Sample records for series methods setting

  1. Transformation-cost time-series method for analyzing irregularly sampled data

    NASA Astrophysics Data System (ADS)

    Ozken, Ibrahim; Eroglu, Deniz; Stemler, Thomas; Marwan, Norbert; Bagci, G. Baris; Kurths, Jürgen

    2015-06-01

    Irregular sampling of data sets is one of the challenges often encountered in time-series analysis, since traditional methods cannot be applied and the frequently used interpolation approach can corrupt the data and bias the subsequence analysis. Here we present the TrAnsformation-Cost Time-Series (TACTS) method, which allows us to analyze irregularly sampled data sets without degenerating the quality of the data set. Instead of using interpolation we consider time-series segments and determine how close they are to each other by determining the cost needed to transform one segment into the following one. Using a limited set of operations—with associated costs—to transform the time series segments, we determine a new time series, that is our transformation-cost time series. This cost time series is regularly sampled and can be analyzed using standard methods. While our main interest is the analysis of paleoclimate data, we develop our method using numerical examples like the logistic map and the Rössler oscillator. The numerical data allows us to test the stability of our method against noise and for different irregular samplings. In addition we provide guidance on how to choose the associated costs based on the time series at hand. The usefulness of the TACTS method is demonstrated using speleothem data from the Secret Cave in Borneo that is a good proxy for paleoclimatic variability in the monsoon activity around the maritime continent.

  2. Transformation-cost time-series method for analyzing irregularly sampled data.

    PubMed

    Ozken, Ibrahim; Eroglu, Deniz; Stemler, Thomas; Marwan, Norbert; Bagci, G Baris; Kurths, Jürgen

    2015-06-01

    Irregular sampling of data sets is one of the challenges often encountered in time-series analysis, since traditional methods cannot be applied and the frequently used interpolation approach can corrupt the data and bias the subsequence analysis. Here we present the TrAnsformation-Cost Time-Series (TACTS) method, which allows us to analyze irregularly sampled data sets without degenerating the quality of the data set. Instead of using interpolation we consider time-series segments and determine how close they are to each other by determining the cost needed to transform one segment into the following one. Using a limited set of operations-with associated costs-to transform the time series segments, we determine a new time series, that is our transformation-cost time series. This cost time series is regularly sampled and can be analyzed using standard methods. While our main interest is the analysis of paleoclimate data, we develop our method using numerical examples like the logistic map and the Rössler oscillator. The numerical data allows us to test the stability of our method against noise and for different irregular samplings. In addition we provide guidance on how to choose the associated costs based on the time series at hand. The usefulness of the TACTS method is demonstrated using speleothem data from the Secret Cave in Borneo that is a good proxy for paleoclimatic variability in the monsoon activity around the maritime continent.

  3. A Doubly Stochastic Change Point Detection Algorithm for Noisy Biological Signals.

    PubMed

    Gold, Nathan; Frasch, Martin G; Herry, Christophe L; Richardson, Bryan S; Wang, Xiaogang

    2017-01-01

    Experimentally and clinically collected time series data are often contaminated with significant confounding noise, creating short, noisy time series. This noise, due to natural variability and measurement error, poses a challenge to conventional change point detection methods. We propose a novel and robust statistical method for change point detection for noisy biological time sequences. Our method is a significant improvement over traditional change point detection methods, which only examine a potential anomaly at a single time point. In contrast, our method considers all suspected anomaly points and considers the joint probability distribution of the number of change points and the elapsed time between two consecutive anomalies. We validate our method with three simulated time series, a widely accepted benchmark data set, two geological time series, a data set of ECG recordings, and a physiological data set of heart rate variability measurements of fetal sheep model of human labor, comparing it to three existing methods. Our method demonstrates significantly improved performance over the existing point-wise detection methods.

  4. Hybrid Wavelet De-noising and Rank-Set Pair Analysis approach for forecasting hydro-meteorological time series

    NASA Astrophysics Data System (ADS)

    WANG, D.; Wang, Y.; Zeng, X.

    2017-12-01

    Accurate, fast forecasting of hydro-meteorological time series is presently a major challenge in drought and flood mitigation. This paper proposes a hybrid approach, Wavelet De-noising (WD) and Rank-Set Pair Analysis (RSPA), that takes full advantage of a combination of the two approaches to improve forecasts of hydro-meteorological time series. WD allows decomposition and reconstruction of a time series by the wavelet transform, and hence separation of the noise from the original series. RSPA, a more reliable and efficient version of Set Pair Analysis, is integrated with WD to form the hybrid WD-RSPA approach. Two types of hydro-meteorological data sets with different characteristics and different levels of human influences at some representative stations are used to illustrate the WD-RSPA approach. The approach is also compared to three other generic methods: the conventional Auto Regressive Integrated Moving Average (ARIMA) method, Artificial Neural Networks (ANNs) (BP-error Back Propagation, MLP-Multilayer Perceptron and RBF-Radial Basis Function), and RSPA alone. Nine error metrics are used to evaluate the model performance. The results show that WD-RSPA is accurate, feasible, and effective. In particular, WD-RSPA is found to be the best among the various generic methods compared in this paper, even when the extreme events are included within a time series.

  5. A high-fidelity weather time series generator using the Markov Chain process on a piecewise level

    NASA Astrophysics Data System (ADS)

    Hersvik, K.; Endrerud, O.-E. V.

    2017-12-01

    A method is developed for generating a set of unique weather time-series based on an existing weather series. The method allows statistically valid weather variations to take place within repeated simulations of offshore operations. The numerous generated time series need to share the same statistical qualities as the original time series. Statistical qualities here refer mainly to the distribution of weather windows available for work, including durations and frequencies of such weather windows, and seasonal characteristics. The method is based on the Markov chain process. The core new development lies in how the Markov Process is used, specifically by joining small pieces of random length time series together rather than joining individual weather states, each from a single time step, which is a common solution found in the literature. This new Markov model shows favorable characteristics with respect to the requirements set forth and all aspects of the validation performed.

  6. On Digital Simulation of Multicorrelated Random Processes and Its Applications. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Sinha, A. K.

    1973-01-01

    Two methods are described to simulate, on a digital computer, a set of correlated, stationary, and Gaussian time series with zero mean from the given matrix of power spectral densities and cross spectral densities. The first method is based upon trigonometric series with random amplitudes and deterministic phase angles. The random amplitudes are generated by using a standard random number generator subroutine. An example is given which corresponds to three components of wind velocities at two different spatial locations for a total of six correlated time series. In the second method, the whole process is carried out using the Fast Fourier Transform approach. This method gives more accurate results and works about twenty times faster for a set of six correlated time series.

  7. Autoregressive modeling for the spectral analysis of oceanographic data

    NASA Technical Reports Server (NTRS)

    Gangopadhyay, Avijit; Cornillon, Peter; Jackson, Leland B.

    1989-01-01

    Over the last decade there has been a dramatic increase in the number and volume of data sets useful for oceanographic studies. Many of these data sets consist of long temporal or spatial series derived from satellites and large-scale oceanographic experiments. These data sets are, however, often 'gappy' in space, irregular in time, and always of finite length. The conventional Fourier transform (FT) approach to the spectral analysis is thus often inapplicable, or where applicable, it provides questionable results. Here, through comparative analysis with the FT for different oceanographic data sets, the possibilities offered by autoregressive (AR) modeling to perform spectral analysis of gappy, finite-length series, are discussed. The applications demonstrate that as the length of the time series becomes shorter, the resolving power of the AR approach as compared with that of the FT improves. For the longest data sets examined here, 98 points, the AR method performed only slightly better than the FT, but for the very short ones, 17 points, the AR method showed a dramatic improvement over the FT. The application of the AR method to a gappy time series, although a secondary concern of this manuscript, further underlines the value of this approach.

  8. Constructing networks from a dynamical system perspective for multivariate nonlinear time series.

    PubMed

    Nakamura, Tomomichi; Tanizawa, Toshihiro; Small, Michael

    2016-03-01

    We describe a method for constructing networks for multivariate nonlinear time series. We approach the interaction between the various scalar time series from a deterministic dynamical system perspective and provide a generic and algorithmic test for whether the interaction between two measured time series is statistically significant. The method can be applied even when the data exhibit no obvious qualitative similarity: a situation in which the naive method utilizing the cross correlation function directly cannot correctly identify connectivity. To establish the connectivity between nodes we apply the previously proposed small-shuffle surrogate (SSS) method, which can investigate whether there are correlation structures in short-term variabilities (irregular fluctuations) between two data sets from the viewpoint of deterministic dynamical systems. The procedure to construct networks based on this idea is composed of three steps: (i) each time series is considered as a basic node of a network, (ii) the SSS method is applied to verify the connectivity between each pair of time series taken from the whole multivariate time series, and (iii) the pair of nodes is connected with an undirected edge when the null hypothesis cannot be rejected. The network constructed by the proposed method indicates the intrinsic (essential) connectivity of the elements included in the system or the underlying (assumed) system. The method is demonstrated for numerical data sets generated by known systems and applied to several experimental time series.

  9. [Local fractal analysis of noise-like time series by all permutations method for 1-115 min periods].

    PubMed

    Panchelyuga, V A; Panchelyuga, M S

    2015-01-01

    Results of local fractal analysis of 329-per-day time series of 239Pu alpha-decay rate fluctuations by means of all permutations method (APM) are presented. The APM-analysis reveals in the time series some steady frequency set. The coincidence of the frequency set with the Earth natural oscillations was demonstrated. A short review of works by different authors who analyzed the time series of fluctuations in processes of different nature is given. We have shown that the periods observed in those works correspond to the periods revealed in our study. It points to a common mechanism of the phenomenon observed.

  10. A hybrid wavelet de-noising and Rank-Set Pair Analysis approach for forecasting hydro-meteorological time series.

    PubMed

    Wang, Dong; Borthwick, Alistair G; He, Handan; Wang, Yuankun; Zhu, Jieyu; Lu, Yuan; Xu, Pengcheng; Zeng, Xiankui; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Liu, Jiufu; Zou, Ying; He, Ruimin

    2018-01-01

    Accurate, fast forecasting of hydro-meteorological time series is presently a major challenge in drought and flood mitigation. This paper proposes a hybrid approach, wavelet de-noising (WD) and Rank-Set Pair Analysis (RSPA), that takes full advantage of a combination of the two approaches to improve forecasts of hydro-meteorological time series. WD allows decomposition and reconstruction of a time series by the wavelet transform, and hence separation of the noise from the original series. RSPA, a more reliable and efficient version of Set Pair Analysis, is integrated with WD to form the hybrid WD-RSPA approach. Two types of hydro-meteorological data sets with different characteristics and different levels of human influences at some representative stations are used to illustrate the WD-RSPA approach. The approach is also compared to three other generic methods: the conventional Auto Regressive Integrated Moving Average (ARIMA) method, Artificial Neural Networks (ANNs) (BP-error Back Propagation, MLP-Multilayer Perceptron and RBF-Radial Basis Function), and RSPA alone. Nine error metrics are used to evaluate the model performance. Compared to three other generic methods, the results generated by WD-REPA model presented invariably smaller error measures which means the forecasting capability of the WD-REPA model is better than other models. The results show that WD-RSPA is accurate, feasible, and effective. In particular, WD-RSPA is found to be the best among the various generic methods compared in this paper, even when the extreme events are included within a time series. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Superstatistical fluctuations in time series: Applications to share-price dynamics and turbulence

    NASA Astrophysics Data System (ADS)

    van der Straeten, Erik; Beck, Christian

    2009-09-01

    We report a general technique to study a given experimental time series with superstatistics. Crucial for the applicability of the superstatistics concept is the existence of a parameter β that fluctuates on a large time scale as compared to the other time scales of the complex system under consideration. The proposed method extracts the main superstatistical parameters out of a given data set and examines the validity of the superstatistical model assumptions. We test the method thoroughly with surrogate data sets. Then the applicability of the superstatistical approach is illustrated using real experimental data. We study two examples, velocity time series measured in turbulent Taylor-Couette flows and time series of log returns of the closing prices of some stock market indices.

  12. Forecasting Jakarta composite index (IHSG) based on chen fuzzy time series and firefly clustering algorithm

    NASA Astrophysics Data System (ADS)

    Ningrum, R. W.; Surarso, B.; Farikhin; Safarudin, Y. M.

    2018-03-01

    This paper proposes the combination of Firefly Algorithm (FA) and Chen Fuzzy Time Series Forecasting. Most of the existing fuzzy forecasting methods based on fuzzy time series use the static length of intervals. Therefore, we apply an artificial intelligence, i.e., Firefly Algorithm (FA) to set non-stationary length of intervals for each cluster on Chen Method. The method is evaluated by applying on the Jakarta Composite Index (IHSG) and compare with classical Chen Fuzzy Time Series Forecasting. Its performance verified through simulation using Matlab.

  13. Parameter motivated mutual correlation analysis: Application to the study of currency exchange rates based on intermittency parameter and Hurst exponent

    NASA Astrophysics Data System (ADS)

    Cristescu, Constantin P.; Stan, Cristina; Scarlat, Eugen I.; Minea, Teofil; Cristescu, Cristina M.

    2012-04-01

    We present a novel method for the parameter oriented analysis of mutual correlation between independent time series or between equivalent structures such as ordered data sets. The proposed method is based on the sliding window technique, defines a new type of correlation measure and can be applied to time series from all domains of science and technology, experimental or simulated. A specific parameter that can characterize the time series is computed for each window and a cross correlation analysis is carried out on the set of values obtained for the time series under investigation. We apply this method to the study of some currency daily exchange rates from the point of view of the Hurst exponent and the intermittency parameter. Interesting correlation relationships are revealed and a tentative crisis prediction is presented.

  14. Testing for nonlinearity in time series: The method of surrogate data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theiler, J.; Galdrikian, B.; Longtin, A.

    1991-01-01

    We describe a statistical approach for identifying nonlinearity in time series; in particular, we want to avoid claims of chaos when simpler models (such as linearly correlated noise) can explain the data. The method requires a careful statement of the null hypothesis which characterizes a candidate linear process, the generation of an ensemble of surrogate'' data sets which are similar to the original time series but consistent with the null hypothesis, and the computation of a discriminating statistic for the original and for each of the surrogate data sets. The idea is to test the original time series against themore » null hypothesis by checking whether the discriminating statistic computed for the original time series differs significantly from the statistics computed for each of the surrogate sets. We present algorithms for generating surrogate data under various null hypotheses, and we show the results of numerical experiments on artificial data using correlation dimension, Lyapunov exponent, and forecasting error as discriminating statistics. Finally, we consider a number of experimental time series -- including sunspots, electroencephalogram (EEG) signals, and fluid convection -- and evaluate the statistical significance of the evidence for nonlinear structure in each case. 56 refs., 8 figs.« less

  15. Genetic network inference as a series of discrimination tasks.

    PubMed

    Kimura, Shuhei; Nakayama, Satoshi; Hatakeyama, Mariko

    2009-04-01

    Genetic network inference methods based on sets of differential equations generally require a great deal of time, as the equations must be solved many times. To reduce the computational cost, researchers have proposed other methods for inferring genetic networks by solving sets of differential equations only a few times, or even without solving them at all. When we try to obtain reasonable network models using these methods, however, we must estimate the time derivatives of the gene expression levels with great precision. In this study, we propose a new method to overcome the drawbacks of inference methods based on sets of differential equations. Our method infers genetic networks by obtaining classifiers capable of predicting the signs of the derivatives of the gene expression levels. For this purpose, we defined a genetic network inference problem as a series of discrimination tasks, then solved the defined series of discrimination tasks with a linear programming machine. Our experimental results demonstrated that the proposed method is capable of correctly inferring genetic networks, and doing so more than 500 times faster than the other inference methods based on sets of differential equations. Next, we applied our method to actual expression data of the bacterial SOS DNA repair system. And finally, we demonstrated that our approach relates to the inference method based on the S-system model. Though our method provides no estimation of the kinetic parameters, it should be useful for researchers interested only in the network structure of a target system. Supplementary data are available at Bioinformatics online.

  16. A Comparison of Forecast Error Generators for Modeling Wind and Load Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ning; Diao, Ruisheng; Hafen, Ryan P.

    2013-07-25

    This paper presents four algorithms to generate random forecast error time series. The performance of four algorithms is compared. The error time series are used to create real-time (RT), hour-ahead (HA), and day-ahead (DA) wind and load forecast time series that statistically match historically observed forecasting data sets used in power grid operation to study the net load balancing need in variable generation integration studies. The four algorithms are truncated-normal distribution models, state-space based Markov models, seasonal autoregressive moving average (ARMA) models, and a stochastic-optimization based approach. The comparison is made using historical DA load forecast and actual load valuesmore » to generate new sets of DA forecasts with similar stoical forecast error characteristics (i.e., mean, standard deviation, autocorrelation, and cross-correlation). The results show that all methods generate satisfactory results. One method may preserve one or two required statistical characteristics better the other methods, but may not preserve other statistical characteristics as well compared with the other methods. Because the wind and load forecast error generators are used in wind integration studies to produce wind and load forecasts time series for stochastic planning processes, it is sometimes critical to use multiple methods to generate the error time series to obtain a statistically robust result. Therefore, this paper discusses and compares the capabilities of each algorithm to preserve the characteristics of the historical forecast data sets.« less

  17. Double power series method for approximating cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Wren, Andrew J.; Malik, Karim A.

    2017-04-01

    We introduce a double power series method for finding approximate analytical solutions for systems of differential equations commonly found in cosmological perturbation theory. The method was set out, in a noncosmological context, by Feshchenko, Shkil' and Nikolenko (FSN) in 1966, and is applicable to cases where perturbations are on subhorizon scales. The FSN method is essentially an extension of the well known Wentzel-Kramers-Brillouin (WKB) method for finding approximate analytical solutions for ordinary differential equations. The FSN method we use is applicable well beyond perturbation theory to solve systems of ordinary differential equations, linear in the derivatives, that also depend on a small parameter, which here we take to be related to the inverse wave-number. We use the FSN method to find new approximate oscillating solutions in linear order cosmological perturbation theory for a flat radiation-matter universe. Together with this model's well-known growing and decaying Mészáros solutions, these oscillating modes provide a complete set of subhorizon approximations for the metric potential, radiation and matter perturbations. Comparison with numerical solutions of the perturbation equations shows that our approximations can be made accurate to within a typical error of 1%, or better. We also set out a heuristic method for error estimation. A Mathematica notebook which implements the double power series method is made available online.

  18. Benchmarking a geostatistical procedure for the homogenisation of annual precipitation series

    NASA Astrophysics Data System (ADS)

    Caineta, Júlio; Ribeiro, Sara; Henriques, Roberto; Soares, Amílcar; Costa, Ana Cristina

    2014-05-01

    The European project COST Action ES0601, Advances in homogenisation methods of climate series: an integrated approach (HOME), has brought to attention the importance of establishing reliable homogenisation methods for climate data. In order to achieve that, a benchmark data set, containing monthly and daily temperature and precipitation data, was created to be used as a comparison basis for the effectiveness of those methods. Several contributions were submitted and evaluated by a number of performance metrics, validating the results against realistic inhomogeneous data. HOME also led to the development of new homogenisation software packages, which included feedback and lessons learned during the project. Preliminary studies have suggested a geostatistical stochastic approach, which uses Direct Sequential Simulation (DSS), as a promising methodology for the homogenisation of precipitation data series. Based on the spatial and temporal correlation between the neighbouring stations, DSS calculates local probability density functions at a candidate station to detect inhomogeneities. The purpose of the current study is to test and compare this geostatistical approach with the methods previously presented in the HOME project, using surrogate precipitation series from the HOME benchmark data set. The benchmark data set contains monthly precipitation surrogate series, from which annual precipitation data series were derived. These annual precipitation series were subject to exploratory analysis and to a thorough variography study. The geostatistical approach was then applied to the data set, based on different scenarios for the spatial continuity. Implementing this procedure also promoted the development of a computer program that aims to assist on the homogenisation of climate data, while minimising user interaction. Finally, in order to compare the effectiveness of this methodology with the homogenisation methods submitted during the HOME project, the obtained results were evaluated using the same performance metrics. This comparison opens new perspectives for the development of an innovative procedure based on the geostatistical stochastic approach. Acknowledgements: The authors gratefully acknowledge the financial support of "Fundação para a Ciência e Tecnologia" (FCT), Portugal, through the research project PTDC/GEO-MET/4026/2012 ("GSIMCLI - Geostatistical simulation with local distributions for the homogenization and interpolation of climate data").

  19. Wavelet analysis and scaling properties of time series

    NASA Astrophysics Data System (ADS)

    Manimaran, P.; Panigrahi, Prasanta K.; Parikh, Jitendra C.

    2005-10-01

    We propose a wavelet based method for the characterization of the scaling behavior of nonstationary time series. It makes use of the built-in ability of the wavelets for capturing the trends in a data set, in variable window sizes. Discrete wavelets from the Daubechies family are used to illustrate the efficacy of this procedure. After studying binomial multifractal time series with the present and earlier approaches of detrending for comparison, we analyze the time series of averaged spin density in the 2D Ising model at the critical temperature, along with several experimental data sets possessing multifractal behavior.

  20. Data and methodological problems in establishing state gasoline-conservation targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, D.L.; Walton, G.H.

    The Emergency Energy Conservation Act of 1979 gives the President the authority to set gasoline-conservation targets for states in the event of a supply shortage. This paper examines data and methodological problems associated with setting state gasoline-conservation targets. The target-setting method currently used is examined and found to have some flaws. Ways of correcting these deficiencies through the use of Box-Jenkins time-series analysis are investigated. A successful estimation of Box-Jenkins models for all states included the estimation of the magnitude of the supply shortages of 1979 in each state and a preliminary estimation of state short-run price elasticities, which weremore » found to vary about a median value of -0.16. The time-series models identified were very simple in structure and lent support to the simple consumption growth model assumed by the current target method. The authors conclude that the flaws in the current method can be remedied either by replacing the current procedures with time-series models or by using the models in conjunction with minor modifications of the current method.« less

  1. The Gaussian Graphical Model in Cross-Sectional and Time-Series Data.

    PubMed

    Epskamp, Sacha; Waldorp, Lourens J; Mõttus, René; Borsboom, Denny

    2018-04-16

    We discuss the Gaussian graphical model (GGM; an undirected network of partial correlation coefficients) and detail its utility as an exploratory data analysis tool. The GGM shows which variables predict one-another, allows for sparse modeling of covariance structures, and may highlight potential causal relationships between observed variables. We describe the utility in three kinds of psychological data sets: data sets in which consecutive cases are assumed independent (e.g., cross-sectional data), temporally ordered data sets (e.g., n = 1 time series), and a mixture of the 2 (e.g., n > 1 time series). In time-series analysis, the GGM can be used to model the residual structure of a vector-autoregression analysis (VAR), also termed graphical VAR. Two network models can then be obtained: a temporal network and a contemporaneous network. When analyzing data from multiple subjects, a GGM can also be formed on the covariance structure of stationary means-the between-subjects network. We discuss the interpretation of these models and propose estimation methods to obtain these networks, which we implement in the R packages graphicalVAR and mlVAR. The methods are showcased in two empirical examples, and simulation studies on these methods are included in the supplementary materials.

  2. A modified temporal criterion to meta-optimize the extended Kalman filter for land cover classification of remotely sensed time series

    NASA Astrophysics Data System (ADS)

    Salmon, B. P.; Kleynhans, W.; Olivier, J. C.; van den Bergh, F.; Wessels, K. J.

    2018-05-01

    Humans are transforming land cover at an ever-increasing rate. Accurate geographical maps on land cover, especially rural and urban settlements are essential to planning sustainable development. Time series extracted from MODerate resolution Imaging Spectroradiometer (MODIS) land surface reflectance products have been used to differentiate land cover classes by analyzing the seasonal patterns in reflectance values. The proper fitting of a parametric model to these time series usually requires several adjustments to the regression method. To reduce the workload, a global setting of parameters is done to the regression method for a geographical area. In this work we have modified a meta-optimization approach to setting a regression method to extract the parameters on a per time series basis. The standard deviation of the model parameters and magnitude of residuals are used as scoring function. We successfully fitted a triply modulated model to the seasonal patterns of our study area using a non-linear extended Kalman filter (EKF). The approach uses temporal information which significantly reduces the processing time and storage requirements to process each time series. It also derives reliability metrics for each time series individually. The features extracted using the proposed method are classified with a support vector machine and the performance of the method is compared to the original approach on our ground truth data.

  3. 3-D ultrasound volume reconstruction using the direct frame interpolation method.

    PubMed

    Scheipers, Ulrich; Koptenko, Sergei; Remlinger, Rachel; Falco, Tony; Lachaine, Martin

    2010-11-01

    A new method for 3-D ultrasound volume reconstruction using tracked freehand 3-D ultrasound is proposed. The method is based on solving the forward volume reconstruction problem using direct interpolation of high-resolution ultrasound B-mode image frames. A series of ultrasound B-mode image frames (an image series) is acquired using the freehand scanning technique and position sensing via optical tracking equipment. The proposed algorithm creates additional intermediate image frames by directly interpolating between two or more adjacent image frames of the original image series. The target volume is filled using the original frames in combination with the additionally constructed frames. Compared with conventional volume reconstruction methods, no additional filling of empty voxels or holes within the volume is required, because the whole extent of the volume is defined by the arrangement of the original and the additionally constructed B-mode image frames. The proposed direct frame interpolation (DFI) method was tested on two different data sets acquired while scanning the head and neck region of different patients. The first data set consisted of eight B-mode 2-D frame sets acquired under optimal laboratory conditions. The second data set consisted of 73 image series acquired during a clinical study. Sample volumes were reconstructed for all 81 image series using the proposed DFI method with four different interpolation orders, as well as with the pixel nearest-neighbor method using three different interpolation neighborhoods. In addition, volumes based on a reduced number of image frames were reconstructed for comparison of the different methods' accuracy and robustness in reconstructing image data that lies between the original image frames. The DFI method is based on a forward approach making use of a priori information about the position and shape of the B-mode image frames (e.g., masking information) to optimize the reconstruction procedure and to reduce computation times and memory requirements. The method is straightforward, independent of additional input or parameters, and uses the high-resolution B-mode image frames instead of usually lower-resolution voxel information for interpolation. The DFI method can be considered as a valuable alternative to conventional 3-D ultrasound reconstruction methods based on pixel or voxel nearest-neighbor approaches, offering better quality and competitive reconstruction time.

  4. Highly comparative time-series analysis: the empirical structure of time series and their methods.

    PubMed

    Fulcher, Ben D; Little, Max A; Jones, Nick S

    2013-06-06

    The process of collecting and organizing sets of observations represents a common theme throughout the history of science. However, despite the ubiquity of scientists measuring, recording and analysing the dynamics of different processes, an extensive organization of scientific time-series data and analysis methods has never been performed. Addressing this, annotated collections of over 35 000 real-world and model-generated time series, and over 9000 time-series analysis algorithms are analysed in this work. We introduce reduced representations of both time series, in terms of their properties measured by diverse scientific methods, and of time-series analysis methods, in terms of their behaviour on empirical time series, and use them to organize these interdisciplinary resources. This new approach to comparing across diverse scientific data and methods allows us to organize time-series datasets automatically according to their properties, retrieve alternatives to particular analysis methods developed in other scientific disciplines and automate the selection of useful methods for time-series classification and regression tasks. The broad scientific utility of these tools is demonstrated on datasets of electroencephalograms, self-affine time series, heartbeat intervals, speech signals and others, in each case contributing novel analysis techniques to the existing literature. Highly comparative techniques that compare across an interdisciplinary literature can thus be used to guide more focused research in time-series analysis for applications across the scientific disciplines.

  5. Highly comparative time-series analysis: the empirical structure of time series and their methods

    PubMed Central

    Fulcher, Ben D.; Little, Max A.; Jones, Nick S.

    2013-01-01

    The process of collecting and organizing sets of observations represents a common theme throughout the history of science. However, despite the ubiquity of scientists measuring, recording and analysing the dynamics of different processes, an extensive organization of scientific time-series data and analysis methods has never been performed. Addressing this, annotated collections of over 35 000 real-world and model-generated time series, and over 9000 time-series analysis algorithms are analysed in this work. We introduce reduced representations of both time series, in terms of their properties measured by diverse scientific methods, and of time-series analysis methods, in terms of their behaviour on empirical time series, and use them to organize these interdisciplinary resources. This new approach to comparing across diverse scientific data and methods allows us to organize time-series datasets automatically according to their properties, retrieve alternatives to particular analysis methods developed in other scientific disciplines and automate the selection of useful methods for time-series classification and regression tasks. The broad scientific utility of these tools is demonstrated on datasets of electroencephalograms, self-affine time series, heartbeat intervals, speech signals and others, in each case contributing novel analysis techniques to the existing literature. Highly comparative techniques that compare across an interdisciplinary literature can thus be used to guide more focused research in time-series analysis for applications across the scientific disciplines. PMID:23554344

  6. A probabilistic method for constructing wave time-series at inshore locations using model scenarios

    USGS Publications Warehouse

    Long, Joseph W.; Plant, Nathaniel G.; Dalyander, P. Soupy; Thompson, David M.

    2014-01-01

    Continuous time-series of wave characteristics (height, period, and direction) are constructed using a base set of model scenarios and simple probabilistic methods. This approach utilizes an archive of computationally intensive, highly spatially resolved numerical wave model output to develop time-series of historical or future wave conditions without performing additional, continuous numerical simulations. The archive of model output contains wave simulations from a set of model scenarios derived from an offshore wave climatology. Time-series of wave height, period, direction, and associated uncertainties are constructed at locations included in the numerical model domain. The confidence limits are derived using statistical variability of oceanographic parameters contained in the wave model scenarios. The method was applied to a region in the northern Gulf of Mexico and assessed using wave observations at 12 m and 30 m water depths. Prediction skill for significant wave height is 0.58 and 0.67 at the 12 m and 30 m locations, respectively, with similar performance for wave period and direction. The skill of this simplified, probabilistic time-series construction method is comparable to existing large-scale, high-fidelity operational wave models but provides higher spatial resolution output at low computational expense. The constructed time-series can be developed to support a variety of applications including climate studies and other situations where a comprehensive survey of wave impacts on the coastal area is of interest.

  7. Simulation of financial market via nonlinear Ising model

    NASA Astrophysics Data System (ADS)

    Ko, Bonggyun; Song, Jae Wook; Chang, Woojin

    2016-09-01

    In this research, we propose a practical method for simulating the financial return series whose distribution has a specific heaviness. We employ the Ising model for generating financial return series to be analogous to those of the real series. The similarity between real financial return series and simulated one is statistically verified based on their stylized facts including the power law behavior of tail distribution. We also suggest the scheme for setting the parameters in order to simulate the financial return series with specific tail behavior. The simulation method introduced in this paper is expected to be applied to the other financial products whose price return distribution is fat-tailed.

  8. Advanced spectral methods for climatic time series

    USGS Publications Warehouse

    Ghil, M.; Allen, M.R.; Dettinger, M.D.; Ide, K.; Kondrashov, D.; Mann, M.E.; Robertson, A.W.; Saunders, A.; Tian, Y.; Varadi, F.; Yiou, P.

    2002-01-01

    The analysis of univariate or multivariate time series provides crucial information to describe, understand, and predict climatic variability. The discovery and implementation of a number of novel methods for extracting useful information from time series has recently revitalized this classical field of study. Considerable progress has also been made in interpreting the information so obtained in terms of dynamical systems theory. In this review we describe the connections between time series analysis and nonlinear dynamics, discuss signal- to-noise enhancement, and present some of the novel methods for spectral analysis. The various steps, as well as the advantages and disadvantages of these methods, are illustrated by their application to an important climatic time series, the Southern Oscillation Index. This index captures major features of interannual climate variability and is used extensively in its prediction. Regional and global sea surface temperature data sets are used to illustrate multivariate spectral methods. Open questions and further prospects conclude the review.

  9. Use of the Box-Cox Transformation in Detecting Changepoints in Daily Precipitation Data Series

    NASA Astrophysics Data System (ADS)

    Wang, X. L.; Chen, H.; Wu, Y.; Pu, Q.

    2009-04-01

    This study integrates a Box-Cox power transformation procedure into two statistical tests for detecting changepoints in Gaussian data series, to make the changepoint detection methods applicable to non-Gaussian data series, such as daily precipitation amounts. The detection power aspects of transformed methods in a common trend two-phase regression setting are assessed by Monte Carlo simulations for data of a log-normal or Gamma distribution. The results show that the transformed methods have increased the power of detection, in comparison with the corresponding original (untransformed) methods. The transformed data much better approximate to a Gaussian distribution. As an example of application, the new methods are applied to a series of daily precipitation amounts recorded at a station in Canada, showing satisfactory detection power.

  10. Multi-scale clustering of functional data with application to hydraulic gradients in wetlands

    USGS Publications Warehouse

    Greenwood, Mark C.; Sojda, Richard S.; Sharp, Julia L.; Peck, Rory G.; Rosenberry, Donald O.

    2011-01-01

    A new set of methods are developed to perform cluster analysis of functions, motivated by a data set consisting of hydraulic gradients at several locations distributed across a wetland complex. The methods build on previous work on clustering of functions, such as Tarpey and Kinateder (2003) and Hitchcock et al. (2007), but explore functions generated from an additive model decomposition (Wood, 2006) of the original time se- ries. Our decomposition targets two aspects of the series, using an adaptive smoother for the trend and circular spline for the diurnal variation in the series. Different measures for comparing locations are discussed, including a method for efficiently clustering time series that are of different lengths using a functional data approach. The complicated nature of these wetlands are highlighted by the shifting group memberships depending on which scale of variation and year of the study are considered.

  11. RankExplorer: Visualization of Ranking Changes in Large Time Series Data.

    PubMed

    Shi, Conglei; Cui, Weiwei; Liu, Shixia; Xu, Panpan; Chen, Wei; Qu, Huamin

    2012-12-01

    For many applications involving time series data, people are often interested in the changes of item values over time as well as their ranking changes. For example, people search many words via search engines like Google and Bing every day. Analysts are interested in both the absolute searching number for each word as well as their relative rankings. Both sets of statistics may change over time. For very large time series data with thousands of items, how to visually present ranking changes is an interesting challenge. In this paper, we propose RankExplorer, a novel visualization method based on ThemeRiver to reveal the ranking changes. Our method consists of four major components: 1) a segmentation method which partitions a large set of time series curves into a manageable number of ranking categories; 2) an extended ThemeRiver view with embedded color bars and changing glyphs to show the evolution of aggregation values related to each ranking category over time as well as the content changes in each ranking category; 3) a trend curve to show the degree of ranking changes over time; 4) rich user interactions to support interactive exploration of ranking changes. We have applied our method to some real time series data and the case studies demonstrate that our method can reveal the underlying patterns related to ranking changes which might otherwise be obscured in traditional visualizations.

  12. Automatic segmentation of right ventricle on ultrasound images using sparse matrix transform and level set

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Cong, Zhibin; Halig, Luma V.; Fei, Baowei

    2013-03-01

    An automatic framework is proposed to segment right ventricle on ultrasound images. This method can automatically segment both epicardial and endocardial boundaries from a continuous echocardiography series by combining sparse matrix transform (SMT), a training model, and a localized region based level set. First, the sparse matrix transform extracts main motion regions of myocardium as eigenimages by analyzing statistical information of these images. Second, a training model of right ventricle is registered to the extracted eigenimages in order to automatically detect the main location of the right ventricle and the corresponding transform relationship between the training model and the SMT-extracted results in the series. Third, the training model is then adjusted as an adapted initialization for the segmentation of each image in the series. Finally, based on the adapted initializations, a localized region based level set algorithm is applied to segment both epicardial and endocardial boundaries of the right ventricle from the whole series. Experimental results from real subject data validated the performance of the proposed framework in segmenting right ventricle from echocardiography. The mean Dice scores for both epicardial and endocardial boundaries are 89.1%+/-2.3% and 83.6+/-7.3%, respectively. The automatic segmentation method based on sparse matrix transform and level set can provide a useful tool for quantitative cardiac imaging.

  13. The High School & Beyond Data Set: Academic Self-Concept Measures.

    ERIC Educational Resources Information Center

    Strein, William

    A series of confirmatory factor analyses using both LISREL VI (maximum likelihood method) and LISCOMP (weighted least squares method using covariance matrix based on polychoric correlations) and including cross-validation on independent samples were applied to items from the High School and Beyond data set to explore the measurement…

  14. Degeneracy relations in QCD and the equivalence of two systematic all-orders methods for setting the renormalization scale

    DOE PAGES

    Bi, Huan -Yu; Wu, Xing -Gang; Ma, Yang; ...

    2015-06-26

    The Principle of Maximum Conformality (PMC) eliminates QCD renormalization scale-setting uncertainties using fundamental renormalization group methods. The resulting scale-fixed pQCD predictions are independent of the choice of renormalization scheme and show rapid convergence. The coefficients of the scale-fixed couplings are identical to the corresponding conformal series with zero β-function. Two all-orders methods for systematically implementing the PMC-scale setting procedure for existing high order calculations are discussed in this article. One implementation is based on the PMC-BLM correspondence (PMC-I); the other, more recent, method (PMC-II) uses the R δ-scheme, a systematic generalization of the minimal subtraction renormalization scheme. Both approaches satisfymore » all of the principles of the renormalization group and lead to scale-fixed and scheme-independent predictions at each finite order. In this work, we show that PMC-I and PMC-II scale-setting methods are in practice equivalent to each other. We illustrate this equivalence for the four-loop calculations of the annihilation ratio R e+e– and the Higgs partial width I'(H→bb¯). Both methods lead to the same resummed (‘conformal’) series up to all orders. The small scale differences between the two approaches are reduced as additional renormalization group {β i}-terms in the pQCD expansion are taken into account. In addition, we show that special degeneracy relations, which underly the equivalence of the two PMC approaches and the resulting conformal features of the pQCD series, are in fact general properties of non-Abelian gauge theory.« less

  15. Clustering Multivariate Time Series Using Hidden Markov Models

    PubMed Central

    Ghassempour, Shima; Girosi, Federico; Maeder, Anthony

    2014-01-01

    In this paper we describe an algorithm for clustering multivariate time series with variables taking both categorical and continuous values. Time series of this type are frequent in health care, where they represent the health trajectories of individuals. The problem is challenging because categorical variables make it difficult to define a meaningful distance between trajectories. We propose an approach based on Hidden Markov Models (HMMs), where we first map each trajectory into an HMM, then define a suitable distance between HMMs and finally proceed to cluster the HMMs with a method based on a distance matrix. We test our approach on a simulated, but realistic, data set of 1,255 trajectories of individuals of age 45 and over, on a synthetic validation set with known clustering structure, and on a smaller set of 268 trajectories extracted from the longitudinal Health and Retirement Survey. The proposed method can be implemented quite simply using standard packages in R and Matlab and may be a good candidate for solving the difficult problem of clustering multivariate time series with categorical variables using tools that do not require advanced statistic knowledge, and therefore are accessible to a wide range of researchers. PMID:24662996

  16. Assessment of resampling methods for causality testing: A note on the US inflation behavior

    PubMed Central

    Kyrtsou, Catherine; Kugiumtzis, Dimitris; Diks, Cees

    2017-01-01

    Different resampling methods for the null hypothesis of no Granger causality are assessed in the setting of multivariate time series, taking into account that the driving-response coupling is conditioned on the other observed variables. As appropriate test statistic for this setting, the partial transfer entropy (PTE), an information and model-free measure, is used. Two resampling techniques, time-shifted surrogates and the stationary bootstrap, are combined with three independence settings (giving a total of six resampling methods), all approximating the null hypothesis of no Granger causality. In these three settings, the level of dependence is changed, while the conditioning variables remain intact. The empirical null distribution of the PTE, as the surrogate and bootstrapped time series become more independent, is examined along with the size and power of the respective tests. Additionally, we consider a seventh resampling method by contemporaneously resampling the driving and the response time series using the stationary bootstrap. Although this case does not comply with the no causality hypothesis, one can obtain an accurate sampling distribution for the mean of the test statistic since its value is zero under H0. Results indicate that as the resampling setting gets more independent, the test becomes more conservative. Finally, we conclude with a real application. More specifically, we investigate the causal links among the growth rates for the US CPI, money supply and crude oil. Based on the PTE and the seven resampling methods, we consistently find that changes in crude oil cause inflation conditioning on money supply in the post-1986 period. However this relationship cannot be explained on the basis of traditional cost-push mechanisms. PMID:28708870

  17. Assessment of resampling methods for causality testing: A note on the US inflation behavior.

    PubMed

    Papana, Angeliki; Kyrtsou, Catherine; Kugiumtzis, Dimitris; Diks, Cees

    2017-01-01

    Different resampling methods for the null hypothesis of no Granger causality are assessed in the setting of multivariate time series, taking into account that the driving-response coupling is conditioned on the other observed variables. As appropriate test statistic for this setting, the partial transfer entropy (PTE), an information and model-free measure, is used. Two resampling techniques, time-shifted surrogates and the stationary bootstrap, are combined with three independence settings (giving a total of six resampling methods), all approximating the null hypothesis of no Granger causality. In these three settings, the level of dependence is changed, while the conditioning variables remain intact. The empirical null distribution of the PTE, as the surrogate and bootstrapped time series become more independent, is examined along with the size and power of the respective tests. Additionally, we consider a seventh resampling method by contemporaneously resampling the driving and the response time series using the stationary bootstrap. Although this case does not comply with the no causality hypothesis, one can obtain an accurate sampling distribution for the mean of the test statistic since its value is zero under H0. Results indicate that as the resampling setting gets more independent, the test becomes more conservative. Finally, we conclude with a real application. More specifically, we investigate the causal links among the growth rates for the US CPI, money supply and crude oil. Based on the PTE and the seven resampling methods, we consistently find that changes in crude oil cause inflation conditioning on money supply in the post-1986 period. However this relationship cannot be explained on the basis of traditional cost-push mechanisms.

  18. Reconstruction of extended Petri nets from time series data and its application to signal transduction and to gene regulatory networks

    PubMed Central

    2011-01-01

    Background Network inference methods reconstruct mathematical models of molecular or genetic networks directly from experimental data sets. We have previously reported a mathematical method which is exclusively data-driven, does not involve any heuristic decisions within the reconstruction process, and deliveres all possible alternative minimal networks in terms of simple place/transition Petri nets that are consistent with a given discrete time series data set. Results We fundamentally extended the previously published algorithm to consider catalysis and inhibition of the reactions that occur in the underlying network. The results of the reconstruction algorithm are encoded in the form of an extended Petri net involving control arcs. This allows the consideration of processes involving mass flow and/or regulatory interactions. As a non-trivial test case, the phosphate regulatory network of enterobacteria was reconstructed using in silico-generated time-series data sets on wild-type and in silico mutants. Conclusions The new exact algorithm reconstructs extended Petri nets from time series data sets by finding all alternative minimal networks that are consistent with the data. It suggested alternative molecular mechanisms for certain reactions in the network. The algorithm is useful to combine data from wild-type and mutant cells and may potentially integrate physiological, biochemical, pharmacological, and genetic data in the form of a single model. PMID:21762503

  19. Data series embedding and scale invariant statistics.

    PubMed

    Michieli, I; Medved, B; Ristov, S

    2010-06-01

    Data sequences acquired from bio-systems such as human gait data, heart rate interbeat data, or DNA sequences exhibit complex dynamics that is frequently described by a long-memory or power-law decay of autocorrelation function. One way of characterizing that dynamics is through scale invariant statistics or "fractal-like" behavior. For quantifying scale invariant parameters of physiological signals several methods have been proposed. Among them the most common are detrended fluctuation analysis, sample mean variance analyses, power spectral density analysis, R/S analysis, and recently in the realm of the multifractal approach, wavelet analysis. In this paper it is demonstrated that embedding the time series data in the high-dimensional pseudo-phase space reveals scale invariant statistics in the simple fashion. The procedure is applied on different stride interval data sets from human gait measurements time series (Physio-Bank data library). Results show that introduced mapping adequately separates long-memory from random behavior. Smaller gait data sets were analyzed and scale-free trends for limited scale intervals were successfully detected. The method was verified on artificially produced time series with known scaling behavior and with the varying content of noise. The possibility for the method to falsely detect long-range dependence in the artificially generated short range dependence series was investigated. (c) 2009 Elsevier B.V. All rights reserved.

  20. Quantifying surface water–groundwater interactions using time series analysis of streambed thermal records: Method development

    USGS Publications Warehouse

    Hatch, Christine E; Fisher, Andrew T.; Revenaugh, Justin S.; Constantz, Jim; Ruehl, Chris

    2006-01-01

    We present a method for determining streambed seepage rates using time series thermal data. The new method is based on quantifying changes in phase and amplitude of temperature variations between pairs of subsurface sensors. For a reasonable range of streambed thermal properties and sensor spacings the time series method should allow reliable estimation of seepage rates for a range of at least ±10 m d−1 (±1.2 × 10−2 m s−1), with amplitude variations being most sensitive at low flow rates and phase variations retaining sensitivity out to much higher rates. Compared to forward modeling, the new method requires less observational data and less setup and data handling and is faster, particularly when interpreting many long data sets. The time series method is insensitive to streambed scour and sedimentation, which allows for application under a wide range of flow conditions and allows time series estimation of variable streambed hydraulic conductivity. This new approach should facilitate wider use of thermal methods and improve understanding of the complex spatial and temporal dynamics of surface water–groundwater interactions.

  1. The application of time series models to cloud field morphology analysis

    NASA Technical Reports Server (NTRS)

    Chin, Roland T.; Jau, Jack Y. C.; Weinman, James A.

    1987-01-01

    A modeling method for the quantitative description of remotely sensed cloud field images is presented. A two-dimensional texture modeling scheme based on one-dimensional time series procedures is adopted for this purpose. The time series procedure used is the seasonal autoregressive, moving average (ARMA) process in Box and Jenkins. Cloud field properties such as directionality, clustering and cloud coverage can be retrieved by this method. It has been demonstrated that a cloud field image can be quantitatively defined by a small set of parameters and synthesized surrogates can be reconstructed from these model parameters. This method enables cloud climatology to be studied quantitatively.

  2. How bootstrap can help in forecasting time series with more than one seasonal pattern

    NASA Astrophysics Data System (ADS)

    Cordeiro, Clara; Neves, M. Manuela

    2012-09-01

    The search for the future is an appealing challenge in time series analysis. The diversity of forecasting methodologies is inevitable and is still in expansion. Exponential smoothing methods are the launch platform for modelling and forecasting in time series analysis. Recently this methodology has been combined with bootstrapping revealing a good performance. The algorithm (Boot. EXPOS) using exponential smoothing and bootstrap methodologies, has showed promising results for forecasting time series with one seasonal pattern. In case of more than one seasonal pattern, the double seasonal Holt-Winters methods and the exponential smoothing methods were developed. A new challenge was now to combine these seasonal methods with bootstrap and carry over a similar resampling scheme used in Boot. EXPOS procedure. The performance of such partnership will be illustrated for some well-know data sets existing in software.

  3. Interaction of impeller and guide vane in a series-designed axial-flow pump

    NASA Astrophysics Data System (ADS)

    Kim, S.; Choi, Y. S.; Lee, K. Y.; Kim, J. H.

    2012-11-01

    In this paper, the interaction of the impeller and guide vane in a series-designed axial-flow pump was examined through the implementation of a commercial CFD code. The impeller series design refers to the general design procedure of the base impeller shape which must satisfy the various flow rate and head requirements by changing the impeller setting angle and number of blades of the base impeller. An arc type meridional shape was used to keep the meridional shape of the hub and shroud with various impeller setting angles. The blade angle and the thickness distribution of the impeller were designed as an NACA airfoil type. In the design of the guide vane, it was necessary to consider the outlet flow condition of the impeller with the given setting angle. The meridional shape of the guide vane were designed taking into consideration the setting angle of the impeller, and the blade angle distribution of the guide vane was determined with a traditional design method using vane plane development. In order to achieve the optimum impeller design and guide vane, three-dimensional computational fluid dynamics and the DOE method were applied. The interaction between the impeller and guide vane with different combination set of impeller setting angles and number of impeller blades was addressed by analyzing the flow field of the computational results.

  4. Discrete Fourier transforms of nonuniformly spaced data

    NASA Technical Reports Server (NTRS)

    Swan, P. R.

    1982-01-01

    Time series or spatial series of measurements taken with nonuniform spacings have failed to yield fully to analysis using the Discrete Fourier Transform (DFT). This is due to the fact that the formal DFT is the convolution of the transform of the signal with the transform of the nonuniform spacings. Two original methods are presented for deconvolving such transforms for signals containing significant noise. The first method solves a set of linear equations relating the observed data to values defined at uniform grid points, and then obtains the desired transform as the DFT of the uniform interpolates. The second method solves a set of linear equations relating the real and imaginary components of the formal DFT directly to those of the desired transform. The results of numerical experiments with noisy data are presented in order to demonstrate the capabilities and limitations of the methods.

  5. Principal components and iterative regression analysis of geophysical series: Application to Sunspot number (1750 2004)

    NASA Astrophysics Data System (ADS)

    Nordemann, D. J. R.; Rigozo, N. R.; de Souza Echer, M. P.; Echer, E.

    2008-11-01

    We present here an implementation of a least squares iterative regression method applied to the sine functions embedded in the principal components extracted from geophysical time series. This method seems to represent a useful improvement for the non-stationary time series periodicity quantitative analysis. The principal components determination followed by the least squares iterative regression method was implemented in an algorithm written in the Scilab (2006) language. The main result of the method is to obtain the set of sine functions embedded in the series analyzed in decreasing order of significance, from the most important ones, likely to represent the physical processes involved in the generation of the series, to the less important ones that represent noise components. Taking into account the need of a deeper knowledge of the Sun's past history and its implication to global climate change, the method was applied to the Sunspot Number series (1750-2004). With the threshold and parameter values used here, the application of the method leads to a total of 441 explicit sine functions, among which 65 were considered as being significant and were used for a reconstruction that gave a normalized mean squared error of 0.146.

  6. Visualization of time series statistical data by shape analysis (GDP ratio changes among Asia countries)

    NASA Astrophysics Data System (ADS)

    Shirota, Yukari; Hashimoto, Takako; Fitri Sari, Riri

    2018-03-01

    It has been very significant to visualize time series big data. In the paper we shall discuss a new analysis method called “statistical shape analysis” or “geometry driven statistics” on time series statistical data in economics. In the paper, we analyse the agriculture, value added and industry, value added (percentage of GDP) changes from 2000 to 2010 in Asia. We handle the data as a set of landmarks on a two-dimensional image to see the deformation using the principal components. The point of the analysis method is the principal components of the given formation which are eigenvectors of its bending energy matrix. The local deformation can be expressed as the set of non-Affine transformations. The transformations give us information about the local differences between in 2000 and in 2010. Because the non-Affine transformation can be decomposed into a set of partial warps, we present the partial warps visually. The statistical shape analysis is widely used in biology but, in economics, no application can be found. In the paper, we investigate its potential to analyse the economic data.

  7. Implementation of Steiner point of fuzzy set.

    PubMed

    Liang, Jiuzhen; Wang, Dejiang

    2014-01-01

    This paper deals with the implementation of Steiner point of fuzzy set. Some definitions and properties of Steiner point are investigated and extended to fuzzy set. This paper focuses on establishing efficient methods to compute Steiner point of fuzzy set. Two strategies of computing Steiner point of fuzzy set are proposed. One is called linear combination of Steiner points computed by a series of crisp α-cut sets of the fuzzy set. The other is an approximate method, which is trying to find the optimal α-cut set approaching the fuzzy set. Stability analysis of Steiner point of fuzzy set is also studied. Some experiments on image processing are given, in which the two methods are applied for implementing Steiner point of fuzzy image, and both strategies show their own advantages in computing Steiner point of fuzzy set.

  8. Coupled uncertainty provided by a multifractal random walker

    NASA Astrophysics Data System (ADS)

    Koohi Lai, Z.; Vasheghani Farahani, S.; Movahed, S. M. S.; Jafari, G. R.

    2015-10-01

    The aim here is to study the concept of pairing multifractality between time series possessing non-Gaussian distributions. The increasing number of rare events creates ;criticality;. We show how the pairing between two series is affected by rare events, which we call ;coupled criticality;. A method is proposed for studying the coupled criticality born out of the interaction between two series, using the bivariate multifractal random walk (BiMRW). This method allows studying dependence of the coupled criticality on the criticality of each individual system. This approach is applied to data sets of gold and oil markets, and inflation and unemployment.

  9. Numerical integration of the N-body ring problem by recurrent power series

    NASA Astrophysics Data System (ADS)

    Navarro, Juan F.

    2018-02-01

    The aim of this article is to present a method for the integration of the equations of motion of the N-body ring problem by means of recurrent power series. We prove that the solution is convergent for any set of initial conditions, excluding those corresponding to binary collisions.

  10. Identifying Needs and Setting Goals. The ACTFL Foreign Language Education Series, Vol. 10.

    ERIC Educational Resources Information Center

    Medley, Frank W., Jr.

    The teaching of foreign languages, like other subjects in the curriculum, must change to incorporate the strategies and technologies which evolve from a new perspective of materials and methods. Accordingly, several reasons are suggested for a systematic approach to constructive chanqe. Needs assessment, a process comprised of a series of…

  11. Stochastic optimization for modeling physiological time series: application to the heart rate response to exercise

    NASA Astrophysics Data System (ADS)

    Zakynthinaki, M. S.; Stirling, J. R.

    2007-01-01

    Stochastic optimization is applied to the problem of optimizing the fit of a model to the time series of raw physiological (heart rate) data. The physiological response to exercise has been recently modeled as a dynamical system. Fitting the model to a set of raw physiological time series data is, however, not a trivial task. For this reason and in order to calculate the optimal values of the parameters of the model, the present study implements the powerful stochastic optimization method ALOPEX IV, an algorithm that has been proven to be fast, effective and easy to implement. The optimal parameters of the model, calculated by the optimization method for the particular athlete, are very important as they characterize the athlete's current condition. The present study applies the ALOPEX IV stochastic optimization to the modeling of a set of heart rate time series data corresponding to different exercises of constant intensity. An analysis of the optimization algorithm, together with an analytic proof of its convergence (in the absence of noise), is also presented.

  12. Do regional methods really help reduce uncertainties in flood frequency analyses?

    NASA Astrophysics Data System (ADS)

    Cong Nguyen, Chi; Payrastre, Olivier; Gaume, Eric

    2013-04-01

    Flood frequency analyses are often based on continuous measured series at gauge sites. However, the length of the available data sets is usually too short to provide reliable estimates of extreme design floods. To reduce the estimation uncertainties, the analyzed data sets have to be extended either in time, making use of historical and paleoflood data, or in space, merging data sets considered as statistically homogeneous to build large regional data samples. Nevertheless, the advantage of the regional analyses, the important increase of the size of the studied data sets, may be counterbalanced by the possible heterogeneities of the merged sets. The application and comparison of four different flood frequency analysis methods to two regions affected by flash floods in the south of France (Ardèche and Var) illustrates how this balance between the number of records and possible heterogeneities plays in real-world applications. The four tested methods are: (1) a local statistical analysis based on the existing series of measured discharges, (2) a local analysis valuating the existing information on historical floods, (3) a standard regional flood frequency analysis based on existing measured series at gauged sites and (4) a modified regional analysis including estimated extreme peak discharges at ungauged sites. Monte Carlo simulations are conducted to simulate a large number of discharge series with characteristics similar to the observed ones (type of statistical distributions, number of sites and records) to evaluate to which extent the results obtained on these case studies can be generalized. These two case studies indicate that even small statistical heterogeneities, which are not detected by the standard homogeneity tests implemented in regional flood frequency studies, may drastically limit the usefulness of such approaches. On the other hand, these result show that the valuation of information on extreme events, either historical flood events at gauged sites or estimated extremes at ungauged sites in the considered region, is an efficient way to reduce uncertainties in flood frequency studies.

  13. Prediction of protein structural classes by recurrence quantification analysis based on chaos game representation.

    PubMed

    Yang, Jian-Yi; Peng, Zhen-Ling; Yu, Zu-Guo; Zhang, Rui-Jie; Anh, Vo; Wang, Desheng

    2009-04-21

    In this paper, we intend to predict protein structural classes (alpha, beta, alpha+beta, or alpha/beta) for low-homology data sets. Two data sets were used widely, 1189 (containing 1092 proteins) and 25PDB (containing 1673 proteins) with sequence homology being 40% and 25%, respectively. We propose to decompose the chaos game representation of proteins into two kinds of time series. Then, a novel and powerful nonlinear analysis technique, recurrence quantification analysis (RQA), is applied to analyze these time series. For a given protein sequence, a total of 16 characteristic parameters can be calculated with RQA, which are treated as feature representation of protein sequences. Based on such feature representation, the structural class for each protein is predicted with Fisher's linear discriminant algorithm. The jackknife test is used to test and compare our method with other existing methods. The overall accuracies with step-by-step procedure are 65.8% and 64.2% for 1189 and 25PDB data sets, respectively. With one-against-others procedure used widely, we compare our method with five other existing methods. Especially, the overall accuracies of our method are 6.3% and 4.1% higher for the two data sets, respectively. Furthermore, only 16 parameters are used in our method, which is less than that used by other methods. This suggests that the current method may play a complementary role to the existing methods and is promising to perform the prediction of protein structural classes.

  14. A user-defined data type for the storage of time series data allowing efficient similarity screening.

    PubMed

    Sorokin, Anatoly; Selkov, Gene; Goryanin, Igor

    2012-07-16

    The volume of the experimentally measured time series data is rapidly growing, while storage solutions offering better data types than simple arrays of numbers or opaque blobs for keeping series data are sorely lacking. A number of indexing methods have been proposed to provide efficient access to time series data, but none has so far been integrated into a tried-and-proven database system. To explore the possibility of such integration, we have developed a data type for time series storage in PostgreSQL, an object-relational database system, and equipped it with an access method based on SAX (Symbolic Aggregate approXimation). This new data type has been successfully tested in a database supporting a large-scale plant gene expression experiment, and it was additionally tested on a very large set of simulated time series data. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. A non-parametric method for automatic determination of P-wave and S-wave arrival times: application to local micro earthquakes

    NASA Astrophysics Data System (ADS)

    Rawles, Christopher; Thurber, Clifford

    2015-08-01

    We present a simple, fast, and robust method for automatic detection of P- and S-wave arrivals using a nearest neighbours-based approach. The nearest neighbour algorithm is one of the most popular time-series classification methods in the data mining community and has been applied to time-series problems in many different domains. Specifically, our method is based on the non-parametric time-series classification method developed by Nikolov. Instead of building a model by estimating parameters from the data, the method uses the data itself to define the model. Potential phase arrivals are identified based on their similarity to a set of reference data consisting of positive and negative sets, where the positive set contains examples of analyst identified P- or S-wave onsets and the negative set contains examples that do not contain P waves or S waves. Similarity is defined as the square of the Euclidean distance between vectors representing the scaled absolute values of the amplitudes of the observed signal and a given reference example in time windows of the same length. For both P waves and S waves, a single pass is done through the bandpassed data, producing a score function defined as the ratio of the sum of similarity to positive examples over the sum of similarity to negative examples for each window. A phase arrival is chosen as the centre position of the window that maximizes the score function. The method is tested on two local earthquake data sets, consisting of 98 known events from the Parkfield region in central California and 32 known events from the Alpine Fault region on the South Island of New Zealand. For P-wave picks, using a reference set containing two picks from the Parkfield data set, 98 per cent of Parkfield and 94 per cent of Alpine Fault picks are determined within 0.1 s of the analyst pick. For S-wave picks, 94 per cent and 91 per cent of picks are determined within 0.2 s of the analyst picks for the Parkfield and Alpine Fault data set, respectively. For the Parkfield data set, our method picks 3520 P-wave picks and 3577 S-wave picks out of 4232 station-event pairs. For the Alpine Fault data set, the method picks 282 P-wave picks and 311 S-wave picks out of a total of 344 station-event pairs. For our testing, we note that the vast majority of station-event pairs have analyst picks, although some analyst picks are excluded based on an accuracy assessment. Finally, our tests suggest that the method is portable, allowing the use of a reference set from one region on data from a different region using relatively few reference picks.

  16. Alteration of Box-Jenkins methodology by implementing genetic algorithm method

    NASA Astrophysics Data System (ADS)

    Ismail, Zuhaimy; Maarof, Mohd Zulariffin Md; Fadzli, Mohammad

    2015-02-01

    A time series is a set of values sequentially observed through time. The Box-Jenkins methodology is a systematic method of identifying, fitting, checking and using integrated autoregressive moving average time series model for forecasting. Box-Jenkins method is an appropriate for a medium to a long length (at least 50) time series data observation. When modeling a medium to a long length (at least 50), the difficulty arose in choosing the accurate order of model identification level and to discover the right parameter estimation. This presents the development of Genetic Algorithm heuristic method in solving the identification and estimation models problems in Box-Jenkins. Data on International Tourist arrivals to Malaysia were used to illustrate the effectiveness of this proposed method. The forecast results that generated from this proposed model outperformed single traditional Box-Jenkins model.

  17. Efficient Algorithms for Segmentation of Item-Set Time Series

    NASA Astrophysics Data System (ADS)

    Chundi, Parvathi; Rosenkrantz, Daniel J.

    We propose a special type of time series, which we call an item-set time series, to facilitate the temporal analysis of software version histories, email logs, stock market data, etc. In an item-set time series, each observed data value is a set of discrete items. We formalize the concept of an item-set time series and present efficient algorithms for segmenting a given item-set time series. Segmentation of a time series partitions the time series into a sequence of segments where each segment is constructed by combining consecutive time points of the time series. Each segment is associated with an item set that is computed from the item sets of the time points in that segment, using a function which we call a measure function. We then define a concept called the segment difference, which measures the difference between the item set of a segment and the item sets of the time points in that segment. The segment difference values are required to construct an optimal segmentation of the time series. We describe novel and efficient algorithms to compute segment difference values for each of the measure functions described in the paper. We outline a dynamic programming based scheme to construct an optimal segmentation of the given item-set time series. We use the item-set time series segmentation techniques to analyze the temporal content of three different data sets—Enron email, stock market data, and a synthetic data set. The experimental results show that an optimal segmentation of item-set time series data captures much more temporal content than a segmentation constructed based on the number of time points in each segment, without examining the item set data at the time points, and can be used to analyze different types of temporal data.

  18. Fast and Scalable Gaussian Process Modeling with Applications to Astronomical Time Series

    NASA Astrophysics Data System (ADS)

    Foreman-Mackey, Daniel; Agol, Eric; Ambikasaran, Sivaram; Angus, Ruth

    2017-12-01

    The growing field of large-scale time domain astronomy requires methods for probabilistic data analysis that are computationally tractable, even with large data sets. Gaussian processes (GPs) are a popular class of models used for this purpose, but since the computational cost scales, in general, as the cube of the number of data points, their application has been limited to small data sets. In this paper, we present a novel method for GPs modeling in one dimension where the computational requirements scale linearly with the size of the data set. We demonstrate the method by applying it to simulated and real astronomical time series data sets. These demonstrations are examples of probabilistic inference of stellar rotation periods, asteroseismic oscillation spectra, and transiting planet parameters. The method exploits structure in the problem when the covariance function is expressed as a mixture of complex exponentials, without requiring evenly spaced observations or uniform noise. This form of covariance arises naturally when the process is a mixture of stochastically driven damped harmonic oscillators—providing a physical motivation for and interpretation of this choice—but we also demonstrate that it can be a useful effective model in some other cases. We present a mathematical description of the method and compare it to existing scalable GP methods. The method is fast and interpretable, with a range of potential applications within astronomical data analysis and beyond. We provide well-tested and documented open-source implementations of this method in C++, Python, and Julia.

  19. Mathematical Methods for Physics and Engineering Third Edition Paperback Set

    NASA Astrophysics Data System (ADS)

    Riley, Ken F.; Hobson, Mike P.; Bence, Stephen J.

    2006-06-01

    Prefaces; 1. Preliminary algebra; 2. Preliminary calculus; 3. Complex numbers and hyperbolic functions; 4. Series and limits; 5. Partial differentiation; 6. Multiple integrals; 7. Vector algebra; 8. Matrices and vector spaces; 9. Normal modes; 10. Vector calculus; 11. Line, surface and volume integrals; 12. Fourier series; 13. Integral transforms; 14. First-order ordinary differential equations; 15. Higher-order ordinary differential equations; 16. Series solutions of ordinary differential equations; 17. Eigenfunction methods for differential equations; 18. Special functions; 19. Quantum operators; 20. Partial differential equations: general and particular; 21. Partial differential equations: separation of variables; 22. Calculus of variations; 23. Integral equations; 24. Complex variables; 25. Application of complex variables; 26. Tensors; 27. Numerical methods; 28. Group theory; 29. Representation theory; 30. Probability; 31. Statistics; Index.

  20. Recurrence Density Enhanced Complex Networks for Nonlinear Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Costa, Diego G. De B.; Reis, Barbara M. Da F.; Zou, Yong; Quiles, Marcos G.; Macau, Elbert E. N.

    We introduce a new method, which is entitled Recurrence Density Enhanced Complex Network (RDE-CN), to properly analyze nonlinear time series. Our method first transforms a recurrence plot into a figure of a reduced number of points yet preserving the main and fundamental recurrence properties of the original plot. This resulting figure is then reinterpreted as a complex network, which is further characterized by network statistical measures. We illustrate the computational power of RDE-CN approach by time series by both the logistic map and experimental fluid flows, which show that our method distinguishes different dynamics sufficiently well as the traditional recurrence analysis. Therefore, the proposed methodology characterizes the recurrence matrix adequately, while using a reduced set of points from the original recurrence plots.

  1. Exploratory Causal Analysis in Bivariate Time Series Data

    NASA Astrophysics Data System (ADS)

    McCracken, James M.

    Many scientific disciplines rely on observational data of systems for which it is difficult (or impossible) to implement controlled experiments and data analysis techniques are required for identifying causal information and relationships directly from observational data. This need has lead to the development of many different time series causality approaches and tools including transfer entropy, convergent cross-mapping (CCM), and Granger causality statistics. In this thesis, the existing time series causality method of CCM is extended by introducing a new method called pairwise asymmetric inference (PAI). It is found that CCM may provide counter-intuitive causal inferences for simple dynamics with strong intuitive notions of causality, and the CCM causal inference can be a function of physical parameters that are seemingly unrelated to the existence of a driving relationship in the system. For example, a CCM causal inference might alternate between ''voltage drives current'' and ''current drives voltage'' as the frequency of the voltage signal is changed in a series circuit with a single resistor and inductor. PAI is introduced to address both of these limitations. Many of the current approaches in the times series causality literature are not computationally straightforward to apply, do not follow directly from assumptions of probabilistic causality, depend on assumed models for the time series generating process, or rely on embedding procedures. A new approach, called causal leaning, is introduced in this work to avoid these issues. The leaning is found to provide causal inferences that agree with intuition for both simple systems and more complicated empirical examples, including space weather data sets. The leaning may provide a clearer interpretation of the results than those from existing time series causality tools. A practicing analyst can explore the literature to find many proposals for identifying drivers and causal connections in times series data sets, but little research exists of how these tools compare to each other in practice. This work introduces and defines exploratory causal analysis (ECA) to address this issue along with the concept of data causality in the taxonomy of causal studies introduced in this work. The motivation is to provide a framework for exploring potential causal structures in time series data sets. ECA is used on several synthetic and empirical data sets, and it is found that all of the tested time series causality tools agree with each other (and intuitive notions of causality) for many simple systems but can provide conflicting causal inferences for more complicated systems. It is proposed that such disagreements between different time series causality tools during ECA might provide deeper insight into the data than could be found otherwise.

  2. Effects on Vocabulary Acquisition of Presenting New Words in Semantic Sets versus Semantically Unrelated Sets

    ERIC Educational Resources Information Center

    Erten, Ismail Hakki; Tekin, Mustafa

    2008-01-01

    This paper reports on a study which investigated the effect on vocabulary recall of introducing new words via two different methods. A one-group quasi-experimental research design with alternating time series measures was employed. A group of 60 fourth graders were taught 80 carefully selected words either in semantically related sets or…

  3. Does preprocessing change nonlinear measures of heart rate variability?

    PubMed

    Gomes, Murilo E D; Guimarães, Homero N; Ribeiro, Antônio L P; Aguirre, Luis A

    2002-11-01

    This work investigated if methods used to produce a uniformly sampled heart rate variability (HRV) time series significantly change the deterministic signature underlying the dynamics of such signals and some nonlinear measures of HRV. Two methods of preprocessing were used: the convolution of inverse interval function values with a rectangular window and the cubic polynomial interpolation. The HRV time series were obtained from 33 Wistar rats submitted to autonomic blockade protocols and from 17 healthy adults. The analysis of determinism was carried out by the method of surrogate data sets and nonlinear autoregressive moving average modelling and prediction. The scaling exponents alpha, alpha(1) and alpha(2) derived from the detrended fluctuation analysis were calculated from raw HRV time series and respective preprocessed signals. It was shown that the technique of cubic interpolation of HRV time series did not significantly change any nonlinear characteristic studied in this work, while the method of convolution only affected the alpha(1) index. The results suggested that preprocessed time series may be used to study HRV in the field of nonlinear dynamics.

  4. Sustainability in Health care by allocating resources effectively (SHARE) 1: introducing a series of papers reporting an investigation of disinvestment in a local healthcare setting.

    PubMed

    Harris, Claire; Green, Sally; Ramsey, Wayne; Allen, Kelly; King, Richard

    2017-05-04

    This is the first in a series of papers reporting Sustainability in Health care by Allocating Resources Effectively (SHARE). The SHARE Program is an investigation of concepts, opportunities, methods and implications for evidence-based investment and disinvestment in health technologies and clinical practices in a local healthcare setting. The papers in this series are targeted at clinicians, managers, policy makers, health service researchers and implementation scientists working in this context. This paper presents an overview of the organisation-wide, systematic, integrated, evidence-based approach taken by one Australian healthcare network and provides an introduction and guide to the suite of papers reporting the experiences and outcomes.

