Hamasu, Kousuke; Shigemi, Kazutaka; Kabuki, Yusuke; Tomonaga, Shozo; Denbow, D Michael; Furuse, Mitsuhiro
2009-08-21
Using microdialysis, we investigated the effect of l-proline on monoamine release in the medio-rostral neostriatum/hyperstriatum ventrale (MNH) of freely moving and restricted chicks. A 30 min handling-stress resulted in a significant increase in extracellular homovallinic acid (HVA), a dopamine metabolite, and 5-hydroxyindoleacetic acid (5-HIAA), a serotonin metabolite, in the MNH. l-Proline, perfused through the microdialysis probe into the MNH during the stressed condition, significantly attenuated the average dialysate concentration of HVA produced by handling-stress. Handling-stress resulted in a significant increase in 5-HIAA levels in the control group, which were attenuated by profusion with l-proline. l-Proline did not significantly modify basal concentrations of HVA or 5-HIAA in the MNH during control conditions. These results show that perfusion of l-proline modified the turnover/metabolism of dopamine and serotonin in the MNH caused by handling-stress.
Systemic Regulation of RAS/MAPK Signaling by the Serotonin Metabolite 5-HIAA.
Schmid, Tobias; Snoek, L Basten; Fröhli, Erika; van der Bent, M Leontien; Kammenga, Jan; Hajnal, Alex
2015-05-01
Human cancer is caused by the interplay of mutations in oncogenes and tumor suppressor genes and inherited variations in cancer susceptibility genes. While many of the tumor initiating mutations are well characterized, the effect of genetic background variation on disease onset and progression is less understood. We have used C. elegans genetics to identify genetic modifiers of the oncogenic RAS/MAPK signaling pathway. Quantitative trait locus analysis of two highly diverged C. elegans isolates combined with allele swapping experiments identified the polymorphic monoamine oxidase A (MAOA) gene amx-2 as a negative regulator of RAS/MAPK signaling. We further show that the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA), which is a product of MAOA catalysis, systemically inhibits RAS/MAPK signaling in different organs of C. elegans. Thus, MAOA activity sets a global threshold for MAPK activation by controlling 5-HIAA levels. To our knowledge, 5-HIAA is the first endogenous small molecule that acts as a systemic inhibitor of RAS/MAPK signaling.
Valim, Valéria; Natour, Jamil; Xiao, Yangming; Pereira, Abraão Ferraz Alves; Lopes, Beatriz Baptista da Cunha; Pollak, Daniel Feldman; Zandonade, Eliana; Russell, Irwin Jon
2013-01-01
To evaluate the effects of aerobic training and stretching on serum levels of serotonin (5HT) and its main metabolite 5-hydroxindolacetic acid (5HIAA). Twenty-two women with FM were randomized into one of two exercise modalities (aerobic walking exercise or stretching exercise) to be accomplished three times a week for 20 weeks. The serum levels of 5HT and 5HIAA were evaluated before and after the exercise program by high performance liquid chromatography (HPLC) with colorimetric detection. Within group analysis (pre-post) showed that serum levels of both 5HT and 5HIAA changed significantly in the aerobic group during the 20-week course of therapy (5HT: P = 0,03; 5HIAA: P = 0,003). In the stretching group, however, no statistically significant change was observed (5HT: P=0,491; 5HIAA: P=0,549). Between group statistical comparisons of laboratory measures disclosed that aerobic training was superior to stretching in that it significantly increased the levels of 5HIAA (F test = 6.61; P = 0.01), but the average difference between groups on the levels of 5HT did not meet significance criteria (F test = 3.42; P = 0.08). Aerobic training increases the 5HIAA and 5HT levels and it could explain why aerobic exercise can improve symptoms in fibromyalgia syndrome patient more than stretching exercise.
Urinary sampling for 5HIAA and metanephrines determination: revisiting the recommendations
Chardon, Laurence; El Hajji Ridah, Ines; Brossaud, Julie
2017-01-01
Context Biogenic amines such as 5-hydroxy-indole acetic acid (5HIAA) the main metabolite of serotonin or metanephrines (catecholamines metabolites) are used as biomarkers of neuroendocrine tumours. Objective To re-evaluate the recommendations for urinary sampling (preservatives, diet, drugs, etc.) as many of the reported analytical interferences supporting these recommendations are related to obsolete assays. Methods Bibliographic analysis of old and modern assays concerning preservation, extraction, assay and interferences. Results 5HIAA may degrade as soon as urine is excreted. Thus, acids as preservatives (hydrochloric or acetic acid) have to be immediately added. Care should be taken not to decrease the pH under 2. Urine preservative for metanephrine assays is not mandatory. Diets including serotonin-, tryptophan- and dopamine-rich foods have to be avoided depending on the biomarkers investigated (bananas, plantain, nuts, etc.). Tryptophan-rich over-the-counter formulas have to be prohibited when 5HIAA has to be assayed. Acetaminophen may interfere with electrochemical detection depending on high-pressure liquid chromatography (HPLC) parameters. No interference is known with mass spectrometric assays but with the one described for metanephrines determination. Some drugs interfere however with serotonin and catecholamines secretion and/or metabolism (monoamine oxidase inhibitors, serotonin or dopamine recapture inhibitors, etc.). Conclusion Revisited recommendations are provided for the diet, the drugs and the preservatives before HPLC coupled with electrochemical and mass spectrometry assays. PMID:28566493
Urinary sampling for 5HIAA and metanephrines determination: revisiting the recommendations.
Corcuff, Jean-Benoît; Chardon, Laurence; El Hajji Ridah, Ines; Brossaud, Julie
2017-08-01
Biogenic amines such as 5-hydroxy-indole acetic acid (5HIAA) the main metabolite of serotonin or metanephrines (catecholamines metabolites) are used as biomarkers of neuroendocrine tumours. To re-evaluate the recommendations for urinary sampling (preservatives, diet, drugs, etc.) as many of the reported analytical interferences supporting these recommendations are related to obsolete assays. Bibliographic analysis of old and modern assays concerning preservation, extraction, assay and interferences. 5HIAA may degrade as soon as urine is excreted. Thus, acids as preservatives (hydrochloric or acetic acid) have to be immediately added. Care should be taken not to decrease the pH under 2. Urine preservative for metanephrine assays is not mandatory. Diets including serotonin-, tryptophan- and dopamine-rich foods have to be avoided depending on the biomarkers investigated (bananas, plantain, nuts, etc.). Tryptophan-rich over-the-counter formulas have to be prohibited when 5HIAA has to be assayed. Acetaminophen may interfere with electrochemical detection depending on high-pressure liquid chromatography (HPLC) parameters. No interference is known with mass spectrometric assays but with the one described for metanephrines determination. Some drugs interfere however with serotonin and catecholamines secretion and/or metabolism (monoamine oxidase inhibitors, serotonin or dopamine recapture inhibitors, etc.). Revisited recommendations are provided for the diet, the drugs and the preservatives before HPLC coupled with electrochemical and mass spectrometry assays. © 2017 The authors.
Yao, JK; Dougherty, GG; Reddy, RD; Keshavan, MS; Montrose, DM; Matson, WR; Rozen, S; Krishnan, RR; McEvoy, J; Kaddurah-Daouk, R
2010-01-01
Schizophrenia is characterized by complex and dynamically interacting perturbations in multiple neurochemical systems. In the past, evidence for these alterations has been collected piecemeal, limiting our understanding of the interactions among relevant biological systems. Earlier, both hyper- and hyposerotonemia were variously associated with the longitudinal course of schizophrenia, suggesting a disturbance in the central serotonin (5-hydroxytrypt-amine (5-HT)) function. Using a targeted electrochemistry-based metabolomics platform, we compared metabolic signatures consisting of 13 plasma tryptophan (Trp) metabolites simultaneously between first-episode neuroleptic-naive patients with schizophrenia (FENNS, n = 25) and healthy controls (HC, n = 30). We also compared these metabolites between FENNS at baseline (BL) and 4 weeks (4w) after antipsychotic treatment. N-acetylserotonin was increased in FENNS-BL compared with HC (P = 0.0077, which remained nearly significant after Bonferroni correction). N-acetylserotonin/Trp and melatonin (Mel)/serotonin ratios were higher, and Mel/N-acetylserotonin ratio was lower in FENNS-BL (all P-values < 0.0029), but not after treatment, compared with HC volunteers. All three groups had highly significant correlations between Trp and its metabolites, Mel, kynurenine, 3-hydroxykynurenine and tryptamine. However, in the HC, but in neither of the FENNS groups, serotonin was highly correlated with Trp, Mel, kynurenine or tryptamine, and 5-hydroxyindoleacetic acid (5HIAA) was highly correlated with Trp, Mel, kynurenine or 3-hydroxykynurenine. A significant difference between HC and FENNS-BL was further shown only for the Trp–5HIAA correlation. Thus, some metabolite interactions within the Trp pathway seem to be altered in the FENNS-BL patients. Conversion of serotonin to N-acetylserotonin by serotonin N-acetyltransferase may be upregulated in FENNS patients, possibly related to the observed alteration in Trp–5HIAA correlation. Considering N-acetylserotonin as a potent antioxidant, such increases in N-acetylserotonin might be a compensatory response to increased oxidative stress, implicated in the pathogenesis of schizophrenia. PMID:19401681
Assmann, Birgit; Köhler, Martin; Hoffmann, Georg F; Heales, Simon; Surtees, Robert
2002-07-01
Childhood dystonia that does not respond to treatment with levodopa (dopa-nonresponsive dystonia, DND) has an unclear pathogenesis and is notoriously difficult to treat. To test the hypothesis that there may be abnormalities in serotonin turnover in DND we measured cerebrospinal fluid (CSF) concentrations of homovanillic (HVA) and 5-hydroxyindoleacetic (HIAA) acids, metabolites of dopamine and serotonin, respectively, in 18 children with dystonia not responsive to levodopa. These were combined with a reference population of 85 children with neurologic or metabolic disease known not to affect dopamine or serotonin metabolism. Because of the known natural age-related decrement in HVA and HIAA concentrations, the results were analyzed using multiple regression using age and DND as predictors of CSF HIAA and HVA concentrations. DND was a highly significant predictor of CSF HIAA concentration (p < 0.001) but not of CSF HVA concentration (p = 0.59). After fitting a regression model, the geometric mean ratio of CSF HIAA in DND compared with the reference range was 0.53 whereas that for CSF HVA was 0.95. We also analyzed CSF HIAA/HVA ratios. After fitting a regression model, we found no dependence on age, and the mean of CSF HIAA/HVA in DND was 0.28 whereas that for the reference range was 0.49 (p < 0.001). We conclude that a significant number of children with DND have reduced CNS serotonin turnover. Treatment with drugs that increase serotonin concentration in the synaptic cleft should be considered in this group of patients.
CSF 5-HIAA and exposure to and expression of interpersonal violence in suicide attempters.
Moberg, T; Nordström, P; Forslund, K; Kristiansson, M; Asberg, M; Jokinen, J
2011-07-01
Serotonin is implicated in impaired impulse control, aggression and suicidal behaviour. Low cerebrospinal fluid (CSF) concentrations of the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) have been found in violent suicide attempters, suicide victims and in violent offenders. CSF 5-HIAA concentrations have both genetic and environmental determinants. Childhood trauma may have an effect on central monoamine function as an adult. The aim of this study was to assess the relationship of CSF 5-HIAA and the exposure to and the expression of violence in childhood and during adult life measured with the Karolinska Interpersonal Violence Scale (KIVS). 42 medication free suicide attempters underwent lumbar puncture and were assessed with the Karolinska Interpersonal Violence Scale (KIVS) to assess history of childhood exposure to violence and lifetime expressed violent behaviour. In women, but not in men, CSF 5-HIAA showed a significant negative correlation to exposure to violence during childhood. Furthermore, suicide attempters with low CSF 5-HIAA were more prone to commit violent acts as an adult if exposed to violence as a child compared to suicide attempters with high CSF 5-HIAA. In the non-traumatized group, CSF 5-HIAA showed a significant negative correlation to expressed violent behaviour in childhood. Although central serotonergic function has important genetic determinants, exposure to childhood trauma may also affect serotonergic function. Low serotonergic function may facilitate impaired aggression control in traumatized suicide attempters. Copyright © 2011 Elsevier B.V. All rights reserved.
Uutela, Päivi; Reinilä, Ruut; Harju, Kirsi; Piepponen, Petteri; Ketola, Raimo A; Kostiainen, Risto
2009-10-15
A method for the analysis of intact glucuronides and sulfates of common neurotransmitters serotonin (5-HT) and dopamine (DA) as well as of 5-hydroxy-3-indoleacetic acid (5-HIAA), 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) in rat brain microdialysates by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed. Enzyme-assisted synthesis using rat liver microsomes as a biocatalyst was employed for the production of 5-HT-, 5-HIAA-, DOPAC-, and HVA-glucuronides for reference compounds. The sulfate conjugates were synthesized either chemically or enzymatically using a rat liver S9 fraction. The LC-MS/MS method was validated by determining the limits of detection and quantitation, linearity, and repeatability for the quantitative analysis of 5-HT and DA and their glucuronides, as well as of 5-HIAA, DOPAC, and HVA and their sulfate-conjugates. In this study, 5-HT-glucuronide was for the first time detected in rat brain. The concentration of 5-HT-glucuronide (1.0-1.7 nM) was up to 2.5 times higher than that of free 5-HT (0.4-2.1 nM) in rat brain microdialysates, whereas the concentration of DA-glucuronide (1.0-1.4 nM) was at the same level or lower than the free DA (1.2-2.4 nM). The acidic metabolites of neurotransmitters, 5-HIAA, HVA, and DOPAC, were found in free and sulfated form, whereas their glucuronidation was not observed.
Polyethylenimine carbon nanotube fiber electrodes for enhanced detection of neurotransmitters.
Zestos, Alexander G; Jacobs, Christopher B; Trikantzopoulos, Elefterios; Ross, Ashley E; Venton, B Jill
2014-09-02
Carbon nanotube (CNT)-based microelectrodes have been investigated as alternatives to carbon-fiber microelectrodes for the detection of neurotransmitters because they are sensitive, exhibit fast electron transfer kinetics, and are more resistant to surface fouling. Wet spinning CNTs into fibers using a coagulating polymer produces a thin, uniform fiber that can be fabricated into an electrode. CNT fibers formed in poly(vinyl alcohol) (PVA) have been used as microelectrodes to detect dopamine, serotonin, and hydrogen peroxide. In this study, we characterize microelectrodes with CNT fibers made in polyethylenimine (PEI), which have much higher conductivity than PVA-CNT fibers. PEI-CNT fibers have lower overpotentials and higher sensitivities than PVA-CNT fiber microelectrodes, with a limit of detection of 5 nM for dopamine. The currents for dopamine were adsorption controlled at PEI-CNT fiber microelectrodes, independent of scan repetition frequency, and stable for over 10 h. PEI-CNT fiber microelectrodes were resistant to surface fouling by serotonin and the metabolite interferant 5-hydroxyindoleacetic acid (5-HIAA). No change in sensitivity was observed for detection of serotonin after 30 flow injection experiments or after 2 h in 5-HIAA for PEI-CNT electrodes. The antifouling properties were maintained in brain slices when serotonin was exogenously applied multiple times or after bathing the slice in 5-HIAA. Thus, PEI-CNT fiber electrodes could be useful for the in vivo monitoring of neurochemicals.
Serotonin, social status and sex change in the bluebanded goby Lythrypnus dalli.
Lorenzi, Varenka; Carpenter, Russ E; Summers, Cliff H; Earley, Ryan L; Grober, Matthew S
2009-06-22
In a variety of vertebrates, highly aggressive individuals tend to have high social status and low serotonergic function. In the sex changing fish Lythrypnus dalli, serotonin (5-HT) may be involved as a mediator between the social environment and the reproductive system because social status is a critical cue in regulating sex change. Subordination inhibits sex change in L. dalli, and it is associated with higher serotonergic activity in other species. We tested the hypothesis that high serotonergic activity has an inhibitory effect on sex change. In a social situation permissive to sex change, we administered to the dominant female implants containing the serotonin precursor 5-hydroxytryptophan (5-HTP). In a social situation not conducive to sex change, we administered either the serotonin synthesis inhibitor p-chlorophenylalanine (PCPA) or the 5-HT(1A) receptor antagonist p-MPPI. After three weeks we used HPLC to measure brain levels of 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA). We also performed PCPA, p-MPPI and fluoxetine injections in size-matched pairs of females to assess its effect on dominance status. Males and newly sex changed fish showed a trend for higher levels of 5-HIAA and 5-HT/5-HIAA ratio than females. The different implants treatments did not affect the probability of sex change. Interestingly, this species does not seem to fit the pattern seen in other vertebrates where dominant individuals have lower serotonergic activity than subordinates.
[Metabolism of various biogenic amines in diabetes mellitus].
Stoilov, L D; Perelygina, A A
1981-01-01
Serotonin (5-HT) and histamine metabolism was studied in 50 patients with diabetes melitus. Simultaneously the blood and urine content of their precursors and metabolites tryptophane, 5-hydroxytryptophane (5-HTP), 5-hydroxyindolylacetic acid (5-HIAA) and histidine was examined. An increase in 5-HT metabolism intensification (the augmented 5-HTP and 5-HT blood levels and enhanced 5-HTP and 5-HIAA excretion with the urine) was determined, whereas the blood and urine contents of histamine and histadine were within normal. Moreover, significantly higher increase in 5-HT blood level and enhanced 5-HIAA excretion with the urine were seen in patients with juvenile diabetes mellitus comparatively to those with insulin-depending type of the disease. Possible significance of changes, being discovered in 5-HT metabolism of patients with diabetes mellitus, in the disease pathogenesis is discussed.
Luykx, Jurjen J.; Bakker, Steven C.; Lentjes, Eef; Boks, Marco P. M.; van Geloven, Nan; Eijkemans, Marinus J. C.; Janson, Esther; Strengman, Eric; de Lepper, Anne M.; Westenberg, Herman; Klopper, Kai E.; Hoorn, Hendrik J.; Gelissen, Harry P. M. M.; Jordan, Julian; Tolenaar, Noortje M.; van Dongen, Eric P. A.; Michel, Bregt; Abramovic, Lucija; Horvath, Steve; Kappen, Teus; Bruins, Peter; Keijzers, Peter; Borgdorff, Paul; Ophoff, Roel A.; Kahn, René S.
2012-01-01
Background Animal studies have revealed seasonal patterns in cerebrospinal fluid (CSF) monoamine (MA) turnover. In humans, no study had systematically assessed seasonal patterns in CSF MA turnover in a large set of healthy adults. Methodology/Principal Findings Standardized amounts of CSF were prospectively collected from 223 healthy individuals undergoing spinal anesthesia for minor surgical procedures. The metabolites of serotonin (5-hydroxyindoleacetic acid, 5-HIAA), dopamine (homovanillic acid, HVA) and norepinephrine (3-methoxy-4-hydroxyphenylglycol, MPHG) were measured using high performance liquid chromatography (HPLC). Concentration measurements by sampling and birth dates were modeled using a non-linear quantile cosine function and locally weighted scatterplot smoothing (LOESS, span = 0.75). The cosine model showed a unimodal season of sampling 5-HIAA zenith in April and a nadir in October (p-value of the amplitude of the cosine = 0.00050), with predicted maximum (PCmax) and minimum (PCmin) concentrations of 173 and 108 nmol/L, respectively, implying a 60% increase from trough to peak. Season of birth showed a unimodal 5-HIAA zenith in May and a nadir in November (p = 0.00339; PCmax = 172 and PCmin = 126). The non-parametric LOESS showed a similar pattern to the cosine in both season of sampling and season of birth models, validating the cosine model. A final model including both sampling and birth months demonstrated that both sampling and birth seasons were independent predictors of 5-HIAA concentrations. Conclusion In subjects without mental illness, 5-HT turnover shows circannual variation by season of sampling as well as season of birth, with peaks in spring and troughs in fall. PMID:22312427
Suominen, Tina; Uutela, Päivi; Ketola, Raimo A.; Bergquist, Jonas; Hillered, Lars; Finel, Moshe; Zhang, Hongbo; Laakso, Aki; Kostiainen, Risto
2013-01-01
An UPLC-MS/MS method was developed for the determination of serotonin (5-HT), dopamine (DA), their phase I metabolites 5-HIAA, DOPAC and HVA, and their sulfate and glucuronide conjugates in human brain microdialysis samples obtained from two patients with acute brain injuries, ventricular cerebrospinal fluid (CSF) samples obtained from four patients with obstructive hydrocephalus, and a lumbar CSF sample pooled mainly from patients undergoing spinal anesthesia in preparation for orthopedic surgery. The method was validated by determining the limits of detection and quantification, linearity, repeatability and specificity. The direct method enabled the analysis of the intact phase II metabolites of 5-HT and DA, without hydrolysis of the conjugates. The method also enabled the analysis of the regioisomers of the conjugates, and several intact glucuronide and sulfate conjugates were identified and quantified for the first time in the human brain microdialysis and CSF samples. We were able to show the presence of 5-HIAA sulfate, and that dopamine-3-O-sulfate predominates over dopamine-4-O-sulfate in the human brain. The quantitative results suggest that sulfonation is a more important phase II metabolism pathway than glucuronidation in the human brain. PMID:23826355
Reduced efficacy of fluoxetine following MDMA ("Ecstasy")-induced serotonin loss in rats.
Durkin, Sarah; Prendergast, Alison; Harkin, Andrew
2008-12-12
Long-term serotonin (5-HT) neuronal loss is currently a major cause of concern associated with recreational use of the substituted amphetamine 3,4 methylenedioxymethamphetamine (MDMA; "Ecstasy"). Such loss may be problematic considering that psychiatric disorders such as depression and anxiety and responses to first line treatments for these disorders are associated with 5-HT. In this study the effects of prior exposure to MDMA on behavioural and central neurochemical changes induced by the serotonin (5-HT) re-uptake inhibitor and antidepressant fluoxetine were examined in rats. Animals were administered MDMA (10 mg/kg. i.p.) four times daily for two consecutive days. One week later the animals were subjected to treatment with fluoxetine (10 mg/kg, i.p.). Fluoxetine treatment groups received either acute (saline injections for 20 days followed by 3 fluoxetine treatments over 24 h) or chronic (once daily fluoxetine for 21 days) drug administration. Prior exposure to MDMA resulted in an attenuation of fluoxetine-induced swimming behaviour in the modified forced swimming test (FST); a behavioural test of antidepressant action. In parallel MDMA treatment resulted in significant regional depletions of 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) accompanied by a reduction in cortical [3H] paroxetine binding to nerve terminal 5-HT transporters. MDMA-induced 5-HT loss was enhanced in animals following chronic fluoxetine administration. Elimination of fluoxetine and its metabolite norfluoxetine from the brain abolished this interaction between MDMA and fluoxetine treatment. Fluoxetine administration reduced both 5-HIAA and the 5-HIAA:5-HT metabolism ratio, which was attenuated in animals pre-treated with MDMA. Overall the results show that MDMA induces long-term 5-HT loss in the rodent brain and consequently diminishes behaviour and reductions in 5-HT metabolism induced by the antidepressant fluoxetine. These results have potential clinical relevance, suggesting that 5-HT re-uptake inhibitors such as fluoxetine may be less effective at treating depression in chronic abusers of MDMA.
Neurochemical variables in schizophrenic patients during switching from neuroleptics to clozapine.
Hatzimanolis, J; Lykouras, L; Markianos, M; Oulis, P
1998-10-01
1. The study aimed to search for the effect of clozapine on the levels of the main metabolites of dopamine homovanillic acid (HVA), serotonin 5-hydroxyindoleacetic acid (5-HIAA) and norepinephrine 3-methoxy-4-hydroxyphenylglycol (MHPG) in urine as well as on plasma levels of HVA, 5-HIAA, prolactin (PRL) and cortisol. 2. Seventeen male patients diagnosed as suffering from DSM-IIIR schizophrenia completed the study. 3. The patients were switched from classical antipsychotics to clozapine. After six weeks treatment with clozapine the severity of psychopathology (total BPRS score) decreased significantly (p = 0.00004). pHVA and -5-HIAA did not change significantly. uMHPG increased significantly (p = 0.017). Both PRL and cortisol levels decreased significantly (p = 0.0002, p = 0.032 respectively). Patients with high HVA levels in both plasma and urine at baseline had a lower BPRS score at the end of treatment period (p = 0.0001, p = 0.049 respectively).
Muñoz, José L P; López Patiño, Marcos A; Hermosilla, Consuelo; Conde-Sieira, Marta; Soengas, José L; Rocha, Francisco; Míguez, Jesús M
2011-08-01
Information regarding melatonin production in molluscs is very limited. In this study the presence and daily fluctuations of melatonin levels were investigated in hemolymph, retina and nervous system-related structures in the cephalopod Octopus vulgaris. Adult animals were maintained in captivity under natural photoperiod and killed at different times in a regular daily cycle. Levels of melatonin, serotonin (5-HT) and its acid metabolite (5-hydroxyindole acetic acid, 5-HIAA) in the hemolymph, retina, optic lobe, and cerebral ganglion were assayed by HPLC. Melatonin content fluctuated rhythmically in the retina and hemolymph, peaking at night. In the retina, but not in the other neural tissues, the rhythm was opposite to that of 5-HT, which displayed basal levels at night. Also, 5-HIAA levels in the retina were higher during the night, supporting that rhythmic melatonin production could be linked to diurnal changes in 5-HT degradation. The high levels of melatonin found in the retina point to it as the major source of melatonin in octopus; in addition, a large variation of melatonin content was found in the optic lobe with maximal values at night. All these data suggest that melatonin might play a role in the transduction of the light-dark cycle information for adjustment of rhythmic physiological events in cephalopods.
Lindström, Mikael; Tohmola, Niina; Renkonen, Risto; Hämäläinen, Esa; Schalin-Jäntti, Camilla; Itkonen, Outi
2018-07-01
Serotonin (5-hydroxytyramine) is a mediator of gastrointestinal smooth muscle contraction, and is secreted by neuroendocrine neoplasms (NENs). We developed a liquid chromatography tandem mass spectrometry (LC-MS/MS) assay for serum serotonin to be used in NEN diagnostics and follow-up. We used serum samples from healthy volunteers (n = 31) and patients suspected or monitored for NEN (n = 98). Serotonin-D 4 internal standard was added to samples before solid phase extraction (SPE) and quantification by LC-MS/MS. The effects of sample handling and preparation on serotonin stability were studied. Finally, we established a provisional reference range for serum serotonin and compared our assay with serum 5-hydroxyindoleacetic acid (5-HIAA) for detection of NENs. Our assay is sensitive and has a wide linear range (10-10,000 nmol/l). Serum serotonin is stable for 7 days at room temperature and for 3 months at -20 °C. Sampling temperature is not critical. Normal range for serum serotonin was 270-1490 nmol/l. We found that serum serotonin and 5-HIAA performed equally well as diagnostic tests for NENs. Our LC-MS/MS assay for serum serotonin is well suited for clinical research and patient diagnostics. Our results confirm that it can complement 5-HIAA in diagnosis of NENs. Copyright © 2018 Elsevier B.V. All rights reserved.
Perinatal methadone exposure affects dopamine, norepinephrine, and serotonin in the weanling rat.
Robinson, S E; Maher, J R; Wallace, M J; Kunko, P M
1997-01-01
On gestational day 7 pregnant rats were implanted with osmotic minipumps containing either methadone hydrochloride (initial dose, 9 mg/kg/day) or sterile water. Their offspring were cross-fostered so that they were exposed to methadone prenatally and/or postnatally. On postnatal day 21, dopamine (DA), norepinephrine (NE), serotonin (5-HT), and their metabolites were analyzed. Perinatal methadone exposure disrupted dopaminergic, noradrenergic, and serotonergic activity in a brain region- and gender-specific fashion. The ratio of the DA metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) to DA was reduced in the frontal cortex of males exposed to methadone postnatally. No effects of perinatal methadone exposure were observed on DA and DOPAC in the striatum. The ratio of 3-methoxy-4-hydroxyphenylglycol (MOPEG) to NE in the hippocampus was increased significantly in males exposed to methadone prenatally. Striatal and parietal cortical 5-hydroxyindoleacetic acid (5-HIAA), but not its ratio to 5-HT, was increased slightly in rats exposed to methadone postnatally. Although parietal cortical 5-HT, 5-HIAA, and 5-hydroxytryptophan were all affected by perinatal methadone exposure, the ratios of metabolite and precursor to 5-HT were not affected. Effects of methadone exposure appeared to depend upon the developmental stage at which exposure occurred and did not appear to result from the phenomenon of neonatal withdrawal. Changes in activity of these three neurotransmitter systems may contribute to the effect of perinatal methadone on the activity of other neurons, such as cholinergic neurons.
Monoaminc and metabolite levels in the cerebrospinal fluid of hibernating and euthermic marmots.
Reid; Kilduff; Romero; Florant; Dement; Heller
1992-03-01
Cerebrospinal fluid from yellow-bellied marmots, Marmota flaviventris, was analysed for monoamine and monoamine metabolite content during euthermia and deep hibernation. Dopamine (DA) levels were decreased, while DA metabolite levels, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), were dramatically increased in hibernating marmots. Serotonin (5-HT) and 5-hydroxyindoleacetic acid (5HIAA) levels were also greatly enhanced during hibernation while norepinephrine (NE) levels were only moderately increased. These findings demonstrate that cerebrospinal monoamine levels are dynamically altered during hibernation, such that DA versus 5-HT and NE levels undergo opposite changes. Therefore, these data indicate that DA, 5-HT and NE neuronal systems are differentially altered during hibernation in mammals.
2012-01-01
Background In the upper bowel, alterations in motility and absorption of key nutrients have been observed as part of the normal ageing process. Serotonin (5-HT) is a key signalling molecule in the gastrointestinal tract and is known to influence motility, however little is known of how the ageing process alters 5-HT signalling processes in the bowel. Results An isocratic chromatographic method was able to detect all 5-HT precursors and metabolites. Using extracellular and intracellular sampling approaches, we were able to monitor all key parameters associated with the transmission process. There was no alteration in the levels of tryptophan and 5-HTP between 3 and 18 month old animals. There was a significant increase in the ratio of 5-HT:5-HTP and an increase in intracellular 5-HT between 3 and 18 month old animals suggesting an increase in 5-HT synthesis. There was also a significant increase in extracellular 5-HT with age, suggesting increased 5-HT release. There was an age-related decrease in the ratio of intracellular 5-HIAA:extracellular 5-HT, whilst the amount of 5-HIAA did not change with age. In the presence of an increase in extracellular 5-HT, the lack of an age-related change in 5-HIAA is suggestive of a decrease in re-uptake via the serotonin transporter (SERT). Conclusions We have used intracellular and extracellular sampling to provide more insight into alterations in the neurotransmission process of 5-HT during normal ageing. We observed elevated 5-HT synthesis and release and a possible decrease in the activity of SERT. Taken together these changes lead to increased 5-HT availability and may alter motility function and could lead to the changes in adsorption observed in the elderly. PMID:22494644
Tekes, K; Gyenge, M; Folyovich, A; Csaba, G
2009-04-01
Newborn male rats were treated with a single dose of 3 mg vitamin A (retinol) or 0.05 mg vita-min D (cholecalciferol), and three months later five brain regions (frontopolar cortex, hypothalamus, hippocampus, striatum, and brainstem) were studied for tissue levels of dopamine (DA), serotonin (5HT), and metabolites such as homovanillic acid (HVA), as well as 5-hydroxyindole-3-acetic acid (5HIAA). Vitamin A treatment as hormonal imprinting significantly decreased 5HIAA levels in each brain region. Vitamin D imprinting significantly elevated DA only in the brainstem and HVA levels in striatum and hypothalamus. Present and earlier brain-imprinting results (with brain-produced substances), show that the profound and life-long effect of neonatal hormonal imprinting on neurotransmitter production of the adult brain seems to be well established. As prophylactic treatment with these vitamins is frequent in the perinatal period, the imprinting effect of vitamin A and vitamin D must be taken into consideration.
Kato, T; Dong, B; Ishii, K; Kinemuchi, H
1986-04-01
A dialysis cannula was implanted into rat striatum while the animals were anesthetized, and the area was perfused with Ringer solution while the animals were unanesthetized after at least 3 days following surgery. Concentrations of the metabolites of 3,4-dihydroxyphenylethylamine (DA) and 5-hydroxytryptamine (5-HT) in the perfusate were determined by HPLC with electrochemical detection. Levels of the DA metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the perfusate significantly decreased after pargyline administration (50 mg/kg i.p.), which may inhibit not only monoamine oxidase (MAO)-B but also MAO-A in these high doses. The level of the 5-HT metabolite 5-hydroxyindoleacetic acid (5-HIAA) also decreased after pargyline treatment, although change in the relative level of 5-HIAA was less than that of DOPAC or HVA. To clarify the mechanisms for the metabolism of monoamines in rat striatum, highly specific MAO-A and -B inhibitors were used in the following experiments. Treatment with l-deprenyl (10 mg/kg), a specific inhibitor for MAO-B, did not cause any statistically significant change in DOPAC, HVA, and 5-HIAA levels. No significant change was found in rat striatal homogenates at 2 h after the same treatment with l-deprenyl. In contrast, low-dose treatment (1 mg/kg) with clorgyline, a specific inhibitor for MAO-A, caused a significant decrease in levels of these three metabolites in both the perfusates and tissue homogenates. In addition to the above three metabolites, the level of 3-methoxytyramine, which is an indicator of the amount of DA released, greatly increased after treatment with a low dose (1 mg/kg) of clorgyline.(ABSTRACT TRUNCATED AT 250 WORDS)
Effects of feedborne fusarium mycotoxins on brain regional neurochemistry of turkeys.
Girish, C K; MacDonald, E J; Scheinin, M; Smith, T K
2008-07-01
An experiment was conducted to investigate the effects of feeding grains naturally contaminated with Fusarium mycotoxins on brain regional neurochemistry of turkeys. The possible preventative effect of a poly-meric glucomannan mycotoxin adsorbent (GMA) was also determined. Forty-five 1-d-old male turkey poults were fed wheat-, corn-, and soybean meal-based diets up to wk 6, formulated with control grains, contaminated grains, or contaminated grains + 0.2% GMA. Deoxynivalenol was the major contaminant, and the concentrations were 2.2 and 3.3 mg/kg of feed during starter and grower phases, respectively. Concentrations of brain monoamine neurotransmitters and metabolites were measured in discrete regions of the brain including the pons, hypothalamus, and cortex by HPLC with electrochemical detection. Neurotransmitters and metabolites analyzed included norepinephrine, dopamine, 3,4-dihydroxyphenylacetic acid, serotonin (5-hydroxytryptamine, 5-HT), and 5-hydroxyindoleacetic acid (5-HIAA). The concentration of 5-HIAA and the 5-HIAA:5-HT-ratio were significantly decreased in pons after feeding contaminated grains. Dietary supplementation with GMA prevented these effects. In the pons, a significant positive correlation (r = 0.52, P < 0.05) was observed between the concentration of 5-HT and BW gain after feeding contaminated diets. The feeding of contaminated diet had no significant effects on the concentrations of neurotransmitters and metabolites in hypothalamus and cortex. It was concluded that consumption of grains naturally contaminated with Fusarium mycotoxins adversely altered the pons serotonergic system of turkeys. Supplementation with GMA partially inhibited these effects.
Bazhenova, Ekaterina Y; Sinyakova, Nadezhda A; Kulikova, Elizabeth A; Kazarinova, Irina A; Bazovkina, Daria V; Gainetdinov, Raul R; Kulikov, Alexander V
2017-07-13
Selective serotonin reuptake inhibitors (SSRIs) are antidepressants that block serotonin transporter (SERT) and increase serotonin (5-HT) level in the synaptic cleft. The interaction between SERT and the key enzyme of 5-HT synthesis in the brain, tryptophan hydroxylase 2 (TPH2), is essential to maintain the brain 5-HT level. The G allele of C1473G polymorphism in Tph2 gene decreases enzyme activity by half in mouse brain. Here we studied effect of C1473G polymorphism on the reaction of brain 5-HT system to chronic fluoxetine treatment (120mg/l in drinking water, for 3 weeks) in adult males of the congenic B6-1473C and B6-1473G mouse lines with high and low enzyme activity, respectively. The polymorphism did not affect the levels of 5-HT, its metabolite, 5-hydroxyindoleacetic acid (5-HIAA) and Tph2 gene mRNA in the brain. Fluoxetine significantly attenuated 5-HT levels in the cortex and striatum, 5-HIAA concentrations in the cortex, hippocampus, striatum and midbrain, and Tph2 gene expression in the midbrain. However, we did not observed any effect of the genotype x treatment interaction on these neurochemical characteristics. Therefore, C1473G polymorphism does not seem to play an essential role in the reaction of the brain 5-HT system to chronic fluoxetine treatment. Copyright © 2017 Elsevier B.V. All rights reserved.
Sex differences in the neurochemical and functional effects of MDMA in Sprague-Dawley rats.
Walker, Q David; Williams, Christina N; Jotwani, Rakesh P; Waller, Samuel T; Francis, Reynold; Kuhn, Cynthia M
2007-01-01
3,4-Methylenedioxymethamphetamine (MDMA; "Ecstasy") use has been associated with acute toxicities and persistent depletion of the neurotransmitter serotonin (5-HT). This study investigates whether sex differences in the acute and long-term effects of MDMA exist. Male and female rats received saline or 15 mg/kg MDMA, ip, bid for 4 days. Temperature was monitored on days 1 and 4. Locomotor activity was measured in a second cohort of animals on days 1 and 4 and after recovery on day 14. The effects of MDMA on performance in a plus maze task and brain levels of serotonin (5-HT) and the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) were determined in a third cohort of animals 2 weeks after the last MDMA treatment. Locomotor activity and temperature increased after MDMA administration on day 1. The drug-induced increases in temperature but not locomotion attenuated with repeated MDMA administration. Male and female MDMA-treated rats spent less time in the open arms of the elevated plus maze and had less 5-HT and 5-HIAA in all brain regions 2 weeks after the end of treatment. Temperature effects of MDMA and persistent effects on plus maze and brain serotonin content were similar in males and females. In contrast, females exhibited markedly greater locomotor stimulation after acute MDMA and also showed sensitization to an acute challenge 2 weeks later. MDMA elicits substantially greater locomotor activation in female rats than in males, but persistent effects on anxiety and serotonin content were similar in males and females.
5-Iodo-2-aminoindan, a nonneurotoxic analogue of p-iodoamphetamine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, D.E.; Johnson, M.P.; Oberlender, R.
1991-01-01
A rigid analogue, 5-iodo-2-aminoindan (5-IAI), of the serotonin neurotoxic halogenated amphetamine p-iodoamphetamine (PIA) was pharmacologically evaluated for production of serotonin neurotoxicity. A comparison was also made between 5-IAI and PIA in the two-lever drug discrimination paradigm in rats trained to discriminate saline from 3,4-methylenedioxymethamphetamine (MDMA) or saline from the alpha-ethyl homologue of MDMA, MBDB. PIA and 5-IAI were both behaviorally active, and fully substituted in both groups of animals, but were considerably less potent than p-chloroamphetamine (PCA). PIA had about twice the potency of PCA as an inhibitor of {sup 3}H-5-HT uptake in rat brain cortical synaptosomes, while 5-IAI wasmore » only about 75% as potent as PCA in this assay. A single 40 mg/kg dose of PIA resulted in a 40% reduction of 5-HT and 5-HIAA levels and in the number of 5-HT uptake sites in rat cortex at one week sacrifice. The same dose of 5-IAI with one week sacrifice led to about a 15% decrease in 5-HIAA levels and number of 5-HT uptake sites, but only the latter was statistically significant. In rat hippocampus, PIA gave significant decreases in all serotonin markers examined, while 5-IAI slightly but significantly decreased only 5-HT levels. Neither compound produced any change in catecholamine or catecholamine metabolite levels. The results confirm earlier reports of the selective serotonin neurotoxicity of PIA, which is less severe than that of PCA, and also demonstrate that its rigid analogue 5-IAI does not appear to cause significant serotonin deficits in the rat.« less
Tekes, K; Gyenge, M; Hantos, M; Csaba, G
2007-07-01
Female rats were treated with 10 microg of beta-endorphin on the 19th day of pregnancy. Offspring were studied when five months old. Serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) content in four brain regions were determined by HPLC-EC and the nocistatin levels of blood plasma using RIA methods. In each brain region studied, the 5-HT levels were highly significantly reduced and that of 5-HIAA in three regions was highly significantly increased. When 5HIAA/5HT ratios, as a measure of serotonin turnover, were calculated, imprinted animals showed extremely high values. Plasma nocistatin level was also significantly elevated. The results call attention to the effect of perinatal endorphin imprinting and its long-term consequences (e.g., setting of aggressiveness, pain tolerance).
Tekes, Kornélia; Gyenge, Melinda; Sótonyi, Péter; Csaba, György
2009-04-01
Noradrenaline (NA), dopamine (DA), homovanillic acid (HA), serotonin (5HT) and 5-hydroxyindole acetic acid (5HIAA) content of five brain regions (hypothalamus, hippocampus, brainstem, striatum and frontal cortex) and the cerebrospinal fluid (CSF) was measured in adult (three months old) male and female rats treated neonatally with a single dose of 10 microg nociceptin (NC) or 10 microg nocistatin (NS) for hormonal imprinting. The biogenic amine and metabolite content of cerebrospinal fluid was also determined. In NC treated animals the serotonergic, dopaminergic as well as noradrenergic systems were influenced by the imprinting. The 5HT level increased in hypothalamus, the 5HIAA tissue levels were found increased in hypothalamus. Hippocampus and striatum and the HVA levels increased highly significantly in brainstem. Dopamine level decreased significantly in striatum, however in frontal cortex both noradrenalin and 5HIAA level decreased. Nevertheless, in NS-treated rats decreased NA tissue levels were found in hypothalamus, brainstem and frontal cortex. Decreased DA levels were found in the hypothalamus, brainstem and striatum. NS imprinting resulted in decreased HVA level, but increased one in the brainstem. The 5HT levels decreased in the hypothalamus, brainstem, striatum and frontal cortex, while 5HIAA content of CSF, and frontal cortex decreased, and that of hypothalamus, hippocampus and striatum increased. There was no significant difference between genders except in the 5HT tissue levels of NC treated rats. Data presented show that neonatal imprinting both by NC and NS have long-lasting and brain area specific effects. In earlier experiments endorphin imprinting also influenced the serotonergic system suggesting that during labour release of pain-related substances may durably affect the serotonergic (dopaminergic, adrenergic) system which can impress the animals' later behavior.
Wang, Jianjun; Luo, Jiansong; Aryal, Dipendra K; Wetsel, William C; Nass, Richard; Benovic, Jeffrey L
2017-04-07
G protein-coupled receptors (GPCRs) regulate many animal behaviors. GPCR signaling is mediated by agonist-promoted interactions of GPCRs with heterotrimeric G proteins, GPCR kinases (GRKs), and arrestins. To further elucidate the role of GRKs in regulating GPCR-mediated behaviors, we utilized the genetic model system Caenorhabditis elegans Our studies demonstrate that grk-2 loss-of-function strains are egg laying-defective and contain low levels of serotonin (5-HT) and high levels of the 5-HT metabolite 5-hydroxyindole acetic acid (5-HIAA). The egg laying defect could be rescued by the expression of wild type but not by catalytically inactive grk-2 or by the selective expression of grk-2 in hermaphrodite-specific neurons. The addition of 5-HT or inhibition of 5-HT metabolism also rescued the egg laying defect. Furthermore, we demonstrate that AMX-2 is the primary monoamine oxidase that metabolizes 5-HT in C. elegans , and we also found that grk-2 loss-of-function strains have abnormally high levels of AMX-2 compared with wild-type nematodes. Interestingly, GRK-2 was also found to interact with and promote the phosphorylation of AMX-2. Additional studies reveal that 5-HIAA functions to inhibit egg laying in a manner dependent on the 5-HT receptor SER-1 and the G protein GOA-1. These results demonstrate that GRK-2 modulates 5-HT metabolism by regulating AMX-2 function and that 5-HIAA may function in the SER-1 signaling pathway. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Wang, Jianjun; Luo, Jiansong; Aryal, Dipendra K.; Wetsel, William C.; Nass, Richard; Benovic, Jeffrey L.
2017-01-01
G protein-coupled receptors (GPCRs) regulate many animal behaviors. GPCR signaling is mediated by agonist-promoted interactions of GPCRs with heterotrimeric G proteins, GPCR kinases (GRKs), and arrestins. To further elucidate the role of GRKs in regulating GPCR-mediated behaviors, we utilized the genetic model system Caenorhabditis elegans. Our studies demonstrate that grk-2 loss-of-function strains are egg laying-defective and contain low levels of serotonin (5-HT) and high levels of the 5-HT metabolite 5-hydroxyindole acetic acid (5-HIAA). The egg laying defect could be rescued by the expression of wild type but not by catalytically inactive grk-2 or by the selective expression of grk-2 in hermaphrodite-specific neurons. The addition of 5-HT or inhibition of 5-HT metabolism also rescued the egg laying defect. Furthermore, we demonstrate that AMX-2 is the primary monoamine oxidase that metabolizes 5-HT in C. elegans, and we also found that grk-2 loss-of-function strains have abnormally high levels of AMX-2 compared with wild-type nematodes. Interestingly, GRK-2 was also found to interact with and promote the phosphorylation of AMX-2. Additional studies reveal that 5-HIAA functions to inhibit egg laying in a manner dependent on the 5-HT receptor SER-1 and the G protein GOA-1. These results demonstrate that GRK-2 modulates 5-HT metabolism by regulating AMX-2 function and that 5-HIAA may function in the SER-1 signaling pathway. PMID:28213524
Chojnacki, C; Walecka-Kapica, E; Stepien, A; Pawlowicz, M; Wachowska-Kelly, P; Chojnacki, J
2013-01-01
The excess and deficit of serotonin can be the cause of somatic and mental disorders. The aim of this study was to evaluate serotonin levels in blood and ascitic fluid as well as excretion of 5-hydroxyindoleacetic acid (5-HIAA) in urine in patients with hepatic encephalopathy (HE). The study included 75 alcoholic cirrhotic patients divided into 3 groups (HE1, HE2, HE3), 25 patients each, with grade 1, 2 and 3 of hepatic encephalopathy according to West-Haven classification. The control group (C) included 25 clinically healthy volunteers. Venous blood and ascitic fluid were collected in fasting. On the same day a 24-hour urine collection was performed. Immunoenzymatic method was used to determine the serotonin level in serum and ascitic fluid, and 5-HIAA in urine (IBL-RE-59121, RE-59131). In the control group, mean serum serotonin level (ng/ml) was 155.5 ± 38.1 and in the 3 study groups: HE1 - 175.2 ± 32.4 (NS), HE2 - 137.2 ± 28.6 (NS), HE3 - 108.3 ± 46.3 (p<0.001). Serotonin concentration in ascitic fluid was on the average about 25% of its level in serum. The excretion of 5-HIAA in urine (mg/24h) in all groups, was: C - 5.9 ± 2.1, HE1 - 5.8 ± 1.8 (NS), HE2 - 4.8 ± 1.2(NS), HE3 - 4.3 ± 1.3 (p<0.05). The results of our study indicate that serum and ascitic fluid level of serotonin and urine excretion of 5-HIAA depends on the grade of hepatic encephalopathy. In patients with severe hepatic encephalopathy serotonin concentration in blood is decreased which can affect some clinical manifestation of this disease.
Hatcher, N. G.; Zhang, X.; Stuart, J. N.; Moroz, L. L.; Sweedler, J. V.; Gillette, R.
2014-01-01
Serotonin (5-HT) is an intrinsic modulator of neural network excitation states in gastropod molluscs. 5-HT and related indole metabolites were measured in single, well-characterized serotonergic neurons of the feeding motor network of the predatory sea-slug Pleurobranchaea californica. Indole amounts were compared between paired hungry and satiated animals. Levels of 5-HT and its metabolite 5-HT-SO4 in the metacerebral giant neurons were observed in amounts approximately four-fold and two-fold, respectively, below unfed partners 24 h after a satiating meal. Intracellular levels of 5-hydroxyindole acetic acid and of free tryptophan did not differ significantly with hunger state. These data demonstrate that neurotransmitter levels and their metabolites can vary in goal-directed neural networks in a manner that follows internal state. PMID:18036151
Kolta, M G; Holson, R; Duffy, P; Hart, R W
1989-05-01
The present study examines the changes in central monoamines and their metabolites in aged male and female rats after long-term caloric restriction. Fischer 344 rats of both sexes (n = 5-10/group) were maintained on one of two dietary regimens: ad libitum NIH 31 diet or 60% by weight of the ad lib. intake (restricted), supplemented with vitamins and minerals. Animals received these diets from the age of 14 weeks until killed at 22.25 months of age. Caudate nucleus (CN), hypothalamus (HYPO), olfactory bulb (OB) and nucleus accumbens (NA) were assayed for content of norepinephrine (NE), dopamine (DA) and its metabolites (dihydroxyphenylacetic acid, DOPAC, and homovanillic acid, HVA) and serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) using HPLC/EC. Relative to the ad lib. group, restricted rats of both sex showed significant decreases in NE content in CN, HYPO and OB. DA and 5-HT content were decreased significantly in the CN and HYPO. No significant changes were found in the levels of DA metabolites in all brain regions studied. While the 5-HIAA level was significantly reduced in the HYPO and NA of the female restricted rats, it was increased several-fold in the OB of the male restricted animals. These preliminary results suggest that long-term caloric restriction alters brain monoamine concentrations, an effect which may in turn modify the normal rate of aging.
Kema, I P; Meijer, W G; Meiborg, G; Ooms, B; Willemse, P H; de Vries, E G
2001-10-01
Profiling of the plasma indoles tryptophan, 5-hydroxytryptophan (5-HTP), serotonin, and 5-hydroxyindoleacetic acid (5-HIAA) is useful in the diagnosis and follow-up of patients with carcinoid tumors. We describe an automated method for the profiling of these indoles in protein-containing matrices as well as the plasma indole concentrations in healthy controls and patients with carcinoid tumors. Plasma, cerebrospinal fluid, and tissue homogenates were prepurified by automated on-line solid-phase extraction (SPE) in Hysphere Resin SH SPE cartridges containing strong hydrophobic polystyrene resin. Analytes were eluted from the SPE cartridge by column switching. Subsequent separation and detection were performed by reversed-phase HPLC combined with fluorometric detection in a total cycle time of 20 min. We obtained samples from 14 healthy controls and 17 patients with metastasized midgut carcinoid tumors for plasma indole analysis. In the patient group, urinary excretion of 5-HIAA and serotonin was compared with concentrations of plasma indoles. Within- and between-series CVs for indoles in platelet-rich plasma were 0.6-6.2% and 3.7-12%, respectively. Results for platelet-rich plasma serotonin compared favorably with those obtained by single-component analysis. Plasma 5-HIAA, but not 5-HTP was detectable in 8 of 17 patients with carcinoid tumors. In the patient group, platelet-rich plasma total tryptophan correlated negatively with platelet-rich plasma serotonin (P = 0.021; r = -0.56), urinary 5-HIAA (P = 0.003; r = -0.68), and urinary serotonin (P <0.0001; r = -0.80). The present chromatographic approach reduces analytical variation and time needed for analysis and gives more detailed information about metabolic deviations in indole metabolism than do manual, single-component analyses.
Jung, Hyo Young; Yoo, Dae Young; Kim, Woosuk; Nam, Sung Min; Kim, Jong Whi; Choi, Jung Hoon; Kwak, Youn-Gil; Yoon, Yeo Sung; Hwang, In Koo
2014-12-11
In this study, we investigate the effects of valerian root extracts (VE) on physical and psychological stress responses by utilizing a communication box. Eight-week-old ICR mice received oral administration of VE (100 mg/kg/0.5 ml) or equal volume of distilled water in every day for 3 weeks prior to being subjected to physical or psychological stress for 3 days, which are induced by communication box developed for physical electric shock and psychological stress by nociceptive stimulation-evoked responses. The stress condition was assessed by forced swimming test and serum corticosterone levels. In addition, norepinephrine (NE), serotonin (5-HT), and their metabolites such as 3-methoxy-4-hydroxyphenylethyleneglycol sulfate (MHPG-SO4) and 5-hydroxyindoleacetic acid (5-HIAA) were measured in the hippocampus and amygdala at 1 h after final stress condition, respectively. Immobility time and corticosterone levels were significantly increased in both the physical and psychological stress groups compared to the control group. The administration of VE significantly reduced these parameters in both the physical and psychological stress groups. In addition, compared to the control group, physical and psychological stress groups showed significantly increased levels of MHPG-SO4 and 5-HIAA in the hippocampus and amygdala, respectively. The administration of VE significantly suppressed the increase of MHPG-SO4 and 5-HIAA in the two stress groups. These results suggest that VE can suppress physical and psychological stress responses by modulating the changes in 5-HT and NE turnover in the hippocampus and amygdala.
Yoon, Hyung Shin; Hattori, Kotaro; Ogawa, Shintaro; Sasayama, Daimei; Ota, Miho; Teraishi, Toshiya; Kunugi, Hiroshi
Many studies have investigated cerebrospinal fluid (CSF) monoamine metabolite levels in depressive disorders. However, their clinical significance is still unclear. We tried to determine whether CSF monoamine metabolite levels could be a state-dependent marker for major depressive disorder (MDD) based on analyses stratified by clinical variables in a relatively large sample. Subjects were 75 patients with MDD according to DSM-IV criteria and 87 healthy controls, matched for age, sex, and ethnicity (Japanese). They were recruited between May 2010 and November 2013. We measured homovanillic acid (HVA), 5-hydroxyindoleacetic acid (5-HIAA), and 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG) in CSF samples by high-performance liquid chromatography. We analyzed the relationships of the metabolite levels with age, sex, diagnosis, psychotropic medication use, and depression severity. There was a weak positive correlation between age and 5-HIAA levels in controls (ρ = 0.26, P < .016) and a similar trend in patients, while sex was unrelated to any metabolite. All monoamine metabolites in moderately to severely depressed patients (17-item Hamilton Depression Rating Scale score > 12) were significantly lower than those in controls (P < .0005 for all 3 metabolites). We found that antidepressants decreased the levels of 5-HIAA (ρ = -0.39, P < .001) and MHPG (ρ = -0.49, P < .0001) and that antipsychotics increased levels of HVA (ρ = 0.24, P < .05). There was a strong correlation between HVA and 5-HIAA levels (controls: ρ = 0.79, P = .000001; MDD: ρ = 0.66, P = .000001). HVA levels (ρ = -0.43, P < .001) and 5-HIAA levels (ρ = -0.23, P < .05), but not MHPG levels (ρ = -0.18, P > .1), were related to depression severity. CSF 5-HIAA and HVA levels could be state-dependent markers in MDD patients. Since 5-HIAA levels greatly decrease with the use of antidepressants, HVA levels might be more useful in the clinical setting. © Copyright 2017 Physicians Postgraduate Press, Inc.
Matragrano, Lisa L.; Sanford, Sara E.; Salvante, Katrina G.; Beaulieu, Michaël; Sockman, Keith W.; Maney, Donna L.
2011-01-01
Because no organism lives in an unchanging environment, sensory processes must remain plastic so that in any context, they emphasize the most relevant signals. As the behavioral relevance of sociosexual signals changes along with reproductive state, the perception of those signals is altered by reproductive hormones such as estradiol (E2). We showed previously that in white-throated sparrows, immediate early gene responses in the auditory pathway of females are selective for conspecific male song only when plasma E2 is elevated to breeding-typical levels. In this study, we looked for evidence that E2-dependent modulation of auditory responses is mediated by serotonergic systems. In female nonbreeding white-throated sparrows treated with E2, the density of fibers immunoreactive for serotonin transporter innervating the auditory midbrain and rostral auditory forebrain increased compared with controls. E2 treatment also increased the concentration of the serotonin metabolite 5-HIAA in the caudomedial mesopallium of the auditory forebrain. In a second experiment, females exposed to 30 min of conspecific male song had higher levels of 5-HIAA in the caudomedial nidopallium of the auditory forebrain than birds not exposed to song. Overall, we show that in this seasonal breeder, (1) serotonergic fibers innervate auditory areas; (2) the density of those fibers is higher in females with breeding-typical levels of E2 than in nonbreeding, untreated females; and (3) serotonin is released in the auditory forebrain within minutes in response to conspecific vocalizations. Our results are consistent with the hypothesis that E2 acts via serotonin systems to alter auditory processing. PMID:21942431
Effects of salicylate on 3,4-methylenedioxymethamphetamine (MDMA)-induced neurotoxicity in rats.
Yeh, S Y
1997-11-01
The drug 3,4-methylenedioxymethamphetamine (MDMA) is a serotonergic neurotoxicant that causes hyperthermia and depletion of serotonin (5-HT) and 5-hydroxy-indole-3-acetic acid (5-HIAA) in the central nervous system. Formation of neurotoxic metabolites of MDMA, e.g., 2,4,5-trihydroxy-methamphetamine and 2,4,5-trihydroxyamphetamine, involves hydroxyl and/or superoxide free radicals. The present study was designed to determine whether the hydroxyl free-radical-trapping agent salicylate could provide protection against MDMA neurotoxicity in rats. In the acute studies, sodium salicylate (12.5-400 mg/kg, calculated as free acid) was injected interperitoneally (i.p.) 1 h before subcutaneous (s.c.) injections of MDMA (20 mg/kg as base). In the chronic studies, sodium salicylate (3.1-100 mg/kg) was injected i.p. 1 h before repeated s.c. injections of MDMA (10 mg/kg as base, twice daily, at 0830 and 1730 h for 4 consecutive days). Repeated MDMA administration depleted contents of 5-HT and 5-HIAA in the frontal cortex, hippocampus and striatum. Coadministration of salicylate plus MDMA did not significantly alter MDMA-induced depletion of 5-HT and 5-HIAA in these tissues. Thus, salicylate, a hydroxyl free-radical-trapping agent, does not protect against MDMA-induced hyperthermia and depletion of 5-HT and 5-HIAA. These observations suggest that MDMA-induced neurotoxicity may occur mainly through the production of superoxide or other radicals rather than hydroxyl free radicals. Salicylate actually potentiated MDMA-induced hyperthermia and lethality, findings that might be of clinical relevance.
Increased release of brain serotonin reduces vulnerability to ventricular fibrillation in the cat
NASA Technical Reports Server (NTRS)
Lehnert, Hendrik; Lombardi, Federico; Raeder, Ernst A.; Lorenzo, Antonio V.; Verrier, Richard L.; Lown, Bernard; Wurtman, Richard J.
1987-01-01
The effect of administering the serotonin precursor 5-l-hydroxytryptophan, in conjunction with a monamine oxidase inhibitor phenelzine and a l-amino acid decarboxylase inhibitor carbidopa, on neurochemical changes in the concentrations of serotonin and 5-hydroxyindoleacetic acid (5-HIAA) in the cerebrospinal fluid of the cat were investigated. Results showed that this drug regimen led to increases of serotonin and 5-hydroxyindoleacetic acid (5-HIAA) concentrations in the cerebrospinal fluid by 330 and 830 percent, respectively. Concomitantly, the threshold of ventricular fibrillation was found to be elevated by 42 percent and the effective refractory period was prolonged by 7 percent; the efferent sympathetic neural activity was suppressed in the normal heart. The results indicate that the enhancement of central serotoninergic neurotransmission can reduce the susceptibility of the heart to ventricular fibrillation mediated through a decline in sympathetic neural traffic to the heart.
Ali, Syed F; Itzhak, Yossef
1998-05-01
Methamphetamine (METH) is one of the major drugs of abuse that is postulated to cause neurotoxicity by depleting dopamine (DA) and its metabolites, high-affinity DA uptake sites, and the activity of tyrosine hydroxylase. The present study was undertaken to investigate whether the relatively selective, neuronal nitric oxide synthase (NOS) inhibitor, 7-nitroindazole (7-NI), protects against METH-induced neurotoxicity. Male Swiss Webster mice received the following injections intraperitoneally (i.p.) 3 times (every 3 hr): (i) vehicle/saline, (ii) 7-NI (25 mg/kg)/saline, (iii) vehicle/METH (5 mg/kg), and (iv) 7-NI (25 mg/kg)/METH (5 mg/kg). On the second day, groups (i) and (iii) received two vehicle injections and groups (ii) and (iv) received two 7-NI injections (25 mg/kg each). The administration of vehicle/METH resulted in 68, 44 and 55% decreases in the concentration of DA, dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA), respectively, and a 48% decrease in the number of [ 3 H]mazindol binding sites in the striatum compared to control values. The treatment with 7-NI (group iv) provided a full protection against the depletion of DA and its metabolites, and the loss of dopamine transporter binding sites. Multiple injection of METH caused a significant decrease in the concentration of serotonin (5-HT) and its metabolite 5-hydroxyindole acetic acid (5-HIAA). Treatment with 7-NI partially blocked the depletion of 5-HT and completely blocked the reduction in 5-HIAA levels. The administration of 7-NI/saline (group ii) affected neither the tissue concentration of DA, 5-HT and their metabolites (DOPAC, HVA and 5-HIAA) nor the binding parameters of [ 3 H]-mazindol compared to control (vehicle/saline) values. 7-NI had no significant effect on the animals' body temperature, and it did not affect METH-induced hyperthermia. These findings indicate a role for nitric oxide in METH-induced neurotoxicity and also suggest that blockage of NOS may be beneficial for the management of Parkinson's disease.
Ali, S F; Itzhak, Y
1998-05-30
Methamphetamine (METH) is one of the major drugs of abuse that is postulated to cause neurotoxicity by depleting dopamine (DA) and its metabolites, high-affinity DA uptake sites, and the activity of tyrosine hydroxylase. The present study was undertaken to investigate whether the relatively selective, neuronal nitric oxide synthase (NOS) inhibitor, 7-nitroindazole (7-NI), protects against METH-induced neurotoxicity. Male Swiss Webster mice received the following injections intraperitoneally (i.p.) 3 times (every 3 hr): (i) vehicle/saline, (ii) 7-NI (25 mg/kg)/saline, (iii) vehicle/METH (5 mg/kg), and (iv) 7-NI (25 mg/kg)/METH (5 mg/kg). On the second day, groups (i) and (iii) received two vehicle injections and groups (ii) and (iv) received two 7-NI injections (25 mg/kg each). The administration of vehicle/METH resulted in 68, 44 and 55% decreases in the concentration of DA, dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA), respectively, and a 48% decrease in the number of [3H]mazindol binding sites in the striatum compared to control values. The treatment with 7-NI (group iv) provided a full protection against the depletion of DA and its metabolites, and the loss of dopamine transporter binding sites. Multiple injection of METH caused a significant decrease in the concentration of serotonin (5-HT) and its metabolite 5-hydroxyindole acetic acid (5-HIAA). Treatment with 7-NI partially blocked the depletion of 5-HT and completely blocked the reduction in 5-HIAA levels. The administration of 7-NI/saline (group ii) affected neither the tissue concentration of DA, 5-HT and their metabolites (DOPAC, HVA and 5-HIAA) nor the binding parameters of [3H]-mazindol compared to control (vehicle/saline) values. 7-NI had no significant effect on the animals' body temperature, and it did not affect METH-induced hyperthermia. These findings indicate a role for nitric oxide in METH-induced neurotoxicity and also suggest that blockage of NOS may be beneficial for the management of Parkinson's disease.
Rognum, Ingvar J.; Tran, Hoa; Haas, Elisabeth A.; Hyland, Keith; Paterson, David S.; Haynes, Robin L.; Broadbelt, Kevin G.; Harty, Brian J.; Mena, Othon; Krous, Henry F.; Kinney, Hannah C.
2015-01-01
Clinical biomarkers are urgently needed in the sudden infant death syndrome (SIDS) to identify living infants at risk because it because it occurs without occurs without clinical warning. Previously, we reported multiple serotonergic (5-HT) abnormalities in nuclei of the medulla oblongata that help mediate protective responses to homeostatic stressors. Here we test the hypothesis that 5-HT-related measures are abnormal in the cerebrospinal fluid (CSF) of SIDS infants compared to autopsy controls, as a first step towards their assessment as diagnostic biomarkers of medullary pathology. Levels of CSF 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA), the degradative products of 5-HT and dopamine, respectively, were measured by high performance liquid chromatography in 57 SIDS and 29 non-SIDS autopsy cases. Tryptophan (Trp) and tyrosine (Tyr), the substrates of 5-HT and dopamine, respectively, were also measured. There were no significant differences in 5-HIAA, Trp, HVA, or Tyr levels between the SIDS and non-SIDS groups. These data preclude use of 5-HIAA, HVA, Trp or Tyr measurements as CSF biomarkers of 5-HT medullary pathology in infants at risk. They provide, however, important information about monoaminergic measurements in human CSF at autopsy and their developmental profile in infancy that is applicable to multiple pediatric disorders beyond SIDS. PMID:24423636
Neurochemical, hormonal, and behavioral effects of chronic unpredictable stress in the rat
Cox, Brittney M.; Alsawah, Fares; McNeill, Peter C.; Galloway, Matthew P.; Perrine, Shane A.
2011-01-01
The high comorbidity of anxiety and depression suggests a potential degree of commonality in their etiologies. The chronic unpredictable stress (CUS) model effectively replicates depressive-like phenotypes; however, the ability of CUS to produce anxiety-like behaviors has not been adequately addressed. Using the CUS paradigm (2 stressors per day for 10 days) in adult Sprague Dawley rats we identified behavioral, hormonal, and neurochemical changes one day after the cessation of treatment. Stress attenuated weight gain throughout the study and increased locomotor activity one day after treatment, but had no effect on anxiety-behavior as measured by the elevated plus maze. In addition, plasma corticosterone levels were positively correlated with hypothalamic serotonin (5-HT) activity one day after stress treatment as determined by the ratio of the metabolite 5-hydroxyindoleacetic acid (5-HIAA) to the parent compound (5-HIAA/5-HT ratio). These data suggest behavioral phenotypes associated with depression, but not comorbid anxiety, emerge in the immediate period after cessation of stress and that stress related physiology is related to 5-HT activity in the hypothalamus. PMID:21277333
The protective effect of Physalis peruviana L. against cadmium-induced neurotoxicity in rats.
Abdel Moneim, Ahmed E; Bauomy, Amira A; Diab, Marwa M S; Shata, Mohamed Tarek M; Al-Olayan, Ebtesam M; El-Khadragy, Manal F
2014-09-01
The present study was carried out to investigate the protective effect of Physalis peruviana L. (family Solanaceae) against cadmium-induced neurotoxicity in rats. Adult male Wistar rats were randomly divided into four groups. Group 1 was used as control. Group 2 was intraperitoneally injected with 6.5 mg/kg bwt of cadmium chloride for 5 days. Group 3 was treated with 200 mg/kg bwt of methanolic extract of Physalis (MEPh). Group 4 was pretreated with MEPh 1 h before cadmium for 5 days. Cadmium treatment induced marked disturbances in neurochemical parameters as indicating by significant (p < 0.05) reduction in dopamine (DA), serotonin (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) in cerebellum, hippocampus, and cerebral cortex and enhanced significantly (p < 0.05) the levels of lipid peroxidation and nitric oxide in the brain. Cadmium treatment also decreased the amount of nonenzymatic and enzymatic antioxidants significantly (p < 0.05). Pretreatment with MEPh resulted in significant (p < 0.05) decreases in lipid peroxidation and nitric oxide levels and restored the amount of glutathione successfully. Although, preadministration of MEPh also brought the activities of cellular antioxidant enzymes, namely superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase significantly (p < 0.05) to the control levels, as well as the levels of Ca(2+), Cl(-), DA, 5-HT, and serotonin metabolite, 5-HIAA. These data indicated that Physalis has a beneficial effect in ameliorating the cadmium-induced oxidative neurotoxicity in the brain of rats.
Mulder, Erik J; Anderson, George M; Kemperman, Ramses F J; Oosterloo-Duinkerken, Alida; Minderaa, Ruud B; Kema, Ido P
2010-01-01
A substantial proportion of individuals with autism have elevated levels of platelet serotonin (5-HT). We examined whether platelet hyperserotonemia is associated with increased gut 5-HT synthesis, altered 5-HT catabolism or altered melatonin production. Urinary excretion of 5-hydroxyindoleacetic acid (5-HIAA) and 5-HT was compared in 10 normoserotonemic and 10 hyperserotonemic age-matched autistic individuals. The relationship of urinary 6-sulfatoxymelatonin (6-SM) excretion to platelet 5-HT, and to urinary 5-HT and 5-HIAA excretion, was also examined. In the hyperserotonemic group, significant increases at trend level in urinary excretion of 5-HIAA (p = 0.061) and 5-HT (p = 0.071) and a significant decrease for 6-SM were found (p = 0.027). The urinary 5-HIAA:5-HT ratio was similar in the normo- versus the hyperserotonemic groups. The catabolism of 5-HT does not differ in the groups, but greater exposure of the platelet to 5-HT cannot be ruled out as a cause of the platelet hyperserotonemia of autism. Although only trend level significant, the data point to a need for larger studies to examine more thoroughly the relationships between platelet hyperserotonemia, gut 5-HT synthesis and melatonin production. (c) 2009 S. Karger AG, Basel.
McNamara, Robert K; Able, Jessica A; Liu, Yanhong; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Lipton, Jack W
2013-12-01
While translational evidence suggests that long-chain omega-3 fatty acid status is positively associated with the efficacy of selective serotonin reuptake inhibitor drugs, the neurochemical mechanisms mediating this interaction are not known. Here, we investigated the effects of dietary omega-3 (n-3) fatty acid insufficiency on the neurochemical and behavioral effects of chronic fluoxetine (FLX) treatment. Female rats were fed diets with (CON, n=56) or without (DEF, n=40) the n-3 fatty acids during peri-adolescent development (P21-P90), and one half of each group was administered FLX (10mg/kg/day) for 30days (P60-P90) prior to testing. In adulthood (P90), regional brain serotonin (5-HT) and 5-hydroxyindoleacetic (5-HIAA) concentrations, presynaptic markers of 5-HT neurotransmission, behavioral responses in the forced swim test (FST), and plasma FLX and norfluoxetine (NFLX) concentrations were investigated. Peri-adolescent n-3 insufficiency led to significant reductions in cortical docosahexaenoic acid (DHA, 22:6n-3) composition in DEF (-25%, p≤0.0001) and DEF+FLX (-28%, p≤0.0001) rats. Untreated DEF rats exhibited significantly lower regional 5-HIAA/5-HT ratios compared with untreated CON rats, but exhibited similar behavioral responses in the FST. In both CON and DEF rats, chronic FLX treatment similarly and significantly decreased 5-HIAA concentrations and the 5-HIAA/5-HT ratio in the hypothalamus, hippocampus, and nucleus accumbens, brainstem tryptophan hydroxylase-2 mRNA expression, and immobility in the FST. While the FLX-induced reduction in 5-HIAA concentrations in the prefrontal cortex was significantly blunted in DEF rats, the reduction in the 5-HIAA/5-HT ratio was similar to CON rats. Although plasma FLX and NFLX levels were not significantly different in DEF and CON rats, the NFLX/FLX ratio was significantly lower in DEF+FLX rats. These preclinical data demonstrate that n-3 fatty acid deficiency does not significantly reduce the effects of chronic FLX treatment on central 5-HT turnover or behavior in the FST in female rats. © 2013 Elsevier Inc. All rights reserved.
McNamara, Robert K.; Able, Jessica A.; Liu, Yanhong; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Lipton, Jack W.
2013-01-01
While translational evidence suggests that long-chain omega-3 fatty acid status is positively associated with the efficacy of selective serotonin reuptake inhibitor drugs, the neurochemical mechanisms mediating this interaction are not known. Here we investigated the effects of dietary omega-3 (n-3) fatty acid insufficiency on the neurochemical and behavioral effects of chronic fluoxetine (FLX) treatment. Female rats were fed diets with (CON, n=56) or without (DEF, n=40) the n-3 fatty acids during peri-adolescent development (P21-P90), and one half of each group were administered FLX (10 mg/kg/d) for 30 d (P60-P90) prior to testing. In adulthood (P90), regional brain serotonin (5-HT) and 5-hydroxyindoleacetic (5-HIAA) concentrations, presynaptic markers of 5-HT neurotransmission, behavioral responses in the forced swim test (FST), and plasma FLX and norfluoxetine (NFLX) concentrations were investigated. Peri-adolescent n-3 insufficiency led to significant reductions in cortical docosahexaenoic acid (DHA, 22:6n-3) composition in DEF (−25%, p≤0.0001) and DEF+FLX (−28%, p≤0.0001) rats. Untreated DEF rats exhibited significantly lower regional 5-HIAA/5-HT ratios compared with untreated CON rats, but exhibited similar behavioral responses in the FST. In both CON and DEF rats, chronic FLX treatment similarly and significantly decreased 5-HIAA concentrations and the 5-HIAA/5-HT ratio in the hypothalamus, hippocampus, and nucleus accumbens, brainstem tryptophan hydroxylase-2 mRNA expression, and immobility in the FST. While the FLX-induced reduction in 5-HIAA concentrations in the prefrontal cortex was significantly blunted in DEF rats, the reduction in the 5-HIAA/5-HT ratio was similar to CON rats. Although plasma FLX and NFLX levels were not significantly different in DEF and CON rats, the NFLX/FLX ratio was significantly lower in DEF+FLX rats. These preclinical data demonstrate that n-3 fatty acid deficiency does not significantly reduce the effects of chronic FLX treatment on central 5-HT turnover or behavior in the FST in female rats. PMID:24090922
Genetic and biochemical changes of the serotonergic system in migraine pathobiology.
Gasparini, Claudia Francesca; Smith, Robert Anthony; Griffiths, Lyn Robyn
2017-12-01
Migraine is a brain disorder characterized by a piercing headache which affects one side of the head, located mainly at the temples and in the area around the eye. Migraine imparts substantial suffering to the family in addition to the sufferer, particularly as it affects three times more women than men and is most prevalent between the ages of 25 and 45, the years of child rearing. Migraine typically occurs in individuals with a genetic predisposition and is aggravated by specific environmental triggers. Attempts to study the biochemistry of migraine began as early as the 1960s and were primarily directed at serotonin metabolism after an increase of 5-hydroxyindoleacetic acid (5-HIAA), the main metabolite of serotonin was observed in urine of migraineurs. Genetic and biochemical studies have primarily focused on the neurotransmitter serotonin, considering receptor binding, transport and synthesis of serotonin and have investigated serotonergic mediators including enzymes, receptors as well as intermediary metabolites. These studies have been mainly assayed in blood, CSF and urine as the most accessible fluids. More recently PET imaging technology integrated with a metabolomics and a systems biology platform are being applied to study serotonergic biology. The general trend observed is that migraine patients have alterations of neurotransmitter metabolism detected in biological fluids with different biochemistry from controls, however the interpretation of the biological significance of these peripheral changes is unresolved. In this review we present the biology of the serotonergic system and metabolic routes for serotonin and discuss results of biochemical studies with regard to alterations in serotonin in brain, cerebrospinal fluid, saliva, platelets, plasma and urine of migraine patients.
Duchesne, Annie; Dufresne, Marc M; Sullivan, Ron M
2009-03-17
Stress-related psychopathology is particularly prevalent in women, although the neurobiological reason(s) for this are unclear. Dopamine (DA) and serotonin (5-HT) systems however, are known to play important adaptive roles in stress and emotion regulation. The aims of the present study included examination of sex differences in stress-related behaviour and neuroendocrine function as well as post mortem neurochemistry, with the main hypothesis that corticolimbic DA and 5-HT systems would show greater functional activity in males than females. Long-Evans rats of both sexes were employed. Additional factors incorporated included differential postnatal experience (handled vs. nonhandled) and adult mild stress experience (acute vs. repeated (5) restraint). Regional neurochemistry measures were conducted separately for left and right hemispheres. Behaviourally, females showed more exploratory behaviour than males in the elevated plus maze and an openfield/holeboard apparatus. Females also exhibited significantly higher levels of adrenocorticotrophic hormone and corticosterone at all time points in response to restraint stress than males across treatment conditions, although both sexes showed similar habituation in stress-induced ACTH activation with repeated mild stress. Neurochemically, females had significantly higher levels of DA (in ventromedial prefrontal cortex (vmPFC), insular cortex and n. accumbens) and 5-HT (in vmPFC, amygdala, dorsal hippocampus and insula) than males. In contrast, males had higher levels of the DA metabolite DOPAC or DOPAC/DA ratios than females in all five regions and higher levels of the 5-HT metabolite 5-HIAA or 5-HIAA/5-HT ratios in vmPFC, amygdala and insula, suggesting greater neurotransmitter utilization in males. Moreover, handling treatment induced a significant male-specific upregulation of 5-HT metabolism in all regions except n. accumbens. Given the adaptive role of 5-HT and DAergic neurotransmission in stress and emotion regulation, the intrinsic sex differences we report in the functional status of these systems across conditions, may be highly relevant to the differential vulnerability to disorders of stress and emotion regulation.
Riddick, N V; Czoty, P W; Gage, H D; Kaplan, J R; Nader, S H; Icenhower, M; Pierre, P J; Bennett, A; Garg, P K; Garg, S; Nader, M A
2009-02-18
Socially housed monkeys have been used as a model to study human diseases. The present study examined behavioral, physiological and neurochemical measures as predictors of social rank in 16 experimentally naïve, individually housed female cynomolgus monkeys (Macaca fascicularis). The two behavioral measures examined were novel object reactivity (NOR), as determined by latency to touch an opaque acrylic box placed in the home cage, and locomotor activity assessed in a novel open-field apparatus. Serum cortisol concentrations were evaluated three times per week for four consecutive weeks, and stress reactivity was assessed on one occasion by evaluating the cortisol response to adrenocorticotropic hormone (ACTH) following dexamethasone suppression. Measures of serotonin (5-HT) function included whole blood 5-HT (WBS) concentrations, cerebrospinal fluid (CSF) concentrations of the 5-HT metabolite 5-hydroxyindoleacetic acid (5-HIAA) and brain 5-HT transporter (SERT) availability obtained using positron emission tomography (PET). After baseline measures were obtained, monkeys were assigned to four social groups of four monkeys per group. The two measures that correlated with eventual social rank were CSF 5-HIAA concentrations, which were significantly higher in the animals who eventually became subordinate, and latency to touch the novel object, which was significantly lower in eventual subordinate monkeys. Measures of 5-HT function did not change as a consequence of social rank. These data suggest that levels of central 5-HIAA and measures of novel object reactivity may be trait markers that influence eventual social rank in female macaques.
Hernández García, Ernestina; Osnaya Brizuela, Norma; Valenzuela Peraza, Armando; Calderón Guzmán, David; Ortiz Herrera, Maribel; Juárez Olguín, Hugo; Barragán Mejía, Gerardo; Santamaría Del Ángel, Daniel; Rojas Ochoa, Alberto
2018-02-13
The aim of this study was to evaluate the effect of splenda and stevia on dopamine and 5-HIAA levels, and some biomarkers of oxidative stress in the presence of cytarabine. Forty-eight young male Wistar rats each with a weight of 80 g (four weeks of age), distributed in six groups of eight animals each, were treated as follows: group 1, control (NaCl 0.9% vehicle); group 2, cytarabine (0.6 g/kg); group 3, stevia (0.6 g/kg); group 4, cytarabine + stevia; group 5, splenda; and group 6, cytarabine + splenda. Cytarabine was given intravenously (IV) while stevia and splenda were administered orally for five days, using orogastric tube. At the end of treatment, the animals were sacrificed and glucose levels in blood were measured. The brains were dissected for histological analysis and homogenated to measure levels of dopamine, lipid peroxidation (TBARS), serotonin metabolite (5-HIAA), Na+, K+ ATPase activity, and glutathione (GSH), using validated methods. Sweeteners increased the glucose in animals that received cytarabine. Dopamine increased in cortex and decreased in striatum of animals that received stevia alone and combined with cytarabine. 5-HIAA decreased in striatum and cerebellum/medulla oblongata of animals that received sweeteners and cytarabine alone or combined. GSH increased in animals that received sweeteners and decreased with cytarabine. Lipoperoxidation decreased in groups that received sweeteners and cytarabine. Histopathological changes revealed marked degeneration of neuronal cells in animals treated with cytarabine. These results show that sweeteners as stevia or splenda may lead to the onset of unfavorable changes in dopamine and 5-HIAA. Antioxidant effects may be involved. Besides, histological changes revealed marked lesions of neuronal cells in experimental animals treated with cytarabine.
Rossi, J; Nordholm, A F; Carpenter, R L; Ritchie, G D; Malcomb, W
2001-07-20
The U.S. Naval Service is anticipating transition from the nearly exclusive use of JP-5 jet fuel to predominant use of JP-8, consistent with the primary utilization by the U.S. Army, U.S. Air Force, and the militaries of most NATO countries. To compare the relative risk of repeated exposure to JP-5 versus JP-8 vapor, groups of 32 male Sprague-Dawley rats each were exposed for 6 h/d, 5 d/wk for 6 wk (180 h) to JP-8 jet fuel vapor (1,000 +/- 10% mg/m3), IP-5 vapor (1,200 +/- 10% mg/m3), or room air control conditions. Following a 65-d rest period, rats completed 10 tests selected from the Neurobehavioral Toxicity Assessment Battery (NTAB) to evaluate changes in performance capacity. Repeated exposure to JP-5 resulted in significant effects on only one test, forelimb grip strength (FGS), while exposure to JP-8 vapor resulted in a significant difference versus controls on appetitive reinforcer approach sensitization (ARAS). Rats were further evaluated for concentrations of major neurotransmitters and metabolites in five brain regions and in the blood serum. Levels of dopamine, the dopamine metabolite dihydroxyphenylacetic acid (DOPAC), and the serotonin metabolite homovanillic acid (HVA) were significantly modulated in various brain regions, as measured 85+ d postexposure. Similarly, serum levels of the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) were differentially modulated following JP-8 or JP-5 exposure. Results are compared to previously published research evaluating the neurotoxicity of repeated exposure to other hydrocarbon fuels and solvents.
Biezonski, Dominik K.; Piper, Brian J.; Shinday, Nina M.; Kim, Peter J.; Ali, Syed F.; Meyer, Jerrold S.
2013-01-01
Although the recreational drug 3,4-methylenedioxymethamphetamine (MDMA) is often described as a selective serotonergic neurotoxin, some research has challenged this view. The objective of this study was to determine the influence of MDMA on subsequent levels of two different markers of dopaminergic function, the dopamine transporter (DAT) as well as dopamine and its major metabolites. In experiment I, adult male Sprague–Dawley rats were administered either a low or moderate dose MDMA binge (2.5 or 5.0 mg/kg × 4 with an inter-dose interval of 1 h) or saline, and were killed 1 week later. The moderate dose dramatically reduced [3H]WIN 35,428 binding to striatal DAT by 73.7% (P ≤ 0.001). In experiment II, animals were binged with a higher dose of MDMA (10 mg/kg × 4) to determine the drug’s effects on concentrations of serotonin (5-HT), dopamine, and their respective major metabolites 5-hydroxyindoleacetic acid (5-HIAA), dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) in the striatum and frontal cortex 1 week later. As expected, MDMA significantly reduced 5-HT and 5-HIAA (≥ 50%) in these structures, while only a marginal decrease in dopamine was noted in the striatum. In contrast, levels of DOPAC (34.3%, P < 0.01) and HVA (33.5%, P < 0.001) were reduced by MDMA treatment, suggesting a decrease in dopamine turnover. Overall, these findings indicate that while serotonergic markers are particularly vulnerable to MDMA-induced depletion, significant dopaminergic deficits may also occur under some conditions. Importantly, DAT expression may be more vulnerable to perturbation by MDMA than dopamine itself. PMID:23276666
The saturated fatty acid, palmitic acid, induces anxiety-like behavior in mice.
Moon, Morgan L; Joesting, Jennifer J; Lawson, Marcus A; Chiu, Gabriel S; Blevins, Neil A; Kwakwa, Kristin A; Freund, Gregory G
2014-09-01
Excess fat in the diet can impact neuropsychiatric functions by negatively affecting cognition, mood and anxiety. We sought to show that the free fatty acid (FFA), palmitic acid, can cause adverse biobehaviors in mice that last beyond an acute elevation in plasma FFAs. Mice were administered palmitic acid or vehicle as a single intraperitoneal (IP) injection. Biobehaviors were profiled 2 and 24 h after palmitic acid treatment. Quantification of dopamine (DA), norepinephrine (NE), serotonin (5-HT) and their major metabolites was performed in cortex, hippocampus and amygdala. FFA concentration was determined in plasma. Relative fold change in mRNA expression of unfolded protein response (UPR)-associated genes was determined in brain regions. In a dose-dependent fashion, palmitic acid rapidly reduced mouse locomotor activity by a mechanism that did not rely on TLR4, MyD88, IL-1, IL-6 or TNFα but was dependent on fatty acid chain length. Twenty-four hours after palmitic acid administration mice exhibited anxiety-like behavior without impairment in locomotion, food intake, depressive-like behavior or spatial memory. Additionally, the serotonin metabolite 5-HIAA was increased by 33% in the amygdala 24h after palmitic acid treatment. Palmitic acid induces anxiety-like behavior in mice while increasing amygdala-based serotonin metabolism. These effects occur at a time point when plasma FFA levels are no longer elevated. Copyright © 2014 Elsevier Inc. All rights reserved.
Serotonin levels in aqueous humor of patients with primary open-angle glaucoma.
Zanon-Moreno, V; Melo, P; Mendes-Pinto, M M; Alves, C J; Garcia-Medina, J J; Vinuesa-Silva, I; Moreno-Nadal, M A; Pinazo-Duran, M D
2008-01-01
Glaucoma is an optic neuropathy characterized by a high intraocular pressure (IOP), alterations in optic nerve head, and loss of visual field that could lead to bilateral blindness. Serotonin (5-HT) is a biogenic monoamine that is synthesized from hydroxylation of tryptophan and acts by three ways, dissemination, metabolism, and reuptake in synaptic cleft through specific systems of the membrane. The purpose of this study is to evaluate the 5-HT and 5-HIAA (5-hydroxiindolacetic acid) levels in the aqueous humor of patients with primary open-angle glaucoma (POAG). We performed a case-control study, and the patients recruited were classified into two groups, 1) 30 patients with POAG (GG) and 2) 30 patients with cataracts (CG), who acted as the controls. Aqueous humor samples of each patient were obtained by paracentesis at the beginning of the surgical procedures. 5-HT and 5-HIAA levels were determined by high performance liquid chromatography (HPLC) with electrochemical detection. There were no statistical differences between age (71.3 +/- 7.2 years in GG, 73.5 +/- 9.0 years in CG; p=0.2581) or gender (sex ratio 0.765 in GG and 0.667 in CG). 5-HT levels were lower in GG, but this difference was not significant (p=0.820). We observed a statistically significant higher level of 5-HIAA in GG (p=0.001). The 5-HT turnover (5-HIAA/5-HT) were higher in GG than in CG (p<0.05), but the difference was not significant (p=0.598). The level of 5-HT was lower in GG patients, and the level of 5-HIAA was higher in GG patients than in CG patients.
COSMOS 2044. Experiment K-7-19. Pineal physiology in microgravity: Relation to rat gonadal function
NASA Technical Reports Server (NTRS)
Holley, D.; Soliman, M. R. I.; Krasnov, I.; Asadi, H.
1989-01-01
It is now known that the pineal organ can interact with many endocrine and nonendocrine tissues in a regulatory fashion. Given its key role in the regulation of melatonin synthesis, its high concentration, and that its levels may persist longer than the more rapidly changing melatonin, it was felt that serotonin might give a more accurate assessment of the effects of microgravity on pineal function following recovery of animals from flight. Five-hydroxyindole acetic acid (5-HIAA), a major metabolite of serotonin metabolism, was also measured. One of the most interesting concomitants to spaceflight and exposure to microgravity has been the disturbing alteration in calcium metabolism and resulting skeletal effects. Given the link between exposure to microgravity and perturbation of calcium metabolism and the fact that the pineal is apparently one of the only soft tissues to calcify, pineal calcium content was examined following spaceflight.
Kirac, Deniz; Ozden, Inci; Yildirim, Alper; Genç, Ece
2009-04-01
The aim of the present study was to investigate whether high fat consumption changes the effects of stress on both motor activity performance, striatal and cortical dopamine and serotonin metabolites in rats. The animals were fed either with high fat or standard diet for 4 weeks. Restraint stress lasting for 15 min at +4 degrees C was applied daily to stress-exposed groups. Motor activity performance was measured weekly by using motor activity monitoring systems. At the end of the study, homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) levels of the striatum and cerebral cortex were measured by HPLCEC. It was observed that restraint stress increased locomotor activity and high-fat diet prevented this effect. Stress and high-fat intake had an additive decreasing effect on striatal HVA levels. 5-HIAA levels, on the other hand, were lower in both high fat and high fat + stress groups compared to the stress group. These results suggest that high-fat intake differentially affected the stress response on striatal dopaminergic and serotonergic neurons in rat brain regions studied and this may be related to the effects observed in motor activity performance.
Cox, Brittney M.; Shah, Mrudang M.; Cichon, Teri; Tancer, Manuel E.; Galloway, Matthew P.; Thomas, David M.; Perrine, Shane A.
2015-01-01
Adolescents and young adults disproportionately abuse 3,4-methylenedioxymethamphetamine (MDMA; ‘Ecstasy’); however, since most MDMA research has concentrated on adults, the effects of MDMA on the developing brain remain obscure. Therefore, we evaluated place conditioning to MDMA (or saline) during late adolescence and assessed anxiety-like behavior and monoamine levels during abstinence. Rats were conditioned to associate 5 or 10 mg/kg MDMA or saline with contextual cues over 4 twice-daily sessions. Five days after conditioning, anxiety-like behavior was examined with the open field test and brain tissue was collected to assess serotonin (5-hydroxytryptamine, 5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the dorsal raphe, amygdala, and hippocampus by high-pressure liquid chromatography (HPLC). In a separate group of rats, anxiety-like and avoidant behaviors were measured using the light–dark box test under similar experimental conditions. MDMA conditioning caused a place aversion at 10, but not at 5, mg/kg, as well as increased anxiety-like behavior in the open field and avoidant behavior in light–dark box test at the same dose. Additionally, 10 mg/kg MDMA decreased 5-HT in the dorsal raphe, increased 5-HT and 5-HIAA in the amygdala, and did not alter levels in the hippocampus. Overall, we show that repeated high (10 mg/kg), but not low (5 mg/kg), dose MDMA during late adolescence in rats increases anxiety-like and avoidant behaviors, accompanied by region-specific alterations in 5-HT levels during abstinence. These results suggest that MDMA causes a region-specific dysregulation of the serotonin system during adolescence that may contribute to maladaptive behavior. PMID:24121061
Cox, Brittney M; Shah, Mrudang M; Cichon, Teri; Tancer, Manuel E; Galloway, Matthew P; Thomas, David M; Perrine, Shane A
2014-01-03
Adolescents and young adults disproportionately abuse 3,4-methylenedioxymethamphetamine (MDMA; 'Ecstasy'); however, since most MDMA research has concentrated on adults, the effects of MDMA on the developing brain remain obscure. Therefore, we evaluated place conditioning to MDMA (or saline) during late adolescence and assessed anxiety-like behavior and monoamine levels during abstinence. Rats were conditioned to associate 5 or 10mg/kg MDMA or saline with contextual cues over 4 twice-daily sessions. Five days after conditioning, anxiety-like behavior was examined with the open field test and brain tissue was collected to assess serotonin (5-hydroxytryptamine, 5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the dorsal raphe, amygdala, and hippocampus by high-pressure liquid chromatography (HPLC). In a separate group of rats, anxiety-like and avoidant behaviors were measured using the light-dark box test under similar experimental conditions. MDMA conditioning caused a place aversion at 10, but not at 5, mg/kg, as well as increased anxiety-like behavior in the open field and avoidant behavior in light-dark box test at the same dose. Additionally, 10mg/kg MDMA decreased 5-HT in the dorsal raphe, increased 5-HT and 5-HIAA in the amygdala, and did not alter levels in the hippocampus. Overall, we show that repeated high (10mg/kg), but not low (5mg/kg), dose MDMA during late adolescence in rats increases anxiety-like and avoidant behaviors, accompanied by region-specific alterations in 5-HT levels during abstinence. These results suggest that MDMA causes a region-specific dysregulation of the serotonin system during adolescence that may contribute to maladaptive behavior. © 2013.
Nzakizwanayo, Jonathan; Dedi, Cinzia; Standen, Guy; Macfarlane, Wendy M.; Patel, Bhavik A.; Jones, Brian V.
2015-01-01
Accumulating evidence shows indigenous gut microbes can interact with the human host through modulation of serotonin (5-HT) signaling. Here we investigate the impact of the probiotic Escherichia coli Nissle 1917 (EcN) on 5-HT signalling in gut tissues. Ex-vivo mouse ileal tissue sections were treated with either EcN or the human gut commensal MG1655, and effects on levels of 5-HT, precursors, and metabolites, were evaluated using amperometry and high performance liquid chromatography with electrochemical detection (HPLC-EC). Exposure of tissue to EcN cells, but not MG1655 cells, was found to increase levels of extra-cellular 5-HT. These effects were not observed when tissues were treated with cell-free supernatant from bacterial cultures. In contrast, when supernatant recovered from untreated ileal tissue was pre-incubated with EcN, the derivative cell-free supernatant was able to elevate 5-HT overflow when used to treat fresh ileal tissue. Measurement of 5-HT precursors and metabolites indicated EcN also increases intracellular 5-HTP and reduces 5-HIAA. The former pointed to modulation of tryptophan hydroxylase-1 to enhance 5-HT synthesis, while the latter indicates an impact on clearance into enterocytes through SERT. Taken together, these findings show EcN is able to enhance 5-HT bioavailability in ileal tissues through interaction with compounds secreted from host tissues. PMID:26616662
Biskup, Caroline Sarah; Sánchez, Cristina L; Arrant, Andrew; Van Swearingen, Amanda E D; Kuhn, Cynthia; Zepf, Florian Daniel
2012-01-01
Acute tryptophan depletion (ATD) is a method of lowering brain serotonin (5-HT). Administration of large neutral amino acids (LNAA) limits the transport of endogenous tryptophan (TRP) across the blood brain barrier by competition with other LNAAs and subsequently decreases serotonergic neurotransmission. A recent discussion on the specificity and efficacy of the ATD paradigm for inhibition of central nervous 5-HT has arisen. Moreover, side effects such as vomiting and nausea after intake of amino acids (AA) still limit its use. ATD Moja-De is a revised mixture of AAs which is less nauseating than conventional protocols. It has been used in preliminary clinical studies but its effects on central 5-HT mechanisms and other neurotransmitter systems have not been validated in an animal model. We tested ATD Moja-De (TRP-) in two strains of mice: C57BL/6J, and BALB/cJ, which are reported to have impaired 5-HT synthesis and a more anxious phenotype relative to other strains of mice. ATD Moja-De lowered brain TRP, significantly decreased 5-HT synthesis as indexed by 5-HTP levels after decarboxlyase inhibition, and lowered 5-HT and 5-HIAA in both strains of mice, however more so in C57BL/6J than in BALB/cJ. Dopamine and its metabolites as well as norepinephrine were not affected. A balanced (TRP+) control mixture did not raise 5-HT or 5-HIAA. The present findings suggest that ATD Moja-De effectively and specifically suppresses central serotonergic function. These results also demonstrate a strain-specific effect of ATD Moja-De on anxiety-like behavior.
