POST , and the handgrip fatigue test. There were no treatment differences (p>0.05) for handgrip strength, handgrip fatigue, or cognitive function as measured by the Trail Making Test and Serial Seven's Subtraction Test in men or women. However, RAR CLA supplementation improved cognitive function as indicated by the RAVLT R 5 in men. A qualitative examination of the mean change scores suggested that, compared to PLA, RAR CLA supplementation was associated with a small improvement in joint discomfort in both men and women. Longer-term studies are needed to more fully understand the potential impact of RAR CLA on cognitive function and hand joint discomfort in older adults, particularly in those with lower cognitive function. Copyright © 2016 Elsevier Inc. All rights reserved.
2014-01-01
Background There are no known studies that have examined β-alanine supplementation in military personnel. Considering the physiological and potential neurological effects that have been reported during sustained military operations, it appears that β-alanine supplementation may have a potential benefit in maintaining physical and cognitive performance during high-intensity military activity under stressful conditions. The purpose of this study was to examine the effect of 28 days of β-alanine ingestion in military personnel while fatigued on physical and cognitive performance. Methods Twenty soldiers (20.1 ± 0.9 years) from an elite combat unit were randomly assigned to either a β-alanine (BA) or placebo (PL) group. Soldiers were involved in advanced military training, including combat skill development, navigational training, self-defense/hand-to-hand combat and conditioning. All participants performed a 4-km run, 5-countermovement jumps using a linear position transducer, 120-m sprint, a 10-shot shooting protocol with assault rifle, including overcoming a misfire, and a 2-min serial subtraction test to assess cognitive function before (Pre) and after (Post) 28 days of supplementation. Results The training routine resulted in significant increases in 4-km run time for both groups, but no between group differences were seen (p = 0.597). Peak jump power at Post was greater for BA than PL (p = 0.034), while mean jump power for BA at Post was 10.2% greater (p = 0.139) than PL. BA had a significantly greater (p = 0.012) number of shots on target at Post (8.2 ± 1.0) than PL (6.5 ± 2.1), and their target engagement speed at Post was also significantly faster (p = 0.039). No difference in serial subtraction performance was seen between the groups (p = 0.844). Conclusion Results of this study indicate that 4-weeks of β-alanine ingestion in young, healthy soldiers did not impact cognitive performance, but did enhance power performance, marksmanship and target engagement speed from pre-ingestion levels. PMID:24716994
Schlittmeier, Sabine J.; Feil, Alexandra; Liebl, Andreas; Hellbrück, Jürgen
2015-01-01
Little empirical evidence is available regarding the effects of road traffic noise on cognitive performance in adults, although traffic noise can be heard at many offices and home office workplaces. Our study tested the impact of road traffic noise at different levels (50 dB(A), 60 dB(A), 70 dB(A)) on performance in three tasks that differed with respect to their dependency on attentional and storage functions, as follows: The Stroop task, in which performance relied predominantly on attentional functions (e.g., inhibition of automated responses; Experiment 1: n = 24); a non-automated multistage mental arithmetic task calling for both attentional and storage functions (Exp. 2: n = 18); and verbal serial recall, which placed a burden predominantly on storage functions (Experiment 3: n = 18). Better performance was observed during moderate road traffic noise at 50 dB(A) compared to loud traffic noise at 70 dB(A) in attention-based tasks (Experiments 1-2). This contrasted with the effects of irrelevant speech (60 dB(A)), which was included in the experiments as a well-explored and common noise source in office settings. A disturbance impact of background speech was only given in the two tasks that called for storage functions (Experiments 2-3). In addition to the performance data, subjective annoyance ratings were collected. Consistent with the level effect of road traffic noise found in the performance data, a moderate road traffic noise at 50 dB(A) was perceived as significantly less annoying than a loud road traffic noise at 70 dB(A), which was found, however, independently of the task at hand. Furthermore, the background sound condition with the highest detrimental performance effect in a task was also rated as most annoying in this task, i.e., traffic noise at 70 dB(A) in the Stroop task, and background speech in the mental arithmetic and serial recall tasks. PMID:25913554
Short-Term Memory and Aphasia: From Theory to Treatment.
Minkina, Irene; Rosenberg, Samantha; Kalinyak-Fliszar, Michelene; Martin, Nadine
2017-02-01
This article reviews existing research on the interactions between verbal short-term memory and language processing impairments in aphasia. Theoretical models of short-term memory are reviewed, starting with a model assuming a separation between short-term memory and language, and progressing to models that view verbal short-term memory as a cognitive requirement of language processing. The review highlights a verbal short-term memory model derived from an interactive activation model of word retrieval. This model holds that verbal short-term memory encompasses the temporary activation of linguistic knowledge (e.g., semantic, lexical, and phonological features) during language production and comprehension tasks. Empirical evidence supporting this model, which views short-term memory in the context of the processes it subserves, is outlined. Studies that use a classic measure of verbal short-term memory (i.e., number of words/digits correctly recalled in immediate serial recall) as well as those that use more intricate measures (e.g., serial position effects in immediate serial recall) are discussed. Treatment research that uses verbal short-term memory tasks in an attempt to improve language processing is then summarized, with a particular focus on word retrieval. A discussion of the limitations of current research and possible future directions concludes the review. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Temporal precision and the capacity of auditory-verbal short-term memory.
Gilbert, Rebecca A; Hitch, Graham J; Hartley, Tom
2017-12-01
The capacity of serially ordered auditory-verbal short-term memory (AVSTM) is sensitive to the timing of the material to be stored, and both temporal processing and AVSTM capacity are implicated in the development of language. We developed a novel "rehearsal-probe" task to investigate the relationship between temporal precision and the capacity to remember serial order. Participants listened to a sub-span sequence of spoken digits and silently rehearsed the items and their timing during an unfilled retention interval. After an unpredictable delay, a tone prompted report of the item being rehearsed at that moment. An initial experiment showed cyclic distributions of item responses over time, with peaks preserving serial order and broad, overlapping tails. The spread of the response distributions increased with additional memory load and correlated negatively with participants' auditory digit spans. A second study replicated the negative correlation and demonstrated its specificity to AVSTM by controlling for differences in visuo-spatial STM and nonverbal IQ. The results are consistent with the idea that a common resource underpins both the temporal precision and capacity of AVSTM. The rehearsal-probe task may provide a valuable tool for investigating links between temporal processing and AVSTM capacity in the context of speech and language abilities.
Short-Term Memory and Aphasia: From Theory to Treatment
Minkina, Irene; Rosenberg, Samantha; Kalinyak-Fliszar, Michelene; Martin, Nadine
2018-01-01
This article reviews existing research on the interactions between verbal short-term memory and language processing impairments in aphasia. Theoretical models of short-term memory are reviewed, starting with a model assuming a separation between short-term memory and language, and progressing to models that view verbal short-term memory as a cognitive requirement of language processing. The review highlights a verbal short-term memory model derived from an interactive activation model of word retrieval. This model holds that verbal short-term memory encompasses the temporary activation of linguistic knowledge (e.g., semantic, lexical, and phonological features) during language production and comprehension tasks. Empirical evidence supporting this model, which views short-term memory in the context of the processes it subserves, is outlined. Studies that use a classic measure of verbal short-term memory (i.e., number of words/digits correctly recalled in immediate serial recall) as well as those that use more intricate measures (e.g., serial position effects in immediate serial recall) are discussed. Treatment research that uses verbal short-term memory tasks in an attempt to improve language processing is then summarized, with a particular focus on word retrieval. A discussion of the limitations of current research and possible future directions concludes the review. PMID:28201834
Display size effects in visual search: analyses of reaction time distributions as mixtures.
Reynolds, Ann; Miller, Jeff
2009-05-01
In a reanalysis of data from Cousineau and Shiffrin (2004) and two new visual search experiments, we used a likelihood ratio test to examine the full distributions of reaction time (RT) for evidence that the display size effect is a mixture-type effect that occurs on only a proportion of trials, leaving RT in the remaining trials unaffected, as is predicted by serial self-terminating search models. Experiment 1 was a reanalysis of Cousineau and Shiffrin's data, for which a mixture effect had previously been established by a bimodal distribution of RTs, and the results confirmed that the likelihood ratio test could also detect this mixture. Experiment 2 applied the likelihood ratio test within a more standard visual search task with a relatively easy target/distractor discrimination, and Experiment 3 applied it within a target identification search task within the same types of stimuli. Neither of these experiments provided any evidence for the mixture-type display size effect predicted by serial self-terminating search models. Overall, these results suggest that serial self-terminating search models may generally be applicable only with relatively difficult target/distractor discriminations, and then only for some participants. In addition, they further illustrate the utility of analysing full RT distributions in addition to mean RT.
Health Literacy, Cognitive Abilities, and Mortality Among Elderly Persons
Wolf, Michael S.; Feinglass, Joseph; Thompson, Jason A.
2008-01-01
Background Low health literacy and low cognitive abilities both predict mortality, but no study has jointly examined these relationships. Methods We conducted a prospective cohort study of 3,260 community-dwelling adults age 65 and older. Participants were interviewed in 1997 and administered the Short Test of Functional Health Literacy in Adults and the Mini Mental Status Examination. Mortality was determined using the National Death Index through 2003. Measurements and Main Results In multivariate models with only literacy (not cognition), the adjusted hazard ratio was 1.50 (95% confidence of interval [CI] 1.24–1.81) for inadequate versus adequate literacy. In multivariate models without literacy, delayed recall of 3 items and the ability to serial subtract numbers were associated with higher mortality (e.g., adjusted hazard ratios [AHR] 1.74 [95% CI 1.30–2.34] for recall of zero versus 3 items, and 1.32 [95% CI 1.09–1.60] for 0–2 vs 5 correct subtractions). In multivariate analysis with both literacy and cognition, the AHRs for the cognition items were similar, but the AHR for inadequate literacy decreased to 1.27 (95% CI 1.03 – 1.57). Conclusions Both health literacy and cognitive abilities independently predict mortality. Interventions to improve patient knowledge and self-management skills should consider both the reading level and cognitive demands of the materials. PMID:18330654
The ontogeny of serial-order behavior in humans (Homo sapiens): representation of a list.
Guyla, Michelle; Colombo, Michael
2004-03-01
The authors trained 3-, 4-, 7-, and 10-year-old children and adults (Homo sapiens) on a nonverbal serial-order task to respond to 5 items in a specific order. Knowledge of each item's sequential position was then examined using pairwise and triplet tests. Adults and 7- and 10-year-olds performed at high levels on both tests, whereas 3- and 4-year-olds did not. The latency to respond to the first item of a test pair or triplet was linearly related to that item's position in the training series for the 7- and 10-year-olds and adults, but not for the 3- and 4-year-olds. These data suggest that older children and adults, but not younger children, developed a well-integrated internal representation of the serial list. ((c) 2004 APA, all rights reserved)
The calculating hemispheres: studies of a split-brain patient.
Funnell, Margaret G; Colvin, Mary K; Gazzaniga, Michael S
2007-06-11
The purpose of the study was to investigate simple calculation in the two cerebral hemispheres of a split-brain patient. In a series of four experiments, the left hemisphere was superior to the right in simple calculation, confirming the previously reported left hemisphere specialization for calculation. In two different recognition paradigms, right hemisphere performance was at chance for all arithmetic operations, with the exception of subtraction in a two-alternative forced choice paradigm (performance was at chance when the lure differed from the correct answer by a magnitude of 1 but above chance when the magnitude difference was 4). In a recall paradigm, the right hemisphere performed above chance for both addition and subtraction, but performed at chance levels for multiplication and division. The error patterns in that experiment suggested that for subtraction and addition, the right hemisphere does have some capacity for approximating the solution even when it is unable to generate the exact solution. Furthermore, right hemisphere accuracy in addition and subtraction was higher for problems with small operands than with large operands. An additional experiment assessed approximate and exact addition in the two hemispheres for problems with small and large operands. The left hemisphere was equally accurate in both tasks but the right hemisphere was more accurate in approximate addition than in exact addition. In exact addition, right hemisphere accuracy was higher for problems with small operands than large, but the opposite pattern was found for approximate addition.
The "Motor" in Implicit Motor Sequence Learning: A Foot-stepping Serial Reaction Time Task.
Du, Yue; Clark, Jane E
2018-05-03
This protocol describes a modified serial reaction time (SRT) task used to study implicit motor sequence learning. Unlike the classic SRT task that involves finger-pressing movements while sitting, the modified SRT task requires participants to step with both feet while maintaining a standing posture. This stepping task necessitates whole body actions that impose postural challenges. The foot-stepping task complements the classic SRT task in several ways. The foot-stepping SRT task is a better proxy for the daily activities that require ongoing postural control, and thus may help us better understand sequence learning in real-life situations. In addition, response time serves as an indicator of sequence learning in the classic SRT task, but it is unclear whether response time, reaction time (RT) representing mental process, or movement time (MT) reflecting the movement itself, is a key player in motor sequence learning. The foot-stepping SRT task allows researchers to disentangle response time into RT and MT, which may clarify how motor planning and movement execution are involved in sequence learning. Lastly, postural control and cognition are interactively related, but little is known about how postural control interacts with learning motor sequences. With a motion capture system, the movement of the whole body (e.g., the center of mass (COM)) can be recorded. Such measures allow us to reveal the dynamic processes underlying discrete responses measured by RT and MT, and may aid in elucidating the relationship between postural control and the explicit and implicit processes involved in sequence learning. Details of the experimental set-up, procedure, and data processing are described. The representative data are adopted from one of our previous studies. Results are related to response time, RT, and MT, as well as the relationship between the anticipatory postural response and the explicit processes involved in implicit motor sequence learning.
VizieR Online Data Catalog: Optical/NIR light curves of SN 2009ib (Takats+, 2015)
NASA Astrophysics Data System (ADS)
Takats, K.; Pignata, G.; Pumo, M. L.; Paillas, E.; Zampieri, L.; Elias-Rosa, N.; Benetti, S.; Bufano, F.; Cappellaro, E.; Ergon, M.; Fraser, M.; Hamuy, M.; Inserra, C.; Kankare, E.; Smartt, S. J.; Stritzinger, M. D.; van Dyk, S. D.; Haislip, J. B.; Lacluyze, A. P.; Moore, J. P.; Reichart, D.
2017-11-01
Optical photometry was collected using multiple telescopes with UBVRI and u'g'r'i'z' filters, covering the phases between 13 and 262d after explosion. The basic reduction steps of the images (such as bias-subtraction, overscan-correction, flat-fielding) were carried out using the standard IRAF tasks. The photometric measurement of the SN was performed using the point-spread function (PSF) fitting technique via the SNOOPY package in IRAF. Near-infrared photometry was obtained using the Rapid Eye Mount (REM) telescope in JH bands. Dithered images of the SN field were taken in multiple sequences of five. The object images were dark- and flat-field corrected, combined to create sky images then the sky images were subtracted from the object images. The images were then registered and combined. (3 data files).
Hashimoto, Ryusaku; Kashiwagi, Mitsuru; Suzuki, Shuhei
2008-09-01
We developed a rapid word reading test for examining the phonological processing ability of Japanese children. We prepared two versions of the test, version A and B. Each test has word and non-word tasks. Twenty-two healthy boys of third grade in primary schools participated in this validation study. For criterion related validity, we performed the serial Hiragana reading test, the sentence reading test, Raven's coloured progressive matrices (RCPM), the Token test for children, the Kana word dictation test, the standardized comprehension test of abstract words (SCTAW), and Trail Circle test. The reading times of the newly developed test correlated moderately or highly with those of the serial Hiragana reading test and the sentence reading test. However, the scores of the other tests (RCPM, Token test for children, Kana word dictation test, SCTAW, Trail Circle test) did not correlated with the reading time of the rapid word reading test. Test-retest reliabilities in the word tasks were more than moderate: 0.52 and 0.76 in versions A and B, while those in the non-word tasks were high: 0.91 and 0.88 in versions A and B. The correlation coefficient between versions A and B was 0.7 for the word tasks and 0.92 for the non-word tasks. This study showed that the rapid word reading test has substantial validity and reliability for testing the phonological processing ability of Japanese children. In addition, the non-word tasks were more suitable for selectively examining the speed of the grapheme to phoneme conversion process.
Decision Making in Concurrent Multitasking: Do People Adapt to Task Interference?
Nijboer, Menno; Taatgen, Niels A.; Brands, Annelies; Borst, Jelmer P.; van Rijn, Hedderik
2013-01-01
While multitasking has received a great deal of attention from researchers, we still know little about how well people adapt their behavior to multitasking demands. In three experiments, participants were presented with a multicolumn subtraction task, which required working memory in half of the trials. This primary task had to be combined with a secondary task requiring either working memory or visual attention, resulting in different types of interference. Before each trial, participants were asked to choose which secondary task they wanted to perform concurrently with the primary task. We predicted that if people seek to maximize performance or minimize effort required to perform the dual task, they choose task combinations that minimize interference. While performance data showed that the predicted optimal task combinations indeed resulted in minimal interference between tasks, the preferential choice data showed that a third of participants did not show any adaptation, and for the remainder it took a considerable number of trials before the optimal task combinations were chosen consistently. On the basis of these results we argue that, while in principle people are able to adapt their behavior according to multitasking demands, selection of the most efficient combination of strategies is not an automatic process. PMID:24244527
CNS cavernous haemangioma: "popcorn" in the brain and spinal cord.
Hegde, A N; Mohan, S; Lim, C C T
2012-04-01
Cavernous haemangiomas (CH) are relatively uncommon non-shunting vascular malformations of the central nervous system and can present with seizures or with neurological deficits due to haemorrhage. Radiologists can often suggest the diagnosis of CH based on characteristic magnetic resonance imaging (MRI) features, thus avoiding further invasive procedures such as digital subtraction angiography or surgical biopsy. Although typical MRI appearance combined with the presence of multiple focal low signal lesions on T2*-weighted images or the presence of one or more developmental venous anomaly within the brain can improve the diagnostic confidence, serial imaging studies are often required if a solitary CH presents at a time when the imaging appearances had not yet matured to the typical "popcorn" appearance. Copyright © 2011 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Off-line simulation inspires insight: A neurodynamics approach to efficient robot task learning.
Sousa, Emanuel; Erlhagen, Wolfram; Ferreira, Flora; Bicho, Estela
2015-12-01
There is currently an increasing demand for robots able to acquire the sequential organization of tasks from social learning interactions with ordinary people. Interactive learning-by-demonstration and communication is a promising research topic in current robotics research. However, the efficient acquisition of generalized task representations that allow the robot to adapt to different users and contexts is a major challenge. In this paper, we present a dynamic neural field (DNF) model that is inspired by the hypothesis that the nervous system uses the off-line re-activation of initial memory traces to incrementally incorporate new information into structured knowledge. To achieve this, the model combines fast activation-based learning to robustly represent sequential information from single task demonstrations with slower, weight-based learning during internal simulations to establish longer-term associations between neural populations representing individual subtasks. The efficiency of the learning process is tested in an assembly paradigm in which the humanoid robot ARoS learns to construct a toy vehicle from its parts. User demonstrations with different serial orders together with the correction of initial prediction errors allow the robot to acquire generalized task knowledge about possible serial orders and the longer term dependencies between subgoals in very few social learning interactions. This success is shown in a joint action scenario in which ARoS uses the newly acquired assembly plan to construct the toy together with a human partner. Copyright © 2015 Elsevier Ltd. All rights reserved.
Central attention is serial but mid-level and peripheral attention are parallel—a hypothesis
Marois, Rene
2016-01-01
In this brief review, we will argue that attention falls along a hierarchy from peripheral through central mechanisms. We further argue that these mechanisms are distinguished not just by their functional roles in cognition, but also by a distinction between serial mechanisms (associated with central attention) and parallel mechanisms (associated with mid-level and peripheral attention). In particular, we suggest that peripheral attentional deployments in distinct representational systems may be maintained simultaneously with little or no interference, but that the serial nature of central attention means that even tasks that largely rely on distinct representational systems will come into conflict when central attention is demanded. We go on to review both behavioral and neural evidence for this prediction. We conclude that even though the existing evidence mostly favors our account of serial central and parallel non-central attention, we know of no experiment that has conclusively borne out these claims. As such, this paper offers a framework of attentional mechanisms that will aid in guiding future research on this topic. PMID:27388496
Serial position effects in the identification of letters, digits, and symbols.
Tydgat, Ilse; Grainger, Jonathan
2009-04-01
In 6 experiments, the authors investigated the form of serial position functions for identification of letters, digits, and symbols presented in strings. The results replicated findings obtained with the target search paradigm, showing an interaction between the effects of serial position and type of stimulus, with symbols generating a distinct serial position function compared with letters and digits. When the task was 2-alternative forced choice, this interaction was driven almost exclusively by performance at the first position in the string, with letters and digits showing much higher levels of accuracy than symbols at this position. A final-position advantage was reinstated in Experiment 6 by placing the two alternative responses below the target string. The end-position (first and last positions) advantage for letters and digits compared with symbol stimuli was further confirmed with the bar-probe technique (postcued partial report) in Experiments 5 and 6. Overall, the results further support the existence of a specialized mechanism designed to optimize processing of strings of letters and digits by modifying the size and shape of retinotopic character detectors' receptive fields. (c) 2009 APA, all rights reserved.
Is the phonological similarity effect in working memory due to proactive interference?
Baddeley, Alan D; Hitch, Graham J; Quinlan, Philip T
2018-04-12
Immediate serial recall of verbal material is highly sensitive to impairment attributable to phonological similarity. Although this has traditionally been interpreted as a within-sequence similarity effect, Engle (2007) proposed an interpretation based on interference from prior sequences, a phenomenon analogous to that found in the Peterson short-term memory (STM) task. We use the method of serial reconstruction to test this in an experiment contrasting the standard paradigm in which successive sequences are drawn from the same set of phonologically similar or dissimilar words and one in which the vowel sound on which similarity is based is switched from trial to trial, a manipulation analogous to that producing release from PI in the Peterson task. A substantial similarity effect occurs under both conditions although there is a small advantage from switching across similar sequences. There is, however, no evidence for the suggestion that the similarity effect will be absent from the very first sequence tested. Our results support the within-sequence similarity rather than a between-list PI interpretation. Reasons for the contrast with the classic Peterson short-term forgetting task are briefly discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Boekhoudt, Linde; Voets, Elisa S; Flores-Dourojeanni, Jacques P; Luijendijk, Mieneke Cm; Vanderschuren, Louk Jmj; Adan, Roger Ah
2017-05-01
Attentional impairments and exaggerated impulsivity are key features of psychiatric disorders, such as attention-deficit/hyperactivity disorder, schizophrenia, and addiction. These deficits in attentional performance and impulsive behaviors have been associated with aberrant dopamine (DA) signaling, but it remains unknown whether these deficits result from enhanced DA neuronal activity in the midbrain. Here, we took a novel approach by testing the impact of chemogenetically activating DA neurons in the ventral tegmental area (VTA) or substantia nigra pars compacta (SNc) on attention and impulsivity in the five-choice serial reaction time task (5-CSRTT) in rats. We found that activation of DA neurons in both the VTA and SNc impaired attention by increasing trial omissions. In addition, SNc DA neuron activation decreased attentional accuracy. Surprisingly, enhanced DA neuron activity did not affect impulsive action in this task. These results show that enhanced midbrain DA neuronal activity induces deficits in attentional performance, but not impulsivity. Furthermore, DA neurons in the VTA and SNc have different roles in regulating attention. These findings contribute to our understanding of the neural substrates underlying attention deficits and impulsivity, and provide valuable insights to improve treatment of these symptoms.