  5. The genomic response of skeletal muscle to methylprednisolone using microarrays: tailoring data mining to the structure of the pharmacogenomic time series

    PubMed Central

    DuBois, Debra C; Piel, William H; Jusko, William J

    2008-01-01

    High-throughput data collection using gene microarrays has great potential as a method for addressing the pharmacogenomics of complex biological systems. Similarly, mechanism-based pharmacokinetic/pharmacodynamic modeling provides a tool for formulating quantitative testable hypotheses concerning the responses of complex biological systems. As the response of such systems to drugs generally entails cascades of molecular events in time, a time series design provides the best approach to capturing the full scope of drug effects. A major problem in using microarrays for high-throughput data collection is sorting through the massive amount of data in order to identify probe sets and genes of interest. Due to its inherent redundancy, a rich time series containing many time points and multiple samples per time point allows for the use of less stringent criteria of expression, expression change and data quality for initial filtering of unwanted probe sets. The remaining probe sets can then become the focus of more intense scrutiny by other methods, including temporal clustering, functional clustering and pharmacokinetic/pharmacodynamic modeling, which provide additional ways of identifying the probes and genes of pharmacological interest. PMID:15212590

  6. Sequential Monte Carlo for inference of latent ARMA time-series with innovations correlated in time

    NASA Astrophysics Data System (ADS)

    Urteaga, Iñigo; Bugallo, Mónica F.; Djurić, Petar M.

    2017-12-01

    We consider the problem of sequential inference of latent time-series with innovations correlated in time and observed via nonlinear functions. We accommodate time-varying phenomena with diverse properties by means of a flexible mathematical representation of the data. We characterize statistically such time-series by a Bayesian analysis of their densities. The density that describes the transition of the state from time t to the next time instant t+1 is used for implementation of novel sequential Monte Carlo (SMC) methods. We present a set of SMC methods for inference of latent ARMA time-series with innovations correlated in time for different assumptions in knowledge of parameters. The methods operate in a unified and consistent manner for data with diverse memory properties. We show the validity of the proposed approach by comprehensive simulations of the challenging stochastic volatility model.

  7. Analyzing Single-Molecule Time Series via Nonparametric Bayesian Inference

    PubMed Central

    Hines, Keegan E.; Bankston, John R.; Aldrich, Richard W.

    2015-01-01

    The ability to measure the properties of proteins at the single-molecule level offers an unparalleled glimpse into biological systems at the molecular scale. The interpretation of single-molecule time series has often been rooted in statistical mechanics and the theory of Markov processes. While existing analysis methods have been useful, they are not without significant limitations including problems of model selection and parameter nonidentifiability. To address these challenges, we introduce the use of nonparametric Bayesian inference for the analysis of single-molecule time series. These methods provide a flexible way to extract structure from data instead of assuming models beforehand. We demonstrate these methods with applications to several diverse settings in single-molecule biophysics. This approach provides a well-constrained and rigorously grounded method for determining the number of biophysical states underlying single-molecule data. PMID:25650922

  8. A hybrid group method of data handling with discrete wavelet transform for GDP forecasting

    NASA Astrophysics Data System (ADS)

    Isa, Nadira Mohamed; Shabri, Ani

    2013-09-01

    This study is proposed the application of hybridization model using Group Method of Data Handling (GMDH) and Discrete Wavelet Transform (DWT) in time series forecasting. The objective of this paper is to examine the flexibility of the hybridization GMDH in time series forecasting by using Gross Domestic Product (GDP). A time series data set is used in this study to demonstrate the effectiveness of the forecasting model. This data are utilized to forecast through an application aimed to handle real life time series. This experiment compares the performances of a hybrid model and a single model of Wavelet-Linear Regression (WR), Artificial Neural Network (ANN), and conventional GMDH. It is shown that the proposed model can provide a promising alternative technique in GDP forecasting.

  9. Gaussian mixture clustering and imputation of microarray data.

    PubMed

    Ouyang, Ming; Welsh, William J; Georgopoulos, Panos

    2004-04-12

    In microarray experiments, missing entries arise from blemishes on the chips. In large-scale studies, virtually every chip contains some missing entries and more than 90% of the genes are affected. Many analysis methods require a full set of data. Either those genes with missing entries are excluded, or the missing entries are filled with estimates prior to the analyses. This study compares methods of missing value estimation. Two evaluation metrics of imputation accuracy are employed. First, the root mean squared error measures the difference between the true values and the imputed values. Second, the number of mis-clustered genes measures the difference between clustering with true values and that with imputed values; it examines the bias introduced by imputation to clustering. The Gaussian mixture clustering with model averaging imputation is superior to all other imputation methods, according to both evaluation metrics, on both time-series (correlated) and non-time series (uncorrelated) data sets.

  10. Products of multiple Fourier series with application to the multiblade transformation

    NASA Technical Reports Server (NTRS)

    Kunz, D. L.

    1981-01-01

    A relatively simple and systematic method for forming the products of multiple Fourier series using tensor like operations is demonstrated. This symbolic multiplication can be performed for any arbitrary number of series, and the coefficients of a set of linear differential equations with periodic coefficients from a rotating coordinate system to a nonrotating system is also demonstrated. It is shown that using Fourier operations to perform this transformation make it easily understood, simple to apply, and generally applicable.

  11. Read On! II. A Sequential Reading Series. Instructor's Guide.

    ERIC Educational Resources Information Center

    Lawson, V. K.; And Others

    This guide is intended for use by teachers and tutors who are using the assisted reading method to teach reading to adult learners. The introduction describes the contents of the guide and the other materials in the Read On! II series, i.e., six textbooks, six workbooks, and a set of tutor resource sheets for use with learners at the beginning…

  12. Clustering Financial Time Series by Network Community Analysis

    NASA Astrophysics Data System (ADS)

    Piccardi, Carlo; Calatroni, Lisa; Bertoni, Fabio

    In this paper, we describe a method for clustering financial time series which is based on community analysis, a recently developed approach for partitioning the nodes of a network (graph). A network with N nodes is associated to the set of N time series. The weight of the link (i, j), which quantifies the similarity between the two corresponding time series, is defined according to a metric based on symbolic time series analysis, which has recently proved effective in the context of financial time series. Then, searching for network communities allows one to identify groups of nodes (and then time series) with strong similarity. A quantitative assessment of the significance of the obtained partition is also provided. The method is applied to two distinct case-studies concerning the US and Italy Stock Exchange, respectively. In the US case, the stability of the partitions over time is also thoroughly investigated. The results favorably compare with those obtained with the standard tools typically used for clustering financial time series, such as the minimal spanning tree and the hierarchical tree.

  13. Boolean network identification from perturbation time series data combining dynamics abstraction and logic programming.

    PubMed

    Ostrowski, M; Paulevé, L; Schaub, T; Siegel, A; Guziolowski, C

    2016-11-01

    Boolean networks (and more general logic models) are useful frameworks to study signal transduction across multiple pathways. Logic models can be learned from a prior knowledge network structure and multiplex phosphoproteomics data. However, most efficient and scalable training methods focus on the comparison of two time-points and assume that the system has reached an early steady state. In this paper, we generalize such a learning procedure to take into account the time series traces of phosphoproteomics data in order to discriminate Boolean networks according to their transient dynamics. To that end, we identify a necessary condition that must be satisfied by the dynamics of a Boolean network to be consistent with a discretized time series trace. Based on this condition, we use Answer Set Programming to compute an over-approximation of the set of Boolean networks which fit best with experimental data and provide the corresponding encodings. Combined with model-checking approaches, we end up with a global learning algorithm. Our approach is able to learn logic models with a true positive rate higher than 78% in two case studies of mammalian signaling networks; for a larger case study, our method provides optimal answers after 7min of computation. We quantified the gain in our method predictions precision compared to learning approaches based on static data. Finally, as an application, our method proposes erroneous time-points in the time series data with respect to the optimal learned logic models. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Exact exchange-correlation potentials of singlet two-electron systems

    NASA Astrophysics Data System (ADS)

    Ryabinkin, Ilya G.; Ospadov, Egor; Staroverov, Viktor N.

    2017-10-01

    We suggest a non-iterative analytic method for constructing the exchange-correlation potential, v XC ( r ) , of any singlet ground-state two-electron system. The method is based on a convenient formula for v XC ( r ) in terms of quantities determined only by the system's electronic wave function, exact or approximate, and is essentially different from the Kohn-Sham inversion technique. When applied to Gaussian-basis-set wave functions, the method yields finite-basis-set approximations to the corresponding basis-set-limit v XC ( r ) , whereas the Kohn-Sham inversion produces physically inappropriate (oscillatory and divergent) potentials. The effectiveness of the procedure is demonstrated by computing accurate exchange-correlation potentials of several two-electron systems (helium isoelectronic series, H2, H3 + ) using common ab initio methods and Gaussian basis sets.

  15. Information mining over heterogeneous and high-dimensional time-series data in clinical trials databases.

    PubMed

    Altiparmak, Fatih; Ferhatosmanoglu, Hakan; Erdal, Selnur; Trost, Donald C

    2006-04-01

    An effective analysis of clinical trials data involves analyzing different types of data such as heterogeneous and high dimensional time series data. The current time series analysis methods generally assume that the series at hand have sufficient length to apply statistical techniques to them. Other ideal case assumptions are that data are collected in equal length intervals, and while comparing time series, the lengths are usually expected to be equal to each other. However, these assumptions are not valid for many real data sets, especially for the clinical trials data sets. An addition, the data sources are different from each other, the data are heterogeneous, and the sensitivity of the experiments varies by the source. Approaches for mining time series data need to be revisited, keeping the wide range of requirements in mind. In this paper, we propose a novel approach for information mining that involves two major steps: applying a data mining algorithm over homogeneous subsets of data, and identifying common or distinct patterns over the information gathered in the first step. Our approach is implemented specifically for heterogeneous and high dimensional time series clinical trials data. Using this framework, we propose a new way of utilizing frequent itemset mining, as well as clustering and declustering techniques with novel distance metrics for measuring similarity between time series data. By clustering the data, we find groups of analytes (substances in blood) that are most strongly correlated. Most of these relationships already known are verified by the clinical panels, and, in addition, we identify novel groups that need further biomedical analysis. A slight modification to our algorithm results an effective declustering of high dimensional time series data, which is then used for "feature selection." Using industry-sponsored clinical trials data sets, we are able to identify a small set of analytes that effectively models the state of normal health.

  16. A Method for Oscillation Errors Restriction of SINS Based on Forecasted Time Series.

    PubMed

    Zhao, Lin; Li, Jiushun; Cheng, Jianhua; Jia, Chun; Wang, Qiufan

    2015-07-17

    Continuity, real-time, and accuracy are the key technical indexes of evaluating comprehensive performance of a strapdown inertial navigation system (SINS). However, Schuler, Foucault, and Earth periodic oscillation errors significantly cut down the real-time accuracy of SINS. A method for oscillation error restriction of SINS based on forecasted time series is proposed by analyzing the characteristics of periodic oscillation errors. The innovative method gains multiple sets of navigation solutions with different phase delays in virtue of the forecasted time series acquired through the measurement data of the inertial measurement unit (IMU). With the help of curve-fitting based on least square method, the forecasted time series is obtained while distinguishing and removing small angular motion interference in the process of initial alignment. Finally, the periodic oscillation errors are restricted on account of the principle of eliminating the periodic oscillation signal with a half-wave delay by mean value. Simulation and test results show that the method has good performance in restricting the Schuler, Foucault, and Earth oscillation errors of SINS.

  17. A Method for Oscillation Errors Restriction of SINS Based on Forecasted Time Series

    PubMed Central

    Zhao, Lin; Li, Jiushun; Cheng, Jianhua; Jia, Chun; Wang, Qiufan

    2015-01-01

    Continuity, real-time, and accuracy are the key technical indexes of evaluating comprehensive performance of a strapdown inertial navigation system (SINS). However, Schuler, Foucault, and Earth periodic oscillation errors significantly cut down the real-time accuracy of SINS. A method for oscillation error restriction of SINS based on forecasted time series is proposed by analyzing the characteristics of periodic oscillation errors. The innovative method gains multiple sets of navigation solutions with different phase delays in virtue of the forecasted time series acquired through the measurement data of the inertial measurement unit (IMU). With the help of curve-fitting based on least square method, the forecasted time series is obtained while distinguishing and removing small angular motion interference in the process of initial alignment. Finally, the periodic oscillation errors are restricted on account of the principle of eliminating the periodic oscillation signal with a half-wave delay by mean value. Simulation and test results show that the method has good performance in restricting the Schuler, Foucault, and Earth oscillation errors of SINS. PMID:26193283

  18. Transformer induced instability of the series resonant converter

    NASA Technical Reports Server (NTRS)

    King, R. J.; Stuart, T. A.

    1983-01-01

    It is shown that the common series resonant power converter is subject to a low frequency oscillation that can lead to the loss of cyclic stability. This oscillation is caused by a low frequency resonant circuit formed by the normal L and C components in series with the magnetizing inductance of the output transformer. Three methods for eliminating this oscillation are presented and analyzed. One of these methods requires a change in the circuit topology during the resonance cycle. This requires a new set of steady state equations which are derived and presented in a normalized form. Experimental results are included which demonstrate the nature of the low frequency oscillation before cyclic stability is lost.

  19. HOMPRA Europe - A gridded precipitation data set from European homogenized time series

    NASA Astrophysics Data System (ADS)

    Rustemeier, Elke; Kapala, Alice; Meyer-Christoffer, Anja; Finger, Peter; Schneider, Udo; Venema, Victor; Ziese, Markus; Simmer, Clemens; Becker, Andreas

    2017-04-01

    Reliable monitoring data are essential for robust analyses of climate variability and, in particular, long-term trends. In this regard, a gridded, homogenized data set of monthly precipitation totals - HOMPRA Europe (HOMogenized PRecipitation Analysis of European in-situ data)- is presented. The data base consists of 5373 homogenized monthly time series, a carefully selected subset held by the Global Precipitation Climatology Centre (GPCC). The chosen series cover the period 1951-2005 and contain less than 10% missing values. Due to the large number of data, an automatic algorithm had to be developed for the homogenization of these precipitation series. In principal, the algorithm is based on three steps: * Selection of overlapping station networks in the same precipitation regime, based on rank correlation and Ward's method of minimal variance. Since the underlying time series should be as homogeneous as possible, the station selection is carried out by deterministic first derivation in order to reduce artificial influences. * The natural variability and trends were temporally removed by means of highly correlated neighboring time series to detect artificial break-points in the annual totals. This ensures that only artificial changes can be detected. The method is based on the algorithm of Caussinus and Mestre (2004). * In the last step, the detected breaks are corrected monthly by means of a multiple linear regression (Mestre, 2003). Due to the automation of the homogenization, the validation of the algorithm is essential. Therefore, the method was tested on artificial data sets. Additionally the sensitivity of the method was tested by varying the neighborhood series. If available in digitized form, the station history was also used to search for systematic errors in the jump detection. Finally, the actual HOMPRA Europe product is produced by interpolation of the homogenized series onto a 1° grid using one of the interpolation schems operationally at GPCC (Becker et al., 2013 and Schamm et al., 2014). Caussinus, H., und O. Mestre, 2004: Detection and correction of artificial shifts in climate series, Journal of the Royal, Statistical Society. Series C (Applied Statistics), 53(3), 405-425. Mestre, O., 2003: Correcting climate series using ANOVA technique, Proceedings of the fourth seminar Willmott, C.; Rowe, C. & Philpot, W., 1985: Small-scale climate maps: A sensitivity analysis of some common assumptions associated with grid-point interpolation and contouring The American Carthographer, 12, 5-16 Becker, A.; Finger, P.; Meyer-Christoffer, A.; Rudolf, B.; Schamm, K.; Schneider, U. & Ziese, M., 2013: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901-present Earth System Science Data, 5, 71-99 Schamm, K.; Ziese, M.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Schneider, U.; Schröder, M. & Stender, P., 2014: Global gridded precipitation over land: a description of the new GPCC First Guess Daily product, Earth System Science Data, 6, 49-60

  20. A geodetic matched filter search for slow slip with application to the Mexico subduction zone

    NASA Astrophysics Data System (ADS)

    Rousset, B.; Campillo, M.; Lasserre, C.; Frank, W. B.; Cotte, N.; Walpersdorf, A.; Socquet, A.; Kostoglodov, V.

    2017-12-01

    Since the discovery of slow slip events, many methods have been successfully applied to model obvious transient events in geodetic time series, such as the widely used network strain filter. Independent seismological observations of tremors or low-frequency earthquakes and repeating earthquakes provide evidence of low-amplitude slow deformation but do not always coincide with clear occurrences of transient signals in geodetic time series. Here we aim to extract the signal corresponding to slow slips hidden in the noise of GPS time series, without using information from independent data sets. We first build a library of synthetic slow slip event templates by assembling a source function with Green's functions for a discretized fault. We then correlate the templates with postprocessed GPS time series. Once the events have been detected in time, we estimate their duration T and magnitude Mw by modeling a weighted stack of GPS time series. An analysis of synthetic time series shows that this method is able to resolve the correct timing, location, T, and Mw of events larger than Mw 6 in the context of the Mexico subduction zone. Applied on a real data set of 29 GPS time series in the Guerrero area from 2005 to 2014, this technique allows us to detect 28 transient events from Mw 6.3 to 7.2 with durations that range from 3 to 39 days. These events have a dominant recurrence time of 40 days and are mainly located at the downdip edges of the Mw>7.5 slow slip events.

  1. Agreement evaluation of AVHRR and MODIS 16-day composite NDVI data sets

    USGS Publications Warehouse

    Ji, Lei; Gallo, Kevin P.; Eidenshink, Jeffery C.; Dwyer, John L.

    2008-01-01

    Satellite-derived normalized difference vegetation index (NDVI) data have been used extensively to detect and monitor vegetation conditions at regional and global levels. A combination of NDVI data sets derived from AVHRR and MODIS can be used to construct a long NDVI time series that may also be extended to VIIRS. Comparative analysis of NDVI data derived from AVHRR and MODIS is critical to understanding the data continuity through the time series. In this study, the AVHRR and MODIS 16-day composite NDVI products were compared using regression and agreement analysis methods. The analysis shows a high agreement between the AVHRR-NDVI and MODIS-NDVI observed from 2002 and 2003 for the conterminous United States, but the difference between the two data sets is appreciable. Twenty per cent of the total difference between the two data sets is due to systematic difference, with the remainder due to unsystematic difference. The systematic difference can be eliminated with a linear regression-based transformation between two data sets, and the unsystematic difference can be reduced partially by applying spatial filters to the data. We conclude that the continuity of NDVI time series from AVHRR to MODIS is satisfactory, but a linear transformation between the two sets is recommended.

  2. A Multipixel Time Series Analysis Method Accounting for Ground Motion, Atmospheric Noise, and Orbital Errors

    NASA Astrophysics Data System (ADS)

    Jolivet, R.; Simons, M.

    2018-02-01

    Interferometric synthetic aperture radar time series methods aim to reconstruct time-dependent ground displacements over large areas from sets of interferograms in order to detect transient, periodic, or small-amplitude deformation. Because of computational limitations, most existing methods consider each pixel independently, ignoring important spatial covariances between observations. We describe a framework to reconstruct time series of ground deformation while considering all pixels simultaneously, allowing us to account for spatial covariances, imprecise orbits, and residual atmospheric perturbations. We describe spatial covariances by an exponential decay function dependent of pixel-to-pixel distance. We approximate the impact of imprecise orbit information and residual long-wavelength atmosphere as a low-order polynomial function. Tests on synthetic data illustrate the importance of incorporating full covariances between pixels in order to avoid biased parameter reconstruction. An example of application to the northern Chilean subduction zone highlights the potential of this method.

  3. Quasi-measures on the group G{sup m}, Dirichlet sets, and uniqueness problems for multiple Walsh series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plotnikov, Mikhail G

    2011-02-11

    Multiple Walsh series (S) on the group G{sup m} are studied. It is proved that every at most countable set is a uniqueness set for series (S) under convergence over cubes. The recovery problem is solved for the coefficients of series (S) that converge outside countable sets or outside sets of Dirichlet type. A number of analogues of the de la Vallee Poussin theorem are established for series (S). Bibliography: 28 titles.

  4. Online Conditional Outlier Detection in Nonstationary Time Series

    PubMed Central

    Liu, Siqi; Wright, Adam; Hauskrecht, Milos

    2017-01-01

    The objective of this work is to develop methods for detecting outliers in time series data. Such methods can become the key component of various monitoring and alerting systems, where an outlier may be equal to some adverse condition that needs human attention. However, real-world time series are often affected by various sources of variability present in the environment that may influence the quality of detection; they may (1) explain some of the changes in the signal that would otherwise lead to false positive detections, as well as, (2) reduce the sensitivity of the detection algorithm leading to increase in false negatives. To alleviate these problems, we propose a new two-layer outlier detection approach that first tries to model and account for the nonstationarity and periodic variation in the time series, and then tries to use other observable variables in the environment to explain any additional signal variation. Our experiments on several data sets in different domains show that our method provides more accurate modeling of the time series, and that it is able to significantly improve outlier detection performance. PMID:29644345

  5. Online Conditional Outlier Detection in Nonstationary Time Series.

    PubMed

    Liu, Siqi; Wright, Adam; Hauskrecht, Milos

    2017-05-01

    The objective of this work is to develop methods for detecting outliers in time series data. Such methods can become the key component of various monitoring and alerting systems, where an outlier may be equal to some adverse condition that needs human attention. However, real-world time series are often affected by various sources of variability present in the environment that may influence the quality of detection; they may (1) explain some of the changes in the signal that would otherwise lead to false positive detections, as well as, (2) reduce the sensitivity of the detection algorithm leading to increase in false negatives. To alleviate these problems, we propose a new two-layer outlier detection approach that first tries to model and account for the nonstationarity and periodic variation in the time series, and then tries to use other observable variables in the environment to explain any additional signal variation. Our experiments on several data sets in different domains show that our method provides more accurate modeling of the time series, and that it is able to significantly improve outlier detection performance.

  6. Time series analysis as input for clinical predictive modeling: Modeling cardiac arrest in a pediatric ICU

    PubMed Central

    2011-01-01

    Background Thousands of children experience cardiac arrest events every year in pediatric intensive care units. Most of these children die. Cardiac arrest prediction tools are used as part of medical emergency team evaluations to identify patients in standard hospital beds that are at high risk for cardiac arrest. There are no models to predict cardiac arrest in pediatric intensive care units though, where the risk of an arrest is 10 times higher than for standard hospital beds. Current tools are based on a multivariable approach that does not characterize deterioration, which often precedes cardiac arrests. Characterizing deterioration requires a time series approach. The purpose of this study is to propose a method that will allow for time series data to be used in clinical prediction models. Successful implementation of these methods has the potential to bring arrest prediction to the pediatric intensive care environment, possibly allowing for interventions that can save lives and prevent disabilities. Methods We reviewed prediction models from nonclinical domains that employ time series data, and identified the steps that are necessary for building predictive models using time series clinical data. We illustrate the method by applying it to the specific case of building a predictive model for cardiac arrest in a pediatric intensive care unit. Results Time course analysis studies from genomic analysis provided a modeling template that was compatible with the steps required to develop a model from clinical time series data. The steps include: 1) selecting candidate variables; 2) specifying measurement parameters; 3) defining data format; 4) defining time window duration and resolution; 5) calculating latent variables for candidate variables not directly measured; 6) calculating time series features as latent variables; 7) creating data subsets to measure model performance effects attributable to various classes of candidate variables; 8) reducing the number of candidate features; 9) training models for various data subsets; and 10) measuring model performance characteristics in unseen data to estimate their external validity. Conclusions We have proposed a ten step process that results in data sets that contain time series features and are suitable for predictive modeling by a number of methods. We illustrated the process through an example of cardiac arrest prediction in a pediatric intensive care setting. PMID:22023778

  7. Seismic joint analysis for non-destructive testing of asphalt and concrete slabs

    USGS Publications Warehouse

    Ryden, N.; Park, C.B.

    2005-01-01

    A seismic approach is used to estimate the thickness and elastic stiffness constants of asphalt or concrete slabs. The overall concept of the approach utilizes the robustness of the multichannel seismic method. A multichannel-equivalent data set is compiled from multiple time series recorded from multiple hammer impacts at progressively different offsets from a fixed receiver. This multichannel simulation with one receiver (MSOR) replaces the true multichannel recording in a cost-effective and convenient manner. A recorded data set is first processed to evaluate the shear wave velocity through a wave field transformation, normally used in the multichannel analysis of surface waves (MASW) method, followed by a Lambwave inversion. Then, the same data set is used to evaluate compression wave velocity from a combined processing of the first-arrival picking and a linear regression. Finally, the amplitude spectra of the time series are used to evaluate the thickness by following the concepts utilized in the Impact Echo (IE) method. Due to the powerful signal extraction capabilities ensured by the multichannel processing schemes used, the entire procedure for all three evaluations can be fully automated and results can be obtained directly in the field. A field data set is used to demonstrate the proposed approach.

  8. Detecting discordance enrichment among a series of two-sample genome-wide expression data sets.

    PubMed

    Lai, Yinglei; Zhang, Fanni; Nayak, Tapan K; Modarres, Reza; Lee, Norman H; McCaffrey, Timothy A

    2017-01-25

    With the current microarray and RNA-seq technologies, two-sample genome-wide expression data have been widely collected in biological and medical studies. The related differential expression analysis and gene set enrichment analysis have been frequently conducted. Integrative analysis can be conducted when multiple data sets are available. In practice, discordant molecular behaviors among a series of data sets can be of biological and clinical interest. In this study, a statistical method is proposed for detecting discordance gene set enrichment. Our method is based on a two-level multivariate normal mixture model. It is statistically efficient with linearly increased parameter space when the number of data sets is increased. The model-based probability of discordance enrichment can be calculated for gene set detection. We apply our method to a microarray expression data set collected from forty-five matched tumor/non-tumor pairs of tissues for studying pancreatic cancer. We divided the data set into a series of non-overlapping subsets according to the tumor/non-tumor paired expression ratio of gene PNLIP (pancreatic lipase, recently shown it association with pancreatic cancer). The log-ratio ranges from a negative value (e.g. more expressed in non-tumor tissue) to a positive value (e.g. more expressed in tumor tissue). Our purpose is to understand whether any gene sets are enriched in discordant behaviors among these subsets (when the log-ratio is increased from negative to positive). We focus on KEGG pathways. The detected pathways will be useful for our further understanding of the role of gene PNLIP in pancreatic cancer research. Among the top list of detected pathways, the neuroactive ligand receptor interaction and olfactory transduction pathways are the most significant two. Then, we consider gene TP53 that is well-known for its role as tumor suppressor in cancer research. The log-ratio also ranges from a negative value (e.g. more expressed in non-tumor tissue) to a positive value (e.g. more expressed in tumor tissue). We divided the microarray data set again according to the expression ratio of gene TP53. After the discordance enrichment analysis, we observed overall similar results and the above two pathways are still the most significant detections. More interestingly, only these two pathways have been identified for their association with pancreatic cancer in a pathway analysis of genome-wide association study (GWAS) data. This study illustrates that some disease-related pathways can be enriched in discordant molecular behaviors when an important disease-related gene changes its expression. Our proposed statistical method is useful in the detection of these pathways. Furthermore, our method can also be applied to genome-wide expression data collected by the recent RNA-seq technology.

  9. Target Detection and Classification Using Seismic and PIR Sensors

    DTIC Science & Technology

    2012-06-01

    time series analysis via wavelet - based partitioning,” Signal Process...regard, this paper presents a wavelet - based method for target detection and classification. The proposed method has been validated on data sets of...The work reported in this paper makes use of a wavelet - based feature extraction method , called Symbolic Dynamic Filtering (SDF) [12]–[14]. The

  10. Multichannel biomedical time series clustering via hierarchical probabilistic latent semantic analysis.

    PubMed

    Wang, Jin; Sun, Xiangping; Nahavandi, Saeid; Kouzani, Abbas; Wu, Yuchuan; She, Mary

    2014-11-01

    Biomedical time series clustering that automatically groups a collection of time series according to their internal similarity is of importance for medical record management and inspection such as bio-signals archiving and retrieval. In this paper, a novel framework that automatically groups a set of unlabelled multichannel biomedical time series according to their internal structural similarity is proposed. Specifically, we treat a multichannel biomedical time series as a document and extract local segments from the time series as words. We extend a topic model, i.e., the Hierarchical probabilistic Latent Semantic Analysis (H-pLSA), which was originally developed for visual motion analysis to cluster a set of unlabelled multichannel time series. The H-pLSA models each channel of the multichannel time series using a local pLSA in the first layer. The topics learned in the local pLSA are then fed to a global pLSA in the second layer to discover the categories of multichannel time series. Experiments on a dataset extracted from multichannel Electrocardiography (ECG) signals demonstrate that the proposed method performs better than previous state-of-the-art approaches and is relatively robust to the variations of parameters including length of local segments and dictionary size. Although the experimental evaluation used the multichannel ECG signals in a biometric scenario, the proposed algorithm is a universal framework for multichannel biomedical time series clustering according to their structural similarity, which has many applications in biomedical time series management. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Real-Time Geospatial Data Viewer (RETIGO)

    EPA Science Inventory

    This is a web-based method that allows the users to upload their air monitoring data and explore the data on graphical interface. The method is optimized for mobile monitoring data sets, showing the data on a map, on a time series, and referenced to a hypothesized line and/or poi...

  12. Clinical time series prediction: towards a hierarchical dynamical system framework

    PubMed Central

    Liu, Zitao; Hauskrecht, Milos

    2014-01-01

    Objective Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Materials and methods Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. Results We tested our framework by first learning the time series model from data for the patient in the training set, and then applying the model in order to predict future time series values on the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. Conclusion A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive performance. PMID:25534671

  13. Detecting Abrupt Changes in a Piecewise Locally Stationary Time Series

    PubMed Central

    Last, Michael; Shumway, Robert

    2007-01-01

    Non-stationary time series arise in many settings, such as seismology, speech-processing, and finance. In many of these settings we are interested in points where a model of local stationarity is violated. We consider the problem of how to detect these change-points, which we identify by finding sharp changes in the time-varying power spectrum. Several different methods are considered, and we find that the symmetrized Kullback-Leibler information discrimination performs best in simulation studies. We derive asymptotic normality of our test statistic, and consistency of estimated change-point locations. We then demonstrate the technique on the problem of detecting arrival phases in earthquakes. PMID:19190715

  14. A 16-year time series of 1 km AVHRR satellite data of the conterminous United States and Alaska

    USGS Publications Warehouse

    Eidenshink, Jeff

    2006-01-01

    The U.S. Geological Survey (USGS) has developed a 16-year time series of vegetation condition information for the conterminous United States and Alaska using 1 km Advanced Very High Resolution Radiometer (AVHRR) data. The AVHRR data have been processed using consistent methods that account for radiometric variability due to calibration uncertainty, the effects of the atmosphere on surface radiometric measurements obtained from wide field-of-view observations, and the geometric registration accuracy. The conterminous United States and Alaska data sets have an atmospheric correction for water vapor, ozone, and Rayleigh scattering and include a cloud mask derived using the Clouds from AVHRR (CLAVR) algorithm. In comparison with other AVHRR time series data sets, the conterminous United States and Alaska data are processed using similar techniques. The primary difference is that the conterminous United States and Alaska data are at 1 km resolution, while others are at 8 km resolution. The time series consists of weekly and biweekly maximum normalized difference vegetation index (NDVI) composites.

  15. Pan-European stochastic flood event set

    NASA Astrophysics Data System (ADS)

    Kadlec, Martin; Pinto, Joaquim G.; He, Yi; Punčochář, Petr; Kelemen, Fanni D.; Manful, Desmond; Palán, Ladislav

    2017-04-01

    Impact Forecasting (IF), the model development center of Aon Benfield, has been developing a large suite of catastrophe flood models on probabilistic bases for individual countries in Europe. Such natural catastrophes do not follow national boundaries: for example, the major flood in 2016 was responsible for the Europe's largest insured loss of USD3.4bn and affected Germany, France, Belgium, Austria and parts of several other countries. Reflecting such needs, IF initiated a pan-European flood event set development which combines cross-country exposures with country based loss distributions to provide more insightful data to re/insurers. Because the observed discharge data are not available across the whole Europe in sufficient quantity and quality to permit a detailed loss evaluation purposes, a top-down approach was chosen. This approach is based on simulating precipitation from a GCM/RCM model chain followed by a calculation of discharges using rainfall-runoff modelling. IF set up this project in a close collaboration with Karlsruhe Institute of Technology (KIT) regarding the precipitation estimates and with University of East Anglia (UEA) in terms of the rainfall-runoff modelling. KIT's main objective is to provide high resolution daily historical and stochastic time series of key meteorological variables. A purely dynamical downscaling approach with the regional climate model COSMO-CLM (CCLM) is used to generate the historical time series, using re-analysis data as boundary conditions. The resulting time series are validated against the gridded observational dataset E-OBS, and different bias-correction methods are employed. The generation of the stochastic time series requires transfer functions between large-scale atmospheric variables and regional temperature and precipitation fields. These transfer functions are developed for the historical time series using reanalysis data as predictors and bias-corrected CCLM simulated precipitation and temperature as predictands. Finally, the transfer functions are applied to a large ensemble of GCM simulations with forcing corresponding to present day climate conditions to generate highly resolved stochastic time series of precipitation and temperature for several thousand years. These time series form the input for the rainfall-runoff model developed by the UEA team. It is a spatially distributed model adapted from the HBV model and will be calibrated for individual basins using historical discharge data. The calibrated model will be driven by the precipitation time series generated by the KIT team to simulate discharges at a daily time step. The uncertainties in the simulated discharges will be analysed using multiple model parameter sets. A number of statistical methods will be used to assess return periods, changes in the magnitudes, changes in the characteristics of floods such as time base and time to peak, and spatial correlations of large flood events. The Pan-European flood stochastic event set will permit a better view of flood risk for market applications.

  16. A method for analyzing temporal patterns of variability of a time series from Poincare plots.

    PubMed

    Fishman, Mikkel; Jacono, Frank J; Park, Soojin; Jamasebi, Reza; Thungtong, Anurak; Loparo, Kenneth A; Dick, Thomas E

    2012-07-01

    The Poincaré plot is a popular two-dimensional, time series analysis tool because of its intuitive display of dynamic system behavior. Poincaré plots have been used to visualize heart rate and respiratory pattern variabilities. However, conventional quantitative analysis relies primarily on statistical measurements of the cumulative distribution of points, making it difficult to interpret irregular or complex plots. Moreover, the plots are constructed to reflect highly correlated regions of the time series, reducing the amount of nonlinear information that is presented and thereby hiding potentially relevant features. We propose temporal Poincaré variability (TPV), a novel analysis methodology that uses standard techniques to quantify the temporal distribution of points and to detect nonlinear sources responsible for physiological variability. In addition, the analysis is applied across multiple time delays, yielding a richer insight into system dynamics than the traditional circle return plot. The method is applied to data sets of R-R intervals and to synthetic point process data extracted from the Lorenz time series. The results demonstrate that TPV complements the traditional analysis and can be applied more generally, including Poincaré plots with multiple clusters, and more consistently than the conventional measures and can address questions regarding potential structure underlying the variability of a data set.

  17. Deconvolution of mixing time series on a graph

    PubMed Central

    Blocker, Alexander W.; Airoldi, Edoardo M.

    2013-01-01

    In many applications we are interested in making inference on latent time series from indirect measurements, which are often low-dimensional projections resulting from mixing or aggregation. Positron emission tomography, super-resolution, and network traffic monitoring are some examples. Inference in such settings requires solving a sequence of ill-posed inverse problems, yt = Axt, where the projection mechanism provides information on A. We consider problems in which A specifies mixing on a graph of times series that are bursty and sparse. We develop a multilevel state-space model for mixing times series and an efficient approach to inference. A simple model is used to calibrate regularization parameters that lead to efficient inference in the multilevel state-space model. We apply this method to the problem of estimating point-to-point traffic flows on a network from aggregate measurements. Our solution outperforms existing methods for this problem, and our two-stage approach suggests an efficient inference strategy for multilevel models of multivariate time series. PMID:25309135

  18. Symplectic geometry spectrum regression for prediction of noisy time series

    NASA Astrophysics Data System (ADS)

    Xie, Hong-Bo; Dokos, Socrates; Sivakumar, Bellie; Mengersen, Kerrie

    2016-05-01

    We present the symplectic geometry spectrum regression (SGSR) technique as well as a regularized method based on SGSR for prediction of nonlinear time series. The main tool of analysis is the symplectic geometry spectrum analysis, which decomposes a time series into the sum of a small number of independent and interpretable components. The key to successful regularization is to damp higher order symplectic geometry spectrum components. The effectiveness of SGSR and its superiority over local approximation using ordinary least squares are demonstrated through prediction of two noisy synthetic chaotic time series (Lorenz and Rössler series), and then tested for prediction of three real-world data sets (Mississippi River flow data and electromyographic and mechanomyographic signal recorded from human body).

  19. Computing singularities of perturbation series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kvaal, Simen; Jarlebring, Elias; Michiels, Wim

    2011-03-15

    Many properties of current ab initio approaches to the quantum many-body problem, both perturbational and otherwise, are related to the singularity structure of the Rayleigh-Schroedinger perturbation series. A numerical procedure is presented that in principle computes the complete set of singularities, including the dominant singularity which limits the radius of convergence. The method approximates the singularities as eigenvalues of a certain generalized eigenvalue equation which is solved using iterative techniques. It relies on computation of the action of the Hamiltonian matrix on a vector and does not rely on the terms in the perturbation series. The method can be usefulmore » for studying perturbation series of typical systems of moderate size, for fundamental development of resummation schemes, and for understanding the structure of singularities for typical systems. Some illustrative model problems are studied, including a helium-like model with {delta}-function interactions for which Moeller-Plesset perturbation theory is considered and the radius of convergence found.« less

  20. Time-Series Analysis: Assessing the Effects of Multiple Educational Interventions in a Small-Enrollment Course

    NASA Astrophysics Data System (ADS)

    Warren, Aaron R.

    2009-11-01

    Time-series designs are an alternative to pretest-posttest methods that are able to identify and measure the impacts of multiple educational interventions, even for small student populations. Here, we use an instrument employing standard multiple-choice conceptual questions to collect data from students at regular intervals. The questions are modified by asking students to distribute 100 Confidence Points among the options in order to indicate the perceived likelihood of each answer option being the correct one. Tracking the class-averaged ratings for each option produces a set of time-series. ARIMA (autoregressive integrated moving average) analysis is then used to test for, and measure, changes in each series. In particular, it is possible to discern which educational interventions produce significant changes in class performance. Cluster analysis can also identify groups of students whose ratings evolve in similar ways. A brief overview of our methods and an example are presented.

  1. A time-series method for automated measurement of changes in mitotic and interphase duration from time-lapse movies.

    PubMed

    Sigoillot, Frederic D; Huckins, Jeremy F; Li, Fuhai; Zhou, Xiaobo; Wong, Stephen T C; King, Randall W

    2011-01-01

    Automated time-lapse microscopy can visualize proliferation of large numbers of individual cells, enabling accurate measurement of the frequency of cell division and the duration of interphase and mitosis. However, extraction of quantitative information by manual inspection of time-lapse movies is too time-consuming to be useful for analysis of large experiments. Here we present an automated time-series approach that can measure changes in the duration of mitosis and interphase in individual cells expressing fluorescent histone 2B. The approach requires analysis of only 2 features, nuclear area and average intensity. Compared to supervised learning approaches, this method reduces processing time and does not require generation of training data sets. We demonstrate that this method is as sensitive as manual analysis in identifying small changes in interphase or mitotic duration induced by drug or siRNA treatment. This approach should facilitate automated analysis of high-throughput time-lapse data sets to identify small molecules or gene products that influence timing of cell division.

  2. A Deep Machine Learning Method for Classifying Cyclic Time Series of Biological Signals Using Time-Growing Neural Network.

    PubMed

    Gharehbaghi, Arash; Linden, Maria

    2017-10-12

    This paper presents a novel method for learning the cyclic contents of stochastic time series: the deep time-growing neural network (DTGNN). The DTGNN combines supervised and unsupervised methods in different levels of learning for an enhanced performance. It is employed by a multiscale learning structure to classify cyclic time series (CTS), in which the dynamic contents of the time series are preserved in an efficient manner. This paper suggests a systematic procedure for finding the design parameter of the classification method for a one-versus-multiple class application. A novel validation method is also suggested for evaluating the structural risk, both in a quantitative and a qualitative manner. The effect of the DTGNN on the performance of the classifier is statistically validated through the repeated random subsampling using different sets of CTS, from different medical applications. The validation involves four medical databases, comprised of 108 recordings of the electroencephalogram signal, 90 recordings of the electromyogram signal, 130 recordings of the heart sound signal, and 50 recordings of the respiratory sound signal. Results of the statistical validations show that the DTGNN significantly improves the performance of the classification and also exhibits an optimal structural risk.

  3. Measuring and Modeling Shared Visual Attention

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.; Gontar, Patrick

    2016-01-01

    Multi-person teams are sometimes responsible for critical tasks, such as flying an airliner. Here we present a method using gaze tracking data to assess shared visual attention, a term we use to describe the situation where team members are attending to a common set of elements in the environment. Gaze data are quantized with respect to a set of N areas of interest (AOIs); these are then used to construct a time series of N dimensional vectors, with each vector component representing one of the AOIs, all set to 0 except for the component corresponding to the currently fixated AOI, which is set to 1. The resulting sequence of vectors can be averaged in time, with the result that each vector component represents the proportion of time that the corresponding AOI was fixated within the given time interval. We present two methods for comparing sequences of this sort, one based on computing the time-varying correlation of the averaged vectors, and another based on a chi-square test testing the hypothesis that the observed gaze proportions are drawn from identical probability distributions. We have evaluated the method using synthetic data sets, in which the behavior was modeled as a series of "activities," each of which was modeled as a first-order Markov process. By tabulating distributions for pairs of identical and disparate activities, we are able to perform a receiver operating characteristic (ROC) analysis, allowing us to choose appropriate criteria and estimate error rates. We have applied the methods to data from airline crews, collected in a high-fidelity flight simulator (Haslbeck, Gontar & Schubert, 2014). We conclude by considering the problem of automatic (blind) discovery of activities, using methods developed for text analysis.

  4. Measuring and Modeling Shared Visual Attention

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.

    2016-01-01

    Multi-person teams are sometimes responsible for critical tasks, such as flying an airliner. Here we present a method using gaze tracking data to assess shared visual attention, a term we use to describe the situation where team members are attending to a common set of elements in the environment. Gaze data are quantized with respect to a set of N areas of interest (AOIs); these are then used to construct a time series of N dimensional vectors, with each vector component representing one of the AOIs, all set to 0 except for the component corresponding to the currently fixated AOI, which is set to 1. The resulting sequence of vectors can be averaged in time, with the result that each vector component represents the proportion of time that the corresponding AOI was fixated within the given time interval. We present two methods for comparing sequences of this sort, one based on computing the time-varying correlation of the averaged vectors, and another based on a chi-square test testing the hypothesis that the observed gaze proportions are drawn from identical probability distributions.We have evaluated the method using synthetic data sets, in which the behavior was modeled as a series of activities, each of which was modeled as a first-order Markov process. By tabulating distributions for pairs of identical and disparate activities, we are able to perform a receiver operating characteristic (ROC) analysis, allowing us to choose appropriate criteria and estimate error rates.We have applied the methods to data from airline crews, collected in a high-fidelity flight simulator (Haslbeck, Gontar Schubert, 2014). We conclude by considering the problem of automatic (blind) discovery of activities, using methods developed for text analysis.

  5. Dynamic Mesh Adaptation for Front Evolution Using Discontinuous Galerkin Based Weighted Condition Number Mesh Relaxation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, Patrick T.; Schofield, Samuel P.; Nourgaliev, Robert

    2016-06-21

    A new mesh smoothing method designed to cluster mesh cells near a dynamically evolving interface is presented. The method is based on weighted condition number mesh relaxation with the weight function being computed from a level set representation of the interface. The weight function is expressed as a Taylor series based discontinuous Galerkin projection, which makes the computation of the derivatives of the weight function needed during the condition number optimization process a trivial matter. For cases when a level set is not available, a fast method for generating a low-order level set from discrete cell-centered elds, such as amore » volume fraction or index function, is provided. Results show that the low-order level set works equally well for the weight function as the actual level set. Meshes generated for a number of interface geometries are presented, including cases with multiple level sets. Dynamic cases for moving interfaces are presented to demonstrate the method's potential usefulness to arbitrary Lagrangian Eulerian (ALE) methods.« less

  6. Recurrent Neural Network Applications for Astronomical Time Series

    NASA Astrophysics Data System (ADS)

    Protopapas, Pavlos

    2017-06-01

    The benefits of good predictive models in astronomy lie in early event prediction systems and effective resource allocation. Current time series methods applicable to regular time series have not evolved to generalize for irregular time series. In this talk, I will describe two Recurrent Neural Network methods, Long Short-Term Memory (LSTM) and Echo State Networks (ESNs) for predicting irregular time series. Feature engineering along with a non-linear modeling proved to be an effective predictor. For noisy time series, the prediction is improved by training the network on error realizations using the error estimates from astronomical light curves. In addition to this, we propose a new neural network architecture to remove correlation from the residuals in order to improve prediction and compensate for the noisy data. Finally, I show how to set hyperparameters for a stable and performant solution correctly. In this work, we circumvent this obstacle by optimizing ESN hyperparameters using Bayesian optimization with Gaussian Process priors. This automates the tuning procedure, enabling users to employ the power of RNN without needing an in-depth understanding of the tuning procedure.

  7. Policy Analysis: A Tool for Setting District Computer Use Policy. Paper and Report Series No. 97.

    ERIC Educational Resources Information Center

    Gray, Peter J.

    This report explores the use of policy analysis as a tool for setting computer use policy in a school district by discussing the steps in the policy formation and implementation processes and outlining how policy analysis methods can contribute to the creation of effective policy. Factors related to the adoption and implementation of innovations…

  8. Walkie-Talkie Measurements for the Speed of Radio Waves in Air

    ERIC Educational Resources Information Center

    Dombi, Andra; Tunyagi, Arthur; Neda, Zoltan

    2013-01-01

    A handheld emitter-receiver device suitable for the direct estimation of the velocity of radio waves in air is presented. The velocity of radio waves is measured using the direct time-of-flight method, without the need for any tedious and precise settings. The results for two measurement series are reported. Both sets of results give an estimate…

  9. A BLIND METHOD TO DETREND INSTRUMENTAL SYSTEMATICS IN EXOPLANETARY LIGHT CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morello, G., E-mail: giuseppe.morello.11@ucl.ac.uk

    2015-07-20

    The study of the atmospheres of transiting exoplanets requires a photometric precision, and repeatability, of one part in ∼10{sup 4}. This is beyond the original calibration plans of current observatories, hence the necessity to disentangle the instrumental systematics from the astrophysical signals in raw data sets. Most methods used in the literature are based on an approximate instrument model. The choice of parameters of the model and their functional forms can sometimes be subjective, causing controversies in the literature. Recently, Morello et al. (2014, 2015) have developed a non-parametric detrending method that gave coherent and repeatable results when applied tomore » Spitzer/IRAC data sets that were debated in the literature. Said method is based on independent component analysis (ICA) of individual pixel time-series, hereafter “pixel-ICA”. The main purpose of this paper is to investigate the limits and advantages of pixel-ICA on a series of simulated data sets with different instrument properties, and a range of jitter timescales and shapes, non-stationarity, sudden change points, etc. The performances of pixel-ICA are compared against the ones of other methods, in particular polynomial centroid division, and pixel-level decorrelation method. We find that in simulated cases pixel-ICA performs as well or better than other methods, and it also guarantees a higher degree of objectivity, because of its purely statistical foundation with no prior information on the instrument systematics. The results of this paper, together with previous analyses of Spitzer/IRAC data sets, suggest that photometric precision and repeatability of one part in 10{sup 4} can be achieved with current infrared space instruments.« less

  10. The natural neighbor series manuals and source codes

    NASA Astrophysics Data System (ADS)

    Watson, Dave

    1999-05-01

    This software series is concerned with reconstruction of spatial functions by interpolating a set of discrete observations having two or three independent variables. There are three components in this series: (1) nngridr: an implementation of natural neighbor interpolation, 1994, (2) modemap: an implementation of natural neighbor interpolation on the sphere, 1998 and (3) orebody: an implementation of natural neighbor isosurface generation (publication incomplete). Interpolation is important to geologists because it can offer graphical insights into significant geological structure and behavior, which, although inherent in the data, may not be otherwise apparent. It also is the first step in numerical integration, which provides a primary avenue to detailed quantification of the observed spatial function. Interpolation is implemented by selecting a surface-generating rule that controls the form of a `bridge' built across the interstices between adjacent observations. The cataloging and classification of the many such rules that have been reported is a subject in itself ( Watson, 1992), and the merits of various approaches have been debated at length. However, for practical purposes, interpolation methods are usually judged on how satisfactorily they handle problematic data sets. Sparse scattered data or traverse data, especially if the functional values are highly variable, generally tests interpolation methods most severely; but one method, natural neighbor interpolation, usually does produce preferable results for such data.

  11. Teaching to Think: Applying the Socratic Method outside the Law School Setting

    ERIC Educational Resources Information Center

    Peterson, Evan

    2009-01-01

    An active learning process has the potential to provide educational benefits above-and-beyond what they might receive from more traditional, passive approaches. The Socratic Method is a unique approach to passive learning that facilitates critical thinking, open-mindedness, and teamwork. By imposing a series of guided questions to students, an…

  12. Motivating People To Be Physically Active. Physical Activity Intervention Series.

    ERIC Educational Resources Information Center

    Marcus, Bess H.; Forsyth, LeighAnn H.

    This book describes proven methods for helping people change from inactive to active living. The behavior change methods are useful for healthy adults as well as individuals with chronic physical and psychological conditions. The book describes intervention programs for individuals and groups and for workplace and community settings. Part 1,…

  13. Time series analysis as input for clinical predictive modeling: modeling cardiac arrest in a pediatric ICU.

    PubMed

    Kennedy, Curtis E; Turley, James P

    2011-10-24

    Thousands of children experience cardiac arrest events every year in pediatric intensive care units. Most of these children die. Cardiac arrest prediction tools are used as part of medical emergency team evaluations to identify patients in standard hospital beds that are at high risk for cardiac arrest. There are no models to predict cardiac arrest in pediatric intensive care units though, where the risk of an arrest is 10 times higher than for standard hospital beds. Current tools are based on a multivariable approach that does not characterize deterioration, which often precedes cardiac arrests. Characterizing deterioration requires a time series approach. The purpose of this study is to propose a method that will allow for time series data to be used in clinical prediction models. Successful implementation of these methods has the potential to bring arrest prediction to the pediatric intensive care environment, possibly allowing for interventions that can save lives and prevent disabilities. We reviewed prediction models from nonclinical domains that employ time series data, and identified the steps that are necessary for building predictive models using time series clinical data. We illustrate the method by applying it to the specific case of building a predictive model for cardiac arrest in a pediatric intensive care unit. Time course analysis studies from genomic analysis provided a modeling template that was compatible with the steps required to develop a model from clinical time series data. The steps include: 1) selecting candidate variables; 2) specifying measurement parameters; 3) defining data format; 4) defining time window duration and resolution; 5) calculating latent variables for candidate variables not directly measured; 6) calculating time series features as latent variables; 7) creating data subsets to measure model performance effects attributable to various classes of candidate variables; 8) reducing the number of candidate features; 9) training models for various data subsets; and 10) measuring model performance characteristics in unseen data to estimate their external validity. We have proposed a ten step process that results in data sets that contain time series features and are suitable for predictive modeling by a number of methods. We illustrated the process through an example of cardiac arrest prediction in a pediatric intensive care setting.

  14. Discovering monotonic stemness marker genes from time-series stem cell microarray data.

    PubMed

    Wang, Hsei-Wei; Sun, Hsing-Jen; Chang, Ting-Yu; Lo, Hung-Hao; Cheng, Wei-Chung; Tseng, George C; Lin, Chin-Teng; Chang, Shing-Jyh; Pal, Nikhil; Chung, I-Fang

    2015-01-01

    Identification of genes with ascending or descending monotonic expression patterns over time or stages of stem cells is an important issue in time-series microarray data analysis. We propose a method named Monotonic Feature Selector (MFSelector) based on a concept of total discriminating error (DEtotal) to identify monotonic genes. MFSelector considers various time stages in stage order (i.e., Stage One vs. other stages, Stages One and Two vs. remaining stages and so on) and computes DEtotal of each gene. MFSelector can successfully identify genes with monotonic characteristics. We have demonstrated the effectiveness of MFSelector on two synthetic data sets and two stem cell differentiation data sets: embryonic stem cell neurogenesis (ESCN) and embryonic stem cell vasculogenesis (ESCV) data sets. We have also performed extensive quantitative comparisons of the three monotonic gene selection approaches. Some of the monotonic marker genes such as OCT4, NANOG, BLBP, discovered from the ESCN dataset exhibit consistent behavior with that reported in other studies. The role of monotonic genes found by MFSelector in either stemness or differentiation is validated using information obtained from Gene Ontology analysis and other literature. We justify and demonstrate that descending genes are involved in the proliferation or self-renewal activity of stem cells, while ascending genes are involved in differentiation of stem cells into variant cell lineages. We have developed a novel system, easy to use even with no pre-existing knowledge, to identify gene sets with monotonic expression patterns in multi-stage as well as in time-series genomics matrices. The case studies on ESCN and ESCV have helped to get a better understanding of stemness and differentiation. The novel monotonic marker genes discovered from a data set are found to exhibit consistent behavior in another independent data set, demonstrating the utility of the proposed method. The MFSelector R function and data sets can be downloaded from: http://microarray.ym.edu.tw/tools/MFSelector/.

  15. A hybrid wavelet analysis-cloud model data-extending approach for meteorologic and hydrologic time series

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ding, Hao; Singh, Vijay P.; Shang, Xiaosan; Liu, Dengfeng; Wang, Yuankun; Zeng, Xiankui; Wu, Jichun; Wang, Lachun; Zou, Xinqing

    2015-05-01

    For scientific and sustainable management of water resources, hydrologic and meteorologic data series need to be often extended. This paper proposes a hybrid approach, named WA-CM (wavelet analysis-cloud model), for data series extension. Wavelet analysis has time-frequency localization features, known as "mathematics microscope," that can decompose and reconstruct hydrologic and meteorologic series by wavelet transform. The cloud model is a mathematical representation of fuzziness and randomness and has strong robustness for uncertain data. The WA-CM approach first employs the wavelet transform to decompose the measured nonstationary series and then uses the cloud model to develop an extension model for each decomposition layer series. The final extension is obtained by summing the results of extension of each layer. Two kinds of meteorologic and hydrologic data sets with different characteristics and different influence of human activity from six (three pairs) representative stations are used to illustrate the WA-CM approach. The approach is also compared with four other methods, which are conventional correlation extension method, Kendall-Theil robust line method, artificial neural network method (back propagation, multilayer perceptron, and radial basis function), and single cloud model method. To evaluate the model performance completely and thoroughly, five measures are used, which are relative error, mean relative error, standard deviation of relative error, root mean square error, and Thiel inequality coefficient. Results show that the WA-CM approach is effective, feasible, and accurate and is found to be better than other four methods compared. The theory employed and the approach developed here can be applied to extension of data in other areas as well.

  16. Degree-Pruning Dynamic Programming Approaches to Central Time Series Minimizing Dynamic Time Warping Distance.

    PubMed

    Sun, Tao; Liu, Hongbo; Yu, Hong; Chen, C L Philip

    2016-06-28

    The central time series crystallizes the common patterns of the set it represents. In this paper, we propose a global constrained degree-pruning dynamic programming (g(dp)²) approach to obtain the central time series through minimizing dynamic time warping (DTW) distance between two time series. The DTW matching path theory with global constraints is proved theoretically for our degree-pruning strategy, which is helpful to reduce the time complexity and computational cost. Our approach can achieve the optimal solution between two time series. An approximate method to the central time series of multiple time series [called as m_g(dp)²] is presented based on DTW barycenter averaging and our g(dp)² approach by considering hierarchically merging strategy. As illustrated by the experimental results, our approaches provide better within-group sum of squares and robustness than other relevant algorithms.

  17. Nonlinear multivariate and time series analysis by neural network methods

    NASA Astrophysics Data System (ADS)

    Hsieh, William W.

    2004-03-01

    Methods in multivariate statistical analysis are essential for working with large amounts of geophysical data, data from observational arrays, from satellites, or from numerical model output. In classical multivariate statistical analysis, there is a hierarchy of methods, starting with linear regression at the base, followed by principal component analysis (PCA) and finally canonical correlation analysis (CCA). A multivariate time series method, the singular spectrum analysis (SSA), has been a fruitful extension of the PCA technique. The common drawback of these classical methods is that only linear structures can be correctly extracted from the data. Since the late 1980s, neural network methods have become popular for performing nonlinear regression and classification. More recently, neural network methods have been extended to perform nonlinear PCA (NLPCA), nonlinear CCA (NLCCA), and nonlinear SSA (NLSSA). This paper presents a unified view of the NLPCA, NLCCA, and NLSSA techniques and their applications to various data sets of the atmosphere and the ocean (especially for the El Niño-Southern Oscillation and the stratospheric quasi-biennial oscillation). These data sets reveal that the linear methods are often too simplistic to describe real-world systems, with a tendency to scatter a single oscillatory phenomenon into numerous unphysical modes or higher harmonics, which can be largely alleviated in the new nonlinear paradigm.

  18. A new parametric method to smooth time-series data of metabolites in metabolic networks.

    PubMed

    Miyawaki, Atsuko; Sriyudthsak, Kansuporn; Hirai, Masami Yokota; Shiraishi, Fumihide

    2016-12-01

    Mathematical modeling of large-scale metabolic networks usually requires smoothing of metabolite time-series data to account for measurement or biological errors. Accordingly, the accuracy of smoothing curves strongly affects the subsequent estimation of model parameters. Here, an efficient parametric method is proposed for smoothing metabolite time-series data, and its performance is evaluated. To simplify parameter estimation, the method uses S-system-type equations with simple power law-type efflux terms. Iterative calculation using this method was found to readily converge, because parameters are estimated stepwise. Importantly, smoothing curves are determined so that metabolite concentrations satisfy mass balances. Furthermore, the slopes of smoothing curves are useful in estimating parameters, because they are probably close to their true behaviors regardless of errors that may be present in the actual data. Finally, calculations for each differential equation were found to converge in much less than one second if initial parameters are set at appropriate (guessed) values. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Dynamic mesh adaptation for front evolution using discontinuous Galerkin based weighted condition number relaxation

    DOE PAGES

    Greene, Patrick T.; Schofield, Samuel P.; Nourgaliev, Robert

    2017-01-27

    A new mesh smoothing method designed to cluster cells near a dynamically evolving interface is presented. The method is based on weighted condition number mesh relaxation with the weight function computed from a level set representation of the interface. The weight function is expressed as a Taylor series based discontinuous Galerkin projection, which makes the computation of the derivatives of the weight function needed during the condition number optimization process a trivial matter. For cases when a level set is not available, a fast method for generating a low-order level set from discrete cell-centered fields, such as a volume fractionmore » or index function, is provided. Results show that the low-order level set works equally well as the actual level set for mesh smoothing. Meshes generated for a number of interface geometries are presented, including cases with multiple level sets. Lastly, dynamic cases with moving interfaces show the new method is capable of maintaining a desired resolution near the interface with an acceptable number of relaxation iterations per time step, which demonstrates the method's potential to be used as a mesh relaxer for arbitrary Lagrangian Eulerian (ALE) methods.« less

  20. A Hierarchical Clustering Methodology for the Estimation of Toxicity

    EPA Science Inventory

    A Quantitative Structure Activity Relationship (QSAR) methodology based on hierarchical clustering was developed to predict toxicological endpoints. This methodology utilizes Ward's method to divide a training set into a series of structurally similar clusters. The structural sim...

  1. Microarray missing data imputation based on a set theoretic framework and biological knowledge.

    PubMed

    Gan, Xiangchao; Liew, Alan Wee-Chung; Yan, Hong

    2006-01-01

    Gene expressions measured using microarrays usually suffer from the missing value problem. However, in many data analysis methods, a complete data matrix is required. Although existing missing value imputation algorithms have shown good performance to deal with missing values, they also have their limitations. For example, some algorithms have good performance only when strong local correlation exists in data while some provide the best estimate when data is dominated by global structure. In addition, these algorithms do not take into account any biological constraint in their imputation. In this paper, we propose a set theoretic framework based on projection onto convex sets (POCS) for missing data imputation. POCS allows us to incorporate different types of a priori knowledge about missing values into the estimation process. The main idea of POCS is to formulate every piece of prior knowledge into a corresponding convex set and then use a convergence-guaranteed iterative procedure to obtain a solution in the intersection of all these sets. In this work, we design several convex sets, taking into consideration the biological characteristic of the data: the first set mainly exploit the local correlation structure among genes in microarray data, while the second set captures the global correlation structure among arrays. The third set (actually a series of sets) exploits the biological phenomenon of synchronization loss in microarray experiments. In cyclic systems, synchronization loss is a common phenomenon and we construct a series of sets based on this phenomenon for our POCS imputation algorithm. Experiments show that our algorithm can achieve a significant reduction of error compared to the KNNimpute, SVDimpute and LSimpute methods.

  2. The Use of Time Series Analysis and t Tests with Serially Correlated Data Tests.

    ERIC Educational Resources Information Center

    Nicolich, Mark J.; Weinstein, Carol S.

    1981-01-01

    Results of three methods of analysis applied to simulated autocorrelated data sets with an intervention point (varying in autocorrelation degree, variance of error term, and magnitude of intervention effect) are compared and presented. The three methods are: t tests; maximum likelihood Box-Jenkins (ARIMA); and Bayesian Box Jenkins. (Author/AEF)

  3. Modified Confidence Intervals for the Mean of an Autoregressive Process.

    DTIC Science & Technology

    1985-08-01

    Validity of the method 45 3.6 Theorem 47 4 Derivation of corrections 48 Introduction 48 The zero order pivot 50 4.1 Algorithm 50 CONTENTS The first...of standard confidence intervals. There are several standard methods of setting confidence intervals in simulations, including the regener- ative... method , batch means, and time series methods . We-will focus-s on improved confidence intervals for the mean of an autoregressive process, and as such our

  4. Multiscale entropy-based methods for heart rate variability complexity analysis

    NASA Astrophysics Data System (ADS)

    Silva, Luiz Eduardo Virgilio; Cabella, Brenno Caetano Troca; Neves, Ubiraci Pereira da Costa; Murta Junior, Luiz Otavio

    2015-03-01

    Physiologic complexity is an important concept to characterize time series from biological systems, which associated to multiscale analysis can contribute to comprehension of many complex phenomena. Although multiscale entropy has been applied to physiological time series, it measures irregularity as function of scale. In this study we purpose and evaluate a set of three complexity metrics as function of time scales. Complexity metrics are derived from nonadditive entropy supported by generation of surrogate data, i.e. SDiffqmax, qmax and qzero. In order to access accuracy of proposed complexity metrics, receiver operating characteristic (ROC) curves were built and area under the curves was computed for three physiological situations. Heart rate variability (HRV) time series in normal sinus rhythm, atrial fibrillation, and congestive heart failure data set were analyzed. Results show that proposed metric for complexity is accurate and robust when compared to classic entropic irregularity metrics. Furthermore, SDiffqmax is the most accurate for lower scales, whereas qmax and qzero are the most accurate when higher time scales are considered. Multiscale complexity analysis described here showed potential to assess complex physiological time series and deserves further investigation in wide context.

  5. Global Warming Estimation From Microwave Sounding Unit

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.; Dalu, G.

    1998-01-01

    Microwave Sounding Unit (MSU) Ch 2 data sets, collected from sequential, polar-orbiting, Sun-synchronous National Oceanic and Atmospheric Administration operational satellites, contain systematic calibration errors that are coupled to the diurnal temperature cycle over the globe. Since these coupled errors in MSU data differ between successive satellites, it is necessary to make compensatory adjustments to these multisatellite data sets in order to determine long-term global temperature change. With the aid of the observations during overlapping periods of successive satellites, we can determine such adjustments and use them to account for the coupled errors in the long-term time series of MSU Ch 2 global temperature. In turn, these adjusted MSU Ch 2 data sets can be used to yield global temperature trend. In a pioneering study, Spencer and Christy (SC) (1990) developed a procedure to derive the global temperature trend from MSU Ch 2 data. Such a procedure can leave unaccounted residual errors in the time series of the temperature anomalies deduced by SC, which could lead to a spurious long-term temperature trend derived from their analysis. In the present study, we have developed a method that avoids the shortcomings of the SC procedure, the magnitude of the coupled errors is not determined explicitly. Furthermore, based on some assumptions, these coupled errors are eliminated in three separate steps. Such a procedure can leave unaccounted residual errors in the time series of the temperature anomalies deduced by SC, which could lead to a spurious long-term temperature trend derived from their analysis. In the present study, we have developed a method that avoids the shortcomings of the SC procedures. Based on our analysis, we find there is a global warming of 0.23+/-0.12 K between 1980 and 1991. Also, in this study, the time series of global temperature anomalies constructed by removing the global mean annual temperature cycle compares favorably with a similar time series obtained from conventional observations of temperature.

  6. Software Method for Computed Tomography Cylinder Data Unwrapping, Re-slicing, and Analysis

    NASA Technical Reports Server (NTRS)

    Roth, Don J.

    2013-01-01

    A software method has been developed that is applicable for analyzing cylindrical and partially cylindrical objects inspected using computed tomography (CT). This method involves unwrapping and re-slicing data so that the CT data from the cylindrical object can be viewed as a series of 2D sheets (or flattened onion skins ) in addition to a series of top view slices and 3D volume rendering. The advantages of viewing the data in this fashion are as follows: (1) the use of standard and specialized image processing and analysis methods is facilitated having 2D array data versus a volume rendering; (2) accurate lateral dimensional analysis of flaws is possible in the unwrapped sheets versus volume rendering; (3) flaws in the part jump out at the inspector with the proper contrast expansion settings in the unwrapped sheets; and (4) it is much easier for the inspector to locate flaws in the unwrapped sheets versus top view slices for very thin cylinders. The method is fully automated and requires no input from the user except proper voxel dimension from the CT experiment and wall thickness of the part. The software is available in 32-bit and 64-bit versions, and can be used with binary data (8- and 16-bit) and BMP type CT image sets. The software has memory (RAM) and hard-drive based modes. The advantage of the (64-bit) RAM-based mode is speed (and is very practical for users of 64-bit Windows operating systems and computers having 16 GB or more RAM). The advantage of the hard-drive based analysis is one can work with essentially unlimited-sized data sets. Separate windows are spawned for the unwrapped/re-sliced data view and any image processing interactive capability. Individual unwrapped images and un -wrapped image series can be saved in common image formats. More information is available at http://www.grc.nasa.gov/WWW/OptInstr/ NDE_CT_CylinderUnwrapper.html.

  7. Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package

    NASA Astrophysics Data System (ADS)

    Donges, Jonathan F.; Heitzig, Jobst; Beronov, Boyan; Wiedermann, Marc; Runge, Jakob; Feng, Qing Yi; Tupikina, Liubov; Stolbova, Veronika; Donner, Reik V.; Marwan, Norbert; Dijkstra, Henk A.; Kurths, Jürgen

    2015-11-01

    We introduce the pyunicorn (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. pyunicorn is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics, or network surrogates. Additionally, pyunicorn provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis, recurrence networks, visibility graphs, and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology.

  8. Long-range memory and multifractality in gold markets

    NASA Astrophysics Data System (ADS)

    Mali, Provash; Mukhopadhyay, Amitabha

    2015-03-01

    Long-range correlation and fluctuation in the gold market time series of the world's two leading gold consuming countries, namely China and India, are studied. For both the market series during the period 1985-2013 we observe a long-range persistence of memory in the sequences of maxima (minima) of returns in successive time windows of fixed length, but the series, as a whole, are found to be uncorrelated. Multifractal analysis for these series as well as for the sequences of maxima (minima) is carried out in terms of the multifractal detrended fluctuation analysis (MF-DFA) method. We observe a weak multifractal structure for the original series that mainly originates from the fat-tailed probability distribution function of the values, and the multifractal nature of the original time series is enriched into their sequences of maximal (minimal) returns. A quantitative measure of multifractality is provided by using a set of ‘complexity parameters’.

  9. Design of Passive Power Filter for Hybrid Series Active Power Filter using Estimation, Detection and Classification Method

    NASA Astrophysics Data System (ADS)

    Swain, Sushree Diptimayee; Ray, Pravat Kumar; Mohanty, K. B.

    2016-06-01

    This research paper discover the design of a shunt Passive Power Filter (PPF) in Hybrid Series Active Power Filter (HSAPF) that employs a novel analytic methodology which is superior than FFT analysis. This novel approach consists of the estimation, detection and classification of the signals. The proposed method is applied to estimate, detect and classify the power quality (PQ) disturbance such as harmonics. This proposed work deals with three methods: the harmonic detection through wavelet transform method, the harmonic estimation by Kalman Filter algorithm and harmonic classification by decision tree method. From different type of mother wavelets in wavelet transform method, the db8 is selected as suitable mother wavelet because of its potency on transient response and crouched oscillation at frequency domain. In harmonic compensation process, the detected harmonic is compensated through Hybrid Series Active Power Filter (HSAPF) based on Instantaneous Reactive Power Theory (IRPT). The efficacy of the proposed method is verified in MATLAB/SIMULINK domain and as well as with an experimental set up. The obtained results confirm the superiority of the proposed methodology than FFT analysis. This newly proposed PPF is used to make the conventional HSAPF more robust and stable.

  10. The LaueUtil toolkit for Laue photocrystallography. I. Rapid orientation matrix determination for intermediate-size-unit-cell Laue data

    PubMed Central

    Kalinowski, Jarosław A.; Makal, Anna; Coppens, Philip

    2011-01-01

    A new method for determination of the orientation matrix of Laue X-ray data is presented. The method is based on matching of the experimental patterns of central reciprocal lattice rows projected on a unit sphere centered on the origin of the reciprocal lattice with the corresponding pattern of a monochromatic data set on the same material. This technique is applied to the complete data set and thus eliminates problems often encountered when single frames with a limited number of peaks are to be used for orientation matrix determination. Application of the method to a series of Laue data sets on organometallic crystals is described. The corresponding program is available under a Mozilla Public License-like open-source license. PMID:22199400

  11. Method of multi-channel data readout and acquisition

    DOEpatents

    Degtiarenko, Pavel V.; Popov, Vladimir E.