Wu, Jui-Pin; Li, Mei-Hui; Chen, Jhih-Sheng; Chung, Szu-Yao; Lee, Hui-Ling
2015-03-01
Using specific neurobehaviors as endpoints, previous studies suggested that planarian neurotransmission systems could be targets of Cd neurotoxicity. However, direct evidence for disturbed neurotransmission systems by Cd in treated planarians is still lacking. In planarians, dopamine (DA) and serotonin (5-HT) play critical roles in neuromuscular function, but little is known about their metabolic degradation. Therefore, in this study, we attempted to determine the appearances of DA, 5-HT, and their metabolic products in the freshwater planarian Dugesia japonica, characterize the activity of enzymes involved in their metabolism, and investigate the effects of Cd on planarian 5-HTergic and DAergic neurotransmission systems. Only DA, 5-HT, and 5-hydroxyindole-3-acetic acid (5-HIAA) were found in planarian tissues. Further enzymatic study revealed the activity of planarian monoamine oxidase (MAO) but not catechol-O-methyl transferase (COMT). These findings suggest that planarian MAO catalyzes the metabolism of 5-HT into 5-HIAA. However, DA metabolites from the MAO-involved metabolic pathway were not found, which might be due to a lack of COMT activity. Finally, in Cd-treated planarians, tissue levels of 5-HT and DA were decreased and MAO activity altered, suggesting that planarian neurotransmission systems are disturbed following Cd treatment. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siegal, T.; Pfeffer, M.R.
To investigate the profile of biochemical and physiological changes induced in the rat spinal cord by radiation, over a period of 8 months. The thoraco-lumbar spinal cords of Fisher rats were irradiated to a dose of 15 Gy. The rats were then followed and killed at various times afterward. Serotonin (5-HT) and its major metabolite 5-hydroxyindole-3-acetic acid (5-HIAA) were assayed as well as prostaglandin synthesis. Microvessel permeability was assessed by quantitative evaluation of Evans blue dye extravasation. None of the rats developed neurologic dysfunction, and histologic examination revealed only occasional gliosis in the ventral white matter at 240 days aftermore » irradiation. Serotonin levels were unchanged at 2, 14, and 56 days after radiation but increased at 120 and 240 days in the irradiated cord segments when compared to both the nonirradiated thoracic and cervical segments (p < 0.01) and age-matched controls (p < 0.03). The calculated utilization ratio of serotonin (5-HIAA/5-HT) remained unchanged. Immediately after radiation (at 3 and 24 h) an abrupt but brief increase in the synthesis of prostaglandin-E{sub 2} (PGE{sub 2}), thromboxane (TXB{sub 2}), and prostacyclin [6 keto-PGF1{alpha} (6KPGF)] was noted, which returned to normal at 3 days. This was followed after 7 and 14 days by a significant fall off in synthesis of all three prostaglandins. Thereafter, at 28, 56, 120, and 240 days, escalated production of thromboxane followed, white prostacyclin synthesis remained markedly reduced (-88% of control level at 240 days). Up to 7 days after radiation the calculated TXB{sub 2}/6KPGF ratio remained balanced, regardless of the observed abrupt early fluctuations in their rate of synthesis. Later, between 7 and 240 days after radiation, a significant imbalance was present which became more pronounced over time. In the first 24 h after radiation, a 104% increase in microvessel permeability was observed which returned to normal by 3 days. 57 refs., 3 figs.« less
CSF 5-HIAA Predicts Suicide Risk after Attempted Suicide.
ERIC Educational Resources Information Center
Nordstrom, Peter; And Others
1994-01-01
Studied suicide risk after attempted suicide, as predicted by cerebrospinal fluid (CSF) monoamine metabolite concentrations, in 92 psychiatric mood disorder inpatients admitted shortly after attempting suicide. Results revealed that low CSF 5-hydroxyindoleacetic acid (5-HIAA) predicted short-range suicide risk after attempted suicide in mood…
Moraes, Michele M; Rabelo, Patrícia C R; Pinto, Valéria A; Pires, Washington; Wanner, Samuel P; Szawka, Raphael E; Soares, Danusa D
2018-04-23
Listening to melodic music is regarded as a non-pharmacological intervention that ameliorates various disease symptoms, likely by changing the activity of brain monoaminergic systems. Here, we investigated the effects of exposure to melodic music on the concentrations of dopamine (DA), serotonin (5-HT) and their respective metabolites in the caudate-putamen (CPu) and nucleus accumbens (NAcc), areas linked to reward and motor control. Male adult Wistar rats were randomly assigned to a control group or a group exposed to music. The music group was submitted to 8 music sessions [Mozart's sonata for two pianos (K. 488) at an average sound pressure of 65 dB]. The control rats were handled in the same way but were not exposed to music. Immediately after the last exposure or control session, the rats were euthanized, and their brains were quickly removed to analyze the concentrations of 5-HT, DA, 5-hydroxyindoleacetic acid (5-HIAA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in the CPu and NAcc. Auditory stimuli affected the monoaminergic system in these two brain structures. In the CPu, auditory stimuli increased the concentrations of DA and 5-HIAA but did not change the DOPAC or 5-HT levels. In the NAcc, music markedly increased the DOPAC/DA ratio, suggesting an increase in DA turnover. Our data indicate that auditory stimuli, such as exposure to melodic music, increase DA levels and the release of 5-HT in the CPu as well as DA turnover in the NAcc, suggesting that the music had a direct impact on monoamine activity in these brain areas. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, Yi-Qun; Tu, Zhi-Cai; Xu, Xing-Yuan; Li, Rui; Qu, Wei-Min; Urade, Yoshihiro; Huang, Zhi-Li
2012-01-01
In humans, depression is associated with altered rapid eye movement (REM) sleep. However, the exact nature of the relationship between depressive behaviors and sleep abnormalities is debated. In this study, bilateral olfactory bulbectomy (OBX) was carried out to create a model of depression in rats. The sleep-wake profiles were assayed using a cutting-edge sleep bioassay system, and depressive behaviors were evaluated by open field and forced swimming tests. The monoamine content and monoamine metabolite levels in the brain were determined by a HPLC-electrochemical detection system. OBX rats exhibited a significant increase in REM sleep, especially between 15:00 and 18:00 hours during the light period. Acute treatment with fluoxetine (10 mg/kg, i.p.) immediately abolished the OBX-induced increase in REM sleep, but hyperactivity in the open field test and the time spent immobile in the forced swimming test remained unchanged. Neurochemistry studies revealed that acute administration of fluoxetine increased serotonin (5-HT) levels in the hippocampus, thalamus, and midbrain and decreased levels of the 5-HT metabolite 5-hydroxyindoleacetic acid (5-HIAA). The ratio of 5-HIAA to 5-HT decreased in almost all regions of the brain. These results indicate that acute administration of fluoxetine can reduce the increase in REM sleep but does not change the depressive behaviors in OBX rats, suggesting that there was no causality between REM sleep abnormalities and depressive behaviors in OBX rats. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.
Incidence and prognostic value of serotonin secretion in pancreatic neuroendocrine tumours.
Zandee, Wouter T; van Adrichem, Roxanne C; Kamp, Kimberly; Feelders, Richard A; van Velthuysen, Marie-Louise F; de Herder, Wouter W
2017-08-01
Serotonin secretion occurs in approximately 1%-4% of patients with a pancreatic neuroendocrine tumour (PNET), but the incidence is not well defined. The aim of this study was to determine the incidence of serotonin secretion with and without carcinoid syndrome and the prognostic value for overall survival (OS). Data were collected from 255 patients with a PNET if 24-hours urinary 5-hydroxyindoleacetic acid excretion (5-HIAA) was assessed. Patients were diagnosed with serotonin secretion if 24-hours urinary 5-HIAA excretion was more than 3× the upper limit of normal (ULN) of 50 μmol/24 hours during follow-up. The effect of serotonin secretion on OS was estimated with uni- and multivariate analyses using a Cox regression. Two (0.8%) patients were diagnosed with carcinoid syndrome, and another 20 (7.8%) had a serotonin-secreting PNET without symptoms. These patients mostly had ENETS stage IV disease with high chromogranin A (CgA). Serotonin secretion was a negative prognostic factor in univariate analysis (HR 2.2, 95% CI: 1.27-3.81), but in multivariate analysis, only CgA>10× ULN (HR: 1.81, 95% CI: 1.10-2.98) and neuron-specific enolase (NSE) >ULN (HR: 3.51, 95% CI: 2.26-5.46) were predictors for OS. Immunohistochemical staining for serotonin was positive in 28.6% of serotonin-secreting PNETs (one with carcinoid syndrome) and negative in all controls. Carcinoid syndrome is rare in patients with a PNET, but serotonin secretion occurs often. This is a negative prognostic factor for OS, but after correction for CgA and NSE, it is no longer a predictor and probably only a "not-so innocent bystander" in patients with high tumour burden. © 2017 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lappalainen, J.; Dean, M.; Virkkunen, M.
1995-04-24
Abnormal brain serotonin function may be characteristic of several neuropsychiatric disorders. Thus, it is important to identify polymorphic genes and screen for functional variants at loci coding for genes that control normal serotonin functions. 5-HT{sub 1D{beta}} is a terminal serotonin autoreceptor which may play a role in regulating serotonin synthesis and release. Using an SSCP technique we screened for 5-HT{sub 1D{beta}} coding sequence variants in psychiatrically interviewed populations, which included controls, alcoholics, and alcoholic arsonists and alcoholic violent offenders with low CSF concentrations of the main serotonin metabolite 5-HIAA. A common polymorphism was identified in the 5-HT{sub 1D{beta}} gene withmore » allele frequencies of 0.72 and 0.28. The SSCP variant was caused by a silent G to C substitution at nucleotide 861 of the coding region. This polymorphism could also be detected as a HincII RFLP of amplified DNA. DNAs from informative CEPH families were typed for the HincII RFLP and analyzed with respect to 20 linked markers on chromosome 6. Multipoint analysis placed the 5-HT{sub 1D{beta}} receptor gene between markers D6S286 and D6S275. A maximum two-point lod score of 10.90 was obtained to D6S26, which had been previously localized on 6q14-15. Chromosomal aberrations involving this region have been previously shown to cause retinal anomalies, developmental delay, and abnormal brain development. This region also contains the gene for North Carolina-type macular dystrophy. 34 refs., 3 figs., 1 tab.« less
Wu, Lin-Lin; Gong, Wei; Shen, Si-Peng; Wang, Zhong-He; Yao, Jia-Xi; Wang, Jun; Yu, Jing; Gao, Rong; Wu, Gang
2017-09-01
Excessive metal exposure has been recognized as one of the detrimental factors for brain damage. However, the potential adverse effects induced by heavy metals on monoamine neurotransmitter pathways remains poorly understood. Our study aimed to investigate the possible association between metal exposure and neurotransmitter metabolism. By a cross-sectional investigation, 224 electroplating workers and 213 non-electroplating exposure workers were recruited in the exposure and control groups. Metal exposure levels were analyzed using inductively-coupled plasma mass spectrometry and monoamine neurotransmitter pathway metabolites were measured by ultra-performance liquid chromatography tandem mass spectrometry in human urine samples. Multivariate linear regression model was used to assess the dose-response relationships of urinary metals and neurotransmitter pathway metabolites. Significant dose-dependent trends of urinary vanadium quartiles with all metabolites were observed, and the trends demonstrated significance after multiple testing correction. It also showed that urinary chromium levels were significantly associated with decreased serotonin level and cadmium was positively associated with norepinephrine and epinephrine. In addition, arsenic was positively associated with tryptophan, serotonin, dopamine and norepinephrine. Iron was positively associated with increased homovanillic acid (HVA) and epinephrine while nickel was negatively associated with increased epinephrine levels. Zinc was positively related to tryptophan, kynurenin (KYN), 5-hydroxyindole acetic acid (5-HIAA), dopamine, HVA and norepinephrine. There was no significant association between urinary copper with any other metabolites after adjusting of multiple metal models. Metal exposure may be associated with neurotransmitter metabolism disturbances. The present work is expected to provide some support in the prevention and management of metal-associated neurological diseases. Copyright © 2017. Published by Elsevier Ltd.
Revisiting the Serotonin-Aggression Relation in Humans: A Meta-analysis
Duke, Aaron A.; Bègue, Laurent; Bell, Rob; Eisenlohr-Moul, Tory
2013-01-01
The inverse relation between serotonin and human aggression is often portrayed as “reliable,” “strong,” and “well-established” despite decades of conflicting reports and widely recognized methodological limitations. In this systematic review and meta-analysis we evaluate the evidence for and against the serotonin deficiency hypothesis of human aggression across four methods of assessing serotonin: (a) cerebrospinal fluid levels of 5-hydroxyindoleacetic acid (CSF 5-HIAA), (b) acute tryptophan depletion, (c) pharmacological challenge, and (d) endocrine challenge. Results across 175 independent samples and over 6,500 total participants were heterogeneous, but, in aggregate, revealed a small, inverse correlation between central serotonin functioning and aggression, anger, and hostility, r = −.12. Pharmacological challenge studies had the largest mean weighted effect size, r = −.21, and CSF 5-HIAA studies had the smallest, r = −.06, p = .21. Potential methodological and demographic moderators largely failed to account for variability in study outcomes. Notable exceptions included year of publication (effect sizes tended to diminish with time) and self-versus other-reported aggression (other-reported aggression was positively correlated to serotonin functioning). We discuss four possible explanations for the pattern of findings: unreliable measures, ambient correlational noise, an unidentified higher-order interaction, and a selective serotonergic effect. Finally, we provide four recommendations for bringing much needed clarity to this important area of research: acknowledge contradictory findings and avoid selective reporting practices; focus on improving the reliability and validity of serotonin and aggression measures; test for interactions involving personality and/or environmental moderators; and revise the serotonin deficiency hypothesis to account for serotonin’s functional complexity. PMID:23379963
... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Semen Analysis Serotonin Serum Free Light Chains Sex Hormone Binding Globulin ... Transferrin Receptor Stool Culture Stool Elastase Strep ...
Wan, Oi Wan; Shin, Eunju; Mattsson, Bengt; Caudal, Dorian; Svenningsson, Per; Björklund, Anders
2016-05-23
We studied the impact of α-synuclein overexpression in brainstem serotonin neurons using a novel vector construct where the expression of human wildtype α-synuclein is driven by the tryptophan hydroxylase promoter, allowing expression of α-synuclein at elevated levels, and with high selectivity, in serotonergic neurons. α-Synuclein induced degenerative changes in axons and dendrites, displaying a distorted appearance, suggesting accumulation and aggregation of α-synuclein as a result of impaired axonal transport, accompanied by a 40% loss of terminals, as assessed in the hippocampus. Tissue levels of serotonin and its major metabolite 5-HIAA remained largely unaltered, and the performance of the α-synuclein overexpressing rats in tests of spatial learning (water maze), anxiety related behavior (elevated plus maze) and depressive-like behavior (forced swim test) was not different from control, suggesting that the impact of the developing axonal pathology on serotonin neurotransmission was relatively mild. Overexpression of α-synuclein in the raphe nuclei, combined with overexpression in basal forebrain cholinergic neurons, resulted in more pronounced axonal pathology and significant impairment in the elevated plus maze. We conclude that α-synuclein pathology in serotonergic or cholinergic neurons alone is not sufficient to impair non-motor behaviors, but that it is their simultaneous involvement that determines severity of such symptoms.
Neudörffer, Anne; Mueller, Melanie; Martinez, Claire-Marie; Mechan, Annis; McCann, Una; Ricaurte, George A.; Largeron, Martine
2011-01-01
The purpose of the present study was to determine if trihydroxymethamphetamine (THMA), a metabolite of methylenedioxymethamphetamine (MDMA, “ecstasy”) or its thioether conjugate, 6-(N-acetylcystein-S-yl)-2,4,5-trihydroxymethamphetamine (6-NAC-THMA), plays a role in the lasting effects of MDMA on brain serotonin (5-HT) neurons. To this end, novel high-yield syntheses of THMA and 6-NAC-THMA were developed. Lasting effects of both compounds on brain serotonin (5-HT) neuronal markers were then examined. A single intraventricular injection of THMA produced a significant lasting depletion of regional rat brain 5-HT and 5-hydroxyindoleacetic acid (5-HIAA), consistent with previous reports that THMA harbors 5-HT neurotoxic potential. The lasting effect of THMA on brain 5-HT markers was blocked by the 5-HT uptake inhibitor fluoxetine, indicating persistent effects of THMA on 5-HT markers, like those of MDMA, are dependent on intact 5-HT transporter function. Efforts to identify THMA in the brains of animals treated with a high, neurotoxic dose (80 mg/kg) of MDMA were unsuccessful. Inability to identify THMA in brains of these animals was not related to the unstable nature of the THMA molecule, because exogenous THMA administered intracerebroventricularly could be readily detected in the rat brain for several hours. The thioether conjugate of THMA, 6-NAC-THMA, led to no detectable lasting alterations of cortical 5-HT or 5-HIAA levels, indicating that it lacks significant 5-HT neurotoxic activity. The present results cast doubt on the role of either THMA or 6-NAC-THMA in the lasting serotonergic effects of MDMA. The possibility remains that different conjugated forms of THMA, or oxidized cyclic forms (e.g. the indole of THMA) play a role in MDMA-induced 5-HT neurotoxicity in vivo. PMID:21557581
Croonenberghs, Jan; Verkerk, Robert; Scharpe, Simon; Deboutte, Dirk; Maes, Michael
2005-03-25
Some studies have suggested that disorders in the peripheral and central metabolism of serotonin (5-HT) may play a role in the pathophysiology of autistic disorder. This study examines the whole blood concentrations of 5-HT and 5-hydroxy-indoleacetic acid (5-HIAA) in baseline conditions and during a challenge with L-5-OH-tryptophane (5-HTP; 4 mg/kg in non enteric-coated tablets), the precursor of 5-HT, in a study group of 18 male, post-pubertal, Caucasian autistic patients (age 13-19 y.; I.Q.>55) and 20 matched healthy volunteers. In baseline conditions, no significant differences in 5-HT or 5-HIAA levels could be found between autistic youngsters and normal controls. 5-HTP administration significantly increased the levels of 5-HT in autistic youngsters but not in normal controls. Following 5-HTP challenge the 5-HT levels were significantly higher in autistic patients than in healthy volunteers. After challenge with 5-HTP, no significant differences were found in the concentrations of 5-HIAA or the test substance between autistic youngsters and normal controls. Differences in the peripheral metabolism of 5-HT which may not be observed in baseline conditions but which became clear after loading with 5-HTP, suggest that an increased synthesis of 5-HT from its precursor 5-HTP might be a one factor responsible for differences in the serotonergic system between autistic post-pubertal youngsters and normal controls.
Cerebellar level of neurotransmitters in rats exposed to paracetamol during development.
Blecharz-Klin, Kamilla; Joniec-Maciejak, Ilona; Jawna-Zboińska, Katarzyna; Pyrzanowska, Justyna; Piechal, Agnieszka; Wawer, Adriana; Widy-Tyszkiewicz, Ewa
2016-12-01
The present study was designed to clarify the effect of prenatal and postnatal paracetamol administration on the neurotransmitter level and balance of amino acids in the cerebellum. Biochemical analysis to determine the concentration of neurotransmitters in this brain structure was performed on two-month-old Wistar male rats previously exposed to paracetamol in doses of 5 (P5, n=10) or 15mg/kg (P15, n=10) throughout the entire prenatal period, lactation and until the completion of the second month of life, when the experiment was terminated. Control animals were given tapped water (Con, n=10). The cerebellar concentration of monoamines, their metabolites and amino acids were assayed using High Performance Liquid Chromatography (HPLC). The present experiment demonstrates that prenatal and postnatal paracetamol exposure results in modulation of cerebellar neurotransmission with changes concerning mainly 5-HIAA and MHPG levels. The effect of paracetamol on monoaminergic neurotransmission in the cerebellum is reflected by changes in the level of catabolic end-products of serotonin (5-HIAA) and noradrenaline (MHPG) degradation. Further work is required to define the mechanism of action and impact of prenatal and postnatal exposure to paracetamol in the cerebellum and other structures of the central nervous system (CNS). Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
[Metabolism of serotonin in autism in children].
Bursztejn, C; Ferrari, P; Dreux, C; Braconnier, A; Lancrenon, S
1988-01-01
In this controlled study of 22 autistic children and 22 normal controls matched for age and sex, the frequency of hyperserotonemia in infantile autism was confirmed. Platelet serotonin was elevated in patients. Comparative to controls, serotonin was also high in urine of autistic patients, while, on the contrary there was no difference for the urinary excretion of 5-HIAA. No difference was observed either for serotonin uptake and efflux or for MAO activity, in isolated platelets. The elevation of plasma free tryptophan - significant only with the Kolmogorov Smirnov test - suggests that 5-HT biosynthesis might be enhanced. In the group of patient reported in this study, disorders of serotonin metabolism are associated with disturbances of platelet catecholamines, and also with elevated immunoglobulins and enhanced cellular immunity reactions.
Shams, Soaleha; Seguin, Diane; Facciol, Amanda; Chatterjee, Diptendu; Gerlai, Robert
2017-12-01
Social isolation can be used to study behavioral, neural, and hormonal mechanisms that regulate interactions in social animals. Although isolation effects have been reported in social mammals and various fish species, systematic studies with isolated zebrafish are rare. Here, the authors examined behavior (social and nonsocial), physiological stress (whole-body cortisol levels), and neurochemicals (serotonin, dopamine, and their metabolites), following acute and chronic social isolation in adult zebrafish. To observe how isolated fish respond behaviorally to social stimuli, they exposed zebrafish to live conspecifics or animated images after acute (24 hr) or chronic (6 months) social isolation. The authors observed that isolation did not affect locomotor activity, but acute isolation had weak nonsignificant anxiogenic effects in adult zebrafish. They also found that all isolated fish responded to both live and animated social stimuli, and the stress hormone, cortisol was lower in chronically isolated fish. Finally, neurochemical analyses showed that serotonin levels increased when fish were exposed to social stimulus after acute isolation, but its metabolite 5HIAA decreased in response to social stimulus following both acute and chronic isolation. Levels of both dopamine and its metabolite DOPAC were also reduced in fish exposed to social stimulus after acute and chronic isolation. Overall, these results show that isolation in zebrafish is an effective tool to study fundamental mechanisms controlling social interaction at behavioral and physiological levels. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Winn, Shelley R; Scherer, Tanja; Thöny, Beat; Harding, Cary O
2016-01-01
Central nervous system (CNS) deficiencies of the monoamine neurotransmitters, dopamine and serotonin, have been implicated in the pathophysiology of neuropsychiatric dysfunction in phenylketonuria (PKU). Increased brain phenylalanine concentration likely competitively inhibits the activities of tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH), the rate limiting steps in dopamine and serotonin synthesis respectively. Tetrahydrobiopterin (BH4) is a required cofactor for TH and TPH activity. Our hypothesis was that treatment of hyperphenylalaninemic Pah(enu2/enu2) mice, a model of human PKU, with sapropterin dihydrochloride, a synthetic form of BH4, would stimulate TH and TPH activities leading to improved dopamine and serotonin synthesis despite persistently elevated brain phenylalanine. Sapropterin (20, 40, or 100mg/kg body weight in 1% ascorbic acid) was administered daily for 4 days by oral gavage to Pah(enu2/enu2) mice followed by measurement of brain biopterin, phenylalanine, tyrosine, tryptophan and monoamine neurotransmitter content. A significant increase in brain biopterin content was detected only in mice that had received the highest sapropterin dose, 100mg/kg. Blood and brain phenylalanine concentrations were unchanged by sapropterin therapy. Sapropterin therapy also did not alter the absolute amounts of dopamine and serotonin in brain but was associated with increased homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA), dopamine and serotonin metabolites respectively, in both wild type and Pah(enu2/enu2) mice. Oral sapropterin therapy likely does not directly affect central nervous system monoamine synthesis in either wild type or hyperphenylalaninemic mice but may stimulate synaptic neurotransmitter release and subsequent metabolism. Copyright © 2015 Elsevier Inc. All rights reserved.
The clinical and laboratory correlates of an increased urinary 5-hydroxyindoleacetic acid.
Tormey, W. P.; FitzGerald, R. J.
1995-01-01
Over a five-and-a-half-year period, there were 298 laboratory requests for urinary 5-hydroxyindoleacetic acid (5-HIAA). The clinical and laboratory associations of the 24 patients in which there were 43 urinary 5-HIAA 24-h collection results greater than the laboratory upper reference limit are detailed. Four were confirmed carcinoid tumours and two were phaeochromocytomas. Flushing was a prominent symptom in 46% and diarrhoea or altered bowel habit in 37%. Associated with the raised urinary 5-HIAA values were increased levels of 4-hydroxy-3-methoxymandelic acid and homovanillic acid in 14.3% and 21%, respectively, of those collections where the metabolites were requested. Diagnostic imaging was performed in 57%. While the specificity was 88%, 5-HIAA is relatively insensitive in the diagnosis of carcinoid tumours and a more widespread use of diagnostic imaging including isotope scanning with labelled metaiodo-benzylguanidine, vasoactive intestinal peptide and octreotide is suggested. PMID:7479466
2013-01-01
The applicability of microbore ultrahigh performance liquid chromatography (UHPLC) with electrochemical detection for offline analysis of a number of well-known neurotransmitters in less than 10 μL microdialysis fractions is described. Two methods are presented for the analysis of monoamine or amino acid neurotransmitters, using the same UHPLC instrument. Speed of analysis of noradrenaline (NA), dopamine (DA), serotonin (5-HT), and the metabolites homovanillic acid (HVA), 5-hydroxyindole aceticacid (5-HIAA), and 3,4-dihydroxyphenylacetic acid (DOPAC) was predominated by the retention behavior of NA, the nonideal behavior of matrix components, and the loss in signal of 5-HT. This method was optimized to meet the requirements for detection sensitivity and minimizing the size of collected fractions, which determines temporal resolution in microdialysis. The amino acid neurotransmitters glutamate (Glu) and γ-aminobutyric acid (GABA) were analyzed after an automated derivatization procedure. Under optimized conditions, Glu was resolved from a number of early eluting system peaks, while the total runtime was decreased to 15 min by a 4-fold increase of the flow rate under UHPLC conditions. The detection limit for Glu and GABA was 10 nmol/L (15 fmol in 1.5 μL); the monoamine neurotransmitters had a detection limit between 32 and 83 pmol/L (0.16–0.42 fmol in 5 μL) in standard solutions. Using UHPLC, the analysis times varied from 15 min to less than 2 min depending on the complexity of the samples and the substances to be analyzed. PMID:23642417
Ammonia causes decreased brain monoamines in fathead minnows (Pimephales promelas)
Ronan, Patrick J.; Gaikowski, Mark P.; Hamilton, Steven J.; Buhl, Kevin J.; Summers, Cliff H.
2007-01-01
Hyperammonemia, arising from variety of disorders, leads to severe neurological dysfunction. The mechanisms of ammonia toxicity in brain are not completely understood. This study investigated the effects of ammonia on monoaminergic systems in brains of fathead minnows (Pimephales promelas). Fish serve as a good model system to investigate hyperammonemic effects on brain function since no liver manipulations are necessary to increase endogenous ammonia concentrations. Using high performance liquid chromatography with electrochemical detection, monoamines and some associated metabolites were measured from whole brain homogenate. Adult males were exposed for 48 h to six different concentrations of ammonia (0.01–2.36 mg/l unionized) which bracketed the 96-h LC50 for this species. Ammonia concentration-dependent decreases were found for the catecholamines (norepinephrine and dopamine) and the indoleamine serotonin (5-HT). After an initial increase in the 5-HT precursor 5-hydroxytryptophan it too decreased with increasing ammonia concentrations. There were also significant increases in the 5-HIAA/5-HT and DOPAC/DA ratios, often used as measures of turnover. There were no changes in epinephrine (Epi) or monoamine catabolites (DOPAC, 5-HIAA) at any ammonia concentrations tested. Results suggest that ammonia causes decreased synthesis while also causing increased release and degradation. Increased release may underlie behavioral reactions to ammonia exposure in fish. This study adds weight to a growing body of evidence demonstrating that ammonia leads to dysfunctional monoaminergic systems in brain which may underlie neurological symptoms associated with human disorders such as hepatic encephalopathy.
[The effect of droxidopa on the monoamine metabolsim in the human brain].
Maruyama, W; Naoi, M; Narabayashi, H
1994-10-01
Droxidopa (L-threo-3,4-dihydroxyphenylserine) is an artificial amino acid, which is used to supplement noradrenaline (NA) in neurodegenerative disorders. Droxidopa is decarboxylated into NA by aromatic L-amino acid decarboxylase in the brain, but its effects on other monoamine neurotransmitters, such as dopamine (DA) and serotonin (5-HT) have not been systematically examined. The monoamine metabolism has been suggested to interact with each other in the brain, and by analysis of the cerebrospinal fluid, L-DOPA, a precursor amino acid used for supplement of DA, was found to inhibit serotonin synthesis in the brain. To examine the effects of droxidopa on the monoamine metabolism, the intraventricular fluid of the patients administered with droxidopa and L-DOPA was analyzed. The levels of monoamines, their precursor amino acids, and their metabolites were compared between the patients administered with L-DOPA. In the patients administered by droxidopa and L-DOPA, droxidopa was shown to increase the concentrations of monoamines (NA, DA and 5-HT), but the difference was not statistically significant by comparison with those treated by L-DOPA alone. The metbolites of DA and 5-HT by monoamine oxidase, 3,4-dihydroxyphenylacetic acid (DOPAC) and 5-hydroxyindoleacetic acid (5-HIAA) were also found to increase by droxidopa administration. On the other hand, the metabolites of NA and DA by catechol-O-methyltransferase (COMT), normetanephrine (NMN) and 3-methoxytyramine (3-MT), decreased in the patients treated with droxidopa and L-DOPA compared with the patients administered with L-DOPA alone and control patients.(ABSTRACT TRUNCATED AT 250 WORDS)
Haleem, D J; Yasmeen, A; Haleem, M A; Zafar, A
1995-01-01
Caffeine injected at doses of 20, 40 and 80 mg/kg increased brain levels of tryptophan, 5-hydroxytryptamine (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) in rat brain. In view of a possible role of 5-HT in caffeine-induced depression the effects of repeated administration of high doses of caffeine on brain 5-HT metabolism are investigated in rats. Caffeine was injected at doses of 80 mg/kg daily for five days. Control animals were injected with saline daily for five days. On the 6th day caffeine (80 mg/kg) injected to 5 day saline injected rats increased brain levels of tryptophan, 5-HT and 5-HIAA. Plasma total tryptophan levels were not affected and free tryptophan increased. Brain levels of 5-HT and 5-HIAA but not tryptophan decreased in 5 day caffeine injected rats injected with saline on the 6th day. Plasma total and free tryptophan were not altered in these rats. Caffeine-induced increases of brain tryptophan but not 5-HT and 5-HIAA were greater in 5 day caffeine than 5 day saline injected rats. The findings are discussed as repeated caffeine administration producing adaptive changes in the serotonergic neurons to decrease the conversion of tryptophan to 5-HT and this may precipitate depression particularly in conditions of caffeine withdrawal.
Pudell, Claudia; Vicente, Bianca A; Delattre, Ana M; Carabelli, Bruno; Mori, Marco A; Suchecki, Deborah; Machado, Ricardo B; Zanata, Sílvio M; Visentainer, Jesuí V; de Oliveira Santos Junior, Oscar; Lima, Marcelo M S; Ferraz, Anete C
2014-01-01
Depression is increasingly present in the population, and its pathophysiology and treatment have been investigated with several animal models, including olfactory bulbectomy (Obx). Fish oil (FO) supplementation during the prenatal and postnatal periods decreases depression-like and anxiety-like behaviors. The present study evaluated the effect of FO supplementation on Obx-induced depressive-like behavior and cognitive impairment. Female rats received supplementation with FO during habituation, mating, gestation, and lactation, and their pups were subjected to Obx in adulthood; after the recovery period, the adult offspring were subjected to behavioral tests, and the hippocampal levels of brain-derived neurotrophic factor (BDNF), serotonin (5-HT) and the metabolite 5-hydroxyindoleacetic (5-HIAA) were determined. Obx led to increased anxiety-like and depressive-like behaviors, and impairment in the object location task. All behavioral changes were reversed by FO supplementation. Obx caused reductions in the levels of hippocampal BDNF and 5-HT, whereas FO supplementation restored these levels to normal values. In control rats, FO increased the hippocampal level of 5-HT and reduced that of 5-HIAA, indicating low 5-HT metabolism in this brain region. The present results indicate that FO supplementation during critical periods of brain development attenuated anxiety-like and depressive-like behaviors and cognitive dysfunction induced by Obx. These results may be explained by increased levels of hippocampal BDNF and 5-HT, two major regulators of neuronal survival and long-term plasticity in this brain structure. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Akiyama, Tomoyuki; Hayashi, Yumiko; Hanaoka, Yoshiyuki; Shibata, Takashi; Akiyama, Mari; Nakamura, Kazuyuki; Tsuyusaki, Yu; Kubota, Masaya; Yoshinaga, Harumi; Kobayashi, Katsuhiro
2017-02-01
We describe a new method for simultaneous measurement of monoamine metabolites (3-O-methyldopa [3-OMD], 3-methoxy-4-hydroxyphenylethyleneglycol [MHPG], 5-hydroxyindoleacetic acid [5-HIAA], and homovanillic acid [HVA]) and 5-methyltetrahydrofolate (5-MTHF) and its use on cerebrospinal fluid (CSF) samples from pediatric patients. Monoamine metabolites and 5-MTHF were measured by high-performance liquid chromatography with fluorescence detection. CSF samples were prospectively collected from children according to a standardized collection protocol in which the first 1-ml fraction was used for analysis. Monoamine metabolites and 5-MTHF were separated within 10min. They showed linearity from the limit of detection to 1024nmol/l. The limit of quantification of each metabolite was sufficiently low for the CSF sample assay. In 42 CSF samples after excluding cases with possibly altered neurotransmitter profiles, the concentrations of 3-OMD, MHPG, 5-HIAA, HVA, and 5-MTHF showed significant age dependence and their ranges were comparable with the reference values in the literature. The metabolite profiles of aromatic l-amino acid decarboxylase deficiency, Segawa disease, and folate receptor α defect by this method were compatible with those in the literature. This method is a simple means of measuring CSF monoamine metabolites and 5-MTHF, and is especially useful for laboratories not equipped with electrochemical detectors. Copyright © 2016 Elsevier B.V. All rights reserved.
Binienda, Zbigniew K; Przybyla, Beata D; Robinson, Bonnie L; Salem, Nadia; Virmani, Ashraf; Amato, Antonino; Ali, Syed F
2006-08-01
Adult, male Sprague-Dawley rats were injected with 3-ni-tropropionic acid (3-NPA) at 30 mg/kg or methamphetamine (METH) at 20 mg/kg alone or following pretreatment with L-cartnitine (LC) at 100 mg/kg. Rectal temperature was measured before and 4 h following treatment. Animals were sacrificed at 4 h posttreatment. Monoamine neurotransmitters, dopamine (DA) and serotonin (5-HT), and their metabolites were analyzed in the striatum using high-performance liquid chromatography method coupled with electrochemical detection (HPLC/ED). Transcripts of several genes related to DA metabolism were quantified using real time reverse transciption polymerase chain reaction (RT-PCR). Core temperature decreased significantly after 3-NPA acid and increased in METH-treated rats (P < 0.05). Temperature change at 4 h exhibited a significant LC effect for 3-NPA, preventing hypothermia (P < 0.05) and no effect for METH. Concentration of DA and 5-HT, and their metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA), increased significantly in 3-NPA and decreased in METH-treated rats. An increase in DOPAC/DA turnover and serotonin observed after 3-NPA was abolished in LC-/3-NPA-treated rats. In both 3-NPA- and METH-treated rats, LC prevented an increase in DA receptor D(1) gene expression. It appears that carnitine effect preventing hypothermia after 3-NPA treatments may be related not only to its mitochondriotropic actions but also to inhibitory effect on the DA and 5-HT systems activated after the exposure to 3-NPA. The same effect observed at the transcriptional level, at least for the DA receptor D(1), may account for protection against METH toxicity.
Stoltenberg, Scott F.; Nag, Parthasarathi
2010-01-01
Despite more than a decade of empirical work on the role of genetic polymorphisms in the serotonin system on behavior, the details across levels of analysis are not well understood. We describe a mathematical model of the genetic control of presynaptic serotonergic function that is based on control theory, implemented using systems of differential equations, and focused on better characterizing pathways from genes to behavior. We present the results of model validation tests that include the comparison of simulation outcomes with empirical data on genetic effects on brain response to affective stimuli and on impulsivity. Patterns of simulated neural firing were consistent with recent findings of additive effects of serotonin transporter and tryptophan hydroxylase-2 polymorphisms on brain activation. In addition, simulated levels of cerebral spinal fluid 5-hydroxyindoleacetic acid (CSF 5-HIAA) were negatively correlated with Barratt Impulsiveness Scale (Version 11) Total scores in college students (r = −.22, p = .002, N = 187), which is consistent with the well-established negative correlation between CSF 5-HIAA and impulsivity. The results of the validation tests suggest that the model captures important aspects of the genetic control of presynaptic serotonergic function and behavior via brain activation. The proposed model can be: (1) extended to include other system components, neurotransmitter systems, behaviors and environmental influences; (2) used to generate testable hypotheses. PMID:20111992
Neuronal Tryptophan Hydroxylase Expression in BALB/cJ and C57Bl/6J Mice
Bach, Helene; Arango, Victoria; Huang, Yung-Yu; Leong, Sharlene; Mann, J. John; Underwood, Mark D.
2014-01-01
BALB/c is an inbred stress-sensitive mouse strain exhibiting low brain serotonin (5-HT) content and a 5-HT biosynthetic enzyme tryptophan hydroxylase (Tph2) variant reported to have lower catalytic activity compared to other inbred base strains. To evaluate other mechanisms that may explain low 5-HT, we compared BALB/cJ mice and a control inbred strain C57Bl/6J mice, for expression of Tph2 mRNA, TPH2 protein and regional levels of 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA). Tph2 mRNA and TPH2 protein in brainstem dorsal raphe nuclei (DRN) was assayed by in situ hybridization and immunocytochemistry respectively. 5-HT and 5-HIAA were determined by high pressure liquid chromatography (HPLC). BALB/cJ mice had 20% less Tph2 mRNA and 28% fewer TPH2 immunolabeled neurons than C57Bl/6J mice (t = -2.59, p = 0.02). The largest difference in Tph2 transcript expression was in rostral DRN (t = 2.731, p = 0.008). 5-HT was 15% lower in the midbrain of BALB/cJ compared to C57Bl/6J mice (p < 0.05). The behavioral differences in BALB/cJ mice relative to the C57Bl/6J strain may be due in part, to fewer 5-HT neurons and lower Tph2 gene expression resulting in less 5-HT neurotransmission. Future studies quantifying expression per neuron are needed to determine whether less expression is explained by fewer neurons or also less expression per neuron, or both. PMID:21740442
Serotonergic neurotoxic metabolites of ecstasy identified in rat brain.
Jones, Douglas C; Duvauchelle, Christine; Ikegami, Aiko; Olsen, Christopher M; Lau, Serrine S; de la Torre, Rafael; Monks, Terrence J
2005-04-01
The selective serotonergic neurotoxicity of 3,4-methylenedioxyamphetamine (MDA) and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) depends on their systemic metabolism. We have recently shown that inhibition of brain endothelial cell gamma-glutamyl transpeptidase (gamma-GT) potentiates the neurotoxicity of both MDMA and MDA, indicating that metabolites that are substrates for this enzyme contribute to the neurotoxicity. Consistent with this view, glutathione (GSH) and N-acetylcysteine conjugates of alpha-methyl dopamine (alpha-MeDA) are selective neurotoxicants. However, neurotoxic metabolites of MDMA or MDA have yet to be identified in brain. Using in vivo microdialysis coupled to liquid chromatography-tandem mass spectroscopy and a high-performance liquid chromatography-coulometric electrode array system, we now show that GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA are present in the striatum of rats administered MDMA by subcutaneous injection. Moreover, inhibition of gamma-GT with acivicin increases the concentration of GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA in brain dialysate, and there is a direct correlation between the concentrations of metabolites in dialysate and the extent of neurotoxicity, measured by decreases in serotonin (5-HT) and 5-hydroxyindole acetic (5-HIAA) levels. Importantly, the effects of acivicin are independent of MDMA-induced hyperthermia, since acivicin-mediated potentiation of MDMA neurotoxicity occurs in the context of acivicin-mediated decreases in body temperature. Finally, we have synthesized 5-(N-acetylcystein-S-yl)-N-methyl-alpha-MeDA and established that it is a relatively potent serotonergic neurotoxicant. Together, the data support the contention that MDMA-mediated serotonergic neurotoxicity is mediated by the systemic formation of GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA (and alpha-MeDA). The mechanisms by which such metabolites access the brain and produce selective serotonergic neurotoxicity remain to be determined.
Browne, Caroline A; Hanke, Joachim; Rose, Claudia; Walsh, Irene; Foley, Tara; Clarke, Gerard; Schwegler, Herbert; Cryan, John F; Yilmazer-Hanke, Deniz
2014-12-01
Stress-induced changes in plasma corticosterone and central monoamine levels were examined in mouse strains that differ in fear-related behaviors. Two DxH recombinant inbred mouse strains with a DBA/2J background, which were originally bred for a high (H-FSS) and low fear-sensitized acoustic startle reflex (L-FSS), were used. Levels of noradrenaline, dopamine, and serotonin and their metabolites 3,4-dihydroxyphenyacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were studied in the amygdala, hippocampus, medial prefrontal cortex, striatum, hypothalamus and brainstem. H-FSS mice exhibited increased fear levels and a deficit in fear extinction (within-session) in the auditory fear-conditioning test, and depressive-like behavior in the acute forced swim stress test. They had higher tissue noradrenaline and serotonin levels and lower dopamine and serotonin turnover under basal conditions, although they were largely insensitive to stress-induced changes in neurotransmitter metabolism. In contrast, acute swim stress increased monoamine levels but decreased turnover in the less fearful L-FSS mice. L-FSS mice also showed a trend toward higher basal and stress-induced corticosterone levels and an increase in noradrenaline and serotonin in the hypothalamus and brainstem 30 min after stress compared to H-FSS mice. Moreover, the dopaminergic system was activated differentially in the medial prefrontal cortex and striatum of the two strains by acute stress. Thus, H-FSS mice showed increased basal noradrenaline tissue levels compatible with a fear phenotype or chronic stressed condition. Low corticosterone levels and the poor monoamine response to stress in H-FSS mice may point to mechanisms similar to those found in principal fear disorders or post-traumatic stress disorder.
Browne, Caroline A.; Hanke, Joachim; Rose, Claudia; Walsh, Irene; Foley, Tara; Clarke, Gerard; Schwegler, Herbert; Cryan, John F.; Yilmazer-Hanke, Deniz
2015-01-01
Stress-induced changes in plasma corticosterone and central monoamine levels were examined in mouse strains that differ in fear-related behaviors. Two DxH recombinant inbred mouse strains with a DBA/2J background, which were originally bred for a high (H-FSS) and low fear-sensitized acoustic startle reflex (L-FSS), were used. Levels of noradrenaline, dopamine, and serotonin and their metabolites (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were studied in the amygdala, hippocampus, medial prefrontal cortex, striatum, hypothalamus, and brainstem. H-FSS mice exhibited increased fear levels and a deficit in fear extinction (within-session) in the auditory fear-conditioning test, and depressive-like behavior in the acute forced swim stress test. They had higher tissue noradrenaline and serotonin levels and lower dopamine and serotonin turnover under basal conditions, although they were largely insensitive to stress-induced changes in neurotransmitter metabolism. In contrast, acute swim stress increased monoamine levels but decreased turnover in the less fearful L-FSS mice. L-FSS mice also showed a trend toward higher basal and stress-induced corticosterone levels and an increase in noradrenaline and serotonin in the hypothalamus and brainstem 30 minutes after stress compared to H-FSS mice. Moreover, the dopaminergic system was activated differentially in the medial prefrontal cortex and striatum of the two strains by acute stress. Thus, H-FSS mice showed increased basal noradrenaline tissue levels compatible with a fear phenotype or chronic stressed condition. Low corticosterone levels and the poor monoamine response to stress in H-FSS mice may point to mechanisms similar to those found in principal fear disorders or posttraumatic stress disorder. PMID:25117886
Alterations in metabolic pathways and networks in Alzheimer's disease
Kaddurah-Daouk, R; Zhu, H; Sharma, S; Bogdanov, M; Rozen, S G; Matson, W; Oki, N O; Motsinger-Reif, A A; Churchill, E; Lei, Z; Appleby, D; Kling, M A; Trojanowski, J Q; Doraiswamy, P M; Arnold, S E
2013-01-01
The pathogenic mechanisms of Alzheimer's disease (AD) remain largely unknown and clinical trials have not demonstrated significant benefit. Biochemical characterization of AD and its prodromal phase may provide new diagnostic and therapeutic insights. We used targeted metabolomics platform to profile cerebrospinal fluid (CSF) from AD (n=40), mild cognitive impairment (MCI, n=36) and control (n=38) subjects; univariate and multivariate analyses to define between-group differences; and partial least square-discriminant analysis models to classify diagnostic groups using CSF metabolomic profiles. A partial correlation network was built to link metabolic markers, protein markers and disease severity. AD subjects had elevated methionine (MET), 5-hydroxyindoleacetic acid (5-HIAA), vanillylmandelic acid, xanthosine and glutathione versus controls. MCI subjects had elevated 5-HIAA, MET, hypoxanthine and other metabolites versus controls. Metabolite ratios revealed changes within tryptophan, MET and purine pathways. Initial pathway analyses identified steps in several pathways that appear altered in AD and MCI. A partial correlation network showed total tau most directly related to norepinephrine and purine pathways; amyloid-β (Ab42) was related directly to an unidentified metabolite and indirectly to 5-HIAA and MET. These findings indicate that MCI and AD are associated with an overlapping pattern of perturbations in tryptophan, tyrosine, MET and purine pathways, and suggest that profound biochemical alterations are linked to abnormal Ab42 and tau metabolism. Metabolomics provides powerful tools to map interlinked biochemical pathway perturbations and study AD as a disease of network failure. PMID:23571809
Alterations in metabolic pathways and networks in Alzheimer's disease.
Kaddurah-Daouk, R; Zhu, H; Sharma, S; Bogdanov, M; Rozen, S G; Matson, W; Oki, N O; Motsinger-Reif, A A; Churchill, E; Lei, Z; Appleby, D; Kling, M A; Trojanowski, J Q; Doraiswamy, P M; Arnold, S E
2013-04-09
The pathogenic mechanisms of Alzheimer's disease (AD) remain largely unknown and clinical trials have not demonstrated significant benefit. Biochemical characterization of AD and its prodromal phase may provide new diagnostic and therapeutic insights. We used targeted metabolomics platform to profile cerebrospinal fluid (CSF) from AD (n=40), mild cognitive impairment (MCI, n=36) and control (n=38) subjects; univariate and multivariate analyses to define between-group differences; and partial least square-discriminant analysis models to classify diagnostic groups using CSF metabolomic profiles. A partial correlation network was built to link metabolic markers, protein markers and disease severity. AD subjects had elevated methionine (MET), 5-hydroxyindoleacetic acid (5-HIAA), vanillylmandelic acid, xanthosine and glutathione versus controls. MCI subjects had elevated 5-HIAA, MET, hypoxanthine and other metabolites versus controls. Metabolite ratios revealed changes within tryptophan, MET and purine pathways. Initial pathway analyses identified steps in several pathways that appear altered in AD and MCI. A partial correlation network showed total tau most directly related to norepinephrine and purine pathways; amyloid-β (Ab42) was related directly to an unidentified metabolite and indirectly to 5-HIAA and MET. These findings indicate that MCI and AD are associated with an overlapping pattern of perturbations in tryptophan, tyrosine, MET and purine pathways, and suggest that profound biochemical alterations are linked to abnormal Ab42 and tau metabolism. Metabolomics provides powerful tools to map interlinked biochemical pathway perturbations and study AD as a disease of network failure.
Janusonis, Skirmantas; Anderson, George M; Shifrovich, Ilya; Rakic, Pasko
2006-11-01
The most consistent neurochemical finding in autism has been elevated group mean levels of blood platelet 5-hydroxytryptamine (5-HT, serotonin). The origin and significance of this platelet hyperserotonemia remain poorly understood. The 5-HT(1A) receptor plays important roles in the developing brain and is also expressed in the gut, the main source of platelet 5-HT. Post-natal tissue levels of 5-HT, 5-hydroxyindoleacetic acid (5-HIAA) and tryptophan were examined in the brain, duodenum and blood of 5-HT(1A) receptor-knockout and wild-type mice. At 3 days after birth, the knockout mice had lower mean brain 5-HT levels and normal mean platelet 5-HT levels. Also, at 3 days after birth, the mean tryptophan levels in the brain, duodenum and blood of the knockout mice were around 30% lower than those of the wild-type mice. By 2 weeks after birth, the mean brain 5-HT levels of the knockout mice normalized, but their mean platelet 5-HT levels became 24% higher than normal. The possible causes of these dynamic shifts were explored by examining correlations between central and peripheral levels of 5-HT, 5-HIAA and tryptophan. The results are discussed in relation to the possible role of 5-HT in the ontogeny of autism.
Di Matteo, V; Di Giovanni, G; Di Mascio, M; Esposito, E
2000-01-01
The hydromethanolic extract of Hypericum perforatum has been shown to be an effective antidepressant, although its mechanism of action is still unclear. In this study, in vivo microdialysis was used to investigate the effects of Hypericum perforatum-CO2 extract on dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), serotonin (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) release in various areas of brain. Administration of Hypericum perforatum extract (1 mg/kg, p.o.) caused a slight, but significant increase of DA outflow both in the nucleus accumbens and the striatum. The maximal increase of DA efflux (+19.22+/-1.93%, relative to the control group) in the nucleus accumbens occurred 100 min after administration of Hypericum perforatum. In the striatum, the extract maximally enhanced DA outflow (+24.83+/-7.49 %, relative to the control group) 80 min after administration. Extraneuronal DOPAC levels were not significantly affected by Hypericum perforatum treatment. Moreover, Hypericum perforatum (1 mg/kg, p.o.) did not produce any significant effect on either 5-HT or 5-HIAA efflux in the ventral hippocampus. This study shows for the first time that Hypericum perforatum extract is capable of increasing in vivo DA release.
Cerebrospinal Fluid Levels of Monoamine Metabolites in the Epileptic Baboon
Szabó, C. Ákos; Patel, Mayuri; Uteshev, Victor V.
2016-01-01
The baboon represents a natural model for genetic generalized epilepsy and sudden unexpected death in epilepsy (SUDEP). In this retrospective study, cerebrospinal fluid (CSF) monoamine metabolites and scalp electroencephalography (EEG) were evaluated in 263 baboons of a pedigreed colony. CSF monoamine abnormalities have been linked to reduced seizure thresholds, behavioral abnormalities and SUDEP in various animal models of epilepsy. The levels of 3-hydroxy-4-methoxyphenylglycol, 5-hydroxyindolacetic acid and homovanillic acid in CSF samples drawn from the cisterna magna were analyzed using high-performance liquid chromatography. These levels were compared between baboons with seizures (SZ), craniofacial trauma (CFT) and asymptomatic, control (CTL) baboons, between baboons with abnormal and normal EEG studies. We hypothesized that the CSF levels of major monoaminergic metabolites (i.e., dopamine, serotonin and norepinephrine) associate with the baboons’ electroclinical status and thus can be used as clinical biomarkers applicable to seizures/epilepsy. However, despite apparent differences in metabolite levels between the groups, usually lower in SZ and CFT baboons and in baboons with abnormal EEG studies, we did not find any statistically significant differences using a logistic regression analysis. Significant correlations between the metabolite levels, especially between 5-HIAA and HVA, were preserved in all electroclinical groups. While we were not able to demonstrate significant differences in monoamine metabolites in relation to seizures or EEG markers of epilepsy, we cannot exclude the monoaminergic system as a potential source of pathogenesis in epilepsy and SUDEP. A prospective study evaluating serial CSF monoamine levels in baboons with recently witnessed seizures, and evaluation of abnormal expression and function of monoaminergic receptors and transporters within epilepsy-related brain regions, may impact the electroclinical status. PMID:26924854
Effect of chronic d-fenfluramine administration on rat hypothalamic serotonin levels and release
NASA Technical Reports Server (NTRS)
Schaechter, Judith D.; Wurtman, Richard J.
1988-01-01
D-fenfluramine, an anorectic agent in rats and man, was administered daily at doses 1.25, 2.5, 5, or 10 mg/kg/day for 10 days, and sacrificed 6 days later. Hypothalamic serotonin (5-HT) levels were unchanged in rats receiving 1.25-5 mg/kg/day of d-fenfluramine but reduced by 22 percent (p less than 0.01) at the highest drug dose (10 mg/kg/day); hypothalamic 5-hydroxyindole acetic acid (5-HIAA) levels were reduced by 15 percent (p less than 0.05) or 28 percent (p less than 0.01) in rats receiving 5 or 10 mg/kg/day of the drug, respectively. Hypothalamic slices prepared from rats which were previously treated with any of the drug doses spontaneously released endogenous 5-HT at rates that did not differ from those of vehicle-treated rats. 5-HT released with electrical field-stimulation was unaffected by prior d-fenfluramine treatment at doses of 1.25-5 mg/kg/day, and was reduced by 20 percent (p less than 0.05) from slices prepared from rats which received 10 mg/kg/day. 5-HIAA efflux was also attenuated by the highest drug dose. These data indicate that chronic administration to rats of customary anorectic doses of d-fenfluramine (i.e. 0.06-1.25 mg/kg) fail to cause long-lasting reductions in brain 5-HT release.
Brown, Philip M.; Drossman, Douglas A.; Wood, Alastair J. J.; Cline, Gary A.; Frazier, Kenny S.; Jackson, Jessica I.; Bronner, Johanna; Freiman, Joel; Zambrowicz, Brian; Sands, Arthur; Gershon, Michael D.
2016-01-01
BACKGROUND & AIMS Serotonin (5-hydroxytryptamine [5-HT]) has an important role in gastrointestinal function. LX1031 is an oral, locally acting, small molecule inhibitor of tryptophan hydroxylase (TPH). Local inhibition of TPH in the gastrointestinal tract might reduce mucosal production of serotonin (5-HT) and be used to treat patients with nonconstipating irritable bowel syndrome (IBS). METHODS We evaluated 2 dose levels of LX1031 (250 mg or 1000 mg, given 4 times/day) in a 28-day, multicenter, randomized, double-blind, placebo-controlled study of 155 patients with nonconstipating IBS. 5-hydroxyindoleacetic acid (5-HIAA), a biomarker of pharmacodynamic activity, was measured in urine samples at baseline (24 hours after LX1031 administration), and at weeks 4 and 6 (n = 76). RESULTS Each dose of LX1031 was safe and well-tolerated. The primary efficacy end point, relief of IBS pain and discomfort, improved significantly in patients given 1000 mg LX1031 (25.5%), compared with those given placebo, at week 1 (P = .018); with nonsignificant improvements at weeks 2, 3, and 4 (17.9%, 16.3%, and 11.6%, respectively). Symptom improvement correlated with a dose-dependent reduction in 5-HIAA, a marker for TPH inhibition, from baseline until week 4. This suggests the efficacy of LX1031 is related to the extent of inhibition of 5-HT biosynthesis. Stool consistency significantly improved, compared with the group given placebo, at weeks 1 and 4 (P < .01) and at week 2 (P < .001). CONCLUSIONS In a phase 2 study, LX1031 was well tolerated, relieving symptoms and increasing stool consistency in patients with nonconstipating IBS. Symptom relief was associated with reduced levels of 5-HIAA in urine samples. This marker might be used to identify patients with nonconstipating IBS who respond to inhibitors of 5-HT synthesis. PMID:21684281
Phadnis, Pradeep; Dey Sarkar, Purnima; Rajput, Mithun Singh
2018-03-21
Initial evidences have shown that diabetes mellitus occurs concomitantly with obsessive-compulsive disorder (OCD) symptomatology. Serotonergic psychiatric therapy posits that serotonin is a central character in the management of OCD. Hence, it is worth investigating novel chemical entities affecting the serotonergic system for targeting OCD. An isoflavonoid phytoestrogen, genistein, has been recognized as of great pharmacological value especially for protecting neurodegeneration, depression (serotonin regulation), and diabetes. The effectiveness of genistein pretreatment on the symptoms of OCD in streptozotocin-induced diabetic mice is investigated in this study. We also evaluate the probable involvement of the serotonergic system. Groups of diabetic mice were treated with genistein at the dose of 5.0 and 10.0 mg/kg (intraperitoneal, twice daily, 14 days), and symptoms of OCD were assessed by the marble-burying behavior, in comparison with the standard drug fluoxetine. Neurochemical assessment of the serotonergic ratio 5-hydroxyindole-3-methoxyphenylacetic acid/5-hydroxytryptamine (5-HIAA/5-HT) in the cortical region of the brain was performed using HPLC (high-pressure liquid chromatography). Chronic treatment with genistein significantly recovered [F(6, 35)=53.00, p<0.0001, R2=0.9008] the symptoms of OCD as assessed by marble burying behavior in normal and diabetic mice. Locomotor performance was not influenced by the diabetic condition or any associated treatment. The turnover of serotonin neurotransmission (5-HIAA/5-HT) was significantly boosted in the diabetic condition; genistein treatment dragged it [F(6, 35)=35.75, p<0.0001, R2=0.8597] toward the respective control. Genistein supplementation might be a potential therapeutic line for the management and/or prevention of diabetes-associated OCD symptomatology.
Effects of acute ethanol administration on nocturnal pineal serotonin N-acetyltransferase activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Creighton, J.A.; Rudeen, P.K.
The effect of acute ethanol administration on pineal serotonin N-acetyltransferase (NAT) activity, norepinephrine and indoleamine content was examined in male rats. When ethanol was administered in two equal doses (2 g/kg body weight) over a 4 hour period during the light phase, the nocturnal rise in NAT activity was delayed by seven hours. The nocturnal pineal norepinephrine content was not altered by ethanol except for a delay in the reduction of NE with the onset of the following light phase. Although ethanol treatment led to a significant reduction in nocturnal levels of pineal serotonin content, there was no significant effectmore » upon pineal content of 5-hydroxyindoleacetic acid (5-HIAA). The data indicate that ethanol delays the onset of the rise of nocturnal pineal NAT activity.« less
Stapleton, J M; Eckardt, M J; Martin, P; Adinoff, B; Roehrich, L; Bone, G; Rubinow, D; Linnoila, M
1988-01-01
The chronic effects of fluvoxamine (200 mg per day for 4 weeks) were studied in ten alcoholic organic brain syndrome patients in a double-blind cross-over design. Complete neuropsychological evaluation was performed as well as measurement of neurochemical changes in CSF. Fluvoxamine produced a small but significant improvement in memory performance. An analysis of fluvoxamine minus placebo difference scores showed a significant correlation between memory functioning and CSF 5HIAA levels. Alcohol amnestic syndrome patients who had the highest blood levels of fluvoxamine demonstrated the largest changes in CSF 5HIAA and improvement in memory performance under fluvoxamine. These findings implicate a role of serotonergic mechanisms in alcoholic organic brain syndrome and suggest that with individual titration of the drug dose, fluvoxamine might be a clinically useful agent in the treatment of this syndrome.
Fluoxetine augments ventilatory CO2 sensitivity in Brown Norway but not Sprague Dawley rats.
Hodges, Matthew R; Echert, Ashley E; Puissant, Madeleine M; Mouradian, Gary C
2013-04-01
The Brown Norway (BN; BN/NHsdMcwi) rat exhibits a deficit in ventilatory CO2 sensitivity and a modest serotonin (5-HT) deficiency. Here, we tested the hypothesis that the selective serotonin reuptake inhibitor fluoxetine would augment CO2 sensitivity in BN but not Sprague Dawley (SD) rats. Ventilation during room air or 7% CO2 exposure was measured before, during and after 3 weeks of daily injections of saline or fluoxetine (10mg/(kgday)) in adult male BN and SD rats. Fluoxetine had minimal effects on room air breathing in BN and SD rats (p>0.05), although tidal volume (VT) was reduced in BN rats (p<0.05). There were also minimal effects of fluoxetine on CO2 sensitivity in SD rats, but fluoxetine increased minute ventilation, breathing frequency and VT during hypercapnia in BN rats (p<0.05). The augmented CO2 response was reversible upon withdrawal of fluoxetine. Brain levels of biogenic amines were largely unaffected, but 5-HIAA and the ratio of 5-HIAA/5-HT were reduced (p<0.05) consistent with selective and effective 5-HT reuptake inhibition. Thus, fluoxetine increases ventilatory CO2 sensitivity in BN but not SD rats, further suggesting altered 5-HT system function may contribute to the inherently low CO2 sensitivity in the BN rat. Copyright © 2013 Elsevier B.V. All rights reserved.
Pineal physiology in microgravity - Relation to rat gonadal function aboard Cosmos 1887
NASA Technical Reports Server (NTRS)
Holley, Daniel C.; Markley, Carol L.; Soliman, Magdi R. I.; Kaddis, Farida; Krasnov, Igor'
1991-01-01
Results are reported from an analysis of pineal glands obtained for five male rats flown aboard an orbiting satellite for their melatonin, serotonin (5-HT), 5-hydroxyindole acetic acid (5-HIA), and calcium content. Plasma 5-HT and 5-HIAA were measured. These parameters were compared to indicators of gonadal function: plasma testosterone concentration and spermatogonia development. Plasma melotonin was found to be low at the time of euthanasia and was not different among the experimental groups. Pineal calcium of flight animals was not different from ground controls. Pineal 5-HT and 5-HIAA in the flight group were significantly higher than those in ground controls. These findings suggest a possible increase in pineal 5-HT turnover in flight animals which may result in increased melatonin secretion. It is argued that the alteration of pinal 5-HT turnover and its expected effects on melatonin secretion may partially explain the lower plasma testosterone levels and 4-11 percent fewer spermatogonia cells observed in flight animals.
Kulikova, Olga I; Berezhnoy, Daniil S; Stvolinsky, Sergey L; Lopachev, Alexander V; Orlova, Valentina S; Fedorova, Tatiana N
2018-06-01
In a model of early-stage Parkinson's disease induced by a single intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to Wistar rats, a neuroprotective effect of a new derivative of carnosine and α-lipoic acid (C/LA nanomicellar complex) was demonstrated. Acute intraperitoneal administration of carnosine, α-lipoic acid and C/LA complex following MPTP administration normalized the total antioxidant activity in the brain tissue. Of all the compounds tested only C/LA complex normalized the metabolism of dopamine (DA) and serotonin (5-HT), while its components did not show similar effects when used separately. C/LA complex effectively restored the level of DA metabolites: the level of DOPAC was increased by 24.7 ± 5.6% compared to the animals that had received MPTP only, and the level of HVA was restored to the values observed in the intact animals. Integral metabolic indices of DA (DOPAC/DA and HVA/DA ratios) and 5-HT turnover (5-HIAA/5-HT ratio) in the striatum tended to increase in case of C/LA complex administration. Copyright © 2018 Elsevier Inc. All rights reserved.
Prenatal exposure to ozone disrupts cerebellar monoamine contents in newborn rats.
Gonzalez-Pina, Rigoberto; Escalante-Membrillo, Carmen; Alfaro-Rodriguez, Alfonso; Gonzalez-Maciel, Angelica
2008-05-01
Ozone (O3) is widely distributed in environments with high levels of air pollution. Since cerebellar morphologic disruptions have been reported with prenatal O3 exposure, O3 may have an effect on some neurotransmitter systems, such as monoamines. In order to test this hypothesis, we used 60 male rats taken from either, mothers exposed to 1 ppm of O3 during the entire pregnancy, or from mothers breathing filtered and clean air during pregnancy. The cerebellum was extracted at 0, 5, and 10 postnatal days. Tissues were processed in order to analyze by HPLC, dopamine (DA) levels, 3,4 dihydroxyphenilacetic acid (DOPAC) and homovanillic acid (HVA), norepinephrine (NA), serotonin, and 5-hydroxy-indole-acetic acid (5-HIAA) contents. Results showed a decrease of DA, NA, DOPAC and HVA mainly in 0 and 5 postnatal days. There were no changes in 5-HT levels, and 5-HIAA showed an increase after 10 postnatal days. DOPAC + HVA/DA ratio showed changes in 0 and 10 postnatal days, while 5-HIAA/5-HT ratio showed a slight decrease in 0 days. The data suggest that prenatal O3 exposure disrupts the cerebellar catecholamine system rather than the indole-amine system. Disruptions in cerebellar NA could lead to ataxic symptoms and also could limit recovery after cortical brain damage in adults. These finding are important given that recovery mechanisms observed in animals are also observed in humans.
Low-dose acute vanillin is beneficial against harmaline-induced tremors in rats.
Abdulrahman, Al Asmari; Faisal, Kunnathodi; Meshref, Ali Al Amri; Arshaduddin, Mohammed
2017-03-01
To study the effect of pretreatment with low doses of vanillin, a flavoring agent used as a food additive, on harmaline-induced tremor in rats. Sprague Dawley rats (110 ± 5 g) were divided into groups of six animals each. Vanillin (6.25 mg, 12.5 mg, and 25 mg/kg) was administered by gavage to different groups of rats, 30 minutes before the induction of tremor. Harmaline (10 mg/kg, i.p.) was used for the induction of tremor. The latency of onset, duration, tremor intensity, tremor index, and spontaneous locomotor activity were recorded. A separate batch of animals was used for the determination of serotonin (5HT) and 5 hydroxyindole acetic acid (5HIAA) levels in the brain. Harmaline treatment resulted in characteristic tremor that lasted for more than 2 hours and decreased the locomotor activity of rats. Pre-treatment with vanillin significantly reduced the duration, intensity, and tremor index of harmaline-treated animals. Vanillin treatment also significantly attenuated harmaline-induced decrease in the locomotor activity. An increase in 5HT levels and the changes in 5HIAA/5HT ratio observed in harmaline treated rats were significantly corrected in vanillin pretreated animals. Vanillin in low doses reduces harmaline-induced tremor in rats, probably through its modulating effect on serotonin levels in the brain. These findings suggest a beneficial effect of vanillin in essential tremor.
Croonenberghs, J; Delmeire, L; Verkerk, R; Lin, A H; Meskal, A; Neels, H; Van der Planken, M; Scharpe, S; Deboutte, D; Pison, G; Maes, M
2000-03-01
Some studies have suggested that disorders in the peripheral and central metabolism of serotonin (5-HT) and noradrenaline may play a role in the pathophysiology of autistic disorder. This study examines serotonergic and noradrenergic markers in a study group of 13 male, post-pubertal, caucasian autistic patients (age 12-18 y; I.Q. > 55) and 13 matched volunteers. [3H]-paroxetine binding Kd values were significantly higher in patients with autism than in healthy volunteers. Plasma concentrations of tryptophan, the precursor of 5-HT, were significantly lower in autistic patients than in healthy volunteers. There were no significant differences between autistic and normal children in the serum concentrations of 5-HT, or the 24-hr urinary excretion of 5-hydroxy-indoleacetic acid (5-HIAA), adrenaline, noradrenaline, and dopamine. There were no significant differences in [3H]-rauwolscine binding Bmax or Kd values, or in the serum concentrations of tyrosine, the precursor of noradrenaline, between both study groups. There were highly significant positive correlations between age and 24-hr urinary excretion of 5-HIAA and serum tryptophan. The results suggest that: 1) serotonergic disturbances, such as defects in the 5-HT transporter system and lowered plasma tryptophan, may play a role in the pathophysiology of autism; 2) autism is not associated with alterations in the noradrenergic system; and 3) the metabolism of serotonin in humans undergoes significant changes between the ages of 12 and 18 years.
Uptake and metabolism of indole compounds by the goldfish pineal organ
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNulty, J.A.
Indole metabolism was studied in the pineal organ of the goldfish by radioautography and high-performance liquid chromatography. The rate of uptake of tritiated serotonin was rapid in vitro with dense labeling over the photoreceptor cells. Tritiated tryptophan was taken up at a slower rate and the label was distributed evenly over the epithelium. Continual light caused a reduction in the concentration of serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) compared to groups exposed to constant darkness both in vivo and in explants, suggesting that these effects are not derived from photoreceptors outside the pineal organ. These data are consistent with themore » hypothesis that indole metabolism is functionally linked to phototransduction events in the pineal organ of lower vertebrates.« less
Pressure Suppresses Serotonin Release by Guinea Pig Striatal Synaptosomes
1988-01-01
neurological syndrome. Brit J Pharmacol 1982; 76:447-452. 5. Wardley-Smith B, Meldrum BS. Effect of excitatory amino acid antagonists on !he high pressure...Res 1974; 1:,-28. *14. IBichard AR, Little HIJ. Drugs that increase Y-aminobutyric acid tr.ansmission prm ict PF..atnst * I the high pressure...Effects of high pressure of heliox on the striatal 5-HIAA and ascorbic acid rates in the rat. Cent Etud Rech Bio-Physiol Rep 84-08. 1984:35. 7
Cartolano, Maria C; Amador, Molly H B; Tzaneva, Velislava; Milsom, William K; McDonald, M Danielle
2017-12-01
Gulf toadfish (Opsanus beta) can switch from continuously excreting ammonia as their primary nitrogenous waste to excreting predominantly urea in distinct pulses. Previous studies have shown that the neurotransmitter serotonin (5-HT) is involved in controlling this process, but it is unknown if 5-HT availability is under central nervous control or if the 5-HT signal originates from a peripheral source. Following up on a previous study, cranial nerves IX (glossopharyngeal) and X (vagus) were sectioned to further characterize their role in controlling pulsatile urea excretion and 5-HT release within the gill. In contrast to an earlier study, nerve sectioning did not result in a change in urea pulse frequency. Total urea excretion, average pulse size, total nitrogen excretion, and percent ureotely were reduced the first day post-surgery in nerve-sectioned fish but recovered by 72h post-surgery. Nerve sectioning also had no effect on toadfish urea transporter (tUT), 5-HT transporter (SERT), or 5-HT 2A receptor mRNA expression or 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) abundance in the gill, all of which were found consistently across the three gill arches except 5-HIAA, which was undetectable in the first gill arch. Our findings indicate that the central nervous system does not directly control pulsatile urea excretion or local changes in gill 5-HT and 5-HIAA abundance. Copyright © 2017 Elsevier Inc. All rights reserved.
Kaplan, Kimberly A; Chiu, Veronica M; Lukus, Peter A; Zhang, Xing; Siems, William F; Schenk, James O; Hill, Herbert H
2013-02-01
We report results of studies of global and targeted neuronal metabolomes by ambient pressure ion mobility mass spectrometry. The rat frontal cortex, striatum, and thalamus were sampled from control nontreated rats and those treated with acute cocaine or pargyline. Quantitative evaluations were made by standard additions or isotopic dilution. The mass detection limit was ~100 pmol varying with the analyte. Targeted metabolites of dopamine, serotonin, and glucose followed the rank order of distribution expected between the anatomical areas. Data was evaluated by principal component analysis on 764 common metabolites (identified by m/z and reduced mobility). Differences between anatomical areas and treatment groups were observed for 53 % of these metabolites using principal component analysis. Global and targeted metabolic differences were observed between the three anatomical areas with contralateral differences between some areas. Following drug treatments, global and targeted metabolomes were found to shift relative to controls and still maintained anatomical differences. Pargyline reduced 3,4-dihydroxyphenylacetic acid below detection limits, and 5-HIAA varied between anatomical regions. Notable findings were: (1) global metabolomes were different between anatomical areas and were altered by acute cocaine providing a broad but targeted window of discovery for metabolic changes produced by drugs of abuse; (2) quantitative analysis was demonstrated using isotope dilution and standard addition; (3) cocaine changed glucose and biogenic amine metabolism in the anatomical areas tested; and (4) the largest effect of cocaine was on the glycolysis metabolome in the thalamus confirming inferences from previous positron emission tomography studies using 2-deoxyglucose.
Oades, Robert D
2011-12-01
Intra-individual variability of the characteristics of children with attention-deficit hyperactivity (ADHD) may reflect compromised glial energy supply in the synapse. We reported recently that while serum levels of a glial marker, the cytokine S100B, were not seriously altered, levels of other cytokines and tryptophan metabolites were related to symptoms, attention and variability. Here, we explore with a regression analysis whether levels of these substances were associated with features of the index pregnancy of potential aetiological significance. Serum was taken from 35 children with DSM-IV ADHD (14 on medication) and 21 typically developing controls to measure 8 cytokines (S100B, IL-2, IL-6, IL-10, IL-13, IL-16, TNF-α and IFN-γ) and 5 metabolites (Tryptophan, Kynurenine, Kynurenate [KA], 3-hydroxy-kynurenine [3HK] and 5-hydroxyindole acetic acid [5-HIAA]). The mothers received a 124-item questionnaire on features surrounding the pregnancy. (1) For children with ADHD, a shorter pregnancy and smaller birth weight were associated statistically with increased 3HK and IFN-γ and for obstetric problems with decreased TNF-α levels. (2) Maternal smoking related to decreasing kynurenine and increasing 3HK and S100B levels in ADHD children. Paternal smoking was associated with increased tryptophan in the controls and increased IL-6 levels in ADHD children. (3) The taking of supplements often related to decreasing TNF-α, increasing IL-10 and lower 5-HIAA levels in the ADHD children. Less 5-HIAA but more tryptophan was associated with earlier and later life events, respectively. (4) Increased IL-16 and 5-HIAA levels in the ADHD group related to reports of poorer infant health. Unexpectedly, more child care (seafood and time together) in ADHD than healthy families was implicated by lower tryptophan levels and an altered balance of pro-inflammatory cytokines. Across measures control families generally showed either non-significant associations or the opposite to those of the ADHD group. In ADHD children more than controls, the balance of potentially toxic or protective kynurenine metabolites and of pro- over anti-inflammatory cytokines may reflect the perinatal experience associated with stress, but not with maternal illness.
Tekes, K; Hantos, M; Gyenge, M; Karabélyos, Cs; Csaba, G
2006-12-01
Weanling female rats were stressed (by water and food deprivation for two days) and three months later the following indexes were studied: 5-HT and 5-HIAA levels in five brain regions, blood plasma and cerebrospinal fluid (CSF), sexual activity and nocistatin level of the plasma and CSF. The 5-HIAA content of hypothalamus and brainstem was significantly decreased (in the brainstem with one third) and in the striatum significantly increased. Plasma nocistatin level was significantly increased. Meyerson index and lordosis quotient were similar to control, but the estrus frequency almost doubled in the stressed animals. Much more defense reactions were observed in the stressed females during trials of mating. The results demonstrate that, 1) the perinatal period is not only sensitive to the remote-effects of stress but later could also be stress-sensitive critical periods, and 2) the continuously differentiating (e.g. bone marrow) cells are sensitive to late imprinting by stress, as well as to the brain and the sexual system.
Kulikov, A V; Osipova, D V; Naumenko, V S; Terenina, E; Mormède, P; Popova, N K
2012-07-15
The neurotransmitter serotonin (5-HT) is involved in the regulation of mouse intermale aggression. Previously, it was shown that intensity of mouse intermale aggression was positively associated with activity of the key enzyme of 5-HT synthesis - tryptophan hydroxylase 2 (TPH2) in mouse brain. The aim of the present study was to investigate the effect of pharmacological activation or inhibition of 5-HT synthesis in the brain on intermale aggression in two mouse strains differing in the TPH2 activity: C57BL/6J (B6, high TPH2 activity, high aggressiveness) and CC57BR/Mv (BR, low TPH2 activity, low aggressiveness). Administration of 5-HT precursor L-tryptophan (300 mg/kg, i.p.) to BR mice significantly increased the 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) levels in the midbrain as well as the number of attacks and their duration in the resident-intruder test. And vice versa, administration of TPH2 inhibitor p-chlorophenylalanine (pCPA) (300 mg/kg, i.p., for 3 consecutive days) to B6 mice dramatically reduced the 5-HT and 5-HIAA contents in brain structures and attenuated the frequency and the duration of aggressive attacks. At the same time, L-tryptophan or pCPA did not influence the percentage of aggressive mice and the attack latency reflecting the threshold of aggressive reaction. This result indicated that the intensity of intermale aggression, but not the threshold of aggressive reaction is positively dependent on 5-HT metabolism in mouse brain. Copyright © 2012 Elsevier B.V. All rights reserved.
A study of so-called hypochondriasis.
von Scheele, C; Nordgren, L; Kempi, V; Hetta, J; Hallborg, A
1990-01-01
Twenty-four patients with unexplained somatic complaints were subjected to a thorough somatic examination. Only when the examination proved negative was the patient entered into the study. The patients were clinically appraised according to criteria given in DSM-III. Generalized anxiety disorder (GAD) was diagnosed in 12, somatization disorder (SD) in 8, and hypochondriasis in 4 patients. Seventeen of the 24 patients agreed to participate in biochemical investigations including a TRH load, a dexamethasone test, and a determination of the monoamine metabolites 5-HIAA and HVA in cerebrospinal fluid (CSF). A normal TSH increase and a normal suppression of cortisol were registered. The HVA values correlated significantly with the 5-HIAA values as well as with the alexithymia scores. Concerning alexithymia and maturity level, no difference as to social class was found. The patients filled in a Zung depression chart. The Zung scale and the 5-HIAA values were both inconsistent with depressive illness. In so-called hypochondriasis a long-term relationship, including selected somatic and biochemical examinations and thorough information, was crucial in abating the patient's distrust and thus the need for health care.
Van Dam, Debby; Vermeiren, Yannick; Aerts, Tony; De Deyn, Peter Paul
2014-08-01
A fast and simple RP-HPLC method with electrochemical detection (ECD) and ion pair chromatography was developed, optimized and validated in order to simultaneously determine eight different biogenic amines and metabolites in post-mortem human brain tissue in a single-run analytical approach. The compounds of interest are the indolamine serotonin (5-hydroxytryptamine, 5-HT), the catecholamines dopamine (DA) and (nor)epinephrine ((N)E), as well as their respective metabolites, i.e. 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), 5-hydroxy-3-indoleacetic acid (5-HIAA) and 3-methoxy-4-hydroxyphenylglycol (MHPG). A two-level fractional factorial experimental design was applied to study the effect of five experimental factors (i.e. the ion-pair counter concentration, the level of organic modifier, the pH of the mobile phase, the temperature of the column, and the voltage setting of the detector) on the chromatographic behaviour. The cross effect between the five quantitative factors and the capacity and separation factors of the analytes were then analysed using a Standard Least Squares model. The optimized method was fully validated according to the requirements of SFSTP (Société Française des Sciences et Techniques Pharmaceutiques). Our human brain tissue sample preparation procedure is straightforward and relatively short, which allows samples to be loaded onto the HPLC system within approximately 4h. Additionally, a high sample throughput was achieved after optimization due to a total runtime of maximally 40min per sample. The conditions and settings of the HPLC system were found to be accurate with high intra and inter-assay repeatability, recovery and accuracy rates. The robust analytical method results in very low detection limits and good separation for all of the eight biogenic amines and metabolites in this complex mixture of biological analytes. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhao, Longshan; Zheng, Shuning; Su, Guangyue; Lu, Xiumei; Yang, Jingyu; Xiong, Zhili; Wu, Chunfu
2015-04-15
A sensitive and versatile, ultra-high performance, liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method coupled to pre-column derivatization for the simultaneous determination of 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), dopamine (DA), norepinephrine (NE), homovanillic acid (HVA), γ-aminobutyric acid (GABA) and glutamic acid (Glu) was developed and validated in rat plasma. The analytes were dansylated under strong alkaline conditions after protein precipitation extraction, which were analyzed on a BEH C18 column using a gradient elution. The lower limit of quantification (LLOQ) values for 5-HT, 5-HIAA, DA, NE, HVA, GABA and Glu were 1.00, 1.00, 0.991, 0.992, 1.02, 1000, and 5030 pmol/mL, respectively. Good linearity was obtained (r > 0.99) and the intra- and inter-day precisions of the method (relative standard deviation, RSD%) were lower than 12%. The method was novel, sensitive and specific which can provide an alternative method for the quantification of neurotransmitters and their metabolites in plasma samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Dalterio, S; Steger, R; Mayfield, D; Bartke, A
1984-01-01
Maternal exposure to delta 9-tetrahydrocannabinol (THC), the major psychoactive constituent in marihuana, or to the non-psychoactive cannabinol (CBN) or cannabidiol (CBD) alters endocrine functions and concentrations of brain biogenic amines in their male offspring. Prenatal CBN exposure on day 18 of gestation resulted in decreased plasma FSH levels, testicular testosterone (T) concentrations, and seminal vesicles weights, but increased plasma levels of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) post-castration in adulthood. Prenatal exposure to THC significantly enhanced the responsiveness of the testes to intratesticular LH injection in vivo and tended to increase human chorionic gonadotropin (hCG)-stimulated T production by decapsulated testes in vitro. In the CBN-exposed mice, hCG-stimulated T production was enhanced, while CBD exposure had no effect. Prenatal THC exposure altered the negative feedback effects of exogenous gonadal steroids in castrated adults, with lower plasma T and FSH levels after 20 micrograms T than in castrated controls. In contrast, CBD-exposed mice had higher levels of LH in plasma post-castration. In CBN-exposed adults, two weeks post-castration the concentration of norepinephrine (NE) and dopamine (DA) in hypothalamus and remaining brain were reduced, while levels of serotonin (5-HT) and its metabolite, 5-HIAA, were elevated compared to that in castrated OIL-controls. Prenatal CBD-exposure also reduced NE and elevated 5-HT and 5-HIAA, but did not affect DA levels post-castration. Concentrations of brain biogenic amines were not influenced by prenatal THC exposure in the present study. A single prenatal exposure to psychoactive or non-psychoactive components of marihuana results in long term alterations in the function of the hypothalamo-pituitary-gonadal axis. Changes in the concentrations of brain biogenic amines may be related to these effects of prenatal cannabinoids on endocrine function in adult male mice.
IL-1 receptor-antagonist (IL-1Ra) knockout mice show anxiety-like behavior by aging.
Wakabayashi, Chisato; Numakawa, Tadahiro; Odaka, Haruki; Ooshima, Yoshiko; Kiyama, Yuji; Manabe, Toshiya; Kunugi, Hiroshi; Iwakura, Yoichiro
2015-07-10
Interleukin 1 (IL-1) plays a critical role in stress responses, and its mRNA is induced in the brain by restraint stress. Previously, we reported that IL-1 receptor antagonist (IL-1Ra) knockout (KO) mice, which lacked IL-1Ra molecules that antagonize the IL-1 receptor, showed anti-depression-like behavior via adrenergic modulation at the age of 8 weeks. Here, we report that IL-1Ra KO mice display an anxiety-like phenotype that is induced spontaneously by aging in the elevated plus-maze (EPM) test. This anxiety-like phenotype was improved by the administration of diazepam. The expression of the anxiety-related molecule glucocorticoid receptor (GR) was significantly reduced in 20-week-old but not in 11-week-old IL-1Ra KO mice compared to wild-type (WT) littermates. The expression of the mineralocorticoid receptor (MR) was not altered between IL-1Ra KO mice and WT littermates at either 11 or 20 weeks old. Analysis of monoamine concentration in the hippocampus revealed that tryptophan, the serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA), and the dopamine metabolite homovanillic acid (HVA) were significantly increased in 20-week-old IL-1Ra KO mice compared to littermate WT mice. These findings strongly suggest that the anxiety-like behavior observed in older mice was caused by the complicated alteration of monoamine metabolism and/or GR expression in the hippocampus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Motbey, Craig P; Clemens, Kelly J; Apetz, Nadine; Winstock, Adam R; Ramsey, John; Li, Kong M; Wyatt, Naomi; Callaghan, Paul D; Bowen, Michael T; Cornish, Jennifer L; McGregor, Iain S
2013-09-01
Mephedrone (MMC) is a relatively new recreational drug that has rapidly increased in popularity in recent years. This study explored the characteristics of intravenous MMC self-administration in the rat, with methamphetamine (METH) used as a comparator drug. Male Sprague-Dawley rats were trained to nose poke for intravenous MMC or METH in daily 2 h sessions over a 10 d acquisition period. Dose-response functions were then established under fixed- and progressive-ratio (FR and PR) schedules over three subsequent weeks of testing. Brains were analyzed ex vivo for striatal serotonin (5-HT) and dopamine (DA) levels and metabolites, while autoradiography assessed changes in the regional density of 5-HT and serotonin transporter (SERT) and DA transporter (DAT) and induction of the inflammation marker translocator protein (TSPO). Results showed that MMC was readily and vigorously self-administered via the intravenous route. Under a FR1 schedule, peak responding for MMC was obtained at 0.1 mg/kg/infusion, versus 0.01 mg/kg/infusion for METH. Break points under a PR schedule peaked at 1 mg/kg/infusion MMC versus 0.3 mg/kg/infusion for METH. Final intakes of MMC were 31.3 mg/kg/d compared to 4 mg/kg/d for METH. Rats self-administering MMC, but not METH, gained weight at a slower rate than control rats. METH, but not MMC, self-administration elevated TSPO receptor density in the nucleus accumbens and hippocampus, while MMC, but not METH, self-administration decreased striatal 5-hydroxyindolacetic acid (5-HIAA) concentrations. In summary, MMC supported high levels of self-administration, matching or exceeding those previously reported with other drugs of abuse.
Stenfors, C; Ross, S B
2002-11-01
Inhibition of cAMP-dependent protein kinase (PKA) with N-[2-methylamino)ethyl]-5-isoquinolinesulfonamide (H-8) almost completely antagonized the increase in 5-HTP accumulation and 5-HIAA/5-HT ratio in hypothalamus induced by NAS-181, a 5-HT(1B) receptor antagonist, but had no effect when the mice were treated with NAS-181 together with WAY-100,635, a selective 5-HT(1A) receptor antagonist. Inhibition of Ca(2+)-calmodulin-dependent protein kinase (CaM kinase II) with the calmodulin antagonist N-(4-aminobutyl)-5-chloro-2-naphtalenesulfonamide (W-13) did not antagonise the effect of NAS-181 alone, but counteracted that evoked by the combined treatment with NAS-181 and WAY-100,635. The results indicate that activation of tryptophan hydroxylase by reducing the tone from terminal 5-HT(1B) receptors involves PKA whereas the depolarisation-induced activation of tryptophan hydroxylase involves CaM kinase II. The increase in the 5-HIAA/5-HT ratio may under the experimental conditions used suggest CaM kinase II-induced phosphorylation of synapsin I resulting in increased 5-HT release.
Bazhenova, Ekaterina Y; Bazovkina, Daria V; Kulikova, Elizabeth A; Fursenko, Dariya V; Khotskin, Nikita V; Lichman, Daria V; Kulikov, Alexander V
2017-02-15
Neurotransmitter serotonin (5-HT) is involved in the regulation of stress response. Tryptophan hydroxylase-2 (TPH2) is the key enzyme of serotonin (5-HT) synthesis in the brain. C1473G polymorphism in Tph2 gene is the main factor defining the enzyme activity in the brain of laboratory mice. The effect of interaction between C1473G polymorphism and 30min restriction stress on the behavior in the open field test, c-Fos gene expression and 5-HT metabolism in the brain in adult male of B6-1473C and B6-1473G congenic mouse lines with high and low TPH2 activity was investigated. A significant effect of genotype x stress interaction on c-Fos mRNA in the hypothalamus (F 1,21 =10.66, p<0.001) and midbrain (F 1,21 =9.18, p<0.01) was observed. The stress-induced rise of c-Fos mRNA in these structures is more intensive in B6-1473G than in B6-1473C mice. A marked effect of genotype x stress interaction on 5-HT level in the cortex (F 1,18 =9.38, p<0.01) and 5-HIAA/5-HT turnover rate in the hypothalamus (F 1,18 =9.01, p<0.01) was revealed. The restriction significantly decreased 5-HT level in the cortex (p<0.01) and increased 5-HIAA/5-HT rate (p<0.001) in the hypothalamus in B6-1473C mice, but not in B6-1473G mice. The present result is the first experimental evidence that C1473G polymorphism is involved in the regulation of the reaction to emotional stress in mice. Copyright © 2017 Elsevier B.V. All rights reserved.
Zuo, Xiu Li; Li, Yan Qing; Yang, Xiao Zhong; Guo, Min; Guo, Yu Ting; Lu, Xue Feng; Li, Jun Man; Desmond, Paul V
2007-12-01
The purpose of the present paper was to investigate the effects of cold water intake on 5-hydroxytryptamine (5-HT) and its metabolite 5-hydroxyindole acetic acid (5-HIAA) in diarrhea-predominant irritable bowel syndrome (d-IBS) patients, and to observe the relationship between 5-HT and symptomatology. The plasma 5-HT/5-HIAA concentrations at 0, 30 min, 60 min, 90 min, 120 min, 150 min and 180 min following cold or warm water intake were investigated in 32 female subjects with d-IBS and 21 healthy female subjects. Gastric mucosal 5-HT under fasting conditions and following water intake were further investigated in 15 d-IBS patients and nine healthy subjects. Symptomatology was assessed throughout the study. The plasma 5-HT concentrations in IBS patients were significantly higher than those of controls at 30 min (P = 0.022), 60 min (P < 0.001), 90 min (P < 0.001), 120 min (P < 0.001) and 150 min (P = 0.001) after cold water intake. The peak plasma 5-HT/5-HIAA and area under the curve for 5-HT/5-HIAA were also higher in d-IBS patients (P < 0.001). Gastric mucosal 5-HT in d-IBS patients and controls did not show any significant differences both under fasting condition (P = 0.596) and after cold water intake (P = 0.426). Last, the d-IBS patients with symptoms had higher 5-HT concentration (P < 0.001) and there was a positive correlation (r = 0.714, P = 0.001)between the symptomatology and plasma 5-HT level. These data suggest that symptomatology following cold water intake may be associated with increased plasma 5-HT concentrations in female subjects with d-IBS.
Oleic Acid Protects Against Oxidative Stress Exacerbated by Cytarabine and Doxorubicin in Rat Brain.
Guzmán, David Calderón; Brizuela, Norma Osnaya; Herrera, Maribel Ortíz; Olguín, Hugo Juárez; García, Ernestina Hernández; Peraza, Armando Valenzuela; Mejía, Gerardo Barragán
2016-01-01
The objective of this study was to analyze the effect of doxorubicin and cytarabine on biogenic amines and oxidative biomarkers in the brain of rats treated with oleic acid. Thirty-six Wistar rats distributed in 6 groups, were treated as follows: group 1 (control), NaCl 0.9%; group 2 doxorubicin (1mg/kg); group 3 cytarabine (70mg /kg); group 4 oleic acid (1500μl/kg); group 5 doxorubicin + oleic acid; group 6 cytarabine + oleic acid. All compounds were administered intraperitoneally for 5 days. The Rats were sacrificed after receiving the last administration and their brains were dissected in cortex, hemispheres, and cerebellum/medulla oblongata. Blood samples were obtained on sacrifice to assess the levels of glucose and triglycerides. In each brain region, lipoperoxidation (TBARS), H2O2, Na+, K+ ATPase, glutathione (GSH), serotonin metabolites (5-HIAA) and dopamine were measured using validated methods. Cytarabine decreased the levels of dopamine, TBARS, GSH, H2O2 and ATPase in all regions. Doxorubicin combined with oleic acid increased the levels of GSH in cortex, and decreased ATPase in cerebellum/medulla oblongata. These results suggest that the reduction of dopamine and oxidant effect during cytarabine treatment could result in brain injury but could be prevented by oleic acid supplementation.
Manyam, Bala V; Dhanasekaran, Muralikrishnan; Hare, Theodore A
2004-02-01
HP-200, which contains Mucuna pruriens endocarp, has been shown to be effective in the treatment of Parkinson's disease. Mucuna pruriens endocarp has also been shown to be more effective compared to synthetic levodopa in an animal model of Parkinson's disease. The present study was designed to elucidate the long-term effect of Mucuna pruriens endocarp in HP-200 on monoaminergic neurotransmitters and its metabolite in various regions of the rat brain. HP-200 at a dose of 2.5, 5.0 or 10.0 g/kg/day was mixed with rat chow and fed daily ad lib to Sprague-Dawley rats (n = 6 for each group) for 52 weeks. Controls (n = 6) received no drug. Random assignment was made for doses and control. The rats were sacrificed at the end of 52 weeks and the neurotransmitters were analyzed in the cortex, hippocampus, substantia nigra and striatum. Oral administration of Mucuna pruriens endocarp in the form of HP-200 had a significant effect on dopamine content in the cortex with no significant effect on levodopa, norepinephrine or dopamine, serotonin, and their metabolites- HVA, DOPAC and 5-HIAA in the nigrostriatal tract. The failure of Mucuna pruriens endocarp to significantly affect dopamine metabolism in the striatonigral tract along with its ability to improve Parkinsonian symptoms in the 6-hydorxydopamine animal model and humans may suggest that its antiparkinson effect may be due to components other than levodopa or that it has an levodopa enhancing effect. Copyright 2004 John Wiley & Sons, Ltd. Copyright 2004 John Wiley & Sons, Ltd.
Watanabe, Kenya; Miura, Itaru; Kanno-Nozaki, Keiko; Horikoshi, Sho; Mashiko, Hirobumi; Niwa, Shin-Ichi; Yabe, Hirooki
2015-12-15
The five-factor model of the Positive and Negative Syndrome Scale (PANSS) for schizophrenia symptoms is the most common multiple-factor model used in analyses; its use may improve evaluation of symptoms in schizophrenia patients. Plasma monoamine metabolite levels are possible indicators of clinical symptoms or response to antipsychotics in schizophrenia. We investigated the association between five-factor model components and plasma monoamine metabolites levels to explore the model's biological basis. Plasma levels of homovanillic acid (HVA), 3-methoxy-4-hydroxyphenylglycol (MHPG), and 5-hydroxyindoleacetic acid (5-HIAA) were measured using high-performance liquid chromatography in 65 Japanese patients with schizophrenia. Significant negative correlation between plasma 5-HIAA levels and the depression/anxiety component was found. Furthermore, significant positive correlation was found between plasma MHPG levels and the excitement component. Plasma HVA levels were not correlated with any five-factor model component. These results suggest that the five-factor model of the PANSS may have a biological basis, and may be useful for elucidating the psychopathology of schizophrenia. Assessment using the five-factor model may enable understanding of monoaminergic dysfunction, possibly allowing more appropriate medication selection. Further studies of a larger number of first-episode schizophrenia patients are needed to confirm and extend these results. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Luo, Jia; Wang, Tao; Liang, Shan; Hu, Xu; Li, Wei; Jin, Feng
2014-03-01
Evidence suggests that the hyperammonemia (HA)-induced neuroinflammation and alterations in the serotonin (5-HT) system may contribute to cognitive decline and anxiety disorder during hepatic encephalopathy (HE). Probiotics that maintain immune system homeostasis and regulate the 5-HT system may be potential treatment for HA-mediated neurological disorders in HE. In this study, we tested the efficacy of probiotic Lactobacillus helveticus strain NS8 in preventing cognitive decline and anxiety-like behavior in HA rats. Chronic HA was induced by intraperitoneal injection of ammonium acetate for four weeks in male Sprague-Dawley rats. HA rats were then given Lactobacillus helveticus strain NS8 (10(9) CFU mL(-1)) in drinking water as a daily supplementation. The Morris water maze task assessed cognitive function, and the elevated plus maze test evaluated anxiety-like behavior. Neuroinflammation was assessed by measuring the inflammatory markers: inducible nitric oxide synthase, prostaglandin E2, and interleukin-1 β in the brain. 5-HT system activity was evaluated by measuring 5-HT and its metabolite, 5-HIAA, and the 5-HT precursor, tryptophan. Probiotic treatment of HA rats significantly reduced the level of inflammatory markers, decreased 5-HT metabolism, restored cognitive function and improved anxiety-like behavior. These results indicate that probiotic L. helveticus strain NS8 is beneficial for the treatment of cognitive decline and anxiety-like behavior in HA rats.