Zhu, Chuanlin; He, Weiqi; Qi, Zhengyang; Wang, Lili; Song, Dongqing; Zhan, Lei; Yi, Shengnan; Luo, Yuejia; Luo, Wenbo
2015-01-01
The present study recorded event-related potentials using rapid serial visual presentation paradigm to explore the time course of emotionally charged pictures. Participants completed a dual-target task as quickly and accurately as possible, in which they were asked to judge the gender of the person depicted (task 1) and the valence (positive, neutral, or negative) of the given picture (task 2). The results showed that the amplitudes of the P2 component were larger for emotional pictures than they were for neutral pictures, and this finding represents brain processes that distinguish emotional stimuli from non-emotional stimuli. Furthermore, positive, neutral, and negative pictures elicited late positive potentials with different amplitudes, implying that the differences between emotions are recognized. Additionally, the time course for emotional picture processing was consistent with the latter two stages of a three-stage model derived from studies on emotional facial expression processing and emotional adjective processing. The results of the present study indicate that in the three-stage model of emotion processing, the middle and late stages are more universal and stable, and thus occur at similar time points when using different stimuli (faces, words, or scenes). PMID:26217276
Gaßner, Heiko; Marxreiter, Franz; Steib, Simon; Kohl, Zacharias; Schlachetzki, Johannes C M; Adler, Werner; Eskofier, Bjoern M; Pfeifer, Klaus; Winkler, Jürgen; Klucken, Jochen
2017-01-01
Cognitive and gait deficits are common symptoms in Parkinson's disease (PD). Motor-cognitive dual tasks (DTs) are used to explore the interplay between gait and cognition. However, it is unclear if DT gait performance is indicative for cognitive impairment. Therefore, the aim of this study was to investigate if cognitive deficits are reflected by DT costs of spatiotemporal gait parameters. Cognitive function, single task (ST) and DT gait performance were investigated in 67 PD patients. Cognition was assessed by the Montreal Cognitive Assessment (MoCA) followed by a standardized, sensor-based gait test and the identical gait test while subtracting serial 3's. Cognitive impairment was defined by a MoCA score <26. DT costs in gait parameters [(DT - ST)/ST × 100] were calculated as a measure of DT effect on gait. Correlation analysis was used to evaluate the association between MoCA performance and gait parameters. In a linear regression model, DT gait costs and clinical confounders (age, gender, disease duration, motor impairment, medication, and depression) were correlated to cognitive performance. In a subgroup analysis, we compared matched groups of cognitively impaired and unimpaired PD patients regarding differences in ST, DT, and DT gait costs. Correlation analysis revealed weak correlations between MoCA score and DT costs of gait parameters ( r / r Sp ≤ 0.3). DT costs of stride length, swing time variability, and maximum toe clearance (| r / r Sp | > 0.2) were included in a regression analysis. The parameters only explain 8% of the cognitive variance. In combination with clinical confounders, regression analysis showed that these gait parameters explained 30% of MoCA performance. Group comparison revealed strong DT effects within both groups (large effect sizes), but significant between-group effects in DT gait costs were not observed. These findings suggest that DT gait performance is not indicative for cognitive impairment in PD. DT effects on gait parameters were substantial in cognitively impaired and unimpaired patients, thereby potentially overlaying the effect of cognitive impairment on DT gait costs. Limits of the MoCA in detecting motor-function specific cognitive performance or variable individual response to the DT as influencing factors cannot be excluded. Therefore, DT gait parameters as marker for cognitive performance should be carefully interpreted in the clinical context.
Hong Kong Papers in Linguistics and Language Teaching.
ERIC Educational Resources Information Center
Hong Kong Papers in Linguistics and Language Teaching, 1995
1995-01-01
This serial presents articles, reports, and conference reports on various topics concerned with language-related areas, including general linguistics, teaching methodology, curriculum development, testing, evaluation, educational technology, language planning, and bilingual education. Articles in this volume are: (1) "Task Difficulty From the…
Brustio, Paolo Riccardo; Zecca, Massimiliano; Rabaglietti, Emanuela; Liubicich, Monica Emma
2017-01-01
This cross-sectional study investigated the age-related differences in dual-task performance both in mobility and cognitive tasks and the additive dual-task costs in a sample of older, middle-aged and young adults. 74 older adults (M = 72.63±5.57 years), 58 middle-aged adults (M = 46.69±4.68 years) and 63 young adults (M = 25.34±3.00 years) participated in the study. Participants performed different mobility and subtraction tasks under both single- and dual-task conditions. Linear regressions, repeated-measures and one-way analyses of covariance were used, The results showed: significant effects of the age on the dual and mobility tasks (p<0.05) and differences among the age-groups in the combined dual-task costs (p<0.05); significant decreases in mobility performance under dual-task conditions in all groups (p<0.05) and a decrease in cognitive performance in the older group (p<0.05). Dual-task activity affected mobility and cognitive performance, especially in older adults who showed a higher dual-task cost, suggesting that dual-tasks activities are affected by the age and consequently also mobility and cognitive tasks are negatively influenced. PMID:28732080
Spurgeon, Jessica; Ward, Geoff; Matthews, William J
2014-07-01
We examined the contribution of the phonological loop to immediate free recall (IFR) and immediate serial recall (ISR) of lists of between one and 15 words. Following Baddeley (1986, 2000, 2007, 2012), we assumed that visual words could be recoded into the phonological store when presented silently but that recoding would be prevented by concurrent articulation (CA; Experiment 1). We further assumed that the use of the phonological loop would be evidenced by greater serial recall for lists of phonologically dissimilar words relative to lists of phonologically similar words (Experiments 2A and 2B). We found that in both tasks, (a) CA reduced recall; (b) participants recalled short lists from the start of the list, leading to enhanced forward-ordered recall; (c) participants were increasingly likely to recall longer lists from the end of the list, leading to extended recency effects; (d) there were significant phonological similarity effects in ISR and IFR when both were analyzed using serial recall scoring; (e) these were reduced by free recall scoring and eliminated by CA; and (f) CA but not phonological similarity affected the tendency to initiate recall with the first list item. We conclude that similar mechanisms underpin ISR and IFR. Critically, the phonological loop is not strictly necessary for the forward-ordered recall of short lists on both tasks but may augment recall by increasing the accessibility of the list items (relative to CA), and in so doing, the order of later items is preserved better in phonologically dissimilar than in phonologically similar lists. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Free Recall of Word Lists under Total Sleep Deprivation and after Recovery Sleep
de Almeida Valverde Zanini, Gislaine; Tufik, Sérgio; Andersen, Monica Levy; da Silva, Raquel Cristina Martins; Bueno, Orlando Francisco Amodeo; Rodrigues, Camila Cruz; Pompéia, Sabine
2012-01-01
Study Objectives: One task that has been used to assess memory effects of prior total sleep deprivation (TSD) is the immediate free recall of word lists; however, results have been mixed. A possible explanation for this is task impurity, since recall of words from different serial positions reflects use of distinct types of memory (last words: short-term memory; first and intermediate words: episodic memory). Here we studied the effects of 2 nights of TSD on immediate free recall of semantically unrelated word lists considering the serial position curve. Design: Random allocation to a 2-night TSD protocol followed by one night of recovery sleep or to a control group. Setting: Study conducted under continuous behavioral monitoring. Participants: 24 young, healthy male volunteers. Intervention: 2 nights of total sleep deprivation (TSD) and one night of recovery sleep. Measurements and Results: Participants were shown five 15 unrelated word-lists at baseline, after one and 2 nights of TSD, and after one night of recovery sleep. We also investigated the development of recall strategies (learning) and susceptibility to interference from previous lists. No free recall impairment occurred during TSD, irrespective of serial position. Interference was unchanged. Both groups developed recall strategies, but task learning occurred earlier in controls and was evident in the TSD group only after sleep recovery. Conclusion: Prior TSD spared episodic memory, short-term phonological memory, and interference, allowed the development of recall strategies, but may have decreased the advantage of using these strategies, which returned to normal after recovery sleep. Citation: Zanini GAV; Tufik S; Andersen ML; da Silva RCM; Bueno OFA; Rodrigues CC; Pompéia S. Free recall of word lists under total sleep deprivation and after recovery sleep. SLEEP 2012;35(2):223-230. PMID:22294812
Turner, Karly M.; Peak, James; Burne, Thomas H. J.
2016-01-01
Neuropsychiatric research has utilized cognitive testing in rodents to improve our understanding of cognitive deficits and for preclinical drug development. However, more sophisticated cognitive tasks have not been as widely exploited due to low throughput and the extensive training time required. We developed a modified signal detection task (SDT) based on the growing body of literature aimed at improving cognitive testing in rodents. This study directly compares performance on the modified SDT with a traditional test for measuring attention, the 5-choice serial reaction time task (5CSRTT). Adult male Sprague-Dawley rats were trained on either the 5CSRTT or the SDT. Briefly, the 5CSRTT required rodents to pay attention to a spatial array of five apertures and respond with a nose poke when an aperture was illuminated. The SDT required the rat to attend to a light panel and respond either left or right to indicate the presence of a signal. In addition, modifications were made to the reward delivery, timing, control of body positioning, and the self-initiation of trials. It was found that less training time was required for the SDT, with both sessions to criteria and daily session duration significantly reduced. Rats performed with a high level of accuracy (>87%) on both tasks, however omissions were far more frequent on the 5CSRTT. The signal duration was reduced on both tasks as a manipulation of task difficulty relevant to attention and a similar pattern of decreasing accuracy was observed on both tasks. These results demonstrate some of the advantages of the SDT over the traditional 5CSRTT as being higher throughput with reduced training time, fewer omission responses and their body position was controlled at stimulus onset. In addition, rats performing the SDT had comparable high levels of accuracy. These results highlight the differences and similarities between the 5CSRTT and a modified SDT as tools for assessing attention in preclinical animal models. PMID:26834597
Oberauer, Klaus
2008-05-01
Three experiments with short-term recognition tasks are reported. In Experiments 1 and 2, participants decided whether a probe matched a list item specified by its spatial location. Items presented at study in a different location (intrusion probes) had to be rejected. Serial position curves of positive, new, and intrusion probes over the probed location's position were mostly parallel. Serial position curves of intrusion probes over their position of origin were again parallel to those of positive probes. Experiment 3 showed largely parallel serial position effects for positive probes and for intrusion probes plotted over positions in a relevant and an irrelevant list, respectively. The results support a dual-process theory in which recognition is based on familiarity and recollection, and recollection uses 2 retrieval routes, from context to item and from item to context.
Majerus, Steve; Norris, Dennis; Patterson, Karalyn
2007-03-01
In this study, we explored capacities for three different aspects of short-term verbal memory in patients with semantic dementia. As expected, the two patients had poor recall for lexico-semantic item information, as assessed by immediate serial recall of word lists. In contrast, their short-term memory for phonological information was preserved, as evidenced by normal performance for immediate serial recall of nonword lists, with normal or increased nonword phonotactic-frequency effects, and increased sensitivity to phonological lures in a delayed probe recognition task. Furthermore, the patients appeared to have excellent memory for the serial order of the words in a list. These data provide further support for the proposal that language knowledge is a major determining factor of verbal STM capacity, but they also highlight the necessary distinction of processes involved in item and order recall, as proposed by recent models of STM.
Investigating neural efficiency of elite karate athletes during a mental arithmetic task using EEG.
Duru, Adil Deniz; Assem, Moataz
2018-02-01
Neural efficiency is proposed as one of the neural mechanisms underlying elite athletic performances. Previous sports studies examined neural efficiency using tasks that involve motor functions. In this study we investigate the extent of neural efficiency beyond motor tasks by using a mental subtraction task. A group of elite karate athletes are compared to a matched group of non-athletes. Electroencephalogram is used to measure cognitive dynamics during resting and increased mental workload periods. Mainly posterior alpha band power of the karate players was found to be higher than control subjects under both tasks. Moreover, event related synchronization/desynchronization has been computed to investigate the neural efficiency hypothesis among subjects. Finally, this study is the first study to examine neural efficiency related to a cognitive task, not a motor task, in elite karate players using ERD/ERS analysis. The results suggest that the effect of neural efficiency in the brain is global rather than local and thus might be contributing to the elite athletic performances. Also the results are in line with the neural efficiency hypothesis tested for motor performance studies.
Renaud, Samantha M; Pickens, Laura R G; Fountain, Stephen B
2015-01-01
Nicotine exposure in adolescent rats has been shown to cause learning impairments that persist into adulthood long after nicotine exposure has ended. This study was designed to assess the extent to which the effects of adolescent nicotine exposure on learning in adulthood can be accounted for by adolescent injection stress experienced concurrently with adolescent nicotine exposure. Female rats received either 0.033 mg/h nicotine (expressed as the weight of the free base) or bacteriostatic water vehicle by osmotic pump infusion on postnatal days 25-53 (P25-53). Half of the nicotine-exposed rats and half of the vehicle rats also received twice-daily injection stress consisting of intraperitoneal saline injections on P26-53. Together these procedures produced 4 groups: No Nicotine/No Stress, Nicotine/No Stress, No Nicotine/Stress, and Nicotine/Stress. On P65-99, rats were trained to perform a structurally complex 24-element serial pattern of responses in the serial multiple choice (SMC) task. Four general results were obtained in the current study. First, learning for within-chunk elements was not affected by either adolescent nicotine exposure, consistent with past work (Pickens, Rowan, Bevins, and Fountain, 2013), or adolescent injection stress. Thus, there were no effects of adolescent nicotine exposure or injection stress on adult within-chunk learning typically attributed to rule learning in the SMC task. Second, adolescent injection stress alone (i.e., without concurrent nicotine exposure) caused transient but significant facilitation of adult learning restricted to a single element of the 24-element pattern, namely, the "violation element," that was the only element of the pattern that was inconsistent with pattern structure. Thus, adolescent injection stress alone facilitated violation element acquisition in adulthood. Third, also consistent with past work (Pickens et al., 2013), adolescent nicotine exposure, in this case both with and without adolescent injection stress, caused a learning impairment in adulthood for the violation element in female rats. Thus, adolescent nicotine impaired adult violation element learning typically attributed to multiple-item learning in the SMC task. Fourth, a paradoxical interaction of injection stress and nicotine exposure in acquisition was observed. In the same female rats in which violation-element learning was impaired by adolescent nicotine exposure, adolescent nicotine experienced without adolescent injection stress produced better learning for chunk-boundary elements in adulthood compared to all other conditions. Thus, adolescent nicotine without concurrent injection stress facilitated adult chunk-boundary element learning typically attributed to concurrent stimulus-response discrimination learning and serial-position learning in the SMC task. To the best of our knowledge, the current study is the first to demonstrate facilitation of adult learning caused by adolescent nicotine exposure. Copyright © 2015 Elsevier Inc. All rights reserved.
Renaud, Samantha M.; Pickens, Laura R. G.; Fountain, Stephen B.
2015-01-01
Nicotine exposure in adolescent rats has been shown to cause learning impairments that persist into adulthood long after nicotine exposure has ended. This study was designed to assess the extent to which the effects of adolescent nicotine exposure on learning in adulthood can be accounted for by adolescent injection stress experienced concurrently with adolescent nicotine exposure. Female rats received either 0.033 mg/hr nicotine (expressed as the weight of the free base) or bacteriostatic water vehicle by osmotic pump infusion on postnatal days 25-53 (P25-53). Half of the nicotine-exposed rats and half of the vehicle rats also received twice-daily injection stress consisting of intraperitoneal saline injections on P26-53. Together these procedures produced 4 groups: No Nicotine / No Stress, Nicotine / No Stress, No Nicotine / Stress, and Nicotine / Stress. On P65-99, rats were trained to perform a structurally complex 24-element serial pattern of responses in the serial multiple choice (SMC) task. Four general results were obtained in the current study. First, learning for within-chunk elements was not affected by either adolescent nicotine exposure, consistent with past work (Pickens, Rowan, Bevins, & Fountain, 2013), or adolescent injection stress. Thus, there were no effects of adolescent nicotine exposure or injection stress on adult within-chunk learning typically attributed to rule learning in the SMC task. Second, adolescent injection stress alone (i.e., without concurrent nicotine exposure) caused transient but significant facilitation of adult learning restricted to a single element of the 24-element pattern, namely, the “violation element,” that was the only element of the pattern that was inconsistent with pattern structure. Thus, adolescent injection stress alone facilitated violation element acquisition in adulthood. Third, also consistent with past work (Pickens et al., 2013), adolescent nicotine exposure, in this case both with and without adolescent injection stress, caused a learning impairment in adulthood for the violation element in female rats. Thus, adolescent nicotine impaired adult violation element learning typically attributed to multiple-item learning in the SMC task. Fourth, a paradoxical interaction of injection stress and nicotine exposure in acquisition was observed. In the same female rats in which violation-element learning was impaired by adolescent nicotine exposure, adolescent nicotine experienced without adolescent injection stress produced better learning for chunk-boundary elements in adulthood compared to all other conditions. Thus, adolescent nicotine without concurrent injection stress facilitated adult chunk-boundary element learning typically attributed to concurrent stimulus-response discrimination learning and serial-position learning in the SMC task. To the best of our knowledge, the current study is the first to demonstrate facilitation of adult learning caused by adolescent nicotine exposure. PMID:25527003
Implications of Mnemonics Research for Cognitive Theory.
ERIC Educational Resources Information Center
Reese, Hayne W.
A skilled cognitive theorist might help behaviorists resolve inconsistencies found from their experimentation with imaginal mnemonics in paired-associate and serial learning tasks. Iconic cognition which relegates verbal processes to short-term storage and output systems is inadequate to explain the verbal coding and elaboration processes…
Romano, Jennifer C; Howard, James H; Howard, Darlene V
2010-05-01
Procedural skills such as riding a bicycle and playing a musical instrument play a central role in daily life. Such skills are learned gradually and are retained throughout life. The present study investigated 1-year retention of procedural skill in a version of the widely used serial reaction time task (SRTT) in young and older motor-skill experts and older controls in two experiments. The young experts were college-age piano and action video-game players, and the older experts were piano players. Previous studies have reported sequence-specific skill retention in the SRTT as long as 2 weeks but not at 1 year. Results indicated that both young and older experts and older non-experts revealed sequence-specific skill retention after 1 year with some evidence that general motor skill was retained as well. These findings are consistent with theoretical accounts of procedural skill learning such as the procedural reinstatement theory as well as with previous studies of retention of other motor skills.
Repetition priming of face recognition in a serial choice reaction-time task.
Roberts, T; Bruce, V
1989-05-01
Marshall & Walker (1987) found that pictorial stimuli yield visual priming that is disrupted by an unpredictable visual event in the response-stimulus interval. They argue that visual stimuli are represented in memory in the form of distinct visual and object codes. Bruce & Young (1986) propose similar pictorial, structural and semantic codes which mediate the recognition of faces, yet repetition priming results obtained with faces as stimuli (Bruce & Valentine, 1985), and with objects (Warren & Morton, 1982) are quite different from those of Marshall & Walker (1987), in the sense that recognition is facilitated by pictures presented 20 minutes earlier. The experiment reported here used different views of familiar and unfamiliar faces as stimuli in a serial choice reaction-time task and found that, with identical pictures, repetition priming survives and intervening item requiring a response, with both familiar and unfamiliar faces. Furthermore, with familiar faces such priming was present even when the view of the prime was different from the target. The theoretical implications of these results are discussed.
Williams, J; O'Rourke, K; Hutchinson, M; Tubridy, N
2006-10-01
The Paced Auditory Serial Addition Test (PASAT) is the chosen task for cognitive assessment in the multiple sclerosis functional composite (MSFC) and a widely used task in neuropsychological studies of people with multiple sclerosis (MS), but is unpopular with patients. The Face-Symbol Test (FST) and Symbol-Digit Tests (SDT) are alternative methods of cognitive testing in MS, which are easily administered and patient-friendly. In order to evaluate the potential of the FST as a possible surrogate for the PASAT, we directly compared the FST to the PASAT and the SDT in a cohort of 50 MS patients with varying levels of disability. There was significant correlation between SDT and FST scores (Spearman's rho 0.80, 95% CI 0.66-0.88), R(2) 65%, with moderate inter-test agreement (k =0.52). In contrast, SDT and FST scores were less predictive of PASAT scores. We concluded that neither the FST nor SDT are reliable surrogates for the PASAT.
Lange, Nicholas D; Thomas, Rick P; Buttaccio, Daniel R; Illingworth, David A; Davelaar, Eddy J
2013-02-01
Although temporal dynamics are inherent aspects of diagnostic tasks, few studies have investigated how various aspects of time course influence hypothesis generation. An experiment is reported that demonstrates that working memory dynamics operating during serial data acquisition bias hypothesis generation. The presentation rate (and order) of a sequence of serially presented symptoms was manipulated to be either fast (180 ms per symptom) or slow (1,500 ms per symptom) in a simulated medical diagnosis task. When the presentation rate was slow, participants chose the disease hypothesis consistent with the symptoms appearing later in the sequence. When the presentation rate was fast, however, participants chose the disease hypothesis consistent with the symptoms appearing earlier in the sequence, therefore representing a novel primacy effect. We predicted and account for this effect through competitive working memory dynamics governing information acquisition and the contribution of maintained information to the retrieval of hypotheses from long-term memory.
Bayer image parallel decoding based on GPU
NASA Astrophysics Data System (ADS)
Hu, Rihui; Xu, Zhiyong; Wei, Yuxing; Sun, Shaohua
2012-11-01
In the photoelectrical tracking system, Bayer image is decompressed in traditional method, which is CPU-based. However, it is too slow when the images become large, for example, 2K×2K×16bit. In order to accelerate the Bayer image decoding, this paper introduces a parallel speedup method for NVIDA's Graphics Processor Unit (GPU) which supports CUDA architecture. The decoding procedure can be divided into three parts: the first is serial part, the second is task-parallelism part, and the last is data-parallelism part including inverse quantization, inverse discrete wavelet transform (IDWT) as well as image post-processing part. For reducing the execution time, the task-parallelism part is optimized by OpenMP techniques. The data-parallelism part could advance its efficiency through executing on the GPU as CUDA parallel program. The optimization techniques include instruction optimization, shared memory access optimization, the access memory coalesced optimization and texture memory optimization. In particular, it can significantly speed up the IDWT by rewriting the 2D (Tow-dimensional) serial IDWT into 1D parallel IDWT. Through experimenting with 1K×1K×16bit Bayer image, data-parallelism part is 10 more times faster than CPU-based implementation. Finally, a CPU+GPU heterogeneous decompression system was designed. The experimental result shows that it could achieve 3 to 5 times speed increase compared to the CPU serial method.
Célérier, Aurélie; Piérard, Christophe; Rachbauer, Dagmar; Sarrieau, Alain; Béracochéa, Daniel
2004-01-01
The present study was aimed at simultaneously determining on the same subject, the effects of stress on retrieval of flexible (contextual or temporal) or stable (spatial) information. Three behavioral paradigms carried out in a four-hole board were designed as follows: (1) Simple Discrimination (SD), in which mice learned a single discrimination; (2) Contextual and Serial Discriminations (CSD), in which mice learned two successive discriminations on two different internal contexts; (3) Spatial Serial Discriminations (SSD), in which mice learned two successive discriminations on an identical internal context. The stressor (three inescapable electric footshocks) was delivered 5 min before retention, occurring 5 min or 24 h after acquisition. Results showed that this stressor increased plasmatic corticosterone levels and fear reactivity in an elevated-plus-maze, as compared with nonstressed mice. The stressor reversed the normal pattern of retrieval observed in nonstressed controls in the CSD task, this effect being context dependent, as it was not observed in the SSD task. Overall, our study shows that stress affected the retrieval of flexible and old information, but spared the retrieval of stable or recent ones. Therefore, these behavioral paradigms allow us to study simultaneously, on the same animal, the effects of stress on distinct forms of memory retrieval. PMID:15054135
Galileo - The Serial-Production AIT Challenge
NASA Technical Reports Server (NTRS)
Ragnit, Ulrike; Brunner, Otto
2008-01-01
The Galileo Project is one of the most demanding projects of ESA, being Europe's autarkic navigation system and a constellation composed of 30 satellites. This presentation points out the different phases of the project up to the full operational capability and the corresponding launch options with respect to launch vehicles as well as launch configurations. One of the biggest challenges is to set up a small serial 'production line' for the overall integration and test campaign of satellites. This production line demands an optimization of all relevant tasks, taking into account also backup and recovery actions. A comprehensive AIT concept is required, reflecting a tightly merged facility layout and work flow design. In addition a common data management system is needed to handle all spacecraft related documentation and to have a direct input-out flow for all activities, phases and positions at the same time. Process optimization is a well known field of engineering in all small high tech production lines, nevertheless serial production of satellites are still not the daily task in space business and therefore new concepts have to be put in place. Therefore, and in order to meet the satellites overall system optimization, a thorough interface between unit/subsystem manufacturing and satellite AIT must be realized to ensure a smooth flow and to avoid any process interruption, which would directly lead to a schedule impact.
Multi-Attribute Task Battery - Applications in pilot workload and strategic behavior research
NASA Technical Reports Server (NTRS)
Arnegard, Ruth J.; Comstock, J. R., Jr.
1991-01-01
The Multi-Attribute Task (MAT) Battery provides a benchmark set of tasks for use in a wide range of lab studies of operator performance and workload. The battery incorporates tasks analogous to activities that aircraft crewmembers perform in flight, while providing a high degree of experimenter control, performance data on each subtask, and freedom to nonpilot test subjects. Features not found in existing computer based tasks include an auditory communication task (to simulate Air Traffic Control communication), a resource management task permitting many avenues or strategies of maintaining target performance, a scheduling window which gives the operator information about future task demands, and the option of manual or automated control of tasks. Performance data are generated for each subtask. In addition, the task battery may be paused and onscreen workload rating scales presented to the subject. The MAT Battery requires a desktop computer with color graphics. The communication task requires a serial link to a second desktop computer with a voice synthesizer or digitizer card.
The multi-attribute task battery for human operator workload and strategic behavior research
NASA Technical Reports Server (NTRS)
Comstock, J. Raymond, Jr.; Arnegard, Ruth J.