    2010-06-15

    A method for dealing with the problem of simultaneous continuous readout of large number of data channels from the set of multiple sensors in instances where the use of multiple amplitude-to-digital converters is not practical or causes undesirable extra noise and distortion in the data. The new method uses sensor front-end s and subsequent electronics to transform the analog input signals and encode them into a series of short pulses that can be transmitted to a long distance via a high frequency transmission line without information loss. Upon arrival at a destination data decoder and analyzer device, the series of short pulses can be decoded and transformed back, to obtain, store, and utilize the sensor information with the required accuracy.

  12. Survey of Manual Methods of Measurements of Asbestos, Beryllium, Lead, Cadmium, Selenium, and Mercury in Stationary Source Emissions. Environmental Monitoring Series.

    ERIC Educational Resources Information Center

    Coulson, Dale M.; And Others

    The purpose of this study is to evaluate existing manual methods for analyzing asbestos, beryllium, lead, cadmium, selenium, and mercury, and from this evaluation to provide the best and most practical set of analytical methods for measuring emissions of these elements from stationary sources. The work in this study was divided into two phases.…

  13. A Case Example of the Implementation of Schoolwide Positive Behavior Support in a High School Setting Using Change Point Test Analysis

    ERIC Educational Resources Information Center

    Bohanon, Hank; Fenning, Pamela; Hicks, Kira; Weber, Stacey; Thier, Kimberly; Aikins, Brigit; Morrissey, Kelly; Briggs, Alissa; Bartucci, Gina; McArdle, Lauren; Hoeper, Lisa; Irvin, Larry

    2012-01-01

    The purpose of this case study was to expand the literature base regarding the application of high school schoolwide positive behavior support in an urban setting for practitioners and policymakers to address behavior issues. In addition, the study describes the use of the Change Point Test as a method for analyzing time series data that are…

  14. Methodological Issues in Examining Measurement Equivalence in Patient Reported Outcomes Measures: Methods Overview to the Two-Part Series, “Measurement Equivalence of the Patient Reported Outcomes Measurement Information System® (PROMIS®) Short Forms”

    PubMed Central

    Teresi, Jeanne A.; Jones, Richard N.

    2017-01-01

    The purpose of this article is to introduce the methods used and challenges confronted by the authors of this two-part series of articles describing the results of analyses of measurement equivalence of the short form scales from the Patient Reported Outcomes Measurement Information System® (PROMIS®). Qualitative and quantitative approaches used to examine differential item functioning (DIF) are reviewed briefly. Qualitative methods focused on generation of DIF hypotheses. The basic quantitative approaches used all rely on a latent variable model, and examine parameters either derived directly from item response theory (IRT) or from structural equation models (SEM). A key methods focus of these articles is to describe state-of-the art approaches to examination of measurement equivalence in eight domains: physical health, pain, fatigue, sleep, depression, anxiety, cognition, and social function. These articles represent the first time that DIF has been examined systematically in the PROMIS short form measures, particularly among ethnically diverse groups. This is also the first set of analyses to examine the performance of PROMIS short forms in patients with cancer. Latent variable model state-of-the-art methods for examining measurement equivalence are introduced briefly in this paper to orient readers to the approaches adopted in this set of papers. Several methodological challenges underlying (DIF-free) anchor item selection and model assumption violations are presented as a backdrop for the articles in this two-part series on measurement equivalence of PROMIS measures. PMID:28983448

  15. Methodological Issues in Examining Measurement Equivalence in Patient Reported Outcomes Measures: Methods Overview to the Two-Part Series, "Measurement Equivalence of the Patient Reported Outcomes Measurement Information System® (PROMIS®) Short Forms".

    PubMed

    Teresi, Jeanne A; Jones, Richard N

    2016-01-01

    The purpose of this article is to introduce the methods used and challenges confronted by the authors of this two-part series of articles describing the results of analyses of measurement equivalence of the short form scales from the Patient Reported Outcomes Measurement Information System ® (PROMIS ® ). Qualitative and quantitative approaches used to examine differential item functioning (DIF) are reviewed briefly. Qualitative methods focused on generation of DIF hypotheses. The basic quantitative approaches used all rely on a latent variable model, and examine parameters either derived directly from item response theory (IRT) or from structural equation models (SEM). A key methods focus of these articles is to describe state-of-the art approaches to examination of measurement equivalence in eight domains: physical health, pain, fatigue, sleep, depression, anxiety, cognition, and social function. These articles represent the first time that DIF has been examined systematically in the PROMIS short form measures, particularly among ethnically diverse groups. This is also the first set of analyses to examine the performance of PROMIS short forms in patients with cancer. Latent variable model state-of-the-art methods for examining measurement equivalence are introduced briefly in this paper to orient readers to the approaches adopted in this set of papers. Several methodological challenges underlying (DIF-free) anchor item selection and model assumption violations are presented as a backdrop for the articles in this two-part series on measurement equivalence of PROMIS measures.

  16. Influence maximization in time bounded network identifies transcription factors regulating perturbed pathways

    PubMed Central

    Jo, Kyuri; Jung, Inuk; Moon, Ji Hwan; Kim, Sun

    2016-01-01

    Motivation: To understand the dynamic nature of the biological process, it is crucial to identify perturbed pathways in an altered environment and also to infer regulators that trigger the response. Current time-series analysis methods, however, are not powerful enough to identify perturbed pathways and regulators simultaneously. Widely used methods include methods to determine gene sets such as differentially expressed genes or gene clusters and these genes sets need to be further interpreted in terms of biological pathways using other tools. Most pathway analysis methods are not designed for time series data and they do not consider gene-gene influence on the time dimension. Results: In this article, we propose a novel time-series analysis method TimeTP for determining transcription factors (TFs) regulating pathway perturbation, which narrows the focus to perturbed sub-pathways and utilizes the gene regulatory network and protein–protein interaction network to locate TFs triggering the perturbation. TimeTP first identifies perturbed sub-pathways that propagate the expression changes along the time. Starting points of the perturbed sub-pathways are mapped into the network and the most influential TFs are determined by influence maximization technique. The analysis result is visually summarized in TF-Pathway map in time clock. TimeTP was applied to PIK3CA knock-in dataset and found significant sub-pathways and their regulators relevant to the PIP3 signaling pathway. Availability and Implementation: TimeTP is implemented in Python and available at http://biohealth.snu.ac.kr/software/TimeTP/. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: sunkim.bioinfo@snu.ac.kr PMID:27307609

  17. "Observation Obscurer" - Time Series Viewer, Editor and Processor

    NASA Astrophysics Data System (ADS)

    Andronov, I. L.

    The program is described, which contains a set of subroutines suitable for East viewing and interactive filtering and processing of regularly and irregularly spaced time series. Being a 32-bit DOS application, it may be used as a default fast viewer/editor of time series in any compute shell ("commander") or in Windows. It allows to view the data in the "time" or "phase" mode, to remove ("obscure") or filter outstanding bad points; to make scale transformations and smoothing using few methods (e.g. mean with phase binning, determination of the statistically opti- mal number of phase bins; "running parabola" (Andronov, 1997, As. Ap. Suppl, 125, 207) fit and to make time series analysis using some methods, e.g. correlation, autocorrelation and histogram analysis: determination of extrema etc. Some features have been developed specially for variable star observers, e.g. the barycentric correction, the creation and fast analysis of "OC" diagrams etc. The manual for "hot keys" is presented. The computer code was compiled with a 32-bit Free Pascal (www.freepascal.org).

  18. Observability of nonlinear dynamics: normalized results and a time-series approach.

    PubMed

    Aguirre, Luis A; Bastos, Saulo B; Alves, Marcela A; Letellier, Christophe

    2008-03-01

    This paper investigates the observability of nonlinear dynamical systems. Two difficulties associated with previous studies are dealt with. First, a normalized degree observability is defined. This permits the comparison of different systems, which was not generally possible before. Second, a time-series approach is proposed based on omnidirectional nonlinear correlation functions to rank a set of time series of a system in terms of their potential use to reconstruct the original dynamics without requiring the knowledge of the system equations. The two approaches proposed in this paper and a former method were applied to five benchmark systems and an overall agreement of over 92% was found.

  19. A systematic review on the use of time series data in the study of antimicrobial consumption and Pseudomonas aeruginosa resistance.

    PubMed

    Athanasiou, Christos I; Kopsini, Angeliki

    2018-06-12

    In the field of antimicrobial resistance, the number of studies that use time series data has increased recently. The purpose of this study is the systematic review of all studies on antibacterial consumption and on Pseudomonas aeruginosa resistance in healthcare settings, that have used time series data. A systematic review of the literature till June 2017 was conducted. All the studies that have used time series data and have examined the inhospital antibiotic consumption and Ps. aeruginosa resistance rates or incidence were eligible. No other exclusion criteria were applied. Data on the structure, terminology used, methods used and results of each article were recorded and analyzed as possible. A total of thirty six studies were retrieved, twenty three of which were in accordance with our criteria. Thirteen of them were quasi experimental studies and ten were ecological observational studies. Eighteen studies collected time series data of both parameters and the statistical methodology of "time series analysis" was applied in nine studies. Most of the studies were published in the last eight years. The Interrupted Time Series design was the most widespread. As expected, there was high heterogeneity in regard to the study design, terminology and statistical methods applied. Copyright © 2018. Published by Elsevier Ltd.

  20. Automatic benchmarking of homogenization packages applied to synthetic monthly series within the frame of the MULTITEST project

    NASA Astrophysics Data System (ADS)

    Guijarro, José A.; López, José A.; Aguilar, Enric; Domonkos, Peter; Venema, Victor; Sigró, Javier; Brunet, Manola

    2017-04-01

    After the successful inter-comparison of homogenization methods carried out in the COST Action ES0601 (HOME), many methods kept improving their algorithms, suggesting the need of performing new inter-comparison exercises. However, manual applications of the methodologies to a large number of testing networks cannot be afforded without involving the work of many researchers over an extended time. The alternative is to make the comparisons as automatic as possible, as in the MULTITEST project, which, funded by the Spanish Ministry of Economy and Competitiveness, tests homogenization methods by applying them to a large number of synthetic networks of monthly temperature and precipitation. One hundred networks of 10 series were sampled from different master networks containing 100 series of 720 values (60 years times 12 months). Three master temperature networks were built with different degree of cross-correlations between the series in order to simulate conditions of different station densities or climatic heterogeneity. Also three master synthetic networks were developed for precipitation, this time mimicking the characteristics of three different climates: Atlantic temperate, Mediterranean and monsoonal. Inhomogeneities were introduced in every network sampled from the master networks, and all publicly available homogenization methods that we could run in an automatic way were applied to them: ACMANT 3.0, Climatol 3.0, MASH 3.03, RHTestV4, USHCN v52d and HOMER 2.6. Most of them were tested with different settings, and their comparative results can be inspected in box-plot graphics of Root Mean Squared Errors and trend biases computed between the homogenized data and their original homogeneous series. In a first stage, inhomogeneities were applied to the synthetic homogeneous series with five different settings with increasing difficulty and realism: i) big shifts in half of the series; ii) the same with a strong seasonality; iii) short term platforms and local trends; iv) random number of shifts with random size and location in all series; and v) the same plus seasonality of random amplitude. The shifts were additive for temperature and multiplicative for precipitation. The second stage is dedicated to study the impact of the number of series in the networks, seasonalities other than sinusoidal, and the occurrence of simultaneous shifts in a high number of series. Finally, tests will be performed on a longer and more realistic benchmark, with varying number of missing data along time, similar to that used in the COST Action ES0601. These inter-comparisons will be valuable both to the users and to the developers of the tested packages, who can see how their algorithms behave under varied climate conditions.

  1. "Geo-statistics methods and neural networks in geophysical applications: A case study"

    NASA Astrophysics Data System (ADS)

    Rodriguez Sandoval, R.; Urrutia Fucugauchi, J.; Ramirez Cruz, L. C.

    2008-12-01

    The study is focus in the Ebano-Panuco basin of northeastern Mexico, which is being explored for hydrocarbon reservoirs. These reservoirs are in limestones and there is interest in determining porosity and permeability in the carbonate sequences. The porosity maps presented in this study are estimated from application of multiattribute and neural networks techniques, which combine geophysics logs and 3-D seismic data by means of statistical relationships. The multiattribute analysis is a process to predict a volume of any underground petrophysical measurement from well-log and seismic data. The data consist of a series of target logs from wells which tie a 3-D seismic volume. The target logs are neutron porosity logs. From the 3-D seismic volume a series of sample attributes is calculated. The objective of this study is to derive a set of attributes and the target log values. The selected set is determined by a process of forward stepwise regression. The analysis can be linear or nonlinear. In the linear mode the method consists of a series of weights derived by least-square minimization. In the nonlinear mode, a neural network is trained using the select attributes as inputs. In this case we used a probabilistic neural network PNN. The method is applied to a real data set from PEMEX. For better reservoir characterization the porosity distribution was estimated using both techniques. The case shown a continues improvement in the prediction of the porosity from the multiattribute to the neural network analysis. The improvement is in the training and the validation, which are important indicators of the reliability of the results. The neural network showed an improvement in resolution over the multiattribute analysis. The final maps provide more realistic results of the porosity distribution.

  2. Clinical time series prediction: Toward a hierarchical dynamical system framework.

    PubMed

    Liu, Zitao; Hauskrecht, Milos

    2015-09-01

    Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. We tested our framework by first learning the time series model from data for the patients in the training set, and then using it to predict future time series values for the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Array magnetics modal analysis for the DIII-D tokamak based on localized time-series modelling

    DOE PAGES

    Olofsson, K. Erik J.; Hanson, Jeremy M.; Shiraki, Daisuke; ...

    2014-07-14

    Here, time-series analysis of magnetics data in tokamaks is typically done using block-based fast Fourier transform methods. This work presents the development and deployment of a new set of algorithms for magnetic probe array analysis. The method is based on an estimation technique known as stochastic subspace identification (SSI). Compared with the standard coherence approach or the direct singular value decomposition approach, the new technique exhibits several beneficial properties. For example, the SSI method does not require that frequencies are orthogonal with respect to the timeframe used in the analysis. Frequencies are obtained directly as parameters of localized time-series models.more » The parameters are extracted by solving small-scale eigenvalue problems. Applications include maximum-likelihood regularized eigenmode pattern estimation, detection of neoclassical tearing modes, including locked mode precursors, and automatic clustering of modes, and magnetics-pattern characterization of sawtooth pre- and postcursors, edge harmonic oscillations and fishbones.« less

  4. Feasibility of radiosurgery for patients with spinal tumors treated in lateral decubitus position: A case series from Memorial Sloan Kettering Cancer Center

    PubMed Central

    Lovelock, D. Michael; Zatcky, Joan; Yamada, Josh

    2017-01-01

    Introduction Often in clinical practice radiation oncologists encounter patients who require treatment to the spine commonly in the setting of metastatic disease. These metastases usually cause pain, immobility, or neurologic deficits mandating expedited therapy to alleviate the suffering of our patients. Spine radiosurgery techniques have been used extensively for palliation purposes; however, given the patients’ deteriorating condition or pain and inability to tolerate anesthesia the radiation oncologist is often left with the conundrum of how to best set up his or her patient in preparation for radiosurgery if supine is not a viable option. In the Memorial Sloan Kettering Cancer Center several patients have been treated successfully in the lateral decubitus position to overcome this set-up issue. In this report, the feasibility of the lateral decubitus set-up for patients who benefit from radiosurgery to the spine when and if they cannot tolerate standard supine position is explored. Objective To report on a retrospective case series of three patients with a total of four lesions who were treated with radiosurgery for spinal metastases while set up in the lateral decubitus position. Methods and materials This is a retrospective case series of 3 patients who were treated with radiosurgery to the spine for palliation of painful metastatic foci. Patients were treated in the lateral decubitus position in 1-5 fractions in order to be eligible for this retrospective case series. Their set-up data, and clinical outcomes were then compared with historic controls. Results Patients who were treated in the lateral decubitus position were set up reliably and reproducibly. Additionally clinical outcomes on routine follow-up and imaging, and toxicity profiles also corroborated the utility of this treatment set-up. Conclusions Routinely employing optical surface tracking during patient setup followed by KVCBCT prior to treatment delivery along with intra-fractional monitoring is safe and effective while utilizing the lateral decubitus position for the treatment of spinal metastases for patients who cannot tolerate the supine position. Finally the patient follow-up also corroborated that treatments were successful thus lending credence to the safety, ease, effectiveness, and feasibility of this patient set-up. PMID:29296455

  5. Fuzzy time-series based on Fibonacci sequence for stock price forecasting

    NASA Astrophysics Data System (ADS)

    Chen, Tai-Liang; Cheng, Ching-Hsue; Jong Teoh, Hia

    2007-07-01

    Time-series models have been utilized to make reasonably accurate predictions in the areas of stock price movements, academic enrollments, weather, etc. For promoting the forecasting performance of fuzzy time-series models, this paper proposes a new model, which incorporates the concept of the Fibonacci sequence, the framework of Song and Chissom's model and the weighted method of Yu's model. This paper employs a 5-year period TSMC (Taiwan Semiconductor Manufacturing Company) stock price data and a 13-year period of TAIEX (Taiwan Stock Exchange Capitalization Weighted Stock Index) stock index data as experimental datasets. By comparing our forecasting performances with Chen's (Forecasting enrollments based on fuzzy time-series. Fuzzy Sets Syst. 81 (1996) 311-319), Yu's (Weighted fuzzy time-series models for TAIEX forecasting. Physica A 349 (2004) 609-624) and Huarng's (The application of neural networks to forecast fuzzy time series. Physica A 336 (2006) 481-491) models, we conclude that the proposed model surpasses in accuracy these conventional fuzzy time-series models.

  6. Low-derivative operators of the Standard Model effective field theory via Hilbert series methods

    NASA Astrophysics Data System (ADS)

    Lehman, Landon; Martin, Adam

    2016-02-01

    In this work, we explore an extension of Hilbert series techniques to count operators that include derivatives. For sufficiently low-derivative operators, we conjecture an algorithm that gives the number of invariant operators, properly accounting for redundancies due to the equations of motion and integration by parts. Specifically, the conjectured technique can be applied whenever there is only one Lorentz invariant for a given partitioning of derivatives among the fields. At higher numbers of derivatives, equation of motion redundancies can be removed, but the increased number of Lorentz contractions spoils the subtraction of integration by parts redundancies. While restricted, this technique is sufficient to automatically recreate the complete set of invariant operators of the Standard Model effective field theory for dimensions 6 and 7 (for arbitrary numbers of flavors). At dimension 8, the algorithm does not automatically generate the complete operator set; however, it suffices for all but five classes of operators. For these remaining classes, there is a well defined procedure to manually determine the number of invariants. Assuming our method is correct, we derive a set of 535 dimension-8 N f = 1 operators.

  7. Integration of Steady-State and Temporal Gene Expression Data for the Inference of Gene Regulatory Networks

    PubMed Central

    Wang, Yi Kan; Hurley, Daniel G.; Schnell, Santiago; Print, Cristin G.; Crampin, Edmund J.

    2013-01-01

    We develop a new regression algorithm, cMIKANA, for inference of gene regulatory networks from combinations of steady-state and time-series gene expression data. Using simulated gene expression datasets to assess the accuracy of reconstructing gene regulatory networks, we show that steady-state and time-series data sets can successfully be combined to identify gene regulatory interactions using the new algorithm. Inferring gene networks from combined data sets was found to be advantageous when using noisy measurements collected with either lower sampling rates or a limited number of experimental replicates. We illustrate our method by applying it to a microarray gene expression dataset from human umbilical vein endothelial cells (HUVECs) which combines time series data from treatment with growth factor TNF and steady state data from siRNA knockdown treatments. Our results suggest that the combination of steady-state and time-series datasets may provide better prediction of RNA-to-RNA interactions, and may also reveal biological features that cannot be identified from dynamic or steady state information alone. Finally, we consider the experimental design of genomics experiments for gene regulatory network inference and show that network inference can be improved by incorporating steady-state measurements with time-series data. PMID:23967277

  8. Automated Analysis of Renewable Energy Datasets ('EE/RE Data Mining')

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bush, Brian; Elmore, Ryan; Getman, Dan

    This poster illustrates methods to substantially improve the understanding of renewable energy data sets and the depth and efficiency of their analysis through the application of statistical learning methods ('data mining') in the intelligent processing of these often large and messy information sources. The six examples apply methods for anomaly detection, data cleansing, and pattern mining to time-series data (measurements from metering points in buildings) and spatiotemporal data (renewable energy resource datasets).

  9. Broadband Studies of Semsmic Sources at Regional and Teleseismic Distances Using Advanced Time Series Analysis Methods. Volume 1.

    DTIC Science & Technology

    1991-03-21

    discussion of spectral factorability and motivations for broadband analysis, the report is subdivided into four main sections. In Section 1.0, we...estimates. The motivation for developing our multi-channel deconvolution method was to gain information about seismic sources, most notably, nuclear...with complex constraints for estimating the rupture history. Such methods (applied mostly to data sets that also include strong rmotion data), were

  10. Sea surface temperature 1871-2099 in 38 cells in the Caribbean region.

    PubMed

    Sheppard, Charles; Rioja-Nieto, Rodolfo

    2005-09-01

    Sea surface temperature (SST) data with monthly resolution are provided for 38 cells in the Caribbean Sea and Bahamas region, plus Bermuda. These series are derived from the HadISST1 data set for historical time (1871-1999) and from the HadCM3 coupled climate model for predicted SST (1950-2099). Statistical scaling of the forecast data sets are performed to produce confluent SST series according to a now established method. These SST series are available for download. High water temperatures in 1998 killed enormous amounts of corals in tropical seas, though in the Caribbean region the effects at that time appeared less marked than in the Indo-Pacific. However, SSTs are rising in accordance with world-wide trends and it has been predicted that temperature will become increasingly important in this region in the near future. Patterns of SST rise within the Caribbean region are shown, and the importance of sub-regional patterns within this biologically highly interconnected area are noted.

  11. A rapid learning and dynamic stepwise updating algorithm for flat neural networks and the application to time-series prediction.

    PubMed

    Chen, C P; Wan, J Z

    1999-01-01

    A fast learning algorithm is proposed to find an optimal weights of the flat neural networks (especially, the functional-link network). Although the flat networks are used for nonlinear function approximation, they can be formulated as linear systems. Thus, the weights of the networks can be solved easily using a linear least-square method. This formulation makes it easier to update the weights instantly for both a new added pattern and a new added enhancement node. A dynamic stepwise updating algorithm is proposed to update the weights of the system on-the-fly. The model is tested on several time-series data including an infrared laser data set, a chaotic time-series, a monthly flour price data set, and a nonlinear system identification problem. The simulation results are compared to existing models in which more complex architectures and more costly training are needed. The results indicate that the proposed model is very attractive to real-time processes.

  12. Multivariate statistical data analysis methods for detecting baroclinic wave interactions in the thermally driven rotating annulus

    NASA Astrophysics Data System (ADS)

    von Larcher, Thomas; Harlander, Uwe; Alexandrov, Kiril; Wang, Yongtai

    2010-05-01

    Experiments on baroclinic wave instabilities in a rotating cylindrical gap have been long performed, e.g., to unhide regular waves of different zonal wave number, to better understand the transition to the quasi-chaotic regime, and to reveal the underlying dynamical processes of complex wave flows. We present the application of appropriate multivariate data analysis methods on time series data sets acquired by the use of non-intrusive measurement techniques of a quite different nature. While the high accurate Laser-Doppler-Velocimetry (LDV ) is used for measurements of the radial velocity component at equidistant azimuthal positions, a high sensitive thermographic camera measures the surface temperature field. The measurements are performed at particular parameter points, where our former studies show that kinds of complex wave patterns occur [1, 2]. Obviously, the temperature data set has much more information content as the velocity data set due to the particular measurement techniques. Both sets of time series data are analyzed by using multivariate statistical techniques. While the LDV data sets are studied by applying the Multi-Channel Singular Spectrum Analysis (M - SSA), the temperature data sets are analyzed by applying the Empirical Orthogonal Functions (EOF ). Our goal is (a) to verify the results yielded with the analysis of the velocity data and (b) to compare the data analysis methods. Therefor, the temperature data are processed in a way to become comparable to the LDV data, i.e. reducing the size of the data set in such a manner that the temperature measurements would imaginary be performed at equidistant azimuthal positions only. This approach initially results in a great loss of information. But applying the M - SSA to the reduced temperature data sets enable us to compare the methods. [1] Th. von Larcher and C. Egbers, Experiments on transitions of baroclinic waves in a differentially heated rotating annulus, Nonlinear Processes in Geophysics, 2005, 12, 1033-1041, NPG Print: ISSN 1023-5809, NPG Online: ISSN 1607-7946 [2] U. Harlander, Th. von Larcher, Y. Wang and C. Egbers, PIV- and LDV-measurements of baroclinic wave interactions in a thermally driven rotating annulus, Experiments in Fluids, 2009, DOI: 10.1007/s00348-009-0792-5

  13. Coupling Matched Molecular Pairs with Machine Learning for Virtual Compound Optimization.

    PubMed

    Turk, Samo; Merget, Benjamin; Rippmann, Friedrich; Fulle, Simone

    2017-12-26

    Matched molecular pair (MMP) analyses are widely used in compound optimization projects to gain insights into structure-activity relationships (SAR). The analysis is traditionally done via statistical methods but can also be employed together with machine learning (ML) approaches to extrapolate to novel compounds. The here introduced MMP/ML method combines a fragment-based MMP implementation with different machine learning methods to obtain automated SAR decomposition and prediction. To test the prediction capabilities and model transferability, two different compound optimization scenarios were designed: (1) "new fragments" which occurs when exploring new fragments for a defined compound series and (2) "new static core and transformations" which resembles for instance the identification of a new compound series. Very good results were achieved by all employed machine learning methods especially for the new fragments case, but overall deep neural network models performed best, allowing reliable predictions also for the new static core and transformations scenario, where comprehensive SAR knowledge of the compound series is missing. Furthermore, we show that models trained on all available data have a higher generalizability compared to models trained on focused series and can extend beyond chemical space covered in the training data. Thus, coupling MMP with deep neural networks provides a promising approach to make high quality predictions on various data sets and in different compound optimization scenarios.

  14. Discovering time-lagged rules from microarray data using gene profile classifiers

    PubMed Central

    2011-01-01

    Background Gene regulatory networks have an essential role in every process of life. In this regard, the amount of genome-wide time series data is becoming increasingly available, providing the opportunity to discover the time-delayed gene regulatory networks that govern the majority of these molecular processes. Results This paper aims at reconstructing gene regulatory networks from multiple genome-wide microarray time series datasets. In this sense, a new model-free algorithm called GRNCOP2 (Gene Regulatory Network inference by Combinatorial OPtimization 2), which is a significant evolution of the GRNCOP algorithm, was developed using combinatorial optimization of gene profile classifiers. The method is capable of inferring potential time-delay relationships with any span of time between genes from various time series datasets given as input. The proposed algorithm was applied to time series data composed of twenty yeast genes that are highly relevant for the cell-cycle study, and the results were compared against several related approaches. The outcomes have shown that GRNCOP2 outperforms the contrasted methods in terms of the proposed metrics, and that the results are consistent with previous biological knowledge. Additionally, a genome-wide study on multiple publicly available time series data was performed. In this case, the experimentation has exhibited the soundness and scalability of the new method which inferred highly-related statistically-significant gene associations. Conclusions A novel method for inferring time-delayed gene regulatory networks from genome-wide time series datasets is proposed in this paper. The method was carefully validated with several publicly available data sets. The results have demonstrated that the algorithm constitutes a usable model-free approach capable of predicting meaningful relationships between genes, revealing the time-trends of gene regulation. PMID:21524308

  15. Electromagnetic beam diffraction by a finite lamellar structure: an aperiodic coupled-wave method.

    PubMed

    Guizal, Brahim; Barchiesi, Dominique; Felbacq, Didier

    2003-12-01

    We have developed a new formulation of the coupled-wave method (CWM) to handle aperiodic lamellar structures, and it will be referred to as the aperiodic coupled-wave method (ACWM). The space is still divided into three regions, but the fields are written by use of their Fourier integrals instead of the Fourier series. In the modulated region the relative permittivity is represented by its Fourier transform, and then a set of integro-differential equations is derived. Discretizing the last system leads to a set of ordinary differential equations that is reduced to an eigenvalue problem, as is usually done in the CWM. To assess the method, we compare our results with three independent formalisms: the Rayleigh perturbation method for small samples, the volume integral method, and the finite-element method.

  16. Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data.

    PubMed

    Grootswagers, Tijl; Wardle, Susan G; Carlson, Thomas A

    2017-04-01

    Multivariate pattern analysis (MVPA) or brain decoding methods have become standard practice in analyzing fMRI data. Although decoding methods have been extensively applied in brain-computer interfaces, these methods have only recently been applied to time series neuroimaging data such as MEG and EEG to address experimental questions in cognitive neuroscience. In a tutorial style review, we describe a broad set of options to inform future time series decoding studies from a cognitive neuroscience perspective. Using example MEG data, we illustrate the effects that different options in the decoding analysis pipeline can have on experimental results where the aim is to "decode" different perceptual stimuli or cognitive states over time from dynamic brain activation patterns. We show that decisions made at both preprocessing (e.g., dimensionality reduction, subsampling, trial averaging) and decoding (e.g., classifier selection, cross-validation design) stages of the analysis can significantly affect the results. In addition to standard decoding, we describe extensions to MVPA for time-varying neuroimaging data including representational similarity analysis, temporal generalization, and the interpretation of classifier weight maps. Finally, we outline important caveats in the design and interpretation of time series decoding experiments.

  17. The LTDP ALTS Project: Contributing to the Continued Understanding and Exploitation of the ATSR Time Series

    NASA Astrophysics Data System (ADS)

    Clarke, Hannah; Done, Fay; Casadio, Stefano; Mackin, Stephen; Dinelli, Bianca Maria; Castelli, Elisa

    2016-08-01

    The long time-series of observations made by the Along Track Scanning Radiometers (ATSR) missions represents a valuable resource for a wide range of research and EO applications.With the advent of ESA's Long-TermData Preservation (LTDP) programme, thought has turned to the preservation and improved understanding of such long time-series, to support their continued exploitation in both existing and new areas of research, bringing the possibility of improving the existing data set and to inform and contribute towards future missions. For this reason, the 'Long Term Stability of the ATSR Instrument Series: SWIR Calibration, Cloud Masking and SAA' project, commonly known as the ATSR Long Term Stability (or ALTS) project, is designed to explore the key characteristics of the data set and new and innovative ways of enhancing and exploiting it.Work has focussed on: A new approach to the assessment of Short Wave Infra-Red (SWIR) channel calibration.; Developmentof a new method for Total Column Water Vapour (TCWV) retrieval.; Study of the South Atlantic Anomaly (SAA).; Radiative Transfer (RT) modelling for ATSR.; Providing AATSR observations with their location in the original instrument grid.; Strategies for the retrieval and archiving of historical ATSR documentation.; Study of TCWV retrieval over land; Development of new methods for cloud masking This paper provides an overview of these activities and illustrates the importance of preserving and understanding 'old' data for continued use in the future.

  18. Computer-Aided Breast Cancer Diagnosis with Optimal Feature Sets: Reduction Rules and Optimization Techniques.

    PubMed

    Mathieson, Luke; Mendes, Alexandre; Marsden, John; Pond, Jeffrey; Moscato, Pablo

    2017-01-01

    This chapter introduces a new method for knowledge extraction from databases for the purpose of finding a discriminative set of features that is also a robust set for within-class classification. Our method is generic and we introduce it here in the field of breast cancer diagnosis from digital mammography data. The mathematical formalism is based on a generalization of the k-Feature Set problem called (α, β)-k-Feature Set problem, introduced by Cotta and Moscato (J Comput Syst Sci 67(4):686-690, 2003). This method proceeds in two steps: first, an optimal (α, β)-k-feature set of minimum cardinality is identified and then, a set of classification rules using these features is obtained. We obtain the (α, β)-k-feature set in two phases; first a series of extremely powerful reduction techniques, which do not lose the optimal solution, are employed; and second, a metaheuristic search to identify the remaining features to be considered or disregarded. Two algorithms were tested with a public domain digital mammography dataset composed of 71 malignant and 75 benign cases. Based on the results provided by the algorithms, we obtain classification rules that employ only a subset of these features.

  19. Modeling PSInSAR time series without phase unwrapping

    USGS Publications Warehouse

    Zhang, L.; Ding, X.; Lu, Z.

    2011-01-01

    In this paper, we propose a least-squares-based method for multitemporal synthetic aperture radar interferometry that allows one to estimate deformations without the need of phase unwrapping. The method utilizes a series of multimaster wrapped differential interferograms with short baselines and focuses on arcs at which there are no phase ambiguities. An outlier detector is used to identify and remove the arcs with phase ambiguities, and a pseudoinverse of the variance-covariance matrix is used as the weight matrix of the correlated observations. The deformation rates at coherent points are estimated with a least squares model constrained by reference points. The proposed approach is verified with a set of simulated data.

  20. A Comprehensive Set of Impact Data for Common Aerospace Metals

    DOE PAGES

    Brake, Matthew; Reu, Phil L.; Aragon, Dannelle S.

    2017-05-16

    Our results for the two sets of impact experiments are reported here. In order to assist with model development using the impact data reported, the materials are mechanically characterized using a series of standard experiments. The first set of impact data comes from a series of coefficient of restitution experiments, in which a 2 meter long pendulum is used to study "in context" measurements of the coefficient of restitution for eight different materials (6061-T6 Aluminum, Phosphor Bronze alloy 510, Hiperco, Nitronic 60A, Stainless Steel 304, Titanium, Copper, and Annealed Copper). The coefficient of restitution is measured via two different techniques:more » digital image correlation and laser Doppler vibrometry. Due to the strong agreement of the two different methods, only results from the digital image correlation are reported. The coefficient of restitution experiments are "in context" as the scales of the geometry and impact velocities are representative of common features in the motivating application for this research. Finally, a series of compliance measurements are detailed for the same set of materials. Furthermore, the compliance measurements are conducted using both nano-indentation and micro-indentation machines, providing sub-nm displacement resolution and uN force resolution. Good agreement is seen for load levels spanned by both machines. As the transition from elastic to plastic behavior occurs at contact displacements on the order of 30 nm, this data set provides a unique insight into the transitionary region.« less

  1. A Comprehensive Set of Impact Data for Common Aerospace Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brake, Matthew; Reu, Phil L.; Aragon, Dannelle S.

    Our results for the two sets of impact experiments are reported here. In order to assist with model development using the impact data reported, the materials are mechanically characterized using a series of standard experiments. The first set of impact data comes from a series of coefficient of restitution experiments, in which a 2 meter long pendulum is used to study "in context" measurements of the coefficient of restitution for eight different materials (6061-T6 Aluminum, Phosphor Bronze alloy 510, Hiperco, Nitronic 60A, Stainless Steel 304, Titanium, Copper, and Annealed Copper). The coefficient of restitution is measured via two different techniques:more » digital image correlation and laser Doppler vibrometry. Due to the strong agreement of the two different methods, only results from the digital image correlation are reported. The coefficient of restitution experiments are "in context" as the scales of the geometry and impact velocities are representative of common features in the motivating application for this research. Finally, a series of compliance measurements are detailed for the same set of materials. Furthermore, the compliance measurements are conducted using both nano-indentation and micro-indentation machines, providing sub-nm displacement resolution and uN force resolution. Good agreement is seen for load levels spanned by both machines. As the transition from elastic to plastic behavior occurs at contact displacements on the order of 30 nm, this data set provides a unique insight into the transitionary region.« less

  2. Statistical assessment of the learning curves of health technologies.

    PubMed

    Ramsay, C R; Grant, A M; Wallace, S A; Garthwaite, P H; Monk, A F; Russell, I T

    2001-01-01

    (1) To describe systematically studies that directly assessed the learning curve effect of health technologies. (2) Systematically to identify 'novel' statistical techniques applied to learning curve data in other fields, such as psychology and manufacturing. (3) To test these statistical techniques in data sets from studies of varying designs to assess health technologies in which learning curve effects are known to exist. METHODS - STUDY SELECTION (HEALTH TECHNOLOGY ASSESSMENT LITERATURE REVIEW): For a study to be included, it had to include a formal analysis of the learning curve of a health technology using a graphical, tabular or statistical technique. METHODS - STUDY SELECTION (NON-HEALTH TECHNOLOGY ASSESSMENT LITERATURE SEARCH): For a study to be included, it had to include a formal assessment of a learning curve using a statistical technique that had not been identified in the previous search. METHODS - DATA SOURCES: Six clinical and 16 non-clinical biomedical databases were searched. A limited amount of handsearching and scanning of reference lists was also undertaken. METHODS - DATA EXTRACTION (HEALTH TECHNOLOGY ASSESSMENT LITERATURE REVIEW): A number of study characteristics were abstracted from the papers such as study design, study size, number of operators and the statistical method used. METHODS - DATA EXTRACTION (NON-HEALTH TECHNOLOGY ASSESSMENT LITERATURE SEARCH): The new statistical techniques identified were categorised into four subgroups of increasing complexity: exploratory data analysis; simple series data analysis; complex data structure analysis, generic techniques. METHODS - TESTING OF STATISTICAL METHODS: Some of the statistical methods identified in the systematic searches for single (simple) operator series data and for multiple (complex) operator series data were illustrated and explored using three data sets. The first was a case series of 190 consecutive laparoscopic fundoplication procedures performed by a single surgeon; the second was a case series of consecutive laparoscopic cholecystectomy procedures performed by ten surgeons; the third was randomised trial data derived from the laparoscopic procedure arm of a multicentre trial of groin hernia repair, supplemented by data from non-randomised operations performed during the trial. RESULTS - HEALTH TECHNOLOGY ASSESSMENT LITERATURE REVIEW: Of 4571 abstracts identified, 272 (6%) were later included in the study after review of the full paper. Some 51% of studies assessed a surgical minimal access technique and 95% were case series. The statistical method used most often (60%) was splitting the data into consecutive parts (such as halves or thirds), with only 14% attempting a more formal statistical analysis. The reporting of the studies was poor, with 31% giving no details of data collection methods. RESULTS - NON-HEALTH TECHNOLOGY ASSESSMENT LITERATURE SEARCH: Of 9431 abstracts assessed, 115 (1%) were deemed appropriate for further investigation and, of these, 18 were included in the study. All of the methods for complex data sets were identified in the non-clinical literature. These were discriminant analysis, two-stage estimation of learning rates, generalised estimating equations, multilevel models, latent curve models, time series models and stochastic parameter models. In addition, eight new shapes of learning curves were identified. RESULTS - TESTING OF STATISTICAL METHODS: No one particular shape of learning curve performed significantly better than another. The performance of 'operation time' as a proxy for learning differed between the three procedures. Multilevel modelling using the laparoscopic cholecystectomy data demonstrated and measured surgeon-specific and confounding effects. The inclusion of non-randomised cases, despite the possible limitations of the method, enhanced the interpretation of learning effects. CONCLUSIONS - HEALTH TECHNOLOGY ASSESSMENT LITERATURE REVIEW: The statistical methods used for assessing learning effects in health technology assessment have been crude and the reporting of studies poor. CONCLUSIONS - NON-HEALTH TECHNOLOGY ASSESSMENT LITERATURE SEARCH: A number of statistical methods for assessing learning effects were identified that had not hitherto been used in health technology assessment. There was a hierarchy of methods for the identification and measurement of learning, and the more sophisticated methods for both have had little if any use in health technology assessment. This demonstrated the value of considering fields outside clinical research when addressing methodological issues in health technology assessment. CONCLUSIONS - TESTING OF STATISTICAL METHODS: It has been demonstrated that the portfolio of techniques identified can enhance investigations of learning curve effects. (ABSTRACT TRUNCATED)

  3. Univariate Time Series Prediction of Solar Power Using a Hybrid Wavelet-ARMA-NARX Prediction Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazaripouya, Hamidreza; Wang, Yubo; Chu, Chi-Cheng

    This paper proposes a new hybrid method for super short-term solar power prediction. Solar output power usually has a complex, nonstationary, and nonlinear characteristic due to intermittent and time varying behavior of solar radiance. In addition, solar power dynamics is fast and is inertia less. An accurate super short-time prediction is required to compensate for the fluctuations and reduce the impact of solar power penetration on the power system. The objective is to predict one step-ahead solar power generation based only on historical solar power time series data. The proposed method incorporates discrete wavelet transform (DWT), Auto-Regressive Moving Average (ARMA)more » models, and Recurrent Neural Networks (RNN), while the RNN architecture is based on Nonlinear Auto-Regressive models with eXogenous inputs (NARX). The wavelet transform is utilized to decompose the solar power time series into a set of richer-behaved forming series for prediction. ARMA model is employed as a linear predictor while NARX is used as a nonlinear pattern recognition tool to estimate and compensate the error of wavelet-ARMA prediction. The proposed method is applied to the data captured from UCLA solar PV panels and the results are compared with some of the common and most recent solar power prediction methods. The results validate the effectiveness of the proposed approach and show a considerable improvement in the prediction precision.« less

  4. “Towards building better linkages between aqueous phase chemistry and microphysics in CMAQ”

    EPA Science Inventory

    Currently, CMAQ’s aqueous phase chemistry routine (AQCHEM-base) assumes Henry’s Law equilibrium and employs a forward Euler method to solve a small set of oxidation equations, considering the additional processes of aitken scavenging and wet deposition in series and e...

  5. Significance testing of clinical data using virus dynamics models with a Markov chain Monte Carlo method: application to emergence of lamivudine-resistant hepatitis B virus.

    PubMed Central

    Burroughs, N J; Pillay, D; Mutimer, D

    1999-01-01

    Bayesian analysis using a virus dynamics model is demonstrated to facilitate hypothesis testing of patterns in clinical time-series. Our Markov chain Monte Carlo implementation demonstrates that the viraemia time-series observed in two sets of hepatitis B patients on antiviral (lamivudine) therapy, chronic carriers and liver transplant patients, are significantly different, overcoming clinical trial design differences that question the validity of non-parametric tests. We show that lamivudine-resistant mutants grow faster in transplant patients than in chronic carriers, which probably explains the differences in emergence times and failure rates between these two sets of patients. Incorporation of dynamic models into Bayesian parameter analysis is of general applicability in medical statistics. PMID:10643081

  6. Computing the multifractal spectrum from time series: an algorithmic approach.

    PubMed

    Harikrishnan, K P; Misra, R; Ambika, G; Amritkar, R E

    2009-12-01

    We show that the existing methods for computing the f(alpha) spectrum from a time series can be improved by using a new algorithmic scheme. The scheme relies on the basic idea that the smooth convex profile of a typical f(alpha) spectrum can be fitted with an analytic function involving a set of four independent parameters. While the standard existing schemes [P. Grassberger et al., J. Stat. Phys. 51, 135 (1988); A. Chhabra and R. V. Jensen, Phys. Rev. Lett. 62, 1327 (1989)] generally compute only an incomplete f(alpha) spectrum (usually the top portion), we show that this can be overcome by an algorithmic approach, which is automated to compute the D(q) and f(alpha) spectra from a time series for any embedding dimension. The scheme is first tested with the logistic attractor with known f(alpha) curve and subsequently applied to higher-dimensional cases. We also show that the scheme can be effectively adapted for analyzing practical time series involving noise, with examples from two widely different real world systems. Moreover, some preliminary results indicating that the set of four independent parameters may be used as diagnostic measures are also included.

  7. Piecewise multivariate modelling of sequential metabolic profiling data.

    PubMed

    Rantalainen, Mattias; Cloarec, Olivier; Ebbels, Timothy M D; Lundstedt, Torbjörn; Nicholson, Jeremy K; Holmes, Elaine; Trygg, Johan

    2008-02-19

    Modelling the time-related behaviour of biological systems is essential for understanding their dynamic responses to perturbations. In metabolic profiling studies, the sampling rate and number of sampling points are often restricted due to experimental and biological constraints. A supervised multivariate modelling approach with the objective to model the time-related variation in the data for short and sparsely sampled time-series is described. A set of piecewise Orthogonal Projections to Latent Structures (OPLS) models are estimated, describing changes between successive time points. The individual OPLS models are linear, but the piecewise combination of several models accommodates modelling and prediction of changes which are non-linear with respect to the time course. We demonstrate the method on both simulated and metabolic profiling data, illustrating how time related changes are successfully modelled and predicted. The proposed method is effective for modelling and prediction of short and multivariate time series data. A key advantage of the method is model transparency, allowing easy interpretation of time-related variation in the data. The method provides a competitive complement to commonly applied multivariate methods such as OPLS and Principal Component Analysis (PCA) for modelling and analysis of short time-series data.

  8. An Enhanced Butyrylcholinesterase Method to Measure Organophosphorus Nerve Agent Exposure in Humans

    PubMed Central

    Pantazides, Brooke G.; Watson, Caroline M.; Carter, Melissa D.; Crow, Brian S.; Perez, Jonas W.; Blake, Thomas A.; Thomas, Jerry D.; Johnson, Rudolph C.

    2016-01-01

    Organophosphorus nerve agent (OPNA) adducts to butyrylcholinesterase (BChE) can be used to confirm exposure in humans. A highly accurate method to detect G-series and V-series OPNA adducts to BChE in 75 μL of filtered blood, serum, or plasma has been developed using immunomagnetic separation (IMS) coupled with liquid chromatography tandem mass spectrometry (LC-MS/MS). The reported IMS method captures > 88% of the BChE in a specimen and corrects for matrix effects on peptide calibrators. The optimized method has been used to quantify baseline BChE levels (unadducted and OPNA-adducted) in a matched set of serum, plasma and whole blood (later processed in-house for plasma content) from 192 unexposed individuals to determine the interchangeability of the tested matrices. The results of these measurements demonstrate the ability to accurately measure BChE regardless of the format of the blood specimen received. Criteria for accepting or denying specimens were established through a series of sample stability and processing experiments. The results of these efforts are an optimized and rugged method that is transferrable to other laboratories and an increased understanding of the BChE biomarker in matrix. PMID:24604326

  9. Two-pass imputation algorithm for missing value estimation in gene expression time series.

    PubMed

    Tsiporkova, Elena; Boeva, Veselka

    2007-10-01

    Gene expression microarray experiments frequently generate datasets with multiple values missing. However, most of the analysis, mining, and classification methods for gene expression data require a complete matrix of gene array values. Therefore, the accurate estimation of missing values in such datasets has been recognized as an important issue, and several imputation algorithms have already been proposed to the biological community. Most of these approaches, however, are not particularly suitable for time series expression profiles. In view of this, we propose a novel imputation algorithm, which is specially suited for the estimation of missing values in gene expression time series data. The algorithm utilizes Dynamic Time Warping (DTW) distance in order to measure the similarity between time expression profiles, and subsequently selects for each gene expression profile with missing values a dedicated set of candidate profiles for estimation. Three different DTW-based imputation (DTWimpute) algorithms have been considered: position-wise, neighborhood-wise, and two-pass imputation. These have initially been prototyped in Perl, and their accuracy has been evaluated on yeast expression time series data using several different parameter settings. The experiments have shown that the two-pass algorithm consistently outperforms, in particular for datasets with a higher level of missing entries, the neighborhood-wise and the position-wise algorithms. The performance of the two-pass DTWimpute algorithm has further been benchmarked against the weighted K-Nearest Neighbors algorithm, which is widely used in the biological community; the former algorithm has appeared superior to the latter one. Motivated by these findings, indicating clearly the added value of the DTW techniques for missing value estimation in time series data, we have built an optimized C++ implementation of the two-pass DTWimpute algorithm. The software also provides for a choice between three different initial rough imputation methods.

  10. Can We Speculate Running Application With Server Power Consumption Trace?

    PubMed

    Li, Yuanlong; Hu, Han; Wen, Yonggang; Zhang, Jun

    2018-05-01

    In this paper, we propose to detect the running applications in a server by classifying the observed power consumption series for the purpose of data center energy consumption monitoring and analysis. Time series classification problem has been extensively studied with various distance measurements developed; also recently the deep learning-based sequence models have been proved to be promising. In this paper, we propose a novel distance measurement and build a time series classification algorithm hybridizing nearest neighbor and long short term memory (LSTM) neural network. More specifically, first we propose a new distance measurement termed as local time warping (LTW), which utilizes a user-specified index set for local warping, and is designed to be noncommutative and nondynamic programming. Second, we hybridize the 1-nearest neighbor (1NN)-LTW and LSTM together. In particular, we combine the prediction probability vector of 1NN-LTW and LSTM to determine the label of the test cases. Finally, using the power consumption data from a real data center, we show that the proposed LTW can improve the classification accuracy of dynamic time warping (DTW) from about 84% to 90%. Our experimental results prove that the proposed LTW is competitive on our data set compared with existed DTW variants and its noncommutative feature is indeed beneficial. We also test a linear version of LTW and find out that it can perform similar to state-of-the-art DTW-based method while it runs as fast as the linear runtime lower bound methods like LB_Keogh for our problem. With the hybrid algorithm, for the power series classification task we achieve an accuracy up to about 93%. Our research can inspire more studies on time series distance measurement and the hybrid of the deep learning models with other traditional models.

  11. Quantification and clustering of phenotypic screening data using time-series analysis for chemotherapy of schistosomiasis

    PubMed Central

    2012-01-01

    Background Neglected tropical diseases, especially those caused by helminths, constitute some of the most common infections of the world's poorest people. Development of techniques for automated, high-throughput drug screening against these diseases, especially in whole-organism settings, constitutes one of the great challenges of modern drug discovery. Method We present a method for enabling high-throughput phenotypic drug screening against diseases caused by helminths with a focus on schistosomiasis. The proposed method allows for a quantitative analysis of the systemic impact of a drug molecule on the pathogen as exhibited by the complex continuum of its phenotypic responses. This method consists of two key parts: first, biological image analysis is employed to automatically monitor and quantify shape-, appearance-, and motion-based phenotypes of the parasites. Next, we represent these phenotypes as time-series and show how to compare, cluster, and quantitatively reason about them using techniques of time-series analysis. Results We present results on a number of algorithmic issues pertinent to the time-series representation of phenotypes. These include results on appropriate representation of phenotypic time-series, analysis of different time-series similarity measures for comparing phenotypic responses over time, and techniques for clustering such responses by similarity. Finally, we show how these algorithmic techniques can be used for quantifying the complex continuum of phenotypic responses of parasites. An important corollary is the ability of our method to recognize and rigorously group parasites based on the variability of their phenotypic response to different drugs. Conclusions The methods and results presented in this paper enable automatic and quantitative scoring of high-throughput phenotypic screens focused on helmintic diseases. Furthermore, these methods allow us to analyze and stratify parasites based on their phenotypic response to drugs. Together, these advancements represent a significant breakthrough for the process of drug discovery against schistosomiasis in particular and can be extended to other helmintic diseases which together afflict a large part of humankind. PMID:22369037

  12. A general approach for developing system-specific functions to score protein-ligand docked complexes using support vector inductive logic programming.

    PubMed

    Amini, Ata; Shrimpton, Paul J; Muggleton, Stephen H; Sternberg, Michael J E

    2007-12-01

    Despite the increased recent use of protein-ligand and protein-protein docking in the drug discovery process due to the increases in computational power, the difficulty of accurately ranking the binding affinities of a series of ligands or a series of proteins docked to a protein receptor remains largely unsolved. This problem is of major concern in lead optimization procedures and has lead to the development of scoring functions tailored to rank the binding affinities of a series of ligands to a specific system. However, such methods can take a long time to develop and their transferability to other systems remains open to question. Here we demonstrate that given a suitable amount of background information a new approach using support vector inductive logic programming (SVILP) can be used to produce system-specific scoring functions. Inductive logic programming (ILP) learns logic-based rules for a given dataset that can be used to describe properties of each member of the set in a qualitative manner. By combining ILP with support vector machine regression, a quantitative set of rules can be obtained. SVILP has previously been used in a biological context to examine datasets containing a series of singular molecular structures and properties. Here we describe the use of SVILP to produce binding affinity predictions of a series of ligands to a particular protein. We also for the first time examine the applicability of SVILP techniques to datasets consisting of protein-ligand complexes. Our results show that SVILP performs comparably with other state-of-the-art methods on five protein-ligand systems as judged by similar cross-validated squares of their correlation coefficients. A McNemar test comparing SVILP to CoMFA and CoMSIA across the five systems indicates our method to be significantly better on one occasion. The ability to graphically display and understand the SVILP-produced rules is demonstrated and this feature of ILP can be used to derive hypothesis for future ligand design in lead optimization procedures. The approach can readily be extended to evaluate the binding affinities of a series of protein-protein complexes. (c) 2007 Wiley-Liss, Inc.

  13. Root System Water Consumption Pattern Identification on Time Series Data

    PubMed Central

    Figueroa, Manuel; Pope, Christopher

    2017-01-01

    In agriculture, soil and meteorological sensors are used along low power networks to capture data, which allows for optimal resource usage and minimizing environmental impact. This study uses time series analysis methods for outliers’ detection and pattern recognition on soil moisture sensor data to identify irrigation and consumption patterns and to improve a soil moisture prediction and irrigation system. This study compares three new algorithms with the current detection technique in the project; the results greatly decrease the number of false positives detected. The best result is obtained by the Series Strings Comparison (SSC) algorithm averaging a precision of 0.872 on the testing sets, vastly improving the current system’s 0.348 precision. PMID:28621739

  14. Root System Water Consumption Pattern Identification on Time Series Data.

    PubMed

    Figueroa, Manuel; Pope, Christopher

    2017-06-16

    In agriculture, soil and meteorological sensors are used along low power networks to capture data, which allows for optimal resource usage and minimizing environmental impact. This study uses time series analysis methods for outliers' detection and pattern recognition on soil moisture sensor data to identify irrigation and consumption patterns and to improve a soil moisture prediction and irrigation system. This study compares three new algorithms with the current detection technique in the project; the results greatly decrease the number of false positives detected. The best result is obtained by the Series Strings Comparison (SSC) algorithm averaging a precision of 0.872 on the testing sets, vastly improving the current system's 0.348 precision.

  15. On improvement of the series convergence in the problem of the vibrations of orhotropic rectangular prism

    NASA Astrophysics Data System (ADS)

    Lyashko, A. D.

    2017-11-01

    A new analytical presentation of the solution for steady-state oscillations of orthotopic rectangular prism is found. The corresponding infinite system of linear algebraic equations has been deduced by the superposition method. A countable set of precise eigenfrequencies and elementary eigenforms is found. The identities are found which make it possible to improve the convergence of all the infinite series in the solution of the problem. All the infinite series in presentation of solution are analytically summed up. Numerical calculations of stresses in the rectangular orthotropic prism with a uniform along the border and harmonic in time load on two opposite faces have been performed.

  16. Application of time series discretization using evolutionary programming for classification of precancerous cervical lesions.

    PubMed

    Acosta-Mesa, Héctor-Gabriel; Rechy-Ramírez, Fernando; Mezura-Montes, Efrén; Cruz-Ramírez, Nicandro; Hernández Jiménez, Rodolfo

    2014-06-01

    In this work, we present a novel application of time series discretization using evolutionary programming for the classification of precancerous cervical lesions. The approach optimizes the number of intervals in which the length and amplitude of the time series should be compressed, preserving the important information for classification purposes. Using evolutionary programming, the search for a good discretization scheme is guided by a cost function which considers three criteria: the entropy regarding the classification, the complexity measured as the number of different strings needed to represent the complete data set, and the compression rate assessed as the length of the discrete representation. This discretization approach is evaluated using a time series data based on temporal patterns observed during a classical test used in cervical cancer detection; the classification accuracy reached by our method is compared with the well-known times series discretization algorithm SAX and the dimensionality reduction method PCA. Statistical analysis of the classification accuracy shows that the discrete representation is as efficient as the complete raw representation for the present application, reducing the dimensionality of the time series length by 97%. This representation is also very competitive in terms of classification accuracy when compared with similar approaches. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Generalised Pareto distribution: impact of rounding on parameter estimation

    NASA Astrophysics Data System (ADS)

    Pasarić, Z.; Cindrić, K.

    2018-05-01

    Problems that occur when common methods (e.g. maximum likelihood and L-moments) for fitting a generalised Pareto (GP) distribution are applied to discrete (rounded) data sets are revealed by analysing the real, dry spell duration series. The analysis is subsequently performed on generalised Pareto time series obtained by systematic Monte Carlo (MC) simulations. The solution depends on the following: (1) the actual amount of rounding, as determined by the actual data range (measured by the scale parameter, σ) vs. the rounding increment (Δx), combined with; (2) applying a certain (sufficiently high) threshold and considering the series of excesses instead of the original series. For a moderate amount of rounding (e.g. σ/Δx ≥ 4), which is commonly met in practice (at least regarding the dry spell data), and where no threshold is applied, the classical methods work reasonably well. If cutting at the threshold is applied to rounded data—which is actually essential when dealing with a GP distribution—then classical methods applied in a standard way can lead to erroneous estimates, even if the rounding itself is moderate. In this case, it is necessary to adjust the theoretical location parameter for the series of excesses. The other solution is to add an appropriate uniform noise to the rounded data ("so-called" jittering). This, in a sense, reverses the process of rounding; and thereafter, it is straightforward to apply the common methods. Finally, if the rounding is too coarse (e.g. σ/Δx 1), then none of the above recipes would work; and thus, specific methods for rounded data should be applied.

  18. Extending the Peak Bandwidth of Parameters for Softmax Selection in Reinforcement Learning.

    PubMed

    Iwata, Kazunori

    2016-05-11

    Softmax selection is one of the most popular methods for action selection in reinforcement learning. Although various recently proposed methods may be more effective with full parameter tuning, implementing a complicated method that requires the tuning of many parameters can be difficult. Thus, softmax selection is still worth revisiting, considering the cost savings of its implementation and tuning. In fact, this method works adequately in practice with only one parameter appropriately set for the environment. The aim of this paper is to improve the variable setting of this method to extend the bandwidth of good parameters, thereby reducing the cost of implementation and parameter tuning. To achieve this, we take advantage of the asymptotic equipartition property in a Markov decision process to extend the peak bandwidth of softmax selection. Using a variety of episodic tasks, we show that our setting is effective in extending the bandwidth and that it yields a better policy in terms of stability. The bandwidth is quantitatively assessed in a series of statistical tests.

  19. Detecting correlation changes in multivariate time series: A comparison of four non-parametric change point detection methods.

    PubMed

    Cabrieto, Jedelyn; Tuerlinckx, Francis; Kuppens, Peter; Grassmann, Mariel; Ceulemans, Eva

    2017-06-01

    Change point detection in multivariate time series is a complex task since next to the mean, the correlation structure of the monitored variables may also alter when change occurs. DeCon was recently developed to detect such changes in mean and\\or correlation by combining a moving windows approach and robust PCA. However, in the literature, several other methods have been proposed that employ other non-parametric tools: E-divisive, Multirank, and KCP. Since these methods use different statistical approaches, two issues need to be tackled. First, applied researchers may find it hard to appraise the differences between the methods. Second, a direct comparison of the relative performance of all these methods for capturing change points signaling correlation changes is still lacking. Therefore, we present the basic principles behind DeCon, E-divisive, Multirank, and KCP and the corresponding algorithms, to make them more accessible to readers. We further compared their performance through extensive simulations using the settings of Bulteel et al. (Biological Psychology, 98 (1), 29-42, 2014) implying changes in mean and in correlation structure and those of Matteson and James (Journal of the American Statistical Association, 109 (505), 334-345, 2014) implying different numbers of (noise) variables. KCP emerged as the best method in almost all settings. However, in case of more than two noise variables, only DeCon performed adequately in detecting correlation changes.

  20. Estimating Transmissivity from the Water Level Fluctuations of a Sinusoidally Forced Well

    USGS Publications Warehouse

    Mehnert, E.; Valocchi, A.J.; Heidari, M.; Kapoor, S.G.; Kumar, P.

    1999-01-01

    The water levels in wells are known to fluctuate in response to earth tides and changes in atmospheric pressure. These water level fluctuations can be analyzed to estimate transmissivity (T). A new method to estimate transmissivity, which assumes that the atmospheric pressure varies in a sinusoidal fashion, is presented. Data analysis for this simplified method involves using a set of type curves and estimating the ratio of the amplitudes of the well response over the atmospheric pressure. Type curves for this new method were generated based on a model for ground water flow between the well and aquifer developed by Cooper et al. (1965). Data analysis with this method confirmed these published results: (1) the amplitude ratio is a function of transmissivity, the well radius, and the frequency of the sinusoidal oscillation; and (2) the amplitude ratio is a weak function of storativity. Compared to other methods, the developed method involves simpler, more intuitive data analysis and allows shorter data sets to be analyzed. The effect of noise on estimating the amplitude ratio was evaluated and found to be more significant at lower T. For aquifers with low T, noise was shown to mask the water level fluctuations induced by atmospheric pressure changes. In addition, reducing the length of the data series did not affect the estimate of T, but the variance of the estimate was higher for the shorter series of noisy data.

  1. Visualizing frequent patterns in large multivariate time series

    NASA Astrophysics Data System (ADS)

    Hao, M.; Marwah, M.; Janetzko, H.; Sharma, R.; Keim, D. A.; Dayal, U.; Patnaik, D.; Ramakrishnan, N.

    2011-01-01

    The detection of previously unknown, frequently occurring patterns in time series, often called motifs, has been recognized as an important task. However, it is difficult to discover and visualize these motifs as their numbers increase, especially in large multivariate time series. To find frequent motifs, we use several temporal data mining and event encoding techniques to cluster and convert a multivariate time series to a sequence of events. Then we quantify the efficiency of the discovered motifs by linking them with a performance metric. To visualize frequent patterns in a large time series with potentially hundreds of nested motifs on a single display, we introduce three novel visual analytics methods: (1) motif layout, using colored rectangles for visualizing the occurrences and hierarchical relationships of motifs in a multivariate time series, (2) motif distortion, for enlarging or shrinking motifs as appropriate for easy analysis and (3) motif merging, to combine a number of identical adjacent motif instances without cluttering the display. Analysts can interactively optimize the degree of distortion and merging to get the best possible view. A specific motif (e.g., the most efficient or least efficient motif) can be quickly detected from a large time series for further investigation. We have applied these methods to two real-world data sets: data center cooling and oil well production. The results provide important new insights into the recurring patterns.

  2. Temporal and long-term trend analysis of class C notifiable diseases in China from 2009 to 2014

    PubMed Central

    Zhang, Xingyu; Hou, Fengsu; Qiao, Zhijiao; Li, Xiaosong; Zhou, Lijun; Liu, Yuanyuan; Zhang, Tao

    2016-01-01

    Objectives Time series models are effective tools for disease forecasting. This study aims to explore the time series behaviour of 11 notifiable diseases in China and to predict their incidence through effective models. Settings and participants The Chinese Ministry of Health started to publish class C notifiable diseases in 2009. The monthly reported case time series of 11 infectious diseases from the surveillance system between 2009 and 2014 was collected. Methods We performed a descriptive and a time series study using the surveillance data. Decomposition methods were used to explore (1) their seasonality expressed in the form of seasonal indices and (2) their long-term trend in the form of a linear regression model. Autoregressive integrated moving average (ARIMA) models have been established for each disease. Results The number of cases and deaths caused by hand, foot and mouth disease ranks number 1 among the detected diseases. It occurred most often in May and July and increased, on average, by 0.14126/100 000 per month. The remaining incidence models show good fit except the influenza and hydatid disease models. Both the hydatid disease and influenza series become white noise after differencing, so no available ARIMA model can be fitted for these two diseases. Conclusion Time series analysis of effective surveillance time series is useful for better understanding the occurrence of the 11 types of infectious disease. PMID:27797981

  3. Cloud masking and removal in remote sensing image time series

    NASA Astrophysics Data System (ADS)

    Gómez-Chova, Luis; Amorós-López, Julia; Mateo-García, Gonzalo; Muñoz-Marí, Jordi; Camps-Valls, Gustau

    2017-01-01

    Automatic cloud masking of Earth observation images is one of the first required steps in optical remote sensing data processing since the operational use and product generation from satellite image time series might be hampered by undetected clouds. The high temporal revisit of current and forthcoming missions and the scarcity of labeled data force us to cast cloud screening as an unsupervised change detection problem in the temporal domain. We introduce a cloud screening method based on detecting abrupt changes along the time dimension. The main assumption is that image time series follow smooth variations over land (background) and abrupt changes will be mainly due to the presence of clouds. The method estimates the background surface changes using the information in the time series. In particular, we propose linear and nonlinear least squares regression algorithms that minimize both the prediction and the estimation error simultaneously. Then, significant differences in the image of interest with respect to the estimated background are identified as clouds. The use of kernel methods allows the generalization of the algorithm to account for higher-order (nonlinear) feature relations. After the proposed cloud masking and cloud removal, cloud-free time series at high spatial resolution can be used to obtain a better monitoring of land cover dynamics and to generate more elaborated products. The method is tested in a dataset with 5-day revisit time series from SPOT-4 at high resolution and with Landsat-8 time series. Experimental results show that the proposed method yields more accurate cloud masks when confronted with state-of-the-art approaches typically used in operational settings. In addition, the algorithm has been implemented in the Google Earth Engine platform, which allows us to access the full Landsat-8 catalog and work in a parallel distributed platform to extend its applicability to a global planetary scale.

  4. Rapid Calculation of Spacecraft Trajectories Using Efficient Taylor Series Integration

    NASA Technical Reports Server (NTRS)

    Scott, James R.; Martini, Michael C.

    2011-01-01

    A variable-order, variable-step Taylor series integration algorithm was implemented in NASA Glenn's SNAP (Spacecraft N-body Analysis Program) code. SNAP is a high-fidelity trajectory propagation program that can propagate the trajectory of a spacecraft about virtually any body in the solar system. The Taylor series algorithm's very high order accuracy and excellent stability properties lead to large reductions in computer time relative to the code's existing 8th order Runge-Kutta scheme. Head-to-head comparison on near-Earth, lunar, Mars, and Europa missions showed that Taylor series integration is 15.8 times faster than Runge- Kutta on average, and is more accurate. These speedups were obtained for calculations involving central body, other body, thrust, and drag forces. Similar speedups have been obtained for calculations that include J2 spherical harmonic for central body gravitation. The algorithm includes a step size selection method that directly calculates the step size and never requires a repeat step. High-order Taylor series integration algorithms have been shown to provide major reductions in computer time over conventional integration methods in numerous scientific applications. The objective here was to directly implement Taylor series integration in an existing trajectory analysis code and demonstrate that large reductions in computer time (order of magnitude) could be achieved while simultaneously maintaining high accuracy. This software greatly accelerates the calculation of spacecraft trajectories. At each time level, the spacecraft position, velocity, and mass are expanded in a high-order Taylor series whose coefficients are obtained through efficient differentiation arithmetic. This makes it possible to take very large time steps at minimal cost, resulting in large savings in computer time. The Taylor series algorithm is implemented primarily through three subroutines: (1) a driver routine that automatically introduces auxiliary variables and sets up initial conditions and integrates; (2) a routine that calculates system reduced derivatives using recurrence relations for quotients and products; and (3) a routine that determines the step size and sums the series. The order of accuracy used in a trajectory calculation is arbitrary and can be set by the user. The algorithm directly calculates the motion of other planetary bodies and does not require ephemeris files (except to start the calculation). The code also runs with Taylor series and Runge-Kutta used interchangeably for different phases of a mission.

  5. Mass Media But Not Mania: Images and Things

    ERIC Educational Resources Information Center

    Templeton, David E.

    1976-01-01

    In order to effectively use National Instructional Television's art series, Images and Things, there are two items which are of great help for setting the cogs and wheels in motion: NIT's Guide and Program Notes and the Learning Resource Kit. Article described both methods for improving instruction. (Author/RK)

  6. Deconstructing Calculation Methods, Part 3: Multiplication

    ERIC Educational Resources Information Center

    Thompson, Ian

    2008-01-01

    In this third of a series of four articles, the author deconstructs the primary national strategy's approach to written multiplication. The approach to multiplication, as set out on pages 12 to 15 of the primary national strategy's "Guidance paper" "Calculation" (DfES, 2007), is divided into six stages: (1) mental…

  7. The statistical analysis of circadian phase and amplitude in constant-routine core-temperature data

    NASA Technical Reports Server (NTRS)

    Brown, E. N.; Czeisler, C. A.

    1992-01-01

    Accurate estimation of the phases and amplitude of the endogenous circadian pacemaker from constant-routine core-temperature series is crucial for making inferences about the properties of the human biological clock from data collected under this protocol. This paper presents a set of statistical methods based on a harmonic-regression-plus-correlated-noise model for estimating the phases and the amplitude of the endogenous circadian pacemaker from constant-routine core-temperature data. The methods include a Bayesian Monte Carlo procedure for computing the uncertainty in these circadian functions. We illustrate the techniques with a detailed study of a single subject's core-temperature series and describe their relationship to other statistical methods for circadian data analysis. In our laboratory, these methods have been successfully used to analyze more than 300 constant routines and provide a highly reliable means of extracting phase and amplitude information from core-temperature data.

  8. Reconstructing land use history from Landsat time-series. Case study of a swidden agriculture system in Brazil

    NASA Astrophysics Data System (ADS)

    Dutrieux, Loïc P.; Jakovac, Catarina C.; Latifah, Siti H.; Kooistra, Lammert

    2016-05-01

    We developed a method to reconstruct land use history from Landsat images time-series. The method uses a breakpoint detection framework derived from the econometrics field and applicable to time-series regression models. The Breaks For Additive Season and Trend (BFAST) framework is used for defining the time-series regression models which may contain trend and phenology, hence appropriately modelling vegetation intra and inter-annual dynamics. All available Landsat data are used for a selected study area, and the time-series are partitioned into segments delimited by breakpoints. Segments can be associated to land use regimes, while the breakpoints then correspond to shifts in land use regimes. In order to further characterize these shifts, we classified the unlabelled breakpoints returned by the algorithm into their corresponding processes. We used a Random Forest classifier, trained from a set of visually interpreted time-series profiles to infer the processes and assign labels to the breakpoints. The whole approach was applied to quantifying the number of cultivation cycles in a swidden agriculture system in Brazil (state of Amazonas). Number and frequency of cultivation cycles is of particular ecological relevance in these systems since they largely affect the capacity of the forest to regenerate after land abandonment. We applied the method to a Landsat time-series of Normalized Difference Moisture Index (NDMI) spanning the 1984-2015 period and derived from it the number of cultivation cycles during that period at the individual field scale level. Agricultural fields boundaries used to apply the method were derived using a multi-temporal segmentation approach. We validated the number of cultivation cycles predicted by the method against in-situ information collected from farmers interviews, resulting in a Normalized Residual Mean Squared Error (NRMSE) of 0.25. Overall the method performed well, producing maps with coherent spatial patterns. We identified various sources of error in the approach, including low data availability in the 90s and sub-object mixture of land uses. We conclude that the method holds great promise for land use history mapping in the tropics and beyond.