Dopamine-related genes and their relationships to monoamine metabolites in CSF.
Jönsson, E; Sedvall, G; Brené, S; Gustavsson, J P; Geijer, T; Terenius, L; Crocq, M A; Lannfelt, L; Tylec, A; Sokoloff, P; Schwartz, J C; Wiesel, F A
1996-11-15
Monoamine metabolite (MM) levels in lumbar cerebrospinal fluid (CSF) are extensively used as indirect estimates of monoamine turnover in the brain. In this study we investigated genotypes for DNA polymorphisms in the D2 (DRD2), D3 (DRD3), and D4 (DRD4) dopamine receptor and tyrosine hydroxylase (TH) genes and their relationships to CSF MM in healthy volunteers (n = 66). Concentrations of homovanillic acid (HVA), 3-methoxy-4-hydroxyphenylglycol (MHPG), and 5-hydroxyindoleacetic acid (5-HIAA) were corrected for back length, a confounding variable. Corrected MM levels were not related to age, gender, height, weight heredity, season or atmospheric pressure at sampling. Individuals with specific DRD2 and TH allele and genotype configurations significantly differed in HVA and MHPG concentrations. DRD3 homo- and heterozygotic genotypes had significantly different CSF 5-HIAA levels. DRD4 genotypes were not related to MM concentrations. The results suggest that specific DRD2, DRD3, and TH genotypes participate in the regulation of monoamine turnover in the central nervous system. Accordingly monoamine receptors and synthesizing enzyme genotypes appear to be variance factors influencing MM concentrations in CSF. The relationships found in this study support MM concentrations as markers for monoamine transmission in the human brain.
Maestripieri, Dario; Higley, J Dee; Lindell, Stephen G; Newman, Timothy K; McCormack, Kai M; Sanchez, Mar M
2006-10-01
This study investigated the effects of early exposure to variable parenting style and infant abuse on cerebrospinal fluid (CSF) concentrations of monoamine metabolites and examined the role of monoaminergic function in the intergenerational transmission of infant abuse in rhesus monkeys (Macaca mulatta). Forty-three infants reared by their biological mothers and 15 infants that were cross-fostered at birth and reared by unrelated mothers were followed longitudinally through their first 3 years of life or longer. Approximately half of the infants were reared by abusive mothers and half by nonabusive controls. Abused infants did not differ from controls in CSF concentrations of 5-hydroxyindoleacetic acid (5-HIAA), homovanillic acid (HVA), or 3-methoxy-4-hydroxyphenylgycol (MHPG). Abused infants, however, were exposed to higher rates of maternal rejection, and highly rejected infants had lower CSF 5-HIAA and HVA than low-rejection infants. The abused females who became abusive mothers in adulthood had lower CSF 5-HIAA than the abused females who did not. A similar trend was also observed among the cross-fostered females, suggesting that low serotonergic function resulting from early exposure to high rates of maternal rejection plays a role in the intergenerational transmission of infant abuse.
Moriya, Shunpei; Tahara, Yu; Sasaki, Hiroyuki; Ishigooka, Jun; Shibata, Shigenobu
2015-11-01
A number of animal studies have implicated circadian clock genes in the regulation of mood, anxiety, and reward. However, the effect of misalignment of the environmental light-dark and internal circadian clock on the monoamine system is not fully understood. In the present study, we examined whether an abnormal light-dark schedule would affect behavior-, circadian clock-, and monoamine-related gene expressions, along with monoamine contents in the amygdala and hippocampus of mice. Mice were subjected to an 8-hour phase delay in the light-dark cycle (Shift) every two days for four weeks, and locomotor activity was continuously measured. We examined the circadian expression of clock genes (Per1, Per2, and Bmal1) and genes of the NE/5HT uptake transporters (Net and Sert). In addition, the levels of NE/5HT and their metabolites MHPG/5HIAA were analyzed in the amygdala and hippocampus. Locomotor activity showed a free-running phenotype with a longer period (>24 hours) and showed misalignment between the light-dark and inactive-active cycles. The amplitude of the day-night fluctuation of Bmal1 expression was reduced in the amygdala and hippocampus of light-dark-shifted mice. Net gene expression in the Shift group showed different profiles compared with the Control group. In addition, NE and 5HT levels in the amygdala of the Shift group increased during the active period. The present results suggest that misalignment of the internal and external clocks by continuous shifting of the light-dark cycle affects the circadian clocks and monoamine metabolism in the amygdala and hippocampus of mice. Copyright © 2015 Elsevier B.V. All rights reserved.
New insights into Brunner syndrome and potential for targeted therapy.
Palmer, E E; Leffler, M; Rogers, C; Shaw, M; Carroll, R; Earl, J; Cheung, N W; Champion, B; Hu, H; Haas, S A; Kalscheuer, V M; Gecz, J; Field, M
2016-01-01
We report two families with Brunner syndrome living in one state of Australia. The first family had a predicted protein-truncating variant of monoamine oxidase A (MAOA) (p.S251KfsX2). Affected males had mild intellectual disability (ID), obsessive behaviour, limited friendships and were introverted and placid during clinical interview. The family disclosed episodic explosive aggression after a diagnosis was made. The second family had a missense variant in MAOA (p.R45W). Affected males had borderline-mild ID, attention deficit disorder and limited friendships. One had a history of explosive aggression in childhood and episodic symptoms of flushing, headaches and diarrhoea. Their carrier mother had normal intelligence but similar episodic symptoms. Characteristic biochemical abnormalities included high serum serotonin and urinary metanephrines and low urinary 5-hydroxyindoleacetic acid (5-HIAA) and vanillylmandelic acid (VMA). Symptomatic individuals in the second family had particularly high serotonin levels, and treatment with a serotonin reuptake inhibitor and dietary modification resulted in reversal of biochemical abnormalities, reduction of 'serotonergic' symptoms and behavioural improvement. Brunner syndrome should be considered as a cause of mild ID with paroxysmal behavioural symptoms. It can be screened for with serum/urine metanephrine and serotonin measurement. Cautious treatment with a serotonin reuptake inhibitor, dietary modifications and avoidance of medications contraindicated in patients on monoamine oxidase inhibitors can improve symptoms. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Daly, R C; Su, T P; Schmidt, P J; Pickar, D; Murphy, D L; Rubinow, D R
2001-02-01
Anabolic androgen steroid abuse is associated with multiple psychiatric symptoms and is a significant public health problem. The biological mechanisms underlying behavioral symptom development are poorly understood. We examined levels of monoamine metabolites, neurohormones, and neuropeptides in the cerebrospinal fluid (CSF) of 17 healthy men, at baseline and following 6 days of methyltestosterone (MT) administration (3 days of 40 mg/d, then 3 days of 240 mg/d). Subjects received MT or placebo in a fixed sequence, with neither subjects nor raters aware of the order. Potential relationships were examined between CSF measures, CSF MT levels, and behavioral changes measured on a visual analog scale. Following MT administration, levels of 3-methoxy-4-hydroxyphenylglycol (MHPG) were significantly lower (mean +/- SD, 103.8 +/- 47 vs 122.0 +/- 50.7 pmol/mL; P<.01), and 5-hydroxyindoleacetic acid (5-HIAA) levels were significantly higher (mean +/- SD, 104.7 +/- 31.3 vs 86.9 +/- 23.6 pmol/mL; P<.01). No significant MT-related changes were observed in CSF levels of corticotropin, norepinephrine, cortisol, arginine vasopressin, prolactin, corticotropin-releasing hormone, beta-endorphin, and somatotropin release-inhibiting factor. Changes in CSF 5-HIAA significantly correlated with increases in "activation" symptoms (energy, sexual arousal, and diminished sleep) (r = 0.55; P =.02). No significant correlation was observed between changes in CSF and plasma MT, CSF MHPG, and behavioral symptoms. Short-term anabolic androgenic steroid use affects brain neurochemistry, increasing CSF 5-HIAA and decreasing MHPG. Changes in 5-HIAA levels caused by anabolic androgenic steroids are related to the behavioral changes we observed. In this small sample, we did not observe a significant relationship between behavioral measures and either dose of MT or CSF and plasma levels of MT.
Culman, Juraj; Mühlenhoff, Stephan; Blume, Annegret; Hedderich, Jürgen; Lützen, Ulf; Hunt, Stephen P; Rupniak, Nadia M J; Zhao, Yi
2018-06-15
Mice lacking the substance P (SP) neurokinin-1 (NK1) receptor (NK1R-/-mice) were used to investigate whether SP affects serotonin (5-HT) function in the brain and to assess the effects of acute immobilisation stress on the hypothalamic-pituitary-adrenocortical (HPA) axis and 5-HT turnover in individual brain nuclei. Basal HPA activity and the expression of hypothalamic corticotropin-releasing hormone (CRH) in wild-type (WT)- and NK1R-/- mice were identical. Stress-induced increases in plasma ACTH concentration were considerably higher in NK1R-/- mice than in WT mice while corticosterone concentrations were equally elevated in both mouse lines. Acute stress did not alter the expression of CRH. In the dorsal raphe nucleus (DRN), basal 5-HT turnover was increased in NK1R-/- mice and a 15 min stress further magnified 5-HT utilisation in this region. In the frontoparietal cortex, medial prefrontal cortex, central nucleus of amygdala, and the hippocampal CA1 region, stress increased 5-HT and/or 5-hydroxyindoleacetic acid (5-HIAA) concentrations to a similar extent in WT and NK1R-/- mice. 5-HT turnover in the hypothalamic paraventricular nucleus was not affected by stress, but stress induced similar increases in 5-HT and 5-HIAA in the ventromedial and dorsomedial hypothalamic nuclei in WT and NK1R-/- mice. Our findings indicate that NK1 receptor activation suppresses ACTH release during acute stress but does not exert sustained inhibition of the HPA axis. Genetic deletion of the NK1 receptor accelerates 5-HT turnover in DRN under basal and stress conditions. No differences between the responses of serotonergic system to acute stress in WT and NK1R-/- mice occur in forebrain nuclei linked to the regulation of anxiety and neuroendocrine stress responses.
Kovac, Andrej; Somikova, Zuzana; Zilka, Norbert; Novak, Michal
2014-02-01
Alzheimer's disease (AD) is still being recognized today as an unmet medical need. Currently, there is no cure and early preclinical diagnostic assay available for AD. Therefore much attention is now being directed at the development of novel methods for quantitative determination of AD biomarkers in the cerebrospinal fluid (CSF). Here, we describe the liquid chromatography-tandem mass spectrometry method for determination of 5-hydroxytryptamine (SER), 5-hydroxyindoleacetic acid (5-HIAA), homovanilic acid (HVA), noradrenaline (NADR), adrenaline (ADR), dopamine (DA), glutamic acid (Glu), γ-aminobutyric acid (GABA), 3,4-dihydroxyphenylacetic acid (DOPAC) and histamine (HIS) in cerebrospinal fluid (CSF) from the rat model for human tauopathy. The benzoyl chloride was used as pre-column derivatization reagents. Neurotransmitters and metabolites were analysed on ultra performance liquid chromatography (UPLC) on C18 column in combination with tandem mass spectrometry. The method is simple, highly sensitive and showed excellent linearity with regression coefficients higher than 0.99. The accuracy was in a range of 93-113% for all analytes. The inter-day precision (n=5 days), expressed as %RSD, was in a range 2-10% for all analytes. Using this method we detected significant changes of CSF levels of two important neurotransmitters/metabolites, ADR and 5-HIAA, which correlates with progression of neurodegeneration in our animal model. © 2013 Published by Elsevier B.V.
Feng, Chengya; Gao, Jieying; Zhen, Qianna; Fan, Zimian; Zhu, Mingsong; Yang, Xiangchun; Ding, Min
2013-06-01
A high performance liquid chromatography-ultraviolet/fluorescence detection (HPLC-UV/FLD) with on-column derivatization was established to simultaneously determine tryptophan (Trp), kynurenine (Kyn), 5-hydroxyindole acetic acid (5-Hiaa) and kynurenic acid (Kyna). A Hypersil C-18 column (250 mm x 4.0 mm, 5 microm) was used for the analysis at 30 degrees C. The separation was carried out with the mobile phase consisting of 250 mmol/L zinc acetate (pH 5.5) and acetonitrile (95: 5, v/v) at a flow rate of 0.8 mL/min using 3-nitrotyrosine as internal standard (IS). The excitation (Ex) and emission (Em) wavelengths were set at 278 nm (lambda(ex))/343 nm (lambda(em)) for 5-Hiaa and 244 nm (lambda(ex))/400 nm (lambda(em)) for Kyna, while the wavelengths of ultraviolet detection were set at 360 nm for Kyn and IS, 302 nm for Trp. The recoveries were in the range of 91.62% to 114.17%. The linearities were from 2.50 micromol/L to 320.00 micromol/L for Trp, 0.32 micromol/L to 15.36 micromol/L for Kyn, 3.27 nmol/L to 104.60 nmol/L for 5-Hiaa, and 14.00 nmol/L to 464.80 nmol/L for Kyna. The detection limits were 0.078 micromol/L, 0.056 micromol/L, 0.690 nmol/L and 1.290 nmol/L for Trp, Kyn, 5-Hiaa, and Kyna, respectively. Thirty plasma samples of normal pregnant women and 28 plasma samples of healthy controls were tested, and the results exhibited that the concentrations of Trp, Kyn and Kyna in the plasma of the normal pregnant women were significantly different from those of the control group (all P < 0.01). The method is simple and sensitive with good reproducibility, and it is suitable for clinical measurements.
[Endogenous nociceptin level in ischemic stroke: connection to serotonin system].
Tekes, Kornélia; Hantos, Mónika; Bátor, György; Gyenge, Melinda; Laufer, Rudolf; Folyovich, András
2006-06-01
Particular role of the heptadecapeptide nociceptin (orphanin FQ), the endogenous agonist of the NOP receptor, has been widely demonstrated in the regulation of pain sensation and anxiety-related behavior. In our best knowledge this is the first study reporting plasma nociceptin levels in 26 acute stroke and 6 transiens ischemic attack (TIA) patients. We have found significantly elevated plasma nociceptin levels in all the three groups of patients studied (stroke influencing the carotis or the lacunar region and TIA). We suggest that elevated plasma nociceptin level is the consequence of stroke as in the group of patients recovered from previous stroke was found similar the control value. Plasma serotonin level was found non-significantly decreased in patients with stroke influencing the lacunar region and TIA patients. However the plasma 5-hydroxy-indoleacetic acid (5HIAA) levels were found significantly elevated in patient groups with stroke influencing both the carotis and the lacunar regions. Data may serve as further evidence for the serotonergic dysregulation in stroke.
Cocaine. Selective regional effects on central monoamines.
Hadfield, M G
1995-01-01
Cocaine HCl (0, 10, or 50 mg/kg) was injected into adult male ICR mice ip. Thirty minutes later, the brains were removed, and nine regions were isolated: olfactory bulbs, olfactory tubercles, prefrontal cortex, septum, striatum, amygdala, hypothalamus, hippocampus, and thalamus. Using high-performance liquid chromatography, concentrations of norepinephrine, dopamine, serotonin, and their major metabolites and the metabolite/neurotransmitter ratios were determined as an indicator of utilization. Serotonergic systems responded most dramatically. 5HIAA/5-HT decreases were seen in all the brain regions, except the septum, hippocampus, and olfactory bulbs. In most instances, the alterations were dose-dependent. The most profound changes were seen in the amygdala, prefrontal cortex, hypothalamus, and thalamus. For noradrenergic systems, significant responses were seen only in the amygdala, prefrontal cortex, and hypothalamus, but then only at the lower dose. The dopaminergic responses were more complex and not always dose-dependent. The DOPAC/DA ratio was decreased only in the amygdala and striatum at the lower dose, and the olfactory tubercles at the higher dose. It was increased in the septum. The HVA/DA ratios were decreased in the amygdala, prefrontal cortex, and hypothalamus, but only at the lower dose (like MHPG/NE). The 3MT/DA ratio was decreased in the thalamus at the lower dose and in the olfactory tubercles at the higher dose, whereas it was increased in the prefrontal cortex at the lower dose. The HVA and DOPAC routes of degradation were both utilized only by the amygdala. Thus, cocaine produced its most comprehensive effects in this nucleus, as well as the greatest absolute percentage changes for all three of the monoamine systems studied.
Smoking induces long-lasting effects through a monoamine-oxidase epigenetic regulation.
Launay, Jean-Marie; Del Pino, Muriel; Chironi, Gilles; Callebert, Jacques; Peoc'h, Katell; Mégnien, Jean-Louis; Mallet, Jacques; Simon, Alain; Rendu, Francine
2009-11-23
Postulating that serotonin (5-HT), released from smoking-activated platelets could be involved in smoking-induced vascular modifications, we studied its catabolism in a series of 115 men distributed as current smokers (S), never smokers (NS) and former smokers (FS) who had stopped smoking for a mean of 13 years. 5-HT, monoamine oxidase (MAO-B) activities and amounts were measured in platelets, and 5-hydroxyindolacetic acid (5-HIAA)--the 5-HT/MAO catabolite--in plasma samples. Both platelet 5-HT and plasma 5-HIAA levels were correlated with the 10-year cardiovascular Framingham relative risk (P<0.01), but these correlations became non-significant after adjustment for smoking status, underlining that the determining risk factor among those taken into account in the Framingham risk calculation was smoking. Surprisingly, the platelet 5-HT content was similar in S and NS but lower in FS with a parallel higher plasma level of 5-HIAA in FS. This was unforeseen since MAO-B activity was inhibited during smoking (P<0.00001). It was, however, consistent with a higher enzyme protein concentration found in S and FS than in NS (P<0.001). It thus appears that MAO inhibition during smoking was compensated by a higher synthesis. To investigate the persistent increase in MAO-B protein concentration, a study of the methylation of its gene promoter was undertaken in a small supplementary cohort of similar subjects. We found that the methylation frequency of the MAOB gene promoter was markedly lower (P<0.0001) for S and FS vs. NS due to cigarette smoke-induced increase of nucleic acid demethylase activity. This is one of the first reports that smoking induces an epigenetic modification. A better understanding of the epigenome may help to further elucidate the physiopathology and the development of new therapeutic approaches to tobacco addiction. The results could have a larger impact than cardiovascular damage, considering that MAO-dependent 5-HT catabolism is also involved in addiction, predisposition to cancer, behaviour and mental health.
Gill, Jaskamal Singh; Jamwal, Sumit; Kumar, Puneet; Deshmukh, Rahul
2017-04-01
Huntington Disease is autosomal, fatal and progressive neurodegenerative disorder for which clinically available drugs offer only symptomatic relief. Emerging strides have indicated that antidepressants improve motor performance, restore neurotransmitters level, ameliorates striatal atrophy, increases BDNF level and may enhance neurogenesis. Therefore, we investigated sertraline and venlafaxine, clinically available drugs for depression with numerous neuroprotective properties, for their beneficial effects, if any, in quinolinic acid induced Huntington's like symptoms in rats. Rats were administered quinolinic acid (QA) (200 nmol/2μl saline) intrastriatal bilaterally on 0day. Sertraline and venlafaxine (10 and 20mg/kg, po) each were administered for 21days once a day. Motor performance was assessed using rotarod test, grip strength test, narrow beam walk test on weekly basis. On day 22, animals were sacrificed and rat striatum was isolated for biochemical (LPO, GSH and Nitrite), neuroinflammation (TNF-α, IL-1β and IL-6) and neurochemical analysis (GABA, glutamate, norepinephrine, dopamine, serotonin, DOPAC, HVA and 5-HIAA). QA treatment significantly altered body weight, motor performance, oxidative defense (increased LPO, nitrite and decreased GSH), pro-inflammatory cytokines levels (TNF-α, IL-6 and IL-1β), neurochemical level (GABA, glutamate, nor-epinephrine, dopamine, serotonin, HVA, DOPAC, 5-HIAA). Sertraline and venlafaxine at selected doses significantly attenuated QA induced alterations in striatum. The present study suggests that modulation of monoamines level, normalization of GABA and glutamatergic signaling, anti-oxidant and anti-inflammatory properties could underlie the neuroprotective effect of sertraline and venlafaxine in QA induced Huntington's like symptoms. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.
López-Patiño, Marcos A; Rodríguez-Illamola, Arnau; Gesto, Manuel; Soengas, José L; Míguez, Jesús M
2011-03-15
Melatonin has been suggested to play a role in fish osmoregulation, and in salmonids has been related to the timing of adaptive mechanisms during smolting. It has been described that acclimation to different environmental salinities alters levels of circulating melatonin in a number of fish species, including rainbow trout. However, nothing is known regarding salinity effects on melatonin synthesis in the pineal organ, which is the main source of rhythmically produced and secreted melatonin in blood. In the present study we have evaluated, in rainbow trout, the effects of acclimation to different salinities on day and night plasma melatonin values and pineal organ melatonin synthesis. Groups of freshwater (FW)-adapted rainbow trout were placed in tanks with four different levels of water salinity (FW, 6, 12, 18 p.p.t.; parts per thousand) and maintained for 6 h or 5 days. Melatonin content in plasma and pineal organs, as well as the pineal content of serotonin (5-HT) and its main oxidative metabolite (5-hydroxyindole-3-acetic acid; 5-HIAA) were measured by high performance liquid chromatography. In addition, day-night changes in pineal organ arylalkylamine N-acetyltransferase (AANAT2) activity and aanat2 gene expression were studied. Plasma osmolalities were found to be higher in rainbow trout exposed to all salinity levels compared with the control FW groups. A salinity-dependent increase in melatonin content was found in both plasma and pineal organs. This effect was observed during the night, and was related to an increase in aanat2 mRNA abundance and AANAT2 enzyme activity, both of which also occurred during the day. Also, the levels of indoles (5-HT, 5-HIAA) in the pineal organ were negatively affected by increasing water salinity, which seems to be related to the higher recruitment of 5-HT as a substrate for the increased melatonin synthesis. A stimulatory effect of salinity on pineal aanat2 mRNA expression was also identified. These results indicate that increased external salinity promotes melatonin synthesis in the pineal organ of rainbow trout by enhancing synthesis of AANAT protein independently of its regulation by light. The possibility that pineal melatonin is a target for hormones involved in the response of fish to osmotic challenge is discussed, as well as the potential role of melatonin in the timing of osmoregulatory processes.
Gigliucci, Valentina; Buckley, Kathleen Niamh; Nunan, John; O'Shea, Karen; Harkin, Andrew
2010-02-01
The present study determined regional serotonin (5-HT) synthesis and metabolism changes associated with the nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine (L-NA) and the influence of 5-HT receptor blockade in the antidepressant-like actions of L-NA in the forced swimming test (FST). Regional effects of L-NA (5,10 and 20mg/kg i.p.) on tryptophan hydroxylase (TPH) activity, the rate limiting enzyme for 5-HT synthesis, were determined by measuring accumulation of the transient intermediate 5-hydoxytryptophan (5-HTP) following in vivo administration of the amino acid decarboxylase inhibitor, NSD 1015 (100mg/kg). L-NA (5-20mg/kg) dose dependently increased 5-HTP accumulation, particularly in the amygdaloid cortex, following exposure to the FST. L-NA also provoked an increase in regional brain 5-HIAA concentrations and in the 5-HIAA:5-HT metabolism ratio. Co-treatment with NSD-1015 failed to consistently modify the antidepressant-like effects of L-NA in the FST. Sub-active doses of L-NA (1mg/kg) and the 5-HT re-uptake inhibitor fluoxetine (2.5mg/kg) acted synergistically to increase swimming in the test. Co-treatment with the non-selective 5-HT receptor antagonist metergoline (1, 2 and 4mg/kg), attenuated the L-NA (20mg/kg)-induced reduction in immobility and increase in swimming behaviours. Metergoline alone however provoked an increase in immobility and reduction in swimming behaviours in the test. A similar response was obtained following co-treatment with the preferential 5-HT(2A) receptor antagonist ketanserin (5mg/kg) and the 5-HT(2C) receptor antagonist RO-430440 (5mg/kg). Co-treatment with the 5-HT(1A) receptor antagonist WAY 100635 (0.3mg/kg) or the 5-HT(1B) receptor antagonist GR 127935 (4mg/kg) failed to influence the antidepressant-like activity of L-NA. Taken together these data provide further support for a role for 5-HT in the antidepressant-like properties of NOS inhibitors. Copyright 2009 Elsevier Inc. All rights reserved.
García-Iglesias, Brenda B.; Mendoza-Garrido, María E.; Gutiérrez-Ospina, Gabriel; Rangel-Barajas, Claudia; Noyola-Díaz, Martha; Terrón, José A.
2013-01-01
Serotonin (5-HT) modulates the hypothalamic-pituitary-adrenal (HPA) axis response to stress. We examined the effect of chronic restraint stress (CRS; 20 min/day) as compared to control (CTRL) conditions for 14 days, on: 1) restraint-induced ACTH and corticosterone (CORT) secretion in rats pretreated with vehicle or SB-656104 (a 5-HT7 receptor antagonist); 2) 5-HT7 receptor-like immunoreactivity (5-HT7-LI) and protein in the hypothalamic paraventricular nucleus (PVN) and adrenal glands (AG); 3) baseline levels of 5-HT and 5-hydroxyindolacetic acid (5-HIAA), and 5-HIAA/5-HT ratio in PVN and AG; and 4) 5-HT-like immunoreactivity (5-HT-LI) in AG and tryptophan hydroxylase (TPH) protein in PVN and AG. On day 15, animals were subdivided into Treatment and No treatment groups. Treatment animals received an i.p. injection of vehicle or SB-656104; No Treatment animals received no injection. Sixty min later, Treatment animals were either decapitated with no further stress (0 min) or submitted to acute restraint (10, 30, 60 or 120 min); hormone serum levels were measured. No Treatment animals were employed for the rest of measurements. CRS decreased body weight gain and increased adrenal weight. In CTRL animals, acute restraint increased ACTH and CORT secretion in a time of restraint-dependent manner; both responses were inhibited by SB-656104. Exposure to CRS abolished ACTH but magnified CORT responses to restraint as compared to CTRL conditions; SB-656104 had no effect on ACTH levels but significantly inhibited sensitized CORT responses. In CTRL animals, 5-HT7-LI was detected in magnocellular and parvocellular subdivisions of PVN and sparsely in adrenal cortex. Exposure to CRS decreased 5-HT7-LI and protein in the PVN, but increased 5-HT7-LI in the adrenal cortex and protein in whole AG. Higher 5-HT and 5-HIAA levels were detected in PVN and AG from CRS animals but 5-HIAA/5-HT ratio increased in AG only. Finally, whereas 5-HT-LI was sparsely observed in the adrenal cortex of CTRL animals, it strongly increased in the adrenal cortex of CRS animals. No TPH protein was detected in AG from both animal groups. Results suggest that CRS promotes endocrine disruption involving decreased ACTH and sensitized CORT responses to acute restraint. This phenomenon may be associated with increased function and expression of 5-HT7 receptors as well as 5-HT turnover in AG. PMID:23542440
Jacome, Luis F.; Gautreaux, Claris; Inagaki, Tomoko; Mohan, Govini; Alves, Stephen; Lubbers, Laura S.; Luine, Victoria
2010-01-01
Effects of estradiol benzoate (EB), ERα-selective agonist, propyl pyrazole triol (PPT) and ERβ-selective agonists, diarylpropionitrile (DPN) and Compound 19 (C-19) on memory were investigated in OVX rats using object recognition (OR) and placement (OP) memory tasks. Treatments were acute (behavior 4 h later) or sub chronic (daily injections for 2 days with behavior 48 h later). Objects were explored in sample trials (T1), and discrimination between sample (old) and new object/location in recognition trials (T2) was examined after 2–4 h inter-trial delays. Subjects treated sub chronically with EB, DPN, and C-19, but not PPT, discriminated between old and new objects and objects in old and new locations, suggesting that, at these doses and duration of treatments, estrogenic interactions with ERβ contributes to enhancements in recognition memory. Acute injections of DPN, but not PPT, immediately after T1, also enhanced discrimination for both tasks (C19 was not investigated). Effects of EB, DPN and PPT on anxiety and locomotion, measured on elevated plus maze and open field, did not appear to account for the mnemonic enhancements. Monoamines and metabolites were measured following DPN treatment in subjects that did not receive behavioral testing. DPN was associated with alterations in monoamines in several brain areas: indexed by the metabolite, 3-methoxy-4-hydroxyphenylglycol (MHPG), or the MHPG/norepinephrine (NE) ratio, NE activity was increased by 60–130% in the prefrontal cortex (PFC) and ventral hippocampus, and NE activity was decreased by 40–80% in the v. diagonal bands and CA1. Levels of the dopamine (DA) metabolite, homovanillic acid (HVA), increased 100% in the PFC and decreased by 50% in the dentate gyrus following DPN treatment. The metabolite of serotonin, 5-hydroxyindole acetic acid (5-HIAA), was increased in the PFC and CA3, by approximately 20%. No monoaminergic changes were noted in striatum or medial septum. Results suggest that ERβ mediates sub chronic and acute effects of estrogens on recognition memory and that memory enhancements by DPN may occur, in part, through alterations in monoaminergic containing systems primarily in PFC and hippocampus. PMID:20828630
NASA Technical Reports Server (NTRS)
Gardier, A. M.; Kaakkola, S.; Erfurth, A.; Wurtman, R. J.
1992-01-01
We previously observed, using in vivo microdialysis, that the potassium-evoked release of frontocortical serotonin (5-HT) is suppressed after rats receive high doses (30 mg/kg, i.p., daily for 3 days) of fluoxetine, a selective blocker of 5-HT reuptake. We now describe similar impairments in 5-HT release after repeated administration of two other 5-HT uptake blockers, zimelidine and sertraline (both at 20 mg/kg, i.p. for 3 days) as well as after dexfenfluramine (7.5 mg/kg, i.p. daily for 3 days), a drug which both releases 5-HT and blocks its reuptake. Doses of these indirect serotonin agonists were about 4-6 times the drug's ED50 in producing anorexia, a serotonin-related behavior. In addition, methiothepin (20 microM), a non-selective receptor antagonist, locally perfused through the dialysis probe 24 h after the last drug injection, enhanced K(+)-evoked release of 5-HT at serotoninergic nerve terminals markedly in control rats and slightly in rats treated with high doses of dexfenfluramine or fluoxetine. On the other hand, pretreatment with methiothepin (10 mg/kg, i.p.) one hour before each of the daily doses of fluoxetine or dexfenfluramine given for 3 days, totally prevented the decrease in basal and K(+)-evoked release of 5-HT. Finally, when methiothepin was injected systemically the day before the first of 3 daily injections of dexfenfluramine, it partially attenuated the long-term depletion of brain 5-HT and 5-HIAA levels induced by repeated administration of high doses of dexfenfluramine. These data suggest that drugs which bring about the prolonged blockade of 5-HT reuptake - such as dexfenfluramine and fluoxetine - can, by causing prolonged increases in intrasynaptic 5-HT levels as measured by in vivo microdialysis, produce receptor-mediated long-term changes in the processes controlling serotonin levels and dynamics.
Al Omairi, Naif E; Radwan, Omyma K; Alzahrani, Yahea A; Kassab, Rami B
2018-03-20
Due to the high ability of cadmium to cross the blood-brain barrier, cadmium (Cd) causes severe neurological damages. Hence, the purpose of this study was to investigate the possible protective effect of Mangifera indica leaf extract (MLE) against Cd-induced neurotoxicity. Rats were divided into eight groups. Group 1 served as vehicle control group, groups 2, 3 and 4 received MLE (100, 200, 300 mg /kg b.wt, respectively). Group 5 was treated with CdCl 2 (5 mg/kg b.wt). Groups 6, 7 and 8 were co-treated with MLE and CdCl 2 using the same doses. All treatments were orally administered for 28 days. Cortical oxidative stress biomarkers [Malondialdehyde (MDA), nitric oxide (NO), glutathione content (GSH), oxidized form of glutathione (GSSG), 8-hydroxy-2-deoxyguanosine (8-OHdG), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)], inflammatory cytokines [tumor necrosis factor (TNF-α) and interlukin-1β (IL-1β)], biogenic amines [norepinephrine (NE), dopamine (DA) and serotonin (5-HT)], some biogenic metabolites [3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA)], acetylcholine esterase activity (AChE) and purinergic compound [adenosine triphosphate (ATP)] were determined in frontal cortex of rats. Results indicated that Cd increased levels of the oxidative biomarkers (MDA, NO, GSSG and 8-OHdG) and the inflammatory mediators (TNF-α and IL-1β), while lowered GSH, SOD, CAT, GPx and ATP levels. Also, Cd significantly decreased the AChE activity and the tested biogenic amines while elevated the tested metabolites in the frontal cortex. Levels of all disrupted cortical parameters were alleviated by MLE co-administration. The MLE induced apparent protective effect on Cd-induced neurotoxicity in concern with its medium and higher doses which may be due to its antioxidant and anti-inflammatory activities.
Stress hormonal changes in the brain and plasma after acute noise exposure in mice.
Jin, Sang Gyun; Kim, Min Jung; Park, So Young; Park, Shi Nae
2017-06-01
To investigate the effects of acute noise stress on two amine stress hormones, norepinephrine (NE) and 5-hydroxyindoleacetic acid (5-HIAA) in the brain and plasma of mice after noise exposure. Mice were grouped into the control and noise groups. Mice in the noise group were exposed to white noise of 110dB sound pressure level for 60min. Auditory brainstem response thresholds, distortion product otoacoustic emissions, the organ of Corti grading scores, western blots of NE/5-HIAA in the whole brain and hippocampus, and the plasma levels of NE/5-HIAA were compared between the two groups. Significant hearing loss and cochlear damage were demonstrated in the noise group. NE and 5-HIAA in the hippocampus were elevated in the noise group (p=0.019/0.022 for NE/5-HIAA vs. the control). Plasma levels of NE and 5-HIAA were not statistically different between the groups (p=0.052/0.671 for NE/5-HIAA). Hearing loss with outer hair cell dysfunction and morphological changes of the organ of Corti after noise exposure in C57BL/6 mice proved the reliability of our animal model as an acute noise stress model. NE and 5-HIAA are suggested to be the potential biomarkers for acute noise stress in the hippocampus. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Jokinen, Jussi; Nordström, Anna-Lena; Nordström, Peter
2009-01-30
Two biomarkers of suicide risk; non-suppression in the dexamethasone suppression test (DST) and low 5-hydroxyindoleacetic acid (5-HIAA) in the cerebrospinal fluid (CSF) have been reported to be predictors of suicide in mood disorders. The interrelation of the two systems seems to be different in suicide attempters compared with depressed inpatients who have not made a suicide attempt, indicating that the two biomarkers may be seen as independent. This investigation examined the interrelation of low CSF 5-HIAA and DST non-suppression in suicide victims with mood disorder. Fifty-eight mood disorder inpatients not receiving any treatment with antidepressants underwent lumbar puncture and the DST. Plasma cortisol levels at 8:00 a.m., 4:00 p.m. and 11:00 p.m. were analysed in relation to CSF 5-HIAA. All patients were followed up for causes of death and suicides were verified with death certificates. During follow-up (mean 21 years), 11 (19%) patients had committed suicide. In male suicide victims (n=6), the serum cortisol level at 4:00 p.m. showed a significant positive correlation with CSF 5-HIAA. Low CSF 5-HIAA predicted all early suicides (within 1 year), whereas all males who committed suicide after 1 year were DST non-suppressors. In female suicide victims (n=5), the post-DST serum cortisol did not correlate with CSF 5-HIAA. Low CSF 5-HIAA and DST non-suppression are orthogonal biologic risk factors for suicide in male mood disorder inpatients. CSF 5-HIAA is associated with short-term suicide risk; dysregulation of the hypothalamic-pituitary-adrenal axis seems to be a long-term suicide predictor.
Gemmel, Mary; Rayen, Ine; Lotus, Tiffany; van Donkelaar, Eva; Steinbusch, Harry W; De Lacalle, Sonsoles; Kokras, Nikolaos; Dalla, Christina; Pawluski, Jodi L
2016-04-01
Selective serotonin reuptake inhibitor medication exposure during the perinatal period can have a long term impact in adult offspring on neuroplasticity and the serotonergic system, but the impact of these medications during early development is poorly understood. The aim of this study was to determine the effects of developmental exposure to the SSRI, fluoxetine, on the serotonergic system, dopaminergic system, and synaptophysin density in the prefrontal cortex and hippocampus, as well as number of immature neurons in the dentate gyrus, in juvenile rat offspring at weaning. To model aspects of maternal depression, prenatal restraint stress was used. Sprague-Dawley rat offspring were exposed to either prenatal stress and/or fluoxetine. Main findings show that developmental fluoxetine exposure to prenatally stressed offspring decreased 5-HT and 5-HIAA levels and altered the dopaminergic system in the hippocampus. Prenatal stress, regardless of fluoxetine, increased synaptophysin density in the PFC. This work indicates that early exposure to maternal stress and SSRI medication can alter brain monoamine levels and synaptophysin density in offspring at weaning. © 2015 Wiley Periodicals, Inc.
The nuclear receptor PPARγ individually responds to serotonin- and fatty acid-metabolites
Waku, Tsuyoshi; Shiraki, Takuma; Oyama, Takuji; Maebara, Kanako; Nakamori, Rinna; Morikawa, Kosuke
2010-01-01
The nuclear receptor, peroxisome proliferator-activated receptor γ (PPARγ), recognizes various synthetic and endogenous ligands by the ligand-binding domain. Fatty-acid metabolites reportedly activate PPARγ through conformational changes of the Ω loop. Here, we report that serotonin metabolites act as endogenous agonists for PPARγ to regulate macrophage function and adipogenesis by directly binding to helix H12. A cyclooxygenase inhibitor, indomethacin, is a mimetic agonist of these metabolites. Crystallographic analyses revealed that an indole acetate functions as a common moiety for the recognition by the sub-pocket near helix H12. Intriguingly, a serotonin metabolite and a fatty-acid metabolite each bind to distinct sub-pockets, and the PPARγ antagonist, T0070907, blocked the fatty-acid agonism, but not that of the serotonin metabolites. Mutational analyses on receptor-mediated transcription and coactivator binding revealed that each metabolite individually uses coregulator and/or heterodimer interfaces in a ligand-type-specific manner. Furthermore, the inhibition of the serotonin metabolism reduced the expression of the endogenous PPARγ-target gene. Collectively, these results suggest a novel agonism, in which PPARγ functions as a multiple sensor in response to distinct metabolites. PMID:20717101
Verhoeven, W M; Tuinier, S; van den Berg, Y W; Coppus, A M; Fekkes, D; Pepplinkhuizen, L; Thijssen, J H
1999-01-01
Self-injurious behavior (SIB) and stereotyped behavior (SB) are major challenges for professionals in the field of mental retardation. From animal experiments it has become obvious that these behavioral disturbances are not purposeless but may emerge secondary to restrictive environment and may serve de-arousing objectives. In mentally retarded subjects, several hypotheses have been formulated concerning the pathogenesis of SIB, particularly about the involvement of serotonin and beta-endorphin, which are supported by beneficial treatment effects of the opiate antagonist naltrexone and serotonin modulating compounds, respectively. The present study was designed to investigate basal levels of stress-hormonal and serotonergic parameters as well as plasma levels of amino-acids and the beta-carboline norharman in a group of 64 mentally retarded subjects with SB and/or SIB. Allocation to three different groups comprising 17 retarded controls, 26 subjects with mainly SIB and 21 subjects with mainly SB, was originally performed using the scores on the factors Irritability, Stereotypic Behaviour and Hyperactivity of the Aberrant Behavioral Checklist. Because of the overlapping nature of the behavioral parameters, subjects were subsequently divided into three maximally contrasting groups, viz. predominantly SIB, predominantly SB and retarded controls, each comprising 11 subjects. With respect to beta-endorphin, no differences were found either between both the original and maximally contrasting groups or in comparison to nonretarded controls. As compared to retarded controls, a tendency to lower values for total cortisol and cortisol binding globulin appeared to be present in the SIB group, whereas in the SB group a tendency toward higher levels of the major serotonin metabolite 5-HIAA was found. In the contrasting SB group, a trend toward decreased total cortisol level was observed as compared to the retarded control group. In addition, significantly lower values for norharman and tryptophan were demonstrated in the total group of mentally retarded subjects as compared to non-retarded controls. The results of the present study, yielding co-existent disturbances in stress-hormonal and monoaminergic mechanisms as well as in the metabolism of norharman, are in line with the hypothesis that mentally retarded subjects are at risk for the development of stress-related behavioral disorders such as SIB and SB.
Gómez, C; Curto, G G; Baltanás, F C; Valero, J; O'Shea, E; Colado, M I; Díaz, D; Weruaga, E; Alonso, J R
2012-01-10
The serotonergic centrifugal system innervating the main olfactory bulb (MOB) plays a key role in the modulation of olfactory processing. We have previously demonstrated that this system suffers adaptive changes under conditions of a lack of olfactory input. The present work examines the response of this centrifugal system after mitral cell loss in the Purkinje cell degeneration (pcd) mutant mice. The distribution and density of serotonergic centrifugal axons were studied in the MOB of control and pcd mice, both before and after the loss of mitral cells, using serotonin (5-HT) and 5-HT transporter immunohistochemistry. Studies of the amount of 5-HT and its metabolite, 5-hydroxyindole acetic acid (5-HIAA), were performed by means of high-performance liquid chromatography (HPLC), and the relative amounts of brain-derived neurotrophin factor, BDNF, and its major receptor, tropomyosin-related kinase B (TrkB), were measured by Western blot. Our study revealed that the serotonergic system develops adaptive changes after, but not before, mitral cell loss. The lack of the main bulbar projection cells causes a decrease in the serotonergic input received by the MOB, whereas the number of serotonergic cells in the raphe nuclei remains constant. In addition, one of the molecules directly involved in serotonergic sprouting, the neurotrophin BDNF and its main receptor TrkB, underwent alterations in the MOBs of the pcd animals even before the loss of mitral cells. These data indicate that serotonergic function in the MOB is closely related to olfactory activity and that mitral cell loss induces serotonergic plastic responses. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Yue, Weihua; Liu, Huiguo; Zhang, Jishui; Zhang, Xianghui; Wang, Xiaoping; Liu, Tieqiao; Liu, Pozi; Hao, Wei
2008-11-01
Since the serotonin (5-HT) is associated with circadian rhythm and breathing regulation, the serotonin transporter (5-HTT), which plays an important role in serotoninergic transmission, might be a strong candidate gene in the pathogenesis of obstructive sleep apnea syndrome (OSAS). To investigate the association of 5-HTT gene polymorphisms with OSAS and clinical characteristics. We genotyped the 5-HTT gene linked polymorphic region (5-HTTLPR) and a variable number of tandem repeats at intron 2 (STin2.VNTR) in 254 OSAS patients and 338 healthy controls in Chinese Han population. In total sample, the 10-repeat allele of STin2.VNTR was significantly associated with OSAS (P = 0.007, OR = 1.72, 95% CI = 1.15-2.58), but no association was found in 5-HTTLPR. In male subjects, both polymorphisms showed significant association with OSAS (Allele L: P = 0.005, OR = 1.44, 95% CI = 1.11 to 1.87; Allele 10: P = 0.002, OR= 1.94, 95% CI = 1.26 to 3.00). Two haplotypes, S-12 and L-10, constructed by the above polymorphisms also revealed significant associations with OSAS (global P-values were 0.020 for total sample and 0.0006 for male subjects, respectively). Male patients carrying the haplotype S-12 showed a significantly lower apnea / hypopnea index (AHI), depressive factor, plasma 5-HT level and 5-hydroxyindolacetic acid (5-HIAA) levels, but higher episodic memory, when compared with non-S-12 carriers (P < 0.05). However, no significant differences were found in excessive daytime sleepiness or other psychological function across haplotype carriers (P > 0.05). These findings support that 5-HTT gene may be involved in susceptibility to OSAS, especially with sex-dependent effect.
Bustamante, D; Goiny, M; Aström, G; Gross, J; Andersson, K; Herrera-Marschitz, M
2003-01-01
Asphyxia during birth can cause gross brain damage, but also subtle perturbations expressed as biochemical or motor deficits with late onset in life. Thus, it has been shown that brain dopamine levels can be increased or decreased depending upon the severity of the insult, and the region where the levels are determined. In this study, perinatal asphyxia was evoked by immersing pup-containing uterus horns removed by hysterectomy in a water bath at 37 degrees C for various periods of time from 0 to 20 min. After the insult, the pups were delivered, given to surrogate mothers, treated with nicotinamide, further observed and finally, 4 weeks later, killed for monoamine biochemistry of tissue samples taken from substantia nigra, neostriatum and nucleus accumbens. The main effect of perinatal asphyxia was a decrease in dopamine and metabolite levels in nucleus accumbens, and a paradoxical increase in the substantia nigra. Nicotinamide (100 mg/kg i.p., once a day for 3 days, beginning 24 h after the perinatal asphyctic insult) prevented the effect of asphyxia in nucleus accumbens. Furthermore, striatal dopamine levels were increased by nicotinamide in asphyctic animals. No apparent changes were observed in substantia nigra. A prominent unexpected effect of perinatal asphyxia alone was on the levels of the metabolite of 5-hydroxytryptamine, 5-hydroxyindoleacetic acid (5-HIAA), which were increased in substantia nigra and decreased in both neostriatum and accumbens. However, nicotinamide increased 5-HIAA levels in all regions, which appeared to be related to the extent of the asphyctic insult. These results suggest that nicotinamide is a useful treatment against the long-term consequences produced by perinatal asphyxia on brain monoamine systems, and that there is a therapeutic window following the insult, providing a therapeutic opportunity to protect the brain.
Pomara, Nunzio; Willoughby, Lisa M; Hashim, Audrey; Sershen, Henry; Sidtis, John J; Wesnes, Keith; Greenblatt, David J; Lajtha, Abel
2004-07-01
The effects of acute lorazepam challenges on plasma (p) HVA, MHPG, and 5-HIAA, and their relationship to drug-induced cognitive and motor deficits and the apolipoprotein (APOE)-epsilon4 allele were examined. Eighteen healthy elderly (8 epsilon4 carriers) received placebo or acute oral lorazepam doses (0.5 mg or 1 mg) in random sequence, 1-week apart. Cognitive assessment and plasma levels of pHVA, pMHPG, and p5-HIAA were determined at baseline and at 1, 2.5, and 5 h postchallenge. There was no drug-to-placebo difference in monoamine levels and no consistent relationship between changes in monoamine levels and cognitive performance, regardless of epsilon4 status. However, the 1.0 mg dose increased p5-HIAA in epsilon4 carriers, whereas it caused a reduction in noncarriers. Higher baseline pMHPG and p5-HIAA levels were associated with better baseline memory. The epsilon4 allele may modulate the effect of lorazepam on p5-HIAA, but further studies are needed to confirm this finding and elucidate its possible significance.
Takemura, Akihiro; Shibata, Yoriko; Takeuchi, Yuki; Hur, Sung-Pyo; Sugama, Nozomi; Badruzzaman, Md
2012-01-01
Most wrasse species in tropical waters exhibit daily spawning synchrony with a preference for high tide. Fish perceive tidal rhythm cues through sensory organs and activate the brain-pituitary-gonadal endocrine axis for synchronous gonadal maturation, although how the tidal-related spawning cycle is controlled endogenously is not known. The purpose of this study was to examine whether hydrostatic pressure has an impact on brain monoamine levels and reproductive activities in the threespot wrasse Halichoeres trimaculatus. The contents of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), serotonin (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) in the brain were measured using high-performance liquid chromatography and an electrochemical detection system. Exposing the fish to hydrostatic pressure occurring at a 3-m depth (~30 kPa) resulted in an increase in 5-HIAA/5-HT over 3h and a decrease in DOPAC/DA over 6h. No changes in gonadosomatic index or oocyte diameter were observed between the groups when female fish were reared at 0-m and 3-m depth for 3h. Hydrostatic pressure did not alter pituitary mRNA abundance of follicle stimulating hormone-β or luteinizing hormone-β. However, in vitro culture of ovaries from pressurized fish in the presence of human chorionic gonadotropin resulted in an increase in 17α,20β-dihydroxy-4-pregnen-3-one in the medium. These results suggest that hydrostatic pressure activates oocyte maturation through brain monoaminergic activity in this tropical wrasse species. Copyright © 2011 Elsevier Inc. All rights reserved.
Repeated administration of fresh garlic increases memory retention in rats.
Haider, Saida; Naz, Nosheen; Khaliq, Saima; Perveen, Tahira; Haleem, Darakhshan J
2008-12-01
Garlic (Allium sativum) is regarded as both a food and a medicinal herb. Increasing attention has focused on the biological functions and health benefits of garlic as a potentially major dietary component. Chronic garlic administration has been shown to enhance memory function. Evidence also shows that garlic administration in rats affects brain serotonin (5-hydroxytryptamine [5-HT]) levels. 5-HT, a neurotransmitter involved in a number of physiological functions, is also known to enhance cognitive performance. The present study was designed to investigate the probable neurochemical mechanism responsible for the enhancement of memory following garlic administration. Sixteen adult locally bred male albino Wistar rats were divided into control (n = 8) and test (n = 8) groups. The test group was orally administered 250 mg/kg fresh garlic homogenate (FGH), while control animals received an equal amount of water daily for 21 days. Estimation of plasma free and total tryptophan (TRP) and whole brain TRP, 5-HT, and 5-hydroxyindole acetic acid (5-HIAA) was determined by high-performance liquid chromatography with electrochemical detection. For assessment of memory, a step-through passive avoidance paradigm (electric shock avoidance) was used. The results showed that the levels of plasma free TRP significantly increased (P < .01) and plasma total TRP significantly decreased (P < .01) in garlic-treated rats. Brain TRP, 5-HT, and 5-HIAA levels were also significantly increased following garlic administration. A significant improvement in memory function was exhibited by garlic-treated rats in the passive avoidance test. Increased brain 5-HT levels were associated with improved cognitive performance. The present results, therefore, demonstrate that the memory-enhancing effect of garlic may be associated with increased brain 5-HT metabolism in rats. The results further support the use of garlic as a food supplement for the enhancement of memory.
Motherhood and infant contact regulate neuroplasticity in the serotonergic midbrain dorsal raphe.
Holschbach, M Allie; Lonstein, Joseph S
2017-02-01
The adult brain shows remarkable neuroplasticity in response to hormones and the socioemotional modifications that they influence. In females with reproductive and maternal experience, this neuroplasticity includes the birth and death of cells in several forebrain regions involved in maternal caregiving and postpartum affective state. Such plasticity in midbrain sites critical for these behavioral and emotional processes has never been examined, though. By visualizing bromodeoxyuridine (BrdU) to label mitotic cells, NeuroD for neuronal precursors, and TUNEL to identify dying cells, we found that the midbrain dorsal raphe nucleus (DR, the source of most ascending serotoninergic projections) exhibited significant neuroplasticity in response to motherhood. Specifically, BrdU analyses revealed that DR newborn cell survival (but not proliferation) was regulated by reproductive state, such that cells born early postpartum were less likely to survive 12 days to reach the late postpartum period compared to cells born during late pregnancy that survived 12 days to reach the early postpartum period. Many of the surviving cells in the DR were NeuN immunoreactive, suggesting a neuronal phenotype. Consistent with these findings, late postpartum rats had fewer NeuroD-immunoreactive DR cells than early postpartum rats. Maternal experience contributed to the late postpartum reduction in DR newborn cell survival because removing the litter at parturition increased cell survival as well as reduced cell death. Unlike cytogenesis in the maternal hippocampus, which is reduced by circulating glucocorticoids, DR newborn cell survival was unaffected by postpartum adrenalectomy. These effects of reproductive state and motherhood on DR plasticity were associated with concurrent changes in DR levels of serotonin's precursor, 5-HTP, and its metabolite, 5-HIAA. Our results demonstrate for the first time that cytogenesis occurs in the midbrain DR of any adult mammal, that DR plasticity is influenced by female reproductive state and maternal experience, and that this plasticity is accompanied by changes in DR serotonergic function. Because serotonin is critical for postpartum caregiving behaviors and maternal affective state, plasticity in the DR may contribute to the neurochemical changes necessary for successful motherhood. Copyright © 2016 Elsevier Ltd. All rights reserved.
Thompson, Murray R; Li, Kong M; Clemens, Kelly J; Gurtman, Clint G; Hunt, Glenn E; Cornish, Jennifer L; McGregor, Iain S
2004-04-01
Use of the drug 3,4-methylenedioxymethamphetamine (MDMA, 'Ecstasy') can have long-term adverse effects on emotion in both humans and laboratory animals. The present study examined whether chronic treatment with the antidepressant drug fluoxetine could reverse such effects. Male Wistar rats were briefly exposed to MDMA (4 x 5 mg/kg over 4 h) or vehicle on 2 consecutive days. Approximately 9-12 weeks later, half of the rats received a dose of approximately 6 mg/kg/day fluoxetine in their drinking water for a 5-week period. Fluoxetine administration reduced fluid intake and body weight in MDMA and vehicle pretreated rats. After several weeks of fluoxetine treatment, rats were assessed on the social interaction test, the emergence test of anxiety and the forced swim model of depression. MDMA pretreated rats showed reduced social interaction, increased anxiety on the emergence test, and increased immobility and decreased active responses in the forced swim test. Fluoxetine treatment reversed MDMA-induced anxiety in the emergence test and depressive-like effects in the forced swim test, yet exhibited no effects on the social interaction test. MDMA pretreated rats had decreased 5-HT and 5-HIAA levels in limbic and cortical regions, and decreased density of serotonin transporter sites in the cortex. Fluoxetine treatment did not greatly affect 5-HT levels in MDMA pretreated rats, but significantly decreased 5-HIAA levels in all brain sites examined. Postmortem blood serum levels of fluoxetine and norfluoxetine did not differ in MDMA and vehicle pretreated rats. These results indicate that fluoxetine may provide a treatment option for some of the deleterious long-term effects resulting from MDMA exposure.
Neurotoxic Effects of 5-MeO-DIPT: A Psychoactive Tryptamine Derivative in Rats.
Noworyta-Sokołowska, Karolina; Kamińska, Katarzyna; Kreiner, Grzegorz; Rogóż, Zofia; Gołembiowska, Krystyna
2016-11-01
5-Methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT, 'foxy') is one of the most popular tryptamine hallucinogens in the illicit drug market. It produces serious adverse effects, but its pharmacological profile is not well recognized. In vitro data have shown that 5-MeO-DIPT acts as a potent serotonin transporter (SERT) inhibitor and displays high affinity at serotonin 5-HT1A, 5-HT2A, and 5-HT2C receptors. In this study, using microdialysis in freely moving rats, we examined the effect of 5-MeO-DIPT on dopamine (DA), serotonin (5-HT), and glutamate release in the rat striatum, nucleus accumbens, and frontal cortex. In search of a possible neurotoxic effect of 5-MeO-DIPT, we measured DA and 5-HT tissue content in the above rat brain regions and also determined the oxidative DNA damage with the comet assay. Moreover, we tested drug-elicited head-twitch response and a forepaw treading induced by 8-OH-DPAT. 5-MeO-DIPT at doses of 5, 10, and 20 mg/kg increased extracellular DA, 5-HT, and glutamate level but the differences in the potency were found between brain regions. 5-MeO-DIPT increased 5-HT and decreased 5-HIAA tissue content which seems to result from SERT inhibition. On the other hand, a decrease in DA, DOPAC, and HVA tissue contents suggests possible adaptive changes in DA turnover or damage of DA terminals by 5-MeO-DIPT. DNA single and double-strand breaks persisted up to 60 days after the treatment, indicating marked neurotoxicity of 5-MeO-DIPT. The induction of head-twitch response and potentiation of forepaw treading induced by 8-OH-DPAT indicate that hallucinogenic activity seems to be mediated through the stimulation of 5-HT2A and 5-HT1A receptors by 5-MeO-DIPT.
Yue, Weihua; Liu, Huiguo; Zhang, Jishui; Zhang, Xianghui; Wang, Xiaoping; Liu, Tieqiao; Liu, Pozi; Hao, Wei
2008-01-01
Background: Since the serotonin (5-HT) is associated with circadian rhythm and breathing regulation, the serotonin transporter (5-HTT), which plays an important role in serotoninergic transmission, might be a strong candidate gene in the pathogenesis of obstructive sleep apnea syndrome (OSAS). Objective: To investigate the association of 5-HTT gene polymorphisms with OSAS and clinical characteristics. Methods: We genotyped the 5-HTT gene linked polymorphic region (5-HTTLPR) and a variable number of tandem repeats at intron 2 (STin2.VNTR) in 254 OSAS patients and 338 healthy controls in Chinese Han population. Results: In total sample, the 10-repeat allele of STin2.VNTR was significantly associated with OSAS (P = 0.007, OR = 1.72, 95% CI = 1.15~2.58), but no association was found in 5-HTTLPR. In male subjects, both polymorphisms showed significant association with OSAS (Allele L: P = 0.005, OR = 1.44, 95% CI = 1.11 to 1.87; Allele 10: P = 0.002, OR = 1.94, 95% CI = 1.26 to 3.00). Two haplotypes, S-12 and L-10, constructed by the above polymorphisms also revealed significant associations with OSAS (global P-values were 0.020 for total sample and 0.0006 for male subjects, respectively). Male patients carrying the haplotype S-12 showed a significantly lower apnea / hypopnea index (AHI), depressive factor, plasma 5-HT level and 5-hydroxyindolacetic acid (5-HIAA) levels, but higher episodic memory, when compared with non-S-12 carriers (P < 0.05). However, no significant differences were found in excessive daytime sleepiness or other psychological function across haplotype carriers (P > 0.05). Conclusions: These findings support that 5-HTT gene may be involved in susceptibility to OSAS, especially with sex-dependent effect. Citation: Yue W; Liu H; Zhang J; Zhang X; Wang X; Liu T; Liu P; Hao W. Association study of serotonin transporter gene polymorphisms with obstructive sleep apnea syndrome in chinese han population. SLEEP 2008;31(11):1535–1541. PMID:19014073
Sinyakova, N A; Kulikova, E A; Englevskii, N A; Kulikov, A V
2018-03-01
We compared the effect of a new potential antidepressant 8-trifluoromethyl 1,2,3,4,5-benzopentathiepine-6-amine hydrochloride (TC-2153) and classical antidepressant fluoxetine in a dose of 0.25 mg/liter on the behavior of Danio rerio in the "novel tank" test and content of biogenic amines and their metabolites in the brain. Fluoxetine alone and TC-2153 alone significantly increased the time spent in the upper part of the tank and insignificantly reduced motor activity. Combined exposure of fishes in the solution containing potential and classical antidepressants potentiated their effects on both parameters. The compounds did not affect brain contents of serotonin, dopamine, and norepinephrine. At the same time, fluoxetine, but not TC-2153, reduced brain content of the main serotonin metabolite 5-hydroxyindole acetic acid.
Daniele, Thiago Medeiros da Costa; de Bruin, Pedro Felipe Carvalhedo; Rios, Emiliano Ricardo Vasconcelos; de Bruin, Veralice Meireles Sales
2017-08-14
Exercise is a promising adjunctive therapy for depressive behavior, sleep/wake abnormalities, cognition and motor dysfunction. Conversely, sleep deprivation impairs mood, cognition and functional performance. The objective of this study is to evaluate the effects of exercise on anxiety and depressive behavior and striatal levels of norepinephrine (NE), serotonin and its metabolites in mice submitted to 6h of total sleep deprivation (6h-TSD) and 72h of Rapid Eye Movement (REM) sleep deprivation (72h-REMSD). Experimental groups were: (1) mice submitted to 6h-TSD by gentle handling; (2) mice submitted to 72h-REMSD by the flower pot method; (3) exercise (treadmill for 8 weeks); (4) exercise followed by 6h-TSD; (5) exercise followed by 72h-REMSD; (6) control (home cage). Behavioral tests included the Elevated Plus Maze and tail-suspension. NE, serotonin and its metabolites were determined in the striatum using high-performance liquid chromatography (HPLC). Sleep deprivation increased depressive behavior (time of immobilization in the tail-suspension test) and previous exercise hindered it. Sleep deprivation increased striatal NE and previous exercise reduced it. Exercise only was associated with higher levels of serotonin. Furthermore, exercise reduced serotonin turnover associated with sleep deprivation. In brief, previous exercise prevented depressive behavior and reduced striatal high NE levels and serotonin turnover. The present findings confirm the effects of exercise on behavior and neurochemical alterations associated with sleep deprivation. These findings provide new avenues for understanding the mechanisms of exercise. Copyright © 2017 Elsevier B.V. All rights reserved.
Murnane, Kevin Sean; Perrine, Shane Alan; Finton, Brendan James; Galloway, Matthew Peter; Howell, Leonard Lee; Fantegrossi, William Edward
2011-01-01
Rationale Considerable evidence indicates that amphetamine derivatives can deplete brain monoaminergic neurotransmitters. However, the behavioral and cognitive consequences of neurochemical depletions induced by amphetamines are not well established. Objectives In this study, mice were exposed to dosing regimens of 3,4-methylenedioxymethamphetamine (MDMA), methamphetamine (METH), or para-chloroamphetamine (PCA) known to deplete the monoamine neurotransmitters dopamine and serotonin, and the effects of these dosing regimens on learning and memory were assessed. Methods In the same animals, we determined deficits in learning and memory via passive avoidance (PA) behavior and changes in tissue content of monoamine neurotransmitters and their primary metabolites in the striatum, frontal cortex, cingulate, hippocampus, and amygdala via ex vivo high pressure liquid chromatography. Results Consistent with previous studies, significant reductions in tissue content of dopamine and serotonin were readily apparent. In addition, exposure to METH and PCA impaired PA performance and resulted in significant depletions of dopamine, serotonin, and their metabolites in several brain regions. Multiple linear regression analysis revealed that the tissue concentration of dopamine in the anterior striatum was the strongest predictor of PA performance, with an additional significant contribution by the tissue concentration of the serotonin metabolite 5-hydroxyindoleacetic acid in the cingulate. In contrast to the effects of METH and PCA, exposure to MDMA did not deplete anterior striatal dopamine levels or cingulate levels of 5-hydroxyindoleacetic acid, and it did not impair PA performance. Conclusions These studies demonstrate that certain amphetamines impair PA performance in mice and that these impairments may be attributable to specific neurochemical depletions. PMID:21993877
Masab, Muhammad; Saif, Muhammad Wasif
2017-12-01
Metastatic neuroendocrine tumors (NETs) are associated with carcinoid syndrome that is typically characterized by diarrhea, cutaneous flushing and bronchospasm. Treatment with somatostatin analogues (SSA) improves the symptom burden but a significant proportion of patients stop responding to SSA therapy eventually. Novel agents with the potential to effectively control the symptoms are urgently needed. This article reviews an in-depth analysis of the phase I-III clinical trials determining the clinical rationale for the use of tryptophan hydroxylase inhibitor, telotristat ethyl in patients with well-differentiated metastatic NETs and uncontrolled carcinoid syndrome. Telotristat ethyl has already been approved for the treatment of inadequately controlled carcinoid syndrome symptoms in metastatic NET patients on SSA therapy. Results from multiple phase I-III clinical studies of telotristat ethyl therapy have reported a significant decrease in the daily bowel movement frequency, increase in quality of life and the subsequent decrease in annual health costs related to carcinoid syndrome symptoms in NET patients. The associated decrease in urinary 5-hydroxyindoleacetic acid (u5-HIAA) provides evidence that telotristat ethyl effectively decreases serotonin production, and therefore, offers a rationale to investigate this agent to mitigate serotonin-mediated complications in this patient population, especially cardiac valvular disease or mesenteric fibrosis.
Esler, Murray; Lambert, Elisabeth; Alvarenga, Marlies; Socratous, Florentia; Richards, Jeff; Barton, David; Pier, Ciaran; Brenchley, Celia; Dawood, Tye; Hastings, Jacqueline; Guo, Ling; Haikerwal, Deepak; Kaye, David; Jennings, Garry; Kalff, Victor; Kelly, Michael; Wiesner, Glen; Lambert, Gavin
2007-08-01
Since the brain neurotransmitter changes characterising panic disorder remain uncertain, we quantified brain noradrenaline and serotonin turnover in patients with panic disorder, in the absence of a panic attack. Thirty-four untreated patients with panic disorder and 24 matched healthy volunteers were studied. A novel method utilising internal jugular venous sampling, with thermodilution measurement of jugular blood flow, was used to directly quantify brain monoamine turnover, by measuring the overflow of noradrenaline and serotonin metabolites from the brain. Radiographic depiction of brain venous sinuses allowed differential venous sampling from cortical and subcortical regions. The relation of brain serotonin turnover to serotonin transporter genotype and panic disorder severity were evaluated, and the influence of an SSRI drug, citalopram, on serotonin turnover investigated. Brain noradrenaline turnover in panic disorder patients was similar to that in healthy subjects. In contrast, brain serotonin turnover, estimated from jugular venous overflow of the metabolite, 5-hydroxyindole acetic acid, was increased approximately 4-fold in subcortical brain regions and in the cerebral cortex (P < 0.01). Serotonin turnover was highest in patients with the most severe disease, was unrelated to serotonin transporter genotype, and was reduced by citalopram (P < 0.01). Normal brain noradrenaline turnover in panic disorder patients argues against primary importance of the locus coeruleus in this condition. The marked increase in serotonin turnover, in the absence of a panic attack, possibly represents an important underlying neurotransmitter substrate for the disorder, although this point remains uncertain. Support for this interpretation comes from the direct relationship which existed between serotonin turnover and illness severity, and the finding that SSRI administration reduced serotonin turnover. Serotonin transporter genotyping suggested that increased whole brain serotonin turnover most likely derived not from impaired serotonin reuptake, but from increased firing in serotonergic midbrain raphe neurons projecting to both subcortical brain regions and the cerebral cortex.
Bartoszyk, G D; Van Amsterdam, C; Greiner, H E; Rautenberg, W; Russ, H; Seyfried, C A
2004-02-01
Sarizotan exhibited high affinities only to serotonin 5-HT1A receptors and dopamine DA D4>D3>D2 receptors with the profile of a 5-HT1A agonist and DA antagonist demonstrated by the inhibition of cAMP-stimulation and guinea pig ileum contraction, decreased accumulation of the 5-HT precursor 5-hydroxytryptophan and increased levels of 5-HT metabolites, increased accumulation of DA precursor dihydroxyphenylalanine (DOPA) and the reduced levels of DA metabolites in intact rats. However, sarizotan at higher doses decreased DA precursor accumulation in reserpinized rats and induced contralateral rotational behavior in unilaterally substantia nigra lesioned rats, indicating some intrinsic dopaminergic activity; at D2 receptors sarizotan may act as a partial agonist, depending on the dopaminergic impulse flow. Sarizotan represents a new approach for the treatment of extrapyramidal motor complications such as l-DOPA-induced dyskinesia in Parkinson's disease.
Chamarro, J; Ostin, A; Sandberg, G
2001-05-01
[5-3H, 1'-14C, 13C6, 12C] Indole-3-acetic acid (IAA), was applied to the flavedo (epicarp) of intact orange fruits at different stages of development. After incubation in the dark, at 25 degrees C, the tissue was extracted with MeOH and the partially purified extracts were analyzed by reversed phase HPLC-RC. Six major metabolite peaks were detected and subsequently analyzed by combined HPLC-frit-FAB MS. The metabolite peak 6 contained oxindole-3-acetic acid (OxIAA), indole-3-acetyl-N-aspartic acid (IAAsp) and also indole-3-acetyl-N-glutamic acid (IAGlu). The nature of metabolite 5 remains unknown. Metabolites 3 and 4 were diastereomers of oxindole-3-acetyl-N-aspartic acid (OxIAAsp). Metabolite 2 was identified as dioxindole-3-acetic acid and metabolite 1 as a DiOx-IAA linked in position three to a hexose, which is suggested to be 3-(-O-beta-glucosyl) dioxindole-3-acetic acid (DiOxIAGlc). Identification work as well as feeding experiments with the [5-3H]IAA labeled metabolites suggest that IAA is metabolized in flavedo tissue mainly through two pathways, namely IAA-OxIAA-DiOxIAA-DiOxIAGlc and IAA-IAAsp-OxIAAsp. The flavedo of citrus fruit has a high capacity for IAA catabolism until the beginning of fruit senescence, with the major route having DiOxIAGlc as end product. This capacity is operative even at high IAA concentrations and is accelerated by pretreatment with the synthetic auxins 2,4-D, NAA and the gibberellin GA3.
Siuciak, J A; McCarthy, S A; Chapin, D S; Reed, T M; Vorhees, C V; Repaske, D R
2007-07-01
PDE1B is a calcium-dependent cyclic nucleotide phosphodiesterase that is highly expressed in the striatum. In order to investigate the physiological role of PDE1B in the central nervous system, PDE1B knockout mice (C57BL/6N background) were assessed in behavioral tests and their brains were assayed for monoamine content. In a variety of well-characterized behavioral tasks, including the elevated plus maze (anxiety-like behavior), forced swim test (depression-like behavior), hot plate (nociception) and two cognition models (passive avoidance and acquisition of conditioned avoidance responding), PDE1B knockout mice performed similarly to wild-type mice. PDE1B knockout mice showed increased baseline exploratory activity when compared to wild-type mice. When challenged with amphetamine (AMPH) and methamphetamine (METH), male and female PDE1B knockout mice showed an exaggerated locomotor response. Male PDE1B knockout mice also showed increased locomotor responses to higher doses of phencyclidine (PCP) and MK-801; however, this effect was not consistently observed in female knockout mice. In the striatum, increased dopamine turnover (DOPAC/DA and HVA/DA ratios) was found in both male and female PDE1B knockout mice. Striatal serotonin (5-HT) levels were also decreased in PDE1B knockout mice, although levels of the metabolite, 5HIAA, were unchanged. The present studies demonstrate increased striatal dopamine turnover in PDE1B knockout mice associated with increased baseline motor activity and an exaggerated locomotor response to dopaminergic stimulants such as methamphetamine and amphetamine. These data further support a role for PDE1B in striatal function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lappalainen, J.; Ozaki, N.; Goldman, D.
1994-09-01
Several lines of evidence suggest that brain serotonergic functions, including behavioral and neurochemical responses to 5-HT{sub 2C} agonist, are abnormal in some individuals with alcoholism and aggressive behaviors. The aim of the present study was to identify coding sequence variants in the human 5-HT{sub 2C} receptor gene which may cause abnormal or variant function of this receptor. Using SSCP analysis, a non-conservative cys-ser substitution was found in the 5-HT{sub 2C} receptor (designated 5-HT{sub 2Ccys} and 5-HT{sub 2Cser}). The polymorphism was typed in CEPH families to genetically map the gene. To test for association of the variant to alcoholism, violent behaviormore » and serotonin function, the 5-HT{sub 2C} genotypes of 151 non-related Finnish male alcoholic violent offenders and impulsive fire setters and 127 Finnish psychiatrically interviewed healthy male volunteers were determined. CSF 5-HIAA concentrations were available for 74 alcoholic violent offenders and 25 healthy volunteers. Linkage analysis placed the 5-HT{sub 2C} gene on Xq21, a region that has been previously shown to contain genes for several mental retardation syndromes. The 5-HT{sub 2Ccys}/5-HT{sub 2Cser} genotype frequencies in alcoholic violent offenders and controls differed significantly (0.90/0.10 and 0.82/0.18, respectively, P=0.048). The association was found to be strongest in the violent offenders who did not fulfill the criteria for antisocial personality disorder (5-HT{sub 2Ccys}/5-HT{sub 2Cser} 0.93/0.07, p=0.021). No association was found between CSF 5-HIAA concentrations and 5-HT{sub 2C} genotype. These results implicate a 5-HT{sub 2C} receptor amino acid substitution in predisposition to alcohol abuse and violent behavior in a subgroup of alcoholics.« less
Lagard, Camille; Chevillard, Lucie; Malissin, Isabelle; Risède, Patricia; Callebert, Jacques; Labat, Laurence; Launay, Jean-Marie; Laplanche, Jean-Louis; Mégarbane, Bruno
2016-11-01
Poisoning with opioid analgesics including tramadol represents a challenge. Tramadol may induce respiratory depression, seizures and serotonin syndrome, possibly worsened when in combination to benzodiazepines. Our objectives were to investigate tramadol-related neurotoxicity, consequences of diazepam/tramadol combination, and mechanisms of drug-drug interactions in rats. Median lethal-doses were determined using Dixon-Bruce's up-and-down method. Sedation, seizures, electroencephalography and plethysmography parameters were studied. Concentrations of tramadol and its metabolites were measured using liquid-chromatography-high-resolution-mass-spectrometry. Plasma, platelet and brain monoamines were measured using liquid-chromatography coupled to fluorimetry. Median lethal-doses of tramadol and diazepam/tramadol combination did not significantly differ, although time-to-death was longer with combination (P=0.04). Tramadol induced dose-dependent sedation (P<0.05), early-onset seizures (P<0.001) and increase in inspiratory (P<0.01) and expiratory times (P<0.05). The diazepam/tramadol combination abolished seizures but significantly enhanced sedation (P<0.01) and respiratory depression (P<0.05) by reducing tidal volume (P<0.05) in addition to tramadol-related increase in respiratory times, suggesting a pharmacodynamic mechanism of interaction. Plasma M1 and M5 metabolites were mildly increased, contributing additionally to tramadol-related respiratory depression. Tramadol-induced early-onset increase in brain concentrations of serotonin and norepinephrine was not significantly altered by the diazepam/tramadol combination. Interestingly neither pretreatment with cyproheptadine (a serotonin-receptor antagonist) nor a benserazide/5-hydroxytryptophane combination (enhancing brain serotonin) reduced tramadol-induced seizures. Our study shows that diazepam/tramadol combination does not worsen tramadol-induced fatality risk but alters its toxicity pattern with enhanced respiratory depression but abolished seizures. Drug-drug interaction is mainly pharmacodynamic but increased plasma M1 and M5 metabolites may also contribute to enhancing respiratory depression. Tramadol-induced seizures are independent of brain serotonin. Copyright © 2016 Elsevier Inc. All rights reserved.
Ji, Wei-Wei; Li, Rui-Peng; Li, Meng; Wang, Shu-Yuan; Zhang, Xian; Niu, Xing-Xing; Li, Wei; Yan, Lu; Wang, Yang; Fu, Qiang; Ma, Shi-Ping
2014-10-01
Perilla frutescens (Perilla leaf), a garnishing vegetable in East Asian countries, as well as a plant-based medicine, has been used for centuries to treat various conditions, including depression. Several studies have demonstrated that the essential oil of P. frutescens (EOPF) attenuated the depressive-like behavior in mice. The present study was designed to test the anti-depressant effects of EOPF and the possible mechanisms in an chronic, unpredictable, mild stress (CUMS)-induced mouse model. With the exposure to stressor once daily for five consecutive weeks, EOPF (3, 6, and 9 mg·kg(-1)) and a positive control drug fluoxetine (20 mg·kg(-1)) were administered through gastric intubation to mice once daily for three consecutive weeks from the 3(rd) week. Open-field test, sucrose consumption test, tail suspension test (TST), and forced swimming test (FST) were used to evaluate the behavioral activity. The contents of 5-hydroxytryptamine (5-HT) and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA), in mouse hippocampus were determined by HPLC-ECD. Serum interleukin (IL)-1, IL-6, and tumor necrosis factor (TNF)-α levels were evaluated by enzyme-linked immunosorbent assay (ELISA). The results showed that CUMS significantly decreased the levels of 5-HT and 5-HIAA in the hippocampus, with an increase in plasma IL-6, IL-1β, and TNF-α levels. CUMS also reduced open-field activity, sucrose consumption, as well as increased immobility duration in FST and TST. EOPF administration could effectively reverse the alterations in the concentrations of 5-HT and 5-HIAA; reduce the IL-6, IL-1β, and TNF-α levels. Moreover, EOPF could effectively reverse alterations in immobility duration, sucrose consumption, and open-field activity. However, the effect was not dose-dependent. In conclusion, EOPF administration exhibited significant antidepressant-like effects in mice with CUMS-induced depression. The antidepressant activity of EOPF might be related to the relation between alteration of serotonergic responses and anti-inflammatory effects. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagard, Camille, E-mail: camille.lagard@gmail.com
Poisoning with opioid analgesics including tramadol represents a challenge. Tramadol may induce respiratory depression, seizures and serotonin syndrome, possibly worsened when in combination to benzodiazepines. Our objectives were to investigate tramadol-related neurotoxicity, consequences of diazepam/tramadol combination, and mechanisms of drug-drug interactions in rats. Median lethal-doses were determined using Dixon–Bruce's up-and-down method. Sedation, seizures, electroencephalography and plethysmography parameters were studied. Concentrations of tramadol and its metabolites were measured using liquid-chromatography-high-resolution-mass-spectrometry. Plasma, platelet and brain monoamines were measured using liquid-chromatography coupled to fluorimetry. Median lethal-doses of tramadol and diazepam/tramadol combination did not significantly differ, although time-to-death was longer with combination (P =more » 0.04). Tramadol induced dose-dependent sedation (P < 0.05), early-onset seizures (P < 0.001) and increase in inspiratory (P < 0.01) and expiratory times (P < 0.05). The diazepam/tramadol combination abolished seizures but significantly enhanced sedation (P < 0.01) and respiratory depression (P < 0.05) by reducing tidal volume (P < 0.05) in addition to tramadol-related increase in respiratory times, suggesting a pharmacodynamic mechanism of interaction. Plasma M1 and M5 metabolites were mildly increased, contributing additionally to tramadol-related respiratory depression. Tramadol-induced early-onset increase in brain concentrations of serotonin and norepinephrine was not significantly altered by the diazepam/tramadol combination. Interestingly neither pretreatment with cyproheptadine (a serotonin-receptor antagonist) nor a benserazide/5-hydroxytryptophane combination (enhancing brain serotonin) reduced tramadol-induced seizures. Our study shows that diazepam/tramadol combination does not worsen tramadol-induced fatality risk but alters its toxicity pattern with enhanced respiratory depression but abolished seizures. Drug-drug interaction is mainly pharmacodynamic but increased plasma M1 and M5 metabolites may also contribute to enhancing respiratory depression. Tramadol-induced seizures are independent of brain serotonin. - Highlights: • Diazepam does not alter tramadol-induced median lethal dose but delays death onset. • Diazepam/tramadol combination worsens respiratory depression but prevents seizures. • Diazepam/tramadol-induced respiratory effects results from a pharmacodynamic drug-drug interaction. • Tramadol increases brain serotonin and norepinephrine that is not altered by diazepam. • Tramadol-induced seizures are independent of brain serotonin.« less
Valeriana wallichii root extract improves sleep quality and modulates brain monoamine level in rats.
Sahu, Surajit; Ray, Koushik; Yogendra Kumar, M S; Gupta, Shilpa; Kauser, Hina; Kumar, Sanjeev; Mishra, Kshipra; Panjwani, Usha
2012-07-15
The present study was performed to investigate the effects of Valeriana wallichi (VW) aqueous root extract on sleep-wake profile and level of brain monoamines on Sprague-Dawley rats. Electrodes and transmitters were implanted to record EEG and EMG in freely moving condition and the changes were recorded telemetrically after oral administration of VW in the doses of 100, 200 and 300 mg/kg body weight. Sleep latency was decreased and duration of non-rapid eye movement (NREM) sleep was increased in a dose dependent manner. A significant decrease of sleep latency and duration of wakefulness were observed with VW at doses of 200 and 300 mg/kg. Duration of NREM sleep as well as duration of total sleep was increased significantly after treatment with VW at the doses of 200 and 300 mg/kg. VW also increased EEG slow wave activity during NREM sleep at the doses of 200 and 300 mg/kg. Level of norepinephrine (NE), dopamine (DA), dihydroxyphenylacetic acid (DOPAC), serotonin (5-HT) and hydroxy indole acetic acid (HIAA) were measured in frontal cortex and brain stem after VW treatment at the dose of 200mg/kg. NE and 5HT level were decreased significantly in both frontal cortex and brain stem. DA and HIAA level significantly decreased only in cortex. DOPAC level was not changed in any brain region studied. In conclusion it can be said that VW water extract has a sleep quality improving effect which may be dependent upon levels of monoamines in cortex and brainstem. Copyright © 2012 Elsevier GmbH. All rights reserved.
Intestinal crosstalk between microbiota and serotonin and its impact on gut motility.
Ge, Xiaolong; Pan, Junhai; Liu, Yichang; Wang, Hongkan; Zhou, Wei; Wang, Xianfa
2018-05-27
The gastrointestinal tract harbours a diverse bacterial community that contributes to health and disease. A number of studies have demonstrated that the gut microbiota plays a critical role in the metabolism of serotonin. Microbial-derived metabolites, such as bile acids and short-chain fatty acids, are reported to affect the production of serotonin which, in turn, directly or indirectly regulates gut motility. Enterochromaffin cells are important specialized endocrine cells found in the intestine, which is the major location of serotonin biosynthesis. The relationship between microbiota and gut motility are studied depended on microbial-derived metabolites and serotonin. Both bile acids and short-chain fatty acids can modulate serotonin metabolism in hosts by affecting key intermediates of the serotonin pathway. Thus, gut motility may be regulated through microbial modifications of host serotonin biosynthesis, which continues to be evaluated as a target for functional gastrointestinal disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Hudon Thibeault, Andrée-Anne; Laurent, Laetitia; Vo Duy, Sung; Sauvé, Sébastien; Caron, Patrick; Guillemette, Chantal; Sanderson, J Thomas; Vaillancourt, Cathy
2017-02-15
The effects of fluoxetine, one of the most prescribed selective serotonin-reuptake inhibitors (SSRIs) during pregnancy, and its active metabolite norfluoxetine were studied on placental aromatase (CYP19) and feto-placental steroidogenesis. Fluoxetine did not alter estrogen secretion in co-culture of fetal-like adrenocortical (H295R) and trophoblast-like (BeWo) cells used as a model of the feto-placental unit, although it induced CYP19 activity, apparently mediated by the serotonin (5-HT) 2A receptor/PKC signaling pathway. Norfluoxetine decreased estrogen secretion in the feto-placental co-culture and competitively inhibited catalytic CYP19 activity in BeWo cells. Decreased serotonin transporter (SERT) activity in the co-culture was comparable to 17β-estradiol treatment of BeWo cells. This work shows that the complex interaction of fluoxetine and norfluoxetine with placental estrogen production, involves 5-HT-dependent and -independent mechanisms. Considering the crucial role of estrogens during pregnancy, our results raise concern about the impact of SSRI treatment on placental function and fetal health. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Neider, Daniel; Lindström, Leif H; Bodén, Robert
2016-01-01
Background The objective of this study was to investigate the association between 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA) in cerebrospinal fluid (CSF), bullying, and later suicide among patients with schizophrenia. Methods Ninety-nine patients with schizophrenia were included. Correlations of clinical factors, 5-HIAA and HVA, and later suicide were investigated. Results Twelve patients committed suicide (12%) during a 28-year follow-up period. Later suicide was correlated to bullying in childhood (P=0.02) and a lower quotient of HVA/5-HIAA in CSF (P<0.05). Conclusion Suicide in schizophrenia is related to childhood exposedness and CSF neurotransmitter levels. PMID:27468235
Khaliq, Saima; Haider, Saida; Naqvi, Faizan; Perveen, Tahira; Saleem, Sadia; Haleem, Darakhshan Jabeen
2012-01-01
Caffeine administration has been shown to enhance performance and memory in rodents and humans while its withdrawal on the other hand produces neurobehavioral deficits which are thought to be mediated by alterations in monoamines neurotransmission. A role of decreased brain 5-HT (5-hydroxytryptamine, serotonin) levels has been implicated in impaired cognitive performance and depression. Memory functions of rats were assessed by Water Maze (WM) and immobility time by Forced Swim Test (FST). The results of this study showed that repeated caffeine administration for 6 days at 30 mg/kg dose significantly increases brain 5-HT (p<0.05) and 5-HIAA (p<0.05) levels and its withdrawal significantly (p<0.05) decreased brain 5-HT levels. A significant decrease in latency time was exhibited by rats in the WM repeatedly injected with caffeine. Withdrawal of caffeine however produced memory deficits and significantly increases the immobility time of rats in FST. The results of this study are linked with caffeine induced alterations in serotonergic neurotransmission and its role in memory and depression.
Ethanol and Mesolimbic Serotonin/Dopamine Interactions via 5HT-1B Receptors
2007-03-01
of [3H]DA in the presence of the monoamine oxidase inhibitor pargyline to minimize the formation of DA metabolites. Under these experimental... human genetics and in animal models, and to play a role in regulating alcohol voluntary intakes. 15. SUBJECT TERMS Ethanol, Dopamine, Serotonin...ip to the KO and WT mice, respectively. Twenty minutes later, each mouse received an ethanol injection (1 or 2 g/kg, ip) and extracellular DA in the
Hashemi, F; Tekes, Kornélia; Laufer, R; Szegi, P; Tóthfalusi, L; Csaba, G
2013-10-01
Perinatal single-hormone treatment causes hormonal imprinting with lifelong consequences in receptor-binding capacity, hormone production as well as in social and sexual behavior. In the present experiments, newborn rats were treated with a single dose of oxytocin, and the levels of biogenic amines and their metabolites were studied in 8 different brain regions and in the sera when the male and female animals were 4 months old. Both dopaminergic and serotonergic neurotransmission was found to be significantly influenced. The levels of 3,4-dihydroxyphenylacetic acid, homovanillic acid, and 5-hydroxyindole acetic acid metabolites decreased in the hypothalamus and striatum. Dopamine, serotonin, norepinephrine, and 5-hydroxytryptophol levels were hardly altered, and there was no difference in the epinephrine levels. The results show that dopamine and serotonin metabolism of hypothalamus and striatum are deeply and lifelong influenced by a single neonatal oxytocin treatment Oxytocin imprinting resulted in decreased dopamine turnover in the hypothalamus and decreased serotonin turnover in the hypothalamus, medulla oblongata, and striatum of females. As the disturbance of brain dopamine and serotonin system has an important role in the development of pervasive developmental diseases (eg, autism) and neuropsychiatric disorders (eg, schizophrenia), the growing number of oxytocin-induced labor as a causal factor, cannot be omitted.
Zhao, Donghai; Zheng, Lianwen; Qi, Ling; Wang, Shuran; Guan, Liping; Xia, Yanan; Cai, Jianhui
2016-01-01
The purified total sterols and β-sitosterol extracted from Sargassum horneri were evaluated for their antidepressant-like activity using the forced swim test (FST) and tail suspension test (TST) in mice. Total sterols and β-sitosterol significantly reduced the immobility time in the FST and TST. Total sterols were administered orally for 7 days at doses of 50, 100, and 200 mg/kg, and β-sitosterol was administered intraperitoneally at doses of 10, 20, and 30 mg/kg. β-sitosterol had no effect on locomotor activity in the open field test. In addition, total sterols and β-sitosterol significantly increased NE, 5-HT, and the metabolite 5-HIAA in the mouse brain, suggesting that the antidepressant-like activity may be mediated through these neurotransmitters. PMID:27367705
Zhao, Donghai; Zheng, Lianwen; Qi, Ling; Wang, Shuran; Guan, Liping; Xia, Yanan; Cai, Jianhui
2016-06-28
The purified total sterols and β-sitosterol extracted from Sargassum horneri were evaluated for their antidepressant-like activity using the forced swim test (FST) and tail suspension test (TST) in mice. Total sterols and β-sitosterol significantly reduced the immobility time in the FST and TST. Total sterols were administered orally for 7 days at doses of 50, 100, and 200 mg/kg, and β-sitosterol was administered intraperitoneally at doses of 10, 20, and 30 mg/kg. β-sitosterol had no effect on locomotor activity in the open field test. In addition, total sterols and β-sitosterol significantly increased NE, 5-HT, and the metabolite 5-HIAA in the mouse brain, suggesting that the antidepressant-like activity may be mediated through these neurotransmitters.
Rauf, Khalid; Subhan, Fazal; Sewell, Robert D E
2012-05-01
Bacopa monnieri (BM) has been used in Ayurvedic medicine as a nootropic, anxiolytic, antiepileptic and antidepressant. An n-butanol extract of the plant (nBt-ext BM) was analysed and found to contain Bacoside A (Bacoside A3, Bacopaside II and Bacopasaponin C). The effects of the BM extract were then studied on morphine-induced hyperactivity as well as dopamine and serotonin turnover in the striatum since these parameters have a role in opioid sensitivity and dependence. Mice were pretreated with saline or nBt-ext BM (5, 10 and 15 mg/kg, orally), 60 min before morphine administration and locomotor activity was subsequently recorded. Immediately after testing, striatal tissues were analysed for dopamine (DA), serotonin (5HT) and their metabolites using HPLC coupled with electrochemical detection. The results indicated that nBt-ext BM significantly (p < 0.001) decreased locomotor activity in both the saline and morphine treated groups. Additionally, nBt-ext BM significantly lowered morphine-induced dopamine (DA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindole acetic acid (5-H1AA) upsurges in the striatum but failed to affect DA, 5-HT and their metabolites in the saline treated group. These findings suggest that nBt-ext BM has an antidopaminergic/serotonergic effect and may have potential beneficial effects in the treatment of morphine dependence. Copyright © 2011 John Wiley & Sons, Ltd.
Pharmacokinetics of reduced iso-α-acids in volunteers following clear bottled beer consumption.
Rodda, Luke N; Gerostamoulos, Dimitri; Drummer, Olaf H
2015-05-01
Reduced iso-α-acids (reduced IAA) consisting of the rho-, tetrahydro- and hexahydro-IAA groups (RIAA, TIAA and HIAA, respectively) are ingredient congeners specific to beer and generally found in clear and also occasionally green bottled beer. Concentrations of reduced IAA were determined in the blood and urine of five volunteers over 6h following the consumption of small volumes of beer containing each of the reduced IAA. The reduced IAA were absorbed and bioavailable with peak concentrations at 0.5h followed by a drop of generally fivefold by 2h. Preliminary pharmacokinetics of these compounds in humans shows relatively small inter-individual differences and an estimated short half-life varying between ∼38 and 46min for the three groups. Comparison of RIAA analyte ratios within the group indicate that some analytes eliminate relatively faster than others and the formation of metabolite products was observed. Preliminary urine analysis showed only unmodified RIAA analytes were detectable throughout 6h and suggests extensive phase I metabolism of TIAA and HIAA analytes. In authentic forensic casework where clear or green bottled beers are consumed, the identification of reduced IAA groups may provide a novel method to target ingredient congeners consistent with beer ingestion and suggest the type of beer consumed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Gómez, C; Briñón, J G; Orio, L; Colado, M I; Lawrence, A J; Zhou, F C; Vidal, M; Barbado, M V; Alonso, J R
2007-02-01
The serotonergic system plays a key role in the modulation of olfactory processing. The present study examined the plastic response of this centrifugal system after unilateral naris occlusion, analysing both serotonergic afferents and receptors in the main olfactory bulb. After 60 days of sensory deprivation, the serotonergic system exhibited adaptive changes. Olfactory deprivation caused a general increase in the number of fibres immunopositive for serotonin but not of those immunopositive for the serotonin transporter. HPLC data revealed an increase in serotonin levels but not in those of its major metabolite, 5-hydroxyindole acetic acid, resulting in a decrease in the 5-hydroxyindole acetic acid/serotonin ratio. These changes were observed not only in the deprived but also in the contralateral olfactory bulb. Double serotonin-tyrosine hydroxylase immunolabelling revealed that the glomerular regions of the deprived olfactory bulb with a high serotonergic fibre density showed a strong reduction in tyrosine hydroxylase. Finally, the serotonin(2A) receptor distribution density and the number of juxtaglomerular cells immunopositive for serotonin(2A) receptor remained unaltered after olfactory deprivation. Environmental stimulation modulated the serotonergic afferents to the olfactory bulb. Our results indicate the presence of a bilateral accumulation of serotonin in the serotonergic axon network, with no changes in serotonin(2A) receptor density after unilateral olfactory deprivation.
Management of the hormonal syndrome of neuroendocrine tumors
Waligórska-Stachura, Joanna; Czarnywojtek, Agata; Sawicka-Gutaj, Nadia; Bączyk, Maciej; Ziemnicka, Katarzyna; Fischbach, Jakub; Woliński, Kosma; Kaznowski, Jarosław; Wrotkowska, Elżbieta; Ruchała, Marek
2016-01-01
Gastroenteropancreatic neuroendocrine tumors (GEP/NET) are unusual and rare neoplasms that present many clinical challenges. They characteristically synthesize store and secrete a variety of peptides and neuroamines which can lead to the development of distinct clinical syndrome, however many are clinically silent until late presentation with mass effects. Management strategies include surgery cure and cytoreduction with the use of somatostatin analogues. Somatostatin have a broad range of biological actions that include inhibition of exocrine and endocrine secretions, gut motility, cell proliferation, cell survival and angiogenesis. Five somatostatin receptors (SSTR1-SSTR5) have been cloned and characterized. Somatostatin analogues include octreotide and lanreotide are effective medical tools in the treatment and present selectivity for SSTR2 and SSTR5. During treatment is seen disapperance of flushing, normalization of bowel movements and reduction of serotonin and 5-hydroxyindole acetic acid (5-HIAA) secretion. Telotristat represents a novel approach by specifically inhibiting serotonin synthesis and as such, is a promising potential new treatment for patients with carcinoid syndrome. To pancreatic functionig neuroendocrine tumors belongs insulinoma, gastrinoma, glucagonoma and VIP-oma. Medical management in patients with insulinoma include diazoxide which suppresses insulin release. Also mTOR inhibitors may inhibit insulin secretion. Treatment of gastrinoma include both proton pump inhibitors (PPIs) and histamine H2 – receptor antagonists. In patients with glucagonomas hyperglycaemia can be controlled using insulin and oral blood glucose lowering drugs. In malignant glucagonomas smatostatin analogues are effective in controlling necrolytic migratory erythemia. Severe cases of the VIP-oma syndrome require supplementation of fluid losses. Octreotide reduce tumoral VIP secretion and control secretory diarrhoea. PMID:28507564
Gallinat, Jürgen; Ströhle, Andreas; Lang, Undine E; Bajbouj, Malek; Kalus, Peter; Montag, Christiane; Seifert, Frank; Wernicke, Catrin; Rommelspacher, Hans; Rinneberg, Herbert; Schubert, Florian
2005-05-15
The impact of the serotonin transporter (5-HTT) gene-linked polymorphic region (5-HTTLPR) on anxiety-related behavior and related cerebral activation has facilitated the understanding of neurobiological mechanisms of anxiety. However, the influence of the 5-HTTLPR genotype on hippocampal neuronal development and neurochemistry, which is relevant to anxiety behavior, has not been investigated. In 38 healthy subjects, absolute concentrations of N-acetylaspartate (NAA) were measured as a main surrogate parameter for hippocampal neurochemistry on a 3-T scanner. A significantly lower hippocampal NAA concentration in s allele carriers was observed as compared to l/l genotype. Other metabolites (choline, creatine + phosphocreatine, glutamate) were unaffected by genotype. The hippocampal NAA concentration was negatively correlated with trait anxiety scores (STAI). Metabolites measured in the anterior cingulate cortex (reference region) were not associated with genotype. The results are in accordance with the recently reported relationship between hippocampal neuronal development and anxiety behavior in adult animals and show an association between human limbic neurochemistry and genetically driven serotonergic neurotransmission relevant to anxiety.