1992-01-01
The Multi-Attribute Task (MAT) Battery provides a benchmark set of tasks for use in a wide range of lab studies of operator performance and workload. The battery incorporates tasks analogous to activities that aircraft crewmembers perform in flight, while providing a high degree of experimenter control, performance data on each subtask, and freedom to use nonpilot test subjects. Features not found in existing computer based tasks include an auditory communication task (to simulate Air Traffic Control communication), a resource management task permitting many avenues or strategies of maintaining target performance, a scheduling window which gives the operator information about future task demands, and the option of manual or automated control of tasks. Performance data are generated for each subtask. In addition, the task battery may be paused and onscreen workload rating scales presented to the subject. The MAT Battery requires a desktop computer with color graphics. The communication task requires a serial link to a second desktop computer with a voice synthesizer or digitizer card.
Face processing in chronic alcoholism: a specific deficit for emotional features.
Maurage, P; Campanella, S; Philippot, P; Martin, S; de Timary, P
2008-04-01
It is well established that chronic alcoholism is associated with a deficit in the decoding of emotional facial expression (EFE). Nevertheless, it is still unclear whether this deficit is specifically for emotions or due to a more general impairment in visual or facial processing. This study was designed to clarify this issue using multiple control tasks and the subtraction method. Eighteen patients suffering from chronic alcoholism and 18 matched healthy control subjects were asked to perform several tasks evaluating (1) Basic visuo-spatial and facial identity processing; (2) Simple reaction times; (3) Complex facial features identification (namely age, emotion, gender, and race). Accuracy and reaction times were recorded. Alcoholic patients had a preserved performance for visuo-spatial and facial identity processing, but their performance was impaired for visuo-motor abilities and for the detection of complex facial aspects. More importantly, the subtraction method showed that alcoholism is associated with a specific EFE decoding deficit, still present when visuo-motor slowing down is controlled for. These results offer a post hoc confirmation of earlier data showing an EFE decoding deficit in alcoholism by strongly suggesting a specificity of this deficit for emotions. This may have implications for clinical situations, where emotional impairments are frequently observed among alcoholic subjects.
VizieR Online Data Catalog: M33 SNR candidates properties (Lee+, 2014)
NASA Astrophysics Data System (ADS)
Lee, J. H.; Lee, M. G.
2017-04-01
We utilized the Hα and [S II] images in the LGGS to find new M33 remnants. The LGGS covered three 36' square fields of M33. We subtracted continuum sources from the narrowband images using R-band images. We smoothed the images with better seeing to match the point-spread function in the images with worse seeing, using the IRAF task psfmatch. We then scaled and subtracted the resulting continuum images from narrowband images. We selected M33 remnants considering three criteria: emission-line ratio ([S II]/Hα), the morphological structure, and the absence of blue stars inside the sources. Details are described in L14 (Lee et al. 2014ApJ...786..130L). We detected objects with [S II]/Hα>0.4 in emission-line ratio maps, and selected objects with round or shell structures in each narrowband image. As a result, we chose 435 sources. (2 data files).
Cordes, Sara; King, Adam Philip; Gallistel, C R
2007-02-22
Evidence suggests that the online combination of non-verbal magnitudes (durations, numerosities) is central to learning in both human and non-human animals [Gallistel, C.R., 1990. The Organization of Learning. MIT Press, Cambridge, MA]. The molecular basis of these computations, however, is an open question at this point. The current study provides the first direct test of temporal subtraction in a species in which the genetic code is available. In two experiments, mice were run in an adaptation of Gibbon and Church's [Gibbon, J., Church, R.M., 1981. Time left: linear versus logarithmic subjective time. J. Exp. Anal. Behav. 7, 87-107] time left paradigm in order to characterize typical responding in this task. Both experiments suggest that mice engaged in online subtraction of temporal values, although the generalization of a learned response rule to novel stimulus values resulted in slightly less systematic responding. Potential explanations for this pattern of results are discussed.
Accurate ω-ψ Spectral Solution of the Singular Driven Cavity Problem
NASA Astrophysics Data System (ADS)
Auteri, F.; Quartapelle, L.; Vigevano, L.
2002-08-01
This article provides accurate spectral solutions of the driven cavity problem, calculated in the vorticity-stream function representation without smoothing the corner singularities—a prima facie impossible task. As in a recent benchmark spectral calculation by primitive variables of Botella and Peyret, closed-form contributions of the singular solution for both zero and finite Reynolds numbers are subtracted from the unknown of the problem tackled here numerically in biharmonic form. The method employed is based on a split approach to the vorticity and stream function equations, a Galerkin-Legendre approximation of the problem for the perturbation, and an evaluation of the nonlinear terms by Gauss-Legendre numerical integration. Results computed for Re=0, 100, and 1000 compare well with the benchmark steady solutions provided by the aforementioned collocation-Chebyshev projection method. The validity of the proposed singularity subtraction scheme for computing time-dependent solutions is also established.
Kannape, Oliver Alan; Barré, Arnaud; Aminian, Kamiar; Blanke, Olaf
2014-01-01
The primary purpose of this study was to investigate the effects of cognitive loading on movement kinematics and trajectory formation during goal-directed walking in a virtual reality (VR) environment. The secondary objective was to measure how participants corrected their trajectories for perturbed feedback and how participants' awareness of such perturbations changed under cognitive loading. We asked 14 healthy young adults to walk towards four different target locations in a VR environment while their movements were tracked and played back in real-time on a large projection screen. In 75% of all trials we introduced angular deviations of ±5° to ±30° between the veridical walking trajectory and the visual feedback. Participants performed a second experimental block under cognitive load (serial-7 subtraction, counter-balanced across participants). We measured walking kinematics (joint-angles, velocity profiles) and motor performance (end-point-compensation, trajectory-deviations). Motor awareness was determined by asking participants to rate the veracity of the feedback after every trial. In-line with previous findings in natural settings, participants displayed stereotypical walking trajectories in a VR environment. Our results extend these findings as they demonstrate that taxing cognitive resources did not affect trajectory formation and deviations although it interfered with the participants' movement kinematics, in particular walking velocity. Additionally, we report that motor awareness was selectively impaired by the secondary task in trials with high perceptual uncertainty. Compared with data on eye and arm movements our findings lend support to the hypothesis that the central nervous system (CNS) uses common mechanisms to govern goal-directed movements, including locomotion. We discuss our results with respect to the use of VR methods in gait control and rehabilitation.
Implicit perceptual-motor skill learning in mild cognitive impairment and Parkinson's disease.
Gobel, Eric W; Blomeke, Kelsey; Zadikoff, Cindy; Simuni, Tanya; Weintraub, Sandra; Reber, Paul J
2013-05-01
Implicit skill learning is hypothesized to depend on nondeclarative memory that operates independent of the medial temporal lobe (MTL) memory system and instead depends on cortico striatal circuits between the basal ganglia and cortical areas supporting motor function and planning. Research with the Serial Reaction Time (SRT) task suggests that patients with memory disorders due to MTL damage exhibit normal implicit sequence learning. However, reports of intact learning rely on observations of no group differences, leading to speculation as to whether implicit sequence learning is fully intact in these patients. Patients with Parkinson's disease (PD) often exhibit impaired sequence learning, but this impairment is not universally observed. Implicit perceptual-motor sequence learning was examined using the Serial Interception Sequence Learning (SISL) task in patients with amnestic Mild Cognitive Impairment (MCI; n = 11) and patients with PD (n = 15). Sequence learning in SISL is resistant to explicit learning and individually adapted task difficulty controls for baseline performance differences. Patients with MCI exhibited robust sequence learning, equivalent to healthy older adults (n = 20), supporting the hypothesis that the MTL does not contribute to learning in this task. In contrast, the majority of patients with PD exhibited no sequence-specific learning in spite of matched overall task performance. Two patients with PD exhibited performance indicative of an explicit compensatory strategy suggesting that impaired implicit learning may lead to greater reliance on explicit memory in some individuals. The differences in learning between patient groups provides strong evidence in favor of implicit sequence learning depending solely on intact basal ganglia function with no contribution from the MTL memory system.
Marker, Ryan J; Maluf, Katrina S
2014-12-01
Electromyography (EMG) recordings from the trapezius are often contaminated by the electrocardiography (ECG) signal, making it difficult to distinguish low-level muscle activity from muscular rest. This study investigates the influence of ECG contamination on EMG amplitude and frequency estimations in the upper trapezius during muscular rest and low-level contractions. A new method of ECG contamination removal, filtered template subtraction (FTS), is described and compared to 30 Hz high-pass filter (HPF) and averaged template subtraction (ATS) methods. FTS creates a unique template of each ECG artifact using a low-pass filtered copy of the contaminated signal, which is subtracted from contaminated periods in the original signal. ECG contamination results in an over-estimation of EMG amplitude during rest in the upper trapezius, with negligible effects on amplitude and frequency estimations during low-intensity isometric contractions. FTS and HPF successfully removed ECG contamination from periods of muscular rest, yet introduced errors during muscle contraction. Conversely, ATS failed to fully remove ECG contamination during muscular rest, yet did not introduce errors during muscle contraction. The relative advantages and disadvantages of different ECG contamination removal methods should be considered in the context of the specific motor tasks that require analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Statistical organelle dissection of Arabidopsis guard cells using image database LIPS.
Higaki, Takumi; Kutsuna, Natsumaro; Hosokawa, Yoichiroh; Akita, Kae; Ebine, Kazuo; Ueda, Takashi; Kondo, Noriaki; Hasezawa, Seiichiro
2012-01-01
To comprehensively grasp cell biological events in plant stomatal movement, we have captured microscopic images of guard cells with various organelles markers. The 28,530 serial optical sections of 930 pairs of Arabidopsis guard cells have been released as a new image database, named Live Images of Plant Stomata (LIPS). We visualized the average organellar distributions in guard cells using probabilistic mapping and image clustering techniques. The results indicated that actin microfilaments and endoplasmic reticulum (ER) are mainly localized to the dorsal side and connection regions of guard cells. Subtractive images of open and closed stomata showed distribution changes in intracellular structures, including the ER, during stomatal movement. Time-lapse imaging showed that similar ER distribution changes occurred during stomatal opening induced by light irradiation or femtosecond laser shots on neighboring epidermal cells, indicating that our image analysis approach has identified a novel ER relocation in stomatal opening.
Purser, Harry; Jarrold, Christopher
2010-04-01
A long-standing body of research supports the existence of separable short- and long-term memory systems, relying on phonological and semantic codes, respectively. The aim of the current study was to measure the contribution of long-term knowledge to short-term memory performance by looking for evidence of phonologically and semantically coded storage within a short-term recognition task, among developmental samples. Each experimental trial presented 4-item lists. In Experiment 1 typically developing children aged 5 to 6 years old showed evidence of phonologically coded storage across all 4 serial positions, but evidence of semantically coded storage at Serial Positions 1 and 2. In a further experiment, a group of individuals with Down syndrome was investigated as a test case that might be expected to use semantic coding to support short-term storage, but these participants showed no evidence of semantically coded storage and evidenced phonologically coded storage only at Serial Position 4, suggesting that individuals with Down syndrome have a verbal short-term memory capacity of 1 item. Our results suggest that previous evidence of semantic effects on "short-term memory performance" does not reflect semantic coding in short-term memory itself, and provide an experimental method for researchers wishing to take a relatively pure measure of verbal short-term memory capacity, in cases where rehearsal is unlikely.
Delaware's first serial killer.
Inguito, G B; Sekula-Perlman, A; Lynch, M J; Callery, R T
2000-11-01
The violent murder of Shirley Ellis on November 29, 1987, marked the beginning of the strange and terrible tale of Steven Bryan Pennell's reign as the state of Delaware's first convicted serial killer. Three more bodies followed the first victim, and all had been brutally beaten and sadistically tortured. The body of a fifth woman has never been found. State and county police collaborated with the FBI to identify and hunt down their suspect, forming a task force of over 100 officers and spending about one million dollars. Through their knowledge and experience with other serial killers, the FBI was able to make an amazingly accurate psychological profile of Delaware's serial killer. After months of around-the-clock surveillance, Steven Pennell was arrested on November 29, 1988, one year to the day after the first victim was found. Pennell was found guilty in the deaths of the first two victims on November 29, 1989, and plead no contest to the murder of two others on October 30, 1991. Still maintaining his innocence, he asked for the death penalty so that he could spare his family further agony. Steven Pennell was executed by lethal injection on March 15, 1992.
Electrophysiological evidence for parallel and serial processing during visual search.
Luck, S J; Hillyard, S A
1990-12-01
Event-related potentials were recorded from young adults during a visual search task in order to evaluate parallel and serial models of visual processing in the context of Treisman's feature integration theory. Parallel and serial search strategies were produced by the use of feature-present and feature-absent targets, respectively. In the feature-absent condition, the slopes of the functions relating reaction time and latency of the P3 component to set size were essentially identical, indicating that the longer reaction times observed for larger set sizes can be accounted for solely by changes in stimulus identification and classification time, rather than changes in post-perceptual processing stages. In addition, the amplitude of the P3 wave on target-present trials in this condition increased with set size and was greater when the preceding trial contained a target, whereas P3 activity was minimal on target-absent trials. These effects are consistent with the serial self-terminating search model and appear to contradict parallel processing accounts of attention-demanding visual search performance, at least for a subset of search paradigms. Differences in ERP scalp distributions further suggested that different physiological processes are utilized for the detection of feature presence and absence.
Serial dependence in the perception of attractiveness.
Xia, Ye; Leib, Allison Yamanashi; Whitney, David
2016-12-01
The perception of attractiveness is essential for choices of food, object, and mate preference. Like perception of other visual features, perception of attractiveness is stable despite constant changes of image properties due to factors like occlusion, visual noise, and eye movements. Recent results demonstrate that perception of low-level stimulus features and even more complex attributes like human identity are biased towards recent percepts. This effect is often called serial dependence. Some recent studies have suggested that serial dependence also exists for perceived facial attractiveness, though there is also concern that the reported effects are due to response bias. Here we used an attractiveness-rating task to test the existence of serial dependence in perceived facial attractiveness. Our results demonstrate that perceived face attractiveness was pulled by the attractiveness level of facial images encountered up to 6 s prior. This effect was not due to response bias and did not rely on the previous motor response. This perceptual pull increased as the difference in attractiveness between previous and current stimuli increased. Our results reconcile previously conflicting findings and extend previous work, demonstrating that sequential dependence in perception operates across different levels of visual analysis, even at the highest levels of perceptual interpretation.
Labeling, Rehearsal, and Short-Term Memory in Retarded Children
ERIC Educational Resources Information Center
Hagen, John W.; And Others
1974-01-01
A short-term memory task was used to explore the effects of verbal labeling and rehearsal on serial-position recall in mildly retarded 9-to 11-year-old children. Results support the view that verbal skills affect recall in mildly retarded children similarly to normal children. (Author/SDH)
Serial Recall and Nonword Repetition in Reading Disabled Children.
ERIC Educational Resources Information Center
Roodenrys, Steven; Stokes, Julie
2001-01-01
Examines the performance on verbal short-term memory tasks of specifically reading disabled children relative to reading-age matched and chronological-age matched control groups. Examines memory span for words, highly wordlike nonwords and less wordlike nonwords, speech rates for these items, and nonword repetition. Suggests that there is a…
A Writing Exercise with the "OED."
ERIC Educational Resources Information Center
Burkle-Young, Francis A.
2001-01-01
Describes a writing exercise with the "Oxford English Dictionary" that teaches students about research and attention to detail. Describes how the exercise, which involves the student in a set of serial tasks, makes students comfortable with the OED, teaches them how to extract full details of any word, and teaches students to take…
NASA Technical Reports Server (NTRS)
Schumacher, W.; Geiser, G.
1978-01-01
The basic concepts of Petri nets are reviewed as well as their application as the fundamental model of technical systems with concurrent discrete events such as hardware systems and software models of computers. The use of Petri nets is proposed for modeling the human operator dealing with concurrent discrete tasks. Their properties useful in modeling the human operator are discussed and practical examples are given. By means of and experimental investigation of binary concurrent tasks which are presented in a serial manner, the representation of human behavior by Petri nets is demonstrated.
Decision-making under risk conditions is susceptible to interference by a secondary executive task.
Starcke, Katrin; Pawlikowski, Mirko; Wolf, Oliver T; Altstötter-Gleich, Christine; Brand, Matthias
2011-05-01
Recent research suggests two ways of making decisions: an intuitive and an analytical one. The current study examines whether a secondary executive task interferes with advantageous decision-making in the Game of Dice Task (GDT), a decision-making task with explicit and stable rules that taps executive functioning. One group of participants performed the original GDT solely, two groups performed either the GDT and a 1-back or a 2-back working memory task as a secondary task simultaneously. Results show that the group which performed the GDT and the secondary task with high executive load (2-back) decided less advantageously than the group which did not perform a secondary executive task. These findings give further evidence for the view that decision-making under risky conditions taps into the rational-analytical system which acts in a serial and not parallel way as performance on the GDT is disturbed by a parallel task that also requires executive resources.
Serial recall of colors: Two models of memory for serial order applied to continuous visual stimuli.
Peteranderl, Sonja; Oberauer, Klaus
2018-01-01
This study investigated the effects of serial position and temporal distinctiveness on serial recall of simple visual stimuli. Participants observed lists of five colors presented at varying, unpredictably ordered interitem intervals, and their task was to reproduce the colors in their order of presentation by selecting colors on a continuous-response scale. To control for the possibility of verbal labeling, articulatory suppression was required in one of two experimental sessions. The predictions were derived through simulation from two computational models of serial recall: SIMPLE represents the class of temporal-distinctiveness models, whereas SOB-CS represents event-based models. According to temporal-distinctiveness models, items that are temporally isolated within a list are recalled more accurately than items that are temporally crowded. In contrast, event-based models assume that the time intervals between items do not affect recall performance per se, although free time following an item can improve memory for that item because of extended time for the encoding. The experimental and the simulated data were fit to an interference measurement model to measure the tendency to confuse items with other items nearby on the list-the locality constraint-in people as well as in the models. The continuous-reproduction performance showed a pronounced primacy effect with no recency, as well as some evidence for transpositions obeying the locality constraint. Though not entirely conclusive, this evidence favors event-based models over a role for temporal distinctiveness. There was also a strong detrimental effect of articulatory suppression, suggesting that verbal codes can be used to support serial-order memory of simple visual stimuli.
Radbruch, Alexander; Weberling, Lukas D; Kieslich, Pascal J; Hepp, Johanna; Kickingereder, Philipp; Wick, Wolfgang; Schlemmer, Heinz-Peter; Bendszus, Martin
2016-11-01
Recent studies reported an increase in the dentate nucleus (DN)-to-pons signal intensity (SI) ratio (DN-pons SI ratio) on unenhanced T1-weighted images in patients who received consecutive serial injections of linear gadolinium-based contrast agents (GBCAs). In contrast, most studies found no increase in the DN-pons SI ratio when patients were treated with consecutive serial injections of macrocyclic GBCAs. However, the potential difference between macrocyclic and linear GBCAs has never been assessed in individuals who received subsequent applications of both contrast agents. In this retrospective study, we assessed the evolution of the DN-pons SI ratio change in patients that were treated with a comparable number of serial consecutive injections of the linear GBCA gadopentetate dimeglumine and subsequent serial injections of the macrocyclic GBCAs gadobutrol and gadoterate meglumine. Data of 36 patients was analyzed. All patients underwent at least 5 consecutive administrations of the linear GBCA gadopentetate dimeglumine followed by an equal number of consecutive administrations of the macrocyclic GBCA gadobutrol. In 12 of the 36 patients, 5 or more final consecutive injections of the macrocyclic GBCA gadoterate meglumine were analyzed additionally. The difference of DN-pons SI ratios on unenhanced T1-weighted images was calculated by subtracting the ratio at the first examination from the ratio at the last examination in each of the 3 periods. The mean DN-pons SI ratio difference in the gadopentetate dimeglumine period was significantly greater than 0 (mean ± SD, 0.0448 ± 0.0345; P < 0.001), whereas the mean DN-pons SI ratio difference in the subsequent gadobutrol and gadoterate meglumine period was significantly smaller than 0 (gadobutrol: -0.0178 ± 0.0459, P = 0.026; gadoterate meglumine: -0.0250 ± 0.0284, P = 0.011). In this observational study, the application of the linear GBCA gadopentetate dimeglumine was associated with a DN-pons SI ratio increase, whereas subsequent applications of the macrocyclic GBCAs gadobutrol or gadoterate meglumine in the same patients were not. Rather, the current data tentatively suggest a decrease in preexisting hyperintensities over time when linear GBCAs are changed to macrocyclic GBCAs, potentially indicating a washout effect or precipitation of gadolinium. Future patient studies need to include control groups to replicate the present results, and additional animal studies should be conducted to clarify the underlying mechanism of the proposed SI decrease.
Sex Differences in Arm Muscle Fatigability With Cognitive Demand in Older Adults.
Pereira, Hugo M; Spears, Vincent C; Schlinder-Delap, Bonnie; Yoon, Tejin; Harkins, April; Nielson, Kristy A; Hoeger Bement, Marie; Hunter, Sandra K
2015-08-01
Muscle fatigability can increase when a stressful, cognitively demanding task is imposed during a low-force fatiguing contraction with the arm muscles, especially in women. Whether this occurs among older adults (>60 years) is currently unknown. We aimed to determine if higher cognitive demands, stratified by sex, increased fatigability in older adults (>60 years). Secondarily, we assessed if varying cognitive demand resulted in decreased steadiness and was explained by anxiety or cortisol levels. Seventeen older women (70±6 years) and 13 older men (71±5 years) performed a sustained, isometric, fatiguing contraction at 20% of maximal voluntary contraction until task failure during three sessions: high cognitive demand (high CD=mental subtraction by 13); low cognitive demand (low CD=mental subtraction by 1); and control (no subtraction). Fatigability was greater when high and low CD were performed during the fatiguing contraction for the women but not for the men. In women, time to failure with high CD was 16±8 minutes and with low CD was 17±4 minutes, both of which were shorter than time to failure in control contractions (21±7 minutes; high CD mean difference: 5 minutes [95% confidence interval {CI}, 0.78-9.89], p=0.02; low CD mean difference: 4 minutes [95% CI, 0.57-7.31], p=0.03). However, in men, no differences were detected in time to failure with cognitive demand (control: 13±5 minutes; high CD mean difference: -0.09 minutes [95% CI, -2.8 to 2.7], p=1.00; low CD mean difference: 0.75 minutes [95% CI, -1.1 to 2.6], p=0.85). Steadiness decreased (force fluctuations increased) more during high CD than control. Elevated anxiety, mean arterial pressure, and salivary cortisol levels in both men and women did not explain the greater fatigability during high CD. Older women but not men showed marked increases in fatigability when low or high CD was imposed during sustained static contractions with the elbow flexor muscles and contrasts with previous findings for the lower limb. Steadiness decreased in both sexes when high CD was imposed. Older women are susceptible to greater fatigability of the upper limb with heightened mental activity during sustained postural contractions, which are the foundation of many work-related tasks.
Forgetting in immediate serial recall: decay, temporal distinctiveness, or interference?
Oberauer, Klaus; Lewandowsky, Stephan
2008-07-01
Three hypotheses of forgetting from immediate memory were tested: time-based decay, decreasing temporal distinctiveness, and interference. The hypotheses were represented by 3 models of serial recall: the primacy model, the SIMPLE (scale-independent memory, perception, and learning) model, and the SOB (serial order in a box) model, respectively. The models were fit to 2 experiments investigating the effect of filled delays between items at encoding or at recall. Short delays between items, filled with articulatory suppression, led to massive impairment of memory relative to a no-delay baseline. Extending the delays had little additional effect, suggesting that the passage of time alone does not cause forgetting. Adding a choice reaction task in the delay periods to block attention-based rehearsal did not change these results. The interference-based SOB fit the data best; the primacy model overpredicted the effect of lengthening delays, and SIMPLE was unable to explain the effect of delays at encoding. The authors conclude that purely temporal views of forgetting are inadequate. Copyright (c) 2008 APA, all rights reserved.
Spatial serial order processing in schizophrenia.
Fraser, David; Park, Sohee; Clark, Gina; Yohanna, Daniel; Houk, James C
2004-10-01
The aim of this study was to examine serial order processing deficits in 21 schizophrenia patients and 16 age- and education-matched healthy controls. In a spatial serial order working memory task, one to four spatial targets were presented in a randomized sequence. Subjects were required to remember the locations and the order in which the targets were presented. Patients showed a marked deficit in ability to remember the sequences compared with controls. Increasing the number of targets within a sequence resulted in poorer memory performance for both control and schizophrenia subjects, but the effect was much more pronounced in the patients. Targets presented at the end of a long sequence were more vulnerable to memory error in schizophrenia patients. Performance deficits were not attributable to motor errors, but to errors in target choice. The results support the idea that the memory errors seen in schizophrenia patients may be due to saturating the working memory network at relatively low levels of memory load.
ERIC Educational Resources Information Center
Savine, Adam C.; McDaniel, Mark A.; Shelton, Jill Talley; Scullin, Michael K.