  9. Asymptotic scaling properties and estimation of the generalized Hurst exponents in financial data

    NASA Astrophysics Data System (ADS)

    Buonocore, R. J.; Aste, T.; Di Matteo, T.

    2017-04-01

    We propose a method to measure the Hurst exponents of financial time series. The scaling of the absolute moments against the aggregation horizon of real financial processes and of both uniscaling and multiscaling synthetic processes converges asymptotically towards linearity in log-log scale. In light of this we found appropriate a modification of the usual scaling equation via the introduction of a filter function. We devised a measurement procedure which takes into account the presence of the filter function without the need of directly estimating it. We verified that the method is unbiased within the errors by applying it to synthetic time series with known scaling properties. Finally we show an application to empirical financial time series where we fit the measured scaling exponents via a second or a fourth degree polynomial, which, because of theoretical constraints, have respectively only one and two degrees of freedom. We found that on our data set there is not clear preference between the second or fourth degree polynomial. Moreover the study of the filter functions of each time series shows common patterns of convergence depending on the momentum degree.

  10. Data cleaning in the energy domain

    NASA Astrophysics Data System (ADS)

    Akouemo Kengmo Kenfack, Hermine N.

    This dissertation addresses the problem of data cleaning in the energy domain, especially for natural gas and electric time series. The detection and imputation of anomalies improves the performance of forecasting models necessary to lower purchasing and storage costs for utilities and plan for peak energy loads or distribution shortages. There are various types of anomalies, each induced by diverse causes and sources depending on the field of study. The definition of false positives also depends on the context. The analysis is focused on energy data because of the availability of data and information to make a theoretical and practical contribution to the field. A probabilistic approach based on hypothesis testing is developed to decide if a data point is anomalous based on the level of significance. Furthermore, the probabilistic approach is combined with statistical regression models to handle time series data. Domain knowledge of energy data and the survey of causes and sources of anomalies in energy are incorporated into the data cleaning algorithm to improve the accuracy of the results. The data cleaning method is evaluated on simulated data sets in which anomalies were artificially inserted and on natural gas and electric data sets. In the simulation study, the performance of the method is evaluated for both detection and imputation on all identified causes of anomalies in energy data. The testing on utilities' data evaluates the percentage of improvement brought to forecasting accuracy by data cleaning. A cross-validation study of the results is also performed to demonstrate the performance of the data cleaning algorithm on smaller data sets and to calculate an interval of confidence for the results. The data cleaning algorithm is able to successfully identify energy time series anomalies. The replacement of those anomalies provides improvement to forecasting models accuracy. The process is automatic, which is important because many data cleaning processes require human input and become impractical for very large data sets. The techniques are also applicable to other fields such as econometrics and finance, but the exogenous factors of the time series data need to be well defined.

  11. Manipulating affective state using extended picture presentations.

    PubMed

    Sutton, S K; Davidson, R J; Donzella, B; Irwin, W; Dottl, D A

    1997-03-01

    Separate, extended series of positive, negative, and neutral pictures were presented to 24 (12 men, 12 women) undergraduates. Each series was presented on a different day, with full counterbalancing of presentation orders. Affective state was measured using (a) orbicularis oculi activity in response to acoustic startle probes during picture presentation, (b) corrugator supercilii activity between and during picture presentation, and (c) changes in self-reports of positive and negative affect. Participants exhibited larger eyeblink reflex magnitudes when viewing negative than when viewing positive pictures. Corrugator activity was also greater during the negative than during the positive picture set, during both picture presentation and the period between pictures. Self-reports of negative affect increased in response to the negative picture set, and self-reports of positive affect were greatest following the positive picture set. These findings suggest that extended picture presentation is an effective method of manipulating affective state and further highlight the utility of startle probe and facial electromyographic measures in providing on-line readouts of affective state.

  12. Quantification and clustering of phenotypic screening data using time-series analysis for chemotherapy of schistosomiasis.

    PubMed

    Lee, Hyokyeong; Moody-Davis, Asher; Saha, Utsab; Suzuki, Brian M; Asarnow, Daniel; Chen, Steven; Arkin, Michelle; Caffrey, Conor R; Singh, Rahul

    2012-01-01

    Neglected tropical diseases, especially those caused by helminths, constitute some of the most common infections of the world's poorest people. Development of techniques for automated, high-throughput drug screening against these diseases, especially in whole-organism settings, constitutes one of the great challenges of modern drug discovery. We present a method for enabling high-throughput phenotypic drug screening against diseases caused by helminths with a focus on schistosomiasis. The proposed method allows for a quantitative analysis of the systemic impact of a drug molecule on the pathogen as exhibited by the complex continuum of its phenotypic responses. This method consists of two key parts: first, biological image analysis is employed to automatically monitor and quantify shape-, appearance-, and motion-based phenotypes of the parasites. Next, we represent these phenotypes as time-series and show how to compare, cluster, and quantitatively reason about them using techniques of time-series analysis. We present results on a number of algorithmic issues pertinent to the time-series representation of phenotypes. These include results on appropriate representation of phenotypic time-series, analysis of different time-series similarity measures for comparing phenotypic responses over time, and techniques for clustering such responses by similarity. Finally, we show how these algorithmic techniques can be used for quantifying the complex continuum of phenotypic responses of parasites. An important corollary is the ability of our method to recognize and rigorously group parasites based on the variability of their phenotypic response to different drugs. The methods and results presented in this paper enable automatic and quantitative scoring of high-throughput phenotypic screens focused on helmintic diseases. Furthermore, these methods allow us to analyze and stratify parasites based on their phenotypic response to drugs. Together, these advancements represent a significant breakthrough for the process of drug discovery against schistosomiasis in particular and can be extended to other helmintic diseases which together afflict a large part of humankind.

  13. Uncertainty in projected point precipitation extremes for hydrological impact analysis of climate change

    NASA Astrophysics Data System (ADS)

    Van Uytven, Els; Willems, Patrick

    2017-04-01

    Current trends in the hydro-meteorological variables indicate the potential impact of climate change on hydrological extremes. Therefore, they trigger an increased importance climate adaptation strategies in water management. The impact of climate change on hydro-meteorological and hydrological extremes is, however, highly uncertain. This is due to uncertainties introduced by the climate models, the internal variability inherent to the climate system, the greenhouse gas scenarios and the statistical downscaling methods. In view of the need to define sustainable climate adaptation strategies, there is a need to assess these uncertainties. This is commonly done by means of ensemble approaches. Because more and more climate models and statistical downscaling methods become available, there is a need to facilitate the climate impact and uncertainty analysis. A Climate Perturbation Tool has been developed for that purpose, which combines a set of statistical downscaling methods including weather typing, weather generator, transfer function and advanced perturbation based approaches. By use of an interactive interface, climate impact modelers can apply these statistical downscaling methods in a semi-automatic way to an ensemble of climate model runs. The tool is applicable to any region, but has been demonstrated so far to cases in Belgium, Suriname, Vietnam and Bangladesh. Time series representing future local-scale precipitation, temperature and potential evapotranspiration (PET) conditions were obtained, starting from time series of historical observations. Uncertainties on the future meteorological conditions are represented in two different ways: through an ensemble of time series, and a reduced set of synthetic scenarios. The both aim to span the full uncertainty range as assessed from the ensemble of climate model runs and downscaling methods. For Belgium, for instance, use was made of 100-year time series of 10-minutes precipitation observations and daily temperature and PET observations at Uccle and a large ensemble of 160 global climate model runs (CMIP5). They cover all four representative concentration pathway based greenhouse gas scenarios. While evaluating the downscaled meteorological series, particular attention was given to the performance of extreme value metrics (e.g. for precipitation, by means of intensity-duration-frequency statistics). Moreover, the total uncertainty was decomposed in the fractional uncertainties for each of the uncertainty sources considered. Research assessing the additional uncertainty due to parameter and structural uncertainties of the hydrological impact model is ongoing.

  14. Self-organising mixture autoregressive model for non-stationary time series modelling.

    PubMed

    Ni, He; Yin, Hujun

    2008-12-01

    Modelling non-stationary time series has been a difficult task for both parametric and nonparametric methods. One promising solution is to combine the flexibility of nonparametric models with the simplicity of parametric models. In this paper, the self-organising mixture autoregressive (SOMAR) network is adopted as a such mixture model. It breaks time series into underlying segments and at the same time fits local linear regressive models to the clusters of segments. In such a way, a global non-stationary time series is represented by a dynamic set of local linear regressive models. Neural gas is used for a more flexible structure of the mixture model. Furthermore, a new similarity measure has been introduced in the self-organising network to better quantify the similarity of time series segments. The network can be used naturally in modelling and forecasting non-stationary time series. Experiments on artificial, benchmark time series (e.g. Mackey-Glass) and real-world data (e.g. numbers of sunspots and Forex rates) are presented and the results show that the proposed SOMAR network is effective and superior to other similar approaches.

  15. Accounting for the Multiple Natures of Missing Values in Label-Free Quantitative Proteomics Data Sets to Compare Imputation Strategies.

    PubMed

    Lazar, Cosmin; Gatto, Laurent; Ferro, Myriam; Bruley, Christophe; Burger, Thomas

    2016-04-01

    Missing values are a genuine issue in label-free quantitative proteomics. Recent works have surveyed the different statistical methods to conduct imputation and have compared them on real or simulated data sets and recommended a list of missing value imputation methods for proteomics application. Although insightful, these comparisons do not account for two important facts: (i) depending on the proteomics data set, the missingness mechanism may be of different natures and (ii) each imputation method is devoted to a specific type of missingness mechanism. As a result, we believe that the question at stake is not to find the most accurate imputation method in general but instead the most appropriate one. We describe a series of comparisons that support our views: For instance, we show that a supposedly "under-performing" method (i.e., giving baseline average results), if applied at the "appropriate" time in the data-processing pipeline (before or after peptide aggregation) on a data set with the "appropriate" nature of missing values, can outperform a blindly applied, supposedly "better-performing" method (i.e., the reference method from the state-of-the-art). This leads us to formulate few practical guidelines regarding the choice and the application of an imputation method in a proteomics context.

  16. Time series modeling of human operator dynamics in manual control tasks

    NASA Technical Reports Server (NTRS)

    Biezad, D. J.; Schmidt, D. K.

    1984-01-01

    A time-series technique is presented for identifying the dynamic characteristics of the human operator in manual control tasks from relatively short records of experimental data. Control of system excitation signals used in the identification is not required. The approach is a multi-channel identification technique for modeling multi-input/multi-output situations. The method presented includes statistical tests for validity, is designed for digital computation, and yields estimates for the frequency responses of the human operator. A comprehensive relative power analysis may also be performed for validated models. This method is applied to several sets of experimental data; the results are discussed and shown to compare favorably with previous research findings. New results are also presented for a multi-input task that has not been previously modeled to demonstrate the strengths of the method.

  17. Time Series Modeling of Human Operator Dynamics in Manual Control Tasks

    NASA Technical Reports Server (NTRS)

    Biezad, D. J.; Schmidt, D. K.

    1984-01-01

    A time-series technique is presented for identifying the dynamic characteristics of the human operator in manual control tasks from relatively short records of experimental data. Control of system excitation signals used in the identification is not required. The approach is a multi-channel identification technique for modeling multi-input/multi-output situations. The method presented includes statistical tests for validity, is designed for digital computation, and yields estimates for the frequency response of the human operator. A comprehensive relative power analysis may also be performed for validated models. This method is applied to several sets of experimental data; the results are discussed and shown to compare favorably with previous research findings. New results are also presented for a multi-input task that was previously modeled to demonstrate the strengths of the method.

  18. A projection operator method for the analysis of magnetic neutron form factors

    NASA Astrophysics Data System (ADS)

    Kaprzyk, S.; Van Laar, B.; Maniawski, F.

    1981-03-01

    A set of projection operators in matrix form has been derived on the basis of decomposition of the spin density into a series of fully symmetrized cubic harmonics. This set of projection operators allows a formulation of the Fourier analysis of magnetic form factors in a convenient way. The presented method is capable of checking the validity of various theoretical models used for spin density analysis up to now. The general formalism is worked out in explicit form for the fcc and bcc structures and deals with that part of spin density which is contained within the sphere inscribed in the Wigner-Seitz cell. This projection operator method has been tested on the magnetic form factors of nickel and iron.

  19. Mining Gene Regulatory Networks by Neural Modeling of Expression Time-Series.

    PubMed

    Rubiolo, Mariano; Milone, Diego H; Stegmayer, Georgina

    2015-01-01

    Discovering gene regulatory networks from data is one of the most studied topics in recent years. Neural networks can be successfully used to infer an underlying gene network by modeling expression profiles as times series. This work proposes a novel method based on a pool of neural networks for obtaining a gene regulatory network from a gene expression dataset. They are used for modeling each possible interaction between pairs of genes in the dataset, and a set of mining rules is applied to accurately detect the subjacent relations among genes. The results obtained on artificial and real datasets confirm the method effectiveness for discovering regulatory networks from a proper modeling of the temporal dynamics of gene expression profiles.

  20. Multiscale analysis of the intensity fluctuation in a time series of dynamic speckle patterns.

    PubMed

    Federico, Alejandro; Kaufmann, Guillermo H

    2007-04-10

    We propose the application of a method based on the discrete wavelet transform to detect, identify, and measure scaling behavior in dynamic speckle. The multiscale phenomena presented by a sample and displayed by its speckle activity are analyzed by processing the time series of dynamic speckle patterns. The scaling analysis is applied to the temporal fluctuation of the speckle intensity and also to the two derived data sets generated by its magnitude and sign. The application of the method is illustrated by analyzing paint-drying processes and bruising in apples. The results are discussed taking into account the different time organizations obtained for the scaling behavior of the magnitude and the sign of the intensity fluctuation.

  1. Study of self-compliance behaviors and internal filament characteristics in intrinsic SiO{sub x}-based resistive switching memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yao-Feng, E-mail: yfchang@utexas.edu; Zhou, Fei; Chen, Ying-Chen

    2016-01-18

    Self-compliance characteristics and reliability optimization are investigated in intrinsic unipolar silicon oxide (SiO{sub x})-based resistive switching (RS) memory using TiW/SiO{sub x}/TiW device structures. The program window (difference between SET voltage and RESET voltage) is dependent on external series resistance, demonstrating that the SET process is due to a voltage-triggered mechanism. The program window has been optimized for program/erase disturbance immunity and reliability for circuit-level applications. The SET and RESET transitions have also been characterized using a dynamic conductivity method, which distinguishes the self-compliance behavior due to an internal series resistance effect (filament) in SiO{sub x}-based RS memory. By using amore » conceptual “filament/resistive gap (GAP)” model of the conductive filament and a proton exchange model with appropriate assumptions, the internal filament resistance and GAP resistance can be estimated for high- and low-resistance states (HRS and LRS), and are found to be independent of external series resistance. Our experimental results not only provide insights into potential reliability issues but also help to clarify the switching mechanisms and device operating characteristics of SiO{sub x}-based RS memory.« less

  2. The virtual people set: developing computer-generated stimuli for the assessment of pedophilic sexual interest.

    PubMed

    Dombert, Beate; Mokros, Andreas; Brückner, Eva; Schlegl, Verena; Antfolk, Jan; Bäckström, Anna; Zappalà, Angelo; Osterheider, Michael; Santtila, Pekka

    2013-12-01

    The implicit assessment of pedophilic sexual interest through viewing-time methods necessitates visual stimuli. There are grave ethical and legal concerns against using pictures of real children, however. The present report is a summary of findings on a new set of 108 computer-generated stimuli. The images vary in terms of gender (female/male), explicitness (naked/clothed), and physical maturity (prepubescent, pubescent, and adult) of the persons depicted. A series of three studies tested the internal and external validity of the picture set. Studies 1 and 2 yielded good-to-high estimates of observer agreement with regard to stimulus maturity levels by two methods (categorization and paired comparison). Study 3 extended these findings with regard to judgments made by convicted child sexual offenders.

  3. A Heuristic Fast Method to Solve the Nonlinear Schroedinger Equation in Fiber Bragg Gratings with Arbitrary Shape Input Pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emami, F.; Hatami, M.; Keshavarz, A. R.

    2009-08-13

    Using a combination of Runge-Kutta and Jacobi iterative method, we could solve the nonlinear Schroedinger equation describing the pulse propagation in FBGs. By decomposing the electric field to forward and backward components in fiber Bragg grating and utilizing the Fourier series analysis technique, the boundary value problem of a set of coupled equations governing the pulse propagation in FBG changes to an initial condition coupled equations which can be solved by simple Runge-Kutta method.

  4. Building Change Detection in Very High Resolution Satellite Stereo Image Time Series

    NASA Astrophysics Data System (ADS)

    Tian, J.; Qin, R.; Cerra, D.; Reinartz, P.

    2016-06-01

    There is an increasing demand for robust methods on urban sprawl monitoring. The steadily increasing number of high resolution and multi-view sensors allows producing datasets with high temporal and spatial resolution; however, less effort has been dedicated to employ very high resolution (VHR) satellite image time series (SITS) to monitor the changes in buildings with higher accuracy. In addition, these VHR data are often acquired from different sensors. The objective of this research is to propose a robust time-series data analysis method for VHR stereo imagery. Firstly, the spatial-temporal information of the stereo imagery and the Digital Surface Models (DSMs) generated from them are combined, and building probability maps (BPM) are calculated for all acquisition dates. In the second step, an object-based change analysis is performed based on the derivative features of the BPM sets. The change consistence between object-level and pixel-level are checked to remove any outlier pixels. Results are assessed on six pairs of VHR satellite images acquired within a time span of 7 years. The evaluation results have proved the efficiency of the proposed method.

  5. Determination of Orbital Parameters for Visual Binary Stars Using a Fourier-Series Approach

    NASA Astrophysics Data System (ADS)

    Brown, D. E.; Prager, J. R.; DeLeo, G. G.; McCluskey, G. E., Jr.

    2001-12-01

    We expand on the Fourier transform method of Monet (ApJ 234, 275, 1979) to infer the orbital parameters of visual binary stars, and we present results for several systems, both simulated and real. Although originally developed to address binary systems observed through at least one complete period, we have extended the method to deal explicitly with cases where the orbital data is less complete. This is especially useful in cases where the period is so long that only a fragment of the orbit has been recorded. We utilize Fourier-series fitting methods appropriate to data sets covering less than one period and containing random measurement errors. In so doing, we address issues of over-determination in fitting the data and the reduction of other deleterious Fourier-series artifacts. We developed our algorithm using the MAPLE mathematical software code, and tested it on numerous "synthetic" systems, and several real binaries, including Xi Boo, 24 Aqr, and Bu 738. This work was supported at Lehigh University by the Delaware Valley Space Grant Consortium and by NSF-REU grant PHY-9820301.

  6. Addressing Spatial Dependence Bias in Climate Model Simulations—An Independent Component Analysis Approach

    NASA Astrophysics Data System (ADS)

    Nahar, Jannatun; Johnson, Fiona; Sharma, Ashish

    2018-02-01

    Conventional bias correction is usually applied on a grid-by-grid basis, meaning that the resulting corrections cannot address biases in the spatial distribution of climate variables. To solve this problem, a two-step bias correction method is proposed here to correct time series at multiple locations conjointly. The first step transforms the data to a set of statistically independent univariate time series, using a technique known as independent component analysis (ICA). The mutually independent signals can then be bias corrected as univariate time series and back-transformed to improve the representation of spatial dependence in the data. The spatially corrected data are then bias corrected at the grid scale in the second step. The method has been applied to two CMIP5 General Circulation Model simulations for six different climate regions of Australia for two climate variables—temperature and precipitation. The results demonstrate that the ICA-based technique leads to considerable improvements in temperature simulations with more modest improvements in precipitation. Overall, the method results in current climate simulations that have greater equivalency in space and time with observational data.

  7. The Derivation of Simple Poles in a Transfer Function from Real Frequency Information. Part 3. Object Classification and Identification,

    DTIC Science & Technology

    1977-01-10

    This report is the third in a series of three that evaluate a technique (frequency-domain Prony) for obtaining the poles of a transfer function. The...main objective was to assess the feasibility of classifying or identifying ship-like targets by using pole sets derived from frequency-domain data. A...predictor-correlator procedure for using spectral data and library pole sets for this purpose was developed. Also studied was an iterative method for

  8. Point-Process Models of Social Network Interactions: Parameter Estimation and Missing Data Recovery

    DTIC Science & Technology

    2014-08-01

    treating them as zero will have a de minimis impact on the results, but avoiding computing them (and computing with them) saves tremendous time. Set a... test the methods on simulated time series on artificial social networks, including some toy networks and some meant to resemble IkeNet. We conclude...the section by discussing the results in detail. In each of our tests we begin with a complete data set, whether it is real (IkeNet) or simulated. Then

  9. Probabilistic modelling of overflow, surcharge and flooding in urban drainage using the first-order reliability method and parameterization of local rain series.

    PubMed

    Thorndahl, S; Willems, P

    2008-01-01

    Failure of urban drainage systems may occur due to surcharge or flooding at specific manholes in the system, or due to overflows from combined sewer systems to receiving waters. To quantify the probability or return period of failure, standard approaches make use of the simulation of design storms or long historical rainfall series in a hydrodynamic model of the urban drainage system. In this paper, an alternative probabilistic method is investigated: the first-order reliability method (FORM). To apply this method, a long rainfall time series was divided in rainstorms (rain events), and each rainstorm conceptualized to a synthetic rainfall hyetograph by a Gaussian shape with the parameters rainstorm depth, duration and peak intensity. Probability distributions were calibrated for these three parameters and used on the basis of the failure probability estimation, together with a hydrodynamic simulation model to determine the failure conditions for each set of parameters. The method takes into account the uncertainties involved in the rainstorm parameterization. Comparison is made between the failure probability results of the FORM method, the standard method using long-term simulations and alternative methods based on random sampling (Monte Carlo direct sampling and importance sampling). It is concluded that without crucial influence on the modelling accuracy, the FORM is very applicable as an alternative to traditional long-term simulations of urban drainage systems.

  10. A method for detecting nonlinear determinism in normal and epileptic brain EEG signals.

    PubMed

    Meghdadi, Amir H; Fazel-Rezai, Reza; Aghakhani, Yahya

    2007-01-01

    A robust method of detecting determinism for short time series is proposed and applied to both healthy and epileptic EEG signals. The method provides a robust measure of determinism through characterizing the trajectories of the signal components which are obtained through singular value decomposition. Robustness of the method is shown by calculating proposed index of determinism at different levels of white and colored noise added to a simulated chaotic signal. The method is shown to be able to detect determinism at considerably high levels of additive noise. The method is then applied to both intracranial and scalp EEG recordings collected in different data sets for healthy and epileptic brain signals. The results show that for all of the studied EEG data sets there is enough evidence of determinism. The determinism is more significant for intracranial EEG recordings particularly during seizure activity.

  11. Persistent topological features of dynamical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maletić, Slobodan, E-mail: slobodan@hitsz.edu.cn; Institute of Nuclear Sciences Vinča, University of Belgrade, Belgrade; Zhao, Yi, E-mail: zhao.yi@hitsz.edu.cn

    Inspired by an early work of Muldoon et al., Physica D 65, 1–16 (1993), we present a general method for constructing simplicial complex from observed time series of dynamical systems based on the delay coordinate reconstruction procedure. The obtained simplicial complex preserves all pertinent topological features of the reconstructed phase space, and it may be analyzed from topological, combinatorial, and algebraic aspects. In focus of this study is the computation of homology of the invariant set of some well known dynamical systems that display chaotic behavior. Persistent homology of simplicial complex and its relationship with the embedding dimensions are examinedmore » by studying the lifetime of topological features and topological noise. The consistency of topological properties for different dynamic regimes and embedding dimensions is examined. The obtained results shed new light on the topological properties of the reconstructed phase space and open up new possibilities for application of advanced topological methods. The method presented here may be used as a generic method for constructing simplicial complex from a scalar time series that has a number of advantages compared to the mapping of the same time series to a complex network.« less

  12. Nimbus 7 earth radiation budget wide field of view climate data set improvement. I - The earth albedo from deconvolution of shortwave measurements

    NASA Technical Reports Server (NTRS)

    Hucek, Richard R.; Ardanuy, Philip E.; Kyle, H. Lee

    1987-01-01

    A deconvolution method for extracting the top of the atmosphere (TOA) mean, daily albedo field from a set of wide-FOV (WFOV) shortwave radiometer measurements is proposed. The method is based on constructing a synthetic measurement for each satellite observation. The albedo field is represented as a truncated series of spherical harmonic functions, and these linear equations are presented. Simulation studies were conducted to determine the sensitivity of the method. It is observed that a maximum of about 289 pieces of data can be extracted from a set of Nimbus 7 WFOV satellite measurements. The albedos derived using the deconvolution method are compared with albedos derived using the WFOV archival method; the developed albedo field achieved a 20 percent reduction in the global rms regional reflected flux density errors. The deconvolution method is applied to estimate the mean, daily average TOA albedo field for January 1983. A strong and extensive albedo maximum (0.42), which corresponds to the El Nino/Southern Oscillation event of 1982-1983, is detected over the south central Pacific Ocean.

  13. Microsecond resolved single-molecule FRET time series measurements based on the line confocal optical system combined with hybrid photodetectors.

    PubMed

    Oikawa, Hiroyuki; Takahashi, Takumi; Kamonprasertsuk, Supawich; Takahashi, Satoshi

    2018-01-31

    Single-molecule (sm) fluorescence time series measurements based on the line confocal optical system are a powerful strategy for the investigation of the structure, dynamics, and heterogeneity of biological macromolecules. This method enables the detection of more than several thousands of fluorescence photons per millisecond from single fluorophores, implying that the potential time resolution for measurements of the fluorescence resonance energy transfer (FRET) efficiency is 10 μs. However, the necessity of using imaging photodetectors in the method limits the time resolution in the FRET efficiency measurements to approximately 100 μs. In this investigation, a new photodetector called a hybrid photodetector (HPD) was incorporated into the line confocal system to improve the time resolution without sacrificing the length of the time series detection. Among several settings examined, the system based on a slit width of 10 μm and a high-speed counting device made the best of the features of the line confocal optical system and the HPD. This method achieved a time resolution of 10 μs and an observation time of approximately 5 ms in the sm-FRET time series measurements. The developed device was used for the native state of the B domain of protein A.

  14. Coastline detection with time series of SAR images

    NASA Astrophysics Data System (ADS)

    Ao, Dongyang; Dumitru, Octavian; Schwarz, Gottfried; Datcu, Mihai

    2017-10-01

    For maritime remote sensing, coastline detection is a vital task. With continuous coastline detection results from satellite image time series, the actual shoreline, the sea level, and environmental parameters can be observed to support coastal management and disaster warning. Established coastline detection methods are often based on SAR images and wellknown image processing approaches. These methods involve a lot of complicated data processing, which is a big challenge for remote sensing time series. Additionally, a number of SAR satellites operating with polarimetric capabilities have been launched in recent years, and many investigations of target characteristics in radar polarization have been performed. In this paper, a fast and efficient coastline detection method is proposed which comprises three steps. First, we calculate a modified correlation coefficient of two SAR images of different polarization. This coefficient differs from the traditional computation where normalization is needed. Through this modified approach, the separation between sea and land becomes more prominent. Second, we set a histogram-based threshold to distinguish between sea and land within the given image. The histogram is derived from the statistical distribution of the polarized SAR image pixel amplitudes. Third, we extract continuous coastlines using a Canny image edge detector that is rather immune to speckle noise. Finally, the individual coastlines derived from time series of .SAR images can be checked for changes.

  15. Modeling global vector fields of chaotic systems from noisy time series with the aid of structure-selection techniques.

    PubMed

    Xu, Daolin; Lu, Fangfang

    2006-12-01

    We address the problem of reconstructing a set of nonlinear differential equations from chaotic time series. A method that combines the implicit Adams integration and the structure-selection technique of an error reduction ratio is proposed for system identification and corresponding parameter estimation of the model. The structure-selection technique identifies the significant terms from a pool of candidates of functional basis and determines the optimal model through orthogonal characteristics on data. The technique with the Adams integration algorithm makes the reconstruction available to data sampled with large time intervals. Numerical experiment on Lorenz and Rossler systems shows that the proposed strategy is effective in global vector field reconstruction from noisy time series.

  16. Reconstructing Land Use History from Landsat Time-Series. Case study of Swidden Agriculture Intensification in Brazil

    NASA Astrophysics Data System (ADS)

    Dutrieux, L.; Jakovac, C. C.; Siti, L. H.; Kooistra, L.

    2015-12-01

    We developed a method to reconstruct land use history from Landsat images time-series. The method uses a breakpoint detection framework derived from the econometrics field and applicable to time-series regression models. The BFAST framework is used for defining the time-series regression models which may contain trend and phenology, hence appropriately modelling vegetation intra and inter-annual dynamics. All available Landsat data are used, and the time-series are partitioned into segments delimited by breakpoints. Segments can be associated to land use regimes, while the breakpoints then correspond to shifts in regimes. To further characterize these shifts, we classified the unlabelled breakpoints returned by the algorithm into their corresponding processes. We used a Random Forest classifier, trained from a set of visually interpreted time-series profiles to infer the processes and assign labels to the breakpoints. The whole approach was applied to quantifying the number of cultivation cycles in a swidden agriculture system in Brazil. Number and frequency of cultivation cycles is of particular ecological relevance in these systems since they largely affect the capacity of the forest to regenerate after abandonment. We applied the method to a Landsat time-series of Normalized Difference Moisture Index (NDMI) spanning the 1984-2015 period and derived from it the number of cultivation cycles during that period at the individual field scale level. Agricultural fields boundaries used to apply the method were derived using a multi-temporal segmentation. We validated the number of cultivation cycles predicted against in-situ information collected from farmers interviews, resulting in a Normalized RMSE of 0.25. Overall the method performed well, producing maps with coherent patterns. We identified various sources of error in the approach, including low data availability in the 90s and sub-object mixture of land uses. We conclude that the method holds great promise for land use history mapping in the tropics and beyond. Spatial and temporal patterns were further analysed with an ecological perspective in a follow-up study. Results show that changes in land use patterns such as land use intensification and reduced agricultural expansion reflect the socio-economic transformations that occurred in the region

  17. Effect of postmortem sampling technique on the clinical significance of autopsy blood cultures.

    PubMed

    Hove, M; Pencil, S D

    1998-02-01

    Our objective was to investigate the value of postmortem autopsy blood cultures performed with an iodine-subclavian technique relative to the classical method of atrial heat searing and antemortem blood cultures. The study consisted of a prospective autopsy series with each case serving as its own control relative to subsequent testing, and a retrospective survey of patients coming to autopsy who had both autopsy blood cultures and premortem blood cultures. A busy academic autopsy service (600 cases per year) at University of Texas Medical Branch Hospitals, Galveston, Texas, served as the setting for this work. The incidence of non-clinically relevant (false-positive) culture results were compared using different methods for collecting blood samples in a prospective series of 38 adult autopsy specimens. One hundred eleven adult autopsy specimens in which both postmortem and antemortem blood cultures were obtained were studied retrospectively. For both studies, positive culture results were scored as either clinically relevant or false positives based on analysis of the autopsy findings and the clinical summary. The rate of false-positive culture results obtained by an iodine-subclavian technique from blood drawn soon after death were statistically significantly lower (13%) than using the classical method of obtaining blood through the atrium after heat searing at the time of the autopsy (34%) in the same set of autopsy subjects. When autopsy results were compared with subjects' antemortem blood culture results, there was no significant difference in the rate of non-clinically relevant culture results in a paired retrospective series of antemortem blood cultures and postmortem blood cultures using the iodine-subclavian postmortem method (11.7% v 13.5%). The results indicate that autopsy blood cultures obtained using the iodine-subclavian technique have reliability equivalent to that of antemortem blood cultures.

  18. A Unified Graphical Representation of Chemical Thermodynamics and Equilibrium

    ERIC Educational Resources Information Center

    Hanson, Robert M.

    2012-01-01

    During the years 1873-1879, J. Willard Gibbs published his now-famous set of articles that form the basis of the current perspective on chemical thermodynamics. The second article of this series, "A Method of Geometrical Representation of the Thermodynamic Properties of Substances by Means of Surfaces," published in 1873, is particularly notable…

  19. Apollo-Soyuz Pamphlet No. 4: Gravitational Field. Apollo-Soyuz Experiments in Space.

    ERIC Educational Resources Information Center

    Page, Lou Williams; Page, Thornton

    This booklet is the fourth in a series of nine that describe the Apollo-Soyuz mission and experiments. This set is designed as a curriculum supplement for teachers, supervisors, curriculum specialists, textbook writers, and the general public. These booklets provide sources of ideas, examples of the scientific method, references to standard…

  20. Algorithmic Procedure for Finding Semantically Related Journals.

    ERIC Educational Resources Information Center

    Pudovkin, Alexander I.; Garfield, Eugene

    2002-01-01

    Using citations, papers and references as parameters a relatedness factor (RF) is computed for a series of journals. Sorting these journals by the RF produces a list of journals most closely related to a specified starting journal. The method appears to select a set of journals that are semantically most similar to the target journal. The…

  1. Apollo-Soyuz Pamphlet No. 9: General Science. Apollo-Soyuz Experiments in Space.

    ERIC Educational Resources Information Center

    Page, Lou Williams; Page, Thornton

    This is the last pamphlet in a series of nine discussing the Apollo-Soyuz mission and experiments. This set is designed as a curriculum supplement for secondary and college teachers, supervisors, curriculum specialists, textbook writers, and the general public. These booklets provide sources of ideas, examples of the scientific method, references…

  2. Apollo-Soyuz Pamphlet No. 1: The Flight. Apollo-Soyuz Experiments in Space.

    ERIC Educational Resources Information Center

    Page, Lou Williams; Page, Thornton

    This is the first in a series of nine booklets that discuss the Apollo-Soyuz mission and experiments. This set is designed as a curriculum supplement for teachers, supervisors, curriculum specialists, textbook writers, and the general public. These booklets provide sources of ideas, examples of the scientific method, references to standard…

  3. An Environmental Data Set for Vector-Borne Disease Modeling and Epidemiology

    PubMed Central

    Chabot-Couture, Guillaume; Nigmatulina, Karima; Eckhoff, Philip

    2014-01-01

    Understanding the environmental conditions of disease transmission is important in the study of vector-borne diseases. Low- and middle-income countries bear a significant portion of the disease burden; but data about weather conditions in those countries can be sparse and difficult to reconstruct. Here, we describe methods to assemble high-resolution gridded time series data sets of air temperature, relative humidity, land temperature, and rainfall for such areas; and we test these methods on the island of Madagascar. Air temperature and relative humidity were constructed using statistical interpolation of weather station measurements; the resulting median 95th percentile absolute errors were 2.75°C and 16.6%. Missing pixels from the MODIS11 remote sensing land temperature product were estimated using Fourier decomposition and time-series analysis; thus providing an alternative to the 8-day and 30-day aggregated products. The RFE 2.0 remote sensing rainfall estimator was characterized by comparing it with multiple interpolated rainfall products, and we observed significant differences in temporal and spatial heterogeneity relevant to vector-borne disease modeling. PMID:24755954

  4. Optimizing support vector machine learning for semi-arid vegetation mapping by using clustering analysis

    NASA Astrophysics Data System (ADS)

    Su, Lihong

    In remote sensing communities, support vector machine (SVM) learning has recently received increasing attention. SVM learning usually requires large memory and enormous amounts of computation time on large training sets. According to SVM algorithms, the SVM classification decision function is fully determined by support vectors, which compose a subset of the training sets. In this regard, a solution to optimize SVM learning is to efficiently reduce training sets. In this paper, a data reduction method based on agglomerative hierarchical clustering is proposed to obtain smaller training sets for SVM learning. Using a multiple angle remote sensing dataset of a semi-arid region, the effectiveness of the proposed method is evaluated by classification experiments with a series of reduced training sets. The experiments show that there is no loss of SVM accuracy when the original training set is reduced to 34% using the proposed approach. Maximum likelihood classification (MLC) also is applied on the reduced training sets. The results show that MLC can also maintain the classification accuracy. This implies that the most informative data instances can be retained by this approach.

  5. Syndrome diagnosis: human intuition or machine intelligence?

    PubMed

    Braaten, Oivind; Friestad, Johannes

    2008-01-01

    The aim of this study was to investigate whether artificial intelligence methods can represent objective methods that are essential in syndrome diagnosis. Most syndromes have no external criterion standard of diagnosis. The predictive value of a clinical sign used in diagnosis is dependent on the prior probability of the syndrome diagnosis. Clinicians often misjudge the probabilities involved. Syndromology needs objective methods to ensure diagnostic consistency, and take prior probabilities into account. We applied two basic artificial intelligence methods to a database of machine-generated patients - a 'vector method' and a set method. As reference methods we ran an ID3 algorithm, a cluster analysis and a naive Bayes' calculation on the same patient series. The overall diagnostic error rate for the the vector algorithm was 0.93%, and for the ID3 0.97%. For the clinical signs found by the set method, the predictive values varied between 0.71 and 1.0. The artificial intelligence methods that we used, proved simple, robust and powerful, and represent objective diagnostic methods.

  6. Imputation of missing data in time series for air pollutants

    NASA Astrophysics Data System (ADS)

    Junger, W. L.; Ponce de Leon, A.

    2015-02-01

    Missing data are major concerns in epidemiological studies of the health effects of environmental air pollutants. This article presents an imputation-based method that is suitable for multivariate time series data, which uses the EM algorithm under the assumption of normal distribution. Different approaches are considered for filtering the temporal component. A simulation study was performed to assess validity and performance of proposed method in comparison with some frequently used methods. Simulations showed that when the amount of missing data was as low as 5%, the complete data analysis yielded satisfactory results regardless of the generating mechanism of the missing data, whereas the validity began to degenerate when the proportion of missing values exceeded 10%. The proposed imputation method exhibited good accuracy and precision in different settings with respect to the patterns of missing observations. Most of the imputations obtained valid results, even under missing not at random. The methods proposed in this study are implemented as a package called mtsdi for the statistical software system R.

  7. Estimating Root Mean Square Errors in Remotely Sensed Soil Moisture over Continental Scale Domains

    NASA Technical Reports Server (NTRS)

    Draper, Clara S.; Reichle, Rolf; de Jeu, Richard; Naeimi, Vahid; Parinussa, Robert; Wagner, Wolfgang

    2013-01-01

    Root Mean Square Errors (RMSE) in the soil moisture anomaly time series obtained from the Advanced Scatterometer (ASCAT) and the Advanced Microwave Scanning Radiometer (AMSR-E; using the Land Parameter Retrieval Model) are estimated over a continental scale domain centered on North America, using two methods: triple colocation (RMSETC ) and error propagation through the soil moisture retrieval models (RMSEEP ). In the absence of an established consensus for the climatology of soil moisture over large domains, presenting a RMSE in soil moisture units requires that it be specified relative to a selected reference data set. To avoid the complications that arise from the use of a reference, the RMSE is presented as a fraction of the time series standard deviation (fRMSE). For both sensors, the fRMSETC and fRMSEEP show similar spatial patterns of relatively highlow errors, and the mean fRMSE for each land cover class is consistent with expectations. Triple colocation is also shown to be surprisingly robust to representativity differences between the soil moisture data sets used, and it is believed to accurately estimate the fRMSE in the remotely sensed soil moisture anomaly time series. Comparing the ASCAT and AMSR-E fRMSETC shows that both data sets have very similar accuracy across a range of land cover classes, although the AMSR-E accuracy is more directly related to vegetation cover. In general, both data sets have good skill up to moderate vegetation conditions.

  8. A Maple package for improved global mapping forecast

    NASA Astrophysics Data System (ADS)

    Carli, H.; Duarte, L. G. S.; da Mota, L. A. C. P.

    2014-03-01

    We present a Maple implementation of the well known global approach to time series analysis and some further developments designed to improve the computational efficiency of the forecasting capabilities of the approach. This global approach can be summarized as being a reconstruction of the phase space, based on a time ordered series of data obtained from the system. After that, using the reconstructed vectors, a portion of this space is used to produce a mapping, a polynomial fitting, through a minimization procedure, that represents the system and can be employed to forecast further entries for the series. In the present implementation, we introduce a set of commands, tools, in order to perform all these tasks. For example, the command VecTS deals mainly with the reconstruction of the vector in the phase space. The command GfiTS deals with producing the minimization and the fitting. ForecasTS uses all these and produces the prediction of the next entries. For the non-standard algorithms, we here present two commands: IforecasTS and NiforecasTS that, respectively deal with the one-step and the N-step forecasting. Finally, we introduce two further tools to aid the forecasting. The commands GfiTS and AnalysTS, basically, perform an analysis of the behavior of each portion of a series regarding the settings used on the commands just mentioned above. Catalogue identifier: AERW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERW_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3001 No. of bytes in distributed program, including test data, etc.: 95018 Distribution format: tar.gz Programming language: Maple 14. Computer: Any capable of running Maple Operating system: Any capable of running Maple. Tested on Windows ME, Windows XP, Windows 7. RAM: 128 MB Classification: 4.3, 4.9, 5 Nature of problem: Time series analysis and improving forecast capability. Solution method: The method of solution is partially based on a result published in [1]. Restrictions: If the time series that is being analyzed presents a great amount of noise or if the dynamical system behind the time series is of high dimensionality (Dim≫3), then the method may not work well. Unusual features: Our implementation can, in the cases where the dynamics behind the time series is given by a system of low dimensionality, greatly improve the forecast. Running time: This depends strongly on the command that is being used. References: [1] Barbosa, L.M.C.R., Duarte, L.G.S., Linhares, C.A. and da Mota, L.A.C.P., Improving the global fitting method on nonlinear time series analysis, Phys. Rev. E 74, 026702 (2006).

  9. Properties of Asymmetric Detrended Fluctuation Analysis in the time series of RR intervals

    NASA Astrophysics Data System (ADS)

    Piskorski, J.; Kosmider, M.; Mieszkowski, D.; Krauze, T.; Wykretowicz, A.; Guzik, P.

    2018-02-01

    Heart rate asymmetry is a phenomenon by which the accelerations and decelerations of heart rate behave differently, and this difference is consistent and unidirectional, i.e. in most of the analyzed recordings the inequalities have the same directions. So far, it has been established for variance and runs based types of descriptors of RR intervals time series. In this paper we apply the newly developed method of Asymmetric Detrended Fluctuation Analysis, which so far has mainly been used with economic time series, to the set of 420 stationary 30 min time series of RR intervals from young, healthy individuals aged between 20 and 40. This asymmetric approach introduces separate scaling exponents for rising and falling trends. We systematically study the presence of asymmetry in both global and local versions of this method. In this study global means "applying to the whole time series" and local means "applying to windows jumping along the recording". It is found that the correlation structure of the fluctuations left over after detrending in physiological time series shows strong asymmetric features in both magnitude, with α+ <α-, where α+ is related to heart rate decelerations and α- to heart rate accelerations, and the proportion of the signal in which the above inequality holds. A very similar effect is observed if asymmetric noise is added to a symmetric self-affine function. No such phenomena are observed in the same physiological data after shuffling or with a group of symmetric synthetic time series.

  10. Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model

    NASA Astrophysics Data System (ADS)

    Zhou, Ya-Tong; Fan, Yu; Chen, Zi-Yi; Sun, Jian-Cheng

    2017-05-01

    The contribution of this work is twofold: (1) a multimodality prediction method of chaotic time series with the Gaussian process mixture (GPM) model is proposed, which employs a divide and conquer strategy. It automatically divides the chaotic time series into multiple modalities with different extrinsic patterns and intrinsic characteristics, and thus can more precisely fit the chaotic time series. (2) An effective sparse hard-cut expectation maximization (SHC-EM) learning algorithm for the GPM model is proposed to improve the prediction performance. SHC-EM replaces a large learning sample set with fewer pseudo inputs, accelerating model learning based on these pseudo inputs. Experiments on Lorenz and Chua time series demonstrate that the proposed method yields not only accurate multimodality prediction, but also the prediction confidence interval. SHC-EM outperforms the traditional variational learning in terms of both prediction accuracy and speed. In addition, SHC-EM is more robust and insusceptible to noise than variational learning. Supported by the National Natural Science Foundation of China under Grant No 60972106, the China Postdoctoral Science Foundation under Grant No 2014M561053, the Humanity and Social Science Foundation of Ministry of Education of China under Grant No 15YJA630108, and the Hebei Province Natural Science Foundation under Grant No E2016202341.

  11. Empirical intrinsic geometry for nonlinear modeling and time series filtering.

    PubMed

    Talmon, Ronen; Coifman, Ronald R

    2013-07-30

    In this paper, we present a method for time series analysis based on empirical intrinsic geometry (EIG). EIG enables one to reveal the low-dimensional parametric manifold as well as to infer the underlying dynamics of high-dimensional time series. By incorporating concepts of information geometry, this method extends existing geometric analysis tools to support stochastic settings and parametrizes the geometry of empirical distributions. However, the statistical models are not required as priors; hence, EIG may be applied to a wide range of real signals without existing definitive models. We show that the inferred model is noise-resilient and invariant under different observation and instrumental modalities. In addition, we show that it can be extended efficiently to newly acquired measurements in a sequential manner. These two advantages enable us to revisit the Bayesian approach and incorporate empirical dynamics and intrinsic geometry into a nonlinear filtering framework. We show applications to nonlinear and non-Gaussian tracking problems as well as to acoustic signal localization.

  12. Syndrome Diagnosis: Human Intuition or Machine Intelligence?

    PubMed Central

    Braaten, Øivind; Friestad, Johannes

    2008-01-01

    The aim of this study was to investigate whether artificial intelligence methods can represent objective methods that are essential in syndrome diagnosis. Most syndromes have no external criterion standard of diagnosis. The predictive value of a clinical sign used in diagnosis is dependent on the prior probability of the syndrome diagnosis. Clinicians often misjudge the probabilities involved. Syndromology needs objective methods to ensure diagnostic consistency, and take prior probabilities into account. We applied two basic artificial intelligence methods to a database of machine-generated patients - a ‘vector method’ and a set method. As reference methods we ran an ID3 algorithm, a cluster analysis and a naive Bayes’ calculation on the same patient series. The overall diagnostic error rate for the the vector algorithm was 0.93%, and for the ID3 0.97%. For the clinical signs found by the set method, the predictive values varied between 0.71 and 1.0. The artificial intelligence methods that we used, proved simple, robust and powerful, and represent objective diagnostic methods. PMID:19415142

  13. Hacia la predicción del Número R de Wolf de manchas solares utilizando Redes Neuronales con retardos temporales

    NASA Astrophysics Data System (ADS)

    Francile, C.; Luoni, M. L.

    We present a prediction of the time series of the Wolf number R of sunspots using "time lagged feed forward neural networks". We use two types of networks: the focused and distributed ones which were trained with the back propagation of errors algorithm and the temporal back propagation algorithm respectively. As inputs to neural networks we use the time series of the number R averaged annually and monthly with the method IR5. As data sets for training and test we choose certain intervals of the time series similar to other works, in order to compare the results. Finally we discuss the topology of the networks used, the number of delays used, the number of neurons per layer, the number of hidden layers and the results in the prediction of the series between one and six steps ahead. FULL TEXT IN SPANISH

  14. Multi-Timescale Analysis of the Spatial Representativeness of In Situ Soil Moisture Data within Satellite Footprints

    NASA Astrophysics Data System (ADS)

    Molero, B.; Leroux, D. J.; Richaume, P.; Kerr, Y. H.; Merlin, O.; Cosh, M. H.; Bindlish, R.

    2018-01-01

    We conduct a novel comprehensive investigation that seeks to prove the connection between spatial scales and timescales in surface soil moisture (SM) within the satellite footprint ( 50 km). Modeled and measured point series at Yanco and Little Washita in situ networks are first decomposed into anomalies at timescales ranging from 0.5 to 128 days, using wavelet transforms. Then, their degree of spatial representativeness is evaluated on a per-timescale basis by comparison to large spatial scale data sets (the in situ spatial average, SMOS, AMSR2, and ECMWF). Four methods are used for this: temporal stability analysis (TStab), triple collocation (TC), percentage of correlated areas (CArea), and a new proposed approach that uses wavelet-based correlations (WCor). We found that the mean of the spatial representativeness values tends to increase with the timescale but so does their dispersion. Locations exhibit poor spatial representativeness at scales below 4 days, while either very good or poor representativeness at seasonal scales. Regarding the methods, TStab cannot be applied to the anomaly series due to their multiple zero-crossings, and TC is suitable for week and month scales but not for other scales where data set cross-correlations are found low. In contrast, WCor and CArea give consistent results at all timescales. WCor is less sensitive to the spatial sampling density, so it is a robust method that can be applied to sparse networks (one station per footprint). These results are promising to improve the validation and downscaling of satellite SM series and the optimization of SM networks.

  15. The Global Streamflow Indices and Metadata Archive (GSIM) - Part 2: Quality control, time-series indices and homogeneity assessment

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Lukas; Do, Hong Xuan; Leonard, Michael; Westra, Seth

    2018-04-01

    This is Part 2 of a two-paper series presenting the Global Streamflow Indices and Metadata Archive (GSIM), which is a collection of daily streamflow observations at more than 30 000 stations around the world. While Part 1 (Do et al., 2018a) describes the data collection process as well as the generation of auxiliary catchment data (e.g. catchment boundary, land cover, mean climate), Part 2 introduces a set of quality controlled time-series indices representing (i) the water balance, (ii) the seasonal cycle, (iii) low flows and (iv) floods. To this end we first consider the quality of individual daily records using a combination of quality flags from data providers and automated screening methods. Subsequently, streamflow time-series indices are computed for yearly, seasonal and monthly resolution. The paper provides a generalized assessment of the homogeneity of all generated streamflow time-series indices, which can be used to select time series that are suitable for a specific task. The newly generated global set of streamflow time-series indices is made freely available with an digital object identifier at https://doi.pangaea.de/10.1594/PANGAEA.887470 and is expected to foster global freshwater research, by acting as a ground truth for model validation or as a basis for assessing the role of human impacts on the terrestrial water cycle. It is hoped that a renewed interest in streamflow data at the global scale will foster efforts in the systematic assessment of data quality and provide momentum to overcome administrative barriers that lead to inconsistencies in global collections of relevant hydrological observations.

  16. A comparison of methods to estimate vertical land motion trends from GNSS and altimetry at tide gauge stations

    NASA Astrophysics Data System (ADS)

    Kleinherenbrink, Marcel; Riva, Riccardo; Frederikse, Thomas

    2018-03-01

    Tide gauge (TG) records are affected by vertical land motion (VLM), causing them to observe relative instead of geocentric sea level. VLM can be estimated from global navigation satellite system (GNSS) time series, but only a few TGs are equipped with a GNSS receiver. Hence, (multiple) neighboring GNSS stations can be used to estimate VLM at the TG. This study compares eight approaches to estimate VLM trends at 570 TG stations using GNSS by taking into account all GNSS trends with an uncertainty smaller than 1 mm yr-1 within 50 km. The range between the methods is comparable with the formal uncertainties of the GNSS trends. Taking the median of the surrounding GNSS trends shows the best agreement with differenced altimetry-tide gauge (ALT-TG) trends. An attempt is also made to improve VLM trends from ALT-TG time series. Only using highly correlated along-track altimetry and TG time series reduces the SD of ALT-TG time series by up to 10 %. As a result, there are spatially coherent changes in the trends, but the reduction in the root mean square (RMS) of differences between ALT-TG and GNSS trends is insignificant. However, setting correlation thresholds also acts like a filter to remove problematic TG time series. This results in sets of ALT-TG VLM trends at 344-663 TG locations, depending on the correlation threshold. Compared to other studies, we decrease the RMS of differences between GNSS and ALT-TG trends (from 1.47 to 1.22 mm yr-1), while we increase the number of locations (from 109 to 155), Depending on the methods the mean of differences between ALT-TG and GNSS trends vary between 0.1 and 0.2 mm yr-1. We reduce the mean of the differences by taking into account the effect of elastic deformation due to present-day mass redistribution. At varying ALT-TG correlation thresholds, we provide new sets of trends for 759 to 939 different TG stations. If both GNSS and ALT-TG trend estimates are available, we recommend using the GNSS trend estimates because residual ocean signals might correlate over long distances. However, if large discrepancies ( > 3 mm yr-1) between the two methods are present, local VLM differences between the TG and the GNSS station are likely the culprit and therefore it is better to take the ALT-TG trend estimate. GNSS estimates for which only a single GNSS station and no ALT-TG estimate are available might still require some inspection before they are used in sea level studies.

  17. Detecting discontinuities in GNSS coordinate time series with STARS: case study, the Bologna and Medicina GPS sites

    NASA Astrophysics Data System (ADS)

    Bruni, S.; Zerbini, Susanna; Raicich, F.; Errico, M.; Santi, E.

    2014-12-01

    Global navigation satellite systems (GNSS) data are a fundamental source of information for achieving a better understanding of geophysical and climate-related phenomena. However, discontinuities in the coordinate time series might be a severe limiting factor for the reliable estimate of long-term trends. A methodological approach has been adapted from Rodionov (Geophys Res Lett 31:L09204, 2004; Geophys Res Lett 31:L12707, 2006) and from Rodionov and Overland (J Marine Sci 62:328-332, 2005) to identify both the epoch of occurrence and the magnitude of jumps corrupting GNSS data sets without any a priori information on these quantities. The procedure is based on the Sequential t test Analysis of Regime Shifts (STARS) (Rodionov in Geophys Res Lett 31:L09204, 2004). The method has been tested against a synthetic data set characterized by typical features exhibited by real GNSS time series, such as linear trend, seasonal cycle, jumps, missing epochs and a combination of white and flicker noise. The results show that the offsets identified by the algorithm are split into 48 % of true-positive, 28 % of false-positive and 24 % of false-negative events. The procedure has then been applied to GPS coordinate time series of stations located in the southeastern Po Plain, in Italy. The series span more than 15 years and are affected by offsets of different nature. The methodology proves to be effective, as confirmed by the comparison between the corrected GPS time series and those obtained by other observation techniques.

  18. Application of vector-valued rational approximations to the matrix eigenvalue problem and connections with Krylov subspace methods

    NASA Technical Reports Server (NTRS)

    Sidi, Avram

    1992-01-01

    Let F(z) be a vectored-valued function F: C approaches C sup N, which is analytic at z=0 and meromorphic in a neighborhood of z=0, and let its Maclaurin series be given. We use vector-valued rational approximation procedures for F(z) that are based on its Maclaurin series in conjunction with power iterations to develop bona fide generalizations of the power method for an arbitrary N X N matrix that may be diagonalizable or not. These generalizations can be used to obtain simultaneously several of the largest distinct eigenvalues and the corresponding invariant subspaces, and present a detailed convergence theory for them. In addition, it is shown that the generalized power methods of this work are equivalent to some Krylov subspace methods, among them the methods of Arnoldi and Lanczos. Thus, the theory provides a set of completely new results and constructions for these Krylov subspace methods. This theory suggests at the same time a new mode of usage for these Krylov subspace methods that were observed to possess computational advantages over their common mode of usage.

  19. Data Analysis for the Behavioral Sciences Using SPSS

    NASA Astrophysics Data System (ADS)

    Lawner Weinberg, Sharon; Knapp Abramowitz, Sarah

    2002-04-01

    This book is written from the perspective that statistics is an integrated set of tools used together to uncover the story contained in numerical data. Accordingly, the book comes with a disk containing a series of real data sets to motivate discussions of appropriate methods of analysis. The presentation is based on a conceptual approach supported by an understanding of underlying mathematical foundations. Students learn that more than one method of analysis is typically needed and that an ample characterization of results is a critical component of any data analytic plan. The use of real data and SPSS to perform computations and create graphical summaries enables a greater emphasis on conceptual understanding and interpretation.

  20. A Recurrent Probabilistic Neural Network with Dimensionality Reduction Based on Time-series Discriminant Component Analysis.

    PubMed

    Hayashi, Hideaki; Shibanoki, Taro; Shima, Keisuke; Kurita, Yuichi; Tsuji, Toshio

    2015-12-01

    This paper proposes a probabilistic neural network (NN) developed on the basis of time-series discriminant component analysis (TSDCA) that can be used to classify high-dimensional time-series patterns. TSDCA involves the compression of high-dimensional time series into a lower dimensional space using a set of orthogonal transformations and the calculation of posterior probabilities based on a continuous-density hidden Markov model with a Gaussian mixture model expressed in the reduced-dimensional space. The analysis can be incorporated into an NN, which is named a time-series discriminant component network (TSDCN), so that parameters of dimensionality reduction and classification can be obtained simultaneously as network coefficients according to a backpropagation through time-based learning algorithm with the Lagrange multiplier method. The TSDCN is considered to enable high-accuracy classification of high-dimensional time-series patterns and to reduce the computation time taken for network training. The validity of the TSDCN is demonstrated for high-dimensional artificial data and electroencephalogram signals in the experiments conducted during the study.

  1. Which missing value imputation method to use in expression profiles: a comparative study and two selection schemes.

    PubMed

    Brock, Guy N; Shaffer, John R; Blakesley, Richard E; Lotz, Meredith J; Tseng, George C

    2008-01-10

    Gene expression data frequently contain missing values, however, most down-stream analyses for microarray experiments require complete data. In the literature many methods have been proposed to estimate missing values via information of the correlation patterns within the gene expression matrix. Each method has its own advantages, but the specific conditions for which each method is preferred remains largely unclear. In this report we describe an extensive evaluation of eight current imputation methods on multiple types of microarray experiments, including time series, multiple exposures, and multiple exposures x time series data. We then introduce two complementary selection schemes for determining the most appropriate imputation method for any given data set. We found that the optimal imputation algorithms (LSA, LLS, and BPCA) are all highly competitive with each other, and that no method is uniformly superior in all the data sets we examined. The success of each method can also depend on the underlying "complexity" of the expression data, where we take complexity to indicate the difficulty in mapping the gene expression matrix to a lower-dimensional subspace. We developed an entropy measure to quantify the complexity of expression matrixes and found that, by incorporating this information, the entropy-based selection (EBS) scheme is useful for selecting an appropriate imputation algorithm. We further propose a simulation-based self-training selection (STS) scheme. This technique has been used previously for microarray data imputation, but for different purposes. The scheme selects the optimal or near-optimal method with high accuracy but at an increased computational cost. Our findings provide insight into the problem of which imputation method is optimal for a given data set. Three top-performing methods (LSA, LLS and BPCA) are competitive with each other. Global-based imputation methods (PLS, SVD, BPCA) performed better on mcroarray data with lower complexity, while neighbour-based methods (KNN, OLS, LSA, LLS) performed better in data with higher complexity. We also found that the EBS and STS schemes serve as complementary and effective tools for selecting the optimal imputation algorithm.

  2. Optimized auxiliary basis sets for density fitted post-Hartree-Fock calculations of lanthanide containing molecules

    NASA Astrophysics Data System (ADS)

    Chmela, Jiří; Harding, Michael E.

    2018-06-01

    Optimised auxiliary basis sets for lanthanide atoms (Ce to Lu) for four basis sets of the Karlsruhe error-balanced segmented contracted def2 - series (SVP, TZVP, TZVPP and QZVPP) are reported. These auxiliary basis sets enable the use of the resolution-of-the-identity (RI) approximation in post Hartree-Fock methods - as for example, second-order perturbation theory (MP2) and coupled cluster (CC) theory. The auxiliary basis sets are tested on an enlarged set of about a hundred molecules where the test criterion is the size of the RI error in MP2 calculations. Our tests also show that the same auxiliary basis sets can be used together with different effective core potentials. With these auxiliary basis set calculations of MP2 and CC quality can now be performed efficiently on medium-sized molecules containing lanthanides.

  3. Circuits and methods for impedance determination using active measurement cancelation

    DOEpatents

    Jamison, David K.

    2016-12-13

    A delta signal and opposite delta signal are generated such that a sum of the two signals is substantially zero. The delta signal is applied across a first set of electrochemical cells. The opposite delta signal is applied across a second set of electrochemical cells series connected to the first set. A first held voltage is established as the voltage across the first set. A second held voltage is established as the voltage across the second set. A first delta signal is added to the first held voltage and applied to the first set. A second delta signal is added to the second held voltage and applied to the second set. The current responses due to the added delta voltages travel only into the set associated with its delta voltage. The delta voltages and the current responses are used to calculate the impedances of their associated cells.

  4. Large data series: Modeling the usual to identify the unusual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Downing, D.J.; Fedorov, V.V.; Lawkins, W.F.

    {open_quotes}Standard{close_quotes} approaches such as regression analysis, Fourier analysis, Box-Jenkins procedure, et al., which handle a data series as a whole, are not useful for very large data sets for at least two reasons. First, even with computer hardware available today, including parallel processors and storage devices, there are no effective means for manipulating and analyzing gigabyte, or larger, data files. Second, in general it can not be assumed that a very large data set is {open_quotes}stable{close_quotes} by the usual measures, like homogeneity, stationarity, and ergodicity, that standard analysis techniques require. Both reasons dictate the necessity to use {open_quotes}local{close_quotes} data analysismore » methods whereby the data is segmented and ordered, where order leads to a sense of {open_quotes}neighbor,{close_quotes} and then analyzed segment by segment. The idea of local data analysis is central to the study reported here.« less

  5. Apollo-Soyuz Pamphlet No. 5: The Earth from Orbit. Apollo-Soyuz Experiments in Space.

    ERIC Educational Resources Information Center

    Page, Lou Williams; Page, Thornton

    This booklet is the fifth in a series of nine that describe the Apollo-Soyuz mission and experiments. This set is designed as a curriculum supplement for high school and college teachers, supervisors, curriculum specialists, textbook writers, and the general public. These booklets provide sources of ideas, examples of the scientific method,…

  6. Describing Images: A Case Study of Visual Literacy among Library and Information Science Students

    ERIC Educational Resources Information Center

    Beaudoin, Joan E.

    2016-01-01

    This paper reports on a study that examined the development of pedagogical methods for increasing the visual literacy skills of a group of library and information science students. Through a series of three assignments, students were asked to provide descriptive information for a set of historical photographs and record reflections on their…

  7. Trigonometry with Year 8: Part 1

    ERIC Educational Resources Information Center

    Steer, Jessica; de Vila, Maria Antioneta; Eaton, James

    2009-01-01

    The authors explore the teaching of trigonometry using a method developed by Jeremy Burke of Kings College. A series of lessons was planned using an approach which looks at moving from a mathematical description of the topic, to a sequence plan, to a set of activities, which students can use to help them come to understand the topic. This is…

  8. Nanoparticle Synthesis, Characterization, and Ecotoxicity: A Research-Based Set of Laboratory Experiments for a General Chemistry Course

    ERIC Educational Resources Information Center

    Amaris, Zoe N.; Freitas, Daniel N.; Mac, Karen; Gerner, Kyle T.; Nameth, Catherine; Wheeler, Korin E.

    2017-01-01

    A series of laboratory experiments were developed to introduce first-year chemistry students to nanoscience through a green chemistry approach. Students made and characterized the stability of silver nanoparticles using two different methods: UV-visible spectroscopy and dynamic light scattering. They then assessed the ecotoxicity of silver…

  9. Inversion and approximation of Laplace transforms

    NASA Technical Reports Server (NTRS)

    Lear, W. M.

    1980-01-01

    A method of inverting Laplace transforms by using a set of orthonormal functions is reported. As a byproduct of the inversion, approximation of complicated Laplace transforms by a transform with a series of simple poles along the left half plane real axis is shown. The inversion and approximation process is simple enough to be put on a programmable hand calculator.

  10. Grounding Leadership Theory and Research: Issues, Perspectives, and Methods. Leadership Horizons Series.

    ERIC Educational Resources Information Center

    Parry, Ken W., Ed.; Meindl, James R., Ed.

    This book is a collection of 11 essays about research into the phenomena of leadership and other social processes of influence in organizations. After a context-setting introduction by Ken W. Perry and James R. Meindl, the main text includes the following essays: (1) "Salient Bias in Discussion and Research on Leadership" (Micha Popper);…

  11. A Procedure for the Analysis of Time-Series Designs

    ERIC Educational Resources Information Center

    Algina, James; Swaminathan, Hariharan

    1977-01-01

    One of the most frequently encountered problems in educational research and evaluation is that of evaluating the effect of a treatment in settings over which the researcher or evaluator has little control. A strong plea is made for use of quasi-experimental designs in these situations and this research provides a method of testing the hypothesis…

  12. Apollo-Soyuz Pamphlet No. 8: Zero-G Technology. Apollo-Soyuz Experiments in Space.

    ERIC Educational Resources Information Center

    Page, Lou Williams; Page, Thornton

    This pamphlet is the eighth in a series of nine discussing the Apollo-Soyuz mission and experiments. This set is designed as a curriculum supplement for high school and college teachers, supervisors, curriculum specialists, textbook writers, and the general public. These booklets provide sources of ideas, examples of the scientific method,…

  13. Meeting on Literacy Training, Berlin (West). Final Report. July 11-17, 1975.

    ERIC Educational Resources Information Center

    International Inst. for Adult Literacy Methods, Teheran (Iran).

    This report's major points are highlighted in two sections: Section One sets forth the rational, design, and intended use of the training monograph series, "Literacy in Development", which (1) has been commissioned by the International Institute for Adult Literacy Methods, (2) is to be used as the basis for the Institute's future training…

  14. Measuring the Quality of Life of University Students. Research Monograph Series. Volume 1.

    ERIC Educational Resources Information Center

    Roberts, Lance W.; Clifton, Rodney A.

    This study sought to develop a valid set of scales in the cognitive and affective domains for measuring the quality of life of university students. In addition the study attempted to illustrate the usefulness of Thomas Piazza's procedures for constructing valid scales in educational research. Piazza's method involves a multi-step construction of…

  15. Apollo-Soyuz Pamphlet No. 3: Sun, Stars, In Between. Apollo-Soyuz Experiments in Space.

    ERIC Educational Resources Information Center

    Page, Lou Williams; Page, Thornton

    This booklet is the third in a series of nine that discuss the Apollo-Soyuz mission and experiments. This set is designed as a curriculum supplement for secondary and college teachers, supervisors, curriculum specialists, textbook writers, and the general public. These booklets provide sources of ideas, examples of the scientific method,…

  16. Apollo-Soyuz Pamphlet No. 6: Cosmic Ray Dosage. Apollo-Soyuz Experiments in Space.

    ERIC Educational Resources Information Center

    Page, Lou Williams; Page, Thornton

    This pamphlet is the sixth in a series of nine that discuss the Apollo-Soyuz mission and experiments. This set is designed as a curriculum supplement for secondary and college teachers, supervisors, curriculum specialists, textbook writers, and the general public. These booklets provide sources of ideas, examples of the scientific method,…

  17. Apollo-Soyuz Pamphlet No. 7: Biology in Zero-G. Apollo-Soyuz Experiments in Space.

    ERIC Educational Resources Information Center

    Page, Lou Williams; Page, Thornton

    This pamphlet is the seventh in a series of nine discussing the Apollo-Soyuz mission and experiments. This set is designed as a curriculum supplement for secondary and college teachers, supervisors, curriculum specialists, textbook writers, and the general public. These booklets provide sources of ideas, examples of the scientific method,…

  18. Apollo-Soyuz Pamphlet No. 2: X-Rays, Gamma-Rays. Apollo-Soyuz Experiments in Space.

    ERIC Educational Resources Information Center

    Page, Lou Williams; Page, Thornton

    This booklet is the second in a series of nine that describe the Apollo-Soyuz mission and experiments. This set is designed as a curriculum supplement for high school and college teachers, supervisors, curriculum specialists, textbook writers, and the general public. These booklets provide sources of ideas, examples of the scientific method,…

  19. Time-Course Gene Set Analysis for Longitudinal Gene Expression Data

    PubMed Central

    Hejblum, Boris P.; Skinner, Jason; Thiébaut, Rodolphe

    2015-01-01

    Gene set analysis methods, which consider predefined groups of genes in the analysis of genomic data, have been successfully applied for analyzing gene expression data in cross-sectional studies. The time-course gene set analysis (TcGSA) introduced here is an extension of gene set analysis to longitudinal data. The proposed method relies on random effects modeling with maximum likelihood estimates. It allows to use all available repeated measurements while dealing with unbalanced data due to missing at random (MAR) measurements. TcGSA is a hypothesis driven method that identifies a priori defined gene sets with significant expression variations over time, taking into account the potential heterogeneity of expression within gene sets. When biological conditions are compared, the method indicates if the time patterns of gene sets significantly differ according to these conditions. The interest of the method is illustrated by its application to two real life datasets: an HIV therapeutic vaccine trial (DALIA-1 trial), and data from a recent study on influenza and pneumococcal vaccines. In the DALIA-1 trial TcGSA revealed a significant change in gene expression over time within 69 gene sets during vaccination, while a standard univariate individual gene analysis corrected for multiple testing as well as a standard a Gene Set Enrichment Analysis (GSEA) for time series both failed to detect any significant pattern change over time. When applied to the second illustrative data set, TcGSA allowed the identification of 4 gene sets finally found to be linked with the influenza vaccine too although they were found to be associated to the pneumococcal vaccine only in previous analyses. In our simulation study TcGSA exhibits good statistical properties, and an increased power compared to other approaches for analyzing time-course expression patterns of gene sets. The method is made available for the community through an R package. PMID:26111374

  20. Reconstructing the temporal ordering of biological samples using microarray data.

    PubMed

    Magwene, Paul M; Lizardi, Paul; Kim, Junhyong

    2003-05-01

    Accurate time series for biological processes are difficult to estimate due to problems of synchronization, temporal sampling and rate heterogeneity. Methods are needed that can utilize multi-dimensional data, such as those resulting from DNA microarray experiments, in order to reconstruct time series from unordered or poorly ordered sets of observations. We present a set of algorithms for estimating temporal orderings from unordered sets of sample elements. The techniques we describe are based on modifications of a minimum-spanning tree calculated from a weighted, undirected graph. We demonstrate the efficacy of our approach by applying these techniques to an artificial data set as well as several gene expression data sets derived from DNA microarray experiments. In addition to estimating orderings, the techniques we describe also provide useful heuristics for assessing relevant properties of sample datasets such as noise and sampling intensity, and we show how a data structure called a PQ-tree can be used to represent uncertainty in a reconstructed ordering. Academic implementations of the ordering algorithms are available as source code (in the programming language Python) on our web site, along with documentation on their use. The artificial 'jelly roll' data set upon which the algorithm was tested is also available from this web site. The publicly available gene expression data may be found at http://genome-www.stanford.edu/cellcycle/ and http://caulobacter.stanford.edu/CellCycle/.