Avgustinovich, D F; Lipina, T V; Alekseenko, O V; Amstislavskaia, T G; Kudriatseva, N N
1998-01-01
Anxiety was estimated in intact male mice of C57BL/6J (C57) and (CBA) and CBA/Lac (CBA) strains and in males of both strains after the repeated experience of social defeats (losers) in 10 daily aggressive confrontations. A plus-maze test for behavior in a novel situation and a partition test for communicative activity were applied. Tryptophan hydroxylase (TPH) activity, 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) levels were measured in the midbrain, hypothalamus, amygdala, hippocampus, and striatum in losers and controls (5 days of individual housing of intact animals). Intact C57 mice which demonstrated active avoidance in the maze had reduced TPH activity in the all studied brain regions compared to the intact CBA mice with passive behavior. The 5-HT catabolism in intact C57 was lower in the midbrain and hypothalamus and higher in amygdala, hippocampus, and striatum than in CBA mice. Chronic social stress led to expressed anxiety revealed by both tests in C57 losers in contrast to CBA ones. This anxiety was accompanied by an increase in 5-HIAA level and 5-HIAA/5-HT ratio in the midbrain as well as by an increase in 5-HT level and decrease in 5-HIAA level and 5-HIAA/5-HT ratio in the hippocampus of C57 losers in comparison with the controls. Flesinoxan (0.5 mg/kg, i.p.), 5-HT1A receptor agonist, changed the communicative behavior of controls but was ineffective in losers. Thus, a decrease in sensitivity of 5-HT1A receptors was suggested in stress-induced anxiety of C57 losers. The less expressed anxiety in CBA losers was associated with less expressed changes in serotonergic metabolism. It is concluded that serotonergic mechanisms of pathological anxiety induced by the long-term social stress and those of natural anxiety in intact mice are different.
Yan, Ming-Zhu; Chang, Qi; Zhong, Yu; Xiao, Bing-Xin; Feng, Li; Cao, Fang-Rui; Pan, Rei-Le; Zhang, Ze-Sheng; Liao, Yong-Hong; Liu, Xin-Min
2015-10-28
Lotus leaves have been used traditionally as both food and herbal medicine in Asia. Open-field, sodium pentobarbital-induced sleeping and light/dark box tests were used to evaluate sedative-hypnotic and anxiolytic effects of the total alkaloids (TA) extracted from the herb, and the neurotransmitter levels in the brain were determined by ultrafast liquid chromatography-tandem mass spectrometry. The effects of picrotoxin, flumazenil, and bicuculline on the hypnotic activity of TA, as well as the influence of TA on Cl(-) influx in cerebellar granule cells, were also investigated. TA showed a sedative-hypnotic effect by increasing the brain level of γ-aminobutyric acid (GABA), and the hypnotic effect could be blocked by picrotoxin and bicuculline, but could not be antagonized by flumazenil. Additionally, TA could increase Cl(-) influx in cerebellar granule cells. TA at 20 mg/kg induced anxiolytic-like effects and significantly increased the concentrations of serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), and dopamine (DA). These data demonstrated that TA exerts sedative-hypnotic and anxiolytic effects via binding to the GABAA receptor and activating the monoaminergic system.
Gislason, T; Hedner, J; Terenius, L; Bisette, G; Nemeroff, C B
1992-09-01
The cerebrospinal fluid (CSF) concentrations of thyrotropin-releasing hormone (TRH), substance P (SP), 5-hydroxyindoleacetic acid (5-HIAA), homovanillic acid (HVA), and 3-methoxy-4-hydroxyphenyl glycol (MHPG) were measured in 15 consecutive patients with the sleep apnea syndrome (SAS) and in healthy control subjects. Second measurements were performed 6 months after surgical treatment in 10 of the patients. The mean (+/- SD) concentration of TRH-like immunoreactive material (TRH-LIM) (pg/ml) did not differ significantly between patients with SAS (8.1 +/- 2.8) and control subjects (7.5 +/- 2.2). However, postoperatively, this concentration was increased in the six clinically cured patients with SAS, from 6.9 +/- 2.7 to 9.4 +/- 1.6 (p less than 0.03). Substance P-like immunoreactive material (SP-LIM) was higher in untreated patients with SAS than in control subjects: 19.2 +/- 6.7 versus 14.4 +/- 4.2 fmol/ml (p less than 0.02), and the level remained high after operation in the group treated surgically. The HVA, 5-HIAA, and MHPG concentrations were similar in patients with SAS and control subjects, and no consistent changes were found postoperatively. The CSF deviations in TRH-LIM and SP-LIM concentrations in the patients may reflect a primary central nervous system defect or they may be secondary to intermittent nocturnal hypoxia, progressive hypercapnia, and/or sleep fragmentation. In this sense, both these systems may be markers of SAS-SP as a "trait" marker and TRH as an indicator of the current state.
Correction to Smith et al. (2013).
Smith, Carl D; Piasecki, Christopher C; Weera, Marcus; Olszewicz, Joshua; Lonstein, Joseph S
2015-08-01
Reports an error in "Noradrenergic alpha-2 receptor modulators in the ventral bed nucleus of the stria terminalis: Effects on anxiety behavior in postpartum and virgin female rats" by Carl D. Smith, Christopher C. Piasecki, Marcus Weera, Joshua Olszewicz and Joseph S. Lonstein (Behavioral Neuroscience, 2013[Aug], Vol 127[4], 582-597). Table 2 should have used the ratio of 5HIAA/serotonin - rather than the inverse - as the indicator of serotonin turnover. Using the correct ratio, differences in serotonin turnover between the postpartum and virgin females are: BSTv - 1.11 0.06 vs 0.79 0.11 (t 2.57, p 0.05); BSTd - 1.01 0.07 vs 0.68 0.11 (t 2.58, p 0.05). That is, contrary to what was originally reported, postpartum females had higher serotonin turnover in both subregions of the BST compared to virgins. The penultimate sentence in the abstract noting serotonin turnover in mothers has been corrected in the online version of this article. (The following abstract of the original article appeared in record 2013-22430-001.) Emotional hyperreactivity can inhibit maternal responsiveness in female rats and other animals. Maternal behavior in postpartum rats is disrupted by increasing norepinephrine release in the ventral bed nucleus of the stria terminalis (BSTv) with the α2-autoreceptor antagonist, yohimbine, or the more selective α2-autoreceptor antagonist, idazoxan (Smith et al., 2012). Because high noradrenergic activity in the BSTv can also increase anxiety-related behaviors, increased anxiety may underlie the disrupted mothering of dams given yohimbine or idazoxan. To assess this possibility, anxiety-related behaviors in an elevated plus maze were assessed in postpartum rats after administration of yohimbine or idazoxan. It was further assessed if the α2-autoreceptor agonist clonidine (which decreases norepinephrine release) would, conversely, reduce dams' anxiety. Groups of diestrous virgins were also examined. It was found that peripheral or intra-BSTv yohimbine did increase anxiety-related behavior in postpartum females. However, BSTv infusion of idazoxan did not reproduce yohimbine's anxiogenic effects and anxiety was not reduced by peripheral or intra-BSTv clonidine. Because yohimbine is a weak 5HT1A receptor agonist, other groups of females received BSTv infusion of the 5HT1A receptor agonist 8OH-DPAT, but it did not alter their anxiety-related behavior. Lastly, levels of norepinephrine and serotonin in tissue punches from the BSTv did not differ between postpartum and diestrous rats, but serotonin turnover was higher in mothers. These results suggest that the impaired maternal behavior after BSTv infusion of yohimbine or idazoxan cannot both be readily explained by an increase in dams' anxiety, and that BSTv α2-autoreceptor modulation alone has little influence on anxiety-related behaviors in postpartum or diestrous rats. (c) 2015 APA, all rights reserved).
Serotonin-induced mate rejection in the female cabbage butterfly, Pieris rapae crucivora
NASA Astrophysics Data System (ADS)
Obara, Yoshiaki; Fukano, Yuya; Watanabe, Kenta; Ozawa, Gaku; Sasaki, Ken
2011-11-01
Virgin female cabbage butterflies, Pieris rapae crucivora, accept and mate with courting males, whereas mated females reject them and assume the "mate refusal posture". This study tested whether the biogenic amines, serotonin (5HT), dopamine (DA), and octopamine (OA), were responsible for this change in behavior. The results showed that 2-3-day-old virgin females fed with 5HT rejected courting males significantly more frequently compared with controls fed on sucrose. In contrast, the proportions of courting males rejected by virgin females fed with either DA or OA did not differ from sucrose-fed controls. Oral application of each amine resulted in significantly increased levels of the amine applied (or its metabolite) in the brain. The results strongly suggest that 5HT or a 5HT metabolite may be responsible for the post-mating change in behavioral response of 2-3-day-old virgin females to courting males. Similar effects of 5HT treatment were observed in 6-8-day-old virgin females, but in this case the results were only marginally different from the controls, suggesting that the effect may decline with increasing female age.
Leitner, Miriam; Fragner, Lena; Danner, Sarah; Holeschofsky, Nastassja; Leitner, Karoline; Tischler, Sonja; Doerfler, Hannes; Bachmann, Gert; Sun, Xiaoliang; Jaeger, Walter; Kautzky-Willer, Alexandra; Weckwerth, Wolfram
2017-01-01
Gestational diabetes mellitus during pregnancy has severe implications for the health of the mother and the fetus. Therefore, early prediction and an understanding of the physiology are an important part of prenatal care. Metabolite profiling is a long established method for the analysis and prediction of metabolic diseases. Here, we applied untargeted and targeted metabolomic protocols to analyze plasma and urine samples of pregnant women with and without GDM. Univariate and multivariate statistical analyses of metabolomic profiles revealed markers such as 2-hydroxybutanoic acid (AHBA), 3-hydroxybutanoic acid (BHBA), amino acids valine and alanine, the glucose-alanine-cycle, but also plant-derived compounds like sitosterin as different between control and GDM patients. PLS-DA and VIP analysis revealed tryptophan as a strong variable separating control and GDM. As tryptophan is biotransformed to serotonin we hypothesized whether serotonin metabolism might also be altered in GDM. To test this hypothesis we applied a method for the analysis of serotonin, metabolic intermediates and dopamine in urine by stable isotope dilution direct infusion electrospray ionization mass spectrometry (SID-MS). Indeed, serotonin and related metabolites differ significantly between control and GDM patients confirming the involvement of serotonin metabolism in GDM. Clustered correlation coefficient visualization of metabolite correlation networks revealed the different metabolic signatures between control and GDM patients. Eventually, the combination of selected blood plasma and urine sample metabolites improved the AUC prediction accuracy to 0.99. The detected GDM candidate biomarkers and the related systemic metabolic signatures are discussed in their pathophysiological context. Further studies with larger cohorts are necessary to underpin these observations. PMID:29312952
Gurtman, Clint G; Morley, Kirsten C; Li, Kong M; Hunt, Glenn E; McGregor, Iain S
2002-06-20
The long-term behavioural and neurotoxic effects of 3,4-methlyenedioxymethampthetamine (MDMA, "Ecstasy") were examined in rats. Rats were given MDMA (5 mg/kg i.p. once per hour for 4 h) or vehicle injections on each of two consecutive days at an ambient temparature of 28 degrees C. MDMA caused acute hyperthermia and locomotor hyperactivity on both days. Four and six weeks after drug administration the rats previously treated with MDMA showed elevated levels of anxiety-like behaviour in the emergence and social interaction tests, respectively. At 9 weeks post-MDMA, the rats displayed an increase in anxiety on the elevated plus-maze test relative to controls. Ten weeks following treatment the rats were killed and their brains dissected and neurotramitter content analysed using High Performance Liquid Chromotography (HPLC). Rats previously given MDMA showed significantly decreased 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) in the amygdala, hippocampus and striatum relative to controls. This 5-HT depletion may have a causal role in producing increased anxiety-like behaviours in MDMA-treated rats. These results are consistent with human studies suggesting that exposure to high doses of MDMA may predispose to long-term psychological problems such as anxiety and depression.
Shortall, SE; Green, AR; Swift, KM; Fone, KCF; King, MV
2013-01-01
Background and Purpose Recreational users report that mephedrone has similar psychoactive effects to 3,4-methylenedioxymethamphetamine (MDMA). MDMA induces well-characterized changes in body temperature due to complex monoaminergic effects on central thermoregulation, peripheral blood flow and thermogenesis, but there are little preclinical data on the acute effects of mephedrone or other synthetic cathinones. Experimental Approach The acute effects of cathinone, methcathinone and mephedrone on rectal and tail temperature were examined in individually housed rats, with MDMA included for comparison. Rats were killed 2 h post-injection and brain regions were collected for quantification of 5-HT, dopamine and major metabolites. Further studies examined the impact of selected α-adrenoceptor and dopamine receptor antagonists on mephedrone-induced changes in rectal temperature and plasma catecholamines. Key Results At normal room temperature, MDMA caused sustained decreases in rectal and tail temperature. Mephedrone caused a transient decrease in rectal temperature, which was enhanced by α1-adrenoceptor and dopamine D1 receptor blockade, and a prolonged decrease in tail temperature. Cathinone and methcathinone caused sustained increases in rectal temperature. MDMA decreased 5-HT and/or 5-hydroxyindoleacetic acid (5-HIAA) content in several brain regions and reduced striatal homovanillic acid (HVA) levels, whereas cathinone and methcathinone increased striatal HVA and 5-HIAA. Cathinone elevated striatal and hypothalamic 5-HT. Mephedrone elevated plasma noradrenaline levels, an effect prevented by α-adrenoceptor and dopamine receptor antagonists. Conclusions and Implications MDMA and cathinones have different effects on thermoregulation, and their acute effects on brain monoamines also differ. These findings suggest that the adverse effects of cathinones in humans cannot be extrapolated from previous observations on MDMA. PMID:23043631
Shortall, S E; Green, A R; Swift, K M; Fone, K C F; King, M V
2013-02-01
Recreational users report that mephedrone has similar psychoactive effects to 3,4-methylenedioxymethamphetamine (MDMA). MDMA induces well-characterized changes in body temperature due to complex monoaminergic effects on central thermoregulation, peripheral blood flow and thermogenesis, but there are little preclinical data on the acute effects of mephedrone or other synthetic cathinones. The acute effects of cathinone, methcathinone and mephedrone on rectal and tail temperature were examined in individually housed rats, with MDMA included for comparison. Rats were killed 2 h post-injection and brain regions were collected for quantification of 5-HT, dopamine and major metabolites. Further studies examined the impact of selected α-adrenoceptor and dopamine receptor antagonists on mephedrone-induced changes in rectal temperature and plasma catecholamines. At normal room temperature, MDMA caused sustained decreases in rectal and tail temperature. Mephedrone caused a transient decrease in rectal temperature, which was enhanced by α(1) -adrenoceptor and dopamine D(1) receptor blockade, and a prolonged decrease in tail temperature. Cathinone and methcathinone caused sustained increases in rectal temperature. MDMA decreased 5-HT and/or 5-hydroxyindoleacetic acid (5-HIAA) content in several brain regions and reduced striatal homovanillic acid (HVA) levels, whereas cathinone and methcathinone increased striatal HVA and 5-HIAA. Cathinone elevated striatal and hypothalamic 5-HT. Mephedrone elevated plasma noradrenaline levels, an effect prevented by α-adrenoceptor and dopamine receptor antagonists. MDMA and cathinones have different effects on thermoregulation, and their acute effects on brain monoamines also differ. These findings suggest that the adverse effects of cathinones in humans cannot be extrapolated from previous observations on MDMA. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.
Jokinen, Jussi; Samuelsson, Mats; Nordström, Anna-Lena; Nordström, Peter
2008-11-01
A lower thyroid-stimulating hormone (TSH) response to thyrotropin-releasing hormone (TRH) in depressed women has been associated with violent suicide attempts, suicidal intent, higher lethality and suicide risk. The cerebrospinal fluid (CSF) 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA) levels are related to suicidal behaviour. We studied the HPT axis function in twelve male suicide attempters and eight healthy volunteers submitted to lumbar puncture and to TRH test. Suicidal behaviour and depression severity were assessed. There was no association between deltamaxTSH and violent suicidality or subsequent suicide. The deltamaxTSH correlated with CSF HVA in suicide attempters. The plasma T3 showed a negative correlation with the Beck Suicide Intent Scale and the Montgomery Asberg Depression rating scale. Dopaminergic regulatory mechanisms on the thyroid hormone activity may be altered in male suicide attempters.
Tekes, Kornélia; Gyenge, Melinda; Hantos, Mónika; Csaba, György
2009-10-01
Biogenic amines (norepinephrine, dopamine, homovanillic acid, serotonin and 5-hyroxyindole acetic acid) were measured by HPLC method in adult F1 generation rats' brain regions (brainstem, hypothalamus, hippocampus, striatum and frontal cortex), whose mothers (P generation) were treated with vitamin A or vitamin D neonatally (hormonal imprinting). Many significant differences were found, related to the maternally untreated controls. In the earlier studied P generation females, vitamin A consistently influenced the serotonerg system (5HIAA), while vitamin D the dopaminerg system (DA or HVA). Vitamin A imprinting always resulted in reduced, while that by vitamin D always in increased tissue levels. In the present case (directly untreated F1 generation) the transgenerational effect was not unidirectional, however biogenic amine tissue levels were strongly disturbed and brain-area dependent. The results call attention to the transgenerational effect of hormonal imprinting in the case of receptor level acting vitamins which are frequently used in the most imprinting-sensitive period (perinatally) of human life and suggests that caution is warranted.
Lewczuk, Bogdan; Ziółkowska, Natalia; Prusik, Magdalena; Przybylska-Gornowicz, Barbara
2014-01-01
This study characterizes the diurnal profiles of ten melatonin synthesis-related indoles, the quantitative relations between these compounds, and daily variations in the contents of catecholamines and their metabolites in the domestic duck pineal organ. Fourteen-week-old birds, which were reared under a 12L:12D cycle, were killed at two-hour intervals. The indole contents were measured using HPLC with fluorescence detection, whereas the levels of catecholamines and their metabolites were measured using HPLC with electrochemical detection. All indole contents, except for tryptophan, showed significant diurnal variations. The 5-hydroxytryptophan level was approximately two-fold higher during the scotophase than during the photophase. The serotonin content increased during the first half of the photophase, remained elevated for approximately 10 h and then rapidly decreased in the middle of the scotophase. N-acetylserotonin showed the most prominent changes, with a more than 15-fold increase at night. The melatonin cycle demonstrated only an approximately 5-fold difference between the peak and nadir. The 5-methoxytryptamine content was markedly elevated during the scotophase. The 5-hydroxyindole acetic acid, 5-hydroxytryptophol, 5-methoxyindole acetic acid and 5-methoxytryptophol profiles were analogous to the serotonin rhythm. The norepinephrine and dopamine contents showed no significant changes. The DOPA, DOPAC and homovanillic acid levels were higher during the scotophase than during the photophase. Vanillylmandelic acid showed the opposite rhythm, with an elevated level during the daytime. PMID:25032843
Effects of 60-Hz electric fields on serotonin metabolism in the rat pineal gland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, L.E.; Hilton, D.I.; Phillips, R.D.
Serotonin and two of its metabolites, melatonin and 5-methoxytryptophol, exhibit circadian rhythmicity in the pineal gland. We recently reported a marked reduction in the normal night-time increase in melatonin concentration in the pineal glands of rats exposed to 60-Hz electric fields. Concomitant with the apparent abolition of melatonin rhythmicity, serotonin-N-acetyl transferase (SNAT) activity was suppressed. We have now conducted studies to determine if abolition of the rhythm in melatonin production in electric-field-exposed rats arises solely from interference in SNAT activity, or if the availability of pineal serotonin is a factor that is affected by exposure. Pineal serotonin concentrations were comparedmore » in rats that were either exposed or sham exposed to 65 kV/m for 30 days. Sham-exposed animals exhibited normal diurnal rhythmicity for pineal concentrations of both melatonin and serotonin; melatonin levels increased markedly during the dark phase with a concurrent decrease in serotonin levels. In the exposed animals, however, normal serotonin rhythmicity was abolished; serotonin levels in these animals did not increase during the light period. The conclusion that electric field exposure results in a biochemical alteration in SNAT enzyme activity can be inferred from the loss of both serotonin and melatonin rhythmicity, as well as by direct measurement of SNAT activity itself. 35 references, 3 figures, 1 table.« less
Characterization, solubilization and partial purification of serotonin 5-HT1C receptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yagaloff, K.A.
1986-01-01
/sup 125/I-Lysergic acid diethylamide (/sup 125/I-LSD) binds with high affinity to a unique serotonergic site on rat choroid plexus. These sites were localized to choroid plexus epithelial cells using a novel high resolution autoradiographic technique. In membrane preparations, the serotonergic site density was 3100 fmol/mg protein, which is 10 fold higher than the density of any other serotonergic site in brain homogenates. The pharmacology of this site, termed the 5-HT1c site, does not match that of 5-Ht1a, 5-HT1b or 5HT2 serotonergic sites. 5-Ht1c sites were solubilized from pig choroid plexus using the zwitterionic detergent, CHAPS. High affinity labelling of themore » solubilized site was obtained using the serotonergic radioligand, N1-methyl-2-(/sup 125/I)lysergic acid diethylamide (/sup 125/I-MIL). Choroid plexus tumors obtained from transgenic mice were examined for the presence of serotonin 5-HT1c receptors. /sup 125/I-LSD binding to choroid plexus tumors displays a pharmacological profile that matches the properties of 5-HT1c receptors in normal choroid plexus. The tumor exhibits the highest site density of serotonin receptors (6600 fmol/mg protein) found in any tissue. /sup 125/I-LSD autoradiography of brain sections from transgenic mice shows high levels of specific labelling over the tumor. The affinities of various indolealkyl, phenlakyl and beta-carboline derivatives for the serotonin 5-HT1c receptor were measured in pig choroid plexus using /sup 125/I-MIL. Serotonin precursors and metabolites were all very weak inhibitors of specific /sup 125/I-MIL binding. Structure-affinity relationships were determined for a number of indolealkylamine analogues. Only serotonin is present in cerebrospinal fluid at concentrations near its 5-HT1c inhibition constant, suggesting that serotonin is the natural 5-HT1c agonist.« less
Bel, N; Artigas, F
1995-05-01
We have used intracerebral microdialysis to examine the reversibility of the action of brofaromine, a selective inhibitor of monoamine oxidase-A (MAO, E.C. 1.4.3.4.), on 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) output in rat frontal cortex. Brofaromine significantly increased the 5-HT output to about 200% of basal values 4 h after the s.c. administration of 10 and 30 mg/kg (but not 3 mg/kg) and reduced the concentration of 5-HIAA in the dialysate dose-dependently (61%, 53% and 41% of basal value with doses of 3, 10 and 30 mg/kg, respectively). At this time, cortical 5-HT concentration was increased and cortical 5-HIAA concentration was decreased in a dose-dependent manner. Treatment of rats with 10 mg/kg brofaromine plus 2.5 mg/kg of the irreversible MAO-B inhibitor L-deprenyl increased the concentration of 5-HT in the dialysate more than did brofaromine alone (503% vs 206% of the basal value, 4h after administration). Similarly, clorgyline (5 mg/kg) plus L-deprenyl (2.5 mg/kg) increased the concentration of 5-HT in the dialysate to 461% of the control value. This indicates that the concurrent inhibition of both types of MAO increases 5-HT output more than the selective blockade of either enzyme subtype. We have used this characteristic to examine, in vivo, the reversibility of the interaction of brofaromine with MAO-A. The output of 5-HT and 5-HIAA was examined 19-21 h after treatment with L-deprenyl plus clorgyline or L-deprenyl plus brofaromine.(ABSTRACT TRUNCATED AT 250 WORDS)
Samad, Noreen; Haleem, Muhammad Abdul; Haleem, Darakhshan Jabeen
2016-07-01
Effect of administration of Rice bran oil (RBO) was evaluated on haloperidol elicited tardive dyskinesia in rats. Albino Wistar rats treated with haloperidol in drinking water at a dose of 0.2mg/kg/day and RBO by oral tubes at a dose of 0.4 mL/day for 5 weeks. Motor coordination, VCMs and 8-hydroxy-2-(di-n-propylamino) tetraline)[8-OH-DPAT] _syndrome were monitored. Striatal serotonin (5-hydroxytryptamine; 5-HT) and 5-hydroxyindolacetic acid (5-HIAA) levels were determined by high performance liquid chromatography (HPLC-EC). Rats treated with haloperidol orally at a dose of for a period of 5 weeks developed VCMs, which increased progressively as the treatment continued for 5 weeks. Motor coordination impairment started after the 1st week and was maximally impaired after 3 weeks and gradually returned to the 1st week value. Co-administration of RBO prevented haloperidol_induced VCMs as well impairment of motor coordination. The intensity of 8-OH-DPAT_induced syndrome and decreased 5-HT metabolism were greater in water + haloperidol treated animals than RBO + haloperidol treated animals. The present study suggested that involvement of free radical in the development of TD and point to RBO as a possible therapeutic option to treat this hyperkinetic motor disorder.
Shirane, M; Nakamura, K
2001-10-19
Aniracetam, a cognition enhancer, has been recently found to preferentially increase extracellular levels of dopamine (DA) and serotonin (5-HT) in the prefrontal cortex (PFC), basolateral amygdala and dorsal hippocampus of the mesocorticolimbic system in stroke-prone spontaneously hypertensive rats. In the present study, we aimed to identify actually active substances among aniracetam and its major metabolites and to clarify the mode of action in DA and 5-HT release in the PFC. Local perfusion of mecamylamine, a nicotinic acetylcholine (nACh) and N-methyl-D-aspartate (NMDA) receptor antagonist, into the ventral tegmental area (VTA) and dorsal raphe nucleus (DRN) completely blocked DA and 5-HT release, respectively, in the PFC elicited by orally administered aniracetam. The effects of aniracetam were mimicked by local perfusion of N-anisoyl-gamma-aminobutyric acid [corrected] (N-anisoyl-GABA), one of the major metabolites of aniracetam, into the VTA and DRN. The cortical DA release induced by N-anisoyl-GABA applied to the VTA was also completely abolished by co-perfusion of mecamylamine. Additionally, when p-anisic acid, another metabolite of aniracetam, and N-anisoyl-GABA were locally perfused into the PFC, they induced DA and 5-HT release in the same region, respectively. These results indicate that aniracetam enhances DA and 5-HT release by mainly mediating the action of N-anisoyl-GABA that targets not only somatodendritic nACh and NMDA receptors but also presynaptic nACh receptors.
Huang, Mei; Panos, John J; Kwon, Sunoh; Oyamada, Yoshihiro; Rajagopal, Lakshmi; Meltzer, Herbert Y
2014-03-01
Atypical antipsychotic drugs (AAPDs) have been suggested to be more effective in improving cognitive impairment in schizophrenia than typical APDs, a conclusion supported by differences in receptor affinities and neurotransmitter efflux in the cortex and the hippocampus. More potent serotonin (5-HT)2A than dopamine (DA) D2 receptors antagonism, and direct or indirect 5-HT1A agonism, characterize almost all AAPDs. Blonanserin, an AAPD, has slightly greater affinity for D2 than 5-HT2A receptors. Using microdialysis and ultra performance liquid chromatography-mass spectrometry/mass spectrometry, we compared the abilities of the typical APD, haloperidol, three AAPDs, blonanserin, lurasidone, and olanzapine, and a selective 5-HT1A partial agonist, tandospirone, and all, except haloperidol, were found to ameliorate the cognitive deficits produced by the N-methyl-d-aspartate antagonist, phencyclidine, altering the efflux of neurotransmitters and metabolites in the rat cortex and nucleus accumbens. Blonanserin, lurasidone, olanzapine, and tandospirone, but not haloperidol, increased the efflux of cortical DA and its metabolites, homovanillic acid and 3,4-dihydroxyphenylacetic acid. Olanzapine and lurasidone increased the efflux of acetylcholine; lurasidone increased glutamate as well. None of the compounds significantly altered the efflux of 5-HT or its metabolite, 5-hydroxyindole acetic acid, or GABA, serine, and glycine. The ability to increase cortical DA efflux was the only shared effect of the compounds which ameliorates the deficit in cognition in rodents following phencyclidine. © 2013 International Society for Neurochemistry.
Karpova, I V; Mikheev, V V; Marysheva, V V; Bychkov, E R; Proshin, S N
2016-03-01
Changes in activity of monoaminergic systems of the left and right brain hemispheres after administration of saline and oxytocin were studied in male C57Bl/6 mice subjected to social isolation. The concentrations of dopamine, norepinephrine, serotonin, and their metabolites dihydroxyphenylacetic, homovanillic, and 5-hydroxyindoleacetic acids were measured in the cerebral cortex, hippocampus, olfactory tubercle, and striatum of the left and right brain hemispheres by HPLC. In isolated aggressive males treated intranasally with saline, the content of serotonin and 5-hydroxyindoleacetic acid was significantly higher in the right hippocampus. Oxytocin reduces aggression caused by long-term social isolation, but has no absolute ability to suppress this type of behavior. Oxytocin reduced dopamine content in the left cortex and serotonin content in the right hippocampus and left striatum. Furthermore, oxytocin evened the revealed asymmetry in serotonin and 5-hydroxyindoleacetic acid concentrations in the hippocampus. At the same time, asymmetry in dopamine concentration appeared in the cortex with predominance of this transmitter in the right hemisphere. The data are discussed in the context of lateralization of neurotransmitter systems responsible for intraspecific aggression caused by long-term social isolation.
Steuer, Andrea E; Boxler, Martina I; Stock, Lorena; Kraemer, Thomas
2016-01-22
Neurotoxicity of 3,4-methylenedioxymethamphetamine (MDMA) is still controversially discussed. Formation of reactive oxygen species e.g. based on elevated dopamine (DA) concentrations and DA quinone formation is discussed among others. Inhibition potential of MDMA metabolites regarding neurotransmitter degradation by catechol-O-methyltransferase and sulfotransferase was described previously. Their influence on monoamine oxidase (MAO) - the major DA degradation pathway-has not yet been studied in humans. Therefore the inhibition potential of MDMA and its metabolites on the deamination of the neurotransmitters DA and serotonin (5-HT) by MAO-A and B using recombinant human enzymes in vitro should be investigated. In initial studies, MDMA and MDA showed relevant inhibition (>30%) toward MAO A for 5-HT and DA. No relevant effects toward MAO B were observed. Further investigation on MAO-A revealed MDMA as a competitive inhibitor of 5-HT and DA deamination with Ki 24.5±7.1 μM and 18.6±4.3 μM respectively and MDA as a mixed-type inhibitor with Ki 7.8±2.6 μM and 8.4±3.2 μM respectively. Although prediction of in vivo relevance needs to be done with care, relevant inhibitory effects at expected plasma concentrations after recreational MDMA consumption seems unlikely based on the obtained data. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Nakamura, K; Shirane, M; Koshikawa, N
2001-04-06
The effects of aniracetam on extracellular levels of dopamine (DA), serotonin (5-HT) and their metabolites were examined in five brain regions in freely moving stroke-prone spontaneously hypertensive rats (SHRSP) using in vivo microdialysis. Basal DA release in SHRSP was uniformly lower in all regions tested than that in age-matched control Wistar Kyoto rats. 3,4-Dihydroxyphenylacetic acid and homovanillic acid levels were altered in the basolateral amygdala, dorsal hippocampus and prefrontal cortex of SHRSP. While basal 5-HT release decreased in the striatum and increased in the basolateral amygdala, there was no associated change in 5-hydroxyindoleacetic acid levels. Systemic administration of aniracetam to SHRSP enhanced both DA and 5-HT release with partly associated change in their metabolite levels in the prefrontal cortex, basolateral amygdala and dorsal hippocampus, but not in the striatum and nucleus accumbens shell, in a dose-dependent manner (30 and/or 100 mg/kg p.o.). Microinjection (1 and 10 ng) of aniracetam or its metabolites (N-anisoyl-GABA and 2-pyrrolidinone) into the nucleus accumbens shell produced no turning behavior. These findings indicate that SHRSP have a dopaminergic hypofunction throughout the brain and that aniracetam elicits a site-specific activation in mesocorticolimbic dopaminergic and serotonergic pathways in SHRSP, possibly via nicotinic acetylcholine receptors in the ventral tegmental area and raphe nuclei. The physiological roles in the aniracetam-sensitive brain regions may closely link with their clinical efficacy towards emotional disturbances appearing after cerebral infarction.
Hubbard, K Elaine; Wells, Amy; Owens, Thandranese S; Tagen, Michael; Fraga, Charles H; Stewart, Clinton F
2010-06-01
A method to rapidly measure dopamine (DA), dihydroxyindolphenylacetic acid, homovanillic acid, serotonin (5-HT) and 5-hydroxyindoleacetic acid concentrations in cerebrospinal fluid (CSF) has not yet been reported. A rapid, sensitive, and specific HPLC method was therefore developed using electrochemical detection. CSF was mixed with an antioxidant solution prior to freezing to prevent neurotransmitter degradation. Separation of the five analytes was obtained on an ESA MD-150 x 3.2 mm column with a flow rate of 0.37 mL/min and an acetonitrile-aqueous (5 : 95, v/v) mobile phase with 75 mM monobasic sodium phosphate buffer, 0.5 mM EDTA, 0.81 mM sodium octylsulfonate and 5% tetrahydrofuran. The optimal electrical potential settings were: guard cell +325 mV, E1 -100 mV and E2 +300 mV. Within-day and between-day precisions were <10% for all analytes and accuracies ranged from 91.0 to 106.7%. DA, 5-HT, and their metabolites were stable in CSF with antioxidant solution at 4 degrees C for 8 h in the autoinjector. This method was used to measure neurotransmitters in CSF obtained from children enrolled on an institutional medulloblastoma treatment protocol. Copyright 2009 John Wiley & Sons, Ltd.
Regulation of embryonic neurotransmitter and tyrosine hydroxylase protein levels by ascorbic acid
Meredith, M. Elizabeth; May, James M.
2013-01-01
Scope: Ascorbic acid (ascorbate) is required to recycle tetrahydrobiopterin, which is necessary for neurotransmitter synthesis by the rate-limiting enzymes tyrosine and tryptophan hydroxylases. We sought to determine whether ascorbate might regulate embryonic brain cortex monoamine synthesis utilizing transgenic mouse models with varying intracellular ascorbate levels. Methods and Results: In embryos lacking the sodium-dependent vitamin C transporter 2 (SVCT2), very low levels of brain ascorbate decreased cortex levels of norepinephrine and dopamine by approximately 33%, but had no effect on cortex serotonin or its metabolite, 5-hydroxyindole acetic acid. This decrease in ascorbate also led to a decrease in protein levels of tyrosine hydroxylase, but not of tryptophan hydroxylase. Increased cortex ascorbate in embryos carrying extra copies of the SVCT2 resulted in increased levels of dopamine and its metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), as well as serotonin and 5-hydroxyindole acetic acid. Conclusion: The dependence of embryonic brain cortex neurotransmitter synthesis and tyrosine hydroxylase expression on intracellular ascorbate emphasizes the importance of receiving adequate ascorbate during development. PMID:24095796
Shen, Hong-Wu; Jiang, Xi-Ling; Winter, Jerrold C; Yu, Ai-Ming
2010-10-01
5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) belongs to a group of naturally-occurring psychoactive indolealkylamine drugs. It acts as a nonselective serotonin (5-HT) agonist and causes many physiological and behavioral changes. 5-MeO-DMT is O-demethylated by polymorphic cytochrome P450 2D6 (CYP2D6) to an active metabolite, bufotenine, while it is mainly inactivated through the deamination pathway mediated by monoamine oxidase A (MAO-A). 5-MeO-DMT is often used with MAO-A inhibitors such as harmaline. Concurrent use of harmaline reduces 5-MeO-DMT deamination metabolism and leads to a prolonged and increased exposure to the parent drug 5-MeO-DMT, as well as the active metabolite bufotenine. Harmaline, 5-MeO-DMT and bufotenine act agonistically on serotonergic systems and may result in hyperserotonergic effects or serotonin toxicity. Interestingly, CYP2D6 also has important contribution to harmaline metabolism, and CYP2D6 genetic polymorphism may cause considerable variability in the metabolism, pharmacokinetics and dynamics of harmaline and its interaction with 5-MeO-DMT. Therefore, this review summarizes recent findings on biotransformation, pharmacokinetics, and pharmacological actions of 5-MeO-DMT. In addition, the pharmacokinetic and pharmacodynamic drug-drug interactions between harmaline and 5-MeO-DMT, potential involvement of CYP2D6 pharmacogenetics, and risks of 5-MeO-DMT intoxication are discussed.
Autistic-like behavioural and neurochemical changes in a mouse model of food allergy.
de Theije, Caroline G M; Wu, Jiangbo; Koelink, Pim J; Korte-Bouws, Gerdien A H; Borre, Yuliya; Kas, Martien J H; Lopes da Silva, Sofia; Korte, S Mechiel; Olivier, Berend; Garssen, Johan; Kraneveld, Aletta D
2014-03-15
Food allergy has been suggested to contribute to the expression of psychological and psychiatric traits, including disturbed social behaviour and repetitive behaviour inherent in autism spectrum disorders (ASD). Most research in this field receives little attention, since fundamental evidence showing direct effects of food allergic immune responses on social behaviour is very limited. In the present study, we show that a food allergic reaction to cow's milk protein, induced shortly after weaning, reduced social behaviour and increased repetitive behaviour in mice. This food allergic reaction increased levels of serotonin (5-hydroxytryptamine; 5-HT) and the number of 5-HT positive cells, and decreased levels of 5-hydroxyindoleacetic acid (5-HIAA) in the intestine. Behavioural changes in food allergic mice were accompanied by reduced dopaminergic activity in the prefrontal cortex. Furthermore, neuronal activation (c-Fos expression) was increased in the prefrontal cortex and reduced in the paraventricular nucleus of the hypothalamus after exposure to a social target. We hypothesize that an intestinal allergic response regulates complex, but critical, neuroimmune interactions, thereby affecting brain circuits involved in social interaction, repetitive behaviour and cognition. Together with a genetic predisposition and multiple environmental factors, these effects of allergic immune activation may exacerbate behavioural abnormalities in patients with ASD. Copyright © 2013 Elsevier B.V. All rights reserved.
Neurochemical and behavioural interactions between ibogaine and nicotine in the rat.
Benwell, M. E.; Holtom, P. E.; Moran, R. J.; Balfour, D. J.
1996-01-01
1. In vivo brain microdialysis has been employed to investigate the effects of ibogaine on nicotine-induced changes in dopamine overflow in the nucleus accumbens (NAc) of freely moving rats. The effects of the compound on locomotor responses to nicotine and behaviour in the elevated plus-maze were also examined. 2. No changes were observed in the dopamine overflow or the locomotor activity of the animals following the administration of ibogaine (40 mg kg-1, i.p.). However, ibogaine, administered 22 h earlier, significantly (P < 0.01) attenuated the increase in dopamine overflow but not the hyperlocomotion, evoked by nicotine. 3. In the elevated plus-maze test, significant reductions in the open:total runway entries in both saline-treated controls (P < 0.05) and nicotine-treated (P < 0.01) rats were obtained when the animals were tested 22 h after pretreatment with ibogaine (40 mg kg-1, i.p.). The total activity was significantly (P < 0.01) greater in the nicotine-treated rats but this response was not affected by ibogaine pretreatment. 4. Administration of ibogaine was associated with reductions in the tissue levels of 5-hydroxyindoleacetic acid (5-HIAA) in the NAc (P < 0.01) and striatum (P < 0.05) and an increase in the level of this metabolite in the medial prefrontal cortex (mPFC) (P < 0.01) while the levels of dopamine and 5-hydroxytryptamine (5-HT) in the mPFC were reduced (P < 0.05). The DOPAC/dopamine (P < 0.05) and 5-HIAA/5-HT (P < 0.01) ratios were significantly increased in the mPFC for at least 7 days after a single treatment with ibogaine. 5. Ibogaine attenuates the nicotine-induced increases in dopamine overflow in the NAc and may, therefore, inhibit the rewarding effects of this drug. However, the long lasting anxiogenesis induced by ibogaine warrant further investigation before its use could be recommended for smokers. PMID:8646423
Schou-Pedersen, Anne Marie V; Hansen, Stine N; Tveden-Nyborg, Pernille; Lykkesfeldt, Jens
2016-08-15
In the present paper, we describe a validated chromatographic method for the simultaneous quantification of monoamine neurotransmitters and their biogenic metabolites intracellularly and extracellularly in primary neuronal cell culture and in sub-regions of the guinea pig brain. Electrochemical detection provided limits of quantifications (LOQs) between 3.6 and 12nM. Within the linear range, obtained recoveries were from 90.9±9.9 to 120±14% and intra-day and inter-day precisions found to be less than 5.5% and 12%, respectively. The analytical method was applicable for quantification of intracellular and extracellular amounts of monoamine neurotransmitters and their metabolites in guinea pig frontal cortex and hippocampal primary neuronal cell cultures. Noradrenaline, dopamine and serotonin were found to be in a range from 0.31 to 1.7pmol per 2 million cells intracellularly, but only the biogenic metabolites could be detected extracellularly. Distinct differences in monoamine concentrations were observed when comparing concentrations in guinea pig frontal cortex and cerebellum tissue with higher amounts of dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid in frontal cortex, as compared to cerebellum. The chemical turnover in frontal cortex tissue of guinea pig was for serotonin successfully predicted from the turnover observed in the frontal cortex cell culture. In conclusion, the present analytical method shows high precision, accuracy and sensitivity and is broadly applicable to monoamine measurements in cell cultures as well as brain biopsies from animal models used in preclinical neurochemistry. Copyright © 2016 Elsevier B.V. All rights reserved.
Shokry, Ibrahim M.; Callanan, John J.; Sousa, John; Tao, Rui
2016-01-01
In spite of the fact that systemic administration of MDMA elicits serotonin syndrome, direct intracranial administration fails to reproduce the effect. To reconcile these findings, it has been suggested that the cause of serotonin syndrome is attributed mainly to MDMA hepatic metabolites, and less likely to MDMA itself. Recently, however, this explanation has been challenged, and alternative hypotheses need to be explored. Here, we tested the hypothesis that serotonin syndrome is the result of excessive 5HT simultaneously in many brain areas, while MDMA administered intracranially fails to cause serotonin syndrome because it produces only a localized effect at the delivery site and not to other parts of the brain. This hypothesis was examined using adult male Sprague Dawley rats by comparing 5HT responses in the right and left hemispheric frontal cortices, right and left hemispheric diencephalons, and medullar raphe nucleus. Occurrence of serotonin syndrome was confirmed by measuring change in body temperature. Administration routes included intraperitoneal (IP), intracerebroventricular (ICV) and reverse microdialysis. First, we found that IP administration caused excessive 5HT in all five sites investigated and induced hypothermia, suggesting the development of the serotonin syndrome. In contrast, ICV and reverse microdialysis caused excessive 5HT only in regions of delivery sites without changes in body-core temperature, suggesting the absence of the syndrome. Next, chemical dyes were used to trace differences in distribution and diffusion patterns between administration routes. After systemic administration, the dyes were found to be evenly distributed in the brain. However, the dyes administered through ICV or reverse microdialysis injection still remained in the delivery sites, poorly diffusing to the brain. In conclusion, intracranial MDMA administration in one area has no or little effect on other areas, which must be considered a plausible reason for the difference in MDMA-elicited serotonin syndrome between systemic and intracranial administrations. PMID:27192423
Shokry, Ibrahim M; Callanan, John J; Sousa, John; Tao, Rui
2016-01-01
In spite of the fact that systemic administration of MDMA elicits serotonin syndrome, direct intracranial administration fails to reproduce the effect. To reconcile these findings, it has been suggested that the cause of serotonin syndrome is attributed mainly to MDMA hepatic metabolites, and less likely to MDMA itself. Recently, however, this explanation has been challenged, and alternative hypotheses need to be explored. Here, we tested the hypothesis that serotonin syndrome is the result of excessive 5HT simultaneously in many brain areas, while MDMA administered intracranially fails to cause serotonin syndrome because it produces only a localized effect at the delivery site and not to other parts of the brain. This hypothesis was examined using adult male Sprague Dawley rats by comparing 5HT responses in the right and left hemispheric frontal cortices, right and left hemispheric diencephalons, and medullar raphe nucleus. Occurrence of serotonin syndrome was confirmed by measuring change in body temperature. Administration routes included intraperitoneal (IP), intracerebroventricular (ICV) and reverse microdialysis. First, we found that IP administration caused excessive 5HT in all five sites investigated and induced hypothermia, suggesting the development of the serotonin syndrome. In contrast, ICV and reverse microdialysis caused excessive 5HT only in regions of delivery sites without changes in body-core temperature, suggesting the absence of the syndrome. Next, chemical dyes were used to trace differences in distribution and diffusion patterns between administration routes. After systemic administration, the dyes were found to be evenly distributed in the brain. However, the dyes administered through ICV or reverse microdialysis injection still remained in the delivery sites, poorly diffusing to the brain. In conclusion, intracranial MDMA administration in one area has no or little effect on other areas, which must be considered a plausible reason for the difference in MDMA-elicited serotonin syndrome between systemic and intracranial administrations.
Ortiz, Águeda; Espino, Javier; Bejarano, Ignacio; Lozano, Graciela M; Monllor, Fabián; García, Juan F; Pariente, José A; Rodríguez, Ana B
2010-11-08
Serotonin is a neurotransmitter that modulates a wide range of neuroendocrine functions. However, excessive circulating serotonin levels may induce harmful effects in the male reproductive system. The objective of this study was to evaluate whether the levels of urinary 5-hydroxyindoleacetic acid (5-HIIA), a major serotonin metabolite, correlate with different classical seminal parameters. Human ejaculates were obtained from 40 men attending infertility counselling and rotating shift workers by masturbation after 4-5 days of abstinence. Urinary 5- HIIA concentration was quantified by using a commercial ELISA kit. Forward motility was assessed by a computer-aided semen analysis (CASA) system. Sperm concentration was determined using the haemocytometer method. Sperm morphology was evaluated after Diff-Quik staining, while sperm vitality was estimated after Eosin-Nigrosin vital staining. Our results show that urinary 5-HIIA levels obtained from a set of 20 volunteers negatively correlated with sperm concentration, forward motility, morphology normal range and sperm vitality. On the other hand, we checked the relationship between male infertility and urinary 5-HIIA levels in 20 night shift workers. Thus, urinary 5-HIIA levels obtained from 10 recently-proven fathers were significantly lower than those found in 10 infertile males. Additionally, samples from recent fathers exhibited higher sperm concentration, as well as better forward motility and normal morphology rate. In the light of our findings, we concluded that high serotonin levels, indirectly measured as urinary 5-HIIA levels, appear to play a role as an infertility determinant in male subjects.
Rao, V A
1999-10-01
Suicide is an important mode of death. There are many psychiatrically ill patients in therapy running different degree of suicide risk. The risk of death by suicide is with almost all psychiatric illnesses, but it is found more with depressive disease, schizophrenia and personality disorder. Many studies have reported higher incidences of suicide attempts and suicide among alcoholics, which is often precipitated by family crises. Drug problems, low threshold for tolerance of day to day frustration, unemployement and poor parenting are major causes for youth suicide.There is biological evidence of suicidal behaviour. Fall in the level of serotonin and 5-HIAA in the CSF and in hind brain is found in subjects dying from suicide. Researchers have found decreased melatonin level in depression and suicide attempters. Long term therapy with antidepressants (Tricyclics), mood stabilizers (lithium and valproate) and new SSRIs prevent relapses and lessen suicide. It was concluded that general hospital doctors are in position of reducing suicide rates. Education of physician in detection of depression and suicide prevention will result in decline in number of suicides. The important measures include limiting the ability of methods of self-harm, antidepressants, paracetamol and insecticides.
Rao, Venkoba A.
1999-01-01
Suicide is an important mode of death. There are many psychiatrically ill patients in therapy running different degree of suicide risk. The risk of death by suicide is with almost all psychiatric illnesses, but it is found more with depressive disease, schizophrenia and personality disorder. Many studies have reported higher incidences of suicide attempts and suicide among alcoholics, which is often precipitated by family crises. Drug problems, low threshold for tolerance of day to day frustration, unemployement and poor parenting are major causes for youth suicide. There is biological evidence of suicidal behaviour. Fall in the level of serotonin and 5-HIAA in the CSF and in hind brain is found in subjects dying from suicide. Researchers have found decreased melatonin level in depression and suicide attempters. Long term therapy with antidepressants (Tricyclics), mood stabilizers (lithium and valproate) and new SSRIs prevent relapses and lessen suicide. It was concluded that general hospital doctors are in position of reducing suicide rates. Education of physician in detection of depression and suicide prevention will result in decline in number of suicides. The important measures include limiting the ability of methods of self-harm, antidepressants, paracetamol and insecticides. PMID:21430799
Iodine-131 metaiodobenzylguanidine treatment for metastatic carcinoid. Results in 98 patients.
Safford, Shawn D; Coleman, R Edward; Gockerman, Jon P; Moore, Joseph; Feldman, Jerome; Onaitis, Mark W; Tyler, Douglas S; Olson, John A
2004-11-01
Iodine-131 metaiodobenzylguanidine (131I-MIBG) is useful for imaging carcinoid tumors and recently has been applied to the palliative treatment of metastatic carcinoid in small studies. The authors now report their results on the therapeutic utility of high-dose 131I-MIBG treatment in a large group of patients with metastatic carcinoid tumors. The authors performed a retrospective review of 98 patients with metastatic carcinoid who were treated at their institution with 131I-MIBG over a 15-year period. Endpoints examined included the World Health Organization criteria for treatment response: symptoms, hormone (5-hydroxyindoleacetic acid [5-HIAA]) production, and clinical tumor response. Patients received a median dose of 401 +/- 202 millicuries (mCi) 131I-MIBG. The median survival after treatment was 2.3 years. Patients who experienced a symptomatic response had improved survival (5.76 years vs. 2.09 years; P < 0.01). For the 56 patients who had 5-HIAA levels monitored, the mean urine 5-HIAA levels decreased significantly after 131I-MIBG treatment (126 +/- 122 ng/mL vs. 91 +/- 125 ng/mL; P < 0.01); however, the patients with reduced 5-HIAA levels did not experience improved survival (4.11 years vs. 3.42 years; P = 0.2). Patients who received an initial 131I-MIBG dose > 400 mCi lived longer than patients who received < 400 mCi (4.69 years vs. 1.86 years; P = 0.05). Radiographic tumor response did not predict survival. Toxicity included pancytopenia, thrombocytopenia, nausea, and emesis. The current data support 131I-MIBG treatment in select patients with metastatic carcinoid who progress despite optimal medical management. Improved survival was predicted best by symptomatic response to 131I-MIBG treatment, but not by hormone or radiographic response.
Patel, Bhavik Anil; Arundell, Martin; Parker, Kim H; Yeoman, Mark S; O'Hare, Danny
2005-04-25
Using the CNS of Lymnaea stagnalis a method is described for the rapid analysis of neurotransmitters and their metabolites using high performance liquid chromatography coupled with electrochemical detection. Tissue samples were homogenised in ice-cold 0.1 M perchloric acid and centrifuged. Using a C(18) microbore column the mobile phase was maintained at a flow rate of 100 microl/min and consisted of sodium citrate buffer (pH 3.2)-acetonitrile (82.5:17.5, v/v) with 2 mM decane-sulfonic acid sodium salt. The potential was set at +750 mV versus Ag|AgCl reference electrode at a sensitivity of 50 nA full scale deflection. The detection limit for serotonin was 11.86 ng ml(-1) for a 5 microl injection. Preparation of tissue samples in mobile phase reduced the response to dopamine and serotonin compared with perchloric acid. In addition it was found that the storage of tissue samples at -20 degrees C caused losses of dopamine and serotonin. As a result of optimising the sample preparation and mobile phase the total time of analysis was substantially reduced resulting in a sample preparation and assay time of 15-20 min.
Shen, Hong-Wu; Jiang, Xi-Ling; Winter, Jerrold C.; Yu, Ai-Ming
2011-01-01
5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) belongs to a group of naturally-occurring psychoactive indolealkylamine drugs. It acts as a nonselective serotonin (5-HT) agonist and causes many physiological and behavioral changes. 5-MeO-DMT is O-demethylated by polymorphic cytochrome P450 2D6 (CYP2D6) to an active metabolite, bufotenine, while it is mainly inactivated through the deamination pathway mediated by monoamine oxidase A (MAO-A). 5-MeO-DMT is often used with MAO-A inhibitors such as harmaline. Concurrent use of harmaline reduces 5-MeO-DMT deamination metabolism and leads to a prolonged and increased exposure to the parent drug 5-MeO-DMT, as well as the active metabolite bufotenine. Harmaline, 5-MeO-DMT and bufotenine act agonistically on serotonergic systems and may result in hyperserotonergic effects or serotonin toxicity. Interestingly, CYP2D6 also has important contribution to harmaline metabolism, and CYP2D6 genetic polymorphism may cause considerable variability in the metabolism, pharmacokinetics and dynamics of harmaline and its interaction with 5-MeO-DMT. Therefore, this review summarizes recent findings on biotransformation, pharmacokinetics, and pharmacological actions of 5-MeO-DMT. In addition, the pharmacokinetic and pharmacodynamic drug-drug interactions between harmaline and 5-MeO-DMT, potential involvement of CYP2D6 pharmacogenetics, and risks of 5-MeO-DMT intoxication are discussed. PMID:20942780
Guzman, D Calderon; Garcia, E Hernandez; Mejia, G Barragan; Olguin, H Juarez; Gonzalez, J A Saldivar; Labra Ruiz, N A
2014-01-15
The study aimed to determine the effect of morphine and lacosamide on levels of dopamine and 5-HIAA in a hypoglycemic model. Female Wistar rats (n = 30), mean weight of 180 g were treated as follow: Group 1 (control) received 0.9% NaCl, Group II; morphine (10 mg kg(-1)), Group III; lacosamide (10 mg kg(-1)), Group IV; insulin (10 U.I. per rat), Group V; morphine (10 mg kg(-1))+insulin, Group VI; lacosamide (10 mg kg(-1))+ insulin. All administrations were made intraperitoneally every 24 h, for 5 days. Animals were sacrificed after the last dose to measure the levels of glucose in blood; dopamine and 5-HIAA in cortex, hemispheres and cerebellum/medulla oblongata regions. Levels of glucose decreased significantly in animals treated with morphine, lacosamide and all groups that received insulin alone or combined with respect to control group. Levels of Dopamine diminished significantly in cortex and increased significantly in hemispheres of animals that received morphine. In cortex, 5-HIAA increase significantly in the groups treated with morphine, morphine+insulin and lacosamide+insulin, however a significant decrease of the same substance was witnessed in cerebellum and medulla oblongata of animals that received morphine or lacosamide plus insulin. GSH increased significantly in cortex and cerebellum/medulla oblongata of animals treated with morphine and lacosamide alone or combined with insulin. Lipid peroxidation decreased significantly in cortex and cerebellum/medulla oblongata of groups that received lacosamide alone or combined with insulin. These results indicate that hypoglycemia induced changes in cellular regulation while morphine and lacosamide are accompanied by biochemical responses.
Guzmàn, David Calderón; Herrera, Maribel Ortiz; Brizuela, Norma Osnaya; Mejía, Gerardo Barragàn; García, Ernestina Hernàndez; Olguín, Hugo Juàrez; Peraza, Armando Valenzuela; Ruíz, Norma Labra; Del Angel, Daniel Santamaría
2017-01-01
The effects of some natural products on dopamine (DA) and 5-hydroxyindole acetic acid (5-HIAA) in brain of infected models are still unclear. The purpose of this study was to measure the effect of Mexican arnica/rosemary (MAR) water extract and oseltamivir on both biogenic amines and some oxidative biomarkers in the brain and stomach of young rats under infection condition. Female Wistar rats (weight 80 g) in the presence of MAR or absence (no-MAR) were treated as follows: group 1, buffer solution (controls); oseltamivir (100 mg/kg), group 2; culture of Salmonella typhimurium ( S.Typh ) (1 × 10 6 colony-forming units/rat) group 3; oseltamivir (100 mg/kg) + S.Typh (same dose) group 4. Drug and extracts were administered intraperitoneally every 24 h for 5 days, and S.Typh was given orally on days 1 and 3. On the fifth day, blood was collected to measure glucose and hemoglobin. The brains and stomachs were obtained to measure levels of DA, 5-HIAA, glutathione (GSH), TBARS, H 2 O 2 , and total ATPase activity using validated methods. DA levels increased in MAR group treated with oseltamivir alone but decreased in no-MAR group treated with oseltamivir plus S.Typh . 5-HIAA, GSH, and H 2 O 2 decreased in this last group, and ATPase activity increased in MAR group treated with oseltamivir plus S.Typh . TBARS (lipid peroxidation) increased in MAR group that received oseltamivir alone. Most of the biomarkers were not altered significantly in the stomach. MAR extract alters DA and metabolism of 5-HIAA in the brain of young animals infected. Antioxidant capacity may be involved in these effects. The purpose of this study was to measure the effect of Mexican arnica/rosemary water extract and oseltamivir on both biogenic amines and some oxidative biomarkers in the brain and stomach of young rats under infection condition. Results: Mexican arnica and rosemary extract alter dopamine and metabolism of 5-HIAA in the brain of young animals infected. Antioxidant capacity may be involved in these effects. Abbreviations used: AS: Automated system, ATP: Adenosine triphosphate, CNS: Central nervous system, CFU: Colony-forming unit, DA: Dopamine EDTA: Ethylenediaminetetraacetic acid, 5-HIAA: Äcido 5-hidroxindolacético (serotonina), GABA: γ-aminobutyric acid, GSH: Glutathione, H2O2: Hidrogen peroxide, HCLO4: Perchloric acid, iNOS: Inducible nitric oxide synthase, LPS: Lipopolysaccharides, MAR: Arnica/Rosemary, NaCl: Sodium Chloride, NOGSH: nitrosoglutathione, NOS: Nitric oxide, OPT: Ortho-phtaldialdehyde, Pbs: Phosphate buffered saline, pH: potential of Hydrogen, Pi: Inorganic phosphate, ROS: Reactive oxygen species, RNSs: Reactive nitrogen species Tba: Thiobarbaturic acid, TBARS: Thiobarbituric aid reactive, Tca: Trichloroacetic, Tris-HCL: Tris hydrochloride, TSA: Trypticasein Soya Agar.
Guzmàn, David Calderón; Herrera, Maribel Ortiz; Brizuela, Norma Osnaya; Mejía, Gerardo Barragàn; García, Ernestina Hernàndez; Olguín, Hugo Juàrez; Peraza, Armando Valenzuela; Ruíz, Norma Labra; Del Angel, Daniel Santamaría
2017-01-01
Background: The effects of some natural products on dopamine (DA) and 5-hydroxyindole acetic acid (5-HIAA) in brain of infected models are still unclear. Objective: The purpose of this study was to measure the effect of Mexican arnica/rosemary (MAR) water extract and oseltamivir on both biogenic amines and some oxidative biomarkers in the brain and stomach of young rats under infection condition. Methods: Female Wistar rats (weight 80 g) in the presence of MAR or absence (no-MAR) were treated as follows: group 1, buffer solution (controls); oseltamivir (100 mg/kg), group 2; culture of Salmonella typhimurium (S.Typh) (1 × 106 colony-forming units/rat) group 3; oseltamivir (100 mg/kg) + S.Typh (same dose) group 4. Drug and extracts were administered intraperitoneally every 24 h for 5 days, and S.Typh was given orally on days 1 and 3. On the fifth day, blood was collected to measure glucose and hemoglobin. The brains and stomachs were obtained to measure levels of DA, 5-HIAA, glutathione (GSH), TBARS, H2O2, and total ATPase activity using validated methods. Results: DA levels increased in MAR group treated with oseltamivir alone but decreased in no-MAR group treated with oseltamivir plus S.Typh. 5-HIAA, GSH, and H2O2 decreased in this last group, and ATPase activity increased in MAR group treated with oseltamivir plus S.Typh. TBARS (lipid peroxidation) increased in MAR group that received oseltamivir alone. Most of the biomarkers were not altered significantly in the stomach. Conclusion: MAR extract alters DA and metabolism of 5-HIAA in the brain of young animals infected. Antioxidant capacity may be involved in these effects. SUMMARY The purpose of this study was to measure the effect of Mexican arnica/rosemary water extract and oseltamivir on both biogenic amines and some oxidative biomarkers in the brain and stomach of young rats under infection condition. Results: Mexican arnica and rosemary extract alter dopamine and metabolism of 5-HIAA in the brain of young animals infected. Antioxidant capacity may be involved in these effects. Abbreviations used: AS: Automated system, ATP: Adenosine triphosphate, CNS: Central nervous system, CFU: Colony-forming unit, DA: Dopamine EDTA: Ethylenediaminetetraacetic acid, 5-HIAA: Äcido 5-hidroxindolacético (serotonina), GABA: γ-aminobutyric acid, GSH: Glutathione, H2O2: Hidrogen peroxide, HCLO4: Perchloric acid, iNOS: Inducible nitric oxide synthase, LPS: Lipopolysaccharides, MAR: Arnica/Rosemary, NaCl: Sodium Chloride, NOGSH: nitrosoglutathione, NOS: Nitric oxide, OPT: Ortho-phtaldialdehyde, Pbs: Phosphate buffered saline, pH: potential of Hydrogen, Pi: Inorganic phosphate, ROS: Reactive oxygen species, RNSs: Reactive nitrogen species Tba: Thiobarbaturic acid, TBARS: Thiobarbituric aid reactive, Tca: Trichloroacetic, Tris-HCL: Tris hydrochloride, TSA: Trypticasein Soya Agar PMID:28539708
Monoamine metabolites, iron induced seizures, and the anticonvulsant effect of tannins.
Kabuto, H; Yokoi, I; Mori, A
1992-06-01
Intracortical injections of iron ions have been shown to induce recurrent seizures and epileptic discharges in the EEG. (-)-Epigallocatechin (EGC) and (-)-epigallocatechin-3-O-gallate (EGCG), isolated from green tea leaves, have been reported to prevent or diminish the occurrence of epileptic discharges induced by iron ions, and to inhibit catechol-O-methyltransferase. Iron ions significantly increased DOPAC and HVA levels in the intrastriatal perfusate 140 and 180 minutes, respectively, after injection. EGC and EGCG inhibited the increases induced by iron ions. Furthermore, EGCG decreased the HVA level in the perfusate 200 minutes after injection whether or not iron ions were injected. Iron ions had no effect on the 5-HIAA level, and EGC and EGCG raised it. These results suggest that formation of an epileptic focus induced by iron ions might be accompanied by activation of dopaminergic neurons, and that EGC and EGCG inhibit that hyperactivity.
von Moltke, L L; Greenblatt, D J; Cotreau-Bibbo, M M; Harmatz, J S; Shader, R I
1994-01-01
1. The biotransformation of the triazolobenzodiazepine alprazolam (ALP) to its hydroxylated metabolites (4-OH-ALP and alpha-OH-ALP) was evaluated in human, monkey, rat, and mouse liver microsomes. 2. In all species 4-OH-ALP was the principal metabolite, accounting for 84% of clearance in human microsomes compared with 16% for alpha-OH-ALP. 3. Among the serotonin-specific reuptake inhibitors fluoxetine (FLU) and sertraline (SERT), and their respective demethylated metabolites norfluoxetine (NOR) and desmethylsertraline (DES), NOR was the most potent inhibitor (mean Ki for 4-OH-ALP formation in humans: 11 microM), FLU the weakest (Ki = 83 microM), with SERT and DES falling in between (Ki = 24 and 20 microM). 4. The in vitro data predict 29% inhibition of ALP clearance at mean FLU and NOR plasma concentrations of 77 ng ml-1 and 72 ng ml-1, respectively, after correction for liver:water partition ratios in the range of 12-14. The observed mean degree of inhibition in a previous in vivo study was 21%. 5. Ketoconazole was a potent inhibitor of ALP metabolism in vitro (Ki = 0.046 microM), suggesting that ALP hydroxylation is mediated by the cytochrome P450-3A sub-family. Quinidine was a weak inhibitor (Ki = 626 microM). PMID:7946933
Dopamine receptor antagonism disrupts social preference in zebrafish, a strain comparison study
Scerbina, Tanya; Chatterjee, Diptendu; Gerlai, Robert
2012-01-01
Zebrafish form shoals in nature and in the laboratory. The sight of conspecifics has been found reinforcing in zebrafish learning tasks. However, the mechanisms of shoaling, and those of its reinforcing properties, are not known. The dopaminergic system has been implicated in reward among other functions and it is also engaged by drugs of abuse as shown in a variety of vertebrates including zebrafish. The ontogenetic changes in dopamine levels and, to a lesser degree, in serotonin levels, have been found to accompany the maturation of shoaling in zebrafish. Thus, we hypothesized that the dopaminergic system may contribute to shoaling in zebrafish. To test this we employed a D1-receptor antagonist and quantified behavioral responses of our subjects using a social preference (shoaling) paradigm. We found significant reduction of social preference induced by the D1-R antagonist, SCH23390, in the AB strain of zebrafish, an alteration that was not accompanied by changes in motor function or vision. We also detected D1-R antagonist induced changes in the level of dopamine, DOPAC, serotonin and 5HIAA, respectively, in the brain of AB zebrafish as quantified by HPLC with electrochemical detection. We found the antagonist induced behavioral changes to be absent and the levels of these neurochemicals to be lower in another zebrafish population, SF, demonstrating naturally occurring genetic variability in these traits. We conclude that this variability may be utilized to unravel the mechanisms of social behavior in zebrafish, a line of research that may be extended to other vertebrates including our own species. PMID:22491827
2010-01-01
Background Serotonin is a neurotransmitter that modulates a wide range of neuroendocrine functions. However, excessive circulating serotonin levels may induce harmful effects in the male reproductive system. The objective of this study was to evaluate whether the levels of urinary 5-hydroxyindoleacetic acid (5-HIIA), a major serotonin metabolite, correlate with different classical seminal parameters. Methods Human ejaculates were obtained from 40 men attending infertility counselling and rotating shift workers by masturbation after 4-5 days of abstinence. Urinary 5- HIIA concentration was quantified by using a commercial ELISA kit. Forward motility was assessed by a computer-aided semen analysis (CASA) system. Sperm concentration was determined using the haemocytometer method. Sperm morphology was evaluated after Diff-Quik staining, while sperm vitality was estimated after Eosin-Nigrosin vital staining. Results Our results show that urinary 5-HIIA levels obtained from a set of 20 volunteers negatively correlated with sperm concentration, forward motility, morphology normal range and sperm vitality. On the other hand, we checked the relationship between male infertility and urinary 5-HIIA levels in 20 night shift workers. Thus, urinary 5-HIIA levels obtained from 10 recently-proven fathers were significantly lower than those found in 10 infertile males. Additionally, samples from recent fathers exhibited higher sperm concentration, as well as better forward motility and normal morphology rate. Conclusions In the light of our findings, we concluded that high serotonin levels, indirectly measured as urinary 5-HIIA levels, appear to play a role as an infertility determinant in male subjects. PMID:21059225
Interplay between aggression, brain monoamines and fur color mutation in the American mink.
Kulikov, A V; Bazhenova, E Y; Kulikova, E A; Fursenko, D V; Trapezova, L I; Terenina, E E; Mormede, P; Popova, N K; Trapezov, O V
2016-11-01
Domestication of wild animals alters the aggression towards humans, brain monoamines and coat pigmentation. Our aim is the interplay between aggression, brain monoamines and depigmentation. The Hedlund white mutation in the American mink is an extreme case of depigmentation observed in domesticated animals. The aggressive (-2.06 ± 0.03) and tame (+3.5 ± 0.1) populations of wild-type dark brown color (standard) minks were bred during 17 successive generations for aggressive or tame reaction towards humans, respectively. The Hedlund mutation was transferred to the aggressive and tame backgrounds to generate aggressive (-1.2 ± 0.1) and tame (+3.0 ± 0.2) Hedlund minks. Four groups of 10 males with equal expression of aggressive (-2) or tame (+5) behavior, standard or with the Hedlund mutation, were selected to study biogenic amines in the brain. Decreased levels of noradrenaline in the hypothalamus, but increased concentrations of the serotonin metabolite, 5-hydroxyindoleacetic acid and dopamine metabolite, homovanillic acid, in the striatum were measured in the tame compared with the aggressive standard minks. The Hedlund mutation increased noradrenaline level in the hypothalamus and substantia nigra, serotonin level in the substantia nigra and striatum and decreased dopamine concentration in the hypothalamus and striatum. Significant interaction effects were found between the Hedlund mutation and aggressive behavior on serotonin metabolism in the substantia nigra (P < 0.001), dopamine level in the midbrain (P < 0.01) and its metabolism in the striatum (P < 0.05). These results provide the first experimental evidence of the interplay between aggression, brain monoamines and the Hedlund mutation in the American minks. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
2013-01-01
Major depressive disorder (MDD) is a multifactorial disorder known to be influenced by both genetic and environmental factors. MDD presents a heritability of 37%, and a genetic contribution has also been observed in studies of family members of individuals with MDD that imply that the probability of suffering the disorder is approximately three times higher if a first-degree family member is affected. Childhood maltreatment and stressful life events (SLEs) have been established as critical environmental factors that profoundly influence the onset of MDD. The serotonin pathway has been a strong candidate for genetic studies, but it only explains a small proportion of the heritability of the disorder, which implies the involvement of other pathways. The serotonin (5-HT) pathway interacts with the stress response pathway in a manner mediated by the hypothalamic-pituitary-adrenal (HPA) axis. To analyze the interaction between the pathways, we propose the use of a synchronous Boolean network (SBN) approximation. The principal aim of this work was to model the interaction between these pathways, taking into consideration the presence of selective serotonin reuptake inhibitors (SSRIs), in order to observe how the pathways interact and to examine if the system is stable. Additionally, we wanted to study which genes or metabolites have the greatest impact on model stability when knocked out in silico. We observed that the biological model generated predicts steady states (attractors) for each of the different runs performed, thereby proving that the system is stable. These attractors changed in shape, especially when anti-depressive drugs were also included in the simulation. This work also predicted that the genes with the greatest impact on model stability were those involved in the neurotrophin pathway, such as CREB, BDNF (which has been associated with major depressive disorder in a variety of studies) and TRkB, followed by genes and metabolites related to 5-HT synthesis. PMID:24093582
Koulu, M; Scheinin, M; Kaarttinen, A; Kallio, J; Pyykkö, K; Vuorinen, J; Zimmer, R H
1989-01-01
1. Single oral doses (100, 200 and 300 mg) of moclobemide, a reversible inhibitor of monoamine oxidase (MAO) with predominant effects on the A-type of the enzyme, were administered to eight young, healthy male volunteers in a double-blind, random-order, placebo-controlled study. The investigation was thereafter continued in an open fashion by administering a single 10 mg dose of the MAO-B inhibitor deprenyl to the same subjects. 2. Deamination of catecholamines was powerfully and dose-dependently inhibited by moclobemide, as evidenced by up to 40% decreases in the urinary excretion of deaminated catecholamine metabolites, corresponding increases in the excretion of non-deaminated, methylated metabolites, and up to 79% average decreases in the plasma concentration of 3,4-dihydroxyphenylglycol (DHPG), a deaminated metabolite of noradrenaline (NA), and up to 75% average decreases in the plasma concentrations of 3,4-dihydroxyphenylacetic acid (DOPAC), a deaminated metabolite of dopamine. The urinary excretion of 5-hydroxyindoleacetic acid (5-HIAA) was only slightly reduced. In contrast, deprenyl, in a dose which almost totally inhibited MAO-B activity in blood platelets, did not appreciably affect the plasma concentrations of DHPG or DOPAC. 3. Due to the rapid, reversible, dose-dependent and MAO-A specific effect of moclobemide on plasma concentrations of DHPG, it is suggested that DHPG in plasma may be a useful indicator of the magnitude and duration of MAO-A inhibition in man. 4. Sympatho-adrenal function at rest was not significantly altered by moclobemide, as judged by unchanged plasma catecholamine concentrations and stable blood pressure and heart rate recordings. 5. Monoamine oxidase type B activity in blood platelets was slightly (less than 30%) and transiently inhibited after moclobemide. 6. The secretion of prolactin was dose-dependently stimulated by moclobemide, whereas the plasma concentrations of growth hormone (hGH) and cortisol remained unchanged. PMID:2469451
Wolkers, C P B; Serra, M; Szawka, R E; Urbinati, E C
2014-01-01
This study evaluated the influence of dietary L-tryptophan (TRP) supplementation on the time course of aggressive behaviour and on neuroendocrine and hormonal indicators in juvenile matrinxã Brycon amazonicus. Supplementation with TRP promoted a change in the fight pattern at the beginning of an interaction with an intruder, resulting in decreased aggressive behaviours during the first 20 min. The decrease in aggression did not persist throughout the interaction but increased at 3 and 6 h after the beginning of the fight. Monoamine levels in the hypothalamus were not influenced by TRP before or after the fight; however, the hypothalamic serotonin (5-HT) concentration and the 5-hydroxyindole-3-acetic acid (5HIAA):5-HT ratio were significantly correlated with the reduction in aggressive behaviour at the beginning of the fight. Cortisol was not altered by TRP before the fight. After the fight cortisol increased to higher levels in B. amazonicus fed with supplementary TRP. These results indicate that TRP supplementation alters the aggressive behaviour of B. amazonicus and that this effect is limited to the beginning of the fight, suggesting a transient effect of TRP on aggressive behaviour. This is the first study reporting the effects of TRP supplementation on the time course of aggressive interaction in fishes. © 2013 The Fisheries Society of the British Isles.
Can, Adem; Zanos, Panos; Moaddel, Ruin; Kang, Hye Jin; Dossou, Katinia S. S.; Wainer, Irving W.; Cheer, Joseph F.; Frost, Douglas O.; Huang, Xi-Ping
2016-01-01
Following administration at subanesthetic doses, (R,S)-ketamine (ketamine) induces rapid and robust relief from symptoms of depression in treatment-refractory depressed patients. Previous studies suggest that ketamine’s antidepressant properties involve enhancement of dopamine (DA) neurotransmission. Ketamine is rapidly metabolized to (2S,6S)- and (2R,6R)-hydroxynorketamine (HNK), which have antidepressant actions independent of N-methyl-d-aspartate glutamate receptor inhibition. These antidepressant actions of (2S,6S;2R,6R)-HNK, or other metabolites, as well as ketamine’s side effects, including abuse potential, may be related to direct effects on components of the dopaminergic (DAergic) system. Here, brain and blood distribution/clearance and pharmacodynamic analyses at DA receptors (D1–D5) and the DA, norepinephrine, and serotonin transporters were assessed for ketamine and its major metabolites (norketamine, dehydronorketamine, and HNKs). Additionally, we measured electrically evoked mesolimbic DA release and decay using fast-scan cyclic voltammetry following acute administration of subanesthetic doses of ketamine (2, 10, and 50 mg/kg, i.p.). Following ketamine injection, ketamine, norketamine, and multiple hydroxynorketamines were detected in the plasma and brain of mice. Dehydronorketamine was detectable in plasma, but concentrations were below detectable limits in the brain. Ketamine did not alter the magnitude or kinetics of evoked DA release in the nucleus accumbens in anesthetized mice. Neither ketamine’s enantiomers nor its metabolites had affinity for DA receptors or the DA, noradrenaline, and serotonin transporters (up to 10 μM). These results suggest that neither the side effects nor antidepressant actions of ketamine or ketamine metabolites are associated with direct effects on mesolimbic DAergic neurotransmission. Previously observed in vivo changes in DAergic neurotransmission following ketamine administration are likely indirect. PMID:27469513
Kalshetti, Padmaja B; Alluri, Ramesh; Mohan, Vishwaraman; Thakurdesai, Prasad Arvind
2015-10-01
Antidepressant-like effects of (2S, 3R, 4S)-4-hydroxyisoleucine (4-HI), a major amino acid from fenugreek seeds, has been reported in the animal model of acute depression. To evaluate effects of subacute administration of 4-HI in animal model of stress-induced depression namely socially isolated olfactory bulbectomized rats. Bilateral olfactory bulbectomy (OBX) were induced in 30 Sprague-Dawley rats. After recovery period of 14 days, rats were randomized into five groups of 6 rats each and stressed with social isolation (individual housing). The rats were orally treated with either vehicle (OBX-Iso), positive control, fluoxetine (30 mg/kg) or 4-HI (10, 30, 100 mg/kg) once a day from day 14 onward. Separate group of rats with social isolation but without OBX (Sham-Iso) was also maintained. The behavioral depression and anxiety related parameters using open field test (OFT), sucrose intake test, novelty suppressed feeding (NSF) and forced swim test (FST), and neurochemical estimation (brain monoamines viz., serotonin and nor-adrenaline, serotonin turnover, and serum cortisol) were performed. Data was analyzed by either two-way ANOVA (OFT and FST) or one-way ANOVA (sucrose intake test, NSF, and neurochemical estimation) followed by Dunnett's multiple comparisons test. Differences were considered significant at P < 0.05. The significant and dose-dependent protection from behavioral and neurochemical changes were observed in 4-HI co-administrated OBX-Iso rats. 4-HI demonstrated the antidepressant and antianxiety effects in socially isolated stress-induced OBX rats with possible involvement of multiple stress relieving mechanisms. In this study, the subacute pretreatment of 4-HI showed strong and dose-dependent prevention of isolation stress related behavioral and neurochemical responses in olfactory bulbectomized rats. The prevention of hyperactive HPA axis in OBX-Iso stress-induced rats can be envisaged as probable mechanism of antidepressant and antianxiety effects of 4-HI. Effect of 4-hydroxyisoleucine (4-HI) in olfactory bulbectomized and socially isolated (Iso) rats was evaluated4-HI showed significant and dose-dependent antidepressant effects during novelty suppressed feeding (NSF) and forced swim test (FST)4-HI showed significant and dose-dependent antianxiety effects during OFT (open field test) and sucrose intake test4-HI showed protection from OBX-Iso stress-induced brain monoamines, serotonin turnover, and serum cortisol level elevation. Abbreviations used: SSRI: Selective Serotonin Reuptake Inhibitor; 4-HI: (2S, 3R, 4S)-4-hydroxyisoleucine; OBX: Olfactory bulbectomy; CPCSEA: Committee for the Purpose of Control and Supervision of Experiments on Animals; OFT: Open Field Test; NSF: Novelty Suppressed Feeding; FST: Forced Swimming Test; 5HT: 5-Hydroxytryptamine; 5-HIAA: 5-Hydroxyindoleacetic Acid; NA: Nor-adrenaline; and HPA: Hypothalamic-Pituitary Adrenal.
Comparison of hormone and electrolyte circadian rhythms in male and female humans
NASA Technical Reports Server (NTRS)
Vernikos-Danellis, J.; Winget, C. M.; Goodwin, A. E.; Reilly, T.
1977-01-01
Circadian rhythm characteristics in healthy male and female humans were studied at 4-hour intervals for urine volume, cortisol, 5-hydroxyindoleacetic acid (5-HIAA), Na, K, Na/K ratios in the urine, as well as plasma cortisol. While plasma and urinary cortisol rhythms were very similar in both sexes, the described rhythms in urine volume, electrolyte, and 5-HIAA excretion differ for the two sexes. The results suggest that sex differences exist in the circadian patterns of important hormone and metabolic functions and that the internal synchrony of circadian rhythms differs for the two sexes. The results seem to indicate that the rhythmical secretion of cortisol does not account for the pattern of Na and K excretion.
Carnosine reverses the aging-induced down regulation of brain regional serotonergic system.
Banerjee, Soumyabrata; Ghosh, Tushar K; Poddar, Mrinal K
2015-12-01
The purpose of the present investigation was to study the role of carnosine, an endogenous dipeptide biomolecule, on brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) serotonergic system during aging. Results showed an aging-induced brain region specific significant (a) increase in Trp (except cerebral cortex) and their 5-HIAA steady state level with an increase in their 5-HIAA accumulation and declination, (b) decrease in their both 5-HT steady state level and 5-HT accumulation (except cerebral cortex). A significant decrease in brain regional 5-HT/Trp ratio (except cerebral cortex) and increase in 5-HIAA/5-HT ratio were also observed during aging. Carnosine at lower dosages (0.5-1.0μg/Kg/day, i.t. for 21 consecutive days) didn't produce any significant response in any of the brain regions, but higher dosages (2.0-2.5μg/Kg/day, i.t. for 21 consecutive days) showed a significant response on those aging-induced brain regional serotonergic parameters. The treatment with carnosine (2.0μg/Kg/day, i.t. for 21 consecutive days), attenuated these brain regional aging-induced serotonergic parameters and restored towards their basal levels that observed in 4 months young control rats. These results suggest that carnosine attenuates and restores the aging-induced brain regional down regulation of serotonergic system towards that observed in young rats' brain regions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Sewall, Kendra B.; Caro, Samuel P.; Sockman, Keith W.
2013-01-01
Male animals often change their behavior in response to the level of competition for mates. Male Lincoln's sparrows (Melospiza lincolnii) modulate their competitive singing over the period of a week as a function of the level of challenge associated with competitors' songs. Differences in song challenge and associated shifts in competitive state should be accompanied by neural changes, potentially in regions that regulate perception and song production. The monoamines mediate neural plasticity in response to environmental cues to achieve shifts in behavioral state. Therefore, using high pressure liquid chromatography with electrochemical detection, we compared levels of monoamines and their metabolites from male Lincoln's sparrows exposed to songs categorized as more or less challenging. We compared levels of norepinephrine and its principal metabolite in two perceptual regions of the auditory telencephalon, the caudomedial nidopallium and the caudomedial mesopallium (CMM), because this chemical is implicated in modulating auditory sensitivity to song. We also measured the levels of dopamine and its principal metabolite in two song control nuclei, area X and the robust nucleus of the arcopallium (RA), because dopamine is implicated in regulating song output. We measured the levels of serotonin and its principal metabolite in all four brain regions because this monoamine is implicated in perception and behavioral output and is found throughout the avian forebrain. After controlling for recent singing, we found that males exposed to more challenging song had higher levels of norepinephrine metabolite in the CMM and lower levels of serotonin in the RA. Collectively, these findings are consistent with norepinephrine in perceptual brain regions and serotonin in song control regions contributing to neuroplasticity that underlies socially-induced changes in behavioral state. PMID:23555809
Induced thermal stress on serotonin levels in the blue swimmer crab, Portunus pelagicus.
Rajendiran, Saravanan; Muhammad Iqbal, Beema Mahin; Vasudevan, Sugumar
2016-03-01
The temperature of habitat water has a drastic influence on the behavioral, physiological and biochemical mechanisms of crustaceans. Hyperglycemia is a typical response of many aquatic animals to harmful physical and chemical environmental changes. In crustaceans increased circulating crustacean hyperglycemic hormone (CHH) and hyperglycemia are reported to occur following exposure to several environmental stress. The biogenic amine, serotonin has been found to modulate the CHH levels and oxidation of serotonin into its metabolites is catalysed by monoamine oxidase. The blue swimmer crab, Portunus pelagicus is a dominant intertidal species utilized throughout the indo-pacific region and is a particularly important species of Palk bay. It has high nutritional value and delicious taste and hence their requirements of capture and cultivation of this species are constantly increasing. This species experiences varying and increasing temperature levels as it resides in an higher intertidal zone of Thondi coast. The present study examines the effect of thermal stress on the levels of serotonin and crustacean hyperglycemic hormone in the hemolymph of P. pelagicus and analyzes the effect of the monoamine oxidase inhibitor, pargyline on serotonin and CHH level after thermal stress. The results showed increased levels of glucose, CHH and serotonin on exposure to 26 °C in control animals. Pargyline injected crabs showed highly significant increase in the levels of CHH and serotonin on every 2 °C increase or decrease in temperature. A greater CHH level of 268.86±2.87 fmol/ml and a greater serotonin level of 177.69±10.10 ng/ml was observed at 24 °C. This could be due to the effect of in maintaining the level of serotonin in the hemolymph and preventing its oxidation, which in turn induces hyperglycemia by releasing CHH into hemolymph. Thus, the study demonstrates the effect of thermal stress on the hemolymph metabolites studied and the role of pargyline in elevating the levels of serotonin and CHH on thermal stress in the blue swimmer crab, P. pelagicus .
Aklillu, Eleni; Karlsson, Sara; Zachrisson, Olof O; Ozdemir, Vural; Agren, Hans
2009-04-01
Monoamine oxidase-A (MAO-A) is a key mitochondrial enzyme that metabolizes biogenic amine neurotransmitters such as dopamine and serotonin. Individuals with atypical depression (AD) are particularly responsive to treatment with MAO inhibitors (MAOIs). Biomarker tests are essential for prompt diagnosis of AD, and to identify those with an altered brain neurotransmitter metabolism who may selectively respond to MAOI therapy. In a sample of 118 Scandinavian patients with treatment-resistant depression who are naive to MAOI therapy, we investigated the associations between a common MAOA functional promoter polymorphism (MAOA-uVNTR), cerebrospinal fluid (CSF) neurotransmitter metabolites, and AD susceptibility. The metabolites for dopamine (homovanillic acid, HVA), serotonin (5-hydroxyindoleacetic acid) and noradrenaline (3-methoxy-4-hydroxyphenylglycol) were measured in the CSF. AD was associated with the female sex and a higher HVA in CSF (P=0.008). The carriers of the MAOA-uVNTR short allele were significantly overrepresented among women with AD (P=0.005; odds ratio=4.76; 95% confidence interval=1.5-13.1; statistical power=80.0%). Moreover, the MAOA-uVNTR genotype significantly influenced the HVA concentration (P=0.01) and showed a strong trend in relation to 5-hydroxyindoleacetic acid concentration (P=0.057) in women. The mediational statistical analyses showed the CSF-HVA concentration as a key driver of the relationship between MAOA-uVNTR genotype and AD. The association of the MAOA-uVNTR with both susceptibility to AD and dopamine metabolite (HVA) concentration lends further biological plausibility for high MAO-A enzyme activity as a mechanistic factor for genetic predisposition to AD through altered dopamine turnover. Our observations provide new evidence on the in-vivo functional significance of the MAOA-uVNTR short allele as a high activity variant.
Faria, Raquel; Magalhães, Ana; Monteiro, Pedro R R; Gomes-Da-Silva, Joana; Amélia Tavares, Maria; Summavielle, Teresa
2006-08-01
Long-term behavioral consequences of the neurotoxicity produced by 3,4-methylenedioxymethamphetamine (MDMA) in the adolescent rat are still mostly unknown. Here, adolescent male rats (postnatal day 45 PND [45]) were exposed to 10 mg/kg of MDMA, intraperitoneally, every 2 h for 6 h. Controls were given 0.9% saline in the same protocol. Ten days after exposure, the behavioral effects of MDMA were assessed in the elevated plus-maze (n = 6 per group). After behavioral testing, animals were sacrificed and the amygdalae were dissected and processed for HPLC determination of dopamine (DA), serotonin (5-HT), and metabolites. Results showed a significant decrease in the 5-HT content (P < 0.05), but no significant alterations in DA or its metabolites. Behavioral observation in the elevated plus-maze showed a decreased number of entries in the unprotected arms (P < 0.05), which were correlated to the number of entries and time spent in the central platform. Rearing was also decreased (P < 0.05). No differences were observed in head dips, grooming, or number of entries in the protected arms of the apparatus. Therefore, we conclude that, as in the adult rat, exposure to MDMA in the adolescent rat is associated to long-term depletion of the 5-HT content and increased anxiety-like behavior.
Oka, K; Kojima, K; Togari, A; Nagatsu, T; Kiss, B
1984-06-08
A new method using high-performance liquid chromatography with electrochemical detection (HPLC-ED) for the simultaneous determination of monoamines, their precursor amino acids, and related major metabolites in small samples of brain tissue weighing from 0.5 to 50 mg is described. The method is based on the preliminary isolation of monoamines (dopamine, norepinephrine, epinephrine, and serotonin), their precursor amino acids (tyrosine, 3,4-dihydroxyphenylalanine, tryptophan and 5-hydroxytryptophan), and their major metabolites (3-methoxytyramine, normetanephrine, 3,4-dihydroxyphenylacetic acid, homovanillic acid, vanillylmandelic acid, 3-methoxy-4-hydroxyphenylethyleneglycol, and 5-hydroxyindoleacetic acid) by chromatography on small columns of Amberlite CG-50 and Dowex 50W, and by ethyl acetate extraction. All the compounds in the four isolated fractions were measured by HPLC-ED on a reversed-phase column under four different conditions. The sensitivity was from 0.1 to 40 pmol, depending on the substances analysed. This newly established method was applied to the study of the effects of an aromatic L-amino acid decarboxylase inhibitor (NSD-1015) and a monoamine oxidase inhibitor (pargyline) on the levels of monoamines, their precursor amino acids and their major metabolites in brain regions of mice.
Tajeddinn, Walid; Fereshtehnejad, Seyed-Mohammad; Seed Ahmed, Mohammed; Yoshitake, Takashi; Kehr, Jan; Shahnaz, Tasmin; Milovanovic, Micha; Behbahani, Homira; Höglund, Kina; Winblad, Bengt; Cedazo-Minguez, Angel; Jelic, Vesna; Järemo, Petter; Aarsland, Dag
2016-05-04
Serotonin (5-HT) is involved in the pathology of Alzheimer's disease (AD). We aimed to measure 5-HT level in platelets in AD and explore its association with cerebrospinal fluid (CSF), AD biomarkers (amyloid-β 1-42 (Aβ42), total tau (t-tau), and phosphorylated tau (p-tau)), and clinical symptoms. 15 patients with AD and 20 patients with subjective cognitive impairment (SCI) were included. 5-HT metabolites were measured, in a specific fraction, using high performance liquid chromatography with electrochemical detection (HPLC-ECD). Significantly lower 5-HT concentrations were observed in AD patients compared to SCI patients both after normalization against total protein (p = 0.008) or platelet count (p = 0.019). SCI patients with lower 5-HT level have higher AD CSF biomarkers, total tau (p = 0.026) and tau/Aβ42 ratio (p = 0.001), compared to those with high 5-HT levels. AD patients have reduced platelet 5-HT levels. In SCI, lower 5-HT content was associated with a higher AD-CSF biomarker burden.
DRD4 dopamine receptor genotype and CSF monoamine metabolites in Finnish alcoholics and controls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamson, M.D.; Dean, M.; Goldman, D.
1995-06-19
The DRD4 dopamine receptor is thus far unique among neurotransmitter receptors in having a highly polymorphic gene structure that has been reported to produce altered receptor functioning. These allelic variations are caused by a 48-bp segment in exon III of the coding region which may be repeated from 2-10 times. Varying the numbers of repeated segments changes the length, structure, and, possibly, the functional efficiency of the receptor, which makes this gene an intriguing candidate for variations in dopamine-related behaviors, such as alcoholism and drug abuse. Thus far, these DRD4 alleles have been investigated for association with schizophrenia, bipolar disorder,more » Parkinson`s disease, and chronic alcoholism, and all have been largely negative for a direct association. We evaluated the DRD4 genotype in 226 Finish adult males, 113 of whom were alcoholics, many of the early onset type with features of impulsivity and antisocial traits. Genotype frequencies were compared to 113 Finnish controls who were free of alcohol abuse, substance abuse, and major mental illness. In 70 alcoholics and 20 controls, we measured CSF homovanillic acid (HVA), the major metabolite of dopamine, and 5-hydroxyindoleacetic acid (5-HIAA). No association was found between a particular DRD4 dopamine receptor allele and alcoholism. CSF concentrations of the monoamine metabolites showed no significant difference among the DRD4 genotypes. This study of the DRD4 dopamine receptor in alcoholics is the first to be conducted in a clinically and ethnically homogeneous population and to relate the DRD4 genotype to CSF monoamine concentrations. The results indicate that there is no association of the DRD4 receptor with alcoholism. 52 refs., 3 figs., 1 tab.« less
Low levels of serum serotonin and amino acids identified in migraine patients.
Ren, Caixia; Liu, Jia; Zhou, Juntuo; Liang, Hui; Wang, Yayun; Sun, Yinping; Ma, Bin; Yin, Yuxin
2018-02-05
Migraine is a highly disabling primary headache associated with a high socioeconomic burden and a generally high prevalence. The clinical management of migraine remains a challenge. This study was undertaken to identify potential serum biomarkers of migraine. Using Liquid Chromatography coupled to Mass Spectrometry (LC-MS), the metabolomic profile of migraine was compared with healthy individuals. Principal component analysis (PCA) and Orthogonal partial least squares-discriminant analysis (orthoPLS-DA) showed the metabolomic profile of migraine is distinguishable from controls. Volcano plot analysis identified 10 serum metabolites significantly decreased during migraine. One of these was serotonin, and the other 9 were amino acids. Pathway analysis and enrichment analysis showed tryptophan metabolism (serotonin metabolism), arginine and proline metabolism, and aminoacyl-tRNA biosynthesis are the three most prominently altered pathways in migraine. ROC curve analysis indicated Glycyl-l-proline, N-Methyl-dl-Alanine and l-Methionine are potential sensitive and specific biomarkers for migraine. Our results show Glycyl-l-proline, N-Methyl-dl-Alanine and l-Methionine may be as specific or more specific for migraine than serotonin which is the traditional biomarker of migraine. We propose that therapeutic manipulation of these metabolites or metabolic pathways may be helpful in the prevention and treatment of migraine. Copyright © 2018 Elsevier Inc. All rights reserved.
Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency
Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei
2015-01-01
Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer’s disease and Parkinson’s disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states. PMID:26154191
Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency.
Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei
2015-07-08
Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer's disease and Parkinson's disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states.
Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency
NASA Astrophysics Data System (ADS)
Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei
2015-07-01
Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer’s disease and Parkinson’s disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states.
Lu, Haihua; Yu, Jing; Wang, Jun; Wu, Linlin; Xiao, Hang; Gao, Rong
2016-04-15
Neuroactive metabolites in dopamine, serotonin and kynurenine metabolic pathways play key roles in several physiological processes and their imbalances have been implicated in the pathophysiology of a wide range of disorders. The association of these metabolites' alterations with various pathologies has raised interest in analytical methods for accurate quantification in biological fluids. However, simultaneous measurement of various neuroactive metabolites represents great challenges due to their trace level, high polarity and instability. In this study, an analytical method was developed and validated for accurately quantifying 12 neuroactive metabolites covering three metabolic pathways in youth urine by ultra performance liquid chromatography coupled to electrospray tandem high resolution mass spectrometry (UPLC-ESI-HRMS/MS). The strategy of dansyl chloride derivatization followed by solid phase extraction on C18 cartridges were employed to reduce matrix interference and improve the extraction efficiency. The reverse phase chromatographic separation was achieved with a gradient elution program in 20 min. The high resolution mass spectrometer (Q Exactive) was employed, with confirmation and quantification by Target-MS/MS scan mode. Youth urine samples collected from 100 healthy volunteers (Female:Male=1:1) were analyzed to explore the differences in metabolite profile and their turnover between genders. The results demonstrated that the UPLC-ESI-HRMS/MS method is sensitive and robust, suitable for monitoring a large panel of metabolites and for discovering new biomarkers in the medical fields. Copyright © 2016 Elsevier B.V. All rights reserved.
Oscillatory serotonin function in depression.