2012-01-01
Prospective memory--remembering to retrieve and execute future goals--is essential to daily life. Prospective remembering is often achieved through effortful monitoring; however, potential individual differences in monitoring patterns have not been characterized. We propose 3 candidate models to characterize the individual differences present in…
Attentional Requirements for the Establishment of Memory for Serial Structure.
ERIC Educational Resources Information Center
Kidd, Gary R.; Greenwald, Anthony G.
The issue of whether information to which little or no attention is paid can have lasting effects is of interest to psychologists as well as educators and advertisers. Two experiments were designed to examine whether focused attention is required, whether the immediate memory task is important, or whether subjects' knowledge that repetitions are…
Central Inhibition Ability Modulates Attention-Induced Motion Blindness
ERIC Educational Resources Information Center
Milders, Maarten; Hay, Julia; Sahraie, Arash; Niedeggen, Michael
2004-01-01
Impaired motion perception can be induced in normal observers in a rapid serial visual presentation task. Essential for this effect is the presence of motion distractors prior to the motion target, and we proposed that this attention-induced motion blindness results from high-level inhibition produced by the distractors. To investigate this, we…
Threaded Cognition: An Integrated Theory of Concurrent Multitasking
ERIC Educational Resources Information Center
Salvucci, Dario D.; Taatgen, Niels A.
2008-01-01
The authors propose the idea of threaded cognition, an integrated theory of concurrent multitasking--that is, performing 2 or more tasks at once. Threaded cognition posits that streams of thought can be represented as threads of processing coordinated by a serial procedural resource and executed across other available resources (e.g., perceptual…
Reduced Implicit and Explicit Sequence Learning in First-Episode Schizophrenia
ERIC Educational Resources Information Center
Pedersen, Anya; Siegmund, Ansgar; Ohrmann, Patricia; Rist, Fred; Rothermundt, Matthias; Suslow, Thomas; Arolt, Volker
2008-01-01
A high prevalence of deficits in explicit learning has been reported for schizophrenic patients, but it is less clear whether these patients are impaired in implicit learning. Deficits in implicit learning indicative of a fronto-striatal dysfunction have been reported using a serial reaction-time task (SRT), but the impact of typical neuroleptic…
The Temporal Dynamics of Regularity Extraction in Non-Human Primates
ERIC Educational Resources Information Center
Minier, Laure; Fagot, Joël; Rey, Arnaud
2016-01-01
Extracting the regularities of our environment is one of our core cognitive abilities. To study the fine-grained dynamics of the extraction of embedded regularities, a method combining the advantages of the artificial language paradigm (Saffran, Aslin, & Newport, [Saffran, J. R., 1996]) and the serial response time task (Nissen & Bullemer,…
Development of Real Time System for Data Communication Based on SCO UNIX
NASA Astrophysics Data System (ADS)
Hua, Ying-Min
2002-01-01
The real time system based on SCO UNIX has the multiple tasks properties as on other UNIX system. The costs is lower than other UNIX system. In this paper the usage of multiple serial communication and UDP communication is mainly introduced. The data housekeeping and system monitor are described.
Is Implicit Sequence Learning Impaired in Schizophrenia? A Meta-Analysis
ERIC Educational Resources Information Center
Siegert, Richard J.; Weatherall, Mark; Bell, Elliot M.
2008-01-01
Cognition in schizophrenia seems to be characterized by impaired performance on most tests of explicit or declarative learning contrasting with relatively intact performance on most tests of implicit or procedural learning. At the same time there have been conflicting results for studies that have used the Serial Reaction Time (SRT) task to…
Notetaking, Verbal Aptitude, & Listening Span: Factors Involved in Learning from Lectures.
ERIC Educational Resources Information Center
Walbaum, Sharlene D.
Three variables (verbal aptitude, listening ability, and notetaking) that may mediate how much college students learn from a lecture were studied. Verbal aptitude was operationalized as a Verbal Scholastic Aptitude Test (VSAT) score. Listening ability was measured as the score on an auditory short-term memory task, using the serial running memory…
ERIC Educational Resources Information Center
Camen, Christian; Morand, Stephanie; Laganaro, Marina
2010-01-01
Neurolinguistic and psycholinguistic studies suggest that grammatical (gender) and phonological information are retrieved independently and that gender can be accessed before phonological information. This study investigated the relative time courses of gender and phonological encoding using topographic evoked potentials mapping methods.…
Insights into the Control of Attentional Set in ADHD Using the Attentional Blink Paradigm
ERIC Educational Resources Information Center
Mason, Deanna J.; Humphreys, Glyn W.; Kent, Lindsey
2005-01-01
Background: Previous work on visual selective attention in Attention Deficit Hyperactivity Disorder (ADHD) has utilised spatial search paradigms. This study compared ADHD to control children on a temporal search task using Rapid Serial Visual Presentation (RSVP). In addition, the effects of irrelevant singleton distractors on search performance…
ERIC Educational Resources Information Center
Fific, Mario; Nosofsky, Robert M.; Townsend, James T.
2008-01-01
A growing methodology, known as the systems factorial technology (SFT), is being developed to diagnose the types of information-processing architectures (serial, parallel, or coactive) and stopping rules (exhaustive or self-terminating) that operate in tasks of multidimensional perception. Whereas most previous applications of SFT have been in…
Parallel Processing in Visual Search Asymmetry
ERIC Educational Resources Information Center
Dosher, Barbara Anne; Han, Songmei; Lu, Zhong-Lin
2004-01-01
The difficulty of visual search may depend on assignment of the same visual elements as targets and distractors-search asymmetry. Easy C-in-O searches and difficult O-in-C searches are often associated with parallel and serial search, respectively. Here, the time course of visual search was measured for both tasks with speed-accuracy methods. The…
ERIC Educational Resources Information Center
Daikhin, Luba; Raviv, Ofri; Ahissar, Merav
2017-01-01
Purpose: The reading deficit for people with dyslexia is typically associated with linguistic, memory, and perceptual-discrimination difficulties, whose relation to reading impairment is disputed. We proposed that automatic detection and usage of serial sound regularities for individuals with dyslexia is impaired (anchoring deficit hypothesis),…
Precategorical Acoustic Storage and the Perception of Speech
ERIC Educational Resources Information Center
Frankish, Clive
2008-01-01
Theoretical accounts of both speech perception and of short term memory must consider the extent to which perceptual representations of speech sounds might survive in relatively unprocessed form. This paper describes a novel version of the serial recall task that can be used to explore this area of shared interest. In immediate recall of digit…
Implicit Perceptual-Motor Skill Learning in Mild Cognitive Impairment and Parkinson's Disease
Gobel, Eric W.; Blomeke, Kelsey; Zadikoff, Cindy; Simuni, Tanya; Weintraub, Sandy; Reber, Paul J.
2015-01-01
Objective Implicit skill learning is hypothesized to depend on nondeclarative memory that operates independent of the medial temporal lobe (MTL) memory system and instead depends on cortico-striatal circuits between the basal ganglia and cortical areas supporting motor function and planning. Research with the Serial Reaction Time (SRT) task suggests that patients with memory-disorders due to MTL damage exhibit normal implicit sequence learning. However, reports of intact learning rely on observations of no group differences, leading to speculation whether implicit sequence learning is fully intact in these patients. Patients with Parkinson's Disease (PD) often exhibit impaired sequence learning, but this impairment is not universally observed. Method Implicit perceptual-motor sequence learning was examined using the Serial Interception Sequence Learning (SISL) task in patients with amnestic Mild Cognitive Impairment (MCI; n=11) and patients with PD (n=15). Sequence learning in SISL is resistant to explicit learning and individually adapted task difficulty controls for baseline performance differences. Results Patients with MCI exhibited robust sequence learning, equivalent to healthy older adults (n=20), supporting the hypothesis that the MTL does not contribute to learning in this task. In contrast, the majority of patients with PD exhibited no sequence-specific learning in spite of matched overall task performance. Two patients with PD exhibited performance indicative of an explicit compensatory strategy suggesting that impaired implicit learning may lead to greater reliance on explicit memory in some individuals. Conclusion The differences in learning between patient groups provides strong evidence in favor of implicit sequence learning depending solely on intact basal ganglia function with no contribution from the MTL memory system. PMID:23688213
Color vision predicts processing modes of goal activation during action cascading.
Jongkees, Bryant J; Steenbergen, Laura; Colzato, Lorenza S
2017-09-01
One of the most important functions of cognitive control is action cascading: the ability to cope with multiple response options when confronted with various task goals. A recent study implicates a key role for dopamine (DA) in this process, suggesting higher D1 efficiency shifts the action cascading strategy toward a more serial processing mode, whereas higher D2 efficiency promotes a shift in the opposite direction by inducing a more parallel processing mode (Stock, Arning, Epplen, & Beste, 2014). Given that DA is found in high concentration in the retina and modulation of retinal DA release displays characteristics of D2-receptors (Peters, Schweibold, Przuntek, & Müller, 2000), color vision discrimination might serve as an index of D2 efficiency. We used color discrimination, assessed with the Lanthony Desaturated Panel D-15 test, to predict individual differences (N = 85) in a stop-change paradigm that provides a well-established measure of action cascading. In this task it is possible to calculate an individual slope value for each participant that estimates the degree of overlap in task goal activation. When the stopping process of a previous task goal has not finished at the time the change process toward a new task goal is initiated (parallel processing), the slope value becomes steeper. In case of less overlap (more serial processing), the slope value becomes flatter. As expected, participants showing better color vision were more prone to activate goals in a parallel manner as indicated by a steeper slope. Our findings suggest that color vision might represent a predictor of D2 efficiency and the predisposed processing mode of goal activation during action cascading. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tree, Jeremy J; Longmore, Chris; Majerus, Steve; Evans, Nicky
2011-07-01
In a now-classic study Besner and Davelaar (1982) reported an advantage of pseudohomophone (PSH) over nonword recall in a visual immediate serial recall (ISR) task, which remained under articulatory suppression (AS), and interpreted the findings as indicating PSH items obtain support from stored phonological long-term memory (LTM) representations even when phonological rehearsal is disrupted. However, one key question relating to this PSH effect remains: could the results have been contaminated by a potential confound of orthographic familiarity (i.e., PSH items often look like the word they sound like)? As a result, the present study examined the impact of orthography on PSH ISR. Our findings indicate that PSH accuracy was consistently higher for items that had an orthographic similarity to the parent word, and this effect did not interact with concurrent task. We therefore argue that PSH items in ISR obtain independent support from both orthographic and phonological LTM representations. The present study demonstrates the critical impact of orthographic LTM representations on visual nonword ISR, and we suggest that this may be a fruitful avenue for further research.
Calia, Clara; Darling, Stephen; Havelka, Jelena; Allen, Richard J
2018-05-01
Immediate serial recall of digits is better when the digits are shown by highlighting them in a familiar array, such as a phone keypad, compared with presenting them serially in a single location, a pattern referred to as "visuospatial bootstrapping." This pattern implies the establishment of temporary links between verbal and spatial working memory, alongside access to information in long-term memory. However, the role of working memory control processes like those implied by the "Central Executive" in bootstrapping has not been directly investigated. Here, we report a study addressing this issue, focusing on executive processes of attentional shifting. Tasks in which information has to be sequenced are thought to be heavily dependent on shifting. Memory for digits presented in keypads versus single locations was assessed under two secondary task load conditions, one with and one without a sequencing requirement, and hence differing in the degree to which they invoke shifting. Results provided clear evidence that multimodal binding (visuospatial bootstrapping) can operate independently of this form of executive control process.
Hemispheric specialization in quantification processes.
Pasini, M; Tessari, A
2001-01-01
Three experiments were carried out to study hemispheric specialization for subitizing (the rapid enumeration of small patterns) and counting (the serial quantification process based on some formal principles). The experiments consist of numerosity identification of dot patterns presented in one visual field, with a tachistoscopic technique, or eye movements monitored through glasses, and comparison between centrally presented dot patterns and lateralized tachistoscopically presented digits. Our experiments show left visual field advantage in the identification and comparison tasks in the subitizing range, whereas right visual field advantage has been found in the comparison task for the counting range.
Towards an Effective Theory of Reformulation. Part 1; Semantics
NASA Technical Reports Server (NTRS)
Benjamin, D. Paul
1992-01-01
This paper describes an investigation into the structure of representations of sets of actions, utilizing semigroup theory. The goals of this project are twofold: to shed light on the relationship between tasks and representations, leading to a classification of tasks according to the representations they admit; and to develop techniques for automatically transforming representations so as to improve problem-solving performance. A method is demonstrated for automatically generating serial algorithms for representations whose actions form a finite group. This method is then extended to representations whose actions form a finite inverse semigroup.
Stahl, Christoph; Barth, Marius; Haider, Hilde
2015-12-01
We investigated potential biases affecting the validity of the process-dissociation (PD) procedure when applied to sequence learning. Participants were or were not exposed to a serial reaction time task (SRTT) with two types of pseudo-random materials. Afterwards, participants worked on a free or cued generation task under inclusion and exclusion instructions. Results showed that pre-experimental response tendencies, non-associative learning of location frequencies, and the usage of cue locations introduced bias to PD estimates. These biases may lead to erroneous conclusions regarding the presence of implicit and explicit knowledge. Potential remedies for these problems are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.
Multi-layer imager design for mega-voltage spectral imaging
NASA Astrophysics Data System (ADS)
Myronakis, Marios; Hu, Yue-Houng; Fueglistaller, Rony; Wang, Adam; Baturin, Paul; Huber, Pascal; Morf, Daniel; Star-Lack, Josh; Berbeco, Ross
2018-05-01
The architecture of multi-layer imagers (MLIs) can be exploited to provide megavoltage spectral imaging (MVSPI) for specific imaging tasks. In the current work, we investigated bone suppression and gold fiducial contrast enhancement as two clinical tasks which could be improved with spectral imaging. A method based on analytical calculations that enables rapid investigation of MLI component materials and thicknesses was developed and validated against Monte Carlo computations. The figure of merit for task-specific imaging performance was the contrast-to-noise ratio (CNR) of the gold fiducial when the CNR of bone was equal to zero after a weighted subtraction of the signals obtained from each MLI layer. Results demonstrated a sharp increase in the CNR of gold when the build-up component or scintillation materials and thicknesses were modified. The potential for low-cost, prompt implementation of specific modifications (e.g. composition of the build-up component) could accelerate clinical translation of MVSPI.
Early but not late blindness leads to enhanced arithmetic and working memory abilities.
Dormal, Valérie; Crollen, Virginie; Baumans, Christine; Lepore, Franco; Collignon, Olivier
2016-10-01
Behavioural and neurophysiological evidence suggest that vision plays an important role in the emergence and development of arithmetic abilities. However, how visual deprivation impacts on the development of arithmetic processing remains poorly understood. We compared the performances of early (EB), late blind (LB) and sighted control (SC) individuals during various arithmetic tasks involving addition, subtraction and multiplication of various complexities. We also assessed working memory (WM) performances to determine if they relate to a blind person's arithmetic capacities. Results showed that EB participants performed better than LB and SC in arithmetic tasks, especially in conditions in which verbal routines and WM abilities are needed. Moreover, EB participants also showed higher WM abilities. Together, our findings demonstrate that the absence of developmental vision does not prevent the development of refined arithmetic skills and can even trigger the refinement of these abilities in specific tasks. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bublitz, Alexander; Weinhold, Severine R.; Strobel, Sophia; Dehnhardt, Guido; Hanke, Frederike D.
2017-01-01
Octopuses (Octopus vulgaris) are generally considered to possess extraordinary cognitive abilities including the ability to successfully perform in a serial reversal learning task. During reversal learning, an animal is presented with a discrimination problem and after reaching a learning criterion, the signs of the stimuli are reversed: the former positive becomes the negative stimulus and vice versa. If an animal improves its performance over reversals, it is ascribed advanced cognitive abilities. Reversal learning has been tested in octopus in a number of studies. However, the experimental procedures adopted in these studies involved pre-training on the new positive stimulus after a reversal, strong negative reinforcement or might have enabled secondary cueing by the experimenter. These procedures could have all affected the outcome of reversal learning. Thus, in this study, serial visual reversal learning was revisited in octopus. We trained four common octopuses (O. vulgaris) to discriminate between 2-dimensional stimuli presented on a monitor in a simultaneous visual discrimination task and reversed the signs of the stimuli each time the animals reached the learning criterion of ≥80% in two consecutive sessions. The animals were trained using operant conditioning techniques including a secondary reinforcer, a rod that was pushed up and down the feeding tube, which signaled the correctness of a response and preceded the subsequent primary reinforcement of food. The experimental protocol did not involve negative reinforcement. One animal completed four reversals and showed progressive improvement, i.e., it decreased its errors to criterion the more reversals it experienced. This animal developed a generalized response strategy. In contrast, another animal completed only one reversal, whereas two animals did not learn to reverse during the first reversal. In conclusion, some octopus individuals can learn to reverse in a visual task demonstrating behavioral flexibility even with a refined methodology. PMID:28223940
On the role of verbalization during task set selection: switching or serial order control?
Bryck, Richard L; Mayr, Ulrich
2005-06-01
Recent task-switching work in which paper-and-pencil administered single-task lists were compared with task-alternation lists has demonstrated large increases in task-switch costs with concurrent articulatory suppression (AS), implicating a crucial role for verbalization during switching (Baddeley, Chincotta, & Adlam, 2001; Emerson & Miyake, 2003). Experiment 1 replicated this result, using computerized assessment, albeit with much smaller effect sizes than in the original reports. In Experiment 2, AS interference was reduced when a sequential cue (spatial location) that indicated the current position in the sequence of task alternations was given. Finally, in Experiment 3, switch trials and no-switch trials were compared within a block of alternating runs of two tasks. Again, AS interference was obtained mainly when the endogenous sequencing demand was high, and it was comparable for no-switch and switch trials. These results suggest that verbalization may be critical for endogenous maintenance and updating of a sequential plan, rather than exclusively for the actual switching process.
Effects of task-irrelevant grouping on visual selection in partial report.
Lunau, Rasmus; Habekost, Thomas
2017-07-01
Perceptual grouping modulates performance in attention tasks such as partial report and change detection. Specifically, grouping of search items according to a task-relevant feature improves the efficiency of visual selection. However, the role of task-irrelevant feature grouping is not clearly understood. In the present study, we investigated whether grouping of targets by a task-irrelevant feature influences performance in a partial-report task. In this task, participants must report as many target letters as possible from a briefly presented circular display. The crucial manipulation concerned the color of the elements in these trials. In the sorted-color condition, the color of the display elements was arranged according to the selection criterion, and in the unsorted-color condition, colors were randomly assigned. The distractor cost was inferred by subtracting performance in partial-report trials from performance in a control condition that had no distractors in the display. Across five experiments, we manipulated trial order, selection criterion, and exposure duration, and found that attentional selectivity was improved in sorted-color trials when the exposure duration was 200 ms and the selection criterion was luminance. This effect was accompanied by impaired selectivity in unsorted-color trials. Overall, the results suggest that the benefit of task-irrelevant color grouping of targets is contingent on the processing locus of the selection criterion.
Temporal production and visuospatial processing.
Benuzzi, Francesca; Basso, Gianpaolo; Nichelli, Paolo
2005-12-01
Current models of prospective timing hypothesize that estimated duration is influenced either by the attentional load or by the short-term memory requirements of a concurrent nontemporal task. In the present study, we addressed this issue with four dual-task experiments. In Exp. 1, the effect of memory load on both reaction time and temporal production was proportional to the number of items of a visuospatial pattern to hold in memory. In Exps. 2, 3, and 4, a temporal production task was combined with two visual search tasks involving either pre-attentive or attentional processing. Visual tasks interfered with temporal production: produced intervals were lengthened proportionally to the display size. In contrast, reaction times increased with display size only when a serial, effortful search was required. It appears that memory and perceptual set size, rather than nonspecific attentional or short-term memory load, can influence prospective timing.
Vakil, Eli; Lowe, Michal; Goldfus, Carol
2015-01-01
Among the various theories proposed to explain developmental dyslexia (DD), the theory of specific procedural learning difficulties has gained certain support and is the framework for the current research. This theory claims that an inability to achieve skill automaticity explains the difficulties experienced by individuals with DD. Previous research on automaticity and DD has exhibited methodological issues such as a failure to test a range of skills. The current study broadens previous findings by delineating various reading skills correlated with several aspects of skill acquisition. Furthermore, the study utilizes two nonverbal tasks that reflect distinct types of skills: Serial Reaction Time (SRT) and the Tower of Hanoi Puzzle (TOHP). A total of 53 children aged 11 to 13 participated in the study, of whom 23 were children with DD and 30 were controls. Participants completed a test battery that consisted of reading tests, the SRT, and the TOHP. Results show no differences in learning rate between individuals with or without DD, although individuals with DD performed both tasks at a slower rate. Correlations were identified between a number of reading measures and measures of skill acquisition, expressed primarily in individuals with DD. Implications are examined in the discussion. © Hammill Institute on Disabilities 2013.
Parker, Matthew O; Millington, Mollie E; Combe, Fraser J; Brennan, Caroline H
2012-02-01
Zebrafish are an established and widely utilized developmental genetic model system, but limitations in developed behavioral assays have meant that their potential as a model in behavioral neuroscience has yet to be fully realized. Here, we describe the development of a novel operant behavioral assay to examine a variety of aspects of stimulus control in zebrafish using a 3 choice serial reaction time task (3 CSRTT). Fish were briefly exposed to three spatially distinct, but perceptually identical stimuli, presented in a random order after a fixed-time inter-trial interval (ITI). Entries to the correct response aperture either during the stimulus presentation, or within a brief limited hold period following presentation, were reinforced with illumination of the magazine light and delivery of a small food reward. Following training, premature responding was probed with a long-ITI session three times; once at baseline, once following a saline injection and once following an injection of a low dose of amphetamine (AMPH; 0.025 mg/kg). We predicted that if premature responding was related to impulsivity (as in rodents) it would be reduced following the AMPH injection. Results confirmed that zebrafish could learn to perform a complex operant task similar to tasks developed for rodents which are used to probe sustained attention and impulsivity, but the results from the AMPH trials were inconclusive. This study provides the foundations for development and further validation of this species as a model for some aspects of human attentional and impulse control disorders, such as substance abuse disorder. Copyright © 2011 Elsevier B.V. All rights reserved.
The dynamics of free recall and their relation to rehearsal between 8 and 10 years of age.
Lehmann, Martin; Hasselhorn, Marcus
2010-01-01
The present study longitudinally examined changes in recall in children between the ages of 8 and 10 years. Given the increasingly sophisticated use of memory strategies during this developmental period, correspondences between study and recall dynamics were of particular interest. Seventy-six children performed free-recall tasks on 5 occasions over a 2-year period. Video and audio analyses revealed that children tended to recall items successively from nearby serial positions. This so-called lag-recency effect was particularly pronounced when items from nearby serial positions were conjunctly rehearsed during study. Implications for understanding study-recall correspondences are discussed in relation to other developmental changes of this period including memory capacity.
NASA Technical Reports Server (NTRS)
Heuer, H.; Spijkers, W.; Kiesswetter, E.; Schmidtke, V.
1998-01-01
Tacit knowledge is part of many professional skills and can be studied experimentally with implicit-learning paradigms. The authors explored the effects of 2 different stressors, loss of sleep and mental fatigue, on implicit learning in a serial-response time (RT) task. In the 1st experiment, 1 night of sleep deprivation was shown to impair implicit but not explicit sequence learning. In the 2nd experiment, no impairment of both types of sequence learning was found after 1.5 hr of mental work. Serial-RT performance, in contrast, suffered from both stressors. These findings suggest that sleep deprivation induces specific risks for automatic, skill-based behavior that are not present in consciously controlled performance.
SPD very front end electronics
NASA Astrophysics Data System (ADS)
Luengo, S.; Gascón, D.; Comerma, A.; Garrido, L.; Riera, J.; Tortella, S.; Vilasís, X.
2006-11-01
The Scintillator Pad Detector (SPD) is part of the LHCb calorimetry system [D. Breton, The front-end electronics for LHCb calorimeters, Tenth International Conference on Calorimetry in Particle Physics, CALOR, Pasadena, 2002] that provides high-energy hadron, electron and photon candidates for the first level trigger. The SPD is designed to distinguish electrons from photons. It consists of a plastic scintillator layer, divided into about 6000 cells of different size to obtain better granularity near the beam [S. Amato, et al., LHCb technical design report, CERN/LHCC/2000-0036, 2000]. Charged particles will produce, and photons will not, ionization in the scintillator. This ionization generates a light pulse that is collected by a WaveLength Shifting (WLS) fiber that is coiled inside the scintillator cell. The light is transmitted through a clear fiber to the readout system that is placed at the periphery of the detector. Due to space constraints, and in order to reduce costs, these 6000 cells are divided in groups using a MAPMT [Z. Ajaltouni, et al., Nucl. Instr. and Meth. A 504 (2003) 9] of 64 channels that provides information to the VFE readout electronics. The SPD signal has rather large statistical fluctuations because of the low number (20-30) of photoelectrons per MIP. Therefore the signal is integrated over the whole bunch crossing length of 25 ns in order to have the maximum value. Since in average about 85% of the SPD signal is within 25 ns, 15% of a sample is subtracted from the following one using an operational amplifier. The SPD VFE readout system that will be presented consists of the following components. A specific ASIC [D. Gascon, et al., Discriminator ASIC for the VFE SPD of the LHCb Calorimeter, LHCB Technical Note, LHCB 2004-xx] integrates the signal, makes the signal-tail subtraction, and compares the level obtained to a programmable threshold (to distinguish electrons from photons). A FPGA programmes the ASIC threshold and the value for signal-tail subtraction. Finally, a LVDS serializer sends the information to the first level trigger system.