  1. Series Transmission Line Transformer

    DOEpatents

    Buckles, Robert A.; Booth, Rex; Yen, Boris T.

    2004-06-29

    A series transmission line transformer is set forth which includes two or more of impedance matched sets of at least two transmissions lines such as shielded cables, connected in parallel at one end ans series at the other in a cascading fashion. The cables are wound about a magnetic core. The series transmission line transformer (STLT) which can provide for higher impedance ratios and bandwidths, which is scalable, and which is of simpler design and construction.

  2. Applications of Fault Detection in Vibrating Structures

    NASA Technical Reports Server (NTRS)

    Eure, Kenneth W.; Hogge, Edward; Quach, Cuong C.; Vazquez, Sixto L.; Russell, Andrew; Hill, Boyd L.

    2012-01-01

    Structural fault detection and identification remains an area of active research. Solutions to fault detection and identification may be based on subtle changes in the time series history of vibration signals originating from various sensor locations throughout the structure. The purpose of this paper is to document the application of vibration based fault detection methods applied to several structures. Overall, this paper demonstrates the utility of vibration based methods for fault detection in a controlled laboratory setting and limitations of applying the same methods to a similar structure during flight on an experimental subscale aircraft.

  3. The costs of nurse turnover, part 2: application of the Nursing Turnover Cost Calculation Methodology.

    PubMed

    Jones, Cheryl Bland

    2005-01-01

    This is the second article in a 2-part series focusing on nurse turnover and its costs. Part 1 (December 2004) described nurse turnover costs within the context of human capital theory, and using human resource accounting methods, presented the updated Nursing Turnover Cost Calculation Methodology. Part 2 presents an application of this method in an acute care setting and the estimated costs of nurse turnover that were derived. Administrators and researchers can use these methods and cost information to build a business case for nurse retention.

  4. Applications of rule-induction in the derivation of quantitative structure-activity relationships.

    PubMed

    A-Razzak, M; Glen, R C

    1992-08-01

    Recently, methods have been developed in the field of Artificial Intelligence (AI), specifically in the expert systems area using rule-induction, designed to extract rules from data. We have applied these methods to the analysis of molecular series with the objective of generating rules which are predictive and reliable. The input to rule-induction consists of a number of examples with known outcomes (a training set) and the output is a tree-structured series of rules. Unlike most other analysis methods, the results of the analysis are in the form of simple statements which can be easily interpreted. These are readily applied to new data giving both a classification and a probability of correctness. Rule-induction has been applied to in-house generated and published QSAR datasets and the methodology, application and results of these analyses are discussed. The results imply that in some cases it would be advantageous to use rule-induction as a complementary technique in addition to conventional statistical and pattern-recognition methods.

  5. Applications of rule-induction in the derivation of quantitative structure-activity relationships

    NASA Astrophysics Data System (ADS)

    A-Razzak, Mohammed; Glen, Robert C.

    1992-08-01

    Recently, methods have been developed in the field of Artificial Intelligence (AI), specifically in the expert systems area using rule-induction, designed to extract rules from data. We have applied these methods to the analysis of molecular series with the objective of generating rules which are predictive and reliable. The input to rule-induction consists of a number of examples with known outcomes (a training set) and the output is a tree-structured series of rules. Unlike most other analysis methods, the results of the analysis are in the form of simple statements which can be easily interpreted. These are readily applied to new data giving both a classification and a probability of correctness. Rule-induction has been applied to in-house generated and published QSAR datasets and the methodology, application and results of these analyses are discussed. The results imply that in some cases it would be advantageous to use rule-induction as a complementary technique in addition to conventional statistical and pattern-recognition methods.

  6. Approximation Methods in Multidimensional Filter Design and Related Problems Encountered in Multidimensional System Design.

    DTIC Science & Technology

    1983-03-21

    zero , it is necessary that B M(0) be nonzero. In the case considered here, B M(0) is taken to be nonsingula and withot loss of generality it may be set...452. (c.51 D. Levin, " General order Padd type rational approximants defined from a double power series," J. Inst. Maths. Applics., 18, 1976, pp. 1-8...common zeros in the closed unit bidisc, U- 2 . The 2-D setting provides a nice theoretical framework for generalization of these stabilization results to

  7. Sector Identification in a Set of Stock Return Time Series Traded at the London Stock Exchange

    NASA Astrophysics Data System (ADS)

    Coronnello, C.; Tumminello, M.; Lillo, F.; Micciche, S.; Mantegna, R. N.

    2005-09-01

    We compare some methods recently used in the literature to detect the existence of a certain degree of common behavior of stock returns belonging to the same economic sector. Specifically, we discuss methods based on random matrix theory and hierarchical clustering techniques. We apply these methods to a portfolio of stocks traded at the London Stock Exchange. The investigated time series are recorded both at a daily time horizon and at a 5-minute time horizon. The correlation coefficient matrix is very different at different time horizons confirming that more structured correlation coefficient matrices are observed for long time horizons. All the considered methods are able to detect economic information and the presence of clusters characterized by the economic sector of stocks. However, different methods present a different degree of sensitivity with respect to different sectors. Our comparative analysis suggests that the application of just a single method could not be able to extract all the economic information present in the correlation coefficient matrix of a stock portfolio.

  8. A hybrid method for transient wave propagation in a multilayered solid

    NASA Astrophysics Data System (ADS)

    Tian, Jiayong; Xie, Zhoumin

    2009-08-01

    We present a hybrid method for the evaluation of transient elastic-wave propagation in a multilayered solid, integrating reverberation matrix method with the theory of generalized rays. Adopting reverberation matrix formulation, Laplace-Fourier domain solutions of elastic waves in the multilayered solid are expanded into the sum of a series of generalized-ray group integrals. Each generalized-ray group integral containing Kth power of reverberation matrix R represents the set of K-times reflections and refractions of source waves arriving at receivers in the multilayered solid, which was computed by fast inverse Laplace transform (FILT) and fast Fourier transform (FFT) algorithms. However, the calculation burden and low precision of FILT-FFT algorithm limit the application of reverberation matrix method. In this paper, we expand each of generalized-ray group integrals into the sum of a series of generalized-ray integrals, each of which is accurately evaluated by Cagniard-De Hoop method in the theory of generalized ray. The numerical examples demonstrate that the proposed method makes it possible to calculate the early-time transient response in the complex multilayered-solid configuration efficiently.

  9. Detection of nuclear testing from surface concentration measurements: Analysis of radioxenon from the February 2013 underground test in North Korea

    DOE PAGES

    Kurzeja, R. J.; Buckley, R. L.; Werth, D. W.; ...

    2017-12-28

    A method is outlined and tested to detect low level nuclear or chemical sources from time series of concentration measurements. The method uses a mesoscale atmospheric model to simulate the concentration signature from a known or suspected source at a receptor which is then regressed successively against segments of the measurement series to create time series of metrics that measure the goodness of fit between the signatures and the measurement segments. The method was applied to radioxenon data from the Comprehensive Test Ban Treaty (CTBT) collection site in Ussuriysk, Russia (RN58) after the Democratic People's Republic of Korea (North Korea)more » underground nuclear test on February 12, 2013 near Punggye. The metrics were found to be a good screening tool to locate data segments with a strong likelihood of origin from Punggye, especially when multiplied together to a determine the joint probability. Metrics from RN58 were also used to find the probability that activity measured in February and April of 2013 originated from the Feb 12 test. A detailed analysis of an RN58 data segment from April 3/4, 2013 was also carried out for a grid of source locations around Punggye and identified Punggye as the most likely point of origin. Thus, the results support the strong possibility that radioxenon was emitted from the test site at various times in April and was detected intermittently at RN58, depending on the wind direction. The method does not locate unsuspected sources, but instead, evaluates the probability of a source at a specified location. However, it can be extended to include a set of suspected sources. Extension of the method to higher resolution data sets, arbitrary sampling, and time-varying sources is discussed along with a path to evaluate uncertainty in the calculated probabilities.« less

  10. Detection of nuclear testing from surface concentration measurements: Analysis of radioxenon from the February 2013 underground test in North Korea

    NASA Astrophysics Data System (ADS)

    Kurzeja, R. J.; Buckley, R. L.; Werth, D. W.; Chiswell, S. R.

    2018-03-01

    A method is outlined and tested to detect low level nuclear or chemical sources from time series of concentration measurements. The method uses a mesoscale atmospheric model to simulate the concentration signature from a known or suspected source at a receptor which is then regressed successively against segments of the measurement series to create time series of metrics that measure the goodness of fit between the signatures and the measurement segments. The method was applied to radioxenon data from the Comprehensive Test Ban Treaty (CTBT) collection site in Ussuriysk, Russia (RN58) after the Democratic People's Republic of Korea (North Korea) underground nuclear test on February 12, 2013 near Punggye. The metrics were found to be a good screening tool to locate data segments with a strong likelihood of origin from Punggye, especially when multiplied together to a determine the joint probability. Metrics from RN58 were also used to find the probability that activity measured in February and April of 2013 originated from the Feb 12 test. A detailed analysis of an RN58 data segment from April 3/4, 2013 was also carried out for a grid of source locations around Punggye and identified Punggye as the most likely point of origin. Thus, the results support the strong possibility that radioxenon was emitted from the test site at various times in April and was detected intermittently at RN58, depending on the wind direction. The method does not locate unsuspected sources, but instead, evaluates the probability of a source at a specified location. However, it can be extended to include a set of suspected sources. Extension of the method to higher resolution data sets, arbitrary sampling, and time-varying sources is discussed along with a path to evaluate uncertainty in the calculated probabilities.

  11. Detection of nuclear testing from surface concentration measurements: Analysis of radioxenon from the February 2013 underground test in North Korea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurzeja, R. J.; Buckley, R. L.; Werth, D. W.

    A method is outlined and tested to detect low level nuclear or chemical sources from time series of concentration measurements. The method uses a mesoscale atmospheric model to simulate the concentration signature from a known or suspected source at a receptor which is then regressed successively against segments of the measurement series to create time series of metrics that measure the goodness of fit between the signatures and the measurement segments. The method was applied to radioxenon data from the Comprehensive Test Ban Treaty (CTBT) collection site in Ussuriysk, Russia (RN58) after the Democratic People's Republic of Korea (North Korea)more » underground nuclear test on February 12, 2013 near Punggye. The metrics were found to be a good screening tool to locate data segments with a strong likelihood of origin from Punggye, especially when multiplied together to a determine the joint probability. Metrics from RN58 were also used to find the probability that activity measured in February and April of 2013 originated from the Feb 12 test. A detailed analysis of an RN58 data segment from April 3/4, 2013 was also carried out for a grid of source locations around Punggye and identified Punggye as the most likely point of origin. Thus, the results support the strong possibility that radioxenon was emitted from the test site at various times in April and was detected intermittently at RN58, depending on the wind direction. The method does not locate unsuspected sources, but instead, evaluates the probability of a source at a specified location. However, it can be extended to include a set of suspected sources. Extension of the method to higher resolution data sets, arbitrary sampling, and time-varying sources is discussed along with a path to evaluate uncertainty in the calculated probabilities.« less

  12. Bayesian Integration and Classification of Composition C-4 Plastic Explosives Based on Time-of-Flight-Secondary Ion Mass Spectrometry and Laser Ablation-Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Mahoney, Christine M; Kelly, Ryan T; Alexander, Liz; Newburn, Matt; Bader, Sydney; Ewing, Robert G; Fahey, Albert J; Atkinson, David A; Beagley, Nathaniel

    2016-04-05

    Time-of-flight-secondary ion mass spectrometry (TOF-SIMS) and laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) were used for characterization and identification of unique signatures from a series of 18 Composition C-4 plastic explosives. The samples were obtained from various commercial and military sources around the country. Positive and negative ion TOF-SIMS data were acquired directly from the C-4 residue on Si surfaces, where the positive ion mass spectra obtained were consistent with the major composition of organic additives, and the negative ion mass spectra were more consistent with explosive content in the C-4 samples. Each series of mass spectra was subjected to partial least squares-discriminant analysis (PLS-DA), a multivariate statistical analysis approach which serves to first find the areas of maximum variance within different classes of C-4 and subsequently to classify unknown samples based on correlations between the unknown data set and the original data set (often referred to as a training data set). This method was able to successfully classify test samples of C-4, though with a limited degree of certainty. The classification accuracy of the method was further improved by integrating the positive and negative ion data using a Bayesian approach. The TOF-SIMS data was combined with a second analytical method, LA-ICPMS, which was used to analyze elemental signatures in the C-4. The integrated data were able to classify test samples with a high degree of certainty. Results indicate that this Bayesian integrated approach constitutes a robust classification method that should be employable even in dirty samples collected in the field.

  13. Estimating clinical chemistry reference values based on an existing data set of unselected animals.

    PubMed

    Dimauro, Corrado; Bonelli, Piero; Nicolussi, Paola; Rassu, Salvatore P G; Cappio-Borlino, Aldo; Pulina, Giuseppe

    2008-11-01

    In an attempt to standardise the determination of biological reference values, the International Federation of Clinical Chemistry (IFCC) has published a series of recommendations on developing reference intervals. The IFCC recommends the use of an a priori sampling of at least 120 healthy individuals. However, such a high number of samples and laboratory analysis is expensive, time-consuming and not always feasible, especially in veterinary medicine. In this paper, an alternative (a posteriori) method is described and is used to determine reference intervals for biochemical parameters of farm animals using an existing laboratory data set. The method used was based on the detection and removal of outliers to obtain a large sample of animals likely to be healthy from the existing data set. This allowed the estimation of reliable reference intervals for biochemical parameters in Sarda dairy sheep. This method may also be useful for the determination of reference intervals for different species, ages and gender.

  14. The genetic algorithm: A robust method for stress inversion

    NASA Astrophysics Data System (ADS)

    Thakur, Prithvi; Srivastava, Deepak C.; Gupta, Pravin K.

    2017-01-01

    The stress inversion of geological or geophysical observations is a nonlinear problem. In most existing methods, it is solved by linearization, under certain assumptions. These linear algorithms not only oversimplify the problem but also are vulnerable to entrapment of the solution in a local optimum. We propose the use of a nonlinear heuristic technique, the genetic algorithm, which searches the global optimum without making any linearizing assumption or simplification. The algorithm mimics the natural evolutionary processes of selection, crossover and mutation and, minimizes a composite misfit function for searching the global optimum, the fittest stress tensor. The validity and efficacy of the algorithm are demonstrated by a series of tests on synthetic and natural fault-slip observations in different tectonic settings and also in situations where the observations are noisy. It is shown that the genetic algorithm is superior to other commonly practised methods, in particular, in those tectonic settings where none of the principal stresses is directed vertically and/or the given data set is noisy.

  15. Improving cluster-based missing value estimation of DNA microarray data.

    PubMed

    Brás, Lígia P; Menezes, José C

    2007-06-01

    We present a modification of the weighted K-nearest neighbours imputation method (KNNimpute) for missing values (MVs) estimation in microarray data based on the reuse of estimated data. The method was called iterative KNN imputation (IKNNimpute) as the estimation is performed iteratively using the recently estimated values. The estimation efficiency of IKNNimpute was assessed under different conditions (data type, fraction and structure of missing data) by the normalized root mean squared error (NRMSE) and the correlation coefficients between estimated and true values, and compared with that of other cluster-based estimation methods (KNNimpute and sequential KNN). We further investigated the influence of imputation on the detection of differentially expressed genes using SAM by examining the differentially expressed genes that are lost after MV estimation. The performance measures give consistent results, indicating that the iterative procedure of IKNNimpute can enhance the prediction ability of cluster-based methods in the presence of high missing rates, in non-time series experiments and in data sets comprising both time series and non-time series data, because the information of the genes having MVs is used more efficiently and the iterative procedure allows refining the MV estimates. More importantly, IKNN has a smaller detrimental effect on the detection of differentially expressed genes.

  16. Discrimination of coherent features in turbulent boundary layers by the entropy method

    NASA Technical Reports Server (NTRS)

    Corke, T. C.; Guezennec, Y. G.

    1984-01-01

    Entropy in information theory is defined as the expected or mean value of the measure of the amount of self-information contained in the ith point of a distribution series x sub i, based on its probability of occurrence p(x sub i). If p(x sub i) is the probability of the ith state of the system in probability space, then the entropy, E(X) = - sigma p(x sub i) logp (x sub i), is a measure of the disorder in the system. Based on this concept, a method was devised which sought to minimize the entropy in a time series in order to construct the signature of the most coherent motions. The constrained minimization was performed using a Lagrange multiplier approach which resulted in the solution of a simultaneous set of non-linear coupled equations to obtain the coherent time series. The application of the method to space-time data taken by a rake of sensors in the near-wall region of a turbulent boundary layer was presented. The results yielded coherent velocity motions made up of locally decelerated or accelerated fluid having a streamwise scale of approximately 100 nu/u(tau), which is in qualitative agreement with the results from other less objective discrimination methods.

  17. Comparison of data transformation procedures to enhance topographical accuracy in time-series analysis of the human EEG.

    PubMed

    Hauk, O; Keil, A; Elbert, T; Müller, M M

    2002-01-30

    We describe a methodology to apply current source density (CSD) and minimum norm (MN) estimation as pre-processing tools for time-series analysis of single trial EEG data. The performance of these methods is compared for the case of wavelet time-frequency analysis of simulated gamma-band activity. A reasonable comparison of CSD and MN on the single trial level requires regularization such that the corresponding transformed data sets have similar signal-to-noise ratios (SNRs). For region-of-interest approaches, it should be possible to optimize the SNR for single estimates rather than for the whole distributed solution. An effective implementation of the MN method is described. Simulated data sets were created by modulating the strengths of a radial and a tangential test dipole with wavelets in the frequency range of the gamma band, superimposed with simulated spatially uncorrelated noise. The MN and CSD transformed data sets as well as the average reference (AR) representation were subjected to wavelet frequency-domain analysis, and power spectra were mapped for relevant frequency bands. For both CSD and MN, the influence of noise can be sufficiently suppressed by regularization to yield meaningful information, but only MN represents both radial and tangential dipole sources appropriately as single peaks. Therefore, when relating wavelet power spectrum topographies to their neuronal generators, MN should be preferred.

  18. Modeling the basin of attraction as a two-dimensional manifold from experimental data: Applications to balance in humans

    NASA Astrophysics Data System (ADS)

    Zakynthinaki, Maria S.; Stirling, James R.; Cordente Martínez, Carlos A.; Díaz de Durana, Alfonso López; Quintana, Manuel Sillero; Romo, Gabriel Rodríguez; Molinuevo, Javier Sampedro

    2010-03-01

    We present a method of modeling the basin of attraction as a three-dimensional function describing a two-dimensional manifold on which the dynamics of the system evolves from experimental time series data. Our method is based on the density of the data set and uses numerical optimization and data modeling tools. We also show how to obtain analytic curves that describe both the contours and the boundary of the basin. Our method is applied to the problem of regaining balance after perturbation from quiet vertical stance using data of an elite athlete. Our method goes beyond the statistical description of the experimental data, providing a function that describes the shape of the basin of attraction. To test its robustness, our method has also been applied to two different data sets of a second subject and no significant differences were found between the contours of the calculated basin of attraction for the different data sets. The proposed method has many uses in a wide variety of areas, not just human balance for which there are many applications in medicine, rehabilitation, and sport.

  19. Interpretation of a compositional time series

    NASA Astrophysics Data System (ADS)

    Tolosana-Delgado, R.; van den Boogaart, K. G.

    2012-04-01

    Common methods for multivariate time series analysis use linear operations, from the definition of a time-lagged covariance/correlation to the prediction of new outcomes. However, when the time series response is a composition (a vector of positive components showing the relative importance of a set of parts in a total, like percentages and proportions), then linear operations are afflicted of several problems. For instance, it has been long recognised that (auto/cross-)correlations between raw percentages are spurious, more dependent on which other components are being considered than on any natural link between the components of interest. Also, a long-term forecast of a composition in models with a linear trend will ultimately predict negative components. In general terms, compositional data should not be treated in a raw scale, but after a log-ratio transformation (Aitchison, 1986: The statistical analysis of compositional data. Chapman and Hill). This is so because the information conveyed by a compositional data is relative, as stated in their definition. The principle of working in coordinates allows to apply any sort of multivariate analysis to a log-ratio transformed composition, as long as this transformation is invertible. This principle is of full application to time series analysis. We will discuss how results (both auto/cross-correlation functions and predictions) can be back-transformed, viewed and interpreted in a meaningful way. One view is to use the exhaustive set of all possible pairwise log-ratios, which allows to express the results into D(D - 1)/2 separate, interpretable sets of one-dimensional models showing the behaviour of each possible pairwise log-ratios. Another view is the interpretation of estimated coefficients or correlations back-transformed in terms of compositions. These two views are compatible and complementary. These issues are illustrated with time series of seasonal precipitation patterns at different rain gauges of the USA. In this data set, the proportion of annual precipitation falling in winter, spring, summer and autumn is considered a 4-component time series. Three invertible log-ratios are defined for calculations, balancing rainfall in autumn vs. winter, in summer vs. spring, and in autumn-winter vs. spring-summer. Results suggest a 2-year correlation range, and certain oscillatory behaviour in the last balance, which does not occur in the other two.

  20. A geodetic matched-filter search for slow slip with application to the Mexico subduction zone

    NASA Astrophysics Data System (ADS)

    Rousset, B.; Campillo, M.; Lasserre, C.; Frank, W.; Cotte, N.; Walpersdorf, A.; Socquet, A.; Kostoglodov, V.

    2017-12-01

    Since the discovery of slow slip events, many methods have been successfully applied to model obvious transient events in geodetic time series, such as the widely used network strain filter. Independent seismological observations of tremors or low frequency earthquakes and repeating earthquakes provide evidence of low amplitude slow deformation but do not always coincide with clear occurrences of transient signals in geodetic time series. Here, we aim to extract the signal corresponding to slow slips hidden in the noise of GPS time series, without using information from independent datasets. We first build a library of synthetic slow slip event templates by assembling a source function with Green's functions for a discretized fault. We then correlate the templates with post-processed GPS time series. Once the events have been detected in time, we estimate their duration T and magnitude Mw by modelling a weighted stack of GPS time series. An analysis of synthetic time series shows that this method is able to resolve the correct timing, location, T and Mw of events larger than Mw 6.0 in the context of the Mexico subduction zone. Applied on a real data set of 29 GPS time series in the Guerrero area from 2005 to 2014, this technique allows us to detect 28 transient events from Mw 6.3 to 7.2 with durations that range from 3 to 39 days. These events have a dominant recurrence time of 40 days and are mainly located at the down dip edges of the Mw > 7.5 SSEs.

  1. Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package

    NASA Astrophysics Data System (ADS)

    Donges, Jonathan; Heitzig, Jobst; Beronov, Boyan; Wiedermann, Marc; Runge, Jakob; Feng, Qing Yi; Tupikina, Liubov; Stolbova, Veronika; Donner, Reik; Marwan, Norbert; Dijkstra, Henk; Kurths, Jürgen

    2016-04-01

    We introduce the pyunicorn (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. pyunicorn is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics, or network surrogates. Additionally, pyunicorn provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis, recurrence networks, visibility graphs, and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology. pyunicorn is available online at https://github.com/pik-copan/pyunicorn. Reference: J.F. Donges, J. Heitzig, B. Beronov, M. Wiedermann, J. Runge, Q.-Y. Feng, L. Tupikina, V. Stolbova, R.V. Donner, N. Marwan, H.A. Dijkstra, and J. Kurths, Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package, Chaos 25, 113101 (2015), DOI: 10.1063/1.4934554, Preprint: arxiv.org:1507.01571 [physics.data-an].

  2. Decadal variations in atmospheric water vapor time series estimated using GNSS, ERA-Interim, and synoptic data

    NASA Astrophysics Data System (ADS)

    Alshawaf, Fadwa; Dick, Galina; Heise, Stefan; Balidakis, Kyriakos; Schmidt, Torsten; Wickert, Jens

    2017-04-01

    Ground-based GNSS (Global Navigation Satellite Systems) have efficiently been used since the 1990s as a meteorological observing system. Recently scientists used GNSS time series of precipitable water vapor (PWV) for climate research although they may not be sufficiently long. In this work, we compare the trend estimated from GNSS time series with that estimated from European Center for Medium-RangeWeather Forecasts Reanalysis (ERA-Interim) data and meteorological measurements.We aim at evaluating climate evolution in Central Europe by monitoring different atmospheric variables such as temperature and PWV. PWV time series were obtained by three methods: 1) estimated from ground-based GNSS observations using the method of precise point positioning, 2) inferred from ERA-Interim data, and 3) determined based on daily surface measurements of temperature and relative humidity. The other variables are available from surface meteorological stations or received from ERA-Interim. The PWV trend component estimated from GNSS data strongly correlates (>70%) with that estimated from the other data sets. The linear trend is estimated by straight line fitting over 30 years of seasonally-adjusted PWV time series obtained using the meteorological measurements. The results show a positive trend in the PWV time series with an increase of 0.2-0.7 mm/decade with a mean standard deviations of 0.016 mm/decade. In this paper, we present the results at three GNSS stations. The temporal increment of the PWV correlates with the temporal increase in the temperature levels.

  3. Enhancing healthcare process design with human factors engineering and reliability science, part 1: setting the context.

    PubMed

    Boston-Fleischhauer, Carol

    2008-01-01

    The design and implementation of efficient, effective, and safe processes are never-ending challenges in healthcare. Less than optimal performance levels and rising concerns about patient safety suggest that traditional process design methods are insufficient to meet design requirements. In this 2-part series, the author presents human factors engineering and reliability science as important knowledge to enhance existing operational and clinical process design methods in healthcare. An examination of these theories, application approaches, and examples are presented.

  4. Frequency analysis via the method of moment functionals

    NASA Technical Reports Server (NTRS)

    Pearson, A. E.; Pan, J. Q.

    1990-01-01

    Several variants are presented of a linear-in-parameters least squares formulation for determining the transfer function of a stable linear system at specified frequencies given a finite set of Fourier series coefficients calculated from transient nonstationary input-output data. The basis of the technique is Shinbrot's classical method of moment functionals using complex Fourier based modulating functions to convert a differential equation model on a finite time interval into an algebraic equation which depends linearly on frequency-related parameters.

  5. Random forests-based differential analysis of gene sets for gene expression data.

    PubMed

    Hsueh, Huey-Miin; Zhou, Da-Wei; Tsai, Chen-An

    2013-04-10

    In DNA microarray studies, gene-set analysis (GSA) has become the focus of gene expression data analysis. GSA utilizes the gene expression profiles of functionally related gene sets in Gene Ontology (GO) categories or priori-defined biological classes to assess the significance of gene sets associated with clinical outcomes or phenotypes. Many statistical approaches have been proposed to determine whether such functionally related gene sets express differentially (enrichment and/or deletion) in variations of phenotypes. However, little attention has been given to the discriminatory power of gene sets and classification of patients. In this study, we propose a method of gene set analysis, in which gene sets are used to develop classifications of patients based on the Random Forest (RF) algorithm. The corresponding empirical p-value of an observed out-of-bag (OOB) error rate of the classifier is introduced to identify differentially expressed gene sets using an adequate resampling method. In addition, we discuss the impacts and correlations of genes within each gene set based on the measures of variable importance in the RF algorithm. Significant classifications are reported and visualized together with the underlying gene sets and their contribution to the phenotypes of interest. Numerical studies using both synthesized data and a series of publicly available gene expression data sets are conducted to evaluate the performance of the proposed methods. Compared with other hypothesis testing approaches, our proposed methods are reliable and successful in identifying enriched gene sets and in discovering the contributions of genes within a gene set. The classification results of identified gene sets can provide an valuable alternative to gene set testing to reveal the unknown, biologically relevant classes of samples or patients. In summary, our proposed method allows one to simultaneously assess the discriminatory ability of gene sets and the importance of genes for interpretation of data in complex biological systems. The classifications of biologically defined gene sets can reveal the underlying interactions of gene sets associated with the phenotypes, and provide an insightful complement to conventional gene set analyses. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. FAMIAS - A userfriendly new software tool for the mode identification of photometric and spectroscopic times series

    NASA Astrophysics Data System (ADS)

    Zima, W.

    2008-12-01

    FAMIAS (Frequency Analysis and Mode Identification for AsteroSeismology) is a collection of state-of-the-art software tools for the analysis of photometric and spectroscopic time series data. It is one of the deliverables of the Work Package NA5: Asteroseismology of the European Coordination Action in Helio- and Asteroseismology (HELAS1 ). Two main sets of tools are incorporated in FAMIAS. The first set allows to search for pe- riodicities in the data using Fourier and non-linear least-squares fitting algorithms. The other set allows to carry out a mode identification for the detected pulsation frequencies to deter- mine their pulsational quantum numbers, the harmonic degree, ℓ, and the azimuthal order, m. For the spectroscopic mode identification, the Fourier parameter fit method and the moment method are available. The photometric mode identification is based on pre-computed grids of atmospheric parameters and non-adiabatic observables, and uses the method of amplitude ratios and phase differences in different filters. The types of stars to which FAMIAS is appli- cable are main-sequence pulsators hotter than the Sun. This includes the Gamma Dor stars, Delta Sct stars, the slowly pulsating B stars and the Beta Cep stars - basically all pulsating main-sequence stars, for which empirical mode identification is required to successfully carry out asteroseismology. The complete manual for FAMIAS is published in a special issue of Communications in Asteroseismology, Vol 155. The homepage of FAMIAS2 provides the possibility to download the software and to read the on-line documentation.

  7. Dual Sticky Hierarchical Dirichlet Process Hidden Markov Model and Its Application to Natural Language Description of Motions.

    PubMed

    Hu, Weiming; Tian, Guodong; Kang, Yongxin; Yuan, Chunfeng; Maybank, Stephen

    2017-09-25

    In this paper, a new nonparametric Bayesian model called the dual sticky hierarchical Dirichlet process hidden Markov model (HDP-HMM) is proposed for mining activities from a collection of time series data such as trajectories. All the time series data are clustered. Each cluster of time series data, corresponding to a motion pattern, is modeled by an HMM. Our model postulates a set of HMMs that share a common set of states (topics in an analogy with topic models for document processing), but have unique transition distributions. For the application to motion trajectory modeling, topics correspond to motion activities. The learnt topics are clustered into atomic activities which are assigned predicates. We propose a Bayesian inference method to decompose a given trajectory into a sequence of atomic activities. On combining the learnt sources and sinks, semantic motion regions, and the learnt sequence of atomic activities, the action represented by the trajectory can be described in natural language in as automatic a way as possible. The effectiveness of our dual sticky HDP-HMM is validated on several trajectory datasets. The effectiveness of the natural language descriptions for motions is demonstrated on the vehicle trajectories extracted from a traffic scene.

  8. TWO CRITERIA FOR WEAK GENERALIZED LOCALIZATION FOR MULTIPLE TRIGONOMETRIC FOURIER SERIES OF FUNCTIONS IN L_p, p \\ge 1

    NASA Astrophysics Data System (ADS)

    Bloshanskiĭ, I. L.

    1986-04-01

    The concept of weak generalized localization almost everywhere is introduced. For the multiple Fourier series of a function f, weak generalized localization almost everywhere holds on the set E (E is an arbitrary set of positive measure E \\subset T^N = \\lbrack- \\pi, \\pi\\rbrack^N) if the condition f(x) \\in L_p(T^N), p \\ge 1, f = 0 on E implies that the indicated series converges almost everywhere on some subset E_1 \\subset E of positive measure. For a large class of sets \\{ E \\}, E \\subset T^N, a number of propositions are proved showing that weak localization of rectangular sums holds on the set E in the classes L_p, p \\ge 1, if and only if the set E has certain specific properties. In the course of the proof the precise geometry and structure of the subset E_1 of E on which the multiple Fourier series converges almost everywhere to zero are determined. Bibliography: 13 titles.

  9. Nonlinear Prediction Model for Hydrologic Time Series Based on Wavelet Decomposition

    NASA Astrophysics Data System (ADS)

    Kwon, H.; Khalil, A.; Brown, C.; Lall, U.; Ahn, H.; Moon, Y.

    2005-12-01

    Traditionally forecasting and characterizations of hydrologic systems is performed utilizing many techniques. Stochastic linear methods such as AR and ARIMA and nonlinear ones such as statistical learning theory based tools have been extensively used. The common difficulty to all methods is the determination of sufficient and necessary information and predictors for a successful prediction. Relationships between hydrologic variables are often highly nonlinear and interrelated across the temporal scale. A new hybrid approach is proposed for the simulation of hydrologic time series combining both the wavelet transform and the nonlinear model. The present model employs some merits of wavelet transform and nonlinear time series model. The Wavelet Transform is adopted to decompose a hydrologic nonlinear process into a set of mono-component signals, which are simulated by nonlinear model. The hybrid methodology is formulated in a manner to improve the accuracy of a long term forecasting. The proposed hybrid model yields much better results in terms of capturing and reproducing the time-frequency properties of the system at hand. Prediction results are promising when compared to traditional univariate time series models. An application of the plausibility of the proposed methodology is provided and the results conclude that wavelet based time series model can be utilized for simulating and forecasting of hydrologic variable reasonably well. This will ultimately serve the purpose of integrated water resources planning and management.

  10. Data Reorganization for Optimal Time Series Data Access, Analysis, and Visualization

    NASA Astrophysics Data System (ADS)

    Rui, H.; Teng, W. L.; Strub, R.; Vollmer, B.

    2012-12-01

    The way data are archived is often not optimal for their access by many user communities (e.g., hydrological), particularly if the data volumes and/or number of data files are large. The number of data records of a non-static data set generally increases with time. Therefore, most data sets are commonly archived by time steps, one step per file, often containing multiple variables. However, many research and application efforts need time series data for a given geographical location or area, i.e., a data organization that is orthogonal to the way the data are archived. The retrieval of a time series of the entire temporal coverage of a data set for a single variable at a single data point, in an optimal way, is an important and longstanding challenge, especially for large science data sets (i.e., with volumes greater than 100 GB). Two examples of such large data sets are the North American Land Data Assimilation System (NLDAS) and Global Land Data Assimilation System (GLDAS), archived at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC; Hydrology Data Holdings Portal, http://disc.sci.gsfc.nasa.gov/hydrology/data-holdings). To date, the NLDAS data set, hourly 0.125x0.125° from Jan. 1, 1979 to present, has a total volume greater than 3 TB (compressed). The GLDAS data set, 3-hourly and monthly 0.25x0.25° and 1.0x1.0° Jan. 1948 to present, has a total volume greater than 1 TB (compressed). Both data sets are accessible, in the archived time step format, via several convenient methods, including Mirador search and download (http://mirador.gsfc.nasa.gov/), GrADS Data Server (GDS; http://hydro1.sci.gsfc.nasa.gov/dods/), direct FTP (ftp://hydro1.sci.gsfc.nasa.gov/data/s4pa/), and Giovanni Online Visualization and Analysis (http://disc.sci.gsfc.nasa.gov/giovanni). However, users who need long time series currently have no efficient way to retrieve them. Continuing a longstanding tradition of facilitating data access, analysis, and visualization that contribute to knowledge discovery from large science data sets, the GES DISC recently begun a NASA ACCESS-funded project to, in part, optimally reorganize selected large data sets for access and use by the hydrological user community. This presentation discusses the following aspects of the project: (1) explorations of approaches, such as database and file system; (2) findings for each approach, such as limitations and concerns, and pros and cons; (3) implementation of reorganizing data via the file system approach, including data processing (parameter and spatial subsetting), metadata and file structure of reorganized time series data (true "Data Rod," single variable, single grid point, and entire data range per file), and production and quality control. The reorganized time series data will be integrated into several broadly used data tools, such as NASA Giovanni and those provided by CUAHSI HIS (http://his.cuahsi.org/) and EPA BASINS (http://water.epa.gov/scitech/datait/models/basins/), as well as accessible via direct FTP, along with documentation and sample reading software. The data reorganization is initially, as part of the project, applied to selected popular hydrology-related parameters, with other parameters to be added, as resources permit.

  11. 77 FR 47455 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    .... (``Bloomberg''), FactSet Research Systems, Inc. (``FactSet'') and Thomson Reuters (``Reuters''). Real time data... reasonably related to the current value of the underlying index at the time such series are first opened for... to which such series relates at or about the time such series of options is first opened for trading...

  12. Successfully Automating Library Consortia: Procedures To Facilitate Governance, Management and Cooperation. DataResearch Automation Guide Series, Number Three.

    ERIC Educational Resources Information Center

    Data Research Associates, Inc., St. Louis, MO.

    Sharing a local automated library system will generally reduce the costs of automation for each participating library and will facilitate the sharing of resources. To set up a consortium, libraries must first identify and agree on governance issues and methods for dealing with these issues. Issues range from ownership, management, and location of…

  13. Examination of Individual Differences in Outcomes from a Randomized Controlled Clinical Trial Comparing Formal and Informal Individual Auditory Training Programs

    ERIC Educational Resources Information Center

    Smith, Sherri L.; Saunders, Gabrielle H.; Chisolm, Theresa H.; Frederick, Melissa; Bailey, Beth A.

    2016-01-01

    Purpose: The purpose of this study was to determine if patient characteristics or clinical variables could predict who benefits from individual auditory training. Method: A retrospective series of analyses were performed using a data set from a large, multisite, randomized controlled clinical trial that compared the treatment effects of at-home…

  14. Forest Fire History... A Computer Method of Data Analysis

    Treesearch

    Romain M. Meese

    1973-01-01

    A series of computer programs is available to extract information from the individual Fire Reports (U.S. Forest Service Form 5100-29). The programs use a statistical technique to fit a continuous distribution to a set of sampled data. The goodness-of-fit program is applicable to data other than the fire history. Data summaries illustrate analysis of fire occurrence,...

  15. A data mining framework for time series estimation.

    PubMed

    Hu, Xiao; Xu, Peng; Wu, Shaozhi; Asgari, Shadnaz; Bergsneider, Marvin

    2010-04-01

    Time series estimation techniques are usually employed in biomedical research to derive variables less accessible from a set of related and more accessible variables. These techniques are traditionally built from systems modeling approaches including simulation, blind decovolution, and state estimation. In this work, we define target time series (TTS) and its related time series (RTS) as the output and input of a time series estimation process, respectively. We then propose a novel data mining framework for time series estimation when TTS and RTS represent different sets of observed variables from the same dynamic system. This is made possible by mining a database of instances of TTS, its simultaneously recorded RTS, and the input/output dynamic models between them. The key mining strategy is to formulate a mapping function for each TTS-RTS pair in the database that translates a feature vector extracted from RTS to the dissimilarity between true TTS and its estimate from the dynamic model associated with the same TTS-RTS pair. At run time, a feature vector is extracted from an inquiry RTS and supplied to the mapping function associated with each TTS-RTS pair to calculate a dissimilarity measure. An optimal TTS-RTS pair is then selected by analyzing these dissimilarity measures. The associated input/output model of the selected TTS-RTS pair is then used to simulate the TTS given the inquiry RTS as an input. An exemplary implementation was built to address a biomedical problem of noninvasive intracranial pressure assessment. The performance of the proposed method was superior to that of a simple training-free approach of finding the optimal TTS-RTS pair by a conventional similarity-based search on RTS features. 2009 Elsevier Inc. All rights reserved.

  16. Thermal form-factor approach to dynamical correlation functions of integrable lattice models

    NASA Astrophysics Data System (ADS)

    Göhmann, Frank; Karbach, Michael; Klümper, Andreas; Kozlowski, Karol K.; Suzuki, Junji

    2017-11-01

    We propose a method for calculating dynamical correlation functions at finite temperature in integrable lattice models of Yang-Baxter type. The method is based on an expansion of the correlation functions as a series over matrix elements of a time-dependent quantum transfer matrix rather than the Hamiltonian. In the infinite Trotter-number limit the matrix elements become time independent and turn into the thermal form factors studied previously in the context of static correlation functions. We make this explicit with the example of the XXZ model. We show how the form factors can be summed utilizing certain auxiliary functions solving finite sets of nonlinear integral equations. The case of the XX model is worked out in more detail leading to a novel form-factor series representation of the dynamical transverse two-point function.

  17. Structural models used in real-time biosurveillance outbreak detection and outbreak curve isolation from noisy background morbidity levels

    PubMed Central

    Cheng, Karen Elizabeth; Crary, David J; Ray, Jaideep; Safta, Cosmin

    2013-01-01

    Objective We discuss the use of structural models for the analysis of biosurveillance related data. Methods and results Using a combination of real and simulated data, we have constructed a data set that represents a plausible time series resulting from surveillance of a large scale bioterrorist anthrax attack in Miami. We discuss the performance of anomaly detection with structural models for these data using receiver operating characteristic (ROC) and activity monitoring operating characteristic (AMOC) analysis. In addition, we show that these techniques provide a method for predicting the level of the outbreak valid for approximately 2 weeks, post-alarm. Conclusions Structural models provide an effective tool for the analysis of biosurveillance data, in particular for time series with noisy, non-stationary background and missing data. PMID:23037798

  18. A Retrospective Analysis of the Benefits and Impacts of U.S. Renewable Portfolio Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, Ryan H.; Barbose, Galen; Heeter, Jenny

    This report, the second in the series, analyzes historical benefits and impacts of all state RPS policies, in aggregate, employing a consistent and well-vetted set of methods and data sets. The analysis focuses on three specific benefits: greenhouse gas emissions, air pollution, and water use. It also analyzes three other impacts: gross job additions, wholesale electricity market price suppression, and natural gas price suppression. These are an important subset, but by no means a comprehensive set, of all possible effects associated with RPS policies. These benefits and impacts are also subject to many uncertainties, which are described and, to themore » extent possible, quantified within the report.« less

  19. Comparison between stochastic and machine learning methods for hydrological multi-step ahead forecasting: All forecasts are wrong!

    NASA Astrophysics Data System (ADS)

    Papacharalampous, Georgia; Tyralis, Hristos; Koutsoyiannis, Demetris

    2017-04-01

    Machine learning (ML) is considered to be a promising approach to hydrological processes forecasting. We conduct a comparison between several stochastic and ML point estimation methods by performing large-scale computational experiments based on simulations. The purpose is to provide generalized results, while the respective comparisons in the literature are usually based on case studies. The stochastic methods used include simple methods, models from the frequently used families of Autoregressive Moving Average (ARMA), Autoregressive Fractionally Integrated Moving Average (ARFIMA) and Exponential Smoothing models. The ML methods used are Random Forests (RF), Support Vector Machines (SVM) and Neural Networks (NN). The comparison refers to the multi-step ahead forecasting properties of the methods. A total of 20 methods are used, among which 9 are the ML methods. 12 simulation experiments are performed, while each of them uses 2 000 simulated time series of 310 observations. The time series are simulated using stochastic processes from the families of ARMA and ARFIMA models. Each time series is split into a fitting (first 300 observations) and a testing set (last 10 observations). The comparative assessment of the methods is based on 18 metrics, that quantify the methods' performance according to several criteria related to the accurate forecasting of the testing set, the capturing of its variation and the correlation between the testing and forecasted values. The most important outcome of this study is that there is not a uniformly better or worse method. However, there are methods that are regularly better or worse than others with respect to specific metrics. It appears that, although a general ranking of the methods is not possible, their classification based on their similar or contrasting performance in the various metrics is possible to some extent. Another important conclusion is that more sophisticated methods do not necessarily provide better forecasts compared to simpler methods. It is pointed out that the ML methods do not differ dramatically from the stochastic methods, while it is interesting that the NN, RF and SVM algorithms used in this study offer potentially very good performance in terms of accuracy. It should be noted that, although this study focuses on hydrological processes, the results are of general scientific interest. Another important point in this study is the use of several methods and metrics. Using fewer methods and fewer metrics would have led to a very different overall picture, particularly if those fewer metrics corresponded to fewer criteria. For this reason, we consider that the proposed methodology is appropriate for the evaluation of forecasting methods.

  20. Orthodontic bracket slot dimensions as measured from entire bracket series.

    PubMed

    Brown, Paul; Wagner, Warren; Choi, Hyden

    2015-07-01

    To measure the slot dimensions of an entire series of metal orthodontic brackets. Ten bracket series approximating five complete sets of brackets each were imaged and measured. Descriptive statistics were generated. Slot dimension varied significantly from series to series as well as within the series themselves. About one-third of the brackets would not accommodate a full-size wire, and 15% to 20% are 0.001 inches or larger than the nominal advertised size. The clinician is unlikely to have on hand complete sets (upper and lower 5-5) of ideal brackets and should both expect and be able to be accommodate tooth movement through wire bending in three planes of space to overcome any bracket deficiencies.

  1. Crossing trend analysis methodology and application for Turkish rainfall records

    NASA Astrophysics Data System (ADS)

    Şen, Zekâi

    2018-01-01

    Trend analyses are the necessary tools for depicting possible general increase or decrease in a given time series. There are many versions of trend identification methodologies such as the Mann-Kendall trend test, Spearman's tau, Sen's slope, regression line, and Şen's innovative trend analysis. The literature has many papers about the use, cons and pros, and comparisons of these methodologies. In this paper, a completely new approach is proposed based on the crossing properties of a time series. It is suggested that the suitable trend from the centroid of the given time series should have the maximum number of crossings (total number of up-crossings or down-crossings). This approach is applicable whether the time series has dependent or independent structure and also without any dependence on the type of the probability distribution function. The validity of this method is presented through extensive Monte Carlo simulation technique and its comparison with other existing trend identification methodologies. The application of the methodology is presented for a set of annual daily extreme rainfall time series from different parts of Turkey and they have physically independent structure.

  2. Short-term versus long-term rainfall time series in the assessment of potable water savings by using rainwater in houses.

    PubMed

    Ghisi, Enedir; Cardoso, Karla Albino; Rupp, Ricardo Forgiarini

    2012-06-15

    The main objective of this article is to assess the possibility of using short-term instead of long-term rainfall time series to evaluate the potential for potable water savings by using rainwater in houses. The analysis was performed considering rainfall data from 1960 to 1995 for the city of Santa Bárbara do Oeste, located in the state of São Paulo, southeastern Brazil. The influence of the rainfall time series, roof area, potable water demand and percentage rainwater demand on the potential for potable water savings was evaluated. The potential for potable water savings was estimated using computer simulations considering a set of long-term rainfall time series and different sets of short-term rainfall time series. The ideal rainwater tank capacity was also assessed for some cases. It was observed that the higher the percentage rainwater demand and the shorter the rainfall time series, the larger the difference between the potential for potable water savings and the greater the variation in the ideal rainwater tank size. The sets of short-term rainfall time series considered adequate for different scenarios ranged from 1 to 13 years depending on the roof area, percentage rainwater demand and potable water demand. The main finding of the research is that sets of short-term rainfall time series can be used to assess the potential for potable water savings by using rainwater, as the results obtained are similar to those obtained from the long-term rainfall time series. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. PRESEE: An MDL/MML Algorithm to Time-Series Stream Segmenting

    PubMed Central

    Jiang, Yexi; Tang, Mingjie; Yuan, Changan; Tang, Changjie

    2013-01-01

    Time-series stream is one of the most common data types in data mining field. It is prevalent in fields such as stock market, ecology, and medical care. Segmentation is a key step to accelerate the processing speed of time-series stream mining. Previous algorithms for segmenting mainly focused on the issue of ameliorating precision instead of paying much attention to the efficiency. Moreover, the performance of these algorithms depends heavily on parameters, which are hard for the users to set. In this paper, we propose PRESEE (parameter-free, real-time, and scalable time-series stream segmenting algorithm), which greatly improves the efficiency of time-series stream segmenting. PRESEE is based on both MDL (minimum description length) and MML (minimum message length) methods, which could segment the data automatically. To evaluate the performance of PRESEE, we conduct several experiments on time-series streams of different types and compare it with the state-of-art algorithm. The empirical results show that PRESEE is very efficient for real-time stream datasets by improving segmenting speed nearly ten times. The novelty of this algorithm is further demonstrated by the application of PRESEE in segmenting real-time stream datasets from ChinaFLUX sensor networks data stream. PMID:23956693

  4. Characterizing system dynamics with a weighted and directed network constructed from time series data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiaoran, E-mail: sxr0806@gmail.com; School of Mathematics and Statistics, The University of Western Australia, Crawley WA 6009; Small, Michael, E-mail: michael.small@uwa.edu.au

    In this work, we propose a novel method to transform a time series into a weighted and directed network. For a given time series, we first generate a set of segments via a sliding window, and then use a doubly symbolic scheme to characterize every windowed segment by combining absolute amplitude information with an ordinal pattern characterization. Based on this construction, a network can be directly constructed from the given time series: segments corresponding to different symbol-pairs are mapped to network nodes and the temporal succession between nodes is represented by directed links. With this conversion, dynamics underlying the timemore » series has been encoded into the network structure. We illustrate the potential of our networks with a well-studied dynamical model as a benchmark example. Results show that network measures for characterizing global properties can detect the dynamical transitions in the underlying system. Moreover, we employ a random walk algorithm to sample loops in our networks, and find that time series with different dynamics exhibits distinct cycle structure. That is, the relative prevalence of loops with different lengths can be used to identify the underlying dynamics.« less

  5. PRESEE: an MDL/MML algorithm to time-series stream segmenting.

    PubMed

    Xu, Kaikuo; Jiang, Yexi; Tang, Mingjie; Yuan, Changan; Tang, Changjie

    2013-01-01

    Time-series stream is one of the most common data types in data mining field. It is prevalent in fields such as stock market, ecology, and medical care. Segmentation is a key step to accelerate the processing speed of time-series stream mining. Previous algorithms for segmenting mainly focused on the issue of ameliorating precision instead of paying much attention to the efficiency. Moreover, the performance of these algorithms depends heavily on parameters, which are hard for the users to set. In this paper, we propose PRESEE (parameter-free, real-time, and scalable time-series stream segmenting algorithm), which greatly improves the efficiency of time-series stream segmenting. PRESEE is based on both MDL (minimum description length) and MML (minimum message length) methods, which could segment the data automatically. To evaluate the performance of PRESEE, we conduct several experiments on time-series streams of different types and compare it with the state-of-art algorithm. The empirical results show that PRESEE is very efficient for real-time stream datasets by improving segmenting speed nearly ten times. The novelty of this algorithm is further demonstrated by the application of PRESEE in segmenting real-time stream datasets from ChinaFLUX sensor networks data stream.

  6. Solar array construction

    NASA Technical Reports Server (NTRS)

    Crouthamel, Marvin S. (Inventor); Coyle, Peter J. (Inventor)

    1982-01-01

    An interconnect tab on each cell of a first set of circular solar cells connects that cell in series with an adjacent cell in the set. This set of cells is arranged in alternate columns and rows of an array and a second set of similar cells is arranged in the remaining alternate columns and rows of the array. Three interconnect tabs on each solar cell of the said second set are employed to connect the cells of the second set to one another, in series and to connect the cells of the second set to those of the first set in parallel. Some tabs (making parallel connections) connect the same surface regions of adjacent cells to one another and others (making series connections) connect a surface region of one cell to the opposite surface region of an adjacent cell; however, the tabs are so positioned that the array may be easily assembled by depositing the cells in a certain sequence and in proper orientation.

  7. Gene regulatory network inference using fused LASSO on multiple data sets

    PubMed Central

    Omranian, Nooshin; Eloundou-Mbebi, Jeanne M. O.; Mueller-Roeber, Bernd; Nikoloski, Zoran

    2016-01-01

    Devising computational methods to accurately reconstruct gene regulatory networks given gene expression data is key to systems biology applications. Here we propose a method for reconstructing gene regulatory networks by simultaneous consideration of data sets from different perturbation experiments and corresponding controls. The method imposes three biologically meaningful constraints: (1) expression levels of each gene should be explained by the expression levels of a small number of transcription factor coding genes, (2) networks inferred from different data sets should be similar with respect to the type and number of regulatory interactions, and (3) relationships between genes which exhibit similar differential behavior over the considered perturbations should be favored. We demonstrate that these constraints can be transformed in a fused LASSO formulation for the proposed method. The comparative analysis on transcriptomics time-series data from prokaryotic species, Escherichia coli and Mycobacterium tuberculosis, as well as a eukaryotic species, mouse, demonstrated that the proposed method has the advantages of the most recent approaches for regulatory network inference, while obtaining better performance and assigning higher scores to the true regulatory links. The study indicates that the combination of sparse regression techniques with other biologically meaningful constraints is a promising framework for gene regulatory network reconstructions. PMID:26864687

  8. INFFTM: Fast evaluation of 3d Fourier series in MATLAB with an application to quantum vortex reconnections

    NASA Astrophysics Data System (ADS)

    Caliari, Marco; Zuccher, Simone

    2017-04-01

    Although Fourier series approximation is ubiquitous in computational physics owing to the Fast Fourier Transform (FFT) algorithm, efficient techniques for the fast evaluation of a three-dimensional truncated Fourier series at a set of arbitrary points are quite rare, especially in MATLAB language. Here we employ the Nonequispaced Fast Fourier Transform (NFFT, by J. Keiner, S. Kunis, and D. Potts), a C library designed for this purpose, and provide a Matlab® and GNU Octave interface that makes NFFT easily available to the Numerical Analysis community. We test the effectiveness of our package in the framework of quantum vortex reconnections, where pseudospectral Fourier methods are commonly used and local high resolution is required in the post-processing stage. We show that the efficient evaluation of a truncated Fourier series at arbitrary points provides excellent results at a computational cost much smaller than carrying out a numerical simulation of the problem on a sufficiently fine regular grid that can reproduce comparable details of the reconnecting vortices.

  9. A Multilevel Multiset Time-Series Model for Describing Complex Developmental Processes

    PubMed Central

    Ma, Xin; Shen, Jianping

    2017-01-01

    The authors sought to develop an analytical platform where multiple sets of time series can be examined simultaneously. This multivariate platform capable of testing interaction effects among multiple sets of time series can be very useful in empirical research. The authors demonstrated that the multilevel framework can readily accommodate this analytical capacity. Given their intention to use the multilevel multiset time-series model to pursue complicated research purposes, their resulting model is relatively simple to specify, to run, and to interpret. These advantages make the adoption of their model relatively effortless as long as researchers have the basic knowledge and skills in working with multilevel growth modeling. With multiple potential extensions of their model, the establishment of this analytical platform for analysis of multiple sets of time series can inspire researchers to pursue far more advanced research designs to address complex developmental processes in reality. PMID:29881094

  10. Detection of bifurcations in noisy coupled systems from multiple time series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, Mark S., E-mail: m.s.williamson@exeter.ac.uk; Lenton, Timothy M.

    We generalize a method of detecting an approaching bifurcation in a time series of a noisy system from the special case of one dynamical variable to multiple dynamical variables. For a system described by a stochastic differential equation consisting of an autonomous deterministic part with one dynamical variable and an additive white noise term, small perturbations away from the system's fixed point will decay slower the closer the system is to a bifurcation. This phenomenon is known as critical slowing down and all such systems exhibit this decay-type behaviour. However, when the deterministic part has multiple coupled dynamical variables, themore » possible dynamics can be much richer, exhibiting oscillatory and chaotic behaviour. In our generalization to the multi-variable case, we find additional indicators to decay rate, such as frequency of oscillation. In the case of approaching a homoclinic bifurcation, there is no change in decay rate but there is a decrease in frequency of oscillations. The expanded method therefore adds extra tools to help detect and classify approaching bifurcations given multiple time series, where the underlying dynamics are not fully known. Our generalisation also allows bifurcation detection to be applied spatially if one treats each spatial location as a new dynamical variable. One may then determine the unstable spatial mode(s). This is also something that has not been possible with the single variable method. The method is applicable to any set of time series regardless of its origin, but may be particularly useful when anticipating abrupt changes in the multi-dimensional climate system.« less

  11. Detection of bifurcations in noisy coupled systems from multiple time series

    NASA Astrophysics Data System (ADS)

    Williamson, Mark S.; Lenton, Timothy M.

    2015-03-01

    We generalize a method of detecting an approaching bifurcation in a time series of a noisy system from the special case of one dynamical variable to multiple dynamical variables. For a system described by a stochastic differential equation consisting of an autonomous deterministic part with one dynamical variable and an additive white noise term, small perturbations away from the system's fixed point will decay slower the closer the system is to a bifurcation. This phenomenon is known as critical slowing down and all such systems exhibit this decay-type behaviour. However, when the deterministic part has multiple coupled dynamical variables, the possible dynamics can be much richer, exhibiting oscillatory and chaotic behaviour. In our generalization to the multi-variable case, we find additional indicators to decay rate, such as frequency of oscillation. In the case of approaching a homoclinic bifurcation, there is no change in decay rate but there is a decrease in frequency of oscillations. The expanded method therefore adds extra tools to help detect and classify approaching bifurcations given multiple time series, where the underlying dynamics are not fully known. Our generalisation also allows bifurcation detection to be applied spatially if one treats each spatial location as a new dynamical variable. One may then determine the unstable spatial mode(s). This is also something that has not been possible with the single variable method. The method is applicable to any set of time series regardless of its origin, but may be particularly useful when anticipating abrupt changes in the multi-dimensional climate system.

  12. Initial Results of an MDO Method Evaluation Study

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia M.; Kodiyalam, Srinivas

    1998-01-01

    The NASA Langley MDO method evaluation study seeks to arrive at a set of guidelines for using promising MDO methods by accumulating and analyzing computational data for such methods. The data are collected by conducting a series of re- producible experiments. In the first phase of the study, three MDO methods were implemented in the SIGHT: framework and used to solve a set of ten relatively simple problems. In this paper, we comment on the general considerations for conducting method evaluation studies and report some initial results obtained to date. In particular, although the results are not conclusive because of the small initial test set, other formulations, optimality conditions, and sensitivity of solutions to various perturbations. Optimization algorithms are used to solve a particular MDO formulation. It is then appropriate to speak of local convergence rates and of global convergence properties of an optimization algorithm applied to a specific formulation. An analogous distinction exists in the field of partial differential equations. On the one hand, equations are analyzed in terms of regularity, well-posedness, and the existence and unique- ness of solutions. On the other, one considers numerous algorithms for solving differential equations. The area of MDO methods studies MDO formulations combined with optimization algorithms, although at times the distinction is blurred. It is important to

  13. Chemical Topic Modeling: Exploring Molecular Data Sets Using a Common Text-Mining Approach.

    PubMed

    Schneider, Nadine; Fechner, Nikolas; Landrum, Gregory A; Stiefl, Nikolaus

    2017-08-28

    Big data is one of the key transformative factors which increasingly influences all aspects of modern life. Although this transformation brings vast opportunities it also generates novel challenges, not the least of which is organizing and searching this data deluge. The field of medicinal chemistry is not different: more and more data are being generated, for instance, by technologies such as DNA encoded libraries, peptide libraries, text mining of large literature corpora, and new in silico enumeration methods. Handling those huge sets of molecules effectively is quite challenging and requires compromises that often come at the expense of the interpretability of the results. In order to find an intuitive and meaningful approach to organizing large molecular data sets, we adopted a probabilistic framework called "topic modeling" from the text-mining field. Here we present the first chemistry-related implementation of this method, which allows large molecule sets to be assigned to "chemical topics" and investigating the relationships between those. In this first study, we thoroughly evaluate this novel method in different experiments and discuss both its disadvantages and advantages. We show very promising results in reproducing human-assigned concepts using the approach to identify and retrieve chemical series from sets of molecules. We have also created an intuitive visualization of the chemical topics output by the algorithm. This is a huge benefit compared to other unsupervised machine-learning methods, like clustering, which are commonly used to group sets of molecules. Finally, we applied the new method to the 1.6 million molecules of the ChEMBL22 data set to test its robustness and efficiency. In about 1 h we built a 100-topic model of this large data set in which we could identify interesting topics like "proteins", "DNA", or "steroids". Along with this publication we provide our data sets and an open-source implementation of the new method (CheTo) which will be part of an upcoming version of the open-source cheminformatics toolkit RDKit.

  14. Accurate estimates of 3D Ising critical exponents using the coherent-anomaly method

    NASA Astrophysics Data System (ADS)

    Kolesik, Miroslav; Suzuki, Masuo

    1995-02-01

    An analysis of the critical behavior of the three-dimensional Ising model using the coherent-anomaly method (CAM) is presented. Various sources of errors in CAM estimates of critical exponents are discussed, and an improved scheme for the CAM data analysis is tested. Using a set of mean-field type approximations based on the variational series expansion approach, accuracy comparable to the most precise conventional methods has been achieved. Our results for the critical exponents are given by α = 0.108(5), β = 0.327(4), γ = 1.237(4) and δ = 4.77(5).

  15. Head-scratching method of the Swainson's warbler

    USGS Publications Warehouse

    Meanley, Brooke

    1970-01-01

    Ficken and Ficken (Auk, 85: 136, 1968) suggest that the "Head-scratching method may prove a valuable addition to the set of complex characters that can be used in defining genera," and that field observers should continue to fill gaps in our knowledge of this behavior. In the course of a series of observations of Swainson's Warblers (Limnothlypis swainsonii) in the Dismal Swamp, Virginia, I saw head-scratching in three individuals, four times in one, three in another, and once in the third. All three birds used the direct method, bringing the foot forward and under the wing.

  16. Time series analysis of InSAR data: Methods and trends

    NASA Astrophysics Data System (ADS)

    Osmanoğlu, Batuhan; Sunar, Filiz; Wdowinski, Shimon; Cabral-Cano, Enrique

    2016-05-01

    Time series analysis of InSAR data has emerged as an important tool for monitoring and measuring the displacement of the Earth's surface. Changes in the Earth's surface can result from a wide range of phenomena such as earthquakes, volcanoes, landslides, variations in ground water levels, and changes in wetland water levels. Time series analysis is applied to interferometric phase measurements, which wrap around when the observed motion is larger than one-half of the radar wavelength. Thus, the spatio-temporal ;unwrapping; of phase observations is necessary to obtain physically meaningful results. Several different algorithms have been developed for time series analysis of InSAR data to solve for this ambiguity. These algorithms may employ different models for time series analysis, but they all generate a first-order deformation rate, which can be compared to each other. However, there is no single algorithm that can provide optimal results in all cases. Since time series analyses of InSAR data are used in a variety of applications with different characteristics, each algorithm possesses inherently unique strengths and weaknesses. In this review article, following a brief overview of InSAR technology, we discuss several algorithms developed for time series analysis of InSAR data using an example set of results for measuring subsidence rates in Mexico City.

  17. Time Series Analysis of Insar Data: Methods and Trends

    NASA Technical Reports Server (NTRS)

    Osmanoglu, Batuhan; Sunar, Filiz; Wdowinski, Shimon; Cano-Cabral, Enrique

    2015-01-01

    Time series analysis of InSAR data has emerged as an important tool for monitoring and measuring the displacement of the Earth's surface. Changes in the Earth's surface can result from a wide range of phenomena such as earthquakes, volcanoes, landslides, variations in ground water levels, and changes in wetland water levels. Time series analysis is applied to interferometric phase measurements, which wrap around when the observed motion is larger than one-half of the radar wavelength. Thus, the spatio-temporal ''unwrapping" of phase observations is necessary to obtain physically meaningful results. Several different algorithms have been developed for time series analysis of InSAR data to solve for this ambiguity. These algorithms may employ different models for time series analysis, but they all generate a first-order deformation rate, which can be compared to each other. However, there is no single algorithm that can provide optimal results in all cases. Since time series analyses of InSAR data are used in a variety of applications with different characteristics, each algorithm possesses inherently unique strengths and weaknesses. In this review article, following a brief overview of InSAR technology, we discuss several algorithms developed for time series analysis of InSAR data using an example set of results for measuring subsidence rates in Mexico City.

  18. Visualization of synchronization of the uterine contraction signals: running cross-correlation and wavelet running cross-correlation methods.

    PubMed

    Oczeretko, Edward; Swiatecka, Jolanta; Kitlas, Agnieszka; Laudanski, Tadeusz; Pierzynski, Piotr

    2006-01-01

    In physiological research, we often study multivariate data sets, containing two or more simultaneously recorded time series. The aim of this paper is to present the cross-correlation and the wavelet cross-correlation methods to assess synchronization between contractions in different topographic regions of the uterus. From a medical point of view, it is important to identify time delays between contractions, which may be of potential diagnostic significance in various pathologies. The cross-correlation was computed in a moving window with a width corresponding to approximately two or three contractions. As a result, the running cross-correlation function was obtained. The propagation% parameter assessed from this function allows quantitative description of synchronization in bivariate time series. In general, the uterine contraction signals are very complicated. Wavelet transforms provide insight into the structure of the time series at various frequencies (scales). To show the changes of the propagation% parameter along scales, a wavelet running cross-correlation was used. At first, the continuous wavelet transforms as the uterine contraction signals were received and afterwards, a running cross-correlation analysis was conducted for each pair of transformed time series. The findings show that running functions are very useful in the analysis of uterine contractions.

  19. Optimize the Coverage Probability of Prediction Interval for Anomaly Detection of Sensor-Based Monitoring Series

    PubMed Central

    Liu, Datong; Peng, Yu; Peng, Xiyuan

    2018-01-01

    Effective anomaly detection of sensing data is essential for identifying potential system failures. Because they require no prior knowledge or accumulated labels, and provide uncertainty presentation, the probability prediction methods (e.g., Gaussian process regression (GPR) and relevance vector machine (RVM)) are especially adaptable to perform anomaly detection for sensing series. Generally, one key parameter of prediction models is coverage probability (CP), which controls the judging threshold of the testing sample and is generally set to a default value (e.g., 90% or 95%). There are few criteria to determine the optimal CP for anomaly detection. Therefore, this paper designs a graphic indicator of the receiver operating characteristic curve of prediction interval (ROC-PI) based on the definition of the ROC curve which can depict the trade-off between the PI width and PI coverage probability across a series of cut-off points. Furthermore, the Youden index is modified to assess the performance of different CPs, by the minimization of which the optimal CP is derived by the simulated annealing (SA) algorithm. Experiments conducted on two simulation datasets demonstrate the validity of the proposed method. Especially, an actual case study on sensing series from an on-orbit satellite illustrates its significant performance in practical application. PMID:29587372

  20. Identification of spikes associated with local sources in continuous time series of atmospheric CO, CO2 and CH4

    NASA Astrophysics Data System (ADS)

    El Yazidi, Abdelhadi; Ramonet, Michel; Ciais, Philippe; Broquet, Gregoire; Pison, Isabelle; Abbaris, Amara; Brunner, Dominik; Conil, Sebastien; Delmotte, Marc; Gheusi, Francois; Guerin, Frederic; Hazan, Lynn; Kachroudi, Nesrine; Kouvarakis, Giorgos; Mihalopoulos, Nikolaos; Rivier, Leonard; Serça, Dominique

    2018-03-01

    This study deals with the problem of identifying atmospheric data influenced by local emissions that can result in spikes in time series of greenhouse gases and long-lived tracer measurements. We considered three spike detection methods known as coefficient of variation (COV), robust extraction of baseline signal (REBS) and standard deviation of the background (SD) to detect and filter positive spikes in continuous greenhouse gas time series from four monitoring stations representative of the European ICOS (Integrated Carbon Observation System) Research Infrastructure network. The results of the different methods are compared to each other and against a manual detection performed by station managers. Four stations were selected as test cases to apply the spike detection methods: a continental rural tower of 100 m height in eastern France (OPE), a high-mountain observatory in the south-west of France (PDM), a regional marine background site in Crete (FKL) and a marine clean-air background site in the Southern Hemisphere on Amsterdam Island (AMS). This selection allows us to address spike detection problems in time series with different variability. Two years of continuous measurements of CO2, CH4 and CO were analysed. All methods were found to be able to detect short-term spikes (lasting from a few seconds to a few minutes) in the time series. Analysis of the results of each method leads us to exclude the COV method due to the requirement to arbitrarily specify an a priori percentage of rejected data in the time series, which may over- or underestimate the actual number of spikes. The two other methods freely determine the number of spikes for a given set of parameters, and the values of these parameters were calibrated to provide the best match with spikes known to reflect local emissions episodes that are well documented by the station managers. More than 96 % of the spikes manually identified by station managers were successfully detected both in the SD and the REBS methods after the best adjustment of parameter values. At PDM, measurements made by two analyzers located 200 m from each other allow us to confirm that the CH4 spikes identified in one of the time series but not in the other correspond to a local source from a sewage treatment facility in one of the observatory buildings. From this experiment, we also found that the REBS method underestimates the number of positive anomalies in the CH4 data caused by local sewage emissions. As a conclusion, we recommend the use of the SD method, which also appears to be the easiest one to implement in automatic data processing, used for the operational filtering of spikes in greenhouse gases time series at global and regional monitoring stations of networks like that of the ICOS atmosphere network.

  1. Reevaluation of Stratospheric Ozone Trends From SAGE II Data Using a Simultaneous Temporal and Spatial Analysis

    NASA Technical Reports Server (NTRS)

    Damadeo, R. P.; Zawodny, J. M.; Thomason, L. W.

    2014-01-01

    This paper details a new method of regression for sparsely sampled data sets for use with time-series analysis, in particular the Stratospheric Aerosol and Gas Experiment (SAGE) II ozone data set. Non-uniform spatial, temporal, and diurnal sampling present in the data set result in biased values for the long-term trend if not accounted for. This new method is performed close to the native resolution of measurements and is a simultaneous temporal and spatial analysis that accounts for potential diurnal ozone variation. Results show biases, introduced by the way data is prepared for use with traditional methods, can be as high as 10%. Derived long-term changes show declines in ozone similar to other studies but very different trends in the presumed recovery period, with differences up to 2% per decade. The regression model allows for a variable turnaround time and reveals a hemispheric asymmetry in derived trends in the middle to upper stratosphere. Similar methodology is also applied to SAGE II aerosol optical depth data to create a new volcanic proxy that covers the SAGE II mission period. Ultimately this technique may be extensible towards the inclusion of multiple data sets without the need for homogenization.

  2. Causal Relationships Among Time Series of the Lange Bramke Catchment (Harz Mountains, Germany)

    NASA Astrophysics Data System (ADS)

    Aufgebauer, Britta; Hauhs, Michael; Bogner, Christina; Meesenburg, Henning; Lange, Holger

    2016-04-01

    Convergent Cross Mapping (CCM) has recently been introduced by Sugihara et al. for the identification and quantification of causal relationships among ecosystem variables. In particular, the method allows to decide on the direction of causality; in some cases, the causality might be bidirectional, indicating a network structure. We extend this approach by introducing a method of surrogate data to obtain confidence intervals for CCM results. We then apply this method to time series from stream water chemistry. Specifically, we analyze a set of eight dissolved major ions from three different catchments belonging to the hydrological monitoring system at the Bramke valley in the Harz Mountains, Germany. Our results demonstrate the potentials and limits of CCM as a monitoring instrument in forestry and hydrology or as a tool to identify processes in ecosystem research. While some networks of causally linked ions can be associated with simple physical and chemical processes, other results illustrate peculiarities of the three studied catchments, which are explained in the context of their special history.