Salomon, Ronald M; Cowan, Ronald L
2013-11-01
Oscillations in brain activities with periods of minutes to hours may be critical for normal mood behaviors. Ultradian (faster than circadian) rhythms of mood behaviors and associated central nervous system activities are altered in depression. Recent data suggest that ultradian rhythms in serotonin (5HT) function also change in depression. In two separate studies, 5HT metabolites in cerebrospinal fluid (CSF) were measured every 10 min for 24 h before and after chronic antidepressant treatment. Antidepressant treatments were associated with enhanced ultradian amplitudes of CSF metabolite levels. Another study used resting-state functional magnetic resonance imaging (fMRI) to measure amplitudes of dorsal raphé activation cycles following sham or active dietary depletions of the 5HT precursor (tryptophan). During depletion, amplitudes of dorsal raphé activation cycles increased with rapid 6 s periods (about 0.18 Hz) while functional connectivity weakened between dorsal raphé and thalamus at slower periods of 20 s (0.05 Hz). A third approach studied MDMA (ecstasy, 3,4-methylenedioxy-N-methylamphetamine) users because of their chronically diminished 5HT function compared with non-MDMA polysubstance users (Karageorgiou et al., 2009). Compared with a non-MDMA using cohort, MDMA users showed diminished fMRI intra-regional coherence in motor regions along with altered functional connectivity, again suggesting effects of altered 5HT oscillatory function. These data support a hypothesis that qualities of ultradian oscillations in 5HT function may critically influence moods and behaviors. Dysfunctional 5HT rhythms in depression may be a common endpoint and biomarker for depression, linking dysfunction of slow brain network oscillators to 5HT mechanisms affected by commonly available treatments. 5HT oscillatory dysfunction may define illness subtypes and predict responses to serotonergic agents. Further studies of 5HT oscillations in depression are indicated. Copyright © 2013 Wiley Periodicals, Inc.
Thein, Tun Linn; Fang, Jinling; Pang, Junxiong; Ooi, Eng Eong; Leo, Yee Sin; Ong, Choon Nam; Tannenbaum, Steven R.
2016-01-01
Effective triage of dengue patients early in the disease course for in- or out-patient management would be useful for optimal healthcare resource utilization while minimizing poor clinical outcome due to delayed intervention. Yet, early prognosis of severe dengue is hampered by the heterogeneity in clinical presentation and routine hematological and biochemical measurements in dengue patients that collectively correlates poorly with eventual clinical outcome. Herein, untargeted liquid-chromatography mass spectrometry metabolomics of serum from patients with dengue fever (DF) and dengue hemorrhagic fever (DHF) in the febrile phase (<96 h) was used to globally probe the serum metabolome to uncover early prognostic biomarkers of DHF. We identified 20 metabolites that are differentially enriched (p<0.05, fold change >1.5) in the serum, among which are two products of tryptophan metabolism–serotonin and kynurenine. Serotonin, involved in platelet aggregation and activation decreased significantly, whereas kynurenine, an immunomodulator, increased significantly in patients with DHF, consistent with thrombocytopenia and immunopathology in severe dengue. To sensitively and accurately evaluate serotonin levels as prognostic biomarkers, we implemented stable-isotope dilution mass spectrometry and used convalescence samples as their own controls. DHF serotonin was significantly 1.98 fold lower in febrile compared to convalescence phase, and significantly 1.76 fold lower compared to DF in the febrile phase of illness. Thus, serotonin alone provided good prognostic utility (Area Under Curve, AUC of serotonin = 0.8). Additionally, immune mediators associated with DHF may further increase the predictive ability than just serotonin alone. Nine cytokines, including IFN-γ, IL-1β, IL-4, IL-8, G-CSF, MIP-1β, FGF basic, TNFα and RANTES were significantly different between DF and DHF, among which IFN-γ ranked top by multivariate statistics. Combining serotonin and IFN-γ improved the prognosis performance (AUC = 0.92, sensitivity = 77.8%, specificity = 95.8%), suggesting this duplex panel as accurate metrics for the early prognosis of DHF. PMID:27055163
Colado, M I; O'Shea, E; Granados, R; Murray, T K; Green, A R
1997-01-01
Administration of 3,4-methylenedioxymethamphetamine (MDMA or ‘ecstasy') to several species results in a long lasting neurotoxic degeneration of 5-hydroxytryptaminergic neurones in several regions of the brain. We have now investigated whether this degeneration is likely to be the result of free radical-induced damage. Free radical formation can be assessed by measuring the formation of 2,3- and 2,5-dihydroxybenzoic acid (2,3-DHBA and 2,5-DHBA) from salicylic acid. An existing method involving implantation of a probe into the hippocampus and in vivo microdialysis was modified and validated. Administration of MDMA (15 mg kg−1, i.p.) to Dark Agouti (DA) rats increased the formation of 2,3-DHBA (but not 2,5-DHBA) for at least 6 h. Seven days after this dose of MDMA, the concentration of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) was reduced by over 50% in hippocampus, cortex and striatum, reflecting neurotoxic damage. There was no change in the concentration of dopamine or 3,4-dihydroxyphenylacetic acid (DOPAC) in the striatum. p-Chloroamphetamine (PCA), another compound which produces a neurotoxic loss of cerebral 5-HT content, when given at a dose of 5 mg kg−1 also significantly increased the formation of 2,3-DHBA (but not 2,5-DHBA) in the dialysate for over 4.5 h. post-injection starting 2 h after treatment. In contrast, fenfluramine administration (15 mg kg−1, i.p.) failed to increase the 2,3-DHBA or 2,5-DHBA concentration in the dialysate. A single fenfluramine injection nevertheless also markedly decreased the concentration of 5-HT and 5-HIAA in the hippocampus, cortex and striatum seven days later. When rats pretreated with fenfluramine (15 mg kg−1, i.p.) seven days earlier were given MDMA (15 mg kg−1, i.p.) no increase in 2,3-DHBA was seen in the dialysate from the hippocampal probe. This indicates that the increase in free radical formation following MDMA is occurring in 5-HT neurones which have been damaged by the prior fenfluramine injection. Administration of the free radical scavenging agent α-phenyl-N-tert-butyl nitrone (PBN; 120 mg kg−1, i.p.) 10 min before and 120 min after an MDMA (15 mg kg−1, i.p.) injection prevented the acute rise in the 2,3-DHBA concentration in the dialysate and attenuated by 30% the long term damage to hippocampal 5-HT neurones (as indicated by a smaller MDMA-induced decrease in both the concentration of 5-HT and 5-HIAA and also the binding of [3H]-paroxetine). These data indicate that a major mechanism by which MDMA and PCA induce damage to 5-hydroxytryptaminergic neurones in rat brain is by increasing the formation of free radicals. These probably result from the degradation of catechol and quinone metabolites of these substituted amphetamines. In contrast, fenfluramine induces damage by another mechanism not involving free radicals; a proposal supported by some of our earlier indirect studies. We suggest that these different modes of action render untenable the recent suggestion that MDMA will not be neurotoxic in humans because fenfluramine appears safe at clinical doses. PMID:9222545
Cerebrospinal fluid monoamines in Prader-Willi syndrome.
Akefeldt, A; Ekman, R; Gillberg, C; Månsson, J E
1998-12-15
The behavioral phenotype of Prader-Willi syndrome (PWS) suggests hypothalamic dysfunction and altered neurotransmitter regulation. The purpose of this study was to examine whether there was any difference in the concentrations of monoamine metabolites in the cerebrospinal fluid (CSF) in PWS and non-PWS comparison cases. The concentration of monoamine metabolites in CSF was determined in 13 children and adolescents with PWS diagnosed on clinical and genetic criteria. The concentrations were compared with those from 56 comparison cases in healthy and other contrast groups. The concentrations of dopamine and particularly serotonin metabolites were increased in the PWS group. The differences were most prominent for 5-hydroxyindoleacetic acid. The increased concentrations were found in all PWS cases independently of age, body mass index, and level of mental retardation. The findings implicate dysfunction of the serotonergic system and possibly also of the dopamine system in PWS individuals, and might help inform future psychopharmacologic studies.
Thermogenic effects of sibutramine and its metabolites
Connoley, Ian P; Liu, Yong-Ling; Frost, Ian; Reckless, Ian P; Heal, David J; Stock, Michael J
1999-01-01
The thermogenic activity of the serotonin and noradrenaline reuptake inhibitor sibutramine (BTS 54524; Reductil) was investigated by measuring oxygen consumption (VO2) in rats treated with sibutramine or its two pharmacologically-active metabolites. Sibutramine caused a dose-dependent rise in VO2, with a dose of 10 mg kg−1 of sibutramine or its metabolites producing increases of up to 30% that were sustained for at least 6 h, and accompanied by significant increases (0.5–1.0°C) in body temperature. Based on the accumulation in vivo of radiolabelled 2-deoxy-[3H]-glucose, sibutramine had little or no effect on glucose utilization in most tissues, but caused an 18 fold increase in brown adipose tissue (BAT). Combined high, non-selective doses (20 mg kg−1) of the β-adrenoceptor antagonists, atenolol and ICI 118551, inhibited completely the VO2 response to sibutramine, but the response was unaffected by low, β1-adrenoceptor-selective (atenolol) or β2-adrenoceptor-selective (ICI 118551) doses (1 mg kg−1). The ganglionic blocking agent, chlorisondamine (15 mg kg−1), inhibited completely the VO2 response to the metabolites of sibutramine, but had no effect on the thermogenic response to the β3-adrenoceptor-selective agonist BRL 35135. Similar thermogenic responses were produced by simultaneous injection of nisoxetine and fluoxetine at doses (30 mg kg−1) that had no effect on VO2 when injected individually. It is concluded that stimulation of thermogenesis by sibutramine requires central reuptake inhibition of both serotonin and noradrenaline, resulting in increased efferent sympathetic activation of BAT thermogenesis via β3-adrenoceptor, and that this contributes to the compound's activity as an anti-obesity agent. PMID:10217544
Fuertig, René; Ceci, Angelo; Camus, Sandrine M; Bezard, Erwan; Luippold, Andreas H; Hengerer, Bastian
2016-09-01
The kynurenine (KYN) pathway is implicated in diseases such as cancer, psychiatric, neurodegenerative and autoimmune disorders. Measurement of KYN metabolite levels will help elucidating the involvement of the KYN pathway in the disease pathology and inform drug development. Samples of plasma, cerebrospinal fluid or brain tissue were spiked with deuterated internal standards, processed and analyzed by LC-MS/MS; analytes were chromatographically separated by gradient elution on a C18 reversed phase analytical column without derivatization. We established an LC-MS/MS method to measure 11 molecules, namely tryptophan, KYN, 3-OH-KYN, 3-OH-anthranilic acid, quinolinic acid, picolinic acid, kynurenic acid, xanthurenic acid, serotonin, dopamine and neopterin within 5.5 min, with sufficient sensitivity to quantify these molecules in small sample volumes of plasma, cerebrospinal fluid and brain tissue.
Shin, Dongseong; Lee, SeungHwan; Yi, Sojeong; Yoon, Seo Hyun; Cho, Joo-Youn; Bahng, Mi Young; Jang, In-Jin; Yu, Kyung-Sang
2017-01-01
DA-8031 is a selective serotonin reuptake inhibitor under development for the treatment of premature ejaculation. This is the first-in-human study aimed at evaluating the pharmacokinetics and tolerability of DA-8031 and its metabolites (M1, M2, M4, and M5) in the plasma and urine after administration of a single oral dose in healthy male subjects. A dose block-randomized, double-blind, placebo-controlled, single ascending dose study was conducted. Subjects received either placebo or a single dose of DA-8031 at 5, 10, 20, 40, 60, 80, or 120 mg. DA-8031 and its four metabolites were analyzed in the plasma and urine for pharmacokinetic evaluation. The effect of genetic polymorphisms of cytochrome-P450 (CYP) enzymes on the pharmacokinetics of DA-8031 was evaluated. After a single dose, plasma DA-8031 reached the maximum concentration at a median of 2-3 h and was eliminated with terminal elimination half-life of 17.9-28.7 h. The mean renal clearance was 3.7-5.6 L/h. Dose-proportional pharmacokinetics was observed over the dose range of 20-80 mg. Among the metabolites, M4 had the greatest plasma concentration, followed by M5 and M1. Subjects with CYP2D6 intermediate metabolizer had significantly greater dose-normalized C max and AUC 0- t of DA-8031 as well as smaller metabolic ratios than those subjects with CYP2D6 extensive metabolizer. The most common adverse events were nausea, dizziness, and headache, and no serious adverse events were reported. In conclusion, the systemic exposure of DA-8031 was increased proportionally to the dose within 20-80 mg. Genetic polymorphisms of CYP2D6 had an effect on the systemic exposure of DA-8031. DA-8031 was well tolerated after single doses of 80 mg or less.
Kalshetti, Padmaja B.; Alluri, Ramesh; Mohan, Vishwaraman; Thakurdesai, Prasad Arvind
2015-01-01
Context: Antidepressant-like effects of (2S, 3R, 4S)-4-hydroxyisoleucine (4-HI), a major amino acid from fenugreek seeds, has been reported in the animal model of acute depression. Aims: To evaluate effects of subacute administration of 4-HI in animal model of stress-induced depression namely socially isolated olfactory bulbectomized rats. Materials and Methods: Bilateral olfactory bulbectomy (OBX) were induced in 30 Sprague-Dawley rats. After recovery period of 14 days, rats were randomized into five groups of 6 rats each and stressed with social isolation (individual housing). The rats were orally treated with either vehicle (OBX-Iso), positive control, fluoxetine (30 mg/kg) or 4-HI (10, 30, 100 mg/kg) once a day from day 14 onward. Separate group of rats with social isolation but without OBX (Sham-Iso) was also maintained. The behavioral depression and anxiety related parameters using open field test (OFT), sucrose intake test, novelty suppressed feeding (NSF) and forced swim test (FST), and neurochemical estimation (brain monoamines viz., serotonin and nor-adrenaline, serotonin turnover, and serum cortisol) were performed. Statistical Analysis Used: Data was analyzed by either two-way ANOVA (OFT and FST) or one-way ANOVA (sucrose intake test, NSF, and neurochemical estimation) followed by Dunnett's multiple comparisons test. Differences were considered significant at P < 0.05. Results: The significant and dose-dependent protection from behavioral and neurochemical changes were observed in 4-HI co-administrated OBX-Iso rats. Conclusion: 4-HI demonstrated the antidepressant and antianxiety effects in socially isolated stress-induced OBX rats with possible involvement of multiple stress relieving mechanisms. HIGHLIGHTS OF PAPER In this study, the subacute pretreatment of 4-HI showed strong and dose-dependent prevention of isolation stress related behavioral and neurochemical responses in olfactory bulbectomized rats. The prevention of hyperactive HPA axis in OBX-Iso stress-induced rats can be envisaged as probable mechanism of antidepressant and antianxiety effects of 4-HI. SUMMARY Effect of 4-hydroxyisoleucine (4-HI) in olfactory bulbectomized and socially isolated (Iso) rats was evaluated4-HI showed significant and dose-dependent antidepressant effects during novelty suppressed feeding (NSF) and forced swim test (FST)4-HI showed significant and dose-dependent antianxiety effects during OFT (open field test) and sucrose intake test4-HI showed protection from OBX-Iso stress-induced brain monoamines, serotonin turnover, and serum cortisol level elevation. Abbreviations used: SSRI: Selective Serotonin Reuptake Inhibitor; 4-HI: (2S, 3R, 4S)-4-hydroxyisoleucine; OBX: Olfactory bulbectomy; CPCSEA: Committee for the Purpose of Control and Supervision of Experiments on Animals; OFT: Open Field Test; NSF: Novelty Suppressed Feeding; FST: Forced Swimming Test; 5HT: 5-Hydroxytryptamine; 5-HIAA: 5-Hydroxyindoleacetic Acid; NA: Nor-adrenaline; and HPA: Hypothalamic-Pituitary Adrenal. PMID:26929572
Serotonin is an endogenous regulator of intestinal CYP1A1 via AhR.
Manzella, Christopher; Singhal, Megha; Alrefai, Waddah A; Saksena, Seema; Dudeja, Pradeep K; Gill, Ravinder K
2018-04-17
Aryl hydrocarbon receptor (AhR) is a nuclear receptor that controls xenobiotic detoxification via induction of cytochrome P450 1A1 (CYP1A1) and regulates immune responses in the intestine. Metabolites of L-tryptophan activate AhR, which confers protection against intestinal inflammation. We tested the hypothesis that serotonin (5-HT) is an endogenous activator of AhR in intestinal epithelial cells. Treatment of Caco-2 monolayers with 5-HT induced CYP1A1 mRNA in a time- and concentration-dependent manner and also stimulated CYP1A1 activity. CYP1A1 induction by 5-HT was dependent upon uptake via serotonin transporter (SERT). Antagonism of AhR and knockdown of AhR and its binding partner aryl hydrocarbon receptor nuclear translocator (ARNT) attenuated CYP1A1 induction by 5-HT. Activation of AhR was evident by its nuclear translocation after 5-HT treatment and by induction of an AhR-responsive luciferase reporter. In vivo studies showed a dramatic decrease in CYP1A1 expression and other AhR target genes in SERT KO ileal mucosa by microarray analysis. These results suggest that intracellular accumulation of 5-HT via SERT induces CYP1A1 expression via AhR in intestinal epithelial cells, and SERT deficiency in vivo impairs activation of AhR. Our studies provide a novel link between the serotonergic and AhR pathways which has implications in xenobiotic metabolism and intestinal inflammation.
A link between central kynurenine metabolism and bone strength in rats with chronic kidney disease
Pawlak, Krystyna; Oksztulska-Kolanek, Ewa; Domaniewski, Tomasz; Znorko, Beata; Karbowska, Malgorzata; Citkowska, Aleksandra; Rogalska, Joanna; Roszczenko, Alicja; Brzoska, Malgorzata M.; Pawlak, Dariusz
2017-01-01
Background Disturbances in mineral and bone metabolism represent one of the most complex complications of chronic kidney disease (CKD). Serotonin, a monoamine synthesized from tryptophan, may play a potential role in bone metabolism. Brain-derived serotonin exerts a positive effect on the bone structure by limiting bone resorption and enhancing bone formation. Tryptophan is the precursor not only to the serotonin but also and primarily to kynurenine metabolites. The ultimate aim of the present study was to determine the association between central kynurenine metabolism and biomechanical as well as geometrical properties of bone in the experimental model of the early stage of CKD. Methods Thirty-three Wistar rats were randomly divided into two groups (sham-operated and subtotal nephrectomized animals). Three months after surgery, serum samples were obtained for the determination of biochemical parameters, bone turnover biomarkers, and kynurenine pathway metabolites; tibias were collected for bone biomechanical, bone geometrical, and bone mass density analysis; brains were removed and divided into five regions for the determination of kynurenine pathway metabolites. Results Subtotal nephrectomized rats presented higher serum concentrations of creatinine, urea nitrogen, and parathyroid hormone, and developed hypocalcemia. Several biomechanical and geometrical parameters were significantly elevated in rats with experimentally induced CKD. Subtotal nephrectomized rats presented significantly higher kynurenine concentrations and kynurenine/tryptophan ratio and significantly lower tryptophan levels in all studied parts of the brain. Kynurenine in the frontal cortex and tryptophan in the hypothalamus and striatum correlated positively with the main parameters of bone biomechanics and bone geometry. Discussion In addition to the complex mineral, hormone, and metabolite changes, intensified central kynurenine turnover may play an important role in the development of bone changes in the course of CKD. PMID:28439468
Sex differences and serotonergic mechanisms in the behavioural effects of psilocin.
Tylš, Filip; Páleníček, Tomáš; Kadeřábek, Lukáš; Lipski, Michaela; Kubešová, Anna; Horáček, Jiří
2016-06-01
Psilocybin has recently attracted a great deal of attention as a clinical research and therapeutic tool. The aim of this paper is to bridge two major knowledge gaps regarding its behavioural pharmacology - sex differences and the underlying receptor mechanisms. We used psilocin (0.25, 1 and 4 mg/kg), an active metabolite of psilocybin, in two behavioural paradigms - the open-field test and prepulse inhibition (PPI) of the acoustic startle reaction. Sex differences were evaluated with respect to the phase of the female cycle. The contribution of serotonin receptors in the behavioural action was tested in male rats with selective serotonin receptor antagonists: 5-HT1A receptor antagonist (WAY100635 1 mg/kg), 5-HT2A receptor antagonist (MDL100907 0.5 mg/kg), 5-HT2B receptor antagonist (SB215505 1 mg/kg) and 5-HT2C receptor antagonist (SB242084 1 mg/kg). Psilocin induced dose-dependent inhibition of locomotion and suppression of normal behaviour in rats (behavioural serotonin syndrome, impaired PPI). The effects were more pronounced in male rats than in females. The inhibition of locomotion was normalized by 5-HT1A and 5-HT2B/C antagonists; however, PPI was not affected significantly by these antagonists. Our findings highlight an important issue of sex-specific reactions to psilocin and that apart from 5-HT2A-mediated effects 5-HT1A and 5-HT2C/B receptors also play an important role. These findings have implications for recent clinical trials.
Ibrahim, Mohamed A; El-Alfy, Abir T; Ezel, Kelly; Radwan, Mohamed O; Shilabin, Abbas G; Kochanowska-Karamyan, Anna J; Abd-Alla, Howaida I; Otsuka, Masami; Hamann, Mark T
2017-08-09
In previous studies, we have isolated several marine indole alkaloids and evaluated them in the forced swim test (FST) and locomotor activity test, revealing their potential as antidepressant and sedative drug leads. Amongst the reported metabolites to display such activities was 5-bromo- N , N -dimethyltryptamine. Owing to the importance of the judicious introduction of halogens into drug candidates, we synthesized two series built on a 2-(1 H -indol-3-yl)- N , N -dimethylethanamine scaffold with different halogen substitutions. The synthesized compounds were evaluated for their in vitro and in vivo antidepressant and sedative activities using the mouse forced swim and locomotor activity tests. Receptor binding studies of these compounds to serotonin (5-HT) receptors were conducted. Amongst the prepared compounds, 2-(1 H -indol-3-yl)- N , N -dimethyl-2-oxoacetamide ( 1a ), 2-(5-bromo-1 H -indol-3-yl)- N , N -dimethyl-2-oxoacetamide ( 1d ), 2-(1 H -indol-3-yl)- N , N -dimethylethanamine ( 2a ), 2-(5-chloro-1 H -indol-3-yl)- N , N -dimethylethanamine ( 2c ), 2-(5-bromo-1 H -indol-3-yl)- N , N -dimethylethanamine ( 2d ), and 2-(5-iodo-1 H -indol-3-yl)- N , N -dimethylethanamine ( 2e ) have been shown to possess significant antidepressant-like action, while compounds 2c , 2d , and 2e exhibited potent sedative activity. Compounds 2a , 2c , 2d , and 2e showed nanomolar affinities to serotonin receptors 5-HT 1A and 5-HT₇. The in vitro data indicates that the antidepressant action exerted by these compounds in vivo is mediated, at least in part, via interaction with serotonin receptors. The data presented here shows the valuable role that bromine plays in providing novel chemical space and electrostatic interactions. Bromine is ubiquitous in the marine environment and a common element of marine natural products.
Freezer, Alexander; Salem, Abdallah; Irvine, Rodney J
2005-04-11
3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") and para-methoxyamphetamine (PMA) are commonly used recreational drugs. PMA, often mistaken for MDMA, is reported to be more toxic in human use than MDMA. Both of these drugs have been shown to facilitate the release and prevent the reuptake of 5-hydroxytryptamine (5-HT, serotonin). PMA is also a potent inhibitor of monoamine oxidase type A (MAO-A), an enzyme responsible for the catabolism of 5-HT, and this characteristic may contribute to its increased toxicity. In humans, co-administration of MDMA with the reversible MAO-A inhibitor moclobemide has led to increased apparent toxicity with ensuing fatalities. In the present study, using microdialysis, we examined the effects of co-administration of MDMA and PMA with moclobemide on extracellular concentrations of 5-HT and 5-hydroxy indol acetic acid (5-HIAA) in the striatum of the rat. 5-HT-mediated effects on body temperature and behavior were also recorded. Rats were pretreated with saline or 20 mg/kg (i.p.) moclobemide and 60 min later injected with 10 mg/kg MDMA, PMA, or saline. Dialysate samples were collected every 30 min for 5 h and analyzed by HPLC-ED. Both MDMA and PMA produced significant increases in extracellular 5-HT concentrations (590% and 360%, respectively, P < 0.05). Rats treated with PMA and MDMA displayed significantly increased 5-HT-related behaviors (P < 0.05). Furthermore, only MDMA was capable of producing additional significant increases in 5-HT concentrations (980%, P < 0.05) when co-administered with moclobemide. These data suggest that co-administration of MDMA with moclobemide increases extracellular 5-HT and 5-HT-mediated behaviors and may cause increased 5-HT related toxicity similar to that reported with PMA.
... Not Listed? Not Listed? 5-HIAA 17-Hydroxyprogesterone Acetaminophen Acetylcholine Receptor (AChR) Antibody Acid-Fast Bacillus (AFB) ... the rate at which the body uses energy ( metabolism ). After completing their actions, the catecholamines are broken ...
... For Health Professionals Subscribe Menu Search Global Sites Tests Tests Index Not Listed? Not Listed? 5-HIAA 17- ... BRCA Gene Mutation Testing Breast Cancer Gene Expression Tests C-peptide C-Reactive Protein (CRP) CA 15- ...
Ehrenworth, Amy M; Claiborne, Tauris; Peralta-Yahya, Pamela
2017-10-17
Chemical biosensors, for which chemical detection triggers a fluorescent signal, have the potential to accelerate the screening of noncolorimetric chemicals produced by microbes, enabling the high-throughput engineering of enzymes and metabolic pathways. Here, we engineer a G-protein-coupled receptor (GPCR)-based sensor to detect serotonin produced by a producer microbe in the producer microbe's supernatant. Detecting a chemical in the producer microbe's supernatant is nontrivial because of the number of other metabolites and proteins present that could interfere with sensor performance. We validate the two-cell screening system for medium-throughput applications, opening the door to the rapid engineering of microbes for the increased production of serotonin. We focus on serotonin detection as serotonin levels limit the microbial production of hydroxystrictosidine, a modified alkaloid that could accelerate the semisynthesis of camptothecin-derived anticancer pharmaceuticals. This work shows the ease of generating GPCR-based chemical sensors and their ability to detect specific chemicals in complex aqueous solutions, such as microbial spent medium. In addition, this work sets the stage for the rapid engineering of serotonin-producing microbes.
Increased urinary excretion rates of serotonin and metabolites during bedrest
NASA Astrophysics Data System (ADS)
Platen, Petra; Lebenstedt, Marion; Schneider, Myriam; Boese, Andrea; Heer, Martina
2005-05-01
Astronauts are often on a voluntarily reduced energy intake during space missions, possibly caused by a metabolic or emotional stress response with involvement of the central serotonergic system (SES). We investigated 24 h urinary excretion (24 h-E) of serotonin (5-HT) and 5-hydroxyindol acidic acid as indicators of the SES in healthy males under two different normocaloric conditions: normal physical activity (NPA) and -6∘ head-down-tilt (HDT). HDT or NPA were randomly arranged with a recovery period of 6 months in between. 24 h-E of hormones varied widely among individuals. Values were higher in HDT compared to NPA. Assuming that the 24 h-E values are, beside being indicators for alterations in the number and metabolism of platelets, Also indicators of central SES, HDT condition seems to activate central SES in a higher degree compared to NPA. Therefore, changes in central SES might be involved in the mechanisms associated with space flight or microgravity, including possible maladaptations such as voluntary undernutrition.
Indolealkylamines: biotransformations and potential drug-drug interactions.
Yu, Ai-Ming
2008-06-01
Indolealkylamine (IAA) drugs are 5-hydroxytryptamine (5-HT or serotonin) analogs that mainly act on the serotonin system. Some IAAs are clinically utilized for antimigraine therapy, whereas other substances are notable as drugs of abuse. In the clinical evaluation of antimigraine triptan drugs, studies on their biotransformations and pharmacokinetics would facilitate the understanding and prevention of unwanted drug-drug interactions (DDIs). A stable, principal metabolite of an IAA drug of abuse could serve as a useful biomarker in assessing intoxication of the IAA substance. Studies on the metabolism of IAA drugs of abuse including lysergic acid amides, tryptamine derivatives and beta-carbolines are therefore emerging. An important role for polymorphic cytochrome P450 2D6 (CYP2D6) in the metabolism of IAA drugs of abuse has been revealed by recent studies, suggesting that variations in IAA metabolism, pharmaco- or toxicokinetics and dynamics can arise from distinct CYP2D6 status, and CYP2D6 polymorphism may represent an additional risk factor in the use of these IAA drugs. Furthermore, DDIs with IAA agents could occur additively at the pharmaco/toxicokinetic and dynamic levels, leading to severe or even fatal serotonin toxicity. In this review, the metabolism and potential DDIs of these therapeutic and abused IAA drugs are described.
Serotonin syndrome following methylene blue administration during cardiothoracic surgery.
Smith, Christina J; Wang, Dorothy; Sgambelluri, Anna; Kramer, Robert S; Gagnon, David J
2015-04-01
Despite its favorable safety profile, there have been reports of methylene blue-induced encephalopathy and serotonin syndrome in patients undergoing parathyroidectomy. We report a case of serotonin syndrome following methylene blue administration in a cardiothoracic surgery patient. A 59-year-old woman taking preoperative venlafaxine and trazodone was given a single dose of 2 mg/kg methylene blue (167 mg) during a planned coronary artery bypass and mitral valve repair. Postoperatively, she was febrile to 38.7°C and developed full-body tremors, rhythmic twitching of the perioral muscles, slow conjugate roving eye movements, and spontaneous movements of the upper extremities. Electroencephalography revealed generalized diffuse slowing consistent with toxic encephalopathy, and a computed tomography scan showed no acute process. The patient's symptoms were most consistent with a methylene blue-induced serotonin syndrome. Her motor symptoms resolved within 48 hours and she was eventually discharged home. Only 2 cases of methylene blue-induced serotonin syndrome during cardiothoracic surgery have been described in the literature, with this report representing the third case. Methylene blue and its metabolite, azure B, are potent, reversible inhibitors of monoamine oxidase A which is responsible for serotonin metabolism. Concomitant administration of methylene blue with serotonin-modulating agents may precipitate serotonin syndrome. © The Author(s) 2015.
Gu, Min-Jung; Jeon, Ji-Hyun; Oh, Myung Sook; Hong, Seon-Pyo
2016-01-01
We developed a method to detect biogenic amines and their metabolites in rat brain tissue using simultaneous high-performance liquid chromatography and a photodiode array detection. Measurements were made using a Hypersil Gold C-18 column (250 × 2.1 mm, 5 µm). The mobile phase was 5 mM perchloric acid containing 5 % acetonitrile. The correlation coefficient was 0.9995-0.9999. LODs (S/N = 3) and LOQs (S/N = 10) were as follows: dopamine 0.4 and 1.3 pg, 3, 4-dihydroxyphenylacetic acid 8.4 and 28.0 pg, serotonin 0.4 and 1.3 pg, 5-hydroxyindolacetic acid 3.4 and 11.3 pg, and homovanillic acid 8.4 and 28.0 pg. This method does not require derivatization steps, and is more sensitive than the widely used HPLC-UV method.
... Not Listed? Not Listed? 5-HIAA 17-Hydroxyprogesterone Acetaminophen Acetylcholine Receptor (AChR) Antibody Acid-Fast Bacillus (AFB) ... your healthcare provider important information about your body's metabolism , including the current status of your kidneys as ...
Trends in Tramadol: Pharmacology, Metabolism, and Misuse.
Miotto, Karen; Cho, Arthur K; Khalil, Mohamed A; Blanco, Kirsten; Sasaki, Jun D; Rawson, Richard
2017-01-01
Tramadol is a unique analgesic medication, available in variety of formulations, with both monoaminergic reuptake inhibitory and opioid receptor agonist activity increasingly prescribed worldwide as an alternative for high-affinity opioid medication in the treatment of acute and chronic pain. It is a prodrug that is metabolized by cytochrome P450 (CYP) enzymes CYP2D6 and CYP3A4 to its more potent opioid analgesic metabolites, particularly the O-demethylation product M1. The opioid analgesic potency of a given dose of tramadol is influenced by an individual's CYP genetics, with poor metabolizers experiencing little conversion to the active M1 opioid metabolite and individuals with a high metabolic profile, or ultra-metabolizers, experiencing the greatest opioid analgesic effects. The importance of the CYP metabolism has led to the adoption of computer clinical decision support with pharmacogenomics tools guiding tramadol treatment in major medical centers. Tramadol's simultaneous opioid agonist action and serotonin (5-HT) and norepinephrine reuptake inhibitory effects result in a unique side effect profile and important drug interactions that must be considered. Abrupt cessation of tramadol increases the risk for both opioid and serotonin-norepinephrine reuptake inhibitor withdrawal syndromes. This review provides updated important information on the pharmacology, pharmacokinetics, CYP genetic polymorphisms, drug interactions, toxicity, withdrawal, and illicit use of tramadol.
Baumann, Michael H; Bulling, Simon; Benaderet, Tova S; Saha, Kusumika; Ayestas, Mario A; Partilla, John S; Ali, Syed F; Stockner, Thomas; Rothman, Richard B; Sandtner, Walter; Sitte, Harald H
2014-05-01
Serotonin (5-HT) transporter (SERT) substrates like fenfluramine and 3,4-methylenedioxymethamphetamine cause long-term depletion of brain 5-HT, while certain other substrates do not. The 5-HT deficits produced by SERT substrates are dependent upon transporter proteins, but the exact mechanisms responsible are unclear. Here, we compared the pharmacology of several SERT substrates: fenfluramine, d-fenfluramine, 1-(m-chlorophenyl)piperazine (mCPP) and 1-(m-trifluoromethylphenyl)piperainze (TFMPP), to establish relationships between acute drug mechanisms and the propensity for long-term 5-HT depletions. In vivo microdialysis was carried out in rat nucleus accumbens to examine acute 5-HT release and long-term depletion in the same subjects. In vitro assays were performed to measure efflux of [(3)H]5-HT in rat brain synaptosomes and transporter-mediated ionic currents in SERT-expressing Xenopus oocytes. When administered repeatedly to rats (6 mg/kg, i.p., four doses), all drugs produce large sustained elevations in extracellular 5-HT (>5-fold) with minimal effects on dopamine. Importantly, 2 weeks after dosing, only rats exposed to fenfluramine and d-fenfluramine display depletion of brain 5-HT. All test drugs evoke fluoxetine-sensitive efflux of [(3)H]5-HT from synaptosomes, but d-fenfluramine and its bioactive metabolite d-norfenfluramine induce significantly greater SERT-mediated currents than phenylpiperazines. Our data confirm that drug-induced 5-HT release probably does not mediate 5-HT depletion. However, the magnitude of transporter-mediated inward current may be a critical factor in the cascade of events leading to 5-HT deficits. This hypothesis warrants further study, especially given the growing popularity of designer drugs that target SERT.
Baumann, Michael H; Bulling, Simon; Benaderet, Tova S; Saha, Kusumika; Ayestas, Mario A; Partilla, John S; Ali, Syed F; Stockner, Thomas; Rothman, Richard B; Sandtner, Walter; Sitte, Harald H
2014-01-01
Serotonin (5-HT) transporter (SERT) substrates like fenfluramine and 3,4-methylenedioxymethamphetamine cause long-term depletion of brain 5-HT, while certain other substrates do not. The 5-HT deficits produced by SERT substrates are dependent upon transporter proteins, but the exact mechanisms responsible are unclear. Here, we compared the pharmacology of several SERT substrates: fenfluramine, d-fenfluramine, 1-(m-chlorophenyl)piperazine (mCPP) and 1-(m-trifluoromethylphenyl)piperainze (TFMPP), to establish relationships between acute drug mechanisms and the propensity for long-term 5-HT depletions. In vivo microdialysis was carried out in rat nucleus accumbens to examine acute 5-HT release and long-term depletion in the same subjects. In vitro assays were performed to measure efflux of [3H]5-HT in rat brain synaptosomes and transporter-mediated ionic currents in SERT-expressing Xenopus oocytes. When administered repeatedly to rats (6 mg/kg, i.p., four doses), all drugs produce large sustained elevations in extracellular 5-HT (>5-fold) with minimal effects on dopamine. Importantly, 2 weeks after dosing, only rats exposed to fenfluramine and d-fenfluramine display depletion of brain 5-HT. All test drugs evoke fluoxetine-sensitive efflux of [3H]5-HT from synaptosomes, but d-fenfluramine and its bioactive metabolite d-norfenfluramine induce significantly greater SERT-mediated currents than phenylpiperazines. Our data confirm that drug-induced 5-HT release probably does not mediate 5-HT depletion. However, the magnitude of transporter-mediated inward current may be a critical factor in the cascade of events leading to 5-HT deficits. This hypothesis warrants further study, especially given the growing popularity of designer drugs that target SERT. PMID:24287719
Shishkina, G T; Kalinina, T S; Dygalo, N N
2012-07-01
Changes in gene expression of the brain serotonin (5-HT) 1A receptors may be important for the development and ameliorating depression, however identification of specific stimuli that activate or reduce the receptor transcriptional activity is far from complete. In the present study, the forced swim test (FST) exposure, the first stress session of which is already sufficient to induce behavioral despair in rats, significantly increased 5-HT1A receptor mRNA levels in the brainstem, frontal cortex, and hippocampus at 24 h. In the brainstem and frontal cortex, the elevation in the receptor gene expression after the second forced swim session was not affected following chronic administration of fluoxetine, while in the cortex, both control and FST values were significantly reduced in fluoxetine-treated rats. In contrast to untreated rats, no increase in hippocampal 5-HT1A receptor mRNA was observed in response to FST in rats chronically treated with fluoxetine. Metabolism of 5-HT (5-HIAA/5-HT) in the brainstem was significantly decreased by fluoxetine and further reduced by swim stress, showing a certain degree of independence of these changes on 5-HT1A receptor gene expression that was increased in this brain region only after the FST, but not after fluoxetine. FST exposure also decreased the brainstem dopamine metabolism, which was unexpectedly positively correlated with 5-HT1A receptor mRNA levels in the frontal cortex. Together, these data suggest that the effects of the forced swim stress as well as fluoxetine involve brain region-dependent alterations in 5-HT1A receptor gene transcription, some of which may be interrelated with concomitant changes in catecholamine metabolism.
Strittmatter, M; Grauer, M; Isenberg, E; Hamann, G; Fischer, C; Hoffmann, K H; Blaes, F; Schimrigk, K
1997-04-01
The pathogenesis of trigeminal neuralgia remains largely unknown. "Peripheral" as well as "central" causes have been suggested. To investigate the role of serotonergic, noradrenergic, dopaminergic, and peptidergic systems, we determined the concentrations of epinephrine, norepinephrine, and their breakdown product, vanillylmandelic acid, in the cerebrospinal fluid of 16 patients (55.3 +/- 8.3 years) with trigeminal neuralgia. As a marker for the dopaminergic system, we determined cerebrospinal fluid concentrations of dopamine and its metabolite, homovanillic acid. As a marker for the serotonergic system, we measured cerebrospinal fluid levels of the serotonin metabolite, 5-hydroxyindoleacetic acid. In addition, levels of the neuropeptides, substance P and somatostatin, were determined. The concentration of norepinephrine (P < 0.01) and its metabolite, vanillylmandelic acid, (P < 0.05) were significantly decreased in our patients. The level of the dopamine metabolite, homovanillic acid, was also significantly reduced (P < 0.01). Also significantly decreased was 5-hydroxyindoleacetic acid (P < 0.01). Substance P was significantly elevated (P < 0.05). Somatostatin was significantly decreased (P < 0.05). We hypothesize that the sum of complex neurochemical changes plays a role in the pathogenesis of trigeminal neuralgia. The elevated substance P could support the concept of a neurogenic inflammation in the trigeminovascular system, whereas changes in the monoaminergic transmitters and their metabolites seem to reflect a more central dysfunction possibly due to a longer duration of the disease and an accompanying depression.
Antkiewicz-Michaluk, Lucyna; Krzemieniecki, Krzysztof; Romanska, Irena; Michaluk, Jerzy; Krygowska-Wajs, Anna
2016-06-01
The clinical studies have shown that chemotherapy may impair cognitive functions especially in the patients treated for breast cancer. It should be mention that only few studies have made use of animals to investigate the effects of chemotherapy on the brain function. Doxorubicin (Adriamycin) is an anthracycline antibiotic commonly used for chemotherapy of breast cancer. This study examined the effect of doxorubicin (1.5 and 3.0mg/kg ip) after acute administration on the levels of dopamine, noradrenaline, serotonin and their metabolites in the rat brain structures connected with cognition and psychiatric disorders. The data indicate that doxorubicin produced a significant and specific for the dopamine system inhibition of its activity in the investigated structures connected with the fall of dopamine concentration (decrease from 25 to 30% in the frontal cortex; from 30 to 60% in the hippocampus and about 20% of the control in the striatum, p<0.05) and its extraneuronal metabolite, 3-MT (from 35% in the frontal cortex to 60% in the hippocampus of the control level, p<0.01). However, doxorubicin did not affect others monoaminergic transmitters in the brain: noradrenaline and serotonin. Summing up, these data indicate that a single injection of doxorubicin produced a clear and significant inhibition of dopamine system activity in all investigated structures with the strongest effect in the hippocampus what may lead to the disturbances of the cognitive functions at the patients treated for cancer. Moreover, such treatment did not significantly affect others monoaminergic transmitters such as noradrenaline and serotonin. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Vermeiren, Yannick; Le Bastard, Nathalie; Van Hemelrijck, An; Drinkenburg, Wilhelmus H; Engelborghs, Sebastiaan; De Deyn, Peter P
2013-09-01
Behavioral and psychological signs and symptoms of dementia (BPSD) are a heterogeneous group of behavioral and psychiatric disturbances occurring in dementia patients of any etiology. Research suggests that altered activities of dopaminergic, serotonergic, (nor)adrenergic, as well as amino acid neurotransmitter systems play a role in the etiopathogenesis of BPSD. In this study we attempted to identify cerebrospinal fluid (CSF) neurochemical correlates of BPSD to provide further insight into its underlying neurochemical pathophysiological mechanisms. Patients with probable Alzheimer's disease (AD; n = 202), probable AD with cerebrovascular disease (n = 37), probable frontotemporal dementia (FTD; n = 32), and probable dementia with Lewy bodies (DLB; n = 26) underwent behavioral assessment and lumbar puncture. CSF levels of six amino acids and several biogenic amines and metabolites were analyzed using ultraperformance liquid chromatography with fluorescence detection and reversed-phase high-performance liquid chromatography with fluorescence detection. In the AD patients, CSF homovanillic acid/5-hydroxyindoleacetic acid (HVA/5HIAA) ratios correlated positively with anxieties/phobias, whereas CSF levels of taurine correlated negatively with depression and behavioral disturbances in general. In FTD patients, CSF levels of glutamate correlated negatively with verbally agitated behavior. In DLB patients, CSF levels of HVA correlated negatively with hallucinations. Several neurotransmitter systems can be linked to one specific behavioral syndrome depending on the dementia subtype. In addition to biogenic amines and metabolites, amino acids seem to play a major role in the neurochemical etiology of BPSD as well. Copyright © 2013 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
Apigenin and quercetin promote. Delta. pH-dependent accumulation of IAA in membrane vesicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woolard, D.D.; Clark, K.A.
1990-05-01
Flavonoids may act as regulators of polar auxin transport. In the presence of a pH gradient (pH 8{sub in}/6{sub out}) the flavonoids quercetin and apigenin, as well as the synthetic herbicide napthylphthalamic acid (NPA), promote the accumulation of IAA in membrane vesicles from dark-grown zucchini hypocotyls. Simultaneous accumulation of {sup 3}H-IAA (10 nM) and {sup 14}C-butyric acid (5 {mu}M; included as a pH probe) was determined by a filtration assay after incubating the vesicles with 3 nM to 100 {mu}M quercetin, apigenin, NPA or unlabeled IAA. Maximal stimulation (% of Control) was observed with 3 {mu}M NPA (130%), 1 {mu}Mmore » quercetin (120%), or 3 {mu}M apigenin (115%); {Delta}pH was not affected by these concentrations. As reported by others, IAA uptake was saturable: 1 {mu}M unlabeled IAA eliminated {Delta}pH-dependent uptake of {sup 3}H-IAA without altering {Delta}pH. However, at 30 to 100 {mu}M, every compound tested collapsed the imposed pH gradient and therefore abolished specific {sup 3}H-IAA uptake.« less
Datta, Swati; Jamwal, Sumit; Deshmukh, Rahul; Kumar, Puneet
2016-01-15
Tardive Dyskinesia is a severe side effect of chronic neuroleptic treatment consisting of abnormal involuntary movements, characterized by orofacial dyskinesia. The study was designed to investigate the protective effect of lycopene against haloperidol induced orofacial dyskinesia possibly by neurochemical and neuroinflammatory modulation in rats. Rats were administered with haloperidol (1mg/kg, i.p for 21 days) to induce orofacial dyskinesia. Lycopene (5 and 10mg/kg, p.o) was given daily 1hour before haloperidol treatment for 21 days. Behavioral observations (vacuous chewing movements, tongue protrusions, facial jerking, rotarod activity, grip strength, narrow beam walking) were assessed on 0th, 7th(,) 14th(,) 21st day after haloperidol treatment. On 22nd day, animals were killed and striatum was excised for estimation of biochemical parameters (malondialdehyde, nitrite and endogenous enzyme (GSH), pro-inflammatory cytokines [Tumor necrosis factor, Interleukin 1β, Interleukin 6] and neurotransmitters level (dopamine, serotonin, nor epinephrine, 5-Hydroxyindole acetic acid (5-HIAA), Homovanillic acid, 3,4- dihydroxyphenylacetic acid. Haloperidol treatment for 21 days impaired muscle co-ordination, motor activity and grip strength with an increased in orofacial dyskinetic movements. Further free radical generation increases MDA and nitrite levels, decreasing GSH levels in striatum. Neuroinflammatory markers were significantly increased with decrease in neurotransmitters levels. Lycopene (5 and 10mg/kg, p.o) treatment along with haloperidol significantly attenuated impairment in behavioral, biochemical, neurochemical and neuroinflammatory markers. Results of the present study attributed the therapeutic potential of lycopene in the treatment (prevented or delayed) of typical antipsychotic induced orofacial dyskinesia. Copyright © 2015 Elsevier B.V. All rights reserved.
Patterns of auxin and abscisic acid movement in the tips of gravistimulated primary roots of maize
NASA Technical Reports Server (NTRS)
Young, L. M.; Evans, M. L.
1996-01-01
Because both abscisic acid (ABA) and auxin (IAA) have been suggested as possible chemical mediators of differential growth during root gravitropism, we compared with redistribution of label from applied 3H-IAA and 3H-ABA during maize root gravitropism and examined the relative basipetal movement of 3H-IAA and 3H-ABA applied to the caps of vertical roots. Lateral movement of 3H-ABA across the tips of vertical roots was non-polar and about 2-fold greater than lateral movement of 3H-IAA (also non-polar). The greater movement of ABA was not due to enhanced uptake since the uptake of 3H-IAA was greater than that of 3H-ABA. Basipetal movement of label from 3H-IAA or 3H-ABA applied to the root cap was determined by measuring radioactivity in successive 1 mm sections behind the tip 90 minutes after application. ABA remained largely in the first mm (point of application) whereas IAA was concentrated in the region 2-4 mm from the tip with substantial levels found 7-8 mm from the tip. Pretreatment with inhibitors of polar auxin transport decreased both gravicurvature and the basipetal movement of IAA. When roots were placed horizontally, the movement of 3H-IAA from top to bottom across the cap was enhanced relative to movement from bottom to top whereas the pattern of movement of label from 3H-ABA was unaffected. These results are consistent with the hypothesis that IAA plays a role in root gravitropism but contrary to the idea that gravi-induced asymmetric distribution of ABA contributes to the response.
Grouleff, Julie; Schiøtt, Birgit
2013-01-01
The competitive inhibitor cocaine and the non-competitive inhibitor ibogaine induce different conformational states of the human serotonin transporter. It has been shown from accessibility experiments that cocaine mainly induces an outward-facing conformation, while the non-competitive inhibitor ibogaine, and its active metabolite noribogaine, have been proposed to induce an inward-facing conformation of the human serotonin transporter similar to what has been observed for the endogenous substrate, serotonin. The ligand induced conformational changes within the human serotonin transporter caused by these three different types of ligands, substrate, non-competitive and competitive inhibitors, are studied from multiple atomistic molecular dynamics simulations initiated from a homology model of the human serotonin transporter. The results reveal that diverse conformations of the human serotonin transporter are captured from the molecular dynamics simulations depending on the type of the ligand bound. The inward-facing conformation of the human serotonin transporter is reached with noribogaine bound, and this state resembles a previously identified inward-facing conformation of the human serotonin transporter obtained from molecular dynamics simulation with bound substrate, but also a recently published inward-facing conformation of a bacterial homolog, the leucine transporter from Aquifex Aoelicus. The differences observed in ligand induced behavior are found to originate from different interaction patterns between the ligands and the protein. Such atomic-level understanding of how an inhibitor can dictate the conformational response of a transporter by ligand binding may be of great importance for future drug design. PMID:23776432
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battaglia, G.; Yeh, S.Y.; O'Hearn, E.
1987-09-01
This study examines the effects of repeated systemic administration (20 mg/kg s.c., twice daily for 4 days) of 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyamphetamine (MDA) on levels of brain monoamines, their metabolites and on the density of monoamine uptake sites in various regions of rat brain. Marked reductions (30-60%) in the concentration of 5-hydroxyindoleacetic acid were observed in cerebral cortex, hippocampus, striatum, hypothalamus and midbrain at 2 weeks after a 4-day treatment regimen of MDMA or MDA; less consistent reductions in serotonin (5-HT) content were observed in these brain regions. In addition, both MDMA and MDA caused comparable and substantial reductions (50-75%)more » in the density of (/sup 3/H)paroxetine-labeled 5-HT uptake sites in all brain regions examined. In contrast, neither MDMA nor MDA caused any widespread or long-term changes in the content of the catecholaminergic markers (i.e., norepinephrine, dopamine, 3,4 dihydroxyphenylacetic acid and homovanillic acid) or in the number of (/sup 3/H)mazindol-labeled norepinephrine or dopamine uptake sites in the brain regions examined. These data demonstrate that MDMA and MDA cause long-lasting neurotoxic effects with respect to both the functional and structural integrity of serotonergic neurons in brain. Furthermore, our measurement of reductions in the density of 5-HT uptake sites provides a means for quantification of the neurodegenerative effects of MDMA and MDA on presynaptic 5-HT terminals.« less
Miller, Jeffrey M; Hesselgrave, Natalie; Ogden, R Todd; Sullivan, Gregory M; Oquendo, Maria A; Mann, J John; Parsey, Ramin V
2013-08-15
Several lines of evidence implicate abnormal serotonergic function in suicidal behavior and completed suicide, including low serotonin transporter binding in postmortem studies of completed suicide. We have also reported low in vivo serotonin transporter binding in major depressive disorder (MDD) during a major depressive episode using positron emission tomography (PET) with [(11)C]McN5652. We quantified regional brain serotonin transporter binding in vivo in depressed suicide attempters, depressed nonattempters, and healthy controls using PET and a superior radiotracer, [(11)C]DASB. Fifty-one subjects with DSM-IV current MDD, 15 of whom were past suicide attempters, and 32 healthy control subjects underwent PET scanning with [(11)C]DASB to quantify in vivo regional brain serotonin transporter binding. Metabolite-corrected arterial input functions and plasma free-fraction were acquired to improve quantification. Depressed suicide attempters had lower serotonin transporter binding in midbrain compared with depressed nonattempters (p = .031) and control subjects (p = .0093). There was no difference in serotonin transporter binding comparing all depressed subjects with healthy control subjects considering six a priori regions of interest simultaneously (p = .41). Low midbrain serotonin transporter binding appears to be related to the pathophysiology of suicidal behavior rather than of major depressive disorder. This is consistent with postmortem work showing low midbrain serotonin transporter binding capacity in depressed suicides and may partially explain discrepant in vivo findings quantifying serotonin transporter in depression. Future studies should investigate midbrain serotonin transporter binding as a predictor of suicidal behavior in MDD and determine the cause of low binding. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
The incidence of elevations in urine 5-hydroxyindoleacetic acid.
Nuttall, K L; Pingree, S S
1998-01-01
A 24-hour urine collection for 5-hydroxyindoleacetic acid (HIAA) is commonly performed to evaluate patients with suspected carcinoid syndrome. However, carcinoids are rare, and elevated results are common even when using an analytically specific method. To characterize this problem, the incidence of elevated results was examined in a population of 947 patient specimens received in a clinical reference laboratory setting. Using a reference limit of 15 mg/d identified 7.9 percent of the results as elevated, with 3 percent > 100 mg/d, and about 1 percent > 350 mg/d. Males showed 14 percent > 15 mg/d compared to 5.2 percent for females. Characterization of incomplete and excess 24-hr urine collections is facilitated by use of a creatinine ratio, with a reference limit of 14 mg/g creatinine equivalent to 15 mg/d. Given the frequency of elevated results, HIAA should be used to support the diagnoses of carcinoid only when consistent with other objective findings.
Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease.
Agus, Allison; Planchais, Julien; Sokol, Harry
2018-06-13
The gut microbiota is a crucial actor in human physiology. Many of these effects are mediated by metabolites that are either produced by the microbes or derived from the transformation of environmental or host molecules. Among the array of metabolites at the interface between these microorganisms and the host is the essential aromatic amino acid tryptophan (Trp). In the gut, the three major Trp metabolism pathways leading to serotonin (5-hydroxytryptamine), kynurenine (Kyn), and indole derivatives are under the direct or indirect control of the microbiota. In this review, we gather the most recent advances concerning the central role of Trp metabolism in microbiota-host crosstalk in health and disease. Deciphering the complex equilibrium between these pathways will facilitate a better understanding of the pathogenesis of human diseases and open therapeutic opportunities. Copyright © 2018 Elsevier Inc. All rights reserved.
... and the carcinoid syndrome. In: Goldman L, Schafer AI, eds. Goldman-Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap 232. Review Date 8/15/2016 Updated by: Todd Gersten, MD, Hematology/Oncology, Florida Cancer Specialists & Research Institute, Wellington, FL. Review provided by ...
Ferry, Barbara; Gifu, Elena-Patricia; Sandu, Ioana; Denoroy, Luc; Parrot, Sandrine
2014-03-01
Electrochemical methods are very often used to detect catecholamine and indolamine neurotransmitters separated by conventional reverse-phase high performance liquid chromatography (HPLC). The present paper presents the development of a chromatographic method to detect monoamines present in low-volume brain dialysis samples using a capillary column filled with sub-2μm particles. Several parameters (repeatability, linearity, accuracy, limit of detection) for this new ultrahigh performance liquid chromatography (UHPLC) method with electrochemical detection were examined after optimization of the analytical conditions. Noradrenaline, adrenaline, serotonin, dopamine and its metabolite 3-methoxytyramine were separated in 1μL of injected sample volume; they were detected above concentrations of 0.5-1nmol/L, with 2.1-9.5% accuracy and intra-assay repeatability equal to or less than 6%. The final method was applied to very low volume dialysates from rat brain containing monoamine traces. The study demonstrates that capillary UHPLC with electrochemical detection is suitable for monitoring dialysate monoamines collected at high sampling rate. Copyright © 2014 Elsevier B.V. All rights reserved.
Fedotova, Julia; Soultanov, Vagif; Nikitina, Tamara; Roschin, Victor; Ordyan, Natalia; Hritcu, Lucian
2016-10-01
Previous studies indicated that reduced androgen levels may contribute to both physical and cognitive disorders in men, including Alzheimer's disease. New drug candidates for Alzheimer's disease in patients with androgen deficiency should ideally be able to act not only on multiple brain targets but also to correct impaired endocrine functions in hypogonadal men with Alzheimer's disease. Ropren ® is one such candidate for the treatment of Alzheimer's disease in men with an imbalance of androgens. Accordingly, the aim of the current study was to examine the effects of long-term Ropren ® administration (8.6mg/kg, orally, once daily, for 28 days) on the anxiety-like behavior and monoamines levels in the rat hippocampus using a β-amyloid (25-35) rat model of Alzheimer's disease following gonadectomy. Ropren ® was administered to the gonadectomized (GDX) rats and GDX rats treated with testosterone propionate (TP, 0.5mg/kg, subcutaneous, once daily, for 28 days). Anxiety-like behavior was assessed in the elevated plus maze (EPM) and the light-dark test (LDT), locomotor and grooming activities were assessed in the open field test (OFT). Ropren ® alone or in combination with TP-induced anxiolytic effects as evidenced in the EPM and in the LDT and increased locomotor activity in the OFT. Additionally, it was observed that dopamine (DA) and serotonin (5-HT) levels increased while 5-hydroxyindoleacetic acid (5-HIAA)/5-HT ratio in the hippocampus decreased. Our results indicate that Ropren ® has a marked anxiolytic-like action due to an increase in the monoamines levels in the experimental rat model of Alzheimer's disease with altered levels of androgens. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Goni-Allo, Beatriz; O Mathúna, Brian; Segura, Mireia; Puerta, Elena; Lasheras, Berta; de la Torre, Rafael; Aguirre, Norberto
2008-04-01
A close relationship appears to exist between 3,4-methylenedioxymethamphetamine (MDMA)-induced changes in core body temperature and long-term serotonin (5-HT) loss. We investigated whether changes in core body temperature affect MDMA metabolism. Male Wistar rats were treated with MDMA at ambient temperatures of 15, 21.5, or 30 degrees C to prevent or exacerbate MDMA-induced hyperthermia. Plasma concentrations of MDMA and its main metabolites were determined for 6 h. Seven days later, animals were killed and brain indole content was measured. The administration of MDMA at 15 degrees C blocked the hyperthermic response and long-term 5-HT depletion found in rats treated at 21.5 degrees C. At 15 degrees C, plasma concentrations of MDMA were significantly increased, whereas those of three of its main metabolites were reduced when compared to rats treated at 21.5 degrees C. By contrast, hyperthermia and indole deficits were exacerbated in rats treated at 30 degrees C. Noteworthy, plasma concentrations of MDMA metabolites were greatly enhanced in these animals. Instrastriatal perfusion of MDMA (100 microM for 5 h at 21 degrees C) did not potentiate the long-term depletion of 5-HT after systemic MDMA. Furthermore, interfering in MDMA metabolism using the catechol-O-methyltransferase inhibitor entacapone potentiated the neurotoxicity of MDMA, indicating that metabolites that are substrates for this enzyme may contribute to neurotoxicity. This is the first report showing a direct relationship between core body temperature and MDMA metabolism. This finding has implications on both the temperature dependence of the mechanism of MDMA neurotoxicity and human use, as hyperthermia is often associated with MDMA use in humans.
O’Leary, Ryan E.; Shih, Jean C.; Hyland, Keith; Kramer, Nancy; Asher, Y. Jane Tavyev; Graham, John M.
2012-01-01
Monoamine oxidase A and B (MAOA and MAOB) play key roles in deaminating neurotransmitters and various other biogenic amines. Patients deficient in one or both enzymes have distinct metabolic and neurologic profiles. MAOB deficient patients exhibit normal clinical characteristics and behavior, while MAOA deficient patients have borderline intellectual deficiency and impaired impulse control. Patients who lack both MAOA and MAOB have the most extreme laboratory values (urine, blood, and CSF serotonin 4–6 times normal, with elevated O-methylated amine metabolites and reduced deaminated metabolites) in addition to severe intellectual deficiency and behavioral problems. Mice lacking maoa and moab exhibit decreased proliferation of neural stem cells beginning in late gestation and persisting into adulthood These mice show significantly increased monoamine levels, particularly serotonin, as well as anxiety-like behaviors as adults, suggesting that brain maturation in late embryonic development is adversely affected by elevated serotonin levels. We report the case of a male infant with a de novo Xp11.3 microdeletion exclusively encompassing the MAOA and MAOB genes. This newly recognized X-linked disorder is characterized by severe intellectual disability and unusual episodes of hypotonia, which resemble atonic seizures, but have no EEG correlate. A customized low dietary amine diet was implemented in an attempt to prevent the cardiovascular complications that can result from the excessive intake of these compounds. This is the second report of this deletion and the first attempt to maintain the patient’s cardiovascular health through dietary manipulation. Even though a diet low in tyramine, phenylethylamine, and dopa/dopamine is necessary for long-term management, it will not rescue the abnormal monoamine profile seen in combined MAOA and MAOB deficiency. Our patient displays markedly elevated levels of serotonin in blood, serum, urine, and CSF while on this diet. Serotonin biosynthesis inhibitors like para-chlorophenylalanine and p-ethynylphenylalanine may be needed to lower serotonin levels in patients with absent monoamine oxidase enzymes. PMID:22365943
O'Leary, Ryan E; Shih, Jean C; Hyland, Keith; Kramer, Nancy; Asher, Y Jane Tavyev; Graham, John M
2012-05-01
Monoamine oxidase A and B (MAOA and MAOB) play key roles in deaminating neurotransmitters and various other biogenic amines. Patients deficient in one or both enzymes have distinct metabolic and neurologic profiles. MAOB deficient patients exhibit normal clinical characteristics and behavior, while MAOA deficient patients have borderline intellectual deficiency and impaired impulse control. Patients who lack both MAOA and MAOB have the most extreme laboratory values (urine, blood, and CSF serotonin 4-6 times normal, with elevated O-methylated amine metabolites and reduced deaminated metabolites) in addition to severe intellectual deficiency and behavioral problems. Mice lacking maoa and moab exhibit decreased proliferation of neural stem cells beginning in late gestation and persisting into adulthood. These mice show significantly increased monoamine levels, particularly serotonin, as well as anxiety-like behaviors as adults, suggesting that brain maturation in late embryonic development is adversely affected by elevated serotonin levels. We report the case of a male infant with a de novo Xp11.3 microdeletion exclusively encompassing the MAOA and MAOB genes. This newly recognized X-linked disorder is characterized by severe intellectual disability and unusual episodes of hypotonia, which resemble atonic seizures, but have no EEG correlate. A customized low dietary amine diet was implemented in an attempt to prevent the cardiovascular complications that can result from the excessive intake of these compounds. This is the second report of this deletion and the first attempt to maintain the patient's cardiovascular health through dietary manipulation. Even though a diet low in tyramine, phenylethylamine, and dopa/dopamine is necessary for long-term management, it will not rescue the abnormal monoamine profile seen in combined MAOA and MAOB deficiency. Our patient displays markedly elevated levels of serotonin in blood, serum, urine, and CSF while on this diet. Serotonin biosynthesis inhibitors like para-chlorophenylalanine and p-ethynylphenylalanine may be needed to lower serotonin levels in patients with absent monoamine oxidase enzymes. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Serotonin: A mediator of the gut-brain axis in multiple sclerosis.
Malinova, Tsveta S; Dijkstra, Christine D; de Vries, Helga E
2017-11-01
The significance of the gut microbiome for the pathogenesis of multiple sclerosis (MS) has been established, although the underlying signaling mechanisms of this interaction have not been sufficiently explored. We address this point and use serotonin (5-hydroxytryptamine (5-HT))-a microbial-modulated neurotransmitter (NT) as a showcase to demonstrate that NTs regulated by the gut microbiome are potent candidates for mediators of the gut-brain axis in demyelinating disorders. Methods, Results, and Conclusion: Our comprehensive overview of literature provides evidence that 5-HT levels in the gut are controlled by the microbiome, both via secretion and through regulation of metabolites. In addition, we demonstrate that the gut microbiome can influence the formation of the serotonergic system (SS) in the brain. We also show that SS alterations have been related to MS directly-altered expression of 5-HT transporters in central nervous system (CNS) and indirectly-beneficial effects of 5-HT modulating drugs on the course of the disease and higher prevalence of depression in patients with MS. Finally, we discuss briefly the role of other microbiome-modulated NTs such as γ-aminobutyric acid and dopamine in MS to highlight a new direction for future research aiming to relate microbiome-regulated NTs to demyelinating disorders.
Ullah, Ihsan; Subhan, Fazal; Ayaz, Muhammad; Shah, Rehmat; Ali, Gowhar; Haq, Ikram Ul; Ullah, Sami
2015-02-26
Zingiber officinale (ZO, family Zingiberaceae) has been reported for its antiemetic activity against cancer chemotherapy induced emesis in animal models and in clinics. Current study was designed to investigate ZO for potential usefulness against cisplatin induced vomiting in pigeon and its effects on central and peripheral neurotransmitters involved in the act of vomiting. Zingiber officinale acetone fraction (ZO-ActFr) was investigated for attenuation of emesis induced by cisplatin in healthy pigeons. Neurotransmitters DA, 5HT and their metabolites DOPAC, HVA and 5HIAA were analyzed using High Performance Liquid Chromatography system coupled with electrochemical detector in area postrema, brain stem and intestine. Antiemetic effect of ZO-ActFr was correlated with central and intestinal neurotransmitters levels in pigeon. Cisplatin (7 mg/kg i.v.) induced emesis without lethality upto the observation period. ZO-ActFr (25, 50 & 100 mg/kg) attenuated cisplatin induced emesis ~ 44.18%, 58.13% (P < 0.05) and 27.9%, respectively; the reference drug, metoclopramide (MCP; 30 mg/kg), produced ~ 48.83% reduction (P < 0.05). ZO-ActFr reduced (P < 0.05 - 0.001) 5-hydroxytryptamine (5HT) concentration in the area postrema, brain stem and intestine at 3(rd) hour of cisplatin administration, while at the 18(th) hour ZO treatments attenuated the dopamine upsurge (P < 0.001) caused by cisplatin in the area postrema and 5HT concentration (P < 0.01 - 0.001) in the brain stem and intestine. ZO treatments alone did not altered the basal neurotransmitters and their metabolites in the brain areas and intestine. The behavioral study verify the antiemetic profile of ZO against cisplatin induced emesis in the pigeon, where central and peripheral neural evidences advocate the involvement of serotonergic mechanism at initial time point (3(rd) hr), while the later time point (18(th) hr) is associated with serotonergic and dopaminergic component in the mediation of its antiemetic effect.
Cruz-Morales, Sara Eugenia; García-Saldívar, Norma Laura; González-López, María Reyes; Castillo-Roberto, Georgina; Monroy, Juana; Domínguez, Roberto
2008-12-16
Serotonin (5-HT) is involved in behaviors such as sleep, eating, memory, in mental disorders like anxiety and depression and plays an important role in the modulation of stress. On the other hand, exposure to stress influence learning as well as declarative and non-declarative memory. These effects are dependent on the type of stressor, their magnitude, and the type of memory. The striatum has been associated with non-declarative procedural memory, while the information about stress effects on procedural memory and their relation with striatal serotonin is scarce. The objective of this study was to evaluate the effects of stress on the modifications of the striatal serotonergic system. In Experiment 1, the effects of either 60 min of restraint (R) or exposure to the elevated T-maze (ETM) was assessed. Exposure to ETM decreased 5-HT concentration and to R increased 5-HT activity ([metabolite]/[neurotransmitter]). In Experiment 2, we evaluated the effects of restraint on ETM trained immediately, 24 or 48 h after restraint. No effects were detected in acquisition or escape latencies, while retention latencies were lower in all groups compared with the non-restrained group, although significant effects were detected immediately and 24h after restraint. The memory impairment seems to be associated with changes in striatal serotonergic system, given that 5-HT concentration increased, while serotonergic activity decreased. The differences in the activity of 5-HT detected in each experiment could be explained by the effects of different stressors on the serotonergic neurons ability to synthesize the neurotransmitter. Thus, we suggest that exposure to stress impairs procedural memory and that striatal serotonin modulates this effect.
Modulation of defensive reflex conditioning in snails by serotonin
Andrianov, Vyatcheslav V.; Bogodvid, Tatiana K.; Deryabina, Irina B.; Golovchenko, Aleksandra N.; Muranova, Lyudmila N.; Tagirova, Roza R.; Vinarskaya, Aliya K.; Gainutdinov, Khalil L.
2015-01-01
Highlights Daily injection of serotonin before a training session accelerated defensive reflex conditioning in snails.Daily injection of 5-hydroxytryptophan before a training session in snails with a deficiency of serotonin induced by the “neurotoxic” analog of serotonin 5,7-dihydroxytryptamine, restored the ability of snails to learn.After injection of the “neurotoxic” analogs of serotonin 5,6- and 5,7-dihydroxytryptamine as well as serotonin, depolarization of the membrane and decrease of the threshold potential of premotor interneurons was observed. We studied the role of serotonin in the mechanisms of learning in terrestrial snails. To produce a serotonin deficit, the “neurotoxic” analogs of serotonin, 5,6- or 5,7-dihydroxytryptamine (5,6/5,7-DHT) were used. Injection of 5,6/5,7-DHT was found to disrupt defensive reflex conditioning. Within 2 weeks of neurotoxin application, the ability to learn had recovered. Daily injection of serotonin before a training session accelerated defensive reflex conditioning and daily injections of 5-HTP in snails with a deficiency of serotonin induced by 5,7-DHT restored the snail's ability to learn. We discovered that injections of the neurotoxins 5,6/5,7-DHT as well as serotonin, caused a decrease in the resting and threshold potentials of the premotor interneurons LPa3 and RPa3. PMID:26557063
Colado, M I; Granados, R; O'Shea, E; Esteban, B; Green, A R
1998-01-01
The immediate effect of administration of 3,4-methylenedioxymethamphetamine (MDMA or ‘ecstasy') on rectal temperature and the effect of putative neuroprotective agents on this change has been examined in rats. The influence of the temperature changes on the long term MDMA-induced neurodegeneration of cerebral 5-hydroxytryptamine (5-HT) nerve terminals was also examined.The novel low affinity N-methyl-D-aspartate (NMDA) receptor channel blocker AR-R15896AR (20 mg kg−1, i.p.) given 5 min before and 55 min after MDMA (15 mg kg−1, i.p.) did not prevent the MDMA-induced hyperthermia and did not alter either the MDMA-induced neurodegenerative loss of 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) in cortex, striatum and hippocampus or loss of [3H]-paroxetine binding in cortex 7 days later.The neuroprotective agent clomethiazole (50 mg kg−1, i.p.) given 5 min before and 55 min after MDMA (15 mg kg−1) abolished the MDMA-induced hyperthermic response and markedly attenuated the loss of 5-HT, 5-HIAA and [3H]-paroxetine binding in the brain regions examined 7 days later.When rats treated with MDMA plus clomethiazole were kept at high ambient temperature for 5 h post-MDMA, thereby keeping their body temperature elevated to near that seen in rats given MDMA alone, the MDMA-induced loss of 5-HT, 5-HIAA and [3H]-paroxetine was still attenuated. However, the protection (39%) afforded by the clomethiazole administration was less than seen in rats kept at normal ambient temperature (75%).These data support the proposals of others that NMDA receptor antagonists are neuroprotective against MDMA-induced degeneration only if they induce hypothermia and further suggest that increased glutamate activity may not be involved in the neurotoxic action of MDMA.These data further demonstrate that a proportion of the neuroprotective action of clomethiazole is due to an effect on body temperature but that, in addition, the compound protects against MDMA-induced damage by an unrelated mechanism. PMID:9647471
Brunner, Valérie; Maynadier, Bernadette; Chen, Laishun; Roques, Louise; Hude, Isabelle; Séguier, Sébastien; Barthe, Laurence; Hermann, Philippe
2015-01-01
Levomilnacipran is approved in the US for the treatment of major depressive disorder in adults. We characterized the metabolic profile of levomilnacipran in humans, monkeys, and rats after oral administration of [14C]-levomilnacipran. In vitro binding of levomilnacipran to human plasma proteins was also studied. Unchanged levomilnacipran was the major circulating compound after dosing in all species. Within 12 hours of dosing in humans, levomilnacipran accounted for 52.9% of total plasma radioactivity; the circulating metabolites N-desethyl levomilnacipran N-carbamoyl glucuronide, N-desethyl levomilnacipran, and levomilnacipran N-carbamoyl glucuronide accounted for 11.3%, 7.5%, and 5.6%, respectively. Similar results were seen in monkeys. N-Desethyl levomilnacipran and p-hydroxy levomilnacipran were the main circulating metabolites in rats. Mass balance results indicated that renal excretion was the major route of elimination with 58.4%, 35.5%, and 40.2% of total radioactivity being excreted as unchanged levomilnacipran in humans, monkeys, and rats, respectively. N-Desethyl levomilnacipran was detected in human, monkey, and rat urine (18.2%, 12.4%, and 7.9% of administered dose, respectively). Human and monkey urine contained measurable quantities of levomilnacipran glucuronide (3.8% and 4.1% of administered dose, respectively) and N-desethyl levomilnacipran glucuronide (3.2% and 2.3% of administered dose, respectively); these metabolites were not detected in rat urine. The metabolites p-hydroxy levomilnacipran and p-hydroxy levomilnacipran glucuronide were detected in human urine (≤1.2% of administered dose), and p-hydroxy levomilnacipran glucuronide was found in rat urine (4% of administered dose). None of the metabolites were pharmacologically active. Levomilnacipran was widely distributed with low plasma protein binding (22%). PMID:26150694
experiments were performed on 7 trichomonas vaginalis strains. The test cultures with serotonin, oestron, testosteron and methyltestosteron grew at...The present study has been concerned with the influence of some hormones upon trichomonas growth. The following substances were used for our...ml onward. Adrenalin and noradrenalin have generally inhibiting action (from 0.80 mg/ml onward) upon trichomonas growth. The antihormone 3.5-dijodtyrosin does rarely influence the growth of trichomonas . (Author)
Sakashita, Yuichi; Abe, Kenji; Katagiri, Nobuyuki; Kambe, Toshie; Saitoh, Toshiaki; Utsunomiya, Iku; Horiguchi, Yoshie; Taguchi, Kyoji
2015-01-01
Psilocin (3-[2-(dimethylamino)ethyl]-1H-indol-4-ol) is a hallucinogenic component of the Mexican mushroom Psilocybe mexicana and a skeletal serotonin (5-HT) analogue. Psilocin is the active metabolite of psilocybin (3-[2-(dimethylamino)ethyl]-1H-indol-4-yl dihydrogen phosphate). In the present study, we examined the effects of systemically administered psilocin on extracellular dopamine and 5-HT concentrations in the ventral tegmental area (VTA), nucleus accumbens, and medial prefrontal cortex of the dopaminergic pathway in awake rats using in vivo microdialysis. Intraperitoneal administration of psilocin (5, 10 mg/kg) significantly increased extracellular dopamine levels in the nucleus accumbens. Psilocin did not affect the extracellular 5-HT level in the nucleus accumbens. Conversely, systemic administration of psilocin (10 mg/kg) significantly increased extracellular 5-HT levels in the medial prefrontal cortex of rats, but dopamine was decreased in this region. However, neither extracellular dopamine nor 5-HT levels in the VTA were altered by administration of psilocin. Behaviorally, psilocin significantly increased the number of head twitches. Thus, psilocin affects the dopaminergic system in the nucleus accumbens. In the serotonergic system, psilocin contribute to a crucial effect in the medial prefrontal cortex. The present data suggest that psilocin increased both the extracellular dopamine and 5-HT concentrations in the mesoaccumbens and/or mesocortical pathway.
Telotristat ethyl in carcinoid syndrome: safety and efficacy in the TELECAST phase 3 trial.
Pavel, Marianne; Gross, David J; Benavent, Marta; Perros, Petros; Srirajaskanthan, Raj; Warner, Richard R P; Kulke, Matthew H; Anthony, Lowell B; Kunz, Pamela L; Hörsch, Dieter; Weickert, Martin O; Lapuerta, Pablo; Jiang, Wenjun; Kassler-Taub, Kenneth; Wason, Suman; Fleming, Rosanna; Fleming, Douglas; Garcia-Carbonero, Rocio
2018-03-01
Telotristat ethyl, a tryptophan hydroxylase inhibitor, was efficacious and well tolerated in the phase 3 TELESTAR study in patients with carcinoid syndrome (CS) experiencing ≥4 bowel movements per day (BMs/day) while on somatostatin analogs (SSAs). TELECAST, a phase 3 companion study, assessed the safety and efficacy of telotristat ethyl in patients with CS (diarrhea, flushing, abdominal pain, nausea or elevated urinary 5-hydroxyindoleacetic acid (u5-HIAA)) with <4 BMs/day on SSAs (or ≥1 symptom or ≥4 BMs/day if not on SSAs) during a 12-week double-blind treatment period followed by a 36-week open-label extension (OLE). The primary safety and efficacy endpoints were incidence of treatment-emergent adverse events (TEAEs) and percent change from baseline in 24-h u5-HIAA at week 12. Patients ( N = 76) were randomly assigned (1:1:1) to receive placebo or telotristat ethyl 250 mg or 500 mg 3 times per day (tid); 67 continued receiving telotristat ethyl 500 mg tid during the OLE. Through week 12, TEAEs were generally mild to moderate in severity; 5 (placebo), 1 (telotristat ethyl 250 mg) and 3 (telotristat ethyl 500 mg) patients experienced serious events, and the rate of TEAEs in the OLE was comparable. At week 12, significant reductions in u5-HIAA from baseline were observed, with Hodges-Lehmann estimators of median treatment differences from placebo of -54.0% (95% confidence limits, -85.0%, -25.1%, P < 0.001) and -89.7% (95% confidence limits, -113.1%, -63.9%, P < 0.001) for telotristat ethyl 250 mg and 500 mg. These results support the safety and efficacy of telotristat ethyl when added to SSAs in patients with CS diarrhea (ClinicalTrials.gov identifier: Nbib2063659). © 2018 The authors.
Rico, María; Andrés-Costa, María Jesús; Picó, Yolanda
2017-02-05
Wastewater can provide a wealth of epidemiologic data on common drugs consumed and on health and nutritional problems based on the biomarkers excreted into community sewage systems. One of the biggest uncertainties of these studies is the estimation of the number of inhabitants served by the treatment plants. Twelve human urine biomarkers -5-hydroxyindoleacetic acid (5-HIAA), acesulfame, atenolol, caffeine, carbamazepine, codeine, cotinine, creatinine, hydrochlorothiazide (HCTZ), naproxen, salicylic acid (SA) and hydroxycotinine (OHCOT)- were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to estimate population size. The results reveal that populations calculated from cotinine, 5-HIAA and caffeine are commonly in agreement with those calculated by the hydrochemical parameters. Creatinine is too unstable to be applicable. HCTZ, naproxen, codeine, OHCOT and carbamazepine, under or overestimate the population compared to the hydrochemical population estimates but showed constant results through the weekdays. The consumption of cannabis, cocaine, heroin and bufotenine in Valencia was estimated for a week using different population calculations. Copyright © 2016 Elsevier B.V. All rights reserved.
Baumann, M H; Rothman, R B; Pablo, J P; Mash, D C
2001-05-01
Ibogaine is a naturally occurring compound with purported antiaddictive properties. When administered to primates, ibogaine is rapidly o-demethylated to form the metabolite 12-hydroxyibogamine (noribogaine). Peak blood levels of noribogaine exceed those of ibogaine, and noribogaine persists in the bloodstream for at least 1 day. Very few studies have systematically evaluated the neurobiological effects of noribogaine in vivo. In the present series of experiments, we compared the effects of i.v. administration of ibogaine and noribogaine (1 and 10 mg/kg) on motor behaviors, stress hormones, and extracellular levels of dopamine (DA) and serotonin (5-HT) in the nucleus accumbens of male rats. Ibogaine caused dose-related increases in tremors, whereas noribogaine did not. Both ibogaine and noribogaine produced significant elevations in plasma corticosterone and prolactin, but ibogaine was a more potent stimulator of corticosterone secretion. Neither drug altered extracellular DA levels in the nucleus accumbens. However, both drugs increased extracellular 5-HT levels, and noribogaine was more potent in this respect. Results from in vitro experiments indicated that ibogaine and noribogaine interact with 5-HT transporters to inhibit 5-HT uptake. The present findings demonstrate that noribogaine is biologically active and undoubtedly contributes to the in vivo pharmacological profile of ibogaine in rats. Noribogaine is approximately 10 times more potent than ibogaine as an indirect 5-HT agonist. More importantly, noribogaine appears less apt to produce the adverse effects associated with ibogaine, indicating the metabolite may be a safer alternative for medication development.
Molina, J A; Calandre, L; Bermejo, F
1989-03-01
Two cases of myoclonic encephalopathy due to bismuth salts intoxication are reported. In both, treatment with dimercaprol led to clinical recovery. This therapy was shown to enhance bismuth clearance. We also present data on the CSF metabolites dopamine, norepinephrine and serotonin of one patient.
Shetty, Reshma A; Sadananda, Monika
2017-05-01
The Wistar-Kyoto rat (WKY) model has been suggested as a model of adult and adolescent depression though face, predictive and construct validities of the model to depression remain equivocal. The suitability of the WKY as a diathesis model that tests the double-hit hypothesis, particularly during critical periods of brain and behavioural development remains to be established. Here, effects of post-weaning social isolation were assessed during early adolescence (~30pnd) on behavioural despair and learned helplessness in the forced swim test (FST), plasma corticosterone levels and tissue monoamine concentrations in brain areas critically involved in depression, such as prefrontal cortex, nucleus accumbens, striatum and hippocampus. Significantly increased immobility in the FST was observed in socially-isolated, adolescent WKY with a concomitant increase in corticosterone levels over and above the FST-induced stress. WKY also demonstrated a significantly increased release and utilization of dopamine, as manifested by levels of metabolites 3,4-dihydroxyphenylacetic acid and homovanillic acid in nucleus accumbens, indicating that the large dopamine storage pool evident during adolescence induces greater dopamine release when stimulated. The serotonin metabolite 5-hydroxy-indoleacetic acid was also significantly increased in nucleus accumbens, indicating increased utilization of serotonin, along with norepinephrine levels which were also signficantly elevated in socially-isolated adolescent WKY. Differences in neurochemistry suggest that social or environmental stimuli during critical periods of brain and behavioural development can determine the developmental trajectories of implicated pathways.
Enantioselective pharmacokinetics of sibutramine in rat.
Noh, Keumhan; Bae, Kyoungjin; Min, Bokyoung; Kim, Eunyoung; Kwon, Kwang-il; Jeong, Taecheon; Kang, Wonku
2010-02-01
Racemic sibutramine is widely used to treat obesity owing to its inhibition of serotonin and noradrenaline reuptake in synapses. Although the enantioselective effects of sibutramine and its two active desmethyl-metabolites, monodesmethylsibutramine (MDS) and didesmethylsibutramine (DDS), on anorexia and energy expenditure have been elucidated, the enantioselective pharmacokinetics of sibutramine are still unclear. Therefore, we aimed to characterize the enantioselective pharmacokinetics of sibutramine and its metabolites in plasma and urine following an intravenous and a single oral administration of sibutramine in rats. The absolute bioavailability of sibutramine was only about 7%. The pharmacologically less effective S-isomer of DDS was predominant in the plasma: the C ( max ) and the AUC ( inf ) were 28 and 30 times higher than those of the R-isomer, respectively (p<0.001). In the urine, the concentrations of the R-isomers of hydroxylated DDS and hydroxylated and carbamoylglucuronized MDS and DDS appeared to be 11.3-, 5.1-, and 5.3-times the concentrations of the respective S-isomers. Thus, regardless of increased potency than the S-enantiomers, the R-enantiomers of the sibutramine metabolites MDS and DDS were present at lower concentrations, owing to their rapid biotransformation to hydroxylated and/or carbamoylglucuronized forms and their faster excretion in the urine. The present study is the first to elucidate the enantioselective pharmacokinetics of sibutramine in rats.
Murphy, D L; Sims, K B; Karoum, F; Garrick, N A; de la Chapelle, A; Sankila, E M; Norio, R; Breakefield, X O
1991-01-01
Two individuals with an X-chromosomal deletion were recently found to lack the genes encoding monoamine oxidase type A (MAO-A) and MAO-B. This abnormality was associated with almost total (90%) reductions in the oxidatively deaminated urinary metabolites of the MAO-A substrate, norepinephrine, and with marked (100-fold) increases in an MAO-B substrate, phenylethylamine, confirming systemic functional consequences of the genetic enzyme deficiency. However, urinary concentrations of the deaminated metabolites of dopamine and serotonin (5-HT) were essentially normal. To investigate other deaminating systems besides MAO-A and MAO-B that might produce these metabolites of dopamine and 5-HT, we examined plasma amine oxidase (AO) activity in these two patients and two additional patients with the same X-chromosomal deletion. Normal plasma AO activity was found in all four Norrie disease-deletion patients, in four patients with classic Norrie disease without a chromosomal deletion, and in family members of patients from both groups. Marked plasma amine metabolite abnormalities and essentially absent platelet MAO-B activity were found in all four Norrie disease-deletion patients, but in none of the other subjects in the two comparison groups. These results indicate that plasma AO is encoded by gene(s) independent of those for MAO-A and MAO-B, and raise the possibility that plasma AO, and perhaps the closely related tissue AO, benzylamine oxidase, as well as other atypical AOs or MAOs encoded independently from MAO-A and MAO-B may contribute to the oxidative deamination of dopamine and 5-HT in humans.
Brain deposition and neurotoxicity of manganese in adult mice exposed via the drinking water
Saritha, Krishna; Celia, Dodd A.; Shahryar, Hekmatyar K.; Nikolay, Filipov M.
2013-01-01
Natural leaching processes and/or anthropogenic contamination can result in ground water concentrations of the essential metal manganese (Mn) that far exceed the current regulatory standards. Neurological consequences of Mn drinking water (DW) overexposure to experimental animals, i.e. mice, including its brain deposition/distribution and behavioral effects are understudied. Adult male C57BL/6 mice were exposed to Mn via the DW for 8 weeks. After 5 weeks of Mn exposure, magnetic resonance imaging revealed significant Mn deposition in all examined brain regions; the degree of Mn deposition did not increase further a week later. Behaviorally, early hyperactivity and more time spent in the center of the arenas in an open field test, decreased forelimb grip strength and less time swimming in a forced swim test were observed after 6 weeks of Mn DW exposure. Eight-week Mn DW exposure did not alter striatal dopamine, its metabolites, or the expression of key dopamine homeostatic proteins, but it significantly increased striatal 5-hydroxyindoleacetic acid (a serotonin metabolite) level, without affecting the levels of serotonin itself. Increased expression (mRNA) of glial fibrillary acidic protein (GFAP, an astrocyte activation marker), heme oxygenase-1 and inducible nitric oxide synthase (oxidative and nitrosative stress markers, respectively) were observed 8 weeks post Mn DW exposure in the substantia nigra. Besides mRNA increases, GFAP protein expression was increased in the substantia nigra pars reticulata. In summary, the neurobehavioral deficits, characterized by locomotor and emotional perturbations, and nigral glial activation associated with significant brain Mn deposition are among the early signs of Mn neurotoxicity caused by DW overexposure. PMID:23832297
Brain deposition and neurotoxicity of manganese in adult mice exposed via the drinking water.
Krishna, Saritha; Dodd, Celia A; Hekmatyar, Shahryar K; Filipov, Nikolay M
2014-01-01
Natural leaching processes and/or anthropogenic contamination can result in ground water concentrations of the essential metal manganese (Mn) that far exceed the current regulatory standards. Neurological consequences of Mn drinking water (DW) overexposure to experimental animals, i.e., mice, including its brain deposition/distribution and behavioral effects are understudied. Adult male C57BL/6 mice were exposed to Mn via the DW for 8 weeks. After 5 weeks of Mn exposure, magnetic resonance imaging revealed significant Mn deposition in all examined brain regions; the degree of Mn deposition did not increase further a week later. Behaviorally, early hyperactivity and more time spent in the center of the arenas in an open field test, decreased forelimb grip strength and less time swimming in a forced swim test were observed after 6 weeks of Mn DW exposure. Eight-week Mn DW exposure did not alter striatal dopamine, its metabolites, or the expression of key dopamine homeostatic proteins, but it significantly increased striatal 5-hydroxyindoleacetic acid (a serotonin metabolite) levels, without affecting the levels of serotonin itself. Increased expression (mRNA) of glial fibrillary acidic protein (GFAP, an astrocyte activation marker), heme oxygenase-1 and inducible nitric oxide synthase (oxidative and nitrosative stress markers, respectively) were observed 8 weeks post-Mn DW exposure in the substantia nigra. Besides mRNA increases, GFAP protein expression was increased in the substantia nigra pars reticulata. In summary, the neurobehavioral deficits, characterized by locomotor and emotional perturbations, and nigral glial activation associated with significant brain Mn deposition are among the early signs of Mn neurotoxicity caused by DW overexposure.
Madden, Amanda M K; Paul, Alexandria T; Pritchard, Rory A; Michel, Rebecca; Zup, Susan L
2016-11-01
Testosterone and its metabolites masculinize the brain during a critical perinatal window, including the relative volume of sexually dimorphic brain areas such as the sexually dimorphic nucleus of the preoptic area (SDN), which is larger in males than females. Serotonin (5HT) may mediate this hormone action, since 5HT given during the second week of life decreases (i.e., feminizes) SDN volume in males and testosterone-treated females. Although previous work indicates that the 5HT 2A/2C receptor is sufficient to induce feminization, it is unclear whether other serotonin receptors are required and which subpopulation(s) of SDN cells are specifically organized by 5HT. Therefore, we injected male and female Sprague-Dawley rat pups with saline, a nonselective 5HTR agonist, a 5HT 2A/2C agonist, or a 5HT 2A/2C antagonist over several timecourses in early life, and measured the Nissl-SDN as well as a calbindin+ subdivision of the SDN, the CALB-SDN. When examined on postnatal day 18 or early adulthood, the size of the Nissl-SDN was feminized in males treated with any of the serotonergic drugs, eliminating the typical sex difference. In contrast, the sex difference in CALB-SDN size was maintained regardless of serotoninergic drug treatment. This pattern suggests that although gonadal hormones shape the whole SDN, individual cellular phenotypes respond to different intermediary signals to become sexually dimorphic. Specifically, 5HT mediates sexual differentiation of non-calbindin population(s) within the SDN. The results also caution against using measurement of the CALB-SDN in isolation, as the absence of an effect on the CALB-SDN does not preclude an effect on the overall nucleus. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1241-1253, 2016. © 2016 Wiley Periodicals, Inc.
Cassel, Jean-Christophe; Riegert, Céline; Rutz, Susanne; Koenig, Julie; Rothmaier, Katharina; Cosquer, Brigitte; Lazarus, Christine; Birthelmer, Anja; Jeltsch, Hélène; Jones, Byron C; Jackisch, Rolf
2005-10-01
This study investigated long-term behavioral, neurochemical, and neuropharmacological effects of ethanol-(+/-)-3,4-methylenedioxymethamphetamine (MDMA, ecstasy) combinations. Over 4 consecutive days, male Long-Evans rats received 1.5 g/kg ethanol and/or 10 mg/kg MDMA, or saline. Rectal temperatures were taken in some rats. Starting 4 days after the last injection, we tested working memory, sensory-motor coordination, and anxiety. Subsequently, we measured cortical, striatal, septal, and hippocampal monoamines (last MDMA injection-euthanasia delay: 20 days), or electrically evoked release of serotonin (5-HT) in cortical and hippocampal slices, and its modulation in the presence of CP 93,129 (3-(1,2,5,6-tetrahydropyrid-4-yl)pyrrollo[3,2-b]pyrid-5-one) or methiotepin (last MDMA injection-euthanasia delays: 3-6 weeks). Ethanol attenuated the MDMA-induced hyperthermia, but only on the first day. In the long-term, MDMA reduced 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) content in most brain regions. The behavioral and neurochemical effects of the ethanol-MDMA combination were comparable to those of MDMA alone; sensory-motor coordination was altered after ethanol and/or MDMA. In hippocampal slices from rats given ethanol and MDMA, the CP 93,129-induced inhibition and methiotepin-induced facilitation of 5-HT release were stronger and weaker, respectively, than in the other groups. This is the first study addressing long-term effects of repeated MDMA and EtOH combined treatments in experimental animals. Whereas the drug combination produced the same behavioral and neurochemical effects as MDMA alone, our neuropharmacological results suggest that MDMA-EtOH interactions may have specific long-term consequences on presynaptic modulation of hippocampal 5-HT release, but not necessarily related to MDMA-induced depletion of 5-HT. Thus, it is likely that the psycho(patho)logical problems reported by ecstasy users drinking alcohol are not solely due to the consumption of MDMA.
Robert, Alexandrine; Monsinjon, Tiphaine; Delbecque, Jean-Paul; Olivier, Stéphanie; Poret, Agnès; Foll, Frank Le; Durand, Fabrice; Knigge, Thomas
2016-06-01
Serotonin, a highly conserved neurotransmitter, controls many biological functions in vertebrates, but also in invertebrates. Selective serotonin reuptake inhibitors (SSRIs), such as fluoxetine, are commonly used in human medication to ease depression by affecting serotonin levels. Their residues and metabolites can be detected in the aquatic environment and its biota. They may also alter serotonin levels in aquatic invertebrates, thereby perturbing physiological functions. To investigate whether such perturbations can indeed be expected, shore crabs (Carcinus maenas) were injected either with serotonin, fluoxetine or a combination of both. Dose-dependent effects of fluoxetine ranging from 250 to 750nM were investigated. Gene expression of crustacean hyperglycemic hormone (chh) as well as moult inhibiting hormone (mih) was assessed by RT-qPCR at 2h and 12h after injection. Glucose and ecdysteroid levels in the haemolymph were monitored in regular intervals until 12h. Serotonin led to a rapid increase of chh and mih expression. On the contrary, fluoxetine only affected chh and mih expression after several hours, but kept expression levels significantly elevated. Correspondingly, serotonin rapidly increased glycaemia, which returned to normal or below normal levels after 12h. Fluoxetine, however, resulted in a persistent low-level increase of glycaemia, notably during the period when negative feedback regulation reduced glycaemia in the serotonin treated animals. Ecdysteroid levels were significantly decreased by serotonin and fluoxetine, with the latter showing less pronounced and less rapid, but longer lasting effects. Impacts of fluoxetine on glycaemia and ecdysteroids were mostly observed at higher doses (500 and 750nM) and affected principally the response dynamics, but not the amplitude of glycaemia and ecdysteroid-levels. These results suggest that psychoactive drugs are able to disrupt neuroendocrine control in decapod crustaceans, as they interfere with the normal regulation of the serotonergic system. Copyright © 2016 Elsevier B.V. All rights reserved.
Lizarraga, Lucina E.; Phan, Andy V.; Cholanians, Aram B.; Herndon, Joseph M.; Lau, Serrine S.; Monks, Terrence J.