2016-04-01
cheap, disposable swarms of robots that can accomplish these tasks quickly and with- out much human supervision. While there has been a lot of work...have shown that swarms of robots so dumb that they have no computational power–they can’t even add or subtract, and have no memory can still collec...behaviors can be achieved using swarms of computation-free robots . Our work starts with the simple robot model proposed in [6] and adds a form of
Robotics in neurosurgery: which tools for what?
Benabid, A L; Hoffmann, D; Seigneuret, E; Chabardes, S
2006-01-01
Robots are the tools for taking advantage of the skills of computers in achieving complicated tasks. This has been made possible owing to the "numerical image explosion" which allowed us to easily obtain spatial coordinates, three dimensional reconstruction, multimodality imaging including digital subtraction angiography (DSA), computed tomography (CT), magnetic resonance imaging (MRI) and magneto encephalography (MEG), with high resolution in space, time, and tissue density. Neurosurgical robots currently available at the operating level are being described. Future evolutions, indications and ethical aspects are examined.
The Effects of Partial Reinforcement in the Acquisition and Extinction of Recurrent Serial Patterns.
ERIC Educational Resources Information Center
Dockstader, Steven L.
The purpose of these 2 experiments was to determine whether sequential response pattern behavior is affected by partial reinforcement in the same way as other behavior systems. The first experiment investigated the partial reinforcement extinction effects (PREE) in a sequential concept learning task where subjects were required to learn a…
ERIC Educational Resources Information Center
Hambrick-Dixon, Priscilla Janet
1986-01-01
Investigates whether an experimentally imposed 80dB (A) noise affected psychomotor, serial memory words and pictures, incidental memory, visual recall, paired associates, perceptual learning, and coding performance of five-year-old Black children attending day care centers near and far from elevated subways. (HOD)
The Use of Variants of the Trail Making Test in Serial Assessment: A Construct Validity Study
ERIC Educational Resources Information Center
Atkinson, Thomas M.; Ryan, Jeanne P.
2008-01-01
The construct validity of three variants of the Trail Making Test was investigated using 162 undergraduate psychology students. During a 3-week period, the Trail Making Test of the Delis-Kaplan Executive Function System, Comprehensive Trail Making Test, and Connections Task were administered in six possible orders. Using confirmatory factor…
ERIC Educational Resources Information Center
Gabay, Yafit; Schiff, Rachel; Vakil, Eli
2012-01-01
Motor sequence learning has been studied extensively in Developmental dyslexia (DD). The purpose of the present research was to examine procedural learning of letter names and motor sequences in individuals with DD and control groups. Both groups completed the Serial Search Task which enabled the assessment of learning of letter names and motor…
Intact Procedural Motor Sequence Learning in Developmental Coordination Disorder
ERIC Educational Resources Information Center
Lejeune, Caroline; Catale, Corinne; Willems, Sylvie; Meulemans, Thierry
2013-01-01
The purpose of the present study was to explore the possibility of a procedural learning deficit among children with developmental coordination disorder (DCD). We tested 34 children aged 6-12 years with and without DCD using the serial reaction time task, in which the standard keyboard was replaced by a touch screen in order to minimize the impact…
ERIC Educational Resources Information Center
Guerard, Katherine; Tremblay, Sebastien
2008-01-01
The authors revisited evidence in favor of modularity and of functional equivalence between the processing of verbal and spatial information in short-term memory. This was done by investigating the patterns of intrusions, omissions, transpositions, and fill-ins in verbal and spatial serial recall and order reconstruction tasks under control,…
The Effects of Mood, Cognitive Style, and Cognitive Ability on Implicit Learning
ERIC Educational Resources Information Center
Pretz, Jean E.; Totz, Kathryn Sentman; Kaufman, Scott Barry
2010-01-01
In an experiment with 109 undergraduates, we examined the effect of mood, cognitive style, and cognitive ability on implicit learning in the Artificial Grammar (AG) and Serial Reaction Time (SRT) tasks. Negative mood facilitated AG learning, but had no significant effect on SRT learning. Rational cognitive style predicted greater learning on both…
Primacy Effects in Short-Term Memory with the Mentally Retarded.
ERIC Educational Resources Information Center
Detterman, Douglas K.
This paper reports on two experiments conducted in an attempt to extend findings by Ellis which suggest a rehearsal deficit in mentally retarded subjects. In experiment one, mentally retarded subjects saw nine stimuli in a serial position probe task for either two, four, or six seconds each. Performances for the two and four second-per-item rates…
ERIC Educational Resources Information Center
Vakil, Eli; Lowe, Michal; Goldfus, Carol
2015-01-01
Among the various theories proposed to explain developmental dyslexia (DD), the theory of specific procedural learning difficulties has gained certain support and is the framework for the current research. This theory claims that an inability to achieve skill automaticity explains the difficulties experienced by individuals with DD. Previous…
Monkeys have a limited form of short-term memory in audition
Scott, Brian H.; Mishkin, Mortimer; Yin, Pingbo
2012-01-01
A stimulus trace may be temporarily retained either actively [i.e., in working memory (WM)] or by the weaker mnemonic process we will call passive short-term memory, in which a given stimulus trace is highly susceptible to “overwriting” by a subsequent stimulus. It has been suggested that WM is the more robust process because it exploits long-term memory (i.e., a current stimulus activates a stored representation of that stimulus, which can then be actively maintained). Recent studies have suggested that monkeys may be unable to store acoustic signals in long-term memory, raising the possibility that they may therefore also lack auditory WM. To explore this possibility, we tested rhesus monkeys on a serial delayed match-to-sample (DMS) task using a small set of sounds presented with ∼1-s interstimulus delays. Performance was accurate whenever a match or a nonmatch stimulus followed the sample directly, but it fell precipitously if a single nonmatch stimulus intervened between sample and match. The steep drop in accuracy was found to be due not to passive decay of the sample’s trace, but to retroactive interference from the intervening nonmatch stimulus. This “overwriting” effect was far greater than that observed previously in serial DMS with visual stimuli. The results, which accord with the notion that WM relies on long-term memory, indicate that monkeys perform serial DMS in audition remarkably poorly and that whatever success they had on this task depended largely, if not entirely, on the retention of stimulus traces in the passive form of short-term memory. PMID:22778411
Monkeys have a limited form of short-term memory in audition.
Scott, Brian H; Mishkin, Mortimer; Yin, Pingbo
2012-07-24
A stimulus trace may be temporarily retained either actively [i.e., in working memory (WM)] or by the weaker mnemonic process we will call passive short-term memory, in which a given stimulus trace is highly susceptible to "overwriting" by a subsequent stimulus. It has been suggested that WM is the more robust process because it exploits long-term memory (i.e., a current stimulus activates a stored representation of that stimulus, which can then be actively maintained). Recent studies have suggested that monkeys may be unable to store acoustic signals in long-term memory, raising the possibility that they may therefore also lack auditory WM. To explore this possibility, we tested rhesus monkeys on a serial delayed match-to-sample (DMS) task using a small set of sounds presented with ~1-s interstimulus delays. Performance was accurate whenever a match or a nonmatch stimulus followed the sample directly, but it fell precipitously if a single nonmatch stimulus intervened between sample and match. The steep drop in accuracy was found to be due not to passive decay of the sample's trace, but to retroactive interference from the intervening nonmatch stimulus. This "overwriting" effect was far greater than that observed previously in serial DMS with visual stimuli. The results, which accord with the notion that WM relies on long-term memory, indicate that monkeys perform serial DMS in audition remarkably poorly and that whatever success they had on this task depended largely, if not entirely, on the retention of stimulus traces in the passive form of short-term memory.
Bunting, Michael F; Cowan, Nelson; Colflesh, Greg H
2008-06-01
Memory at times depends on attention, as when attention is used to encode incoming, serial verbal information. When encoding and rehearsal are difficult or when attention is divided during list presentation, more attention is needed in the time following the presentation and just preceding the response. Across 12 experimental conditions observed in several experiments, we demonstrated this by introducing a nonverbal task with three levels of effort (no task, a natural nonverbal task, or an unnatural version of the task) during a brief retention interval in a short-term digit recall task. Interference from the task during the retention interval was greater when resources were drawn away from the encoding of the stimuli by other factors, including unpredictability of the end point of the list, rapid presentation, and a secondary task during list presentation. When those conditions complicate encoding of the list, we argue, attention is needed after the list so that the contents of passive memory (i.e., postcategorical phonological storage and/or precategorical sensory memory) may be retrieved and become the focus of attention for recall.
Attentional blink in children with attention deficit hyperactivity disorder.
Amador-Campos, Juan A; Aznar-Casanova, J Antonio; Bezerra, Izabela; Torro-Alves, Nelson; Sánchez, Manuel M
2015-01-01
To explore the temporal mechanism of attention in children with attention deficit hyperactivity disorder (ADHD) and controls using a rapid serial visual presentation (RSVP) task in which two letters (T1 and T2) were presented in close temporal proximity among distractors (attentional blink [AB]). Thirty children aged between 9 and 13 years (12 with ADHD combined type and 18 controls) took part in the study. Both groups performed two kinds of RSVP task. In the single task, participants simply had to identify a target letter (T1), whereas in the dual task, they had to identify a target letter (T1) and a probe letter (T2). The ADHD and control groups were equivalent in their single-task performance. However, in the dual-task condition, there were significant between-group differences in the rate of detection of the probe letter (T2) at lag + 1 and lag + 4. The ADHD group exhibited a larger overall AB compared with controls. Our findings provide support for a link between ADHD and attentional blink.
Attention and P300-based BCI performance in people with amyotrophic lateral sclerosis
Riccio, Angela; Simione, Luca; Schettini, Francesca; Pizzimenti, Alessia; Inghilleri, Maurizio; Belardinelli, Marta Olivetti; Mattia, Donatella; Cincotti, Febo
2013-01-01
The purpose of this study was to investigate the support of attentional and memory processes in controlling a P300-based brain-computer interface (BCI) in people with amyotrophic lateral sclerosis (ALS). Eight people with ALS performed two behavioral tasks: (i) a rapid serial visual presentation (RSVP) task, screening the temporal filtering capacity and the speed of the update of the attentive filter, and (ii) a change detection task, screening the memory capacity and the spatial filtering capacity. The participants were also asked to perform a P300-based BCI spelling task. By using correlation and regression analyses, we found that only the temporal filtering capacity in the RSVP task was a predictor of both the P300-based BCI accuracy and of the amplitude of the P300 elicited performing the BCI task. We concluded that the ability to keep the attentional filter active during the selection of a target influences performance in BCI control. PMID:24282396
Mayor-Dubois, C; Zesiger, P; Van der Linden, M; Roulet-Perez, E
2014-01-01
Ullman (2004) suggested that Specific Language Impairment (SLI) results from a general procedural learning deficit. In order to test this hypothesis, we investigated children with SLI via procedural learning tasks exploring the verbal, motor, and cognitive domains. Results showed that compared with a Control Group, the children with SLI (a) were unable to learn a phonotactic learning task, (b) were able but less efficiently to learn a motor learning task and (c) succeeded in a cognitive learning task. Regarding the motor learning task (Serial Reaction Time Task), reaction times were longer and learning slower than in controls. The learning effect was not significant in children with an associated Developmental Coordination Disorder (DCD), and future studies should consider comorbid motor impairment in order to clarify whether impairments are related to the motor rather than the language disorder. Our results indicate that a phonotactic learning but not a cognitive procedural deficit underlies SLI, thus challenging Ullmans' general procedural deficit hypothesis, like a few other recent studies.
RC64, a Rad-Hard Many-Core High- Performance DSP for Space Applications
NASA Astrophysics Data System (ADS)
Ginosar, Ran; Aviely, Peleg; Gellis, Hagay; Liran, Tuvia; Israeli, Tsvika; Nesher, Roy; Lange, Fredy; Dobkin, Reuven; Meirov, Henri; Reznik, Dror
2015-09-01
RC64, a novel rad-hard 64-core signal processing chip targets DSP performance of 75 GMACs (16bit), 150 GOPS and 38 single precision GFLOPS while dissipating less than 10 Watts. RC64 integrates advanced DSP cores with a multi-bank shared memory and a hardware scheduler, also supporting DDR2/3 memory and twelve 3.125 Gbps full duplex high speed serial links using SpaceFibre and other protocols. The programming model employs sequential fine-grain tasks and a separate task map to define task dependencies. RC64 is implemented as a 300 MHz integrated circuit on a 65nm CMOS technology, assembled in hermetically sealed ceramic CCGA624 package and qualified to the highest space standards.
RC64, a Rad-Hard Many-Core High-Performance DSP for Space Applications
NASA Astrophysics Data System (ADS)
Ginosar, Ran; Aviely, Peleg; Liran, Tuvia; Alon, Dov; Mandler, Alberto; Lange, Fredy; Dobkin, Reuven; Goldberg, Miki
2014-08-01
RC64, a novel rad-hard 64-core signal processing chip targets DSP performance of 75 GMACs (16bit), 150 GOPS and 20 single precision GFLOPS while dissipating less than 10 Watts. RC64 integrates advanced DSP cores with a multi-bank shared memory and a hardware scheduler, also supporting DDR2/3 memory and twelve 2.5 Gbps full duplex high speed serial links using SpaceFibre and other protocols. The programming model employs sequential fine-grain tasks and a separate task map to define task dependencies. RC64 is implemented as a 300 MHz integrated circuit on a 65nm CMOS technology, assembled in hermetically sealed ceramic CCGA624 package and qualified to the highest space standards.
Is scanning in probed order recall articulatory?
Farrell, Simon; Lelièvre, Anna
2009-09-01
We consider how theories of serial recall might apply to other short-term memory tasks involving recall of order. In particular, we consider the possibility that when participants are cued to recall an item at an arbitrary position in a sequence, they covertly serially recall the list up to the cued position. One question is whether such "scanning" is articulatory in nature. Two experiments are presented in which the syllabic length of words preceding and following target positions were manipulated, to test the prediction of an articulatory-based mechanism that time to recall an item at a particular position will depend on the number of preceding long words. Although latency was dependent on target position, no word length effects on latency were observed. Additionally, the effects of word length on accuracy replicate recent demonstrations in serial recall that recall accuracy is dependent on the word length of all list items, not just that of target items, in line with distinctiveness assumptions. It is concluded that if scanning does occur, it is not carried out by covert or overt articulation.
Cascaded systems analysis of noise and detectability in dual-energy cone-beam CT
Gang, Grace J.; Zbijewski, Wojciech; Webster Stayman, J.; Siewerdsen, Jeffrey H.
2012-01-01
Purpose: Dual-energy computed tomography and dual-energy cone-beam computed tomography (DE-CBCT) are promising modalities for applications ranging from vascular to breast, renal, hepatic, and musculoskeletal imaging. Accordingly, the optimization of imaging techniques for such applications would benefit significantly from a general theoretical description of image quality that properly incorporates factors of acquisition, reconstruction, and tissue decomposition in DE tomography. This work reports a cascaded systems analysis model that includes the Poisson statistics of x rays (quantum noise), detector model (flat-panel detectors), anatomical background, image reconstruction (filtered backprojection), DE decomposition (weighted subtraction), and simple observer models to yield a task-based framework for DE technique optimization. Methods: The theoretical framework extends previous modeling of DE projection radiography and CBCT. Signal and noise transfer characteristics are propagated through physical and mathematical stages of image formation and reconstruction. Dual-energy decomposition was modeled according to weighted subtraction of low- and high-energy images to yield the 3D DE noise-power spectrum (NPS) and noise-equivalent quanta (NEQ), which, in combination with observer models and the imaging task, yields the dual-energy detectability index (d′). Model calculations were validated with NPS and NEQ measurements from an experimental imaging bench simulating the geometry of a dedicated musculoskeletal extremities scanner. Imaging techniques, including kVp pair and dose allocation, were optimized using d′ as an objective function for three example imaging tasks: (1) kidney stone discrimination; (2) iodine vs bone in a uniform, soft-tissue background; and (3) soft tissue tumor detection on power-law anatomical background. Results: Theoretical calculations of DE NPS and NEQ demonstrated good agreement with experimental measurements over a broad range of imaging conditions. Optimization results suggest a lower fraction of total dose imparted by the low-energy acquisition, a finding consistent with previous literature. The selection of optimal kVp pair reveals the combined effect of both quantum noise and contrast in the kidney stone discrimination and soft-tissue tumor detection tasks, whereas the K-edge effect of iodine was the dominant factor in determining kVp pairs in the iodine vs bone task. The soft-tissue tumor task illustrated the benefit of dual-energy imaging in eliminating anatomical background noise and improving detectability beyond that achievable by single-energy scans. Conclusions: This work established a task-based theoretical framework that is predictive of DE image quality. The model can be utilized in optimizing a broad range of parameters in image acquisition, reconstruction, and decomposition, providing a useful tool for maximizing DE-CBCT image quality and reducing dose. PMID:22894440
Task Parallel Incomplete Cholesky Factorization using 2D Partitioned-Block Layout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kyungjoo; Rajamanickam, Sivasankaran; Stelle, George Widgery
We introduce a task-parallel algorithm for sparse incomplete Cholesky factorization that utilizes a 2D sparse partitioned-block layout of a matrix. Our factorization algorithm follows the idea of algorithms-by-blocks by using the block layout. The algorithm-byblocks approach induces a task graph for the factorization. These tasks are inter-related to each other through their data dependences in the factorization algorithm. To process the tasks on various manycore architectures in a portable manner, we also present a portable tasking API that incorporates different tasking backends and device-specific features using an open-source framework for manycore platforms i.e., Kokkos. A performance evaluation is presented onmore » both Intel Sandybridge and Xeon Phi platforms for matrices from the University of Florida sparse matrix collection to illustrate merits of the proposed task-based factorization. Experimental results demonstrate that our task-parallel implementation delivers about 26.6x speedup (geometric mean) over single-threaded incomplete Choleskyby- blocks and 19.2x speedup over serial Cholesky performance which does not carry tasking overhead using 56 threads on the Intel Xeon Phi processor for sparse matrices arising from various application problems.« less
The Development and Use of Memory Strategies by Deaf Children and Adults.
ERIC Educational Resources Information Center
Liben, Lynn S.
The availability and application of particular memory strategies by deaf children and adults was examined. In the first study, 20 younger (mean age, 6 years, 3 months) and 20 older (8 years, 8 months) children's use of rehearsal strategies was examined with a serial probe task. All four types of stimuli (animals, nonsense shapes, hands, print)…
ERIC Educational Resources Information Center
Desmottes, Lise; Meulemans, Thierry; Patinec, Marie-Aude; Maillart, Christelle
2017-01-01
Purpose: This study explored the effects of 2 different training structures on the implicit acquisition of a sequence in a serial reaction time (SRT) task in children with and without specific language impairment (SLI). Method: All of the children underwent 3 training sessions, followed by a retention session 2 weeks after the last session. In the…
Integrated Network Decompositions and Dynamic Programming for Graph Optimization (INDDGO)
DOE Office of Scientific and Technical Information (OSTI.GOV)
The INDDGO software package offers a set of tools for finding exact solutions to graph optimization problems via tree decompositions and dynamic programming algorithms. Currently the framework offers serial and parallel (distributed memory) algorithms for finding tree decompositions and solving the maximum weighted independent set problem. The parallel dynamic programming algorithm is implemented on top of the MADNESS task-based runtime.
Project DyAdd: Implicit Learning in Adult Dyslexia and ADHD
ERIC Educational Resources Information Center
Laasonen, Marja; Väre, Jenni; Oksanen-Hennah, Henna; Leppämäki, Sami; Tani, Pekka; Harno, Hanna; Hokkanen, Laura; Pothos, Emmanuel; Cleeremans, Axel
2014-01-01
In this study of the project DyAdd, implicit learning was investigated through two paradigms in adults (18-55 years) with dyslexia (n?=?36) or with attention deficit/hyperactivity disorder (ADHD, n?=?22) and in controls (n?=?35). In the serial reaction time (SRT) task, there were no group differences in learning. However, those with ADHD exhibited…
Effects of Verbal Coding on Learning Disabled and Normal Readers Visual Short-Term Memory.
ERIC Educational Resources Information Center
Swanson, Lee
The hypothesis that reading difficulty of learning disabled (LD) children is attributable to deficiencies in verbal encoding was investigated with 60 LD and normal children (mean CA=9.1, mean IQ=103.5). Ss were compared on recall of a serial short-term memory task after pre-training of named and unnamed stimulus conditions. Data suggested that…
How to Say No: Single- and Dual-Process Theories of Short-Term Recognition Tested on Negative Probes
ERIC Educational Resources Information Center
Oberauer, Klaus
2008-01-01
Three experiments with short-term recognition tasks are reported. In Experiments 1 and 2, participants decided whether a probe matched a list item specified by its spatial location. Items presented at study in a different location (intrusion probes) had to be rejected. Serial position curves of positive, new, and intrusion probes over the probed…
ERIC Educational Resources Information Center
Kelly, Ashleigh J.; Dux, Paul E.
2011-01-01
To study the temporal dynamics and capacity-limits of attentional selection and encoding, researchers often employ the attentional blink (AB) phenomenon: subjects' impaired ability to report the second of two targets in a rapid serial visual presentation (RSVP) stream that appear within 200-500 ms of one another. The AB has now been the subject of…
Serial and Parallel Processes in Working Memory after Practice
ERIC Educational Resources Information Center
Oberauer, Klaus; Bialkova, Svetlana
2011-01-01
Six young adults practiced for 36 sessions on a working-memory updating task in which 2 digits and 2 spatial positions were continuously updated. Participants either did 1 updating operation at a time, or attempted 1 numerical and 1 spatial operation at the same time. In contrast to previous research using the same paradigm with a single digit and…
Zhao, Shijie; Han, Junwei; Hu, Xintao; Jiang, Xi; Lv, Jinglei; Zhang, Tuo; Zhang, Shu; Guo, Lei; Liu, Tianming
2018-06-01
Recently, a growing body of studies have demonstrated the simultaneous existence of diverse brain activities, e.g., task-evoked dominant response activities, delayed response activities and intrinsic brain activities, under specific task conditions. However, current dominant task-based functional magnetic resonance imaging (tfMRI) analysis approach, i.e., the general linear model (GLM), might have difficulty in discovering those diverse and concurrent brain responses sufficiently. This subtraction-based model-driven approach focuses on the brain activities evoked directly from the task paradigm, thus likely overlooks other possible concurrent brain activities evoked during the information processing. To deal with this problem, in this paper, we propose a novel hybrid framework, called extendable supervised dictionary learning (E-SDL), to explore diverse and concurrent brain activities under task conditions. A critical difference between E-SDL framework and previous methods is that we systematically extend the basic task paradigm regressor into meaningful regressor groups to account for possible regressor variation during the information processing procedure in the brain. Applications of the proposed framework on five independent and publicly available tfMRI datasets from human connectome project (HCP) simultaneously revealed more meaningful group-wise consistent task-evoked networks and common intrinsic connectivity networks (ICNs). These results demonstrate the advantage of the proposed framework in identifying the diversity of concurrent brain activities in tfMRI datasets.
Correlated neuronal discharges that increase coding efficiency during perceptual discrimination.
Romo, Ranulfo; Hernández, Adrián; Zainos, Antonio; Salinas, Emilio
2003-05-22
During a sensory discrimination task, the responses of multiple sensory neurons must be combined to generate a choice. The optimal combination of responses is determined both by their dependence on the sensory stimulus and by their cofluctuations across trials-that is, the noise correlations. Positively correlated noise is considered deleterious, because it limits the coding accuracy of populations of similarly tuned neurons. However, positively correlated fluctuations between differently tuned neurons actually increase coding accuracy, because they allow the common noise to be subtracted without signal loss. This is demonstrated with data recorded from the secondary somatosensory cortex of monkeys performing a vibrotactile discrimination task. The results indicate that positive correlations are not always harmful and may be exploited by cortical networks to enhance the neural representation of features to be discriminated.