  3. The cross-correlation analysis of multi property of stock markets based on MM-DFA

    NASA Astrophysics Data System (ADS)

    Yang, Yujun; Li, Jianping; Yang, Yimei

    2017-09-01

    In this paper, we propose a new method called DH-MXA based on distribution histograms of Hurst surface and multiscale multifractal detrended fluctuation analysis. The method allows us to investigate the cross-correlation characteristics among multiple properties of different stock time series. It may provide a new way of measuring the nonlinearity of several signals. It also can provide a more stable and faithful description of cross-correlation of multiple properties of stocks. The DH-MXA helps us to present much richer information than multifractal detrented cross-correlation analysis and allows us to assess many universal and subtle cross-correlation characteristics of stock markets. We show DH-MXA by selecting four artificial data sets and five properties of four stock time series from different countries. The results show that our proposed method can be adapted to investigate the cross-correlation of stock markets. In general, the American stock markets are more mature and less volatile than the Chinese stock markets.

  4. Detecting synchronization clusters in multivariate time series via coarse-graining of Markov chains.

    PubMed

    Allefeld, Carsten; Bialonski, Stephan

    2007-12-01

    Synchronization cluster analysis is an approach to the detection of underlying structures in data sets of multivariate time series, starting from a matrix R of bivariate synchronization indices. A previous method utilized the eigenvectors of R for cluster identification, analogous to several recent attempts at group identification using eigenvectors of the correlation matrix. All of these approaches assumed a one-to-one correspondence of dominant eigenvectors and clusters, which has however been shown to be wrong in important cases. We clarify the usefulness of eigenvalue decomposition for synchronization cluster analysis by translating the problem into the language of stochastic processes, and derive an enhanced clustering method harnessing recent insights from the coarse-graining of finite-state Markov processes. We illustrate the operation of our method using a simulated system of coupled Lorenz oscillators, and we demonstrate its superior performance over the previous approach. Finally we investigate the question of robustness of the algorithm against small sample size, which is important with regard to field applications.

  5. A novel series of thiosemicarbazone drugs: From synthesis to structure

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Hossein Pasha; Hadi, Jabbar S.; Alsalim, Tahseen A.; Ghali, Thaer S.; Bolandnazar, Zeinab

    2015-02-01

    A new series of thiosemicarbazones (TSCs) and their 1,3,4-thiadiazolines (TDZs) containing acetamide group have been synthesized from thiosemicarbazide compounds by the reaction of TSCs with cyclic ketones as well as aromatic aldehydes. The structures of newly synthesized 1,3,4-thiadiazole derivatives obtained by heterocyclization of the TSCs with acetic anhydride were experimentally characterized by spectral methods using IR, 1H NMR, 13C NMR and mass spectroscopic methods. Furthermore, the structural, thermodynamic, and electronic properties of the studied compounds were also studied theoretically by performing Density Functional Theory (DFT) to access reliable results to the experimental values. The molecular geometry, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO) and Mulliken atomic charges of the studied compounds have been calculated at the B3LYP method and standard 6-31+G(d,p) basis set starting from optimized geometry. The theoretical 13C chemical shift results were also calculated using the gauge independent atomic orbital (GIAO) approach and their respective linear correlations were obtained.

  6. A Mathematica program for the approximate analytical solution to a nonlinear undamped Duffing equation by a new approximate approach

    NASA Astrophysics Data System (ADS)

    Wu, Dongmei; Wang, Zhongcheng

    2006-03-01

    According to Mickens [R.E. Mickens, Comments on a Generalized Galerkin's method for non-linear oscillators, J. Sound Vib. 118 (1987) 563], the general HB (harmonic balance) method is an approximation to the convergent Fourier series representation of the periodic solution of a nonlinear oscillator and not an approximation to an expansion in terms of a small parameter. Consequently, for a nonlinear undamped Duffing equation with a driving force Bcos(ωx), to find a periodic solution when the fundamental frequency is identical to ω, the corresponding Fourier series can be written as y˜(x)=∑n=1m acos[(2n-1)ωx]. How to calculate the coefficients of the Fourier series efficiently with a computer program is still an open problem. For HB method, by substituting approximation y˜(x) into force equation, expanding the resulting expression into a trigonometric series, then letting the coefficients of the resulting lowest-order harmonic be zero, one can obtain approximate coefficients of approximation y˜(x) [R.E. Mickens, Comments on a Generalized Galerkin's method for non-linear oscillators, J. Sound Vib. 118 (1987) 563]. But for nonlinear differential equations such as Duffing equation, it is very difficult to construct higher-order analytical approximations, because the HB method requires solving a set of algebraic equations for a large number of unknowns with very complex nonlinearities. To overcome the difficulty, forty years ago, Urabe derived a computational method for Duffing equation based on Galerkin procedure [M. Urabe, A. Reiter, Numerical computation of nonlinear forced oscillations by Galerkin's procedure, J. Math. Anal. Appl. 14 (1966) 107-140]. Dooren obtained an approximate solution of the Duffing oscillator with a special set of parameters by using Urabe's method [R. van Dooren, Stabilization of Cowell's classic finite difference method for numerical integration, J. Comput. Phys. 16 (1974) 186-192]. In this paper, in the frame of the general HB method, we present a new iteration algorithm to calculate the coefficients of the Fourier series. By using this new method, the iteration procedure starts with a(x)cos(ωx)+b(x)sin(ωx), and the accuracy may be improved gradually by determining new coefficients a,a,… will be produced automatically in an one-by-one manner. In all the stage of calculation, we need only to solve a cubic equation. Using this new algorithm, we develop a Mathematica program, which demonstrates following main advantages over the previous HB method: (1) it avoids solving a set of associate nonlinear equations; (2) it is easier to be implemented into a computer program, and produces a highly accurate solution with analytical expression efficiently. It is interesting to find that, generally, for a given set of parameters, a nonlinear Duffing equation can have three independent oscillation modes. For some sets of the parameters, it can have two modes with complex displacement and one with real displacement. But in some cases, it can have three modes, all of them having real displacement. Therefore, we can divide the parameters into two classes, according to the solution property: there is only one mode with real displacement and there are three modes with real displacement. This program should be useful to study the dynamically periodic behavior of a Duffing oscillator and can provide an approximate analytical solution with high-accuracy for testing the error behavior of newly developed numerical methods with a wide range of parameters. Program summaryTitle of program:AnalyDuffing.nb Catalogue identifier:ADWR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWR_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:none Computer for which the program is designed and others on which it has been tested:the program has been designed for a microcomputer and been tested on the microcomputer. Computers:IBM PC Installations:the address(es) of your computer(s) Operating systems under which the program has been tested:Windows XP Programming language used:Software Mathematica 4.2, 5.0 and 5.1 No. of lines in distributed program, including test data, etc.:23 663 No. of bytes in distributed program, including test data, etc.:152 321 Distribution format:tar.gz Memory required to execute with typical data:51 712 Bytes No. of bits in a word: No. of processors used:1 Has the code been vectorized?:no Peripherals used:no Program Library subprograms used:no Nature of physical problem:To find an approximate solution with analytical expressions for the undamped nonlinear Duffing equation with periodic driving force when the fundamental frequency is identical to the driving force. Method of solution:In the frame of the general HB method, by using a new iteration algorithm to calculate the coefficients of the Fourier series, we can obtain an approximate analytical solution with high-accuracy efficiently. Restrictions on the complexity of the problem:For problems, which have a large driving frequency, the convergence may be a little slow, because more iterative times are needed. Typical running time:several seconds Unusual features of the program:For an undamped Duffing equation, it can provide all the solutions or the oscillation modes with real displacement for any interesting parameters, for the required accuracy, efficiently. The program can be used to study the dynamically periodic behavior of a nonlinear oscillator, and can provide a high-accurate approximate analytical solution for developing high-accurate numerical method.

  7. Non-invasive breast biopsy method using GD-DTPA contrast enhanced MRI series and F-18-FDG PET/CT dynamic image series

    NASA Astrophysics Data System (ADS)

    Magri, Alphonso William

    This study was undertaken to develop a nonsurgical breast biopsy from Gd-DTPA Contrast Enhanced Magnetic Resonance (CE-MR) images and F-18-FDG PET/CT dynamic image series. A five-step process was developed to accomplish this. (1) Dynamic PET series were nonrigidly registered to the initial frame using a finite element method (FEM) based registration that requires fiducial skin markers to sample the displacement field between image frames. A commercial FEM package (ANSYS) was used for meshing and FEM calculations. Dynamic PET image series registrations were evaluated using similarity measurements SAVD and NCC. (2) Dynamic CE-MR series were nonrigidly registered to the initial frame using two registration methods: a multi-resolution free-form deformation (FFD) registration driven by normalized mutual information, and a FEM-based registration method. Dynamic CE-MR image series registrations were evaluated using similarity measurements, localization measurements, and qualitative comparison of motion artifacts. FFD registration was found to be superior to FEM-based registration. (3) Nonlinear curve fitting was performed for each voxel of the PET/CT volume of activity versus time, based on a realistic two-compartmental Patlak model. Three parameters for this model were fitted; two of them describe the activity levels in the blood and in the cellular compartment, while the third characterizes the washout rate of F-18-FDG from the cellular compartment. (4) Nonlinear curve fitting was performed for each voxel of the MR volume of signal intensity versus time, based on a realistic two-compartment Brix model. Three parameters for this model were fitted: rate of Gd exiting the compartment, representing the extracellular space of a lesion; rate of Gd exiting a blood compartment; and a parameter that characterizes the strength of signal intensities. Curve fitting used for PET/CT and MR series was accomplished by application of the Levenburg-Marquardt nonlinear regression algorithm. The best-fit parameters were used to create 3D parametric images. Compartmental modeling evaluation was based on the ability of parameter values to differentiate between tissue types. This evaluation was used on registered and unregistered image series and found that registration improved results. (5) PET and MR parametric images were registered through FEM- and FFD-based registration. Parametric image registration was evaluated using similarity measurements, target registration error, and qualitative comparison. Comparing FFD and FEM-based registration results showed that the FEM method is superior. This five-step process constitutes a novel multifaceted approach to a nonsurgical breast biopsy that successfully executes each step. Comparison of this method to biopsy still needs to be done with a larger set of subject data.

  8. Efficient sampling of parsimonious inversion histories with application to genome rearrangement in Yersinia.

    PubMed

    Miklós, István; Darling, Aaron E

    2009-06-22

    Inversions are among the most common mutations acting on the order and orientation of genes in a genome, and polynomial-time algorithms exist to obtain a minimal length series of inversions that transform one genome arrangement to another. However, the minimum length series of inversions (the optimal sorting path) is often not unique as many such optimal sorting paths exist. If we assume that all optimal sorting paths are equally likely, then statistical inference on genome arrangement history must account for all such sorting paths and not just a single estimate. No deterministic polynomial algorithm is known to count the number of optimal sorting paths nor sample from the uniform distribution of optimal sorting paths. Here, we propose a stochastic method that uniformly samples the set of all optimal sorting paths. Our method uses a novel formulation of parallel Markov chain Monte Carlo. In practice, our method can quickly estimate the total number of optimal sorting paths. We introduce a variant of our approach in which short inversions are modeled to be more likely, and we show how the method can be used to estimate the distribution of inversion lengths and breakpoint usage in pathogenic Yersinia pestis. The proposed method has been implemented in a program called "MC4Inversion." We draw comparison of MC4Inversion to the sampler implemented in BADGER and a previously described importance sampling (IS) technique. We find that on high-divergence data sets, MC4Inversion finds more optimal sorting paths per second than BADGER and the IS technique and simultaneously avoids bias inherent in the IS technique.

  9. Identification of Large Space Structures on Orbit

    DTIC Science & Technology

    1986-09-01

    requires only the eigenvector corresponding to the eigenvector 93 .:. ,S --- k’.’ L derivative being calculated. However, a set of linear algebraic ...Journal of Guidance, Control and Dynamics. 204. Noble, B. and J. W. Daniel, Applied Linear Algebra , Prentice-Hall, Inc., 1977. 205. Nurre, G. S., R. S...4.2.1. Linear Relationships . . . . . . . . . . 114 4.2.2. Nonlinear Relationships . . . . . . . . . 120 4.3. Series Expansion Methods

  10. Stochastic Gabor reflectivity and acoustic impedance inversion

    NASA Astrophysics Data System (ADS)

    Hariri Naghadeh, Diako; Morley, Christopher Keith; Ferguson, Angus John

    2018-02-01

    To delineate subsurface lithology to estimate petrophysical properties of a reservoir, it is possible to use acoustic impedance (AI) which is the result of seismic inversion. To change amplitude to AI, removal of wavelet effects from the seismic signal in order to get a reflection series, and subsequently transforming those reflections to AI, is vital. To carry out seismic inversion correctly it is important to not assume that the seismic signal is stationary. However, all stationary deconvolution methods are designed following that assumption. To increase temporal resolution and interpretation ability, amplitude compensation and phase correction are inevitable. Those are pitfalls of stationary reflectivity inversion. Although stationary reflectivity inversion methods are trying to estimate reflectivity series, because of incorrect assumptions their estimations will not be correct, but may be useful. Trying to convert those reflection series to AI, also merging with the low frequency initial model, can help us. The aim of this study was to apply non-stationary deconvolution to eliminate time variant wavelet effects from the signal and to convert the estimated reflection series to the absolute AI by getting bias from well logs. To carry out this aim, stochastic Gabor inversion in the time domain was used. The Gabor transform derived the signal’s time-frequency analysis and estimated wavelet properties from different windows. Dealing with different time windows gave an ability to create a time-variant kernel matrix, which was used to remove matrix effects from seismic data. The result was a reflection series that does not follow the stationary assumption. The subsequent step was to convert those reflections to AI using well information. Synthetic and real data sets were used to show the ability of the introduced method. The results highlight that the time cost to get seismic inversion is negligible related to general Gabor inversion in the frequency domain. Also, obtaining bias could help the method to estimate reliable AI. To justify the effect of random noise on deterministic and stochastic inversion results, a stationary noisy trace with signal-to-noise ratio equal to 2 was used. The results highlight the inability of deterministic inversion in dealing with a noisy data set even using a high number of regularization parameters. Also, despite the low level of signal, stochastic Gabor inversion not only can estimate correctly the wavelet’s properties but also, because of bias from well logs, the inversion result is very close to the real AI. Comparing deterministic and introduced inversion results on a real data set shows that low resolution results, especially in the deeper parts of seismic sections using deterministic inversion, creates significant reliability problems for seismic prospects, but this pitfall is solved completely using stochastic Gabor inversion. The estimated AI using Gabor inversion in the time domain is much better and faster than general Gabor inversion in the frequency domain. This is due to the extra number of windows required to analyze the time-frequency information and also the amount of temporal increment between windows. In contrast, stochastic Gabor inversion can estimate trustable physical properties close to the real characteristics. Applying to a real data set could give an ability to detect the direction of volcanic intrusion and the ability of lithology distribution delineation along the fan. Comparing the inversion results highlights the efficiency of stochastic Gabor inversion to delineate lateral lithology changes because of the improved frequency content and zero phasing of the final inversion volume.

  11. 3D-QSAR analysis of MCD inhibitors by CoMFA and CoMSIA.

    PubMed

    Pourbasheer, Eslam; Aalizadeh, Reza; Ebadi, Amin; Ganjali, Mohammad Reza

    2015-01-01

    Three-dimensional quantitative structure-activity relationship was developed for the series of compounds as malonyl-CoA decarboxylase antagonists (MCD) using the CoMFA and CoMSIA methods. The statistical parameters for CoMFA (q(2)=0.558, r(2)=0.841) and CoMSIA (q(2)= 0.615, r(2) = 0.870) models were derived based on 38 compounds as training set in the basis of the selected alignment. The external predictive abilities of the built models were evaluated by using the test set of nine compounds. From obtained results, the CoMSIA method was found to have highly predictive capability in comparison with CoMFA method. Based on the given results by CoMSIA and CoMFA contour maps, some features that can enhance the activity of compounds as MCD antagonists were introduced and used to design new compounds with better inhibition activity.

  12. Motif-Synchronization: A new method for analysis of dynamic brain networks with EEG

    NASA Astrophysics Data System (ADS)

    Rosário, R. S.; Cardoso, P. T.; Muñoz, M. A.; Montoya, P.; Miranda, J. G. V.

    2015-12-01

    The major aim of this work was to propose a new association method known as Motif-Synchronization. This method was developed to provide information about the synchronization degree and direction between two nodes of a network by counting the number of occurrences of some patterns between any two time series. The second objective of this work was to present a new methodology for the analysis of dynamic brain networks, by combining the Time-Varying Graph (TVG) method with a directional association method. We further applied the new algorithms to a set of human electroencephalogram (EEG) signals to perform a dynamic analysis of the brain functional networks (BFN).

  13. Multiple imputation for multivariate data with missing and below-threshold measurements: time-series concentrations of pollutants in the Arctic.

    PubMed

    Hopke, P K; Liu, C; Rubin, D B

    2001-03-01

    Many chemical and environmental data sets are complicated by the existence of fully missing values or censored values known to lie below detection thresholds. For example, week-long samples of airborne particulate matter were obtained at Alert, NWT, Canada, between 1980 and 1991, where some of the concentrations of 24 particulate constituents were coarsened in the sense of being either fully missing or below detection limits. To facilitate scientific analysis, it is appealing to create complete data by filling in missing values so that standard complete-data methods can be applied. We briefly review commonly used strategies for handling missing values and focus on the multiple-imputation approach, which generally leads to valid inferences when faced with missing data. Three statistical models are developed for multiply imputing the missing values of airborne particulate matter. We expect that these models are useful for creating multiple imputations in a variety of incomplete multivariate time series data sets.

  14. Data catalog series for space science and applications flight missions. Volume 4B: Descriptions of data sets from meteorological and terrestrial applications spacecraft and investigations

    NASA Technical Reports Server (NTRS)

    Ng, Carolyn; Stonesifer, G. Richard

    1989-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets from meteorological and terrestrial applications spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  15. Data Catalog Series for Space Science and Applications Flight Missions. Volume 2B; Descriptions of Data Sets from Geostationary and High-Altitude Scientific Spacecraft and Investigations

    NASA Technical Reports Server (NTRS)

    Schofield, Norman J. (Editor); Parthasarathy, R. (Editor); Hills, H. Kent (Editor)

    1988-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets from geostationary and high altitude scientific spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  16. Data catalog series for space science and applications flight missions. Volume 3B: Descriptions of data sets from low- and medium-altitude scientific spacecraft and investigations

    NASA Technical Reports Server (NTRS)

    Jackson, John E. (Editor); Horowitz, Richard (Editor)

    1986-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets from low and medium altitude scientific spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  17. Fourier transform methods in local gravity modeling

    NASA Technical Reports Server (NTRS)

    Harrison, J. C.; Dickinson, M.

    1989-01-01

    New algorithms were derived for computing terrain corrections, all components of the attraction of the topography at the topographic surface and the gradients of these attractions. These algoriithms utilize fast Fourier transforms, but, in contrast to methods currently in use, all divergences of the integrals are removed during the analysis. Sequential methods employing a smooth intermediate reference surface were developed to avoid the very large transforms necessary when making computations at high resolution over a wide area. A new method for the numerical solution of Molodensky's problem was developed to mitigate the convergence difficulties that occur at short wavelengths with methods based on a Taylor series expansion. A trial field on a level surface is continued analytically to the topographic surface, and compared with that predicted from gravity observations. The difference is used to compute a correction to the trial field and the process iterated. Special techniques are employed to speed convergence and prevent oscillations. Three different spectral methods for fitting a point-mass set to a gravity field given on a regular grid at constant elevation are described. Two of the methods differ in the way that the spectrum of the point-mass set, which extends to infinite wave number, is matched to that of the gravity field which is band-limited. The third method is essentially a space-domain technique in which Fourier methods are used to solve a set of simultaneous equations.

  18. FY13 Annual Report: PHEV Advanced Series Gen-set Development/Demonstration Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chambon, Paul H.

    2013-12-01

    The objective of this project is to integrate ORNL advancements in vehicle technologies to properly design, and size a gen-set for various vehicle applications and then simulate multiple advanced series hybrid (HEV/PHEV) vehicles with the genset models.

  19. Outlier-resilient complexity analysis of heartbeat dynamics

    NASA Astrophysics Data System (ADS)

    Lo, Men-Tzung; Chang, Yi-Chung; Lin, Chen; Young, Hsu-Wen Vincent; Lin, Yen-Hung; Ho, Yi-Lwun; Peng, Chung-Kang; Hu, Kun

    2015-03-01

    Complexity in physiological outputs is believed to be a hallmark of healthy physiological control. How to accurately quantify the degree of complexity in physiological signals with outliers remains a major barrier for translating this novel concept of nonlinear dynamic theory to clinical practice. Here we propose a new approach to estimate the complexity in a signal by analyzing the irregularity of the sign time series of its coarse-grained time series at different time scales. Using surrogate data, we show that the method can reliably assess the complexity in noisy data while being highly resilient to outliers. We further apply this method to the analysis of human heartbeat recordings. Without removing any outliers due to ectopic beats, the method is able to detect a degradation of cardiac control in patients with congestive heart failure and a more degradation in critically ill patients whose life continuation relies on extracorporeal membrane oxygenator (ECMO). Moreover, the derived complexity measures can predict the mortality of ECMO patients. These results indicate that the proposed method may serve as a promising tool for monitoring cardiac function of patients in clinical settings.

  20. Memory and long-range correlations in chess games

    NASA Astrophysics Data System (ADS)

    Schaigorodsky, Ana L.; Perotti, Juan I.; Billoni, Orlando V.

    2014-01-01

    In this paper we report the existence of long-range memory in the opening moves of a chronologically ordered set of chess games using an extensive chess database. We used two mapping rules to build discrete time series and analyzed them using two methods for detecting long-range correlations; rescaled range analysis and detrended fluctuation analysis. We found that long-range memory is related to the level of the players. When the database is filtered according to player levels we found differences in the persistence of the different subsets. For high level players, correlations are stronger at long time scales; whereas in intermediate and low level players they reach the maximum value at shorter time scales. This can be interpreted as a signature of the different strategies used by players with different levels of expertise. These results are robust against the assignation rules and the method employed in the analysis of the time series.

  1. Current leads cooling for the series-connected hybrid magnets

    NASA Astrophysics Data System (ADS)

    Bai, Hongyu; Marshall, William S.; Bird, Mark D.; Gavrilin, Andrew V.; Weijers, Hubertus W.

    2014-01-01

    Two Series-Connected Hybrid (SCH) magnets are being developed at the National High Magnetic Field Laboratory. Both SCH magnets combine a set of resistive Florida-Bitter coils with a superconducting outsert coil constructed of the cable-in-conduit conductor (CICC). The outsert coils of the two magnets employ 20 kA BSCCO HTS current leads for the power supply although they have different designs and cooling methods. The copper heat exchangers of the HTS current leads for the HZB SCH are cooled with forced flow helium at a supply temperature of 44 K, while the copper heat exchangers of HTS current leads for NHMFL SCH are cooled with liquid nitrogen at a temperature of 78 K in a self-demand boil-off mode. This paper presents the two cooling methods and their impacts on cryogenic systems. Their efficiencies and costs are compared and presented.

  2. Getting to the point: Rapid point selection and variable density InSAR time series for urban deformation monitoring

    NASA Astrophysics Data System (ADS)

    Spaans, K.; Hooper, A. J.

    2017-12-01

    The short revisit time and high data acquisition rates of current satellites have resulted in increased interest in the development of deformation monitoring and rapid disaster response capability, using InSAR. Fast, efficient data processing methodologies are required to deliver the timely results necessary for this, and also to limit computing resources required to process the large quantities of data being acquired. Contrary to volcano or earthquake applications, urban monitoring requires high resolution processing, in order to differentiate movements between buildings, or between buildings and the surrounding land. Here we present Rapid time series InSAR (RapidSAR), a method that can efficiently update high resolution time series of interferograms, and demonstrate its effectiveness over urban areas. The RapidSAR method estimates the coherence of pixels on an interferogram-by-interferogram basis. This allows for rapid ingestion of newly acquired images without the need to reprocess the earlier acquired part of the time series. The coherence estimate is based on ensembles of neighbouring pixels with similar amplitude behaviour through time, which are identified on an initial set of interferograms, and need be re-evaluated only occasionally. By taking into account scattering properties of points during coherence estimation, a high quality coherence estimate is achieved, allowing point selection at full resolution. The individual point selection maximizes the amount of information that can be extracted from each interferogram, as no selection compromise has to be reached between high and low coherence interferograms. In other words, points do not have to be coherent throughout the time series to contribute to the deformation time series. We demonstrate the effectiveness of our method over urban areas in the UK. We show how the algorithm successfully extracts high density time series from full resolution Sentinel-1 interferograms, and distinguish clearly between buildings and surrounding vegetation or streets. The fact that new interferograms can be processed separately from the remainder of the time series helps manage the high data volumes, both in space and time, generated by current missions.

  3. An industry consensus study on an HPLC fluorescence method for the determination of (±)-catechin and (±)-epicatechin in cocoa and chocolate products.

    PubMed

    Shumow, Laura; Bodor, Alison

    2011-07-05

    This manuscript describes the results of an HPLC study for the determination of the flavan-3-ol monomers, (±)-catechin and (±)-epicatechin, in cocoa and plain dark and milk chocolate products. The study was performed under the auspices of the National Confectioners Association (NCA) and involved the analysis of a series of samples by laboratories of five member companies using a common method. The method reported in this paper uses reversed phase HPLC with fluorescence detection to analyze (±)-epicatechin and (±)-catechin extracted with an acidic solvent from defatted cocoa and chocolate. In addition to a variety of cocoa and chocolate products, the sample set included a blind duplicate used to assess method reproducibility. All data were subjected to statistical analysis with outliers eliminated from the data set. The percent coefficient of variation (%CV) of the sample set ranged from approximately 7 to 15%. Further experimental details are described in the body of the manuscript and the results indicate the method is suitable for the determination of (±)-catechin and (±)-epicatechin in cocoa and chocolate products and represents the first collaborative study of this HPLC method for these compounds in these matrices.

  4. Efficient Blockwise Permutation Tests Preserving Exchangeability

    PubMed Central

    Zhou, Chunxiao; Zwilling, Chris E.; Calhoun, Vince D.; Wang, Michelle Y.

    2014-01-01

    In this paper, we present a new blockwise permutation test approach based on the moments of the test statistic. The method is of importance to neuroimaging studies. In order to preserve the exchangeability condition required in permutation tests, we divide the entire set of data into certain exchangeability blocks. In addition, computationally efficient moments-based permutation tests are performed by approximating the permutation distribution of the test statistic with the Pearson distribution series. This involves the calculation of the first four moments of the permutation distribution within each block and then over the entire set of data. The accuracy and efficiency of the proposed method are demonstrated through simulated experiment on the magnetic resonance imaging (MRI) brain data, specifically the multi-site voxel-based morphometry analysis from structural MRI (sMRI). PMID:25289113

  5. Development of a visible light transmission (VLT) measurement system using an open-path optical method

    NASA Astrophysics Data System (ADS)

    Nurulain, S.; Manap, H.

    2017-09-01

    This paper describes about a visible light transmission (VLT) measurement system using an optical method. VLT rate plays an important role in order to determine the visibility of a medium. Current instrument to measure visibility has a gigantic set up, costly and mostly fails to function at low light condition environment. This research focuses on the development of a VLT measurement system using a simple experimental set-up and at a low cost. An open path optical technique is used to measure a few series of known-VLT thin film that act as sample of different visibilities. This measurement system is able to measure the light intensity of these thin films within the visible light region (535-540 nm) and the response time is less than 1s.

  6. Functional magnetic resonance imaging activation detection: fuzzy cluster analysis in wavelet and multiwavelet domains.

    PubMed

    Jahanian, Hesamoddin; Soltanian-Zadeh, Hamid; Hossein-Zadeh, Gholam-Ali

    2005-09-01

    To present novel feature spaces, based on multiscale decompositions obtained by scalar wavelet and multiwavelet transforms, to remedy problems associated with high dimension of functional magnetic resonance imaging (fMRI) time series (when they are used directly in clustering algorithms) and their poor signal-to-noise ratio (SNR) that limits accurate classification of fMRI time series according to their activation contents. Using randomization, the proposed method finds wavelet/multiwavelet coefficients that represent the activation content of fMRI time series and combines them to define new feature spaces. Using simulated and experimental fMRI data sets, the proposed feature spaces are compared to the cross-correlation (CC) feature space and their performances are evaluated. In these studies, the false positive detection rate is controlled using randomization. To compare different methods, several points of the receiver operating characteristics (ROC) curves, using simulated data, are estimated and compared. The proposed features suppress the effects of confounding signals and improve activation detection sensitivity. Experimental results show improved sensitivity and robustness of the proposed method compared to the conventional CC analysis. More accurate and sensitive activation detection can be achieved using the proposed feature spaces compared to CC feature space. Multiwavelet features show superior detection sensitivity compared to the scalar wavelet features. (c) 2005 Wiley-Liss, Inc.

  7. Matrix Transformations between Certain Sequence Spaces over the Non-Newtonian Complex Field

    PubMed Central

    Efe, Hakan

    2014-01-01

    In some cases, the most general linear operator between two sequence spaces is given by an infinite matrix. So the theory of matrix transformations has always been of great interest in the study of sequence spaces. In the present paper, we introduce the matrix transformations in sequence spaces over the field ℂ* and characterize some classes of infinite matrices with respect to the non-Newtonian calculus. Also we give the necessary and sufficient conditions on an infinite matrix transforming one of the classical sets over ℂ* to another one. Furthermore, the concept for sequence-to-sequence and series-to-series methods of summability is given with some illustrated examples. PMID:25110740

  8. The use of ERTS/LANDSAT imagery in relation to airborne remote sensing for terrain analysis in western Queensland, Australia

    NASA Technical Reports Server (NTRS)

    Cole, M. M.; Wen-Jones, S. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. Series of linears were identified on the March imagery of Lady Annie-Mt. Gordon fault zone area. The series with a WSW-ENE orientation which is normal to the major structural units and also several linears with NNW-SSE orientation appears to be particularly important. Copper mineralization is known at several localities where these linears are intersected by faults. Automated outputs using supervised methods involving the selection of training sets selected by visual recognition of spectral signatures on the color composites obtained from combinations of MSS bands 4, 5 and 7 projected through appropriate filters, were generated.

  9. A method for generating high resolution satellite image time series

    NASA Astrophysics Data System (ADS)

    Guo, Tao

    2014-10-01

    There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation, environment and etc. applications.

  10. A comparison of classical and intelligent methods to detect potential thermal anomalies before the 11 August 2012 Varzeghan, Iran, earthquake (Mw = 6.4)

    NASA Astrophysics Data System (ADS)

    Akhoondzadeh, M.

    2013-04-01

    In this paper, a number of classical and intelligent methods, including interquartile, autoregressive integrated moving average (ARIMA), artificial neural network (ANN) and support vector machine (SVM), have been proposed to quantify potential thermal anomalies around the time of the 11 August 2012 Varzeghan, Iran, earthquake (Mw = 6.4). The duration of the data set, which is comprised of Aqua-MODIS land surface temperature (LST) night-time snapshot images, is 62 days. In order to quantify variations of LST data obtained from satellite images, the air temperature (AT) data derived from the meteorological station close to the earthquake epicenter has been taken into account. For the models examined here, results indicate the following: (i) ARIMA models, which are the most widely used in the time series community for short-term forecasting, are quickly and easily implemented, and can efficiently act through linear solutions. (ii) A multilayer perceptron (MLP) feed-forward neural network can be a suitable non-parametric method to detect the anomalous changes of a non-linear time series such as variations of LST. (iii) Since SVMs are often used due to their many advantages for classification and regression tasks, it can be shown that, if the difference between the predicted value using the SVM method and the observed value exceeds the pre-defined threshold value, then the observed value could be regarded as an anomaly. (iv) ANN and SVM methods could be powerful tools in modeling complex phenomena such as earthquake precursor time series where we may not know what the underlying data generating process is. There is good agreement in the results obtained from the different methods for quantifying potential anomalies in a given LST time series. This paper indicates that the detection of the potential thermal anomalies derive credibility from the overall efficiencies and potentialities of the four integrated methods.

  11. Machine learning for cardiac ultrasound time series data

    NASA Astrophysics Data System (ADS)

    Yuan, Baichuan; Chitturi, Sathya R.; Iyer, Geoffrey; Li, Nuoyu; Xu, Xiaochuan; Zhan, Ruohan; Llerena, Rafael; Yen, Jesse T.; Bertozzi, Andrea L.

    2017-03-01

    We consider the problem of identifying frames in a cardiac ultrasound video associated with left ventricular chamber end-systolic (ES, contraction) and end-diastolic (ED, expansion) phases of the cardiac cycle. Our procedure involves a simple application of non-negative matrix factorization (NMF) to a series of frames of a video from a single patient. Rank-2 NMF is performed to compute two end-members. The end members are shown to be close representations of the actual heart morphology at the end of each phase of the heart function. Moreover, the entire time series can be represented as a linear combination of these two end-member states thus providing a very low dimensional representation of the time dynamics of the heart. Unlike previous work, our methods do not require any electrocardiogram (ECG) information in order to select the end-diastolic frame. Results are presented for a data set of 99 patients including both healthy and diseased examples.

  12. Improving Psychological Measurement: Does It Make a Difference? A Comment on Nesselroade and Molenaar (2016).

    PubMed

    Maydeu-Olivares, Alberto

    2016-01-01

    Nesselroade and Molenaar advocate the use of an idiographic filter approach. This is a fixed-effects approach, which may limit the number of individuals that can be simultaneously modeled, and it is not clear how to model the presence of subpopulations. Most important, Nesselroade and Molenaar's proposal appears to be best suited for modeling long time series on a few variables for a few individuals. Long time series are not common in psychological applications. Can it be applied to the usual longitudinal data we face? These are characterized by short time series (four to five points in time), hundreds of individuals, and dozens of variables. If so, what do we gain? Applied settings most often involve between-individual decisions. I conjecture that their approach will not outperform common, simpler, methods. However, when intraindividual decisions are involved, their approach may have an edge.

  13. A hybrid clustering approach for multivariate time series - A case study applied to failure analysis in a gas turbine.

    PubMed

    Fontes, Cristiano Hora; Budman, Hector

    2017-11-01

    A clustering problem involving multivariate time series (MTS) requires the selection of similarity metrics. This paper shows the limitations of the PCA similarity factor (SPCA) as a single metric in nonlinear problems where there are differences in magnitude of the same process variables due to expected changes in operation conditions. A novel method for clustering MTS based on a combination between SPCA and the average-based Euclidean distance (AED) within a fuzzy clustering approach is proposed. Case studies involving either simulated or real industrial data collected from a large scale gas turbine are used to illustrate that the hybrid approach enhances the ability to recognize normal and fault operating patterns. This paper also proposes an oversampling procedure to create synthetic multivariate time series that can be useful in commonly occurring situations involving unbalanced data sets. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Approximate techniques of structural reanalysis

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Lowder, H. E.

    1974-01-01

    A study is made of two approximate techniques for structural reanalysis. These include Taylor series expansions for response variables in terms of design variables and the reduced-basis method. In addition, modifications to these techniques are proposed to overcome some of their major drawbacks. The modifications include a rational approach to the selection of the reduced-basis vectors and the use of Taylor series approximation in an iterative process. For the reduced basis a normalized set of vectors is chosen which consists of the original analyzed design and the first-order sensitivity analysis vectors. The use of the Taylor series approximation as a first (initial) estimate in an iterative process, can lead to significant improvements in accuracy, even with one iteration cycle. Therefore, the range of applicability of the reanalysis technique can be extended. Numerical examples are presented which demonstrate the gain in accuracy obtained by using the proposed modification techniques, for a wide range of variations in the design variables.

  15. Estimating the effective spatial resolution of an AVHRR time series

    USGS Publications Warehouse

    Meyer, D.J.

    1996-01-01

    A method is proposed to estimate the spatial degradation of geometrically rectified AVHRR data resulting from misregistration and off-nadir viewing, and to infer the cumulative effect of these degradations over time. Misregistrations are measured using high resolution imagery as a geometric reference, and pixel sizes are computed directly from satellite zenith angles. The influence or neighbouring features on a nominal 1 km by 1 km pixel over a given site is estimated from the above information, and expressed as a spatial distribution whose spatial frequency response is used to define an effective field-of-view (EFOV) for a time series. In a demonstration of the technique applied to images from the Conterminous U.S. AVHRR data set, an EFOV of 3·1km in the east-west dimension and 19 km in the north-south dimension was estimated for a time series accumulated over a grasslands test site.

  16. A numerical method for solving systems of linear ordinary differential equations with rapidly oscillating solutions

    NASA Technical Reports Server (NTRS)

    Bernstein, Ira B.; Brookshaw, Leigh; Fox, Peter A.

    1992-01-01

    The present numerical method for accurate and efficient solution of systems of linear equations proceeds by numerically developing a set of basis solutions characterized by slowly varying dependent variables. The solutions thus obtained are shown to have a computational overhead largely independent of the small size of the scale length which characterizes the solutions; in many cases, the technique obviates series solutions near singular points, and its known sources of error can be easily controlled without a substantial increase in computational time.

  17. Stochastic rainfall synthesis for urban applications using different regionalization methods

    NASA Astrophysics Data System (ADS)

    Callau Poduje, A. C.; Leimbach, S.; Haberlandt, U.

    2017-12-01

    The proper design and efficient operation of urban drainage systems require long and continuous rainfall series in a high temporal resolution. Unfortunately, these time series are usually available in a few locations and it is therefore suitable to develop a stochastic precipitation model to generate rainfall in locations without observations. The model presented is based on an alternating renewal process and involves an external and an internal structure. The members of these structures are described by probability distributions which are site specific. Different regionalization methods based on site descriptors are presented which are used for estimating the distributions for locations without observations. Regional frequency analysis, multiple linear regressions and a vine-copula method are applied for this purpose. An area located in the north-west of Germany is used to compare the different methods and involves a total of 81 stations with 5 min rainfall records. The site descriptors include information available for the whole region: position, topography and hydrometeorologic characteristics which are estimated from long term observations. The methods are compared directly by cross validation of different rainfall statistics. Given that the model is stochastic the evaluation is performed based on ensembles of many long synthetic time series which are compared with observed ones. The performance is as well indirectly evaluated by setting up a fictional urban hydrological system to test the capability of the different methods regarding flooding and overflow characteristics. The results show a good representation of the seasonal variability and good performance in reproducing the sample statistics of the rainfall characteristics. The copula based method shows to be the most robust of the three methods. Advantages and disadvantages of the different methods are presented and discussed.

  18. A Proposed Data Fusion Architecture for Micro-Zone Analysis and Data Mining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin McCarthy; Milos Manic

    Data Fusion requires the ability to combine or “fuse” date from multiple data sources. Time Series Analysis is a data mining technique used to predict future values from a data set based upon past values. Unlike other data mining techniques, however, Time Series places special emphasis on periodicity and how seasonal and other time-based factors tend to affect trends over time. One of the difficulties encountered in developing generic time series techniques is the wide variability of the data sets available for analysis. This presents challenges all the way from the data gathering stage to results presentation. This paper presentsmore » an architecture designed and used to facilitate the collection of disparate data sets well suited to Time Series analysis as well as other predictive data mining techniques. Results show this architecture provides a flexible, dynamic framework for the capture and storage of a myriad of dissimilar data sets and can serve as a foundation from which to build a complete data fusion architecture.« less

  19. Conical Fourier shell correlation applied to electron tomograms.

    PubMed

    Diebolder, C A; Faas, F G A; Koster, A J; Koning, R I

    2015-05-01

    The resolution of electron tomograms is anisotropic due to geometrical constraints during data collection, such as the limited tilt range and single axis tilt series acquisition. Acquisition of dual axis tilt series can decrease these effects. However, in cryo-electron tomography, to limit the electron radiation damage that occurs during imaging, the total dose should not increase and must be fractionated over the two tilt series. Here we set out to determine whether it is beneficial fractionate electron dose for recording dual axis cryo electron tilt series or whether it is better to perform single axis acquisition. To assess the quality of tomographic reconstructions in different directions here we introduce conical Fourier shell correlation (cFSCe/o). Employing cFSCe/o, we compared the resolution isotropy of single-axis and dual-axis (cryo-)electron tomograms using even/odd split data sets. We show that the resolution of dual-axis simulated and cryo-electron tomograms in the plane orthogonal to the electron beam becomes more isotropic compared to single-axis tomograms and high resolution peaks along the tilt axis disappear. cFSCe/o also allowed us to compare different methods for the alignment of dual-axis tomograms. We show that different tomographic reconstruction programs produce different anisotropic resolution in dual axis tomograms. We anticipate that cFSCe/o can also be useful for comparisons of acquisition and reconstruction parameters, and different hardware implementations. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. a Spiral-Based Downscaling Method for Generating 30 M Time Series Image Data

    NASA Astrophysics Data System (ADS)

    Liu, B.; Chen, J.; Xing, H.; Wu, H.; Zhang, J.

    2017-09-01

    The spatial detail and updating frequency of land cover data are important factors influencing land surface dynamic monitoring applications in high spatial resolution scale. However, the fragmentized patches and seasonal variable of some land cover types (e. g. small crop field, wetland) make it labor-intensive and difficult in the generation of land cover data. Utilizing the high spatial resolution multi-temporal image data is a possible solution. Unfortunately, the spatial and temporal resolution of available remote sensing data like Landsat or MODIS datasets can hardly satisfy the minimum mapping unit and frequency of current land cover mapping / updating at the same time. The generation of high resolution time series may be a compromise to cover the shortage in land cover updating process. One of popular way is to downscale multi-temporal MODIS data with other high spatial resolution auxiliary data like Landsat. But the usual manner of downscaling pixel based on a window may lead to the underdetermined problem in heterogeneous area, result in the uncertainty of some high spatial resolution pixels. Therefore, the downscaled multi-temporal data can hardly reach high spatial resolution as Landsat data. A spiral based method was introduced to downscale low spatial and high temporal resolution image data to high spatial and high temporal resolution image data. By the way of searching the similar pixels around the adjacent region based on the spiral, the pixel set was made up in the adjacent region pixel by pixel. The underdetermined problem is prevented to a large extent from solving the linear system when adopting the pixel set constructed. With the help of ordinary least squares, the method inverted the endmember values of linear system. The high spatial resolution image was reconstructed on the basis of high spatial resolution class map and the endmember values band by band. Then, the high spatial resolution time series was formed with these high spatial resolution images image by image. Simulated experiment and remote sensing image downscaling experiment were conducted. In simulated experiment, the 30 meters class map dataset Globeland30 was adopted to investigate the effect on avoid the underdetermined problem in downscaling procedure and a comparison between spiral and window was conducted. Further, the MODIS NDVI and Landsat image data was adopted to generate the 30m time series NDVI in remote sensing image downscaling experiment. Simulated experiment results showed that the proposed method had a robust performance in downscaling pixel in heterogeneous region and indicated that it was superior to the traditional window-based methods. The high resolution time series generated may be a benefit to the mapping and updating of land cover data.

  1. Comparison of drought events detected by SPI calculated from different historical precipitation data sets - case study from Southern Alps

    NASA Astrophysics Data System (ADS)

    Brencic, M.; Hictaler, J.

    2012-04-01

    During recent years substantial efforts were directed toward the reconstruction of past meteorological data sets of precipitation, air temperature, air pressure and sunshine. In Alpine space of Europe long tradition of meteorological data monitoring exist starting with the first modern measurements in late 18th century. However, older data were obtained under very different conditions, standards and quality. Consequently direct comparison between data sets of different observation points is not possible. Several methods defined as data homogenisation procedures were developed intended to enable comparison of data from different observation points and sources. In spite of the fact that homogenisation procedures are scientifically agreed final result represented as homogenised data series depends on the ability and approach of the interpreters. Well know data set from the Greater Alpine region based on the common homogenisation procedure is HISTALP data series. However, HISTALP data set is not the only available homogenised data set in the region. Local agencies responsible for meteorological observations (e.g. in Slovenia Environmental Agency of Slovenia - ARSO) perform their own homogenisation procedures. Because more detailed information about measuring procedures and locations for the particular stations is available for them one can expect differences between homogenised data sets. Longer meteorological data sets can be used to detect past drought events of various magnitudes. They can help to discern past droughts and their characteristics. A very frequently used meteorological drought index is standardized precipitation index - SPI. The nature of SPI is designed to detect events of low frequency. With the help of this index periods of extremely low precipitation can be defined. It is usually based on monthly amount of precipitation where cumulative precipitation amount for the particular time period is calculated. During the calculation of SPI with a time series of monthly precipitation data for a location can calculate the SPI for any month in the record for the previous i months where i=1,2,3, …, 12, …, 24, …. 48, … depending upon the time scale of the interest. A 3 month SPI index is usually used for a short-term or seasonal drought index, a 12 month SPI is used for an intermediate term drought index, and a 48 month SPI is used for a long term drought index. In the paper results of SPI calculations are presented for the precipitation stations in the region of the Southern Alps for the last 200 years. Compared are results of differently homogenised data sets for the same observation points. We have performed comparison of homogenised data sets between HISTALP and ARSO data base. For the period after World War II when reliable precipitation measurements are available comparison was performed also between raw data series and homogenised data series. Differences between calculated form short term SPI (from 1 to 6 months) are small and don't influence the interpretation of short term drought appearance. With the prolonged length of SPI differences between calculated values rise and influence the detection of longer term drought appearance. It can be also illustrated that differences among parameters of model distribution (gamma distribution) are larger for longer SPI than for shorter SPI. It can be empirically concluded that homogenisation procedure of precipitation data sets can importantly influence the SPI values and has impact on conclusions about long term drought appearance.

  2. Local regression type methods applied to the study of geophysics and high frequency financial data

    NASA Astrophysics Data System (ADS)

    Mariani, M. C.; Basu, K.

    2014-09-01

    In this work we applied locally weighted scatterplot smoothing techniques (Lowess/Loess) to Geophysical and high frequency financial data. We first analyze and apply this technique to the California earthquake geological data. A spatial analysis was performed to show that the estimation of the earthquake magnitude at a fixed location is very accurate up to the relative error of 0.01%. We also applied the same method to a high frequency data set arising in the financial sector and obtained similar satisfactory results. The application of this approach to the two different data sets demonstrates that the overall method is accurate and efficient, and the Lowess approach is much more desirable than the Loess method. The previous works studied the time series analysis; in this paper our local regression models perform a spatial analysis for the geophysics data providing different information. For the high frequency data, our models estimate the curve of best fit where data are dependent on time.

  3. Combination Base64 Algorithm and EOF Technique for Steganography

    NASA Astrophysics Data System (ADS)

    Rahim, Robbi; Nurdiyanto, Heri; Hidayat, Rahmat; Saleh Ahmar, Ansari; Siregar, Dodi; Putera Utama Siahaan, Andysah; Faisal, Ilham; Rahman, Sayuti; Suita, Diana; Zamsuri, Ahmad; Abdullah, Dahlan; Napitupulu, Darmawan; Ikhsan Setiawan, Muhammad; Sriadhi, S.

    2018-04-01

    The steganography process combines mathematics and computer science. Steganography consists of a set of methods and techniques to embed the data into another media so that the contents are unreadable to anyone who does not have the authority to read these data. The main objective of the use of base64 method is to convert any file in order to achieve privacy. This paper discusses a steganography and encoding method using base64, which is a set of encoding schemes that convert the same binary data to the form of a series of ASCII code. Also, the EoF technique is used to embed encoding text performed by Base64. As an example, for the mechanisms a file is used to represent the texts, and by using the two methods together will increase the security level for protecting the data, this research aims to secure many types of files in a particular media with a good security and not to damage the stored files and coverage media that used.

  4. A Temporal Mining Framework for Classifying Un-Evenly Spaced Clinical Data: An Approach for Building Effective Clinical Decision-Making System.

    PubMed

    Jane, Nancy Yesudhas; Nehemiah, Khanna Harichandran; Arputharaj, Kannan

    2016-01-01

    Clinical time-series data acquired from electronic health records (EHR) are liable to temporal complexities such as irregular observations, missing values and time constrained attributes that make the knowledge discovery process challenging. This paper presents a temporal rough set induced neuro-fuzzy (TRiNF) mining framework that handles these complexities and builds an effective clinical decision-making system. TRiNF provides two functionalities namely temporal data acquisition (TDA) and temporal classification. In TDA, a time-series forecasting model is constructed by adopting an improved double exponential smoothing method. The forecasting model is used in missing value imputation and temporal pattern extraction. The relevant attributes are selected using a temporal pattern based rough set approach. In temporal classification, a classification model is built with the selected attributes using a temporal pattern induced neuro-fuzzy classifier. For experimentation, this work uses two clinical time series dataset of hepatitis and thrombosis patients. The experimental result shows that with the proposed TRiNF framework, there is a significant reduction in the error rate, thereby obtaining the classification accuracy on an average of 92.59% for hepatitis and 91.69% for thrombosis dataset. The obtained classification results prove the efficiency of the proposed framework in terms of its improved classification accuracy.

  5. Association of Protein Translation and Extracellular Matrix Gene Sets with Breast Cancer Metastasis: Findings Uncovered on Analysis of Multiple Publicly Available Datasets Using Individual Patient Data Approach

    PubMed Central

    Chowdhury, Nilotpal; Sapru, Shantanu

    2015-01-01

    Introduction Microarray analysis has revolutionized the role of genomic prognostication in breast cancer. However, most studies are single series studies, and suffer from methodological problems. We sought to use a meta-analytic approach in combining multiple publicly available datasets, while correcting for batch effects, to reach a more robust oncogenomic analysis. Aim The aim of the present study was to find gene sets associated with distant metastasis free survival (DMFS) in systemically untreated, node-negative breast cancer patients, from publicly available genomic microarray datasets. Methods Four microarray series (having 742 patients) were selected after a systematic search and combined. Cox regression for each gene was done for the combined dataset (univariate, as well as multivariate – adjusted for expression of Cell cycle related genes) and for the 4 major molecular subtypes. The centre and microarray batch effects were adjusted by including them as random effects variables. The Cox regression coefficients for each analysis were then ranked and subjected to a Gene Set Enrichment Analysis (GSEA). Results Gene sets representing protein translation were independently negatively associated with metastasis in the Luminal A and Luminal B subtypes, but positively associated with metastasis in Basal tumors. Proteinaceous extracellular matrix (ECM) gene set expression was positively associated with metastasis, after adjustment for expression of cell cycle related genes on the combined dataset. Finally, the positive association of the proliferation-related genes with metastases was confirmed. Conclusion To the best of our knowledge, the results depicting mixed prognostic significance of protein translation in breast cancer subtypes are being reported for the first time. We attribute this to our study combining multiple series and performing a more robust meta-analytic Cox regression modeling on the combined dataset, thus discovering 'hidden' associations. This methodology seems to yield new and interesting results and may be used as a tool to guide new research. PMID:26080057

  6. Uncertainty in determining extreme precipitation thresholds

    NASA Astrophysics Data System (ADS)

    Liu, Bingjun; Chen, Junfan; Chen, Xiaohong; Lian, Yanqing; Wu, Lili

    2013-10-01

    Extreme precipitation events are rare and occur mostly on a relatively small and local scale, which makes it difficult to set the thresholds for extreme precipitations in a large basin. Based on the long term daily precipitation data from 62 observation stations in the Pearl River Basin, this study has assessed the applicability of the non-parametric, parametric, and the detrended fluctuation analysis (DFA) methods in determining extreme precipitation threshold (EPT) and the certainty to EPTs from each method. Analyses from this study show the non-parametric absolute critical value method is easy to use, but unable to reflect the difference of spatial rainfall distribution. The non-parametric percentile method can account for the spatial distribution feature of precipitation, but the problem with this method is that the threshold value is sensitive to the size of rainfall data series and is subjected to the selection of a percentile thus make it difficult to determine reasonable threshold values for a large basin. The parametric method can provide the most apt description of extreme precipitations by fitting extreme precipitation distributions with probability distribution functions; however, selections of probability distribution functions, the goodness-of-fit tests, and the size of the rainfall data series can greatly affect the fitting accuracy. In contrast to the non-parametric and the parametric methods which are unable to provide information for EPTs with certainty, the DFA method although involving complicated computational processes has proven to be the most appropriate method that is able to provide a unique set of EPTs for a large basin with uneven spatio-temporal precipitation distribution. The consistency between the spatial distribution of DFA-based thresholds with the annual average precipitation, the coefficient of variation (CV), and the coefficient of skewness (CS) for the daily precipitation further proves that EPTs determined by the DFA method are more reasonable and applicable for the Pearl River Basin.

  7. A Least Square Approach for Joining Persistent Scatterer InSAR Time Series Acquired by Different Satellites

    NASA Astrophysics Data System (ADS)

    Caro Cuenca, Miguel; Esfahany, Sami Samiei; Hanssen, Ramon F.

    2010-12-01

    Persistent scatterer Radar Interferometry (PSI) can provide with a wealth of information on surface motion. These methods overcome the major limitations of the antecessor technique, interferometric SAR (InSAR), such as atmospheric disturbances, by detecting the scatterers which are slightly affected by noise. The time span that surface deformation processes are observed is limited by the satellite lifetime, which is usually less than 10 years. However most of deformation phenomena last longer. In order to fully monitor and comprehend the observed signal, acquisitions from different sensors can be merged. This is a complex task for one main reason. PSI methods provide with estimations that are relative in time to one of the acquisitions which is referred to as master or reference image. Therefore, time series acquired by different sensors will have different reference images and cannot be directly compared or joint unless they are set to the same time reference system. In global terms, the operation of translating from one to another reference systems consist of calculating a vertical offset, which is the total deformation that occurs between the two master times. To estimate this offset, different strategies can be applied, for example, using additional data such as leveling or GPS measurements. In this contribution we propose to use a least squares to merge PSI time series without any ancillary information. This method treats the time series individually, i.e. per PS, and requires some knowledge of the deformation signal, for example, if a polynomial would fairly describe the expected behavior. To test the proposed approach, we applied it to the southern Netherlands, where the surface is affected by ground water processes in abandoned mines. The time series were obtained after processing images provided by ERS1/2 and Envisat. The results were validated using in-situ water measurements, which show very high correlation with deformation time series.

  8. The convergence of double Fourier-Haar series over homothetic copies of sets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oniani, G. G., E-mail: oniani@atsu.edu.ge

    The paper is concerned with the convergence of double Fourier- Haar series with partial sums taken over homothetic copies of a given bounded set W⊂R{sub +}{sup 2} containing the intersection of some neighbourhood of the origin with R{sub +}{sup 2}. It is proved that for a set W from a fairly broad class (in particular, for convex W) there are two alternatives: either the Fourier-Haar series of an arbitrary function f∈L([0,1]{sup 2}) converges almost everywhere or Lln{sup +} L([0,1]{sup 2}) is the best integral class in which the double Fourier-Haar series converges almost everywhere. Furthermore, a characteristic property is obtained, whichmore » distinguishes which of the two alternatives is realized for a given W. Bibliography: 12 titles. (paper)« less

  9. Forecasting of particulate matter time series using wavelet analysis and wavelet-ARMA/ARIMA model in Taiyuan, China.

    PubMed

    Zhang, Hong; Zhang, Sheng; Wang, Ping; Qin, Yuzhe; Wang, Huifeng

    2017-07-01

    Particulate matter with aerodynamic diameter below 10 μm (PM 10 ) forecasting is difficult because of the uncertainties in describing the emission and meteorological fields. This paper proposed a wavelet-ARMA/ARIMA model to forecast the short-term series of the PM 10 concentrations. It was evaluated by experiments using a 10-year data set of daily PM 10 concentrations from 4 stations located in Taiyuan, China. The results indicated the following: (1) PM 10 concentrations of Taiyuan had a decreasing trend during 2005 to 2012 but increased in 2013. PM 10 concentrations had an obvious seasonal fluctuation related to coal-fired heating in winter and early spring. (2) Spatial differences among the four stations showed that the PM 10 concentrations in industrial and heavily trafficked areas were higher than those in residential and suburb areas. (3) Wavelet analysis revealed that the trend variation and the changes of the PM 10 concentration of Taiyuan were complicated. (4) The proposed wavelet-ARIMA model could be efficiently and successfully applied to the PM 10 forecasting field. Compared with the traditional ARMA/ARIMA methods, this wavelet-ARMA/ARIMA method could effectively reduce the forecasting error, improve the prediction accuracy, and realize multiple-time-scale prediction. Wavelet analysis can filter noisy signals and identify the variation trend and the fluctuation of the PM 10 time-series data. Wavelet decomposition and reconstruction reduce the nonstationarity of the PM 10 time-series data, and thus improve the accuracy of the prediction. This paper proposed a wavelet-ARMA/ARIMA model to forecast the PM 10 time series. Compared with the traditional ARMA/ARIMA method, this wavelet-ARMA/ARIMA method could effectively reduce the forecasting error, improve the prediction accuracy, and realize multiple-time-scale prediction. The proposed model could be efficiently and successfully applied to the PM 10 forecasting field.

  10. National Defense University's Influence on U.S. National Security Policy: Case Study about the Center for the Study of Weapons of Mass Destruction

    ERIC Educational Resources Information Center

    Rondeau, Ann E.

    2010-01-01

    This dissertation touches on a series of events leading to an aspect of United States public policy dealing with weapons of mass destruction (WMD). After exploring the literature that describes the understanding of public policy, this paper uses the case study method to understand why and how a single research center and a particular set of…

  11. On The Geodynamics In Latvia

    NASA Astrophysics Data System (ADS)

    Balodis, Janis; Haritonova, Diana; Janpaule, Inese; Normand, Madara; Silabiedis, Gunars; Zarinjsh, Ansis; Rubans, Agusts; Kalinka, Maris; Jumare, Izolde; Lasmane, Ieva

    2013-12-01

    This paper discusses the research work done in Institute of Geodesy and Geoinformation, University of Latvia, and Department of Geomatics, Riga Technical Univesity, devoted to the geodynamics in Latvia: national geoid model computation, using different methods and data sets, in order to improve its precision; analysis of LatPos and EUPOS®-Riga GNSS permanent station observation data time series for time period of 5 years; development of digital zenith camera for vertical deflection determination.

  12. On the application of the Principal Component Analysis for an efficient climate downscaling of surface wind fields

    NASA Astrophysics Data System (ADS)

    Chavez, Roberto; Lozano, Sergio; Correia, Pedro; Sanz-Rodrigo, Javier; Probst, Oliver

    2013-04-01

    With the purpose of efficiently and reliably generating long-term wind resource maps for the wind energy industry, the application and verification of a statistical methodology for the climate downscaling of wind fields at surface level is presented in this work. This procedure is based on the combination of the Monte Carlo and the Principal Component Analysis (PCA) statistical methods. Firstly the Monte Carlo method is used to create a huge number of daily-based annual time series, so called climate representative years, by the stratified sampling of a 33-year-long time series corresponding to the available period of the NCAR/NCEP global reanalysis data set (R-2). Secondly the representative years are evaluated such that the best set is chosen according to its capability to recreate the Sea Level Pressure (SLP) temporal and spatial fields from the R-2 data set. The measure of this correspondence is based on the Euclidean distance between the Empirical Orthogonal Functions (EOF) spaces generated by the PCA (Principal Component Analysis) decomposition of the SLP fields from both the long-term and the representative year data sets. The methodology was verified by comparing the selected 365-days period against a 9-year period of wind fields generated by dynamical downscaling the Global Forecast System data with the mesoscale model SKIRON for the Iberian Peninsula. These results showed that, compared to the traditional method of dynamical downscaling any random 365-days period, the error in the average wind velocity by the PCA's representative year was reduced by almost 30%. Moreover the Mean Absolute Errors (MAE) in the monthly and daily wind profiles were also reduced by almost 25% along all SKIRON grid points. These results showed also that the methodology presented maximum error values in the wind speed mean of 0.8 m/s and maximum MAE in the monthly curves of 0.7 m/s. Besides the bulk numbers, this work shows the spatial distribution of the errors across the Iberian domain and additional wind statistics such as the velocity and directional frequency. Additional repetitions were performed to prove the reliability and robustness of this kind-of statistical-dynamical downscaling method.

  13. Prediction of User Context Using Smartphone Activity Data

    DTIC Science & Technology

    2016-07-22

    sophisticated design supports any time - series data of numeric, binary, and nominal variables. Thus, given a set of attributes, we attempt to maximize the...such as the temporal shapes of the time series of the sensor data. In order to verify the advantage of our methodology, we collected a data set of...then, for each timeslot, derives relevant features such as the temporal shapes of the time series of the sensor data. In order to verify the advantage

  14. Dealing with gene expression missing data.

    PubMed

    Brás, L P; Menezes, J C

    2006-05-01

    Compared evaluation of different methods is presented for estimating missing values in microarray data: weighted K-nearest neighbours imputation (KNNimpute), regression-based methods such as local least squares imputation (LLSimpute) and partial least squares imputation (PLSimpute) and Bayesian principal component analysis (BPCA). The influence in prediction accuracy of some factors, such as methods' parameters, type of data relationships used in the estimation process (i.e. row-wise, column-wise or both), missing rate and pattern and type of experiment [time series (TS), non-time series (NTS) or mixed (MIX) experiments] is elucidated. Improvements based on the iterative use of data (iterative LLS and PLS imputation--ILLSimpute and IPLSimpute), the need to perform initial imputations (modified PLS and Helland PLS imputation--MPLSimpute and HPLSimpute) and the type of relationships employed (KNNarray, LLSarray, HPLSarray and alternating PLS--APLSimpute) are proposed. Overall, it is shown that data set properties (type of experiment, missing rate and pattern) affect the data similarity structure, therefore influencing the methods' performance. LLSimpute and ILLSimpute are preferable in the presence of data with a stronger similarity structure (TS and MIX experiments), whereas PLS-based methods (MPLSimpute, IPLSimpute and APLSimpute) are preferable when estimating NTS missing data.

  15. Optimal resonance configuration for ultrasonic wireless power transmission to millimeter-sized biomedical implants.

    PubMed

    Miao Meng; Kiani, Mehdi

    2016-08-01

    In order to achieve efficient wireless power transmission (WPT) to biomedical implants with millimeter (mm) dimensions, ultrasonic WPT links have recently been proposed. Operating both transmitter (Tx) and receiver (Rx) ultrasonic transducers at their resonance frequency (fr) is key in improving power transmission efficiency (PTE). In this paper, different resonance configurations for Tx and Rx transducers, including series and parallel resonance, have been studied to help the designers of ultrasonic WPT links to choose the optimal resonance configuration for Tx and Rx that maximizes PTE. The geometries for disk-shaped transducers of four different sets of links, operating at series-series, series-parallel, parallel-series, and parallel-parallel resonance configurations in Tx and Rx, have been found through finite-element method (FEM) simulation tools for operation at fr of 1.4 MHz. Our simulation results suggest that operating the Tx transducer with parallel resonance increases PTE, while the resonance configuration of the mm-sized Rx transducer highly depends on the load resistance, Rl. For applications that involve large Rl in the order of tens of kΩ, a parallel resonance for a mm-sized Rx leads to higher PTE, while series resonance is preferred for Rl in the order of several kΩ and below.

  16. Inhomogeneities detection in annual precipitation time series in Portugal using direct sequential simulation

    NASA Astrophysics Data System (ADS)

    Caineta, Júlio; Ribeiro, Sara; Costa, Ana Cristina; Henriques, Roberto; Soares, Amílcar

    2014-05-01

    Climate data homogenisation is of major importance in monitoring climate change, the validation of weather forecasting, general circulation and regional atmospheric models, modelling of erosion, drought monitoring, among other studies of hydrological and environmental impacts. This happens because non-climate factors can cause time series discontinuities which may hide the true climatic signal and patterns, thus potentially bias the conclusions of those studies. In the last two decades, many methods have been developed to identify and remove these inhomogeneities. One of those is based on geostatistical simulation (DSS - direct sequential simulation), where local probability density functions (pdf) are calculated at candidate monitoring stations, using spatial and temporal neighbouring observations, and then are used for detection of inhomogeneities. This approach has been previously applied to detect inhomogeneities in four precipitation series (wet day count) from a network with 66 monitoring stations located in the southern region of Portugal (1980-2001). This study revealed promising results and the potential advantages of geostatistical techniques for inhomogeneities detection in climate time series. This work extends the case study presented before and investigates the application of the geostatistical stochastic approach to ten precipitation series that were previously classified as inhomogeneous by one of six absolute homogeneity tests (Mann-Kendall test, Wald-Wolfowitz runs test, Von Neumann ratio test, Standard normal homogeneity test (SNHT) for a single break, Pettit test, and Buishand range test). Moreover, a sensibility analysis is implemented to investigate the number of simulated realisations that should be used to accurately infer the local pdfs. Accordingly, the number of simulations per iteration is increased from 50 to 500, which resulted in a more representative local pdf. A set of default and recommended settings is provided, which will help other users to implement this method. The need of user intervention is reduced to a minimum through the usage of a cross-platform script. Finally, as in the previous study, the results are compared with those from the SNHT, Pettit and Buishand range tests, which were applied to composite (ratio) reference series. Acknowledgements: The authors gratefully acknowledge the financial support of "Fundação para a Ciência e Tecnologia" (FCT), Portugal, through the research project PTDC/GEO-MET/4026/2012 ("GSIMCLI - Geostatistical simulation with local distributions for the homogenization and interpolation of climate data").

  17. Recommendations for the diagnosis of candidemia in Latin America. Latin America Invasive Mycosis Network.

    PubMed

    Colombo, Arnaldo Lopes; Cortes, Jorge Alberto; Zurita, Jeannete; Guzman-Blanco, Manuel; Alvarado Matute, Tito; de Queiroz Telles, Flavio; Santolaya, María E; Tiraboschi, Iris Nora; Echevarría, Juan; Sifuentes, Jose; Thompson-Moya, Luis; Nucci, Marcio

    2013-01-01

    Candidemia is one of the most frequent opportunistic mycoses worldwide. Limited epidemiological studies in Latin America indicate that incidence rates are higher in this region than in the Northern Hemisphere. Diagnosis is often made late in the infection, affecting the initiation of antifungal therapy. A more scientific approach, based on specific parameters, for diagnosis and management of candidemia in Latin America is warranted. 'Recommendations for the diagnosis and management of candidemia' are a series of manuscripts that have been developed by members of the Latin America Invasive Mycosis Network. They aim to provide a set of best-evidence recommendations for the diagnosis and management of candidemia. This publication, 'Recommendations for the diagnosis of candidemia in Latin America', was written to provide guidance to healthcare professionals on the diagnosis of candidemia, as well as on the usefulness and application of susceptibility testing in patients who have a confirmed diagnosis of candidemia. Computerized searches of existing literature were performed by PubMed. The data were extensively reviewed and analyzed by members of the group. The group also met on two occasions to pose questions, discuss conflicting views, and deliberate on a series of management recommendations. 'Recommendations for the diagnosis of candidemia in Latin America' includes diagnostic methods used to detect candidemia, Candida species identification, and susceptibility testing. The availability of methods, their costs and treatment settings are considered. This manuscript is the first of this series that deals with diagnosis and treatment of invasive candidiasis. Other publications in this series include: 'Recommendations for the management of candidemia in adults in Latin America', 'Recommendations for the management of candidemia in children in Latin America', and 'Recommendations for the management of candidemia in neonates in Latin America'. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  18. [Recommendations for the diagnosis of candidemia in Latin America. Grupo Proyecto Épico].

    PubMed

    Colombo, Arnaldo Lopes; Cortes, Jorge Alberto; Zurita, Jeannete; Guzman-Blanco, Manuel; Alvarado Matute, Tito; de Queiroz Telles, Flavio; Santolaya, María E; Tiraboschi, Iris Nora; Echevarría, Juan; Sifuentes, Jose; Thompson-Moya, Luis; Nucci, Marcio

    2013-01-01

    Candidemia is one of the most frequent opportunistic mycoses worldwide. Limited epidemiological studies in Latin America indicate that incidence rates are higher in this region than in the Northern Hemisphere. Diagnosis is often made late in the infection, affecting the initiation of antifungal therapy. A more scientific approach, based on specific parameters, for diagnosis and management of candidemia in Latin America is warranted. 'Recommendations for the diagnosis and management of candidemia' are a series of manuscripts that have been developed by members of the Latin America Invasive Mycosis Network. They aim to provide a set of best-evidence recommendations for the diagnosis and management of candidemia. This publication, 'Recommendations for the diagnosis of candidemia in Latin America', was written to provide guidance to healthcare professionals on the diagnosis of candidemia, as well as on the usefulness and application of susceptibility testing in patients who have a confirmed diagnosis of candidemia. Computerized searches of existing literature were performed by PubMed. The data were extensively reviewed and analyzed by members of the group. The group also met on two occasions to pose questions, discuss conflicting views, and deliberate on a series of management recommendations. 'Recommendations for the diagnosis of candidemia in Latin America' includes diagnostic methods used to detect candidemia, Candida species identification, and susceptibility testing. The availability of methods, their costs and treatment settings are considered. This manuscript is the first of this series that deals with diagnosis and treatment of invasive candidiasis. Other publications in this series include: 'Recommendations for the management of candidemia in adults in Latin America', 'Recommendations for the management of candidemia in children in Latin America', and 'Recommendations for the management of candidemia in neonates in Latin America'. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  19. Data Rods: High Speed, Time-Series Analysis of Massive Cryospheric Data Sets Using Object-Oriented Database Methods

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Gallaher, D. W.; Grant, G.; Lv, Q.