2014-01-01
3,4-(±)-Methylenedioxymethamphetamine (MDMA) is a ring-substituted amphetamine derivative with potent psychostimulant properties. The neuropharmacological effects of MDMA are biphasic in nature, initially causing synaptic monoamine release, primarily of serotonin (5-HT), inducing thermogenesis and hyperactivity (5-HT syndrome). The long-term effects of MDMA manifest as a prolonged depletion in 5-HT, and structural damage to 5-HT nerve terminals. MDMA toxicity is in part mediated by an ability to inhibit the presynaptic 5-HT reuptake transporter (SERT). Using a SERT-knockout (SERT-KO) rat model, we determined the impact of SERT deficiency on thermoregulation, locomotor activity, and neurotoxicity in SERT-KO or Wistar-based wild-type (WT) rats exposed to MDMA. WT and SERT-KO animals exhibited the highest thermogenic responses to MDMA (four times 10 mg/kg, sc at 12 h intervals) during the diurnal (first and third) doses according to peak body temperature and area under the curve (∑°C × h) analysis. Although no differences in peak body temperature were observed between MDMA-treated WT and SERT-KO animals, ∑°C × h following the first MDMA dose was reduced in SERT-KO rats. Exposure to a single dose of MDMA stimulated horizontal velocity in both WT and SERT-KO rats, however, this effect was delayed and attenuated in the KO animals. Finally, SERT-KO rats were insensitive to MDMA-induced long-term (7 days) depletions in 5-HT and its metabolite, 5-hydroxyindole acetic acid, in both cortex and striatum. In conclusion, SERT deficiency modulated MDMA-mediated thermogenesis, hyperactivity and neurotoxicity in KO rats. The data confirm that the SERT is essential for the manifestation of the acute and long-term toxicities of MDMA. PMID:24595820
Yuan, Zhi-Xin; Rapoport, Stanley I
2015-10-01
Transient postnatal exposure of rodents to the selective serotonin (5-HT) reuptake inhibitor (SSRI) fluoxetine alters behavior and brain 5-HT neurotransmission during adulthood, and also reduces brain arachidonic (ARA) metabolic consumption and protein level of the ARA metabolizing enzyme, cytochrome P4504A (CYP4A). Brain 20-hydroxyeicosatetraenoic acid (20-HETE), converted by CYP4A from ARA, will be reduced in adult mice treated transiently and postnatally with fluoxetine. Male mice pups were injected i.p. daily with fluoxetine (10mg/kg) or saline during P4-P21. At P90 their brain was high-energy microwaved and analyzed for 20-HETE and six other ARA metabolites by enzyme immunoassay. Postnatal fluoxetine vs. saline significantly decreased brain concentrations of 20-HETE (-70.3%) and 15-epi-lipoxin A4 (-60%) in adult mice, but did not change other eicosanoid concentrations. Behavioral changes in adult mice treated postnatally with fluoxetine may be related to reduced brain ARA metabolism involving CYP4A and 20-HETE formation. Published by Elsevier Ltd.
Multiple receptor subtypes mediate the effects of serotonin on rat subfornical organ neurons
NASA Technical Reports Server (NTRS)
Scrogin, K. E.; Johnson, A. K.; Schmid, H. A.
1998-01-01
The subfornical organ (SFO) receives significant serotonergic innervation. However, few reports have examined the functional effects of serotonin on SFO neurons. This study characterized the effects of serotonin on spontaneously firing SFO neurons in the rat brain slice. Of 31 neurons tested, 80% responded to serotonin (1-100 microM) with either an increase (n = 15) or decrease (n = 10) in spontaneous activity. Responses to serotonin were dose dependent and persisted after synaptic blockade. Excitatory responses could also be mimicked by the 5-hydroxytryptamine (5-HT)2A/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI; 1-10 microM) and could be blocked by the 5-HT2A/2C-receptor antagonist LY-53,857 (10 microM). LY-53,857 unmasked inhibitory responses to serotonin in 56% of serotonin-excited cells tested. Serotonin-inhibited cells were also inhibited by the 5-HT1A-receptor agonist 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT; 1-10 microM; n = 7). The data indicate that SFO neurons are responsive to serotonin via postsynaptic activation of multiple receptor subtypes. The results suggest that excitatory responses to serotonin are mediated by 5-HT2A or 5-HT2C receptors and that inhibitory responses may be mediated by 5-HT1A receptors. In addition, similar percentages of serotonin-excited and -inhibited cells were also sensitive to ANG II. As such the functional relationship between serotonin and ANG II in the SFO remains unclear.
Multiple receptor subtypes mediate the effects of serotonin on rat subfornical organ neurons.
Scrogin, K E; Johnson, A K; Schmid, H A
1998-12-01
The subfornical organ (SFO) receives significant serotonergic innervation. However, few reports have examined the functional effects of serotonin on SFO neurons. This study characterized the effects of serotonin on spontaneously firing SFO neurons in the rat brain slice. Of 31 neurons tested, 80% responded to serotonin (1-100 microM) with either an increase (n = 15) or decrease (n = 10) in spontaneous activity. Responses to serotonin were dose dependent and persisted after synaptic blockade. Excitatory responses could also be mimicked by the 5-hydroxytryptamine (5-HT)2A/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI; 1-10 microM) and could be blocked by the 5-HT2A/2C-receptor antagonist LY-53,857 (10 microM). LY-53,857 unmasked inhibitory responses to serotonin in 56% of serotonin-excited cells tested. Serotonin-inhibited cells were also inhibited by the 5-HT1A-receptor agonist 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT; 1-10 microM; n = 7). The data indicate that SFO neurons are responsive to serotonin via postsynaptic activation of multiple receptor subtypes. The results suggest that excitatory responses to serotonin are mediated by 5-HT2A or 5-HT2C receptors and that inhibitory responses may be mediated by 5-HT1A receptors. In addition, similar percentages of serotonin-excited and -inhibited cells were also sensitive to ANG II. As such the functional relationship between serotonin and ANG II in the SFO remains unclear.
In Vivo Quantification of Human Serotonin 1A Receptor Using 11C-CUMI-101, an Agonist PET Radiotracer
Milak, Matthew S.; DeLorenzo, Christine; Zanderigo, Francesca; Prabhakaran, Jaya; Kumar, J.S. Dileep; Majo, Vattoly J.; Mann, J. John; Parsey, Ramin V.
2013-01-01
The serotonin (5-hydroxytryptamine, or 5-HT) type 1A receptor (5-HT1AR) is implicated in the pathophysiology of numerous neuropsychiatric disorders. We have published the initial evaluation and reproducibility in vivo of [O-methyl-11C]2-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)-4-methyl-1,2,4-triazine-3,5 (2H,4H)dione (11C-CUMI-101), a novel 5-HT1A agonist radiotracer, in Papio anubis. Here, we report the optimal modeling parameters of 11C-CUMI-101 for human PET studies. Methods PET scans were obtained for 7 adult human volunteers. 11C-CUMI-101 was injected as an intravenous bolus, and emission data were collected for 120 min in 3-dimensional mode. We evaluated 10 different models using metabolite-corrected arterial input functions or reference region approaches and several outcome measures. Results When using binding potential (BPF = Bavail/KD [total available receptor concentration divided by the equilibrium dissociation constant]) as the outcome measure, the likelihood estimation in the graphical analysis (LEGA) model performed slightly better than the other methods evaluated at full scan duration. The average test–retest percentage difference was 9.90% ± 5.60%. When using BPND (BPND = fnd × Bavail/KD; BPND equals the product of BPF and fnd [free fraction in the nondisplaceable compartment]), the simplified reference tissue method (SRTM) achieved the lowest percentage difference and smallest bias when compared with nondisplaceable binding potential obtained from LEGA using the metabolite-corrected plasma input function (r2 = 0.99; slope = 0.92). The time–stability analysis indicates that a 120-min scan is sufficient for the stable estimation of outcome measures. Voxel results were comparable to region-of-interest–based analysis, with higher spatial resolution. Conclusion On the basis of its measurable and stable free fraction, high affinity and selectivity, good blood–brain barrier permeability, and plasma and brain kinetics, 11C-CUMI-101 is suitable for the imaging of high-affinity 5-HT1A binding in humans. PMID:21098796
21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic acid...
21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic acid...
21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic acid...
21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic acid...
Weber, Tillmann; Vogt, Miriam A; Gartside, Sarah E; Berger, Stefan M; Lujan, Rafael; Lau, Thorsten; Herrmann, Elke; Sprengel, Rolf; Bartsch, Dusan; Gass, Peter
2015-05-01
Both the glutamatergic and serotonergic (5-HT) systems are implicated in the modulation of mood and anxiety. Descending cortical glutamatergic neurons regulate 5-HT neuronal activity in the midbrain raphe nuclei through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors. To analyze the functional role of GLUA1-containing AMPA receptors in serotonergic neurons, we used the Cre-ERT2/loxP-system for the conditional inactivation of the GLUA1-encoding Gria1 gene selectively in 5-HT neurons of adult mice. These Gria1(5-HT-/-) mice exhibited a distinct anxiety phenotype but showed no alterations in locomotion, depression-like behavior, or learning and memory. Increased anxiety-related behavior was associated with significant decreases in tryptophan hydroxylase 2 (TPH2) expression and activity, and subsequent reductions in tissue levels of 5-HT, its metabolite 5-hydroxyindoleacetic acid (5-HIAA), and norepinephrine in the raphe nuclei. However, TPH2 expression and activity as well as monoamine levels were unchanged in the projection areas of 5-HT neurons. Extracellular electrophysiological recordings of 5-HT neurons revealed that, while α1-adrenoceptor-mediated excitation was unchanged, excitatory responses to AMPA were enhanced and the 5-HT1A autoreceptor-mediated inhibitory response to 5-HT was attenuated in Gria1(5-HT-/-) mice. Our data show that a loss of GLUA1 protein in 5-HT neurons enhances AMPA receptor function and leads to multiple local molecular and neurochemical changes in the raphe nuclei that dysregulate 5-HT neuronal activity and induce anxiety-like behavior.
Pharmacological aspects of metaldehyde poisoning in mice.
Homeida, A M; Cooke, R G
1982-03-01
Metaldehyde, when administered orally to mice at a dose of 1 g kg-1, produced convulsions and death within 2 h. Brain concentrations of noradrenaline (NA) 5-hydroxytryptamie (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) were significantly reduced in these animals relative to controls. Treatment with either intraperitoneal clonidine or diazepam 20 min after administration of metaldehyde reduced the mortality rate and in mice surviving for 5 h, the decrease in brain NA and 5-HT concentrations were significantly reduced.
Gkourogianni, Alexandra; Sinaii, Ninet; Jackson, Sharon H; Karageorgiadis, Alexander S; Lyssikatos, Charalampos; Belyavskaya, Elena; Keil, Margaret F; Zilbermint, Mihail; Chittiboina, Prashant; Stratakis, Constantine A; Lodish, Maya B
2017-08-01
BackgroundLittle is known about the contribution of racial and socioeconomic disparities to severity and outcomes in children with Cushing disease (CD).MethodsA total of 129 children with CD, 45 Hispanic/Latino or African-American (HI/AA) and 84 non-Hispanic White (non-HW), were included in this study. A 10-point index for rating severity (CD severity) incorporated the degree of hypercortisolemia, glucose tolerance, hypertension, anthropomorphic measurements, disease duration, and tumor characteristics. Race, ethnicity, age, gender, local obesity prevalence, estimated median income, and access to care were assessed in regression analyses of CD severity.ResultsThe mean CD severity in the HI/AA group was worse than that in the non-HW group (4.9±2.0 vs. 4.1±1.9, P=0.023); driving factors included higher cortisol levels and larger tumor size. Multiple regression models confirmed that race (P=0.027) and older age (P=0.014) were the most important predictors of worse CD severity. When followed up a median of 2.3 years after surgery, the relative risk for persistent CD combined with recurrence was 2.8 times higher in the HI/AA group compared with that in the non-HW group (95% confidence interval: 1.2-6.5).ConclusionOur data show that the driving forces for the discrepancy in severity of CD are older age and race/ethnicity. Importantly, the risk for persistent and recurrent CD was higher in minority children.
Prostaglandins E and F in endocrine diarrheagenic syndromes.
Jaffe, B M; Condon, S
1976-01-01
The role of prostaglandins in endocrine diarrheagenic syndromes was evaluated by measuring peripheral concentration of immunoreactive PGE and PGF in patients with non-endocrine diarrhea as well as those with the Zollinger-Ellison (Z-E) syndrome, MCT, carcinoid tumors and the WDHA syndrome. In 21 normals, PGE and PGF levels averaged 272 +/- 18 and 119 +/- 14 pg/ml, respectively. Twenty eight patients with diarrhea of non-endocrine origin (mainly inflammatory bowel disease) had levels indistinguishable from normal, i.e. 353 +/- 25 and 77 +/- 37 pg/ml, respectively. Among 29 patients with the Zollinger-Ellison syndrome (mean gastrin 6127 +/- 3267 pg/ml) only 2 had significantly elevated PGE levels; mean PGE levels, 382 +/- 32 pg/ml, were not significantly different from normal and did not correlate with either diarrhea or the serum gastrin concentration. In contrast, 18 of 22 patients with carcinoid tumors (mean blood serotonin concentration 1655 +/- 604 ng/ml; mean urinary excretion of 5 HIAA 66.8 +/- 16.7 mg/day) had elevated peripheral concentrations of PGE. The mean PGE level (1367 +/- 245 pg/ml) was significantly elevated (P less than 0.001). Nonetheless PGE levels did not correlate with diarrhea, blood concentrations of serotonin, or urinary indole excretion. MCT (mean serum calcitonin 24.5 +/- 6.3 ng/ml) was similarly associated with consistent (18/19) elevation in peripheral concentrations of PGE (mean 1922 +/- 541 pg/ml; P less than 0.001). Inthis syndrome, PGE levels were higher in patients with diarrhea and in those with markedly elevated serum thyrocalcitonin levels. Finally, 8 of 21 patients with the WDHA syndrome had increased levels of PGE. Although 13 of 17 patients had high levels of VIP (mean 8133 pg/ml), 2 patients had hyperprostaglandinemia in the face of normal peripheral concentrations of VIP. In one patient the serum PGE level was elevated prior to resection of the primary pancreatic neoplasm (9939 pg/ml) as well as the subsequent extirpation of a solitary hepatic metastasis (1063 pg/ml); following each procedure the diarrhea abated and the PGE level returned to normal. In none of these syndromes were mean PGF levels elevated. The study has documented hyperprostaglandinemia in some endocrine diarrheagenic syndromes and validated the usefullness of measurements of PGE in patients with unexplained diarrhea. PMID:189708
Shiina, T; Naitou, K; Nakamori, H; Suzuki, Y; Horii, K; Sano, Y; Shimaoka, H; Shimizu, Y
2016-11-01
Serotonin (5-hydroxytryptamine, 5-HT) is a regulatory factor in motility of the gastrointestinal tract including the esophagus. Although we proposed that vagal cholinergic and mast cell-derived non-cholinergic components including serotonin coordinately shorten the esophagus, the precise mechanism of serotonin-induced contractions in the suncus esophagus is still unclear. Therefore, the aims of this study were to determine characteristics of contractile responses induced by serotonin and to identify 5-HT receptor subtypes responsible for regulating motility in the suncus esophagus. An isolated segment of the suncus esophagus was placed in an organ bath, and longitudinal or circular mechanical responses were recorded using a force transducer. Serotonin evoked contractile responses of the suncus esophagus in the longitudinal direction but not in the circular direction. Tetrodotoxin did not affect the serotonin-induced contractions. Pretreatment with a non-selective 5-HT receptor antagonist or double application of 5-HT 1 and 5-HT 2 receptor antagonists blocked the serotonin-induced contractions. 5-HT 1 and 5-HT 2 receptor agonists, but not a 5-HT 3 receptor agonist, evoked contractile responses in the suncus esophagus. The findings suggest that serotonin induces contractile responses of the longitudinal smooth muscle in the muscularis mucosae of the suncus esophagus that are mediated via 5-HT 1 and 5-HT 2 receptors on muscle cells. The serotonin-induced contractions might contribute to esophageal peristalsis and emetic response. © 2016 John Wiley & Sons Ltd.
Dissociation of the neurochemical and behavioral toxicology of MDMA ('Ecstasy') by citalopram.
Piper, Brian J; Fraiman, Joseph B; Owens, Cullen B; Ali, Syed F; Meyer, Jerrold S
2008-04-01
High or repeated doses of the recreational drug 3,4-methylenedioxymethamphetamine (MDMA, or 'Ecstasy') produce long-lasting deficits in several markers of serotonin (5-HT) system integrity and also alter behavioral function. However, it is not yet clear whether MDMA-induced serotonergic neurotoxicity is responsible for these behavioral changes or whether other mechanisms are involved. The present experiment tested the hypothesis that blocking serotonergic neurotoxicity by pretreatment with the selective 5-HT reuptake inhibitor citalopram will also prevent the behavioral and physiological consequences of an MDMA binge administration. Male, Sprague-Dawley rats (N=67) received MDMA (4 x 10 mg/kg) with or without citalopram (10 mg/kg) pretreatment. Core temperature, ejaculatory response, and body weight were monitored during and immediately following drug treatments. A battery of tests assessing motor, cognitive, exploratory, anxiety, and social behaviors was completed during a 10-week period following MDMA administration. Brain tissue was collected at 1 and 10 weeks after drug treatments for measurement of regional 5-HT transporter binding and (for the 1-week samples) 5-HT and 5-HIAA concentrations. Citalopram pretreatment blocked MDMA-related reductions in aggressive and exploratory behavior measured in the social interaction and hole-board tests respectively. Such pretreatment also had the expected protective effect against MDMA-induced 5-HT neurotoxicity at 1 week following the binge. In contrast, citalopram did not prevent most of the acute effects of MDMA (eg hyperthermia and weight loss), nor did it block the decreased motor activity seen in the binge-treated animals 1 day after dosing. These results suggest that some of the behavioral and physiological consequences of a high-dose MDMA regimen in rats are mediated by mechanisms other than the drug's effects on the serotonergic system. Elucidation of these mechanisms requires further study of the influence of MDMA on other neurotransmitter systems.
Urinary Metabolite Markers of Precocious Puberty*
Qi, Ying; Li, Pin; Zhang, Yongyu; Cui, Lulu; Guo, Zi; Xie, Guoxiang; Su, Mingming; Li, Xin; Zheng, Xiaojiao; Qiu, Yunping; Liu, Yumin; Zhao, Aihua; Jia, Weiping; Jia, Wei
2012-01-01
The incidence of precocious puberty (PP, the appearance of signs of pubertal development at an abnormally early age), is rapidly rising, concurrent with changes of diet, lifestyles, and social environment. The current diagnostic methods are based on a hormone (gonadotropin-releasing hormone) stimulation test, which is costly, time-consuming, and uncomfortable for patients. The lack of molecular biomarkers to support simple laboratory tests, such as a blood or urine test, has been a long standing bottleneck in the clinical diagnosis and evaluation of PP. Here we report a metabolomic study using an ultra performance liquid chromatography-quadrupole time of flight mass spectrometry and gas chromatography-time of flight mass spectrometry. Urine metabolites from 163 individuals were profiled, and the metabolic alterations were analyzed after treatment of central precocious puberty (CPP) with triptorelin depot. A panel of biomarkers selected from >70 differentially expressed urinary metabolites by receiver operating characteristic and logistic regression analysis provided excellent predictive power with high sensitivity and specificity for PP. The altered metabolic profile of the PP patients was characterized by three major perturbed metabolic pathways: catecholamine, serotonin metabolism, and tricarboxylic acid cycle, presumably resulting from activation of the sympathetic nervous system and the hypothalamic-pituitary-gonadal axis. Treatment with triptorelin depot was able to normalize these three altered pathways. Additionally, significant changes in the urine levels of 4-hydroxyphenylacetic acid, 5-hydroxyindoleacetic acid, indoleacetic acid, 5-hydroxytryptophan, and 5-hydroxykynurenamine in the CPP group suggest that the development of CPP condition may involve an alteration in symbiotic gut microbial composition. PMID:22027199
Wu, Liping; Oshima, Tadayuki; Tomita, Toshihiko; Ohda, Yoshio; Fukui, Hirokazu; Watari, Jiro; Miwa, Hiroto
2016-11-01
Serotonin regulates gastrointestinal function, and mast cells are a potential nonneuronal source of serotonin in the esophagus. Tight junction (TJ) proteins in the esophageal epithelium contribute to the barrier function, and the serotonin signaling pathway may contribute to epithelial leakage in gastroesophageal reflux disease. Therefore, the aim of this study was to investigate the role of serotonin on barrier function, TJ proteins, and related signaling pathways. Normal primary human esophageal epithelial cells were cultured with use of an air-liquid interface system. Serotonin was added to the basolateral compartment, and transepithelial electrical resistance (TEER) was measured. The expression of TJ proteins and serotonin receptor 7 (5-HT 7 ) was assessed by Western blotting. The involvement of 5-HT 7 was assessed with use of an antagonist and an agonist. The underlying cellular signaling pathways were examined with use of specific blockers. Serotonin decreased TEER and reduced the expression of TJ proteins ZO-1, occludin, and claudin 1, but not claudin 4. A 5-HT 7 antagonist blocked the serotonin-induced decrease in TEER, and a 5-HT 7 agonist decreased TEER. Inhibition of p38 mitogen-activated protein kinase (MAPK) reduced the serotonin-induced decrease in TEER. Inhibition of p38 MAPK blocked the decrease of ZO-1 levels, whereas extracellular-signal-regulated kinase (ERK) inhibition blocked the decrease in occludin levels. Cell signaling pathway inhibitors had no effect on serotonin-induced alterations in claudin 1 and claudin 4 levels. Serotonin induced phosphorylation of p38 MAPK and ERK, and a 5-HT 7 antagonist partially blocked serotonin-induced phosphorylation of p38 MAPK but not that of ERK. Serotonin disrupted esophageal squamous epithelial barrier function by modulating the levels of TJ proteins. Serotonin signaling pathways may mediate the pathogenesis of gastroesophageal reflux disease.
Fujimoto, Yohei; Funao, Tomoharu; Suehiro, Koichi; Takahashi, Ryota; Mori, Takashi; Nishikawa, Kiyonobu
2015-01-01
Tramadol-induced seizures might be pathologically associated with serotonin syndrome. Here, the authors investigated the relationship between serotonin and the seizure-inducing potential of tramadol. Two groups of rats received pretreatment to modulate brain levels of serotonin and one group was treated as a sham control (n = 6 per group). Serotonin modulation groups received either para-chlorophenylalanine or benserazide + 5-hydroxytryptophan. Serotonin, dopamine, and histamine levels in the posterior hypothalamus were then measured by microdialysis, while simultaneously infusing tramadol until seizure onset. In another experiment, seizure threshold with tramadol was investigated in rats intracerebroventricularly administered with either a serotonin receptor antagonist (methysergide) or saline (n = 6). Pretreatment significantly affected seizure threshold and serotonin fluctuations. The threshold was lowered in para-chlorophenylalanine group and raised in benserazide + 5-hydroxytryptophan group (The mean ± SEM amount of tramadol needed to induce seizures; sham: 43.1 ± 4.2 mg/kg, para-chlorophenylalanine: 23.2 ± 2.8 mg/kg, benserazide + 5-hydroxytryptophan: 59.4 ± 16.5 mg/kg). Levels of serotonin at baseline, and their augmentation with tramadol infusion, were less in the para-chlorophenylalanine group and greater in the benserazide + 5-hydroxytryptophan group. Furthermore, seizure thresholds were negatively correlated with serotonin levels (correlation coefficient; 0.71, P < 0.01), while intracerebroventricular methysergide lowered the seizure threshold (P < 0.05 vs. saline). The authors determined that serotonin-reduced rats were predisposed to tramadol-induced seizures, and that serotonin concentrations were negatively associated with seizure thresholds. Moreover, serotonin receptor antagonism precipitated seizure manifestation, indicating that tramadol-induced seizures are distinct from serotonin syndrome.
Fox, M A; Panessiti, M G; Moya, P R; Tolliver, T J; Chen, K; Shih, J C; Murphy, D L
2013-12-01
A possible side effect of serotonin-enhancing drugs is the serotonin syndrome, which can be lethal. Here we examined possible hypersensitivity to two such drugs, the serotonin precursor 5-hydroxy-L-tryptophan (5-HTP) and the atypical opioid tramadol, in mice lacking the genes for both monoamine oxidase A (MAOA) and MAOB. MAOA/B-knockout (KO) mice displayed baseline serotonin syndrome behaviors, and these behavioral responses were highly exaggerated following 5-HTP or tramadol versus baseline and wild-type (WT) littermates. Compared with MAOA/B-WT mice, baseline tissue serotonin levels were increased ∼2.6-3.9-fold in MAOA/B-KO mice. Following 5-HTP, serotonin levels were further increased ∼4.5-6.2-fold in MAOA/B-KO mice. These exaggerated responses are in line with the exaggerated responses following serotonin-enhancing drugs that we previously observed in mice lacking the serotonin transporter (SERT). These findings provide a second genetic mouse model suggestive of possible human vulnerability to the serotonin syndrome in individuals with lesser-expressing MAO or SERT polymorphisms that confer serotonergic system changes.
Fox, MA; Panessiti, MG; Moya, PR; Tolliver, TJ; Chen, K; Shih, JC; Murphy, DL
2012-01-01
A possible side effect of serotonin-enhancing drugs is the serotonin syndrome, which can be lethal. Here we examined possible hypersensitivity to two such drugs, the serotonin precursor 5-hydroxy-L-tryptophan (5-HTP) and the atypical opioid tramadol, in mice lacking the genes for both monoamine oxidase A (MAOA) and MAOB. MAOA/B-knockout (KO) mice displayed baseline serotonin syndrome behaviors, and these behavioral responses were highly exaggerated following 5-HTP or tramadol versus baseline and wild-type (WT) littermates. Compared with MAOA/B-WT mice, baseline tissue serotonin levels were increased ~2.6–3.9-fold in MAOA/B-KO mice. Following 5-HTP, serotonin levels were further increased ~4.5–6.2-fold in MAOA/B-KO mice. These exaggerated responses are in line with the exaggerated responses following serotonin-enhancing drugs that we previously observed in mice lacking the serotonin transporter (SERT). These findings provide a second genetic mouse model suggestive of possible human vulnerability to the serotonin syndrome in individuals with lesser-expressing MAO or SERT polymorphisms that confer serotonergic system changes. PMID:22964922
Curzon, G.; Knott, P.J.
1974-01-01
1 The effects on tryptophan distribution and metabolism of drugs altering plasma unesterified fatty acid (UFA) concentration were investigated in the rat. 2 UFA and plasma free (i.e. ultrafilterable) tryptophan altered in the same direction. 3 Catecholamines and L-DOPA increased both plasma UFA and free tryptophan. L-DOPA also increased brain tryptophan and 5-hydroxyindoleacetic acid (5-HIAA) but decreased brain 5-hydroxytryptamine (5-HT). 4 Aminophylline increased plasma UFA and free tryptophan and also brain tryptophan, 5-HT and 5-HIAA. Food deprivation had qualitatively similar effects. 5 Insulin decreased plasma UFA and free tryptophan in both fed and food-deprived rats. However, while in fed rats these changes were associated with small decreases of brain indoles, in food-deprived animals small increases occurred. 6 Nicotinic acid had only small effects in fed rats but it opposed both the UFA and indole changes in food-deprived animals. Total plasma tryptophan increased in nicotinic acid treated, food-deprived rats. 7 There was a tendency towards inverse relations between changes of plasma free and total tryptophan. 8 The results suggest that drugs which influence plasma UFA through actions on cyclic AMP thereby alter the binding of tryptophan to plasma protein and that this leads to altered distribution and metabolism of tryptophan. PMID:4371899
Estrous cycle affects the neurochemical and neurobehavioral profile of carvacrol-treated female rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trabace, L., E-mail: trabace@unifg.it; Zotti, M.; Morgese, M.G.
2011-09-01
Carvacrol is the major constituent of essential oils from aromatic plants. It showed antimicrobial, anticancer and antioxidant properties. Although it was approved for food use and included in the chemical flavorings list, no indication on its safety has been estimated. Since the use of plant extracts is relatively high among women, aim of this study was to evaluate carvacrol effects on female physiology and endocrine profiles by using female rats in proestrus and diestrus phases. Serotonin and metabolite tissue content in prefrontal cortex and nucleus accumbens, after carvacrol administration (0.15 and 0.45 g/kg p.o.), was measured. Drug effects in behavioralmore » tests for alterations in motor activity, depression, anxiety-related behaviors and endocrine alterations were also investigated. While in proestrus carvacrol reduced serotonin and metabolite levels in both brain areas, no effects were observed in diestrus phase. Only in proestrus phase, carvacrol induced a depressive-like behavior in forced swimming test, without accompanying changes in ambulation. The improvement of performance in FST after subchronic treatment with fluoxetine (20 mg/kg) suggested a specific involvement of serotonergic system. No differences were found across the groups with regard to self-grooming behavior. Moreover, in proestrus phase, carvacrol reduced only estradiol levels without binding hypothalamic estradiol receptors. Our study showed an estrous-stage specific effect of carvacrol on depressive behaviors and endocrine parameters, involving serotonergic system. Given the wide carvacrol use not only as feed additive, but also as cosmetic essence and herbal remedy, our results suggest that an accurate investigation on the effects of its chronic exposure is warranted. - Highlights: > Carvacrol induced a depressive-like phenotype in rats, depending on ovarian cyclicity. > Carvacrol selectively reduced serotonin content in female rats in proestrus phase. > Carvacrol reduced serotonin levels in areas belonging to the emotional circuit. > Carvacrol reduced plasma estradiol levels only during the proestrus phase.« less
Citalopram and escitalopram plasma drug and metabolite concentrations: genome-wide associations
Ji, Yuan; Schaid, Daniel J; Desta, Zeruesenay; Kubo, Michiaki; Batzler, Anthony J; Snyder, Karen; Mushiroda, Taisei; Kamatani, Naoyuki; Ogburn, Evan; Hall-Flavin, Daniel; Flockhart, David; Nakamura, Yusuke; Mrazek, David A; Weinshilboum, Richard M
2014-01-01
Aims Citalopram (CT) and escitalopram (S-CT) are among the most widely prescribed selective serotonin reuptake inhibitors used to treat major depressive disorder (MDD). We applied a genome-wide association study to identify genetic factors that contribute to variation in plasma concentrations of CT or S-CT and their metabolites in MDD patients treated with CT or S-CT. Methods Our genome-wide association study was performed using samples from 435 MDD patients. Linear mixed models were used to account for within-subject correlations of longitudinal measures of plasma drug/metabolite concentrations (4 and 8 weeks after the initiation of drug therapy), and single-nucleotide polymorphisms (SNPs) were modelled as additive allelic effects. Results Genome-wide significant associations were observed for S-CT concentration with SNPs in or near the CYP2C19 gene on chromosome 10 (rs1074145, P = 4.1 × 10−9) and with S-didesmethylcitalopram concentration for SNPs near the CYP2D6 locus on chromosome 22 (rs1065852, P = 2.0 × 10−16), supporting the important role of these cytochrome P450 (CYP) enzymes in biotransformation of citalopram. After adjustment for the effect of CYP2C19 functional alleles, the analyses also identified novel loci that will require future replication and functional validation. Conclusions In vitro and in vivo studies have suggested that the biotransformation of CT to monodesmethylcitalopram and didesmethylcitalopram is mediated by CYP isozymes. The results of our genome-wide association study performed in MDD patients treated with CT or S-CT have confirmed those observations but also identified novel genomic loci that might play a role in variation in plasma levels of CT or its metabolites during the treatment of MDD patients with these selective serotonin reuptake inhibitors. PMID:24528284
Citalopram and escitalopram plasma drug and metabolite concentrations: genome-wide associations.
Ji, Yuan; Schaid, Daniel J; Desta, Zeruesenay; Kubo, Michiaki; Batzler, Anthony J; Snyder, Karen; Mushiroda, Taisei; Kamatani, Naoyuki; Ogburn, Evan; Hall-Flavin, Daniel; Flockhart, David; Nakamura, Yusuke; Mrazek, David A; Weinshilboum, Richard M
2014-08-01
Citalopram (CT) and escitalopram (S-CT) are among the most widely prescribed selective serotonin reuptake inhibitors used to treat major depressive disorder (MDD). We applied a genome-wide association study to identify genetic factors that contribute to variation in plasma concentrations of CT or S-CT and their metabolites in MDD patients treated with CT or S-CT. Our genome-wide association study was performed using samples from 435 MDD patients. Linear mixed models were used to account for within-subject correlations of longitudinal measures of plasma drug/metabolite concentrations (4 and 8 weeks after the initiation of drug therapy), and single-nucleotide polymorphisms (SNPs) were modelled as additive allelic effects. Genome-wide significant associations were observed for S-CT concentration with SNPs in or near the CYP2C19 gene on chromosome 10 (rs1074145, P = 4.1 × 10(-9) ) and with S-didesmethylcitalopram concentration for SNPs near the CYP2D6 locus on chromosome 22 (rs1065852, P = 2.0 × 10(-16) ), supporting the important role of these cytochrome P450 (CYP) enzymes in biotransformation of citalopram. After adjustment for the effect of CYP2C19 functional alleles, the analyses also identified novel loci that will require future replication and functional validation. In vitro and in vivo studies have suggested that the biotransformation of CT to monodesmethylcitalopram and didesmethylcitalopram is mediated by CYP isozymes. The results of our genome-wide association study performed in MDD patients treated with CT or S-CT have confirmed those observations but also identified novel genomic loci that might play a role in variation in plasma levels of CT or its metabolites during the treatment of MDD patients with these selective serotonin reuptake inhibitors. © 2014 The British Pharmacological Society.
Multiple mechanisms of serotonin 5-HT2 receptor desensitization.
Rahman, S; Neuman, R S
1993-07-20
Desensitization of serotonin 5-HT2 receptor-mediated enhancement of the N-methyl-D-aspartate (NMDA) depolarization was studied in rat cortical neurons. Serotonin and (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) induced long term desensitization. Staurosporine, a nonspecific protein kinase C inhibitor, potentiated the serotonin and DOI facilitation, suggesting acute desensitization was operative. In the case of DOI, long term desensitization was prevented by staurosporine. Activators of protein kinase C abolished the serotonin facilitation, an action prevented by staurosporine. Concanavalin A potentiated the facilitation at 100 microM, but not 30 microM serotonin, suggesting these receptors undergo dose dependent internalization. Calmodulin antagonists prevent long term desensitization induced by serotonin. The depolarization induced by NMDA alone was not altered by staurosporine, protein kinase C activators, concanavalin A or calmodulin antagonists. Serotonin at 100 microM, but not 30 microM, induced heterologous desensitization of phenylephrine and carbachol induced facilitation of the NMDA depolarization. We conclude that serotonin 5-HT2 receptors both induce and undergo several forms of desensitization.
Pharmacologic Characterization of Valbenazine (NBI-98854) and Its Metabolites.
Grigoriadis, Dimitri E; Smith, Evan; Hoare, Sam R J; Madan, Ajay; Bozigian, Haig
2017-06-01
The vesicular monoamine transporter 2 (VMAT2) is an integral presynaptic protein that regulates the packaging and subsequent release of dopamine and other monoamines from neuronal vesicles into the synapse. Valbenazine (NBI-98854), a novel compound that selectively inhibits VMAT2, is approved for the treatment of tardive dyskinesia. Valbenazine is converted to two significant circulating metabolites in vivo, namely, (+)- α -dihydrotetrabenazine (R,R,R-HTBZ) and a mono-oxy metabolite, NBI-136110. Radioligand-binding studies were conducted to assess and compare valbenazine, tetrabenazine, and their respective metabolites in their abilities to selectively and potently inhibit [ 3 H]-HTBZ binding to VMAT2 in rat striatal, rat forebrain, and human platelet homogenates. A broad panel screen was conducted to evaluate possible off-target interactions of valbenazine, R,R,R-HTBZ, and NBI-136110 at >80 receptor, transporter, and ion channel sites. Radioligand binding showed R,R,R-HTBZ to be a potent VMAT2 inhibitor in homogenates of rat striatum (K i = 1.0-2.8 nM), rat forebrain (K i = 4.2 nM), and human platelets (K i = 2.6-3.3 nM). Valbenazine (K i = 110-190 nM) and NBI-136110 (K i = 160-220 nM) also exhibited inhibitory effects on VMAT2, but with lower potency than R,R,R-HTBZ. Neither valbenazine, R,R,R-HTBZ, nor NBI-136110 had significant off-target interactions at serotonin (5-HT 1A , 5-HT 2A , 5-HT 2B ) or dopamine (D 1 or D 2 ) receptor sites. In vivo studies measuring ptosis and prolactin secretion in the rat confirmed the specific and dose-dependent interactions of tetrabenazine and R,R,R-HTBZ with VMAT2. Evaluations of potency and selectivity of tetrabenazine and its pharmacologically active metabolites were also performed. Overall, the pharmacologic characteristics of valbenazine appear consistent with the favorable efficacy and tolerability findings of recent clinical studies [KINECT 2 (NCT01733121), KINECT 3 (NCT02274558)]. Copyright © 2017 by The Author(s).
[Change of host's behavior including man under the influence of parasites].
Sergiev, V P
2010-01-01
Directed modulation of hosts' behavior favouring transmission of pathogen was noted in many parasites and, above all, in helminthes, which life cycle includes the consequent change of several hosts. It turned out that parasites use the same neuromediators for change of behavior of both mammals and hosts belonging to other animal classes. In fishes as well as in mammals, monoamines-neurotransmitters assist in brain functioning. Norepinephrine, dopamine and serotonin affect the alimentation, motion activity, aggression and social behaviour. Changes in concentration ratio of serotonin and its metabolites in invaded species were more pronounced, which pointed to directed effects of pathogens on serotonin activity. The same effect of some pathogens on human behaviour does not have selective significance because humans are not an essential link in life cycle of many parasites. Although the mentioned effect on behaviour could lead to negative consequences. For examples, persons with latent toxoplasmosis are significantly more frequent become members or victims of traffic accidents due to decreased ability for concentration of attention.
Doucet, M Y; Jones, T R; Ford-Hutchinson, A W
1990-03-01
The responses of equine trachealis and lung parenchymal strips to a range of contractile agonists were studied. Equine trachealis responded to methacholine greater than histamine greater than serotonin as shown by the maximal responses but failed to respond to either leukotrienes (LT), prostaglandin F2 alpha, or U-44069. Equine parenchymal strips showed considerable tonal activity and responded to LTD4 congruent to LTC4 greater than U-44069 = LTE4 greater than methacholine congruent to histamine congruent to serotonin greater than prostaglandin F2 alpha as determined through pD2 values. Neither the concentration response curve to LTD4 nor the intrinsic tonal activity of the preparations was modified by pretreatment with either atropine or indomethacin, although the maximal response to LTD4 was reversed by addition of the LTD4 receptor antagonist, MK-571. Thus arachidonic acid metabolites, including LTs, must be considered potential mediators of equine small airway disease, a potential model of human bronchial asthma.
Positive regulation of raphe serotonin neurons by serotonin 2B receptors.
Belmer, Arnauld; Quentin, Emily; Diaz, Silvina L; Guiard, Bruno P; Fernandez, Sebastian P; Doly, Stéphane; Banas, Sophie M; Pitychoutis, Pothitos M; Moutkine, Imane; Muzerelle, Aude; Tchenio, Anna; Roumier, Anne; Mameli, Manuel; Maroteaux, Luc
2018-06-01
Serotonin is a neurotransmitter involved in many psychiatric diseases. In humans, a lack of 5-HT 2B receptors is associated with serotonin-dependent phenotypes, including impulsivity and suicidality. A lack of 5-HT 2B receptors in mice eliminates the effects of molecules that directly target serotonergic neurons including amphetamine derivative serotonin releasers, and selective serotonin reuptake inhibitor antidepressants. In this work, we tested the hypothesis that 5-HT 2B receptors directly and positively regulate raphe serotonin neuron activity. By ex vivo electrophysiological recordings, we report that stimulation by the 5-HT 2B receptor agonist, BW723C86, increased the firing frequency of serotonin Pet1-positive neurons. Viral overexpression of 5-HT 2B receptors in these neurons increased their excitability. Furthermore, in vivo 5-HT 2B -receptor stimulation by BW723C86 counteracted 5-HT 1A autoreceptor-dependent reduction in firing rate and hypothermic response in wild-type mice. By a conditional genetic ablation that eliminates 5-HT 2B receptor expression specifically and exclusively from Pet1-positive serotonin neurons (Htr2b 5-HTKO mice), we demonstrated that behavioral and sensitizing effects of MDMA (3,4-methylenedioxy-methamphetamine), as well as acute behavioral and chronic neurogenic effects of the antidepressant fluoxetine, require 5-HT 2B receptor expression in serotonergic neurons. In Htr2b 5-HTKO mice, dorsal raphe serotonin neurons displayed a lower firing frequency compared to control Htr2b lox/lox mice as assessed by in vivo extracellular recordings and a stronger hypothermic effect of 5-HT 1A -autoreceptor stimulation was observed. The increase in head-twitch response to DOI (2,5-dimethoxy-4-iodoamphetamine) further confirmed the lower serotonergic tone resulting from the absence of 5-HT 2B receptors in serotonin neurons. Together, these observations indicate that the 5-HT 2B receptor acts as a direct positive modulator of serotonin Pet1-positive neurons in an opposite way as the known 5-HT 1A -negative autoreceptor.
Elevated brain serotonin turnover in patients with depression: effect of genotype and therapy.
Barton, David A; Esler, Murray D; Dawood, Tye; Lambert, Elisabeth A; Haikerwal, Deepak; Brenchley, Celia; Socratous, Florentia; Hastings, Jacqueline; Guo, Ling; Wiesner, Glen; Kaye, David M; Bayles, Richard; Schlaich, Markus P; Lambert, Gavin W
2008-01-01
The biological basis for the development of major depressive disorder (MDD) remains incompletely understood. To quantify brain serotonin (5-hydroxytryptamine [5-HT]) turnover in patients with MDD. Patients with depression were studied both untreated and during administration of a selective serotonin reuptake inhibitor (SSRI) in an unblinded study of sequential design. Healthy volunteers were examined on only 1 occasion. Direct internal jugular venous blood sampling was used to directly quantify brain serotonin turnover. The effect of serotonin transporter (5-HTT) genotype on brain serotonin turnover was evaluated and the influence of SSRI therapy on serotonin turnover was investigated. Participants were recruited from the general community following media advertisement. Experimental procedures were performed in the research catheterization laboratory of a major training hospital and medical research institute. Studies were performed in 21 patients fulfilling the DSM-IV and International Statistical Classification of Diseases, 10th Revision diagnostic criteria for MDD and in 40 healthy volunteers. Treatment for patients consisted of SSRI administration for approximately 12 weeks. Brain serotonin turnover before and after SSRI therapy. Brain serotonin turnover was significantly elevated in unmedicated patients with MDD compared with healthy subjects (mean [SD] internal jugular venoarterial 5-hydroxyindoleacetic acid plasma concentration difference, 4.4 [4.3] vs 1.6 [2.4] nmol/L, respectively; P = .003). Analysis of the influence of the 5-HTT genotype in MDD indicated that carriage of the s allele compared with the l allele was associated with greater than a 2-fold increase in brain serotonin turnover (mean [SD] internal jugular venoarterial 5-hydroxyindoleacetic acid plasma concentration difference, 6.5 [4.7] vs 2.7 [2.9] nmol/L, respectively; P = .04). Following SSRI therapy, brain serotonin turnover was substantially reduced (mean [SD] internal jugular venoarterial 5-hydroxyindoleacetic acid plasma concentration difference, 6.0 [4.0] nmol/L prior to treatment vs 2.0 [3.3] nmol/L following therapy; P = .008). Brain serotonin turnover is elevated in unmedicated patients with MDD and is influenced by the 5-HTT genotype. The marked reduction in serotonin turnover following SSRI treatment and the accompanying improvement in symptoms suggest that high brain serotonin turnover may be a biological substrate of MDD.
Wirbisky, Sara E; Weber, Gregory J; Sepúlveda, Maria S; Xiao, Changhe; Cannon, Jason R; Freeman, Jennifer L
2015-07-03
Atrazine is an herbicide applied to agricultural crops and is indicated to be an endocrine disruptor. Atrazine is frequently found to contaminate potable water supplies above the maximum contaminant level of 3μg/L as defined by the U.S. Environmental Protection Agency. The developmental origin of adult disease hypothesis suggests that toxicant exposure during development can increase the risk of certain diseases during adulthood. However, the molecular mechanisms underlying disease progression are still unknown. In this study, zebrafish embryos were exposed to 0, 0.3, 3, or 30μg/L atrazine throughout embryogenesis. Larvae were then allowed to mature under normal laboratory conditions with no further chemical treatment until 7 days post fertilization (dpf) or adulthood and neurotransmitter analysis completed. No significant alterations in neurotransmitter levels was observed at 7dpf or in adult males, but a significant decrease in 5-hydroxyindoleacetic acid (5-HIAA) and serotonin turnover was seen in adult female brain tissue. Transcriptomic analysis was completed on adult female brain tissue to identify molecular pathways underlying the observed neurological alterations. Altered expression of 1928, 89, and 435 genes in the females exposed to 0.3, 3, or 30μg/L atrazine during embryogenesis were identified, respectively. There was a high level of overlap between the biological processes and molecular pathways in which the altered genes were associated. Moreover, a subset of genes was down regulated throughout the serotonergic pathway. These results provide support of the developmental origins of neurological alterations observed in adult female zebrafish exposed to atrazine during embryogenesis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Zhao, S; Edwards, J; Carroll, J; Wiedholz, L; Millstein, R A; Jaing, C; Murphy, D L; Lanthorn, T H; Holmes, A
2006-06-19
The 5-hydroxytryptamine transporter (5-HTT) regulates 5-hydroxytryptamine (5-HT) neurotransmission by removing 5-HT from the synaptic cleft. Emerging evidence from clinical and genetic studies implicates the 5-HTT in various neuropsychiatric conditions, including anxiety and depression. Here we report that a 5-HTT null mutant mouse line was generated by gene trapping that disrupted the sequence encoding the C-terminus of 5-HTT. This mutation resulted in significant reduction of 5-HTT mRNA and loss of 5-HTT protein. Brain levels of 5-HT and its major metabolite, 5-hydroxyindoleacetic acid, were markedly decreased in C-terminus 5-HTT -/- mice, while 5-HT uptake or 5-HT content in platelets was absent. Behavioral phenotyping showed that C-terminus 5-HTT -/- mice were normal on a screen for gross behavioral, neurological, and sensory functions. In the tail suspension test for depression-related behavior, C-terminus 5-HTT -/- mice showed increased immobility relative to their +/+ controls. By comparison, a previously generated line of 5-HTT -/- mice lacking exon 2, encoding the N-terminus of the 5-HTT, showed abnormally high immobility in response to repeated, but not acute, exposure to the tail suspension test. In a novel, brightly-lit open field, both C-terminus 5-HTT -/- mice and N-terminus 5-HTT -/- mice displayed decreased center time and reduced locomotor activity compared with their +/+ controls. Both mutant lines buried significantly fewer marbles than their +/+ controls in the marble burying test. These findings further demonstrate the neurobiological functions of the 5-HTT and add to a growing literature linking genetic variation in 5-HTT function with emotional abnormalities.
Anil Kumar, K V; Nagwar, Shrasti; Thyloor, Rama; Satyanarayana, Sreemantula
2015-12-01
Various stress hormones are responsible for bringing out stress-related changes and are implicated in learning and memory processes. The extensive clinical experience of angiotensin receptor blockers (ARBs) and direct renin inhibitor as antihypertensive agents provides anecdotal evidence of improvements in cognition. The neurochemical basis underlying the anti-stress and nootropic effects are unclear. This study was aimed to determine the effects of aliskiren, valsartan and their combination on the neuromediators of the central nervous system (CNS) and periphery as well as on cognitive function. Groups of rats were subjected to a forced swim stress for one hour after daily treatment with aliskiren, valsartan and their combination. The 24 h urinary excretion of vanillylmandellic acid (VMA), 5-hydroxyindoleacetic acid (5-HIAA), 6-β-hydroxycortisol (6-β-OH) cortisol and homovanillic acid (HVA) was determined in all groups under normal and stressed conditions. Nootropic activity was studied using cook's pole climbing apparatus and acetylcholinesterase (AChE) inhibitory activity by Ellman's method. Administration of aliskiren (10 mg/kg), valsartan (20 mg/kg) and their combination at a dose of 5 and 10 mg/kg respectively reduced the urinary metabolite levels. Further, all drugs showed significant improvement in scopolamine-impaired performance and produced inhibition of the AChE enzyme. The present study provides scientific support for the anti-stress and nootropic activities of aliskiren, valsartan and their combination. © The Author(s) 2014.
Zessin, Jörg; Deuther-Conrad, Winnie; Kretzschmar, Marion; Wüst, Frank; Pawelke, Beate; Brust, Peter; Steinbach, Jörg; Bergmann, Ralf
2006-01-01
N,N-Dimethyl-2-(2-amino-4-methylthiophenylthio)benzylamine (SMe-ADAM, 1) is a highly potent and selective inhibitor of the serotonin transporter (SERT). This compound was labeled with carbon-11 by methylation of the S-desmethyl precursor 10 with [(11)C]methyl iodide to obtain the potential positron emission tomography (PET) radioligand [(11)C]SMe-ADAM. The radiochemical yield was 27 +/- 5%, and the specific radioactivity was 26-40 GBq/micromol at the end of synthesis. Ex vivo and in vivo biodistribution experiments in rats demonstrated a rapid accumulation of the radiotracer in brain regions known to be rich in SERT, such as the thalamus/hypothalamus region (3.59 +/- 0.41%ID/g at 5 min after injection). The specific uptake reached a thalamus to cerebellum ratio of 6.74 +/- 0.95 at 60 min postinjection. The [(11)C]SMe-ADAM uptake in the thalamus was significantly decreased by pretreatment with fluoxetine to 38 +/- 11% of the control value. Furthermore, no metabolites of [(11)C]SMe-ADAM could be detected in the SERT-rich regions of the rat brain. It is concluded that [(11)C]SMe-ADAM may be a suitable PET ligand for SERT imaging in the living brain.
Boissonnet, Arnaud; Hévor, Tobias; Landemarre, Ludovic; Cloix, Jean-François
2013-05-01
The experimental model of seizures which depends upon methionine sulfoximine (MSO) simulates the most striking form of human epilepsy. MSO generates epileptiform seizures in a large variety of animals, increases brain glycogen content and induces brain monoamines modifications. We selected two inbred lines of mice based upon their latency toward MSO-dependent seizures, named as MSO-Fast (sensitive), having short latency toward MSO, and MSO-Slow (resistant) with a long latency. We determined 13 monoamines and glycogen contents in brain cortices of the MSO-Fast and slow lines in order to determine the relationships with MSO-dependent seizures. The present data show that using these MSO-Fast and MSO-Slow inbred lines it could be demonstrated that: (1) in basal conditions the neurotransmitter 5-HT is significantly higher in MSO-Fast mice than in MSO-Slow ones; (2) MSO in both lines induced a significant increase in brain content of DOPAC (3,4-dihydroxyphenylacetic acid), HVA (homovanillic acid), MHPG (3-methoxy-4-hydroxyphenylglycol), and 5-HT (serotonin); a significant decrease in MSO-Slow mice in brain content of NME (normetepinephrine), and 5-HIAA (5-hydroxyindoleacetic acid) and the variation of other monoamines were not significant; (3) the brain glycogen content is significantly higher in MSO-Fast mice than in MSO-Slow ones, both in basal conditions and after MSO administration. From our data, we propose that brain glycogen content may constitute a defense against epileptic attack, as glycogen may be degraded down to glucose-6-phosphate that can be used to either postpone the epileptic attack or to provide neurons with energy when they needed it. Brain glycogen might therefore be considered as a molecule that can contribute to struggle seizures, at least in MSO-dependent seizure. The 5-HT content may constitute a defense against MSO-dependent epilepsy. Copyright © 2013 Elsevier B.V. All rights reserved.
Serotonin, tryptophan metabolism and the brain-gut-microbiome axis.
O'Mahony, S M; Clarke, G; Borre, Y E; Dinan, T G; Cryan, J F
2015-01-15
The brain-gut axis is a bidirectional communication system between the central nervous system and the gastrointestinal tract. Serotonin functions as a key neurotransmitter at both terminals of this network. Accumulating evidence points to a critical role for the gut microbiome in regulating normal functioning of this axis. In particular, it is becoming clear that the microbial influence on tryptophan metabolism and the serotonergic system may be an important node in such regulation. There is also substantial overlap between behaviours influenced by the gut microbiota and those which rely on intact serotonergic neurotransmission. The developing serotonergic system may be vulnerable to differential microbial colonisation patterns prior to the emergence of a stable adult-like gut microbiota. At the other extreme of life, the decreased diversity and stability of the gut microbiota may dictate serotonin-related health problems in the elderly. The mechanisms underpinning this crosstalk require further elaboration but may be related to the ability of the gut microbiota to control host tryptophan metabolism along the kynurenine pathway, thereby simultaneously reducing the fraction available for serotonin synthesis and increasing the production of neuroactive metabolites. The enzymes of this pathway are immune and stress-responsive, both systems which buttress the brain-gut axis. In addition, there are neural processes in the gastrointestinal tract which can be influenced by local alterations in serotonin concentrations with subsequent relay of signals along the scaffolding of the brain-gut axis to influence CNS neurotransmission. Therapeutic targeting of the gut microbiota might be a viable treatment strategy for serotonin-related brain-gut axis disorders. Copyright © 2014 Elsevier B.V. All rights reserved.
Yegani, M; Chowdhury, S R; Oinas, N; MacDonald, E J; Smith, T K
2006-12-01
Three experiments were conducted to compare the effects of feeding blends of grains naturally contaminated with Fusarium mycotoxins on brain regional neurochemistry of laying hens, turkey poults, and broiler breeder hens. In Experiment 1, thirty-six 45-wk-old laying hens were fed diets including the following for 4 wk: 1) control, 2) contaminated grains, and 3) contaminated grains + 0.2% polymeric glucomannan mycotoxin adsorbent (GMA). Concentrations of brain neurotransmitters and metabolites were analyzed in pons, hypothalamus, and cortex by HPLC with electrochemical detection. Neurotransmitters and the metabolites measured included dopamine, 3,4-dihydroxylphenyacetic acid, homovanillic acid, serotonin [5-hydroxytryptamine (5-HT)], 5-hydroxyindolacetic acid, epinephrine, and norepinephrine. The feeding of contaminated grains significantly increased concentrations of 5-HT and decreased the 5-hydroxyindolacetic acid:5-HT in the pons region in the brain stem. Dietary supplementation with GMA prevented these effects. There was no effect of diet on concentrations of other neurotransmitters or metabolites in the pons, hypothalamus, or cortex. In Experiment 2, thirty-six 1-d-old turkey poults were fed diets including the following for 4 wk: 1) control, 2) contaminated grains, and 3) contaminated grains + 0.2% GMA. Hypothalamic, pons, and cortex neurotransmitter concentrations were not affected by diet. In Experiment 3, forty-two 26-wk-old broiler breeder hens were fed diets including the following for 15 wk: 1) control, 2) contaminated grains, and 3) contaminated grains + 0.2% GMA. There was no effect of diet on neurotransmitter concentrations in the pons, hypothalamus, or cortex. It was concluded that differences in intraspecies effects of these mycotoxins on brain neurotransmitter concentrations might explain the intraspecies differences in the severity of Fusarium mycotoxin-induced reductions in feed intake.
Folinic acid treatment for schizophrenia associated with folate receptor autoantibodies.
Ramaekers, V T; Thöny, B; Sequeira, J M; Ansseau, M; Philippe, P; Boemer, F; Bours, V; Quadros, E V
2014-12-01
Auto-antibodies against folate receptor alpha (FRα) at the choroid plexus that block N(5)-methyltetrahydrofolate (MTHF) transfer to the brain were identified in catatonic schizophrenia. Acoustic hallucinations disappeared following folinic acid treatment. Folate transport to the CNS prevents homocysteine accumulation and delivers one-carbon units for methyl-transfer reactions and synthesis of purines. The guanosine derivative tetrahydrobiopterin acts as common co-factor for the enzymes producing dopamine, serotonin and nitric oxide. Our study selected patients with schizophrenia unresponsive to conventional treatment. Serum from these patients with normal plasma homocysteine, folate and vitamin B12 was tested for FR autoantibodies of the blocking type on serial samples each week. Spinal fluid was analyzed for MTHF and the metabolites of pterins, dopamine and serotonin. The clinical response to folinic acid treatment was evaluated. Fifteen of 18 patients (83.3%) had positive serum FR auto-antibodies compared to only 1 in 30 controls (3.3%) (χ(2)=21.6; p<0.0001). FRα antibody titers in patients fluctuated over time varying between negative and high titers, modulating folate flux to the CNS, which explained low CSF folate values in 6 and normal values in 7 patients. The mean±SD for CSF MTHF was diminished compared to previously established controls (t-test: 3.90; p=0.0002). A positive linear correlation existed between CSF MTHF and biopterin levels. CSF dopamine and serotonin metabolites were low or in the lower normal range. Administration of folinic acid (0.3-1mg/kg/day) to 7 participating patients during at least six months resulted in clinical improvement. Assessment of FR auto-antibodies in serum is recommended for schizophrenic patients. Clinical negative or positive symptoms are speculated to be influenced by the level and evolution of FRα antibody titers which determine folate flux to the brain with up- or down-regulation of brain folate intermediates linked to metabolic processes affecting homocysteine levels, synthesis of tetrahydrobiopterin and neurotransmitters. Folinic acid intervention appears to stabilize the disease process. Copyright © 2014 Elsevier Inc. All rights reserved.
Bucaretchi, Fábio; de Capitani, Eduardo Mello; Mello, Sueli Moreira; Lanaro, Rafael; Barros, Roberta F; Fernandes, Luciane C R; da Costa, José Luiz; Hyslop, Stephen
2009-07-01
To report a case of serotonin syndrome (SS) after sibutramine overdose in a child. A 4-year-old girl was admitted 25 h after accidentally ingesting approximately 27 pills of sibutramine (15 mg, approximately 23 mg/kg). The child developed clinical features suggestive of SS, including diaphoresis, tachycardia, hypertension, agitation, insomnia, incoordination, hypertonia (lower limbs > upper limbs), and hallucinations. Serum creatine phosphokinase levels reached a peak on day 3 (2,577 U/L, reference value <145), suggesting mild rhabdomyolysis. No relevant changes were detected in other laboratory examinations or in the electrocardiogram throughout the period of hospitalization. The quantification of sibutramine and the active metabolites, M1 (mono-desmethyl sibutramine) and M2 (di-desmethyl sibutramine), by liquid chromatography/electrospray ionization tandem mass spectrometry in six sequential samples collected from 25 to 147 h post-ingestion revealed a nonlinear decrease in the log-scale plasma concentrations. Treatment was only supportive and involved prolonged sedation to control the agitation, sleeplessness, and hypertension; no cyproheptadine was used. The patient was discharged on day 6 and follow-up revealed no sequelae. To our knowledge, this is the first report of SS after sibutramine overdose in a child, with sequential monitoring of the plasma levels of the drug and its two active metabolites. The growing consumption of weight reducing pills may increase the risk of unintentional acute toxic exposures in children.
Stimulation of aortic smooth muscle cell mitogenesis by serotonin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemecek, G.M.; Coughlin, S.R.; Handley, D.A.
1986-02-01
Bovine aortic smooth muscle cells in vitro responded to 1 nM to 10 ..mu..M serotonin with increased incorporation of (/sup 3/H)thymidine into DNA. The mitogenic effect of serotonin was half-maximal at 80 nM and maximal above 1 ..mu..M. At a concentration of 1 ..mu..M, serotonin stimulated smooth muscle cell mitogenesis to the same extent as human platelet-derived growth factor (PDGF) at 12 ng/ml. Tryptamine was approx. = 1/10th as potent as serotonin as a mitogen for smooth muscle cells. Other indoles that are structurally related to serotonin (D- and L-tryptophan, 5-hydroxy-L-tryptophan, N-acetyl-5-hydroxytryptamine, melatonin, 5-hydroxyindoleacetic acid, and 5-hydroxytryptophol) and quipazine weremore » inactive. The stimulatory effect of serotonin on smooth muscle cell DNA synthesis required prolonged (20-24 hr) exposure to the agonist and was attenuated in the presence of serotonin D receptor antagonists. When smooth muscle cells were incubated with submaximal concentrations of serotonin and PDGF, synergistic rather than additive mitogenic responses were observed. These data indicate that serotonin has a significant mitogenic effect on smooth muscle cells in vitro, which appears to be mediated by specific plasma membrane receptors.« less
Praveen, Vijayakumar; Praveen, Shama
2016-01-01
Sudden infant death syndrome (SIDS) continues to be a major public health issue. Following its major decline since the "Back to Sleep" campaign, the incidence of SIDS has plateaued, with an annual incidence of about 1,500 SIDS-related deaths in the United States and thousands more throughout the world. The etiology of SIDS, the major cause of postneonatal mortality in the western world, is still poorly understood. Although sleeping in prone position is a major risk factor, SIDS continues to occur even in the supine sleeping position. The triple-risk model of Filiano and Kinney emphasizes the interaction between a susceptible infant during a critical developmental period and stressor/s in the pathogenesis of SIDS. Recent evidence ranges from dysregulated autonomic control to findings of altered neurochemistry, especially the serotonergic system that plays an important role in brainstem cardiorespiratory/thermoregulatory centers. Brainstem serotonin (5-HT) and tryptophan hydroxylase-2 (TPH-2) levels have been shown to be lower in SIDS, supporting the evidence that defects in the medullary serotonergic system play a significant role in SIDS. Pathogenic bacteria and their enterotoxins have been associated with SIDS, although no direct evidence has been established. We present a new hypothesis that the infant's gut microbiome, and/or its metabolites, by its direct effects on the gut enterochromaffin cells, stimulates the afferent gut vagal endings by releasing serotonin (paracrine effect), optimizing autoresuscitation by modulating brainstem 5-HT levels through the microbiome-gut-brain axis, thus playing a significant role in SIDS during the critical period of gut flora development and vulnerability to SIDS. The shared similarities between various risk factors for SIDS and their relationship with the infant gut microbiome support our hypothesis. Comprehensive gut-microbiome studies are required to test our hypothesis.
5-HT level; 5-hydroxytryptamine level; Serotonin test ... Chernecky CC, Berger BJ. Serotonin (5-hydroxytryptamine) - serum or blood. In: Chernecky CC, Berger BJ, eds. Laboratory Tests and Diagnostic Procedures . 6th ed. St Louis, MO: Elsevier ...
Fox, Meredith A.; Jensen, Catherine L.; French, Helen T.; Stein, Alison R.; Huang, Su-Jan; Tolliver, Teresa J.; Murphy, Dennis L.
2008-01-01
Rationale Serotonin transporter (SERT) knockout (−/−) mice have an altered phenotype in adulthood, including high baseline anxiety and depressive-like behaviors, associated with increased baseline extracellular serotonin levels throughout life. Objectives To examine the effects of increases in serotonin following administration of the serotonin precursor 5-hydroxy-L-tryptophan (5-HTP) in SERT wildtype (+/+), heterozygous (+/−) and −/− mice. Results 5-HTP increased serotonin in all five brain areas examined, with ~2–5-fold increases in SERT +/+ and +/− mice, and greater 4.5–11.7-fold increases in SERT −/− mice. Behaviorally, 5-HTP induced exaggerated serotonin syndrome behaviors in SERT −/− mice, with similar effects in male and female mice. Studies suggest promiscuous serotonin uptake by the dopamine transporter (DAT) in SERT −/− mice, and here, the DAT blocker GBR 12909 enhanced 5-HTP-induced behaviors in SERT −/− mice. Physiologically, 5-HTP induced exaggerated temperature effects in SERT-deficient mice. The 5-HT1A antagonist WAY 100635 decreased 5-HTP-induced hypothermia in SERT +/+ and +/− mice, with no effect in SERT −/− mice, whereas the 5-HT7 antagonist SB 269970 decreased this exaggerated response in SERT −/− mice only. WAY 100635 and SB 269970 together completely blocked 5-HTP-induced hypothermia in SERT +/− and −/− mice. Conclusions These studies demonstrate that SERT −/− mice have exaggerated neurochemical, behavioral and physiological responses to further increases in serotonin, and provide the first evidence of intact 5-HT7 receptor function in SERT −/− mice, with interesting interactions between 5-HT1A and 5-HT7 receptors. As roles for 5-HT7 receptors in anxiety and depression were recently established, the current findings have implications for understanding the high anxiety and depressive-like phenotype of SERT-deficient mice. PMID:18712364
Halberstadt, Adam L; Koedood, Liselore; Powell, Susan B; Geyer, Mark A
2012-01-01
Psilocin (4-hydroxy-N,N-dimethyltryptamine) is a hallucinogen that acts as an agonist at 5-HT1A, 5-HT2A, and 5-HT2C receptors. Psilocin is the active metabolite of psilocybin, a hallucinogen that is currently being investigated clinically as a potential therapeutic agent. In the present investigation, we used a combination of genetic and pharmacological approaches to identify the serotonin (5-HT) receptor subtypes responsible for mediating the effects of psilocin on head twitch response (HTR) and the behavioral pattern monitor (BPM) in C57BL/6J mice. We also compared the effects of psilocin with those of the putative 5-HT2C receptor-selective agonist 1-methylpsilocin and the hallucinogen and non-selective serotonin receptor agonist 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT). Psilocin, 1-methylpsilocin, and 5-MeO-DMT induced the HTR, effects that were absent in mice lacking the 5-HT2A receptor gene. When tested in the BPM, psilocin decreased locomotor activity, holepoking, and time spent in the center of the chamber, effects that were blocked by the selective 5-HT1A antagonist WAY-100635 but were not altered by the selective 5-HT2C antagonist SB 242,084 or by 5-HT2A receptor gene deletion. 5-MeO-DMT produced similar effects when tested in the BPM, and the action of 5-MeO-DMT was significantly attenuated by WAY-100635. Psilocin and 5-MeO-DMT also decreased the linearity of locomotor paths, effects that were mediated by 5-HT2C and 5-HT1A receptors, respectively. In contrast to psilocin and 5-MeO-DMT, 1-methylpsilocin (0.6–9.6 mg/kg) was completely inactive in the BPM. These findings confirm that psilocin acts as an agonist at 5-HT1A, 5-HT2A, and 5-HT2C receptors in mice, whereas the behavioral effects of 1-methylpsilocin indicate that this compound is acting at 5-HT2A sites but is inactive at the 5-HT1A receptor. The fact that 1-methylpsilocin displays greater pharmacological selectivity than psilocin indicates that 1-methylpsilocin represents a potentially useful alternative to psilocybin for development as a potential therapeutic agent. PMID:21148021
Perturbation of Serotonin Homeostasis during Adulthood Affects Serotonergic Neuronal Circuitry.
Pratelli, Marta; Migliarini, Sara; Pelosi, Barbara; Napolitano, Francesco; Usiello, Alessandro; Pasqualetti, Massimo
2017-01-01
Growing evidence shows that the neurotransmitter serotonin (5-HT) modulates the fine-tuning of neuron development and the establishment of wiring patterns in the brain. However, whether serotonin is involved in the maintenance of neuronal circuitry in the adult brain remains elusive. Here, we use a Tph2 fl ° x conditional knockout (cKO) mouse line to assess the impact of serotonin depletion during adulthood on serotonergic system organization. Data show that the density of serotonergic fibers is increased in the hippocampus and decreased in the thalamic paraventricular nucleus (PVN) as a consequence of brain serotonin depletion. Strikingly, these defects are rescued following reestablishment of brain 5-HT signaling via administration of the serotonin precursor 5-hydroxytryptophan (5-HTP). Finally, 3D reconstruction of serotonergic fibers reveals that changes in serotonin homeostasis affect axonal branching complexity. These data demonstrate that maintaining proper serotonin homeostasis in the adult brain is crucial to preserve the correct serotonergic axonal wiring.
Anderberg, Rozita H; Richard, Jennifer E; Eerola, Kim; López-Ferreras, Lorena; Banke, Elin; Hansson, Caroline; Nissbrandt, Hans; Berqquist, Filip; Gribble, Fiona M; Reimann, Frank; Wernstedt Asterholm, Ingrid; Lamy, Christophe M; Skibicka, Karolina P
2017-04-01
Glucagon-like peptide 1 (GLP-1) and serotonin play critical roles in energy balance regulation. Both systems are exploited clinically as antiobesity strategies. Surprisingly, whether they interact in order to regulate energy balance is poorly understood. Here we investigated mechanisms by which GLP-1 and serotonin interact at the level of the central nervous system. Serotonin depletion impaired the ability of exendin-4, a clinically used GLP-1 analog, to reduce body weight in rats, suggesting that serotonin is a critical mediator of the energy balance impact of GLP-1 receptor (GLP-1R) activation. Serotonin turnover and expression of 5-hydroxytryptamine (5-HT) 2A (5-HT 2A ) and 5-HT 2C serotonin receptors in the hypothalamus were altered by GLP-1R activation. We demonstrate that the 5-HT 2A , but surprisingly not the 5-HT 2C , receptor is critical for weight loss, anorexia, and fat mass reduction induced by central GLP-1R activation. Importantly, central 5-HT 2A receptors are also required for peripherally injected liraglutide to reduce feeding and weight. Dorsal raphe (DR) harbors cell bodies of serotonin-producing neurons that supply serotonin to the hypothalamic nuclei. We show that GLP-1R stimulation in DR is sufficient to induce hypophagia and increase the electrical activity of the DR serotonin neurons. Finally, our results disassociate brain metabolic and emotionality pathways impacted by GLP-1R activation. This study identifies serotonin as a new critical neural substrate for GLP-1 impact on energy homeostasis and expands the current map of brain areas impacted by GLP-1R activation. © 2017 by the American Diabetes Association.
Faulkner, Paul; Mancinelli, Federico; Lockwood, Patricia L; Matarin, Mar; Dolan, Raymond J; Wood, Nick W; Dayan, Peter; Roiser, Jonathan P
2017-01-01
The effects of acute tryptophan depletion on human decision-making suggest that serotonin modulates the processing of rewards and punishments. However, few studies have assessed which of the many types of serotonin receptors are responsible. Using a within-subject, double-blind, sham-controlled design in 26 subjects, we examined whether individual differences in serotonin system gene transcription, measured in peripheral blood, predicted the effect of acute tryptophan depletion on decision-making. Participants performed a task in which they chose between successive pairs of fixed, lower-stakes (control) and variable, higher-stakes (experimental) gambles, each involving wins or losses. In 21 participants, mRNA from 9 serotonin system genes was measured in whole blood prior to acute tryptophan depletion: 5-HT1B, 5-HT1F, 5-HT2A, 5-HT2B, 5-HT3A, 5-HT3E, 5-HT7 (serotonin receptors), 5-HTT (the serotonin transporter), and tryptophan hydroxylase 1. Acute tryptophan depletion did not significantly influence participants' sensitivity to probability, wins, or losses, although there was a trend for a lower tendency to choose experimental gambles overall following depletion. Significant positive correlations, which survived correction for multiple comparisons, were detected between baseline 5-HT1B mRNA levels and acute tryptophan depletion-induced increases in both the overall tendency to choose the experimental gamble and sensitivity to wins. No significant relationship was observed with any other peripheral serotonin system markers. Computational analyses of decision-making data provided results consistent with these findings. These results suggest that the 5-HT1B receptor may modulate the effects of acute tryptophan depletion on risky decision-making. Peripheral levels of serotonin markers may predict response to treatments that act upon the serotonin system, such as selective serotonin reuptake inhibitors. © The Author 2016. Published by Oxford University Press on behalf of CINP.
Mechaly, Alejandro S; Richardson, Ebony; Rinkwitz, Silke
2017-05-15
Serotonin has been implicated in the inhibition of food intake in vertebrates. However, the mechanisms through which serotonin acts has yet to be elucidated. Recently, ETV5 (ets variant gene 5) has been associated with obesity and food intake control mechanisms in mammals. We have analyzed a putative physiological function of the two etv5 paralogous genes (etv5a and etv5b) in neuronal food intake control in adult zebrafish that have been exposed to different nutritional conditions. A feeding assay was established and fluoxetine, a selective serotonin re-uptake inhibitor (SSRI), was applied. Gene expression changes in the hypothalamus were determined using real-time PCR. Fasting induced an up-regulation of etv5a and etv5b in the hypothalamus, whereas increased serotonin levels in the fasted fish counteracted the increase in expression. To investigate potential mechanisms the expression of further food intake control genes was determined. The results show that an increase of serotonin in fasting fish causes a reduction in the activity of genes stimulating food intake. This is in line with a previously demonstrated anorexigenic function of serotonin. Our results suggest that obesity-associated ETV5 has a food intake stimulating function and that this function is modulated through serotonin. Copyright © 2016 Elsevier Inc. All rights reserved.
The effects of glycogen synthase kinase-3beta in serotonin neurons.
Zhou, Wenjun; Chen, Ligong; Paul, Jodi; Yang, Sufen; Li, Fuzeng; Sampson, Karen; Woodgett, Jim R; Beaulieu, Jean Martin; Gamble, Karen L; Li, Xiaohua
2012-01-01
Glycogen synthase kinase-3 (GSK3) is a constitutively active protein kinase in brain. Increasing evidence has shown that GSK3 acts as a modulator in the serotonin neurotransmission system, including direct interaction with serotonin 1B (5-HT1B) receptors in a highly selective manner and prominent modulating effect on 5-HT1B receptor activity. In this study, we utilized the serotonin neuron-selective GSK3β knockout (snGSK3β-KO) mice to test if GSK3β in serotonin neurons selectively modulates 5-HT1B autoreceptor activity and function. The snGSK3β-KO mice were generated by crossbreeding GSK3β-floxed mice and ePet1-Cre mice. These mice had normal growth and physiological characteristics, similar numbers of tryptophan hydroxylase-2 (TpH2)-expressing serotonin neurons, and the same brain serotonin content as in littermate wild type mice. However, the expression of GSK3β in snGSK3β-KO mice was diminished in TpH2-expressing serotonin neurons. Compared to littermate wild type mice, snGSK3β-KO mice had a reduced response to the 5-HT1B receptor agonist anpirtoline in the regulation of serotonergic neuron firing, cAMP production, and serotonin release, whereas these animals displayed a normal response to the 5-HT1A receptor agonist 8-OH-DPAT. The effect of anpirtoline on the horizontal, center, and vertical activities in the open field test was differentially affected by GSK3β depletion in serotonin neurons, wherein vertical activity, but not horizontal activity, was significantly altered in snGSK3β-KO mice. In addition, there was an enhanced anti-immobility response to anpirtoline in the tail suspension test in snGSK3β-KO mice. Therefore, results of this study demonstrated a serotonin neuron-targeting function of GSK3β by regulating 5-HT1B autoreceptors, which impacts serotonergic neuron firing, serotonin release, and serotonin-regulated behaviors.
Korse, Catharina M; Buning-Kager, Johanna C G M; Linders, Theodora C; Heijboer, Annemieke C; van den Broek, Daan; Tesselaar, Margot E T; van Tellingen, Olaf; van Rossum, Huub H
2017-06-01
Serotonin is used for the diagnosis and follow-up of neuroendocrine tumors (NET). We describe the analytical and clinical validation of a liquid chromatography tandem mass spectrometry (LC-MS/MS) based serotonin assay for serum and platelet-rich plasma (PRP). An LC-MS/MS based method for serum and PRP serotonin was validated by determination of assay imprecision, carry-over, linearity, interference, recovery, sample stability and a matrix/method comparison of serum and PRP serotonin was made with whole blood serotonin. Furthermore, upper limits of normal were determined and serotonin concentrations of healthy individuals, 14 NET patients without evidence of disease and 51 NET patients with evidence of disease were compared. For serum and PRP fractions, total assay imprecision was <5%. All correlation coefficients were 0.98 and the serum and platelet-rich serotonin upper limit of normal were 5.5nmol/10 9 platelet and 5.1nmol/10 9 platelet, respectively. NET patients with confirmed evidence of disease had significantly higher serum and PRP serotonin levels when compared to NET patients without evidence of disease and healthy volunteers. LC-MS/MS based serum and PRP serotonin assays were developed with suitable analytical characteristics. Furthermore, serum and PRP serotonin was found to be useful for monitoring NET patients. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katz, D.M.; Kimelberg, H.K.
Primary astrocyte cultures prepared from the cerebral cortices of neonatal rats showed significant accumulation of serotonin (5-hydroxytryptamine; (/sup 3/H)-5-HT). At concentrations in the range of 0.01 to 0.7 microM (/sup 3/H)-5-HT, this uptake was 50 to 85% Na+ dependent and gave a Km of 0.40 +/- 0.11 microM (/sup 3/H)-5-HT and a Vmax of 6.42 +/- 0.85 (+/- SEM) pmol of (/sup 3/H)-5-HT/mg of protein/4 min for the Na+-dependent component. In the absence of Na+ the uptake was nonsaturable. Omission of the monoamine oxidase inhibitor pargyline markedly reduced the Na+-dependent component of (/sup 3/H)-5-HT uptake but had a negligible effectmore » on the Na+-independent component. This suggest significant oxidative deamination of serotonin after it has been taken up by the high affinity system, followed by release of its metabolite. The authors estimated that this system enabled the cells to concentrate (/sup 3/H)-5-HT up to 44-fold at an external (/sup 3/H)-5-HT concentration of 10(-7) M. Inhibition of (/sup 3/H)-5-HT uptake by a number of clinically effective antidepressants was also consistent with a specific high affinity uptake mechanism for 5-HT, the order of effectiveness of inhibition being chlorimipramine greater than fluoxetine greater than imipramine = amitriptyline greater than desmethylimipramine greater than iprindole greater than mianserin. Uptake of (/sup 3/H)-5-HT was dependent on the presence of Cl- as well as Na+ in the medium, and the effect of omission of both ions was nonadditive. Varying the concentration of K+ in the media from 1 to 50 mM had a limited effect on (/sup 3/H)-5-HT uptake.« less
Sabe, Sharif A; Feng, Jun; Liu, Yuhong; Scrimgeour, Laura A; Ehsan, Afshin; Sellke, Frank W
2018-05-11
Regulation of coronary vasomotor tone by serotonin is significantly changed after cardioplegic arrest and reperfusion. The current study investigates whether cardiopulmonary bypass may also affect peripheral arteriolar response to serotonin in patients with or without diabetes. Human peripheral microvessels (90-180 µm diameter) were dissected from harvested skeletal muscle tissues from diabetic and non-diabetic patients before and after cardiopulmonary bypass and cardiac surgery (n = 8/group). In vitro contractile response to serotonin was assessed by videomicroscopy in the presence or absence of serotonin alone (10 -9 -10 -5 M) or combined with the selective serotonin 1B receptor (5-HT1B) antagonist, SB224289 (10 -6 M). 5-HT1A/1B protein expression in the skeletal muscle was measured by Western-blot and immunohistochemistry. There were no significant differences in contractile response of peripheral arterioles to serotonin (10 -5 M) pre-cardiopulmonary bypass between diabetic and non-diabetic patients. After cardiopulmonary bypass, contractile response to serotonin was significantly impaired in both diabetic and non-diabetic patients compared to their pre-cardiopulmonary bypass counterparts (P < .05). This effect was more pronounced in diabetic patients than non-diabetic patients (P < .05 versus non-diabetic). The contractile response to serotonin was significantly inhibited by the 5-HT1B antagonist in both diabetic and non-diabetic vessels (P < .05 versus serotonin alone). There were no significant differences in the expression/distribution of 5-HT1A/1B between non-diabetic and diabetic groups or between pre- versus post- cardiopulmonary bypass vessels. Cardiopulmonary bypass is associated with decreased contractile response of peripheral arterioles to serotonin and this effect was exaggerated in the presence of diabetes. Serotonin-induced contractile response of the peripheral arterioles was via 5-HT1B in both diabetic and non-diabetic patients. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kanamori, Keiko; Ross, Brian D.; Parivar, Farhad
Four cerebral metabolites of importance in neurotransmission, serotonin, L-tryptophan, L-glutamine, and N-acetyl- L-aspartate, and two hepatic urea-cycle intermediates, citrulline and urea, were found to be observable by 1H- 15N heteronuclear multiple-quantum-coherence (HMQC) spectroscopy in aqueous solution at physiological pH and temperature, through the protons spin-coupled to their indole, amide, or ureido nitrogen. Their 1H chemical shifts were well dispersed over a 5-10 ppm region while the 1J 15N- 1H values were 87-99 Hz. For [γ- 15N]glutamine, a 50- to 100-fold increase in sensitivity over direct 15N detection was achieved, in contrast to a 2-fold increase by the polarization-transfer method. In the isolated brain of portacaval-shunted rats, the amide protons of biologically 15N-enriched [γ- 15N]glutamine were observed in 2 min of acquisition, with suppression of proton signals from all other cerebral metabolites. In isolated liver of 15N-enriched control rats, [ 15NIurea protons were observed in 16 min. The HMQC method is likely to be effective for the in vivo study of cerebral and hepatic nitrogen metabolism.
Wijaya, Chandra S.; Lee, Jovia J. Z.; Husain, Syeda F.; Ho, Cyrus S. H.; McIntyre, Roger S.; Tam, Wilson W.
2018-01-01
Introduction: Major Depressive Disorder (MDD) is a common psychiatric disorder. Currently, there is no objective, cost-effective and non-invasive method to measure biological markers related to the pathogenesis of MDD. Previous studies primarily focused on urinary metabolite markers which are not proximal to the pathogenesis of MDD. Herein, we compare urinary monoamines, steroid hormones and the derived ratios amongst MDD when compared to healthy controls. Methods: Morning urine samples of medicated patients suffering from MDD (n = 47) and healthy controls (n = 41) were collected. Enzyme-linked immunosorbent assay (ELISA) was performed to measure five biomarkers: cortisol, dopamine, noradrenaline, serotonin and sulphate derivative of dehydroepiandrosterone (DHEAS). The mean urinary levels and derived ratios of monoamines and steroid hormones were compared between patients and controls to identify potential biomarkers. The receiver operative characteristic curve (ROC) analysis was conducted to evaluate the diagnostic performance of potential biomarkers. Results: Medicated patients with MDD showed significantly higher spot urine ratio of DHEAS/serotonin (1.56 vs. 1.19, p = 0.004) and lower ratio of serotonin/dopamine (599.71 vs. 888.60, p = 0.008) than healthy controls. A spot urine serotonin/dopamine ratio cut-off of >667.38 had a sensitivity of 73.2% and specificity of 51.1%. Conclusions: Our results suggest that spot urine serotonin/dopamine ratio can be used as an objective diagnostic method for adults with MDD. PMID:29701669
Kumasaka, Mayuko Y; Yajima, Ichiro; Ohgami, Nobutaka; Naito, Hisao; Omata, Yasuhiro; Kato, Masashi
2014-05-01
Krishna et al. (Arch Toxicol 88(1):47-64, 2014) recently published the results of a study in which adult C57BL/6 mice were subchronically exposed to 400,000 μg/L manganese (Mn) using manganese chloride via drinking water for 8 weeks and examined the neurotoxic effects. After 5 weeks of Mn exposure, significant deposition of Mn in all of the brain regions examined by magnetic resonance imaging was detected. After 6 weeks of Mn exposure, neurobehavioral deficits in an open field test, a grip strength test, and a forced swim test were observed. Eight weeks of Mn exposure increased striatal 5-hydroxyindoleacetic acid (a serotonin metabolite) levels, but did not alter the levels of striatal dopamine, its metabolites and serotonin. Krishna et al. also reported significant increases in mRNA levels of GFAP (an astrocyte activation marker), HO-1 (an oxidative stress marker) and NOS2 (a nitrosative stress marker), and in protein expression level of GFAP in the substantia nigra pars reticulata after 8 weeks of Mn exposure. These results suggest that 400,000 μg/L Mn exposure via drinking water in mice induces neurobehavioral deficits, serotonergic imbalance, and glial activation accompanied by an increase in brain Mn deposition. The report by Krishna et al. is interesting because the studies on the neurobehavioral effect of Mn exposure by drinking water in mice are very limited. However, Mn concentrations previously reported in well drinking water (Agusa et al. in Vietnam Environ Pollut 139(1):95-106, 2006; Buschmann et al. in Environ Int 34(6):756-764, 2008; Hafeman et al. in Environ Health Perspect 115(7):1107-1112, 2007; Wasserman et al. in Bangladesh Environ Health Perspect 114(1):124-129, 2006) were lower than 400,000 μg/L.
Lustgarten, Michael S; Price, Lori L; Chalé, Angela; Fielding, Roger A
2014-01-01
Identification of mechanisms underlying physical function will be important for addressing the growing challenge that health care will face with physical disablement in the expanding aging population. Therefore, the goals of the current study were to use metabolic profiling to provide insight into biologic mechanisms that may underlie physical function by examining the association between baseline and the 6-month change in serum mass spectrometry-obtained amino acids, fatty acids, and acylcarnitines with baseline and the 6-month change in muscle strength (leg press one repetition maximum divided by total lean mass, LP/Lean), lower extremity function [short physical performance battery (SPPB)], and mobility (400 m gait speed, 400-m), in response to 6 months of a combined resistance exercise and nutritional supplementation (whey protein or placebo) intervention in functionally-limited older adults (SPPB ≤ 10; 70–85 years, N = 73). Metabolites related to gut bacterial metabolism (cinnamoylglycine, phenol sulfate, p-cresol sulfate, 3-indoxyl sulfate, serotonin, N-methylproline, hydrocinnamate, dimethylglycine, trans-urocanate, valerate) that are altered in response to peroxisome proliferator-activated receptor-alpha (PPAR-α) activation (α-hydroxyisocaproate, α-hydroxyisovalerate, 2-hydroxy-3-methylvalerate, indolelactate, serotonin, 2-hydroxypalmitate, glutarylcarnitine, isobutyrylcarnitine, cinnamoylglycine) and that are related to insulin sensitivity (monounsaturated fatty acids: 5-dodecenoate, myristoleate, palmitoleate; γ-glutamylamino acids: γ-glutamylglutamine, γ-glutamylalanine, γ-glutamylmethionine, γ-glutamyltyrosine; branched-chain amino acids: leucine, isoleucine, valine) were associated with function at baseline, with the 6-month change in function or were identified in backward elimination regression predictive models. Collectively, these data suggest that gut microbial metabolism, PPAR-α activation, and insulin sensitivity may be involved in mechanisms that underlie physical function in functionally-limited older adults. PMID:25041144
Oyanagui, Y
1984-02-01
Serotonin paw edema of mice and carrageenan paw edema of rats were inhibited by subcutaneously or orally administered certain polyamines. They must be given at least 2 h before serotonin challenge to get inhibitions which were blocked by the concomitant injections of cycloheximide. Thirty percent inhibitory dose (ID30) of polyamines (s.c.) 3 h before serotonin (s.c.) were: spermidine (8 mg/kg), spermine 28 mg/kg) and putrescine (55 mg/kg). Agmatine, cadaverine, ornithine, citrulline, lysine and arginine were not inhibitory even at 200 mg/kg. Three inhibitory polyamines were effective by oral administration but were not inhibitory by local administration into the paws. Intravenous injections of spermidine also required 2 h of lag period for inhibitions. Serotonin edema was inhibited by dexamethasone (1 mg/kg), prednisolone (1 mg/kg) or by superoxide dismutase (SOD, 5 mg/kg) in lag period requiring manner (s.c. and i.v.). High dose of cyclo-oxygenase inhibitors indomethacin and diclofenac sodium, lipo-oxygenase inhibitor BW755C (30 mg/kg s.c., respectively) and phospholipase A2 inhibitor quinacrine (100 mg/kg s.c.) failed to inhibit serotonin edema, suggesting that arachidonate metabolites are not participating in this model. ID30 of polyamines which were administered (s.c. and oral) to rats 3 h before carrageenan and determined at 3 h by paw weight were: spermidine (28 and 100 mg/kg), spermine (18 and 90 mg/kg) and putrescine (both greater than 200 mg/kg). Adrenalectomized rats responded to polyamines just as normal rats. Local vascular permeability, irritancy and acute toxicity were also tested in mice. Polyamines were proved to be glucocorticoid-type anti-inflammatory drugs. Polyamines may be mediators of glucocorticoids for the synthesis of the postulated vascular permeability inhibitory protein (called as 'vasoregulin' for convenience). Anti-inflammatory effect of glucocorticoid is recently explained by its capacity to induce phospholipase A2 inhibitory protein(s) (macrocortin or lipomodulin). However, this hypothesis has not yet been proved by in vivo experiment and our data suggest that there is induction by glucocorticoid of another kind of protein which does not inhibit phospholipase A2 activity.
Effect of chronic D-fenfluramine administration on rat hypothalamic serotonin levels and release
NASA Technical Reports Server (NTRS)
Schaechter, Judith D.; Wurtman, Richard J.
1989-01-01
The effect of administering to rats (in doses of 1.25, 2.5, 5, or 10 mg/kg/day for 10 days) of an anorectic agent, D-fenfluramine, on the serotonin levels in hypothalamic tissue and on the in vitro release of serotonin by hypothalamic slices was investigated in rats which were sacrificed six days after the end of treatment. It was found that D-fenfuramine had no effect on tissue serotonin in doses from 1.25 to 5 mg/kg. However, given at 10 mg/kg level, serotonin led to a 22 percent decrease. The release of serotonin was found to be not affected by D-fenfluramine.
Monoamine levels in the nucleus accumbens correlate with male sexual behavior in middle-aged rats.
Tsai, Houng-Wei; Shui, Hao-Ai; Liu, Hang-Shen; Tai, Mei-Yun; Tsai, Yuan-Feen
2006-02-01
The correlation between monoamine levels in the nucleus accumbens (NAcc) and male sexual behavior was studied in middle-aged rats. Male rats (18-19months) were assigned to three groups: (1) Group MIE consisted of rats showing mounts, intromissions, and ejaculations; (2) Group MI was composed of rats showing mounts and intromissions, but no ejaculation; and (3) Group NC were non-copulators showing no sexual behavior. Young adult rats (4-5months), displaying complete copulatory behavior, were used as the control group. Levels of dopamine (DA), serotonin, and norepinephrine and their metabolites in the NAcc were measured by high-pressure liquid chromatography with electrochemical detection. No difference was seen in DA levels between MIE rats and young controls, whereas DA levels in NC rats were significantly lower than those in both MIE and MI rats. Serotonin levels in NC rats were significantly higher than those in MIE and MI rats. Conversely, norepinephrine levels in NC rats were lower than those in MIE rats. These results suggest that monoamine levels in the NAcc correlate with sexual performance in male rats and that changes in NAcc monoamine levels might affect male sexual behavior in middle-aged rats.
Horvath, Gabriella A; Tarailo-Graovac, Maja; Bartel, Tanja; Race, Simone; Van Allen, Margot I; Blydt-Hansen, Ingrid; Ross, Colin J; Wasserman, Wyeth W; Connolly, Mary B; van Karnebeek, Clara D M
2018-01-01
PAK3-related intellectual disability is caused by mutations in the gene encoding the p21-activated kinase (PAK) protein. It is characterized by mild to moderate cognitive impairment, micro/normocephaly, and a neurobehavioral phenotype characterized by short attention span, anxiety, restlessness, aggression, and self-abusive behaviors. The authors report a patient with a novel PAK3 mutation, who presented with intellectual disability, severe automutilation, and epilepsy. His magnetic resonance imaging changes were most likely secondary to lacerations from parenchymal contusions. His behavior was difficult to manage with behavior interventions or multiple medications. After finding low levels of dopamine and borderline low serotonin metabolites in the spinal fluid, treatment with low dose L-dopa/carbidopa and 5-hydroxytryptophan significantly improved his self-injurious behavior. This is the first case of PAK3-related intellectual disability presenting with severe self-injury with improvement following treatment. The patient's response to neurotransmitter replacement therapy raises the question if this treatment intervention might help other individuals suffering genetic syndromes and self-injurious behaviors.
Meguid, Nagwa A; Gebril, Ola H; Khalil, Rehab O
2015-01-01
Autism spectrum disorder (ASD) is a complex, heterogeneous neurodevelopmental disorder with onset during early childhood. Most studies have reported an elevation in platelet serotonin in persons with autism. The serotonin (5-hydroxytryptamine; 5-HT) transporter in the brain uptakes 5-HT from extracellular spaces. It is also present in platelets, where it takes up 5-HT from plasma. Polymorphisms in serotonin transporter gene (SLC6A4) were frequently studied in many neuropsychiatric disorders. We have measured the plasma 5-HT levels in 20 autistic male children and 20 control male children by the enzyme-linked immunosorbent assay (ELISA) method. In addition, the SLC6A4 promoter region (5-HTTLPR) insertion/deletion (I/D) polymorphism was studied, using whole genomic DNA. Plasma serotonin was significantly low in autistic children compared to control (P = 0.001), although correlation to severity of autism was not significant. The frequency of short (S) allele in autism cases was 10% and in the control group it was absent. Our study demonstrated an increased prevalence of 5-HTTLPR S allele in autism subjects. Significantly decreased plasma serotonin was detected in autism subjects, with no significant relationship between 5-HTTLPR genotype and plasma 5-HT being evident.
Meguid, Nagwa A.; Gebril, Ola H.; Khalil, Rehab O.
2015-01-01
Background: Autism spectrum disorder (ASD) is a complex, heterogeneous neurodevelopmental disorder with onset during early childhood. Most studies have reported an elevation in platelet serotonin in persons with autism. The serotonin (5-hydroxytryptamine; 5-HT) transporter in the brain uptakes 5-HT from extracellular spaces. It is also present in platelets, where it takes up 5-HT from plasma. Polymorphisms in serotonin transporter gene (SLC6A4) were frequently studied in many neuropsychiatric disorders. Materials and Methods: We have measured the plasma 5-HT levels in 20 autistic male children and 20 control male children by the enzyme-linked immunosorbent assay (ELISA) method. In addition, the SLC6A4 promoter region (5-HTTLPR) insertion/deletion (I/D) polymorphism was studied, using whole genomic DNA. Results: Plasma serotonin was significantly low in autistic children compared to control (P = 0.001), although correlation to severity of autism was not significant. The frequency of short (S) allele in autism cases was 10% and in the control group it was absent. Conclusion: Our study demonstrated an increased prevalence of 5-HTTLPR S allele in autism subjects. Significantly decreased plasma serotonin was detected in autism subjects, with no significant relationship between 5-HTTLPR genotype and plasma 5-HT being evident. PMID:26015920
Zendehdel, M; Sardari, F; Hassanpour, S; Rahnema, M; Adeli, A; Ghashghayi, E
2017-06-01
1. Serotoninergic and adrenergic systems play crucial roles in feed intake regulation in avians but there is no report on possible interactions among them. So, in this study, 5 experiments were designed to evaluate the interaction of central serotonergic and adrenergic systems on food intake regulation in 3 h food deprived (FD 3 ) neonatal layer-type chickens. 2. In Experiment 1, chickens received intracerebroventricular (ICV) injection of control solution, serotonin (56.74 nmol), prazosin (α 1 receptor antagonist, 10 nmol) and co-injection of serotonin plus prazosin. In Experiment 2, control solution, serotonin (56.74 nmol), yohimbine (α 2 receptor antagonist, 13 nmol) and co-injection of serotonin plus yohimbine were used. In Experiment 3, the birds received control solution, serotonin (56.74 nmol), metoprolol (β 1 receptor antagonist, 24 nmol) and co-injection of serotonin plus metoprolol. In Experiment 4, injections were control solution, serotonin (56.74 nmol), ICI 118.551 (β 2 receptor antagonist, 5 nmol) and serotonin plus ICI 118.551. In Experiment 5, control solution, serotonin (56.74 nmol), SR59230R (β 3 receptor antagonist, 20 nmol) and co-administration of serotonin and SR59230R were injected. In all experiments the cumulative food intake was measured until 120 min post injection. 3. The results showed that ICV injection of serotonin alone decreased food intake in chickens. A combined injection of serotonin plus ICI 118.551 significantly attenuated serotonin-induced hypophagia. Also, co-administration of serotonin and yohimbine significantly amplified the hypophagic effect of serotonin. However, prazosin, metoprolol and SR59230R had no effect on serotonin-induced hypophagia in chickens. 4. These results suggest that serotonin-induced feeding behaviour is probably mediated via α 2 and β 2 adrenergic receptors in neonatal layer-type chicken.