NASA Astrophysics Data System (ADS)
Choppin, Jeffrey
2011-03-01
This study explores the extent to which a teacher elicited students' mathematical reasoning through the use of challenging tasks and the role her knowledge played in doing so. I characterised the teacher's knowledge in terms of a local theory of instruction, a form of pedagogical content knowledge that involves an empirically tested set of conjectures situated within a mathematical domain. Video data were collected and analysed and used to stimulate the teacher's reflection on her enactments of an instructional sequence. The teacher, chosen for how she consistently elicited student reasoning, showed evidence of possessing a local theory in that she articulated the ways student thinking developed over time, the processes by which that thinking developed, and the resources that facilitated the development of student thinking. Her knowledge informed how she revised and enacted challenging tasks in ways that elicited and refined student thinking around integer addition and subtraction. Furthermore, her knowledge and practices emphasised the progressive formalisation of students' ideas as a key learning process. A key implication of this study is that teachers are able to develop robust knowledge from enacting challenging tasks, knowledge that organises how they elicit and refine student reasoning from those tasks.
Changes in step-width during dual-task walking predicts falls.
Nordin, E; Moe-Nilssen, R; Ramnemark, A; Lundin-Olsson, L
2010-05-01
The aim was to evaluate whether gait pattern changes between single- and dual-task conditions were associated with risk of falling in older people. Dual-task cost (DTC) of 230 community living, physically independent people, 75 years or older, was determined with an electronic walkway. Participants were followed up each month for 1 year to record falls. Mean and variability measures of gait characteristics for 5 dual-task conditions were compared to single-task walking for each participant. Almost half (48%) of the participants fell at least once during follow-up. Risk of falling increased in individuals where DTC for performing a subtraction task demonstrated change in mean step-width compared to single-task walking. Risk of falling decreased in individuals where DTC for carrying a cup and saucer demonstrated change compared to single-task walking in mean step-width, mean step-time, and step-length variability. Degree of change in gait characteristics related to a change in risk of falling differed between measures. Prognostic guidance for fall risk was found for the above DTCs in mean step-width with a negative likelihood ratio of 0.5 and a positive likelihood ratio of 2.3, respectively. Findings suggest that changes in step-width, step-time, and step-length with dual tasking may be related to future risk of falling. Depending on the nature of the second task, DTC may indicate either an increased risk of falling, or a protective strategy to avoid falling. Copyright 2010. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Lopez Maurino, Sebastian; Badano, Aldo; Cunningham, Ian A.; Karim, Karim S.
2016-03-01
We propose a new design of a stacked three-layer flat-panel x-ray detector for dual-energy (DE) imaging. Each layer consists of its own scintillator of individual thickness and an underlying thin-film-transistor-based flat-panel. Three images are obtained simultaneously in the detector during the same x-ray exposure, thereby eliminating any motion artifacts. The detector operation is two-fold: a conventional radiography image can be obtained by combining all three layers' images, while a DE subtraction image can be obtained from the front and back layers' images, where the middle layer acts as a mid-filter that helps achieve spectral separation. We proceed to optimize the detector parameters for two sample imaging tasks that could particularly benefit from this new detector by obtaining the best possible signal to noise ratio per root entrance exposure using well-established theoretical models adapted to fit our new design. These results are compared to a conventional DE temporal subtraction detector and a single-shot DE subtraction detector with a copper mid-filter, both of which underwent the same theoretical optimization. The findings are then validated using advanced Monte Carlo simulations for all optimized detector setups. Given the performance expected from initial results and the recent decrease in price for digital x-ray detectors, the simplicity of the three-layer stacked imager approach appears promising to usher in a new generation of multi-spectral digital x-ray diagnostics.
Language and Short-Term Memory: The Role of Perceptual-Motor Affordance
2014-01-01
The advantage for real words over nonwords in serial recall—the lexicality effect—is typically attributed to support for item-level phonology, either via redintegration, whereby partially degraded short-term traces are “cleaned up” via support from long-term representations of the phonological material or via the more robust temporary activation of long-term lexical phonological knowledge that derives from its combination with established lexical and semantic levels of representation. The much smaller effect of lexicality in serial recognition, where the items are re-presented in the recognition cue, is attributed either to the minimal role for redintegration from long-term memory or to the minimal role for item memory itself in such retrieval conditions. We show that the reduced lexicality effect in serial recognition is not a function of the retrieval conditions, but rather because previous demonstrations have used auditory presentation, and we demonstrate a robust lexicality effect for visual serial recognition in a setting where auditory presentation produces no such effect. Furthermore, this effect is abolished under conditions of articulatory suppression. We argue that linguistic knowledge affects the readiness with which verbal material is segmentally recoded via speech motor processes that support rehearsal and therefore affects tasks that involve recoding. On the other hand, auditory perceptual organization affords sequence matching in the absence of such a requirement for segmental recoding and therefore does not show such effects of linguistic knowledge. PMID:24797440
Serial-order learning impairment and hypersensitivity-to-interference in dyscalculia.
De Visscher, Alice; Szmalec, Arnaud; Van Der Linden, Lize; Noël, Marie-Pascale
2015-11-01
In the context of heterogeneity, the different profiles of dyscalculia are still hypothetical. This study aims to link features of mathematical difficulties to certain potential etiologies. First, we wanted to test the hypothesis of a serial-order learning deficit in adults with dyscalculia. For this purpose we used a Hebb repetition learning task. Second, we wanted to explore a recent hypothesis according to which hypersensitivity-to-interference hampers the storage of arithmetic facts and leads to a particular profile of dyscalculia. We therefore used interfering and non-interfering repeated sequences in the Hebb paradigm. A final test was used to assess the memory trace of the non-interfering sequence and the capacity to manipulate it. In line with our predictions, we observed that people with dyscalculia who show good conceptual knowledge in mathematics but impaired arithmetic fluency suffer from increased sensitivity-to-interference compared to controls. Secondly, people with dyscalculia who show a deficit in a global mathematical test suffer from a serial-order learning deficit characterized by a slow learning and a quick degradation of the memory trace of the repeated sequence. A serial-order learning impairment could be one of the explanations for a basic numerical deficit, since it is necessary for the number-word sequence acquisition. Among the different profiles of dyscalculia, this study provides new evidence and refinement for two particular profiles. Copyright © 2015 Elsevier B.V. All rights reserved.
Language and short-term memory: the role of perceptual-motor affordance.
Macken, Bill; Taylor, John C; Jones, Dylan M
2014-09-01
The advantage for real words over nonwords in serial recall--the lexicality effect--is typically attributed to support for item-level phonology, either via redintegration, whereby partially degraded short-term traces are "cleaned up" via support from long-term representations of the phonological material or via the more robust temporary activation of long-term lexical phonological knowledge that derives from its combination with established lexical and semantic levels of representation. The much smaller effect of lexicality in serial recognition, where the items are re-presented in the recognition cue, is attributed either to the minimal role for redintegration from long-term memory or to the minimal role for item memory itself in such retrieval conditions. We show that the reduced lexicality effect in serial recognition is not a function of the retrieval conditions, but rather because previous demonstrations have used auditory presentation, and we demonstrate a robust lexicality effect for visual serial recognition in a setting where auditory presentation produces no such effect. Furthermore, this effect is abolished under conditions of articulatory suppression. We argue that linguistic knowledge affects the readiness with which verbal material is segmentally recoded via speech motor processes that support rehearsal and therefore affects tasks that involve recoding. On the other hand, auditory perceptual organization affords sequence matching in the absence of such a requirement for segmental recoding and therefore does not show such effects of linguistic knowledge.
Sequential dynamics in visual short-term memory.
Kool, Wouter; Conway, Andrew R A; Turk-Browne, Nicholas B
2014-10-01
Visual short-term memory (VSTM) is thought to help bridge across changes in visual input, and yet many studies of VSTM employ static displays. Here we investigate how VSTM copes with sequential input. In particular, we characterize the temporal dynamics of several different components of VSTM performance, including: storage probability, precision, variability in precision, guessing, and swapping. We used a variant of the continuous-report VSTM task developed for static displays, quantifying the contribution of each component with statistical likelihood estimation, as a function of serial position and set size. In Experiments 1 and 2, storage probability did not vary by serial position for small set sizes, but showed a small primacy effect and a robust recency effect for larger set sizes; precision did not vary by serial position or set size. In Experiment 3, the recency effect was shown to reflect an increased likelihood of swapping out items from earlier serial positions and swapping in later items, rather than an increased rate of guessing for earlier items. Indeed, a model that incorporated responding to non-targets provided a better fit to these data than alternative models that did not allow for swapping or that tried to account for variable precision. These findings suggest that VSTM is updated in a first-in-first-out manner, and they bring VSTM research into closer alignment with classical working memory research that focuses on sequential behavior and interference effects.
Sequential dynamics in visual short-term memory
Conway, Andrew R. A.; Turk-Browne, Nicholas B.
2014-01-01
Visual short-term memory (VSTM) is thought to help bridge across changes in visual input, and yet many studies of VSTM employ static displays. Here we investigate how VSTM copes with sequential input. In particular, we characterize the temporal dynamics of several different components of VSTM performance, including: storage probability, precision, variability in precision, guessing, and swapping. We used a variant of the continuous-report VSTM task developed for static displays, quantifying the contribution of each component with statistical likelihood estimation, as a function of serial position and set size. In Experiments 1 and 2, storage probability did not vary by serial position for small set sizes, but showed a small primacy effect and a robust recency effect for larger set sizes; precision did not vary by serial position or set size. In Experiment 3, the recency effect was shown to reflect an increased likelihood of swapping out items from earlier serial positions and swapping in later items, rather than an increased rate of guessing for earlier items. Indeed, a model that incorporated responding to non-targets provided a better fit to these data than alternative models that did not allow for swapping or that tried to account for variable precision. These findings suggest that VSTM is updated in a first-in-first-out manner, and they bring VSTM research into closer alignment with classical working memory research that focuses on sequential behavior and interference effects. PMID:25228092
Alards-Tomalin, Doug; Walker, Alexander C; Nepon, Hillary; Leboe-McGowan, Launa C
2017-09-01
In the current study, cross-task interactions between number order and sound intensity judgments were assessed using a dual-task paradigm. Participants first categorized numerical sequences composed of Arabic digits as either ordered (ascending, descending) or non-ordered. Following each number sequence, participants then had to judge the intensity level of a target sound. Experiment 1 emphasized processing the two tasks independently (serial processing), while Experiments 2 and 3 emphasized processing the two tasks simultaneously (parallel processing). Cross-task interference occurred only when the task required parallel processing and was specific to ascending numerical sequences, which led to a higher proportion of louder sound intensity judgments. In Experiment 4 we examined whether this unidirectional interaction was the result of participants misattributing enhanced processing fluency experienced on ascending sequences as indicating a louder target sound. The unidirectional finding could not be entirely attributed to misattributed processing fluency, and may also be connected to experientially derived conceptual associations between ascending number sequences and greater magnitude, consistent with conceptual mapping theory.
Esser, Sarah; Haider, Hilde
2017-01-01
The Serial Reaction Time Task (SRTT) is an important paradigm to study the properties of unconscious learning processes. One specifically interesting and still controversially discussed topic are the conditions under which unconsciously acquired knowledge becomes conscious knowledge. The different assumptions about the underlying mechanisms can contrastively be separated into two accounts: single system views in which the strengthening of associative weights throughout training gradually turns implicit knowledge into explicit knowledge, and dual system views in which implicit knowledge itself does not become conscious. Rather, it requires a second process which detects changes in performance and is able to acquire conscious knowledge. In a series of three experiments, we manipulated the arrangement of sequential and deviant trials. In an SRTT training, participants either received mini-blocks of sequential trials followed by mini-blocks of deviant trials (22 trials each) or they received sequential and deviant trials mixed randomly. Importantly the number of correct and deviant transitions was the same for both conditions. Experiment 1 showed that both conditions acquired a comparable amount of implicit knowledge, expressed in different test tasks. Experiment 2 further demonstrated that both conditions differed in their subjectively experienced fluency of the task, with more fluency experienced when trained with mini-blocks. Lastly, Experiment 3 revealed that the participants trained with longer mini-blocks of sequential and deviant material developed more explicit knowledge. Results are discussed regarding their compatibility with different assumptions about the emergence of explicit knowledge in an implicit learning situation, especially with respect to the role of metacognitive judgements and more specifically the Unexpected-Event Hypothesis.
Esser, Sarah; Haider, Hilde
2017-01-01
The Serial Reaction Time Task (SRTT) is an important paradigm to study the properties of unconscious learning processes. One specifically interesting and still controversially discussed topic are the conditions under which unconsciously acquired knowledge becomes conscious knowledge. The different assumptions about the underlying mechanisms can contrastively be separated into two accounts: single system views in which the strengthening of associative weights throughout training gradually turns implicit knowledge into explicit knowledge, and dual system views in which implicit knowledge itself does not become conscious. Rather, it requires a second process which detects changes in performance and is able to acquire conscious knowledge. In a series of three experiments, we manipulated the arrangement of sequential and deviant trials. In an SRTT training, participants either received mini-blocks of sequential trials followed by mini-blocks of deviant trials (22 trials each) or they received sequential and deviant trials mixed randomly. Importantly the number of correct and deviant transitions was the same for both conditions. Experiment 1 showed that both conditions acquired a comparable amount of implicit knowledge, expressed in different test tasks. Experiment 2 further demonstrated that both conditions differed in their subjectively experienced fluency of the task, with more fluency experienced when trained with mini-blocks. Lastly, Experiment 3 revealed that the participants trained with longer mini-blocks of sequential and deviant material developed more explicit knowledge. Results are discussed regarding their compatibility with different assumptions about the emergence of explicit knowledge in an implicit learning situation, especially with respect to the role of metacognitive judgements and more specifically the Unexpected-Event Hypothesis. PMID:28421018
Tyson-Parry, Maree M; Sailah, Jessica; Boyes, Mark E; Badcock, Nicholas A
2015-10-01
This research investigated the relationship between the attentional blink (AB) and reading in typical adults. The AB is a deficit in the processing of the second of two rapidly presented targets when it occurs in close temporal proximity to the first target. Specifically, this experiment examined whether the AB was related to both phonological and sight-word reading abilities, and whether the relationship was mediated by accuracy on a single-target rapid serial visual processing task (single-target accuracy). Undergraduate university students completed a battery of tests measuring reading ability, non-verbal intelligence, and rapid automatised naming, in addition to rapid serial visual presentation tasks in which they were required to identify either two (AB task) or one (single target task) target/s (outlined shapes: circle, square, diamond, cross, and triangle) in a stream of random-dot distractors. The duration of the AB was related to phonological reading (n=41, β=-0.43): participants who exhibited longer ABs had poorer phonemic decoding skills. The AB was not related to sight-word reading. Single-target accuracy did not mediate the relationship between the AB and reading, but was significantly related to AB depth (non-linear fit, R(2)=.50): depth reflects the maximal cost in T2 reporting accuracy in the AB. The differential relationship between the AB and phonological versus sight-word reading implicates common resources used for phonemic decoding and target consolidation, which may be involved in cognitive control. The relationship between single-target accuracy and the AB is discussed in terms of cognitive preparation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Beginning at the beginning: Recall order and the number of words to be recalled.
Tan, Lydia; Ward, Geoff; Paulauskaite, Laura; Markou, Maria
2016-08-01
When participants are asked to recall a short list of words in any order that they like, they tend to initiate recall with the first list item and proceed in forward order, even when this is not a task requirement. The current research examined whether this tendency might be influenced by varying the number of items that are to be recalled. In 3 experiments, participants were presented with short lists of between 4 and 6 words and instructed to recall 1, 2, 3, or all of the items from the lists. Data were collected using immediate free recall (IFR, Experiment 1), immediate serial recall (ISR, Experiment 2), and a variant of ISR that we call ISR-free (Experiment 3), in which participants had to recall words in their correct serial positions but were free to output the words in any order. For all 3 tasks, the tendency to begin recall with the first list item occurred only when participants were required to recall as many items from the list as they could. When participants were asked to recall only 1 or 2 items, they tended to initiate recall with end-of-list items. It is argued that these findings show for the first time a manipulation that eliminates the initial tendency to recall in forward order, provide some support for recency-based accounts of IFR and help explain differences between single-response and multiple-response immediate memory tasks. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Zwart, Fenny S; Vissers, Constance Th W M; van der Meij, Roemer; Kessels, Roy P C; Maes, Joseph H R
2017-09-01
It has been suggested that people with autism spectrum disorder (ASD) have an increased tendency to use explicit (or intentional) learning strategies. This altered learning may play a role in the development of the social communication difficulties characterizing ASD. In the current study, we investigated incidental and intentional sequence learning using a Serial Reaction Time (SRT) task in an adult ASD population. Response times and event related potentials (ERP) components (N2b and P3) were assessed as indicators of learning and knowledge. Findings showed that behaviorally, sequence learning and ensuing explicit knowledge were similar in ASD and typically developing (TD) controls. However, ERP findings showed that learning in the TD group was characterized by an enhanced N2b, while learning in the ASD group was characterized by an enhanced P3. These findings suggest that learning in the TD group might be more incidental in nature, whereas learning in the ASD group is more intentional or effortful. Increased intentional learning might serve as a strategy for individuals with ASD to control an overwhelming environment. Although this led to similar behavioral performances on the SRT task, it is very plausible that this intentional learning has adverse effects in more complex social situations, and hence contributes to the social impairments found in ASD. Autism Res 2017, 10: 1533-1543. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.
Peris-Sampedro, Fiona; Reverte, Ingrid; Basaure, Pia; Cabré, Maria; Domingo, José L; Colomina, Maria Teresa
2016-06-01
Organophosphate pesticides - and chlorpyrifos (CPF) in particular - contribute to a wide range of neurobehavioural disorders. Most experimental research focuses on learning and memory processes, while other behaviours remain understudied. The isoforms of the human apolipoprotein E (apoE) confer different cognitive skills on their carriers, but data on this topic are still limited. The current study was performed to assess whether the APOE genotypic variability differently modulates the effects of CPF on attentional performance, inhibitory control and motivation. Human apoE targeted replacement adult female mice (apoE2, apoE3 and apoE4) were trained to stably perform the 5-choice serial reaction time task (5-CSRTT). Animals were then subjected to daily dietary CPF (3.75 mg/kg body weight) for 4 weeks. After CPF exposure, we established a 4-week CPF-free period to assess recovery. All individuals acquired the task, apoE2 mice showed enhanced learning, while apoE4 mice displayed increased premature and perseverative responding. This genotype-dependent lack of inhibitory control was reversed by CPF. Overall, the pesticide induced protracted impairments in sustained attention and motivation, and it reduced anticipatory responding. ApoE3 mice exhibited delayed attentional disruptions throughout the wash-out period. Taken together, these findings provide notable evidence on the emergence of CPF-related attentional and motivational deficits. Copyright © 2016 Elsevier Ltd. All rights reserved.
Single-trial effective brain connectivity patterns enhance discriminability of mental imagery tasks
NASA Astrophysics Data System (ADS)
Rathee, Dheeraj; Cecotti, Hubert; Prasad, Girijesh
2017-10-01
Objective. The majority of the current approaches of connectivity based brain-computer interface (BCI) systems focus on distinguishing between different motor imagery (MI) tasks. Brain regions associated with MI are anatomically close to each other, hence these BCI systems suffer from low performances. Our objective is to introduce single-trial connectivity feature based BCI system for cognition imagery (CI) based tasks wherein the associated brain regions are located relatively far away as compared to those for MI. Approach. We implemented time-domain partial Granger causality (PGC) for the estimation of the connectivity features in a BCI setting. The proposed hypothesis has been verified with two publically available datasets involving MI and CI tasks. Main results. The results support the conclusion that connectivity based features can provide a better performance than a classical signal processing framework based on bandpass features coupled with spatial filtering for CI tasks, including word generation, subtraction, and spatial navigation. These results show for the first time that connectivity features can provide a reliable performance for imagery-based BCI system. Significance. We show that single-trial connectivity features for mixed imagery tasks (i.e. combination of CI and MI) can outperform the features obtained by current state-of-the-art method and hence can be successfully applied for BCI applications.
Threaded cognition: an integrated theory of concurrent multitasking.
Salvucci, Dario D; Taatgen, Niels A
2008-01-01
The authors propose the idea of threaded cognition, an integrated theory of concurrent multitasking--that is, performing 2 or more tasks at once. Threaded cognition posits that streams of thought can be represented as threads of processing coordinated by a serial procedural resource and executed across other available resources (e.g., perceptual and motor resources). The theory specifies a parsimonious mechanism that allows for concurrent execution, resource acquisition, and resolution of resource conflicts, without the need for specialized executive processes. By instantiating this mechanism as a computational model, threaded cognition provides explicit predictions of how multitasking behavior can result in interference, or lack thereof, for a given set of tasks. The authors illustrate the theory in model simulations of several representative domains ranging from simple laboratory tasks such as dual-choice tasks to complex real-world domains such as driving and driver distraction. (c) 2008 APA, all rights reserved
NASA Technical Reports Server (NTRS)
Hart, S. G.; Shively, R. J.; Vidulich, M. A.; Miller, R. C.
1986-01-01
The influence of stimulus modality and task difficulty on workload and performance was investigated. The goal was to quantify the cost (in terms of response time and experienced workload) incurred when essentially serial task components shared common elements (e.g., the response to one initiated the other) which could be accomplished in parallel. The experimental tasks were based on the Fittsberg paradigm; the solution to a SternBERG-type memory task determines which of two identical FITTS targets are acquired. Previous research suggested that such functionally integrated dual tasks are performed with substantially less workload and faster response times than would be predicted by suming single-task components when both are presented in the same stimulus modality (visual). The physical integration of task elements was varied (although their functional relationship remained the same) to determine whether dual-task facilitation would persist if task components were presented in different sensory modalities. Again, it was found that the cost of performing the two-stage task was considerably less than the sum of component single-task levels when both were presented visually. Less facilitation was found when task elements were presented in different sensory modalities. These results suggest the importance of distinguishing between concurrent tasks that complete for limited resources from those that beneficially share common resources when selecting the stimulus modalities for information displays.
Coelho, Daniel Boari; Bourlinova, Catarina; Teixeira, Luis Augusto
2016-12-01
In the present experiment, we aimed to evaluate the interactive effect of performing a cognitive task simultaneously with a manual task requiring either high or low steadiness on APRs. Young volunteers performed the task of recovering upright balance following a mechanical perturbation provoked by unanticipatedly releasing a load pulling the participant's body backwards. The postural task was performed while holding a cylinder steadily on a tray. One group performed that task under high (cylinder' round side down) and another one under low (cylinder' flat side down) manual steadiness constraint. Those tasks were evaluated in the conditions of performing concurrently a cognitive numeric subtraction task and under no cognitive task. Analysis showed that performance of the cognitive task led to increased body and tray displacement, associated with higher displacement at the hip and upper trunk, and lower magnitude of activation of the GM muscle in response to the perturbation. Conversely, high manual steadiness constraint led to reduced tray velocity in association with lower values of trunk displacement, and decreased rotation amplitude at the ankle and hip joints. We found no interactions between the effects of the cognitive and manual tasks on APRs, suggesting that they were processed in parallel in the generation of responses for balance recovery. Modulation of postural responses from the manual and cognitive tasks indicates participation of higher order neural structures in the generation of APRs, with postural responses being affected by multiple mental processes occurring in parallel. Copyright © 2016 Elsevier B.V. All rights reserved.
Camfield, David A; Silber, Beata Y; Scholey, Andrew B; Nolidin, Karen; Goh, Antionette; Stough, Con
2013-01-01
In the current study, sixty healthy older adults aged 50 years or older, and who were light to moderate coffee drinkers, were administered 6g of a decaffeinated green coffee blend (NESCAFÉ Green Blend coffee; GB) or 540mg pure chlorogenic acids (CGA) or placebo in a double-blind acute cross-over design, with cognitive and mood assessments pre-dose, 40-mins and 120-mins post-dose. The primary outcome measure was accuracy in Rapid Visual Information Processing (RVIP). Secondary cognitive outcome measures included RVIP reaction time as well as Inspection time (IT), Jensen Box decision/reaction times, serial subtraction and N-Back working memory. Secondary mood measures included Bond-Lader and caffeine Research visual analogue scales (VAS). No significant treatment effects were found for the primary outcome measure, although significant effects were found amongst secondary measures. Overall, CGA in isolation was not found to significantly improve cognitive function relative to placebo whereas the GB was found to improve sustained attention as measured by the N-Back task in comparison to placebo overall (t=2.45,p=.05), as well as decision time on a 2-choice reaction time task (Jensen box) in comparison to placebo at 40 minutes post-dose (t=2.45,p=.05). Similarly, GB was found to improve alertness on both the Bond-Lader at 120 minutes relative to CGA (t=2.86, p=0.02) and the caffeine Research VAS relative to CGA (t=3.09, p=0.009) and placebo (t=2.75,p=0.02) at 120 minutes post-dose. Both the GB and CGA were also found to significantly improve symptoms of headache at 120 minutes relative to placebo (t=2.51,p=0.03 and t=2.43,p=.04 respectively), whilst there was a trend towards a reduction in jitteriness with GB and CGA in comparison to placebo at 40 minutes post-dose (t=2.24,p=0.06 and t=2.20,p=0.06 respectively). These findings suggest that the improvements in mood observed with GB, but not the improvements in cognitive function, are likely to some extent to be attributable to CGAs. Australia New Zealand Clinical Trials Registry ACTRN12611000067976 www.anzctr.org.au.