    2011-12-01

    Change over time, is the central driver of climate change detection. The goal is to diagnose the underlying causes, and make projections into the future. In an effort to optimize this process we have developed the Data Rod model, an object-oriented approach that provides the ability to query grid cell changes and their relationships to neighboring grid cells through time. The time series data is organized in time-centric structures called "data rods." A single data rod can be pictured as the multi-spectral data history at one grid cell: a vertical column of data through time. This resolves the long-standing problem of managing time-series data and opens new possibilities for temporal data analysis. This structure enables rapid time- centric analysis at any grid cell across multiple sensors and satellite platforms. Collections of data rods can be spatially and temporally filtered, statistically analyzed, and aggregated for use with pattern matching algorithms. Likewise, individual image pixels can be extracted to generate multi-spectral imagery at any spatial and temporal location. The Data Rods project has created a series of prototype databases to store and analyze massive datasets containing multi-modality remote sensing data. Using object-oriented technology, this method overcomes the operational limitations of traditional relational databases. To demonstrate the speed and efficiency of time-centric analysis using the Data Rods model, we have developed a sea ice detection algorithm. This application determines the concentration of sea ice in a small spatial region across a long temporal window. If performed using traditional analytical techniques, this task would typically require extensive data downloads and spatial filtering. Using Data Rods databases, the exact spatio-temporal data set is immediately available No extraneous data is downloaded, and all selected data querying occurs transparently on the server side. Moreover, fundamental statistical calculations such as running averages are easily implemented against the time-centric columns of data.

  20. A Time Series of Mean Global Sea Surface Temperature from the Along-Track Scanning Radiometers

    NASA Astrophysics Data System (ADS)

    Veal, Karen L.; Corlett, Gary; Remedios, John; Llewellyn-Jones, David

    2010-12-01

    A climate data set requires a long time series of consistently processed data with suitably long periods of overlap of different instruments which allows characterization of any inter-instrument biases. The data obtained from ESA's three Along-Track Scanning Radiometers (ATSRs) together comprise an 18 year record of SST with overlap periods of at least 6 months. The data from all three ATSRs has been consistently processed. These factors together with the stability of the instruments and the precision of the derived SST makes this data set eminently suitable for the construction of a time series of SST that complies with many of the GCOS requirements for a climate data set. A time series of global and regional average SST anomalies has been constructed from the ATSR version 2 data set. An analysis of the overlap periods of successive instruments was used to remove intra-series biases and align the series to a common reference. An ATSR climatology has been developed and has been used to calculate the SST anomalies. The ATSR-1 time series and the AATSR time series have been aligned to ATSR-2. The largest adjustment is ~0.2 K between ATSR-2 and AATSR which is suspected to be due to a shift of the 12 μm filter function for AATSR. An uncertainty of 0.06 K is assigned to the relative anomaly record that is derived from the dual three-channel night-time data. A relative uncertainty of 0.07 K is assigned to the dual night-time two-channel record, except in the ATSR-1 period (1994-1996) where it is larger.

  1. ON THE GEOMETRY OF MEASURABLE SETS IN N-DIMENSIONAL SPACE ON WHICH GENERALIZED LOCALIZATION HOLDS FOR MULTIPLE FOURIER SERIES OF FUNCTIONS IN L_p, p>1

    NASA Astrophysics Data System (ADS)

    Bloshanskiĭ, I. L.

    1984-02-01

    The precise geometry is found of measurable sets in N-dimensional Euclidean space on which generalized localization almost everywhere holds for multiple Fourier series which are rectangularly summable.Bibliography: 14 titles.

  2. Homogenisation of minimum and maximum air temperature in northern Portugal

    NASA Astrophysics Data System (ADS)

    Freitas, L.; Pereira, M. G.; Caramelo, L.; Mendes, L.; Amorim, L.; Nunes, L.

    2012-04-01

    Homogenization of minimum and maximum air temperature has been carried out for northern Portugal for the period 1941-2010. The database corresponds to the values of the monthly arithmetic averages calculated from daily values observed at stations within the network of stations managed by the national Institute of Meteorology (IM). Some of the weather stations of IM's network are collecting data for more than a century; however, during the entire observing period, some factors have affected the climate series and have to be considered such as, changes in the station surroundings and changes related to replacement of manually operated instruments. Besides these typical changes, it is of particular interest the station relocation to rural areas or to the urban-rural interface and the installation of automatic weather stations in the vicinity of the principal or synoptic stations with the aim of replacing them. The information from these relocated and new stations was merged to produce just one but representative time series of that site. This process starts at the end 90's and the information of the time series fusion process constitutes the set of metadata used. Two basic procedures were performed: (i) preliminary statistical and quality control analysis; and, (ii) detection and correction of problems of homogeneity. In the first case, was developed and used software for quality control, specifically dedicated for the detection of outliers, based on the quartile values of the time series itself. The analysis of homogeneity was performed using the MASH (Multiple Analysis of Series for Homogenisation) and HOMER, which is a software application developed and recently made available within the COST Action ES0601 (COST-ES0601, 2012). Both methods provide a fast quality control of the original data and were developed for automatic processing, analyzing, homogeneity testing and adjusting of climatological data, but manual usage is also possible. Obtained results with both methods will be presented, compared and discussed along with the results of the sensitivity tests performed with both methods. COST-ES0601, 2012: "ACTION COST-ES0601 - Advances in homogenisation methods of climate series: an integrated approach HOME". Available at http://www.homogenisation.org/v_02_15/ [accessed 3 January 2012].

  3. A Filtering of Incomplete GNSS Position Time Series with Probabilistic Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Gruszczynski, Maciej; Klos, Anna; Bogusz, Janusz

    2018-04-01

    For the first time, we introduced the probabilistic principal component analysis (pPCA) regarding the spatio-temporal filtering of Global Navigation Satellite System (GNSS) position time series to estimate and remove Common Mode Error (CME) without the interpolation of missing values. We used data from the International GNSS Service (IGS) stations which contributed to the latest International Terrestrial Reference Frame (ITRF2014). The efficiency of the proposed algorithm was tested on the simulated incomplete time series, then CME was estimated for a set of 25 stations located in Central Europe. The newly applied pPCA was compared with previously used algorithms, which showed that this method is capable of resolving the problem of proper spatio-temporal filtering of GNSS time series characterized by different observation time span. We showed, that filtering can be carried out with pPCA method when there exist two time series in the dataset having less than 100 common epoch of observations. The 1st Principal Component (PC) explained more than 36% of the total variance represented by time series residuals' (series with deterministic model removed), what compared to the other PCs variances (less than 8%) means that common signals are significant in GNSS residuals. A clear improvement in the spectral indices of the power-law noise was noticed for the Up component, which is reflected by an average shift towards white noise from - 0.98 to - 0.67 (30%). We observed a significant average reduction in the accuracy of stations' velocity estimated for filtered residuals by 35, 28 and 69% for the North, East, and Up components, respectively. CME series were also subjected to analysis in the context of environmental mass loading influences of the filtering results. Subtraction of the environmental loading models from GNSS residuals provides to reduction of the estimated CME variance by 20 and 65% for horizontal and vertical components, respectively.

  4. Analysis and Forecasting of Shoreline Position

    NASA Astrophysics Data System (ADS)

    Barton, C. C.; Tebbens, S. F.

    2007-12-01

    Analysis of historical shoreline positions on sandy coasts, in the geologic record, and study of sea-level rise curves reveals that the dynamics of the underlying processes produce temporal/spatial signals that exhibit power scaling and are therefore self-affine fractals. Self-affine time series signals can be quantified over many orders of magnitude in time and space in terms of persistence, a measure of the degree of correlation between adjacent values in the stochastic portion of a time series. Fractal statistics developed for self-affine time series are used to forecast a probability envelope bounding future shoreline positions. The envelope provides the standard deviation as a function of three variables: persistence, a constant equal to the value of the power spectral density when 1/period equals 1, and the number of time increments. The persistence of a twenty-year time series of the mean-high-water (MHW) shoreline positions was measured for four profiles surveyed at Duck, NC at the Field Research Facility (FRF) by the U.S. Army Corps of Engineers. The four MHW shoreline time series signals are self-affine with persistence ranging between 0.8 and 0.9, which indicates that the shoreline position time series is weakly persistent (where zero is uncorrelated), and has highly varying trends for all time intervals sampled. Forecasts of a probability envelope for future MHW positions are made for the 20 years of record and beyond to 50 years from the start of the data records. The forecasts describe the twenty-year data sets well and indicate that within a 96% confidence envelope, future decadal MHW shoreline excursions should be within 14.6 m of the position at the start of data collection. This is a stable-oscillatory shoreline. The forecasting method introduced here includes the stochastic portion of the time series while the traditional method of predicting shoreline change reduces the time series to a linear trend line fit to historic shoreline positions and extrapolated linearly to forecast future positions with a linearly increasing mean that breaks the confidence envelope eight years into the future and continues to increase. The traditional method is a poor representation of the observed shoreline position time series and is a poor basis for extrapolating future shoreline positions.

  5. A novel stock forecasting model based on High-order-fuzzy-fluctuation Trends and Back Propagation Neural Network

    PubMed Central

    Dai, Zongli; Zhao, Aiwu; He, Jie

    2018-01-01

    In this paper, we propose a hybrid method to forecast the stock prices called High-order-fuzzy-fluctuation-Trends-based Back Propagation(HTBP)Neural Network model. First, we compare each value of the historical training data with the previous day's value to obtain a fluctuation trend time series (FTTS). On this basis, the FTTS blur into fuzzy time series (FFTS) based on the fluctuation of the increasing, equality, decreasing amplitude and direction. Since the relationship between FFTS and future wave trends is nonlinear, the HTBP neural network algorithm is used to find the mapping rules in the form of self-learning. Finally, the results of the algorithm output are used to predict future fluctuations. The proposed model provides some innovative features:(1)It combines fuzzy set theory and neural network algorithm to avoid overfitting problems existed in traditional models. (2)BP neural network algorithm can intelligently explore the internal rules of the actual existence of sequential data, without the need to analyze the influence factors of specific rules and the path of action. (3)The hybrid modal can reasonably remove noises from the internal rules by proper fuzzy treatment. This paper takes the TAIEX data set of Taiwan stock exchange as an example, and compares and analyzes the prediction performance of the model. The experimental results show that this method can predict the stock market in a very simple way. At the same time, we use this method to predict the Shanghai stock exchange composite index, and further verify the effectiveness and universality of the method. PMID:29420584

  6. A novel stock forecasting model based on High-order-fuzzy-fluctuation Trends and Back Propagation Neural Network.

    PubMed

    Guan, Hongjun; Dai, Zongli; Zhao, Aiwu; He, Jie

    2018-01-01

    In this paper, we propose a hybrid method to forecast the stock prices called High-order-fuzzy-fluctuation-Trends-based Back Propagation(HTBP)Neural Network model. First, we compare each value of the historical training data with the previous day's value to obtain a fluctuation trend time series (FTTS). On this basis, the FTTS blur into fuzzy time series (FFTS) based on the fluctuation of the increasing, equality, decreasing amplitude and direction. Since the relationship between FFTS and future wave trends is nonlinear, the HTBP neural network algorithm is used to find the mapping rules in the form of self-learning. Finally, the results of the algorithm output are used to predict future fluctuations. The proposed model provides some innovative features:(1)It combines fuzzy set theory and neural network algorithm to avoid overfitting problems existed in traditional models. (2)BP neural network algorithm can intelligently explore the internal rules of the actual existence of sequential data, without the need to analyze the influence factors of specific rules and the path of action. (3)The hybrid modal can reasonably remove noises from the internal rules by proper fuzzy treatment. This paper takes the TAIEX data set of Taiwan stock exchange as an example, and compares and analyzes the prediction performance of the model. The experimental results show that this method can predict the stock market in a very simple way. At the same time, we use this method to predict the Shanghai stock exchange composite index, and further verify the effectiveness and universality of the method.

  7. Monitoring Volcano Deformation in the Northernmost Andes with ALOS InSAR Time-Series

    NASA Astrophysics Data System (ADS)

    Morales Rivera, A. M.; Amelung, F.

    2014-12-01

    Satellite-based Interferometric Synthetic Aperture Radar (InSAR) is well known to be used as a volcano monitoring tool, providing the opportunity to conduct local and regional surveys to detect and measure volcanic deformation. The signals detected by InSAR on volcanoes can be related to various phenomena, such as volume changes in magmatic reservoirs, compaction of recent deposits, changes in hydrothermal activity, and flank instability. The InSAR time-series method has well documented examples of these phenomena, including precursory inflation of magma reservoirs months prior to volcanic eruptions, proving its potential for early warning systems. We use the ALOS-1 satellite from the Japanese Aerospace Exploration Agency (JAXA), which acquired a global L-band data set of nearly 20 acquisitions during 2007-2011, to make an InSAR time-series analysis using the Small Baseline method (SBAS). Our analysis covers all of the volcanoes in Colombia, Ecuador, and Peru that are cataloged by the Global Volcanism Program. We present results showing time-dependent ground deformation on an near the volcanoes, and present kinematic models to constrain the characteristics of the magmatic sources for the cases in which the deformation is likely related to changes in magma reservoir pressurization.

  8. Efficient Sampling of Parsimonious Inversion Histories with Application to Genome Rearrangement in Yersinia

    PubMed Central

    Darling, Aaron E.

    2009-01-01

    Inversions are among the most common mutations acting on the order and orientation of genes in a genome, and polynomial-time algorithms exist to obtain a minimal length series of inversions that transform one genome arrangement to another. However, the minimum length series of inversions (the optimal sorting path) is often not unique as many such optimal sorting paths exist. If we assume that all optimal sorting paths are equally likely, then statistical inference on genome arrangement history must account for all such sorting paths and not just a single estimate. No deterministic polynomial algorithm is known to count the number of optimal sorting paths nor sample from the uniform distribution of optimal sorting paths. Here, we propose a stochastic method that uniformly samples the set of all optimal sorting paths. Our method uses a novel formulation of parallel Markov chain Monte Carlo. In practice, our method can quickly estimate the total number of optimal sorting paths. We introduce a variant of our approach in which short inversions are modeled to be more likely, and we show how the method can be used to estimate the distribution of inversion lengths and breakpoint usage in pathogenic Yersinia pestis. The proposed method has been implemented in a program called “MC4Inversion.” We draw comparison of MC4Inversion to the sampler implemented in BADGER and a previously described importance sampling (IS) technique. We find that on high-divergence data sets, MC4Inversion finds more optimal sorting paths per second than BADGER and the IS technique and simultaneously avoids bias inherent in the IS technique. PMID:20333186

  9. Combined cGPS and InSAR time series for observing subsidence in the southern Central Valley due to groundwater exploitation

    NASA Astrophysics Data System (ADS)

    Neely, W.; Borsa, A. A.; Silverii, F.

    2017-12-01

    Recent droughts have increased reliance on groundwater for agricultural production in California's Central Valley. Using Interferometric Synthetic Aperture Radar (InSAR), we observe upwards of 25 cm/yr of subsidence from November 2014 to February 2017 due to intense pumping. However, these observations are contaminated by atmospheric noise and orbital errors. We present a novel method for correcting long wavelength errors in InSAR deformation estimates using time series from continuous Global Positioning System (cGPS) stations within the SAR footprint, which we apply to C-band data from the Sentinel mission. We test our method using 49 SAR acquisitions from the Sentinel 1 satellites and 107 cGPS times series from the Geodesy Advancing Geoscience and EarthScope (GAGE) network in southern Central Valley. We correct each interferogram separately, implementing an intermittent Small Baseline Subset (ISBAS) technique to produce a time series of line-of-sight surface motion from 276 InSAR pairs. To estimate the vertical component of this motion, we remove horizontal tectonic displacements predicted by the Southern California Earthquake Center's (SCEC) Community Geodetic Model. We validate our method by comparing the corrected InSAR results with independent cGPS data and find a marked improvement in agreement between the two data sets, particularly in the deformation rates. Using this technique, we characterize the time evolution of surface vertical deformation in the southern Central Valley related to human exploitation of local groundwater resources. This methodology is applicable to data from other SAR satellites, including ALOS-2 and the upcoming US-India NISAR mission.

  10. Time‐resolved detection of stimulus/task‐related networks, via clustering of transient intersubject synchronization

    PubMed Central

    Macaluso, Emiliano

    2015-01-01

    Abstract Several methods are available for the identification of functional networks of brain areas using functional magnetic resonance imaging (fMRI) time‐series. These typically assume a fixed relationship between the signal of the areas belonging to the same network during the entire time‐series (e.g., positive correlation between the areas belonging to the same network), or require a priori information about when this relationship may change (task‐dependent changes of connectivity). We present a fully data‐driven method that identifies transient network configurations that are triggered by the external input and that, therefore, include only regions involved in stimulus/task processing. Intersubject synchronization with short sliding time‐windows was used to identify if/when any area showed stimulus/task‐related responses. Next, a first clustering step grouped together areas that became engaged concurrently and repetitively during the time‐series (stimulus/task‐related networks). Finally, for each network, a second clustering step grouped together all the time‐windows with the same BOLD signal. The final output consists of a set of network configurations that show stimulus/task‐related activity at specific time‐points during the fMRI time‐series. We label these configurations: “brain modes” (bModes). The method was validated using simulated datasets and a real fMRI experiment with multiple tasks and conditions. Future applications include the investigation of brain functions using complex and naturalistic stimuli. Hum Brain Mapp 36:3404–3425, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:26095530

  11. Final report: ES11: The 23rd Annual Workshop on Electronic Structure Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rappe, Andrew M.

    2011-08-31

    ES11: the 23rd Annual Workshop on Electronic Structure Methods was held from June 6-9, 2011 at the University of Pennsylvania. The local organizing committee (see Section II) led by PI Andrew M. Rappe supervised the organization of the conference, before, during, and after the meeting itself. The national organizing committee set the technical program of talks, and provided support and advice in various ways. The conference was well-attended (see Section III). An important feature of this conference was a series of panel discussions (see Section IV) to discuss the field of electronic structure and to set new directions. The technicalmore » program was of extraordinarily high quality (see Section V). The host institution, the University of Pennsylvania, provided a supportive environment for this meeting (see Section VI).« less

  12. Monochloramine Disinfection Kinetics of Nitrosomonas europaea by Propidium Monoazide Quantitative PCR and Live/Dead BacLight Methods▿

    PubMed Central

    Wahman, David G.; Wulfeck-Kleier, Karen A.; Pressman, Jonathan G.

    2009-01-01

    Monochloramine disinfection kinetics were determined for the pure-culture ammonia-oxidizing bacterium Nitrosomonas europaea (ATCC 19718) by two culture-independent methods, namely, Live/Dead BacLight (LD) and propidium monoazide quantitative PCR (PMA-qPCR). Both methods were first verified with mixtures of heat-killed (nonviable) and non-heat-killed (viable) cells before a series of batch disinfection experiments with stationary-phase cultures (batch grown for 7 days) at pH 8.0, 25°C, and 5, 10, and 20 mg Cl2/liter monochloramine. Two data sets were generated based on the viability method used, either (i) LD or (ii) PMA-qPCR. These two data sets were used to estimate kinetic parameters for the delayed Chick-Watson disinfection model through a Bayesian analysis implemented in WinBUGS. This analysis provided parameter estimates of 490 mg Cl2-min/liter for the lag coefficient (b) and 1.6 × 10−3 to 4.0 × 10−3 liter/mg Cl2-min for the Chick-Watson disinfection rate constant (k). While estimates of b were similar for both data sets, the LD data set resulted in a greater k estimate than that obtained with the PMA-qPCR data set, implying that the PMA-qPCR viability measure was more conservative than LD. For N. europaea, the lag phase was not previously reported for culture-independent methods and may have implications for nitrification in drinking water distribution systems. This is the first published application of a PMA-qPCR method for disinfection kinetic model parameter estimation as well as its application to N. europaea or monochloramine. Ultimately, this PMA-qPCR method will allow evaluation of monochloramine disinfection kinetics for mixed-culture bacteria in drinking water distribution systems. PMID:19561179

  13. Classifying with confidence from incomplete information.

    DOE PAGES

    Parrish, Nathan; Anderson, Hyrum S.; Gupta, Maya R.; ...

    2013-12-01

    For this paper, we consider the problem of classifying a test sample given incomplete information. This problem arises naturally when data about a test sample is collected over time, or when costs must be incurred to compute the classification features. For example, in a distributed sensor network only a fraction of the sensors may have reported measurements at a certain time, and additional time, power, and bandwidth is needed to collect the complete data to classify. A practical goal is to assign a class label as soon as enough data is available to make a good decision. We formalize thismore » goal through the notion of reliability—the probability that a label assigned given incomplete data would be the same as the label assigned given the complete data, and we propose a method to classify incomplete data only if some reliability threshold is met. Our approach models the complete data as a random variable whose distribution is dependent on the current incomplete data and the (complete) training data. The method differs from standard imputation strategies in that our focus is on determining the reliability of the classification decision, rather than just the class label. We show that the method provides useful reliability estimates of the correctness of the imputed class labels on a set of experiments on time-series data sets, where the goal is to classify the time-series as early as possible while still guaranteeing that the reliability threshold is met.« less

  14. QSAR studies of the bioactivity of hepatitis C virus (HCV) NS3/4A protease inhibitors by multiple linear regression (MLR) and support vector machine (SVM).

    PubMed

    Qin, Zijian; Wang, Maolin; Yan, Aixia

    2017-07-01

    In this study, quantitative structure-activity relationship (QSAR) models using various descriptor sets and training/test set selection methods were explored to predict the bioactivity of hepatitis C virus (HCV) NS3/4A protease inhibitors by using a multiple linear regression (MLR) and a support vector machine (SVM) method. 512 HCV NS3/4A protease inhibitors and their IC 50 values which were determined by the same FRET assay were collected from the reported literature to build a dataset. All the inhibitors were represented with selected nine global and 12 2D property-weighted autocorrelation descriptors calculated from the program CORINA Symphony. The dataset was divided into a training set and a test set by a random and a Kohonen's self-organizing map (SOM) method. The correlation coefficients (r 2 ) of training sets and test sets were 0.75 and 0.72 for the best MLR model, 0.87 and 0.85 for the best SVM model, respectively. In addition, a series of sub-dataset models were also developed. The performances of all the best sub-dataset models were better than those of the whole dataset models. We believe that the combination of the best sub- and whole dataset SVM models can be used as reliable lead designing tools for new NS3/4A protease inhibitors scaffolds in a drug discovery pipeline. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Data catalog series for space science and applications flight missions. Volume 5A: Descriptions of astronomy, astrophysics, and solar physics spacecraft and investigations. Volume 5B: Descriptions of data sets from astronomy, astrophysics, and solar physics spacecraft and investigations

    NASA Technical Reports Server (NTRS)

    Kim, Sang J. (Editor)

    1988-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets of astronomy, astrophysics, solar physics spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  16. A 60-year reconstructed high-resolution local meteorological data set in Central Sahel (1950-2009): evaluation, analysis and application to land surface modelling

    NASA Astrophysics Data System (ADS)

    Leauthaud, Crystele; Cappelaere, Bernard; Demarty, Jérôme; Guichard, Françoise; Velluet, Cécile; Kergoat, Laurent; Vischel, Théo; Grippa, Manuela; Mouhaimouni, Mohammed; Bouzou Moussa, Ibrahim; Mainassara, Ibrahim; Sultan, Benjamin

    2017-04-01

    The Sahel has experienced strong climate variability in the past decades. Understanding its implications for natural and cultivated ecosystems is pivotal in a context of high population growth and mainly agriculture-based livelihoods. However, efforts to model processes at the land-atmosphere interface are hindered, particularly when the multi-decadal timescale is targeted, as climatic data are scarce, largely incomplete and often unreliable. This study presents the generation of a long-term, high-temporal resolution, multivariate local climatic data set for Niamey, Central Sahel. The continuous series spans the period 1950-2009 at a 30-min timescale and includes ground station-based meteorological variables (precipitation, air temperature, relative and specific humidity, air pressure, wind speed, downwelling long- and short-wave radiation) as well as process-modelled surface fluxes (upwelling long- and short-wave radiation,latent, sensible and soil heat fluxes and surface temperature). A combination of complementary techniques (linear/spline regressions, a multivariate analogue method, artificial neural networks and recursive gap filling) was used to reconstruct missing meteorological data. The complete surface energy budget was then obtained for two dominant land cover types, fallow bush and millet, by applying the meteorological forcing data set to a finely field-calibrated land surface model. Uncertainty in reconstructed data was expressed by means of a stochastic ensemble of plausible historical time series. Climatological statistics were computed at sub-daily to decadal timescales and compared with local, regional and global data sets such as CRU and ERA-Interim. The reconstructed precipitation statistics, ˜1°C increase in mean annual temperature from 1950 to 2009, and mean diurnal and annual cycles for all variables were in good agreement with previous studies. The new data set, denoted NAD (Niamey Airport-derived set) and publicly available, can be used to investigate the water and energy cycles in Central Sahel, while the methodology can be applied to reconstruct series at other stations. The study has been published in Int. J. Climatol. (2016), DOI: 10.1002/joc.4874

  17. Short-term data forecasting based on wavelet transformation and chaos theory

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Li, Cunbin; Zhang, Liang

    2017-09-01

    A sketch of wavelet transformation and its application was given. Concerning the characteristics of time sequence, Haar wavelet was used to do data reduction. After processing, the effect of “data nail” on forecasting was reduced. Chaos theory was also introduced, a new chaos time series forecasting flow based on wavelet transformation was proposed. The largest Lyapunov exponent was larger than zero from small data sets, it verified the data change behavior still met chaotic behavior. Based on this, chaos time series to forecast short-term change behavior could be used. At last, the example analysis of the price from a real electricity market showed that the forecasting method increased the precision of the forecasting more effectively and steadily.

  18. A Retrospective Analysis of the Benefits and Impacts of U.S. Renewable Portfolio Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, Ryan; Barbose, Galen; Heeter, Jenny

    This is the second in a series of reports exploring the costs, benefits, and other impacts of state renewable portfolio standards (RPS), both retrospectively and prospectively. This report focuses on the benefits and impacts of all state RPS programs, in aggregate, for the year 2013 (the most-recent year for which the requisite data were available). Relying on a well-vetted set of methods, the study evaluates a number of important benefits and impacts in both physical and monetary terms, where possible, and characterizes key uncertainties. The prior study in this series focused on historical RPS compliance costs, and future work willmore » evaluate costs, benefits, and other impacts of RPS policies prospectively.« less

  19. New Features for Neuron Classification.

    PubMed

    Hernández-Pérez, Leonardo A; Delgado-Castillo, Duniel; Martín-Pérez, Rainer; Orozco-Morales, Rubén; Lorenzo-Ginori, Juan V

    2018-04-28

    This paper addresses the problem of obtaining new neuron features capable of improving results of neuron classification. Most studies on neuron classification using morphological features have been based on Euclidean geometry. Here three one-dimensional (1D) time series are derived from the three-dimensional (3D) structure of neuron instead, and afterwards a spatial time series is finally constructed from which the features are calculated. Digitally reconstructed neurons were separated into control and pathological sets, which are related to three categories of alterations caused by epilepsy, Alzheimer's disease (long and local projections), and ischemia. These neuron sets were then subjected to supervised classification and the results were compared considering three sets of features: morphological, features obtained from the time series and a combination of both. The best results were obtained using features from the time series, which outperformed the classification using only morphological features, showing higher correct classification rates with differences of 5.15, 3.75, 5.33% for epilepsy and Alzheimer's disease (long and local projections) respectively. The morphological features were better for the ischemia set with a difference of 3.05%. Features like variance, Spearman auto-correlation, partial auto-correlation, mutual information, local minima and maxima, all related to the time series, exhibited the best performance. Also we compared different evaluators, among which ReliefF was the best ranked.

  20. The Serious Series: Presenting Performing Arts in Succession.

    ERIC Educational Resources Information Center

    Miner, Stephen

    1989-01-01

    Four or five events together constitute a lively arts 'series'. Ways to make a college series a success are discussed, covering: goal setting, the talent, and promotion. The usual series range from four to six performances and allows a season ticket holder to experience varied selections of performing arts attraction. (MLW)

  1. The forecasting of menstruation based on a state-space modeling of basal body temperature time series.

    PubMed

    Fukaya, Keiichi; Kawamori, Ai; Osada, Yutaka; Kitazawa, Masumi; Ishiguro, Makio

    2017-09-20

    Women's basal body temperature (BBT) shows a periodic pattern that associates with menstrual cycle. Although this fact suggests a possibility that daily BBT time series can be useful for estimating the underlying phase state as well as for predicting the length of current menstrual cycle, little attention has been paid to model BBT time series. In this study, we propose a state-space model that involves the menstrual phase as a latent state variable to explain the daily fluctuation of BBT and the menstruation cycle length. Conditional distributions of the phase are obtained by using sequential Bayesian filtering techniques. A predictive distribution of the next menstruation day can be derived based on this conditional distribution and the model, leading to a novel statistical framework that provides a sequentially updated prediction for upcoming menstruation day. We applied this framework to a real data set of women's BBT and menstruation days and compared prediction accuracy of the proposed method with that of previous methods, showing that the proposed method generally provides a better prediction. Because BBT can be obtained with relatively small cost and effort, the proposed method can be useful for women's health management. Potential extensions of this framework as the basis of modeling and predicting events that are associated with the menstrual cycles are discussed. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  2. Machine learning for neuroimaging with scikit-learn.

    PubMed

    Abraham, Alexandre; Pedregosa, Fabian; Eickenberg, Michael; Gervais, Philippe; Mueller, Andreas; Kossaifi, Jean; Gramfort, Alexandre; Thirion, Bertrand; Varoquaux, Gaël

    2014-01-01

    Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.

  3. Machine learning for neuroimaging with scikit-learn

    PubMed Central

    Abraham, Alexandre; Pedregosa, Fabian; Eickenberg, Michael; Gervais, Philippe; Mueller, Andreas; Kossaifi, Jean; Gramfort, Alexandre; Thirion, Bertrand; Varoquaux, Gaël

    2014-01-01

    Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain. PMID:24600388

  4. A multi-pixel InSAR time series analysis method: Simultaneous estimation of atmospheric noise, orbital errors and deformation

    NASA Astrophysics Data System (ADS)

    Jolivet, R.; Simons, M.

    2016-12-01

    InSAR time series analysis allows reconstruction of ground deformation with meter-scale spatial resolution and high temporal sampling. For instance, the ESA Sentinel-1 Constellation is capable of providing 6-day temporal sampling, thereby opening a new window on the spatio-temporal behavior of tectonic processes. However, due to computational limitations, most time series methods rely on a pixel-by-pixel approach. This limitation is a concern because (1) accounting for orbital errors requires referencing all interferograms to a common set of pixels before reconstruction of the time series and (2) spatially correlated atmospheric noise due to tropospheric turbulence is ignored. Decomposing interferograms into statistically independent wavelets will mitigate issues of correlated noise, but prior estimation of orbital uncertainties will still be required. Here, we explore a method that considers all pixels simultaneously when solving for the spatio-temporal evolution of interferometric phase Our method is based on a massively parallel implementation of a conjugate direction solver. We consider an interferogram as the sum of the phase difference between 2 SAR acquisitions and the corresponding orbital errors. In addition, we fit the temporal evolution with a physically parameterized function while accounting for spatially correlated noise in the data covariance. We assume noise is isotropic for any given InSAR pair with a covariance described by an exponential function that decays with increasing separation distance between pixels. We regularize our solution in space using a similar exponential function as model covariance. Given the problem size, we avoid matrix multiplications of the full covariances by computing convolutions in the Fourier domain. We first solve the unregularized least squares problem using the LSQR algorithm to approach the final solution, then run our conjugate direction solver to account for data and model covariances. We present synthetic tests showing the efficiency of our method. We then reconstruct a 20-year continuous time series covering Northern Chile. Without input from any additional GNSS data, we recover the secular deformation rate, seasonal oscillations and the deformation fields from the 2005 Mw 7.8 Tarapaca and 2007 Mw 7.7 Tocopilla earthquakes.

  5. Optimal Access to NASA Water Cycle Data for Water Resources Management

    NASA Astrophysics Data System (ADS)

    Teng, W. L.; Arctur, D. K.; Espinoza, G. E.; Rui, H.; Strub, R. F.; Vollmer, B.

    2016-12-01

    A "Digital Divide" in data representation exists between the preferred way of data access by the hydrology community (i.e., as time series of discrete spatial objects) and the common way of data archival by earth science data centers (i.e., as continuous spatial fields, one file per time step). This Divide has been an obstacle, specifically, between the Consortium of Universities for the Advancement of Hydrologic Science, Inc. Hydrologic Information System (CUAHSI HIS) and NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). An optimal approach to bridging the Divide, developed by the GES DISC, is to reorganize data from the way they are archived to some way that is optimal for the desired method of data access. Specifically for CUAHSI HIS, selected data sets were reorganized into time series files, one per geographical "point." These time series files, termed "data rods," are pre-generated or virtual (generated on-the-fly). Data sets available as data rods include North American Land Data Assimilation System (NLDAS), Global Land Data Assimilation System (GLDAS), TRMM Multi-satellite Precipitation Analysis (TMPA), Land Parameter Retrieval Model (LPRM), Modern-Era Retrospective Analysis for Research and Applications (MERRA)-Land, and Groundwater and Soil Moisture Conditions from Gravity Recovery and Climate Experiment (GRACE) Data Assimilation drought indicators for North America Drought Monitor (GRACE-DA-DM). In order to easily avail the operational water resources community the benefits of optimally reorganized data, we have developed multiple methods of making these data more easily accessible and usable. These include direct access via RESTful Web services, a browser-based Web map and statistical tool for selected NLDAS variables for the U.S. (CONUS), a HydroShare app (Data Rods Explorer, under development) on the Tethys Platform, and access via the GEOSS Portal. Examples of drought-related applications of these data and data access methods are provided.

  6. Simulating the complex output of rainfall and hydrological processes using the information contained in large data sets: the Direct Sampling approach.

    NASA Astrophysics Data System (ADS)

    Oriani, Fabio

    2017-04-01

    The unpredictable nature of rainfall makes its estimation as much difficult as it is essential to hydrological applications. Stochastic simulation is often considered a convenient approach to asses the uncertainty of rainfall processes, but preserving their irregular behavior and variability at multiple scales is a challenge even for the most advanced techniques. In this presentation, an overview on the Direct Sampling technique [1] and its recent application to rainfall and hydrological data simulation [2, 3] is given. The algorithm, having its roots in multiple-point statistics, makes use of a training data set to simulate the outcome of a process without inferring any explicit probability measure: the data are simulated in time or space by sampling the training data set where a sufficiently similar group of neighbor data exists. This approach allows preserving complex statistical dependencies at different scales with a good approximation, while reducing the parameterization to the minimum. The straights and weaknesses of the Direct Sampling approach are shown through a series of applications to rainfall and hydrological data: from time-series simulation to spatial rainfall fields conditioned by elevation or a climate scenario. In the era of vast databases, is this data-driven approach a valid alternative to parametric simulation techniques? [1] Mariethoz G., Renard P., and Straubhaar J. (2010), The Direct Sampling method to perform multiple-point geostatistical simulations, Water. Rerous. Res., 46(11), http://dx.doi.org/10.1029/2008WR007621 [2] Oriani F., Straubhaar J., Renard P., and Mariethoz G. (2014), Simulation of rainfall time series from different climatic regions using the direct sampling technique, Hydrol. Earth Syst. Sci., 18, 3015-3031, http://dx.doi.org/10.5194/hess-18-3015-2014 [3] Oriani F., Borghi A., Straubhaar J., Mariethoz G., Renard P. (2016), Missing data simulation inside flow rate time-series using multiple-point statistics, Environ. Model. Softw., vol. 86, pp. 264 - 276, http://dx.doi.org/10.1016/j.envsoft.2016.10.002

  7. Script identification from images using cluster-based templates

    DOEpatents

    Hochberg, J.G.; Kelly, P.M.; Thomas, T.R.

    1998-12-01

    A computer-implemented method identifies a script used to create a document. A set of training documents for each script to be identified is scanned into the computer to store a series of exemplary images representing each script. Pixels forming the exemplary images are electronically processed to define a set of textual symbols corresponding to the exemplary images. Each textual symbol is assigned to a cluster of textual symbols that most closely represents the textual symbol. The cluster of textual symbols is processed to form a representative electronic template for each cluster. A document having a script to be identified is scanned into the computer to form one or more document images representing the script to be identified. Pixels forming the document images are electronically processed to define a set of document textual symbols corresponding to the document images. The set of document textual symbols is compared to the electronic templates to identify the script. 17 figs.

  8. Script identification from images using cluster-based templates

    DOEpatents

    Hochberg, Judith G.; Kelly, Patrick M.; Thomas, Timothy R.

    1998-01-01

    A computer-implemented method identifies a script used to create a document. A set of training documents for each script to be identified is scanned into the computer to store a series of exemplary images representing each script. Pixels forming the exemplary images are electronically processed to define a set of textual symbols corresponding to the exemplary images. Each textual symbol is assigned to a cluster of textual symbols that most closely represents the textual symbol. The cluster of textual symbols is processed to form a representative electronic template for each cluster. A document having a script to be identified is scanned into the computer to form one or more document images representing the script to be identified. Pixels forming the document images are electronically processed to define a set of document textual symbols corresponding to the document images. The set of document textual symbols is compared to the electronic templates to identify the script.

  9. Winding Schemes for Wide Constant Power Range of Double Stator Transverse Flux Machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husain, Tausif; Hassan, Iftekhar; Sozer, Yilmaz

    2015-05-01

    Different ring winding schemes for double sided transverse flux machines are investigated in this paper for wide speed operation. The windings under investigation are based on two inverters used in parallel. At higher power applications this arrangement improves the drive efficiency. The new winding structure through manipulation of the end connection splits individual sets into two and connects the partitioned turns from individual stator sets in series. This configuration offers the flexibility of torque profiling and a greater flux weakening region. At low speeds and low torque only one winding set is capable of providing the required torque thus providingmore » greater fault tolerance. At higher speeds one set is dedicated to torque production and the other for flux control. The proposed method improves the machine efficiency and allows better flux weakening which is desirable for traction applications.« less

  10. Designs of Empirical Evaluations of Nonexperimental Methods in Field Settings.

    PubMed

    Wong, Vivian C; Steiner, Peter M

    2018-01-01

    Over the last three decades, a research design has emerged to evaluate the performance of nonexperimental (NE) designs and design features in field settings. It is called the within-study comparison (WSC) approach or the design replication study. In the traditional WSC design, treatment effects from a randomized experiment are compared to those produced by an NE approach that shares the same target population. The nonexperiment may be a quasi-experimental design, such as a regression-discontinuity or an interrupted time-series design, or an observational study approach that includes matching methods, standard regression adjustments, and difference-in-differences methods. The goals of the WSC are to determine whether the nonexperiment can replicate results from a randomized experiment (which provides the causal benchmark estimate), and the contexts and conditions under which these methods work in practice. This article presents a coherent theory of the design and implementation of WSCs for evaluating NE methods. It introduces and identifies the multiple purposes of WSCs, required design components, common threats to validity, design variants, and causal estimands of interest in WSCs. It highlights two general approaches for empirical evaluations of methods in field settings, WSC designs with independent and dependent benchmark and NE arms. This article highlights advantages and disadvantages for each approach, and conditions and contexts under which each approach is optimal for addressing methodological questions.

  11. A Framework and Algorithms for Multivariate Time Series Analytics (MTSA): Learning, Monitoring, and Recommendation

    ERIC Educational Resources Information Center

    Ngan, Chun-Kit

    2013-01-01

    Making decisions over multivariate time series is an important topic which has gained significant interest in the past decade. A time series is a sequence of data points which are measured and ordered over uniform time intervals. A multivariate time series is a set of multiple, related time series in a particular domain in which domain experts…

  12. Wavelet application to the time series analysis of DORIS station coordinates

    NASA Astrophysics Data System (ADS)

    Bessissi, Zahia; Terbeche, Mekki; Ghezali, Boualem

    2009-06-01

    The topic developed in this article relates to the residual time series analysis of DORIS station coordinates using the wavelet transform. Several analysis techniques, already developed in other disciplines, were employed in the statistical study of the geodetic time series of stations. The wavelet transform allows one, on the one hand, to provide temporal and frequential parameter residual signals, and on the other hand, to determine and quantify systematic signals such as periodicity and tendency. Tendency is the change in short or long term signals; it is an average curve which represents the general pace of the signal evolution. On the other hand, periodicity is a process which is repeated, identical to itself, after a time interval called the period. In this context, the topic of this article consists, on the one hand, in determining the systematic signals by wavelet analysis of time series of DORIS station coordinates, and on the other hand, in applying the denoising signal to the wavelet packet, which makes it possible to obtain a well-filtered signal, smoother than the original signal. The DORIS data used in the treatment are a set of weekly residual time series from 1993 to 2004 from eight stations: DIOA, COLA, FAIB, KRAB, SAKA, SODB, THUB and SYPB. It is the ign03wd01 solution expressed in stcd format, which is derived by the IGN/JPL analysis center. Although these data are not very recent, the goal of this study is to detect the contribution of the wavelet analysis method on the DORIS data, compared to the other analysis methods already studied.

  13. OLYMPUS: an automated hybrid clustering method in time series gene expression. Case study: host response after Influenza A (H1N1) infection.

    PubMed

    Dimitrakopoulou, Konstantina; Vrahatis, Aristidis G; Wilk, Esther; Tsakalidis, Athanasios K; Bezerianos, Anastasios

    2013-09-01

    The increasing flow of short time series microarray experiments for the study of dynamic cellular processes poses the need for efficient clustering tools. These tools must deal with three primary issues: first, to consider the multi-functionality of genes; second, to evaluate the similarity of the relative change of amplitude in the time domain rather than the absolute values; third, to cope with the constraints of conventional clustering algorithms such as the assignment of the appropriate cluster number. To address these, we propose OLYMPUS, a novel unsupervised clustering algorithm that integrates Differential Evolution (DE) method into Fuzzy Short Time Series (FSTS) algorithm with the scope to utilize efficiently the information of population of the first and enhance the performance of the latter. Our hybrid approach provides sets of genes that enable the deciphering of distinct phases in dynamic cellular processes. We proved the efficiency of OLYMPUS on synthetic as well as on experimental data. The discriminative power of OLYMPUS provided clusters, which refined the so far perspective of the dynamics of host response mechanisms to Influenza A (H1N1). Our kinetic model sets a timeline for several pathways and cell populations, implicated to participate in host response; yet no timeline was assigned to them (e.g. cell cycle, homeostasis). Regarding the activity of B cells, our approach revealed that some antibody-related mechanisms remain activated until day 60 post infection. The Matlab codes for implementing OLYMPUS, as well as example datasets, are freely accessible via the Web (http://biosignal.med.upatras.gr/wordpress/biosignal/). Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. A longitudinal model for functional connectivity networks using resting-state fMRI.

    PubMed

    Hart, Brian; Cribben, Ivor; Fiecas, Mark

    2018-06-04

    Many neuroimaging studies collect functional magnetic resonance imaging (fMRI) data in a longitudinal manner. However, the current fMRI literature lacks a general framework for analyzing functional connectivity (FC) networks in fMRI data obtained from a longitudinal study. In this work, we build a novel longitudinal FC model using a variance components approach. First, for all subjects' visits, we account for the autocorrelation inherent in the fMRI time series data using a non-parametric technique. Second, we use a generalized least squares approach to estimate 1) the within-subject variance component shared across the population, 2) the baseline FC strength, and 3) the FC's longitudinal trend. Our novel method for longitudinal FC networks seeks to account for the within-subject dependence across multiple visits, the variability due to the subjects being sampled from a population, and the autocorrelation present in fMRI time series data, while restricting the number of parameters in order to make the method computationally feasible and stable. We develop a permutation testing procedure to draw valid inference on group differences in the baseline FC network and change in FC over longitudinal time between a set of patients and a comparable set of controls. To examine performance, we run a series of simulations and apply the model to longitudinal fMRI data collected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Overall, we found no difference in the global FC network between Alzheimer's disease patients and healthy controls, but did find differing local aging patterns in the FC between the left hippocampus and the posterior cingulate cortex. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Pi2 detection using Empirical Mode Decomposition (EMD)

    NASA Astrophysics Data System (ADS)

    Mieth, Johannes Z. D.; Frühauff, Dennis; Glassmeier, Karl-Heinz

    2017-04-01

    Empirical Mode Decomposition has been used as an alternative method to wavelet transformation to identify onset times of Pi2 pulsations in data sets of the Scandinavian Magnetometer Array (SMA). Pi2 pulsations are magnetohydrodynamic waves occurring during magnetospheric substorms. Almost always Pi2 are observed at substorm onset in mid to low latitudes on Earth's nightside. They are fed by magnetic energy release caused by dipolarization processes. Their periods lie between 40 to 150 seconds. Usually, Pi2 are detected using wavelet transformation. Here, Empirical Mode Decomposition (EMD) is presented as an alternative approach to the traditional procedure. EMD is a young signal decomposition method designed for nonlinear and non-stationary time series. It provides an adaptive, data driven, and complete decomposition of time series into slow and fast oscillations. An optimized version using Monte-Carlo-type noise assistance is used here. By displaying the results in a time-frequency space a characteristic frequency modulation is observed. This frequency modulation can be correlated with the onset of Pi2 pulsations. A basic algorithm to find the onset is presented. Finally, the results are compared to classical wavelet-based analysis. The use of different SMA stations furthermore allows the spatial analysis of Pi2 onset times. EMD mostly finds application in the fields of engineering and medicine. This work demonstrates the applicability of this method to geomagnetic time series.

  16. Statistical process control of mortality series in the Australian and New Zealand Intensive Care Society (ANZICS) adult patient database: implications of the data generating process

    PubMed Central

    2013-01-01

    Background Statistical process control (SPC), an industrial sphere initiative, has recently been applied in health care and public health surveillance. SPC methods assume independent observations and process autocorrelation has been associated with increase in false alarm frequency. Methods Monthly mean raw mortality (at hospital discharge) time series, 1995–2009, at the individual Intensive Care unit (ICU) level, were generated from the Australia and New Zealand Intensive Care Society adult patient database. Evidence for series (i) autocorrelation and seasonality was demonstrated using (partial)-autocorrelation ((P)ACF) function displays and classical series decomposition and (ii) “in-control” status was sought using risk-adjusted (RA) exponentially weighted moving average (EWMA) control limits (3 sigma). Risk adjustment was achieved using a random coefficient (intercept as ICU site and slope as APACHE III score) logistic regression model, generating an expected mortality series. Application of time-series to an exemplar complete ICU series (1995-(end)2009) was via Box-Jenkins methodology: autoregressive moving average (ARMA) and (G)ARCH ((Generalised) Autoregressive Conditional Heteroscedasticity) models, the latter addressing volatility of the series variance. Results The overall data set, 1995-2009, consisted of 491324 records from 137 ICU sites; average raw mortality was 14.07%; average(SD) raw and expected mortalities ranged from 0.012(0.113) and 0.013(0.045) to 0.296(0.457) and 0.278(0.247) respectively. For the raw mortality series: 71 sites had continuous data for assessment up to or beyond lag40 and 35% had autocorrelation through to lag40; and of 36 sites with continuous data for ≥ 72 months, all demonstrated marked seasonality. Similar numbers and percentages were seen with the expected series. Out-of-control signalling was evident for the raw mortality series with respect to RA-EWMA control limits; a seasonal ARMA model, with GARCH effects, displayed white-noise residuals which were in-control with respect to EWMA control limits and one-step prediction error limits (3SE). The expected series was modelled with a multiplicative seasonal autoregressive model. Conclusions The data generating process of monthly raw mortality series at the ICU level displayed autocorrelation, seasonality and volatility. False-positive signalling of the raw mortality series was evident with respect to RA-EWMA control limits. A time series approach using residual control charts resolved these issues. PMID:23705957

  17. Generalized spheroidal wave equation and limiting cases

    NASA Astrophysics Data System (ADS)

    Figueiredo, B. D. Bonorino

    2007-01-01

    We find sets of solutions to the generalized spheroidal wave equation (GSWE) or, equivalently, to the confluent Heun equation. Each set is constituted by three solutions, one given by a series of ascending powers of the independent variable, and the others by series of regular and irregular confluent hypergeometric functions. For a fixed set, the solutions converge over different regions of the complex plane but present series coefficients proportional to each other. These solutions for the GSWE afford solutions to a double-confluent Heun equation by a taking-limit process due to Leaver. [E. W. Leaver, J. Math. Phys. 27, 1238 (1986)]. Another procedure, called Whittaker-Ince limit [B. D. Figueiredo, J. Math. Phys. 46, 113503 (2005)], provides solutions in series of powers and Bessel functions for two other equations with a different type of singularity at infinity. In addition, new solutions are obtained for the Whittaker-Hill and Mathieu equations [F. M. Arscott, Proc. R. Soc. Edinburg A67, 265 (1967)] by considering these as special cases of both the confluent and double-confluent Heun equations. In particular, we find that each of the Lindemann-Stieltjes solutions for the Mathieu equation [E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge University Press (1945)] is associated with two expansions in series of Bessel functions. We also discuss a set of solutions in series of hypergeometric and confluent hypergeometric functions for the GSWE and use their Leaver limits to obtain infinite-series solutions for the Schrödinger equation with an asymmetric double-Morse potential. Finally, the possibility of extending the solutions of the GSWE to the general Heun equation is briefly discussed.

  18. Learning time series for intelligent monitoring

    NASA Technical Reports Server (NTRS)

    Manganaris, Stefanos; Fisher, Doug

    1994-01-01

    We address the problem of classifying time series according to their morphological features in the time domain. In a supervised machine-learning framework, we induce a classification procedure from a set of preclassified examples. For each class, we infer a model that captures its morphological features using Bayesian model induction and the minimum message length approach to assign priors. In the performance task, we classify a time series in one of the learned classes when there is enough evidence to support that decision. Time series with sufficiently novel features, belonging to classes not present in the training set, are recognized as such. We report results from experiments in a monitoring domain of interest to NASA.

  19. Capture the Moment: Using Digital Photography in Early Childhood Settings. Research in Practice Series

    ERIC Educational Resources Information Center

    Walters, Kim

    2006-01-01

    The Research in Practice Series has been developed to provide practical, easy to read, up-to-date information and support to a growing national readership of early childhood workers. Digital photography opens a whole new world of communication within early childhood settings, giving scope for devising more effective ways of engaging children,…

  20. Data catalog series for space science and applications flight missions. Volume 1B: Descriptions of data sets from planetary and heliocentric spacecraft and investigations

    NASA Technical Reports Server (NTRS)

    Horowitz, Richard (Compiler); Jackson, John E. (Compiler); Cameron, Winifred S. (Compiler)

    1987-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of planetary and heliocentric spacecraft and associated experiments. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  1. Palm vein recognition based on directional empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Lee, Jen-Chun; Chang, Chien-Ping; Chen, Wei-Kuei

    2014-04-01

    Directional empirical mode decomposition (DEMD) has recently been proposed to make empirical mode decomposition suitable for the processing of texture analysis. Using DEMD, samples are decomposed into a series of images, referred to as two-dimensional intrinsic mode functions (2-D IMFs), from finer to large scale. A DEMD-based 2 linear discriminant analysis (LDA) for palm vein recognition is proposed. The proposed method progresses through three steps: (i) a set of 2-D IMF features of various scale and orientation are extracted using DEMD, (ii) the 2LDA method is then applied to reduce the dimensionality of the feature space in both the row and column directions, and (iii) the nearest neighbor classifier is used for classification. We also propose two strategies for using the set of 2-D IMF features: ensemble DEMD vein representation (EDVR) and multichannel DEMD vein representation (MDVR). In experiments using palm vein databases, the proposed MDVR-based 2LDA method achieved recognition accuracy of 99.73%, thereby demonstrating its feasibility for palm vein recognition.

  2. Detecting Rhythms in Time Series with RAIN

    PubMed Central

    Thaben, Paul F.; Westermark, Pål O.

    2014-01-01

    A fundamental problem in research on biological rhythms is that of detecting and assessing the significance of rhythms in large sets of data. Classic methods based on Fourier theory are often hampered by the complex and unpredictable characteristics of experimental and biological noise. Robust nonparametric methods are available but are limited to specific wave forms. We present RAIN, a robust nonparametric method for the detection of rhythms of prespecified periods in biological data that can detect arbitrary wave forms. When applied to measurements of the circadian transcriptome and proteome of mouse liver, the sets of transcripts and proteins with rhythmic abundances were significantly expanded due to the increased detection power, when we controlled for false discovery. Validation against independent data confirmed the quality of these results. The large expansion of the circadian mouse liver transcriptomes and proteomes reflected the prevalence of nonsymmetric wave forms and led to new conclusions about function. RAIN was implemented as a freely available software package for R/Bioconductor and is presently also available as a web interface. PMID:25326247

  3. Discontinuous Galerkin algorithms for fully kinetic plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juno, J.; Hakim, A.; TenBarge, J.

    Here, we present a new algorithm for the discretization of the non-relativistic Vlasov–Maxwell system of equations for the study of plasmas in the kinetic regime. Using the discontinuous Galerkin finite element method for the spatial discretization, we obtain a high order accurate solution for the plasma's distribution function. Time stepping for the distribution function is done explicitly with a third order strong-stability preserving Runge–Kutta method. Since the Vlasov equation in the Vlasov–Maxwell system is a high dimensional transport equation, up to six dimensions plus time, we take special care to note various features we have implemented to reduce the costmore » while maintaining the integrity of the solution, including the use of a reduced high-order basis set. A series of benchmarks, from simple wave and shock calculations, to a five dimensional turbulence simulation, are presented to verify the efficacy of our set of numerical methods, as well as demonstrate the power of the implemented features.« less

  4. Discontinuous Galerkin algorithms for fully kinetic plasmas

    DOE PAGES

    Juno, J.; Hakim, A.; TenBarge, J.; ...

    2017-10-10

    Here, we present a new algorithm for the discretization of the non-relativistic Vlasov–Maxwell system of equations for the study of plasmas in the kinetic regime. Using the discontinuous Galerkin finite element method for the spatial discretization, we obtain a high order accurate solution for the plasma's distribution function. Time stepping for the distribution function is done explicitly with a third order strong-stability preserving Runge–Kutta method. Since the Vlasov equation in the Vlasov–Maxwell system is a high dimensional transport equation, up to six dimensions plus time, we take special care to note various features we have implemented to reduce the costmore » while maintaining the integrity of the solution, including the use of a reduced high-order basis set. A series of benchmarks, from simple wave and shock calculations, to a five dimensional turbulence simulation, are presented to verify the efficacy of our set of numerical methods, as well as demonstrate the power of the implemented features.« less

  5. BAC-MP4 predictions of thermochemistry for the gas-phase tin compounds in the Sn-H-C-Cl system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allendorf, Mark D.; Melius, Carl F.

    2004-09-01

    In this work, the BAC-MP4 method is extended for the first time to compounds in the fourth row of the periodic table, resulting in a self-consistent set of thermochemical data for 56 tin-containing molecules in the Sn-H-C-Cl system. The BAC-MP4 method combines ab initio electronic structure calculations with empirical corrections to obtain accurate heats of formation. To obtain electronic energies for tin-containing species, the standard 6-31G(d,p) basis set used in BAC-MP4 calculations is augmented with a relativistic effective core potential to describe the electronic structure of the tin atom. Both stable compounds and radical species are included in this study.more » Trends within homologous series and calculated bond dissociation energies are consistent with previous BAC-MP4 predictions for group 14 compounds and the limited data available from the literature, indicating that the method is performing well for these compounds.« less

  6. Use of the Monte Carlo Method for OECD Principles-Guided QSAR Modeling of SIRT1 Inhibitors.

    PubMed

    Kumar, Ashwani; Chauhan, Shilpi

    2017-01-01

    SIRT1 inhibitors offer therapeutic potential for the treatment of a number of diseases including cancer and human immunodeficiency virus infection. A diverse series of 45 compounds with reported SIRT1 inhibitory activity has been employed for the development of quantitative structure-activity relationship (QSAR) models using the Monte Carlo optimization method. This method makes use of simplified molecular input line entry system notation of the molecular structure. The QSAR models were built up according to OECD principles. Three subsets of three splits were examined and validated by respective external sets. All the three described models have good statistical quality. The best model has the following statistical characteristics: R 2  = 0.8350, Q 2 test  = 0.7491 for the test set and R 2  = 0.9655, Q 2 ext  = 0.9261 for the validation set. In the mechanistic interpretation, structural attributes responsible for the endpoint increase and decrease are defined. Further, the design of some prospective SIRT1 inhibitors is also presented on the basis of these structural attributes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. cDREM: inferring dynamic combinatorial gene regulation.

    PubMed

    Wise, Aaron; Bar-Joseph, Ziv

    2015-04-01

    Genes are often combinatorially regulated by multiple transcription factors (TFs). Such combinatorial regulation plays an important role in development and facilitates the ability of cells to respond to different stresses. While a number of approaches have utilized sequence and ChIP-based datasets to study combinational regulation, these have often ignored the combinational logic and the dynamics associated with such regulation. Here we present cDREM, a new method for reconstructing dynamic models of combinatorial regulation. cDREM integrates time series gene expression data with (static) protein interaction data. The method is based on a hidden Markov model and utilizes the sparse group Lasso to identify small subsets of combinatorially active TFs, their time of activation, and the logical function they implement. We tested cDREM on yeast and human data sets. Using yeast we show that the predicted combinatorial sets agree with other high throughput genomic datasets and improve upon prior methods developed to infer combinatorial regulation. Applying cDREM to study human response to flu, we were able to identify several combinatorial TF sets, some of which were known to regulate immune response while others represent novel combinations of important TFs.

  8. Life cycle assessment of TV sets in China: a case study of the impacts of CRT monitors.

    PubMed

    Song, Qingbin; Wang, Zhishi; Li, Jinhui; Zeng, Xianlai

    2012-10-01

    Along with the rapid increase in both production and use of TV sets in China, there is an increasing awareness of the environmental impacts related to the accelerating mass production, electricity use, and waste management of these sets. This paper aims to describe the application of life cycle assessment (LCA) to investigate the environmental performance of Chinese TV sets. An assessment of the TV set device (focusing on the Cathode Ray Tube (CRT) monitor) was carried out using a detailed modular LCA based on the international standards of the ISO 14040 series. The LCA was constructed using SimaPro software version 7.2 and expressed with the Eco-indicator' 99 life cycle impact assessment method. For a sensitivity analysis of the overall LCA results, the CML method was used in order to estimate the influence of the choice of the assessment method on the results. Life cycle inventory information was compiled by Ecoinvent 2.2 databases, combined with literature and field investigations on the current Chinese situation. The established LCA study shows that the use stage of such devices has the highest environmental impact, followed by the manufacturing stage. In the manufacturing stage, the CRT and the Printed Circuit Board (PCB) are those components contributing the most environmental impacts. During the use phase, the environmental impacts are due entirely to the methods of electricity generation used to run them, since no other aspects were taken into account for this phase. The final processing step-the end-of-life stage-can lead to a clear environmental benefit when the TV sets are processed through the formal dismantling enterprises in China. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Life cycle assessment of TV sets in China: A case study of the impacts of CRT monitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song Qingbin; Wang Zhishi, E-mail: zswang@umac.mo; Li Jinhui

    2012-10-15

    Along with the rapid increase in both production and use of TV sets in China, there is an increasing awareness of the environmental impacts related to the accelerating mass production, electricity use, and waste management of these sets. This paper aims to describe the application of life cycle assessment (LCA) to investigate the environmental performance of Chinese TV sets. An assessment of the TV set device (focusing on the Cathode Ray Tube (CRT) monitor) was carried out using a detailed modular LCA based on the international standards of the ISO 14040 series. The LCA was constructed using SimaPro software versionmore » 7.2 and expressed with the Eco-indicator' 99 life cycle impact assessment method. For a sensitivity analysis of the overall LCA results, the CML method was used in order to estimate the influence of the choice of the assessment method on the results. Life cycle inventory information was compiled by Ecoinvent 2.2 databases, combined with literature and field investigations on the current Chinese situation. The established LCA study shows that the use stage of such devices has the highest environmental impact, followed by the manufacturing stage. In the manufacturing stage, the CRT and the Printed Circuit Board (PCB) are those components contributing the most environmental impacts. During the use phase, the environmental impacts are due entirely to the methods of electricity generation used to run them, since no other aspects were taken into account for this phase. The final processing step-the end-of-life stage-can lead to a clear environmental benefit when the TV sets are processed through the formal dismantling enterprises in China.« less

  10. Layered Ensemble Architecture for Time Series Forecasting.

    PubMed

    Rahman, Md Mustafizur; Islam, Md Monirul; Murase, Kazuyuki; Yao, Xin

    2016-01-01

    Time series forecasting (TSF) has been widely used in many application areas such as science, engineering, and finance. The phenomena generating time series are usually unknown and information available for forecasting is only limited to the past values of the series. It is, therefore, necessary to use an appropriate number of past values, termed lag, for forecasting. This paper proposes a layered ensemble architecture (LEA) for TSF problems. Our LEA consists of two layers, each of which uses an ensemble of multilayer perceptron (MLP) networks. While the first ensemble layer tries to find an appropriate lag, the second ensemble layer employs the obtained lag for forecasting. Unlike most previous work on TSF, the proposed architecture considers both accuracy and diversity of the individual networks in constructing an ensemble. LEA trains different networks in the ensemble by using different training sets with an aim of maintaining diversity among the networks. However, it uses the appropriate lag and combines the best trained networks to construct the ensemble. This indicates LEAs emphasis on accuracy of the networks. The proposed architecture has been tested extensively on time series data of neural network (NN)3 and NN5 competitions. It has also been tested on several standard benchmark time series data. In terms of forecasting accuracy, our experimental results have revealed clearly that LEA is better than other ensemble and nonensemble methods.

  11. Analyzing the effect of selected control policy measures and sociodemographic factors on alcoholic beverage consumption in Europe within the AMPHORA project: statistical methods.

    PubMed

    Baccini, Michela; Carreras, Giulia

    2014-10-01

    This paper describes the methods used to investigate variations in total alcoholic beverage consumption as related to selected control intervention policies and other socioeconomic factors (unplanned factors) within 12 European countries involved in the AMPHORA project. The analysis presented several critical points: presence of missing values, strong correlation among the unplanned factors, long-term waves or trends in both the time series of alcohol consumption and the time series of the main explanatory variables. These difficulties were addressed by implementing a multiple imputation procedure for filling in missing values, then specifying for each country a multiple regression model which accounted for time trend, policy measures and a limited set of unplanned factors, selected in advance on the basis of sociological and statistical considerations are addressed. This approach allowed estimating the "net" effect of the selected control policies on alcohol consumption, but not the association between each unplanned factor and the outcome.

  12. An Iterative Time Windowed Signature Algorithm for Time Dependent Transcription Module Discovery

    PubMed Central

    Meng, Jia; Gao, Shou-Jiang; Huang, Yufei

    2010-01-01

    An algorithm for the discovery of time varying modules using genome-wide expression data is present here. When applied to large-scale time serious data, our method is designed to discover not only the transcription modules but also their timing information, which is rarely annotated by the existing approaches. Rather than assuming commonly defined time constant transcription modules, a module is depicted as a set of genes that are co-regulated during a specific period of time, i.e., a time dependent transcription module (TDTM). A rigorous mathematical definition of TDTM is provided, which is serve as an objective function for retrieving modules. Based on the definition, an effective signature algorithm is proposed that iteratively searches the transcription modules from the time series data. The proposed method was tested on the simulated systems and applied to the human time series microarray data during Kaposi's sarcoma-associated herpesvirus (KSHV) infection. The result has been verified by Expression Analysis Systematic Explorer. PMID:21552463

  13. Further distinctive investigations of the Sumudu transform

    NASA Astrophysics Data System (ADS)

    Belgacem, Fethi Bin Muhammad; Silambarasan, Rathinavel

    2017-01-01

    The Sumudu transform of time function f (t) is computed by making the transform variable u of Sumudu as factor of function f (t) and then integrated against exp(-t). Being a factor in the original function f (t), becomes f (ut) preserves units and dimension. This preservation property distinguishes Sumudu from other integral transforms. With obtained definition, the related complete set of properties were derived for the Sumudu transform. Framgment of Symbolic C++ program was given for Sumudu computation as series. Also procedure in Maple was given for Sumudu computation in closed form. The Method proposed herein not depends neither on any of homotopy methods such as HPM, HAM nor any of decomposition methods such as ADM.

  14. Comparative efficacy of interventions to promote hand hygiene in hospital: systematic review and network meta-analysis

    PubMed Central

    Hongsuwan, Maliwan; Limmathurotsakul, Direk; Lubell, Yoel; Lee, Andie S; Harbarth, Stephan; Day, Nicholas P J; Graves, Nicholas; Cooper, Ben S

    2015-01-01

    Objective To evaluate the relative efficacy of the World Health Organization 2005 campaign (WHO-5) and other interventions to promote hand hygiene among healthcare workers in hospital settings and to summarize associated information on use of resources. Design Systematic review and network meta-analysis. Data sources Medline, Embase, CINAHL, NHS Economic Evaluation Database, NHS Centre for Reviews and Dissemination, Cochrane Library, and the EPOC register (December 2009 to February 2014); studies selected by the same search terms in previous systematic reviews (1980-2009). Review methods Included studies were randomised controlled trials, non-randomised trials, controlled before-after trials, and interrupted time series studies implementing an intervention to improve compliance with hand hygiene among healthcare workers in hospital settings and measuring compliance or appropriate proxies that met predefined quality inclusion criteria. When studies had not used appropriate analytical methods, primary data were re-analysed. Random effects and network meta-analyses were performed on studies reporting directly observed compliance with hand hygiene when they were considered sufficiently homogeneous with regard to interventions and participants. Information on resources required for interventions was extracted and graded into three levels. Results Of 3639 studies retrieved, 41 met the inclusion criteria (six randomised controlled trials, 32 interrupted time series, one non-randomised trial, and two controlled before-after studies). Meta-analysis of two randomised controlled trials showed the addition of goal setting to WHO-5 was associated with improved compliance (pooled odds ratio 1.35, 95% confidence interval 1.04 to 1.76; I2=81%). Of 22 pairwise comparisons from interrupted time series, 18 showed stepwise increases in compliance with hand hygiene, and all but four showed a trend for increasing compliance after the intervention. Network meta-analysis indicated considerable uncertainty in the relative effectiveness of interventions, but nonetheless provided evidence that WHO-5 is effective and that compliance can be further improved by adding interventions including goal setting, reward incentives, and accountability. Nineteen studies reported clinical outcomes; data from these were consistent with clinically important reductions in rates of infection resulting from improved hand hygiene for some but not all important hospital pathogens. Reported costs of interventions ranged from $225 to $4669 (£146-£3035; €204-€4229) per 1000 bed days. Conclusion Promotion of hand hygiene with WHO-5 is effective at increasing compliance in healthcare workers. Addition of goal setting, reward incentives, and accountability strategies can lead to further improvements. Reporting of resources required for such interventions remains inadequate. PMID:26220070

  15. Theoretical study on the molecular structure and vibrational properties, NBO and HOMO-LUMO analysis of the POX3 (X = F, Cl, Br, I) series of molecules

    NASA Astrophysics Data System (ADS)

    Galván, Jorge E.; Gil, Diego M.; Lanús, Hernán E.; Altabef, Aida Ben

    2015-02-01

    The fourth member of the series of compounds of the type POX3 with X = I was synthesized and characterized by infrared spectroscopy. The geometrical parameters and vibrational properties of POX3 (X = F, Cl, Br, I) molecules were investigated theoretically by means DFT and ab initio methods. Available geometrical and vibrational data were used together with theoretical calculations in order to obtain a set of scaled force constants. The observed trends in geometrical parameters are analyzed and compared with those obtained in a previous work for the VOX3 (X = F, Cl, Br, I) series of compounds. NBO analysis was performed in order to know the hyper-conjugative interactions that favor one structure over another. The molecular properties such as ionization potential, electron affinity, electronegativity, chemical potential, chemical hardness, softness and global electrophilicity index have been deduced from HOMO-LUMO analysis.

  16. A multivariate time series approach to modeling and forecasting demand in the emergency department.

    PubMed

    Jones, Spencer S; Evans, R Scott; Allen, Todd L; Thomas, Alun; Haug, Peter J; Welch, Shari J; Snow, Gregory L

    2009-02-01

    The goals of this investigation were to study the temporal relationships between the demands for key resources in the emergency department (ED) and the inpatient hospital, and to develop multivariate forecasting models. Hourly data were collected from three diverse hospitals for the year 2006. Descriptive analysis and model fitting were carried out using graphical and multivariate time series methods. Multivariate models were compared to a univariate benchmark model in terms of their ability to provide out-of-sample forecasts of ED census and the demands for diagnostic resources. Descriptive analyses revealed little temporal interaction between the demand for inpatient resources and the demand for ED resources at the facilities considered. Multivariate models provided more accurate forecasts of ED census and of the demands for diagnostic resources. Our results suggest that multivariate time series models can be used to reliably forecast ED patient census; however, forecasts of the demands for diagnostic resources were not sufficiently reliable to be useful in the clinical setting.

  17. Comparison of the Performances of Five Primer Sets for the Detection and Quantification of Plasmodium in Anopheline Vectors by Real-Time PCR.

    PubMed

    Chaumeau, V; Andolina, C; Fustec, B; Tuikue Ndam, N; Brengues, C; Herder, S; Cerqueira, D; Chareonviriyaphap, T; Nosten, F; Corbel, V

    2016-01-01

    Quantitative real-time polymerase chain reaction (qrtPCR) has made a significant improvement for the detection of Plasmodium in anopheline vectors. A wide variety of primers has been used in different assays, mostly adapted from molecular diagnosis of malaria in human. However, such an adaptation can impact the sensitivity of the PCR. Therefore we compared the sensitivity of five primer sets with different molecular targets on blood stages, sporozoites and oocysts standards of Plasmodium falciparum (Pf) and P. vivax (Pv). Dilution series of standard DNA were used to discriminate between methods at low concentrations of parasite and to generate standard curves suitable for the absolute quantification of Plasmodium sporozoites. Our results showed that the best primers to detect blood stages were not necessarily the best ones to detect sporozoites. Absolute detection threshold of our qrtPCR assay varied between 3.6 and 360 Pv sporozoites and between 6 and 600 Pf sporozoites per mosquito according to the primer set used in the reaction mix. In this paper, we discuss the general performance of each primer set and highlight the need to use efficient detection methods for transmission studies.

  18. Comparison of the Performances of Five Primer Sets for the Detection and Quantification of Plasmodium in Anopheline Vectors by Real-Time PCR

    PubMed Central

    Chaumeau, V.; Andolina, C.; Fustec, B.; Tuikue Ndam, N.; Brengues, C.; Herder, S.; Cerqueira, D.; Chareonviriyaphap, T.; Nosten, F.; Corbel, V.