Shariati, Gholam Reza; Ahangari, Ghasem; Hossein-nezhad, Arash; Asadi, Seyed Mohammad; Pooyafard, Farzaneh; Ahmadkhaniha, Hamid Reza
2009-09-01
Serotonin receptors are involved in pathophysiology of schizophrenia and may mediate other neurotransmitter effects. We investigated serotonin receptors gene expression in peripheral blood mononuclear cells (PBMC) of naïve schizophrenic patients, before and after treatment. Also serotonin receptor gene expression was compared in two treatment groups including Haloperidol and Olanzapine. The PBMC was separated from whole blood by Ficoll-hypaque. The total cellular RNA was extracted and the cDNA was synthesized. This process was followed by real-time PCR using primer pairs specific for 5HT(3a) serotonin receptor mRNA and beta-actin as internal control. The results showed the presence of subtype of serotonin receptor in lymphocytes. Serotonin gene expression showed significant changes in Olanzapine treatment group which correlated with Clinical Global Impression (CGI) score improvement. In conclusion, the present study has shown that human PBMC express serotonin receptors 5HT(3a). Moreover, clinical symptom improvement of Olanzapin may be demonstrated by a change in serotonin receptor gene expression.
Antidepressant-like effect of oleanolic acid in mice exposed to the repeated forced swimming test.
Yi, Li-Tao; Li, Jing; Liu, Qing; Geng, Di; Zhou, Ya-Fei; Ke, Xiao-Qing; Chen, Huan; Weng, Lian-Jin
2013-05-01
The study aimed to explore the antidepressant-like effect of oleanolic acid and its possible mechanism related to the monoaminergic system and neurotrophin in mice exposed to the repeated forced swimming test (FST). Both the duration and the latency of immobility affected by oleanolic acid (10, 20 and 40 mg/kg) were evaluated in the FST repeated at intervals on days 1, 7 and 14, followed by neurochemical and brain-derived neurotrophic factor (BDNF) analyses in the mouse brain regions of frontal cortex and whole hippocampus. A repeated analysis of variance (ANOVA) indicated that over retesting the immobility time increased, whereas latency to immobility tended to decrease. Minute-by-minute analysis showed that immobility time also increased during the 4-min course of the test. In addition, post-hoc Dunnett's test demonstrated that sub-chronic and chronic, but not acute, oleanolic acid treatment reduced the immobility time (sub-chronic: 20 mg/kg, 43.5%; chronic: 10 mg/kg, 19.3%; 20 mg/kg, 31.8%) and increased the latency to immobility (sub-chronic: 10 mg/kg, 60.6%; 20 mg/kg, 80.1%; chronic: 10 mg/kg, 121.8%; 20 mg/kg, 140.8%; 40 mg/kg, 80.0%). Furthermore, chronic administration of oleanolic acid significantly increased serotonin (5-HT) levels (frontal cortex: 44.5%, 41.9%, 27.5% for 10, 20, 40 mg/kg; hippocampus: 57.2%, 80.9% for 10, 20 mg/kg), decreased 5-hydroxyindoleacetic acid (5-HIAA)/5-HT ratio (frontal cortex: 31.6%, 30.1%, 23.5%; hippocampus: 40.6%, 47.7%, 29.2% for 10, 20, 40 mg/kg) and elevated norepinephrine (NE) levels (hippocampus: 20 mg/kg, 45.4%) but did not alter dopamine (DA) levels. Moreover, BDNF levels in the two brain regions were also elevated by chronic oleanolic acid treatment (frontal cortex: 20 mg/kg, 67.2%; hippocampus: 10 mg/kg, 36.4%; 20 mg/kg, 55.1%). Taken together, these findings imply that functions of 5-HT, NE and BDNF may be involved in the antidepressant-like effect of oleanolic acid.
Thompson, P M; Cruz, D A; Olukotun, D Y; Delgado, P L
2012-09-01
This study tested the hypothesis that abnormalities in components of the serotonin (5HT) system in the prefrontal cortex are associated with suicide in alcohol-dependent subjects. Second, we assessed the relationship of lifetime impulsivity and mood symptoms with prefrontal cortex 5-HT measures. Tissue was obtained from Brodmann's areas (BA) 9 and 24 in postmortem samples of individuals who were alcohol dependent with suicide (n = 5), alcohol dependent without suicide (n = 9) and normal controls (n = 5). Serotonin receptor (5HT) and serotonin reuptake transporter (SERT) mRNA were measured. Interviews with next of kin estimated lifetime impulsivity and mood symptoms in the last week of life. Serotonin receptor 1A (5HT1A) mRNA in BA 9 was elevated in the alcohol dependence without suicide group compared with controls. In the alcohol dependence with suicide group, anxiety symptoms were associated with decreased BA 24 SERT mRNA and depressive symptoms with BA 9 5HT1A mRNA expression. In the alcohol dependent only group impulsivity is correlated with increased BA 9, and BA 24 serotonin receptor 2A mRNA. Our data suggest region-specific change, rather than global serotonin blunting is involved in alcohol dependence and suicide. It also suggests that symptoms are differentially influenced by prefrontal cortex serotonin receptor mRNA levels. © 2011 John Wiley & Sons A/S.
Tashiro, Tomoyuki; Murakami, Yuki; Mouri, Akihiro; Imamura, Yukio; Nabeshima, Toshitaka; Yamamoto, Yasuko; Saito, Kuniaki
2017-01-15
l-Tryptophan (TRP) is metabolized via serotonin and kynurenine pathways (KP). Several studies have demonstrated that abnormality of both pathways is involved in the pathogenesis of major depressive disorder (MDD). Kynurenine 3-monooxygenase (KMO), a pivotal enzyme in the KP, has been suggested to play major roles in physiological and pathological events mediated by bioactive kynurenine metabolites. In this study, we investigated the role of KMO in the emotional and cognitive functions by using KMO knockout (KO) mice. We measured contents of TRP and monoamines and their metabolites in the serum and hippocampus of KMO KO mice. Further, we investigated whether antidepressants improved the depressive-like behaviors in KMO KO mice. KMO KO mice showed depressive-like behaviors such as decreased sucrose preference and increased immobility in the forced swimming test and high anxiety by decreased time spent in the center area of open field. But, there was no difference in spontaneous alternation in Y-maze test, counts of rearing or locomotor activity. Higher contents of TRP metabolites such as kynurenine (KYN), kynurenic acid (KA), anthranilic acid (AA), and 3-hydroxykynurenine (3-HK) in the serum and hippocampus and decreased serotonin turnover and higher content of normetanephrine (NM) in the hippocampus were observed in the KMO KO mice. Although both antidepressant attenuated increase of immobility, sertraline but not imipramine improved decrease of sucrose preference in the KMO KO mice. These findings suggested that KMO KO mice show antidepressants-responsive depressive-like behaviors and monoaminergic dysfunctions via abnormality of kynurenine metabolism with good validities as MDD model. Copyright © 2016 Elsevier B.V. All rights reserved.
5-HT2A SEROTONIN RECEPTOR BIOLOGY: Interacting proteins, kinases and paradoxical regulation
Roth, Bryan L
2011-01-01
5-hydroxytryptamine2A (5-HT2A) serotonin receptors are important pharmacological targets for a large number of central nervous system and peripheral serotonergic medications. In this review article I summarize work mainly from my lab regarding serotonin receptor anatomy, pharmacology, signaling and regulation. I highlight the role of serotonin receptor interacting proteins and the emerging paradigm of G-protein coupled receptor functional selectivity. PMID:21288474
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witkin, J.M.; Mansbach, R.S.; Barrett, J.E.
1987-12-01
Interactions of the nonbenzodiazepine anxiolytic, buspirone, with serotonin (5-HT) were studied using behavioral and neurochemical procedures. Punished responding was studied in pigeons as this behavior is a generally acknowledged preclinical predictor of anxiolytic activity and because buspirone increases punished responding of pigeons with greater potency and efficacy than in other species. Keypeck responses were maintained under either fixed-interval or fixed-ratio schedules of food presentation; every 30th response produced a brief electric shock and suppressed responding (punishment). Buspirone (0.1-5.6 mg/kg i.m.) produced dose-related increases in punished responding which reached a maximum at 1 mg/kg. A serotonin agonist, MK-212 (0.01 mg/kg), antagonizedmore » whereas the 5-HT antagonist, cyproheptadine (0.01 mg/kg), potentiated the effects of buspirone without having behavioral effects of their own. The characteristics of (/sup 3/H)-5-HT binding in pigeon brain membranes were similar to results reported in mammalian brain. Neither buspirone, MJ-13805 (gepirone, a related analog), nor MJ-13653 (a buspirone metabolite), significantly affected (/sup 3/H)-5-HT binding and none of the compounds appreciably inhibited uptake of (/sup 3/H)-5-HT into pigeon cerebral synaptosomes. Hill coefficients significantly less than unity for all drugs except 5-HT suggested multiple serotonergic binding sites for buspirone and analogs. Buspirone and MJ-13805 (1 nM) inhibited (/sup 3/H)ketanserin binding (a measure of 5-HT2 binding sites) in pigeon cerebrum with Ki values above 10(-6) M. The number of (/sup 3/H)ketanserin binding sites was estimated to be 109 fmol/mg of protein in pigeon cerebrum compared to 400 fmol/mg of protein in rat cerebrum.« less
Andrée, Bengt; Halldin, Christer; Pike, Victor W; Gunn, Roger N; Olsson, Hans; Farde, Lars
2002-03-01
5-Hydroxytryptamine (serotonin)-1A (5-HT(1A)) receptors are of key interest in research on the pathophysiology and treatment of psychiatric disorders. The PET radioligand [carbonyl-(11)C]WAY-100635 ((11)C-WAY), where WAY-100635 is (3)H-(N-(2-(1-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridyl) cyclohexane-carboxamide, is commonly used for quantitation of 5-HT(1A) receptors in the human brain. The aim of this PET study was to compare (11)C-WAY with the putative metabolite and selective radioligand [carbonyl-(11)C]desmethyl-WAY-100635 ((11)C-DWAY). A PET examination was performed on each of 5 healthy male volunteers after intravenous injection of (11)C-WAY and (11)C-DWAY on separate occasions. Radioactive metabolites in plasma were determined with high-performance liquid chromatography. The plasma metabolite--corrected input function was used in a kinetic compartment analysis. The simplified reference tissue model and peak equilibrium method, using the cerebellum as reference region, was applied for comparison of data. For both radioligands, the highest radioactivity was observed in the neocortex and the raphe nuclei, whereas radioactivity was low in the cerebellum. The regional binding potentials were similar for the 2 radioligands. The brain uptake was more than 2-fold higher for (11)C-DWAY than for (11)C-WAY, in part because of higher delivery (first-order rate constant K(1), 0.38 vs. 0.16). The time--activity curves were well described by a 3-compartment model for all regions, whereas uptake in the cerebellum could not be described by a 2-compartment model, supporting the existence of kinetically distinguishable nonspecific binding in the cerebellum or radioactive metabolites in the brain for both radioligands. Both radioligands were rapidly metabolized, and <10% of the radioactivity in plasma represented unchanged (11)C-WAY or (11)C-DWAY at 10 min after injection. The metabolic pattern was similar for both radioligands, with the formation of radiolabeled cyclohexanecarboxylic acid and more polar components. For (11)C-WAY, small amounts of an additional labeled metabolite comigrated with reference desmethyl-WAY-100635. The advantages of (11)C-DWAY over (11)C-WAY for research on central 5-HT(1A) receptors is supported by a significantly higher radioactivity signal at equipotent doses, providing improved imaging statistics and advantages in biomathematic modeling and the preclusion of (11)C-DWAY as a metabolite interfering with PET measurements.
Ueda, N; Yoshimura, R; Shinkai, K; Nakamura, J
2002-09-01
We investigated the relationships between the changes in plasma catecholamine metabolites obtained from depressed patients before and after administration of sulpiride, a benzamide compound, or fluvoxamine, a selective serotonin reuptake inhibitor (SSRI), and between clinical responses to treatment with each of these drugs. Responders to sulpiride had significantly lower plasma homovanillic acid (pHVA) levels before administration of sulpiride than did non-responders or controls (responders: 4.5 +/- 3.1 ng/ml, non-responders: 11.1 +/- 5.9 ng/ml, controls: 10.9 +/- 5.3 ng/ml). Positive relationships were observed between changes in pHVA levels and improvement rates in the 17-item Hamilton Depression Rating Scale (Ham-D). In contrast, responders to fluvoxamine had significantly higher plasma free 3-methoxy-4-hydroxyphenylglycol (pMHPG) levels before administration of fluvoxamine than did non-responders or controls (responders: 8.5 +/- 1.8 ng/ml, non-responders: 5.9 +/- 2.I ng/ml, controls: 5.2 +/- 2.9 ng/ml). Negative relationships were observed between changes in pMHPG levels and improvement rates in Ham-D. These results suggest that lower pretreatment pHVA levels and higher pretreatment levels of pMHPG might be predictors of response to sulpiride and fluvoxamine, respectively, and that sulpiride might produce a functional increase in the dopaminergic system, resulting in improvement in some depressive symptoms; fluvoxamine, on the other hand, might produce a functional decrease in the noradrenergic system via serotonergic neurons, resulting in improvement of those symptoms.
Tutton, P J; Barkla, D H
1986-01-01
Serotonin has previously been shown to stimulate cell proliferation in the jejunal crypt epithelium and in colonic tumours. The original classification of serotonin receptors into D and M groups was not conductive to the understanding of these observations. The more recent classification of serotonin receptors into 5HT1 and 5HT2 groups is considered in this report. On the balance of evidence it appears that similar receptors mediate the response to serotonin in the two tissues under consideration and that these receptors resemble those of the 5HT1 group. Such receptors are usually positively linked to adenylate cyclase.
Colado, M. I.; Murray, T. K.; Green, A. R.
1993-01-01
1. The present study has investigated whether the neurotoxic effects of the relatively selective 5-hydroxytryptamine (5-HT) neurotoxins, 3,4-methylenedioxymethamphetamine (MDMA or 'Ecstasy'), p-chloroamphetamine (PCA) and fenfluramine on hippocampal and cortical 5-HT terminals in rat brain could be prevented by administration of either chlormethiazole or dizocilpine. 2. Administration of MDMA (20 mg kg-1, i.p.) resulted in an approximate 30% loss of cortical and hippocampal 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) content 4 days later. Injection of chlormethiazole (50 mg kg-1) 5 min before and 55 min after the MDMA provided complete protection in both regions, while dizocilpine (1 mg kg-1, i.p.) protected only the hippocampus. 3. Administration of a single dose of chlormethiazole (100 mg kg-1) 20 min after the MDMA also provided complete protection to the hippocampus but not the cortex. This regime also attenuated the sustained hyperthermia (approx +2.5 degrees C) induced by the MDMA injection. 4. Injection of PCA (5 mg kg-1, i.p.) resulted in a 70% loss of 5-HT and 5-HIAA content in hippocampus and cortex 4 days later. Injection of chlormethiazole (100 mg kg-1, i.p.) or dizocilpine (1 mg kg-1, i.p.) 5 min before and 55 min after the PCA failed to protect against the neurotoxicity, nor was protection afforded by chlormethiazole when a lower dose of PCA (2.5 mg kg-1, i.p.) was given which produced only a 30% loss of 5-HT content.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7682129
Jung, Hyo Young; Yoo, Dae Young; Nam, Sung Min; Kim, Jong Whi; Choi, Jung Hoon; Yoo, Miyoung; Lee, Sanghee; Yoon, Yeo Sung
2015-01-01
Abstract In a previous study, we demonstrated that a Valeriana officinalis extract could attenuate increases in serum corticosterone levels in a mouse model of physical and psychological stress. In addition, our results showed that the extract could modulate serotonin (5-HT) and norepinephrine (NE) turnover in the hippocampus and amygdala region. In this study, we intended to investigate the effects of valerenic acid (VA), the main component of V. officinalis extract, on corticosterone levels in serum in normal mice and monoamine turnover in hippocampus-amygdala homogenates in a mouse model of physical and psychological stress. To determine the minimum dose of VA for antianxiety effect, eight-week-old ICR mice were orally administered VA (0.2, 0.5, and 1.0 mg/kg/0.3 mL) once daily for 3 weeks to probe for immobility time and serum corticosterone levels. At a VA dose of 0.5 and 1.0 mg/kg, animals showed a decrease in the duration of immobility time and serum corticosterone levels. To confirm the antianxiety effect of VA, eight-week-old ICR mice received VA at a dose of 0.5 mg/kg, orally, once daily for 3 weeks, before being subjected to physical or psychological stress for 3 days, in a specially designed communication box, followed by estimation of levels of monoamines and their metabolites in the hippocampus-amygdala region. In conclusion, VA administration at 0.5 mg/kg can mitigate the physical and psychological stress response by decreasing the turnover of 5-HT to 5-hydroxyindoleacetic acid and NE to 3-methoxy-4-hydroxyphenylethyleneglycol sulfate in the hippocampus and amygdala. PMID:26177123
Serotonin syndrome: a complex but easily avoidable condition.
Dvir, Yael; Smallwood, Patrick
2008-01-01
Serotonin syndrome is a potentially life-threatening adverse drug reaction caused by excessive serotonergic agonism in central and peripheral nervous system serotonergic receptors (Boyer EW, Shannon M. The serotonin syndrome. N Engl J Med 2005;352:1112-1120). Symptoms are characterized by a triad of neuron-excitatory features, which include (a) neuromuscular hyperactivity -- tremor, clonus, myoclonus, hyperreflexia and, in advanced stages, pyramidal rigidity; (b) autonomic hyperactivity -- diaphoresis, fever, tachycardia and tachypnea; (c) altered mental status -- agitation, excitement and, in advanced stages, confusion (Gillman PK. Monoamine oxidase inhibitors, opioid analgesics and serotonin toxicity. Br J Anaesth 2005;95:434-441). It arises when pharmacological agents increase serotonin neurotransmission at postsynaptic 5-hydroxytryptamine 1A and 5-hydroxytryptamine 2A receptors through increased serotonin synthesis, decreased serotonin metabolism, increased serotonin release, inhibition of serotonin reuptake or direct agonism of the serotonin receptors (Houlihan D. Serotonin syndrome resulting from coadministration of tramodol, venlafaxine, and mirtazapine. Ann Pharmacother 2004;38:411-413). The etiology is often the result of therapeutic drug use, intentional overdosing of serotonergic agents or complex interactions between drugs that directly or indirectly modulate the serotonin system (Boyer EW, Shannon M. The serotonin syndrome. N Engl J Med 2005;352:1112-1120). Due to the increasing availability of agents with serotonergic activity, physicians need to more aware of serotonin syndrome. The following case highlights the complex nature in which serotonin syndrome can arise, as well as the proper recognition and treatment of a potentially life-threatening yet easily avoidable condition.
Fox, Meredith A.; Jensen, Catherine L.; Murphy, Dennis L.
2009-01-01
The serotonin syndrome is a potential side effect of serotonin-enhancing drugs, including antidepressants such as selective serotonin reuptake inhibitors (SSRIs) and monoamine oxidase inhibitors (MAOIs). We recently reported a genetic mouse model for the serotonin syndrome, as serotonin transporter (SERT)-deficient mice have exaggerated serotonin syndrome behavioral responses to the MAOI tranylcypromine and the serotonin precursor 5-hydroxy-L-tryptophan (5-HTP). As numerous case reports implicate the atypical opioids tramadol and meperidine in the development of the human serotonin syndrome, we examined tramadol and meperidine as possible causative drugs in the rodent model of the serotonin syndrome in SERT wildtype (+/+), heterozygous (+/−) and knockout (−/−) mice. Comparisons were made to SERT mice treated with either vehicle or morphine, an opioid not implicated in the serotonin syndrome in humans. Here we show that tramadol and meperidine, but not morphine, induce serotonin syndrome-like behaviors in mice, and we show that this response is exaggerated in mice lacking one or two copies of SERT. The exaggerated response to tramadol in SERT −/− mice was blocked by pretreatment with the 5-HT1A antagonist WAY 100635. Further, we show that morphine-, meperidine- and tramadol-induced analgesia is markedly decreased in SERT −/− mice. These studies suggest that caution seems warranted in prescribing or not warning patients receiving SSRIs or MAOIs, that dangerous side effects may occur during concurrent use of tramadol and similar agents. These findings suggest that it is conceivable that there might be increased vulnerability in individuals with SERT polymorphisms that may reduce SERT by more than 50%, the level in SERT +/− mice. PMID:19275775
Non-conventional features of peripheral serotonin signalling - the gut and beyond.
Spohn, Stephanie N; Mawe, Gary M
2017-07-01
Serotonin was first discovered in the gut, and its conventional actions as an intercellular signalling molecule in the intrinsic and extrinsic enteric reflexes are well recognized, as are a number of serotonin signalling pharmacotherapeutic targets for treatment of nausea, diarrhoea or constipation. The latest discoveries have greatly broadened our understanding of non-conventional actions of peripheral serotonin within the gastrointestinal tract and in a number of other tissues. For example, it is now clear that bacteria within the lumen of the bowel influence serotonin synthesis and release by enterochromaffin cells. Also, serotonin can act both as a pro-inflammatory and anti-inflammatory signalling molecule in the intestinal mucosa via activation of serotonin receptors (5-HT 7 or 5-HT 4 receptors, respectively). For decades, serotonin receptors have been known to exist in a variety of tissues other than the gut, but studies have now provided strong evidence for physiological roles of serotonin in several important processes, including haematopoiesis, metabolic homeostasis and bone metabolism. Furthermore, evidence for serotonin synthesis in peripheral tissues outside of the gut is emerging. In this Review, we expand the discussion beyond gastrointestinal functions to highlight the roles of peripheral serotonin in colitis, haematopoiesis, energy and bone metabolism, and how serotonin is influenced by the gut microbiota.
Serotonin-Labeled CdSe Nanocrystals: Applications for Neuroscience
NASA Astrophysics Data System (ADS)
Kippeny, Tadd; Adkins, Erika; Adams, Scott; Thomlinson, Ian; Schroeter, Sally; Defelice, Louis; Blakely, Randy; Rosenthal, Sandra
2000-03-01
Serotonin (5-hydroxytryptamine, 5-HT) is an important neurotransmitter which has been linked to the regulation of critical behaviors including sleep, appetite, and mood. The serotonin transporter (SERT) is a 12-transmembrane domain protein responsible for clearance of serotonin from extracellular spaces following release. In order to assess the potential for use of ligand-conjugated nanocrystals to target cell surface receptors, ion channels, and transporters we have measured the ability of serotonin-labeled CdSe nanocrystals (SNACs) to block the uptake of tritiated serotonin by the human and Drosophila serotonin transporters (hSERT and dSERT). Estimated Ki values, the SNAC concentration at which half of the serotonin transport activity is blocked, were determined by nonlinear regression to be Ki (hSERT ) = 74uM and Ki (dSERT ) = 29uM. These values and our inability to detect free serotonin indicate that SNACs selectively interact with the serotonin recognition site of the transporter. We have also exposed the SNACs to cells containing ionotropic serotonin receptors and have measured the electrical response of the cell using a two microelectrode voltage clamp. We find that serotonin receptors do respond to the SNACs and we measure currents similar to the free serotonin response. These results indicate that ligand-conjugated nanocrystals can be used to label both receptor and transporter proteins. Initial fluorescence labeling experiments will be discussed.
Azmitia, Efrain C; Singh, Jorawer S; Whitaker-Azmitia, Patricia M
2011-06-01
Imaging studies of serotonin transporter binding or tryptophan retention in autistic patients suggest that the brain serotonin system is decreased. However, treatment with drugs which increase serotonin (5-HT) levels, specific serotonin reuptake inhibitors (SSRIs), commonly produce a worsening of the symptoms. In this study we examined 5-HT axons that were immunoreactive to a serotonin transporter (5-HTT) antibody in a number of postmortem brains from autistic patients and controls with no known diagnosis who ranged in age from 2 to 29 years. Fine, highly branched, and thick straight fibers were found in forebrain pathways (e.g. medial forebrain bundle, stria terminalis and ansa lenticularis). Many immunoreactive varicose fine fibers were seen in target areas (e.g. globus pallidus, amygdala and temporal cortex). Morphometric analysis of the stained axons at all ages studied indicated that the number of serotonin axons was increased in both pathways and terminal regions in cortex from autism donors. Our findings provide morphological evidence to warrant caution when using serotonin enhancing drugs (e.g. SSRIs and receptor agonist) to treat autistic children. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'. Copyright © 2011 Elsevier Ltd. All rights reserved.
Nicola, Valentina G.; Vischer, Nerina; Donzelli, Massimiliano; Krähenbühl, Stephan; Grouzmann, Eric; Huwyler, Jörg; Hoener, Marius C.; Liechti, Matthias E.
2012-01-01
This study assessed the effects of the serotonin (5-HT) and norepinephrine (NE) transporter inhibitor duloxetine on the effects of 3,4–methylenedioxymethamphetamine (MDMA, ecstasy) in vitro and in 16 healthy subjects. The clinical study used a double-blind, randomized, placebo-controlled, four-session, crossover design. In vitro, duloxetine blocked the release of both 5-HT and NE by MDMA or by its metabolite 3,4-methylenedioxyamphetamine from transmitter-loaded human cells expressing the 5-HT or NE transporter. In humans, duloxetine inhibited the effects of MDMA including elevations in circulating NE, increases in blood pressure and heart rate, and the subjective drug effects. Duloxetine inhibited the pharmacodynamic response to MDMA despite an increase in duloxetine-associated elevations in plasma MDMA levels. The findings confirm the important role of MDMA-induced 5-HT and NE release in the psychotropic effects of MDMA. Duloxetine may be useful in the treatment of psychostimulant dependence. Trial Registration Clinicaltrials.gov NCT00990067 PMID:22574166
Rabbani, M A G; Barik, Sailen
2017-03-01
Interferon (IFN) exerts its antiviral effect by inducing a large family of cellular genes, named interferon (IFN)-stimulated genes (ISGs). An intriguing member of this family is indoleamine 2,3-dioxygenase (IDO), which catalyzes the first and rate-limiting step of the main branch of tryptophan (Trp) degradation, the kynurenine pathway. We recently showed that IDO strongly inhibits human parainfluenza virus type 3 (PIV3), a significant respiratory pathogen. Here, we show that 5-hydoxytryptophan (5-HTP), the first product of an alternative branch of Trp degradation and a serotonin precursor, is essential to protect virus growth against IDO in cell culture. We also show that the apparent antiviral effect of IDO on PIV3 is not due to the generation of the kynurenine pathway metabolites, but rather due to the depletion of intracellular Trp by IDO, as a result of which this rare amino acid becomes unavailable for the alternative, proviral 5-HTP pathway. Copyright © 2017 Elsevier Inc. All rights reserved.
Gastric pentadecapeptide BPC 157 effective against serotonin syndrome in rats.
Boban Blagaic, Alenka; Blagaic, Vladimir; Mirt, Mirela; Jelovac, Nikola; Dodig, Goran; Rucman, Rudolf; Petek, Marijan; Turkovic, Branko; Anic, Tomislav; Dubovecak, Miroslav; Staresinic, Mario; Seiwerth, Sven; Sikiric, Predrag
2005-04-11
Serotonin syndrome commonly follows irreversible monoamine oxidase (MAO)-inhibition and subsequent serotonin (5-HT) substrate (in rats with fore paw treading, hind limbs abduction, wet dog shake, hypothermia followed by hyperthermia). A stable gastric pentadecapeptide BPC 157 with very safe profile (inflammatory bowel disease clinical phase II, PL-10, PLD-116, PL-14736, Pliva) reduced the duration of immobility to a greater extent than imipramine, and, given peripherally, has region specific influence on brain 5-HT synthesis (alpha-[14C]methyl-L-tryptophan autoradiographic measurements) in rats, different from any other serotonergic drug. Thereby, we investigate this peptide (10 microg, 10 ng, 10 pg/kg i.p.) in (i) full serotonin syndrome in rat combining pargyline (irreversible MAO-inhibition; 75 mg/kg i.p.) and subsequent L-tryptophan (5-HT precursor; 100 mg/kg i.p.; BPC 157 as a co-treatment), or (ii, iii) using pargyline or L-tryptophan given separately, as a serotonin-substrate with (ii) pargyline (BPC 157 as a 15-min posttreatment) or as a potential serotonin syndrome inductor with (iii) L-tryptophan (BPC 157 as a 15 min-pretreatment). In all experiments, gastric pentadecapeptide BPC 157 contrasts with serotonin-syndrome either (i) presentation (i.e., particularly counteracted) or (ii) initiation (i.e., neither a serotonin substrate (counteraction of pargyline), nor an inductor for serotonin syndrome (no influence on L-tryptophan challenge)). Indicatively, severe serotonin syndrome in pargyline + L-tryptophan rats is considerably inhibited even by lower pentadecapeptide BPC 157 doses regimens (particularly disturbances such as hyperthermia and wet dog shake thought to be related to stimulation of 5-HT2A receptors), while the highest pentadecapeptide dose counteracts mild disturbances present in pargyline rats (mild hypothermia, feeble hind limbs abduction). Thereby, in severe serotonin syndrome, gastric pentadecapeptide BPC 157 (alone, no behavioral or temperature effect) has a beneficial activity, which is likely, particular, and mostly related to a rather specific counteraction of 5-HT2A receptors phenomena.
Wang, Ya; Balvers, Michiel G J; Hendriks, Henk F J; Wilpshaar, Tessa; van Heek, Tjarda; Witkamp, Renger F; Meijerink, Jocelijn
2017-09-01
Fatty acid amides (FAAs), conjugates of fatty acids with ethanolamine, mono-amine neurotransmitters or amino acids are a class of molecules that display diverse functional roles in different cells and tissues. Recently we reported that one of the serotonin-fatty acid conjugates, docosahexaenoyl serotonin (DHA-5-HT), previously found in gut tissue of mouse and pig, attenuates the IL-23-IL-17 signaling axis in LPS-stimulated mice macrophages. However, its presence and effects in humans remained to be elucidated. Here, we report for the first time its identification in human intestinal (colon) tissue, along with a series of related N-acyl serotonins. Furthermore, we tested these fatty acid conjugates for their ability to inhibit the release of IL-17 and CCL-20 by stimulated human peripheral blood mononuclear cells (PBMCs). Serotonin conjugates with palmitic acid (PA-5-HT), stearic acid (SA-5-HT) and oleic acid (OA-5-HT) were detected in higher levels than arachidonoyl serotonin (AA-5-HT) and DHA-5-HT, while eicosapentaenoyl serotonin (EPA-5-HT) could not be quantified. Among these, DHA-5-HT was the most potent in inhibiting IL-17 and CCL-20, typical Th17 pro-inflammatory mediators, by Concanavalin A (ConA)-stimulated human PBMCs. These results underline the idea that DHA-5-HT is a gut-specific endogenously produced mediator with the capacity to modulate the IL-17/Th17 signaling response. Our findings may be of relevance in relation to intestinal inflammatory diseases like Crohn's disease and Ulcerative colitis. Copyright © 2017. Published by Elsevier B.V.
Kusaga, Akira
2002-05-01
beta-phenylethylamine (PEA), a biogenic trace amine, acts as a neuromodulator in the nigrostriatal dopaminergic pathway and stimulates the release of dopamine. To clarify the mechanism of neurochemical metabolism in attention deficit hyperactivity disorder (ADHD), we measured the urine levels of PEA using gas chromatography-chemical ionization-mass spectrometry. The urinary levels of 3-methoxy-4-hydroxyphenyl glycol (MHPG), homovanillic acid (HVA), and 5-hydroxy-indoleacetic acid (5-HIAA) were determined by high performance liquid chromatography. Urine samples were collected in a 24 hour period. Findings were compared with those obtained from controls (N = 15), children with ADHD (N = 15), and children with autistic disorder (AD) (N = 5). The mean urinary levels of MHPG, HVA, and 5-HIAA in the children with ADHD were not significantly different from those of the controls or those with AD, whereas PEA levels were significantly lower in children with ADHD (11.23 +/- 13.40 micrograms/g creatinine) compared with controls (56.01 +/- 52.18 micrograms/g creatinine). PEA and MHPG levels in children with AD (14.75 +/- 14.37 micrograms/g creatine, 1.10 +/- 0.61 micrograms/mg creatine, respectively) were significantly decreased compared to controls (MHPG, 2.2 +/- 0.9 micrograms/mg creatine). The decreased urine PEA in children with ADHD and AD may suggest a common underlying pathophysiology. The decreased urine MHPG in children with AD might indicate the existence of an alteration in central and peripheral noradrenergic function.
Tomie, A; Aguado, A S; Pohorecky, L A; Benjamin, D
2000-03-01
Pavlovian autoshaping CRs are directed and reflexive consummatory responses targeted at objects repeatedly paired with rewarding substances. To evaluate the hypothesis that autoshaping may provide an animal learning model of vulnerability to drug abuse, this study relates individual differences in lever-press autoshaping CR performance in rats to stress-induced corticosterone release and tissue monoamine levels in the mesolimbic dopamine tract. Long-Evans rats (n = 14) were given 20 sessions of Pavlovian autoshaping training wherein the insertion of a retractable lever CS was followed by the response-independent presentation of food US. Large between-subjects differences in lever-press autoshaping CR performance were observed, with group high CR frequency (n = 5) performing many more lever press CRs than group low CR frequency (n = 9). Tail-blood samples were obtained before and after the 20th autoshaping session, then 24 h later the rats were sacrificed and dissection yielded tissue samples of nucleus accumbens (NAC), prefrontal cortex (PFC), caudate putamen (CP), and ventral tegmental area (VTA). Serum levels of postsession corticosterone were elevated in group high CR frequency. HPLC revealed that group high CR frequency had higher tissue levels of dopamine and DOPAC in NAC, lower levels of DOPAC/DA turnover in CP, and lower levels of 5-HIAA and lower 5-HIAA/5-HT turnover in VTA. The neurochemical profile of rats that perform more autoshaping CRs share some features of vulnerability to drug abuse.
Serotonin receptor 5-HT5A in rat hippocampus decrease by leptin treatment.
García-Alcocer, Guadalupe; Rodríguez, Angelina; Moreno-Layseca, Paulina; Berumen, Laura C; Escobar, Jesica; Miledi, Ricardo
2010-12-17
5-Hydroxytryptamine (5-HT) is involved in a variety of different physiological processes and behaviors through the activation of equally diverse receptors subtypes. In this work we studied the changes on the expression of 5-HT(5A) receptors in rat hippocampus induced by leptin, an adipocyte-derived hormone that has been reported to participate in the modulation of food intake and in adult hippocampal neurogenesis. To study the effect of leptin on the 5-HT(5A) receptor gene expression a qRT-PCR was used and the distribution of those receptors in the hippocampus was visualized by immunohistochemistry. Rats were separated in four groups: control (untreated rats), leptin-treated, serotonin-treated and leptin+serotonin treated. The results showed that even though the 5-HT(5A) gene expression did not change in the hippocampus of any of the treated groups, in the rats treated with leptin and serotonin, the specific immunostaining for the 5-HT(5A) serotonin receptor decreased significantly in the dentate gyrus. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Rashid, Mohammed; Ribeiro, Paula
2014-01-01
Serotonin is an important neuroactive substance in all the parasitic helminths. In Schistosoma mansoni, serotonin is strongly myoexcitatory; it potentiates contraction of the body wall muscles and stimulates motor activity. This is considered to be a critical mechanism of motor control in the parasite, but the mode of action of serotonin is poorly understood. Here we provide the first molecular evidence of a functional serotonin receptor (Sm5HTR) in S. mansoni. The schistosome receptor belongs to the G protein-coupled receptor (GPCR) superfamily and is distantly related to serotonergic type 7 (5HT7) receptors from other species. Functional expression studies in transfected HEK 293 cells showed that Sm5HTR is a specific serotonin receptor and it signals through an increase in intracellular cAMP, consistent with a 5HT7 signaling mechanism. Immunolocalization studies with a specific anti-Sm5HTR antibody revealed that the receptor is abundantly distributed in the worm's nervous system, including the cerebral ganglia and main nerve cords of the central nervous system and the peripheral innervation of the body wall muscles and tegument. RNA interference (RNAi) was performed both in schistosomulae and adult worms to test whether the receptor is required for parasite motility. The RNAi-suppressed adults and larvae were markedly hypoactive compared to the corresponding controls and they were also resistant to exogenous serotonin treatment. These results show that Sm5HTR is at least one of the receptors responsible for the motor effects of serotonin in S. mansoni. The fact that Sm5HTR is expressed in nerve tissue further suggests that serotonin stimulates movement via this receptor by modulating neuronal output to the musculature. Together, the evidence identifies Sm5HTR as an important neuronal protein and a key component of the motor control apparatus in S. mansoni. PMID:24453972
Mueck, A O; Seeger, H; Petersen, G; Schulte-Wintrop, E; Wallwiener, D
2001-12-01
In the present study the effect on the urinary excretion of vasoactive markers of two oral contraceptives (OCs), i.e., Leios, containing 0.02 mg ethinyl estradiol and 0.1 mg levonorgestrel, and Stediril 30, containing 0.03 mg ethinyl estradiol and 0.15 mg levonorgestrel, was investigated. cGMP, prostacyclin and its antagonist thromboxane, serotonin, and urodilatin, a natriuretic and diuretic peptide formed in the kidney, were measured as markers. In a comparative, double-blind, randomized, parallel group study, 34 women received Leios and 33 women Stediril 30. Nocturnal urine was collected before treatment and during cyclic treatment after 3 and 12 cycles. Both contraceptives significantly enhanced cGMP excretion after 12 cycles. The prostacyclin metabolite remained unchanged for both formulations, but the excretion of the thromboxane metabolite was significantly decreased after 12 cycles. Thus, the ratio of prostacyclin to thromboxane, crucial for the resulting effect on vascular tone, increased significantly. For the serotonin metabolite, no changes were observed for both contraceptives. The excretion of urodilatin significantly increased for both preparations after 12 cycles compared to the pretreatment values. These results indicate that the low-dose OCs Leios and Stediril 30 may stimulate the production of some vasoactive markers, at least after 12 cycles of treatment. The positive influence of these contraceptives on the various markers investigated may improve vascular tone, impede development of atherosclerosis and arterial thrombosis, and improve water and electrolyte homeostasis. These effects most likely can be attributed to the estrogenic component. Levonorgestrel may elicit no impact on these estrogen-induced changes that, however, seem only to be manifested after a longer treatment period.
Chemical regulation of spawning in the zebra mussel (Dreissena polymorpha)
Ram, Jeffrey L.; Nichols, S. Jerrine; Nalepa, Thomas F.; Schloesser, Donald W.
1992-01-01
Previous literature suggests that spawning in bivalves is chemically regulated, both by environmental chemical cues and by internal chemical mediators. In a model proposed for zebra mussels, chemicals from phytoplankton initially trigger spawning, and chemicals associated with gametes provide further stimulus for spawning. The response to environmental chemicals is internally mediated by a pathway utilizing serotonin (5-hydroxytryptamine, a neurotransmitter), which acts directly on both male and female gonads. The role of serotonin and most other aspects of the model have been tested only on bivalves other than zebra mussels. The effect of serotonin on zebra mussel spawning was tested. Serotonin (10-5 and 10-3 M) injected into ripe males induced spawning, but injection of serotonin into females did not. Gametes were not released by 10-6 serotonin; in most cases, serotonin injection did not release gametes from immature recipients. Serotonin injection provides a reliable means for identifying ripe male zebra mussels and for obtaining zebra mussel sperm without the need for dissection.
Brain aging phenomena in migrating sockeye salmon Oncorhynchus nerka nerka.
Götz, M E; Malz, C R; Dirr, A; Blum, D; Gsell, W; Schmidt, S; Burger, R; Pohli, S; Riederer, P
2005-09-01
Aging, a process occurring in all vertebrates, is closely related to a loss in physical and functional abilities. There is widespread interest in clarifying the relevance of environmental, metabolic, and genetic factors for vertebrate aging. In the Pacific salmon a dramatic example of aging is known. Looking for changes in the salmon brain, perhaps even in the role of initiating the aging processes, we investigated several biochemical parameters that should reflect brain functional activity and stress response such as the neurotransmitters dopamine, and serotonin, and two of their respective metabolites 3,4-dihydroxyphenylacetic acid, and 5-hydroxyindole acetic acid, as well as glutathione, glutathione disulfide, and the extent of terminal deoxynucleotidyltransferase-mediated dUTP nick end-labelling. The aging of migrating sockeye salmon (Oncorhynchus nerka nerka) is accompanied by gradual increase in dopamine and serotonin turnover and a gradual decrease of brain total protein and glutathione levels. There appears to be an increased need for detoxification of reactive biological intermediates since activities of superoxide dismutase and catalase increase with age. However, our data do not support a major increase in apoptotic cell death during late aging but rather implicate an age related downward regulation of protein and glutathione synthesis and proteolysis increasing the need for autophagocytosis or heterophagocytosis in the course of cell death.
The Role of Serotonin in Ventricular Repolarization in Pregnant Mice
Park, Hyelim; Mun, Dasom; Lee, Seung-Hyun; Kim, Hyoeun; Yun, Nuri; Kim, Hail; Kim, Michael; Pak, Hui-Nam; Lee, Moon-Hyoung
2018-01-01
Purpose The mechanisms underlying repolarization abnormalities during pregnancy are not fully understood. Although maternal serotonin (5-hydroxytryptamine, 5-HT) production is an important determinant for normal fetal development in mice, its role in mothers remains unclear. We evaluated the role of serotonin in ventricular repolarization in mice hearts via 5Htr3 receptor (Htr3a) and investigated the mechanism of QT-prolongation during pregnancy. Materials and Methods We measured current amplitudes and the expression levels of voltage-gated K+ (Kv) channels in freshly-isolated left ventricular myocytes from wild-type non-pregnant (WT-NP), late-pregnant (WT-LP), and non-pregnant Htr3a homozygous knockout mice (Htr3a−/−-NP). Results During pregnancy, serotonin and tryptophan hydroxylase 1, a rate-limiting enzyme for the synthesis of serotonin, were markedly increased in hearts and serum. Serotonin increased Kv current densities concomitant with the shortening of the QT interval in WT-NP mice, but not in WT-LP and Htr3a−/−-NP mice. Ondansetron, an Htr3 antagonist, decreased Kv currents in WT-LP mice, but not in WT-NP mice. Kv4.3 directly interacted with Htr3a, and this binding was facilitated by serotonin. Serotonin increased the trafficking of Kv4.3 channels to the cellular membrane in WT-NP. Conclusion Serotonin increases repolarizing currents by augmenting Kv currents. Elevated serotonin levels during pregnancy counterbalance pregnancy-related QT prolongation by facilitating Htr3-mediated Kv currents. PMID:29436197
The Role of Serotonin in Ventricular Repolarization in Pregnant Mice.
Cui, Shanyu; Park, Hyewon; Park, Hyelim; Mun, Dasom; Lee, Seung Hyun; Kim, Hyoeun; Yun, Nuri; Kim, Hail; Kim, Michael; Pak, Hui Nam; Lee, Moon Hyoung; Joung, Boyoung
2018-03-01
The mechanisms underlying repolarization abnormalities during pregnancy are not fully understood. Although maternal serotonin (5-hydroxytryptamine, 5-HT) production is an important determinant for normal fetal development in mice, its role in mothers remains unclear. We evaluated the role of serotonin in ventricular repolarization in mice hearts via 5Htr3 receptor (Htr3a) and investigated the mechanism of QT-prolongation during pregnancy. We measured current amplitudes and the expression levels of voltage-gated K⁺ (Kv) channels in freshly-isolated left ventricular myocytes from wild-type non-pregnant (WT-NP), late-pregnant (WT-LP), and non-pregnant Htr3a homozygous knockout mice (Htr3a(-/-)-NP). During pregnancy, serotonin and tryptophan hydroxylase 1, a rate-limiting enzyme for the synthesis of serotonin, were markedly increased in hearts and serum. Serotonin increased Kv current densities concomitant with the shortening of the QT interval in WT-NP mice, but not in WT-LP and Htr3a(-/-)-NP mice. Ondansetron, an Htr3 antagonist, decreased Kv currents in WT-LP mice, but not in WT-NP mice. Kv4.3 directly interacted with Htr3a, and this binding was facilitated by serotonin. Serotonin increased the trafficking of Kv4.3 channels to the cellular membrane in WT-NP. Serotonin increases repolarizing currents by augmenting Kv currents. Elevated serotonin levels during pregnancy counterbalance pregnancy-related QT prolongation by facilitating Htr3-mediated Kv currents. © Copyright: Yonsei University College of Medicine 2018
On the Mechanism of Serotonin-Induced Dipsogenesis in the Rat
NASA Technical Reports Server (NTRS)
Kikta, Dianne C.; Barney, Christopher C.; Threatte, Rose M.; Fregly, Melvin J.; Rowland, Neil E.; Greenleaf, John E.
1983-01-01
Subcutaneous administration of 1-5-hydroxytryptophan (5-HTP), the precursor of serotonin, to female rats induces copious drinking accompanied by activation of the renin-angiotensin system. Neither a reduction in blood pressure nor body temperature accompanied administration of 5-HTP. The objective of the present study was to determine whether serotonin-induced dipsogenesis, like that of 5-HTP, is mediated via the renin-angiotensin system. Serotonin (2 mg/kg, SC)-induced drinking was inhibited by the dopaminergic antagonist, haloperidol (150 /micro g/kg, IP), which also inhibits angiotensin II-induced drinking, Both captopril (35 mg/kg, IP), an angiotensin converting enzyme inhibitor, and propranolol (6 micro g/kg, IP), a beta-adrenergic antagonist, blocked serotonin-induced dipsogenesis. The alpha(sub a),-adrenergic agonist, clonidine (6.25 micro g/kg, SC), which suppresses renin release from the kidney, attenuated serotonin-induced water intake. The dipsogenic responses to submaximal concentrations of both serotonin (1 mg/kg, SC) and isoproterenol (8 micro g/kg, SC) were additive rather than interactive suggesting that similar pathways mediate both responses. The serotonergic receptor antagonist, methysergide (3 mg/kg, IP), inhibited serotonin-induced drinking but had no effect on isoproterenol (25micro g/kg, SC)-induced dipsogenesis. However, neither serotonin (2 mg/kg, SC) nor isoproterenol (25 micro g/kg, SC)-induced drinking was inhibited by cinansefin (25 micro g/kg, IP). These data indicate that serotonin induces drinking in rats via the renin-angiotensin system. However, the results of the studies using methysergide suggest that scrotonin appears to act at a point prior to activation of beta-adrenoceptors in the pathway leading to release of renin from the kidneys.
Praveen, Vijayakumar; Praveen, Shama
2017-01-01
Sudden infant death syndrome (SIDS) continues to be a major public health issue. Following its major decline since the “Back to Sleep” campaign, the incidence of SIDS has plateaued, with an annual incidence of about 1,500 SIDS-related deaths in the United States and thousands more throughout the world. The etiology of SIDS, the major cause of postneonatal mortality in the western world, is still poorly understood. Although sleeping in prone position is a major risk factor, SIDS continues to occur even in the supine sleeping position. The triple-risk model of Filiano and Kinney emphasizes the interaction between a susceptible infant during a critical developmental period and stressor/s in the pathogenesis of SIDS. Recent evidence ranges from dysregulated autonomic control to findings of altered neurochemistry, especially the serotonergic system that plays an important role in brainstem cardiorespiratory/thermoregulatory centers. Brainstem serotonin (5-HT) and tryptophan hydroxylase-2 (TPH-2) levels have been shown to be lower in SIDS, supporting the evidence that defects in the medullary serotonergic system play a significant role in SIDS. Pathogenic bacteria and their enterotoxins have been associated with SIDS, although no direct evidence has been established. We present a new hypothesis that the infant’s gut microbiome, and/or its metabolites, by its direct effects on the gut enterochromaffin cells, stimulates the afferent gut vagal endings by releasing serotonin (paracrine effect), optimizing autoresuscitation by modulating brainstem 5-HT levels through the microbiome–gut–brain axis, thus playing a significant role in SIDS during the critical period of gut flora development and vulnerability to SIDS. The shared similarities between various risk factors for SIDS and their relationship with the infant gut microbiome support our hypothesis. Comprehensive gut-microbiome studies are required to test our hypothesis. PMID:28111624
Gupta, Poulami; De, Bratati
2017-07-03
A GC-MS based analytical approach was undertaken to understand the metabolomic responses of seedlings of 2 salt sensitive (Sujala and MTU 7029) and 2 tolerant varieties (Bhutnath, and Nonabokra) of indica rice (Oryza sativa L.) to NaCl induced stress. The 4 varieties responded differently to NaCl treatment with respect to the conserved primary metabolites (sugars, polyols, amino acids, organic acids and certain purine derivatives) of the leaf of rice seedlings. However, there were significant differences in salt induced production of chorismic acid derivatives. Serotonin level was increased in both the salt tolerant varieties in response to NaCl induced stress. In both the salt tolerant varieties, increased production of the signaling molecule gentisic acid in response to NaCl treatment was noticed. Salt tolerant varieties also produced increased level of ferulic acid and vanillic acid. In the salt sensitive varieties, cinnamic acid derivatives, 4-hydroxycinnamic acid (in Sujala) and 4-hydroxybenzoic acid (in MTU 7029), were elevated in the leaves. So increased production of the 2 signaling molecules serotonin and gentisic acid may be considered as 2 important biomarker compounds produced in tolerant varieties contributing toward NaCl tolerance.
USDA-ARS?s Scientific Manuscript database
Serotonin (5-HT) acts as a neurogenic compound in the developing brain; however serotonin altering drugs such as SSRIs are often prescribed to pregnant and lactating mothers. Early agonism of 5-HT receptors could alter the development of serotonergic circuitry, altering neurotransmission and behavio...
Hyperserotoninemia and Antiserotonin Antibodies in Autism and Other Disorders.
ERIC Educational Resources Information Center
Yuwiler, Arthur; And Others
1992-01-01
This study examined the linkage between elevated blood serotonin in autism and the presence of circulating autoantibodies against the serotonin 5HT receptor. Results showed elevated blood serotonin was not closely related to inhibition of serotonin binding by antibody-rich blood fractions. Data were insufficient to determine whether people with…
Wessels, Anna G.; Kluge, Holger; Hirche, Frank; Kiowski, Andreas; Schutkowski, Alexandra; Corrent, Etienne; Bartelt, Jörg; König, Bettina; Stangl, Gabriele I.
2016-01-01
In addition to its role as an essential protein component, leucine (Leu) displays several other metabolic functions such as activation of protein synthesis. This property makes it an interesting amino acid for the therapy of human muscle atrophy and for livestock production. However, Leu can stimulate its own degradation via the branched-chain keto acid dehydrogenase complex (BCKDH). To examine the response of several tissues to excessive Leu, pigs were fed diets containing two- (L2) and four-fold (L4) higher Leu contents than the recommended amount (control). We found that the L4 diet led to a pronounced increase in BCKDH activity in the brain (2.5-fold, P < 0.05), liver (1.8-fold, P < 0.05) and cardiac muscle (1.7-fold, P < 0.05), whereas we found no changes in enzyme activity in the pancreas, skeletal muscle, adipose tissue and intestinal mucosa. The L2 diet had only weak effects on BCKDH activity. Both high Leu diets reduced the concentrations of free valine and isoleucine in nearly all tissues. In the brain, high Leu diets modified the amount of tryptophan available: for serotonin synthesis. Compared to the controls, pigs treated with the high Leu diets consumed less food, showed increased plasma concentrations of 3-hydroxybutyrate and reduced levels of circulating serotonin. In conclusion, excessive Leu can stimulate BCKDH activity in several tissues, including the brain. Changes in cerebral tryptophan, along with the changes in amino acid-derived metabolites in the plasma may limit the use of high Leu diets to treat muscle atrophy or to increase muscle growth. PMID:26930301
Yang, Mo; Li, Karen; Ng, Pak Cheung; Chuen, Carmen Ka Yee; Lau, Tze Kin; Cheng, Yuan Shan; Liu, Yuan Sheng; Li, Chi Kong; Yuen, Patrick Man Pan; James, Anthony Edward; Lee, Shuk Man; Fok, Tai Fai
2007-07-01
Serotonin is a monoamine neurotransmitter that has multiple extraneuronal functions. We previously reported that serotonin exerted mitogenic stimulation on megakaryocytopoiesis mediated by 5-hydroxytryptamine (5-HT)2 receptors. In this study, we investigated effects of serotonin on ex vivo expansion of human cord blood CD34+ cells, bone marrow (BM) stromal cell colony-forming unit-fibroblast (CFU-F) formation, and antiapoptosis of megakaryoblastic M-07e cells. Our results showed that serotonin at 200 nM significantly enhanced the expansion of CD34+ cells to early stem/progenitors (CD34+ cells, colony-forming unit-mixed [CFU-GEMM]) and multilineage committed progenitors (burst-forming unit/colony-forming unit-erythroid [BFU/CFU-E], colony-forming unit-granulocyte macrophage, colony-forming unit-megakaryocyte, CD61+ CD41+ cells). Serotonin also increased nonobese diabetic/severe combined immunodeficient repopulating cells in the expansion culture in terms of human CD45+, CD33+, CD14+ cells, BFU/CFU-E, and CFU-GEMM engraftment in BM of animals 6 weeks post-transplantation. Serotonin alone or in addition to fibroblast growth factor, platelet-derived growth factor, or vascular endothelial growth factor stimulated BM CFU-F formation. In M-07e cells, serotonin exerted antiapoptotic effects (annexin V, caspase-3, and propidium iodide staining) and reduced mitochondria membrane potential damage. The addition of ketanserin, a competitive antagonist of 5-HT2 receptor, nullified the antiapoptotic effects of serotonin. Our data suggest the involvement of serotonin in promoting hematopoietic stem cells and the BM microenvironment. Serotonin could be developed for clinical ex vivo expansion of hematopoietic stem cells for transplantation. Disclosure of potential conflicts of interest is found at the end of this article.
Sulfonyl-containing modulators of serotonin 5-HT6 receptors and their pharmacophore models
NASA Astrophysics Data System (ADS)
Ivachtchenko, A. V.
2014-05-01
Data published in recent years on the synthesis of serotonin 5-HT6 receptor modulators are summarized. Modulators with high affinity for 5-HT6 receptors exhibiting different degrees of selectivity — from highly selective to semiselective and multimodal — are described. Clinical trial results are reported for the most promising serotonin 5-HT6 receptor modulators attracting special attention of medicinal chemists. The bibliography includes 128 references.
Serotonin neurotransmission in anorexia nervosa.
Haleem, Darakhshan Jabeen
2012-09-01
Patients with anorexia nervosa (AN) show extreme dieting weight loss, hyperactivity, depression/anxiety, self-control, and behavioral impulsivity. 5-Hydroxytryptamine (5-HT; serotonin) is involved in almost all the behavioral changes observed in AN patients. Both genetic and environmental factors contribute toward the pathogenesis of AN. It is a frequent disorder among adolescent girls and young women and starts as an attempt to lose weight to look beautiful and attractive. Failure to see the turning point when fasting becomes unreasonable leads to malnutrition and AN. Tryptophan, the precursor of serotonin and an essential amino acid, is only available in the diet. It is therefore likely that excessive diet restriction and malnutrition decrease brain serotonin stores because the precursor is less available to the rate-limiting enzyme of 5-HT biosynthesis, which normally exists unsaturated with its substrate. Evidence shows that diet restriction-induced exaggerated feedback control over 5-HT synthesis and the smaller availability of tryptophan decreases serotonin neurotransmission at postsynaptic sites, leading to hyperactivity, depression, and behavioral impulsivity. A compensatory upregulation of postsynaptic 5-HT-1A receptors and hypophagic serotonin receptors may be involved in anxiety and suppression of appetite. It is suggested that tryptophan supplementation may improve pharmacotherapy in AN.
Opiate modulation of monoamines in the chick forebrain: possible role in emotional regulation?
Baldauf, K; Braun, K; Gruss, M
2005-02-05
Numerous studies have shown that the opiate system is crucially involved in emotionally guided behavior. In the present study, we focussed on the medio-rostral neostriatum/hyperstriatum ventrale (MNH) of the chick forebrain. This avian prefrontal cortex analogue is critically involved in auditory filial imprinting, a well-characterized juvenile emotional learning event. The high density of mu-opiate receptors expressed in the MNH led to the hypothesis that mu-opiate receptor-mediated processes may modulate the glutamatergic, dopaminergic, and/or serotonergic neurotransmission within the MNH and thereby have a critical impact on filial imprinting. Using microdialysis and pharmaco-behavioral approaches in young chicks, we demonstrated that: the systemic application of the mu-opiate receptor antagonist naloxone (5, 50 mg/kg) significantly increased extracellular levels of 5-HIAA and HVA; the systemic application of the specific mu-opiate receptor agonist DAGO (5 mg/kg) increased the levels of HVA and taurine, an effect that was antagonized by simultaneously applied naloxone (5 mg/kg); the local application of DAGO (1 mM) had no effects on 5-HIAA, HVA, glutamate, and taurine, however, the effects of systemically injected naloxone (5 mg/kg) were abolished by simultaneously applied DAGO (1 mM); the systemic application of naloxone (5 mg/kg) increased distress behavior (measured as the duration of distress vocalization during separation from the peer group). These results are in line with our hypothesis that the mu-opiate receptor-mediated modulation of serotonergic and dopaminergic neurotransmission alters the emotional and motivational status of the animal and thereby may play a modulatory role during filial imprinting in the newborn animal. 2004 Wiley Periodicals, Inc
Dere, E; De Souza-Silva, M A; Frisch, C; Teubner, B; Söhl, G; Willecke, K; Huston, J P
2003-08-01
Gap-junction channels in the brain, formed by connexin (Cx) proteins with a distinct regional/cell-type distribution, allow intercellular electrical and metabolic communication. In astrocytes, mainly the connexins 43, 26 and 30 are expressed. In addition, connexin30 is expressed in ependymal and leptomeningeal cells, as well as in skin and cochlea. The functional implications of the astrocytic gap-junctional network are not well understood and evidence regarding their behavioural relevance is lacking. Thus, we have tested groups of Cx30-/-, Cx30+/-, and Cx30+/+ mice in the open-field, an object exploration task, in the graded anxiety test and on the rotarod. The Cx30-/- mice showed reduced exploratory activity in terms of rearings but not locomotion in the open-field and object exploration task. Furthermore, Cx30-/- mice exhibited anxiogenic behaviour as shown by higher open-field centre avoidance and corner preference. Graded anxiety test and rotarod performance was similar across groups. The Cx30-/- mice had elevated choline levels in the ventral striatum, possibly related to their aberrant behavioural phenotypes. The Cx30+/- mice had lower dopamine and metabolite levels in the amygdala and ventral striatum and lower hippocampal 5-hydroxyindole acid (5-HIAA) concentrations relative to Cx30+/+ mice. Furthermore, the Cx30+/- mice had lower acetylcholine concentrations in the ventral striatum and higher choline levels in the neostriatum, relative to Cx30+/+ mice. Our data suggest that the elimination of connexin30 can alter the reactivity to novel environments, pointing to the importance of gap-junctional signalling in behavioural processes.
Bogodvid, Tatiana K.; Andrianov, Vyatcheslav V.; Deryabina, Irina B.; Muranova, Lyudmila N.; Silantyeva, Dinara I.; Vinarskaya, Aliya; Balaban, Pavel M.; Gainutdinov, Khalil L.
2017-01-01
Long-term changes in membrane potential after associative training were described previously in identified premotor interneurons for withdrawal of the terrestrial snail Helix. Serotonin was shown to be a major transmitter involved in triggering the long-term changes in mollusks. In the present study we compared the changes in electrophysiological characteristics of identifiable premotor interneurons for withdrawal in response to bath applications of serotonin (5-HT) or serotonin precursor 5-hydroxytryptophan (5-HTP) in preparations from naïve, neurotoxin-injected or associatively trained snails. It was found that 5-HT or 5-HTP applications caused a significant decrease of membrane potential in premotor interneurons of naïve snails, associatively trained snails and snails with impaired serotonergic system by injection of a selective neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) 1 week before the experiments. Applications of 5-HT or 5-HTP did not cause significant changes in the action potential (AP) threshold potential of these neurons in naïve snails. Conversely, applications of 5-HT or 5-HTP to the premotor interneurons of previously trained or 5,7-DHT-injected snails caused a significant increase in the firing threshold potential in spite of a depolarizing shift of the resting membrane potential. Results demonstrate that responsiveness of premotor interneurons to extracellularly applied 5-HT or 5-HTP changes for days after the associative training or serotonin depletion. Similarity of the effects in trained and 5,7-DHT-injected animals may be due to massive release of serotonin elicited by 5,7-DHT injection. Our results suggest that serotonin release due to aversive conditionining or elicited by the neurotoxin administration triggers similar changes in resting membrane potential and AP threshold in response to bath applications of 5-HT or its precursor 5-HTP. PMID:29311833
Croft, Harry A
2017-12-01
The neurobiology of sexual response is driven in part by dopamine and serotonin-the former modulating excitatory pathways and the latter regulating inhibitory pathways. Neurobiological underpinnings of hypoactive sexual desire disorder (HSDD) are seemingly related to overactive serotonin activity that results in underactive dopamine activity. As such, pharmacologic agents that decrease serotonin, increase dopamine, or some combination thereof, have therapeutic potential for HSDD. To review the role of serotonin in female sexual function and the effects of pharmacologic interventions that target the serotonin system in the treatment of HSDD. Searches of the Medline database for articles on serotonin and female sexual function. Relevant articles from the peer-reviewed literature were included. Female sexual response is regulated not only by the sex hormones but also by several neurotransmitters. It is postulated that dopamine, norepinephrine, oxytocin, and melanocortins serve as key neuromodulators for the excitatory pathways, whereas serotonin, opioids, and endocannabinoids serve as key neuromodulators for the inhibitory pathways. Serotonin appears to be a key inhibitory modulator of sexual desire, because it decreases the ability of excitatory systems to be activated by sexual cues. Centrally acting drugs that modulate the excitatory and inhibitory pathways involved in sexual desire (eg, bremelanotide, bupropion, buspirone, flibanserin) have been investigated as treatment options for HSDD. However, only flibanserin, a multifunctional serotonin agonist and antagonist (5-hydroxytryptamine [5-HT] 1A receptor agonist and 5-HT 2A receptor antagonist), is currently approved for the treatment of HSDD. The central serotonin system is 1 biochemical target for medications intended to treat HSDD. This narrative review integrates findings from preclinical studies and clinical trials to elucidate neurobiological underpinnings of HSDD but is limited to 1 neurotransmitter system (serotonin). Serotonin overactivity is a putative cause of sexual dysfunction in patients with HSDD. The unique pharmacologic profile of flibanserin tones down inhibitory serotonergic function and restores dopaminergic and noradrenergic function. Croft HA. Understanding the Role of Serotonin in Female Hypoactive Sexual Desire Disorder and Treatment Options. J Sex Med 2017;14:1575-1584. Copyright © 2017 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Acquisition of MDMA self-administration: pharmacokinetic factors and MDMA-induced serotonin release.
Bradbury, Sarah; Bird, Judith; Colussi-Mas, Joyce; Mueller, Melanie; Ricaurte, George; Schenk, Susan
2014-09-01
The current study aimed to elucidate the role of pharmacokinetic (PK) parameters and neurotransmitter efflux in explaining variability in (±) 3, 4-methylenedioxymethamphetamine (MDMA) self-administration in rats. PK profiles of MDMA and its major metabolites were determined after the administration of 1.0 mg/kg MDMA (iv) prior to, and following, the acquisition of MDMA self-administration. Synaptic levels of 5-hydroxytryptamine (5HT) and dopamine (DA) in the nucleus accumbens were measured following administration of MDMA (1.0 and 3.0 mg/kg, iv) using in vivo microdialysis and compared for rats that acquired or failed to acquire MDMA self-administration. Effects of the 5HT neurotoxin, 5,7 dihydroxytryptamine (5, 7-DHT), on the acquisition of MDMA and cocaine self-administration were also determined. In keeping with previous findings, approximately 50% of rats failed to meet a criterion for acquisition of MDMA self-administration. The PK profiles of MDMA and its metabolites did not differ between rats that acquired or failed to acquire MDMA self-administration. MDMA produced more overflow of 5HT than DA. The MDMA-induced 5HT overflow was lower in rats that acquired MDMA self-administration compared with those that did not acquire self-administration. In contrast, MDMA-induced DA overflow was comparable for the two groups. Prior 5,7-DHT lesions reduced tissue levels of 5HT and markedly increased the percentage of rats that acquired MDMA self-administration and also decreased the latency to acquisition of cocaine self-administration. These data suggest that 5HT limits the initial sensitivity to the positively reinforcing effects of MDMA and delays the acquisition of reliable self-administration. © 2013 Society for the Study of Addiction.
Forcén, R; Latorre, E; Pardo, J; Alcalde, A I; Murillo, M D; Grasa, L
2016-08-01
What is the central question of this study? The action of Toll-like receptors (TLRs) 2 and 4 on the motor response to serotonin in mouse colon has not previously been reported. What is the main finding and its importance? Toll-like receptors 2 and 4 modulate the serotonin-induced contractile response in mouse colon by modifying the expression of serotonin (5-HT) receptors. Alterations in 5-HT2A and 5-HT2C receptors explain the increase of the response to serotonin in TLR2(-/-) mice. Alterations in 5-HT2C and 5-HT4 receptors explain the suppression of the response to serotonin in TLR4(-/-) mice. The microbiota, through Toll-like receptors (TLRs), may regulate gastrointestinal motility by activating neuroendocrine mechanisms. We evaluated the influence of TLR2 and TLR4 in spontaneous contractions and in the serotonin (5-HT)-induced motor response in mouse colon, and assessed the 5-HT receptors involved. Muscle contractility studies to evaluate the intestinal spontaneous motility and the response to 5-HT were performed in the colon from wild-type (WT), TLR2(-/-) , TLR4(-/-) and TLR2/4 double knockout (DKO) mice. The 5-HT receptor mRNA expression was determined by real-time PCR. The amplitude and frequency of the spontaneous contractions of the colon were smaller in TLR4(-/-) and TLR2/4 DKO mice with respect to WT mice. In WT, TLR2(-/-) and TLR2/4 DKO mice, 100 μm 5-HT evoked a contractile response. The contractile response induced by 5-HT was significantly higher in TLR2(-/-) than in WT mice. In TLR4(-/-) mice, 5-HT did not evoke any contractile response. The mRNA expression of 5-HT2A was increased in TLR2(-/-) and TLR2/4 DKO mice. The 5-HT2C and 5-HT4 mRNA expressions were increased in TLR4(-/-) and TLR2/4 DKO mice. The 5-HT2C mRNA expression was diminished in TLR2(-/-) mice. The 5-HT3 mRNA expression was increased in TLR2(-/-) , TLR4(-/-) and TLR2/4 DKO mice. The 5-HT7 mRNA expression was diminished in TLR2/4 DKO mice. In WT, TLR2(-/-) and TLR2/4 DKO mice, 5-HT2 , 5-HT3 , 5-HT4 and 5-HT7 receptor antagonists reduced or blocked the contractile response evoked by 5-HT. We postulate that TLR2 and TLR4 modulate the serotonin contractile motor response in mouse colon in an opposing manner by modifying the expression of several serotonin receptors. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fonsart, Julien, E-mail: julien.fonsart@lrb.aphp.f; CNRS, UMR 7157, Paris F-75006; INSERM, U705, Paris F-75006
The use of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) has increased in recent years; it can lead to life-threatening hyperthermia and serotonin syndrome. Human and rodent males appear to be more sensitive to acute toxicity than are females. MDMA is metabolized to five main metabolites by the enzymes CYP1A2, CYP2D and COMT. Little is presently known about sex-dependent differences in the pharmacokinetics of MDMA and its metabolites. We therefore analyzed MDMA disposition in male and female rats by measuring the plasma and urine concentrations of MDMA and its metabolites using a validated LC-MS method. MDA AUC{sub last} and C{sub max} were 1.6- tomore » 1.7-fold higher in males than in females given MDMA (5 mg/kg sc), while HMMA C{sub max} and AUC{sub last} were 3.2- and 3.5-fold higher, respectively. MDMA renal clearance was 1.26-fold higher in males, and that of MDA was 2.2-fold higher. MDMA AUC{sub last} and t{sub 1/2} were 50% higher in females given MDMA (1 mg/kg iv). MDA C{sub max} and AUC{sub last} were 75-82% higher in males, with a 2.8-fold higher metabolic index. Finally, the AUC{sub last} of MDA was 0.73-fold lower in males given 1 mg/kg iv MDA. The volumes of distribution of MDMA and MDA at steady-state were similar in the two sexes. These data strongly suggest that differences in the N-demethylation of MDMA to MDA are major influences on the MDMA and MDA pharmacokinetics in male and female rats. Hence, males are exposed to significantly more toxic MDA, which could explain previously reported sexual dysmorphism in the acute effects and toxicity of MDMA in rats.« less
Iscan, Zafer; Rakesh, Gopalkumar; Rossano, Samantha; Yang, Jie; Zhang, Mengru; Miller, Jeffrey; Sullivan, Gregory M; Sharma, Priya; McClure, Matthew; Oquendo, Maria A; Mann, J John; Parsey, Ramin V; DeLorenzo, Christine
2017-10-01
Symptoms of anxiety are highly comorbid with major depressive disorder (MDD) and are known to alter the course of the disease. To help elucidate the biological underpinnings of these prevalent disorders, we previously examined the relationship between components of anxiety (somatic, psychic and motoric) and serotonin 1A receptor (5-HT 1A ) binding in MDD and found that higher psychic and lower somatic anxiety was associated with greater 5-HT 1A binding. In this work, we sought to examine the correlation between these anxiety symptom dimensions and 5-HTT binding. Positron emission tomography with [ 11 C]-3-amino-4-(3-dimethylamino-methylphenylsulfanyl)-benzonitrile ([ 11 C]DASB) and a metabolite-corrected arterial input function were used to estimate regional 5-HTT binding in 55 subjects with MDD and anxiety symptoms. Somatic anxiety was negatively correlated with 5-HTT binding in the thalamus (β=-.33, p=.025), amygdala (β=-.31, p=.007) and midbrain (β=-.72, p<.001). Psychic anxiety was positively correlated with 5-HTT binding in midbrain only (β=.46, p=.0025). To relate to our previous study, correlation between 5-HT 1A and 5-HTT binding was examined, and none was found. We also examined how much of the variance in anxiety symptom dimensions could be explained by both 5-HTT and 5-HT 1A binding. The developed model was able to explain 68% (p<.001), 38% (p=.012) and 32% (p=.038) of the total variance in somatic, psychic, and motoric anxiety, respectively. Results indicate the tight coupling between the serotonergic system and anxiety components, which may be confounded when using aggregate anxiety measures. Uncovering serotonin's role in anxiety and depression in this way may give way to a new generation of therapeutics and treatment strategies. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.
Nutrient-induced glucagon like peptide-1 release is modulated by serotonin.
Ripken, Dina; van der Wielen, Nikkie; Wortelboer, Heleen M; Meijerink, Jocelijn; Witkamp, Renger F; Hendriks, Henk F J
2016-06-01
Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis for the current study was that nutrient-induced GLP-1 release from EECs is modulated by serotonin through a process involving serotonin receptor interaction. This was studied by assessing the effects of serotonin reuptake inhibition by fluoxetine on nutrient-induced GLP-1, PYY and CCK release from isolated pig intestinal segments. Next, serotonin-induced GLP-1 release was studied in enteroendocrine STC-1 cells, where effects of serotonin receptor inhibition were studied using specific and non-specific antagonists. Casein (1% w/v), safflower oil (3.35% w/v), sucrose (50mM) and rebaudioside A (12.5mM) stimulated GLP-1 release from intestinal segments, whereas casein only stimulated PYY and CCK release. Combining nutrients with fluoxetine further increased nutrient-induced GLP-1, PYY and CCK release. Serotonin release from intestinal tissue segments was stimulated by casein and safflower oil while sucrose and rebaudioside A had no effect. The combination with fluoxetine (0.155μM) further enhanced casein and safflower oil induced-serotonin release. Exposure of ileal tissue segments to serotonin (30μM) stimulated GLP-1 release whereas it did not induce PYY and CCK release. Serotonin (30 and 100μM) also stimulated GLP-1 release from STC-1 cells, which was inhibited by the non-specific 5HT receptor antagonist asenapine (1 and 10μM). These data suggest that nutrient-induced GLP-1 release is modulated by serotonin through a receptor mediated process. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Guzmán, David C; García, Ernestina H; Mejía, Gerardo B; Olguín, Hugo J; Jiménez, Francisca T; Soto, Erick B; Del Angel, Daniel S; Aparicio, Liliana C
2012-05-01
A number of drugs, like sibutramine, which are used clinically in weight control, act on serotonergic metabolism. However, their relation with zinc and free radical (FR) production in central nervous system remains unknown. This study aimed to evaluate the effect of sibutramine and zinc on FR production. Female Wistar rats (about 250 g) were used in this study. The animals received 400 μg/kg of zinc and 10 mg/kg of sibutramine intraperitoneally every 36 hr for 15 days. At the end of the study, the rats were killed and their brains used for the measurement of lipid peroxidation thiobarbituric acid-reactive substances (TBARS), reduced glutathione (GSH), hydrogen peroxide (H(2) O(2) ), calcium and 5-hydroxyindole acetic acid (5-HIAA) levels, all by means of validated methods. Corporal weight and food consumption were found to be decreased in the zinc/sibutramine group. TBARS decreased in cortex, hemispheres and medulla oblongata. GSH decreased in cortex, hemispheres and cerebellum in the sibutramine group. Zinc given alone and in combination with sibutramine decreased H(2) O(2) concentration in cortex, hemispheres and cerebellum but increased calcium and 5-HIAA concentration in all brain regions. Our results suggest that sibutramine and zinc are associated with weight loss, an effect that was more pronounced in the group treated with both drugs. Reduction in oxidative stress may be involved in these effects. © 2011 The Authors. Basic & Clinical Pharmacology & Toxicology © 2011 Nordic Pharmacological Society.
ERIC Educational Resources Information Center
Conway, Christopher C.; Keenan-Miller, Danielle; Hammen, Constance; Lind, Penelope A.; Najman, Jake M.; Brennan, Patricia A.
2012-01-01
Despite consistent evidence that serotonin functioning affects stress reactivity and vulnerability to aggression, research on serotonin gene-stress interactions (G x E) in the development of aggression remains limited. The present study investigated variation in the promoter region of the serotonin transporter gene (5-HTTLPR) as a moderator of the…
Muller, Christopher L; Anacker, Allison MJ; Rogers, Tiffany D; Goeden, Nick; Keller, Elizabeth H; Forsberg, C Gunnar; Kerr, Travis M; Wender, Carly LA; Anderson, George M; Stanwood, Gregg D; Blakely, Randy D; Bonnin, Alexandre; Veenstra-VanderWeele, Jeremy
2017-01-01
Biomarker, neuroimaging, and genetic findings implicate the serotonin transporter (SERT) in autism spectrum disorder (ASD). Previously, we found that adult male mice expressing the autism-associated SERT Ala56 variant have altered central serotonin (5-HT) system function, as well as elevated peripheral blood 5-HT levels. Early in gestation, before midbrain 5-HT projections have reached the cortex, peripheral sources supply 5-HT to the forebrain, suggesting that altered maternal or placenta 5-HT system function could impact the developing embryo. We therefore used different combinations of maternal and embryo SERT Ala56 genotypes to examine effects on blood, placenta and embryo serotonin levels and neurodevelopment at embryonic day E14.5, when peripheral sources of 5-HT predominate, and E18.5, when midbrain 5-HT projections have reached the forebrain. Maternal SERT Ala56 genotype was associated with decreased placenta and embryonic forebrain 5-HT levels at E14.5. Low 5-HT in the placenta persisted, but forebrain levels normalized by E18.5. Maternal SERT Ala56 genotype effects on forebrain 5-HT levels were accompanied by a broadening of 5-HT-sensitive thalamocortical axon projections. In contrast, no effect of embryo genotype was seen in concepti from heterozygous dams. Blood 5-HT levels were dynamic across pregnancy and were increased in SERT Ala56 dams at E14.5. Placenta RNA sequencing data at E14.5 indicated substantial impact of maternal SERT Ala56 genotype, with alterations in immune and metabolic-related pathways. Collectively, these findings indicate that maternal SERT function impacts offspring placental 5-HT levels, forebrain 5-HT levels, and neurodevelopment. PMID:27550733
Hood, Katie Y; Mair, Kirsty M; Harvey, Adam P; Montezano, Augusto C; Touyz, Rhian M; MacLean, Margaret R
2017-07-01
Serotonin can induce human pulmonary artery smooth muscle cell (hPASMC) proliferation through reactive oxygen species (ROS), influencing the development of pulmonary arterial hypertension (PAH). We hypothesize that in PASMCs, serotonin induces oxidative stress through NADPH-oxidase-derived ROS generation and reduced Nrf-2 (nuclear factor [erythroid-derived 2]-like 2) antioxidant systems, promoting vascular injury. HPASMCs from controls and PAH patients, and PASMCs from Nox1 -/- mice, were stimulated with serotonin in the absence/presence of inhibitors of Src kinase, the 5-HT 1B receptor, and NADPH oxidase 1 (Nox1). Markers of fibrosis were also determined. The pathophysiological significance of our findings was examined in vivo in serotonin transporter overexpressing female mice, a model of pulmonary hypertension. We confirmed thatserotonin increased superoxide and hydrogen peroxide production in these cells. For the first time, we show that serotonin increased oxidized protein tyrosine phosphatases and hyperoxidized peroxiredoxin and decreased Nrf-2 and catalase activity in hPASMCs. ROS generation was exaggerated and dependent on cellular Src-related kinase, 5-HT 1B receptor, and the serotonin transporter in human pulmonary artery smooth muscle cells from PAH subjects. Proliferation and extracellular matrix remodeling were exaggerated in human pulmonary artery smooth muscle cells from PAH subjects and dependent on 5-HT 1B receptor signaling and Nox1, confirmed in PASMCs from Nox1 -/- mice. In serotonin transporter overexpressing mice, SB216641, a 5-HT 1B receptor antagonist, prevented development of pulmonary hypertension in a ROS-dependent manner. Serotonin can induce cellular Src-related kinase-regulated Nox1-induced ROS and Nrf-2 dysregulation, contributing to increased post-translational oxidative modification of proteins and activation of redox-sensitive signaling pathways in hPASMCs, associated with mitogenic responses. 5-HT 1B receptors contribute to experimental pulmonary hypertension by inducing lung ROS production. Our results suggest that 5-HT 1B receptor-dependent cellular Src-related kinase-Nox1-pathways contribute to vascular remodeling in PAH. © 2017 The Authors.
Hood, Katie Y.; Mair, Kirsty M.; Harvey, Adam P.; Montezano, Augusto C.; Touyz, Rhian M.
2017-01-01
Objective— Serotonin can induce human pulmonary artery smooth muscle cell (hPASMC) proliferation through reactive oxygen species (ROS), influencing the development of pulmonary arterial hypertension (PAH). We hypothesize that in PASMCs, serotonin induces oxidative stress through NADPH-oxidase–derived ROS generation and reduced Nrf-2 (nuclear factor [erythroid-derived 2]-like 2) antioxidant systems, promoting vascular injury. Approach and Results— HPASMCs from controls and PAH patients, and PASMCs from Nox1−/− mice, were stimulated with serotonin in the absence/presence of inhibitors of Src kinase, the 5-HT1B receptor, and NADPH oxidase 1 (Nox1). Markers of fibrosis were also determined. The pathophysiological significance of our findings was examined in vivo in serotonin transporter overexpressing female mice, a model of pulmonary hypertension. We confirmed thatserotonin increased superoxide and hydrogen peroxide production in these cells. For the first time, we show that serotonin increased oxidized protein tyrosine phosphatases and hyperoxidized peroxiredoxin and decreased Nrf-2 and catalase activity in hPASMCs. ROS generation was exaggerated and dependent on cellular Src-related kinase, 5-HT1B receptor, and the serotonin transporter in human pulmonary artery smooth muscle cells from PAH subjects. Proliferation and extracellular matrix remodeling were exaggerated in human pulmonary artery smooth muscle cells from PAH subjects and dependent on 5-HT1B receptor signaling and Nox1, confirmed in PASMCs from Nox1−/− mice. In serotonin transporter overexpressing mice, SB216641, a 5-HT1B receptor antagonist, prevented development of pulmonary hypertension in a ROS-dependent manner. Conclusions— Serotonin can induce cellular Src-related kinase–regulated Nox1-induced ROS and Nrf-2 dysregulation, contributing to increased post-translational oxidative modification of proteins and activation of redox-sensitive signaling pathways in hPASMCs, associated with mitogenic responses. 5-HT1B receptors contribute to experimental pulmonary hypertension by inducing lung ROS production. Our results suggest that 5-HT1B receptor–dependent cellular Src-related kinase-Nox1-pathways contribute to vascular remodeling in PAH. PMID:28473438
Serotonin release varies with brain tryptophan levels
NASA Technical Reports Server (NTRS)
Schaechter, Judith D.; Wurtman, Richard J.
1990-01-01
This study examines directly the effects on serotonin release of varying brain tryptophan levels within the physiologic range. It also addresses possible interactions between tryptophan availability and the frequency of membrane depolarization in controlling serotonin release. We demonstrate that reducing tryptophan levels in rat hypothalamic slices (by superfusing them with medium supplemented with 100 microM leucine) decreases tissue serotonin levels as well as both the spontaneous and the electrically-evoked serotonin release. Conversely, elevating tissue tryptophan levels (by superfusing slices with medium supplemented with 2 microM tryptophan) increases both the tissue serotonin levels and the serotonin release. Serotonin release was found to be affected independently by the tryptophan availability and the frequency of electrical field-stimulation (1-5 Hz), since increasing both variables produced nearly additive increases in release. These observations demonstrate for the first time that both precursor-dependent elevations and reductions in brain serotonin levels produce proportionate changes in serotonin release, and that the magnitude of the tryptophan effect is unrelated to neuronal firing frequency. The data support the hypothesis that serotonin release is proportionate to intracellular serotonin levels.
Concheiro, Marta; Baumann, Michael H; Scheidweiler, Karl B; Rothman, Richard B; Marrone, Gina F; Huestis, Marilyn A
2014-01-01
3,4-Methylenedioxymethamphetamine (MDMA) is a widely abused illicit drug that can cause severe and even fatal adverse effects. However, interest remains for its possible clinical applications in posttraumatic stress disorder and anxiety treatment. Preclinical studies to determine MDMA's safety are needed. We evaluated MDMA's pharmacokinetics and metabolism in male rats receiving 2.5, 5, and 10 mg/kg s.c. MDMA, and the associated pharmacodynamic consequences. Blood was collected via jugular catheter at 0, 0.5, 1, 2, 4, 6, 8, 16, and 24 hours, with simultaneous serotonin (5-HT) behavioral syndrome and core temperature monitoring. Plasma specimens were analyzed for MDMA and the metabolites (±)-3,4-dihydroxymethamphetamine (HHMA), (±)-4-hydroxy-3-methoxymethamphetamine (HMMA), and (±)-3,4-methylenedioxyamphetamine (MDA) by liquid chromatography-tandem mass spectrometry. After 2.5 mg/kg MDMA, mean MDMA Cmax was 164 ± 47.1 ng/ml, HHMA and HMMA were major metabolites, and <20% of MDMA was metabolized to MDA. After 5- and 10-mg/kg doses, MDMA areas under the curve (AUCs) were 3- and 10-fold greater than those after 2.5 mg/kg; HHMA and HMMA AUC values were relatively constant across doses; and MDA AUC values were greater than dose-proportional. Our data provide decisive in vivo evidence that MDMA and MDA display nonlinear accumulation via metabolic autoinhibition in the rat. Importantly, 5-HT syndrome severity correlated with MDMA concentrations (r = 0.8083; P < 0.0001) and core temperature correlated with MDA concentrations (r = 0.7595; P < 0.0001), suggesting that MDMA's behavioral and hyperthermic effects may involve distinct mechanisms. Given key similarities between MDMA pharmacokinetics in rats and humans, data from rats can be useful when provided at clinically relevant doses.
Concheiro, Marta; Baumann, Michael H.; Scheidweiler, Karl B.; Rothman, Richard B.; Marrone, Gina F.
2014-01-01
3,4-Methylenedioxymethamphetamine (MDMA) is a widely abused illicit drug that can cause severe and even fatal adverse effects. However, interest remains for its possible clinical applications in posttraumatic stress disorder and anxiety treatment. Preclinical studies to determine MDMA’s safety are needed. We evaluated MDMA’s pharmacokinetics and metabolism in male rats receiving 2.5, 5, and 10 mg/kg s.c. MDMA, and the associated pharmacodynamic consequences. Blood was collected via jugular catheter at 0, 0.5, 1, 2, 4, 6, 8, 16, and 24 hours, with simultaneous serotonin (5-HT) behavioral syndrome and core temperature monitoring. Plasma specimens were analyzed for MDMA and the metabolites (±)-3,4-dihydroxymethamphetamine (HHMA), (±)-4-hydroxy-3-methoxymethamphetamine (HMMA), and (±)-3,4-methylenedioxyamphetamine (MDA) by liquid chromatography–tandem mass spectrometry. After 2.5 mg/kg MDMA, mean MDMA Cmax was 164 ± 47.1 ng/ml, HHMA and HMMA were major metabolites, and <20% of MDMA was metabolized to MDA. After 5- and 10-mg/kg doses, MDMA areas under the curve (AUCs) were 3- and 10-fold greater than those after 2.5 mg/kg; HHMA and HMMA AUC values were relatively constant across doses; and MDA AUC values were greater than dose-proportional. Our data provide decisive in vivo evidence that MDMA and MDA display nonlinear accumulation via metabolic autoinhibition in the rat. Importantly, 5-HT syndrome severity correlated with MDMA concentrations (r = 0.8083; P < 0.0001) and core temperature correlated with MDA concentrations (r = 0.7595; P < 0.0001), suggesting that MDMA’s behavioral and hyperthermic effects may involve distinct mechanisms. Given key similarities between MDMA pharmacokinetics in rats and humans, data from rats can be useful when provided at clinically relevant doses. PMID:24141857
A physiologic role for serotonergic transmission in adult rat taste buds.
Jaber, Luc; Zhao, Fang-li; Kolli, Tamara; Herness, Scott
2014-01-01
Of the multiple neurotransmitters and neuropeptides expressed in the mammalian taste bud, serotonin remains both the most studied and least understood. Serotonin is expressed in a subset of taste receptor cells that form synapses with afferent nerve fibers (type III cells) and was once thought to be essential to neurotransmission (now understood as purinergic). However, the discovery of the 5-HT1A serotonin receptor in a subset of taste receptor cells paracrine to type III cell suggested a role in cell-to-cell communication during the processing of taste information. Functional data describing this role are lacking. Using anatomical and neurophysiological techniques, this study proposes a modulatory role for serotonin during the processing of taste information. Double labeling immunocytochemical and single cell RT-PCR technique experiments documented that 5-HT1A-expressing cells co-expressed markers for type II cells, cells which express T1R or T2R receptors and release ATP. These cells did not co-express type III cells markers. Neurophysiological recordings from the chorda tympani nerve, which innervates anterior taste buds, were performed prior to and during intravenous injection of a 5-HT1A receptor antagonist. These experiments revealed that serotonin facilitates processing of taste information for tastants representing sweet, sour, salty, and bitter taste qualities. On the other hand, injection of ondansetron, a 5-HT3 receptor antagonist, was without effect. Collectively, these data support the hypothesis that serotonin is a crucial element in a finely-tuned feedback loop involving the 5-HT1A receptor, ATP, and purinoceptors. It is hypothesized that serotonin facilitates gustatory signals by regulating the release of ATP through ATP-release channels possibly through phosphatidylinositol 4,5-bisphosphate resynthesis. By doing so, 5-HT1A activation prevents desensitization of post-synaptic purinergic receptors expressed on afferent nerve fibers and enhances the afferent signal. Serotonin may thus play a major modulatory role within peripheral taste in shaping the afferent taste signals prior to their transmission across gustatory nerves.
Gruss, M; Bock, J; Braun, K
2003-11-01
In vivo microdialysis and behavioural studies in the domestic chick have shown that glutamatergic as well as monoaminergic neurotransmission in the medio-rostral neostriatum/hyperstriatum ventrale (MNH) is altered after auditory filial imprinting. In the present study, using pharmaco-behavioural and in vivo microdialysis approaches, the role of dopaminergic neurotransmission in this juvenile learning event was further evaluated. The results revealed that: (i) the systemic application of the potent dopamine receptor antagonist haloperidol (7.5 mg/kg) strongly impairs auditory filial imprinting; (ii) systemic haloperidol induces a tetrodotoxin-sensitive increase of extracellular levels of the dopamine metabolite, homovanillic acid, in the MNH, whereas the levels of glutamate, taurine and the serotonin metabolite, 5-hydroxyindole-3-acetic acid, remain unchanged; (iii) haloperidol (0.01, 0.1, 1 mm) infused locally into the MNH increases glutamate, taurine and 5- hydroxyindole-3-acetic acid levels in a dose-dependent manner, whereas homovanillic acid levels remain unchanged; (iv) systemic haloperidol infusion reinforces the N-methyl-d-aspartate receptor-mediated inhibitory modulation of the dopaminergic neurotransmission within the MNH. These results indicate that the modulation of dopaminergic function and its interaction with other neurotransmitter systems in a higher associative forebrain region of the juvenile avian brain displays similar neurochemical characteristics as the adult mammalian prefrontal cortex. Furthermore, we were able to show that the pharmacological manipulation of monoaminergic regulatory mechanisms interferes with learning and memory formation, events which in a similar fashion might occur in young or adult mammals.
Boulet, Lysiane; Faure, Patrice; Flore, Patrice; Montérémal, Julien; Ducros, Véronique
2017-06-01
Tryptophan (Trp) is an essential amino-acid and the precursor of many biologically active substances such as kynurenine (KYN) and serotonin (5HT). Its metabolism is involved in different physiopathological states, such as cardiovascular diseases, cancer, immunomodulation or depression. Hence, the quantification of Trp catabolites, from both KYN and 5HT pathways, might be usefulfor the discovery of novel diagnostic and follow-up biomarkers. We have developed a simple method for quantification of Trp and 8 of its metabolites,involved in both KYN and 5HT pathways, using liquid chromatography coupled to tandem mass spectrometry. We also validated the methodin human plasma samples, according to NF EN ISO 15189 criteria. Our method shows acceptable intra- and inter-day coefficients of variation (CV) (<12% and <16% respectively). The linearity entirelycovers the human plasma range. Stabilities of whole blood and of residues weredetermined, as well as the use of 2 different types of collectiontube, enabling us to adapt our process. Matrix effects and reference values showed good agreement compared to the literature. We propose here a method allowing the simultaneous quantification of a panel of Trp catabolites, never used before to our knowledge. This method, witha quickchromatographic runtime (15min) and simple sample preparation, has beenvalidated according to NF EN ISO 15189 criteria. The method enables the detailed analysis of these metabolic pathways, which are thought to be involved in a number of pathological conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Yue; Gao, Hongwei
2012-04-01
Serotonin (5-hydroxytryptamine, 5-HT) is a monoamine neurotransmitter which plays an important role in treating acute or clinical stress. The comparative performance of different density functional theory (DFT) methods at various basis sets in predicting the molecular structure and vibration spectra of serotonin was reported. The calculation results of different methods including mPW1PW91, HCTH, SVWN, PBEPBE, B3PW91 and B3LYP with various basis sets including LANL2DZ, SDD, LANL2MB, 6-31G, 6-311++G and 6-311+G* were compared with the experimental data. It is remarkable that the SVWN/6-311++G and SVWN/6-311+G* levels afford the best quality to predict the structure of serotonin. The results also indicate that PBEPBE/LANL2DZ level show better performance in the vibration spectra prediction of serotonin than other DFT methods.
Koishi, Shinko; Yamamoto, Kenji; Matsumoto, Hideo; Koishi, Seiji; Enseki, Youichi; Oya, Akitoshi; Asakura, Arata; Aoki, Yutaka; Atsumi, Mariko; Iga, Tomiei; Inomata, Jyoji; Inoko, Hidetoshi; Sasaki, Tsukasa; Nanba, Eiji; Kato, Nobumasa; Ishii, Tetsuo; Yamazaki, Kosuke
2006-05-01
Autism is now widely accepted as a biological disorder which, by and large, starts before birth. It has been shown that serotonin (5-HT) is associated with several psychological processes and hyperserotoninemia is observed in some autistic patients. The results of previous reports about family-based association studies between the serotonin transporter (5-HTT) gene promoter polymorphism and autism are controversial. In this study, an analysis using the transmission/disequilibrium test (TDT) between the 5-HTT gene promoter polymorphism and autism in 104 trios, all ethnically Japanese, showed no significant linkage disequilibrium (P=0.17). Recently, it has been reported that some haplotypes at the serotonin transporter locus may be associated with the pathogenesis of autism. Therefore, further investigations by haplotype analyses are necessary to confirm the implications of genetic variants of the serotonin transporter in the etiology of autism.
Serotonin and Blood Pressure Regulation
Morrison, Shaun F.; Davis, Robert Patrick; Barman, Susan M.
2012-01-01
5-Hydroxytryptamine (5-HT; serotonin) was discovered more than 60 years ago as a substance isolated from blood. The neural effects of 5-HT have been well investigated and understood, thanks in part to the pharmacological tools available to dissect the serotonergic system and the development of the frequently prescribed selective serotonin-reuptake inhibitors. By contrast, our understanding of the role of 5-HT in the control and modification of blood pressure pales in comparison. Here we focus on the role of 5-HT in systemic blood pressure control. This review provides an in-depth study of the function and pharmacology of 5-HT in those tissues that can modify blood pressure (blood, vasculature, heart, adrenal gland, kidney, brain), with a focus on the autonomic nervous system that includes mechanisms of action and pharmacology of 5-HT within each system. We compare the change in blood pressure produced in different species by short- and long-term administration of 5-HT or selective serotonin receptor agonists. To further our understanding of the mechanisms through which 5-HT modifies blood pressure, we also describe the blood pressure effects of commonly used drugs that modify the actions of 5-HT. The pharmacology and physiological actions of 5-HT in modifying blood pressure are important, given its involvement in circulatory shock, orthostatic hypotension, serotonin syndrome and hypertension. PMID:22407614
López-Vázquez, Miguel Ángel; López-Loeza, Elisa; Lajud Ávila, Naima; Gutiérrez-Guzmán, Blanca Erika; Hernández-Pérez, J Jesús; Reyes, Yoana Estrada; Olvera-Cortés, María Esther
2014-07-05
Hippocampal theta activity, which is strongly modulated by the septal medial/Broca׳s diagonal band neurons, has been linked to information processing of the hippocampus. Serotonin from the medial raphe nuclei desynchronises hippocampal theta activity, whereas inactivation or a lesion of this nucleus induces continuous and persistent theta activity in the hippocampus. Hippocampal serotonin depletion produces an increased expression of high-frequency theta activity concurrent with the facilitation of place learning in the Morris maze. The medial septum-diagonal band of Broca complex (MS/DBB) has been proposed as a key structure in the serotonin modulation of theta activity. We addressed whether serotonin depletion of the MS/DBB induces changes in the characteristics of hippocampal theta activity and whether the depletion is associated with learning in a working memory spatial task in the radial arm maze. Sprague Dawley rats were depleted of 5HT with the infusion of 5,7-dihydroxytriptamine (5,7-DHT) in MS/DBB and were subsequently trained in the standard test (win-shift) in the radial arm, while the CA1 EEG activity was simultaneously recorded through telemetry. The MS/DBB serotonin depletion induced a low level of expression of low-frequency (4.5-6.5Hz) and a higher expression of high-frequency (6.5-9.5Hz) theta activity concomitant to a minor number of errors committed by rats on the working memory test. Thus, the depletion of serotonin in the MS/DBB caused a facilitator effect on working memory and a predominance of high-frequency theta activity. Copyright © 2014 Elsevier B.V. All rights reserved.