Camfield, David A.; Silber, Beata Y.; Scholey, Andrew B.; Nolidin, Karen; Goh, Antionette; Stough, Con
2013-01-01
In the current study, sixty healthy older adults aged 50 years or older, and who were light to moderate coffee drinkers, were administered 6g of a decaffeinated green coffee blend (NESCAFÉ Green Blend coffee; GB) or 540mg pure chlorogenic acids (CGA) or placebo in a double-blind acute cross-over design, with cognitive and mood assessments pre-dose, 40-mins and 120-mins post-dose. The primary outcome measure was accuracy in Rapid Visual Information Processing (RVIP). Secondary cognitive outcome measures included RVIP reaction time as well as Inspection time (IT), Jensen Box decision/reaction times, serial subtraction and N-Back working memory. Secondary mood measures included Bond-Lader and caffeine Research visual analogue scales (VAS). No significant treatment effects were found for the primary outcome measure, although significant effects were found amongst secondary measures. Overall, CGA in isolation was not found to significantly improve cognitive function relative to placebo whereas the GB was found to improve sustained attention as measured by the N-Back task in comparison to placebo overall (t=2.45,p=.05), as well as decision time on a 2-choice reaction time task (Jensen box) in comparison to placebo at 40 minutes post-dose (t=2.45,p=.05). Similarly, GB was found to improve alertness on both the Bond-Lader at 120 minutes relative to CGA (t=2.86, p=0.02) and the caffeine Research VAS relative to CGA (t=3.09, p=0.009) and placebo (t=2.75,p=0.02) at 120 minutes post-dose. Both the GB and CGA were also found to significantly improve symptoms of headache at 120 minutes relative to placebo (t=2.51,p=0.03 and t=2.43,p=.04 respectively), whilst there was a trend towards a reduction in jitteriness with GB and CGA in comparison to placebo at 40 minutes post-dose (t=2.24,p=0.06 and t=2.20,p=0.06 respectively). These findings suggest that the improvements in mood observed with GB, but not the improvements in cognitive function, are likely to some extent to be attributable to CGAs. Trial Registration: Australia New Zealand Clinical Trials Registry ACTRN12611000067976 www.anzctr.org.au PMID:24349389
I.v. and intraarterial hybrid digital subtraction angiography: clinical evaluation.
Foley, W D; Beres, J; Smith, D F; Bell, R M; Milde, M W; Lipchik, E O
1986-09-01
Temporal/energy (hybrid) subtraction is a technique for removing soft-tissue motion artifact from digital subtraction angiograms. The diagnostic utility of hybrid subtraction for i.v. and intraarterial angiography was assessed in the first 9 months of operation of a dedicated production system. In i.v. carotid arteriography (N = 127), hybrid subtraction (H) provided a double-profile projection of the carotid bifurcation in an additional 14% of studies, compared with temporal subtraction (T) alone (H79:T48, p less than 0.001). However, a change in estimated percent stenosis or additional diagnostic information occurred in only 2% of studies. In i.v. abdominal arteriography (N = 23), hybrid subtraction, compared with temporal subtraction, provided a diagnostic examination in an additional 14% of studies (H20:T17); however, this difference is not statistically significant. An additional three i.v. abdominal angiograms were nondiagnostic. In intraarterial abdominal (N = 98) and pelvic (N = 60) angiography, hybrid subtraction provided a diagnostic examination in an additional 5% of studies (abdomen H94:T90, pelvis H58:T56); this difference was not statistically significant. An additional 5% of all intraarterial abdominal and pelvic digital subtraction angiographic studies were considered nondiagnostic. Hybrid subtraction provides a double-profile view of the carotid bifurcation in a significant number of patients. However, apart from some potential for improved i.v. abdominal arteriography, hybrid subtraction does not result in significant improvement in comparison to conventional temporal-subtraction techniques.
Maekawa, Toru; de Brecht, Matthew; Yamagishi, Noriko
2018-01-01
The study of visual perception has largely been completed without regard to the influence that an individual’s emotional status may have on their performance in visual tasks. However, there is a growing body of evidence to suggest that mood may affect not only creative abilities and interpersonal skills but also the capacity to perform low-level cognitive tasks. Here, we sought to determine whether rudimentary visual search processes are similarly affected by emotion. Specifically, we examined whether an individual’s perceived happiness level affects their ability to detect a target in noise. To do so, we employed pop-out and serial visual search paradigms, implemented using a novel smartphone application that allowed search times and self-rated levels of happiness to be recorded throughout each twenty-four-hour period for two weeks. This experience sampling protocol circumvented the need to alter mood artificially with laboratory-based induction methods. Using our smartphone application, we were able to replicate the classic visual search findings, whereby pop-out search times remained largely unaffected by the number of distractors whereas serial search times increased with increasing number of distractors. While pop-out search times were unaffected by happiness level, serial search times with the maximum numbers of distractors (n = 30) were significantly faster for high happiness levels than low happiness levels (p = 0.02). Our results demonstrate the utility of smartphone applications in assessing ecologically valid measures of human visual performance. We discuss the significance of our findings for the assessment of basic visual functions using search time measures, and for our ability to search effectively for targets in real world settings. PMID:29664952
Maekawa, Toru; Anderson, Stephen J; de Brecht, Matthew; Yamagishi, Noriko
2018-01-01
The study of visual perception has largely been completed without regard to the influence that an individual's emotional status may have on their performance in visual tasks. However, there is a growing body of evidence to suggest that mood may affect not only creative abilities and interpersonal skills but also the capacity to perform low-level cognitive tasks. Here, we sought to determine whether rudimentary visual search processes are similarly affected by emotion. Specifically, we examined whether an individual's perceived happiness level affects their ability to detect a target in noise. To do so, we employed pop-out and serial visual search paradigms, implemented using a novel smartphone application that allowed search times and self-rated levels of happiness to be recorded throughout each twenty-four-hour period for two weeks. This experience sampling protocol circumvented the need to alter mood artificially with laboratory-based induction methods. Using our smartphone application, we were able to replicate the classic visual search findings, whereby pop-out search times remained largely unaffected by the number of distractors whereas serial search times increased with increasing number of distractors. While pop-out search times were unaffected by happiness level, serial search times with the maximum numbers of distractors (n = 30) were significantly faster for high happiness levels than low happiness levels (p = 0.02). Our results demonstrate the utility of smartphone applications in assessing ecologically valid measures of human visual performance. We discuss the significance of our findings for the assessment of basic visual functions using search time measures, and for our ability to search effectively for targets in real world settings.
Rahman, Md. Ashrafur; Tanaka, Norifumi; Usui, Koji; Kawahara, Shigenori
2016-01-01
We investigated the role of muscarinic acetylcholine receptors (mAChRs) in eyeblink serial feature-positive discrimination learning in mice using the mAChR antagonist. A 2-s light cue was delivered 5 or 6 s before the presentation of a 350-ms tone paired with a 100-ms periorbital electrical shock (cued trial) but not before the tone-alone presentation (non-cued trial). Mice received 30 cued and 30 non-cued trials each day in a random order. We found that saline-injected control mice were successfully discriminating between cued and non-cued trials within a few days of conditioning. The mice responded more frequently to the tone in cued trials than in non-cued trials. Analysis of conditioned response (CR) dynamics revealed that the CR onset latency was shorter in cued trials than in non-cued trials, despite the CR peak amplitude not differing significantly between the two conditions. In contrast, scopolamine-injected mice developed an equal number of CRs with similar temporal patterns irrespective of the presence of the cue during the 7 days of conditioning, indicating in a failure to acquire conditional discrimination. In addition, the scopolamine administration to the control mice after they had successfully acquired discrimination did not impair the conditional discrimination and expression of pre-acquired CR. These results suggest that mAChRs may play a pivotal role in memory formation in the conditional brain state associated with the feature cue; however they are unlikely to be involved in the development of discrimination after conditional memory had formed in the serial feature-positive discrimination task during eyeblink conditioning. PMID:26808980
Price, John M.; Colflesh, Gregory J. H.; Cerella, John; Verhaeghen, Paul
2014-01-01
We investigated the effects of 10 hours of practice on variations of the N-Back task to investigate the processes underlying possible expansion of the focus of attention within working memory. Using subtractive logic, we showed that random access (i.e., Sternberg-like search) yielded a modest effect (a 50% increase in speed) whereas the processes of forward access (i.e., retrieval in order, as in a standard N-Back task) and updating (i.e., changing the contents of working memory) were executed about 5 times faster after extended practice. We additionally found that extended practice increased working memory capacity as measured by the size of the focus of attention for the forward-access task, but not for variations where probing was in random order. This suggests that working memory capacity may depend on the type of search process engaged, and that certain working-memory-related cognitive processes are more amenable to practice than others. PMID:24486803
Intact implicit learning in autism spectrum conditions.
Brown, Jamie; Aczel, Balazs; Jiménez, Luis; Kaufman, Scott Barry; Grant, Kate Plaisted
2010-09-01
Individuals with autism spectrum condition (ASC) have diagnostic impairments in skills that are associated with an implicit acquisition; however, it is not clear whether ASC individuals show specific implicit learning deficits. We compared ASC and typically developing (TD) individuals matched for IQ on five learning tasks: four implicit learning tasks--contextual cueing, serial reaction time, artificial grammar learning, and probabilistic classification learning tasks--that used procedures expressly designed to minimize the use of explicit strategies, and one comparison explicit learning task, paired associates learning. We found implicit learning to be intact in ASC. Beyond no evidence of differences, there was evidence of statistical equivalence between the groups on all the implicit learning tasks. This was not a consequence of compensation by explicit learning ability or IQ. Furthermore, there was no evidence to relate implicit learning to ASC symptomatology. We conclude that implicit mechanisms are preserved in ASC and propose that it is disruption by other atypical processes that impact negatively on the development of skills associated with an implicit acquisition.
Measuring strategic control in implicit learning: how and why?
Norman, Elisabeth
2015-01-01
Several methods have been developed for measuring the extent to which implicitly learned knowledge can be applied in a strategic, flexible manner. Examples include generation exclusion tasks in Serial Reaction Time (SRT) learning (Goschke, 1998; Destrebecqz and Cleeremans, 2001) and 2-grammar classification tasks in Artificial Grammar Learning (AGL; Dienes et al., 1995; Norman et al., 2011). Strategic control has traditionally been used as a criterion for determining whether acquired knowledge is conscious or unconscious, or which properties of knowledge are consciously available. In this paper I first summarize existing methods that have been developed for measuring strategic control in the SRT and AGL tasks. I then address some methodological and theoretical questions. Methodological questions concern choice of task, whether the measurement reflects inhibitory control or task switching, and whether or not strategic control should be measured on a trial-by-trial basis. Theoretical questions concern the rationale for including measurement of strategic control, what form of knowledge is strategically controlled, and how strategic control can be combined with subjective awareness measures.
Measuring strategic control in implicit learning: how and why?
Norman, Elisabeth
2015-01-01
Several methods have been developed for measuring the extent to which implicitly learned knowledge can be applied in a strategic, flexible manner. Examples include generation exclusion tasks in Serial Reaction Time (SRT) learning (Goschke, 1998; Destrebecqz and Cleeremans, 2001) and 2-grammar classification tasks in Artificial Grammar Learning (AGL; Dienes et al., 1995; Norman et al., 2011). Strategic control has traditionally been used as a criterion for determining whether acquired knowledge is conscious or unconscious, or which properties of knowledge are consciously available. In this paper I first summarize existing methods that have been developed for measuring strategic control in the SRT and AGL tasks. I then address some methodological and theoretical questions. Methodological questions concern choice of task, whether the measurement reflects inhibitory control or task switching, and whether or not strategic control should be measured on a trial-by-trial basis. Theoretical questions concern the rationale for including measurement of strategic control, what form of knowledge is strategically controlled, and how strategic control can be combined with subjective awareness measures. PMID:26441809
De Lillo, Carlo; Kirby, Melissa; Poole, Daniel
2016-01-01
Immediate serial spatial recall measures the ability to retain sequences of locations in short-term memory and is considered the spatial equivalent of digit span. It is tested by requiring participants to reproduce sequences of movements performed by an experimenter or displayed on a monitor. Different organizational factors dramatically affect serial spatial recall but they are often confounded or underspecified. Untangling them is crucial for the characterization of working-memory models and for establishing the contribution of structure and memory capacity to spatial span. We report five experiments assessing the relative role and independence of factors that have been reported in the literature. Experiment 1 disentangled the effects of spatial clustering and path-length by manipulating the distance of items displayed on a touchscreen monitor. Long-path sequences segregated by spatial clusters were compared with short-path sequences not segregated by clusters. Recall was more accurate for sequences segregated by clusters independently from path-length. Experiment 2 featured conditions where temporal pauses were introduced between or within cluster boundaries during the presentation of sequences with the same paths. Thus, the temporal structure of the sequences was either consistent or inconsistent with a hierarchical representation based on segmentation by spatial clusters but the effect of structure could not be confounded with effects of path-characteristics. Pauses at cluster boundaries yielded more accurate recall, as predicted by a hierarchical model. In Experiment 3, the systematic manipulation of sequence structure, path-length, and presence of path-crossings of sequences showed that structure explained most of the variance, followed by the presence/absence of path-crossings, and path-length. Experiments 4 and 5 replicated the results of the previous experiments in immersive virtual reality navigation tasks where the viewpoint of the observer changed dynamically during encoding and recall. This suggested that the effects of structure in spatial span are not dependent on perceptual grouping processes induced by the aerial view of the stimulus array typically afforded by spatial recall tasks. These results demonstrate the independence of coding strategies based on structure from effects of path characteristics and perceptual grouping in immediate serial spatial recall. PMID:27891101
Bunce, David; MacDonald, Stuart W S; Hultsch, David F
2004-12-01
Intraindividual variability (inconsistency) in reaction time (RT) latencies was investigated in a group of younger (M=25.46 years) and older (M=69.29 years) men. Both groups performed 300 trials in 2-, 4-, and 8-choice RT conditions where RTs for decision and motor components of the task were recorded separately. A dissociation was evident in that inconsistency was greater in older adults for decision RTs when task demands relating to the number of choices and fatigue arising from time-on-task were high. For younger persons, a weak trend toward greater inconsistency in motor RTs was evident. The results are consistent with accounts suggesting that inconsistency in neurobiological mechanisms increases with age, and that attentional lapses or fluctuations in executive control contribute to RT inconsistency.
FPGA implementation for real-time background subtraction based on Horprasert model.
Rodriguez-Gomez, Rafael; Fernandez-Sanchez, Enrique J; Diaz, Javier; Ros, Eduardo
2012-01-01
Background subtraction is considered the first processing stage in video surveillance systems, and consists of determining objects in movement in a scene captured by a static camera. It is an intensive task with a high computational cost. This work proposes an embedded novel architecture on FPGA which is able to extract the background on resource-limited environments and offers low degradation (produced because of the hardware-friendly model modification). In addition, the original model is extended in order to detect shadows and improve the quality of the segmentation of the moving objects. We have analyzed the resource consumption and performance in Spartan3 Xilinx FPGAs and compared to others works available on the literature, showing that the current architecture is a good trade-off in terms of accuracy, performance and resources utilization. With less than a 65% of the resources utilization of a XC3SD3400 Spartan-3A low-cost family FPGA, the system achieves a frequency of 66.5 MHz reaching 32.8 fps with resolution 1,024 × 1,024 pixels, and an estimated power consumption of 5.76 W.
Factors influencing infants’ ability to update object representations in memory
Moher, Mariko; Feigenson, Lisa
2013-01-01
Remembering persisting objects over occlusion is critical to representing a stable environment. Infants remember hidden objects at multiple locations and can update their representation of a hidden array when an object is added or subtracted. However, the factors influencing these updating abilities have received little systematic exploration. Here we examined the flexibility of infants’ ability to update object representations. We tested 11-month-olds in a looking-time task in which objects were added to or subtracted from two hidden arrays. Across five experiments, infants successfully updated their representations of hidden arrays when the updating occurred successively at one array before beginning at the other. But when updating required alternating between two arrays, infants failed. However, simply connecting the two arrays with a thin strip of foam-core led infants to succeed. Our results suggest that infants’ construal of an event strongly affects their ability to update memory representations of hidden objects. When construing an event as containing multiple updates to the same array, infants succeed, but when construing the event as requiring the revisiting and updating of previously attended arrays, infants fail. PMID:24049245
In Vivo Small Animal Imaging using Micro-CT and Digital Subtraction Angiography
Badea, C.T.; Drangova, M.; Holdsworth, D.W.; Johnson, G.A.
2009-01-01
Small animal imaging has a critical role in phenotyping, drug discovery, and in providing a basic understanding of mechanisms of disease. Translating imaging methods from humans to small animals is not an easy task. The purpose of this work is to review in vivo X-ray based small animal imaging, with a focus on in vivo micro-computed tomography (micro-CT) and digital subtraction angiography (DSA). We present the principles, technologies, image quality parameters and types of applications. We show that both methods can be used not only to provide morphological, but also functional information, such as cardiac function estimation or perfusion. Compared to other modalities, x-ray based imaging is usually regarded as being able to provide higher throughput at lower cost and adequate resolution. The limitations are usually associated with the relatively poor contrast mechanisms and potential radiation damage due to ionizing radiation, although the use of contrast agents and careful design of studies can address these limitations. We hope that the information will effectively address how x-ray based imaging can be exploited for successful in vivo preclinical imaging. PMID:18758005
FPGA Implementation for Real-Time Background Subtraction Based on Horprasert Model
Rodriguez-Gomez, Rafael; Fernandez-Sanchez, Enrique J.; Diaz, Javier; Ros, Eduardo
2012-01-01
Background subtraction is considered the first processing stage in video surveillance systems, and consists of determining objects in movement in a scene captured by a static camera. It is an intensive task with a high computational cost. This work proposes an embedded novel architecture on FPGA which is able to extract the background on resource-limited environments and offers low degradation (produced because of the hardware-friendly model modification). In addition, the original model is extended in order to detect shadows and improve the quality of the segmentation of the moving objects. We have analyzed the resource consumption and performance in Spartan3 Xilinx FPGAs and compared to others works available on the literature, showing that the current architecture is a good trade-off in terms of accuracy, performance and resources utilization. With less than a 65% of the resources utilization of a XC3SD3400 Spartan-3A low-cost family FPGA, the system achieves a frequency of 66.5 MHz reaching 32.8 fps with resolution 1,024 × 1,024 pixels, and an estimated power consumption of 5.76 W. PMID:22368487
ERIC Educational Resources Information Center
Karatekin, Canan; Marcus, David J.; White, Tonya
2007-01-01
The goal of this study was to examine incidental and intentional spatial sequence learning during middle childhood and adolescence. We tested four age groups (8-10 years, 11-13 years, 14-17 years, and young adults [18+ years]) on a serial reaction time task and used manual and oculomotor measures to examine incidental sequence learning.…
ERIC Educational Resources Information Center
Bunce, D.; MacDonald, S.W.S.; Hultsch, D.F.
2004-01-01
Intraindividual variability (inconsistency) in reaction time (RT) latencies was investigated in a group of younger (M=25.46 years) and older (M=69.29 years) men. Both groups performed 300 trials in 2-, 4-, and 8-choice RT conditions where RTs for decision and motor components of the task were recorded separately. A dissociation was evident in that…
Children with Autism Detect Targets at Very Rapid Presentation Rates with Similar Accuracy as Adults
ERIC Educational Resources Information Center
Hagmann, Carl Erick; Wyble, Bradley; Shea, Nicole; LeBlanc, Megan; Kates, Wendy R.; Russo, Natalie
2016-01-01
Enhanced perception may allow for visual search superiority by individuals with Autism Spectrum Disorder (ASD), but does it occur over time? We tested high-functioning children with ASD, typically developing (TD) children, and TD adults in two tasks at three presentation rates (50, 83.3, and 116.7 ms/item) using rapid serial visual presentation.…
ERIC Educational Resources Information Center
Tremblay, Sebastien; Saint-Aubin, Jean
2009-01-01
In the present study, the authors offer a window onto the mechanisms that drive the Hebb repetition effect through the analysis of eye movement and recall performance. In a spatial serial recall task in which sequences of dots are to be remembered in order, when one particular series is repeated every 4 trials, memory performance markedly improves…
van de Kamp, Cornelis; Gawthrop, Peter J.; Gollee, Henrik; Lakie, Martin; Loram, Ian D.
2013-01-01
Modular organization in control architecture may underlie the versatility of human motor control; but the nature of the interface relating sensory input through task-selection in the space of performance variables to control actions in the space of the elemental variables is currently unknown. Our central question is whether the control architecture converges to a serial process along a single channel? In discrete reaction time experiments, psychologists have firmly associated a serial single channel hypothesis with refractoriness and response selection [psychological refractory period (PRP)]. Recently, we developed a methodology and evidence identifying refractoriness in sustained control of an external single degree-of-freedom system. We hypothesize that multi-segmental whole-body control also shows refractoriness. Eight participants controlled their whole body to ensure a head marker tracked a target as fast and accurately as possible. Analysis showed enhanced delays in response to stimuli with close temporal proximity to the preceding stimulus. Consistent with our preceding work, this evidence is incompatible with control as a linear time invariant process. This evidence is consistent with a single-channel serial ballistic process within the intermittent control paradigm with an intermittent interval of around 0.5 s. A control architecture reproducing intentional human movement control must reproduce refractoriness. Intermittent control is designed to provide computational time for an online optimization process and is appropriate for flexible adaptive control. For human motor control we suggest that parallel sensory input converges to a serial, single channel process involving planning, selection, and temporal inhibition of alternative responses prior to low dimensional motor output. Such design could aid robots to reproduce the flexibility of human control. PMID:23675342
Parallel performance of TORT on the CRAY J90: Model and measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnett, A.; Azmy, Y.Y.
1997-10-01
A limitation on the parallel performance of TORT on the CRAY J90 is the amount of extra work introduced by the multitasking algorithm itself. The extra work beyond that of the serial version of the code, called overhead, arises from the synchronization of the parallel tasks and the accumulation of results by the master task. The goal of recent updates to TORT was to reduce the time consumed by these activities. To help understand which components of the multitasking algorithm contribute significantly to the overhead, a parallel performance model was constructed and compared to measurements of actual timings of themore » code.« less
Callahan, Patrick M; Terry, Alvin V
2015-01-01
The ability to focus one's attention on important environmental stimuli while ignoring irrelevant stimuli is fundamental to human cognition and intellectual function. Attention is inextricably linked to perception, learning and memory, and executive function; however, it is often impaired in a variety of neuropsychiatric disorders, including Alzheimer's disease, schizophrenia, depression, and attention deficit hyperactivity disorder (ADHD). Accordingly, attention is considered as an important therapeutic target in these disorders. The purpose of this chapter is to provide an overview of the most common behavioral paradigms of attention that have been used in animals (particularly rodents) and to review the literature where these tasks have been employed to elucidate neurobiological substrates of attention as well as to evaluate novel pharmacological agents for their potential as treatments for disorders of attention. These paradigms include two tasks of sustained attention that were developed as rodent analogues of the human Continuous Performance Task (CPT), the Five-Choice Serial Reaction Time Task (5-CSRTT) and the more recently introduced Five-Choice Continuous Performance Task (5C-CPT), and the Signal Detection Task (SDT) which was designed to emphasize temporal components of attention.
Hughes, Robert W; Vachon, François; Jones, Dylan M
2005-07-01
A novel attentional capture effect is reported in which visual-verbal serial recall was disrupted if a single deviation in the interstimulus interval occurred within otherwise regularly presented task-irrelevant spoken items. The degree of disruption was the same whether the temporal deviant was embedded in a sequence made up of a repeating item or a sequence of changing items. Moreover, the effect was evident during the presentation of the to-be-remembered sequence but not during rehearsal just prior to recall, suggesting that the encoding of sequences is particularly susceptible. The results suggest that attentional capture is due to a violation of an algorithm rather than an aggregate-based neural model and further undermine an attentional capture-based account of the classical changing-state irrelevant sound effect. ((c) 2005 APA, all rights reserved).
Pupil-linked arousal is driven by decision uncertainty and alters serial choice bias
NASA Astrophysics Data System (ADS)
Urai, Anne E.; Braun, Anke; Donner, Tobias H.
2017-03-01
While judging their sensory environments, decision-makers seem to use the uncertainty about their choices to guide adjustments of their subsequent behaviour. One possible source of these behavioural adjustments is arousal: decision uncertainty might drive the brain's arousal systems, which control global brain state and might thereby shape subsequent decision-making. Here, we measure pupil diameter, a proxy for central arousal state, in human observers performing a perceptual choice task of varying difficulty. Pupil dilation, after choice but before external feedback, reflects three hallmark signatures of decision uncertainty derived from a computational model. This increase in pupil-linked arousal boosts observers' tendency to alternate their choice on the subsequent trial. We conclude that decision uncertainty drives rapid changes in pupil-linked arousal state, which shape the serial correlation structure of ongoing choice behaviour.