    2016-01-01

    Quantitative real-time polymerase chain reaction (qrtPCR) has made a significant improvement for the detection of Plasmodium in anopheline vectors. A wide variety of primers has been used in different assays, mostly adapted from molecular diagnosis of malaria in human. However, such an adaptation can impact the sensitivity of the PCR. Therefore we compared the sensitivity of five primer sets with different molecular targets on blood stages, sporozoites and oocysts standards of Plasmodium falciparum (Pf) and P. vivax (Pv). Dilution series of standard DNA were used to discriminate between methods at low concentrations of parasite and to generate standard curves suitable for the absolute quantification of Plasmodium sporozoites. Our results showed that the best primers to detect blood stages were not necessarily the best ones to detect sporozoites. Absolute detection threshold of our qrtPCR assay varied between 3.6 and 360 Pv sporozoites and between 6 and 600 Pf sporozoites per mosquito according to the primer set used in the reaction mix. In this paper, we discuss the general performance of each primer set and highlight the need to use efficient detection methods for transmission studies. PMID:27441839

  19. QSAR models based on quantum topological molecular similarity.

    PubMed

    Popelier, P L A; Smith, P J

    2006-07-01

    A new method called quantum topological molecular similarity (QTMS) was fairly recently proposed [J. Chem. Inf. Comp. Sc., 41, 2001, 764] to construct a variety of medicinal, ecological and physical organic QSAR/QSPRs. QTMS method uses quantum chemical topology (QCT) to define electronic descriptors drawn from modern ab initio wave functions of geometry-optimised molecules. It was shown that the current abundance of computing power can be utilised to inject realistic descriptors into QSAR/QSPRs. In this article we study seven datasets of medicinal interest : the dissociation constants (pK(a)) for a set of substituted imidazolines , the pK(a) of imidazoles , the ability of a set of indole derivatives to displace [(3)H] flunitrazepam from binding to bovine cortical membranes , the influenza inhibition constants for a set of benzimidazoles , the interaction constants for a set of amides and the enzyme liver alcohol dehydrogenase , the natriuretic activity of sulphonamide carbonic anhydrase inhibitors and the toxicity of a series of benzyl alcohols. A partial least square analysis in conjunction with a genetic algorithm delivered excellent models. They are also able to highlight the active site, of the ligand or the molecule whose structure determines the activity. The advantages and limitations of QTMS are discussed.

  20. An extended harmonic balance method based on incremental nonlinear control parameters

    NASA Astrophysics Data System (ADS)

    Khodaparast, Hamed Haddad; Madinei, Hadi; Friswell, Michael I.; Adhikari, Sondipon; Coggon, Simon; Cooper, Jonathan E.

    2017-02-01

    A new formulation for calculating the steady-state responses of multiple-degree-of-freedom (MDOF) non-linear dynamic systems due to harmonic excitation is developed. This is aimed at solving multi-dimensional nonlinear systems using linear equations. Nonlinearity is parameterised by a set of 'non-linear control parameters' such that the dynamic system is effectively linear for zero values of these parameters and nonlinearity increases with increasing values of these parameters. Two sets of linear equations which are formed from a first-order truncated Taylor series expansion are developed. The first set of linear equations provides the summation of sensitivities of linear system responses with respect to non-linear control parameters and the second set are recursive equations that use the previous responses to update the sensitivities. The obtained sensitivities of steady-state responses are then used to calculate the steady state responses of non-linear dynamic systems in an iterative process. The application and verification of the method are illustrated using a non-linear Micro-Electro-Mechanical System (MEMS) subject to a base harmonic excitation. The non-linear control parameters in these examples are the DC voltages that are applied to the electrodes of the MEMS devices.

  1. A review of the matrix-exponential formalism in radiative transfer

    NASA Astrophysics Data System (ADS)

    Efremenko, Dmitry S.; Molina García, Víctor; Gimeno García, Sebastián; Doicu, Adrian

    2017-07-01

    This paper outlines the matrix exponential description of radiative transfer. The eigendecomposition method which serves as a basis for computing the matrix exponential and for representing the solution in a discrete ordinate setting is considered. The mathematical equivalence of the discrete ordinate method, the matrix operator method, and the matrix Riccati equations method is proved rigorously by means of the matrix exponential formalism. For optically thin layers, approximate solution methods relying on the Padé and Taylor series approximations to the matrix exponential, as well as on the matrix Riccati equations, are presented. For optically thick layers, the asymptotic theory with higher-order corrections is derived, and parameterizations of the asymptotic functions and constants for a water-cloud model with a Gamma size distribution are obtained.

  2. Water Level Monitoring on Tibetan Lakes Based on Icesat and Envisat Data Series

    NASA Astrophysics Data System (ADS)

    Li, H. W.; Qiao, G.; Wu, Y. J.; Cao, Y. J.; Mi, H.

    2017-09-01

    Satellite altimetry technique is an effective method to monitor the water level of lakes in a wide range, especially in sparsely populated areas, such as the Tibet Plateau (TP). To provide high quality data for time-series change detection of lake water level, an automatic and efficient algorithm for lake water footprint (LWF) detection in a wide range is used. Based on ICESat GLA14 Release634 data and ENVISat GDR 1Hz data, water level of 167 lakes were obtained from ICESat data series, and water level of 120 lakes were obtained from ENVISat data series. Among them, 67 lakes contained two data series. Mean standard deviation of all lakes is 0.088 meters (ICESat), 0.339 meters (ENVISat). Combination of multi-source altimetry data is helpful for us to get longer and more dense periods cover water level, study the lake level changes, manage water resources and understand the impacts of climate change better. In addition, the standard deviation of LWF elevation used to calculate the water level were analyzed by month. Based on lake data set for the TP from the 1960s, 2005, and 2014 in Scientific Data, it is found that the water level changes in the TP have a strong spatial correlation with the area changes.

  3. Retrieving air humidity, global solar radiation, and reference evapotranspiration from daily temperatures: development and validation of new methods for Mexico. Part III: reference evapotranspiration

    NASA Astrophysics Data System (ADS)

    Lobit, P.; Gómez Tagle, A.; Bautista, F.; Lhomme, J. P.

    2017-07-01

    We evaluated two methods to estimate evapotranspiration (ETo) from minimal weather records (daily maximum and minimum temperatures) in Mexico: a modified reduced set FAO-Penman-Monteith method (Allen et al. 1998, Rome, Italy) and the Hargreaves and Samani (Appl Eng Agric 1(2): 96-99, 1985) method. In the reduced set method, the FAO-Penman-Monteith equation was applied with vapor pressure and radiation estimated from temperature data using two new models (see first and second articles in this series): mean temperature as the average of maximum and minimum temperature corrected for a constant bias and constant wind speed. The Hargreaves-Samani method combines two empirical relationships: one between diurnal temperature range ΔT and shortwave radiation Rs, and another one between average temperature and the ratio ETo/Rs: both relationships were evaluated and calibrated for Mexico. After performing a sensitivity analysis to evaluate the impact of different approximations on the estimation of Rs and ETo, several model combinations were tested to predict ETo from daily maximum and minimum temperature alone. The quality of fit of these models was evaluated on 786 weather stations covering most of the territory of Mexico. The best method was found to be a combination of the FAO-Penman-Monteith reduced set equation with the new radiation estimation and vapor pressure model. As an alternative, a recalibration of the Hargreaves-Samani equation is proposed.

  4. A correlated ab initio study of linear carbon-chain radicals CnH (n = 2-7)

    NASA Technical Reports Server (NTRS)

    Woon, D. E.; Loew, G. H. (Principal Investigator)

    1995-01-01

    Linear carbon-chain radicals CnH for n = 2-7 have been studied with correlation consistent valence and core-valence basis sets and the coupled cluster method RCCSD(T). Equilibrium structures, rotational constants, and dipole moments are reported and compared with available experimental data. The ground state of the even-n series changes from 2 sigma+ to 2 pi as the chain is extended. For C4H, the 2 sigma+ state was found to lie only 72 cm-1 below the 2 pi state in the estimated complete basis set limit for valence correlation. The C2H- and C3H- anions have also been characterized.

  5. An evaluation of sampling and full enumeration strategies for Fisher Jenks classification in big data settings

    USGS Publications Warehouse

    Rey, Sergio J.; Stephens, Philip A.; Laura, Jason R.

    2017-01-01

    Large data contexts present a number of challenges to optimal choropleth map classifiers. Application of optimal classifiers to a sample of the attribute space is one proposed solution. The properties of alternative sampling-based classification methods are examined through a series of Monte Carlo simulations. The impacts of spatial autocorrelation, number of desired classes, and form of sampling are shown to have significant impacts on the accuracy of map classifications. Tradeoffs between improved speed of the sampling approaches and loss of accuracy are also considered. The results suggest the possibility of guiding the choice of classification scheme as a function of the properties of large data sets.

  6. Quantifying non-linear dynamics of mass-springs in series oscillators via asymptotic approach

    NASA Astrophysics Data System (ADS)

    Starosta, Roman; Sypniewska-Kamińska, Grażyna; Awrejcewicz, Jan

    2017-05-01

    Dynamical regular response of an oscillator with two serially connected springs with nonlinear characteristics of cubic type and governed by a set of differential-algebraic equations (DAEs) is studied. The classical approach of the multiple scales method (MSM) in time domain has been employed and appropriately modified to solve the governing DAEs of two systems, i.e. with one- and two degrees-of-freedom. The approximate analytical solutions have been verified by numerical simulations.

  7. Enlisted Personnel Allocation System. Volume 1 and 2 - Appendixes

    DTIC Science & Technology

    1988-12-01

    A-3 displays the overall goal achievement by mission for these two years. Success in recruiting increased in FY82 over FY81 with only two lower...maintain military-civilian pay comparability, as well as educational benefits, in order to have continued success in recruiting quality soldiers. Home...Divisive methods begin with all the objects or individuals as part of one cluster, and proceed by a series of successive splittings until a set of many

  8. Development in Wear Debris Morphological Analysis at RAF Early Failure Detection Centres

    DTIC Science & Technology

    1996-04-01

    variable, although there have been attempts made to specify good practise which utilise either a wear particle atlas , (8) or attempt to lay down a set...personnel arrive at a correct diagnosis of the problem. Application to EFDC Operations: Wear Particle Atlas : The purpose of developing a series of...advantage of using this method is that the atlas can be specifically dedicated to the requirements of a particular engine type or EFDC operation, and the

  9. An application of actuarial methods in psychiatric diagnosis.

    PubMed

    Overall, J E; Higgins, C W

    1977-10-01

    An actuarial program for psychiatric diagnosis is evaluated for agreement with final clinical diagnosis in a series of 288 patients. The acturial program provides a probability differential diagnosis based on an analysis of history and background data, symptom rating profiles, and MMPI clinical scale profiles. The observed agreement with final clinical diagnosis is approximately 50% higher than previously reported for psychological testing in this same setting. The results emphasize the importance for psychologists of clinical interview and observation skills.

  10. Novel Strategies for the Removal of Toxic Metals from Soils and Waters

    NASA Astrophysics Data System (ADS)

    Roundhill, D. Max

    2004-02-01

    This article surveys the toxicities of mercury, cadmium, lead, copper, cadmium, and the actinides. Strategies for the removal of these metals include surfactants, aqueous biphasic systems, and liquid membranes. For soils, both in situ stabilization and detection are discussed. For extraction from soils, electrokinetic extraction, phytoremediation, and bioremediation methods are critically evaluated. This article provides an educator with the resources to set up a series of lectures on inorganic aspects of environmental chemistry.

  11. BCI Competition IV – Data Set I: Learning Discriminative Patterns for Self-Paced EEG-Based Motor Imagery Detection

    PubMed Central

    Zhang, Haihong; Guan, Cuntai; Ang, Kai Keng; Wang, Chuanchu

    2012-01-01

    Detecting motor imagery activities versus non-control in brain signals is the basis of self-paced brain-computer interfaces (BCIs), but also poses a considerable challenge to signal processing due to the complex and non-stationary characteristics of motor imagery as well as non-control. This paper presents a self-paced BCI based on a robust learning mechanism that extracts and selects spatio-spectral features for differentiating multiple EEG classes. It also employs a non-linear regression and post-processing technique for predicting the time-series of class labels from the spatio-spectral features. The method was validated in the BCI Competition IV on Dataset I where it produced the lowest prediction error of class labels continuously. This report also presents and discusses analysis of the method using the competition data set. PMID:22347153

  12. Prediction of near-surface soil moisture at large scale by digital terrain modeling and neural networks.

    PubMed

    Lavado Contador, J F; Maneta, M; Schnabel, S

    2006-10-01

    The capability of Artificial Neural Network models to forecast near-surface soil moisture at fine spatial scale resolution has been tested for a 99.5 ha watershed located in SW Spain using several easy to achieve digital models of topographic and land cover variables as inputs and a series of soil moisture measurements as training data set. The study methods were designed in order to determining the potentials of the neural network model as a tool to gain insight into soil moisture distribution factors and also in order to optimize the data sampling scheme finding the optimum size of the training data set. Results suggest the efficiency of the methods in forecasting soil moisture, as a tool to assess the optimum number of field samples, and the importance of the variables selected in explaining the final map obtained.

  13. Implementation of the block-Krylov boundary flexibility method of component synthesis

    NASA Technical Reports Server (NTRS)

    Carney, Kelly S.; Abdallah, Ayman A.; Hucklebridge, Arthur A.

    1993-01-01

    A method of dynamic substructuring is presented which utilizes a set of static Ritz vectors as a replacement for normal eigenvectors in component mode synthesis. This set of Ritz vectors is generated in a recurrence relationship, which has the form of a block-Krylov subspace. The initial seed to the recurrence algorithm is based on the boundary flexibility vectors of the component. This algorithm is not load-dependent, is applicable to both fixed and free-interface boundary components, and results in a general component model appropriate for any type of dynamic analysis. This methodology was implemented in the MSC/NASTRAN normal modes solution sequence using DMAP. The accuracy is found to be comparable to that of component synthesis based upon normal modes. The block-Krylov recurrence algorithm is a series of static solutions and so requires significantly less computation than solving the normal eigenspace problem.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivasseau, Vincent, E-mail: vincent.rivasseau@th.u-psud.fr, E-mail: adrian.tanasa@ens-lyon.org; Tanasa, Adrian, E-mail: vincent.rivasseau@th.u-psud.fr, E-mail: adrian.tanasa@ens-lyon.org

    The Loop Vertex Expansion (LVE) is a quantum field theory (QFT) method which explicitly computes the Borel sum of Feynman perturbation series. This LVE relies in a crucial way on symmetric tree weights which define a measure on the set of spanning trees of any connected graph. In this paper we generalize this method by defining new tree weights. They depend on the choice of a partition of a set of vertices of the graph, and when the partition is non-trivial, they are no longer symmetric under permutation of vertices. Nevertheless we prove they have the required positivity property tomore » lead to a convergent LVE; in fact we formulate this positivity property precisely for the first time. Our generalized tree weights are inspired by the Brydges-Battle-Federbush work on cluster expansions and could be particularly suited to the computation of connected functions in QFT. Several concrete examples are explicitly given.« less

  15. Techniques of Acceleration for Association Rule Induction with Pseudo Artificial Life Algorithm

    NASA Astrophysics Data System (ADS)

    Kanakubo, Masaaki; Hagiwara, Masafumi

    Frequent patterns mining is one of the important problems in data mining. Generally, the number of potential rules grows rapidly as the size of database increases. It is therefore hard for a user to extract the association rules. To avoid such a difficulty, we propose a new method for association rule induction with pseudo artificial life approach. The proposed method is to decide whether there exists an item set which contains N or more items in two transactions. If it exists, a series of item sets which are contained in the part of transactions will be recorded. The iteration of this step contributes to the extraction of association rules. It is not necessary to calculate the huge number of candidate rules. In the evaluation test, we compared the extracted association rules using our method with the rules using other algorithms like Apriori algorithm. As a result of the evaluation using huge retail market basket data, our method is approximately 10 and 20 times faster than the Apriori algorithm and many its variants.

  16. [Proposal of a method for collective analysis of work-related accidents in the hospital setting].

    PubMed

    Osório, Claudia; Machado, Jorge Mesquita Huet; Minayo-Gomez, Carlos

    2005-01-01

    The article presents a method for the analysis of work-related accidents in hospitals, with the double aim of analyzing accidents in light of actual work activity and enhancing the vitality of the various professions that comprise hospital work. This process involves both research and intervention, combining knowledge output with training of health professionals, fostering expanded participation by workers in managing their daily work. The method consists of stimulating workers to recreate the situation in which a given accident occurred, shifting themselves to the position of observers of their own work. In the first stage of analysis, workers are asked to show the work analyst how the accident occurred; in the second stage, the work accident victim and analyst jointly record the described series of events in a diagram; in the third, the resulting record is re-discussed and further elaborated; in the fourth, the work accident victim and analyst evaluate and implement measures aimed to prevent the accident from recurring. The article concludes by discussing the method's possibilities and limitations in the hospital setting.

  17. Nucleus segmentation in histology images with hierarchical multilevel thresholding

    NASA Astrophysics Data System (ADS)

    Ahmady Phoulady, Hady; Goldgof, Dmitry B.; Hall, Lawrence O.; Mouton, Peter R.

    2016-03-01

    Automatic segmentation of histological images is an important step for increasing throughput while maintaining high accuracy, avoiding variation from subjective bias, and reducing the costs for diagnosing human illnesses such as cancer and Alzheimer's disease. In this paper, we present a novel method for unsupervised segmentation of cell nuclei in stained histology tissue. Following an initial preprocessing step involving color deconvolution and image reconstruction, the segmentation step consists of multilevel thresholding and a series of morphological operations. The only parameter required for the method is the minimum region size, which is set according to the resolution of the image. Hence, the proposed method requires no training sets or parameter learning. Because the algorithm requires no assumptions or a priori information with regard to cell morphology, the automatic approach is generalizable across a wide range of tissues. Evaluation across a dataset consisting of diverse tissues, including breast, liver, gastric mucosa and bone marrow, shows superior performance over four other recent methods on the same dataset in terms of F-measure with precision and recall of 0.929 and 0.886, respectively.

  18. Goal setting dynamics that facilitate or impede a client-centered approach.

    PubMed

    Kessler, Dorothy; Walker, Ian; Sauvé-Schenk, Katrine; Egan, Mary

    2018-04-19

    Client-centred goal setting is central to the process of enabling occupation. Yet, there are multiple barriers to incorporating client-centred goal setting in practice. We sought to determine what might facilitate or impede the formation of client-centred goals in a context highly supportive of client-centred goal setting Methods: We used conversational analysis to examine goal-setting conversations that took place during a pilot trial of Occupational Performance Coaching for stroke survivors. Twelve goal-setting sessions were purposively selected, transcribed, and analyzed according to conventions for conversation analysis. Two main types of interactions were observed: introductory actions and goal selection actions. Introductory actions set the context for goal setting and involved sharing information and seeking clarification related to goal requirements and clients' occupational performance competencies. Goal selection actions were a series of interactions whereby the goals were explored, endorsed or dropped. Client-centred occupational performance goals may be facilitated through placing goal-setting in the context of life changes and lifelong development of goals, and through listening to clients' stories. Therapists may improve consistency in adoption of client-suggested goals through clarifying meaning attached to goals and being attuned to power dynamics and underlying values and beliefs around risk and goal attainability.

  19. Development and validation of a set of six adaptable prognosis prediction (SAP) models based on time-series real-world big data analysis for patients with cancer receiving chemotherapy: A multicenter case crossover study

    PubMed Central

    Kanai, Masashi; Okamoto, Kazuya; Yamamoto, Yosuke; Yoshioka, Akira; Hiramoto, Shuji; Nozaki, Akira; Nishikawa, Yoshitaka; Yamaguchi, Daisuke; Tomono, Teruko; Nakatsui, Masahiko; Baba, Mika; Morita, Tatsuya; Matsumoto, Shigemi; Kuroda, Tomohiro; Okuno, Yasushi; Muto, Manabu

    2017-01-01

    Background We aimed to develop an adaptable prognosis prediction model that could be applied at any time point during the treatment course for patients with cancer receiving chemotherapy, by applying time-series real-world big data. Methods Between April 2004 and September 2014, 4,997 patients with cancer who had received systemic chemotherapy were registered in a prospective cohort database at the Kyoto University Hospital. Of these, 2,693 patients with a death record were eligible for inclusion and divided into training (n = 1,341) and test (n = 1,352) cohorts. In total, 3,471,521 laboratory data at 115,738 time points, representing 40 laboratory items [e.g., white blood cell counts and albumin (Alb) levels] that were monitored for 1 year before the death event were applied for constructing prognosis prediction models. All possible prediction models comprising three different items from 40 laboratory items (40C3 = 9,880) were generated in the training cohort, and the model selection was performed in the test cohort. The fitness of the selected models was externally validated in the validation cohort from three independent settings. Results A prognosis prediction model utilizing Alb, lactate dehydrogenase, and neutrophils was selected based on a strong ability to predict death events within 1–6 months and a set of six prediction models corresponding to 1,2, 3, 4, 5, and 6 months was developed. The area under the curve (AUC) ranged from 0.852 for the 1 month model to 0.713 for the 6 month model. External validation supported the performance of these models. Conclusion By applying time-series real-world big data, we successfully developed a set of six adaptable prognosis prediction models for patients with cancer receiving chemotherapy. PMID:28837592

  20. Designing Psychological Treatments for Scalability: The PREMIUM Approach

    PubMed Central

    Vellakkal, Sukumar; Patel, Vikram

    2015-01-01

    Introduction Lack of access to empirically-supported psychological treatments (EPT) that are contextually appropriate and feasible to deliver by non-specialist health workers (referred to as ‘counsellors’) are major barrier for the treatment of mental health problems in resource poor countries. To address this barrier, the ‘Program for Effective Mental Health Interventions in Under-resourced Health Systems’ (PREMIUM) designed a method for the development of EPT for severe depression and harmful drinking. This was implemented over three years in India. This study assessed the relative usefulness and costs of the five ‘steps’ (Systematic reviews, In-depth interviews, Key informant surveys, Workshops with international experts, and Workshops with local experts) in the first phase of identifying the strategies and theoretical model of the treatment and two ‘steps’ (Case series with specialists, and Case series and pilot trial with counsellors) in the second phase of enhancing the acceptability and feasibility of its delivery by counsellors in PREMIUM with the aim of arriving at a parsimonious set of steps for future investigators to use for developing scalable EPT. Data and Methods The study used two sources of data: the usefulness ratings by the investigators and the resource utilization. The usefulness of each of the seven steps was assessed through the ratings by the investigators involved in the development of each of the two EPT, viz. Healthy Activity Program for severe depression and Counselling for Alcohol Problems for harmful drinking. Quantitative responses were elicited to rate the utility (usefulness/influence), followed by open-ended questions for explaining the rankings. The resources used by PREMIUM were computed in terms of time (months) and monetary costs. Results The theoretical core of the new treatments were consistent with those of EPT derived from global evidence, viz. Behavioural Activation and Motivational Enhancement for severe depression and harmful drinking respectively, indicating the universal applicability of these theories. All the steps of both phases in PREMIUM contributed to the development of the final EPT. However, if there were significant resource constraints, the steps can be limited to workshops with international and local experts in the first phase, and case series with specialists, and case series and pilot trial with counsellors in the second phase. Conclusions Integrating global evidence with local knowledge and practices are complementary and feasible goals to contribute to the development of contextually appropriate and feasible EPT in resource poor country settings. The emerging EPT share similar theoretical frameworks to those described in the global evidence. The PREMIUM method has relevance for any setting where populations have poor access to EPT as its explicit goal is to develop scalable treatments. PMID:26225853

  1. Identification and description of the momentum effect in studies of learning: An abstract science concept

    NASA Astrophysics Data System (ADS)

    Kwon, Jae-Sool; Mayer, Victor J.

    Several studies of the validity of the intensive time series design have revealed a post-intervention increase in the level of achievement data. This so called momentum effect has not been demonstrated through the application of an appropriate analysis technique. The purpose of this study was to identify and apply a technique that would adequately represent and describe such an effect if indeed it does occur, and to use that technique to study the momentum effect as it is observed in several data sets on the learning of the concept of plate tectonics. Subsequent to trials of several different analyses, a segmented straight line regression analysis was chosen and used on three different data sets. Each set revealed similar patterns of inflection points between lines with similar time intervals between inflections for those data from students with formal cognitive tendencies. These results seem to indicate that this method will indeed be useful in representing and identifying the presence and duration of the momentum effect in time series data on achievement. Since the momentum effect could be described in each of the data sets and since its presence seems a function of similar circumstances, support is given for its presence in the learning of abstract scientific concepts for formal cognitive tendency students. The results indicate that the duration of the momentum effect is related to the level of student understanding tested and the cognitive level of the learners.

  2. Portable and Accessible Video Modeling: Teaching a Series of Novel Skills within School and Community Settings

    ERIC Educational Resources Information Center

    Taber-Doughty, Teresa; Miller, Bridget; Shurr, Jordan; Wiles, Benjamin

    2013-01-01

    This study examined the effectiveness of self-operated video models on the skill acquisition of a series of novel tasks taught in community-based settings. In addition, the percent of independent task transitions and the duration at which four secondary students with a moderate intellectual disability transitioned between tasks was also examined.…

  3. Bayesian model averaging method for evaluating associations between air pollution and respiratory mortality: a time-series study

    PubMed Central

    Fang, Xin; Li, Runkui; Kan, Haidong; Bottai, Matteo; Fang, Fang

    2016-01-01

    Objective To demonstrate an application of Bayesian model averaging (BMA) with generalised additive mixed models (GAMM) and provide a novel modelling technique to assess the association between inhalable coarse particles (PM10) and respiratory mortality in time-series studies. Design A time-series study using regional death registry between 2009 and 2010. Setting 8 districts in a large metropolitan area in Northern China. Participants 9559 permanent residents of the 8 districts who died of respiratory diseases between 2009 and 2010. Main outcome measures Per cent increase in daily respiratory mortality rate (MR) per interquartile range (IQR) increase of PM10 concentration and corresponding 95% confidence interval (CI) in single-pollutant and multipollutant (including NOx, CO) models. Results The Bayesian model averaged GAMM (GAMM+BMA) and the optimal GAMM of PM10, multipollutants and principal components (PCs) of multipollutants showed comparable results for the effect of PM10 on daily respiratory MR, that is, one IQR increase in PM10 concentration corresponded to 1.38% vs 1.39%, 1.81% vs 1.83% and 0.87% vs 0.88% increase, respectively, in daily respiratory MR. However, GAMM+BMA gave slightly but noticeable wider CIs for the single-pollutant model (−1.09 to 4.28 vs −1.08 to 3.93) and the PCs-based model (−2.23 to 4.07 vs −2.03 vs 3.88). The CIs of the multiple-pollutant model from two methods are similar, that is, −1.12 to 4.85 versus −1.11 versus 4.83. Conclusions The BMA method may represent a useful tool for modelling uncertainty in time-series studies when evaluating the effect of air pollution on fatal health outcomes. PMID:27531727

  4. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows.

    PubMed

    Excoffier, Laurent; Lischer, Heidi E L

    2010-05-01

    We present here a new version of the Arlequin program available under three different forms: a Windows graphical version (Winarl35), a console version of Arlequin (arlecore), and a specific console version to compute summary statistics (arlsumstat). The command-line versions run under both Linux and Windows. The main innovations of the new version include enhanced outputs in XML format, the possibility to embed graphics displaying computation results directly into output files, and the implementation of a new method to detect loci under selection from genome scans. Command-line versions are designed to handle large series of files, and arlsumstat can be used to generate summary statistics from simulated data sets within an Approximate Bayesian Computation framework. © 2010 Blackwell Publishing Ltd.

  5. Some series of intuitionistic fuzzy interactive averaging aggregation operators.

    PubMed

    Garg, Harish

    2016-01-01

    In this paper, some series of new intuitionistic fuzzy averaging aggregation operators has been presented under the intuitionistic fuzzy sets environment. For this, some shortcoming of the existing operators are firstly highlighted and then new operational law, by considering the hesitation degree between the membership functions, has been proposed to overcome these. Based on these new operation laws, some new averaging aggregation operators namely, intuitionistic fuzzy Hamacher interactive weighted averaging, ordered weighted averaging and hybrid weighted averaging operators, labeled as IFHIWA, IFHIOWA and IFHIHWA respectively has been proposed. Furthermore, some desirable properties such as idempotency, boundedness, homogeneity etc. are studied. Finally, a multi-criteria decision making method has been presented based on proposed operators for selecting the best alternative. A comparative concelebration between the proposed operators and the existing operators are investigated in detail.

  6. Universal Linear Fit Identification: A Method Independent of Data, Outliers and Noise Distribution Model and Free of Missing or Removed Data Imputation.

    PubMed

    Adikaram, K K L B; Hussein, M A; Effenberger, M; Becker, T

    2015-01-01

    Data processing requires a robust linear fit identification method. In this paper, we introduce a non-parametric robust linear fit identification method for time series. The method uses an indicator 2/n to identify linear fit, where n is number of terms in a series. The ratio Rmax of amax - amin and Sn - amin*n and that of Rmin of amax - amin and amax*n - Sn are always equal to 2/n, where amax is the maximum element, amin is the minimum element and Sn is the sum of all elements. If any series expected to follow y = c consists of data that do not agree with y = c form, Rmax > 2/n and Rmin > 2/n imply that the maximum and minimum elements, respectively, do not agree with linear fit. We define threshold values for outliers and noise detection as 2/n * (1 + k1) and 2/n * (1 + k2), respectively, where k1 > k2 and 0 ≤ k1 ≤ n/2 - 1. Given this relation and transformation technique, which transforms data into the form y = c, we show that removing all data that do not agree with linear fit is possible. Furthermore, the method is independent of the number of data points, missing data, removed data points and nature of distribution (Gaussian or non-Gaussian) of outliers, noise and clean data. These are major advantages over the existing linear fit methods. Since having a perfect linear relation between two variables in the real world is impossible, we used artificial data sets with extreme conditions to verify the method. The method detects the correct linear fit when the percentage of data agreeing with linear fit is less than 50%, and the deviation of data that do not agree with linear fit is very small, of the order of ±10-4%. The method results in incorrect detections only when numerical accuracy is insufficient in the calculation process.

  7. An information-theoretical perspective on weighted ensemble forecasts

    NASA Astrophysics Data System (ADS)

    Weijs, Steven V.; van de Giesen, Nick

    2013-08-01

    This paper presents an information-theoretical method for weighting ensemble forecasts with new information. Weighted ensemble forecasts can be used to adjust the distribution that an existing ensemble of time series represents, without modifying the values in the ensemble itself. The weighting can, for example, add new seasonal forecast information in an existing ensemble of historically measured time series that represents climatic uncertainty. A recent article in this journal compared several methods to determine the weights for the ensemble members and introduced the pdf-ratio method. In this article, a new method, the minimum relative entropy update (MRE-update), is presented. Based on the principle of minimum discrimination information, an extension of the principle of maximum entropy (POME), the method ensures that no more information is added to the ensemble than is present in the forecast. This is achieved by minimizing relative entropy, with the forecast information imposed as constraints. From this same perspective, an information-theoretical view on the various weighting methods is presented. The MRE-update is compared with the existing methods and the parallels with the pdf-ratio method are analysed. The paper provides a new, information-theoretical justification for one version of the pdf-ratio method that turns out to be equivalent to the MRE-update. All other methods result in sets of ensemble weights that, seen from the information-theoretical perspective, add either too little or too much (i.e. fictitious) information to the ensemble.

  8. A Comparison of Forecast Error Generators for Modeling Wind and Load Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ning; Diao, Ruisheng; Hafen, Ryan P.

    2013-12-18

    This paper presents four algorithms to generate random forecast error time series, including a truncated-normal distribution model, a state-space based Markov model, a seasonal autoregressive moving average (ARMA) model, and a stochastic-optimization based model. The error time series are used to create real-time (RT), hour-ahead (HA), and day-ahead (DA) wind and load forecast time series that statistically match historically observed forecasting data sets, used for variable generation integration studies. A comparison is made using historical DA load forecast and actual load values to generate new sets of DA forecasts with similar stoical forecast error characteristics. This paper discusses and comparesmore » the capabilities of each algorithm to preserve the characteristics of the historical forecast data sets.« less

  9. What does the structure of its visibility graph tell us about the nature of the time series?

    NASA Astrophysics Data System (ADS)

    Franke, Jasper G.; Donner, Reik V.

    2017-04-01

    Visibility graphs are a recently introduced method to construct complex network representations based upon univariate time series in order to study their dynamical characteristics [1]. In the last years, this approach has been successfully applied to studying a considerable variety of geoscientific research questions and data sets, including non-trivial temporal patterns in complex earthquake catalogs [2] or time-reversibility in climate time series [3]. It has been shown that several characteristic features of the thus constructed networks differ between stochastic and deterministic (possibly chaotic) processes, which is, however, relatively hard to exploit in the case of real-world applications. In this study, we propose studying two new measures related with the network complexity of visibility graphs constructed from time series, one being a special type of network entropy [4] and the other a recently introduced measure of the heterogeneity of the network's degree distribution [5]. For paradigmatic model systems exhibiting bifurcation sequences between regular and chaotic dynamics, both properties clearly trace the transitions between both types of regimes and exhibit marked quantitative differences for regular and chaotic dynamics. Moreover, for dynamical systems with a small amount of additive noise, the considered properties demonstrate gradual changes prior to the bifurcation point. This finding appears closely related to the subsequent loss of stability of the current state known to lead to a critical slowing down as the transition point is approaches. In this spirit, both considered visibility graph characteristics provide alternative tracers of dynamical early warning signals consistent with classical indicators. Our results demonstrate that measures of visibility graph complexity (i) provide a potentially useful means to tracing changes in the dynamical patterns encoded in a univariate time series that originate from increasing autocorrelation and (ii) allow to systematically distinguish regular from deterministic-chaotic dynamics. We demonstrate the application of our method for different model systems as well as selected paleoclimate time series from the North Atlantic region. Notably, visibility graph based methods are particularly suited for studying the latter type of geoscientific data, since they do not impose intrinsic restrictions or assumptions on the nature of the time series under investigation in terms of noise process, linearity and sampling homogeneity. [1] Lacasa, Lucas, et al. "From time series to complex networks: The visibility graph." Proceedings of the National Academy of Sciences 105.13 (2008): 4972-4975. [2] Telesca, Luciano, and Michele Lovallo. "Analysis of seismic sequences by using the method of visibility graph." EPL (Europhysics Letters) 97.5 (2012): 50002. [3] Donges, Jonathan F., Reik V. Donner, and Jürgen Kurths. "Testing time series irreversibility using complex network methods." EPL (Europhysics Letters) 102.1 (2013): 10004. [4] Small, Michael. "Complex networks from time series: capturing dynamics." 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013), Beijing (2013): 2509-2512. [5] Jacob, Rinku, K.P. Harikrishnan, Ranjeev Misra, and G. Ambika. "Measure for degree heterogeneity in complex networks and its application to recurrence network analysis." arXiv preprint 1605.06607 (2016).

  10. Phase Tomography Reconstructed by 3D TIE in Hard X-ray Microscope

    NASA Astrophysics Data System (ADS)

    Yin, Gung-Chian; Chen, Fu-Rong; Pyun, Ahram; Je, Jung Ho; Hwu, Yeukuang; Liang, Keng S.

    2007-01-01

    X-ray phase tomography and phase imaging are promising ways of investigation on low Z material. A polymer blend of PE/PS sample was used to test the 3D phase retrieval method in the parallel beam illuminated microscope. Because the polymer sample is thick, the phase retardation is quite mixed and the image can not be distinguished when the 2D transport intensity equation (TIE) is applied. In this study, we have provided a different approach for solving the phase in three dimensions for thick sample. Our method involves integration of 3D TIE/Fourier slice theorem for solving thick phase sample. In our experiment, eight sets of de-focal series image data sets were recorded covering the angular range of 0 to 180 degree. Only three set of image cubes were used in 3D TIE equation for solving the phase tomography. The phase contrast of the polymer blend in 3D is obviously enhanced, and the two different groups of polymer blend can be distinguished in the phase tomography.

  11. Smoothing of climate time series revisited

    NASA Astrophysics Data System (ADS)

    Mann, Michael E.

    2008-08-01

    We present an easily implemented method for smoothing climate time series, generalizing upon an approach previously described by Mann (2004). The method adaptively weights the three lowest order time series boundary constraints to optimize the fit with the raw time series. We apply the method to the instrumental global mean temperature series from 1850-2007 and to various surrogate global mean temperature series from 1850-2100 derived from the CMIP3 multimodel intercomparison project. These applications demonstrate that the adaptive method systematically out-performs certain widely used default smoothing methods, and is more likely to yield accurate assessments of long-term warming trends.

  12. Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data

    PubMed Central

    Havlicek, Martin; Jan, Jiri; Brazdil, Milan; Calhoun, Vince D.

    2015-01-01

    Increasing interest in understanding dynamic interactions of brain neural networks leads to formulation of sophisticated connectivity analysis methods. Recent studies have applied Granger causality based on standard multivariate autoregressive (MAR) modeling to assess the brain connectivity. Nevertheless, one important flaw of this commonly proposed method is that it requires the analyzed time series to be stationary, whereas such assumption is mostly violated due to the weakly nonstationary nature of functional magnetic resonance imaging (fMRI) time series. Therefore, we propose an approach to dynamic Granger causality in the frequency domain for evaluating functional network connectivity in fMRI data. The effectiveness and robustness of the dynamic approach was significantly improved by combining a forward and backward Kalman filter that improved estimates compared to the standard time-invariant MAR modeling. In our method, the functional networks were first detected by independent component analysis (ICA), a computational method for separating a multivariate signal into maximally independent components. Then the measure of Granger causality was evaluated using generalized partial directed coherence that is suitable for bivariate as well as multivariate data. Moreover, this metric provides identification of causal relation in frequency domain, which allows one to distinguish the frequency components related to the experimental paradigm. The procedure of evaluating Granger causality via dynamic MAR was demonstrated on simulated time series as well as on two sets of group fMRI data collected during an auditory sensorimotor (SM) or auditory oddball discrimination (AOD) tasks. Finally, a comparison with the results obtained from a standard time-invariant MAR model was provided. PMID:20561919

  13. Repetitive deliberate fires: Development and validation of a methodology to detect series.

    PubMed

    Bruenisholz, Eva; Delémont, Olivier; Ribaux, Olivier; Wilson-Wilde, Linzi

    2017-08-01

    The detection of repetitive deliberate fire events is challenging and still often ineffective due to a case-by-case approach. A previous study provided a critical review of the situation and analysis of the main challenges. This study suggested that the intelligence process, integrating forensic data, could be a valid framework to provide a follow-up and systematic analysis provided it is adapted to the specificities of repetitive deliberate fires. In this current manuscript, a specific methodology to detect deliberate fires series, i.e. set by the same perpetrators, is presented and validated. It is based on case profiles relying on specific elements previously identified. The method was validated using a dataset of approximately 8000 deliberate fire events collected over 12 years in a Swiss state. Twenty possible series were detected, including 6 of 9 known series. These results are very promising and lead the way to a systematic implementation of this methodology in an intelligence framework, whilst demonstrating the need and benefit of increasing the collection of forensic specific information to strengthen the value of links between cases. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  14. The application of neural networks to myoelectric signal analysis: a preliminary study.

    PubMed

    Kelly, M F; Parker, P A; Scott, R N

    1990-03-01

    Two neural network implementations are applied to myoelectric signal (MES) analysis tasks. The motivation behind this research is to explore more reliable methods of deriving control for multidegree of freedom arm prostheses. A discrete Hopfield network is used to calculate the time series parameters for a moving average MES model. It is demonstrated that the Hopfield network is capable of generating the same time series parameters as those produced by the conventional sequential least squares (SLS) algorithm. Furthermore, it can be extended to applications utilizing larger amounts of data, and possibly to higher order time series models, without significant degradation in computational efficiency. The second neural network implementation involves using a two-layer perceptron for classifying a single site MES based on two features, specifically the first time series parameter, and the signal power. Using these features, the perceptron is trained to distinguish between four separate arm functions. The two-dimensional decision boundaries used by the perceptron classifier are delineated. It is also demonstrated that the perceptron is able to rapidly compensate for variations when new data are incorporated into the training set. This adaptive quality suggests that perceptrons may provide a useful tool for future MES analysis.

  15. Dynamic equations for an isotropic spherical shell using the power series method and surface differential operators

    NASA Astrophysics Data System (ADS)

    Okhovat, Reza; Boström, Anders

    2017-04-01

    Dynamic equations for an isotropic spherical shell are derived by using a series expansion technique. The displacement field is split into a scalar (radial) part and a vector (tangential) part. Surface differential operators are introduced to decrease the length of all equations. The starting point is a power series expansion of the displacement components in the thickness coordinate relative to the mid-surface of the shell. By using the expansions of the displacement components, the three-dimensional elastodynamic equations yield a set of recursion relations among the expansion functions that can be used to eliminate all but the four of lowest order and to express higher order expansion functions in terms of those of lowest orders. Applying the boundary conditions on the surfaces of the spherical shell and eliminating all but the four lowest order expansion functions give the shell equations as a power series in the shell thickness. After lengthy manipulations, the final four shell equations are obtained in a relatively compact form which are given to second order in shell thickness explicitly. The eigenfrequencies are compared to exact three-dimensional theory with excellent agreement and to membrane theory.

  16. Multi-stage 3D-2D registration for correction of anatomical deformation in image-guided spine surgery

    NASA Astrophysics Data System (ADS)

    Ketcha, M. D.; De Silva, T.; Uneri, A.; Jacobson, M. W.; Goerres, J.; Kleinszig, G.; Vogt, S.; Wolinsky, J.-P.; Siewerdsen, J. H.

    2017-06-01

    A multi-stage image-based 3D-2D registration method is presented that maps annotations in a 3D image (e.g. point labels annotating individual vertebrae in preoperative CT) to an intraoperative radiograph in which the patient has undergone non-rigid anatomical deformation due to changes in patient positioning or due to the intervention itself. The proposed method (termed msLevelCheck) extends a previous rigid registration solution (LevelCheck) to provide an accurate mapping of vertebral labels in the presence of spinal deformation. The method employs a multi-stage series of rigid 3D-2D registrations performed on sets of automatically determined and increasingly localized sub-images, with the final stage achieving a rigid mapping for each label to yield a locally rigid yet globally deformable solution. The method was evaluated first in a phantom study in which a CT image of the spine was acquired followed by a series of 7 mobile radiographs with increasing degree of deformation applied. Second, the method was validated using a clinical data set of patients exhibiting strong spinal deformation during thoracolumbar spine surgery. Registration accuracy was assessed using projection distance error (PDE) and failure rate (PDE  >  20 mm—i.e. label registered outside vertebra). The msLevelCheck method was able to register all vertebrae accurately for all cases of deformation in the phantom study, improving the maximum PDE of the rigid method from 22.4 mm to 3.9 mm. The clinical study demonstrated the feasibility of the approach in real patient data by accurately registering all vertebral labels in each case, eliminating all instances of failure encountered in the conventional rigid method. The multi-stage approach demonstrated accurate mapping of vertebral labels in the presence of strong spinal deformation. The msLevelCheck method maintains other advantageous aspects of the original LevelCheck method (e.g. compatibility with standard clinical workflow, large capture range, and robustness against mismatch in image content) and extends capability to cases exhibiting strong changes in spinal curvature.

  17. ReTrOS: a MATLAB toolbox for reconstructing transcriptional activity from gene and protein expression data.

    PubMed

    Minas, Giorgos; Momiji, Hiroshi; Jenkins, Dafyd J; Costa, Maria J; Rand, David A; Finkenstädt, Bärbel

    2017-06-26

    Given the development of high-throughput experimental techniques, an increasing number of whole genome transcription profiling time series data sets, with good temporal resolution, are becoming available to researchers. The ReTrOS toolbox (Reconstructing Transcription Open Software) provides MATLAB-based implementations of two related methods, namely ReTrOS-Smooth and ReTrOS-Switch, for reconstructing the temporal transcriptional activity profile of a gene from given mRNA expression time series or protein reporter time series. The methods are based on fitting a differential equation model incorporating the processes of transcription, translation and degradation. The toolbox provides a framework for model fitting along with statistical analyses of the model with a graphical interface and model visualisation. We highlight several applications of the toolbox, including the reconstruction of the temporal cascade of transcriptional activity inferred from mRNA expression data and protein reporter data in the core circadian clock in Arabidopsis thaliana, and how such reconstructed transcription profiles can be used to study the effects of different cell lines and conditions. The ReTrOS toolbox allows users to analyse gene and/or protein expression time series where, with appropriate formulation of prior information about a minimum of kinetic parameters, in particular rates of degradation, users are able to infer timings of changes in transcriptional activity. Data from any organism and obtained from a range of technologies can be used as input due to the flexible and generic nature of the model and implementation. The output from this software provides a useful analysis of time series data and can be incorporated into further modelling approaches or in hypothesis generation.

  18. Atomoxetine for the Treatment of ADHD in Incarcerated Adolescents.

    PubMed

    Jillani, Sarah; Patel, Prina; Trestman, Robert; Kamath, Jayesh

    2016-06-01

    Effective interventions for adolescents with attention deficit/hyperactivity disorder (ADHD) in the correctional setting may improve care during incarceration, decrease risk of substance relapse, and reduce recidivism after release from the correctional setting of these individuals. The present report delineates the epidemiology of adolescent ADHD in the correctional setting and its association with substance use disorders and comorbid psychiatric illnesses. Evidence suggests that adolescents with ADHD have a higher risk of arrest and incarceration during adulthood. The present report examines evidence related to efficacy of atomoxetine, a nonstimulant medication for the treatment of adolescent ADHD, and presents data from a case series evaluating the effectiveness of atomoxetine for the treatment of adolescent ADHD in the Connecticut correctional setting. The results from the case series suggest that atomoxetine is effective for the treatment of adolescent ADHD in the context of significant past substance use. In summary, adolescents with ADHD have an elevated risk of incarceration and developing substance use disorders. The present review and pilot case series suggest that atomoxetine is an effective treatment for adolescents with ADHD in the correctional setting. © 2016 American Academy of Psychiatry and the Law.

  19. The Leading Edge: A Career Development Workshop Series for Young Adults. Participant Workbook.

    ERIC Educational Resources Information Center

    Canadian Career Development Foundation, Ottawa (Ontario).

    This booklet is designed for participants in "The Leading Edge: A Career Development Workshop Series for Young Adults." It provides the 27 participant handouts for the six workshops in the series. The first in the series, "Setting the Stage: The Changing World of Work," is a workshop to clarify what is occurring in the world of…

  20. Discovery: An Introduction. Alaska Sea Week Curriculum Series. Alaska Sea Grant Report 83-6.

    ERIC Educational Resources Information Center

    Mickelson, Belle; And Others

    This curriculum guide is the first (Series I) in a six-volume set that comprises the Sea Week Curriculum Series developed in Alaska. As a basic introduction, this first book in the series lends itself to the kindergarten level but can be adapted to preschool, secondary, and adult education. Six units contain 32 activities with worksheets that…

  1. Attributed graph distance measure for automatic detection of attention deficit hyperactive disordered subjects.

    PubMed

    Dey, Soumyabrata; Rao, A Ravishankar; Shah, Mubarak

    2014-01-01

    Attention Deficit Hyperactive Disorder (ADHD) is getting a lot of attention recently for two reasons. First, it is one of the most commonly found childhood disorders and second, the root cause of the problem is still unknown. Functional Magnetic Resonance Imaging (fMRI) data has become a popular tool for the analysis of ADHD, which is the focus of our current research. In this paper we propose a novel framework for the automatic classification of the ADHD subjects using their resting state fMRI (rs-fMRI) data of the brain. We construct brain functional connectivity networks for all the subjects. The nodes of the network are constructed with clusters of highly active voxels and edges between any pair of nodes represent the correlations between their average fMRI time series. The activity level of the voxels are measured based on the average power of their corresponding fMRI time-series. For each node of the networks, a local descriptor comprising of a set of attributes of the node is computed. Next, the Multi-Dimensional Scaling (MDS) technique is used to project all the subjects from the unknown graph-space to a low dimensional space based on their inter-graph distance measures. Finally, the Support Vector Machine (SVM) classifier is used on the low dimensional projected space for automatic classification of the ADHD subjects. Exhaustive experimental validation of the proposed method is performed using the data set released for the ADHD-200 competition. Our method shows promise as we achieve impressive classification accuracies on the training (70.49%) and test data sets (73.55%). Our results reveal that the detection rates are higher when classification is performed separately on the male and female groups of subjects.

  2. An Aggregated Method for Determining Railway Defects and Obstacle Parameters

    NASA Astrophysics Data System (ADS)

    Loktev, Daniil; Loktev, Alexey; Stepanov, Roman; Pevzner, Viktor; Alenov, Kanat

    2018-03-01

    The method of combining algorithms of image blur analysis and stereo vision to determine the distance to objects (including external defects of railway tracks) and the speed of moving objects-obstacles is proposed. To estimate the deviation of the distance depending on the blur a statistical approach, logarithmic, exponential and linear standard functions are used. The statistical approach includes a method of estimating least squares and the method of least modules. The accuracy of determining the distance to the object, its speed and direction of movement is obtained. The paper develops a method of determining distances to objects by analyzing a series of images and assessment of depth using defocusing using its aggregation with stereoscopic vision. This method is based on a physical effect of dependence on the determined distance to the object on the obtained image from the focal length or aperture of the lens. In the calculation of the blur spot diameter it is assumed that blur occurs at the point equally in all directions. According to the proposed approach, it is possible to determine the distance to the studied object and its blur by analyzing a series of images obtained using the video detector with different settings. The article proposes and scientifically substantiates new and improved existing methods for detecting the parameters of static and moving objects of control, and also compares the results of the use of various methods and the results of experiments. It is shown that the aggregate method gives the best approximation to the real distances.

  3. The establishment and external validation of NIR qualitative analysis model for waste polyester-cotton blend fabrics.

    PubMed

    Li, Feng; Li, Wen-Xia; Zhao, Guo-Liang; Tang, Shi-Jun; Li, Xue-Jiao; Wu, Hong-Mei

    2014-10-01

    A series of 354 polyester-cotton blend fabrics were studied by the near-infrared spectra (NIRS) technology, and a NIR qualitative analysis model for different spectral characteristics was established by partial least squares (PLS) method combined with qualitative identification coefficient. There were two types of spectrum for dying polyester-cotton blend fabrics: normal spectrum and slash spectrum. The slash spectrum loses its spectral characteristics, which are effected by the samples' dyes, pigments, matting agents and other chemical additives. It was in low recognition rate when the model was established by the total sample set, so the samples were divided into two types of sets: normal spectrum sample set and slash spectrum sample set, and two NIR qualitative analysis models were established respectively. After the of models were established the model's spectral region, pretreatment methods and factors were optimized based on the validation results, and the robustness and reliability of the model can be improved lately. The results showed that the model recognition rate was improved greatly when they were established respectively, the recognition rate reached up to 99% when the two models were verified by the internal validation. RC (relation coefficient of calibration) values of the normal spectrum model and slash spectrum model were 0.991 and 0.991 respectively, RP (relation coefficient of prediction) values of them were 0.983 and 0.984 respectively, SEC (standard error of calibration) values of them were 0.887 and 0.453 respectively, SEP (standard error of prediction) values of them were 1.131 and 0.573 respectively. A series of 150 bounds samples reached used to verify the normal spectrum model and slash spectrum model and the recognition rate reached up to 91.33% and 88.00% respectively. It showed that the NIR qualitative analysis model can be used for identification in the recycle site for the polyester-cotton blend fabrics.

  4. Multivariate missing data in hydrology - Review and applications

    NASA Astrophysics Data System (ADS)

    Ben Aissia, Mohamed-Aymen; Chebana, Fateh; Ouarda, Taha B. M. J.

    2017-12-01

    Water resources planning and management require complete data sets of a number of hydrological variables, such as flood peaks and volumes. However, hydrologists are often faced with the problem of missing data (MD) in hydrological databases. Several methods are used to deal with the imputation of MD. During the last decade, multivariate approaches have gained popularity in the field of hydrology, especially in hydrological frequency analysis (HFA). However, treating the MD remains neglected in the multivariate HFA literature whereas the focus has been mainly on the modeling component. For a complete analysis and in order to optimize the use of data, MD should also be treated in the multivariate setting prior to modeling and inference. Imputation of MD in the multivariate hydrological framework can have direct implications on the quality of the estimation. Indeed, the dependence between the series represents important additional information that can be included in the imputation process. The objective of the present paper is to highlight the importance of treating MD in multivariate hydrological frequency analysis by reviewing and applying multivariate imputation methods and by comparing univariate and multivariate imputation methods. An application is carried out for multiple flood attributes on three sites in order to evaluate the performance of the different methods based on the leave-one-out procedure. The results indicate that, the performance of imputation methods can be improved by adopting the multivariate setting, compared to mean substitution and interpolation methods, especially when using the copula-based approach.

  5. Proposal of Classification Method of Time Series Data in International Emissions Trading Market Using Agent-based Simulation

    NASA Astrophysics Data System (ADS)

    Nakada, Tomohiro; Takadama, Keiki; Watanabe, Shigeyoshi

    This paper proposes the classification method using Bayesian analytical method to classify the time series data in the international emissions trading market depend on the agent-based simulation and compares the case with Discrete Fourier transform analytical method. The purpose demonstrates the analytical methods mapping time series data such as market price. These analytical methods have revealed the following results: (1) the classification methods indicate the distance of mapping from the time series data, it is easier the understanding and inference than time series data; (2) these methods can analyze the uncertain time series data using the distance via agent-based simulation including stationary process and non-stationary process; and (3) Bayesian analytical method can show the 1% difference description of the emission reduction targets of agent.

  6. Cost-Sensitive Local Binary Feature Learning for Facial Age Estimation.

    PubMed

    Lu, Jiwen; Liong, Venice Erin; Zhou, Jie

    2015-12-01

    In this paper, we propose a cost-sensitive local binary feature learning (CS-LBFL) method for facial age estimation. Unlike the conventional facial age estimation methods that employ hand-crafted descriptors or holistically learned descriptors for feature representation, our CS-LBFL method learns discriminative local features directly from raw pixels for face representation. Motivated by the fact that facial age estimation is a cost-sensitive computer vision problem and local binary features are more robust to illumination and expression variations than holistic features, we learn a series of hashing functions to project raw pixel values extracted from face patches into low-dimensional binary codes, where binary codes with similar chronological ages are projected as close as possible, and those with dissimilar chronological ages are projected as far as possible. Then, we pool and encode these local binary codes within each face image as a real-valued histogram feature for face representation. Moreover, we propose a cost-sensitive local binary multi-feature learning method to jointly learn multiple sets of hashing functions using face patches extracted from different scales to exploit complementary information. Our methods achieve competitive performance on four widely used face aging data sets.

  7. Nonlinear dimensionality reduction of data lying on the multicluster manifold.

    PubMed

    Meng, Deyu; Leung, Yee; Fung, Tung; Xu, Zongben

    2008-08-01

    A new method, which is called decomposition-composition (D-C) method, is proposed for the nonlinear dimensionality reduction (NLDR) of data lying on the multicluster manifold. The main idea is first to decompose a given data set into clusters and independently calculate the low-dimensional embeddings of each cluster by the decomposition procedure. Based on the intercluster connections, the embeddings of all clusters are then composed into their proper positions and orientations by the composition procedure. Different from other NLDR methods for multicluster data, which consider associatively the intracluster and intercluster information, the D-C method capitalizes on the separate employment of the intracluster neighborhood structures and the intercluster topologies for effective dimensionality reduction. This, on one hand, isometrically preserves the rigid-body shapes of the clusters in the embedding process and, on the other hand, guarantees the proper locations and orientations of all clusters. The theoretical arguments are supported by a series of experiments performed on the synthetic and real-life data sets. In addition, the computational complexity of the proposed method is analyzed, and its efficiency is theoretically analyzed and experimentally demonstrated. Related strategies for automatic parameter selection are also examined.

  8. Data-driven forecasting algorithms for building energy consumption

    NASA Astrophysics Data System (ADS)

    Noh, Hae Young; Rajagopal, Ram

    2013-04-01

    This paper introduces two forecasting methods for building energy consumption data that are recorded from smart meters in high resolution. For utility companies, it is important to reliably forecast the aggregate consumption profile to determine energy supply for the next day and prevent any crisis. The proposed methods involve forecasting individual load on the basis of their measurement history and weather data without using complicated models of building system. The first method is most efficient for a very short-term prediction, such as the prediction period of one hour, and uses a simple adaptive time-series model. For a longer-term prediction, a nonparametric Gaussian process has been applied to forecast the load profiles and their uncertainty bounds to predict a day-ahead. These methods are computationally simple and adaptive and thus suitable for analyzing a large set of data whose pattern changes over the time. These forecasting methods are applied to several sets of building energy consumption data for lighting and heating-ventilation-air-conditioning (HVAC) systems collected from a campus building at Stanford University. The measurements are collected every minute, and corresponding weather data are provided hourly. The results show that the proposed algorithms can predict those energy consumption data with high accuracy.

  9. Kinetics and mechanism of catalytic hydroprocessing of components of coal-derived liquids. Sixteenth quarterly report, February 16, 1983-May 15, 1983.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gates, B. C.; Olson, H. H.; Schuit, G. C.A.

    1983-08-22

    A new method of structural analysis is applied to a group of hydroliquefied coal samples. The method uses elemental analysis and NMR data to estimate the concentrations of functional groups in the samples. The samples include oil and asphaltene fractions obtained in a series of hydroliquefaction experiments, and a set of 9 fractions separated from a coal-derived oil. The structural characterization of these samples demonstrates that estimates of functional group concentrations can be used to provide detailed structural profiles of complex mixtures and to obtain limited information about reaction pathways. 11 references, 1 figure, 7 tables.

  10. Ab initio approaches for the determination of heavy element energetics: Ionization energies of trivalent lanthanides (Ln = La-Eu)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Charles; Penchoff, Deborah A.; Wilson, Angela K., E-mail: wilson@chemistry.msu.edu

    2015-11-21

    An effective approach for the determination of lanthanide energetics, as demonstrated by application to the third ionization energy (in the gas phase) for the first half of the lanthanide series, has been developed. This approach uses a combination of highly correlated and fully relativistic ab initio methods to accurately describe the electronic structure of heavy elements. Both scalar and fully relativistic methods are used to achieve an approach that is both computationally feasible and accurate. The impact of basis set choice and the number of electrons included in the correlation space has also been examined.

  11. Comet brightness parameters: Definition, determination, and correlations

    NASA Technical Reports Server (NTRS)

    Meisel, D. D.; Morris, C. S.

    1976-01-01

    The power-law definition of comet brightness is reviewed and possible systematic influences are discussed that can affect the derivation of m sub o and n values from visual magnitude estimates. A rationale for the Bobrovnikoff aperture correction method is given and it is demonstrated that the Beyer extrafocal method leads to large systematic effects which if uncorrected by an instrumental relationship result in values significantly higher than those derived according to the Bobrovnikoff guidelines. A series of visual brightness parameter sets are presented which have been reduced to the same photometric system. Recommendations are given to insure that future observations are reduced to the same system.

  12. New infinite families of exact sums of squares formulas, Jacobi elliptic functions, and Ramanujan's tau function.

    PubMed

    Milne, S C

    1996-12-24

    In this paper, we give two infinite families of explicit exact formulas that generalize Jacobi's (1829) 4 and 8 squares identities to 4n(2) or 4n(n + 1) squares, respectively, without using cusp forms. Our 24 squares identity leads to a different formula for Ramanujan's tau function tau(n), when n is odd. These results arise in the setting of Jacobi elliptic functions, Jacobi continued fractions, Hankel or Turánian determinants, Fourier series, Lambert series, inclusion/exclusion, Laplace expansion formula for determinants, and Schur functions. We have also obtained many additional infinite families of identities in this same setting that are analogous to the eta-function identities in appendix I of Macdonald's work [Macdonald, I. G. (1972) Invent. Math. 15, 91-143]. A special case of our methods yields a proof of the two conjectured [Kac, V. G. and Wakimoto, M. (1994) in Progress in Mathematics, eds. Brylinski, J.-L., Brylinski, R., Guillemin, V. & Kac, V. (Birkhäuser Boston, Boston, MA), Vol. 123, pp. 415-456] identities involving representing a positive integer by sums of 4n(2) or 4n(n + 1) triangular numbers, respectively. Our 16 and 24 squares identities were originally obtained via multiple basic hypergeometric series, Gustafson's C(l) nonterminating (6)phi(5) summation theorem, and Andrews' basic hypergeometric series proof of Jacobi's 4 and 8 squares identities. We have (elsewhere) applied symmetry and Schur function techniques to this original approach to prove the existence of similar infinite families of sums of squares identities for n(2) or n(n + 1) squares, respectively. Our sums of more than 8 squares identities are not the same as the formulas of Mathews (1895), Glaisher (1907), Ramanujan (1916), Mordell (1917, 1919), Hardy (1918, 1920), Kac and Wakimoto, and many others.

  13. Validation of Left Atrial Volume Estimation by Left Atrial Diameter from the Parasternal Long-Axis View.

    PubMed

    Canciello, Grazia; de Simone, Giovanni; Izzo, Raffaele; Giamundo, Alessandra; Pacelli, Filomena; Mancusi, Costantino; Galderisi, Maurizio; Trimarco, Bruno; Losi, Maria-Angela

    2017-03-01

    Measurement of left atrial (LA) volume (LAV) is recommended for quantification of LA size. Only LA anteroposterior diameter (LAd) is available in a number of large cohorts, trials, or registries. The aim of this study was to evaluate whether LAV may be reasonably estimated from LAd. One hundred forty consecutive patients referred to our outpatient clinics were prospectively enrolled to measure LAd from the long-axis view on two-dimensional echocardiography. LA orthogonal dimensions were also taken from apical four- and two-chamber views. LAV was measured using the Simpson, area-length, and ellipsoid (LAV e ) methods. The first 70 patients were the learning series and the last 70 the testing series (TeS). In the learning series, best-fitting regression analysis of LAV-LAd was run using all LAV methods, and the highest values of F were chosen among the regression equations. In the TeS, the best-fitting regressions were used to estimate LAV from LAd. In the learning series, the best-fitting regression was linear for the Spearman method (r 2  = 0.62, F = 111.85, P = .0001) and area-length method (r 2  = 0.62, F = 112.24, P = .0001) and powered for the LAV e method (r 2  = 0.81, F = 288.41, P = .0001). In the TeS, the r 2 value for LAV prediction was substantially better using the LAV e method (r 2  = 0.89) than the Simpson (r 2  = 0.72) or area-length (r 2  = 0.70) method, as was the intraclass correlation (ρ = 0.96 vs ρ = 0.89 and ρ = 0.89, respectively). In the TeS, the sensitivity and specificity of LA dilatation by the estimated LAV e method were 87% and 90%, respectively. LAV can be estimated from LAd using a nonlinear equation with an elliptical model. The proposed method may be used in retrospective analysis of existing data sets in which determination of LAV was not programmed. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  14. The relevance of the cross-wavelet transform in the analysis of human interaction – a tutorial

    PubMed Central

    Issartel, Johann; Bardainne, Thomas; Gaillot, Philippe; Marin, Ludovic

    2015-01-01

    This article sheds light on a quantitative method allowing psychologists and behavioral scientists to take into account the specific characteristics emerging from the interaction between two sets of data in general and two individuals in particular. The current article outlines the practical elements of the cross-wavelet transform (CWT) method, highlighting WHY such a method is important in the analysis of time-series in psychology. The idea is (1) to bridge the gap between physical measurements classically used in physiology – neuroscience and psychology; (2) and demonstrates how the CWT method can be applied in psychology. One of the aims is to answer three important questions WHO could use this method in psychology, WHEN it is appropriate to use it (suitable type of time-series) and HOW to use it. Throughout these explanations, an example with simulated data is used. Finally, data from real life application are analyzed. This data corresponds to a rating task where the participants had to rate in real time the emotional expression of a person. The objectives of this practical example are (i) to point out how to manipulate the properties of the CWT method on real data, (ii) to show how to extract meaningful information from the results, and (iii) to provide a new way to analyze psychological attributes. PMID:25620949

  15. Exploiting the spatial locality of electron correlation within the parametric two-electron reduced-density-matrix method

    NASA Astrophysics Data System (ADS)

    DePrince, A. Eugene; Mazziotti, David A.

    2010-01-01

    The parametric variational two-electron reduced-density-matrix (2-RDM) method is applied to computing electronic correlation energies of medium-to-large molecular systems by exploiting the spatial locality of electron correlation within the framework of the cluster-in-molecule (CIM) approximation [S. Li et al., J. Comput. Chem. 23, 238 (2002); J. Chem. Phys. 125, 074109 (2006)]. The 2-RDMs of individual molecular fragments within a molecule are determined, and selected portions of these 2-RDMs are recombined to yield an accurate approximation to the correlation energy of the entire molecule. In addition to extending CIM to the parametric 2-RDM method, we (i) suggest a more systematic selection of atomic-orbital domains than that presented in previous CIM studies and (ii) generalize the CIM method for open-shell quantum systems. The resulting method is tested with a series of polyacetylene molecules, water clusters, and diazobenzene derivatives in minimal and nonminimal basis sets. Calculations show that the computational cost of the method scales linearly with system size. We also compute hydrogen-abstraction energies for a series of hydroxyurea derivatives. Abstraction of hydrogen from hydroxyurea is thought to be a key step in its treatment of sickle cell anemia; the design of hydroxyurea derivatives that oxidize more rapidly is one approach to devising more effective treatments.

  16. Testing deformation hypotheses by constraints on a time series of geodetic observations

    NASA Astrophysics Data System (ADS)

    Velsink, Hiddo

    2018-01-01

    In geodetic deformation analysis observations are used to identify form and size changes of a geodetic network, representing objects on the earth's surface. The network points are monitored, often continuously, because of suspected deformations. A deformation may affect many points during many epochs. The problem is that the best description of the deformation is, in general, unknown. To find it, different hypothesised deformation models have to be tested systematically for agreement with the observations. The tests have to be capable of stating with a certain probability the size of detectable deformations, and to be datum invariant. A statistical criterion is needed to find the best deformation model. Existing methods do not fulfil these requirements. Here we propose a method that formulates the different hypotheses as sets of constraints on the parameters of a least-squares adjustment model. The constraints can relate to subsets of epochs and to subsets of points, thus combining time series analysis and congruence model analysis. The constraints are formulated as nonstochastic observations in an adjustment model of observation equations. This gives an easy way to test the constraints and to get a quality description. The proposed method aims at providing a good discriminating method to find the best description of a deformation. The method is expected to improve the quality of geodetic deformation analysis. We demonstrate the method with an elaborate example.

  17. Rapid computation of directional wellbore drawdown in a confined aquifer via Poisson resummation

    NASA Astrophysics Data System (ADS)

    Blumenthal, Benjamin J.; Zhan, Hongbin

    2016-08-01

    We have derived a rapidly computed analytical solution for drawdown caused by a partially or fully penetrating directional wellbore (vertical, horizontal, or slant) via Green's function method. The mathematical model assumes an anisotropic, homogeneous, confined, box-shaped aquifer. Any dimension of the box can have one of six possible boundary conditions: 1) both sides no-flux; 2) one side no-flux - one side constant-head; 3) both sides constant-head; 4) one side no-flux; 5) one side constant-head; 6) free boundary conditions. The solution has been optimized for rapid computation via Poisson Resummation, derivation of convergence rates, and numerical optimization of integration techniques. Upon application of the Poisson Resummation method, we were able to derive two sets of solutions with inverse convergence rates, namely an early-time rapidly convergent series (solution-A) and a late-time rapidly convergent series (solution-B). From this work we were able to link Green's function method (solution-B) back to image well theory (solution-A). We then derived an equation defining when the convergence rate between solution-A and solution-B is the same, which we termed the switch time. Utilizing the more rapidly convergent solution at the appropriate time, we obtained rapid convergence at all times. We have also shown that one may simplify each of the three infinite series for the three-dimensional solution to 11 terms and still maintain a maximum relative error of less than 10-14.

  18. Computer program for Bessel and Hankel functions

    NASA Technical Reports Server (NTRS)

    Kreider, Kevin L.; Saule, Arthur V.; Rice, Edward J.; Clark, Bruce J.

    1991-01-01

    A set of FORTRAN subroutines for calculating Bessel and Hankel functions is presented. The routines calculate Bessel and Hankel functions of the first and second kinds, as well as their derivatives, for wide ranges of integer order and real or complex argument in single or double precision. Depending on the order and argument, one of three evaluation methods is used: the power series definition, an Airy function expansion, or an asymptotic expansion. Routines to calculate Airy functions and their derivatives are also included.

  19. Analysis of Rhythms in Experimental Signals

    NASA Astrophysics Data System (ADS)

    Desherevskii, A. V.; Zhuravlev, V. I.; Nikolsky, A. N.; Sidorin, A. Ya.

    2017-12-01

    We compare algorithms designed to extract quasiperiodic components of a signal and estimate the amplitude, phase, stability, and other characteristics of a rhythm in a sliding window in the presence of data gaps. Each algorithm relies on its own rhythm model; therefore, it is necessary to use different algorithms depending on the research objectives. The described set of algorithms and methods is implemented in the WinABD software package, which includes a time-series database management system, a powerful research complex, and an interactive data-visualization environment.

  20. Combinations of Earth Orientation Observations: SPACE94, COMB94, and POLE94

    NASA Technical Reports Server (NTRS)

    Gross, R. S.

    1995-01-01

    A Kalman filter has been used to combine all publicly available, independently determined measurements of the Earth's orientation taken by the modern, space-geodetic techniques of very long baseline interferometry, satellite laser ranging, lunar laser ranging, and the global positioning system. Prior to combining the data, tidal terms were removed from the UT1 measurements, outlying data points were deleted, series-specific corrections were applied for bias and rate, and the stated uncertainties of the measurements were adjusted by multiplying them by series-specific scale factors. Values for these bias- rate corrections and uncertainty scale factors were determined by an iterative, round-robin procedure wherein each data set is compared, in turn, to a combination of all other data sets. When applied to the measurements, the bias-rate corrections thus determined make the data sets agree with each other in bias and rate, and the uncertainty scale factors thus determined make the residual of each series (when differenced with a combination of all others) have a reduced chi-square of one. The corrected and adjusted series are then placed within an IERS reference frame by aligning them with the IERS Earth orientation series EOP (IERS)90C04. The result of combining these corrected, adjusted and aligned series is designated SPCE94 and spans October 6.0, 1976 to January 27.0, 1995 at daily intervals.

Top