Altered serotonin physiology in human breast cancers favors paradoxical growth and cell survival.
Pai, Vaibhav P; Marshall, Aaron M; Hernandez, Laura L; Buckley, Arthur R; Horseman, Nelson D
2009-01-01
The breast microenvironment can either retard or accelerate the events associated with progression of latent cancers. However, the actions of local physiological mediators in the context of breast cancers are poorly understood. Serotonin (5-HT) is a critical local regulator of epithelial homeostasis in the breast and other organs. Herein, we report complex alterations in the intrinsic mammary gland serotonin system of human breast cancers. Serotonin biosynthetic capacity was analyzed in human breast tumor tissue microarrays using immunohistochemistry for tryptophan hydroxylase 1 (TPH1). Serotonin receptors (5-HT1-7) were analyzed in human breast tumors using the Oncomine database. Serotonin receptor expression, signal transduction, and 5-HT effects on breast cancer cell phenotype were compared in non-transformed and transformed human breast cells. In the context of the normal mammary gland, 5-HT acts as a physiological regulator of lactation and involution, in part by favoring growth arrest and cell death. This tightly regulated 5-HT system is subverted in multiple ways in human breast cancers. Specifically, TPH1 expression undergoes a non-linear change during progression, with increased expression during malignant progression. Correspondingly, the tightly regulated pattern of 5-HT receptors becomes dysregulated in human breast cancer cells, resulting in both ectopic expression of some isoforms and suppression of others. The receptor expression change is accompanied by altered downstream signaling of 5-HT receptors in human breast cancer cells, resulting in resistance to 5-HT-induced apoptosis, and stimulated proliferation. Our data constitutes the first report of direct involvement of 5-HT in human breast cancer. Increased 5-HT biosynthetic capacity accompanied by multiple changes in 5-HT receptor expression and signaling favor malignant progression of human breast cancer cells (for example, stimulated proliferation, inappropriate cell survival). This occurs through uncoupling of serotonin from the homeostatic regulatory mechanisms of the normal mammary epithelium. The findings open a new avenue for identification of diagnostic and prognostic markers, and valuable new therapeutic targets for managing breast cancer.
Cremer, Signe E; Kristensen, Annemarie T; Reimann, Maria J; Eriksen, Nynne B; Petersen, Stine F; Marschner, Clara B; Tarnow, Inge; Oyama, Mark A; Olsen, Lisbeth H
2015-06-01
To investigate serum and plasma serotonin concentrations, percentage of serotonin-positive platelets, level of surface-bound platelet serotonin expression (mean fluorescence intensity [MFI]), and platelet activation (CD62 expression) in platelet-rich plasma from Cavalier King Charles Spaniels with myxomatous mitral valve disease (MMVD). Healthy dogs (n = 15) and dogs with mild MMVD (18), moderate-severe MMVD (19), or severe MMVD with congestive heart failure (CHF; 10). Blood samples were collected from each dog. Serum and plasma serotonin concentrations were measured with an ELISA, and surface-bound platelet serotonin expression and platelet activation were determined by flow cytometry. Dogs with mild MMVD had higher median serum (746 ng/mL) and plasma (33.3 ng/mL) serotonin concentrations, compared with MMVD-affected dogs with CHF (388 ng/mL and 9.9 ng/mL, respectively), but no other group differences were found. Among disease groups, no differences in surface-bound serotonin expression or platelet activation were found. Thrombocytopenic dogs had lower serum serotonin concentration (482 ng/mL) than nonthrombocytopenic dogs (731 ng/mL). In 26 dogs, a flow cytometry scatterplot subpopulation (FSSP) of platelets was identified; dogs with an FSSP had a higher percentage of serotonin-positive platelets (11.0%), higher level of surface-bound serotonin expression (MFI, 32,068), and higher platelet activation (MFI, 2,363) than did dogs without an FSSP (5.7%, 1,230, and 1,165, respectively). An FSSP was present in 93.8% of thrombocytopenic dogs and in 29.5% of nonthrombocytopenic dogs. A substantive influence of circulating serotonin on MMVD stages prior to CHF development in Cavalier King Charles Spaniels was not supported by the study findings. An FSSP of highly activated platelets with pronounced serotonin binding was strongly associated with thrombocytopenia but not MMVD.
Nathanson, James A.; Greengard, Paul
1974-01-01
An adenylate cyclase (EC 4.6.1.1) that is activated specifically by low concentrations of serotonin has been identified in homogenates of the thoracic ganglia of an insect nervous system. The activation of this enzyme by serotonin was selectively inhibited by extremely low concentrations of D-lysergic acid diethylamide (LSD), 2-bromo-LSD, and cyproheptadine, agents which are known to block certain serotonin receptors in vivo. The inhibition was competitive with respect to serotonin, and the calculated inhibitory constant of LSD for this serotonin-sensitive adenylate cyclase was 5 nM. The data are consistent with a model in which the serotonin receptor of neural tissue is intimately associated with a serotonin-sensitive adenylate cyclase which mediates serotonergic neurotransmission. The results are also compatible with the possibility that some of the physiological effects of LSD may be mediated through interaction with serotonin-sensitive adenylate cyclase. PMID:4595572
Maternal 25-hydroxyvitamin D is inversely correlated with foetal serotonin.
Murthi, Padma; Davies-Tuck, Miranda; Lappas, Martha; Singh, Harmeet; Mockler, Joanne; Rahman, Rahana; Lim, Rebecca; Leaw, Bryan; Doery, James; Wallace, Euan M; Ebeling, Peter R
2017-03-01
Maternal vitamin D deficiency during pregnancy has been linked to impaired neurocognitive development in childhood. The mechanism by which vitamin D affects childhood neurocognition is unclear but may be via interactions with serotonin, a neurotransmitter involved in foetal brain development. In this study, we aimed to explore associations between maternal and foetal vitamin D concentrations, and foetal serotonin concentrations at term. Serum 25-hydroxyvitamin D (25(OH)D, nmol/l) and serotonin (5-HT, nmol/l) concentrations were measured in maternal and umbilical cord blood from mother-infant pairs (n = 64). Association between maternal 25(OH)D, cord 25(OH)D and cord serotonin was explored using linear regression, before and after adjusting for maternal serotonin levels. We also assessed the effects of siRNA knockdown of the vitamin D receptor (VDR) and administration of 10 nm 1,25-dihydroxyvitamin D 3 on serotonin secretion in human umbilical vein endothelial cells (HUVECs) in vitro. We observed an inverse relationship between both maternal and cord 25(OH)D concentrations with cord serotonin concentrations. The treatment of HUVECs with 1,25-dihydroxyvitamin D 3 in vitro decreased the release of serotonin (193·9 ±14·8 nmol/l vs 458·9 ± 317·5 nmol/l, control, P < 0·05). Conversely, inactivation of VDR increased serotonin release in cultured HUVECs. These observations provide the first evidence of an inverse relationship between maternal 25(OH)D and foetal serotonin concentrations. We propose that maternal vitamin D deficiency increases foetal serotonin concentrations and thereby contributes to longer-term neurocognitive impairment in infants and children. © 2016 John Wiley & Sons Ltd.
Branched-chain amino acids alter neurobehavioral function in rats
Coppola, Anna; Wenner, Brett R.; Ilkayeva, Olga; Stevens, Robert D.; Maggioni, Mauro; Slotkin, Theodore A.; Levin, Edward D.
2013-01-01
Recently, we have described a strong association of branched-chain amino acids (BCAA) and aromatic amino acids (AAA) with obesity and insulin resistance. In the current study, we have investigated the potential impact of BCAA on behavioral functions. We demonstrate that supplementation of either a high-sucrose or a high-fat diet with BCAA induces anxiety-like behavior in rats compared with control groups fed on unsupplemented diets. These behavioral changes are associated with a significant decrease in the concentration of tryptophan (Trp) in brain tissues and a consequent decrease in serotonin but no difference in indices of serotonin synaptic function. The anxiety-like behaviors and decreased levels of Trp in the brain of BCAA-fed rats were reversed by supplementation of Trp in the drinking water but not by administration of fluoxetine, a selective serotonin reuptake inhibitor, suggesting that the behavioral changes are independent of the serotonergic pathway of Trp metabolism. Instead, BCAA supplementation lowers the brain levels of another Trp-derived metabolite, kynurenic acid, and these levels are normalized by Trp supplementation. We conclude that supplementation of high-energy diets with BCAA causes neurobehavioral impairment. Since BCAA are elevated spontaneously in human obesity, our studies suggest a potential mechanism for explaining the strong association of obesity and mood disorders. PMID:23249694
[The pharmacological basis of the serotonin system: Application to antidepressant response].
David, D J; Gardier, A M
2016-06-01
If serotonin (5-hydroxytryptamin [5-HT]) is well known for its role in mood regulation, it also impacts numerous physiological functions at periphery. Serotonin is synthetized at the periphery into the gut by intestinal enterochromaffin cells and in the central nervous system (CNS) in the raphe nucleus from the essential amino acid tryptophan. Physiological effects of 5-HT are mediated by about 15 serotoninergic receptors grouped into seven broad families (5-HT1, 5-HT2, 5-HT3, 5-HT4, 5-HT5, 5-HT6, 5-HT7 receptor families). Except 5-HT3 receptor, a ligand-gated ion channels, all the others are G protein-coupled receptors. Serotonin's homeostasis involves serotoninergic autoreceptor such as 5-HT1A, 5-HT1B, 5-HT1D, the enzymatic degradation of serotonin by monoamine oxidase A (MAO-A), and a transporter (serotoninergic transporter [SERT]). In the CNS, the SERT is a key target for various antidepressant drugs such as Selective Serotonin Reuptake Inhibitors (SSRI), Serotonin Norepinephrin Reuptake Inhibitors (SNRI) and tricyclics family. However, antidepressant activity of SERT inhibitors is not directly mediated by the SERT inhibition, but a consequence of postsynaptic 5-HT receptor activation following the increase in 5-HT levels in the synaptic cleft. In pharmacology, SSRIs are defined as indirect agonist of postsynaptic receptor. Among all the 5-HT receptors, 5-HT1A, 5-HT1B, 5-HT1D, 5-HT2B and 5-HT4 receptors activation would mediate antidepressant effects. In the meanwhile, 5-HT2A, 5-HT2C, 5-HT3, 5-HT6 and 5-HT7 receptors activation would induce opposite effects. The best serotoninergic antidepressant would directly activate 5-HT1A, 5-HT1B, 5-HT1D, 5-HT2B and 5-HT4 and would block 5-HT2A, 5-HT2C, 5-HT3, 5-HT6 and 5-HT7 receptor. If the chemical synthesis of such a compound may be compromised, SERT inhibition associated with the blockade of some but not all 5-HT receptor could shorten onset of action and/or improve antidepressant efficacy on the overall symptomatology of depression. Copyright © 2016 L'Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.
Ethanol intake and sup 3 H-serotonin uptake I: A study in Fawn-Hooded rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daoust, M.; Compagnon, P.; Legrand, E.
1991-01-01
Ethanol intake and synaptosomal {sup 3}H-serotonin uptake were studied in male Fawn-Hooded and Sprague-Dawley rats. Fawn-Hooded rats consumed more alcohol and more water than Sprague-Dawley rats. Plasma alcohol levels of Sprague-Dawley rats were not detectable but were about 5 mg/dl in Fawn-Hooded rats. Ethanol intake increased the Vmax of serotonin uptake in Fawn-Hooded rats in hippocampus and cortex, but not in thalamus. In Fawn-Hooded rats, serotonin uptake (Vmax) was higher than in Sprague-Dawley rats cortex. Ethanol intake reduced the Vmax of serotonin uptake in Fawn-Hooded rats in hippocampus and cortex. In cortex, the carrier affinity for serotonin was increased inmore » alcoholized Fawn-Hooded rats. These results indicate that synaptosomal {sup 3}H-serotonin uptake is affected by ethanol intake. In Fawn-Hooded rats, high ethanol consumption is associated with high serotonin uptake. In rats presenting high serotonin uptake, alcoholization reduces {sup 3}H-serotonin internalization in synaptosomes, indicating a specific sensitivity to alcohol intake of serotonin uptake system.« less
Brvar, Miran; Stajer, Dusan; Kozelj, Gordana; Osredkar, Josko; Mozina, Martin; Bunc, Matjaz
2007-01-01
Altered mental status, autonomic dysfunction, and neuromuscular abnormalities are a characteristic triad of serotonin syndrome. No laboratory tests confirm the diagnosis of serotonin syndrome. A 35-year-old woman took moclobemide, sertraline, and citalopram in a suicide attempt. She was conscious with mild tachycardia, hypertension, and tachypnea one hour after ingestion. In the second hour after ingestion diaphoresis, mydriasis, horizontal nystagmus, trismus, hyperreflexia, clonus, and tremor appeared. She became agitated and unresponsive. In the third hour after ingestion she became comatose and hyperthermic. She was anesthetized, paralyzed, intubated, and ventilated for 24 hours. Serum moclobemide, sertraline, and citalopram levels were above therapeutic levels. The serum serotonin level was within normal limits and the urinary 5-hydroxyindoleacetic acid:creatinine ratio was below the average daily value. The urinary serotonin:creatinine ratio was increased on arrival (1 mg/g). The urinary serotonin level is increased in serotonin syndrome due to a monoamine oxidase inhibitor and selective serotonin-reuptake inhibitors overdose. It is possible that urinary serotonin concentration could be used as a biochemical marker of serotonin syndrome.
Freitas, M A R; Segatto, N; Tischler, N; de Oliveira, E C; Brehmer, A; da Silveira, A B M
2017-03-01
Chagas' disease is still reaching about 10 million people in the world. In South America, one of the most severe forms of this disease is the megacolon, characterized by severe constipation, dilated sigmoid colon and rectum and severe malnutrition. Previous data suggested that mast cells and serotonin (5-hydroxytryptamine [5-HT]) expression could be involved in intestinal homeostasis control, avoiding the chagasic megacolon development. The aim at this study was to characterize the presence of mast cells and expression of serotonin in chagasic patients with and without megacolon and evaluate the relation between mast cells, serotonin and megacolon development. Our results demonstrated that patients without megacolon feature a large amount of serotonin and few mast cells, while patients with megacolon feature low serotonin expression and a lot of mast cells. We believe that serotonin may be involved in the inflammatory process control, triggered by mast cells, and the presence of this substance in large quantities of the intestine could represent a mechanism of megacolon prevention. © 2017 John Wiley & Sons Ltd.
Serotonin induces peripheral antinociception via the opioidergic system.
Diniz, Danielle Aguiar; Petrocchi, Júlia Alvarenga; Navarro, Larissa Caldeira; Souza, Tâmara Cristina; Castor, Marina Gomes Miranda E; Duarte, Igor Dimitri Gama; Romero, Thiago Roberto Lima
2018-01-01
Studies conducted since 1969 have shown that the release of serotonin (5-HT) in the dorsal horn of the spinal cord contributes to opioid analgesia. In the present study, the participation of the opioidergic system in antinociceptive effect serotonin at the peripheral level was examined. The paw pressure test was used with mice (Swiss, males from 35 g) which had increased pain sensitivity by intraplantar injection of PGE 2 (2 μg). Serotonin (250 ng), administered locally to the right paw of animals, produces antinociception in this model. The selective antagonists for mu, delta and kappa opioid receptors, clocinnamox clocinnamox (40 μg), naltrindole (60 μg) and nor-binaltorfimina (200 μg), respectively, inhibited the antinociceptive effect induced by serotonin. Additionally, bestatin (400 μg), an inhibitor of enkephalinases that degrade peptides opioids, enhanced the antinociceptive effect induced by serotonin (low dose of 62.5 ng). These results suggest that serotonin possibly induce peripheral antinociception through the release of endogenous opioid peptides, possible from immune cells or keratinocytes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norman, A.B.; Battaglia, G.; Creese, I.
1985-12-01
In the presence of a 30 nM prazosin mask, (/sup 3/H)-2-(2,6-dimethoxyphenoxyethyl) aminomethyl-1,4-benzodioxane ((/sup 3/H)WB4101) can selectively label 5-HT1 serotonin receptors. Serotonin exhibits high affinity (Ki = 2.5 nM) and monophasic competition for (/sup 3/H) WB4101 binding in cerebral cortex. We have found a significant correlation (r = 0.96) between the affinities of a number of serotonergic and nonserotonergic compounds at (/sup 3/H)WB4101-binding sites in the presence of 30 nM prazosin and (/sup 3/H) lysergic acid diethylamide ((/sup 3/H)LSD)-labeled 5-HT1 serotonin receptors in homogenates of rat cerebral cortex. Despite similar pharmacological profiles, distribution studies indicate that, in the presence of 5more » mM MgSO4, the Bmax of (/sup 3/H)WB4101 is significantly lower than the Bmax of (/sup 3/H)LSD in various brain regions. WB4101 competition for (/sup 3/H) LSD-labeled 5-HT1 receptors fits best to a computer-derived model assuming two binding sites, with the KH for WB4101 being similar to the KD of (/sup 3/H)WB4101 binding derived from saturation experiments. This suggests that (/sup 3/H)WB4101 labels only one of the subtypes of the 5-HT1 serotonin receptors labeled by (/sup 3/H)LSD. The selective 5-HT1A serotonin receptor antagonist, spiperone, and the selective 5-HT1A agonist, 8-hydroxy-2-(di-n-propylamino) tetraline, exhibit high affinity and monophasic competition for (/sup 3/H)WB4101 but compete for multiple (/sup 3/H)LSD 5-HT1 binding sites. These data indicate that (/sup 3/H)WB4101 selectively labels the 5-HT1A serotonin receptor, whereas (/sup 3/H) LSD appears to label both the 5-HT1A and the 5-HT1B serotonin receptor subtypes. The divalent cations, Mn2+, Mg2+, and Ca2+ were found to markedly increase the affinity and Bmax of (/sup 3/H)WB4101 binding in cerebral cortex. Conversely, the guanine nucleotides guanylylimidodiphosphate and GTP, but not the adenosine nucleotide ATP, markedly reduce the Bmax of (/sup 3/H)WB4101 binding.« less
Control of cytokinin and auxin homeostasis in cyanobacteria and algae.
Žižková, Eva; Kubeš, Martin; Dobrev, Petre I; Přibyl, Pavel; Šimura, Jan; Zahajská, Lenka; Záveská Drábková, Lenka; Novák, Ondřej; Motyka, Václav
2017-01-01
The metabolism of cytokinins (CKs) and auxins in vascular plants is relatively well understood, but data concerning their metabolic pathways in non-vascular plants are still rather rare. With the aim of filling this gap, 20 representatives of taxonomically major lineages of cyanobacteria and algae from Cyanophyceae, Xanthophyceae, Eustigmatophyceae, Porphyridiophyceae, Chlorophyceae, Ulvophyceae, Trebouxiophyceae, Zygnematophyceae and Klebsormidiophyceae were analysed for endogenous profiles of CKs and auxins and some of them were used for studies of the metabolic fate of exogenously applied radiolabelled CK, [ 3 H]trans-zeatin (transZ) and auxin ([ 3 H]indole-3-acetic acid (IAA)), and the dynamics of endogenous CK and auxin pools during algal growth and cell division. Quantification of phytohormone levels was performed by high-performance or ultrahigh-performance liquid chromatography-electrospray tandem mass spectrometry (HPLC-MS/MS, UHPLC-MS/MS). The dynamics of exogenously applied [ 3 H]transZ and [ 3 H]IAA in cell cultures were monitored by HPLC with on-line radioactivity detection. The comprehensive screen of selected cyanobacteria and algae for endogenous CKs revealed a predominance of bioactive and phosphate CK forms while O- and N-glucosides evidently did not contribute greatly to the total CK pool. The abundance of cis-zeatin-type CKs and occurrence of CK 2-methylthio derivatives pointed to the tRNA pathway as a substantial source of CKs. The importance of the tRNA biosynthetic pathway was proved by the detection of tRNA-bound CKs during the course of Scenedesmus obliquus growth. Among auxins, free IAA and its oxidation catabolite 2-oxindole-3-acetic acid represented the prevailing endogenous forms. After treatment with [ 3 H]IAA, IAA-aspartate and indole-3-acetyl-1-glucosyl ester were detected as major auxin metabolites. Moreover, different dynamics of endogenous CKs and auxin profiles during S. obliquus culture clearly demonstrated diverse roles of both phytohormones in algal growth and cell division. Our data suggest the existence and functioning of a complex network of metabolic pathways and activity control of CKs and auxins in cyanobacteria and algae that apparently differ from those in vascular plants. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.
Control of cytokinin and auxin homeostasis in cyanobacteria and algae
Žižková, Eva; Kubeš, Martin; Dobrev, Petre I.; Přibyl, Pavel; Šimura, Jan; Zahajská, Lenka; Záveská Drábková, Lenka; Novák, Ondřej; Motyka, Václav
2017-01-01
Background and Aims The metabolism of cytokinins (CKs) and auxins in vascular plants is relatively well understood, but data concerning their metabolic pathways in non-vascular plants are still rather rare. With the aim of filling this gap, 20 representatives of taxonomically major lineages of cyanobacteria and algae from Cyanophyceae, Xanthophyceae, Eustigmatophyceae, Porphyridiophyceae, Chlorophyceae, Ulvophyceae, Trebouxiophyceae, Zygnematophyceae and Klebsormidiophyceae were analysed for endogenous profiles of CKs and auxins and some of them were used for studies of the metabolic fate of exogenously applied radiolabelled CK, [3H]trans-zeatin (transZ) and auxin ([3H]indole-3-acetic acid (IAA)), and the dynamics of endogenous CK and auxin pools during algal growth and cell division. Methods Quantification of phytohormone levels was performed by high-performance or ultrahigh-performance liquid chromatography–electrospray tandem mass spectrometry (HPLC-MS/MS, UHPLC-MS/MS). The dynamics of exogenously applied [3H]transZ and [3H]IAA in cell cultures were monitored by HPLC with on-line radioactivity detection. Key Results The comprehensive screen of selected cyanobacteria and algae for endogenous CKs revealed a predominance of bioactive and phosphate CK forms while O- and N-glucosides evidently did not contribute greatly to the total CK pool. The abundance of cis-zeatin-type CKs and occurrence of CK 2-methylthio derivatives pointed to the tRNA pathway as a substantial source of CKs. The importance of the tRNA biosynthetic pathway was proved by the detection of tRNA-bound CKs during the course of Scenedesmus obliquus growth. Among auxins, free IAA and its oxidation catabolite 2-oxindole-3-acetic acid represented the prevailing endogenous forms. After treatment with [3H]IAA, IAA-aspartate and indole-3-acetyl-1-glucosyl ester were detected as major auxin metabolites. Moreover, different dynamics of endogenous CKs and auxin profiles during S. obliquus culture clearly demonstrated diverse roles of both phytohormones in algal growth and cell division. Conclusions Our data suggest the existence and functioning of a complex network of metabolic pathways and activity control of CKs and auxins in cyanobacteria and algae that apparently differ from those in vascular plants. PMID:27707748
Resistance of rice to insect pests mediated by suppression of serotonin biosynthesis.
Lu, Hai-Ping; Luo, Ting; Fu, Hao-Wei; Wang, Long; Tan, Yuan-Yuan; Huang, Jian-Zhong; Wang, Qing; Ye, Gong-Yin; Gatehouse, Angharad M R; Lou, Yong-Gen; Shu, Qing-Yao
2018-05-07
Rice is one of the world's most important foods, but its production suffers from insect pests, causing losses of billions of dollars, and extensive use of environmentally damaging pesticides for their control 1,2 . However, the molecular mechanisms of insect resistance remain elusive. Although a few resistance genes for planthopper have been cloned, no rice germplasm is resistant to stem borers. Here, we report that biosynthesis of serotonin, a neurotransmitter in mammals 3 , is induced by insect infestation in rice, and its suppression confers resistance to planthoppers and stem borers, the two most destructive pests of rice 2 . Serotonin and salicylic acid derive from chorismate 4 . In rice, the cytochrome P450 gene CYP71A1 encodes tryptamine 5-hydroxylase, which catalyses conversion of tryptamine to serotonin 5 . In susceptible wild-type rice, planthopper feeding induces biosynthesis of serotonin and salicylic acid, whereas in mutants with an inactivated CYP71A1 gene, no serotonin is produced, salicylic acid levels are higher and plants are more insect resistant. The addition of serotonin to the resistant rice mutant and other brown planthopper-resistant genotypes results in a loss of insect resistance. Similarly, serotonin supplementation in artificial diet enhances the performance of both insects. These insights demonstrate that regulation of serotonin biosynthesis plays an important role in defence, and may prove valuable for breeding insect-resistant cultivars of rice and other cereal crops.
Jablonski, Sarah A.; Graham, Devon L.; Vorhees, Charles V.; Williams, Michael T.
2017-01-01
Neonatal exposure to methamphetamine (MA) and developmental chronic stress significantly alter neurodevelopmental profiles that show a variety of long-term physiological and behavioral effects. In the current experiment, Sprague-Dawley rats were exposed to one of two housing conditions along with MA. Rats were given 0 (saline), 5, or 7.5 mg/kg MA, four times per day from postnatal day (P)11 to 15 or P11 to 20. Half of the litters were reared in cages with standard bedding and half with no bedding. Separate litters were assessed at P15 or P20 for organ weights (adrenals, spleen, thymus); corticosterone; and monoamine assessments (dopamine, serotonin, norepinephrine) and their metabolites within the neostriatum, hippocampus, and prefrontal cortex. Findings show neonatal MA altered mono-amines, corticosterone, and organ characteristics alone, and as a function of developmental age and stress compared with controls. These alterations may in part be responsible for MA and early life stress-induced long-term learning and memory deficits. PMID:27817108
Oh, Ji Sun; Seo, Hong Seong; Kim, Kyoung Heon; Pyo, Heesoo; Chung, Bong Chul; Lee, Jeongae
2017-09-01
Tryptophan (Trp) is an essential amino acid that plays an important role in protein synthesis and is a precursor of various substances related to diverse biological functions. An imbalance in Trp metabolites is associated with inflammatory diseases. The accurate and precise measurement of these compounds in biological specimens would provide meaningful information for understanding the biochemical states of various metabolic syndrome-related diseases, such as hyperlipidemia, hypertension, diabetes, and obesity. In this study, we developed a rapid, accurate, and sensitive liquid chromatography-tandem mass spectrometry-based method for the simultaneous targeted analysis of Trp and its related metabolites of the kynurenine (Kyn), serotonin, and tryptamine pathways in urine. The application of the developed method was tested using urine samples after protein precipitation. The detection limits of Trp and its metabolites were in the range of 0.01 to 0.1 μg/mL. The method was successfully validated and applied to urine samples from controls and patients with metabolic syndrome. Our results revealed high concentrations of Kyn, kynurenic acid, xanthurenic acid, and quinolinic acid as well as a high Kyn-to-Trp ratio (KTR) in patients with metabolic syndromes. The levels of urine Kyn and KTR were significantly increased in patients under 60 years old. The profiling of urinary Trp metabolites could be a useful indicator for age-related diseases including metabolic syndrome. ᅟ.
Palomares, Arturo R; Lendínez-Ramírez, Ana M; Pérez-Nevot, Beatriz; Cortés-Rodríguez, Miriam; Martínez, Francisco; Garrido, Nicolás; Ruiz-Galdón, Maximiliano; Reyes-Engel, Armando
2013-06-01
To explore whether serotonin-related gene polymorphisms influence clinical outcomes of IVF treatment in recipients using donated oocytes. Nested case-control study. University-affiliated infertility clinic. Two hundred forty-five women undergoing IVF treatment with donated oocytes. None. Genotype and haplotype analysis of the serotonin transporter-linked polymorphic region (5-HTTLPR), rs1800532, rs6295, rs6313, and rs3813929, between recipients grouped according to the results of the oocyte donation for IVF treatment. No differences were found between genotype distribution of the tryptophan hydroxylase 1, serotonin receptor 2A, and serotonin receptor 2C polymorphisms. Recipients carrying the LL genotype for 5-HTTLPR had lower clinical pregnancy rates (PR) and higher biochemical pregnancy loss (BPL) events. Lower implantation rates were found in CC carriers for 5-HT1A.rs6295 who also presented higher BPL rates. A lower incidence of clinical pregnancy was observed for LC haplotypes, corresponding to an increase in BPL rates. A strong association was found between early pregnancy loss and recipients carrying the 5-HTTLPR and rs6295 genetic variants. Identifying biological processes involving serotonin and embryo implantation may help to understand the dynamics of the maternal-embryo dialogue. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Zhang, Lei; Maleta, Kenneth M; Manary, Mark J; Ryan, Elizabeth P
2017-01-01
Abstract Background: Environmental enteric dysfunction (EED), frequently seen in rural Malawian children, causes chronic inflammation and increases the risk of stunting. Legumes may be beneficial for improving nutrition and reducing the risk of developing EED in weaning children. Objective: The objectives of this study were to determine the nutritional value, verify the food safety, and identify metabolite profiles of 3 legume-based complementary foods: common bean (CB), cowpea (CP), and traditional corn-soy blend (CSB). Methods: Foods were prepared by using local ingredients and analyzed for nutrient composition with the use of Association of Official Analytical Chemists (AOAC) standards (950.46, 991.43, 992.15, 996.06, and 991.36) for macro- and micronutrient proximate analysis. Food safety analysis was conducted in accordance with the Environmental Protection Agency (7471B) and AOAC (2008.02) standards. The metabolite composition of foods was determined with nontargeted ultra-performance LC–tandem mass spectrometry metabolomics. Results: All foods provided similar energy; CB and CP foods contained higher protein and dietary fiber contents than did the CSB food. Iron and zinc were highest in the CSB and CP foods, whereas CB and CP foods contained higher amounts of magnesium, phosphorus, and potassium. A total of 652 distinct metabolites were identified across the 3 foods, and 23, 14, and 36 metabolites were specific to the CSB, CB, and CP foods, respectively. Among the potential dietary biomarkers of intake to distinguish legume foods were pipecolic acid and oleanolic acid for CB; arabinose and serotonin for CSB; and quercetin and α- and γ-tocopherol acid for CP. No heavy metals were detected, and aflatoxin was measured only in the CSB (5.2 parts per billion). Conclusions: Legumes in the diet provide a rich source of protein, dietary fiber, essential micronutrients, and phytochemicals that may reduce EED. These food metabolite analyses identified potential dietary biomarkers of legume intake for stool, urine, and blood detection that can be used in future studies to assess the relation between the distinct legumes consumed and health outcomes. This trial was registered at clinicaltrials.gov as NCT02472262 and NCT02472301.
Electrochemical quantification of serotonin in the live embryonic zebrafish intestine
Njagi, John; Ball, Michael; Best, Marc; Wallace, Kenneth N.; Andreescu, Silvana
2010-01-01
We monitored real-time in vivo levels of serotonin release in the digestive system of intact zebrafish embryos during early development (5 dpf) using differential pulse voltammetry with implanted carbon fiber microelectrodes modified with carbon nanotubes dispersed in nafion. A detection limit of 1 nM, a linear range between 5 to 200 nM and a sensitivity of 83.65 nA·μM−1 were recorded. The microelectrodes were implanted at various locations in the intestine of zebrafish embryos. Serotonin levels of up to 29.9(±1.13) nM were measured in vivo in normal physiological conditions. Measurements were performed in intact live embryos without additional perturbation beyond electrode insertion. The sensor was able to quantify pharmacological alterations in serotonin release and provide the longitudinal distribution of this neurotransmitter along the intestine with high spatial resolution. In the presence of fluvoxamine, a selective serotonin reuptake inhibitor (SSRI), concentrations of 54.1(±1.05) nM were recorded while in the presence of p-chloro-phenylalanine (PCPA), a tryptophan hydroxylase inhibitor, the serotonin levels decreased to 7.2(±0.45) nM. The variation of serotonin levels was correlated with immunohistochemical analysis. We have demonstrated the first use of electrochemical microsensors for in vivo monitoring of intestinal serotonin levels in intact zebrafish embryos. PMID:20148518
Hepatocyte transplants improve liver function and encephalopathy in portacaval shunted rats.
Fogel, Wieslawa Agnieszka; Stasiak, Anna; Maksymowicz, Michał; Kobos, Jozef; Unzeta, Mercedes; Mussur, Miroslaw
2014-07-01
Rats with portacaval shunt (PCS) are useful experimental models of human hepatic encephalopathy in chronic liver dysfunction. We have previously shown that PCS modifies amine neurotransmitter systems in the CNS and increases voluntary alcohol intake by rats. Hepatocyte transplantation, used in acute liver failure, has recently also been applied to chronic liver diseases, which prompted us to investigate whether the altered brain amine system and the drinking behavior in long-term shunted rats could be normalized by hepatocyte transplants. Hepatocytes, isolated from syngeneic donors by collagenase digestion, were injected (3 × 10(6) cells/rat) into the pancreatic tail region, 6 months after PCS. Hepatic function was evaluated by measuring urine urea and plasma L-histidine concentrations. A free choice test with two bottles (tap water and 10% ethyl alcohol) was performed for 3 days to assess the rats' preference for alcohol. The rats were euthanized 2 months posttransplantation. Brain histamine and 5-hydroxyindoleacetic acid (5-HIAA) levels were measured by radioenzymatic assay and by HPLC-EC, respectively, N-tele-methylhistamine by GC/MS while MAOA and MAOB activities by isotopic procedures. Portacaval shunt rats with hepatocyte transplants gave more urea than before transplantation, with lower plasma L-His levels and higher body weight versus the PCS counterparts. Also, those rats consumed less alcohol. The CNS amines and 5-HIAA concentrations, as well as MAO-B activity, being abnormally high in untreated PCS rats, significantly reduced after PCS hepatocyte treatment. The results support the therapeutic values of hepatocyte transplants in chronic liver diseases and the temporary character of PCS-exerted CNS dysfunctions. © 2014 John Wiley & Sons Ltd.
Dobson, R; Valle, J W; Burgess, M I; Poston, G J; Cuthbertson, D J
2015-12-01
Screening for carcinoid heart disease is an important, yet frequently neglected aspect of the management of patients with neuroendocrine tumours (NETs). Screening is advocated in international guidelines, although recommendations on the modality and frequency are poorly defined. We mapped current practice for the screening and management of carcinoid heart disease in specialist NET centres throughout the UK and Republic of Ireland. Thirty-five NET centres were invited to complete an online questionnaire outlining the size of NET service, patient selection criteria for carcinoid heart disease screening and the modality and frequency of screening. Twenty-eight centres responded (80%), representing over 5500 patients. Eleven per cent of centres screen all patients with any NET, 14% screen only patients with midgut NETs, 32% screen all patients with liver metastases and/or carcinoid syndrome and 43% screen all patients with evidence of syndrome or raised urinary/serum/plasma 5-hydroxyindoleacetic acid (5HIAA). The mode of screening included clinical examination, echocardiography and biomarker measurement: 89% of centres carry out echocardiography, ranging from at initial presentation only (24%), periodically without clearly defined intervals (28%), annually (36%) or less than annually (12%); three centres use a scoring system to report their echocardiograms. Fifty per cent of centres utilise biomarkers for screening (chromogranins, plasma/urinary 5HIAA or most commonly N-terminal pro-brain natriuretic peptide) at varying time intervals. There is considerable heterogeneity across the UK and Ireland in multiple aspects of screening and management of carcinoid heart disease. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Human Beta Cells Produce and Release Serotonin to Inhibit Glucagon Secretion from Alpha Cells.
Almaça, Joana; Molina, Judith; Menegaz, Danusa; Pronin, Alexey N; Tamayo, Alejandro; Slepak, Vladlen; Berggren, Per-Olof; Caicedo, Alejandro
2016-12-20
In the pancreatic islet, serotonin is an autocrine signal increasing beta cell mass during metabolic challenges such as those associated with pregnancy or high-fat diet. It is still unclear whether serotonin is relevant for regular islet physiology and hormone secretion. Here, we show that human beta cells produce and secrete serotonin when stimulated with increases in glucose concentration. Serotonin secretion from beta cells decreases cyclic AMP (cAMP) levels in neighboring alpha cells via 5-HT 1F receptors and inhibits glucagon secretion. Without serotonergic input, alpha cells lose their ability to regulate glucagon secretion in response to changes in glucose concentration, suggesting that diminished serotonergic control of alpha cells can cause glucose blindness and the uncontrolled glucagon secretion associated with diabetes. Supporting this model, pharmacological activation of 5-HT 1F receptors reduces glucagon secretion and has hypoglycemic effects in diabetic mice. Thus, modulation of serotonin signaling in the islet represents a drug intervention opportunity. Published by Elsevier Inc.
Triptans, serotonin agonists, and serotonin syndrome (serotonin toxicity): a review.
Gillman, P Ken
2010-02-01
The US Food and Drug Administration (FDA) have suggested that fatal serotonin syndrome (SS) is possible with selective serotonin reuptake inhibitors (SSRIs) and triptans: this warning affects millions of patients as these drugs are frequently given simultaneously. SS is a complex topic about which there is much misinformation. The misconception that 5-HT1A receptors can cause serious SS is still widely perpetuated, despite quality evidence that it is activation of the 5-HT2A receptor that is required for serious SS. This review considers SS involving serotonin agonists: ergotamine, lysergic acid diethylamide, bromocriptine, and buspirone, as well as triptans, and reviews the experimental foundation underpinning the latest understanding of SS. It is concluded that there is neither significant clinical evidence, nor theoretical reason, to entertain speculation about serious SS from triptans and SSRIs. The misunderstandings about SS exhibited by the FDA, and shared by the UK Medicines and Healthcare products Regulatory Agency (in relation to methylene blue), are an important issue with wide ramifications.
Structure and Function of Serotonin G protein Coupled Receptors
McCorvy, John D.; Roth, Bryan L.
2015-01-01
Serotonin receptors are prevalent throughout the nervous system and the periphery, and remain one of the most lucrative and promising drug discovery targets for disorders ranging from migraine headaches to neuropsychiatric disorders such as schizophrenia and depression. There are 14 distinct serotonin receptors, of which 13 are G protein coupled receptors (GPCRs), which are targets for approximately 40% of the approved medicines. Recent crystallographic and biochemical evidence has provided a converging understanding of the basic structure and functional mechanics of GPCR activation. Currently, two GPCR crystal structures exist for the serotonin family, the 5-HT1B and 5-HT2B receptor, with the antimigraine and valvulopathic drug ergotamine bound. The first serotonin crystal structures not only provide the first evidence of serotonin receptor topography but also provide mechanistic explanations into functional selectivity or biased agonism. This review will detail the findings of these crystal structures from a molecular and mutagenesis perspective for driving rational drug design for novel therapeutics incorporating biased signaling. PMID:25601315
Xia, Yan; Wang, Dawei; Zhang, Nan; Wang, Zhihao; Pang, Li
2018-02-01
To investigate the prognostic value of plasma serotonin levels in colorectal cancer (CRC). Preoperative plasma serotonin levels of 150 healthy control (HC) cases, 150 benign colorectal polyp (BCP) cases, and 176 CRC cases were determined using radioimmunoassay assay. Serotonin levels were compared between HC, BCP, and CRC cases, and those in CRC patients were related to 5-year outcome. Plasma serotonin levels were markedly higher in CRC patients than in either HCs or BCP cases. An elevated serotonin level was significantly associated with advanced tumor node metastasis. Receiver operating characteristic curve analysis showed that the level of serotonin had a high predictive value for disease recurrence and mortality. Multivariate analysis revealed that high serotonin level was significantly associated with poor recurrence-free survival and overall survival. Our results suggest that a high peri-operative plasma serotonin level is useful as a prognostic biomarker for CRC recurrence and poor survival. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, Mesbah; Danysz, Wojciech; Schmidt, Werner Juergen
2009-10-15
Systemic inhibition of complex I by rotenone in rats represents a model of Parkinson's disease (PD). The aim of this study was to elucidate whether neramexane (NMDA, nicotinic {alpha}9/{alpha}10 and 5-HT{sub 3} receptor antagonist), idazoxan ({alpha}{sub 2}-adrenoceptor antagonist) or 2-methyl-6-(phenyl-ethyl)-pyrimidine (MPEP, metabotropic glutamate receptor 5 antagonist) prevents rotenone-induced parkinsonian-like behaviours and neurochemical changes in rats. Rotenone (2.5 mg/kg i.p. daily) was administered over 60 days together with saline, neramexane (5 mg/kg i.p., b.i.d.), idazoxan (2.5 mg/kg i.p., b.i.d.) or MPEP (2.5 mg/kg i.p., b.i.d.). The same doses of neramexane, idazoxan and MPEP were administered to rats treated with vehicle insteadmore » of rotenone. Treatment-related effects on parkinsonian-like behaviours, such as hypokinesia/rigidity and locomotor activity, were evaluated. Moreover, concentrations of dopamine, serotonin and their metabolites were measured in rats from each experimental group. Over the 60-day treatment period, the rotenone + saline treated animals developed hypokinesia, expressed as an increase in the bar and grid descent latencies in the catalepsy test, and a decrease in locomotor activity. Neramexane and idazoxan partially prevented the development of catalepsy in rotenone-treated rats. Co-administration of MPEP with rotenone resulted only in a decrease in descent latency in the grid test on day 60. Chronic rotenone treatment reduced concentrations of dopamine and serotonin in the anterior striatum, which was blocked by co-treatment with neramexane or idazoxan but not with MPEP. Only neramexane treatment blocked the rotenone-induced decrease in dopamine levels in the substantia nigra pars compacta. In conclusion, neramexane and idazoxan counteracted to some extent the development of parkinsonian symptoms and neurochemical alterations in the rotenone model of Parkinson's disease.« less
Mohamed, M I; Rahman, T A
1982-01-01
1. The variations in 5-HT and 5-HIAA levels following heat exposure and split heat doses were determined in the different brain regions of Gerbillus pyramidum, Streptopelia senegalensis aegyptiaca and Agama stellio. 2. Heat exposure was found to be associated with an increase in the levels of the two indole compounds. 3. The 5-HT concentrations increased markedly in the three species following the first heat dose and decreased following the second dose in the various brain regions except in the cerebellum of Agama. 4. The increased 5-HT levels when animals are exposed to high temperature probably represent a response to activate heat-loss mechanisms and to depress heat production.
Whitaker-Azmitia, Patricia M
2005-02-01
The hypothesis explored in this review is that the high levels of serotonin in the blood seen in some autistic children (the so-called hyperserotonemia of autism) may lead to some of the behavioral and cellular changes also observed in the disorder. At early stages of development, when the blood-brain Barrier is not yet fully formed, the high levels of serotonin in the blood can enter the brain of a developing fetus and cause loss of serotonin terminals through a known negative feedback function of serotonin during development. The loss of serotonin innervation persists throughout subsequent development and the symptoms of autism appear. A review of the basic scientific literature on prenatal treatments affecting serotonin is given, in support of this hypothesis, with an emphasis on studies using the serotonin agonist, 5-methoxytryptamine (5-MT). In work using 5-MT to mimic hyperserotonemia, Sprague-Dawley rats are treated from gestational day 12 until postnatal 20. In published reports, these animals have been found to have a significant loss of serotonin terminals, decreased metabolic activity in cortex, changes in columnar development in cortex, changes in serotonin receptors, and "autistic-like" behaviors. In preliminary cellular findings given in this review, the animals have also been found to have cellular changes in two relevant brain regions: 1. Central nucleus of the amygdala, a brain region involved in fear-responding, where an increase in calcitonin gene related peptide (CGRP) was found 2. Paraventricular nucleus of the hypothalamus, a brain region involved in social memory and bonding, where a decrease in oxytocin was found. Both of these cellular changes could result from loss of serotonin innervation, possibly due to loss of terminal outgrowth from the same cells of the raphe nuclei. Thus, increased serotonergic activity during development could damage neurocircuitry involved in emotional responding to social stressors and may have relevance to the symptoms of autism.
Harry and Louise and health care reform: romancing public opinion.
Goldsteen, R L; Goldsteen, K; Swan, J H; Clemeña, W
2001-12-01
The question whether the "Harry and Louise" campaign ads, sponsored by the Health Insurance Association of America (HIAA) during the 1993-1994 health care reform debate, influenced public opinion has particular relevance today since interest groups are increasingly choosing commercial-style mass media campaigns to sway public opinion about health policy issues. Our study revisits the issue of the Harry and Louise campaign's influence on public opinion, comparing the ad campaign's messages to changes in opinion about health care reform over a twenty-six-month period in Oklahoma. Looking at the overall trends just prior to the introduction of the Harry and Louise campaign, public opinion was going in the "wrong" direction, from the HIAA perspective. Moreover, public opinion continued in the wrong direction until the mid-point of the campaign. However, in either the turning point of the campaign in terms of message content and tone or in the lag period following it, public opinion reversed on each health reform issue and returned to pre-campaign levels. It appears from these findings that the campaign captured public opinion when support for issues that were unfavorable to HIAA members was increasing and turned public opinion back to pre-campaign levels. The campaign may result in many more such marriages of political interest groups and commercial advertisers for the purpose of demobilizing public support for health policy initiatives that are unfavorable to special interests.
A Physiologic Role for Serotonergic Transmission in Adult Rat Taste Buds
Jaber, Luc; Zhao, Fang-li; Kolli, Tamara; Herness, Scott
2014-01-01
Of the multiple neurotransmitters and neuropeptides expressed in the mammalian taste bud, serotonin remains both the most studied and least understood. Serotonin is expressed in a subset of taste receptor cells that form synapses with afferent nerve fibers (type III cells) and was once thought to be essential to neurotransmission (now understood as purinergic). However, the discovery of the 5-HT1A serotonin receptor in a subset of taste receptor cells paracrine to type III cell suggested a role in cell-to-cell communication during the processing of taste information. Functional data describing this role are lacking. Using anatomical and neurophysiological techniques, this study proposes a modulatory role for serotonin during the processing of taste information. Double labeling immunocytochemical and single cell RT-PCR technique experiments documented that 5-HT1A-expressing cells co-expressed markers for type II cells, cells which express T1R or T2R receptors and release ATP. These cells did not co-express type III cells markers. Neurophysiological recordings from the chorda tympani nerve, which innervates anterior taste buds, were performed prior to and during intravenous injection of a 5-HT1A receptor antagonist. These experiments revealed that serotonin facilitates processing of taste information for tastants representing sweet, sour, salty, and bitter taste qualities. On the other hand, injection of ondansetron, a 5-HT3 receptor antagonist, was without effect. Collectively, these data support the hypothesis that serotonin is a crucial element in a finely-tuned feedback loop involving the 5-HT1A receptor, ATP, and purinoceptors. It is hypothesized that serotonin facilitates gustatory signals by regulating the release of ATP through ATP-release channels possibly through phosphatidylinositol 4,5-bisphosphate resynthesis. By doing so, 5-HT1A activation prevents desensitization of post-synaptic purinergic receptors expressed on afferent nerve fibers and enhances the afferent signal. Serotonin may thus play a major modulatory role within peripheral taste in shaping the afferent taste signals prior to their transmission across gustatory nerves. PMID:25386961
Maia, Gisela H; Brazete, Cátia S; Soares, Joana I; Luz, Liliana L; Lukoyanov, Nikolai V
2017-09-01
Serotonin is implicated in the regulation of seizures, but whether or not it can potentiate the effects of epileptogenic factors is not fully established. Using the kainic acid model of epilepsy in rats, we tested the effects of serotonin depletion on (1) susceptibility to acute seizures, (2) development of spontaneous recurrent seizures and (3) behavioral and neuroanatomical sequelae of kainic acid treatment. Serotonin was depleted by pretreating rats with p-chlorophenylalanine. In different groups, kainic acid was injected at 3 different doses: 6.5mg/kg, 9.0mg/kg or 12.5mg/kg. A single dose of 6.5mg/kg of kainic acid reliably induced status epilepticus in p-chlorophenylalanine-pretreated rats, but not in saline-pretreated rats. The neuroexcitatory effects of kainic acid in the p-chlorophenylalanine-pretreated rats, but not in saline-pretreated rats, were associated with the presence of tonic-clonic convulsions and high lethality. Compared to controls, a greater portion of serotonin-depleted rats showed spontaneous recurrent seizures after kainic acid injections. Loss of hippocampal neurons and spatial memory deficits associated with kainic acid treatment were exacerbated by prior depletion of serotonin. The present findings are of particular importance because they suggest that low serotonin activity may represent one of the major risk factors for epilepsy and, thus, offer potentially relevant targets for prevention of epileptogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.
Balasubramanian, Priya; Sirivelu, Madhu P; Weiss, Kathryn A; Wagner, James G; Harkema, Jack R; Morishita, Masako; Mohankumar, P S; Mohankumar, Sheba M J
2013-05-01
Acute exposure to airborne pollutants, especially particulate matter (PM2.5) is known to increase hospital admissions for cardiovascular conditions, increase cardiovascular related mortality and predispose the elderly and obese individuals to cardiovascular conditions. The mechanisms by which PM2.5 exposure affects the cardiovascular system is not clear. Since the autonomic system plays an important role in cardiovascular regulation, we hypothesized that PM2.5 exposure most likely activates the paraventricular nucleus (PVN) of the hypothalamus to cause an increase in sympathetic nervous system and/or stress axis activity. We also hypothesized that these changes may be sustained in obese rats predisposing them to higher cardiovascular risk. To test this, adult male Brown Norway (BN) rats were subjected to one day or three days of inhalation exposures to filtered air (FA) or concentrated air particulate (CAP) derived from ambient PM2.5. Corpulent JCR-LA rats were exposed to FA or CAP for four days. Animals were sacrificed 24h after the last inhalation exposure. Their brains were removed, frozen and sectioned. The PVN and median eminence (ME) were microdissected. PVN was analyzed for norepinephrine (NE), dopamine (DA) and 5-hydroxy-indole acetic acid (5-HIAA) levels using HPLC-EC. ME was analyzed for corticotrophin releasing hormone (CRH) levels by ELISA. One day exposure to CAP increased NE levels in the PVN and CRH levels in the ME of BN rats. Repeated exposures to CAP did not affect NE levels in the PVN of BN rats, but increased NE levels in JCR/LA rats. A similar pattern was observed with 5-HIAA levels. DA levels on the other hand, were unaffected in both BN and JCR/LA strains. These data suggest that repeated exposures to PM2.5 continue to stimulate the PVN in obese animals but not lean rats. Copyright © 2012 Elsevier Inc. All rights reserved.
Lete, Iñaki; Lapuente, Oihane
2016-01-01
Premenstrual syndrome and its most severe form, premenstrual dysphoric disorder (PMDD), are two well-defined clinical entities that affect a considerable number of women. Progesterone metabolites and certain neurotransmitters, such as gamma-aminobutyric acid and serotonin, are involved in the etiology of this condition. Until recently, the only treatment for women with PMDD was psychoactive drugs, such as selective serotonin reuptake inhibitors. Several years ago, there has been evidence of the beneficial role of combined hormonal contraceptives in controlling PMDD symptoms. Oral combined hormonal contraceptives that contain drospirenone in a 24+4-day regimen are the only drugs that have been approved by US Food and Drug Administration for the treatment of PMDD, but there is scientific evidence that other agents, with other formulations and regimens, could also be effective for the treatment of this condition. However, it remains unclear whether the beneficial effect of combined hormonal contraceptives is associated with the type of estrogen or progestogen used or the treatment regimen. PMID:29386943
Neurotoxic effects of ecstasy on the thalamus.
de Win, Maartje M L; Jager, Gerry; Booij, Jan; Reneman, Liesbeth; Schilt, Thelma; Lavini, Cristina; Olabarriaga, Sílvia D; Ramsey, Nick F; Heeten, Gerard J den; van den Brink, Wim
2008-10-01
Neurotoxic effects of ecstasy have been reported, although it remains unclear whether effects can be attributed to ecstasy, other recreational drugs or a combination of these. To assess specific/independent neurotoxic effects of heavy ecstasy use and contributions of amphetamine, cocaine and cannabis as part of The Netherlands XTC Toxicity (NeXT) study. Effects of ecstasy and other substances were assessed with (1)H-magnetic resonance spectroscopy, diffusion tensor imaging, perfusion weighted imaging and [(123)I]2beta-carbomethoxy-3beta-(4-iodophenyl)-tropane ([(123)I]beta-CIT) single photon emission computed tomography (serotonin transporters) in a sample (n=71) with broad variation in drug use, using multiple regression analyses. Ecstasy showed specific effects in the thalamus with decreased [(123)I]beta-CIT binding, suggesting serotonergic axonal damage; decreased fractional anisotropy, suggesting axonal loss; and increased cerebral blood volume probably caused by serotonin depletion. Ecstasy had no effect on brain metabolites and apparent diffusion coefficients. Converging evidence was found for a specific toxic effect of ecstasy on serotonergic axons in the thalamus.
Stress enables reinforcement-elicited serotonergic consolidation of fear memory
Baratta, Michael V.; Kodandaramaiah, Suhasa B.; Monahan, Patrick E.; Yao, Junmei; Weber, Michael D.; Lin, Pei-Ann; Gisabella, Barbara; Petrossian, Natalie; Amat, Jose; Kim, Kyungman; Yang, Aimei; Forest, Craig R.; Boyden, Edward S.; Goosens, Ki A.
2015-01-01
Background Prior exposure to stress is a risk factor for developing post-traumatic stress disorder (PTSD) in response to trauma, yet the mechanisms by which this occurs are unclear. Using a rodent model of stress-based susceptibility to PTSD, we investigated the role of serotonin in this phenomenon. Methods Adult mice were exposed to repeated immobilization stress or handling, and the role of serotonin in subsequent fear learning was assessed using pharmacological manipulation and western blot detection of serotonin receptors, measurements of serotonin, high-speed optogenetic silencing, and behavior. Results Both dorsal raphe serotonergic activity during aversive reinforcement and amygdala serotonin 2c receptor (5-HT2CR) activity during memory consolidation are necessary for stress enhancement of fear memory, but neither process affects fear memory in unstressed mice. Additionally, prior stress increases amygdala sensitivity to serotonin by promoting surface expression of 5-HT2CR without affecting tissue levels of serotonin in the amygdala. We also show that the serotonin that drives stress enhancement of associative cued fear memory can arise from paired or unpaired footshock, an effect not predicted by theoretical models of associative learning. Conclusion Stress bolsters the consequences of aversive reinforcement, not by simply enhancing the neurobiological signals used to encode fear in unstressed animals, but rather by engaging distinct mechanistic pathways. These results reveal that predictions from classical associative learning models do not always hold for stressed animals, and suggest that 5-HT2CR blockade may represent a promising therapeutic target for psychiatric disorders characterized by excessive fear responses such as that observed in PTSD. PMID:26248536
Kious, Brent M; Sabic, Hana; Sung, Young-Hoon; Kondo, Douglas G; Renshaw, Perry
2017-10-01
Many women with major depressive disorder (MDD) respond inadequately to standard treatments. Augmentation of conventional antidepressants with creatine monohydrate and 5-hydroxytryptophan (5-HTP) could correct deficits in serotonin production and brain bioenergetics associated with depression in women, yielding synergistic benefit. We describe an open-label study of 5-HTP and creatine augmentation in women with MDD who had failed selective serotonin reuptake inhibitor (SSRI) or serotonin-norepinephrine reuptake inhibitor (SNRI) monotherapy. Fifteen women who were adequately adherent to an SSRI or SNRI and currently experiencing MDD, with a 17-item Hamilton Depression Rating Scale (HAM-D) score of 16 or higher, were treated with 5 g of creatine monohydrate daily and 100 mg of 5-HTP twice daily for 8 weeks, with 4 weeks of posttreatment follow-up. The primary outcome was change in mean HAM-D scores. Mean HAM-D scores declined from 18.9 (SD, 2.5) at pretreatment visits to 7.5 (SD, 4.4) (P < 0.00001), a decrease of 60%. Participants did not experience any serious treatment-related adverse events. Combination treatment with creatine and 5-HTP may represent an effective augmentation strategy for women with SSRI- or SNRI-resistant depression. Given the limitations of this small, open-label trial, future study in randomized, placebo-controlled trials is warranted.
The modulation role of serotonin in Pacific oyster Crassostrea gigas in response to air exposure.
Dong, Wenjing; Liu, Zhaoqun; Qiu, Limei; Wang, Weilin; Song, Xiaorui; Wang, Xiudan; Li, Yiqun; Xin, Lusheng; Wang, Lingling; Song, Linsheng
2017-03-01
Serotonin, also known as 5-hydroxytryptamine (5-HT), is a critical neurotransmitter in the neuroendocrine-immune regulatory network and involved in regulation of the stress response in vertebrates and invertebrates. In the present study, serotonin was found to be widely distributed in the tissues of Pacific oyster Crassostrea gigas, including haemolymph, gonad, visceral ganglion, mantle, gill, labial palps and hepatopancreas, and its concentration increased significantly in haemolymph and mantle after the oysters were exposed to air for 1 d. The apoptosis rate of haemocytes was significantly declined after the oysters received an injection of extra serotonin, while the activity of superoxide dismutase (SOD) in haemolymph increased significantly. After the stimulation of serotonin during air exposure, the apoptosis rate of oyster haemocytes and the concentration of H 2 O 2 in haemolymph were significantly decreased, while the SOD activity was significantly elevated. Furthermore, the survival rate of oysters from 4 th to 6 th d after injection of serotonin was higher than that of FSSW group and air exposure group. The results clearly indicated that serotonin could modulate apoptotic effect and redox during air exposure to protect oysters from stress. Copyright © 2017 Elsevier Ltd. All rights reserved.
Inam, Qurrat-ul-Aen; Ikram, Huma; Shireen, Erum; Haleem, Darakhshan Jabeen
2016-05-01
Lower levels of 5-hydroxytryptamine (5-HT; serotonin) in the brain elicit sugar craving, while ingestion of sugar rich diet improves mood and alleviates anxiety. Gender differences occur not only in brain serotonin metabolism but also in a serotonin mediated functional responses. The present study was therefore designed to investigate gender related differences on the effects of long term consumption of sugar rich diet on the metabolism of serotonin in the hypothalamus and whole brain which may be relevant with the hyperphagic and anxiety reducing effects of sugar rich diet. Male and female rats were fed freely on a sugar rich diet for five weeks. Hyperphagic effects were monitored by measuring total food intake and body weights changes during the intervention. Anxiolytic effects of sugar rich diet was monitored in light-dark transition test. The results show that ingestion of sugar rich diet decreased serotonin metabolism more in female than male rats. Anxiolytic effects were elicited only in male rats. Hyperphagia was comparable in both male and female rats. Finings would help in understanding the role of sugar rich diet-induced greater decreases of serotonin in sweet craving in women during stress.
Effects of progesterone administered after MPTP on dopaminergic neurons of male mice.
Litim, Nadhir; Morissette, Marc; Di Paolo, Thérèse
2017-05-01
Progesterone neuroprotection of striatal dopamine (DA) in male mice lesioned with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was previously reported when administered before MPTP or an hour after. A dose of MPTP to induce a partial lesion was used to model early stages or prodromal Parkinson. We hypothesized that brain DA can be restored by progesterone administered early (24 h) or later (5 days) after MPTP. Male mice received 4 injections of MPTP (8 mg/kg) and progesterone (8 mg/kg) once daily for 5 days started 24 h or 5 days after MPTP. The lesion decreased striatal DA and its metabolites but not serotonin contents. MPTP mice treated with progesterone starting 24 h but not 5 days after MPTP had higher striatal DA and its metabolites content than vehicle-treated MPTP mice. Striatal DA transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) specific binding decreased in lesioned mice and were corrected with progesterone treatment starting 24 h but not 5 days after MPTP. Striatal glial fibrillary acidic protein (GFAP) levels, a marker of activated astrocytes, were elevated by the MPTP lesion and were corrected with progesterone treatment starting 24 h after MPTP. Striatal brain derived neurotrophic factor (BDNF) levels were decreased by the MPTP lesion and were prevented by progesterone treatments whereas no change of Akt, GSK3β, ERK1 and 2 and their phosphorylated forms were observed. Thus, progesterone administered after MPTP in mice protected dopaminergic neurons through modulation of neuroinflammation and BDNF. In humans, progesterone could possibly be used as a disease-modifying drug in prodromal Parkinson. Copyright © 2017 Elsevier Ltd. All rights reserved.
Altered serotonin physiology in human breast cancers favors paradoxical growth and cell survival
2009-01-01
Introduction The breast microenvironment can either retard or accelerate the events associated with progression of latent cancers. However, the actions of local physiological mediators in the context of breast cancers are poorly understood. Serotonin (5-HT) is a critical local regulator of epithelial homeostasis in the breast and other organs. Herein, we report complex alterations in the intrinsic mammary gland serotonin system of human breast cancers. Methods Serotonin biosynthetic capacity was analyzed in human breast tumor tissue microarrays using immunohistochemistry for tryptophan hydroxylase 1 (TPH1). Serotonin receptors (5-HT1-7) were analyzed in human breast tumors using the Oncomine database. Serotonin receptor expression, signal transduction, and 5-HT effects on breast cancer cell phenotype were compared in non-transformed and transformed human breast cells. Results In the context of the normal mammary gland, 5-HT acts as a physiological regulator of lactation and involution, in part by favoring growth arrest and cell death. This tightly regulated 5-HT system is subverted in multiple ways in human breast cancers. Specifically, TPH1 expression undergoes a non-linear change during progression, with increased expression during malignant progression. Correspondingly, the tightly regulated pattern of 5-HT receptors becomes dysregulated in human breast cancer cells, resulting in both ectopic expression of some isoforms and suppression of others. The receptor expression change is accompanied by altered downstream signaling of 5-HT receptors in human breast cancer cells, resulting in resistance to 5-HT-induced apoptosis, and stimulated proliferation. Conclusions Our data constitutes the first report of direct involvement of 5-HT in human breast cancer. Increased 5-HT biosynthetic capacity accompanied by multiple changes in 5-HT receptor expression and signaling favor malignant progression of human breast cancer cells (for example, stimulated proliferation, inappropriate cell survival). This occurs through uncoupling of serotonin from the homeostatic regulatory mechanisms of the normal mammary epithelium. The findings open a new avenue for identification of diagnostic and prognostic markers, and valuable new therapeutic targets for managing breast cancer. PMID:19903352
Structural basis of ligand recognition in 5-HT3 receptors
Kesters, Divya; Thompson, Andrew J; Brams, Marijke; van Elk, René; Spurny, Radovan; Geitmann, Matthis; Villalgordo, Jose M; Guskov, Albert; Helena Danielson, U; Lummis, Sarah C R; Smit, August B; Ulens, Chris
2013-01-01
The 5-HT3 receptor is a pentameric serotonin-gated ion channel, which mediates rapid excitatory neurotransmission and is the target of a therapeutically important class of anti-emetic drugs, such as granisetron. We report crystal structures of a binding protein engineered to recognize the agonist serotonin and the antagonist granisetron with affinities comparable to the 5-HT3 receptor. In the serotonin-bound structure, we observe hydrophilic interactions with loop E-binding site residues, which might enable transitions to channel opening. In the granisetron-bound structure, we observe a critical cation–π interaction between the indazole moiety of the ligand and a cationic centre in loop D, which is uniquely present in the 5-HT3 receptor. We use a series of chemically tuned granisetron analogues to demonstrate the energetic contribution of this electrostatic interaction to high-affinity ligand binding in the human 5-HT3 receptor. Our study offers the first structural perspective on recognition of serotonin and antagonism by anti-emetics in the 5-HT3 receptor. PMID:23196367
[The effect of mineral water on serotonin and insulin production (an experimental study)].
Polushina, N D
1998-01-01
Radioimmunoassay (DRG kits) and orthotoluidine test were conducted to measure blood serotonin, insulin and glucose in 70 intact Wistar rat males before and after a course of drinking mineral water Essentuki 17 (MW). After the MW drinking course, a single dose of mineral water increases basal levels of serotonin and insulin, sensitivity of endocrine cells to MW. Serotonin and insulin rose maximally on minute 5 after the drink while in contrast to minute 15 and 30 before initiation of the MW drinking course. A direct correlation was found between blood concentrations of serotonin and insulin.
Reduced sensitivity to MDMA-induced facilitation of social behaviour in MDMA pre-exposed rats.
Thompson, Murray R; Callaghan, Paul D; Hunt, Glenn E; McGregor, Iain S
2008-05-15
The acute effects of the party drug 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") in humans include feelings of love, closeness towards other people and an increased acceptance of others views and feelings. Some evidence suggests that regular MDMA users develop a subsensitivity to the positive effects of the drug and escalate their intake of the drug over time as a result. The current study investigated whether brief exposure to relatively high doses of MDMA in rats produces a subsequent attenuation in the ability of MDMA to enhance social interaction. Male Wistar rats were exposed to either MDMA (4 x 5 mg/kg over 4 h) or vehicle on two consecutive days. Twelve weeks later, MDMA pre-exposed rats displayed a significantly shorter period of time spent in social interaction than controls when tested in the drug-free state. MDMA pre-exposed rats also showed a blunted prosocial response to MDMA (2.5 mg/kg) relative to controls. This difference was overcome by increasing the MDMA dose to 5 mg/kg. The 5-HT(1A) agonist 8-OH-DPAT (250 microg/kg but not 125 microg/kg) increased social interaction and this effect did not differ in MDMA and vehicle pre-exposed rats. HPLC analysis showed a small but significant depletion of prefrontal 5-HT and 5-HIAA in MDMA pre-exposed rats. Prefrontal 5-HIAA concentrations were also reduced in the subset of vehicle and MDMA pre-exposed rats that received additional testing with MDMA. These results indicate that treatment with MDMA not only causes lasting reductions in social interaction in rats but causes an attenuation of the prosocial effects of subsequent MDMA administration. The lack of a differential response to 8-OH-DPAT agrees with other findings that the 5-HT(1A) receptor system remains functionally intact following MDMA pre-exposure and suggests that other neuroadaptations may underlie the lasting social deficits caused by MDMA.
Clemens, Kelly J; Van Nieuwenhuyzen, Petra S; Li, Kong M; Cornish, Jennifer L; Hunt, Glenn E; McGregor, Iain S
2004-05-01
3,4-Methylenedioxymethamphetamine (MDMA) and methamphetamine (METH) are illicit drugs that are increasingly used in combination. The acute and long-term effects of MDMA/METH combinations are largely uncharacterised. The current study investigated the behavioural, thermal and neurotoxic effects of MDMA and METH when given alone or in combined low doses. Male rats received four injections, one every 2 h, of vehicle, MDMA (2.5 or 5 mg/kg per injection), METH (2.5 or 5 mg/kg per injection) or combined MDMA/METH (1.25+1.25 mg/kg per injection or 2+2 mg/kg per injection). Drugs were given at an ambient temperature of 28 degrees C to simulate hot nightclub conditions. Body temperature, locomotor activity and head-weaving were assessed during acute drug administration while social interaction, anxiety-related behavior on the emergence test and neurochemical parameters were assessed 4-7 weeks later. All treatments acutely increased locomotor activity, while pronounced head-weaving was seen with both MDMA/METH treatments and the higher dose METH treatment. Acute hyperthermia was greatest with the higher dose MDMA/METH treatment and was also seen with MDMA but not METH treatment. Several weeks after drug administration, both MDMA/METH groups, both METH groups and the higher dose MDMA group showed decreased social interaction relative to controls, while both MDMA/METH groups and the lower dose MDMA group showed increased anxiety-like behaviour on the emergence test. MDMA treatment caused 5-HT and 5-HIAA depletion in several brain regions, while METH treatment reduced dopamine in the prefrontal cortex. Combined MDMA/METH treatment caused 5-HT and 5-HIAA depletion in several brain regions and a unique depletion of dopamine and DOPAC in the striatum. These results suggest that MDMA and METH in combination may have greater adverse acute effects (head-weaving, body temperature) and long-term effects (decreased social interaction, increased emergence anxiety, dopamine depletion) than equivalent doses of either drug alone.
Molecular imaging of serotonin degeneration in mild cognitive impairment.
Smith, Gwenn S; Barrett, Frederick S; Joo, Jin Hui; Nassery, Najlla; Savonenko, Alena; Sodums, Devin J; Marano, Christopher M; Munro, Cynthia A; Brandt, Jason; Kraut, Michael A; Zhou, Yun; Wong, Dean F; Workman, Clifford I
2017-09-01
Neuropathological and neuroimaging studies have consistently demonstrated degeneration of monoamine systems, especially the serotonin system, in normal aging and Alzheimer's disease. The evidence for degeneration of the serotonin system in mild cognitive impairment is limited. Thus, the goal of the present study was to measure the serotonin transporter in vivo in mild cognitive impairment and healthy controls. The serotonin transporter is a selective marker of serotonin terminals and of the integrity of serotonin projections to cortical, subcortical and limbic regions and is found in high concentrations in the serotonergic cell bodies of origin of these projections (raphe nuclei). Twenty-eight participants with mild cognitive impairment (age 66.6±6.9, 16 males) and 28 healthy, cognitively normal, demographically matched controls (age 66.2±7.1, 15 males) underwent magnetic resonance imaging for measurement of grey matter volumes and high-resolution positron emission tomography with well-established radiotracers for the serotonin transporter and regional cerebral blood flow. Beta-amyloid imaging was performed to evaluate, in combination with the neuropsychological testing, the likelihood of subsequent cognitive decline in the participants with mild cognitive impairment. The following hypotheses were tested: 1) the serotonin transporter would be lower in mild cognitive impairment compared to controls in cortical and limbic regions, 2) in mild cognitive impairment relative to controls, the serotonin transporter would be lower to a greater extent and observed in a more widespread pattern than lower grey matter volumes or lower regional cerebral blood flow and 3) lower cortical and limbic serotonin transporters would be correlated with greater deficits in auditory-verbal and visual-spatial memory in mild cognitive impairment, not in controls. Reduced serotonin transporter availability was observed in mild cognitive impairment compared to controls in cortical and limbic areas typically affected by Alzheimer's disease pathology, as well as in sensory and motor areas, striatum and thalamus that are relatively spared in Alzheimer's disease. The reduction of the serotonin transporter in mild cognitive impairment was greater than grey matter atrophy or reductions in regional cerebral blood flow compared to controls. Lower cortical serotonin transporters were associated with worse performance on tests of auditory-verbal and visual-spatial memory in mild cognitive impairment, not in controls. The serotonin system may represent an important target for prevention and treatment of MCI, particularly the post-synaptic receptors (5-HT4 and 5-HT6), which may not be as severely affected as presynaptic aspects of the serotonin system, as indicated by the observation of lower serotonin transporters in MCI relative to healthy controls. Copyright © 2017 Elsevier Inc. All rights reserved.
Cross, Sarah; Kim, Soo-Jeong; Weiss, Lauren A.; Delahanty, Ryan J.; Sutcliffe, James S.; Leventhal, Bennett L.; Cook, Edwin H.; Veenstra-VanderWeele, Jeremy
2009-01-01
Elevated platelet serotonin (5-HT) is found in a subset of children with autism and in some of their first-degree relatives. Indices of the platelet serotonin system, including whole blood serotonin (5-HT), 5-HT binding affinity for the serotonin transporter (Km), 5-HT uptake (Vmax), and lysergic acid diethylamide (LSD) receptor binding, were previously studied in twenty-four first-degree relatives of probands with autism, half of whom were selected for elevated whole blood 5-HT levels. All subjects were then genotyped for selected polymorphisms at the SLC6A4, HTR7, HTR2A, ITGB3, and TPH1 loci. Previous studies allowed an a priori prediction of SLC6A4 haplotypes that separated the subjects into three groups that showed significantly different 5-HT binding affinity (Km, p = 0.005) and 5-HT uptake rate (Vmax, p = 0.046). Genotypes at four individual polymorphisms in SLC6A4 were not associated with platelet 5-HT indices. Haplotypes at SLC6A4 and individual genotypes of polymorphisms at SLC6A4, HTR7, HTR2A, ITGB3, and TPH1 showed no significant association with whole blood 5-HT. Haplotype analysis of two polymorphisms in TPH1 revealed a nominally significant association with whole blood 5-HT (p = 0.046). These initial studies of indices of the 5-HT system with several SNPs at loci in this system generate hypotheses for testing in other samples. PMID:17406648
Schlenstedt, Jana; Balfanz, Sabine; Baumann, Arnd; Blenau, Wolfgang
2006-09-01
The biogenic amine serotonin (5-HT) plays a key role in the regulation and modulation of many physiological and behavioural processes in both vertebrates and invertebrates. These functions are mediated through the binding of serotonin to its receptors, of which 13 subtypes have been characterized in vertebrates. We have isolated a cDNA from the honeybee Apis mellifera (Am5-ht7) sharing high similarity to members of the 5-HT(7) receptor family. Expression of the Am5-HT(7) receptor in HEK293 cells results in an increase in basal cAMP levels, suggesting that Am5-HT(7) is expressed as a constitutively active receptor. Serotonin application to Am5-ht7-transfected cells elevates cyclic adenosine 3',5'-monophosphate (cAMP) levels in a dose-dependent manner (EC(50) = 1.1-1.8 nm). The Am5-HT(7) receptor is also activated by 5-carboxamidotryptamine, whereas methiothepin acts as an inverse agonist. Receptor expression has been investigated by RT-PCR, in situ hybridization, and western blotting experiments. Receptor mRNA is expressed in the perikarya of various brain neuropils, including intrinsic mushroom body neurons, and in peripheral organs. This study marks the first comprehensive characterization of a serotonin receptor in the honeybee and should facilitate further analysis of the role(s) of the receptor in mediating the various central and peripheral effects of 5-HT.
Larvae of small white butterfly, Pieris rapae, express a novel serotonin receptor
USDA-ARS?s Scientific Manuscript database
The biogenic amine serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter in vertebrates and invertebrates. It acts in regulation and modulation of many physiological and behavioral processes through G protein-coupled receptors. Insects express five 5-HT receptor subtypes that share high simila...
Aubert, Yves; Gustison, Morgan L.; Gardner, Lindsey A.; Bohl, Michael A.; Lange, Jason R.; Allers, Kelly A.; Sommer, Bernd; Datson, Nicole A.; Abbott, David H.
2018-01-01
Introduction Psychopathological origins of personally distressing, hypoactive sexual desire disorder (HSDD) in women are unknown, but are generally attributed to an inhibitory neural regulator, serotonin (5-HT). Flibanserin, a 5-HT1A agonist and 5-HT2A antagonist, shows promise as a treatment for HSDD. Aim To test the hypothesis that female marmoset sexual behavior is enhanced by flibanserin and diminished by 8-OH-DPAT, in order to evaluate the efficacy of serotonergic modulation of female sexual behavior in a pairmate social setting comparable to humans. Methods Sexual and social behavior were examined in 8 female marmoset monkeys receiving daily flibanserin (15mg/kg), 8-OH-DPAT (0.1 mg/kg) or corresponding vehicle for 15–16 weeks in a counterbalanced, within-subject design, while housed in long-term, stable male-female pairs. Main outcome measures Marmoset pairmate interactions, including sexual and social behavior, were scored during weeks 5–6 of daily flibanserin, 8-OH-DPAT or vehicle treatment. 24-h pharmacokinetic profiles of the drugs and their metabolites, as well as drug-induced acute symptoms of the 5-HT behavioral syndrome were also assessed. Results 2-way analysis of variance reveals that flibanserin-treated females attract more male sexual interest (p = .020) and trigger increased grooming (p = .001) between partners. In contrast, 8-OH-DPAT-treated females show increased rejection of male sexual advances (p = .024), a tendency for decreased male sexual interest (p = .080), and increased aggression with their male pairmates (p = .049). Conclusions While 8-OH-DPAT-treated female marmosets display decreased sexual receptivity and increased aggressive interactions with their male pairmates, flibanserin-treated female marmosets demonstrate increased affiliative behavior with their male pairmates. Such pro-affiliation attributes may underly flibanserin’s effectiveness in treating HSDD in women. PMID:22304661
Laporta, Jimena; Keil, Kimberly P.; Vezina, Chad M.; Hernandez, Laura L.
2014-01-01
Lactation is characterized by massive transcellular flux of calcium, from the basolateral side of the mammary alveolar epithelium (blood) into the ductal lumen (milk). Regulation of calcium transport during lactation is critical for maternal and neonatal health. The monoamine serotonin (5-HT) is synthesized by the mammary gland and functions as a homeostatic regulation of lactation. Genetic ablation of tryptophan hydroxylase 1 (Tph1), which encodes the rate-limiting enzyme in non-neuronal serotonin synthesis, causes a deficiency in circulating serotonin. As a consequence maternal calcium concentrations decrease, mammary epithelial cell morphology is altered, and cell proliferation is decreased during lactation. Here we demonstrate that serotonin deficiency decreases the expression and disrupts the normal localization of calcium transporters located in the apical (PMCA2) and basolateral (CaSR, ORAI-1) membranes of the lactating mammary gland. In addition, serotonin deficiency decreases the mRNA expression of calcium transporters located in intracellular compartments (SERCA2, SPCA1 and 2). Mammary expression of serotonin receptor isoform 2b and its downstream pathways (PLCβ3, PKC and MAP-ERK1/2) are also decreased by serotonin deficiency, which might explain the numerous phenotypic alterations described above. In most cases, addition of exogenous 5-hydroxy-L-tryptophan to the Tph1 deficient mice rescued the phenotype. Our data supports the hypothesis that serotonin is necessary for proper mammary gland structure and function, to regulate blood and mammary epithelial cell transport of calcium during lactation. These findings can be applicable to the treatment of lactation-induced hypocalcemia in dairy cows and can have profound implications in humans, given the wide-spread use of selective serotonin reuptake inhibitors as antidepressants during pregnancy and lactation. PMID:25299122
Karlsson, Louise; Carlsson, Björn; Hiemke, Christoph; Ahlner, Johan; Bengtsson, Finn; Schmitt, Ulrich; Kugelberg, Fredrik C
2013-11-01
According to both in vitro and in vivo data P-glycoprotein (P-gp) may restrict the uptake of several antidepressants into the brain, thus contributing to the poor success rate of current antidepressant therapies. The therapeutic activity of citalopram resides in the S-enantiomer, whereas the R-enantiomer is practically devoid of serotonin reuptake potency. To date, no in vivo data are available that address whether the enantiomers of citalopram and its metabolites are substrates of P-gp. P-gp knockout (abcb1ab (-/-)) and wild-type (abcb1ab (+/+)) mice underwent acute (single-dose) and chronic (two daily doses for 10 days) treatment with citalopram (10mg/kg) or escitalopram (5mg/kg) Serum and brain samples were collected 1-6h after the first or last i.p. injection for subsequent drug analysis by an enantioselective HPLC method. In brain, 3-fold higher concentrations of S- and R-citalopram, and its metabolites, were found in abcb1ab (-/-) mice than in abcb1ab (+/+) mice after both acute and chronic citalopram treatments. After escitalopram treatment, the S-citalopram brain concentration was 3-5 times higher in the knockout mice than in controls. The results provide novel evidence that the enantiomers of citalopram are substrates of P-gp. Possible clinical and toxicological implications of this finding need to be further elucidated. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.
Serotonin modulates insect hemocyte phagocytosis via two different serotonin receptors
Qi, Yi-xiang; Huang, Jia; Li, Meng-qi; Wu, Ya-su; Xia, Ren-ying; Ye, Gong-yin
2016-01-01
Serotonin (5-HT) modulates both neural and immune responses in vertebrates, but its role in insect immunity remains uncertain. We report that hemocytes in the caterpillar, Pieris rapae are able to synthesize 5-HT following activation by lipopolysaccharide. The inhibition of a serotonin-generating enzyme with either pharmacological blockade or RNAi knock-down impaired hemocyte phagocytosis. Biochemical and functional experiments showed that naive hemocytes primarily express 5-HT1B and 5-HT2B receptors. The blockade of 5-HT1B significantly reduced phagocytic ability; however, the blockade of 5-HT2B increased hemocyte phagocytosis. The 5-HT1B-null Drosophila melanogaster mutants showed higher mortality than controls when infected with bacteria, due to their decreased phagocytotic ability. Flies expressing 5-HT1B or 5-HT2B RNAi in hemocytes also showed similar sensitivity to infection. Combined, these data demonstrate that 5-HT mediates hemocyte phagocytosis through 5-HT1B and 5-HT2B receptors and serotonergic signaling performs critical modulatory functions in immune systems of animals separated by 500 million years of evolution. DOI: http://dx.doi.org/10.7554/eLife.12241.001 PMID:26974346
Effects of delayed laboratory processing on platelet serotonin levels.
Sanner, Jennifer E; Frazier, Lorraine; Udtha, Malini
2013-01-01
Despite the availability of established guidelines for measuring platelet serotonin, these guidelines may be difficult to follow in a hospital setting where time to processing may vary from sample to sample. The purpose of this study was to evaluate the effect of the time to processing of human blood samples on the stability of the enzyme-linked immunosorbent assay (ELISA) for the determination of platelet serotonin levels in human plasma. Human blood samples collected from a convenience sample of eight healthy volunteers were analyzed to determine platelet serotonin levels from plasma collected in ethylene diamine tetra acetic acid (EDTA) tubes and stored at 4°C for 3 hr, 5 hr, 8 hr, and 12 hr. Refrigeration storage at 4°C for 3 hr, 5 hr, 8 hr, and 12 hr altered the platelet serotonin measurement when compared to immediate processing. The bias for the samples stored at 4°C for 3 hr was 102.3 (±217.39 ng/10(9) platelets), for 5 hr was 200.1 (±132.76 ng/10(9) platelets), for 8 hr was 146.9 (±221.41 ng/10(9) platelets), and for 12 hr was -67.6 (±349.60 ng/10(9) platelets). Results from this study show that accurate measurement of platelet serotonin levels is dependent on time to processing. Researchers should therefore follow a standardized laboratory guideline for obtaining immediate platelet serotonin levels after blood sample collection.
Dogan, Kamil Hakan; Unaldi, Mustafa; Demirci, Serafettin
2016-09-01
Although suicide is a preventable public health problem, objective assays for suicide risk are limited. In this study, it was aimed to determine levels of S100B protein and serotonin as a marker for risk of suicide. S100B protein and serotonin levels were investigated with ELISA method in the cerebrospinal fluid (CSF) in medicolegal autopsy cases, including those of suicide cases (n = 32) and nonsuicide cases (n = 56). The CSF S100B levels were higher (9.3 ± 2.9 ng/mL vs. 5.4 ± 2.0 ng/mL), and serotonin levels were lower (10.4 ± 4.9 ng/mL vs. 19.0 ± 5.7 ng/mL) in suicide group than nonsuicide group (p < 0.05). There was no correlation between S100B protein and serotonin levels with gender, age groups, postmortem interval, and cause of death. It is concluded that both S100B protein and serotonin in CSF may be useful for determination of suicide risk. © 2016 American Academy of Forensic Sciences.
Morton, Russell A; Yanagawa, Yuchio; Valenzuela, C Fernando
2015-01-01
Alterations in the development of the serotonin system can have prolonged effects, including depression and anxiety disorders later in life. Serotonin axonal projections from the dorsal raphe undergo extensive refinement during the first 2 weeks of postnatal life in rodents (equivalent to the third trimester of human pregnancy). However, little is known about the functional properties of serotonin and GABA neurons in the dorsal raphe during this critical developmental period. We assessed the functional properties and synaptic connectivity of putative serotoninergic neurons and GABAergic neurons in the dorsal raphe during early [postnatal day (P) P5-P7] and late (P15-P17) stages of the third trimester equivalent period using electrophysiology. Our studies demonstrate that GABAergic neurons are hyperexcitable at P5-P7 relative to P15-P17. Furthermore, putative serotonin neurons exhibit an increase in both excitatory and GABAA receptor-mediated spontaneous postsynaptic currents during this developmental period. Our data suggest that GABAergic neurons and putative serotonin neurons undergo significant electrophysiological changes during neonatal development.
Hofmann, Alejandro D; Friedmacher, Florian; Hunziker, Manuela; Takahashi, Hiromizu; Duess, Johannes W; Gosemann, Jan-Hendrik; Puri, Prem
2014-06-01
Congenital diaphragmatic hernia (CDH) is attributed to severe pulmonary hypoplasia and pulmonary hypertension (PH). PH is characterized by structural changes resulting in vascular remodeling. Serotonin, a potent vasoconstrictor, plays a central role in the development of PH. It exerts its constricting effects on the vessels via Serotonin receptor 2A (5-HT2A) and induces pulmonary smooth muscle cell proliferation via the serotonin transporter (5-HTT). This study was designed to investigate expressions of 5-HT2A and 5-HTT in the pulmonary vasculature of rats with nitrofen-induced CDH. Rats were exposed to nitrofen or vehicle on D9. Fetuses were sacrificed on D21 and divided into nitrofen and control group (n=32). Pulmonary RNA was extracted and mRNA level of 5HT2A was determined by qRT-PCR. Protein expression of 5HT2A and 5-HTT was investigated by western blotting. Confocal immunofluorescence double-staining for 5-HT2A, 5-HTT, and alpha smooth muscle actin were performed. Pulmonary 5-HT2A gene expression levels were significantly increased in nitrofen-induced CDH compared to controls. Western blotting and confocal microscopy confirmed increased pulmonary protein expression in CDH lungs compared to controls. Increased gene and protein expression of 5HT2A and 5-HTT in the pulmonary vasculature of nitrofen-induced CDH lungs suggest that 5HT2A and 5-HTT are important mediators of PH in nitrofen-induced CDH. Copyright © 2014 Elsevier Inc. All rights reserved.
Serotonin inhibits low-threshold spike interneurons in the striatum
Cains, Sarah; Blomeley, Craig P; Bracci, Enrico
2012-01-01
Low-threshold spike interneurons (LTSIs) are important elements of the striatal architecture and the only known source of nitric oxide in this nucleus, but their rarity has so far prevented systematic studies. Here, we used transgenic mice in which green fluorescent protein is expressed under control of the neuropeptide Y (NPY) promoter and striatal NPY-expressing LTSIs can be easily identified, to investigate the effects of serotonin on these neurons. In sharp contrast with its excitatory action on other striatal interneurons, serotonin (30 μm) strongly inhibited LTSIs, reducing or abolishing their spontaneous firing activity and causing membrane hyperpolarisations. These hyperpolarisations persisted in the presence of tetrodotoxin, were mimicked by 5-HT2C receptor agonists and reversed by 5-HT2C antagonists. Voltage-clamp slow-ramp experiments showed that serotonin caused a strong increase in an outward current activated by depolarisations that was blocked by the specific M current blocker XE 991. In current-clamp experiments, XE 991 per se caused membrane depolarisations in LTSIs and subsequent application of serotonin (in the presence of XE 991) failed to affect these neurons. We concluded that serotonin strongly inhibits striatal LTSIs acting through postsynaptic 5-HT2C receptors and increasing an M type current. PMID:22495583
Okamoto, Nagahisa; Sakamoto, Kota; Yamada, Maki
2012-01-01
The serotonin syndrome, which is characterized by psychiatric, autonomic nervous and neurological symptoms, is considered to be caused by excessive stimulation of the 5-HT1A and 5-HT2 receptors in the gray matter and spinal cord of the central nervous system, after the start of dosing or increase of the dose of a serotoninergic drug. There have been hardly any reports of induction of serotonin syndrome by electroconvulsive therapy (ECT) in combination with antidepressant. We present the case of a female patient with major depressive disorder (MDD) who developed transient serotonin syndrome soon after the first session of ECT in combination with paroxetine. Paroxetine was discontinued, and her psychiatric, autonomic nervous and neurological symptoms were gradually relieved and disappeared within 2 days. We performed the second ECT session 5 days after the initial session and performed 12 sessions of ECT without any changes in the procedure of ECT and anesthesia, but no symptoms of SS were observed. Finally, her MDD remitted. ECT might cause transiently increased blood-brain barrier (BBB) permeability and enhance the transmissivity of the antidepressant in BBB. Therefore, it is necessary to pay attention to rare side effect of serotonin syndrome by ECT in combination with antidepressant.
Nishi, Kyoko; Takahashi, Sho
2013-01-01
An estimate of serotonergic innervation density and regional serotonin (5-HT) concentration was performed from the distribution of in situ produced labelled α-methyl-serotonin. Rats were injected with (3H) labelled α-methyl-L-tryptophan and the tracer distribution was measured using the autoradiographic method 14 days following the injection. In a separate experiment, the total brain concentration of 5-HT in the rat brain was found to be 2.4 ± 0.2 nmol/g. Based on this, and the assumption that the specific activity of in situ produced α-methyl-serotonin is the same as that of the injected tracer, it was possible to estimate the regional concentrations of 5-HT and the relative concentration of regional serotonergic innervations. It was found, and reported for the first time here, that the highest concentration of serotonergic innervation is present in the solitary nucleus. Regionally measured 5-HT concentrations accord well with previously reported concentrations of 5-HT. PMID:21472458
Effects of Early Serotonin Programming on Fear Response, Memory and Aggression
USDA-ARS?s Scientific Manuscript database
The neurotransmitter serotonin (5-HT) also acts as a neurogenic compound in the developing brain. Early administration of a 5-HT agonist could alter development of serotonergic circuitry, altering behaviors mediated by 5-HT signaling, including memory, fear and aggression. The present study was desi...
Effects of Postnatal Serotonin Agonism on Fear Response and Memory
USDA-ARS?s Scientific Manuscript database
The neurotransmitter serotonin (5-HT) also acts as a neurogenic compound in the developing brain. Early administration of a 5-HT agonist could alter the development of the serotonergic circuitry, altering behaviors mediated by 5-HT signaling, such as memory, fear and aggression. White leghorn chicks...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhat, G.B.; Block, E.R.
1990-02-26
Alterations in the physical state and composition of membrane lipids have been shown to interfere with a number of critical cellular and membrane functions including transmembrane transport. The authors have reported that hypoxia has profound effects upon the physical state and lipid composition of the PAEC plasma membrane bilayer and have suggested that this is responsible for increased serotonin uptake by these cells. In order to determine whether hypoxia has a direct effect on the plasma membrane transport of serotonin, they measured serotonin transport activity (1) in plasma membrane vesicles isolated from normoxic (20% O{sub 2}-5% CO{sub 2}) and hypoxicmore » (0% O{sub 2}-5% CO{sub 2}) PAEC and (2) in PAEC plasma membrane vesicles that were exposed directly to normoxia or hypoxia. A 24-h exposure of PAEC to hypoxia resulted in a 40% increase in specific serotonin transport by plasma membrane vesicles derived from these cells. When plasma membrane vesicles were isolated and then directly exposed to normoxia or hypoxia for 1 h at 37C, a 31% increase in specific 5-HT transport was observed in hypoxic vesicles. Hypoxia did not alter the Km of serotonin transport (normoxia = 3.47 {mu}M versus hypoxia = 3.76 {mu}M) but markedly increased the maximal rate of transport (V{sup max}) (normoxia = 202.4 pmol/min/mg protein versus hypoxia = 317.9 pmol/min/mg protein). These results indicate that hypoxia increases serotonin transport in PAEC by a direct effect on the plasma membrane leading to an increase in the effective number of transporter molecules without alteration in transporter affinity for serotonin.« less
Odaka, Yuji; Takahashi, Jun; Tsuburaya, Ryuji; Nishimiya, Kensuke; Hao, Kiyotaka; Matsumoto, Yasuharu; Ito, Kenta; Sakata, Yasuhiko; Miyata, Satoshi; Manita, Daisuke; Hirowatari, Yuji; Shimokawa, Hiroaki
2017-02-14
Although the importance of coronary microvascular dysfunction (CMD) has been emerging, reliable biomarkers for CMD remain to be developed. We examined the potential usefulness of plasma concentration of serotonin to diagnose CMD in patients with suspected angina and unobstructive coronary arteries. We enrolled 198 consecutive patients (M/F 116/82, 60.2 ± 13.3 years old) who underwent acetylcholine provocation test and measured plasma serotonin concentration. Coronary microvascular dysfunction was defined as myocardial lactate production without or prior to the occurrence of epicardial coronary spasm during acetylcholine provocation test. Although no statistical difference in plasma concentration of serotonin [median (inter-quartile range) nmol/L] was noted between the vasospastic angina (VSA) and non-VSA groups [6.8 (3.8, 10.9) vs. 5.1 (3.7, 8.4), P = 0.135], it was significantly higher in patients with CMD compared with those without it [7.7 (4.5, 14.2) vs. 5.6 (3.7, 9.3), P = 0.008]. Among the four groups classified according to the presence or absence of VSA and CMD, serotonin concentration was highest in the VSA with CMD group. Importantly, there was a positive correlation between plasma serotonin concentration and baseline thrombolysis in myocardial infarction frame count (P = 0.001), a marker of coronary vascular resistance. The classification and regression trees analysis showed that plasma serotonin concentration of 9.55 nmol/L was the first discriminator to stratify the risk for the presence of CMD. In multivariable analysis, serotonin concentration greater than the cut-off value had the largest odds ratio in the prediction of CMD [odds ratio (95% confidence interval) 2.63 (1.28-5.49), P = 0.009]. Plasma concentration of serotonin may be a novel biomarker for CMD in patients with angina and unobstructive coronary arteries. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For Permissions, please email: journals.permissions@oup.com.
Nicol, Jennifer J E; Yarema, Mark C; Jones, Graham R; Martz, Walter; Purssell, Roy A; MacDonald, Judy C; Wishart, Ian; Durigon, Monica; Tzemis, Despina; Buxton, Jane A
2015-01-01
Paramethoxymethamphetamine (PMMA) is a ring-substituted amphetamine similar in structure to 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy"), but substantially more toxic. We describe the clinical features of fatal exposures in the provinces of Alberta and British Columbia, Canada. We conducted a retrospective case series on deaths in Alberta and BC between June 2011 and April 2012 for which forensic toxicologic analysis was positive for PMMA and the drug was implicated as the primary toxic agent. Data collected included patient demographics, exposure history, clinical features, investigations, therapy provided and postmortem toxicologic findings. A total of 27 PMMA-associated deaths (20 in Alberta, 7 in BC) were reported in the 11-month period. The median age was 24 (range 14-52) years, and 22 (81%) were male. Ten patients were pronounced dead at the scene, and 17 died in hospital. The median time from exposure to death was 17 (range 5-264) hours. The median first-recorded vital signs (and ranges) were: heart rate 160 (86-201) beats/min, blood pressure 89/43 (69/30-162/83) mm Hg, respiratory rate 40 (26-48) breaths/min, oxygen saturation 81% (68%-100%) and temperature 39.4°C (34-43.8°C). Sixteen of the 17 people who died in hospital presented with clinical features consistent with serotonin syndrome. End-organ dysfunction included hepatic (30%) and acute kidney injury (85%), rhabdomyolysis (54%), coagulopathy (61%) and cardiac ischemia (15%). Other drugs identified on toxicologic analysis were MDMA (n = 27), cocaine or its metabolite benzoylecgonine (n = 14) and methamphetamine (n = 12). Exposure to PMMA was characterized by multiorgan dysfunction and serotonin syndrome, followed by cardiovascular collapse. In addition to PMMA, multiple synthetic amphetamines were present on toxicologic analysis. When evaluating patients suspected of exposure to sympathomimetic drugs of abuse, clinicians must anticipate multiple clinical effects from the increased release of dopamine, serotonin, norepinephrine and other neurotransmitters.