Barty, Anton; Kirian, Richard A.; Maia, Filipe R. N. C.; Hantke, Max; Yoon, Chun Hong; White, Thomas A.; Chapman, Henry
2014-01-01
The emerging technique of serial X-ray diffraction, in which diffraction data are collected from samples flowing across a pulsed X-ray source at repetition rates of 100 Hz or higher, has necessitated the development of new software in order to handle the large data volumes produced. Sorting of data according to different criteria and rapid filtering of events to retain only diffraction patterns of interest results in significant reductions in data volume, thereby simplifying subsequent data analysis and management tasks. Meanwhile the generation of reduced data in the form of virtual powder patterns, radial stacks, histograms and other meta data creates data set summaries for analysis and overall experiment evaluation. Rapid data reduction early in the analysis pipeline is proving to be an essential first step in serial imaging experiments, prompting the authors to make the tool described in this article available to the general community. Originally developed for experiments at X-ray free-electron lasers, the software is based on a modular facility-independent library to promote portability between different experiments and is available under version 3 or later of the GNU General Public License. PMID:24904246
[Eye movement study in multiple object search process].
Xu, Zhaofang; Liu, Zhongqi; Wang, Xingwei; Zhang, Xin
2017-04-01
The aim of this study is to investigate the search time regulation of objectives and eye movement behavior characteristics in the multi-objective visual search. The experimental task was accomplished with computer programming and presented characters on a 24 inch computer display. The subjects were asked to search three targets among the characters. Three target characters in the same group were of high similarity degree while those in different groups of target characters and distraction characters were in different similarity degrees. We recorded the search time and eye movement data through the whole experiment. It could be seen from the eye movement data that the quantity of fixation points was large when the target characters and distraction characters were similar. There were three kinds of visual search patterns for the subjects including parallel search, serial search, and parallel-serial search. In addition, the last pattern had the best search performance among the three search patterns, that is, the subjects who used parallel-serial search pattern spent shorter time finding the target. The order that the targets presented were able to affect the search performance significantly; and the similarity degree between target characters and distraction characters could also affect the search performance.
Experimentally Assessed Reactive Aggression in Borderline Personality Disorder
Kogan-Goloborodko, Olga; Brügmann, Elisabeth; Repple, Jonathan; Habel, Ute; Clemens, Benjamin
2016-01-01
Approximately 73% of patients suffering from Borderline personality disorder (BPD) exhibit aggressive behaviour, which severely hinders therapeutic work and clinical improvement. Because the underlying mechanisms of aggression in BPD are not yet completely understood, additional research in this domain has a high clinical and scientific relevance. We employed a modified version of the Taylor Aggression Paradigm (mTAP), in order to examine for the first time whether this task can be used to differentiate between BPD patients and healthy controls with regard to reactive aggression. In the mTAP, the amount of money subtracted by a virtual opponent was categorized into ‘low’ (10–20 cents) and ‘high’ (80–100 cents) provocations, enabling us to compare how much money BPD patients and healthy controls subtracted (i.e., how aggressively participants responded) following high and low provocation trials. Our results showed that, compared to healthy controls, BPD patients showed higher overall aggression, higher aggression after high provocation trials, as well as a larger difference between high and low provocation trials. This finding was corroborated by a neuropsychological assessment, demonstrating higher levels of aggression and impulsivity in BPD patients. Interestingly, reactive aggression in the mTAP was positively correlated with symptom severity and impulsivity in BPD patients. We suggest that the mTAP provides a valuable tool allowing psychiatrists to quantify reactive aggression in BPD. Therefore, clinicians and researchers might consider this task, as a short experimental measure of reactive aggression, either in future studies or to aid diagnostic assessment during clinical practice. PMID:27851804
Representation of item position in immediate serial recall: Evidence from intrusion errors.
Fischer-Baum, Simon; McCloskey, Michael
2015-09-01
In immediate serial recall, participants are asked to recall novel sequences of items in the correct order. Theories of the representations and processes required for this task differ in how order information is maintained; some have argued that order is represented through item-to-item associations, while others have argued that each item is coded for its position in a sequence, with position being defined either by distance from the start of the sequence, or by distance from both the start and the end of the sequence. Previous researchers have used error analyses to adjudicate between these different proposals. However, these previous attempts have not allowed researchers to examine the full set of alternative proposals. In the current study, we analyzed errors produced in 2 immediate serial recall experiments that differ in the modality of input (visual vs. aural presentation of words) and the modality of output (typed vs. spoken responses), using new analysis methods that allow for a greater number of alternative hypotheses to be considered. We find evidence that sequence positions are represented relative to both the start and the end of the sequence, and show a contribution of the end-based representation beyond the final item in the sequence. We also find limited evidence for item-to-item associations, suggesting that both a start-end positional scheme and item-to-item associations play a role in representing item order in immediate serial recall. (c) 2015 APA, all rights reserved).
Reimer, Christina B; Strobach, Tilo; Schubert, Torsten
2017-12-01
Visual attention and response selection are limited in capacity. Here, we investigated whether visual attention requires the same bottleneck mechanism as response selection in a dual-task of the psychological refractory period (PRP) paradigm. The dual-task consisted of an auditory two-choice discrimination Task 1 and a conjunction search Task 2, which were presented at variable temporal intervals (stimulus onset asynchrony, SOA). In conjunction search, visual attention is required to select items and to bind their features resulting in a serial search process around the items in the search display (i.e., set size). We measured the reaction time of the visual search task (RT2) and the N2pc, an event-related potential (ERP), which reflects lateralized visual attention processes. If the response selection processes in Task 1 influence the visual attention processes in Task 2, N2pc latency and amplitude would be delayed and attenuated at short SOA compared to long SOA. The results, however, showed that latency and amplitude were independent of SOA, indicating that visual attention was concurrently deployed to response selection. Moreover, the RT2 analysis revealed an underadditive interaction of SOA and set size. We concluded that visual attention does not require the same bottleneck mechanism as response selection in dual-tasks.
Effects of Hearing Status and Sign Language Use on Working Memory
Sarchet, Thomastine; Trani, Alexandra
2016-01-01
Deaf individuals have been found to score lower than hearing individuals across a variety of memory tasks involving both verbal and nonverbal stimuli, particularly those requiring retention of serial order. Deaf individuals who are native signers, meanwhile, have been found to score higher on visual-spatial memory tasks than on verbal-sequential tasks and higher on some visual-spatial tasks than hearing nonsigners. However, hearing status and preferred language modality (signed or spoken) frequently are confounded in such studies. That situation is resolved in the present study by including deaf students who use spoken language and sign language interpreting students (hearing signers) as well as deaf signers and hearing nonsigners. Three complex memory span tasks revealed overall advantages for hearing signers and nonsigners over both deaf signers and deaf nonsigners on 2 tasks involving memory for verbal stimuli (letters). There were no differences among the groups on the task involving visual-spatial stimuli. The results are consistent with and extend recent findings concerning the effects of hearing status and language on memory and are discussed in terms of language modality, hearing status, and cognitive abilities among deaf and hearing individuals. PMID:26755684
Phase 0 Trial of Itraconazole for Early-Stage Non-Small Cell Lung Cancer
2016-10-01
tissue and blood sampling in addition to magnetic resonance imaging ( MRI ) scans for biomarker analysis. At the time of surgery, resected tissue will...original proposal, these subjects underwent study-related MRI scans, skin biopsies, blood tests, treatment with itraconazole, and surgical resection...not complete serial MRIs scans. Task 2: Determine anti-angiogenic effects of itraconazole Subtask 2a: Blood-based PD studies As described in the
Chrobak, Adrian Andrzej; Siuda-Krzywicka, Katarzyna; Siwek, Grzegorz Przemysław; Tereszko, Anna; Janeczko, Weronika; Starowicz-Filip, Anna; Siwek, Marcin; Dudek, Dominika
2017-10-03
Impairment of implicit motor sequence learning was shown in schizophrenia (SZ) and, most recently, in bipolar disorder (BD), and was connected to cerebellar abnormalities. The goal of this study was to compare implicit motor sequence learning in BD and SZ. We examined 33 patients with BD, 33 patients with SZ and 31 healthy controls with a use of ambidextrous Serial Reaction Time Task (SRTT), which allows exploring asymmetries in performance depending on the hand used. BD and SZ patients presented impaired implicit motor sequence learning, although the pattern of their impairments was different. While BD patients showed no signs of implicit motor sequence learning for both hands, the SZ group presented some features of motor learning when performing with the right, but not with the left hand. To our best knowledge this is the first study comparing implicit motor sequence learning in BD and SZ. We show that both diseases share impairments in this domain, however in the case of SZ this impairment differs dependently on the hand performing SRTT. We propose that implicit motor sequence learning impairments constitute an overlapping symptom in BD and SZ and suggest further neuroimaging studies to verify cerebellar underpinnings as its cause. Copyright © 2017 Elsevier Inc. All rights reserved.
Schizophrenia patients demonstrate a dissociation on declarative and non-declarative memory tests.
Perry, W; Light, G A; Davis, H; Braff, D L
2000-12-15
Declarative memory refers to the recall and recognition of factual information. In contrast, non-declarative memory entails a facilitation of memory based on prior exposure and is typically assessed with priming and perceptual-motor sequencing tasks. In this study, schizophrenia patients were compared to normal comparison subjects on two computerized memory tasks: the Word-stem Priming Test (n=30) and the Pattern Sequence Learning Test (n=20). Word-stem Priming includes recall, recognition (declarative) and priming (non-declarative) components of memory. The schizophrenia patients demonstrated an impaired performance on recall of words with relative improvement during the recognition portion of the test. Furthermore, they performed normally on the priming portion of the test. Thus, on tests of declarative memory, the patients had retrieval deficits with intact performance on the non-declarative memory component. The Pattern Sequence Learning Test utilizes a serial reaction time paradigm to assess non-declarative memory. The schizophrenia patients' serial reaction time was significantly slower than that of comparison subjects. However, the patients' rate of acquisition was not different from the normal comparison group. The data suggest that patients with schizophrenia process more slowly than normal, but have an intact non-declarative memory. The schizophrenia patients' dissociation on declarative vs. non-declarative memory tests is discussed in terms of possible underlying structural impairment.
Mental Task Evaluation for Hybrid NIRS-EEG Brain-Computer Interfaces
Gupta, Rishabh; Falk, Tiago H.
2017-01-01
Based on recent electroencephalography (EEG) and near-infrared spectroscopy (NIRS) studies that showed that tasks such as motor imagery and mental arithmetic induce specific neural response patterns, we propose a hybrid brain-computer interface (hBCI) paradigm in which EEG and NIRS data are fused to improve binary classification performance. We recorded simultaneous NIRS-EEG data from nine participants performing seven mental tasks (word generation, mental rotation, subtraction, singing and navigation, and motor and face imagery). Classifiers were trained for each possible pair of tasks using (1) EEG features alone, (2) NIRS features alone, and (3) EEG and NIRS features combined, to identify the best task pairs and assess the usefulness of a multimodal approach. The NIRS-EEG approach led to an average increase in peak kappa of 0.03 when using features extracted from one-second windows (equivalent to an increase of 1.5% in classification accuracy for balanced classes). The increase was much stronger (0.20, corresponding to an 10% accuracy increase) when focusing on time windows of high NIRS performance. The EEG and NIRS analyses further unveiled relevant brain regions and important feature types. This work provides a basis for future NIRS-EEG hBCI studies aiming to improve classification performance toward more efficient and flexible BCIs. PMID:29181021
The Organization of Behavior Over Time: Insights from Mid-Session Reversal
Rayburn-Reeves, Rebecca M.; Cook, Robert G.
2016-01-01
What are the mechanisms by which behavior is organized sequentially over time? The recently developed mid-session reversal (MSR) task offers new insights into this fundamental question. The typical MSR task is arranged to have a single reversed discrimination occurring in a consistent location within each session and across sessions. In this task, we examine the relevance of time, reinforcement, and other factors as the switching cue in the sequential modulation of control in MSR. New analyses also highlight some of the potential mechanisms underlying this serially organized behavior. MSR provides new evidence and we offer some ideas about how cues interact to compete for the control of behavior within and across sessions. We suggest that MSR is an excellent preparation for studying the competition among psychological states and their resolution toward action. PMID:27942272
The Organization of Behavior Over Time: Insights from Mid-Session Reversal.
Rayburn-Reeves, Rebecca M; Cook, Robert G
2016-01-01
What are the mechanisms by which behavior is organized sequentially over time? The recently developed mid-session reversal (MSR) task offers new insights into this fundamental question. The typical MSR task is arranged to have a single reversed discrimination occurring in a consistent location within each session and across sessions. In this task, we examine the relevance of time, reinforcement, and other factors as the switching cue in the sequential modulation of control in MSR. New analyses also highlight some of the potential mechanisms underlying this serially organized behavior. MSR provides new evidence and we offer some ideas about how cues interact to compete for the control of behavior within and across sessions. We suggest that MSR is an excellent preparation for studying the competition among psychological states and their resolution toward action.
schwimmbad: A uniform interface to parallel processing pools in Python
NASA Astrophysics Data System (ADS)
Price-Whelan, Adrian M.; Foreman-Mackey, Daniel
2017-09-01
Many scientific and computing problems require doing some calculation on all elements of some data set. If the calculations can be executed in parallel (i.e. without any communication between calculations), these problems are said to be perfectly parallel. On computers with multiple processing cores, these tasks can be distributed and executed in parallel to greatly improve performance. A common paradigm for handling these distributed computing problems is to use a processing "pool": the "tasks" (the data) are passed in bulk to the pool, and the pool handles distributing the tasks to a number of worker processes when available. schwimmbad provides a uniform interface to parallel processing pools and enables switching easily between local development (e.g., serial processing or with multiprocessing) and deployment on a cluster or supercomputer (via, e.g., MPI or JobLib).
Saund, Jasjot; Dautan, Daniel; Rostron, Claire; Urcelay, Gonzalo P; Gerdjikov, Todor V
2017-08-01
Corticostriatal circuits are widely implicated in the top-down control of attention including inhibitory control and behavioural flexibility. However, recent neurophysiological evidence also suggests a role for thalamic inputs to striatum in behaviours related to salient, reward-paired cues. Here, we used designer receptors exclusively activated by designer drugs (DREADDs) to investigate the role of parafascicular (Pf) thalamic inputs to the dorsomedial striatum (DMS) using the five-choice serial reaction time task (5CSRTT) in rats. The 5CSRTT requires sustained attention in order to detect spatially and temporally distributed visual cues and provides measures of inhibitory control related to impulsivity (premature responses) and compulsivity (perseverative responses). Rats underwent bilateral Pf injections of the DREADD vector, AAV2-CaMKIIa-HA-hM4D(Gi)-IRES-mCitrine. The DREADD agonist, clozapine N-oxide (CNO; 1 μl bilateral; 3 μM) or vehicle, was injected into DMS 1 h before behavioural testing. Task parameters were manipulated to increase attention load or reduce stimulus predictability respectively. We found that inhibition of the Pf-DMS projection significantly increased perseverative responses when stimulus predictability was reduced but had no effect on premature responses or response accuracy, even under increased attentional load. Control experiments showed no effects on locomotor activity in an open field. These results complement previous lesion work in which the DMS and orbitofrontal cortex were similarly implicated in perseverative responses and suggest a specific role for thalamostriatal inputs in inhibitory control.
Brown, Stephen B R E; Slagter, Heleen A; van Noorden, Martijn S; Giltay, Erik J; van der Wee, Nic J A; Nieuwenhuis, Sander
2016-01-01
The specific role of neuromodulator systems in regulating rapid fluctuations of attention is still poorly understood. In this study, we examined the effects of clonidine and scopolamine on multiple target detection in a rapid serial visual presentation task to assess the role of the central noradrenergic and cholinergic systems in temporal attention. Eighteen healthy volunteers took part in a crossover double-dummy study in which they received clonidine (150/175 μg), scopolamine (1.2 mg), and placebo by mouth in counterbalanced order. A dual-target attentional blink task was administered at 120 min after scopolamine intake and 180 min after clonidine intake. The electroencephalogram was measured during task performance. Clonidine and scopolamine both impaired detection of the first target (T1). For clonidine, this impairment was accompanied by decreased amplitudes of the P2 and P3 components of the event-related potential. The drugs did not impair second-target (T2) detection, except if T2 was presented immediately after T1. The attentional blink for T2 was not affected, in line with a previous study that found no effect of clonidine on the attentional blink. These and other results suggest that clonidine and scopolamine may impair temporal attention through a decrease in tonic alertness and that this decrease in alertness can be temporarily compensated by a phasic alerting response to a salient stimulus. The comparable behavioral effects of clonidine and scopolamine are consistent with animal studies indicating close interactions between the noradrenergic and cholinergic neuromodulator systems.
Conditional responding is impaired in chronic alcoholics.
Hildebrandt, Helmut; Brokate, B; Hoffmann, E; Kröger, B; Eling, P
2006-07-01
Bechara (2003) describes a model for disturbances in executive functions related to addiction. This model involves deficits in decision-making and in suppressing pre-potent representations or response patterns. We tested this model in 29 individuals with long-term heavy alcohol dependency and compared their performance with that of 20 control subjects. Only individuals without memory impairment, with normal intelligence and normal visual response times were included. We examined word fluency, object alternation, spatial stimulus-response incompatibility, extra-dimensional shift learning and decision-making using the Gambling task. We subtracted the performance in a control condition from that of the executive condition, in order to focus specifically on the executive component of each task. Only the object alternation and incompatibility tasks revealed significant differences between the group of alcoholics and the control group. Moreover, response times in the object alternation task correlated with duration of alcohol dependency. The results do not argue in favor of a specific deficit in decision-making or in shifting between relevant representations. We conclude that long-term alcohol abuse leads to an impairment in conditional responding, provided the response depends on former reactions or the inhibition of pre-potent response patterns.
Gutierrez-Herrera, Maria; Eger, Simone; Keller, Ingo; Hermsdörfer, Joachim; Saevarsson, Styrmir
2018-06-03
Among the different interventions to alleviate the symptoms of unilateral neglect, prism adaptation (PA) appears especially promising. To elucidate the contribution of some neuroanatomical and behavioural factors to PA's effectiveness, we conducted a study combining neuropsychological and lesion mapping methods on a group of 19 neglect patients who underwent two sessions of PA during one week and assessed their improvement relative to the baseline until the following week (7-8 days later). Correlation analyses revealed a significant positive relationship between the magnitude of the proprioceptive after-effect and the improvement at the follow-up session in two perceptual tasks requiring motor responses. Conversely, no correlation was found between the proprioceptive after-effect and the improvement in a perceptual task with no motor involvement. This finding suggests that patients' potential to show a prism-related improvement in motor-related tasks might be indicated by the strength of their proprioceptive response (proprioceptive after-effect). As for the neuroanatomical basis of this relationship, subtraction analyses suggested that patients' improvement in perceptual tasks with high motor involvement might be facilitated by the integrity of temporo-parietal areas and the damage of frontal and subcortical areas.
ERIC Educational Resources Information Center
Larwin, K. H.; Thomas, Eugene M.; Larwin, David A.
2015-01-01
This paper introduces a new term and concept to the leadership discourse: Subtractive Leadership. As an extension of the distributive leadership model, the notion of subtractive leadership refers to a leadership style that detracts from organizational culture and productivity. Subtractive leadership fails to embrace and balance the characteristics…
Zhao, Dandan; Liang, Shengnan; Jin, Zhenlan; Li, Ling
2014-07-09
Previous studies have confirmed that attention can be modulated by the current task set while involuntarily captured by salient items. However, little is known on which factors the modulation of attentional capture is dependent on when the same stimuli with different task sets are presented. In the present study, participants conducted two visual search tasks with the same search arrays by varying target and distractor settings (color singleton as target, onset singleton as distractor, named as color task, and vice versa). Ipsilateral and contralateral color distractors resulted in two different relative saliences in two tasks, respectively. Both reaction times (RTs) and N2-posterior-contralateral (N2pc) results showed that there was no difference between ipsilateral and contralateral color distractors in the onset task. However, both RTs and the latency of N2pc showed a delay to the ipsilateral onset distractor compared with the contralateral onset distractor. Moreover, the N2pc observed under the contralateral distractor condition in the color task was reversed, and its amplitude was attenuated. On the basis of these results, we proposed a parameter called distractor cost (DC), computed by subtracting RTs under the contralateral distractor condition from the ipsilateral condition. The results suggest that an enhanced DC might be related to the modification of N2pc in searching for the color target. Taken together, these findings provide evidence that the effect of task set-modulating attentional capture in visual search is related to the DC.
Attout, Lucie; Salmon, Eric; Majerus, Steve
2015-01-01
Recent studies suggest that order working memory (WM) may be specifically associated with numerical abilities. This study explored behavioral performance and neural networks associated with verbal WM in adults with a history of developmental dyscalculia (DD). The DD group performed significantly poorer but with the same precision than the control group in order WM tasks and showed a lower activation of the right middle frontal gyrus during the order WM and the alphabetical order judgment tasks. This study suggests a persistent impairment in order WM in adults with DD, characterized by more general difficulties in controlled activation of order information.
Part-set cueing impairment & facilitation in semantic memory.
Kelley, Matthew R; Parihar, Sushmeena A
2018-01-19
The present study explored the influence of part-set cues in semantic memory using tests of "free" recall, reconstruction of order, and serial recall. Nine distinct categories of information were used (e.g., Zodiac signs, Harry Potter books, Star Wars films, planets). The results showed part-set cueing impairment for all three "free" recall sets, whereas part-set cueing facilitation was evident for five of the six ordered sets. Generally, the present results parallel those often observed across episodic tasks, which could indicate that similar mechanisms contribute to part-set cueing effects in both episodic and semantic memory. A novel anchoring explanation of part-set cueing facilitation in order and spatial tasks is provided.
Item-specific proactive interference in olfactory working memory.
Moss, Andrew; Miles, Christopher; Elsley, Jane; Johnson, Andrew
2018-04-01
We examine item-specific olfactory proactive interference (PI) effects and undertake comparisons with verbal and non-verbal visual stimuli. Using a sequential recent-probes task, we show no evidence for PI with hard-to-name odours (Experiment 1). However, verbalisable odours do exhibit PI effects (Experiment 2). These findings occur despite above chance performance and similar serial position functions across both tasks. Experiments 3 and 4 apply words and faces, respectively, to our modified procedure, and show that methodological differences cannot explain the null finding in Experiment 1. The extent to which odours exhibit analogous PI effects to that of other modalities is, we argue, contingent on the characteristics of the odours employed.
Bioinformatics and expressional analysis of cDNA clones from floral buds
NASA Astrophysics Data System (ADS)
Pawełkowicz, Magdalena Ewa; Skarzyńska, Agnieszka; Cebula, Justyna; Hincha, Dirck; ZiÄ bska, Karolina; PlÄ der, Wojciech; Przybecki, Zbigniew
2017-08-01
The application of genomic approaches may serve as an initial step in understanding the complexity of biochemical network and cellular processes responsible for regulation and execution of many developmental tasks. The molecular mechanism of sex expression in cucumber is still not elucidated. A study of differential expression was conducted to identify genes involved in sex determination and floral organ morphogenesis. Herein, we present generation of expression sequence tags (EST) obtained by differential hybridization (DH) and subtraction technique (cDNA-DSC) and their characteristic features such as molecular function, involvement in biology processes, expression and mapping position on the genome.
Bjourson, A J; Stone, C E; Cooper, J E
1992-01-01
A novel subtraction hybridization procedure, incorporating a combination of four separation strategies, was developed to isolate unique DNA sequences from a strain of Rhizobium leguminosarum bv. trifolii. Sau3A-digested DNA from this strain, i.e., the probe strain, was ligated to a linker and hybridized in solution with an excess of pooled subtracter DNA from seven other strains of the same biovar which had been restricted, ligated to a different, biotinylated, subtracter-specific linker, and amplified by polymerase chain reaction to incorporate dUTP. Subtracter DNA and subtracter-probe hybrids were removed by phenol-chloroform extraction of a streptavidin-biotin-DNA complex. NENSORB chromatography of the sequences remaining in the aqueous layer captured biotinylated subtracter DNA which may have escaped removal by phenol-chloroform treatment. Any traces of contaminating subtracter DNA were removed by digestion with uracil DNA glycosylase. Finally, remaining sequences were amplified by polymerase chain reaction with a probe strain-specific primer, labelled with 32P, and tested for specificity in dot blot hybridizations against total genomic target DNA from each strain in the subtracter pool. Two rounds of subtraction-amplification were sufficient to remove cross-hybridizing sequences and to give a probe which hybridized only with homologous target DNA. The method is applicable to the isolation of DNA and RNA sequences from both procaryotic and eucaryotic cells. Images PMID:1637166